SemaTemplate.cpp revision 5c7bf42ef16dc767615bed10f3b7b3c1265314e1
1d70d1c4aa6b9b2f4713d79f442dbf66a3f702c9bDmitry V. Levin//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2d70d1c4aa6b9b2f4713d79f442dbf66a3f702c9bDmitry V. Levin// 3d70d1c4aa6b9b2f4713d79f442dbf66a3f702c9bDmitry V. Levin// The LLVM Compiler Infrastructure 4d70d1c4aa6b9b2f4713d79f442dbf66a3f702c9bDmitry V. Levin// 5d70d1c4aa6b9b2f4713d79f442dbf66a3f702c9bDmitry V. Levin// This file is distributed under the University of Illinois Open Source 6d70d1c4aa6b9b2f4713d79f442dbf66a3f702c9bDmitry V. Levin// License. See LICENSE.TXT for details. 7d70d1c4aa6b9b2f4713d79f442dbf66a3f702c9bDmitry V. Levin//===----------------------------------------------------------------------===/ 85105d4ac960b8cd2bfa5f9f907806aa388235889Dmitry V. Levin// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "clang/Sema/SemaInternal.h" 13#include "clang/Sema/Lookup.h" 14#include "clang/Sema/Scope.h" 15#include "clang/Sema/Template.h" 16#include "clang/Sema/TemplateDeduction.h" 17#include "TreeTransform.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ExprCXX.h" 21#include "clang/AST/DeclFriend.h" 22#include "clang/AST/DeclTemplate.h" 23#include "clang/AST/RecursiveASTVisitor.h" 24#include "clang/AST/TypeVisitor.h" 25#include "clang/Sema/DeclSpec.h" 26#include "clang/Sema/ParsedTemplate.h" 27#include "clang/Basic/LangOptions.h" 28#include "clang/Basic/PartialDiagnostic.h" 29#include "llvm/ADT/StringExtras.h" 30using namespace clang; 31using namespace sema; 32 33// Exported for use by Parser. 34SourceRange 35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 36 unsigned N) { 37 if (!N) return SourceRange(); 38 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 39} 40 41/// \brief Determine whether the declaration found is acceptable as the name 42/// of a template and, if so, return that template declaration. Otherwise, 43/// returns NULL. 44static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 45 NamedDecl *Orig) { 46 NamedDecl *D = Orig->getUnderlyingDecl(); 47 48 if (isa<TemplateDecl>(D)) 49 return Orig; 50 51 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 52 // C++ [temp.local]p1: 53 // Like normal (non-template) classes, class templates have an 54 // injected-class-name (Clause 9). The injected-class-name 55 // can be used with or without a template-argument-list. When 56 // it is used without a template-argument-list, it is 57 // equivalent to the injected-class-name followed by the 58 // template-parameters of the class template enclosed in 59 // <>. When it is used with a template-argument-list, it 60 // refers to the specified class template specialization, 61 // which could be the current specialization or another 62 // specialization. 63 if (Record->isInjectedClassName()) { 64 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 65 if (Record->getDescribedClassTemplate()) 66 return Record->getDescribedClassTemplate(); 67 68 if (ClassTemplateSpecializationDecl *Spec 69 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 70 return Spec->getSpecializedTemplate(); 71 } 72 73 return 0; 74 } 75 76 return 0; 77} 78 79static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) { 80 // The set of class templates we've already seen. 81 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 82 LookupResult::Filter filter = R.makeFilter(); 83 while (filter.hasNext()) { 84 NamedDecl *Orig = filter.next(); 85 NamedDecl *Repl = isAcceptableTemplateName(C, Orig); 86 if (!Repl) 87 filter.erase(); 88 else if (Repl != Orig) { 89 90 // C++ [temp.local]p3: 91 // A lookup that finds an injected-class-name (10.2) can result in an 92 // ambiguity in certain cases (for example, if it is found in more than 93 // one base class). If all of the injected-class-names that are found 94 // refer to specializations of the same class template, and if the name 95 // is followed by a template-argument-list, the reference refers to the 96 // class template itself and not a specialization thereof, and is not 97 // ambiguous. 98 // 99 // FIXME: Will we eventually have to do the same for alias templates? 100 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 101 if (!ClassTemplates.insert(ClassTmpl)) { 102 filter.erase(); 103 continue; 104 } 105 106 // FIXME: we promote access to public here as a workaround to 107 // the fact that LookupResult doesn't let us remember that we 108 // found this template through a particular injected class name, 109 // which means we end up doing nasty things to the invariants. 110 // Pretending that access is public is *much* safer. 111 filter.replace(Repl, AS_public); 112 } 113 } 114 filter.done(); 115} 116 117TemplateNameKind Sema::isTemplateName(Scope *S, 118 CXXScopeSpec &SS, 119 bool hasTemplateKeyword, 120 UnqualifiedId &Name, 121 ParsedType ObjectTypePtr, 122 bool EnteringContext, 123 TemplateTy &TemplateResult, 124 bool &MemberOfUnknownSpecialization) { 125 assert(getLangOptions().CPlusPlus && "No template names in C!"); 126 127 DeclarationName TName; 128 MemberOfUnknownSpecialization = false; 129 130 switch (Name.getKind()) { 131 case UnqualifiedId::IK_Identifier: 132 TName = DeclarationName(Name.Identifier); 133 break; 134 135 case UnqualifiedId::IK_OperatorFunctionId: 136 TName = Context.DeclarationNames.getCXXOperatorName( 137 Name.OperatorFunctionId.Operator); 138 break; 139 140 case UnqualifiedId::IK_LiteralOperatorId: 141 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 142 break; 143 144 default: 145 return TNK_Non_template; 146 } 147 148 QualType ObjectType = ObjectTypePtr.get(); 149 150 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 151 LookupOrdinaryName); 152 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 153 MemberOfUnknownSpecialization); 154 if (R.empty()) return TNK_Non_template; 155 if (R.isAmbiguous()) { 156 // Suppress diagnostics; we'll redo this lookup later. 157 R.suppressDiagnostics(); 158 159 // FIXME: we might have ambiguous templates, in which case we 160 // should at least parse them properly! 161 return TNK_Non_template; 162 } 163 164 TemplateName Template; 165 TemplateNameKind TemplateKind; 166 167 unsigned ResultCount = R.end() - R.begin(); 168 if (ResultCount > 1) { 169 // We assume that we'll preserve the qualifier from a function 170 // template name in other ways. 171 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 172 TemplateKind = TNK_Function_template; 173 174 // We'll do this lookup again later. 175 R.suppressDiagnostics(); 176 } else { 177 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 178 179 if (SS.isSet() && !SS.isInvalid()) { 180 NestedNameSpecifier *Qualifier 181 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 182 Template = Context.getQualifiedTemplateName(Qualifier, 183 hasTemplateKeyword, TD); 184 } else { 185 Template = TemplateName(TD); 186 } 187 188 if (isa<FunctionTemplateDecl>(TD)) { 189 TemplateKind = TNK_Function_template; 190 191 // We'll do this lookup again later. 192 R.suppressDiagnostics(); 193 } else { 194 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD)); 195 TemplateKind = TNK_Type_template; 196 } 197 } 198 199 TemplateResult = TemplateTy::make(Template); 200 return TemplateKind; 201} 202 203bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 204 SourceLocation IILoc, 205 Scope *S, 206 const CXXScopeSpec *SS, 207 TemplateTy &SuggestedTemplate, 208 TemplateNameKind &SuggestedKind) { 209 // We can't recover unless there's a dependent scope specifier preceding the 210 // template name. 211 // FIXME: Typo correction? 212 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 213 computeDeclContext(*SS)) 214 return false; 215 216 // The code is missing a 'template' keyword prior to the dependent template 217 // name. 218 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 219 Diag(IILoc, diag::err_template_kw_missing) 220 << Qualifier << II.getName() 221 << FixItHint::CreateInsertion(IILoc, "template "); 222 SuggestedTemplate 223 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 224 SuggestedKind = TNK_Dependent_template_name; 225 return true; 226} 227 228void Sema::LookupTemplateName(LookupResult &Found, 229 Scope *S, CXXScopeSpec &SS, 230 QualType ObjectType, 231 bool EnteringContext, 232 bool &MemberOfUnknownSpecialization) { 233 // Determine where to perform name lookup 234 MemberOfUnknownSpecialization = false; 235 DeclContext *LookupCtx = 0; 236 bool isDependent = false; 237 if (!ObjectType.isNull()) { 238 // This nested-name-specifier occurs in a member access expression, e.g., 239 // x->B::f, and we are looking into the type of the object. 240 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 241 LookupCtx = computeDeclContext(ObjectType); 242 isDependent = ObjectType->isDependentType(); 243 assert((isDependent || !ObjectType->isIncompleteType()) && 244 "Caller should have completed object type"); 245 } else if (SS.isSet()) { 246 // This nested-name-specifier occurs after another nested-name-specifier, 247 // so long into the context associated with the prior nested-name-specifier. 248 LookupCtx = computeDeclContext(SS, EnteringContext); 249 isDependent = isDependentScopeSpecifier(SS); 250 251 // The declaration context must be complete. 252 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 253 return; 254 } 255 256 bool ObjectTypeSearchedInScope = false; 257 if (LookupCtx) { 258 // Perform "qualified" name lookup into the declaration context we 259 // computed, which is either the type of the base of a member access 260 // expression or the declaration context associated with a prior 261 // nested-name-specifier. 262 LookupQualifiedName(Found, LookupCtx); 263 264 if (!ObjectType.isNull() && Found.empty()) { 265 // C++ [basic.lookup.classref]p1: 266 // In a class member access expression (5.2.5), if the . or -> token is 267 // immediately followed by an identifier followed by a <, the 268 // identifier must be looked up to determine whether the < is the 269 // beginning of a template argument list (14.2) or a less-than operator. 270 // The identifier is first looked up in the class of the object 271 // expression. If the identifier is not found, it is then looked up in 272 // the context of the entire postfix-expression and shall name a class 273 // or function template. 274 if (S) LookupName(Found, S); 275 ObjectTypeSearchedInScope = true; 276 } 277 } else if (isDependent && (!S || ObjectType.isNull())) { 278 // We cannot look into a dependent object type or nested nme 279 // specifier. 280 MemberOfUnknownSpecialization = true; 281 return; 282 } else { 283 // Perform unqualified name lookup in the current scope. 284 LookupName(Found, S); 285 } 286 287 if (Found.empty() && !isDependent) { 288 // If we did not find any names, attempt to correct any typos. 289 DeclarationName Name = Found.getLookupName(); 290 if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx, 291 false, CTC_CXXCasts)) { 292 FilterAcceptableTemplateNames(Context, Found); 293 if (!Found.empty()) { 294 if (LookupCtx) 295 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 296 << Name << LookupCtx << Found.getLookupName() << SS.getRange() 297 << FixItHint::CreateReplacement(Found.getNameLoc(), 298 Found.getLookupName().getAsString()); 299 else 300 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 301 << Name << Found.getLookupName() 302 << FixItHint::CreateReplacement(Found.getNameLoc(), 303 Found.getLookupName().getAsString()); 304 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 305 Diag(Template->getLocation(), diag::note_previous_decl) 306 << Template->getDeclName(); 307 } 308 } else { 309 Found.clear(); 310 Found.setLookupName(Name); 311 } 312 } 313 314 FilterAcceptableTemplateNames(Context, Found); 315 if (Found.empty()) { 316 if (isDependent) 317 MemberOfUnknownSpecialization = true; 318 return; 319 } 320 321 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 322 // C++ [basic.lookup.classref]p1: 323 // [...] If the lookup in the class of the object expression finds a 324 // template, the name is also looked up in the context of the entire 325 // postfix-expression and [...] 326 // 327 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 328 LookupOrdinaryName); 329 LookupName(FoundOuter, S); 330 FilterAcceptableTemplateNames(Context, FoundOuter); 331 332 if (FoundOuter.empty()) { 333 // - if the name is not found, the name found in the class of the 334 // object expression is used, otherwise 335 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 336 // - if the name is found in the context of the entire 337 // postfix-expression and does not name a class template, the name 338 // found in the class of the object expression is used, otherwise 339 } else if (!Found.isSuppressingDiagnostics()) { 340 // - if the name found is a class template, it must refer to the same 341 // entity as the one found in the class of the object expression, 342 // otherwise the program is ill-formed. 343 if (!Found.isSingleResult() || 344 Found.getFoundDecl()->getCanonicalDecl() 345 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 346 Diag(Found.getNameLoc(), 347 diag::ext_nested_name_member_ref_lookup_ambiguous) 348 << Found.getLookupName() 349 << ObjectType; 350 Diag(Found.getRepresentativeDecl()->getLocation(), 351 diag::note_ambig_member_ref_object_type) 352 << ObjectType; 353 Diag(FoundOuter.getFoundDecl()->getLocation(), 354 diag::note_ambig_member_ref_scope); 355 356 // Recover by taking the template that we found in the object 357 // expression's type. 358 } 359 } 360 } 361} 362 363/// ActOnDependentIdExpression - Handle a dependent id-expression that 364/// was just parsed. This is only possible with an explicit scope 365/// specifier naming a dependent type. 366ExprResult 367Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 368 const DeclarationNameInfo &NameInfo, 369 bool isAddressOfOperand, 370 const TemplateArgumentListInfo *TemplateArgs) { 371 NestedNameSpecifier *Qualifier 372 = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 373 374 DeclContext *DC = getFunctionLevelDeclContext(); 375 376 if (!isAddressOfOperand && 377 isa<CXXMethodDecl>(DC) && 378 cast<CXXMethodDecl>(DC)->isInstance()) { 379 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 380 381 // Since the 'this' expression is synthesized, we don't need to 382 // perform the double-lookup check. 383 NamedDecl *FirstQualifierInScope = 0; 384 385 return Owned(CXXDependentScopeMemberExpr::Create(Context, 386 /*This*/ 0, ThisType, 387 /*IsArrow*/ true, 388 /*Op*/ SourceLocation(), 389 Qualifier, SS.getRange(), 390 FirstQualifierInScope, 391 NameInfo, 392 TemplateArgs)); 393 } 394 395 return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs); 396} 397 398ExprResult 399Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 400 const DeclarationNameInfo &NameInfo, 401 const TemplateArgumentListInfo *TemplateArgs) { 402 return Owned(DependentScopeDeclRefExpr::Create(Context, 403 static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 404 SS.getRange(), 405 NameInfo, 406 TemplateArgs)); 407} 408 409/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 410/// that the template parameter 'PrevDecl' is being shadowed by a new 411/// declaration at location Loc. Returns true to indicate that this is 412/// an error, and false otherwise. 413bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 414 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 415 416 // Microsoft Visual C++ permits template parameters to be shadowed. 417 if (getLangOptions().Microsoft) 418 return false; 419 420 // C++ [temp.local]p4: 421 // A template-parameter shall not be redeclared within its 422 // scope (including nested scopes). 423 Diag(Loc, diag::err_template_param_shadow) 424 << cast<NamedDecl>(PrevDecl)->getDeclName(); 425 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 426 return true; 427} 428 429/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 430/// the parameter D to reference the templated declaration and return a pointer 431/// to the template declaration. Otherwise, do nothing to D and return null. 432TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 433 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 434 D = Temp->getTemplatedDecl(); 435 return Temp; 436 } 437 return 0; 438} 439 440ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 441 SourceLocation EllipsisLoc) const { 442 assert(Kind == Template && 443 "Only template template arguments can be pack expansions here"); 444 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 445 "Template template argument pack expansion without packs"); 446 ParsedTemplateArgument Result(*this); 447 Result.EllipsisLoc = EllipsisLoc; 448 return Result; 449} 450 451static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 452 const ParsedTemplateArgument &Arg) { 453 454 switch (Arg.getKind()) { 455 case ParsedTemplateArgument::Type: { 456 TypeSourceInfo *DI; 457 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 458 if (!DI) 459 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 460 return TemplateArgumentLoc(TemplateArgument(T), DI); 461 } 462 463 case ParsedTemplateArgument::NonType: { 464 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 465 return TemplateArgumentLoc(TemplateArgument(E), E); 466 } 467 468 case ParsedTemplateArgument::Template: { 469 TemplateName Template = Arg.getAsTemplate().get(); 470 return TemplateArgumentLoc(TemplateArgument(Template, 471 Arg.getEllipsisLoc().isValid()), 472 Arg.getScopeSpec().getRange(), 473 Arg.getLocation(), 474 Arg.getEllipsisLoc()); 475 } 476 } 477 478 llvm_unreachable("Unhandled parsed template argument"); 479 return TemplateArgumentLoc(); 480} 481 482/// \brief Translates template arguments as provided by the parser 483/// into template arguments used by semantic analysis. 484void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 485 TemplateArgumentListInfo &TemplateArgs) { 486 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 487 TemplateArgs.addArgument(translateTemplateArgument(*this, 488 TemplateArgsIn[I])); 489} 490 491/// ActOnTypeParameter - Called when a C++ template type parameter 492/// (e.g., "typename T") has been parsed. Typename specifies whether 493/// the keyword "typename" was used to declare the type parameter 494/// (otherwise, "class" was used), and KeyLoc is the location of the 495/// "class" or "typename" keyword. ParamName is the name of the 496/// parameter (NULL indicates an unnamed template parameter) and 497/// ParamName is the location of the parameter name (if any). 498/// If the type parameter has a default argument, it will be added 499/// later via ActOnTypeParameterDefault. 500Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 501 SourceLocation EllipsisLoc, 502 SourceLocation KeyLoc, 503 IdentifierInfo *ParamName, 504 SourceLocation ParamNameLoc, 505 unsigned Depth, unsigned Position, 506 SourceLocation EqualLoc, 507 ParsedType DefaultArg) { 508 assert(S->isTemplateParamScope() && 509 "Template type parameter not in template parameter scope!"); 510 bool Invalid = false; 511 512 if (ParamName) { 513 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 514 LookupOrdinaryName, 515 ForRedeclaration); 516 if (PrevDecl && PrevDecl->isTemplateParameter()) 517 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 518 PrevDecl); 519 } 520 521 SourceLocation Loc = ParamNameLoc; 522 if (!ParamName) 523 Loc = KeyLoc; 524 525 TemplateTypeParmDecl *Param 526 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 527 Loc, Depth, Position, ParamName, Typename, 528 Ellipsis); 529 if (Invalid) 530 Param->setInvalidDecl(); 531 532 if (ParamName) { 533 // Add the template parameter into the current scope. 534 S->AddDecl(Param); 535 IdResolver.AddDecl(Param); 536 } 537 538 // C++0x [temp.param]p9: 539 // A default template-argument may be specified for any kind of 540 // template-parameter that is not a template parameter pack. 541 if (DefaultArg && Ellipsis) { 542 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 543 DefaultArg = ParsedType(); 544 } 545 546 // Handle the default argument, if provided. 547 if (DefaultArg) { 548 TypeSourceInfo *DefaultTInfo; 549 GetTypeFromParser(DefaultArg, &DefaultTInfo); 550 551 assert(DefaultTInfo && "expected source information for type"); 552 553 // Check for unexpanded parameter packs. 554 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, 555 UPPC_DefaultArgument)) 556 return Param; 557 558 // Check the template argument itself. 559 if (CheckTemplateArgument(Param, DefaultTInfo)) { 560 Param->setInvalidDecl(); 561 return Param; 562 } 563 564 Param->setDefaultArgument(DefaultTInfo, false); 565 } 566 567 return Param; 568} 569 570/// \brief Check that the type of a non-type template parameter is 571/// well-formed. 572/// 573/// \returns the (possibly-promoted) parameter type if valid; 574/// otherwise, produces a diagnostic and returns a NULL type. 575QualType 576Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 577 // We don't allow variably-modified types as the type of non-type template 578 // parameters. 579 if (T->isVariablyModifiedType()) { 580 Diag(Loc, diag::err_variably_modified_nontype_template_param) 581 << T; 582 return QualType(); 583 } 584 585 // C++ [temp.param]p4: 586 // 587 // A non-type template-parameter shall have one of the following 588 // (optionally cv-qualified) types: 589 // 590 // -- integral or enumeration type, 591 if (T->isIntegralOrEnumerationType() || 592 // -- pointer to object or pointer to function, 593 T->isPointerType() || 594 // -- reference to object or reference to function, 595 T->isReferenceType() || 596 // -- pointer to member. 597 T->isMemberPointerType() || 598 // If T is a dependent type, we can't do the check now, so we 599 // assume that it is well-formed. 600 T->isDependentType()) 601 return T; 602 // C++ [temp.param]p8: 603 // 604 // A non-type template-parameter of type "array of T" or 605 // "function returning T" is adjusted to be of type "pointer to 606 // T" or "pointer to function returning T", respectively. 607 else if (T->isArrayType()) 608 // FIXME: Keep the type prior to promotion? 609 return Context.getArrayDecayedType(T); 610 else if (T->isFunctionType()) 611 // FIXME: Keep the type prior to promotion? 612 return Context.getPointerType(T); 613 614 Diag(Loc, diag::err_template_nontype_parm_bad_type) 615 << T; 616 617 return QualType(); 618} 619 620Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 621 unsigned Depth, 622 unsigned Position, 623 SourceLocation EqualLoc, 624 Expr *Default) { 625 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 626 QualType T = TInfo->getType(); 627 628 assert(S->isTemplateParamScope() && 629 "Non-type template parameter not in template parameter scope!"); 630 bool Invalid = false; 631 632 IdentifierInfo *ParamName = D.getIdentifier(); 633 if (ParamName) { 634 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 635 LookupOrdinaryName, 636 ForRedeclaration); 637 if (PrevDecl && PrevDecl->isTemplateParameter()) 638 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 639 PrevDecl); 640 } 641 642 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 643 if (T.isNull()) { 644 T = Context.IntTy; // Recover with an 'int' type. 645 Invalid = true; 646 } 647 648 bool IsParameterPack = D.hasEllipsis(); 649 NonTypeTemplateParmDecl *Param 650 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 651 D.getIdentifierLoc(), 652 Depth, Position, ParamName, T, 653 IsParameterPack, TInfo); 654 if (Invalid) 655 Param->setInvalidDecl(); 656 657 if (D.getIdentifier()) { 658 // Add the template parameter into the current scope. 659 S->AddDecl(Param); 660 IdResolver.AddDecl(Param); 661 } 662 663 // C++0x [temp.param]p9: 664 // A default template-argument may be specified for any kind of 665 // template-parameter that is not a template parameter pack. 666 if (Default && IsParameterPack) { 667 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 668 Default = 0; 669 } 670 671 // Check the well-formedness of the default template argument, if provided. 672 if (Default) { 673 // Check for unexpanded parameter packs. 674 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 675 return Param; 676 677 TemplateArgument Converted; 678 if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) { 679 Param->setInvalidDecl(); 680 return Param; 681 } 682 683 Param->setDefaultArgument(Default, false); 684 } 685 686 return Param; 687} 688 689/// ActOnTemplateTemplateParameter - Called when a C++ template template 690/// parameter (e.g. T in template <template <typename> class T> class array) 691/// has been parsed. S is the current scope. 692Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 693 SourceLocation TmpLoc, 694 TemplateParamsTy *Params, 695 SourceLocation EllipsisLoc, 696 IdentifierInfo *Name, 697 SourceLocation NameLoc, 698 unsigned Depth, 699 unsigned Position, 700 SourceLocation EqualLoc, 701 ParsedTemplateArgument Default) { 702 assert(S->isTemplateParamScope() && 703 "Template template parameter not in template parameter scope!"); 704 705 // Construct the parameter object. 706 bool IsParameterPack = EllipsisLoc.isValid(); 707 // FIXME: Pack-ness is dropped 708 TemplateTemplateParmDecl *Param = 709 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 710 NameLoc.isInvalid()? TmpLoc : NameLoc, 711 Depth, Position, IsParameterPack, 712 Name, Params); 713 714 // If the template template parameter has a name, then link the identifier 715 // into the scope and lookup mechanisms. 716 if (Name) { 717 S->AddDecl(Param); 718 IdResolver.AddDecl(Param); 719 } 720 721 if (Params->size() == 0) { 722 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 723 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 724 Param->setInvalidDecl(); 725 } 726 727 // C++0x [temp.param]p9: 728 // A default template-argument may be specified for any kind of 729 // template-parameter that is not a template parameter pack. 730 if (IsParameterPack && !Default.isInvalid()) { 731 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 732 Default = ParsedTemplateArgument(); 733 } 734 735 if (!Default.isInvalid()) { 736 // Check only that we have a template template argument. We don't want to 737 // try to check well-formedness now, because our template template parameter 738 // might have dependent types in its template parameters, which we wouldn't 739 // be able to match now. 740 // 741 // If none of the template template parameter's template arguments mention 742 // other template parameters, we could actually perform more checking here. 743 // However, it isn't worth doing. 744 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 745 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 746 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 747 << DefaultArg.getSourceRange(); 748 return Param; 749 } 750 751 // Check for unexpanded parameter packs. 752 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 753 DefaultArg.getArgument().getAsTemplate(), 754 UPPC_DefaultArgument)) 755 return Param; 756 757 Param->setDefaultArgument(DefaultArg, false); 758 } 759 760 return Param; 761} 762 763/// ActOnTemplateParameterList - Builds a TemplateParameterList that 764/// contains the template parameters in Params/NumParams. 765Sema::TemplateParamsTy * 766Sema::ActOnTemplateParameterList(unsigned Depth, 767 SourceLocation ExportLoc, 768 SourceLocation TemplateLoc, 769 SourceLocation LAngleLoc, 770 Decl **Params, unsigned NumParams, 771 SourceLocation RAngleLoc) { 772 if (ExportLoc.isValid()) 773 Diag(ExportLoc, diag::warn_template_export_unsupported); 774 775 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 776 (NamedDecl**)Params, NumParams, 777 RAngleLoc); 778} 779 780static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 781 if (SS.isSet()) 782 T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 783 SS.getRange()); 784} 785 786DeclResult 787Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 788 SourceLocation KWLoc, CXXScopeSpec &SS, 789 IdentifierInfo *Name, SourceLocation NameLoc, 790 AttributeList *Attr, 791 TemplateParameterList *TemplateParams, 792 AccessSpecifier AS) { 793 assert(TemplateParams && TemplateParams->size() > 0 && 794 "No template parameters"); 795 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 796 bool Invalid = false; 797 798 // Check that we can declare a template here. 799 if (CheckTemplateDeclScope(S, TemplateParams)) 800 return true; 801 802 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 803 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 804 805 // There is no such thing as an unnamed class template. 806 if (!Name) { 807 Diag(KWLoc, diag::err_template_unnamed_class); 808 return true; 809 } 810 811 // Find any previous declaration with this name. 812 DeclContext *SemanticContext; 813 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 814 ForRedeclaration); 815 if (SS.isNotEmpty() && !SS.isInvalid()) { 816 SemanticContext = computeDeclContext(SS, true); 817 if (!SemanticContext) { 818 // FIXME: Produce a reasonable diagnostic here 819 return true; 820 } 821 822 if (RequireCompleteDeclContext(SS, SemanticContext)) 823 return true; 824 825 LookupQualifiedName(Previous, SemanticContext); 826 } else { 827 SemanticContext = CurContext; 828 LookupName(Previous, S); 829 } 830 831 if (Previous.isAmbiguous()) 832 return true; 833 834 NamedDecl *PrevDecl = 0; 835 if (Previous.begin() != Previous.end()) 836 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 837 838 // If there is a previous declaration with the same name, check 839 // whether this is a valid redeclaration. 840 ClassTemplateDecl *PrevClassTemplate 841 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 842 843 // We may have found the injected-class-name of a class template, 844 // class template partial specialization, or class template specialization. 845 // In these cases, grab the template that is being defined or specialized. 846 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 847 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 848 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 849 PrevClassTemplate 850 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 851 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 852 PrevClassTemplate 853 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 854 ->getSpecializedTemplate(); 855 } 856 } 857 858 if (TUK == TUK_Friend) { 859 // C++ [namespace.memdef]p3: 860 // [...] When looking for a prior declaration of a class or a function 861 // declared as a friend, and when the name of the friend class or 862 // function is neither a qualified name nor a template-id, scopes outside 863 // the innermost enclosing namespace scope are not considered. 864 if (!SS.isSet()) { 865 DeclContext *OutermostContext = CurContext; 866 while (!OutermostContext->isFileContext()) 867 OutermostContext = OutermostContext->getLookupParent(); 868 869 if (PrevDecl && 870 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 871 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 872 SemanticContext = PrevDecl->getDeclContext(); 873 } else { 874 // Declarations in outer scopes don't matter. However, the outermost 875 // context we computed is the semantic context for our new 876 // declaration. 877 PrevDecl = PrevClassTemplate = 0; 878 SemanticContext = OutermostContext; 879 } 880 } 881 882 if (CurContext->isDependentContext()) { 883 // If this is a dependent context, we don't want to link the friend 884 // class template to the template in scope, because that would perform 885 // checking of the template parameter lists that can't be performed 886 // until the outer context is instantiated. 887 PrevDecl = PrevClassTemplate = 0; 888 } 889 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 890 PrevDecl = PrevClassTemplate = 0; 891 892 if (PrevClassTemplate) { 893 // Ensure that the template parameter lists are compatible. 894 if (!TemplateParameterListsAreEqual(TemplateParams, 895 PrevClassTemplate->getTemplateParameters(), 896 /*Complain=*/true, 897 TPL_TemplateMatch)) 898 return true; 899 900 // C++ [temp.class]p4: 901 // In a redeclaration, partial specialization, explicit 902 // specialization or explicit instantiation of a class template, 903 // the class-key shall agree in kind with the original class 904 // template declaration (7.1.5.3). 905 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 906 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 907 Diag(KWLoc, diag::err_use_with_wrong_tag) 908 << Name 909 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 910 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 911 Kind = PrevRecordDecl->getTagKind(); 912 } 913 914 // Check for redefinition of this class template. 915 if (TUK == TUK_Definition) { 916 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 917 Diag(NameLoc, diag::err_redefinition) << Name; 918 Diag(Def->getLocation(), diag::note_previous_definition); 919 // FIXME: Would it make sense to try to "forget" the previous 920 // definition, as part of error recovery? 921 return true; 922 } 923 } 924 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 925 // Maybe we will complain about the shadowed template parameter. 926 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 927 // Just pretend that we didn't see the previous declaration. 928 PrevDecl = 0; 929 } else if (PrevDecl) { 930 // C++ [temp]p5: 931 // A class template shall not have the same name as any other 932 // template, class, function, object, enumeration, enumerator, 933 // namespace, or type in the same scope (3.3), except as specified 934 // in (14.5.4). 935 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 936 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 937 return true; 938 } 939 940 // Check the template parameter list of this declaration, possibly 941 // merging in the template parameter list from the previous class 942 // template declaration. 943 if (CheckTemplateParameterList(TemplateParams, 944 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 945 TPC_ClassTemplate)) 946 Invalid = true; 947 948 if (SS.isSet()) { 949 // If the name of the template was qualified, we must be defining the 950 // template out-of-line. 951 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate && 952 !(TUK == TUK_Friend && CurContext->isDependentContext())) 953 Diag(NameLoc, diag::err_member_def_does_not_match) 954 << Name << SemanticContext << SS.getRange(); 955 } 956 957 CXXRecordDecl *NewClass = 958 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 959 PrevClassTemplate? 960 PrevClassTemplate->getTemplatedDecl() : 0, 961 /*DelayTypeCreation=*/true); 962 SetNestedNameSpecifier(NewClass, SS); 963 964 ClassTemplateDecl *NewTemplate 965 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 966 DeclarationName(Name), TemplateParams, 967 NewClass, PrevClassTemplate); 968 NewClass->setDescribedClassTemplate(NewTemplate); 969 970 // Build the type for the class template declaration now. 971 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 972 T = Context.getInjectedClassNameType(NewClass, T); 973 assert(T->isDependentType() && "Class template type is not dependent?"); 974 (void)T; 975 976 // If we are providing an explicit specialization of a member that is a 977 // class template, make a note of that. 978 if (PrevClassTemplate && 979 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 980 PrevClassTemplate->setMemberSpecialization(); 981 982 // Set the access specifier. 983 if (!Invalid && TUK != TUK_Friend) 984 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 985 986 // Set the lexical context of these templates 987 NewClass->setLexicalDeclContext(CurContext); 988 NewTemplate->setLexicalDeclContext(CurContext); 989 990 if (TUK == TUK_Definition) 991 NewClass->startDefinition(); 992 993 if (Attr) 994 ProcessDeclAttributeList(S, NewClass, Attr); 995 996 if (TUK != TUK_Friend) 997 PushOnScopeChains(NewTemplate, S); 998 else { 999 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1000 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1001 NewClass->setAccess(PrevClassTemplate->getAccess()); 1002 } 1003 1004 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 1005 PrevClassTemplate != NULL); 1006 1007 // Friend templates are visible in fairly strange ways. 1008 if (!CurContext->isDependentContext()) { 1009 DeclContext *DC = SemanticContext->getRedeclContext(); 1010 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 1011 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1012 PushOnScopeChains(NewTemplate, EnclosingScope, 1013 /* AddToContext = */ false); 1014 } 1015 1016 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 1017 NewClass->getLocation(), 1018 NewTemplate, 1019 /*FIXME:*/NewClass->getLocation()); 1020 Friend->setAccess(AS_public); 1021 CurContext->addDecl(Friend); 1022 } 1023 1024 if (Invalid) { 1025 NewTemplate->setInvalidDecl(); 1026 NewClass->setInvalidDecl(); 1027 } 1028 return NewTemplate; 1029} 1030 1031/// \brief Diagnose the presence of a default template argument on a 1032/// template parameter, which is ill-formed in certain contexts. 1033/// 1034/// \returns true if the default template argument should be dropped. 1035static bool DiagnoseDefaultTemplateArgument(Sema &S, 1036 Sema::TemplateParamListContext TPC, 1037 SourceLocation ParamLoc, 1038 SourceRange DefArgRange) { 1039 switch (TPC) { 1040 case Sema::TPC_ClassTemplate: 1041 return false; 1042 1043 case Sema::TPC_FunctionTemplate: 1044 // C++ [temp.param]p9: 1045 // A default template-argument shall not be specified in a 1046 // function template declaration or a function template 1047 // definition [...] 1048 // (This sentence is not in C++0x, per DR226). 1049 if (!S.getLangOptions().CPlusPlus0x) 1050 S.Diag(ParamLoc, 1051 diag::err_template_parameter_default_in_function_template) 1052 << DefArgRange; 1053 return false; 1054 1055 case Sema::TPC_ClassTemplateMember: 1056 // C++0x [temp.param]p9: 1057 // A default template-argument shall not be specified in the 1058 // template-parameter-lists of the definition of a member of a 1059 // class template that appears outside of the member's class. 1060 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1061 << DefArgRange; 1062 return true; 1063 1064 case Sema::TPC_FriendFunctionTemplate: 1065 // C++ [temp.param]p9: 1066 // A default template-argument shall not be specified in a 1067 // friend template declaration. 1068 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1069 << DefArgRange; 1070 return true; 1071 1072 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1073 // for friend function templates if there is only a single 1074 // declaration (and it is a definition). Strange! 1075 } 1076 1077 return false; 1078} 1079 1080/// \brief Check for unexpanded parameter packs within the template parameters 1081/// of a template template parameter, recursively. 1082bool DiagnoseUnexpandedParameterPacks(Sema &S, TemplateTemplateParmDecl *TTP){ 1083 TemplateParameterList *Params = TTP->getTemplateParameters(); 1084 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 1085 NamedDecl *P = Params->getParam(I); 1086 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 1087 if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 1088 NTTP->getTypeSourceInfo(), 1089 Sema::UPPC_NonTypeTemplateParameterType)) 1090 return true; 1091 1092 continue; 1093 } 1094 1095 if (TemplateTemplateParmDecl *InnerTTP 1096 = dyn_cast<TemplateTemplateParmDecl>(P)) 1097 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 1098 return true; 1099 } 1100 1101 return false; 1102} 1103 1104/// \brief Checks the validity of a template parameter list, possibly 1105/// considering the template parameter list from a previous 1106/// declaration. 1107/// 1108/// If an "old" template parameter list is provided, it must be 1109/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1110/// template parameter list. 1111/// 1112/// \param NewParams Template parameter list for a new template 1113/// declaration. This template parameter list will be updated with any 1114/// default arguments that are carried through from the previous 1115/// template parameter list. 1116/// 1117/// \param OldParams If provided, template parameter list from a 1118/// previous declaration of the same template. Default template 1119/// arguments will be merged from the old template parameter list to 1120/// the new template parameter list. 1121/// 1122/// \param TPC Describes the context in which we are checking the given 1123/// template parameter list. 1124/// 1125/// \returns true if an error occurred, false otherwise. 1126bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1127 TemplateParameterList *OldParams, 1128 TemplateParamListContext TPC) { 1129 bool Invalid = false; 1130 1131 // C++ [temp.param]p10: 1132 // The set of default template-arguments available for use with a 1133 // template declaration or definition is obtained by merging the 1134 // default arguments from the definition (if in scope) and all 1135 // declarations in scope in the same way default function 1136 // arguments are (8.3.6). 1137 bool SawDefaultArgument = false; 1138 SourceLocation PreviousDefaultArgLoc; 1139 1140 bool SawParameterPack = false; 1141 SourceLocation ParameterPackLoc; 1142 1143 // Dummy initialization to avoid warnings. 1144 TemplateParameterList::iterator OldParam = NewParams->end(); 1145 if (OldParams) 1146 OldParam = OldParams->begin(); 1147 1148 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1149 NewParamEnd = NewParams->end(); 1150 NewParam != NewParamEnd; ++NewParam) { 1151 // Variables used to diagnose redundant default arguments 1152 bool RedundantDefaultArg = false; 1153 SourceLocation OldDefaultLoc; 1154 SourceLocation NewDefaultLoc; 1155 1156 // Variables used to diagnose missing default arguments 1157 bool MissingDefaultArg = false; 1158 1159 // C++0x [temp.param]p11: 1160 // If a template parameter of a primary class template is a template 1161 // parameter pack, it shall be the last template parameter. 1162 if (SawParameterPack && TPC == TPC_ClassTemplate) { 1163 Diag(ParameterPackLoc, 1164 diag::err_template_param_pack_must_be_last_template_parameter); 1165 Invalid = true; 1166 } 1167 1168 if (TemplateTypeParmDecl *NewTypeParm 1169 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1170 // Check the presence of a default argument here. 1171 if (NewTypeParm->hasDefaultArgument() && 1172 DiagnoseDefaultTemplateArgument(*this, TPC, 1173 NewTypeParm->getLocation(), 1174 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1175 .getSourceRange())) 1176 NewTypeParm->removeDefaultArgument(); 1177 1178 // Merge default arguments for template type parameters. 1179 TemplateTypeParmDecl *OldTypeParm 1180 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1181 1182 if (NewTypeParm->isParameterPack()) { 1183 assert(!NewTypeParm->hasDefaultArgument() && 1184 "Parameter packs can't have a default argument!"); 1185 SawParameterPack = true; 1186 ParameterPackLoc = NewTypeParm->getLocation(); 1187 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1188 NewTypeParm->hasDefaultArgument()) { 1189 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1190 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1191 SawDefaultArgument = true; 1192 RedundantDefaultArg = true; 1193 PreviousDefaultArgLoc = NewDefaultLoc; 1194 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1195 // Merge the default argument from the old declaration to the 1196 // new declaration. 1197 SawDefaultArgument = true; 1198 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1199 true); 1200 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1201 } else if (NewTypeParm->hasDefaultArgument()) { 1202 SawDefaultArgument = true; 1203 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1204 } else if (SawDefaultArgument) 1205 MissingDefaultArg = true; 1206 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1207 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1208 // Check for unexpanded parameter packs. 1209 if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 1210 NewNonTypeParm->getTypeSourceInfo(), 1211 UPPC_NonTypeTemplateParameterType)) { 1212 Invalid = true; 1213 continue; 1214 } 1215 1216 // Check the presence of a default argument here. 1217 if (NewNonTypeParm->hasDefaultArgument() && 1218 DiagnoseDefaultTemplateArgument(*this, TPC, 1219 NewNonTypeParm->getLocation(), 1220 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1221 NewNonTypeParm->removeDefaultArgument(); 1222 } 1223 1224 // Merge default arguments for non-type template parameters 1225 NonTypeTemplateParmDecl *OldNonTypeParm 1226 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1227 if (NewNonTypeParm->isParameterPack()) { 1228 assert(!NewNonTypeParm->hasDefaultArgument() && 1229 "Parameter packs can't have a default argument!"); 1230 SawParameterPack = true; 1231 ParameterPackLoc = NewNonTypeParm->getLocation(); 1232 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1233 NewNonTypeParm->hasDefaultArgument()) { 1234 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1235 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1236 SawDefaultArgument = true; 1237 RedundantDefaultArg = true; 1238 PreviousDefaultArgLoc = NewDefaultLoc; 1239 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1240 // Merge the default argument from the old declaration to the 1241 // new declaration. 1242 SawDefaultArgument = true; 1243 // FIXME: We need to create a new kind of "default argument" 1244 // expression that points to a previous non-type template 1245 // parameter. 1246 NewNonTypeParm->setDefaultArgument( 1247 OldNonTypeParm->getDefaultArgument(), 1248 /*Inherited=*/ true); 1249 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1250 } else if (NewNonTypeParm->hasDefaultArgument()) { 1251 SawDefaultArgument = true; 1252 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1253 } else if (SawDefaultArgument) 1254 MissingDefaultArg = true; 1255 } else { 1256 // Check the presence of a default argument here. 1257 TemplateTemplateParmDecl *NewTemplateParm 1258 = cast<TemplateTemplateParmDecl>(*NewParam); 1259 1260 // Check for unexpanded parameter packs, recursively. 1261 if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 1262 Invalid = true; 1263 continue; 1264 } 1265 1266 if (NewTemplateParm->hasDefaultArgument() && 1267 DiagnoseDefaultTemplateArgument(*this, TPC, 1268 NewTemplateParm->getLocation(), 1269 NewTemplateParm->getDefaultArgument().getSourceRange())) 1270 NewTemplateParm->removeDefaultArgument(); 1271 1272 // Merge default arguments for template template parameters 1273 TemplateTemplateParmDecl *OldTemplateParm 1274 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1275 if (NewTemplateParm->isParameterPack()) { 1276 assert(!NewTemplateParm->hasDefaultArgument() && 1277 "Parameter packs can't have a default argument!"); 1278 SawParameterPack = true; 1279 ParameterPackLoc = NewTemplateParm->getLocation(); 1280 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1281 NewTemplateParm->hasDefaultArgument()) { 1282 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1283 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1284 SawDefaultArgument = true; 1285 RedundantDefaultArg = true; 1286 PreviousDefaultArgLoc = NewDefaultLoc; 1287 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1288 // Merge the default argument from the old declaration to the 1289 // new declaration. 1290 SawDefaultArgument = true; 1291 // FIXME: We need to create a new kind of "default argument" expression 1292 // that points to a previous template template parameter. 1293 NewTemplateParm->setDefaultArgument( 1294 OldTemplateParm->getDefaultArgument(), 1295 /*Inherited=*/ true); 1296 PreviousDefaultArgLoc 1297 = OldTemplateParm->getDefaultArgument().getLocation(); 1298 } else if (NewTemplateParm->hasDefaultArgument()) { 1299 SawDefaultArgument = true; 1300 PreviousDefaultArgLoc 1301 = NewTemplateParm->getDefaultArgument().getLocation(); 1302 } else if (SawDefaultArgument) 1303 MissingDefaultArg = true; 1304 } 1305 1306 if (RedundantDefaultArg) { 1307 // C++ [temp.param]p12: 1308 // A template-parameter shall not be given default arguments 1309 // by two different declarations in the same scope. 1310 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1311 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1312 Invalid = true; 1313 } else if (MissingDefaultArg) { 1314 // C++ [temp.param]p11: 1315 // If a template-parameter of a class template has a default 1316 // template-argument, each subsequent template- parameter shall either 1317 // have a default template-argument supplied or be a template parameter 1318 // pack. 1319 Diag((*NewParam)->getLocation(), 1320 diag::err_template_param_default_arg_missing); 1321 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1322 Invalid = true; 1323 } 1324 1325 // If we have an old template parameter list that we're merging 1326 // in, move on to the next parameter. 1327 if (OldParams) 1328 ++OldParam; 1329 } 1330 1331 return Invalid; 1332} 1333 1334namespace { 1335 1336/// A class which looks for a use of a certain level of template 1337/// parameter. 1338struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 1339 typedef RecursiveASTVisitor<DependencyChecker> super; 1340 1341 unsigned Depth; 1342 bool Match; 1343 1344 DependencyChecker(TemplateParameterList *Params) : Match(false) { 1345 NamedDecl *ND = Params->getParam(0); 1346 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 1347 Depth = PD->getDepth(); 1348 } else if (NonTypeTemplateParmDecl *PD = 1349 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 1350 Depth = PD->getDepth(); 1351 } else { 1352 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 1353 } 1354 } 1355 1356 bool Matches(unsigned ParmDepth) { 1357 if (ParmDepth >= Depth) { 1358 Match = true; 1359 return true; 1360 } 1361 return false; 1362 } 1363 1364 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 1365 return !Matches(T->getDepth()); 1366 } 1367 1368 bool TraverseTemplateName(TemplateName N) { 1369 if (TemplateTemplateParmDecl *PD = 1370 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 1371 if (Matches(PD->getDepth())) return false; 1372 return super::TraverseTemplateName(N); 1373 } 1374 1375 bool VisitDeclRefExpr(DeclRefExpr *E) { 1376 if (NonTypeTemplateParmDecl *PD = 1377 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) { 1378 if (PD->getDepth() == Depth) { 1379 Match = true; 1380 return false; 1381 } 1382 } 1383 return super::VisitDeclRefExpr(E); 1384 } 1385}; 1386} 1387 1388/// Determines whether a template-id depends on the given parameter 1389/// list. 1390static bool 1391DependsOnTemplateParameters(const TemplateSpecializationType *TemplateId, 1392 TemplateParameterList *Params) { 1393 DependencyChecker Checker(Params); 1394 Checker.TraverseType(QualType(TemplateId, 0)); 1395 return Checker.Match; 1396} 1397 1398/// \brief Match the given template parameter lists to the given scope 1399/// specifier, returning the template parameter list that applies to the 1400/// name. 1401/// 1402/// \param DeclStartLoc the start of the declaration that has a scope 1403/// specifier or a template parameter list. 1404/// 1405/// \param SS the scope specifier that will be matched to the given template 1406/// parameter lists. This scope specifier precedes a qualified name that is 1407/// being declared. 1408/// 1409/// \param ParamLists the template parameter lists, from the outermost to the 1410/// innermost template parameter lists. 1411/// 1412/// \param NumParamLists the number of template parameter lists in ParamLists. 1413/// 1414/// \param IsFriend Whether to apply the slightly different rules for 1415/// matching template parameters to scope specifiers in friend 1416/// declarations. 1417/// 1418/// \param IsExplicitSpecialization will be set true if the entity being 1419/// declared is an explicit specialization, false otherwise. 1420/// 1421/// \returns the template parameter list, if any, that corresponds to the 1422/// name that is preceded by the scope specifier @p SS. This template 1423/// parameter list may be have template parameters (if we're declaring a 1424/// template) or may have no template parameters (if we're declaring a 1425/// template specialization), or may be NULL (if we were's declaring isn't 1426/// itself a template). 1427TemplateParameterList * 1428Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1429 const CXXScopeSpec &SS, 1430 TemplateParameterList **ParamLists, 1431 unsigned NumParamLists, 1432 bool IsFriend, 1433 bool &IsExplicitSpecialization, 1434 bool &Invalid) { 1435 IsExplicitSpecialization = false; 1436 1437 // Find the template-ids that occur within the nested-name-specifier. These 1438 // template-ids will match up with the template parameter lists. 1439 llvm::SmallVector<const TemplateSpecializationType *, 4> 1440 TemplateIdsInSpecifier; 1441 llvm::SmallVector<ClassTemplateSpecializationDecl *, 4> 1442 ExplicitSpecializationsInSpecifier; 1443 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 1444 NNS; NNS = NNS->getPrefix()) { 1445 const Type *T = NNS->getAsType(); 1446 if (!T) break; 1447 1448 // C++0x [temp.expl.spec]p17: 1449 // A member or a member template may be nested within many 1450 // enclosing class templates. In an explicit specialization for 1451 // such a member, the member declaration shall be preceded by a 1452 // template<> for each enclosing class template that is 1453 // explicitly specialized. 1454 // 1455 // Following the existing practice of GNU and EDG, we allow a typedef of a 1456 // template specialization type. 1457 while (const TypedefType *TT = dyn_cast<TypedefType>(T)) 1458 T = TT->getDecl()->getUnderlyingType().getTypePtr(); 1459 1460 if (const TemplateSpecializationType *SpecType 1461 = dyn_cast<TemplateSpecializationType>(T)) { 1462 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 1463 if (!Template) 1464 continue; // FIXME: should this be an error? probably... 1465 1466 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 1467 ClassTemplateSpecializationDecl *SpecDecl 1468 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 1469 // If the nested name specifier refers to an explicit specialization, 1470 // we don't need a template<> header. 1471 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) { 1472 ExplicitSpecializationsInSpecifier.push_back(SpecDecl); 1473 continue; 1474 } 1475 } 1476 1477 TemplateIdsInSpecifier.push_back(SpecType); 1478 } 1479 } 1480 1481 // Reverse the list of template-ids in the scope specifier, so that we can 1482 // more easily match up the template-ids and the template parameter lists. 1483 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 1484 1485 SourceLocation FirstTemplateLoc = DeclStartLoc; 1486 if (NumParamLists) 1487 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 1488 1489 // Match the template-ids found in the specifier to the template parameter 1490 // lists. 1491 unsigned ParamIdx = 0, TemplateIdx = 0; 1492 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 1493 TemplateIdx != NumTemplateIds; ++TemplateIdx) { 1494 const TemplateSpecializationType *TemplateId 1495 = TemplateIdsInSpecifier[TemplateIdx]; 1496 bool DependentTemplateId = TemplateId->isDependentType(); 1497 1498 // In friend declarations we can have template-ids which don't 1499 // depend on the corresponding template parameter lists. But 1500 // assume that empty parameter lists are supposed to match this 1501 // template-id. 1502 if (IsFriend && ParamIdx < NumParamLists && ParamLists[ParamIdx]->size()) { 1503 if (!DependentTemplateId || 1504 !DependsOnTemplateParameters(TemplateId, ParamLists[ParamIdx])) 1505 continue; 1506 } 1507 1508 if (ParamIdx >= NumParamLists) { 1509 // We have a template-id without a corresponding template parameter 1510 // list. 1511 1512 // ...which is fine if this is a friend declaration. 1513 if (IsFriend) { 1514 IsExplicitSpecialization = true; 1515 break; 1516 } 1517 1518 if (DependentTemplateId) { 1519 // FIXME: the location information here isn't great. 1520 Diag(SS.getRange().getBegin(), 1521 diag::err_template_spec_needs_template_parameters) 1522 << QualType(TemplateId, 0) 1523 << SS.getRange(); 1524 Invalid = true; 1525 } else { 1526 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 1527 << SS.getRange() 1528 << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> "); 1529 IsExplicitSpecialization = true; 1530 } 1531 return 0; 1532 } 1533 1534 // Check the template parameter list against its corresponding template-id. 1535 if (DependentTemplateId) { 1536 TemplateParameterList *ExpectedTemplateParams = 0; 1537 1538 // Are there cases in (e.g.) friends where this won't match? 1539 if (const InjectedClassNameType *Injected 1540 = TemplateId->getAs<InjectedClassNameType>()) { 1541 CXXRecordDecl *Record = Injected->getDecl(); 1542 if (ClassTemplatePartialSpecializationDecl *Partial = 1543 dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) 1544 ExpectedTemplateParams = Partial->getTemplateParameters(); 1545 else 1546 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1547 ->getTemplateParameters(); 1548 } 1549 1550 if (ExpectedTemplateParams) 1551 TemplateParameterListsAreEqual(ParamLists[ParamIdx], 1552 ExpectedTemplateParams, 1553 true, TPL_TemplateMatch); 1554 1555 CheckTemplateParameterList(ParamLists[ParamIdx], 0, 1556 TPC_ClassTemplateMember); 1557 } else if (ParamLists[ParamIdx]->size() > 0) 1558 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1559 diag::err_template_param_list_matches_nontemplate) 1560 << TemplateId 1561 << ParamLists[ParamIdx]->getSourceRange(); 1562 else 1563 IsExplicitSpecialization = true; 1564 1565 ++ParamIdx; 1566 } 1567 1568 // If there were at least as many template-ids as there were template 1569 // parameter lists, then there are no template parameter lists remaining for 1570 // the declaration itself. 1571 if (ParamIdx >= NumParamLists) 1572 return 0; 1573 1574 // If there were too many template parameter lists, complain about that now. 1575 if (ParamIdx != NumParamLists - 1) { 1576 while (ParamIdx < NumParamLists - 1) { 1577 bool isExplicitSpecHeader = ParamLists[ParamIdx]->size() == 0; 1578 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1579 isExplicitSpecHeader? diag::warn_template_spec_extra_headers 1580 : diag::err_template_spec_extra_headers) 1581 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 1582 ParamLists[ParamIdx]->getRAngleLoc()); 1583 1584 if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) { 1585 Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(), 1586 diag::note_explicit_template_spec_does_not_need_header) 1587 << ExplicitSpecializationsInSpecifier.back(); 1588 ExplicitSpecializationsInSpecifier.pop_back(); 1589 } 1590 1591 // We have a template parameter list with no corresponding scope, which 1592 // means that the resulting template declaration can't be instantiated 1593 // properly (we'll end up with dependent nodes when we shouldn't). 1594 if (!isExplicitSpecHeader) 1595 Invalid = true; 1596 1597 ++ParamIdx; 1598 } 1599 } 1600 1601 // Return the last template parameter list, which corresponds to the 1602 // entity being declared. 1603 return ParamLists[NumParamLists - 1]; 1604} 1605 1606QualType Sema::CheckTemplateIdType(TemplateName Name, 1607 SourceLocation TemplateLoc, 1608 const TemplateArgumentListInfo &TemplateArgs) { 1609 TemplateDecl *Template = Name.getAsTemplateDecl(); 1610 if (!Template) { 1611 // The template name does not resolve to a template, so we just 1612 // build a dependent template-id type. 1613 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1614 } 1615 1616 // Check that the template argument list is well-formed for this 1617 // template. 1618 llvm::SmallVector<TemplateArgument, 4> Converted; 1619 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1620 false, Converted)) 1621 return QualType(); 1622 1623 assert((Converted.size() == Template->getTemplateParameters()->size()) && 1624 "Converted template argument list is too short!"); 1625 1626 QualType CanonType; 1627 1628 if (Name.isDependent() || 1629 TemplateSpecializationType::anyDependentTemplateArguments( 1630 TemplateArgs)) { 1631 // This class template specialization is a dependent 1632 // type. Therefore, its canonical type is another class template 1633 // specialization type that contains all of the converted 1634 // arguments in canonical form. This ensures that, e.g., A<T> and 1635 // A<T, T> have identical types when A is declared as: 1636 // 1637 // template<typename T, typename U = T> struct A; 1638 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1639 CanonType = Context.getTemplateSpecializationType(CanonName, 1640 Converted.data(), 1641 Converted.size()); 1642 1643 // FIXME: CanonType is not actually the canonical type, and unfortunately 1644 // it is a TemplateSpecializationType that we will never use again. 1645 // In the future, we need to teach getTemplateSpecializationType to only 1646 // build the canonical type and return that to us. 1647 CanonType = Context.getCanonicalType(CanonType); 1648 1649 // This might work out to be a current instantiation, in which 1650 // case the canonical type needs to be the InjectedClassNameType. 1651 // 1652 // TODO: in theory this could be a simple hashtable lookup; most 1653 // changes to CurContext don't change the set of current 1654 // instantiations. 1655 if (isa<ClassTemplateDecl>(Template)) { 1656 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 1657 // If we get out to a namespace, we're done. 1658 if (Ctx->isFileContext()) break; 1659 1660 // If this isn't a record, keep looking. 1661 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 1662 if (!Record) continue; 1663 1664 // Look for one of the two cases with InjectedClassNameTypes 1665 // and check whether it's the same template. 1666 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 1667 !Record->getDescribedClassTemplate()) 1668 continue; 1669 1670 // Fetch the injected class name type and check whether its 1671 // injected type is equal to the type we just built. 1672 QualType ICNT = Context.getTypeDeclType(Record); 1673 QualType Injected = cast<InjectedClassNameType>(ICNT) 1674 ->getInjectedSpecializationType(); 1675 1676 if (CanonType != Injected->getCanonicalTypeInternal()) 1677 continue; 1678 1679 // If so, the canonical type of this TST is the injected 1680 // class name type of the record we just found. 1681 assert(ICNT.isCanonical()); 1682 CanonType = ICNT; 1683 break; 1684 } 1685 } 1686 } else if (ClassTemplateDecl *ClassTemplate 1687 = dyn_cast<ClassTemplateDecl>(Template)) { 1688 // Find the class template specialization declaration that 1689 // corresponds to these arguments. 1690 void *InsertPos = 0; 1691 ClassTemplateSpecializationDecl *Decl 1692 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(), 1693 InsertPos); 1694 if (!Decl) { 1695 // This is the first time we have referenced this class template 1696 // specialization. Create the canonical declaration and add it to 1697 // the set of specializations. 1698 Decl = ClassTemplateSpecializationDecl::Create(Context, 1699 ClassTemplate->getTemplatedDecl()->getTagKind(), 1700 ClassTemplate->getDeclContext(), 1701 ClassTemplate->getLocation(), 1702 ClassTemplate, 1703 Converted.data(), 1704 Converted.size(), 0); 1705 ClassTemplate->AddSpecialization(Decl, InsertPos); 1706 Decl->setLexicalDeclContext(CurContext); 1707 } 1708 1709 CanonType = Context.getTypeDeclType(Decl); 1710 assert(isa<RecordType>(CanonType) && 1711 "type of non-dependent specialization is not a RecordType"); 1712 } 1713 1714 // Build the fully-sugared type for this class template 1715 // specialization, which refers back to the class template 1716 // specialization we created or found. 1717 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 1718} 1719 1720TypeResult 1721Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1722 SourceLocation LAngleLoc, 1723 ASTTemplateArgsPtr TemplateArgsIn, 1724 SourceLocation RAngleLoc) { 1725 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1726 1727 // Translate the parser's template argument list in our AST format. 1728 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 1729 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 1730 1731 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 1732 TemplateArgsIn.release(); 1733 1734 if (Result.isNull()) 1735 return true; 1736 1737 TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result); 1738 TemplateSpecializationTypeLoc TL 1739 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc()); 1740 TL.setTemplateNameLoc(TemplateLoc); 1741 TL.setLAngleLoc(LAngleLoc); 1742 TL.setRAngleLoc(RAngleLoc); 1743 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 1744 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 1745 1746 return CreateParsedType(Result, DI); 1747} 1748 1749TypeResult Sema::ActOnTagTemplateIdType(CXXScopeSpec &SS, 1750 TypeResult TypeResult, 1751 TagUseKind TUK, 1752 TypeSpecifierType TagSpec, 1753 SourceLocation TagLoc) { 1754 if (TypeResult.isInvalid()) 1755 return ::TypeResult(); 1756 1757 TypeSourceInfo *DI; 1758 QualType Type = GetTypeFromParser(TypeResult.get(), &DI); 1759 1760 // Verify the tag specifier. 1761 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 1762 1763 if (const RecordType *RT = Type->getAs<RecordType>()) { 1764 RecordDecl *D = RT->getDecl(); 1765 1766 IdentifierInfo *Id = D->getIdentifier(); 1767 assert(Id && "templated class must have an identifier"); 1768 1769 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 1770 Diag(TagLoc, diag::err_use_with_wrong_tag) 1771 << Type 1772 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 1773 Diag(D->getLocation(), diag::note_previous_use); 1774 } 1775 } 1776 1777 ElaboratedTypeKeyword Keyword 1778 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 1779 QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type); 1780 1781 TypeSourceInfo *ElabDI = Context.CreateTypeSourceInfo(ElabType); 1782 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(ElabDI->getTypeLoc()); 1783 TL.setKeywordLoc(TagLoc); 1784 TL.setQualifierRange(SS.getRange()); 1785 TL.getNamedTypeLoc().initializeFullCopy(DI->getTypeLoc()); 1786 return CreateParsedType(ElabType, ElabDI); 1787} 1788 1789ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 1790 LookupResult &R, 1791 bool RequiresADL, 1792 const TemplateArgumentListInfo &TemplateArgs) { 1793 // FIXME: Can we do any checking at this point? I guess we could check the 1794 // template arguments that we have against the template name, if the template 1795 // name refers to a single template. That's not a terribly common case, 1796 // though. 1797 1798 // These should be filtered out by our callers. 1799 assert(!R.empty() && "empty lookup results when building templateid"); 1800 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 1801 1802 NestedNameSpecifier *Qualifier = 0; 1803 SourceRange QualifierRange; 1804 if (SS.isSet()) { 1805 Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 1806 QualifierRange = SS.getRange(); 1807 } 1808 1809 // We don't want lookup warnings at this point. 1810 R.suppressDiagnostics(); 1811 1812 UnresolvedLookupExpr *ULE 1813 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 1814 Qualifier, QualifierRange, 1815 R.getLookupNameInfo(), 1816 RequiresADL, TemplateArgs, 1817 R.begin(), R.end()); 1818 1819 return Owned(ULE); 1820} 1821 1822// We actually only call this from template instantiation. 1823ExprResult 1824Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 1825 const DeclarationNameInfo &NameInfo, 1826 const TemplateArgumentListInfo &TemplateArgs) { 1827 DeclContext *DC; 1828 if (!(DC = computeDeclContext(SS, false)) || 1829 DC->isDependentContext() || 1830 RequireCompleteDeclContext(SS, DC)) 1831 return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs); 1832 1833 bool MemberOfUnknownSpecialization; 1834 LookupResult R(*this, NameInfo, LookupOrdinaryName); 1835 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 1836 MemberOfUnknownSpecialization); 1837 1838 if (R.isAmbiguous()) 1839 return ExprError(); 1840 1841 if (R.empty()) { 1842 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 1843 << NameInfo.getName() << SS.getRange(); 1844 return ExprError(); 1845 } 1846 1847 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 1848 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 1849 << (NestedNameSpecifier*) SS.getScopeRep() 1850 << NameInfo.getName() << SS.getRange(); 1851 Diag(Temp->getLocation(), diag::note_referenced_class_template); 1852 return ExprError(); 1853 } 1854 1855 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 1856} 1857 1858/// \brief Form a dependent template name. 1859/// 1860/// This action forms a dependent template name given the template 1861/// name and its (presumably dependent) scope specifier. For 1862/// example, given "MetaFun::template apply", the scope specifier \p 1863/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1864/// of the "template" keyword, and "apply" is the \p Name. 1865TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 1866 SourceLocation TemplateKWLoc, 1867 CXXScopeSpec &SS, 1868 UnqualifiedId &Name, 1869 ParsedType ObjectType, 1870 bool EnteringContext, 1871 TemplateTy &Result) { 1872 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() && 1873 !getLangOptions().CPlusPlus0x) 1874 Diag(TemplateKWLoc, diag::ext_template_outside_of_template) 1875 << FixItHint::CreateRemoval(TemplateKWLoc); 1876 1877 DeclContext *LookupCtx = 0; 1878 if (SS.isSet()) 1879 LookupCtx = computeDeclContext(SS, EnteringContext); 1880 if (!LookupCtx && ObjectType) 1881 LookupCtx = computeDeclContext(ObjectType.get()); 1882 if (LookupCtx) { 1883 // C++0x [temp.names]p5: 1884 // If a name prefixed by the keyword template is not the name of 1885 // a template, the program is ill-formed. [Note: the keyword 1886 // template may not be applied to non-template members of class 1887 // templates. -end note ] [ Note: as is the case with the 1888 // typename prefix, the template prefix is allowed in cases 1889 // where it is not strictly necessary; i.e., when the 1890 // nested-name-specifier or the expression on the left of the -> 1891 // or . is not dependent on a template-parameter, or the use 1892 // does not appear in the scope of a template. -end note] 1893 // 1894 // Note: C++03 was more strict here, because it banned the use of 1895 // the "template" keyword prior to a template-name that was not a 1896 // dependent name. C++ DR468 relaxed this requirement (the 1897 // "template" keyword is now permitted). We follow the C++0x 1898 // rules, even in C++03 mode with a warning, retroactively applying the DR. 1899 bool MemberOfUnknownSpecialization; 1900 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name, 1901 ObjectType, EnteringContext, Result, 1902 MemberOfUnknownSpecialization); 1903 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 1904 isa<CXXRecordDecl>(LookupCtx) && 1905 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) { 1906 // This is a dependent template. Handle it below. 1907 } else if (TNK == TNK_Non_template) { 1908 Diag(Name.getSourceRange().getBegin(), 1909 diag::err_template_kw_refers_to_non_template) 1910 << GetNameFromUnqualifiedId(Name).getName() 1911 << Name.getSourceRange() 1912 << TemplateKWLoc; 1913 return TNK_Non_template; 1914 } else { 1915 // We found something; return it. 1916 return TNK; 1917 } 1918 } 1919 1920 NestedNameSpecifier *Qualifier 1921 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1922 1923 switch (Name.getKind()) { 1924 case UnqualifiedId::IK_Identifier: 1925 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1926 Name.Identifier)); 1927 return TNK_Dependent_template_name; 1928 1929 case UnqualifiedId::IK_OperatorFunctionId: 1930 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1931 Name.OperatorFunctionId.Operator)); 1932 return TNK_Dependent_template_name; 1933 1934 case UnqualifiedId::IK_LiteralOperatorId: 1935 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 1936 1937 default: 1938 break; 1939 } 1940 1941 Diag(Name.getSourceRange().getBegin(), 1942 diag::err_template_kw_refers_to_non_template) 1943 << GetNameFromUnqualifiedId(Name).getName() 1944 << Name.getSourceRange() 1945 << TemplateKWLoc; 1946 return TNK_Non_template; 1947} 1948 1949bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1950 const TemplateArgumentLoc &AL, 1951 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 1952 const TemplateArgument &Arg = AL.getArgument(); 1953 1954 // Check template type parameter. 1955 switch(Arg.getKind()) { 1956 case TemplateArgument::Type: 1957 // C++ [temp.arg.type]p1: 1958 // A template-argument for a template-parameter which is a 1959 // type shall be a type-id. 1960 break; 1961 case TemplateArgument::Template: { 1962 // We have a template type parameter but the template argument 1963 // is a template without any arguments. 1964 SourceRange SR = AL.getSourceRange(); 1965 TemplateName Name = Arg.getAsTemplate(); 1966 Diag(SR.getBegin(), diag::err_template_missing_args) 1967 << Name << SR; 1968 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 1969 Diag(Decl->getLocation(), diag::note_template_decl_here); 1970 1971 return true; 1972 } 1973 default: { 1974 // We have a template type parameter but the template argument 1975 // is not a type. 1976 SourceRange SR = AL.getSourceRange(); 1977 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 1978 Diag(Param->getLocation(), diag::note_template_param_here); 1979 1980 return true; 1981 } 1982 } 1983 1984 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 1985 return true; 1986 1987 // Add the converted template type argument. 1988 Converted.push_back( 1989 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 1990 return false; 1991} 1992 1993/// \brief Substitute template arguments into the default template argument for 1994/// the given template type parameter. 1995/// 1996/// \param SemaRef the semantic analysis object for which we are performing 1997/// the substitution. 1998/// 1999/// \param Template the template that we are synthesizing template arguments 2000/// for. 2001/// 2002/// \param TemplateLoc the location of the template name that started the 2003/// template-id we are checking. 2004/// 2005/// \param RAngleLoc the location of the right angle bracket ('>') that 2006/// terminates the template-id. 2007/// 2008/// \param Param the template template parameter whose default we are 2009/// substituting into. 2010/// 2011/// \param Converted the list of template arguments provided for template 2012/// parameters that precede \p Param in the template parameter list. 2013/// 2014/// \returns the substituted template argument, or NULL if an error occurred. 2015static TypeSourceInfo * 2016SubstDefaultTemplateArgument(Sema &SemaRef, 2017 TemplateDecl *Template, 2018 SourceLocation TemplateLoc, 2019 SourceLocation RAngleLoc, 2020 TemplateTypeParmDecl *Param, 2021 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2022 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 2023 2024 // If the argument type is dependent, instantiate it now based 2025 // on the previously-computed template arguments. 2026 if (ArgType->getType()->isDependentType()) { 2027 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2028 Converted.data(), Converted.size()); 2029 2030 MultiLevelTemplateArgumentList AllTemplateArgs 2031 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2032 2033 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2034 Template, Converted.data(), 2035 Converted.size(), 2036 SourceRange(TemplateLoc, RAngleLoc)); 2037 2038 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 2039 Param->getDefaultArgumentLoc(), 2040 Param->getDeclName()); 2041 } 2042 2043 return ArgType; 2044} 2045 2046/// \brief Substitute template arguments into the default template argument for 2047/// the given non-type template parameter. 2048/// 2049/// \param SemaRef the semantic analysis object for which we are performing 2050/// the substitution. 2051/// 2052/// \param Template the template that we are synthesizing template arguments 2053/// for. 2054/// 2055/// \param TemplateLoc the location of the template name that started the 2056/// template-id we are checking. 2057/// 2058/// \param RAngleLoc the location of the right angle bracket ('>') that 2059/// terminates the template-id. 2060/// 2061/// \param Param the non-type template parameter whose default we are 2062/// substituting into. 2063/// 2064/// \param Converted the list of template arguments provided for template 2065/// parameters that precede \p Param in the template parameter list. 2066/// 2067/// \returns the substituted template argument, or NULL if an error occurred. 2068static ExprResult 2069SubstDefaultTemplateArgument(Sema &SemaRef, 2070 TemplateDecl *Template, 2071 SourceLocation TemplateLoc, 2072 SourceLocation RAngleLoc, 2073 NonTypeTemplateParmDecl *Param, 2074 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2075 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2076 Converted.data(), Converted.size()); 2077 2078 MultiLevelTemplateArgumentList AllTemplateArgs 2079 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2080 2081 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2082 Template, Converted.data(), 2083 Converted.size(), 2084 SourceRange(TemplateLoc, RAngleLoc)); 2085 2086 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 2087} 2088 2089/// \brief Substitute template arguments into the default template argument for 2090/// the given template template parameter. 2091/// 2092/// \param SemaRef the semantic analysis object for which we are performing 2093/// the substitution. 2094/// 2095/// \param Template the template that we are synthesizing template arguments 2096/// for. 2097/// 2098/// \param TemplateLoc the location of the template name that started the 2099/// template-id we are checking. 2100/// 2101/// \param RAngleLoc the location of the right angle bracket ('>') that 2102/// terminates the template-id. 2103/// 2104/// \param Param the template template parameter whose default we are 2105/// substituting into. 2106/// 2107/// \param Converted the list of template arguments provided for template 2108/// parameters that precede \p Param in the template parameter list. 2109/// 2110/// \returns the substituted template argument, or NULL if an error occurred. 2111static TemplateName 2112SubstDefaultTemplateArgument(Sema &SemaRef, 2113 TemplateDecl *Template, 2114 SourceLocation TemplateLoc, 2115 SourceLocation RAngleLoc, 2116 TemplateTemplateParmDecl *Param, 2117 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2118 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2119 Converted.data(), Converted.size()); 2120 2121 MultiLevelTemplateArgumentList AllTemplateArgs 2122 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2123 2124 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2125 Template, Converted.data(), 2126 Converted.size(), 2127 SourceRange(TemplateLoc, RAngleLoc)); 2128 2129 return SemaRef.SubstTemplateName( 2130 Param->getDefaultArgument().getArgument().getAsTemplate(), 2131 Param->getDefaultArgument().getTemplateNameLoc(), 2132 AllTemplateArgs); 2133} 2134 2135/// \brief If the given template parameter has a default template 2136/// argument, substitute into that default template argument and 2137/// return the corresponding template argument. 2138TemplateArgumentLoc 2139Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 2140 SourceLocation TemplateLoc, 2141 SourceLocation RAngleLoc, 2142 Decl *Param, 2143 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2144 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 2145 if (!TypeParm->hasDefaultArgument()) 2146 return TemplateArgumentLoc(); 2147 2148 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 2149 TemplateLoc, 2150 RAngleLoc, 2151 TypeParm, 2152 Converted); 2153 if (DI) 2154 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 2155 2156 return TemplateArgumentLoc(); 2157 } 2158 2159 if (NonTypeTemplateParmDecl *NonTypeParm 2160 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2161 if (!NonTypeParm->hasDefaultArgument()) 2162 return TemplateArgumentLoc(); 2163 2164 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 2165 TemplateLoc, 2166 RAngleLoc, 2167 NonTypeParm, 2168 Converted); 2169 if (Arg.isInvalid()) 2170 return TemplateArgumentLoc(); 2171 2172 Expr *ArgE = Arg.takeAs<Expr>(); 2173 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 2174 } 2175 2176 TemplateTemplateParmDecl *TempTempParm 2177 = cast<TemplateTemplateParmDecl>(Param); 2178 if (!TempTempParm->hasDefaultArgument()) 2179 return TemplateArgumentLoc(); 2180 2181 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 2182 TemplateLoc, 2183 RAngleLoc, 2184 TempTempParm, 2185 Converted); 2186 if (TName.isNull()) 2187 return TemplateArgumentLoc(); 2188 2189 return TemplateArgumentLoc(TemplateArgument(TName), 2190 TempTempParm->getDefaultArgument().getTemplateQualifierRange(), 2191 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 2192} 2193 2194/// \brief Check that the given template argument corresponds to the given 2195/// template parameter. 2196bool Sema::CheckTemplateArgument(NamedDecl *Param, 2197 const TemplateArgumentLoc &Arg, 2198 NamedDecl *Template, 2199 SourceLocation TemplateLoc, 2200 SourceLocation RAngleLoc, 2201 llvm::SmallVectorImpl<TemplateArgument> &Converted, 2202 CheckTemplateArgumentKind CTAK) { 2203 // Check template type parameters. 2204 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2205 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2206 2207 // Check non-type template parameters. 2208 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2209 // Do substitution on the type of the non-type template parameter 2210 // with the template arguments we've seen thus far. But if the 2211 // template has a dependent context then we cannot substitute yet. 2212 QualType NTTPType = NTTP->getType(); 2213 if (NTTPType->isDependentType() && 2214 !isa<TemplateTemplateParmDecl>(Template) && 2215 !Template->getDeclContext()->isDependentContext()) { 2216 // Do substitution on the type of the non-type template parameter. 2217 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2218 NTTP, Converted.data(), Converted.size(), 2219 SourceRange(TemplateLoc, RAngleLoc)); 2220 2221 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2222 Converted.data(), Converted.size()); 2223 NTTPType = SubstType(NTTPType, 2224 MultiLevelTemplateArgumentList(TemplateArgs), 2225 NTTP->getLocation(), 2226 NTTP->getDeclName()); 2227 // If that worked, check the non-type template parameter type 2228 // for validity. 2229 if (!NTTPType.isNull()) 2230 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2231 NTTP->getLocation()); 2232 if (NTTPType.isNull()) 2233 return true; 2234 } 2235 2236 switch (Arg.getArgument().getKind()) { 2237 case TemplateArgument::Null: 2238 assert(false && "Should never see a NULL template argument here"); 2239 return true; 2240 2241 case TemplateArgument::Expression: { 2242 Expr *E = Arg.getArgument().getAsExpr(); 2243 TemplateArgument Result; 2244 if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK)) 2245 return true; 2246 2247 Converted.push_back(Result); 2248 break; 2249 } 2250 2251 case TemplateArgument::Declaration: 2252 case TemplateArgument::Integral: 2253 // We've already checked this template argument, so just copy 2254 // it to the list of converted arguments. 2255 Converted.push_back(Arg.getArgument()); 2256 break; 2257 2258 case TemplateArgument::Template: 2259 case TemplateArgument::TemplateExpansion: 2260 // We were given a template template argument. It may not be ill-formed; 2261 // see below. 2262 if (DependentTemplateName *DTN 2263 = Arg.getArgument().getAsTemplateOrTemplatePattern() 2264 .getAsDependentTemplateName()) { 2265 // We have a template argument such as \c T::template X, which we 2266 // parsed as a template template argument. However, since we now 2267 // know that we need a non-type template argument, convert this 2268 // template name into an expression. 2269 2270 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 2271 Arg.getTemplateNameLoc()); 2272 2273 Expr *E = DependentScopeDeclRefExpr::Create(Context, 2274 DTN->getQualifier(), 2275 Arg.getTemplateQualifierRange(), 2276 NameInfo); 2277 2278 // If we parsed the template argument as a pack expansion, create a 2279 // pack expansion expression. 2280 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 2281 ExprResult Expansion = ActOnPackExpansion(E, 2282 Arg.getTemplateEllipsisLoc()); 2283 if (Expansion.isInvalid()) 2284 return true; 2285 2286 E = Expansion.get(); 2287 } 2288 2289 TemplateArgument Result; 2290 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 2291 return true; 2292 2293 Converted.push_back(Result); 2294 break; 2295 } 2296 2297 // We have a template argument that actually does refer to a class 2298 // template, template alias, or template template parameter, and 2299 // therefore cannot be a non-type template argument. 2300 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2301 << Arg.getSourceRange(); 2302 2303 Diag(Param->getLocation(), diag::note_template_param_here); 2304 return true; 2305 2306 case TemplateArgument::Type: { 2307 // We have a non-type template parameter but the template 2308 // argument is a type. 2309 2310 // C++ [temp.arg]p2: 2311 // In a template-argument, an ambiguity between a type-id and 2312 // an expression is resolved to a type-id, regardless of the 2313 // form of the corresponding template-parameter. 2314 // 2315 // We warn specifically about this case, since it can be rather 2316 // confusing for users. 2317 QualType T = Arg.getArgument().getAsType(); 2318 SourceRange SR = Arg.getSourceRange(); 2319 if (T->isFunctionType()) 2320 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2321 else 2322 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2323 Diag(Param->getLocation(), diag::note_template_param_here); 2324 return true; 2325 } 2326 2327 case TemplateArgument::Pack: 2328 llvm_unreachable("Caller must expand template argument packs"); 2329 break; 2330 } 2331 2332 return false; 2333 } 2334 2335 2336 // Check template template parameters. 2337 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2338 2339 // Substitute into the template parameter list of the template 2340 // template parameter, since previously-supplied template arguments 2341 // may appear within the template template parameter. 2342 { 2343 // Set up a template instantiation context. 2344 LocalInstantiationScope Scope(*this); 2345 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2346 TempParm, Converted.data(), Converted.size(), 2347 SourceRange(TemplateLoc, RAngleLoc)); 2348 2349 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2350 Converted.data(), Converted.size()); 2351 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2352 SubstDecl(TempParm, CurContext, 2353 MultiLevelTemplateArgumentList(TemplateArgs))); 2354 if (!TempParm) 2355 return true; 2356 } 2357 2358 switch (Arg.getArgument().getKind()) { 2359 case TemplateArgument::Null: 2360 assert(false && "Should never see a NULL template argument here"); 2361 return true; 2362 2363 case TemplateArgument::Template: 2364 case TemplateArgument::TemplateExpansion: 2365 if (CheckTemplateArgument(TempParm, Arg)) 2366 return true; 2367 2368 Converted.push_back(Arg.getArgument()); 2369 break; 2370 2371 case TemplateArgument::Expression: 2372 case TemplateArgument::Type: 2373 // We have a template template parameter but the template 2374 // argument does not refer to a template. 2375 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 2376 return true; 2377 2378 case TemplateArgument::Declaration: 2379 llvm_unreachable( 2380 "Declaration argument with template template parameter"); 2381 break; 2382 case TemplateArgument::Integral: 2383 llvm_unreachable( 2384 "Integral argument with template template parameter"); 2385 break; 2386 2387 case TemplateArgument::Pack: 2388 llvm_unreachable("Caller must expand template argument packs"); 2389 break; 2390 } 2391 2392 return false; 2393} 2394 2395/// \brief Check that the given template argument list is well-formed 2396/// for specializing the given template. 2397bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2398 SourceLocation TemplateLoc, 2399 const TemplateArgumentListInfo &TemplateArgs, 2400 bool PartialTemplateArgs, 2401 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2402 TemplateParameterList *Params = Template->getTemplateParameters(); 2403 unsigned NumParams = Params->size(); 2404 unsigned NumArgs = TemplateArgs.size(); 2405 bool Invalid = false; 2406 2407 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2408 2409 bool HasParameterPack = 2410 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2411 2412 if ((NumArgs > NumParams && !HasParameterPack) || 2413 (NumArgs < Params->getMinRequiredArguments() && 2414 !PartialTemplateArgs)) { 2415 // FIXME: point at either the first arg beyond what we can handle, 2416 // or the '>', depending on whether we have too many or too few 2417 // arguments. 2418 SourceRange Range; 2419 if (NumArgs > NumParams) 2420 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2421 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2422 << (NumArgs > NumParams) 2423 << (isa<ClassTemplateDecl>(Template)? 0 : 2424 isa<FunctionTemplateDecl>(Template)? 1 : 2425 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2426 << Template << Range; 2427 Diag(Template->getLocation(), diag::note_template_decl_here) 2428 << Params->getSourceRange(); 2429 Invalid = true; 2430 } 2431 2432 // C++ [temp.arg]p1: 2433 // [...] The type and form of each template-argument specified in 2434 // a template-id shall match the type and form specified for the 2435 // corresponding parameter declared by the template in its 2436 // template-parameter-list. 2437 llvm::SmallVector<TemplateArgument, 2> ArgumentPack; 2438 TemplateParameterList::iterator Param = Params->begin(), 2439 ParamEnd = Params->end(); 2440 unsigned ArgIdx = 0; 2441 while (Param != ParamEnd) { 2442 if (ArgIdx > NumArgs && PartialTemplateArgs) 2443 break; 2444 2445 if (ArgIdx < NumArgs) { 2446 // Check the template argument we were given. 2447 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2448 TemplateLoc, RAngleLoc, Converted)) 2449 return true; 2450 2451 if ((*Param)->isTemplateParameterPack()) { 2452 // The template parameter was a template parameter pack, so take the 2453 // deduced argument and place it on the argument pack. Note that we 2454 // stay on the same template parameter so that we can deduce more 2455 // arguments. 2456 ArgumentPack.push_back(Converted.back()); 2457 Converted.pop_back(); 2458 } else { 2459 // Move to the next template parameter. 2460 ++Param; 2461 } 2462 ++ArgIdx; 2463 continue; 2464 } 2465 2466 // If we have a template parameter pack with no more corresponding 2467 // arguments, just break out now and we'll fill in the argument pack below. 2468 if ((*Param)->isTemplateParameterPack()) 2469 break; 2470 2471 // We have a default template argument that we will use. 2472 TemplateArgumentLoc Arg; 2473 2474 // Retrieve the default template argument from the template 2475 // parameter. For each kind of template parameter, we substitute the 2476 // template arguments provided thus far and any "outer" template arguments 2477 // (when the template parameter was part of a nested template) into 2478 // the default argument. 2479 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2480 if (!TTP->hasDefaultArgument()) { 2481 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2482 break; 2483 } 2484 2485 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2486 Template, 2487 TemplateLoc, 2488 RAngleLoc, 2489 TTP, 2490 Converted); 2491 if (!ArgType) 2492 return true; 2493 2494 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2495 ArgType); 2496 } else if (NonTypeTemplateParmDecl *NTTP 2497 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2498 if (!NTTP->hasDefaultArgument()) { 2499 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2500 break; 2501 } 2502 2503 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 2504 TemplateLoc, 2505 RAngleLoc, 2506 NTTP, 2507 Converted); 2508 if (E.isInvalid()) 2509 return true; 2510 2511 Expr *Ex = E.takeAs<Expr>(); 2512 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2513 } else { 2514 TemplateTemplateParmDecl *TempParm 2515 = cast<TemplateTemplateParmDecl>(*Param); 2516 2517 if (!TempParm->hasDefaultArgument()) { 2518 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2519 break; 2520 } 2521 2522 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2523 TemplateLoc, 2524 RAngleLoc, 2525 TempParm, 2526 Converted); 2527 if (Name.isNull()) 2528 return true; 2529 2530 Arg = TemplateArgumentLoc(TemplateArgument(Name), 2531 TempParm->getDefaultArgument().getTemplateQualifierRange(), 2532 TempParm->getDefaultArgument().getTemplateNameLoc()); 2533 } 2534 2535 // Introduce an instantiation record that describes where we are using 2536 // the default template argument. 2537 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 2538 Converted.data(), Converted.size(), 2539 SourceRange(TemplateLoc, RAngleLoc)); 2540 2541 // Check the default template argument. 2542 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 2543 RAngleLoc, Converted)) 2544 return true; 2545 2546 // Move to the next template parameter and argument. 2547 ++Param; 2548 ++ArgIdx; 2549 } 2550 2551 // Form argument packs for each of the parameter packs remaining. 2552 while (Param != ParamEnd) { 2553 // If we're checking a partial list of template arguments, don't fill 2554 // in arguments for non-template parameter packs. 2555 2556 if ((*Param)->isTemplateParameterPack()) { 2557 if (PartialTemplateArgs && ArgumentPack.empty()) { 2558 Converted.push_back(TemplateArgument()); 2559 } else if (ArgumentPack.empty()) { 2560 Converted.push_back(TemplateArgument(0, 0)); 2561 } else { 2562 TemplateArgument *PackedArgs 2563 = new (Context) TemplateArgument [ArgumentPack.size()]; 2564 std::copy(ArgumentPack.begin(), ArgumentPack.end(), PackedArgs); 2565 Converted.push_back(TemplateArgument(PackedArgs, ArgumentPack.size())); 2566 ArgumentPack.clear(); 2567 } 2568 } 2569 2570 ++Param; 2571 } 2572 2573 return Invalid; 2574} 2575 2576namespace { 2577 class UnnamedLocalNoLinkageFinder 2578 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 2579 { 2580 Sema &S; 2581 SourceRange SR; 2582 2583 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 2584 2585 public: 2586 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 2587 2588 bool Visit(QualType T) { 2589 return inherited::Visit(T.getTypePtr()); 2590 } 2591 2592#define TYPE(Class, Parent) \ 2593 bool Visit##Class##Type(const Class##Type *); 2594#define ABSTRACT_TYPE(Class, Parent) \ 2595 bool Visit##Class##Type(const Class##Type *) { return false; } 2596#define NON_CANONICAL_TYPE(Class, Parent) \ 2597 bool Visit##Class##Type(const Class##Type *) { return false; } 2598#include "clang/AST/TypeNodes.def" 2599 2600 bool VisitTagDecl(const TagDecl *Tag); 2601 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 2602 }; 2603} 2604 2605bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 2606 return false; 2607} 2608 2609bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 2610 return Visit(T->getElementType()); 2611} 2612 2613bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 2614 return Visit(T->getPointeeType()); 2615} 2616 2617bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 2618 const BlockPointerType* T) { 2619 return Visit(T->getPointeeType()); 2620} 2621 2622bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 2623 const LValueReferenceType* T) { 2624 return Visit(T->getPointeeType()); 2625} 2626 2627bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 2628 const RValueReferenceType* T) { 2629 return Visit(T->getPointeeType()); 2630} 2631 2632bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 2633 const MemberPointerType* T) { 2634 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 2635} 2636 2637bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 2638 const ConstantArrayType* T) { 2639 return Visit(T->getElementType()); 2640} 2641 2642bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 2643 const IncompleteArrayType* T) { 2644 return Visit(T->getElementType()); 2645} 2646 2647bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 2648 const VariableArrayType* T) { 2649 return Visit(T->getElementType()); 2650} 2651 2652bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 2653 const DependentSizedArrayType* T) { 2654 return Visit(T->getElementType()); 2655} 2656 2657bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 2658 const DependentSizedExtVectorType* T) { 2659 return Visit(T->getElementType()); 2660} 2661 2662bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 2663 return Visit(T->getElementType()); 2664} 2665 2666bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 2667 return Visit(T->getElementType()); 2668} 2669 2670bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 2671 const FunctionProtoType* T) { 2672 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), 2673 AEnd = T->arg_type_end(); 2674 A != AEnd; ++A) { 2675 if (Visit(*A)) 2676 return true; 2677 } 2678 2679 return Visit(T->getResultType()); 2680} 2681 2682bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 2683 const FunctionNoProtoType* T) { 2684 return Visit(T->getResultType()); 2685} 2686 2687bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 2688 const UnresolvedUsingType*) { 2689 return false; 2690} 2691 2692bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 2693 return false; 2694} 2695 2696bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 2697 return Visit(T->getUnderlyingType()); 2698} 2699 2700bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 2701 return false; 2702} 2703 2704bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 2705 return VisitTagDecl(T->getDecl()); 2706} 2707 2708bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 2709 return VisitTagDecl(T->getDecl()); 2710} 2711 2712bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 2713 const TemplateTypeParmType*) { 2714 return false; 2715} 2716 2717bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 2718 const TemplateSpecializationType*) { 2719 return false; 2720} 2721 2722bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 2723 const InjectedClassNameType* T) { 2724 return VisitTagDecl(T->getDecl()); 2725} 2726 2727bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 2728 const DependentNameType* T) { 2729 return VisitNestedNameSpecifier(T->getQualifier()); 2730} 2731 2732bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 2733 const DependentTemplateSpecializationType* T) { 2734 return VisitNestedNameSpecifier(T->getQualifier()); 2735} 2736 2737bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 2738 const PackExpansionType* T) { 2739 return Visit(T->getPattern()); 2740} 2741 2742bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 2743 return false; 2744} 2745 2746bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 2747 const ObjCInterfaceType *) { 2748 return false; 2749} 2750 2751bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 2752 const ObjCObjectPointerType *) { 2753 return false; 2754} 2755 2756bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 2757 if (Tag->getDeclContext()->isFunctionOrMethod()) { 2758 S.Diag(SR.getBegin(), diag::ext_template_arg_local_type) 2759 << S.Context.getTypeDeclType(Tag) << SR; 2760 return true; 2761 } 2762 2763 if (!Tag->getDeclName() && !Tag->getTypedefForAnonDecl()) { 2764 S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR; 2765 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 2766 return true; 2767 } 2768 2769 return false; 2770} 2771 2772bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 2773 NestedNameSpecifier *NNS) { 2774 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 2775 return true; 2776 2777 switch (NNS->getKind()) { 2778 case NestedNameSpecifier::Identifier: 2779 case NestedNameSpecifier::Namespace: 2780 case NestedNameSpecifier::Global: 2781 return false; 2782 2783 case NestedNameSpecifier::TypeSpec: 2784 case NestedNameSpecifier::TypeSpecWithTemplate: 2785 return Visit(QualType(NNS->getAsType(), 0)); 2786 } 2787 return false; 2788} 2789 2790 2791/// \brief Check a template argument against its corresponding 2792/// template type parameter. 2793/// 2794/// This routine implements the semantics of C++ [temp.arg.type]. It 2795/// returns true if an error occurred, and false otherwise. 2796bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 2797 TypeSourceInfo *ArgInfo) { 2798 assert(ArgInfo && "invalid TypeSourceInfo"); 2799 QualType Arg = ArgInfo->getType(); 2800 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 2801 2802 if (Arg->isVariablyModifiedType()) { 2803 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 2804 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 2805 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 2806 } 2807 2808 // C++03 [temp.arg.type]p2: 2809 // A local type, a type with no linkage, an unnamed type or a type 2810 // compounded from any of these types shall not be used as a 2811 // template-argument for a template type-parameter. 2812 // 2813 // C++0x allows these, and even in C++03 we allow them as an extension with 2814 // a warning. 2815 if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) { 2816 UnnamedLocalNoLinkageFinder Finder(*this, SR); 2817 (void)Finder.Visit(Context.getCanonicalType(Arg)); 2818 } 2819 2820 return false; 2821} 2822 2823/// \brief Checks whether the given template argument is the address 2824/// of an object or function according to C++ [temp.arg.nontype]p1. 2825static bool 2826CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 2827 NonTypeTemplateParmDecl *Param, 2828 QualType ParamType, 2829 Expr *ArgIn, 2830 TemplateArgument &Converted) { 2831 bool Invalid = false; 2832 Expr *Arg = ArgIn; 2833 QualType ArgType = Arg->getType(); 2834 2835 // See through any implicit casts we added to fix the type. 2836 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2837 Arg = Cast->getSubExpr(); 2838 2839 // C++ [temp.arg.nontype]p1: 2840 // 2841 // A template-argument for a non-type, non-template 2842 // template-parameter shall be one of: [...] 2843 // 2844 // -- the address of an object or function with external 2845 // linkage, including function templates and function 2846 // template-ids but excluding non-static class members, 2847 // expressed as & id-expression where the & is optional if 2848 // the name refers to a function or array, or if the 2849 // corresponding template-parameter is a reference; or 2850 DeclRefExpr *DRE = 0; 2851 2852 // In C++98/03 mode, give an extension warning on any extra parentheses. 2853 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 2854 bool ExtraParens = false; 2855 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2856 if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) { 2857 S.Diag(Arg->getSourceRange().getBegin(), 2858 diag::ext_template_arg_extra_parens) 2859 << Arg->getSourceRange(); 2860 ExtraParens = true; 2861 } 2862 2863 Arg = Parens->getSubExpr(); 2864 } 2865 2866 bool AddressTaken = false; 2867 SourceLocation AddrOpLoc; 2868 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2869 if (UnOp->getOpcode() == UO_AddrOf) { 2870 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2871 AddressTaken = true; 2872 AddrOpLoc = UnOp->getOperatorLoc(); 2873 } 2874 } else 2875 DRE = dyn_cast<DeclRefExpr>(Arg); 2876 2877 if (!DRE) { 2878 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 2879 << Arg->getSourceRange(); 2880 S.Diag(Param->getLocation(), diag::note_template_param_here); 2881 return true; 2882 } 2883 2884 // Stop checking the precise nature of the argument if it is value dependent, 2885 // it should be checked when instantiated. 2886 if (Arg->isValueDependent()) { 2887 Converted = TemplateArgument(ArgIn); 2888 return false; 2889 } 2890 2891 if (!isa<ValueDecl>(DRE->getDecl())) { 2892 S.Diag(Arg->getSourceRange().getBegin(), 2893 diag::err_template_arg_not_object_or_func_form) 2894 << Arg->getSourceRange(); 2895 S.Diag(Param->getLocation(), diag::note_template_param_here); 2896 return true; 2897 } 2898 2899 NamedDecl *Entity = 0; 2900 2901 // Cannot refer to non-static data members 2902 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) { 2903 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 2904 << Field << Arg->getSourceRange(); 2905 S.Diag(Param->getLocation(), diag::note_template_param_here); 2906 return true; 2907 } 2908 2909 // Cannot refer to non-static member functions 2910 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 2911 if (!Method->isStatic()) { 2912 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method) 2913 << Method << Arg->getSourceRange(); 2914 S.Diag(Param->getLocation(), diag::note_template_param_here); 2915 return true; 2916 } 2917 2918 // Functions must have external linkage. 2919 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 2920 if (!isExternalLinkage(Func->getLinkage())) { 2921 S.Diag(Arg->getSourceRange().getBegin(), 2922 diag::err_template_arg_function_not_extern) 2923 << Func << Arg->getSourceRange(); 2924 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object) 2925 << true; 2926 return true; 2927 } 2928 2929 // Okay: we've named a function with external linkage. 2930 Entity = Func; 2931 2932 // If the template parameter has pointer type, the function decays. 2933 if (ParamType->isPointerType() && !AddressTaken) 2934 ArgType = S.Context.getPointerType(Func->getType()); 2935 else if (AddressTaken && ParamType->isReferenceType()) { 2936 // If we originally had an address-of operator, but the 2937 // parameter has reference type, complain and (if things look 2938 // like they will work) drop the address-of operator. 2939 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 2940 ParamType.getNonReferenceType())) { 2941 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2942 << ParamType; 2943 S.Diag(Param->getLocation(), diag::note_template_param_here); 2944 return true; 2945 } 2946 2947 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2948 << ParamType 2949 << FixItHint::CreateRemoval(AddrOpLoc); 2950 S.Diag(Param->getLocation(), diag::note_template_param_here); 2951 2952 ArgType = Func->getType(); 2953 } 2954 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 2955 if (!isExternalLinkage(Var->getLinkage())) { 2956 S.Diag(Arg->getSourceRange().getBegin(), 2957 diag::err_template_arg_object_not_extern) 2958 << Var << Arg->getSourceRange(); 2959 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object) 2960 << true; 2961 return true; 2962 } 2963 2964 // A value of reference type is not an object. 2965 if (Var->getType()->isReferenceType()) { 2966 S.Diag(Arg->getSourceRange().getBegin(), 2967 diag::err_template_arg_reference_var) 2968 << Var->getType() << Arg->getSourceRange(); 2969 S.Diag(Param->getLocation(), diag::note_template_param_here); 2970 return true; 2971 } 2972 2973 // Okay: we've named an object with external linkage 2974 Entity = Var; 2975 2976 // If the template parameter has pointer type, we must have taken 2977 // the address of this object. 2978 if (ParamType->isReferenceType()) { 2979 if (AddressTaken) { 2980 // If we originally had an address-of operator, but the 2981 // parameter has reference type, complain and (if things look 2982 // like they will work) drop the address-of operator. 2983 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 2984 ParamType.getNonReferenceType())) { 2985 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2986 << ParamType; 2987 S.Diag(Param->getLocation(), diag::note_template_param_here); 2988 return true; 2989 } 2990 2991 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2992 << ParamType 2993 << FixItHint::CreateRemoval(AddrOpLoc); 2994 S.Diag(Param->getLocation(), diag::note_template_param_here); 2995 2996 ArgType = Var->getType(); 2997 } 2998 } else if (!AddressTaken && ParamType->isPointerType()) { 2999 if (Var->getType()->isArrayType()) { 3000 // Array-to-pointer decay. 3001 ArgType = S.Context.getArrayDecayedType(Var->getType()); 3002 } else { 3003 // If the template parameter has pointer type but the address of 3004 // this object was not taken, complain and (possibly) recover by 3005 // taking the address of the entity. 3006 ArgType = S.Context.getPointerType(Var->getType()); 3007 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 3008 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3009 << ParamType; 3010 S.Diag(Param->getLocation(), diag::note_template_param_here); 3011 return true; 3012 } 3013 3014 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3015 << ParamType 3016 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 3017 3018 S.Diag(Param->getLocation(), diag::note_template_param_here); 3019 } 3020 } 3021 } else { 3022 // We found something else, but we don't know specifically what it is. 3023 S.Diag(Arg->getSourceRange().getBegin(), 3024 diag::err_template_arg_not_object_or_func) 3025 << Arg->getSourceRange(); 3026 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 3027 return true; 3028 } 3029 3030 if (ParamType->isPointerType() && 3031 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 3032 S.IsQualificationConversion(ArgType, ParamType)) { 3033 // For pointer-to-object types, qualification conversions are 3034 // permitted. 3035 } else { 3036 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 3037 if (!ParamRef->getPointeeType()->isFunctionType()) { 3038 // C++ [temp.arg.nontype]p5b3: 3039 // For a non-type template-parameter of type reference to 3040 // object, no conversions apply. The type referred to by the 3041 // reference may be more cv-qualified than the (otherwise 3042 // identical) type of the template- argument. The 3043 // template-parameter is bound directly to the 3044 // template-argument, which shall be an lvalue. 3045 3046 // FIXME: Other qualifiers? 3047 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 3048 unsigned ArgQuals = ArgType.getCVRQualifiers(); 3049 3050 if ((ParamQuals | ArgQuals) != ParamQuals) { 3051 S.Diag(Arg->getSourceRange().getBegin(), 3052 diag::err_template_arg_ref_bind_ignores_quals) 3053 << ParamType << Arg->getType() 3054 << Arg->getSourceRange(); 3055 S.Diag(Param->getLocation(), diag::note_template_param_here); 3056 return true; 3057 } 3058 } 3059 } 3060 3061 // At this point, the template argument refers to an object or 3062 // function with external linkage. We now need to check whether the 3063 // argument and parameter types are compatible. 3064 if (!S.Context.hasSameUnqualifiedType(ArgType, 3065 ParamType.getNonReferenceType())) { 3066 // We can't perform this conversion or binding. 3067 if (ParamType->isReferenceType()) 3068 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 3069 << ParamType << Arg->getType() << Arg->getSourceRange(); 3070 else 3071 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3072 << Arg->getType() << ParamType << Arg->getSourceRange(); 3073 S.Diag(Param->getLocation(), diag::note_template_param_here); 3074 return true; 3075 } 3076 } 3077 3078 // Create the template argument. 3079 Converted = TemplateArgument(Entity->getCanonicalDecl()); 3080 S.MarkDeclarationReferenced(Arg->getLocStart(), Entity); 3081 return false; 3082} 3083 3084/// \brief Checks whether the given template argument is a pointer to 3085/// member constant according to C++ [temp.arg.nontype]p1. 3086bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 3087 TemplateArgument &Converted) { 3088 bool Invalid = false; 3089 3090 // See through any implicit casts we added to fix the type. 3091 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 3092 Arg = Cast->getSubExpr(); 3093 3094 // C++ [temp.arg.nontype]p1: 3095 // 3096 // A template-argument for a non-type, non-template 3097 // template-parameter shall be one of: [...] 3098 // 3099 // -- a pointer to member expressed as described in 5.3.1. 3100 DeclRefExpr *DRE = 0; 3101 3102 // In C++98/03 mode, give an extension warning on any extra parentheses. 3103 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3104 bool ExtraParens = false; 3105 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3106 if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) { 3107 Diag(Arg->getSourceRange().getBegin(), 3108 diag::ext_template_arg_extra_parens) 3109 << Arg->getSourceRange(); 3110 ExtraParens = true; 3111 } 3112 3113 Arg = Parens->getSubExpr(); 3114 } 3115 3116 // A pointer-to-member constant written &Class::member. 3117 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3118 if (UnOp->getOpcode() == UO_AddrOf) { 3119 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 3120 if (DRE && !DRE->getQualifier()) 3121 DRE = 0; 3122 } 3123 } 3124 // A constant of pointer-to-member type. 3125 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 3126 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 3127 if (VD->getType()->isMemberPointerType()) { 3128 if (isa<NonTypeTemplateParmDecl>(VD) || 3129 (isa<VarDecl>(VD) && 3130 Context.getCanonicalType(VD->getType()).isConstQualified())) { 3131 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3132 Converted = TemplateArgument(Arg); 3133 else 3134 Converted = TemplateArgument(VD->getCanonicalDecl()); 3135 return Invalid; 3136 } 3137 } 3138 } 3139 3140 DRE = 0; 3141 } 3142 3143 if (!DRE) 3144 return Diag(Arg->getSourceRange().getBegin(), 3145 diag::err_template_arg_not_pointer_to_member_form) 3146 << Arg->getSourceRange(); 3147 3148 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 3149 assert((isa<FieldDecl>(DRE->getDecl()) || 3150 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 3151 "Only non-static member pointers can make it here"); 3152 3153 // Okay: this is the address of a non-static member, and therefore 3154 // a member pointer constant. 3155 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3156 Converted = TemplateArgument(Arg); 3157 else 3158 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 3159 return Invalid; 3160 } 3161 3162 // We found something else, but we don't know specifically what it is. 3163 Diag(Arg->getSourceRange().getBegin(), 3164 diag::err_template_arg_not_pointer_to_member_form) 3165 << Arg->getSourceRange(); 3166 Diag(DRE->getDecl()->getLocation(), 3167 diag::note_template_arg_refers_here); 3168 return true; 3169} 3170 3171/// \brief Check a template argument against its corresponding 3172/// non-type template parameter. 3173/// 3174/// This routine implements the semantics of C++ [temp.arg.nontype]. 3175/// It returns true if an error occurred, and false otherwise. \p 3176/// InstantiatedParamType is the type of the non-type template 3177/// parameter after it has been instantiated. 3178/// 3179/// If no error was detected, Converted receives the converted template argument. 3180bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 3181 QualType InstantiatedParamType, Expr *&Arg, 3182 TemplateArgument &Converted, 3183 CheckTemplateArgumentKind CTAK) { 3184 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 3185 3186 // If either the parameter has a dependent type or the argument is 3187 // type-dependent, there's nothing we can check now. 3188 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 3189 // FIXME: Produce a cloned, canonical expression? 3190 Converted = TemplateArgument(Arg); 3191 return false; 3192 } 3193 3194 // C++ [temp.arg.nontype]p5: 3195 // The following conversions are performed on each expression used 3196 // as a non-type template-argument. If a non-type 3197 // template-argument cannot be converted to the type of the 3198 // corresponding template-parameter then the program is 3199 // ill-formed. 3200 // 3201 // -- for a non-type template-parameter of integral or 3202 // enumeration type, integral promotions (4.5) and integral 3203 // conversions (4.7) are applied. 3204 QualType ParamType = InstantiatedParamType; 3205 QualType ArgType = Arg->getType(); 3206 if (ParamType->isIntegralOrEnumerationType()) { 3207 // C++ [temp.arg.nontype]p1: 3208 // A template-argument for a non-type, non-template 3209 // template-parameter shall be one of: 3210 // 3211 // -- an integral constant-expression of integral or enumeration 3212 // type; or 3213 // -- the name of a non-type template-parameter; or 3214 SourceLocation NonConstantLoc; 3215 llvm::APSInt Value; 3216 if (!ArgType->isIntegralOrEnumerationType()) { 3217 Diag(Arg->getSourceRange().getBegin(), 3218 diag::err_template_arg_not_integral_or_enumeral) 3219 << ArgType << Arg->getSourceRange(); 3220 Diag(Param->getLocation(), diag::note_template_param_here); 3221 return true; 3222 } else if (!Arg->isValueDependent() && 3223 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 3224 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 3225 << ArgType << Arg->getSourceRange(); 3226 return true; 3227 } 3228 3229 // From here on out, all we care about are the unqualified forms 3230 // of the parameter and argument types. 3231 ParamType = ParamType.getUnqualifiedType(); 3232 ArgType = ArgType.getUnqualifiedType(); 3233 3234 // Try to convert the argument to the parameter's type. 3235 if (Context.hasSameType(ParamType, ArgType)) { 3236 // Okay: no conversion necessary 3237 } else if (CTAK == CTAK_Deduced) { 3238 // C++ [temp.deduct.type]p17: 3239 // If, in the declaration of a function template with a non-type 3240 // template-parameter, the non-type template- parameter is used 3241 // in an expression in the function parameter-list and, if the 3242 // corresponding template-argument is deduced, the 3243 // template-argument type shall match the type of the 3244 // template-parameter exactly, except that a template-argument 3245 // deduced from an array bound may be of any integral type. 3246 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 3247 << ArgType << ParamType; 3248 Diag(Param->getLocation(), diag::note_template_param_here); 3249 return true; 3250 } else if (ParamType->isBooleanType()) { 3251 // This is an integral-to-boolean conversion. 3252 ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean); 3253 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 3254 !ParamType->isEnumeralType()) { 3255 // This is an integral promotion or conversion. 3256 ImpCastExprToType(Arg, ParamType, CK_IntegralCast); 3257 } else { 3258 // We can't perform this conversion. 3259 Diag(Arg->getSourceRange().getBegin(), 3260 diag::err_template_arg_not_convertible) 3261 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3262 Diag(Param->getLocation(), diag::note_template_param_here); 3263 return true; 3264 } 3265 3266 QualType IntegerType = Context.getCanonicalType(ParamType); 3267 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 3268 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 3269 3270 if (!Arg->isValueDependent()) { 3271 llvm::APSInt OldValue = Value; 3272 3273 // Coerce the template argument's value to the value it will have 3274 // based on the template parameter's type. 3275 unsigned AllowedBits = Context.getTypeSize(IntegerType); 3276 if (Value.getBitWidth() != AllowedBits) 3277 Value = Value.extOrTrunc(AllowedBits); 3278 Value.setIsSigned(IntegerType->isSignedIntegerType()); 3279 3280 // Complain if an unsigned parameter received a negative value. 3281 if (IntegerType->isUnsignedIntegerType() 3282 && (OldValue.isSigned() && OldValue.isNegative())) { 3283 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative) 3284 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3285 << Arg->getSourceRange(); 3286 Diag(Param->getLocation(), diag::note_template_param_here); 3287 } 3288 3289 // Complain if we overflowed the template parameter's type. 3290 unsigned RequiredBits; 3291 if (IntegerType->isUnsignedIntegerType()) 3292 RequiredBits = OldValue.getActiveBits(); 3293 else if (OldValue.isUnsigned()) 3294 RequiredBits = OldValue.getActiveBits() + 1; 3295 else 3296 RequiredBits = OldValue.getMinSignedBits(); 3297 if (RequiredBits > AllowedBits) { 3298 Diag(Arg->getSourceRange().getBegin(), 3299 diag::warn_template_arg_too_large) 3300 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3301 << Arg->getSourceRange(); 3302 Diag(Param->getLocation(), diag::note_template_param_here); 3303 } 3304 } 3305 3306 // Add the value of this argument to the list of converted 3307 // arguments. We use the bitwidth and signedness of the template 3308 // parameter. 3309 if (Arg->isValueDependent()) { 3310 // The argument is value-dependent. Create a new 3311 // TemplateArgument with the converted expression. 3312 Converted = TemplateArgument(Arg); 3313 return false; 3314 } 3315 3316 Converted = TemplateArgument(Value, 3317 ParamType->isEnumeralType() ? ParamType 3318 : IntegerType); 3319 return false; 3320 } 3321 3322 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 3323 3324 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion 3325 // from a template argument of type std::nullptr_t to a non-type 3326 // template parameter of type pointer to object, pointer to 3327 // function, or pointer-to-member, respectively. 3328 if (ArgType->isNullPtrType() && 3329 (ParamType->isPointerType() || ParamType->isMemberPointerType())) { 3330 Converted = TemplateArgument((NamedDecl *)0); 3331 return false; 3332 } 3333 3334 // Handle pointer-to-function, reference-to-function, and 3335 // pointer-to-member-function all in (roughly) the same way. 3336 if (// -- For a non-type template-parameter of type pointer to 3337 // function, only the function-to-pointer conversion (4.3) is 3338 // applied. If the template-argument represents a set of 3339 // overloaded functions (or a pointer to such), the matching 3340 // function is selected from the set (13.4). 3341 (ParamType->isPointerType() && 3342 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 3343 // -- For a non-type template-parameter of type reference to 3344 // function, no conversions apply. If the template-argument 3345 // represents a set of overloaded functions, the matching 3346 // function is selected from the set (13.4). 3347 (ParamType->isReferenceType() && 3348 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 3349 // -- For a non-type template-parameter of type pointer to 3350 // member function, no conversions apply. If the 3351 // template-argument represents a set of overloaded member 3352 // functions, the matching member function is selected from 3353 // the set (13.4). 3354 (ParamType->isMemberPointerType() && 3355 ParamType->getAs<MemberPointerType>()->getPointeeType() 3356 ->isFunctionType())) { 3357 3358 if (Arg->getType() == Context.OverloadTy) { 3359 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 3360 true, 3361 FoundResult)) { 3362 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3363 return true; 3364 3365 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3366 ArgType = Arg->getType(); 3367 } else 3368 return true; 3369 } 3370 3371 if (!ParamType->isMemberPointerType()) 3372 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3373 ParamType, 3374 Arg, Converted); 3375 3376 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) { 3377 ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)); 3378 } else if (!Context.hasSameUnqualifiedType(ArgType, 3379 ParamType.getNonReferenceType())) { 3380 // We can't perform this conversion. 3381 Diag(Arg->getSourceRange().getBegin(), 3382 diag::err_template_arg_not_convertible) 3383 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3384 Diag(Param->getLocation(), diag::note_template_param_here); 3385 return true; 3386 } 3387 3388 return CheckTemplateArgumentPointerToMember(Arg, Converted); 3389 } 3390 3391 if (ParamType->isPointerType()) { 3392 // -- for a non-type template-parameter of type pointer to 3393 // object, qualification conversions (4.4) and the 3394 // array-to-pointer conversion (4.2) are applied. 3395 // C++0x also allows a value of std::nullptr_t. 3396 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 3397 "Only object pointers allowed here"); 3398 3399 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3400 ParamType, 3401 Arg, Converted); 3402 } 3403 3404 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 3405 // -- For a non-type template-parameter of type reference to 3406 // object, no conversions apply. The type referred to by the 3407 // reference may be more cv-qualified than the (otherwise 3408 // identical) type of the template-argument. The 3409 // template-parameter is bound directly to the 3410 // template-argument, which must be an lvalue. 3411 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 3412 "Only object references allowed here"); 3413 3414 if (Arg->getType() == Context.OverloadTy) { 3415 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 3416 ParamRefType->getPointeeType(), 3417 true, 3418 FoundResult)) { 3419 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3420 return true; 3421 3422 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3423 ArgType = Arg->getType(); 3424 } else 3425 return true; 3426 } 3427 3428 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3429 ParamType, 3430 Arg, Converted); 3431 } 3432 3433 // -- For a non-type template-parameter of type pointer to data 3434 // member, qualification conversions (4.4) are applied. 3435 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 3436 3437 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 3438 // Types match exactly: nothing more to do here. 3439 } else if (IsQualificationConversion(ArgType, ParamType)) { 3440 ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)); 3441 } else { 3442 // We can't perform this conversion. 3443 Diag(Arg->getSourceRange().getBegin(), 3444 diag::err_template_arg_not_convertible) 3445 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3446 Diag(Param->getLocation(), diag::note_template_param_here); 3447 return true; 3448 } 3449 3450 return CheckTemplateArgumentPointerToMember(Arg, Converted); 3451} 3452 3453/// \brief Check a template argument against its corresponding 3454/// template template parameter. 3455/// 3456/// This routine implements the semantics of C++ [temp.arg.template]. 3457/// It returns true if an error occurred, and false otherwise. 3458bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 3459 const TemplateArgumentLoc &Arg) { 3460 TemplateName Name = Arg.getArgument().getAsTemplate(); 3461 TemplateDecl *Template = Name.getAsTemplateDecl(); 3462 if (!Template) { 3463 // Any dependent template name is fine. 3464 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 3465 return false; 3466 } 3467 3468 // C++ [temp.arg.template]p1: 3469 // A template-argument for a template template-parameter shall be 3470 // the name of a class template, expressed as id-expression. Only 3471 // primary class templates are considered when matching the 3472 // template template argument with the corresponding parameter; 3473 // partial specializations are not considered even if their 3474 // parameter lists match that of the template template parameter. 3475 // 3476 // Note that we also allow template template parameters here, which 3477 // will happen when we are dealing with, e.g., class template 3478 // partial specializations. 3479 if (!isa<ClassTemplateDecl>(Template) && 3480 !isa<TemplateTemplateParmDecl>(Template)) { 3481 assert(isa<FunctionTemplateDecl>(Template) && 3482 "Only function templates are possible here"); 3483 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 3484 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 3485 << Template; 3486 } 3487 3488 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 3489 Param->getTemplateParameters(), 3490 true, 3491 TPL_TemplateTemplateArgumentMatch, 3492 Arg.getLocation()); 3493} 3494 3495/// \brief Given a non-type template argument that refers to a 3496/// declaration and the type of its corresponding non-type template 3497/// parameter, produce an expression that properly refers to that 3498/// declaration. 3499ExprResult 3500Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 3501 QualType ParamType, 3502 SourceLocation Loc) { 3503 assert(Arg.getKind() == TemplateArgument::Declaration && 3504 "Only declaration template arguments permitted here"); 3505 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 3506 3507 if (VD->getDeclContext()->isRecord() && 3508 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 3509 // If the value is a class member, we might have a pointer-to-member. 3510 // Determine whether the non-type template template parameter is of 3511 // pointer-to-member type. If so, we need to build an appropriate 3512 // expression for a pointer-to-member, since a "normal" DeclRefExpr 3513 // would refer to the member itself. 3514 if (ParamType->isMemberPointerType()) { 3515 QualType ClassType 3516 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 3517 NestedNameSpecifier *Qualifier 3518 = NestedNameSpecifier::Create(Context, 0, false, 3519 ClassType.getTypePtr()); 3520 CXXScopeSpec SS; 3521 SS.setScopeRep(Qualifier); 3522 3523 // The actual value-ness of this is unimportant, but for 3524 // internal consistency's sake, references to instance methods 3525 // are r-values. 3526 ExprValueKind VK = VK_LValue; 3527 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 3528 VK = VK_RValue; 3529 3530 ExprResult RefExpr = BuildDeclRefExpr(VD, 3531 VD->getType().getNonReferenceType(), 3532 VK, 3533 Loc, 3534 &SS); 3535 if (RefExpr.isInvalid()) 3536 return ExprError(); 3537 3538 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 3539 3540 // We might need to perform a trailing qualification conversion, since 3541 // the element type on the parameter could be more qualified than the 3542 // element type in the expression we constructed. 3543 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 3544 ParamType.getUnqualifiedType())) { 3545 Expr *RefE = RefExpr.takeAs<Expr>(); 3546 ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp); 3547 RefExpr = Owned(RefE); 3548 } 3549 3550 assert(!RefExpr.isInvalid() && 3551 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 3552 ParamType.getUnqualifiedType())); 3553 return move(RefExpr); 3554 } 3555 } 3556 3557 QualType T = VD->getType().getNonReferenceType(); 3558 if (ParamType->isPointerType()) { 3559 // When the non-type template parameter is a pointer, take the 3560 // address of the declaration. 3561 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 3562 if (RefExpr.isInvalid()) 3563 return ExprError(); 3564 3565 if (T->isFunctionType() || T->isArrayType()) { 3566 // Decay functions and arrays. 3567 Expr *RefE = (Expr *)RefExpr.get(); 3568 DefaultFunctionArrayConversion(RefE); 3569 if (RefE != RefExpr.get()) { 3570 RefExpr.release(); 3571 RefExpr = Owned(RefE); 3572 } 3573 3574 return move(RefExpr); 3575 } 3576 3577 // Take the address of everything else 3578 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 3579 } 3580 3581 ExprValueKind VK = VK_RValue; 3582 3583 // If the non-type template parameter has reference type, qualify the 3584 // resulting declaration reference with the extra qualifiers on the 3585 // type that the reference refers to. 3586 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 3587 VK = VK_LValue; 3588 T = Context.getQualifiedType(T, 3589 TargetRef->getPointeeType().getQualifiers()); 3590 } 3591 3592 return BuildDeclRefExpr(VD, T, VK, Loc); 3593} 3594 3595/// \brief Construct a new expression that refers to the given 3596/// integral template argument with the given source-location 3597/// information. 3598/// 3599/// This routine takes care of the mapping from an integral template 3600/// argument (which may have any integral type) to the appropriate 3601/// literal value. 3602ExprResult 3603Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 3604 SourceLocation Loc) { 3605 assert(Arg.getKind() == TemplateArgument::Integral && 3606 "Operation is only valid for integral template arguments"); 3607 QualType T = Arg.getIntegralType(); 3608 if (T->isCharType() || T->isWideCharType()) 3609 return Owned(new (Context) CharacterLiteral( 3610 Arg.getAsIntegral()->getZExtValue(), 3611 T->isWideCharType(), 3612 T, 3613 Loc)); 3614 if (T->isBooleanType()) 3615 return Owned(new (Context) CXXBoolLiteralExpr( 3616 Arg.getAsIntegral()->getBoolValue(), 3617 T, 3618 Loc)); 3619 3620 QualType BT; 3621 if (const EnumType *ET = T->getAs<EnumType>()) 3622 BT = ET->getDecl()->getPromotionType(); 3623 else 3624 BT = T; 3625 3626 Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc); 3627 ImpCastExprToType(E, T, CK_IntegralCast); 3628 3629 return Owned(E); 3630} 3631 3632 3633/// \brief Determine whether the given template parameter lists are 3634/// equivalent. 3635/// 3636/// \param New The new template parameter list, typically written in the 3637/// source code as part of a new template declaration. 3638/// 3639/// \param Old The old template parameter list, typically found via 3640/// name lookup of the template declared with this template parameter 3641/// list. 3642/// 3643/// \param Complain If true, this routine will produce a diagnostic if 3644/// the template parameter lists are not equivalent. 3645/// 3646/// \param Kind describes how we are to match the template parameter lists. 3647/// 3648/// \param TemplateArgLoc If this source location is valid, then we 3649/// are actually checking the template parameter list of a template 3650/// argument (New) against the template parameter list of its 3651/// corresponding template template parameter (Old). We produce 3652/// slightly different diagnostics in this scenario. 3653/// 3654/// \returns True if the template parameter lists are equal, false 3655/// otherwise. 3656bool 3657Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 3658 TemplateParameterList *Old, 3659 bool Complain, 3660 TemplateParameterListEqualKind Kind, 3661 SourceLocation TemplateArgLoc) { 3662 if (Old->size() != New->size()) { 3663 if (Complain) { 3664 unsigned NextDiag = diag::err_template_param_list_different_arity; 3665 if (TemplateArgLoc.isValid()) { 3666 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3667 NextDiag = diag::note_template_param_list_different_arity; 3668 } 3669 Diag(New->getTemplateLoc(), NextDiag) 3670 << (New->size() > Old->size()) 3671 << (Kind != TPL_TemplateMatch) 3672 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 3673 Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 3674 << (Kind != TPL_TemplateMatch) 3675 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 3676 } 3677 3678 return false; 3679 } 3680 3681 for (TemplateParameterList::iterator OldParm = Old->begin(), 3682 OldParmEnd = Old->end(), NewParm = New->begin(); 3683 OldParm != OldParmEnd; ++OldParm, ++NewParm) { 3684 if ((*OldParm)->getKind() != (*NewParm)->getKind()) { 3685 if (Complain) { 3686 unsigned NextDiag = diag::err_template_param_different_kind; 3687 if (TemplateArgLoc.isValid()) { 3688 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3689 NextDiag = diag::note_template_param_different_kind; 3690 } 3691 Diag((*NewParm)->getLocation(), NextDiag) 3692 << (Kind != TPL_TemplateMatch); 3693 Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration) 3694 << (Kind != TPL_TemplateMatch); 3695 } 3696 return false; 3697 } 3698 3699 if (TemplateTypeParmDecl *OldTTP 3700 = dyn_cast<TemplateTypeParmDecl>(*OldParm)) { 3701 // Template type parameters are equivalent if either both are template 3702 // type parameter packs or neither are (since we know we're at the same 3703 // index). 3704 TemplateTypeParmDecl *NewTTP = cast<TemplateTypeParmDecl>(*NewParm); 3705 if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) { 3706 // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that 3707 // allow one to match a template parameter pack in the template 3708 // parameter list of a template template parameter to one or more 3709 // template parameters in the template parameter list of the 3710 // corresponding template template argument. 3711 if (Complain) { 3712 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 3713 if (TemplateArgLoc.isValid()) { 3714 Diag(TemplateArgLoc, 3715 diag::err_template_arg_template_params_mismatch); 3716 NextDiag = diag::note_template_parameter_pack_non_pack; 3717 } 3718 Diag(NewTTP->getLocation(), NextDiag) 3719 << 0 << NewTTP->isParameterPack(); 3720 Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here) 3721 << 0 << OldTTP->isParameterPack(); 3722 } 3723 return false; 3724 } 3725 } else if (NonTypeTemplateParmDecl *OldNTTP 3726 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) { 3727 // The types of non-type template parameters must agree. 3728 NonTypeTemplateParmDecl *NewNTTP 3729 = cast<NonTypeTemplateParmDecl>(*NewParm); 3730 3731 if (OldNTTP->isParameterPack() != NewNTTP->isParameterPack()) { 3732 // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that 3733 // allow one to match a template parameter pack in the template 3734 // parameter list of a template template parameter to one or more 3735 // template parameters in the template parameter list of the 3736 // corresponding template template argument. 3737 if (Complain) { 3738 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 3739 if (TemplateArgLoc.isValid()) { 3740 Diag(TemplateArgLoc, 3741 diag::err_template_arg_template_params_mismatch); 3742 NextDiag = diag::note_template_parameter_pack_non_pack; 3743 } 3744 Diag(NewNTTP->getLocation(), NextDiag) 3745 << 1 << NewNTTP->isParameterPack(); 3746 Diag(OldNTTP->getLocation(), diag::note_template_parameter_pack_here) 3747 << 1 << OldNTTP->isParameterPack(); 3748 } 3749 return false; 3750 } 3751 3752 // If we are matching a template template argument to a template 3753 // template parameter and one of the non-type template parameter types 3754 // is dependent, then we must wait until template instantiation time 3755 // to actually compare the arguments. 3756 if (Kind == TPL_TemplateTemplateArgumentMatch && 3757 (OldNTTP->getType()->isDependentType() || 3758 NewNTTP->getType()->isDependentType())) 3759 continue; 3760 3761 if (Context.getCanonicalType(OldNTTP->getType()) != 3762 Context.getCanonicalType(NewNTTP->getType())) { 3763 if (Complain) { 3764 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 3765 if (TemplateArgLoc.isValid()) { 3766 Diag(TemplateArgLoc, 3767 diag::err_template_arg_template_params_mismatch); 3768 NextDiag = diag::note_template_nontype_parm_different_type; 3769 } 3770 Diag(NewNTTP->getLocation(), NextDiag) 3771 << NewNTTP->getType() 3772 << (Kind != TPL_TemplateMatch); 3773 Diag(OldNTTP->getLocation(), 3774 diag::note_template_nontype_parm_prev_declaration) 3775 << OldNTTP->getType(); 3776 } 3777 return false; 3778 } 3779 } else { 3780 // The template parameter lists of template template 3781 // parameters must agree. 3782 assert(isa<TemplateTemplateParmDecl>(*OldParm) && 3783 "Only template template parameters handled here"); 3784 TemplateTemplateParmDecl *OldTTP 3785 = cast<TemplateTemplateParmDecl>(*OldParm); 3786 TemplateTemplateParmDecl *NewTTP 3787 = cast<TemplateTemplateParmDecl>(*NewParm); 3788 3789 if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) { 3790 // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that 3791 // allow one to match a template parameter pack in the template 3792 // parameter list of a template template parameter to one or more 3793 // template parameters in the template parameter list of the 3794 // corresponding template template argument. 3795 if (Complain) { 3796 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 3797 if (TemplateArgLoc.isValid()) { 3798 Diag(TemplateArgLoc, 3799 diag::err_template_arg_template_params_mismatch); 3800 NextDiag = diag::note_template_parameter_pack_non_pack; 3801 } 3802 Diag(NewTTP->getLocation(), NextDiag) 3803 << 2 << NewTTP->isParameterPack(); 3804 Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here) 3805 << 2 << OldTTP->isParameterPack(); 3806 } 3807 return false; 3808 } 3809 3810 if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 3811 OldTTP->getTemplateParameters(), 3812 Complain, 3813 (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind), 3814 TemplateArgLoc)) 3815 return false; 3816 } 3817 } 3818 3819 return true; 3820} 3821 3822/// \brief Check whether a template can be declared within this scope. 3823/// 3824/// If the template declaration is valid in this scope, returns 3825/// false. Otherwise, issues a diagnostic and returns true. 3826bool 3827Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 3828 // Find the nearest enclosing declaration scope. 3829 while ((S->getFlags() & Scope::DeclScope) == 0 || 3830 (S->getFlags() & Scope::TemplateParamScope) != 0) 3831 S = S->getParent(); 3832 3833 // C++ [temp]p2: 3834 // A template-declaration can appear only as a namespace scope or 3835 // class scope declaration. 3836 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 3837 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 3838 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 3839 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 3840 << TemplateParams->getSourceRange(); 3841 3842 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 3843 Ctx = Ctx->getParent(); 3844 3845 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 3846 return false; 3847 3848 return Diag(TemplateParams->getTemplateLoc(), 3849 diag::err_template_outside_namespace_or_class_scope) 3850 << TemplateParams->getSourceRange(); 3851} 3852 3853/// \brief Determine what kind of template specialization the given declaration 3854/// is. 3855static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 3856 if (!D) 3857 return TSK_Undeclared; 3858 3859 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 3860 return Record->getTemplateSpecializationKind(); 3861 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 3862 return Function->getTemplateSpecializationKind(); 3863 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 3864 return Var->getTemplateSpecializationKind(); 3865 3866 return TSK_Undeclared; 3867} 3868 3869/// \brief Check whether a specialization is well-formed in the current 3870/// context. 3871/// 3872/// This routine determines whether a template specialization can be declared 3873/// in the current context (C++ [temp.expl.spec]p2). 3874/// 3875/// \param S the semantic analysis object for which this check is being 3876/// performed. 3877/// 3878/// \param Specialized the entity being specialized or instantiated, which 3879/// may be a kind of template (class template, function template, etc.) or 3880/// a member of a class template (member function, static data member, 3881/// member class). 3882/// 3883/// \param PrevDecl the previous declaration of this entity, if any. 3884/// 3885/// \param Loc the location of the explicit specialization or instantiation of 3886/// this entity. 3887/// 3888/// \param IsPartialSpecialization whether this is a partial specialization of 3889/// a class template. 3890/// 3891/// \returns true if there was an error that we cannot recover from, false 3892/// otherwise. 3893static bool CheckTemplateSpecializationScope(Sema &S, 3894 NamedDecl *Specialized, 3895 NamedDecl *PrevDecl, 3896 SourceLocation Loc, 3897 bool IsPartialSpecialization) { 3898 // Keep these "kind" numbers in sync with the %select statements in the 3899 // various diagnostics emitted by this routine. 3900 int EntityKind = 0; 3901 bool isTemplateSpecialization = false; 3902 if (isa<ClassTemplateDecl>(Specialized)) { 3903 EntityKind = IsPartialSpecialization? 1 : 0; 3904 isTemplateSpecialization = true; 3905 } else if (isa<FunctionTemplateDecl>(Specialized)) { 3906 EntityKind = 2; 3907 isTemplateSpecialization = true; 3908 } else if (isa<CXXMethodDecl>(Specialized)) 3909 EntityKind = 3; 3910 else if (isa<VarDecl>(Specialized)) 3911 EntityKind = 4; 3912 else if (isa<RecordDecl>(Specialized)) 3913 EntityKind = 5; 3914 else { 3915 S.Diag(Loc, diag::err_template_spec_unknown_kind); 3916 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3917 return true; 3918 } 3919 3920 // C++ [temp.expl.spec]p2: 3921 // An explicit specialization shall be declared in the namespace 3922 // of which the template is a member, or, for member templates, in 3923 // the namespace of which the enclosing class or enclosing class 3924 // template is a member. An explicit specialization of a member 3925 // function, member class or static data member of a class 3926 // template shall be declared in the namespace of which the class 3927 // template is a member. Such a declaration may also be a 3928 // definition. If the declaration is not a definition, the 3929 // specialization may be defined later in the name- space in which 3930 // the explicit specialization was declared, or in a namespace 3931 // that encloses the one in which the explicit specialization was 3932 // declared. 3933 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 3934 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 3935 << Specialized; 3936 return true; 3937 } 3938 3939 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 3940 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 3941 << Specialized; 3942 return true; 3943 } 3944 3945 // C++ [temp.class.spec]p6: 3946 // A class template partial specialization may be declared or redeclared 3947 // in any namespace scope in which its definition may be defined (14.5.1 3948 // and 14.5.2). 3949 bool ComplainedAboutScope = false; 3950 DeclContext *SpecializedContext 3951 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 3952 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 3953 if ((!PrevDecl || 3954 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 3955 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 3956 // C++ [temp.exp.spec]p2: 3957 // An explicit specialization shall be declared in the namespace of which 3958 // the template is a member, or, for member templates, in the namespace 3959 // of which the enclosing class or enclosing class template is a member. 3960 // An explicit specialization of a member function, member class or 3961 // static data member of a class template shall be declared in the 3962 // namespace of which the class template is a member. 3963 // 3964 // C++0x [temp.expl.spec]p2: 3965 // An explicit specialization shall be declared in a namespace enclosing 3966 // the specialized template. 3967 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) && 3968 !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) { 3969 bool IsCPlusPlus0xExtension 3970 = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext); 3971 if (isa<TranslationUnitDecl>(SpecializedContext)) 3972 S.Diag(Loc, IsCPlusPlus0xExtension 3973 ? diag::ext_template_spec_decl_out_of_scope_global 3974 : diag::err_template_spec_decl_out_of_scope_global) 3975 << EntityKind << Specialized; 3976 else if (isa<NamespaceDecl>(SpecializedContext)) 3977 S.Diag(Loc, IsCPlusPlus0xExtension 3978 ? diag::ext_template_spec_decl_out_of_scope 3979 : diag::err_template_spec_decl_out_of_scope) 3980 << EntityKind << Specialized 3981 << cast<NamedDecl>(SpecializedContext); 3982 3983 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3984 ComplainedAboutScope = true; 3985 } 3986 } 3987 3988 // Make sure that this redeclaration (or definition) occurs in an enclosing 3989 // namespace. 3990 // Note that HandleDeclarator() performs this check for explicit 3991 // specializations of function templates, static data members, and member 3992 // functions, so we skip the check here for those kinds of entities. 3993 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 3994 // Should we refactor that check, so that it occurs later? 3995 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 3996 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 3997 isa<FunctionDecl>(Specialized))) { 3998 if (isa<TranslationUnitDecl>(SpecializedContext)) 3999 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 4000 << EntityKind << Specialized; 4001 else if (isa<NamespaceDecl>(SpecializedContext)) 4002 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 4003 << EntityKind << Specialized 4004 << cast<NamedDecl>(SpecializedContext); 4005 4006 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4007 } 4008 4009 // FIXME: check for specialization-after-instantiation errors and such. 4010 4011 return false; 4012} 4013 4014/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs 4015/// that checks non-type template partial specialization arguments. 4016static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S, 4017 NonTypeTemplateParmDecl *Param, 4018 const TemplateArgument *Args, 4019 unsigned NumArgs) { 4020 for (unsigned I = 0; I != NumArgs; ++I) { 4021 if (Args[I].getKind() == TemplateArgument::Pack) { 4022 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4023 Args[I].pack_begin(), 4024 Args[I].pack_size())) 4025 return true; 4026 4027 continue; 4028 } 4029 4030 Expr *ArgExpr = Args[I].getAsExpr(); 4031 if (!ArgExpr) { 4032 continue; 4033 } 4034 4035 // We can have a pack expansion of any of the bullets below. 4036 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 4037 ArgExpr = Expansion->getPattern(); 4038 4039 // Strip off any implicit casts we added as part of type checking. 4040 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 4041 ArgExpr = ICE->getSubExpr(); 4042 4043 // C++ [temp.class.spec]p8: 4044 // A non-type argument is non-specialized if it is the name of a 4045 // non-type parameter. All other non-type arguments are 4046 // specialized. 4047 // 4048 // Below, we check the two conditions that only apply to 4049 // specialized non-type arguments, so skip any non-specialized 4050 // arguments. 4051 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 4052 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 4053 continue; 4054 4055 // C++ [temp.class.spec]p9: 4056 // Within the argument list of a class template partial 4057 // specialization, the following restrictions apply: 4058 // -- A partially specialized non-type argument expression 4059 // shall not involve a template parameter of the partial 4060 // specialization except when the argument expression is a 4061 // simple identifier. 4062 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 4063 S.Diag(ArgExpr->getLocStart(), 4064 diag::err_dependent_non_type_arg_in_partial_spec) 4065 << ArgExpr->getSourceRange(); 4066 return true; 4067 } 4068 4069 // -- The type of a template parameter corresponding to a 4070 // specialized non-type argument shall not be dependent on a 4071 // parameter of the specialization. 4072 if (Param->getType()->isDependentType()) { 4073 S.Diag(ArgExpr->getLocStart(), 4074 diag::err_dependent_typed_non_type_arg_in_partial_spec) 4075 << Param->getType() 4076 << ArgExpr->getSourceRange(); 4077 S.Diag(Param->getLocation(), diag::note_template_param_here); 4078 return true; 4079 } 4080 } 4081 4082 return false; 4083} 4084 4085/// \brief Check the non-type template arguments of a class template 4086/// partial specialization according to C++ [temp.class.spec]p9. 4087/// 4088/// \param TemplateParams the template parameters of the primary class 4089/// template. 4090/// 4091/// \param TemplateArg the template arguments of the class template 4092/// partial specialization. 4093/// 4094/// \returns true if there was an error, false otherwise. 4095static bool CheckClassTemplatePartialSpecializationArgs(Sema &S, 4096 TemplateParameterList *TemplateParams, 4097 llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs) { 4098 const TemplateArgument *ArgList = TemplateArgs.data(); 4099 4100 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4101 NonTypeTemplateParmDecl *Param 4102 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 4103 if (!Param) 4104 continue; 4105 4106 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4107 &ArgList[I], 1)) 4108 return true; 4109 } 4110 4111 return false; 4112} 4113 4114/// \brief Retrieve the previous declaration of the given declaration. 4115static NamedDecl *getPreviousDecl(NamedDecl *ND) { 4116 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 4117 return VD->getPreviousDeclaration(); 4118 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 4119 return FD->getPreviousDeclaration(); 4120 if (TagDecl *TD = dyn_cast<TagDecl>(ND)) 4121 return TD->getPreviousDeclaration(); 4122 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND)) 4123 return TD->getPreviousDeclaration(); 4124 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 4125 return FTD->getPreviousDeclaration(); 4126 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND)) 4127 return CTD->getPreviousDeclaration(); 4128 return 0; 4129} 4130 4131DeclResult 4132Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 4133 TagUseKind TUK, 4134 SourceLocation KWLoc, 4135 CXXScopeSpec &SS, 4136 TemplateTy TemplateD, 4137 SourceLocation TemplateNameLoc, 4138 SourceLocation LAngleLoc, 4139 ASTTemplateArgsPtr TemplateArgsIn, 4140 SourceLocation RAngleLoc, 4141 AttributeList *Attr, 4142 MultiTemplateParamsArg TemplateParameterLists) { 4143 assert(TUK != TUK_Reference && "References are not specializations"); 4144 4145 // Find the class template we're specializing 4146 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4147 ClassTemplateDecl *ClassTemplate 4148 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4149 4150 if (!ClassTemplate) { 4151 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 4152 << (Name.getAsTemplateDecl() && 4153 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 4154 return true; 4155 } 4156 4157 bool isExplicitSpecialization = false; 4158 bool isPartialSpecialization = false; 4159 4160 // Check the validity of the template headers that introduce this 4161 // template. 4162 // FIXME: We probably shouldn't complain about these headers for 4163 // friend declarations. 4164 bool Invalid = false; 4165 TemplateParameterList *TemplateParams 4166 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 4167 (TemplateParameterList**)TemplateParameterLists.get(), 4168 TemplateParameterLists.size(), 4169 TUK == TUK_Friend, 4170 isExplicitSpecialization, 4171 Invalid); 4172 if (Invalid) 4173 return true; 4174 4175 unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size(); 4176 if (TemplateParams) 4177 --NumMatchedTemplateParamLists; 4178 4179 if (TemplateParams && TemplateParams->size() > 0) { 4180 isPartialSpecialization = true; 4181 4182 if (TUK == TUK_Friend) { 4183 Diag(KWLoc, diag::err_partial_specialization_friend) 4184 << SourceRange(LAngleLoc, RAngleLoc); 4185 return true; 4186 } 4187 4188 // C++ [temp.class.spec]p10: 4189 // The template parameter list of a specialization shall not 4190 // contain default template argument values. 4191 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4192 Decl *Param = TemplateParams->getParam(I); 4193 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 4194 if (TTP->hasDefaultArgument()) { 4195 Diag(TTP->getDefaultArgumentLoc(), 4196 diag::err_default_arg_in_partial_spec); 4197 TTP->removeDefaultArgument(); 4198 } 4199 } else if (NonTypeTemplateParmDecl *NTTP 4200 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 4201 if (Expr *DefArg = NTTP->getDefaultArgument()) { 4202 Diag(NTTP->getDefaultArgumentLoc(), 4203 diag::err_default_arg_in_partial_spec) 4204 << DefArg->getSourceRange(); 4205 NTTP->removeDefaultArgument(); 4206 } 4207 } else { 4208 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 4209 if (TTP->hasDefaultArgument()) { 4210 Diag(TTP->getDefaultArgument().getLocation(), 4211 diag::err_default_arg_in_partial_spec) 4212 << TTP->getDefaultArgument().getSourceRange(); 4213 TTP->removeDefaultArgument(); 4214 } 4215 } 4216 } 4217 } else if (TemplateParams) { 4218 if (TUK == TUK_Friend) 4219 Diag(KWLoc, diag::err_template_spec_friend) 4220 << FixItHint::CreateRemoval( 4221 SourceRange(TemplateParams->getTemplateLoc(), 4222 TemplateParams->getRAngleLoc())) 4223 << SourceRange(LAngleLoc, RAngleLoc); 4224 else 4225 isExplicitSpecialization = true; 4226 } else if (TUK != TUK_Friend) { 4227 Diag(KWLoc, diag::err_template_spec_needs_header) 4228 << FixItHint::CreateInsertion(KWLoc, "template<> "); 4229 isExplicitSpecialization = true; 4230 } 4231 4232 // Check that the specialization uses the same tag kind as the 4233 // original template. 4234 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4235 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 4236 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4237 Kind, KWLoc, 4238 *ClassTemplate->getIdentifier())) { 4239 Diag(KWLoc, diag::err_use_with_wrong_tag) 4240 << ClassTemplate 4241 << FixItHint::CreateReplacement(KWLoc, 4242 ClassTemplate->getTemplatedDecl()->getKindName()); 4243 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4244 diag::note_previous_use); 4245 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4246 } 4247 4248 // Translate the parser's template argument list in our AST format. 4249 TemplateArgumentListInfo TemplateArgs; 4250 TemplateArgs.setLAngleLoc(LAngleLoc); 4251 TemplateArgs.setRAngleLoc(RAngleLoc); 4252 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4253 4254 // Check for unexpanded parameter packs in any of the template arguments. 4255 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 4256 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 4257 UPPC_PartialSpecialization)) 4258 return true; 4259 4260 // Check that the template argument list is well-formed for this 4261 // template. 4262 llvm::SmallVector<TemplateArgument, 4> Converted; 4263 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4264 TemplateArgs, false, Converted)) 4265 return true; 4266 4267 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 4268 "Converted template argument list is too short!"); 4269 4270 // Find the class template (partial) specialization declaration that 4271 // corresponds to these arguments. 4272 if (isPartialSpecialization) { 4273 if (CheckClassTemplatePartialSpecializationArgs(*this, 4274 ClassTemplate->getTemplateParameters(), 4275 Converted)) 4276 return true; 4277 4278 if (!Name.isDependent() && 4279 !TemplateSpecializationType::anyDependentTemplateArguments( 4280 TemplateArgs.getArgumentArray(), 4281 TemplateArgs.size())) { 4282 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 4283 << ClassTemplate->getDeclName(); 4284 isPartialSpecialization = false; 4285 } 4286 } 4287 4288 void *InsertPos = 0; 4289 ClassTemplateSpecializationDecl *PrevDecl = 0; 4290 4291 if (isPartialSpecialization) 4292 // FIXME: Template parameter list matters, too 4293 PrevDecl 4294 = ClassTemplate->findPartialSpecialization(Converted.data(), 4295 Converted.size(), 4296 InsertPos); 4297 else 4298 PrevDecl 4299 = ClassTemplate->findSpecialization(Converted.data(), 4300 Converted.size(), InsertPos); 4301 4302 ClassTemplateSpecializationDecl *Specialization = 0; 4303 4304 // Check whether we can declare a class template specialization in 4305 // the current scope. 4306 if (TUK != TUK_Friend && 4307 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 4308 TemplateNameLoc, 4309 isPartialSpecialization)) 4310 return true; 4311 4312 // The canonical type 4313 QualType CanonType; 4314 if (PrevDecl && 4315 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 4316 TUK == TUK_Friend)) { 4317 // Since the only prior class template specialization with these 4318 // arguments was referenced but not declared, or we're only 4319 // referencing this specialization as a friend, reuse that 4320 // declaration node as our own, updating its source location to 4321 // reflect our new declaration. 4322 Specialization = PrevDecl; 4323 Specialization->setLocation(TemplateNameLoc); 4324 PrevDecl = 0; 4325 CanonType = Context.getTypeDeclType(Specialization); 4326 } else if (isPartialSpecialization) { 4327 // Build the canonical type that describes the converted template 4328 // arguments of the class template partial specialization. 4329 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 4330 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 4331 Converted.data(), 4332 Converted.size()); 4333 4334 if (Context.hasSameType(CanonType, 4335 ClassTemplate->getInjectedClassNameSpecialization())) { 4336 // C++ [temp.class.spec]p9b3: 4337 // 4338 // -- The argument list of the specialization shall not be identical 4339 // to the implicit argument list of the primary template. 4340 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 4341 << (TUK == TUK_Definition) 4342 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 4343 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 4344 ClassTemplate->getIdentifier(), 4345 TemplateNameLoc, 4346 Attr, 4347 TemplateParams, 4348 AS_none); 4349 } 4350 4351 // Create a new class template partial specialization declaration node. 4352 ClassTemplatePartialSpecializationDecl *PrevPartial 4353 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 4354 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 4355 : ClassTemplate->getNextPartialSpecSequenceNumber(); 4356 ClassTemplatePartialSpecializationDecl *Partial 4357 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 4358 ClassTemplate->getDeclContext(), 4359 TemplateNameLoc, 4360 TemplateParams, 4361 ClassTemplate, 4362 Converted.data(), 4363 Converted.size(), 4364 TemplateArgs, 4365 CanonType, 4366 PrevPartial, 4367 SequenceNumber); 4368 SetNestedNameSpecifier(Partial, SS); 4369 if (NumMatchedTemplateParamLists > 0 && SS.isSet()) { 4370 Partial->setTemplateParameterListsInfo(Context, 4371 NumMatchedTemplateParamLists, 4372 (TemplateParameterList**) TemplateParameterLists.release()); 4373 } 4374 4375 if (!PrevPartial) 4376 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 4377 Specialization = Partial; 4378 4379 // If we are providing an explicit specialization of a member class 4380 // template specialization, make a note of that. 4381 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 4382 PrevPartial->setMemberSpecialization(); 4383 4384 // Check that all of the template parameters of the class template 4385 // partial specialization are deducible from the template 4386 // arguments. If not, this class template partial specialization 4387 // will never be used. 4388 llvm::SmallVector<bool, 8> DeducibleParams; 4389 DeducibleParams.resize(TemplateParams->size()); 4390 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 4391 TemplateParams->getDepth(), 4392 DeducibleParams); 4393 unsigned NumNonDeducible = 0; 4394 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 4395 if (!DeducibleParams[I]) 4396 ++NumNonDeducible; 4397 4398 if (NumNonDeducible) { 4399 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 4400 << (NumNonDeducible > 1) 4401 << SourceRange(TemplateNameLoc, RAngleLoc); 4402 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 4403 if (!DeducibleParams[I]) { 4404 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 4405 if (Param->getDeclName()) 4406 Diag(Param->getLocation(), 4407 diag::note_partial_spec_unused_parameter) 4408 << Param->getDeclName(); 4409 else 4410 Diag(Param->getLocation(), 4411 diag::note_partial_spec_unused_parameter) 4412 << "<anonymous>"; 4413 } 4414 } 4415 } 4416 } else { 4417 // Create a new class template specialization declaration node for 4418 // this explicit specialization or friend declaration. 4419 Specialization 4420 = ClassTemplateSpecializationDecl::Create(Context, Kind, 4421 ClassTemplate->getDeclContext(), 4422 TemplateNameLoc, 4423 ClassTemplate, 4424 Converted.data(), 4425 Converted.size(), 4426 PrevDecl); 4427 SetNestedNameSpecifier(Specialization, SS); 4428 if (NumMatchedTemplateParamLists > 0 && SS.isSet()) { 4429 Specialization->setTemplateParameterListsInfo(Context, 4430 NumMatchedTemplateParamLists, 4431 (TemplateParameterList**) TemplateParameterLists.release()); 4432 } 4433 4434 if (!PrevDecl) 4435 ClassTemplate->AddSpecialization(Specialization, InsertPos); 4436 4437 CanonType = Context.getTypeDeclType(Specialization); 4438 } 4439 4440 // C++ [temp.expl.spec]p6: 4441 // If a template, a member template or the member of a class template is 4442 // explicitly specialized then that specialization shall be declared 4443 // before the first use of that specialization that would cause an implicit 4444 // instantiation to take place, in every translation unit in which such a 4445 // use occurs; no diagnostic is required. 4446 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 4447 bool Okay = false; 4448 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 4449 // Is there any previous explicit specialization declaration? 4450 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 4451 Okay = true; 4452 break; 4453 } 4454 } 4455 4456 if (!Okay) { 4457 SourceRange Range(TemplateNameLoc, RAngleLoc); 4458 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 4459 << Context.getTypeDeclType(Specialization) << Range; 4460 4461 Diag(PrevDecl->getPointOfInstantiation(), 4462 diag::note_instantiation_required_here) 4463 << (PrevDecl->getTemplateSpecializationKind() 4464 != TSK_ImplicitInstantiation); 4465 return true; 4466 } 4467 } 4468 4469 // If this is not a friend, note that this is an explicit specialization. 4470 if (TUK != TUK_Friend) 4471 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 4472 4473 // Check that this isn't a redefinition of this specialization. 4474 if (TUK == TUK_Definition) { 4475 if (RecordDecl *Def = Specialization->getDefinition()) { 4476 SourceRange Range(TemplateNameLoc, RAngleLoc); 4477 Diag(TemplateNameLoc, diag::err_redefinition) 4478 << Context.getTypeDeclType(Specialization) << Range; 4479 Diag(Def->getLocation(), diag::note_previous_definition); 4480 Specialization->setInvalidDecl(); 4481 return true; 4482 } 4483 } 4484 4485 if (Attr) 4486 ProcessDeclAttributeList(S, Specialization, Attr); 4487 4488 // Build the fully-sugared type for this class template 4489 // specialization as the user wrote in the specialization 4490 // itself. This means that we'll pretty-print the type retrieved 4491 // from the specialization's declaration the way that the user 4492 // actually wrote the specialization, rather than formatting the 4493 // name based on the "canonical" representation used to store the 4494 // template arguments in the specialization. 4495 TypeSourceInfo *WrittenTy 4496 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 4497 TemplateArgs, CanonType); 4498 if (TUK != TUK_Friend) { 4499 Specialization->setTypeAsWritten(WrittenTy); 4500 if (TemplateParams) 4501 Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc()); 4502 } 4503 TemplateArgsIn.release(); 4504 4505 // C++ [temp.expl.spec]p9: 4506 // A template explicit specialization is in the scope of the 4507 // namespace in which the template was defined. 4508 // 4509 // We actually implement this paragraph where we set the semantic 4510 // context (in the creation of the ClassTemplateSpecializationDecl), 4511 // but we also maintain the lexical context where the actual 4512 // definition occurs. 4513 Specialization->setLexicalDeclContext(CurContext); 4514 4515 // We may be starting the definition of this specialization. 4516 if (TUK == TUK_Definition) 4517 Specialization->startDefinition(); 4518 4519 if (TUK == TUK_Friend) { 4520 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 4521 TemplateNameLoc, 4522 WrittenTy, 4523 /*FIXME:*/KWLoc); 4524 Friend->setAccess(AS_public); 4525 CurContext->addDecl(Friend); 4526 } else { 4527 // Add the specialization into its lexical context, so that it can 4528 // be seen when iterating through the list of declarations in that 4529 // context. However, specializations are not found by name lookup. 4530 CurContext->addDecl(Specialization); 4531 } 4532 return Specialization; 4533} 4534 4535Decl *Sema::ActOnTemplateDeclarator(Scope *S, 4536 MultiTemplateParamsArg TemplateParameterLists, 4537 Declarator &D) { 4538 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 4539} 4540 4541Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 4542 MultiTemplateParamsArg TemplateParameterLists, 4543 Declarator &D) { 4544 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 4545 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 4546 4547 if (FTI.hasPrototype) { 4548 // FIXME: Diagnose arguments without names in C. 4549 } 4550 4551 Scope *ParentScope = FnBodyScope->getParent(); 4552 4553 Decl *DP = HandleDeclarator(ParentScope, D, 4554 move(TemplateParameterLists), 4555 /*IsFunctionDefinition=*/true); 4556 if (FunctionTemplateDecl *FunctionTemplate 4557 = dyn_cast_or_null<FunctionTemplateDecl>(DP)) 4558 return ActOnStartOfFunctionDef(FnBodyScope, 4559 FunctionTemplate->getTemplatedDecl()); 4560 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP)) 4561 return ActOnStartOfFunctionDef(FnBodyScope, Function); 4562 return 0; 4563} 4564 4565/// \brief Strips various properties off an implicit instantiation 4566/// that has just been explicitly specialized. 4567static void StripImplicitInstantiation(NamedDecl *D) { 4568 D->dropAttrs(); 4569 4570 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 4571 FD->setInlineSpecified(false); 4572 } 4573} 4574 4575/// \brief Diagnose cases where we have an explicit template specialization 4576/// before/after an explicit template instantiation, producing diagnostics 4577/// for those cases where they are required and determining whether the 4578/// new specialization/instantiation will have any effect. 4579/// 4580/// \param NewLoc the location of the new explicit specialization or 4581/// instantiation. 4582/// 4583/// \param NewTSK the kind of the new explicit specialization or instantiation. 4584/// 4585/// \param PrevDecl the previous declaration of the entity. 4586/// 4587/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 4588/// 4589/// \param PrevPointOfInstantiation if valid, indicates where the previus 4590/// declaration was instantiated (either implicitly or explicitly). 4591/// 4592/// \param HasNoEffect will be set to true to indicate that the new 4593/// specialization or instantiation has no effect and should be ignored. 4594/// 4595/// \returns true if there was an error that should prevent the introduction of 4596/// the new declaration into the AST, false otherwise. 4597bool 4598Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 4599 TemplateSpecializationKind NewTSK, 4600 NamedDecl *PrevDecl, 4601 TemplateSpecializationKind PrevTSK, 4602 SourceLocation PrevPointOfInstantiation, 4603 bool &HasNoEffect) { 4604 HasNoEffect = false; 4605 4606 switch (NewTSK) { 4607 case TSK_Undeclared: 4608 case TSK_ImplicitInstantiation: 4609 assert(false && "Don't check implicit instantiations here"); 4610 return false; 4611 4612 case TSK_ExplicitSpecialization: 4613 switch (PrevTSK) { 4614 case TSK_Undeclared: 4615 case TSK_ExplicitSpecialization: 4616 // Okay, we're just specializing something that is either already 4617 // explicitly specialized or has merely been mentioned without any 4618 // instantiation. 4619 return false; 4620 4621 case TSK_ImplicitInstantiation: 4622 if (PrevPointOfInstantiation.isInvalid()) { 4623 // The declaration itself has not actually been instantiated, so it is 4624 // still okay to specialize it. 4625 StripImplicitInstantiation(PrevDecl); 4626 return false; 4627 } 4628 // Fall through 4629 4630 case TSK_ExplicitInstantiationDeclaration: 4631 case TSK_ExplicitInstantiationDefinition: 4632 assert((PrevTSK == TSK_ImplicitInstantiation || 4633 PrevPointOfInstantiation.isValid()) && 4634 "Explicit instantiation without point of instantiation?"); 4635 4636 // C++ [temp.expl.spec]p6: 4637 // If a template, a member template or the member of a class template 4638 // is explicitly specialized then that specialization shall be declared 4639 // before the first use of that specialization that would cause an 4640 // implicit instantiation to take place, in every translation unit in 4641 // which such a use occurs; no diagnostic is required. 4642 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 4643 // Is there any previous explicit specialization declaration? 4644 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 4645 return false; 4646 } 4647 4648 Diag(NewLoc, diag::err_specialization_after_instantiation) 4649 << PrevDecl; 4650 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 4651 << (PrevTSK != TSK_ImplicitInstantiation); 4652 4653 return true; 4654 } 4655 break; 4656 4657 case TSK_ExplicitInstantiationDeclaration: 4658 switch (PrevTSK) { 4659 case TSK_ExplicitInstantiationDeclaration: 4660 // This explicit instantiation declaration is redundant (that's okay). 4661 HasNoEffect = true; 4662 return false; 4663 4664 case TSK_Undeclared: 4665 case TSK_ImplicitInstantiation: 4666 // We're explicitly instantiating something that may have already been 4667 // implicitly instantiated; that's fine. 4668 return false; 4669 4670 case TSK_ExplicitSpecialization: 4671 // C++0x [temp.explicit]p4: 4672 // For a given set of template parameters, if an explicit instantiation 4673 // of a template appears after a declaration of an explicit 4674 // specialization for that template, the explicit instantiation has no 4675 // effect. 4676 HasNoEffect = true; 4677 return false; 4678 4679 case TSK_ExplicitInstantiationDefinition: 4680 // C++0x [temp.explicit]p10: 4681 // If an entity is the subject of both an explicit instantiation 4682 // declaration and an explicit instantiation definition in the same 4683 // translation unit, the definition shall follow the declaration. 4684 Diag(NewLoc, 4685 diag::err_explicit_instantiation_declaration_after_definition); 4686 Diag(PrevPointOfInstantiation, 4687 diag::note_explicit_instantiation_definition_here); 4688 assert(PrevPointOfInstantiation.isValid() && 4689 "Explicit instantiation without point of instantiation?"); 4690 HasNoEffect = true; 4691 return false; 4692 } 4693 break; 4694 4695 case TSK_ExplicitInstantiationDefinition: 4696 switch (PrevTSK) { 4697 case TSK_Undeclared: 4698 case TSK_ImplicitInstantiation: 4699 // We're explicitly instantiating something that may have already been 4700 // implicitly instantiated; that's fine. 4701 return false; 4702 4703 case TSK_ExplicitSpecialization: 4704 // C++ DR 259, C++0x [temp.explicit]p4: 4705 // For a given set of template parameters, if an explicit 4706 // instantiation of a template appears after a declaration of 4707 // an explicit specialization for that template, the explicit 4708 // instantiation has no effect. 4709 // 4710 // In C++98/03 mode, we only give an extension warning here, because it 4711 // is not harmful to try to explicitly instantiate something that 4712 // has been explicitly specialized. 4713 if (!getLangOptions().CPlusPlus0x) { 4714 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 4715 << PrevDecl; 4716 Diag(PrevDecl->getLocation(), 4717 diag::note_previous_template_specialization); 4718 } 4719 HasNoEffect = true; 4720 return false; 4721 4722 case TSK_ExplicitInstantiationDeclaration: 4723 // We're explicity instantiating a definition for something for which we 4724 // were previously asked to suppress instantiations. That's fine. 4725 return false; 4726 4727 case TSK_ExplicitInstantiationDefinition: 4728 // C++0x [temp.spec]p5: 4729 // For a given template and a given set of template-arguments, 4730 // - an explicit instantiation definition shall appear at most once 4731 // in a program, 4732 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 4733 << PrevDecl; 4734 Diag(PrevPointOfInstantiation, 4735 diag::note_previous_explicit_instantiation); 4736 HasNoEffect = true; 4737 return false; 4738 } 4739 break; 4740 } 4741 4742 assert(false && "Missing specialization/instantiation case?"); 4743 4744 return false; 4745} 4746 4747/// \brief Perform semantic analysis for the given dependent function 4748/// template specialization. The only possible way to get a dependent 4749/// function template specialization is with a friend declaration, 4750/// like so: 4751/// 4752/// template <class T> void foo(T); 4753/// template <class T> class A { 4754/// friend void foo<>(T); 4755/// }; 4756/// 4757/// There really isn't any useful analysis we can do here, so we 4758/// just store the information. 4759bool 4760Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 4761 const TemplateArgumentListInfo &ExplicitTemplateArgs, 4762 LookupResult &Previous) { 4763 // Remove anything from Previous that isn't a function template in 4764 // the correct context. 4765 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 4766 LookupResult::Filter F = Previous.makeFilter(); 4767 while (F.hasNext()) { 4768 NamedDecl *D = F.next()->getUnderlyingDecl(); 4769 if (!isa<FunctionTemplateDecl>(D) || 4770 !FDLookupContext->InEnclosingNamespaceSetOf( 4771 D->getDeclContext()->getRedeclContext())) 4772 F.erase(); 4773 } 4774 F.done(); 4775 4776 // Should this be diagnosed here? 4777 if (Previous.empty()) return true; 4778 4779 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 4780 ExplicitTemplateArgs); 4781 return false; 4782} 4783 4784/// \brief Perform semantic analysis for the given function template 4785/// specialization. 4786/// 4787/// This routine performs all of the semantic analysis required for an 4788/// explicit function template specialization. On successful completion, 4789/// the function declaration \p FD will become a function template 4790/// specialization. 4791/// 4792/// \param FD the function declaration, which will be updated to become a 4793/// function template specialization. 4794/// 4795/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 4796/// if any. Note that this may be valid info even when 0 arguments are 4797/// explicitly provided as in, e.g., \c void sort<>(char*, char*); 4798/// as it anyway contains info on the angle brackets locations. 4799/// 4800/// \param PrevDecl the set of declarations that may be specialized by 4801/// this function specialization. 4802bool 4803Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 4804 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4805 LookupResult &Previous) { 4806 // The set of function template specializations that could match this 4807 // explicit function template specialization. 4808 UnresolvedSet<8> Candidates; 4809 4810 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 4811 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4812 I != E; ++I) { 4813 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 4814 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 4815 // Only consider templates found within the same semantic lookup scope as 4816 // FD. 4817 if (!FDLookupContext->InEnclosingNamespaceSetOf( 4818 Ovl->getDeclContext()->getRedeclContext())) 4819 continue; 4820 4821 // C++ [temp.expl.spec]p11: 4822 // A trailing template-argument can be left unspecified in the 4823 // template-id naming an explicit function template specialization 4824 // provided it can be deduced from the function argument type. 4825 // Perform template argument deduction to determine whether we may be 4826 // specializing this template. 4827 // FIXME: It is somewhat wasteful to build 4828 TemplateDeductionInfo Info(Context, FD->getLocation()); 4829 FunctionDecl *Specialization = 0; 4830 if (TemplateDeductionResult TDK 4831 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 4832 FD->getType(), 4833 Specialization, 4834 Info)) { 4835 // FIXME: Template argument deduction failed; record why it failed, so 4836 // that we can provide nifty diagnostics. 4837 (void)TDK; 4838 continue; 4839 } 4840 4841 // Record this candidate. 4842 Candidates.addDecl(Specialization, I.getAccess()); 4843 } 4844 } 4845 4846 // Find the most specialized function template. 4847 UnresolvedSetIterator Result 4848 = getMostSpecialized(Candidates.begin(), Candidates.end(), 4849 TPOC_Other, 0, FD->getLocation(), 4850 PDiag(diag::err_function_template_spec_no_match) 4851 << FD->getDeclName(), 4852 PDiag(diag::err_function_template_spec_ambiguous) 4853 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 4854 PDiag(diag::note_function_template_spec_matched)); 4855 if (Result == Candidates.end()) 4856 return true; 4857 4858 // Ignore access information; it doesn't figure into redeclaration checking. 4859 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 4860 Specialization->setLocation(FD->getLocation()); 4861 4862 // FIXME: Check if the prior specialization has a point of instantiation. 4863 // If so, we have run afoul of . 4864 4865 // If this is a friend declaration, then we're not really declaring 4866 // an explicit specialization. 4867 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 4868 4869 // Check the scope of this explicit specialization. 4870 if (!isFriend && 4871 CheckTemplateSpecializationScope(*this, 4872 Specialization->getPrimaryTemplate(), 4873 Specialization, FD->getLocation(), 4874 false)) 4875 return true; 4876 4877 // C++ [temp.expl.spec]p6: 4878 // If a template, a member template or the member of a class template is 4879 // explicitly specialized then that specialization shall be declared 4880 // before the first use of that specialization that would cause an implicit 4881 // instantiation to take place, in every translation unit in which such a 4882 // use occurs; no diagnostic is required. 4883 FunctionTemplateSpecializationInfo *SpecInfo 4884 = Specialization->getTemplateSpecializationInfo(); 4885 assert(SpecInfo && "Function template specialization info missing?"); 4886 4887 bool HasNoEffect = false; 4888 if (!isFriend && 4889 CheckSpecializationInstantiationRedecl(FD->getLocation(), 4890 TSK_ExplicitSpecialization, 4891 Specialization, 4892 SpecInfo->getTemplateSpecializationKind(), 4893 SpecInfo->getPointOfInstantiation(), 4894 HasNoEffect)) 4895 return true; 4896 4897 // Mark the prior declaration as an explicit specialization, so that later 4898 // clients know that this is an explicit specialization. 4899 if (!isFriend) { 4900 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 4901 MarkUnusedFileScopedDecl(Specialization); 4902 } 4903 4904 // Turn the given function declaration into a function template 4905 // specialization, with the template arguments from the previous 4906 // specialization. 4907 // Take copies of (semantic and syntactic) template argument lists. 4908 const TemplateArgumentList* TemplArgs = new (Context) 4909 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 4910 const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs 4911 ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0; 4912 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 4913 TemplArgs, /*InsertPos=*/0, 4914 SpecInfo->getTemplateSpecializationKind(), 4915 TemplArgsAsWritten); 4916 4917 // The "previous declaration" for this function template specialization is 4918 // the prior function template specialization. 4919 Previous.clear(); 4920 Previous.addDecl(Specialization); 4921 return false; 4922} 4923 4924/// \brief Perform semantic analysis for the given non-template member 4925/// specialization. 4926/// 4927/// This routine performs all of the semantic analysis required for an 4928/// explicit member function specialization. On successful completion, 4929/// the function declaration \p FD will become a member function 4930/// specialization. 4931/// 4932/// \param Member the member declaration, which will be updated to become a 4933/// specialization. 4934/// 4935/// \param Previous the set of declarations, one of which may be specialized 4936/// by this function specialization; the set will be modified to contain the 4937/// redeclared member. 4938bool 4939Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 4940 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 4941 4942 // Try to find the member we are instantiating. 4943 NamedDecl *Instantiation = 0; 4944 NamedDecl *InstantiatedFrom = 0; 4945 MemberSpecializationInfo *MSInfo = 0; 4946 4947 if (Previous.empty()) { 4948 // Nowhere to look anyway. 4949 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 4950 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4951 I != E; ++I) { 4952 NamedDecl *D = (*I)->getUnderlyingDecl(); 4953 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 4954 if (Context.hasSameType(Function->getType(), Method->getType())) { 4955 Instantiation = Method; 4956 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 4957 MSInfo = Method->getMemberSpecializationInfo(); 4958 break; 4959 } 4960 } 4961 } 4962 } else if (isa<VarDecl>(Member)) { 4963 VarDecl *PrevVar; 4964 if (Previous.isSingleResult() && 4965 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 4966 if (PrevVar->isStaticDataMember()) { 4967 Instantiation = PrevVar; 4968 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 4969 MSInfo = PrevVar->getMemberSpecializationInfo(); 4970 } 4971 } else if (isa<RecordDecl>(Member)) { 4972 CXXRecordDecl *PrevRecord; 4973 if (Previous.isSingleResult() && 4974 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 4975 Instantiation = PrevRecord; 4976 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 4977 MSInfo = PrevRecord->getMemberSpecializationInfo(); 4978 } 4979 } 4980 4981 if (!Instantiation) { 4982 // There is no previous declaration that matches. Since member 4983 // specializations are always out-of-line, the caller will complain about 4984 // this mismatch later. 4985 return false; 4986 } 4987 4988 // If this is a friend, just bail out here before we start turning 4989 // things into explicit specializations. 4990 if (Member->getFriendObjectKind() != Decl::FOK_None) { 4991 // Preserve instantiation information. 4992 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 4993 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 4994 cast<CXXMethodDecl>(InstantiatedFrom), 4995 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 4996 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 4997 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 4998 cast<CXXRecordDecl>(InstantiatedFrom), 4999 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 5000 } 5001 5002 Previous.clear(); 5003 Previous.addDecl(Instantiation); 5004 return false; 5005 } 5006 5007 // Make sure that this is a specialization of a member. 5008 if (!InstantiatedFrom) { 5009 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 5010 << Member; 5011 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 5012 return true; 5013 } 5014 5015 // C++ [temp.expl.spec]p6: 5016 // If a template, a member template or the member of a class template is 5017 // explicitly specialized then that spe- cialization shall be declared 5018 // before the first use of that specialization that would cause an implicit 5019 // instantiation to take place, in every translation unit in which such a 5020 // use occurs; no diagnostic is required. 5021 assert(MSInfo && "Member specialization info missing?"); 5022 5023 bool HasNoEffect = false; 5024 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 5025 TSK_ExplicitSpecialization, 5026 Instantiation, 5027 MSInfo->getTemplateSpecializationKind(), 5028 MSInfo->getPointOfInstantiation(), 5029 HasNoEffect)) 5030 return true; 5031 5032 // Check the scope of this explicit specialization. 5033 if (CheckTemplateSpecializationScope(*this, 5034 InstantiatedFrom, 5035 Instantiation, Member->getLocation(), 5036 false)) 5037 return true; 5038 5039 // Note that this is an explicit instantiation of a member. 5040 // the original declaration to note that it is an explicit specialization 5041 // (if it was previously an implicit instantiation). This latter step 5042 // makes bookkeeping easier. 5043 if (isa<FunctionDecl>(Member)) { 5044 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 5045 if (InstantiationFunction->getTemplateSpecializationKind() == 5046 TSK_ImplicitInstantiation) { 5047 InstantiationFunction->setTemplateSpecializationKind( 5048 TSK_ExplicitSpecialization); 5049 InstantiationFunction->setLocation(Member->getLocation()); 5050 } 5051 5052 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 5053 cast<CXXMethodDecl>(InstantiatedFrom), 5054 TSK_ExplicitSpecialization); 5055 MarkUnusedFileScopedDecl(InstantiationFunction); 5056 } else if (isa<VarDecl>(Member)) { 5057 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 5058 if (InstantiationVar->getTemplateSpecializationKind() == 5059 TSK_ImplicitInstantiation) { 5060 InstantiationVar->setTemplateSpecializationKind( 5061 TSK_ExplicitSpecialization); 5062 InstantiationVar->setLocation(Member->getLocation()); 5063 } 5064 5065 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 5066 cast<VarDecl>(InstantiatedFrom), 5067 TSK_ExplicitSpecialization); 5068 MarkUnusedFileScopedDecl(InstantiationVar); 5069 } else { 5070 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 5071 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 5072 if (InstantiationClass->getTemplateSpecializationKind() == 5073 TSK_ImplicitInstantiation) { 5074 InstantiationClass->setTemplateSpecializationKind( 5075 TSK_ExplicitSpecialization); 5076 InstantiationClass->setLocation(Member->getLocation()); 5077 } 5078 5079 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5080 cast<CXXRecordDecl>(InstantiatedFrom), 5081 TSK_ExplicitSpecialization); 5082 } 5083 5084 // Save the caller the trouble of having to figure out which declaration 5085 // this specialization matches. 5086 Previous.clear(); 5087 Previous.addDecl(Instantiation); 5088 return false; 5089} 5090 5091/// \brief Check the scope of an explicit instantiation. 5092/// 5093/// \returns true if a serious error occurs, false otherwise. 5094static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 5095 SourceLocation InstLoc, 5096 bool WasQualifiedName) { 5097 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 5098 DeclContext *CurContext = S.CurContext->getRedeclContext(); 5099 5100 if (CurContext->isRecord()) { 5101 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 5102 << D; 5103 return true; 5104 } 5105 5106 // C++0x [temp.explicit]p2: 5107 // An explicit instantiation shall appear in an enclosing namespace of its 5108 // template. 5109 // 5110 // This is DR275, which we do not retroactively apply to C++98/03. 5111 if (S.getLangOptions().CPlusPlus0x && 5112 !CurContext->Encloses(OrigContext)) { 5113 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) 5114 S.Diag(InstLoc, 5115 S.getLangOptions().CPlusPlus0x? 5116 diag::err_explicit_instantiation_out_of_scope 5117 : diag::warn_explicit_instantiation_out_of_scope_0x) 5118 << D << NS; 5119 else 5120 S.Diag(InstLoc, 5121 S.getLangOptions().CPlusPlus0x? 5122 diag::err_explicit_instantiation_must_be_global 5123 : diag::warn_explicit_instantiation_out_of_scope_0x) 5124 << D; 5125 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 5126 return false; 5127 } 5128 5129 // C++0x [temp.explicit]p2: 5130 // If the name declared in the explicit instantiation is an unqualified 5131 // name, the explicit instantiation shall appear in the namespace where 5132 // its template is declared or, if that namespace is inline (7.3.1), any 5133 // namespace from its enclosing namespace set. 5134 if (WasQualifiedName) 5135 return false; 5136 5137 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 5138 return false; 5139 5140 S.Diag(InstLoc, 5141 S.getLangOptions().CPlusPlus0x? 5142 diag::err_explicit_instantiation_unqualified_wrong_namespace 5143 : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 5144 << D << OrigContext; 5145 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 5146 return false; 5147} 5148 5149/// \brief Determine whether the given scope specifier has a template-id in it. 5150static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 5151 if (!SS.isSet()) 5152 return false; 5153 5154 // C++0x [temp.explicit]p2: 5155 // If the explicit instantiation is for a member function, a member class 5156 // or a static data member of a class template specialization, the name of 5157 // the class template specialization in the qualified-id for the member 5158 // name shall be a simple-template-id. 5159 // 5160 // C++98 has the same restriction, just worded differently. 5161 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 5162 NNS; NNS = NNS->getPrefix()) 5163 if (Type *T = NNS->getAsType()) 5164 if (isa<TemplateSpecializationType>(T)) 5165 return true; 5166 5167 return false; 5168} 5169 5170// Explicit instantiation of a class template specialization 5171DeclResult 5172Sema::ActOnExplicitInstantiation(Scope *S, 5173 SourceLocation ExternLoc, 5174 SourceLocation TemplateLoc, 5175 unsigned TagSpec, 5176 SourceLocation KWLoc, 5177 const CXXScopeSpec &SS, 5178 TemplateTy TemplateD, 5179 SourceLocation TemplateNameLoc, 5180 SourceLocation LAngleLoc, 5181 ASTTemplateArgsPtr TemplateArgsIn, 5182 SourceLocation RAngleLoc, 5183 AttributeList *Attr) { 5184 // Find the class template we're specializing 5185 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 5186 ClassTemplateDecl *ClassTemplate 5187 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 5188 5189 // Check that the specialization uses the same tag kind as the 5190 // original template. 5191 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5192 assert(Kind != TTK_Enum && 5193 "Invalid enum tag in class template explicit instantiation!"); 5194 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 5195 Kind, KWLoc, 5196 *ClassTemplate->getIdentifier())) { 5197 Diag(KWLoc, diag::err_use_with_wrong_tag) 5198 << ClassTemplate 5199 << FixItHint::CreateReplacement(KWLoc, 5200 ClassTemplate->getTemplatedDecl()->getKindName()); 5201 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 5202 diag::note_previous_use); 5203 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 5204 } 5205 5206 // C++0x [temp.explicit]p2: 5207 // There are two forms of explicit instantiation: an explicit instantiation 5208 // definition and an explicit instantiation declaration. An explicit 5209 // instantiation declaration begins with the extern keyword. [...] 5210 TemplateSpecializationKind TSK 5211 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5212 : TSK_ExplicitInstantiationDeclaration; 5213 5214 // Translate the parser's template argument list in our AST format. 5215 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 5216 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 5217 5218 // Check that the template argument list is well-formed for this 5219 // template. 5220 llvm::SmallVector<TemplateArgument, 4> Converted; 5221 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 5222 TemplateArgs, false, Converted)) 5223 return true; 5224 5225 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 5226 "Converted template argument list is too short!"); 5227 5228 // Find the class template specialization declaration that 5229 // corresponds to these arguments. 5230 void *InsertPos = 0; 5231 ClassTemplateSpecializationDecl *PrevDecl 5232 = ClassTemplate->findSpecialization(Converted.data(), 5233 Converted.size(), InsertPos); 5234 5235 TemplateSpecializationKind PrevDecl_TSK 5236 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 5237 5238 // C++0x [temp.explicit]p2: 5239 // [...] An explicit instantiation shall appear in an enclosing 5240 // namespace of its template. [...] 5241 // 5242 // This is C++ DR 275. 5243 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 5244 SS.isSet())) 5245 return true; 5246 5247 ClassTemplateSpecializationDecl *Specialization = 0; 5248 5249 bool ReusedDecl = false; 5250 bool HasNoEffect = false; 5251 if (PrevDecl) { 5252 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 5253 PrevDecl, PrevDecl_TSK, 5254 PrevDecl->getPointOfInstantiation(), 5255 HasNoEffect)) 5256 return PrevDecl; 5257 5258 // Even though HasNoEffect == true means that this explicit instantiation 5259 // has no effect on semantics, we go on to put its syntax in the AST. 5260 5261 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 5262 PrevDecl_TSK == TSK_Undeclared) { 5263 // Since the only prior class template specialization with these 5264 // arguments was referenced but not declared, reuse that 5265 // declaration node as our own, updating the source location 5266 // for the template name to reflect our new declaration. 5267 // (Other source locations will be updated later.) 5268 Specialization = PrevDecl; 5269 Specialization->setLocation(TemplateNameLoc); 5270 PrevDecl = 0; 5271 ReusedDecl = true; 5272 } 5273 } 5274 5275 if (!Specialization) { 5276 // Create a new class template specialization declaration node for 5277 // this explicit specialization. 5278 Specialization 5279 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5280 ClassTemplate->getDeclContext(), 5281 TemplateNameLoc, 5282 ClassTemplate, 5283 Converted.data(), 5284 Converted.size(), 5285 PrevDecl); 5286 SetNestedNameSpecifier(Specialization, SS); 5287 5288 if (!HasNoEffect && !PrevDecl) { 5289 // Insert the new specialization. 5290 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5291 } 5292 } 5293 5294 // Build the fully-sugared type for this explicit instantiation as 5295 // the user wrote in the explicit instantiation itself. This means 5296 // that we'll pretty-print the type retrieved from the 5297 // specialization's declaration the way that the user actually wrote 5298 // the explicit instantiation, rather than formatting the name based 5299 // on the "canonical" representation used to store the template 5300 // arguments in the specialization. 5301 TypeSourceInfo *WrittenTy 5302 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5303 TemplateArgs, 5304 Context.getTypeDeclType(Specialization)); 5305 Specialization->setTypeAsWritten(WrittenTy); 5306 TemplateArgsIn.release(); 5307 5308 // Set source locations for keywords. 5309 Specialization->setExternLoc(ExternLoc); 5310 Specialization->setTemplateKeywordLoc(TemplateLoc); 5311 5312 // Add the explicit instantiation into its lexical context. However, 5313 // since explicit instantiations are never found by name lookup, we 5314 // just put it into the declaration context directly. 5315 Specialization->setLexicalDeclContext(CurContext); 5316 CurContext->addDecl(Specialization); 5317 5318 // Syntax is now OK, so return if it has no other effect on semantics. 5319 if (HasNoEffect) { 5320 // Set the template specialization kind. 5321 Specialization->setTemplateSpecializationKind(TSK); 5322 return Specialization; 5323 } 5324 5325 // C++ [temp.explicit]p3: 5326 // A definition of a class template or class member template 5327 // shall be in scope at the point of the explicit instantiation of 5328 // the class template or class member template. 5329 // 5330 // This check comes when we actually try to perform the 5331 // instantiation. 5332 ClassTemplateSpecializationDecl *Def 5333 = cast_or_null<ClassTemplateSpecializationDecl>( 5334 Specialization->getDefinition()); 5335 if (!Def) 5336 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 5337 else if (TSK == TSK_ExplicitInstantiationDefinition) { 5338 MarkVTableUsed(TemplateNameLoc, Specialization, true); 5339 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 5340 } 5341 5342 // Instantiate the members of this class template specialization. 5343 Def = cast_or_null<ClassTemplateSpecializationDecl>( 5344 Specialization->getDefinition()); 5345 if (Def) { 5346 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 5347 5348 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 5349 // TSK_ExplicitInstantiationDefinition 5350 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 5351 TSK == TSK_ExplicitInstantiationDefinition) 5352 Def->setTemplateSpecializationKind(TSK); 5353 5354 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 5355 } 5356 5357 // Set the template specialization kind. 5358 Specialization->setTemplateSpecializationKind(TSK); 5359 return Specialization; 5360} 5361 5362// Explicit instantiation of a member class of a class template. 5363DeclResult 5364Sema::ActOnExplicitInstantiation(Scope *S, 5365 SourceLocation ExternLoc, 5366 SourceLocation TemplateLoc, 5367 unsigned TagSpec, 5368 SourceLocation KWLoc, 5369 CXXScopeSpec &SS, 5370 IdentifierInfo *Name, 5371 SourceLocation NameLoc, 5372 AttributeList *Attr) { 5373 5374 bool Owned = false; 5375 bool IsDependent = false; 5376 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 5377 KWLoc, SS, Name, NameLoc, Attr, AS_none, 5378 MultiTemplateParamsArg(*this, 0, 0), 5379 Owned, IsDependent, false, false, 5380 TypeResult()); 5381 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 5382 5383 if (!TagD) 5384 return true; 5385 5386 TagDecl *Tag = cast<TagDecl>(TagD); 5387 if (Tag->isEnum()) { 5388 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 5389 << Context.getTypeDeclType(Tag); 5390 return true; 5391 } 5392 5393 if (Tag->isInvalidDecl()) 5394 return true; 5395 5396 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 5397 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 5398 if (!Pattern) { 5399 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 5400 << Context.getTypeDeclType(Record); 5401 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 5402 return true; 5403 } 5404 5405 // C++0x [temp.explicit]p2: 5406 // If the explicit instantiation is for a class or member class, the 5407 // elaborated-type-specifier in the declaration shall include a 5408 // simple-template-id. 5409 // 5410 // C++98 has the same restriction, just worded differently. 5411 if (!ScopeSpecifierHasTemplateId(SS)) 5412 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 5413 << Record << SS.getRange(); 5414 5415 // C++0x [temp.explicit]p2: 5416 // There are two forms of explicit instantiation: an explicit instantiation 5417 // definition and an explicit instantiation declaration. An explicit 5418 // instantiation declaration begins with the extern keyword. [...] 5419 TemplateSpecializationKind TSK 5420 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5421 : TSK_ExplicitInstantiationDeclaration; 5422 5423 // C++0x [temp.explicit]p2: 5424 // [...] An explicit instantiation shall appear in an enclosing 5425 // namespace of its template. [...] 5426 // 5427 // This is C++ DR 275. 5428 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 5429 5430 // Verify that it is okay to explicitly instantiate here. 5431 CXXRecordDecl *PrevDecl 5432 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 5433 if (!PrevDecl && Record->getDefinition()) 5434 PrevDecl = Record; 5435 if (PrevDecl) { 5436 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 5437 bool HasNoEffect = false; 5438 assert(MSInfo && "No member specialization information?"); 5439 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 5440 PrevDecl, 5441 MSInfo->getTemplateSpecializationKind(), 5442 MSInfo->getPointOfInstantiation(), 5443 HasNoEffect)) 5444 return true; 5445 if (HasNoEffect) 5446 return TagD; 5447 } 5448 5449 CXXRecordDecl *RecordDef 5450 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 5451 if (!RecordDef) { 5452 // C++ [temp.explicit]p3: 5453 // A definition of a member class of a class template shall be in scope 5454 // at the point of an explicit instantiation of the member class. 5455 CXXRecordDecl *Def 5456 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 5457 if (!Def) { 5458 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 5459 << 0 << Record->getDeclName() << Record->getDeclContext(); 5460 Diag(Pattern->getLocation(), diag::note_forward_declaration) 5461 << Pattern; 5462 return true; 5463 } else { 5464 if (InstantiateClass(NameLoc, Record, Def, 5465 getTemplateInstantiationArgs(Record), 5466 TSK)) 5467 return true; 5468 5469 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 5470 if (!RecordDef) 5471 return true; 5472 } 5473 } 5474 5475 // Instantiate all of the members of the class. 5476 InstantiateClassMembers(NameLoc, RecordDef, 5477 getTemplateInstantiationArgs(Record), TSK); 5478 5479 if (TSK == TSK_ExplicitInstantiationDefinition) 5480 MarkVTableUsed(NameLoc, RecordDef, true); 5481 5482 // FIXME: We don't have any representation for explicit instantiations of 5483 // member classes. Such a representation is not needed for compilation, but it 5484 // should be available for clients that want to see all of the declarations in 5485 // the source code. 5486 return TagD; 5487} 5488 5489DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 5490 SourceLocation ExternLoc, 5491 SourceLocation TemplateLoc, 5492 Declarator &D) { 5493 // Explicit instantiations always require a name. 5494 // TODO: check if/when DNInfo should replace Name. 5495 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 5496 DeclarationName Name = NameInfo.getName(); 5497 if (!Name) { 5498 if (!D.isInvalidType()) 5499 Diag(D.getDeclSpec().getSourceRange().getBegin(), 5500 diag::err_explicit_instantiation_requires_name) 5501 << D.getDeclSpec().getSourceRange() 5502 << D.getSourceRange(); 5503 5504 return true; 5505 } 5506 5507 // The scope passed in may not be a decl scope. Zip up the scope tree until 5508 // we find one that is. 5509 while ((S->getFlags() & Scope::DeclScope) == 0 || 5510 (S->getFlags() & Scope::TemplateParamScope) != 0) 5511 S = S->getParent(); 5512 5513 // Determine the type of the declaration. 5514 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 5515 QualType R = T->getType(); 5516 if (R.isNull()) 5517 return true; 5518 5519 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 5520 // Cannot explicitly instantiate a typedef. 5521 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 5522 << Name; 5523 return true; 5524 } 5525 5526 // C++0x [temp.explicit]p1: 5527 // [...] An explicit instantiation of a function template shall not use the 5528 // inline or constexpr specifiers. 5529 // Presumably, this also applies to member functions of class templates as 5530 // well. 5531 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 5532 Diag(D.getDeclSpec().getInlineSpecLoc(), 5533 diag::err_explicit_instantiation_inline) 5534 <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 5535 5536 // FIXME: check for constexpr specifier. 5537 5538 // C++0x [temp.explicit]p2: 5539 // There are two forms of explicit instantiation: an explicit instantiation 5540 // definition and an explicit instantiation declaration. An explicit 5541 // instantiation declaration begins with the extern keyword. [...] 5542 TemplateSpecializationKind TSK 5543 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5544 : TSK_ExplicitInstantiationDeclaration; 5545 5546 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 5547 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 5548 5549 if (!R->isFunctionType()) { 5550 // C++ [temp.explicit]p1: 5551 // A [...] static data member of a class template can be explicitly 5552 // instantiated from the member definition associated with its class 5553 // template. 5554 if (Previous.isAmbiguous()) 5555 return true; 5556 5557 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 5558 if (!Prev || !Prev->isStaticDataMember()) { 5559 // We expect to see a data data member here. 5560 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 5561 << Name; 5562 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 5563 P != PEnd; ++P) 5564 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 5565 return true; 5566 } 5567 5568 if (!Prev->getInstantiatedFromStaticDataMember()) { 5569 // FIXME: Check for explicit specialization? 5570 Diag(D.getIdentifierLoc(), 5571 diag::err_explicit_instantiation_data_member_not_instantiated) 5572 << Prev; 5573 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 5574 // FIXME: Can we provide a note showing where this was declared? 5575 return true; 5576 } 5577 5578 // C++0x [temp.explicit]p2: 5579 // If the explicit instantiation is for a member function, a member class 5580 // or a static data member of a class template specialization, the name of 5581 // the class template specialization in the qualified-id for the member 5582 // name shall be a simple-template-id. 5583 // 5584 // C++98 has the same restriction, just worded differently. 5585 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5586 Diag(D.getIdentifierLoc(), 5587 diag::ext_explicit_instantiation_without_qualified_id) 5588 << Prev << D.getCXXScopeSpec().getRange(); 5589 5590 // Check the scope of this explicit instantiation. 5591 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 5592 5593 // Verify that it is okay to explicitly instantiate here. 5594 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 5595 assert(MSInfo && "Missing static data member specialization info?"); 5596 bool HasNoEffect = false; 5597 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 5598 MSInfo->getTemplateSpecializationKind(), 5599 MSInfo->getPointOfInstantiation(), 5600 HasNoEffect)) 5601 return true; 5602 if (HasNoEffect) 5603 return (Decl*) 0; 5604 5605 // Instantiate static data member. 5606 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5607 if (TSK == TSK_ExplicitInstantiationDefinition) 5608 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev); 5609 5610 // FIXME: Create an ExplicitInstantiation node? 5611 return (Decl*) 0; 5612 } 5613 5614 // If the declarator is a template-id, translate the parser's template 5615 // argument list into our AST format. 5616 bool HasExplicitTemplateArgs = false; 5617 TemplateArgumentListInfo TemplateArgs; 5618 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 5619 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 5620 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 5621 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 5622 ASTTemplateArgsPtr TemplateArgsPtr(*this, 5623 TemplateId->getTemplateArgs(), 5624 TemplateId->NumArgs); 5625 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 5626 HasExplicitTemplateArgs = true; 5627 TemplateArgsPtr.release(); 5628 } 5629 5630 // C++ [temp.explicit]p1: 5631 // A [...] function [...] can be explicitly instantiated from its template. 5632 // A member function [...] of a class template can be explicitly 5633 // instantiated from the member definition associated with its class 5634 // template. 5635 UnresolvedSet<8> Matches; 5636 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 5637 P != PEnd; ++P) { 5638 NamedDecl *Prev = *P; 5639 if (!HasExplicitTemplateArgs) { 5640 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 5641 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 5642 Matches.clear(); 5643 5644 Matches.addDecl(Method, P.getAccess()); 5645 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 5646 break; 5647 } 5648 } 5649 } 5650 5651 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 5652 if (!FunTmpl) 5653 continue; 5654 5655 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 5656 FunctionDecl *Specialization = 0; 5657 if (TemplateDeductionResult TDK 5658 = DeduceTemplateArguments(FunTmpl, 5659 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 5660 R, Specialization, Info)) { 5661 // FIXME: Keep track of almost-matches? 5662 (void)TDK; 5663 continue; 5664 } 5665 5666 Matches.addDecl(Specialization, P.getAccess()); 5667 } 5668 5669 // Find the most specialized function template specialization. 5670 UnresolvedSetIterator Result 5671 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0, 5672 D.getIdentifierLoc(), 5673 PDiag(diag::err_explicit_instantiation_not_known) << Name, 5674 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 5675 PDiag(diag::note_explicit_instantiation_candidate)); 5676 5677 if (Result == Matches.end()) 5678 return true; 5679 5680 // Ignore access control bits, we don't need them for redeclaration checking. 5681 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5682 5683 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 5684 Diag(D.getIdentifierLoc(), 5685 diag::err_explicit_instantiation_member_function_not_instantiated) 5686 << Specialization 5687 << (Specialization->getTemplateSpecializationKind() == 5688 TSK_ExplicitSpecialization); 5689 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 5690 return true; 5691 } 5692 5693 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 5694 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 5695 PrevDecl = Specialization; 5696 5697 if (PrevDecl) { 5698 bool HasNoEffect = false; 5699 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 5700 PrevDecl, 5701 PrevDecl->getTemplateSpecializationKind(), 5702 PrevDecl->getPointOfInstantiation(), 5703 HasNoEffect)) 5704 return true; 5705 5706 // FIXME: We may still want to build some representation of this 5707 // explicit specialization. 5708 if (HasNoEffect) 5709 return (Decl*) 0; 5710 } 5711 5712 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5713 5714 if (TSK == TSK_ExplicitInstantiationDefinition) 5715 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 5716 5717 // C++0x [temp.explicit]p2: 5718 // If the explicit instantiation is for a member function, a member class 5719 // or a static data member of a class template specialization, the name of 5720 // the class template specialization in the qualified-id for the member 5721 // name shall be a simple-template-id. 5722 // 5723 // C++98 has the same restriction, just worded differently. 5724 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 5725 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 5726 D.getCXXScopeSpec().isSet() && 5727 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5728 Diag(D.getIdentifierLoc(), 5729 diag::ext_explicit_instantiation_without_qualified_id) 5730 << Specialization << D.getCXXScopeSpec().getRange(); 5731 5732 CheckExplicitInstantiationScope(*this, 5733 FunTmpl? (NamedDecl *)FunTmpl 5734 : Specialization->getInstantiatedFromMemberFunction(), 5735 D.getIdentifierLoc(), 5736 D.getCXXScopeSpec().isSet()); 5737 5738 // FIXME: Create some kind of ExplicitInstantiationDecl here. 5739 return (Decl*) 0; 5740} 5741 5742TypeResult 5743Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 5744 const CXXScopeSpec &SS, IdentifierInfo *Name, 5745 SourceLocation TagLoc, SourceLocation NameLoc) { 5746 // This has to hold, because SS is expected to be defined. 5747 assert(Name && "Expected a name in a dependent tag"); 5748 5749 NestedNameSpecifier *NNS 5750 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5751 if (!NNS) 5752 return true; 5753 5754 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5755 5756 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 5757 Diag(NameLoc, diag::err_dependent_tag_decl) 5758 << (TUK == TUK_Definition) << Kind << SS.getRange(); 5759 return true; 5760 } 5761 5762 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 5763 return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name)); 5764} 5765 5766TypeResult 5767Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 5768 const CXXScopeSpec &SS, const IdentifierInfo &II, 5769 SourceLocation IdLoc) { 5770 NestedNameSpecifier *NNS 5771 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5772 if (!NNS) 5773 return true; 5774 5775 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 5776 !getLangOptions().CPlusPlus0x) 5777 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 5778 << FixItHint::CreateRemoval(TypenameLoc); 5779 5780 QualType T = CheckTypenameType(ETK_Typename, NNS, II, 5781 TypenameLoc, SS.getRange(), IdLoc); 5782 if (T.isNull()) 5783 return true; 5784 5785 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5786 if (isa<DependentNameType>(T)) { 5787 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 5788 TL.setKeywordLoc(TypenameLoc); 5789 TL.setQualifierRange(SS.getRange()); 5790 TL.setNameLoc(IdLoc); 5791 } else { 5792 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 5793 TL.setKeywordLoc(TypenameLoc); 5794 TL.setQualifierRange(SS.getRange()); 5795 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc); 5796 } 5797 5798 return CreateParsedType(T, TSI); 5799} 5800 5801TypeResult 5802Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 5803 const CXXScopeSpec &SS, SourceLocation TemplateLoc, 5804 ParsedType Ty) { 5805 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 5806 !getLangOptions().CPlusPlus0x) 5807 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 5808 << FixItHint::CreateRemoval(TypenameLoc); 5809 5810 TypeSourceInfo *InnerTSI = 0; 5811 QualType T = GetTypeFromParser(Ty, &InnerTSI); 5812 5813 assert(isa<TemplateSpecializationType>(T) && 5814 "Expected a template specialization type"); 5815 5816 if (computeDeclContext(SS, false)) { 5817 // If we can compute a declaration context, then the "typename" 5818 // keyword was superfluous. Just build an ElaboratedType to keep 5819 // track of the nested-name-specifier. 5820 5821 // Push the inner type, preserving its source locations if possible. 5822 TypeLocBuilder Builder; 5823 if (InnerTSI) 5824 Builder.pushFullCopy(InnerTSI->getTypeLoc()); 5825 else 5826 Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc); 5827 5828 /* Note: NNS already embedded in template specialization type T. */ 5829 T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T); 5830 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 5831 TL.setKeywordLoc(TypenameLoc); 5832 TL.setQualifierRange(SS.getRange()); 5833 5834 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 5835 return CreateParsedType(T, TSI); 5836 } 5837 5838 // TODO: it's really silly that we make a template specialization 5839 // type earlier only to drop it again here. 5840 TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T); 5841 DependentTemplateName *DTN = 5842 TST->getTemplateName().getAsDependentTemplateName(); 5843 assert(DTN && "dependent template has non-dependent name?"); 5844 assert(DTN->getQualifier() 5845 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 5846 T = Context.getDependentTemplateSpecializationType(ETK_Typename, 5847 DTN->getQualifier(), 5848 DTN->getIdentifier(), 5849 TST->getNumArgs(), 5850 TST->getArgs()); 5851 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5852 DependentTemplateSpecializationTypeLoc TL = 5853 cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc()); 5854 if (InnerTSI) { 5855 TemplateSpecializationTypeLoc TSTL = 5856 cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc()); 5857 TL.setLAngleLoc(TSTL.getLAngleLoc()); 5858 TL.setRAngleLoc(TSTL.getRAngleLoc()); 5859 for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I) 5860 TL.setArgLocInfo(I, TSTL.getArgLocInfo(I)); 5861 } else { 5862 TL.initializeLocal(SourceLocation()); 5863 } 5864 TL.setKeywordLoc(TypenameLoc); 5865 TL.setQualifierRange(SS.getRange()); 5866 return CreateParsedType(T, TSI); 5867} 5868 5869/// \brief Build the type that describes a C++ typename specifier, 5870/// e.g., "typename T::type". 5871QualType 5872Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 5873 NestedNameSpecifier *NNS, const IdentifierInfo &II, 5874 SourceLocation KeywordLoc, SourceRange NNSRange, 5875 SourceLocation IILoc) { 5876 CXXScopeSpec SS; 5877 SS.setScopeRep(NNS); 5878 SS.setRange(NNSRange); 5879 5880 DeclContext *Ctx = computeDeclContext(SS); 5881 if (!Ctx) { 5882 // If the nested-name-specifier is dependent and couldn't be 5883 // resolved to a type, build a typename type. 5884 assert(NNS->isDependent()); 5885 return Context.getDependentNameType(Keyword, NNS, &II); 5886 } 5887 5888 // If the nested-name-specifier refers to the current instantiation, 5889 // the "typename" keyword itself is superfluous. In C++03, the 5890 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 5891 // allows such extraneous "typename" keywords, and we retroactively 5892 // apply this DR to C++03 code with only a warning. In any case we continue. 5893 5894 if (RequireCompleteDeclContext(SS, Ctx)) 5895 return QualType(); 5896 5897 DeclarationName Name(&II); 5898 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 5899 LookupQualifiedName(Result, Ctx); 5900 unsigned DiagID = 0; 5901 Decl *Referenced = 0; 5902 switch (Result.getResultKind()) { 5903 case LookupResult::NotFound: 5904 DiagID = diag::err_typename_nested_not_found; 5905 break; 5906 5907 case LookupResult::FoundUnresolvedValue: { 5908 // We found a using declaration that is a value. Most likely, the using 5909 // declaration itself is meant to have the 'typename' keyword. 5910 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(), 5911 IILoc); 5912 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 5913 << Name << Ctx << FullRange; 5914 if (UnresolvedUsingValueDecl *Using 5915 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 5916 SourceLocation Loc = Using->getTargetNestedNameRange().getBegin(); 5917 Diag(Loc, diag::note_using_value_decl_missing_typename) 5918 << FixItHint::CreateInsertion(Loc, "typename "); 5919 } 5920 } 5921 // Fall through to create a dependent typename type, from which we can recover 5922 // better. 5923 5924 case LookupResult::NotFoundInCurrentInstantiation: 5925 // Okay, it's a member of an unknown instantiation. 5926 return Context.getDependentNameType(Keyword, NNS, &II); 5927 5928 case LookupResult::Found: 5929 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 5930 // We found a type. Build an ElaboratedType, since the 5931 // typename-specifier was just sugar. 5932 return Context.getElaboratedType(ETK_Typename, NNS, 5933 Context.getTypeDeclType(Type)); 5934 } 5935 5936 DiagID = diag::err_typename_nested_not_type; 5937 Referenced = Result.getFoundDecl(); 5938 break; 5939 5940 5941 llvm_unreachable("unresolved using decl in non-dependent context"); 5942 return QualType(); 5943 5944 case LookupResult::FoundOverloaded: 5945 DiagID = diag::err_typename_nested_not_type; 5946 Referenced = *Result.begin(); 5947 break; 5948 5949 case LookupResult::Ambiguous: 5950 return QualType(); 5951 } 5952 5953 // If we get here, it's because name lookup did not find a 5954 // type. Emit an appropriate diagnostic and return an error. 5955 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(), 5956 IILoc); 5957 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 5958 if (Referenced) 5959 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 5960 << Name; 5961 return QualType(); 5962} 5963 5964namespace { 5965 // See Sema::RebuildTypeInCurrentInstantiation 5966 class CurrentInstantiationRebuilder 5967 : public TreeTransform<CurrentInstantiationRebuilder> { 5968 SourceLocation Loc; 5969 DeclarationName Entity; 5970 5971 public: 5972 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 5973 5974 CurrentInstantiationRebuilder(Sema &SemaRef, 5975 SourceLocation Loc, 5976 DeclarationName Entity) 5977 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 5978 Loc(Loc), Entity(Entity) { } 5979 5980 /// \brief Determine whether the given type \p T has already been 5981 /// transformed. 5982 /// 5983 /// For the purposes of type reconstruction, a type has already been 5984 /// transformed if it is NULL or if it is not dependent. 5985 bool AlreadyTransformed(QualType T) { 5986 return T.isNull() || !T->isDependentType(); 5987 } 5988 5989 /// \brief Returns the location of the entity whose type is being 5990 /// rebuilt. 5991 SourceLocation getBaseLocation() { return Loc; } 5992 5993 /// \brief Returns the name of the entity whose type is being rebuilt. 5994 DeclarationName getBaseEntity() { return Entity; } 5995 5996 /// \brief Sets the "base" location and entity when that 5997 /// information is known based on another transformation. 5998 void setBase(SourceLocation Loc, DeclarationName Entity) { 5999 this->Loc = Loc; 6000 this->Entity = Entity; 6001 } 6002 }; 6003} 6004 6005/// \brief Rebuilds a type within the context of the current instantiation. 6006/// 6007/// The type \p T is part of the type of an out-of-line member definition of 6008/// a class template (or class template partial specialization) that was parsed 6009/// and constructed before we entered the scope of the class template (or 6010/// partial specialization thereof). This routine will rebuild that type now 6011/// that we have entered the declarator's scope, which may produce different 6012/// canonical types, e.g., 6013/// 6014/// \code 6015/// template<typename T> 6016/// struct X { 6017/// typedef T* pointer; 6018/// pointer data(); 6019/// }; 6020/// 6021/// template<typename T> 6022/// typename X<T>::pointer X<T>::data() { ... } 6023/// \endcode 6024/// 6025/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 6026/// since we do not know that we can look into X<T> when we parsed the type. 6027/// This function will rebuild the type, performing the lookup of "pointer" 6028/// in X<T> and returning an ElaboratedType whose canonical type is the same 6029/// as the canonical type of T*, allowing the return types of the out-of-line 6030/// definition and the declaration to match. 6031TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 6032 SourceLocation Loc, 6033 DeclarationName Name) { 6034 if (!T || !T->getType()->isDependentType()) 6035 return T; 6036 6037 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 6038 return Rebuilder.TransformType(T); 6039} 6040 6041ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 6042 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 6043 DeclarationName()); 6044 return Rebuilder.TransformExpr(E); 6045} 6046 6047bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 6048 if (SS.isInvalid()) return true; 6049 6050 NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 6051 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 6052 DeclarationName()); 6053 NestedNameSpecifier *Rebuilt = 6054 Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange()); 6055 if (!Rebuilt) return true; 6056 6057 SS.setScopeRep(Rebuilt); 6058 return false; 6059} 6060 6061/// \brief Produces a formatted string that describes the binding of 6062/// template parameters to template arguments. 6063std::string 6064Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6065 const TemplateArgumentList &Args) { 6066 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 6067} 6068 6069std::string 6070Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6071 const TemplateArgument *Args, 6072 unsigned NumArgs) { 6073 llvm::SmallString<128> Str; 6074 llvm::raw_svector_ostream Out(Str); 6075 6076 if (!Params || Params->size() == 0 || NumArgs == 0) 6077 return std::string(); 6078 6079 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 6080 if (I >= NumArgs) 6081 break; 6082 6083 if (I == 0) 6084 Out << "[with "; 6085 else 6086 Out << ", "; 6087 6088 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 6089 Out << Id->getName(); 6090 } else { 6091 Out << '$' << I; 6092 } 6093 6094 Out << " = "; 6095 Args[I].print(Context.PrintingPolicy, Out); 6096 } 6097 6098 Out << ']'; 6099 return Out.str(); 6100} 6101 6102