SemaTemplate.cpp revision 5c7bf42ef16dc767615bed10f3b7b3c1265314e1
1d70d1c4aa6b9b2f4713d79f442dbf66a3f702c9bDmitry V. Levin//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2d70d1c4aa6b9b2f4713d79f442dbf66a3f702c9bDmitry V. Levin//
3d70d1c4aa6b9b2f4713d79f442dbf66a3f702c9bDmitry V. Levin//                     The LLVM Compiler Infrastructure
4d70d1c4aa6b9b2f4713d79f442dbf66a3f702c9bDmitry V. Levin//
5d70d1c4aa6b9b2f4713d79f442dbf66a3f702c9bDmitry V. Levin// This file is distributed under the University of Illinois Open Source
6d70d1c4aa6b9b2f4713d79f442dbf66a3f702c9bDmitry V. Levin// License. See LICENSE.TXT for details.
7d70d1c4aa6b9b2f4713d79f442dbf66a3f702c9bDmitry V. Levin//===----------------------------------------------------------------------===/
85105d4ac960b8cd2bfa5f9f907806aa388235889Dmitry V. Levin//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/StringExtras.h"
30using namespace clang;
31using namespace sema;
32
33// Exported for use by Parser.
34SourceRange
35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
36                              unsigned N) {
37  if (!N) return SourceRange();
38  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
39}
40
41/// \brief Determine whether the declaration found is acceptable as the name
42/// of a template and, if so, return that template declaration. Otherwise,
43/// returns NULL.
44static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
45                                           NamedDecl *Orig) {
46  NamedDecl *D = Orig->getUnderlyingDecl();
47
48  if (isa<TemplateDecl>(D))
49    return Orig;
50
51  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
52    // C++ [temp.local]p1:
53    //   Like normal (non-template) classes, class templates have an
54    //   injected-class-name (Clause 9). The injected-class-name
55    //   can be used with or without a template-argument-list. When
56    //   it is used without a template-argument-list, it is
57    //   equivalent to the injected-class-name followed by the
58    //   template-parameters of the class template enclosed in
59    //   <>. When it is used with a template-argument-list, it
60    //   refers to the specified class template specialization,
61    //   which could be the current specialization or another
62    //   specialization.
63    if (Record->isInjectedClassName()) {
64      Record = cast<CXXRecordDecl>(Record->getDeclContext());
65      if (Record->getDescribedClassTemplate())
66        return Record->getDescribedClassTemplate();
67
68      if (ClassTemplateSpecializationDecl *Spec
69            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
70        return Spec->getSpecializedTemplate();
71    }
72
73    return 0;
74  }
75
76  return 0;
77}
78
79static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
80  // The set of class templates we've already seen.
81  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
82  LookupResult::Filter filter = R.makeFilter();
83  while (filter.hasNext()) {
84    NamedDecl *Orig = filter.next();
85    NamedDecl *Repl = isAcceptableTemplateName(C, Orig);
86    if (!Repl)
87      filter.erase();
88    else if (Repl != Orig) {
89
90      // C++ [temp.local]p3:
91      //   A lookup that finds an injected-class-name (10.2) can result in an
92      //   ambiguity in certain cases (for example, if it is found in more than
93      //   one base class). If all of the injected-class-names that are found
94      //   refer to specializations of the same class template, and if the name
95      //   is followed by a template-argument-list, the reference refers to the
96      //   class template itself and not a specialization thereof, and is not
97      //   ambiguous.
98      //
99      // FIXME: Will we eventually have to do the same for alias templates?
100      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
101        if (!ClassTemplates.insert(ClassTmpl)) {
102          filter.erase();
103          continue;
104        }
105
106      // FIXME: we promote access to public here as a workaround to
107      // the fact that LookupResult doesn't let us remember that we
108      // found this template through a particular injected class name,
109      // which means we end up doing nasty things to the invariants.
110      // Pretending that access is public is *much* safer.
111      filter.replace(Repl, AS_public);
112    }
113  }
114  filter.done();
115}
116
117TemplateNameKind Sema::isTemplateName(Scope *S,
118                                      CXXScopeSpec &SS,
119                                      bool hasTemplateKeyword,
120                                      UnqualifiedId &Name,
121                                      ParsedType ObjectTypePtr,
122                                      bool EnteringContext,
123                                      TemplateTy &TemplateResult,
124                                      bool &MemberOfUnknownSpecialization) {
125  assert(getLangOptions().CPlusPlus && "No template names in C!");
126
127  DeclarationName TName;
128  MemberOfUnknownSpecialization = false;
129
130  switch (Name.getKind()) {
131  case UnqualifiedId::IK_Identifier:
132    TName = DeclarationName(Name.Identifier);
133    break;
134
135  case UnqualifiedId::IK_OperatorFunctionId:
136    TName = Context.DeclarationNames.getCXXOperatorName(
137                                              Name.OperatorFunctionId.Operator);
138    break;
139
140  case UnqualifiedId::IK_LiteralOperatorId:
141    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
142    break;
143
144  default:
145    return TNK_Non_template;
146  }
147
148  QualType ObjectType = ObjectTypePtr.get();
149
150  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
151                 LookupOrdinaryName);
152  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
153                     MemberOfUnknownSpecialization);
154  if (R.empty()) return TNK_Non_template;
155  if (R.isAmbiguous()) {
156    // Suppress diagnostics;  we'll redo this lookup later.
157    R.suppressDiagnostics();
158
159    // FIXME: we might have ambiguous templates, in which case we
160    // should at least parse them properly!
161    return TNK_Non_template;
162  }
163
164  TemplateName Template;
165  TemplateNameKind TemplateKind;
166
167  unsigned ResultCount = R.end() - R.begin();
168  if (ResultCount > 1) {
169    // We assume that we'll preserve the qualifier from a function
170    // template name in other ways.
171    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
172    TemplateKind = TNK_Function_template;
173
174    // We'll do this lookup again later.
175    R.suppressDiagnostics();
176  } else {
177    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
178
179    if (SS.isSet() && !SS.isInvalid()) {
180      NestedNameSpecifier *Qualifier
181        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
182      Template = Context.getQualifiedTemplateName(Qualifier,
183                                                  hasTemplateKeyword, TD);
184    } else {
185      Template = TemplateName(TD);
186    }
187
188    if (isa<FunctionTemplateDecl>(TD)) {
189      TemplateKind = TNK_Function_template;
190
191      // We'll do this lookup again later.
192      R.suppressDiagnostics();
193    } else {
194      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
195      TemplateKind = TNK_Type_template;
196    }
197  }
198
199  TemplateResult = TemplateTy::make(Template);
200  return TemplateKind;
201}
202
203bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
204                                       SourceLocation IILoc,
205                                       Scope *S,
206                                       const CXXScopeSpec *SS,
207                                       TemplateTy &SuggestedTemplate,
208                                       TemplateNameKind &SuggestedKind) {
209  // We can't recover unless there's a dependent scope specifier preceding the
210  // template name.
211  // FIXME: Typo correction?
212  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
213      computeDeclContext(*SS))
214    return false;
215
216  // The code is missing a 'template' keyword prior to the dependent template
217  // name.
218  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
219  Diag(IILoc, diag::err_template_kw_missing)
220    << Qualifier << II.getName()
221    << FixItHint::CreateInsertion(IILoc, "template ");
222  SuggestedTemplate
223    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
224  SuggestedKind = TNK_Dependent_template_name;
225  return true;
226}
227
228void Sema::LookupTemplateName(LookupResult &Found,
229                              Scope *S, CXXScopeSpec &SS,
230                              QualType ObjectType,
231                              bool EnteringContext,
232                              bool &MemberOfUnknownSpecialization) {
233  // Determine where to perform name lookup
234  MemberOfUnknownSpecialization = false;
235  DeclContext *LookupCtx = 0;
236  bool isDependent = false;
237  if (!ObjectType.isNull()) {
238    // This nested-name-specifier occurs in a member access expression, e.g.,
239    // x->B::f, and we are looking into the type of the object.
240    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
241    LookupCtx = computeDeclContext(ObjectType);
242    isDependent = ObjectType->isDependentType();
243    assert((isDependent || !ObjectType->isIncompleteType()) &&
244           "Caller should have completed object type");
245  } else if (SS.isSet()) {
246    // This nested-name-specifier occurs after another nested-name-specifier,
247    // so long into the context associated with the prior nested-name-specifier.
248    LookupCtx = computeDeclContext(SS, EnteringContext);
249    isDependent = isDependentScopeSpecifier(SS);
250
251    // The declaration context must be complete.
252    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
253      return;
254  }
255
256  bool ObjectTypeSearchedInScope = false;
257  if (LookupCtx) {
258    // Perform "qualified" name lookup into the declaration context we
259    // computed, which is either the type of the base of a member access
260    // expression or the declaration context associated with a prior
261    // nested-name-specifier.
262    LookupQualifiedName(Found, LookupCtx);
263
264    if (!ObjectType.isNull() && Found.empty()) {
265      // C++ [basic.lookup.classref]p1:
266      //   In a class member access expression (5.2.5), if the . or -> token is
267      //   immediately followed by an identifier followed by a <, the
268      //   identifier must be looked up to determine whether the < is the
269      //   beginning of a template argument list (14.2) or a less-than operator.
270      //   The identifier is first looked up in the class of the object
271      //   expression. If the identifier is not found, it is then looked up in
272      //   the context of the entire postfix-expression and shall name a class
273      //   or function template.
274      if (S) LookupName(Found, S);
275      ObjectTypeSearchedInScope = true;
276    }
277  } else if (isDependent && (!S || ObjectType.isNull())) {
278    // We cannot look into a dependent object type or nested nme
279    // specifier.
280    MemberOfUnknownSpecialization = true;
281    return;
282  } else {
283    // Perform unqualified name lookup in the current scope.
284    LookupName(Found, S);
285  }
286
287  if (Found.empty() && !isDependent) {
288    // If we did not find any names, attempt to correct any typos.
289    DeclarationName Name = Found.getLookupName();
290    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
291                                                false, CTC_CXXCasts)) {
292      FilterAcceptableTemplateNames(Context, Found);
293      if (!Found.empty()) {
294        if (LookupCtx)
295          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
296            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
297            << FixItHint::CreateReplacement(Found.getNameLoc(),
298                                          Found.getLookupName().getAsString());
299        else
300          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
301            << Name << Found.getLookupName()
302            << FixItHint::CreateReplacement(Found.getNameLoc(),
303                                          Found.getLookupName().getAsString());
304        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
305          Diag(Template->getLocation(), diag::note_previous_decl)
306            << Template->getDeclName();
307      }
308    } else {
309      Found.clear();
310      Found.setLookupName(Name);
311    }
312  }
313
314  FilterAcceptableTemplateNames(Context, Found);
315  if (Found.empty()) {
316    if (isDependent)
317      MemberOfUnknownSpecialization = true;
318    return;
319  }
320
321  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
322    // C++ [basic.lookup.classref]p1:
323    //   [...] If the lookup in the class of the object expression finds a
324    //   template, the name is also looked up in the context of the entire
325    //   postfix-expression and [...]
326    //
327    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
328                            LookupOrdinaryName);
329    LookupName(FoundOuter, S);
330    FilterAcceptableTemplateNames(Context, FoundOuter);
331
332    if (FoundOuter.empty()) {
333      //   - if the name is not found, the name found in the class of the
334      //     object expression is used, otherwise
335    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
336      //   - if the name is found in the context of the entire
337      //     postfix-expression and does not name a class template, the name
338      //     found in the class of the object expression is used, otherwise
339    } else if (!Found.isSuppressingDiagnostics()) {
340      //   - if the name found is a class template, it must refer to the same
341      //     entity as the one found in the class of the object expression,
342      //     otherwise the program is ill-formed.
343      if (!Found.isSingleResult() ||
344          Found.getFoundDecl()->getCanonicalDecl()
345            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
346        Diag(Found.getNameLoc(),
347             diag::ext_nested_name_member_ref_lookup_ambiguous)
348          << Found.getLookupName()
349          << ObjectType;
350        Diag(Found.getRepresentativeDecl()->getLocation(),
351             diag::note_ambig_member_ref_object_type)
352          << ObjectType;
353        Diag(FoundOuter.getFoundDecl()->getLocation(),
354             diag::note_ambig_member_ref_scope);
355
356        // Recover by taking the template that we found in the object
357        // expression's type.
358      }
359    }
360  }
361}
362
363/// ActOnDependentIdExpression - Handle a dependent id-expression that
364/// was just parsed.  This is only possible with an explicit scope
365/// specifier naming a dependent type.
366ExprResult
367Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
368                                 const DeclarationNameInfo &NameInfo,
369                                 bool isAddressOfOperand,
370                           const TemplateArgumentListInfo *TemplateArgs) {
371  NestedNameSpecifier *Qualifier
372    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
373
374  DeclContext *DC = getFunctionLevelDeclContext();
375
376  if (!isAddressOfOperand &&
377      isa<CXXMethodDecl>(DC) &&
378      cast<CXXMethodDecl>(DC)->isInstance()) {
379    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
380
381    // Since the 'this' expression is synthesized, we don't need to
382    // perform the double-lookup check.
383    NamedDecl *FirstQualifierInScope = 0;
384
385    return Owned(CXXDependentScopeMemberExpr::Create(Context,
386                                                     /*This*/ 0, ThisType,
387                                                     /*IsArrow*/ true,
388                                                     /*Op*/ SourceLocation(),
389                                                     Qualifier, SS.getRange(),
390                                                     FirstQualifierInScope,
391                                                     NameInfo,
392                                                     TemplateArgs));
393  }
394
395  return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
396}
397
398ExprResult
399Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
400                                const DeclarationNameInfo &NameInfo,
401                                const TemplateArgumentListInfo *TemplateArgs) {
402  return Owned(DependentScopeDeclRefExpr::Create(Context,
403               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
404                                                 SS.getRange(),
405                                                 NameInfo,
406                                                 TemplateArgs));
407}
408
409/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
410/// that the template parameter 'PrevDecl' is being shadowed by a new
411/// declaration at location Loc. Returns true to indicate that this is
412/// an error, and false otherwise.
413bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
414  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
415
416  // Microsoft Visual C++ permits template parameters to be shadowed.
417  if (getLangOptions().Microsoft)
418    return false;
419
420  // C++ [temp.local]p4:
421  //   A template-parameter shall not be redeclared within its
422  //   scope (including nested scopes).
423  Diag(Loc, diag::err_template_param_shadow)
424    << cast<NamedDecl>(PrevDecl)->getDeclName();
425  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
426  return true;
427}
428
429/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
430/// the parameter D to reference the templated declaration and return a pointer
431/// to the template declaration. Otherwise, do nothing to D and return null.
432TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
433  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
434    D = Temp->getTemplatedDecl();
435    return Temp;
436  }
437  return 0;
438}
439
440ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
441                                             SourceLocation EllipsisLoc) const {
442  assert(Kind == Template &&
443         "Only template template arguments can be pack expansions here");
444  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
445         "Template template argument pack expansion without packs");
446  ParsedTemplateArgument Result(*this);
447  Result.EllipsisLoc = EllipsisLoc;
448  return Result;
449}
450
451static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
452                                            const ParsedTemplateArgument &Arg) {
453
454  switch (Arg.getKind()) {
455  case ParsedTemplateArgument::Type: {
456    TypeSourceInfo *DI;
457    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
458    if (!DI)
459      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
460    return TemplateArgumentLoc(TemplateArgument(T), DI);
461  }
462
463  case ParsedTemplateArgument::NonType: {
464    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
465    return TemplateArgumentLoc(TemplateArgument(E), E);
466  }
467
468  case ParsedTemplateArgument::Template: {
469    TemplateName Template = Arg.getAsTemplate().get();
470    return TemplateArgumentLoc(TemplateArgument(Template,
471                                                Arg.getEllipsisLoc().isValid()),
472                               Arg.getScopeSpec().getRange(),
473                               Arg.getLocation(),
474                               Arg.getEllipsisLoc());
475  }
476  }
477
478  llvm_unreachable("Unhandled parsed template argument");
479  return TemplateArgumentLoc();
480}
481
482/// \brief Translates template arguments as provided by the parser
483/// into template arguments used by semantic analysis.
484void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
485                                      TemplateArgumentListInfo &TemplateArgs) {
486 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
487   TemplateArgs.addArgument(translateTemplateArgument(*this,
488                                                      TemplateArgsIn[I]));
489}
490
491/// ActOnTypeParameter - Called when a C++ template type parameter
492/// (e.g., "typename T") has been parsed. Typename specifies whether
493/// the keyword "typename" was used to declare the type parameter
494/// (otherwise, "class" was used), and KeyLoc is the location of the
495/// "class" or "typename" keyword. ParamName is the name of the
496/// parameter (NULL indicates an unnamed template parameter) and
497/// ParamName is the location of the parameter name (if any).
498/// If the type parameter has a default argument, it will be added
499/// later via ActOnTypeParameterDefault.
500Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
501                               SourceLocation EllipsisLoc,
502                               SourceLocation KeyLoc,
503                               IdentifierInfo *ParamName,
504                               SourceLocation ParamNameLoc,
505                               unsigned Depth, unsigned Position,
506                               SourceLocation EqualLoc,
507                               ParsedType DefaultArg) {
508  assert(S->isTemplateParamScope() &&
509         "Template type parameter not in template parameter scope!");
510  bool Invalid = false;
511
512  if (ParamName) {
513    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
514                                           LookupOrdinaryName,
515                                           ForRedeclaration);
516    if (PrevDecl && PrevDecl->isTemplateParameter())
517      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
518                                                           PrevDecl);
519  }
520
521  SourceLocation Loc = ParamNameLoc;
522  if (!ParamName)
523    Loc = KeyLoc;
524
525  TemplateTypeParmDecl *Param
526    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
527                                   Loc, Depth, Position, ParamName, Typename,
528                                   Ellipsis);
529  if (Invalid)
530    Param->setInvalidDecl();
531
532  if (ParamName) {
533    // Add the template parameter into the current scope.
534    S->AddDecl(Param);
535    IdResolver.AddDecl(Param);
536  }
537
538  // C++0x [temp.param]p9:
539  //   A default template-argument may be specified for any kind of
540  //   template-parameter that is not a template parameter pack.
541  if (DefaultArg && Ellipsis) {
542    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
543    DefaultArg = ParsedType();
544  }
545
546  // Handle the default argument, if provided.
547  if (DefaultArg) {
548    TypeSourceInfo *DefaultTInfo;
549    GetTypeFromParser(DefaultArg, &DefaultTInfo);
550
551    assert(DefaultTInfo && "expected source information for type");
552
553    // Check for unexpanded parameter packs.
554    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
555                                        UPPC_DefaultArgument))
556      return Param;
557
558    // Check the template argument itself.
559    if (CheckTemplateArgument(Param, DefaultTInfo)) {
560      Param->setInvalidDecl();
561      return Param;
562    }
563
564    Param->setDefaultArgument(DefaultTInfo, false);
565  }
566
567  return Param;
568}
569
570/// \brief Check that the type of a non-type template parameter is
571/// well-formed.
572///
573/// \returns the (possibly-promoted) parameter type if valid;
574/// otherwise, produces a diagnostic and returns a NULL type.
575QualType
576Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
577  // We don't allow variably-modified types as the type of non-type template
578  // parameters.
579  if (T->isVariablyModifiedType()) {
580    Diag(Loc, diag::err_variably_modified_nontype_template_param)
581      << T;
582    return QualType();
583  }
584
585  // C++ [temp.param]p4:
586  //
587  // A non-type template-parameter shall have one of the following
588  // (optionally cv-qualified) types:
589  //
590  //       -- integral or enumeration type,
591  if (T->isIntegralOrEnumerationType() ||
592      //   -- pointer to object or pointer to function,
593      T->isPointerType() ||
594      //   -- reference to object or reference to function,
595      T->isReferenceType() ||
596      //   -- pointer to member.
597      T->isMemberPointerType() ||
598      // If T is a dependent type, we can't do the check now, so we
599      // assume that it is well-formed.
600      T->isDependentType())
601    return T;
602  // C++ [temp.param]p8:
603  //
604  //   A non-type template-parameter of type "array of T" or
605  //   "function returning T" is adjusted to be of type "pointer to
606  //   T" or "pointer to function returning T", respectively.
607  else if (T->isArrayType())
608    // FIXME: Keep the type prior to promotion?
609    return Context.getArrayDecayedType(T);
610  else if (T->isFunctionType())
611    // FIXME: Keep the type prior to promotion?
612    return Context.getPointerType(T);
613
614  Diag(Loc, diag::err_template_nontype_parm_bad_type)
615    << T;
616
617  return QualType();
618}
619
620Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
621                                          unsigned Depth,
622                                          unsigned Position,
623                                          SourceLocation EqualLoc,
624                                          Expr *Default) {
625  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
626  QualType T = TInfo->getType();
627
628  assert(S->isTemplateParamScope() &&
629         "Non-type template parameter not in template parameter scope!");
630  bool Invalid = false;
631
632  IdentifierInfo *ParamName = D.getIdentifier();
633  if (ParamName) {
634    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
635                                           LookupOrdinaryName,
636                                           ForRedeclaration);
637    if (PrevDecl && PrevDecl->isTemplateParameter())
638      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
639                                                           PrevDecl);
640  }
641
642  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
643  if (T.isNull()) {
644    T = Context.IntTy; // Recover with an 'int' type.
645    Invalid = true;
646  }
647
648  bool IsParameterPack = D.hasEllipsis();
649  NonTypeTemplateParmDecl *Param
650    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
651                                      D.getIdentifierLoc(),
652                                      Depth, Position, ParamName, T,
653                                      IsParameterPack, TInfo);
654  if (Invalid)
655    Param->setInvalidDecl();
656
657  if (D.getIdentifier()) {
658    // Add the template parameter into the current scope.
659    S->AddDecl(Param);
660    IdResolver.AddDecl(Param);
661  }
662
663  // C++0x [temp.param]p9:
664  //   A default template-argument may be specified for any kind of
665  //   template-parameter that is not a template parameter pack.
666  if (Default && IsParameterPack) {
667    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
668    Default = 0;
669  }
670
671  // Check the well-formedness of the default template argument, if provided.
672  if (Default) {
673    // Check for unexpanded parameter packs.
674    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
675      return Param;
676
677    TemplateArgument Converted;
678    if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) {
679      Param->setInvalidDecl();
680      return Param;
681    }
682
683    Param->setDefaultArgument(Default, false);
684  }
685
686  return Param;
687}
688
689/// ActOnTemplateTemplateParameter - Called when a C++ template template
690/// parameter (e.g. T in template <template <typename> class T> class array)
691/// has been parsed. S is the current scope.
692Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
693                                           SourceLocation TmpLoc,
694                                           TemplateParamsTy *Params,
695                                           SourceLocation EllipsisLoc,
696                                           IdentifierInfo *Name,
697                                           SourceLocation NameLoc,
698                                           unsigned Depth,
699                                           unsigned Position,
700                                           SourceLocation EqualLoc,
701                                           ParsedTemplateArgument Default) {
702  assert(S->isTemplateParamScope() &&
703         "Template template parameter not in template parameter scope!");
704
705  // Construct the parameter object.
706  bool IsParameterPack = EllipsisLoc.isValid();
707  // FIXME: Pack-ness is dropped
708  TemplateTemplateParmDecl *Param =
709    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
710                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
711                                     Depth, Position, IsParameterPack,
712                                     Name, Params);
713
714  // If the template template parameter has a name, then link the identifier
715  // into the scope and lookup mechanisms.
716  if (Name) {
717    S->AddDecl(Param);
718    IdResolver.AddDecl(Param);
719  }
720
721  if (Params->size() == 0) {
722    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
723    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
724    Param->setInvalidDecl();
725  }
726
727  // C++0x [temp.param]p9:
728  //   A default template-argument may be specified for any kind of
729  //   template-parameter that is not a template parameter pack.
730  if (IsParameterPack && !Default.isInvalid()) {
731    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
732    Default = ParsedTemplateArgument();
733  }
734
735  if (!Default.isInvalid()) {
736    // Check only that we have a template template argument. We don't want to
737    // try to check well-formedness now, because our template template parameter
738    // might have dependent types in its template parameters, which we wouldn't
739    // be able to match now.
740    //
741    // If none of the template template parameter's template arguments mention
742    // other template parameters, we could actually perform more checking here.
743    // However, it isn't worth doing.
744    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
745    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
746      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
747        << DefaultArg.getSourceRange();
748      return Param;
749    }
750
751    // Check for unexpanded parameter packs.
752    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
753                                        DefaultArg.getArgument().getAsTemplate(),
754                                        UPPC_DefaultArgument))
755      return Param;
756
757    Param->setDefaultArgument(DefaultArg, false);
758  }
759
760  return Param;
761}
762
763/// ActOnTemplateParameterList - Builds a TemplateParameterList that
764/// contains the template parameters in Params/NumParams.
765Sema::TemplateParamsTy *
766Sema::ActOnTemplateParameterList(unsigned Depth,
767                                 SourceLocation ExportLoc,
768                                 SourceLocation TemplateLoc,
769                                 SourceLocation LAngleLoc,
770                                 Decl **Params, unsigned NumParams,
771                                 SourceLocation RAngleLoc) {
772  if (ExportLoc.isValid())
773    Diag(ExportLoc, diag::warn_template_export_unsupported);
774
775  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
776                                       (NamedDecl**)Params, NumParams,
777                                       RAngleLoc);
778}
779
780static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
781  if (SS.isSet())
782    T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
783                        SS.getRange());
784}
785
786DeclResult
787Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
788                         SourceLocation KWLoc, CXXScopeSpec &SS,
789                         IdentifierInfo *Name, SourceLocation NameLoc,
790                         AttributeList *Attr,
791                         TemplateParameterList *TemplateParams,
792                         AccessSpecifier AS) {
793  assert(TemplateParams && TemplateParams->size() > 0 &&
794         "No template parameters");
795  assert(TUK != TUK_Reference && "Can only declare or define class templates");
796  bool Invalid = false;
797
798  // Check that we can declare a template here.
799  if (CheckTemplateDeclScope(S, TemplateParams))
800    return true;
801
802  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
803  assert(Kind != TTK_Enum && "can't build template of enumerated type");
804
805  // There is no such thing as an unnamed class template.
806  if (!Name) {
807    Diag(KWLoc, diag::err_template_unnamed_class);
808    return true;
809  }
810
811  // Find any previous declaration with this name.
812  DeclContext *SemanticContext;
813  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
814                        ForRedeclaration);
815  if (SS.isNotEmpty() && !SS.isInvalid()) {
816    SemanticContext = computeDeclContext(SS, true);
817    if (!SemanticContext) {
818      // FIXME: Produce a reasonable diagnostic here
819      return true;
820    }
821
822    if (RequireCompleteDeclContext(SS, SemanticContext))
823      return true;
824
825    LookupQualifiedName(Previous, SemanticContext);
826  } else {
827    SemanticContext = CurContext;
828    LookupName(Previous, S);
829  }
830
831  if (Previous.isAmbiguous())
832    return true;
833
834  NamedDecl *PrevDecl = 0;
835  if (Previous.begin() != Previous.end())
836    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
837
838  // If there is a previous declaration with the same name, check
839  // whether this is a valid redeclaration.
840  ClassTemplateDecl *PrevClassTemplate
841    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
842
843  // We may have found the injected-class-name of a class template,
844  // class template partial specialization, or class template specialization.
845  // In these cases, grab the template that is being defined or specialized.
846  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
847      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
848    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
849    PrevClassTemplate
850      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
851    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
852      PrevClassTemplate
853        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
854            ->getSpecializedTemplate();
855    }
856  }
857
858  if (TUK == TUK_Friend) {
859    // C++ [namespace.memdef]p3:
860    //   [...] When looking for a prior declaration of a class or a function
861    //   declared as a friend, and when the name of the friend class or
862    //   function is neither a qualified name nor a template-id, scopes outside
863    //   the innermost enclosing namespace scope are not considered.
864    if (!SS.isSet()) {
865      DeclContext *OutermostContext = CurContext;
866      while (!OutermostContext->isFileContext())
867        OutermostContext = OutermostContext->getLookupParent();
868
869      if (PrevDecl &&
870          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
871           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
872        SemanticContext = PrevDecl->getDeclContext();
873      } else {
874        // Declarations in outer scopes don't matter. However, the outermost
875        // context we computed is the semantic context for our new
876        // declaration.
877        PrevDecl = PrevClassTemplate = 0;
878        SemanticContext = OutermostContext;
879      }
880    }
881
882    if (CurContext->isDependentContext()) {
883      // If this is a dependent context, we don't want to link the friend
884      // class template to the template in scope, because that would perform
885      // checking of the template parameter lists that can't be performed
886      // until the outer context is instantiated.
887      PrevDecl = PrevClassTemplate = 0;
888    }
889  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
890    PrevDecl = PrevClassTemplate = 0;
891
892  if (PrevClassTemplate) {
893    // Ensure that the template parameter lists are compatible.
894    if (!TemplateParameterListsAreEqual(TemplateParams,
895                                   PrevClassTemplate->getTemplateParameters(),
896                                        /*Complain=*/true,
897                                        TPL_TemplateMatch))
898      return true;
899
900    // C++ [temp.class]p4:
901    //   In a redeclaration, partial specialization, explicit
902    //   specialization or explicit instantiation of a class template,
903    //   the class-key shall agree in kind with the original class
904    //   template declaration (7.1.5.3).
905    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
906    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
907      Diag(KWLoc, diag::err_use_with_wrong_tag)
908        << Name
909        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
910      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
911      Kind = PrevRecordDecl->getTagKind();
912    }
913
914    // Check for redefinition of this class template.
915    if (TUK == TUK_Definition) {
916      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
917        Diag(NameLoc, diag::err_redefinition) << Name;
918        Diag(Def->getLocation(), diag::note_previous_definition);
919        // FIXME: Would it make sense to try to "forget" the previous
920        // definition, as part of error recovery?
921        return true;
922      }
923    }
924  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
925    // Maybe we will complain about the shadowed template parameter.
926    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
927    // Just pretend that we didn't see the previous declaration.
928    PrevDecl = 0;
929  } else if (PrevDecl) {
930    // C++ [temp]p5:
931    //   A class template shall not have the same name as any other
932    //   template, class, function, object, enumeration, enumerator,
933    //   namespace, or type in the same scope (3.3), except as specified
934    //   in (14.5.4).
935    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
936    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
937    return true;
938  }
939
940  // Check the template parameter list of this declaration, possibly
941  // merging in the template parameter list from the previous class
942  // template declaration.
943  if (CheckTemplateParameterList(TemplateParams,
944            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
945                                 TPC_ClassTemplate))
946    Invalid = true;
947
948  if (SS.isSet()) {
949    // If the name of the template was qualified, we must be defining the
950    // template out-of-line.
951    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
952        !(TUK == TUK_Friend && CurContext->isDependentContext()))
953      Diag(NameLoc, diag::err_member_def_does_not_match)
954        << Name << SemanticContext << SS.getRange();
955  }
956
957  CXXRecordDecl *NewClass =
958    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
959                          PrevClassTemplate?
960                            PrevClassTemplate->getTemplatedDecl() : 0,
961                          /*DelayTypeCreation=*/true);
962  SetNestedNameSpecifier(NewClass, SS);
963
964  ClassTemplateDecl *NewTemplate
965    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
966                                DeclarationName(Name), TemplateParams,
967                                NewClass, PrevClassTemplate);
968  NewClass->setDescribedClassTemplate(NewTemplate);
969
970  // Build the type for the class template declaration now.
971  QualType T = NewTemplate->getInjectedClassNameSpecialization();
972  T = Context.getInjectedClassNameType(NewClass, T);
973  assert(T->isDependentType() && "Class template type is not dependent?");
974  (void)T;
975
976  // If we are providing an explicit specialization of a member that is a
977  // class template, make a note of that.
978  if (PrevClassTemplate &&
979      PrevClassTemplate->getInstantiatedFromMemberTemplate())
980    PrevClassTemplate->setMemberSpecialization();
981
982  // Set the access specifier.
983  if (!Invalid && TUK != TUK_Friend)
984    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
985
986  // Set the lexical context of these templates
987  NewClass->setLexicalDeclContext(CurContext);
988  NewTemplate->setLexicalDeclContext(CurContext);
989
990  if (TUK == TUK_Definition)
991    NewClass->startDefinition();
992
993  if (Attr)
994    ProcessDeclAttributeList(S, NewClass, Attr);
995
996  if (TUK != TUK_Friend)
997    PushOnScopeChains(NewTemplate, S);
998  else {
999    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1000      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1001      NewClass->setAccess(PrevClassTemplate->getAccess());
1002    }
1003
1004    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1005                                       PrevClassTemplate != NULL);
1006
1007    // Friend templates are visible in fairly strange ways.
1008    if (!CurContext->isDependentContext()) {
1009      DeclContext *DC = SemanticContext->getRedeclContext();
1010      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
1011      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1012        PushOnScopeChains(NewTemplate, EnclosingScope,
1013                          /* AddToContext = */ false);
1014    }
1015
1016    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1017                                            NewClass->getLocation(),
1018                                            NewTemplate,
1019                                    /*FIXME:*/NewClass->getLocation());
1020    Friend->setAccess(AS_public);
1021    CurContext->addDecl(Friend);
1022  }
1023
1024  if (Invalid) {
1025    NewTemplate->setInvalidDecl();
1026    NewClass->setInvalidDecl();
1027  }
1028  return NewTemplate;
1029}
1030
1031/// \brief Diagnose the presence of a default template argument on a
1032/// template parameter, which is ill-formed in certain contexts.
1033///
1034/// \returns true if the default template argument should be dropped.
1035static bool DiagnoseDefaultTemplateArgument(Sema &S,
1036                                            Sema::TemplateParamListContext TPC,
1037                                            SourceLocation ParamLoc,
1038                                            SourceRange DefArgRange) {
1039  switch (TPC) {
1040  case Sema::TPC_ClassTemplate:
1041    return false;
1042
1043  case Sema::TPC_FunctionTemplate:
1044    // C++ [temp.param]p9:
1045    //   A default template-argument shall not be specified in a
1046    //   function template declaration or a function template
1047    //   definition [...]
1048    // (This sentence is not in C++0x, per DR226).
1049    if (!S.getLangOptions().CPlusPlus0x)
1050      S.Diag(ParamLoc,
1051             diag::err_template_parameter_default_in_function_template)
1052        << DefArgRange;
1053    return false;
1054
1055  case Sema::TPC_ClassTemplateMember:
1056    // C++0x [temp.param]p9:
1057    //   A default template-argument shall not be specified in the
1058    //   template-parameter-lists of the definition of a member of a
1059    //   class template that appears outside of the member's class.
1060    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1061      << DefArgRange;
1062    return true;
1063
1064  case Sema::TPC_FriendFunctionTemplate:
1065    // C++ [temp.param]p9:
1066    //   A default template-argument shall not be specified in a
1067    //   friend template declaration.
1068    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1069      << DefArgRange;
1070    return true;
1071
1072    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1073    // for friend function templates if there is only a single
1074    // declaration (and it is a definition). Strange!
1075  }
1076
1077  return false;
1078}
1079
1080/// \brief Check for unexpanded parameter packs within the template parameters
1081/// of a template template parameter, recursively.
1082bool DiagnoseUnexpandedParameterPacks(Sema &S, TemplateTemplateParmDecl *TTP){
1083  TemplateParameterList *Params = TTP->getTemplateParameters();
1084  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1085    NamedDecl *P = Params->getParam(I);
1086    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1087      if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1088                                            NTTP->getTypeSourceInfo(),
1089                                      Sema::UPPC_NonTypeTemplateParameterType))
1090        return true;
1091
1092      continue;
1093    }
1094
1095    if (TemplateTemplateParmDecl *InnerTTP
1096                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1097      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1098        return true;
1099  }
1100
1101  return false;
1102}
1103
1104/// \brief Checks the validity of a template parameter list, possibly
1105/// considering the template parameter list from a previous
1106/// declaration.
1107///
1108/// If an "old" template parameter list is provided, it must be
1109/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1110/// template parameter list.
1111///
1112/// \param NewParams Template parameter list for a new template
1113/// declaration. This template parameter list will be updated with any
1114/// default arguments that are carried through from the previous
1115/// template parameter list.
1116///
1117/// \param OldParams If provided, template parameter list from a
1118/// previous declaration of the same template. Default template
1119/// arguments will be merged from the old template parameter list to
1120/// the new template parameter list.
1121///
1122/// \param TPC Describes the context in which we are checking the given
1123/// template parameter list.
1124///
1125/// \returns true if an error occurred, false otherwise.
1126bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1127                                      TemplateParameterList *OldParams,
1128                                      TemplateParamListContext TPC) {
1129  bool Invalid = false;
1130
1131  // C++ [temp.param]p10:
1132  //   The set of default template-arguments available for use with a
1133  //   template declaration or definition is obtained by merging the
1134  //   default arguments from the definition (if in scope) and all
1135  //   declarations in scope in the same way default function
1136  //   arguments are (8.3.6).
1137  bool SawDefaultArgument = false;
1138  SourceLocation PreviousDefaultArgLoc;
1139
1140  bool SawParameterPack = false;
1141  SourceLocation ParameterPackLoc;
1142
1143  // Dummy initialization to avoid warnings.
1144  TemplateParameterList::iterator OldParam = NewParams->end();
1145  if (OldParams)
1146    OldParam = OldParams->begin();
1147
1148  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1149                                    NewParamEnd = NewParams->end();
1150       NewParam != NewParamEnd; ++NewParam) {
1151    // Variables used to diagnose redundant default arguments
1152    bool RedundantDefaultArg = false;
1153    SourceLocation OldDefaultLoc;
1154    SourceLocation NewDefaultLoc;
1155
1156    // Variables used to diagnose missing default arguments
1157    bool MissingDefaultArg = false;
1158
1159    // C++0x [temp.param]p11:
1160    //   If a template parameter of a primary class template is a template
1161    //   parameter pack, it shall be the last template parameter.
1162    if (SawParameterPack && TPC == TPC_ClassTemplate) {
1163      Diag(ParameterPackLoc,
1164           diag::err_template_param_pack_must_be_last_template_parameter);
1165      Invalid = true;
1166    }
1167
1168    if (TemplateTypeParmDecl *NewTypeParm
1169          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1170      // Check the presence of a default argument here.
1171      if (NewTypeParm->hasDefaultArgument() &&
1172          DiagnoseDefaultTemplateArgument(*this, TPC,
1173                                          NewTypeParm->getLocation(),
1174               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1175                                                       .getSourceRange()))
1176        NewTypeParm->removeDefaultArgument();
1177
1178      // Merge default arguments for template type parameters.
1179      TemplateTypeParmDecl *OldTypeParm
1180          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1181
1182      if (NewTypeParm->isParameterPack()) {
1183        assert(!NewTypeParm->hasDefaultArgument() &&
1184               "Parameter packs can't have a default argument!");
1185        SawParameterPack = true;
1186        ParameterPackLoc = NewTypeParm->getLocation();
1187      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1188                 NewTypeParm->hasDefaultArgument()) {
1189        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1190        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1191        SawDefaultArgument = true;
1192        RedundantDefaultArg = true;
1193        PreviousDefaultArgLoc = NewDefaultLoc;
1194      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1195        // Merge the default argument from the old declaration to the
1196        // new declaration.
1197        SawDefaultArgument = true;
1198        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1199                                        true);
1200        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1201      } else if (NewTypeParm->hasDefaultArgument()) {
1202        SawDefaultArgument = true;
1203        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1204      } else if (SawDefaultArgument)
1205        MissingDefaultArg = true;
1206    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1207               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1208      // Check for unexpanded parameter packs.
1209      if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1210                                          NewNonTypeParm->getTypeSourceInfo(),
1211                                          UPPC_NonTypeTemplateParameterType)) {
1212        Invalid = true;
1213        continue;
1214      }
1215
1216      // Check the presence of a default argument here.
1217      if (NewNonTypeParm->hasDefaultArgument() &&
1218          DiagnoseDefaultTemplateArgument(*this, TPC,
1219                                          NewNonTypeParm->getLocation(),
1220                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1221        NewNonTypeParm->removeDefaultArgument();
1222      }
1223
1224      // Merge default arguments for non-type template parameters
1225      NonTypeTemplateParmDecl *OldNonTypeParm
1226        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1227      if (NewNonTypeParm->isParameterPack()) {
1228        assert(!NewNonTypeParm->hasDefaultArgument() &&
1229               "Parameter packs can't have a default argument!");
1230        SawParameterPack = true;
1231        ParameterPackLoc = NewNonTypeParm->getLocation();
1232      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1233          NewNonTypeParm->hasDefaultArgument()) {
1234        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1235        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1236        SawDefaultArgument = true;
1237        RedundantDefaultArg = true;
1238        PreviousDefaultArgLoc = NewDefaultLoc;
1239      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1240        // Merge the default argument from the old declaration to the
1241        // new declaration.
1242        SawDefaultArgument = true;
1243        // FIXME: We need to create a new kind of "default argument"
1244        // expression that points to a previous non-type template
1245        // parameter.
1246        NewNonTypeParm->setDefaultArgument(
1247                                         OldNonTypeParm->getDefaultArgument(),
1248                                         /*Inherited=*/ true);
1249        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1250      } else if (NewNonTypeParm->hasDefaultArgument()) {
1251        SawDefaultArgument = true;
1252        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1253      } else if (SawDefaultArgument)
1254        MissingDefaultArg = true;
1255    } else {
1256      // Check the presence of a default argument here.
1257      TemplateTemplateParmDecl *NewTemplateParm
1258        = cast<TemplateTemplateParmDecl>(*NewParam);
1259
1260      // Check for unexpanded parameter packs, recursively.
1261      if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1262        Invalid = true;
1263        continue;
1264      }
1265
1266      if (NewTemplateParm->hasDefaultArgument() &&
1267          DiagnoseDefaultTemplateArgument(*this, TPC,
1268                                          NewTemplateParm->getLocation(),
1269                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1270        NewTemplateParm->removeDefaultArgument();
1271
1272      // Merge default arguments for template template parameters
1273      TemplateTemplateParmDecl *OldTemplateParm
1274        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1275      if (NewTemplateParm->isParameterPack()) {
1276        assert(!NewTemplateParm->hasDefaultArgument() &&
1277               "Parameter packs can't have a default argument!");
1278        SawParameterPack = true;
1279        ParameterPackLoc = NewTemplateParm->getLocation();
1280      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1281          NewTemplateParm->hasDefaultArgument()) {
1282        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1283        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1284        SawDefaultArgument = true;
1285        RedundantDefaultArg = true;
1286        PreviousDefaultArgLoc = NewDefaultLoc;
1287      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1288        // Merge the default argument from the old declaration to the
1289        // new declaration.
1290        SawDefaultArgument = true;
1291        // FIXME: We need to create a new kind of "default argument" expression
1292        // that points to a previous template template parameter.
1293        NewTemplateParm->setDefaultArgument(
1294                                          OldTemplateParm->getDefaultArgument(),
1295                                          /*Inherited=*/ true);
1296        PreviousDefaultArgLoc
1297          = OldTemplateParm->getDefaultArgument().getLocation();
1298      } else if (NewTemplateParm->hasDefaultArgument()) {
1299        SawDefaultArgument = true;
1300        PreviousDefaultArgLoc
1301          = NewTemplateParm->getDefaultArgument().getLocation();
1302      } else if (SawDefaultArgument)
1303        MissingDefaultArg = true;
1304    }
1305
1306    if (RedundantDefaultArg) {
1307      // C++ [temp.param]p12:
1308      //   A template-parameter shall not be given default arguments
1309      //   by two different declarations in the same scope.
1310      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1311      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1312      Invalid = true;
1313    } else if (MissingDefaultArg) {
1314      // C++ [temp.param]p11:
1315      //   If a template-parameter of a class template has a default
1316      //   template-argument, each subsequent template- parameter shall either
1317      //   have a default template-argument supplied or be a template parameter
1318      //   pack.
1319      Diag((*NewParam)->getLocation(),
1320           diag::err_template_param_default_arg_missing);
1321      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1322      Invalid = true;
1323    }
1324
1325    // If we have an old template parameter list that we're merging
1326    // in, move on to the next parameter.
1327    if (OldParams)
1328      ++OldParam;
1329  }
1330
1331  return Invalid;
1332}
1333
1334namespace {
1335
1336/// A class which looks for a use of a certain level of template
1337/// parameter.
1338struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1339  typedef RecursiveASTVisitor<DependencyChecker> super;
1340
1341  unsigned Depth;
1342  bool Match;
1343
1344  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1345    NamedDecl *ND = Params->getParam(0);
1346    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1347      Depth = PD->getDepth();
1348    } else if (NonTypeTemplateParmDecl *PD =
1349                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1350      Depth = PD->getDepth();
1351    } else {
1352      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1353    }
1354  }
1355
1356  bool Matches(unsigned ParmDepth) {
1357    if (ParmDepth >= Depth) {
1358      Match = true;
1359      return true;
1360    }
1361    return false;
1362  }
1363
1364  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1365    return !Matches(T->getDepth());
1366  }
1367
1368  bool TraverseTemplateName(TemplateName N) {
1369    if (TemplateTemplateParmDecl *PD =
1370          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1371      if (Matches(PD->getDepth())) return false;
1372    return super::TraverseTemplateName(N);
1373  }
1374
1375  bool VisitDeclRefExpr(DeclRefExpr *E) {
1376    if (NonTypeTemplateParmDecl *PD =
1377          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1378      if (PD->getDepth() == Depth) {
1379        Match = true;
1380        return false;
1381      }
1382    }
1383    return super::VisitDeclRefExpr(E);
1384  }
1385};
1386}
1387
1388/// Determines whether a template-id depends on the given parameter
1389/// list.
1390static bool
1391DependsOnTemplateParameters(const TemplateSpecializationType *TemplateId,
1392                            TemplateParameterList *Params) {
1393  DependencyChecker Checker(Params);
1394  Checker.TraverseType(QualType(TemplateId, 0));
1395  return Checker.Match;
1396}
1397
1398/// \brief Match the given template parameter lists to the given scope
1399/// specifier, returning the template parameter list that applies to the
1400/// name.
1401///
1402/// \param DeclStartLoc the start of the declaration that has a scope
1403/// specifier or a template parameter list.
1404///
1405/// \param SS the scope specifier that will be matched to the given template
1406/// parameter lists. This scope specifier precedes a qualified name that is
1407/// being declared.
1408///
1409/// \param ParamLists the template parameter lists, from the outermost to the
1410/// innermost template parameter lists.
1411///
1412/// \param NumParamLists the number of template parameter lists in ParamLists.
1413///
1414/// \param IsFriend Whether to apply the slightly different rules for
1415/// matching template parameters to scope specifiers in friend
1416/// declarations.
1417///
1418/// \param IsExplicitSpecialization will be set true if the entity being
1419/// declared is an explicit specialization, false otherwise.
1420///
1421/// \returns the template parameter list, if any, that corresponds to the
1422/// name that is preceded by the scope specifier @p SS. This template
1423/// parameter list may be have template parameters (if we're declaring a
1424/// template) or may have no template parameters (if we're declaring a
1425/// template specialization), or may be NULL (if we were's declaring isn't
1426/// itself a template).
1427TemplateParameterList *
1428Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1429                                              const CXXScopeSpec &SS,
1430                                          TemplateParameterList **ParamLists,
1431                                              unsigned NumParamLists,
1432                                              bool IsFriend,
1433                                              bool &IsExplicitSpecialization,
1434                                              bool &Invalid) {
1435  IsExplicitSpecialization = false;
1436
1437  // Find the template-ids that occur within the nested-name-specifier. These
1438  // template-ids will match up with the template parameter lists.
1439  llvm::SmallVector<const TemplateSpecializationType *, 4>
1440    TemplateIdsInSpecifier;
1441  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1442    ExplicitSpecializationsInSpecifier;
1443  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1444       NNS; NNS = NNS->getPrefix()) {
1445    const Type *T = NNS->getAsType();
1446    if (!T) break;
1447
1448    // C++0x [temp.expl.spec]p17:
1449    //   A member or a member template may be nested within many
1450    //   enclosing class templates. In an explicit specialization for
1451    //   such a member, the member declaration shall be preceded by a
1452    //   template<> for each enclosing class template that is
1453    //   explicitly specialized.
1454    //
1455    // Following the existing practice of GNU and EDG, we allow a typedef of a
1456    // template specialization type.
1457    while (const TypedefType *TT = dyn_cast<TypedefType>(T))
1458      T = TT->getDecl()->getUnderlyingType().getTypePtr();
1459
1460    if (const TemplateSpecializationType *SpecType
1461                                  = dyn_cast<TemplateSpecializationType>(T)) {
1462      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1463      if (!Template)
1464        continue; // FIXME: should this be an error? probably...
1465
1466      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1467        ClassTemplateSpecializationDecl *SpecDecl
1468          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1469        // If the nested name specifier refers to an explicit specialization,
1470        // we don't need a template<> header.
1471        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1472          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1473          continue;
1474        }
1475      }
1476
1477      TemplateIdsInSpecifier.push_back(SpecType);
1478    }
1479  }
1480
1481  // Reverse the list of template-ids in the scope specifier, so that we can
1482  // more easily match up the template-ids and the template parameter lists.
1483  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1484
1485  SourceLocation FirstTemplateLoc = DeclStartLoc;
1486  if (NumParamLists)
1487    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1488
1489  // Match the template-ids found in the specifier to the template parameter
1490  // lists.
1491  unsigned ParamIdx = 0, TemplateIdx = 0;
1492  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1493       TemplateIdx != NumTemplateIds; ++TemplateIdx) {
1494    const TemplateSpecializationType *TemplateId
1495      = TemplateIdsInSpecifier[TemplateIdx];
1496    bool DependentTemplateId = TemplateId->isDependentType();
1497
1498    // In friend declarations we can have template-ids which don't
1499    // depend on the corresponding template parameter lists.  But
1500    // assume that empty parameter lists are supposed to match this
1501    // template-id.
1502    if (IsFriend && ParamIdx < NumParamLists && ParamLists[ParamIdx]->size()) {
1503      if (!DependentTemplateId ||
1504          !DependsOnTemplateParameters(TemplateId, ParamLists[ParamIdx]))
1505        continue;
1506    }
1507
1508    if (ParamIdx >= NumParamLists) {
1509      // We have a template-id without a corresponding template parameter
1510      // list.
1511
1512      // ...which is fine if this is a friend declaration.
1513      if (IsFriend) {
1514        IsExplicitSpecialization = true;
1515        break;
1516      }
1517
1518      if (DependentTemplateId) {
1519        // FIXME: the location information here isn't great.
1520        Diag(SS.getRange().getBegin(),
1521             diag::err_template_spec_needs_template_parameters)
1522          << QualType(TemplateId, 0)
1523          << SS.getRange();
1524        Invalid = true;
1525      } else {
1526        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1527          << SS.getRange()
1528          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1529        IsExplicitSpecialization = true;
1530      }
1531      return 0;
1532    }
1533
1534    // Check the template parameter list against its corresponding template-id.
1535    if (DependentTemplateId) {
1536      TemplateParameterList *ExpectedTemplateParams = 0;
1537
1538      // Are there cases in (e.g.) friends where this won't match?
1539      if (const InjectedClassNameType *Injected
1540            = TemplateId->getAs<InjectedClassNameType>()) {
1541        CXXRecordDecl *Record = Injected->getDecl();
1542        if (ClassTemplatePartialSpecializationDecl *Partial =
1543              dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1544          ExpectedTemplateParams = Partial->getTemplateParameters();
1545        else
1546          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1547            ->getTemplateParameters();
1548      }
1549
1550      if (ExpectedTemplateParams)
1551        TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1552                                       ExpectedTemplateParams,
1553                                       true, TPL_TemplateMatch);
1554
1555      CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1556                                 TPC_ClassTemplateMember);
1557    } else if (ParamLists[ParamIdx]->size() > 0)
1558      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1559           diag::err_template_param_list_matches_nontemplate)
1560        << TemplateId
1561        << ParamLists[ParamIdx]->getSourceRange();
1562    else
1563      IsExplicitSpecialization = true;
1564
1565    ++ParamIdx;
1566  }
1567
1568  // If there were at least as many template-ids as there were template
1569  // parameter lists, then there are no template parameter lists remaining for
1570  // the declaration itself.
1571  if (ParamIdx >= NumParamLists)
1572    return 0;
1573
1574  // If there were too many template parameter lists, complain about that now.
1575  if (ParamIdx != NumParamLists - 1) {
1576    while (ParamIdx < NumParamLists - 1) {
1577      bool isExplicitSpecHeader = ParamLists[ParamIdx]->size() == 0;
1578      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1579           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1580                               : diag::err_template_spec_extra_headers)
1581        << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1582                       ParamLists[ParamIdx]->getRAngleLoc());
1583
1584      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1585        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1586             diag::note_explicit_template_spec_does_not_need_header)
1587          << ExplicitSpecializationsInSpecifier.back();
1588        ExplicitSpecializationsInSpecifier.pop_back();
1589      }
1590
1591      // We have a template parameter list with no corresponding scope, which
1592      // means that the resulting template declaration can't be instantiated
1593      // properly (we'll end up with dependent nodes when we shouldn't).
1594      if (!isExplicitSpecHeader)
1595        Invalid = true;
1596
1597      ++ParamIdx;
1598    }
1599  }
1600
1601  // Return the last template parameter list, which corresponds to the
1602  // entity being declared.
1603  return ParamLists[NumParamLists - 1];
1604}
1605
1606QualType Sema::CheckTemplateIdType(TemplateName Name,
1607                                   SourceLocation TemplateLoc,
1608                              const TemplateArgumentListInfo &TemplateArgs) {
1609  TemplateDecl *Template = Name.getAsTemplateDecl();
1610  if (!Template) {
1611    // The template name does not resolve to a template, so we just
1612    // build a dependent template-id type.
1613    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1614  }
1615
1616  // Check that the template argument list is well-formed for this
1617  // template.
1618  llvm::SmallVector<TemplateArgument, 4> Converted;
1619  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1620                                false, Converted))
1621    return QualType();
1622
1623  assert((Converted.size() == Template->getTemplateParameters()->size()) &&
1624         "Converted template argument list is too short!");
1625
1626  QualType CanonType;
1627
1628  if (Name.isDependent() ||
1629      TemplateSpecializationType::anyDependentTemplateArguments(
1630                                                      TemplateArgs)) {
1631    // This class template specialization is a dependent
1632    // type. Therefore, its canonical type is another class template
1633    // specialization type that contains all of the converted
1634    // arguments in canonical form. This ensures that, e.g., A<T> and
1635    // A<T, T> have identical types when A is declared as:
1636    //
1637    //   template<typename T, typename U = T> struct A;
1638    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1639    CanonType = Context.getTemplateSpecializationType(CanonName,
1640                                                      Converted.data(),
1641                                                      Converted.size());
1642
1643    // FIXME: CanonType is not actually the canonical type, and unfortunately
1644    // it is a TemplateSpecializationType that we will never use again.
1645    // In the future, we need to teach getTemplateSpecializationType to only
1646    // build the canonical type and return that to us.
1647    CanonType = Context.getCanonicalType(CanonType);
1648
1649    // This might work out to be a current instantiation, in which
1650    // case the canonical type needs to be the InjectedClassNameType.
1651    //
1652    // TODO: in theory this could be a simple hashtable lookup; most
1653    // changes to CurContext don't change the set of current
1654    // instantiations.
1655    if (isa<ClassTemplateDecl>(Template)) {
1656      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1657        // If we get out to a namespace, we're done.
1658        if (Ctx->isFileContext()) break;
1659
1660        // If this isn't a record, keep looking.
1661        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1662        if (!Record) continue;
1663
1664        // Look for one of the two cases with InjectedClassNameTypes
1665        // and check whether it's the same template.
1666        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1667            !Record->getDescribedClassTemplate())
1668          continue;
1669
1670        // Fetch the injected class name type and check whether its
1671        // injected type is equal to the type we just built.
1672        QualType ICNT = Context.getTypeDeclType(Record);
1673        QualType Injected = cast<InjectedClassNameType>(ICNT)
1674          ->getInjectedSpecializationType();
1675
1676        if (CanonType != Injected->getCanonicalTypeInternal())
1677          continue;
1678
1679        // If so, the canonical type of this TST is the injected
1680        // class name type of the record we just found.
1681        assert(ICNT.isCanonical());
1682        CanonType = ICNT;
1683        break;
1684      }
1685    }
1686  } else if (ClassTemplateDecl *ClassTemplate
1687               = dyn_cast<ClassTemplateDecl>(Template)) {
1688    // Find the class template specialization declaration that
1689    // corresponds to these arguments.
1690    void *InsertPos = 0;
1691    ClassTemplateSpecializationDecl *Decl
1692      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
1693                                          InsertPos);
1694    if (!Decl) {
1695      // This is the first time we have referenced this class template
1696      // specialization. Create the canonical declaration and add it to
1697      // the set of specializations.
1698      Decl = ClassTemplateSpecializationDecl::Create(Context,
1699                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1700                                                ClassTemplate->getDeclContext(),
1701                                                ClassTemplate->getLocation(),
1702                                                     ClassTemplate,
1703                                                     Converted.data(),
1704                                                     Converted.size(), 0);
1705      ClassTemplate->AddSpecialization(Decl, InsertPos);
1706      Decl->setLexicalDeclContext(CurContext);
1707    }
1708
1709    CanonType = Context.getTypeDeclType(Decl);
1710    assert(isa<RecordType>(CanonType) &&
1711           "type of non-dependent specialization is not a RecordType");
1712  }
1713
1714  // Build the fully-sugared type for this class template
1715  // specialization, which refers back to the class template
1716  // specialization we created or found.
1717  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1718}
1719
1720TypeResult
1721Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1722                          SourceLocation LAngleLoc,
1723                          ASTTemplateArgsPtr TemplateArgsIn,
1724                          SourceLocation RAngleLoc) {
1725  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1726
1727  // Translate the parser's template argument list in our AST format.
1728  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1729  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1730
1731  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1732  TemplateArgsIn.release();
1733
1734  if (Result.isNull())
1735    return true;
1736
1737  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1738  TemplateSpecializationTypeLoc TL
1739    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1740  TL.setTemplateNameLoc(TemplateLoc);
1741  TL.setLAngleLoc(LAngleLoc);
1742  TL.setRAngleLoc(RAngleLoc);
1743  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1744    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1745
1746  return CreateParsedType(Result, DI);
1747}
1748
1749TypeResult Sema::ActOnTagTemplateIdType(CXXScopeSpec &SS,
1750                                        TypeResult TypeResult,
1751                                        TagUseKind TUK,
1752                                        TypeSpecifierType TagSpec,
1753                                        SourceLocation TagLoc) {
1754  if (TypeResult.isInvalid())
1755    return ::TypeResult();
1756
1757  TypeSourceInfo *DI;
1758  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1759
1760  // Verify the tag specifier.
1761  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1762
1763  if (const RecordType *RT = Type->getAs<RecordType>()) {
1764    RecordDecl *D = RT->getDecl();
1765
1766    IdentifierInfo *Id = D->getIdentifier();
1767    assert(Id && "templated class must have an identifier");
1768
1769    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1770      Diag(TagLoc, diag::err_use_with_wrong_tag)
1771        << Type
1772        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1773      Diag(D->getLocation(), diag::note_previous_use);
1774    }
1775  }
1776
1777  ElaboratedTypeKeyword Keyword
1778    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
1779  QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type);
1780
1781  TypeSourceInfo *ElabDI = Context.CreateTypeSourceInfo(ElabType);
1782  ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(ElabDI->getTypeLoc());
1783  TL.setKeywordLoc(TagLoc);
1784  TL.setQualifierRange(SS.getRange());
1785  TL.getNamedTypeLoc().initializeFullCopy(DI->getTypeLoc());
1786  return CreateParsedType(ElabType, ElabDI);
1787}
1788
1789ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1790                                                 LookupResult &R,
1791                                                 bool RequiresADL,
1792                                 const TemplateArgumentListInfo &TemplateArgs) {
1793  // FIXME: Can we do any checking at this point? I guess we could check the
1794  // template arguments that we have against the template name, if the template
1795  // name refers to a single template. That's not a terribly common case,
1796  // though.
1797
1798  // These should be filtered out by our callers.
1799  assert(!R.empty() && "empty lookup results when building templateid");
1800  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1801
1802  NestedNameSpecifier *Qualifier = 0;
1803  SourceRange QualifierRange;
1804  if (SS.isSet()) {
1805    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1806    QualifierRange = SS.getRange();
1807  }
1808
1809  // We don't want lookup warnings at this point.
1810  R.suppressDiagnostics();
1811
1812  UnresolvedLookupExpr *ULE
1813    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
1814                                   Qualifier, QualifierRange,
1815                                   R.getLookupNameInfo(),
1816                                   RequiresADL, TemplateArgs,
1817                                   R.begin(), R.end());
1818
1819  return Owned(ULE);
1820}
1821
1822// We actually only call this from template instantiation.
1823ExprResult
1824Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1825                                   const DeclarationNameInfo &NameInfo,
1826                             const TemplateArgumentListInfo &TemplateArgs) {
1827  DeclContext *DC;
1828  if (!(DC = computeDeclContext(SS, false)) ||
1829      DC->isDependentContext() ||
1830      RequireCompleteDeclContext(SS, DC))
1831    return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
1832
1833  bool MemberOfUnknownSpecialization;
1834  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1835  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
1836                     MemberOfUnknownSpecialization);
1837
1838  if (R.isAmbiguous())
1839    return ExprError();
1840
1841  if (R.empty()) {
1842    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
1843      << NameInfo.getName() << SS.getRange();
1844    return ExprError();
1845  }
1846
1847  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1848    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
1849      << (NestedNameSpecifier*) SS.getScopeRep()
1850      << NameInfo.getName() << SS.getRange();
1851    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1852    return ExprError();
1853  }
1854
1855  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1856}
1857
1858/// \brief Form a dependent template name.
1859///
1860/// This action forms a dependent template name given the template
1861/// name and its (presumably dependent) scope specifier. For
1862/// example, given "MetaFun::template apply", the scope specifier \p
1863/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1864/// of the "template" keyword, and "apply" is the \p Name.
1865TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
1866                                                  SourceLocation TemplateKWLoc,
1867                                                  CXXScopeSpec &SS,
1868                                                  UnqualifiedId &Name,
1869                                                  ParsedType ObjectType,
1870                                                  bool EnteringContext,
1871                                                  TemplateTy &Result) {
1872  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
1873      !getLangOptions().CPlusPlus0x)
1874    Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
1875      << FixItHint::CreateRemoval(TemplateKWLoc);
1876
1877  DeclContext *LookupCtx = 0;
1878  if (SS.isSet())
1879    LookupCtx = computeDeclContext(SS, EnteringContext);
1880  if (!LookupCtx && ObjectType)
1881    LookupCtx = computeDeclContext(ObjectType.get());
1882  if (LookupCtx) {
1883    // C++0x [temp.names]p5:
1884    //   If a name prefixed by the keyword template is not the name of
1885    //   a template, the program is ill-formed. [Note: the keyword
1886    //   template may not be applied to non-template members of class
1887    //   templates. -end note ] [ Note: as is the case with the
1888    //   typename prefix, the template prefix is allowed in cases
1889    //   where it is not strictly necessary; i.e., when the
1890    //   nested-name-specifier or the expression on the left of the ->
1891    //   or . is not dependent on a template-parameter, or the use
1892    //   does not appear in the scope of a template. -end note]
1893    //
1894    // Note: C++03 was more strict here, because it banned the use of
1895    // the "template" keyword prior to a template-name that was not a
1896    // dependent name. C++ DR468 relaxed this requirement (the
1897    // "template" keyword is now permitted). We follow the C++0x
1898    // rules, even in C++03 mode with a warning, retroactively applying the DR.
1899    bool MemberOfUnknownSpecialization;
1900    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
1901                                          ObjectType, EnteringContext, Result,
1902                                          MemberOfUnknownSpecialization);
1903    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1904        isa<CXXRecordDecl>(LookupCtx) &&
1905        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1906      // This is a dependent template. Handle it below.
1907    } else if (TNK == TNK_Non_template) {
1908      Diag(Name.getSourceRange().getBegin(),
1909           diag::err_template_kw_refers_to_non_template)
1910        << GetNameFromUnqualifiedId(Name).getName()
1911        << Name.getSourceRange()
1912        << TemplateKWLoc;
1913      return TNK_Non_template;
1914    } else {
1915      // We found something; return it.
1916      return TNK;
1917    }
1918  }
1919
1920  NestedNameSpecifier *Qualifier
1921    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1922
1923  switch (Name.getKind()) {
1924  case UnqualifiedId::IK_Identifier:
1925    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1926                                                              Name.Identifier));
1927    return TNK_Dependent_template_name;
1928
1929  case UnqualifiedId::IK_OperatorFunctionId:
1930    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1931                                             Name.OperatorFunctionId.Operator));
1932    return TNK_Dependent_template_name;
1933
1934  case UnqualifiedId::IK_LiteralOperatorId:
1935    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1936
1937  default:
1938    break;
1939  }
1940
1941  Diag(Name.getSourceRange().getBegin(),
1942       diag::err_template_kw_refers_to_non_template)
1943    << GetNameFromUnqualifiedId(Name).getName()
1944    << Name.getSourceRange()
1945    << TemplateKWLoc;
1946  return TNK_Non_template;
1947}
1948
1949bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1950                                     const TemplateArgumentLoc &AL,
1951                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
1952  const TemplateArgument &Arg = AL.getArgument();
1953
1954  // Check template type parameter.
1955  switch(Arg.getKind()) {
1956  case TemplateArgument::Type:
1957    // C++ [temp.arg.type]p1:
1958    //   A template-argument for a template-parameter which is a
1959    //   type shall be a type-id.
1960    break;
1961  case TemplateArgument::Template: {
1962    // We have a template type parameter but the template argument
1963    // is a template without any arguments.
1964    SourceRange SR = AL.getSourceRange();
1965    TemplateName Name = Arg.getAsTemplate();
1966    Diag(SR.getBegin(), diag::err_template_missing_args)
1967      << Name << SR;
1968    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
1969      Diag(Decl->getLocation(), diag::note_template_decl_here);
1970
1971    return true;
1972  }
1973  default: {
1974    // We have a template type parameter but the template argument
1975    // is not a type.
1976    SourceRange SR = AL.getSourceRange();
1977    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1978    Diag(Param->getLocation(), diag::note_template_param_here);
1979
1980    return true;
1981  }
1982  }
1983
1984  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1985    return true;
1986
1987  // Add the converted template type argument.
1988  Converted.push_back(
1989                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1990  return false;
1991}
1992
1993/// \brief Substitute template arguments into the default template argument for
1994/// the given template type parameter.
1995///
1996/// \param SemaRef the semantic analysis object for which we are performing
1997/// the substitution.
1998///
1999/// \param Template the template that we are synthesizing template arguments
2000/// for.
2001///
2002/// \param TemplateLoc the location of the template name that started the
2003/// template-id we are checking.
2004///
2005/// \param RAngleLoc the location of the right angle bracket ('>') that
2006/// terminates the template-id.
2007///
2008/// \param Param the template template parameter whose default we are
2009/// substituting into.
2010///
2011/// \param Converted the list of template arguments provided for template
2012/// parameters that precede \p Param in the template parameter list.
2013///
2014/// \returns the substituted template argument, or NULL if an error occurred.
2015static TypeSourceInfo *
2016SubstDefaultTemplateArgument(Sema &SemaRef,
2017                             TemplateDecl *Template,
2018                             SourceLocation TemplateLoc,
2019                             SourceLocation RAngleLoc,
2020                             TemplateTypeParmDecl *Param,
2021                         llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2022  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2023
2024  // If the argument type is dependent, instantiate it now based
2025  // on the previously-computed template arguments.
2026  if (ArgType->getType()->isDependentType()) {
2027    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2028                                      Converted.data(), Converted.size());
2029
2030    MultiLevelTemplateArgumentList AllTemplateArgs
2031      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2032
2033    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2034                                     Template, Converted.data(),
2035                                     Converted.size(),
2036                                     SourceRange(TemplateLoc, RAngleLoc));
2037
2038    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2039                                Param->getDefaultArgumentLoc(),
2040                                Param->getDeclName());
2041  }
2042
2043  return ArgType;
2044}
2045
2046/// \brief Substitute template arguments into the default template argument for
2047/// the given non-type template parameter.
2048///
2049/// \param SemaRef the semantic analysis object for which we are performing
2050/// the substitution.
2051///
2052/// \param Template the template that we are synthesizing template arguments
2053/// for.
2054///
2055/// \param TemplateLoc the location of the template name that started the
2056/// template-id we are checking.
2057///
2058/// \param RAngleLoc the location of the right angle bracket ('>') that
2059/// terminates the template-id.
2060///
2061/// \param Param the non-type template parameter whose default we are
2062/// substituting into.
2063///
2064/// \param Converted the list of template arguments provided for template
2065/// parameters that precede \p Param in the template parameter list.
2066///
2067/// \returns the substituted template argument, or NULL if an error occurred.
2068static ExprResult
2069SubstDefaultTemplateArgument(Sema &SemaRef,
2070                             TemplateDecl *Template,
2071                             SourceLocation TemplateLoc,
2072                             SourceLocation RAngleLoc,
2073                             NonTypeTemplateParmDecl *Param,
2074                        llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2075  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2076                                    Converted.data(), Converted.size());
2077
2078  MultiLevelTemplateArgumentList AllTemplateArgs
2079    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2080
2081  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2082                                   Template, Converted.data(),
2083                                   Converted.size(),
2084                                   SourceRange(TemplateLoc, RAngleLoc));
2085
2086  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2087}
2088
2089/// \brief Substitute template arguments into the default template argument for
2090/// the given template template parameter.
2091///
2092/// \param SemaRef the semantic analysis object for which we are performing
2093/// the substitution.
2094///
2095/// \param Template the template that we are synthesizing template arguments
2096/// for.
2097///
2098/// \param TemplateLoc the location of the template name that started the
2099/// template-id we are checking.
2100///
2101/// \param RAngleLoc the location of the right angle bracket ('>') that
2102/// terminates the template-id.
2103///
2104/// \param Param the template template parameter whose default we are
2105/// substituting into.
2106///
2107/// \param Converted the list of template arguments provided for template
2108/// parameters that precede \p Param in the template parameter list.
2109///
2110/// \returns the substituted template argument, or NULL if an error occurred.
2111static TemplateName
2112SubstDefaultTemplateArgument(Sema &SemaRef,
2113                             TemplateDecl *Template,
2114                             SourceLocation TemplateLoc,
2115                             SourceLocation RAngleLoc,
2116                             TemplateTemplateParmDecl *Param,
2117                       llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2118  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2119                                    Converted.data(), Converted.size());
2120
2121  MultiLevelTemplateArgumentList AllTemplateArgs
2122    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2123
2124  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2125                                   Template, Converted.data(),
2126                                   Converted.size(),
2127                                   SourceRange(TemplateLoc, RAngleLoc));
2128
2129  return SemaRef.SubstTemplateName(
2130                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2131                              Param->getDefaultArgument().getTemplateNameLoc(),
2132                                   AllTemplateArgs);
2133}
2134
2135/// \brief If the given template parameter has a default template
2136/// argument, substitute into that default template argument and
2137/// return the corresponding template argument.
2138TemplateArgumentLoc
2139Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2140                                              SourceLocation TemplateLoc,
2141                                              SourceLocation RAngleLoc,
2142                                              Decl *Param,
2143                      llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2144   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2145    if (!TypeParm->hasDefaultArgument())
2146      return TemplateArgumentLoc();
2147
2148    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2149                                                      TemplateLoc,
2150                                                      RAngleLoc,
2151                                                      TypeParm,
2152                                                      Converted);
2153    if (DI)
2154      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2155
2156    return TemplateArgumentLoc();
2157  }
2158
2159  if (NonTypeTemplateParmDecl *NonTypeParm
2160        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2161    if (!NonTypeParm->hasDefaultArgument())
2162      return TemplateArgumentLoc();
2163
2164    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2165                                                        TemplateLoc,
2166                                                        RAngleLoc,
2167                                                        NonTypeParm,
2168                                                        Converted);
2169    if (Arg.isInvalid())
2170      return TemplateArgumentLoc();
2171
2172    Expr *ArgE = Arg.takeAs<Expr>();
2173    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2174  }
2175
2176  TemplateTemplateParmDecl *TempTempParm
2177    = cast<TemplateTemplateParmDecl>(Param);
2178  if (!TempTempParm->hasDefaultArgument())
2179    return TemplateArgumentLoc();
2180
2181  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2182                                                    TemplateLoc,
2183                                                    RAngleLoc,
2184                                                    TempTempParm,
2185                                                    Converted);
2186  if (TName.isNull())
2187    return TemplateArgumentLoc();
2188
2189  return TemplateArgumentLoc(TemplateArgument(TName),
2190                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
2191                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2192}
2193
2194/// \brief Check that the given template argument corresponds to the given
2195/// template parameter.
2196bool Sema::CheckTemplateArgument(NamedDecl *Param,
2197                                 const TemplateArgumentLoc &Arg,
2198                                 NamedDecl *Template,
2199                                 SourceLocation TemplateLoc,
2200                                 SourceLocation RAngleLoc,
2201                            llvm::SmallVectorImpl<TemplateArgument> &Converted,
2202                                 CheckTemplateArgumentKind CTAK) {
2203  // Check template type parameters.
2204  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2205    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2206
2207  // Check non-type template parameters.
2208  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2209    // Do substitution on the type of the non-type template parameter
2210    // with the template arguments we've seen thus far.  But if the
2211    // template has a dependent context then we cannot substitute yet.
2212    QualType NTTPType = NTTP->getType();
2213    if (NTTPType->isDependentType() &&
2214        !isa<TemplateTemplateParmDecl>(Template) &&
2215        !Template->getDeclContext()->isDependentContext()) {
2216      // Do substitution on the type of the non-type template parameter.
2217      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2218                                 NTTP, Converted.data(), Converted.size(),
2219                                 SourceRange(TemplateLoc, RAngleLoc));
2220
2221      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2222                                        Converted.data(), Converted.size());
2223      NTTPType = SubstType(NTTPType,
2224                           MultiLevelTemplateArgumentList(TemplateArgs),
2225                           NTTP->getLocation(),
2226                           NTTP->getDeclName());
2227      // If that worked, check the non-type template parameter type
2228      // for validity.
2229      if (!NTTPType.isNull())
2230        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2231                                                     NTTP->getLocation());
2232      if (NTTPType.isNull())
2233        return true;
2234    }
2235
2236    switch (Arg.getArgument().getKind()) {
2237    case TemplateArgument::Null:
2238      assert(false && "Should never see a NULL template argument here");
2239      return true;
2240
2241    case TemplateArgument::Expression: {
2242      Expr *E = Arg.getArgument().getAsExpr();
2243      TemplateArgument Result;
2244      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
2245        return true;
2246
2247      Converted.push_back(Result);
2248      break;
2249    }
2250
2251    case TemplateArgument::Declaration:
2252    case TemplateArgument::Integral:
2253      // We've already checked this template argument, so just copy
2254      // it to the list of converted arguments.
2255      Converted.push_back(Arg.getArgument());
2256      break;
2257
2258    case TemplateArgument::Template:
2259    case TemplateArgument::TemplateExpansion:
2260      // We were given a template template argument. It may not be ill-formed;
2261      // see below.
2262      if (DependentTemplateName *DTN
2263            = Arg.getArgument().getAsTemplateOrTemplatePattern()
2264                                              .getAsDependentTemplateName()) {
2265        // We have a template argument such as \c T::template X, which we
2266        // parsed as a template template argument. However, since we now
2267        // know that we need a non-type template argument, convert this
2268        // template name into an expression.
2269
2270        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2271                                     Arg.getTemplateNameLoc());
2272
2273        Expr *E = DependentScopeDeclRefExpr::Create(Context,
2274                                                    DTN->getQualifier(),
2275                                               Arg.getTemplateQualifierRange(),
2276                                                    NameInfo);
2277
2278        // If we parsed the template argument as a pack expansion, create a
2279        // pack expansion expression.
2280        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2281          ExprResult Expansion = ActOnPackExpansion(E,
2282                                                  Arg.getTemplateEllipsisLoc());
2283          if (Expansion.isInvalid())
2284            return true;
2285
2286          E = Expansion.get();
2287        }
2288
2289        TemplateArgument Result;
2290        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2291          return true;
2292
2293        Converted.push_back(Result);
2294        break;
2295      }
2296
2297      // We have a template argument that actually does refer to a class
2298      // template, template alias, or template template parameter, and
2299      // therefore cannot be a non-type template argument.
2300      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2301        << Arg.getSourceRange();
2302
2303      Diag(Param->getLocation(), diag::note_template_param_here);
2304      return true;
2305
2306    case TemplateArgument::Type: {
2307      // We have a non-type template parameter but the template
2308      // argument is a type.
2309
2310      // C++ [temp.arg]p2:
2311      //   In a template-argument, an ambiguity between a type-id and
2312      //   an expression is resolved to a type-id, regardless of the
2313      //   form of the corresponding template-parameter.
2314      //
2315      // We warn specifically about this case, since it can be rather
2316      // confusing for users.
2317      QualType T = Arg.getArgument().getAsType();
2318      SourceRange SR = Arg.getSourceRange();
2319      if (T->isFunctionType())
2320        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2321      else
2322        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2323      Diag(Param->getLocation(), diag::note_template_param_here);
2324      return true;
2325    }
2326
2327    case TemplateArgument::Pack:
2328      llvm_unreachable("Caller must expand template argument packs");
2329      break;
2330    }
2331
2332    return false;
2333  }
2334
2335
2336  // Check template template parameters.
2337  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2338
2339  // Substitute into the template parameter list of the template
2340  // template parameter, since previously-supplied template arguments
2341  // may appear within the template template parameter.
2342  {
2343    // Set up a template instantiation context.
2344    LocalInstantiationScope Scope(*this);
2345    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2346                               TempParm, Converted.data(), Converted.size(),
2347                               SourceRange(TemplateLoc, RAngleLoc));
2348
2349    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2350                                      Converted.data(), Converted.size());
2351    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2352                      SubstDecl(TempParm, CurContext,
2353                                MultiLevelTemplateArgumentList(TemplateArgs)));
2354    if (!TempParm)
2355      return true;
2356  }
2357
2358  switch (Arg.getArgument().getKind()) {
2359  case TemplateArgument::Null:
2360    assert(false && "Should never see a NULL template argument here");
2361    return true;
2362
2363  case TemplateArgument::Template:
2364  case TemplateArgument::TemplateExpansion:
2365    if (CheckTemplateArgument(TempParm, Arg))
2366      return true;
2367
2368    Converted.push_back(Arg.getArgument());
2369    break;
2370
2371  case TemplateArgument::Expression:
2372  case TemplateArgument::Type:
2373    // We have a template template parameter but the template
2374    // argument does not refer to a template.
2375    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2376    return true;
2377
2378  case TemplateArgument::Declaration:
2379    llvm_unreachable(
2380                       "Declaration argument with template template parameter");
2381    break;
2382  case TemplateArgument::Integral:
2383    llvm_unreachable(
2384                          "Integral argument with template template parameter");
2385    break;
2386
2387  case TemplateArgument::Pack:
2388    llvm_unreachable("Caller must expand template argument packs");
2389    break;
2390  }
2391
2392  return false;
2393}
2394
2395/// \brief Check that the given template argument list is well-formed
2396/// for specializing the given template.
2397bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2398                                     SourceLocation TemplateLoc,
2399                                const TemplateArgumentListInfo &TemplateArgs,
2400                                     bool PartialTemplateArgs,
2401                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2402  TemplateParameterList *Params = Template->getTemplateParameters();
2403  unsigned NumParams = Params->size();
2404  unsigned NumArgs = TemplateArgs.size();
2405  bool Invalid = false;
2406
2407  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2408
2409  bool HasParameterPack =
2410    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2411
2412  if ((NumArgs > NumParams && !HasParameterPack) ||
2413      (NumArgs < Params->getMinRequiredArguments() &&
2414       !PartialTemplateArgs)) {
2415    // FIXME: point at either the first arg beyond what we can handle,
2416    // or the '>', depending on whether we have too many or too few
2417    // arguments.
2418    SourceRange Range;
2419    if (NumArgs > NumParams)
2420      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2421    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2422      << (NumArgs > NumParams)
2423      << (isa<ClassTemplateDecl>(Template)? 0 :
2424          isa<FunctionTemplateDecl>(Template)? 1 :
2425          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2426      << Template << Range;
2427    Diag(Template->getLocation(), diag::note_template_decl_here)
2428      << Params->getSourceRange();
2429    Invalid = true;
2430  }
2431
2432  // C++ [temp.arg]p1:
2433  //   [...] The type and form of each template-argument specified in
2434  //   a template-id shall match the type and form specified for the
2435  //   corresponding parameter declared by the template in its
2436  //   template-parameter-list.
2437  llvm::SmallVector<TemplateArgument, 2> ArgumentPack;
2438  TemplateParameterList::iterator Param = Params->begin(),
2439                               ParamEnd = Params->end();
2440  unsigned ArgIdx = 0;
2441  while (Param != ParamEnd) {
2442    if (ArgIdx > NumArgs && PartialTemplateArgs)
2443      break;
2444
2445    if (ArgIdx < NumArgs) {
2446      // Check the template argument we were given.
2447      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2448                                TemplateLoc, RAngleLoc, Converted))
2449        return true;
2450
2451      if ((*Param)->isTemplateParameterPack()) {
2452        // The template parameter was a template parameter pack, so take the
2453        // deduced argument and place it on the argument pack. Note that we
2454        // stay on the same template parameter so that we can deduce more
2455        // arguments.
2456        ArgumentPack.push_back(Converted.back());
2457        Converted.pop_back();
2458      } else {
2459        // Move to the next template parameter.
2460        ++Param;
2461      }
2462      ++ArgIdx;
2463      continue;
2464    }
2465
2466    // If we have a template parameter pack with no more corresponding
2467    // arguments, just break out now and we'll fill in the argument pack below.
2468    if ((*Param)->isTemplateParameterPack())
2469      break;
2470
2471    // We have a default template argument that we will use.
2472    TemplateArgumentLoc Arg;
2473
2474    // Retrieve the default template argument from the template
2475    // parameter. For each kind of template parameter, we substitute the
2476    // template arguments provided thus far and any "outer" template arguments
2477    // (when the template parameter was part of a nested template) into
2478    // the default argument.
2479    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2480      if (!TTP->hasDefaultArgument()) {
2481        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2482        break;
2483      }
2484
2485      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2486                                                             Template,
2487                                                             TemplateLoc,
2488                                                             RAngleLoc,
2489                                                             TTP,
2490                                                             Converted);
2491      if (!ArgType)
2492        return true;
2493
2494      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2495                                ArgType);
2496    } else if (NonTypeTemplateParmDecl *NTTP
2497                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2498      if (!NTTP->hasDefaultArgument()) {
2499        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2500        break;
2501      }
2502
2503      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2504                                                              TemplateLoc,
2505                                                              RAngleLoc,
2506                                                              NTTP,
2507                                                              Converted);
2508      if (E.isInvalid())
2509        return true;
2510
2511      Expr *Ex = E.takeAs<Expr>();
2512      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2513    } else {
2514      TemplateTemplateParmDecl *TempParm
2515        = cast<TemplateTemplateParmDecl>(*Param);
2516
2517      if (!TempParm->hasDefaultArgument()) {
2518        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2519        break;
2520      }
2521
2522      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2523                                                       TemplateLoc,
2524                                                       RAngleLoc,
2525                                                       TempParm,
2526                                                       Converted);
2527      if (Name.isNull())
2528        return true;
2529
2530      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2531                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2532                  TempParm->getDefaultArgument().getTemplateNameLoc());
2533    }
2534
2535    // Introduce an instantiation record that describes where we are using
2536    // the default template argument.
2537    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2538                                        Converted.data(), Converted.size(),
2539                                        SourceRange(TemplateLoc, RAngleLoc));
2540
2541    // Check the default template argument.
2542    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2543                              RAngleLoc, Converted))
2544      return true;
2545
2546    // Move to the next template parameter and argument.
2547    ++Param;
2548    ++ArgIdx;
2549  }
2550
2551  // Form argument packs for each of the parameter packs remaining.
2552  while (Param != ParamEnd) {
2553    // If we're checking a partial list of template arguments, don't fill
2554    // in arguments for non-template parameter packs.
2555
2556    if ((*Param)->isTemplateParameterPack()) {
2557      if (PartialTemplateArgs && ArgumentPack.empty()) {
2558        Converted.push_back(TemplateArgument());
2559      } else if (ArgumentPack.empty()) {
2560        Converted.push_back(TemplateArgument(0, 0));
2561      } else {
2562        TemplateArgument *PackedArgs
2563          = new (Context) TemplateArgument [ArgumentPack.size()];
2564        std::copy(ArgumentPack.begin(), ArgumentPack.end(), PackedArgs);
2565        Converted.push_back(TemplateArgument(PackedArgs, ArgumentPack.size()));
2566        ArgumentPack.clear();
2567      }
2568    }
2569
2570    ++Param;
2571  }
2572
2573  return Invalid;
2574}
2575
2576namespace {
2577  class UnnamedLocalNoLinkageFinder
2578    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
2579  {
2580    Sema &S;
2581    SourceRange SR;
2582
2583    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
2584
2585  public:
2586    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
2587
2588    bool Visit(QualType T) {
2589      return inherited::Visit(T.getTypePtr());
2590    }
2591
2592#define TYPE(Class, Parent) \
2593    bool Visit##Class##Type(const Class##Type *);
2594#define ABSTRACT_TYPE(Class, Parent) \
2595    bool Visit##Class##Type(const Class##Type *) { return false; }
2596#define NON_CANONICAL_TYPE(Class, Parent) \
2597    bool Visit##Class##Type(const Class##Type *) { return false; }
2598#include "clang/AST/TypeNodes.def"
2599
2600    bool VisitTagDecl(const TagDecl *Tag);
2601    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
2602  };
2603}
2604
2605bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
2606  return false;
2607}
2608
2609bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
2610  return Visit(T->getElementType());
2611}
2612
2613bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
2614  return Visit(T->getPointeeType());
2615}
2616
2617bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
2618                                                    const BlockPointerType* T) {
2619  return Visit(T->getPointeeType());
2620}
2621
2622bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
2623                                                const LValueReferenceType* T) {
2624  return Visit(T->getPointeeType());
2625}
2626
2627bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
2628                                                const RValueReferenceType* T) {
2629  return Visit(T->getPointeeType());
2630}
2631
2632bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
2633                                                  const MemberPointerType* T) {
2634  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
2635}
2636
2637bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
2638                                                  const ConstantArrayType* T) {
2639  return Visit(T->getElementType());
2640}
2641
2642bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
2643                                                 const IncompleteArrayType* T) {
2644  return Visit(T->getElementType());
2645}
2646
2647bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
2648                                                   const VariableArrayType* T) {
2649  return Visit(T->getElementType());
2650}
2651
2652bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
2653                                            const DependentSizedArrayType* T) {
2654  return Visit(T->getElementType());
2655}
2656
2657bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
2658                                         const DependentSizedExtVectorType* T) {
2659  return Visit(T->getElementType());
2660}
2661
2662bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
2663  return Visit(T->getElementType());
2664}
2665
2666bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
2667  return Visit(T->getElementType());
2668}
2669
2670bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
2671                                                  const FunctionProtoType* T) {
2672  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
2673                                         AEnd = T->arg_type_end();
2674       A != AEnd; ++A) {
2675    if (Visit(*A))
2676      return true;
2677  }
2678
2679  return Visit(T->getResultType());
2680}
2681
2682bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
2683                                               const FunctionNoProtoType* T) {
2684  return Visit(T->getResultType());
2685}
2686
2687bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
2688                                                  const UnresolvedUsingType*) {
2689  return false;
2690}
2691
2692bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
2693  return false;
2694}
2695
2696bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
2697  return Visit(T->getUnderlyingType());
2698}
2699
2700bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
2701  return false;
2702}
2703
2704bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
2705  return VisitTagDecl(T->getDecl());
2706}
2707
2708bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
2709  return VisitTagDecl(T->getDecl());
2710}
2711
2712bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
2713                                                 const TemplateTypeParmType*) {
2714  return false;
2715}
2716
2717bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
2718                                            const TemplateSpecializationType*) {
2719  return false;
2720}
2721
2722bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
2723                                              const InjectedClassNameType* T) {
2724  return VisitTagDecl(T->getDecl());
2725}
2726
2727bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
2728                                                   const DependentNameType* T) {
2729  return VisitNestedNameSpecifier(T->getQualifier());
2730}
2731
2732bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
2733                                 const DependentTemplateSpecializationType* T) {
2734  return VisitNestedNameSpecifier(T->getQualifier());
2735}
2736
2737bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
2738                                                   const PackExpansionType* T) {
2739  return Visit(T->getPattern());
2740}
2741
2742bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
2743  return false;
2744}
2745
2746bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
2747                                                   const ObjCInterfaceType *) {
2748  return false;
2749}
2750
2751bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
2752                                                const ObjCObjectPointerType *) {
2753  return false;
2754}
2755
2756bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
2757  if (Tag->getDeclContext()->isFunctionOrMethod()) {
2758    S.Diag(SR.getBegin(), diag::ext_template_arg_local_type)
2759      << S.Context.getTypeDeclType(Tag) << SR;
2760    return true;
2761  }
2762
2763  if (!Tag->getDeclName() && !Tag->getTypedefForAnonDecl()) {
2764    S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR;
2765    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
2766    return true;
2767  }
2768
2769  return false;
2770}
2771
2772bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
2773                                                    NestedNameSpecifier *NNS) {
2774  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
2775    return true;
2776
2777  switch (NNS->getKind()) {
2778  case NestedNameSpecifier::Identifier:
2779  case NestedNameSpecifier::Namespace:
2780  case NestedNameSpecifier::Global:
2781    return false;
2782
2783  case NestedNameSpecifier::TypeSpec:
2784  case NestedNameSpecifier::TypeSpecWithTemplate:
2785    return Visit(QualType(NNS->getAsType(), 0));
2786  }
2787  return false;
2788}
2789
2790
2791/// \brief Check a template argument against its corresponding
2792/// template type parameter.
2793///
2794/// This routine implements the semantics of C++ [temp.arg.type]. It
2795/// returns true if an error occurred, and false otherwise.
2796bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2797                                 TypeSourceInfo *ArgInfo) {
2798  assert(ArgInfo && "invalid TypeSourceInfo");
2799  QualType Arg = ArgInfo->getType();
2800  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2801
2802  if (Arg->isVariablyModifiedType()) {
2803    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
2804  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2805    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2806  }
2807
2808  // C++03 [temp.arg.type]p2:
2809  //   A local type, a type with no linkage, an unnamed type or a type
2810  //   compounded from any of these types shall not be used as a
2811  //   template-argument for a template type-parameter.
2812  //
2813  // C++0x allows these, and even in C++03 we allow them as an extension with
2814  // a warning.
2815  if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) {
2816    UnnamedLocalNoLinkageFinder Finder(*this, SR);
2817    (void)Finder.Visit(Context.getCanonicalType(Arg));
2818  }
2819
2820  return false;
2821}
2822
2823/// \brief Checks whether the given template argument is the address
2824/// of an object or function according to C++ [temp.arg.nontype]p1.
2825static bool
2826CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2827                                               NonTypeTemplateParmDecl *Param,
2828                                               QualType ParamType,
2829                                               Expr *ArgIn,
2830                                               TemplateArgument &Converted) {
2831  bool Invalid = false;
2832  Expr *Arg = ArgIn;
2833  QualType ArgType = Arg->getType();
2834
2835  // See through any implicit casts we added to fix the type.
2836  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2837    Arg = Cast->getSubExpr();
2838
2839  // C++ [temp.arg.nontype]p1:
2840  //
2841  //   A template-argument for a non-type, non-template
2842  //   template-parameter shall be one of: [...]
2843  //
2844  //     -- the address of an object or function with external
2845  //        linkage, including function templates and function
2846  //        template-ids but excluding non-static class members,
2847  //        expressed as & id-expression where the & is optional if
2848  //        the name refers to a function or array, or if the
2849  //        corresponding template-parameter is a reference; or
2850  DeclRefExpr *DRE = 0;
2851
2852  // In C++98/03 mode, give an extension warning on any extra parentheses.
2853  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
2854  bool ExtraParens = false;
2855  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2856    if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) {
2857      S.Diag(Arg->getSourceRange().getBegin(),
2858             diag::ext_template_arg_extra_parens)
2859        << Arg->getSourceRange();
2860      ExtraParens = true;
2861    }
2862
2863    Arg = Parens->getSubExpr();
2864  }
2865
2866  bool AddressTaken = false;
2867  SourceLocation AddrOpLoc;
2868  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2869    if (UnOp->getOpcode() == UO_AddrOf) {
2870      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2871      AddressTaken = true;
2872      AddrOpLoc = UnOp->getOperatorLoc();
2873    }
2874  } else
2875    DRE = dyn_cast<DeclRefExpr>(Arg);
2876
2877  if (!DRE) {
2878    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2879      << Arg->getSourceRange();
2880    S.Diag(Param->getLocation(), diag::note_template_param_here);
2881    return true;
2882  }
2883
2884  // Stop checking the precise nature of the argument if it is value dependent,
2885  // it should be checked when instantiated.
2886  if (Arg->isValueDependent()) {
2887    Converted = TemplateArgument(ArgIn);
2888    return false;
2889  }
2890
2891  if (!isa<ValueDecl>(DRE->getDecl())) {
2892    S.Diag(Arg->getSourceRange().getBegin(),
2893           diag::err_template_arg_not_object_or_func_form)
2894      << Arg->getSourceRange();
2895    S.Diag(Param->getLocation(), diag::note_template_param_here);
2896    return true;
2897  }
2898
2899  NamedDecl *Entity = 0;
2900
2901  // Cannot refer to non-static data members
2902  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
2903    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2904      << Field << Arg->getSourceRange();
2905    S.Diag(Param->getLocation(), diag::note_template_param_here);
2906    return true;
2907  }
2908
2909  // Cannot refer to non-static member functions
2910  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2911    if (!Method->isStatic()) {
2912      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
2913        << Method << Arg->getSourceRange();
2914      S.Diag(Param->getLocation(), diag::note_template_param_here);
2915      return true;
2916    }
2917
2918  // Functions must have external linkage.
2919  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2920    if (!isExternalLinkage(Func->getLinkage())) {
2921      S.Diag(Arg->getSourceRange().getBegin(),
2922             diag::err_template_arg_function_not_extern)
2923        << Func << Arg->getSourceRange();
2924      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2925        << true;
2926      return true;
2927    }
2928
2929    // Okay: we've named a function with external linkage.
2930    Entity = Func;
2931
2932    // If the template parameter has pointer type, the function decays.
2933    if (ParamType->isPointerType() && !AddressTaken)
2934      ArgType = S.Context.getPointerType(Func->getType());
2935    else if (AddressTaken && ParamType->isReferenceType()) {
2936      // If we originally had an address-of operator, but the
2937      // parameter has reference type, complain and (if things look
2938      // like they will work) drop the address-of operator.
2939      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
2940                                            ParamType.getNonReferenceType())) {
2941        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2942          << ParamType;
2943        S.Diag(Param->getLocation(), diag::note_template_param_here);
2944        return true;
2945      }
2946
2947      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2948        << ParamType
2949        << FixItHint::CreateRemoval(AddrOpLoc);
2950      S.Diag(Param->getLocation(), diag::note_template_param_here);
2951
2952      ArgType = Func->getType();
2953    }
2954  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2955    if (!isExternalLinkage(Var->getLinkage())) {
2956      S.Diag(Arg->getSourceRange().getBegin(),
2957             diag::err_template_arg_object_not_extern)
2958        << Var << Arg->getSourceRange();
2959      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2960        << true;
2961      return true;
2962    }
2963
2964    // A value of reference type is not an object.
2965    if (Var->getType()->isReferenceType()) {
2966      S.Diag(Arg->getSourceRange().getBegin(),
2967             diag::err_template_arg_reference_var)
2968        << Var->getType() << Arg->getSourceRange();
2969      S.Diag(Param->getLocation(), diag::note_template_param_here);
2970      return true;
2971    }
2972
2973    // Okay: we've named an object with external linkage
2974    Entity = Var;
2975
2976    // If the template parameter has pointer type, we must have taken
2977    // the address of this object.
2978    if (ParamType->isReferenceType()) {
2979      if (AddressTaken) {
2980        // If we originally had an address-of operator, but the
2981        // parameter has reference type, complain and (if things look
2982        // like they will work) drop the address-of operator.
2983        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
2984                                            ParamType.getNonReferenceType())) {
2985          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2986            << ParamType;
2987          S.Diag(Param->getLocation(), diag::note_template_param_here);
2988          return true;
2989        }
2990
2991        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2992          << ParamType
2993          << FixItHint::CreateRemoval(AddrOpLoc);
2994        S.Diag(Param->getLocation(), diag::note_template_param_here);
2995
2996        ArgType = Var->getType();
2997      }
2998    } else if (!AddressTaken && ParamType->isPointerType()) {
2999      if (Var->getType()->isArrayType()) {
3000        // Array-to-pointer decay.
3001        ArgType = S.Context.getArrayDecayedType(Var->getType());
3002      } else {
3003        // If the template parameter has pointer type but the address of
3004        // this object was not taken, complain and (possibly) recover by
3005        // taking the address of the entity.
3006        ArgType = S.Context.getPointerType(Var->getType());
3007        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3008          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3009            << ParamType;
3010          S.Diag(Param->getLocation(), diag::note_template_param_here);
3011          return true;
3012        }
3013
3014        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3015          << ParamType
3016          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3017
3018        S.Diag(Param->getLocation(), diag::note_template_param_here);
3019      }
3020    }
3021  } else {
3022    // We found something else, but we don't know specifically what it is.
3023    S.Diag(Arg->getSourceRange().getBegin(),
3024           diag::err_template_arg_not_object_or_func)
3025      << Arg->getSourceRange();
3026    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3027    return true;
3028  }
3029
3030  if (ParamType->isPointerType() &&
3031      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3032      S.IsQualificationConversion(ArgType, ParamType)) {
3033    // For pointer-to-object types, qualification conversions are
3034    // permitted.
3035  } else {
3036    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3037      if (!ParamRef->getPointeeType()->isFunctionType()) {
3038        // C++ [temp.arg.nontype]p5b3:
3039        //   For a non-type template-parameter of type reference to
3040        //   object, no conversions apply. The type referred to by the
3041        //   reference may be more cv-qualified than the (otherwise
3042        //   identical) type of the template- argument. The
3043        //   template-parameter is bound directly to the
3044        //   template-argument, which shall be an lvalue.
3045
3046        // FIXME: Other qualifiers?
3047        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3048        unsigned ArgQuals = ArgType.getCVRQualifiers();
3049
3050        if ((ParamQuals | ArgQuals) != ParamQuals) {
3051          S.Diag(Arg->getSourceRange().getBegin(),
3052                 diag::err_template_arg_ref_bind_ignores_quals)
3053            << ParamType << Arg->getType()
3054            << Arg->getSourceRange();
3055          S.Diag(Param->getLocation(), diag::note_template_param_here);
3056          return true;
3057        }
3058      }
3059    }
3060
3061    // At this point, the template argument refers to an object or
3062    // function with external linkage. We now need to check whether the
3063    // argument and parameter types are compatible.
3064    if (!S.Context.hasSameUnqualifiedType(ArgType,
3065                                          ParamType.getNonReferenceType())) {
3066      // We can't perform this conversion or binding.
3067      if (ParamType->isReferenceType())
3068        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3069          << ParamType << Arg->getType() << Arg->getSourceRange();
3070      else
3071        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
3072          << Arg->getType() << ParamType << Arg->getSourceRange();
3073      S.Diag(Param->getLocation(), diag::note_template_param_here);
3074      return true;
3075    }
3076  }
3077
3078  // Create the template argument.
3079  Converted = TemplateArgument(Entity->getCanonicalDecl());
3080  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
3081  return false;
3082}
3083
3084/// \brief Checks whether the given template argument is a pointer to
3085/// member constant according to C++ [temp.arg.nontype]p1.
3086bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
3087                                                TemplateArgument &Converted) {
3088  bool Invalid = false;
3089
3090  // See through any implicit casts we added to fix the type.
3091  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3092    Arg = Cast->getSubExpr();
3093
3094  // C++ [temp.arg.nontype]p1:
3095  //
3096  //   A template-argument for a non-type, non-template
3097  //   template-parameter shall be one of: [...]
3098  //
3099  //     -- a pointer to member expressed as described in 5.3.1.
3100  DeclRefExpr *DRE = 0;
3101
3102  // In C++98/03 mode, give an extension warning on any extra parentheses.
3103  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3104  bool ExtraParens = false;
3105  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3106    if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) {
3107      Diag(Arg->getSourceRange().getBegin(),
3108           diag::ext_template_arg_extra_parens)
3109        << Arg->getSourceRange();
3110      ExtraParens = true;
3111    }
3112
3113    Arg = Parens->getSubExpr();
3114  }
3115
3116  // A pointer-to-member constant written &Class::member.
3117  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3118    if (UnOp->getOpcode() == UO_AddrOf) {
3119      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3120      if (DRE && !DRE->getQualifier())
3121        DRE = 0;
3122    }
3123  }
3124  // A constant of pointer-to-member type.
3125  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
3126    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
3127      if (VD->getType()->isMemberPointerType()) {
3128        if (isa<NonTypeTemplateParmDecl>(VD) ||
3129            (isa<VarDecl>(VD) &&
3130             Context.getCanonicalType(VD->getType()).isConstQualified())) {
3131          if (Arg->isTypeDependent() || Arg->isValueDependent())
3132            Converted = TemplateArgument(Arg);
3133          else
3134            Converted = TemplateArgument(VD->getCanonicalDecl());
3135          return Invalid;
3136        }
3137      }
3138    }
3139
3140    DRE = 0;
3141  }
3142
3143  if (!DRE)
3144    return Diag(Arg->getSourceRange().getBegin(),
3145                diag::err_template_arg_not_pointer_to_member_form)
3146      << Arg->getSourceRange();
3147
3148  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
3149    assert((isa<FieldDecl>(DRE->getDecl()) ||
3150            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
3151           "Only non-static member pointers can make it here");
3152
3153    // Okay: this is the address of a non-static member, and therefore
3154    // a member pointer constant.
3155    if (Arg->isTypeDependent() || Arg->isValueDependent())
3156      Converted = TemplateArgument(Arg);
3157    else
3158      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3159    return Invalid;
3160  }
3161
3162  // We found something else, but we don't know specifically what it is.
3163  Diag(Arg->getSourceRange().getBegin(),
3164       diag::err_template_arg_not_pointer_to_member_form)
3165      << Arg->getSourceRange();
3166  Diag(DRE->getDecl()->getLocation(),
3167       diag::note_template_arg_refers_here);
3168  return true;
3169}
3170
3171/// \brief Check a template argument against its corresponding
3172/// non-type template parameter.
3173///
3174/// This routine implements the semantics of C++ [temp.arg.nontype].
3175/// It returns true if an error occurred, and false otherwise. \p
3176/// InstantiatedParamType is the type of the non-type template
3177/// parameter after it has been instantiated.
3178///
3179/// If no error was detected, Converted receives the converted template argument.
3180bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3181                                 QualType InstantiatedParamType, Expr *&Arg,
3182                                 TemplateArgument &Converted,
3183                                 CheckTemplateArgumentKind CTAK) {
3184  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
3185
3186  // If either the parameter has a dependent type or the argument is
3187  // type-dependent, there's nothing we can check now.
3188  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3189    // FIXME: Produce a cloned, canonical expression?
3190    Converted = TemplateArgument(Arg);
3191    return false;
3192  }
3193
3194  // C++ [temp.arg.nontype]p5:
3195  //   The following conversions are performed on each expression used
3196  //   as a non-type template-argument. If a non-type
3197  //   template-argument cannot be converted to the type of the
3198  //   corresponding template-parameter then the program is
3199  //   ill-formed.
3200  //
3201  //     -- for a non-type template-parameter of integral or
3202  //        enumeration type, integral promotions (4.5) and integral
3203  //        conversions (4.7) are applied.
3204  QualType ParamType = InstantiatedParamType;
3205  QualType ArgType = Arg->getType();
3206  if (ParamType->isIntegralOrEnumerationType()) {
3207    // C++ [temp.arg.nontype]p1:
3208    //   A template-argument for a non-type, non-template
3209    //   template-parameter shall be one of:
3210    //
3211    //     -- an integral constant-expression of integral or enumeration
3212    //        type; or
3213    //     -- the name of a non-type template-parameter; or
3214    SourceLocation NonConstantLoc;
3215    llvm::APSInt Value;
3216    if (!ArgType->isIntegralOrEnumerationType()) {
3217      Diag(Arg->getSourceRange().getBegin(),
3218           diag::err_template_arg_not_integral_or_enumeral)
3219        << ArgType << Arg->getSourceRange();
3220      Diag(Param->getLocation(), diag::note_template_param_here);
3221      return true;
3222    } else if (!Arg->isValueDependent() &&
3223               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
3224      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
3225        << ArgType << Arg->getSourceRange();
3226      return true;
3227    }
3228
3229    // From here on out, all we care about are the unqualified forms
3230    // of the parameter and argument types.
3231    ParamType = ParamType.getUnqualifiedType();
3232    ArgType = ArgType.getUnqualifiedType();
3233
3234    // Try to convert the argument to the parameter's type.
3235    if (Context.hasSameType(ParamType, ArgType)) {
3236      // Okay: no conversion necessary
3237    } else if (CTAK == CTAK_Deduced) {
3238      // C++ [temp.deduct.type]p17:
3239      //   If, in the declaration of a function template with a non-type
3240      //   template-parameter, the non-type template- parameter is used
3241      //   in an expression in the function parameter-list and, if the
3242      //   corresponding template-argument is deduced, the
3243      //   template-argument type shall match the type of the
3244      //   template-parameter exactly, except that a template-argument
3245      //   deduced from an array bound may be of any integral type.
3246      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
3247        << ArgType << ParamType;
3248      Diag(Param->getLocation(), diag::note_template_param_here);
3249      return true;
3250    } else if (ParamType->isBooleanType()) {
3251      // This is an integral-to-boolean conversion.
3252      ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean);
3253    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
3254               !ParamType->isEnumeralType()) {
3255      // This is an integral promotion or conversion.
3256      ImpCastExprToType(Arg, ParamType, CK_IntegralCast);
3257    } else {
3258      // We can't perform this conversion.
3259      Diag(Arg->getSourceRange().getBegin(),
3260           diag::err_template_arg_not_convertible)
3261        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3262      Diag(Param->getLocation(), diag::note_template_param_here);
3263      return true;
3264    }
3265
3266    QualType IntegerType = Context.getCanonicalType(ParamType);
3267    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3268      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
3269
3270    if (!Arg->isValueDependent()) {
3271      llvm::APSInt OldValue = Value;
3272
3273      // Coerce the template argument's value to the value it will have
3274      // based on the template parameter's type.
3275      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3276      if (Value.getBitWidth() != AllowedBits)
3277        Value = Value.extOrTrunc(AllowedBits);
3278      Value.setIsSigned(IntegerType->isSignedIntegerType());
3279
3280      // Complain if an unsigned parameter received a negative value.
3281      if (IntegerType->isUnsignedIntegerType()
3282          && (OldValue.isSigned() && OldValue.isNegative())) {
3283        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
3284          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3285          << Arg->getSourceRange();
3286        Diag(Param->getLocation(), diag::note_template_param_here);
3287      }
3288
3289      // Complain if we overflowed the template parameter's type.
3290      unsigned RequiredBits;
3291      if (IntegerType->isUnsignedIntegerType())
3292        RequiredBits = OldValue.getActiveBits();
3293      else if (OldValue.isUnsigned())
3294        RequiredBits = OldValue.getActiveBits() + 1;
3295      else
3296        RequiredBits = OldValue.getMinSignedBits();
3297      if (RequiredBits > AllowedBits) {
3298        Diag(Arg->getSourceRange().getBegin(),
3299             diag::warn_template_arg_too_large)
3300          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3301          << Arg->getSourceRange();
3302        Diag(Param->getLocation(), diag::note_template_param_here);
3303      }
3304    }
3305
3306    // Add the value of this argument to the list of converted
3307    // arguments. We use the bitwidth and signedness of the template
3308    // parameter.
3309    if (Arg->isValueDependent()) {
3310      // The argument is value-dependent. Create a new
3311      // TemplateArgument with the converted expression.
3312      Converted = TemplateArgument(Arg);
3313      return false;
3314    }
3315
3316    Converted = TemplateArgument(Value,
3317                                 ParamType->isEnumeralType() ? ParamType
3318                                                             : IntegerType);
3319    return false;
3320  }
3321
3322  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
3323
3324  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
3325  // from a template argument of type std::nullptr_t to a non-type
3326  // template parameter of type pointer to object, pointer to
3327  // function, or pointer-to-member, respectively.
3328  if (ArgType->isNullPtrType() &&
3329      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
3330    Converted = TemplateArgument((NamedDecl *)0);
3331    return false;
3332  }
3333
3334  // Handle pointer-to-function, reference-to-function, and
3335  // pointer-to-member-function all in (roughly) the same way.
3336  if (// -- For a non-type template-parameter of type pointer to
3337      //    function, only the function-to-pointer conversion (4.3) is
3338      //    applied. If the template-argument represents a set of
3339      //    overloaded functions (or a pointer to such), the matching
3340      //    function is selected from the set (13.4).
3341      (ParamType->isPointerType() &&
3342       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
3343      // -- For a non-type template-parameter of type reference to
3344      //    function, no conversions apply. If the template-argument
3345      //    represents a set of overloaded functions, the matching
3346      //    function is selected from the set (13.4).
3347      (ParamType->isReferenceType() &&
3348       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
3349      // -- For a non-type template-parameter of type pointer to
3350      //    member function, no conversions apply. If the
3351      //    template-argument represents a set of overloaded member
3352      //    functions, the matching member function is selected from
3353      //    the set (13.4).
3354      (ParamType->isMemberPointerType() &&
3355       ParamType->getAs<MemberPointerType>()->getPointeeType()
3356         ->isFunctionType())) {
3357
3358    if (Arg->getType() == Context.OverloadTy) {
3359      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
3360                                                                true,
3361                                                                FoundResult)) {
3362        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3363          return true;
3364
3365        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3366        ArgType = Arg->getType();
3367      } else
3368        return true;
3369    }
3370
3371    if (!ParamType->isMemberPointerType())
3372      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3373                                                            ParamType,
3374                                                            Arg, Converted);
3375
3376    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) {
3377      ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3378    } else if (!Context.hasSameUnqualifiedType(ArgType,
3379                                           ParamType.getNonReferenceType())) {
3380      // We can't perform this conversion.
3381      Diag(Arg->getSourceRange().getBegin(),
3382           diag::err_template_arg_not_convertible)
3383        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3384      Diag(Param->getLocation(), diag::note_template_param_here);
3385      return true;
3386    }
3387
3388    return CheckTemplateArgumentPointerToMember(Arg, Converted);
3389  }
3390
3391  if (ParamType->isPointerType()) {
3392    //   -- for a non-type template-parameter of type pointer to
3393    //      object, qualification conversions (4.4) and the
3394    //      array-to-pointer conversion (4.2) are applied.
3395    // C++0x also allows a value of std::nullptr_t.
3396    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
3397           "Only object pointers allowed here");
3398
3399    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3400                                                          ParamType,
3401                                                          Arg, Converted);
3402  }
3403
3404  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
3405    //   -- For a non-type template-parameter of type reference to
3406    //      object, no conversions apply. The type referred to by the
3407    //      reference may be more cv-qualified than the (otherwise
3408    //      identical) type of the template-argument. The
3409    //      template-parameter is bound directly to the
3410    //      template-argument, which must be an lvalue.
3411    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
3412           "Only object references allowed here");
3413
3414    if (Arg->getType() == Context.OverloadTy) {
3415      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
3416                                                 ParamRefType->getPointeeType(),
3417                                                                true,
3418                                                                FoundResult)) {
3419        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3420          return true;
3421
3422        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3423        ArgType = Arg->getType();
3424      } else
3425        return true;
3426    }
3427
3428    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3429                                                          ParamType,
3430                                                          Arg, Converted);
3431  }
3432
3433  //     -- For a non-type template-parameter of type pointer to data
3434  //        member, qualification conversions (4.4) are applied.
3435  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
3436
3437  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
3438    // Types match exactly: nothing more to do here.
3439  } else if (IsQualificationConversion(ArgType, ParamType)) {
3440    ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3441  } else {
3442    // We can't perform this conversion.
3443    Diag(Arg->getSourceRange().getBegin(),
3444         diag::err_template_arg_not_convertible)
3445      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3446    Diag(Param->getLocation(), diag::note_template_param_here);
3447    return true;
3448  }
3449
3450  return CheckTemplateArgumentPointerToMember(Arg, Converted);
3451}
3452
3453/// \brief Check a template argument against its corresponding
3454/// template template parameter.
3455///
3456/// This routine implements the semantics of C++ [temp.arg.template].
3457/// It returns true if an error occurred, and false otherwise.
3458bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3459                                 const TemplateArgumentLoc &Arg) {
3460  TemplateName Name = Arg.getArgument().getAsTemplate();
3461  TemplateDecl *Template = Name.getAsTemplateDecl();
3462  if (!Template) {
3463    // Any dependent template name is fine.
3464    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3465    return false;
3466  }
3467
3468  // C++ [temp.arg.template]p1:
3469  //   A template-argument for a template template-parameter shall be
3470  //   the name of a class template, expressed as id-expression. Only
3471  //   primary class templates are considered when matching the
3472  //   template template argument with the corresponding parameter;
3473  //   partial specializations are not considered even if their
3474  //   parameter lists match that of the template template parameter.
3475  //
3476  // Note that we also allow template template parameters here, which
3477  // will happen when we are dealing with, e.g., class template
3478  // partial specializations.
3479  if (!isa<ClassTemplateDecl>(Template) &&
3480      !isa<TemplateTemplateParmDecl>(Template)) {
3481    assert(isa<FunctionTemplateDecl>(Template) &&
3482           "Only function templates are possible here");
3483    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3484    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3485      << Template;
3486  }
3487
3488  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3489                                         Param->getTemplateParameters(),
3490                                         true,
3491                                         TPL_TemplateTemplateArgumentMatch,
3492                                         Arg.getLocation());
3493}
3494
3495/// \brief Given a non-type template argument that refers to a
3496/// declaration and the type of its corresponding non-type template
3497/// parameter, produce an expression that properly refers to that
3498/// declaration.
3499ExprResult
3500Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3501                                              QualType ParamType,
3502                                              SourceLocation Loc) {
3503  assert(Arg.getKind() == TemplateArgument::Declaration &&
3504         "Only declaration template arguments permitted here");
3505  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3506
3507  if (VD->getDeclContext()->isRecord() &&
3508      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3509    // If the value is a class member, we might have a pointer-to-member.
3510    // Determine whether the non-type template template parameter is of
3511    // pointer-to-member type. If so, we need to build an appropriate
3512    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3513    // would refer to the member itself.
3514    if (ParamType->isMemberPointerType()) {
3515      QualType ClassType
3516        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3517      NestedNameSpecifier *Qualifier
3518        = NestedNameSpecifier::Create(Context, 0, false,
3519                                      ClassType.getTypePtr());
3520      CXXScopeSpec SS;
3521      SS.setScopeRep(Qualifier);
3522
3523      // The actual value-ness of this is unimportant, but for
3524      // internal consistency's sake, references to instance methods
3525      // are r-values.
3526      ExprValueKind VK = VK_LValue;
3527      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
3528        VK = VK_RValue;
3529
3530      ExprResult RefExpr = BuildDeclRefExpr(VD,
3531                                            VD->getType().getNonReferenceType(),
3532                                            VK,
3533                                            Loc,
3534                                            &SS);
3535      if (RefExpr.isInvalid())
3536        return ExprError();
3537
3538      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3539
3540      // We might need to perform a trailing qualification conversion, since
3541      // the element type on the parameter could be more qualified than the
3542      // element type in the expression we constructed.
3543      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
3544                                    ParamType.getUnqualifiedType())) {
3545        Expr *RefE = RefExpr.takeAs<Expr>();
3546        ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp);
3547        RefExpr = Owned(RefE);
3548      }
3549
3550      assert(!RefExpr.isInvalid() &&
3551             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3552                                 ParamType.getUnqualifiedType()));
3553      return move(RefExpr);
3554    }
3555  }
3556
3557  QualType T = VD->getType().getNonReferenceType();
3558  if (ParamType->isPointerType()) {
3559    // When the non-type template parameter is a pointer, take the
3560    // address of the declaration.
3561    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
3562    if (RefExpr.isInvalid())
3563      return ExprError();
3564
3565    if (T->isFunctionType() || T->isArrayType()) {
3566      // Decay functions and arrays.
3567      Expr *RefE = (Expr *)RefExpr.get();
3568      DefaultFunctionArrayConversion(RefE);
3569      if (RefE != RefExpr.get()) {
3570        RefExpr.release();
3571        RefExpr = Owned(RefE);
3572      }
3573
3574      return move(RefExpr);
3575    }
3576
3577    // Take the address of everything else
3578    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3579  }
3580
3581  ExprValueKind VK = VK_RValue;
3582
3583  // If the non-type template parameter has reference type, qualify the
3584  // resulting declaration reference with the extra qualifiers on the
3585  // type that the reference refers to.
3586  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
3587    VK = VK_LValue;
3588    T = Context.getQualifiedType(T,
3589                              TargetRef->getPointeeType().getQualifiers());
3590  }
3591
3592  return BuildDeclRefExpr(VD, T, VK, Loc);
3593}
3594
3595/// \brief Construct a new expression that refers to the given
3596/// integral template argument with the given source-location
3597/// information.
3598///
3599/// This routine takes care of the mapping from an integral template
3600/// argument (which may have any integral type) to the appropriate
3601/// literal value.
3602ExprResult
3603Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3604                                                  SourceLocation Loc) {
3605  assert(Arg.getKind() == TemplateArgument::Integral &&
3606         "Operation is only valid for integral template arguments");
3607  QualType T = Arg.getIntegralType();
3608  if (T->isCharType() || T->isWideCharType())
3609    return Owned(new (Context) CharacterLiteral(
3610                                             Arg.getAsIntegral()->getZExtValue(),
3611                                             T->isWideCharType(),
3612                                             T,
3613                                             Loc));
3614  if (T->isBooleanType())
3615    return Owned(new (Context) CXXBoolLiteralExpr(
3616                                            Arg.getAsIntegral()->getBoolValue(),
3617                                            T,
3618                                            Loc));
3619
3620  QualType BT;
3621  if (const EnumType *ET = T->getAs<EnumType>())
3622    BT = ET->getDecl()->getPromotionType();
3623  else
3624    BT = T;
3625
3626  Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
3627  ImpCastExprToType(E, T, CK_IntegralCast);
3628
3629  return Owned(E);
3630}
3631
3632
3633/// \brief Determine whether the given template parameter lists are
3634/// equivalent.
3635///
3636/// \param New  The new template parameter list, typically written in the
3637/// source code as part of a new template declaration.
3638///
3639/// \param Old  The old template parameter list, typically found via
3640/// name lookup of the template declared with this template parameter
3641/// list.
3642///
3643/// \param Complain  If true, this routine will produce a diagnostic if
3644/// the template parameter lists are not equivalent.
3645///
3646/// \param Kind describes how we are to match the template parameter lists.
3647///
3648/// \param TemplateArgLoc If this source location is valid, then we
3649/// are actually checking the template parameter list of a template
3650/// argument (New) against the template parameter list of its
3651/// corresponding template template parameter (Old). We produce
3652/// slightly different diagnostics in this scenario.
3653///
3654/// \returns True if the template parameter lists are equal, false
3655/// otherwise.
3656bool
3657Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3658                                     TemplateParameterList *Old,
3659                                     bool Complain,
3660                                     TemplateParameterListEqualKind Kind,
3661                                     SourceLocation TemplateArgLoc) {
3662  if (Old->size() != New->size()) {
3663    if (Complain) {
3664      unsigned NextDiag = diag::err_template_param_list_different_arity;
3665      if (TemplateArgLoc.isValid()) {
3666        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3667        NextDiag = diag::note_template_param_list_different_arity;
3668      }
3669      Diag(New->getTemplateLoc(), NextDiag)
3670          << (New->size() > Old->size())
3671          << (Kind != TPL_TemplateMatch)
3672          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3673      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3674        << (Kind != TPL_TemplateMatch)
3675        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3676    }
3677
3678    return false;
3679  }
3680
3681  for (TemplateParameterList::iterator OldParm = Old->begin(),
3682         OldParmEnd = Old->end(), NewParm = New->begin();
3683       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
3684    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
3685      if (Complain) {
3686        unsigned NextDiag = diag::err_template_param_different_kind;
3687        if (TemplateArgLoc.isValid()) {
3688          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3689          NextDiag = diag::note_template_param_different_kind;
3690        }
3691        Diag((*NewParm)->getLocation(), NextDiag)
3692          << (Kind != TPL_TemplateMatch);
3693        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
3694          << (Kind != TPL_TemplateMatch);
3695      }
3696      return false;
3697    }
3698
3699    if (TemplateTypeParmDecl *OldTTP
3700                                  = dyn_cast<TemplateTypeParmDecl>(*OldParm)) {
3701      // Template type parameters are equivalent if either both are template
3702      // type parameter packs or neither are (since we know we're at the same
3703      // index).
3704      TemplateTypeParmDecl *NewTTP = cast<TemplateTypeParmDecl>(*NewParm);
3705      if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) {
3706        // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that
3707        // allow one to match a template parameter pack in the template
3708        // parameter list of a template template parameter to one or more
3709        // template parameters in the template parameter list of the
3710        // corresponding template template argument.
3711        if (Complain) {
3712          unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3713          if (TemplateArgLoc.isValid()) {
3714            Diag(TemplateArgLoc,
3715                 diag::err_template_arg_template_params_mismatch);
3716            NextDiag = diag::note_template_parameter_pack_non_pack;
3717          }
3718          Diag(NewTTP->getLocation(), NextDiag)
3719            << 0 << NewTTP->isParameterPack();
3720          Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here)
3721            << 0 << OldTTP->isParameterPack();
3722        }
3723        return false;
3724      }
3725    } else if (NonTypeTemplateParmDecl *OldNTTP
3726                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
3727      // The types of non-type template parameters must agree.
3728      NonTypeTemplateParmDecl *NewNTTP
3729        = cast<NonTypeTemplateParmDecl>(*NewParm);
3730
3731      if (OldNTTP->isParameterPack() != NewNTTP->isParameterPack()) {
3732        // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that
3733        // allow one to match a template parameter pack in the template
3734        // parameter list of a template template parameter to one or more
3735        // template parameters in the template parameter list of the
3736        // corresponding template template argument.
3737        if (Complain) {
3738          unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3739          if (TemplateArgLoc.isValid()) {
3740            Diag(TemplateArgLoc,
3741                 diag::err_template_arg_template_params_mismatch);
3742            NextDiag = diag::note_template_parameter_pack_non_pack;
3743          }
3744          Diag(NewNTTP->getLocation(), NextDiag)
3745            << 1 << NewNTTP->isParameterPack();
3746          Diag(OldNTTP->getLocation(), diag::note_template_parameter_pack_here)
3747            << 1 << OldNTTP->isParameterPack();
3748        }
3749        return false;
3750      }
3751
3752      // If we are matching a template template argument to a template
3753      // template parameter and one of the non-type template parameter types
3754      // is dependent, then we must wait until template instantiation time
3755      // to actually compare the arguments.
3756      if (Kind == TPL_TemplateTemplateArgumentMatch &&
3757          (OldNTTP->getType()->isDependentType() ||
3758           NewNTTP->getType()->isDependentType()))
3759        continue;
3760
3761      if (Context.getCanonicalType(OldNTTP->getType()) !=
3762            Context.getCanonicalType(NewNTTP->getType())) {
3763        if (Complain) {
3764          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3765          if (TemplateArgLoc.isValid()) {
3766            Diag(TemplateArgLoc,
3767                 diag::err_template_arg_template_params_mismatch);
3768            NextDiag = diag::note_template_nontype_parm_different_type;
3769          }
3770          Diag(NewNTTP->getLocation(), NextDiag)
3771            << NewNTTP->getType()
3772            << (Kind != TPL_TemplateMatch);
3773          Diag(OldNTTP->getLocation(),
3774               diag::note_template_nontype_parm_prev_declaration)
3775            << OldNTTP->getType();
3776        }
3777        return false;
3778      }
3779    } else {
3780      // The template parameter lists of template template
3781      // parameters must agree.
3782      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
3783             "Only template template parameters handled here");
3784      TemplateTemplateParmDecl *OldTTP
3785        = cast<TemplateTemplateParmDecl>(*OldParm);
3786      TemplateTemplateParmDecl *NewTTP
3787        = cast<TemplateTemplateParmDecl>(*NewParm);
3788
3789      if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) {
3790        // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that
3791        // allow one to match a template parameter pack in the template
3792        // parameter list of a template template parameter to one or more
3793        // template parameters in the template parameter list of the
3794        // corresponding template template argument.
3795        if (Complain) {
3796          unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3797          if (TemplateArgLoc.isValid()) {
3798            Diag(TemplateArgLoc,
3799                 diag::err_template_arg_template_params_mismatch);
3800            NextDiag = diag::note_template_parameter_pack_non_pack;
3801          }
3802          Diag(NewTTP->getLocation(), NextDiag)
3803            << 2 << NewTTP->isParameterPack();
3804          Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here)
3805            << 2 << OldTTP->isParameterPack();
3806        }
3807        return false;
3808      }
3809
3810      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3811                                          OldTTP->getTemplateParameters(),
3812                                          Complain,
3813              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
3814                                          TemplateArgLoc))
3815        return false;
3816    }
3817  }
3818
3819  return true;
3820}
3821
3822/// \brief Check whether a template can be declared within this scope.
3823///
3824/// If the template declaration is valid in this scope, returns
3825/// false. Otherwise, issues a diagnostic and returns true.
3826bool
3827Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3828  // Find the nearest enclosing declaration scope.
3829  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3830         (S->getFlags() & Scope::TemplateParamScope) != 0)
3831    S = S->getParent();
3832
3833  // C++ [temp]p2:
3834  //   A template-declaration can appear only as a namespace scope or
3835  //   class scope declaration.
3836  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3837  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3838      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3839    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3840             << TemplateParams->getSourceRange();
3841
3842  while (Ctx && isa<LinkageSpecDecl>(Ctx))
3843    Ctx = Ctx->getParent();
3844
3845  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3846    return false;
3847
3848  return Diag(TemplateParams->getTemplateLoc(),
3849              diag::err_template_outside_namespace_or_class_scope)
3850    << TemplateParams->getSourceRange();
3851}
3852
3853/// \brief Determine what kind of template specialization the given declaration
3854/// is.
3855static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3856  if (!D)
3857    return TSK_Undeclared;
3858
3859  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3860    return Record->getTemplateSpecializationKind();
3861  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3862    return Function->getTemplateSpecializationKind();
3863  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3864    return Var->getTemplateSpecializationKind();
3865
3866  return TSK_Undeclared;
3867}
3868
3869/// \brief Check whether a specialization is well-formed in the current
3870/// context.
3871///
3872/// This routine determines whether a template specialization can be declared
3873/// in the current context (C++ [temp.expl.spec]p2).
3874///
3875/// \param S the semantic analysis object for which this check is being
3876/// performed.
3877///
3878/// \param Specialized the entity being specialized or instantiated, which
3879/// may be a kind of template (class template, function template, etc.) or
3880/// a member of a class template (member function, static data member,
3881/// member class).
3882///
3883/// \param PrevDecl the previous declaration of this entity, if any.
3884///
3885/// \param Loc the location of the explicit specialization or instantiation of
3886/// this entity.
3887///
3888/// \param IsPartialSpecialization whether this is a partial specialization of
3889/// a class template.
3890///
3891/// \returns true if there was an error that we cannot recover from, false
3892/// otherwise.
3893static bool CheckTemplateSpecializationScope(Sema &S,
3894                                             NamedDecl *Specialized,
3895                                             NamedDecl *PrevDecl,
3896                                             SourceLocation Loc,
3897                                             bool IsPartialSpecialization) {
3898  // Keep these "kind" numbers in sync with the %select statements in the
3899  // various diagnostics emitted by this routine.
3900  int EntityKind = 0;
3901  bool isTemplateSpecialization = false;
3902  if (isa<ClassTemplateDecl>(Specialized)) {
3903    EntityKind = IsPartialSpecialization? 1 : 0;
3904    isTemplateSpecialization = true;
3905  } else if (isa<FunctionTemplateDecl>(Specialized)) {
3906    EntityKind = 2;
3907    isTemplateSpecialization = true;
3908  } else if (isa<CXXMethodDecl>(Specialized))
3909    EntityKind = 3;
3910  else if (isa<VarDecl>(Specialized))
3911    EntityKind = 4;
3912  else if (isa<RecordDecl>(Specialized))
3913    EntityKind = 5;
3914  else {
3915    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3916    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3917    return true;
3918  }
3919
3920  // C++ [temp.expl.spec]p2:
3921  //   An explicit specialization shall be declared in the namespace
3922  //   of which the template is a member, or, for member templates, in
3923  //   the namespace of which the enclosing class or enclosing class
3924  //   template is a member. An explicit specialization of a member
3925  //   function, member class or static data member of a class
3926  //   template shall be declared in the namespace of which the class
3927  //   template is a member. Such a declaration may also be a
3928  //   definition. If the declaration is not a definition, the
3929  //   specialization may be defined later in the name- space in which
3930  //   the explicit specialization was declared, or in a namespace
3931  //   that encloses the one in which the explicit specialization was
3932  //   declared.
3933  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
3934    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3935      << Specialized;
3936    return true;
3937  }
3938
3939  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3940    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3941      << Specialized;
3942    return true;
3943  }
3944
3945  // C++ [temp.class.spec]p6:
3946  //   A class template partial specialization may be declared or redeclared
3947  //   in any namespace scope in which its definition may be defined (14.5.1
3948  //   and 14.5.2).
3949  bool ComplainedAboutScope = false;
3950  DeclContext *SpecializedContext
3951    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3952  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3953  if ((!PrevDecl ||
3954       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3955       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3956    // C++ [temp.exp.spec]p2:
3957    //   An explicit specialization shall be declared in the namespace of which
3958    //   the template is a member, or, for member templates, in the namespace
3959    //   of which the enclosing class or enclosing class template is a member.
3960    //   An explicit specialization of a member function, member class or
3961    //   static data member of a class template shall be declared in the
3962    //   namespace of which the class template is a member.
3963    //
3964    // C++0x [temp.expl.spec]p2:
3965    //   An explicit specialization shall be declared in a namespace enclosing
3966    //   the specialized template.
3967    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) &&
3968        !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) {
3969      bool IsCPlusPlus0xExtension
3970        = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext);
3971      if (isa<TranslationUnitDecl>(SpecializedContext))
3972        S.Diag(Loc, IsCPlusPlus0xExtension
3973                      ? diag::ext_template_spec_decl_out_of_scope_global
3974                      : diag::err_template_spec_decl_out_of_scope_global)
3975          << EntityKind << Specialized;
3976      else if (isa<NamespaceDecl>(SpecializedContext))
3977        S.Diag(Loc, IsCPlusPlus0xExtension
3978                      ? diag::ext_template_spec_decl_out_of_scope
3979                      : diag::err_template_spec_decl_out_of_scope)
3980          << EntityKind << Specialized
3981          << cast<NamedDecl>(SpecializedContext);
3982
3983      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3984      ComplainedAboutScope = true;
3985    }
3986  }
3987
3988  // Make sure that this redeclaration (or definition) occurs in an enclosing
3989  // namespace.
3990  // Note that HandleDeclarator() performs this check for explicit
3991  // specializations of function templates, static data members, and member
3992  // functions, so we skip the check here for those kinds of entities.
3993  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3994  // Should we refactor that check, so that it occurs later?
3995  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3996      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3997        isa<FunctionDecl>(Specialized))) {
3998    if (isa<TranslationUnitDecl>(SpecializedContext))
3999      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
4000        << EntityKind << Specialized;
4001    else if (isa<NamespaceDecl>(SpecializedContext))
4002      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
4003        << EntityKind << Specialized
4004        << cast<NamedDecl>(SpecializedContext);
4005
4006    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4007  }
4008
4009  // FIXME: check for specialization-after-instantiation errors and such.
4010
4011  return false;
4012}
4013
4014/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
4015/// that checks non-type template partial specialization arguments.
4016static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
4017                                                NonTypeTemplateParmDecl *Param,
4018                                                  const TemplateArgument *Args,
4019                                                        unsigned NumArgs) {
4020  for (unsigned I = 0; I != NumArgs; ++I) {
4021    if (Args[I].getKind() == TemplateArgument::Pack) {
4022      if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4023                                                           Args[I].pack_begin(),
4024                                                           Args[I].pack_size()))
4025        return true;
4026
4027      continue;
4028    }
4029
4030    Expr *ArgExpr = Args[I].getAsExpr();
4031    if (!ArgExpr) {
4032      continue;
4033    }
4034
4035    // We can have a pack expansion of any of the bullets below.
4036    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
4037      ArgExpr = Expansion->getPattern();
4038
4039    // Strip off any implicit casts we added as part of type checking.
4040    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
4041      ArgExpr = ICE->getSubExpr();
4042
4043    // C++ [temp.class.spec]p8:
4044    //   A non-type argument is non-specialized if it is the name of a
4045    //   non-type parameter. All other non-type arguments are
4046    //   specialized.
4047    //
4048    // Below, we check the two conditions that only apply to
4049    // specialized non-type arguments, so skip any non-specialized
4050    // arguments.
4051    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
4052      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
4053        continue;
4054
4055    // C++ [temp.class.spec]p9:
4056    //   Within the argument list of a class template partial
4057    //   specialization, the following restrictions apply:
4058    //     -- A partially specialized non-type argument expression
4059    //        shall not involve a template parameter of the partial
4060    //        specialization except when the argument expression is a
4061    //        simple identifier.
4062    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
4063      S.Diag(ArgExpr->getLocStart(),
4064           diag::err_dependent_non_type_arg_in_partial_spec)
4065        << ArgExpr->getSourceRange();
4066      return true;
4067    }
4068
4069    //     -- The type of a template parameter corresponding to a
4070    //        specialized non-type argument shall not be dependent on a
4071    //        parameter of the specialization.
4072    if (Param->getType()->isDependentType()) {
4073      S.Diag(ArgExpr->getLocStart(),
4074           diag::err_dependent_typed_non_type_arg_in_partial_spec)
4075        << Param->getType()
4076        << ArgExpr->getSourceRange();
4077      S.Diag(Param->getLocation(), diag::note_template_param_here);
4078      return true;
4079    }
4080  }
4081
4082  return false;
4083}
4084
4085/// \brief Check the non-type template arguments of a class template
4086/// partial specialization according to C++ [temp.class.spec]p9.
4087///
4088/// \param TemplateParams the template parameters of the primary class
4089/// template.
4090///
4091/// \param TemplateArg the template arguments of the class template
4092/// partial specialization.
4093///
4094/// \returns true if there was an error, false otherwise.
4095static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
4096                                        TemplateParameterList *TemplateParams,
4097                       llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs) {
4098  const TemplateArgument *ArgList = TemplateArgs.data();
4099
4100  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4101    NonTypeTemplateParmDecl *Param
4102      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
4103    if (!Param)
4104      continue;
4105
4106    if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4107                                                           &ArgList[I], 1))
4108      return true;
4109  }
4110
4111  return false;
4112}
4113
4114/// \brief Retrieve the previous declaration of the given declaration.
4115static NamedDecl *getPreviousDecl(NamedDecl *ND) {
4116  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
4117    return VD->getPreviousDeclaration();
4118  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
4119    return FD->getPreviousDeclaration();
4120  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
4121    return TD->getPreviousDeclaration();
4122  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
4123    return TD->getPreviousDeclaration();
4124  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4125    return FTD->getPreviousDeclaration();
4126  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
4127    return CTD->getPreviousDeclaration();
4128  return 0;
4129}
4130
4131DeclResult
4132Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
4133                                       TagUseKind TUK,
4134                                       SourceLocation KWLoc,
4135                                       CXXScopeSpec &SS,
4136                                       TemplateTy TemplateD,
4137                                       SourceLocation TemplateNameLoc,
4138                                       SourceLocation LAngleLoc,
4139                                       ASTTemplateArgsPtr TemplateArgsIn,
4140                                       SourceLocation RAngleLoc,
4141                                       AttributeList *Attr,
4142                               MultiTemplateParamsArg TemplateParameterLists) {
4143  assert(TUK != TUK_Reference && "References are not specializations");
4144
4145  // Find the class template we're specializing
4146  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4147  ClassTemplateDecl *ClassTemplate
4148    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
4149
4150  if (!ClassTemplate) {
4151    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
4152      << (Name.getAsTemplateDecl() &&
4153          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
4154    return true;
4155  }
4156
4157  bool isExplicitSpecialization = false;
4158  bool isPartialSpecialization = false;
4159
4160  // Check the validity of the template headers that introduce this
4161  // template.
4162  // FIXME: We probably shouldn't complain about these headers for
4163  // friend declarations.
4164  bool Invalid = false;
4165  TemplateParameterList *TemplateParams
4166    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
4167                        (TemplateParameterList**)TemplateParameterLists.get(),
4168                                              TemplateParameterLists.size(),
4169                                              TUK == TUK_Friend,
4170                                              isExplicitSpecialization,
4171                                              Invalid);
4172  if (Invalid)
4173    return true;
4174
4175  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
4176  if (TemplateParams)
4177    --NumMatchedTemplateParamLists;
4178
4179  if (TemplateParams && TemplateParams->size() > 0) {
4180    isPartialSpecialization = true;
4181
4182    if (TUK == TUK_Friend) {
4183      Diag(KWLoc, diag::err_partial_specialization_friend)
4184        << SourceRange(LAngleLoc, RAngleLoc);
4185      return true;
4186    }
4187
4188    // C++ [temp.class.spec]p10:
4189    //   The template parameter list of a specialization shall not
4190    //   contain default template argument values.
4191    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4192      Decl *Param = TemplateParams->getParam(I);
4193      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4194        if (TTP->hasDefaultArgument()) {
4195          Diag(TTP->getDefaultArgumentLoc(),
4196               diag::err_default_arg_in_partial_spec);
4197          TTP->removeDefaultArgument();
4198        }
4199      } else if (NonTypeTemplateParmDecl *NTTP
4200                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4201        if (Expr *DefArg = NTTP->getDefaultArgument()) {
4202          Diag(NTTP->getDefaultArgumentLoc(),
4203               diag::err_default_arg_in_partial_spec)
4204            << DefArg->getSourceRange();
4205          NTTP->removeDefaultArgument();
4206        }
4207      } else {
4208        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
4209        if (TTP->hasDefaultArgument()) {
4210          Diag(TTP->getDefaultArgument().getLocation(),
4211               diag::err_default_arg_in_partial_spec)
4212            << TTP->getDefaultArgument().getSourceRange();
4213          TTP->removeDefaultArgument();
4214        }
4215      }
4216    }
4217  } else if (TemplateParams) {
4218    if (TUK == TUK_Friend)
4219      Diag(KWLoc, diag::err_template_spec_friend)
4220        << FixItHint::CreateRemoval(
4221                                SourceRange(TemplateParams->getTemplateLoc(),
4222                                            TemplateParams->getRAngleLoc()))
4223        << SourceRange(LAngleLoc, RAngleLoc);
4224    else
4225      isExplicitSpecialization = true;
4226  } else if (TUK != TUK_Friend) {
4227    Diag(KWLoc, diag::err_template_spec_needs_header)
4228      << FixItHint::CreateInsertion(KWLoc, "template<> ");
4229    isExplicitSpecialization = true;
4230  }
4231
4232  // Check that the specialization uses the same tag kind as the
4233  // original template.
4234  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4235  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
4236  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4237                                    Kind, KWLoc,
4238                                    *ClassTemplate->getIdentifier())) {
4239    Diag(KWLoc, diag::err_use_with_wrong_tag)
4240      << ClassTemplate
4241      << FixItHint::CreateReplacement(KWLoc,
4242                            ClassTemplate->getTemplatedDecl()->getKindName());
4243    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4244         diag::note_previous_use);
4245    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4246  }
4247
4248  // Translate the parser's template argument list in our AST format.
4249  TemplateArgumentListInfo TemplateArgs;
4250  TemplateArgs.setLAngleLoc(LAngleLoc);
4251  TemplateArgs.setRAngleLoc(RAngleLoc);
4252  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4253
4254  // Check for unexpanded parameter packs in any of the template arguments.
4255  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4256    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4257                                        UPPC_PartialSpecialization))
4258      return true;
4259
4260  // Check that the template argument list is well-formed for this
4261  // template.
4262  llvm::SmallVector<TemplateArgument, 4> Converted;
4263  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4264                                TemplateArgs, false, Converted))
4265    return true;
4266
4267  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
4268         "Converted template argument list is too short!");
4269
4270  // Find the class template (partial) specialization declaration that
4271  // corresponds to these arguments.
4272  if (isPartialSpecialization) {
4273    if (CheckClassTemplatePartialSpecializationArgs(*this,
4274                                         ClassTemplate->getTemplateParameters(),
4275                                         Converted))
4276      return true;
4277
4278    if (!Name.isDependent() &&
4279        !TemplateSpecializationType::anyDependentTemplateArguments(
4280                                             TemplateArgs.getArgumentArray(),
4281                                                         TemplateArgs.size())) {
4282      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4283        << ClassTemplate->getDeclName();
4284      isPartialSpecialization = false;
4285    }
4286  }
4287
4288  void *InsertPos = 0;
4289  ClassTemplateSpecializationDecl *PrevDecl = 0;
4290
4291  if (isPartialSpecialization)
4292    // FIXME: Template parameter list matters, too
4293    PrevDecl
4294      = ClassTemplate->findPartialSpecialization(Converted.data(),
4295                                                 Converted.size(),
4296                                                 InsertPos);
4297  else
4298    PrevDecl
4299      = ClassTemplate->findSpecialization(Converted.data(),
4300                                          Converted.size(), InsertPos);
4301
4302  ClassTemplateSpecializationDecl *Specialization = 0;
4303
4304  // Check whether we can declare a class template specialization in
4305  // the current scope.
4306  if (TUK != TUK_Friend &&
4307      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
4308                                       TemplateNameLoc,
4309                                       isPartialSpecialization))
4310    return true;
4311
4312  // The canonical type
4313  QualType CanonType;
4314  if (PrevDecl &&
4315      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
4316               TUK == TUK_Friend)) {
4317    // Since the only prior class template specialization with these
4318    // arguments was referenced but not declared, or we're only
4319    // referencing this specialization as a friend, reuse that
4320    // declaration node as our own, updating its source location to
4321    // reflect our new declaration.
4322    Specialization = PrevDecl;
4323    Specialization->setLocation(TemplateNameLoc);
4324    PrevDecl = 0;
4325    CanonType = Context.getTypeDeclType(Specialization);
4326  } else if (isPartialSpecialization) {
4327    // Build the canonical type that describes the converted template
4328    // arguments of the class template partial specialization.
4329    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4330    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
4331                                                      Converted.data(),
4332                                                      Converted.size());
4333
4334    if (Context.hasSameType(CanonType,
4335                        ClassTemplate->getInjectedClassNameSpecialization())) {
4336      // C++ [temp.class.spec]p9b3:
4337      //
4338      //   -- The argument list of the specialization shall not be identical
4339      //      to the implicit argument list of the primary template.
4340      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4341      << (TUK == TUK_Definition)
4342      << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4343      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
4344                                ClassTemplate->getIdentifier(),
4345                                TemplateNameLoc,
4346                                Attr,
4347                                TemplateParams,
4348                                AS_none);
4349    }
4350
4351    // Create a new class template partial specialization declaration node.
4352    ClassTemplatePartialSpecializationDecl *PrevPartial
4353      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
4354    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
4355                            : ClassTemplate->getNextPartialSpecSequenceNumber();
4356    ClassTemplatePartialSpecializationDecl *Partial
4357      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
4358                                             ClassTemplate->getDeclContext(),
4359                                                       TemplateNameLoc,
4360                                                       TemplateParams,
4361                                                       ClassTemplate,
4362                                                       Converted.data(),
4363                                                       Converted.size(),
4364                                                       TemplateArgs,
4365                                                       CanonType,
4366                                                       PrevPartial,
4367                                                       SequenceNumber);
4368    SetNestedNameSpecifier(Partial, SS);
4369    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4370      Partial->setTemplateParameterListsInfo(Context,
4371                                             NumMatchedTemplateParamLists,
4372                    (TemplateParameterList**) TemplateParameterLists.release());
4373    }
4374
4375    if (!PrevPartial)
4376      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
4377    Specialization = Partial;
4378
4379    // If we are providing an explicit specialization of a member class
4380    // template specialization, make a note of that.
4381    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4382      PrevPartial->setMemberSpecialization();
4383
4384    // Check that all of the template parameters of the class template
4385    // partial specialization are deducible from the template
4386    // arguments. If not, this class template partial specialization
4387    // will never be used.
4388    llvm::SmallVector<bool, 8> DeducibleParams;
4389    DeducibleParams.resize(TemplateParams->size());
4390    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4391                               TemplateParams->getDepth(),
4392                               DeducibleParams);
4393    unsigned NumNonDeducible = 0;
4394    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
4395      if (!DeducibleParams[I])
4396        ++NumNonDeducible;
4397
4398    if (NumNonDeducible) {
4399      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
4400        << (NumNonDeducible > 1)
4401        << SourceRange(TemplateNameLoc, RAngleLoc);
4402      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4403        if (!DeducibleParams[I]) {
4404          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
4405          if (Param->getDeclName())
4406            Diag(Param->getLocation(),
4407                 diag::note_partial_spec_unused_parameter)
4408              << Param->getDeclName();
4409          else
4410            Diag(Param->getLocation(),
4411                 diag::note_partial_spec_unused_parameter)
4412              << "<anonymous>";
4413        }
4414      }
4415    }
4416  } else {
4417    // Create a new class template specialization declaration node for
4418    // this explicit specialization or friend declaration.
4419    Specialization
4420      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4421                                             ClassTemplate->getDeclContext(),
4422                                                TemplateNameLoc,
4423                                                ClassTemplate,
4424                                                Converted.data(),
4425                                                Converted.size(),
4426                                                PrevDecl);
4427    SetNestedNameSpecifier(Specialization, SS);
4428    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4429      Specialization->setTemplateParameterListsInfo(Context,
4430                                                  NumMatchedTemplateParamLists,
4431                    (TemplateParameterList**) TemplateParameterLists.release());
4432    }
4433
4434    if (!PrevDecl)
4435      ClassTemplate->AddSpecialization(Specialization, InsertPos);
4436
4437    CanonType = Context.getTypeDeclType(Specialization);
4438  }
4439
4440  // C++ [temp.expl.spec]p6:
4441  //   If a template, a member template or the member of a class template is
4442  //   explicitly specialized then that specialization shall be declared
4443  //   before the first use of that specialization that would cause an implicit
4444  //   instantiation to take place, in every translation unit in which such a
4445  //   use occurs; no diagnostic is required.
4446  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4447    bool Okay = false;
4448    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4449      // Is there any previous explicit specialization declaration?
4450      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4451        Okay = true;
4452        break;
4453      }
4454    }
4455
4456    if (!Okay) {
4457      SourceRange Range(TemplateNameLoc, RAngleLoc);
4458      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4459        << Context.getTypeDeclType(Specialization) << Range;
4460
4461      Diag(PrevDecl->getPointOfInstantiation(),
4462           diag::note_instantiation_required_here)
4463        << (PrevDecl->getTemplateSpecializationKind()
4464                                                != TSK_ImplicitInstantiation);
4465      return true;
4466    }
4467  }
4468
4469  // If this is not a friend, note that this is an explicit specialization.
4470  if (TUK != TUK_Friend)
4471    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4472
4473  // Check that this isn't a redefinition of this specialization.
4474  if (TUK == TUK_Definition) {
4475    if (RecordDecl *Def = Specialization->getDefinition()) {
4476      SourceRange Range(TemplateNameLoc, RAngleLoc);
4477      Diag(TemplateNameLoc, diag::err_redefinition)
4478        << Context.getTypeDeclType(Specialization) << Range;
4479      Diag(Def->getLocation(), diag::note_previous_definition);
4480      Specialization->setInvalidDecl();
4481      return true;
4482    }
4483  }
4484
4485  if (Attr)
4486    ProcessDeclAttributeList(S, Specialization, Attr);
4487
4488  // Build the fully-sugared type for this class template
4489  // specialization as the user wrote in the specialization
4490  // itself. This means that we'll pretty-print the type retrieved
4491  // from the specialization's declaration the way that the user
4492  // actually wrote the specialization, rather than formatting the
4493  // name based on the "canonical" representation used to store the
4494  // template arguments in the specialization.
4495  TypeSourceInfo *WrittenTy
4496    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4497                                                TemplateArgs, CanonType);
4498  if (TUK != TUK_Friend) {
4499    Specialization->setTypeAsWritten(WrittenTy);
4500    if (TemplateParams)
4501      Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc());
4502  }
4503  TemplateArgsIn.release();
4504
4505  // C++ [temp.expl.spec]p9:
4506  //   A template explicit specialization is in the scope of the
4507  //   namespace in which the template was defined.
4508  //
4509  // We actually implement this paragraph where we set the semantic
4510  // context (in the creation of the ClassTemplateSpecializationDecl),
4511  // but we also maintain the lexical context where the actual
4512  // definition occurs.
4513  Specialization->setLexicalDeclContext(CurContext);
4514
4515  // We may be starting the definition of this specialization.
4516  if (TUK == TUK_Definition)
4517    Specialization->startDefinition();
4518
4519  if (TUK == TUK_Friend) {
4520    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
4521                                            TemplateNameLoc,
4522                                            WrittenTy,
4523                                            /*FIXME:*/KWLoc);
4524    Friend->setAccess(AS_public);
4525    CurContext->addDecl(Friend);
4526  } else {
4527    // Add the specialization into its lexical context, so that it can
4528    // be seen when iterating through the list of declarations in that
4529    // context. However, specializations are not found by name lookup.
4530    CurContext->addDecl(Specialization);
4531  }
4532  return Specialization;
4533}
4534
4535Decl *Sema::ActOnTemplateDeclarator(Scope *S,
4536                              MultiTemplateParamsArg TemplateParameterLists,
4537                                    Declarator &D) {
4538  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
4539}
4540
4541Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
4542                               MultiTemplateParamsArg TemplateParameterLists,
4543                                            Declarator &D) {
4544  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4545  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4546
4547  if (FTI.hasPrototype) {
4548    // FIXME: Diagnose arguments without names in C.
4549  }
4550
4551  Scope *ParentScope = FnBodyScope->getParent();
4552
4553  Decl *DP = HandleDeclarator(ParentScope, D,
4554                              move(TemplateParameterLists),
4555                              /*IsFunctionDefinition=*/true);
4556  if (FunctionTemplateDecl *FunctionTemplate
4557        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
4558    return ActOnStartOfFunctionDef(FnBodyScope,
4559                                   FunctionTemplate->getTemplatedDecl());
4560  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
4561    return ActOnStartOfFunctionDef(FnBodyScope, Function);
4562  return 0;
4563}
4564
4565/// \brief Strips various properties off an implicit instantiation
4566/// that has just been explicitly specialized.
4567static void StripImplicitInstantiation(NamedDecl *D) {
4568  D->dropAttrs();
4569
4570  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4571    FD->setInlineSpecified(false);
4572  }
4573}
4574
4575/// \brief Diagnose cases where we have an explicit template specialization
4576/// before/after an explicit template instantiation, producing diagnostics
4577/// for those cases where they are required and determining whether the
4578/// new specialization/instantiation will have any effect.
4579///
4580/// \param NewLoc the location of the new explicit specialization or
4581/// instantiation.
4582///
4583/// \param NewTSK the kind of the new explicit specialization or instantiation.
4584///
4585/// \param PrevDecl the previous declaration of the entity.
4586///
4587/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4588///
4589/// \param PrevPointOfInstantiation if valid, indicates where the previus
4590/// declaration was instantiated (either implicitly or explicitly).
4591///
4592/// \param HasNoEffect will be set to true to indicate that the new
4593/// specialization or instantiation has no effect and should be ignored.
4594///
4595/// \returns true if there was an error that should prevent the introduction of
4596/// the new declaration into the AST, false otherwise.
4597bool
4598Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4599                                             TemplateSpecializationKind NewTSK,
4600                                             NamedDecl *PrevDecl,
4601                                             TemplateSpecializationKind PrevTSK,
4602                                        SourceLocation PrevPointOfInstantiation,
4603                                             bool &HasNoEffect) {
4604  HasNoEffect = false;
4605
4606  switch (NewTSK) {
4607  case TSK_Undeclared:
4608  case TSK_ImplicitInstantiation:
4609    assert(false && "Don't check implicit instantiations here");
4610    return false;
4611
4612  case TSK_ExplicitSpecialization:
4613    switch (PrevTSK) {
4614    case TSK_Undeclared:
4615    case TSK_ExplicitSpecialization:
4616      // Okay, we're just specializing something that is either already
4617      // explicitly specialized or has merely been mentioned without any
4618      // instantiation.
4619      return false;
4620
4621    case TSK_ImplicitInstantiation:
4622      if (PrevPointOfInstantiation.isInvalid()) {
4623        // The declaration itself has not actually been instantiated, so it is
4624        // still okay to specialize it.
4625        StripImplicitInstantiation(PrevDecl);
4626        return false;
4627      }
4628      // Fall through
4629
4630    case TSK_ExplicitInstantiationDeclaration:
4631    case TSK_ExplicitInstantiationDefinition:
4632      assert((PrevTSK == TSK_ImplicitInstantiation ||
4633              PrevPointOfInstantiation.isValid()) &&
4634             "Explicit instantiation without point of instantiation?");
4635
4636      // C++ [temp.expl.spec]p6:
4637      //   If a template, a member template or the member of a class template
4638      //   is explicitly specialized then that specialization shall be declared
4639      //   before the first use of that specialization that would cause an
4640      //   implicit instantiation to take place, in every translation unit in
4641      //   which such a use occurs; no diagnostic is required.
4642      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4643        // Is there any previous explicit specialization declaration?
4644        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4645          return false;
4646      }
4647
4648      Diag(NewLoc, diag::err_specialization_after_instantiation)
4649        << PrevDecl;
4650      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4651        << (PrevTSK != TSK_ImplicitInstantiation);
4652
4653      return true;
4654    }
4655    break;
4656
4657  case TSK_ExplicitInstantiationDeclaration:
4658    switch (PrevTSK) {
4659    case TSK_ExplicitInstantiationDeclaration:
4660      // This explicit instantiation declaration is redundant (that's okay).
4661      HasNoEffect = true;
4662      return false;
4663
4664    case TSK_Undeclared:
4665    case TSK_ImplicitInstantiation:
4666      // We're explicitly instantiating something that may have already been
4667      // implicitly instantiated; that's fine.
4668      return false;
4669
4670    case TSK_ExplicitSpecialization:
4671      // C++0x [temp.explicit]p4:
4672      //   For a given set of template parameters, if an explicit instantiation
4673      //   of a template appears after a declaration of an explicit
4674      //   specialization for that template, the explicit instantiation has no
4675      //   effect.
4676      HasNoEffect = true;
4677      return false;
4678
4679    case TSK_ExplicitInstantiationDefinition:
4680      // C++0x [temp.explicit]p10:
4681      //   If an entity is the subject of both an explicit instantiation
4682      //   declaration and an explicit instantiation definition in the same
4683      //   translation unit, the definition shall follow the declaration.
4684      Diag(NewLoc,
4685           diag::err_explicit_instantiation_declaration_after_definition);
4686      Diag(PrevPointOfInstantiation,
4687           diag::note_explicit_instantiation_definition_here);
4688      assert(PrevPointOfInstantiation.isValid() &&
4689             "Explicit instantiation without point of instantiation?");
4690      HasNoEffect = true;
4691      return false;
4692    }
4693    break;
4694
4695  case TSK_ExplicitInstantiationDefinition:
4696    switch (PrevTSK) {
4697    case TSK_Undeclared:
4698    case TSK_ImplicitInstantiation:
4699      // We're explicitly instantiating something that may have already been
4700      // implicitly instantiated; that's fine.
4701      return false;
4702
4703    case TSK_ExplicitSpecialization:
4704      // C++ DR 259, C++0x [temp.explicit]p4:
4705      //   For a given set of template parameters, if an explicit
4706      //   instantiation of a template appears after a declaration of
4707      //   an explicit specialization for that template, the explicit
4708      //   instantiation has no effect.
4709      //
4710      // In C++98/03 mode, we only give an extension warning here, because it
4711      // is not harmful to try to explicitly instantiate something that
4712      // has been explicitly specialized.
4713      if (!getLangOptions().CPlusPlus0x) {
4714        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4715          << PrevDecl;
4716        Diag(PrevDecl->getLocation(),
4717             diag::note_previous_template_specialization);
4718      }
4719      HasNoEffect = true;
4720      return false;
4721
4722    case TSK_ExplicitInstantiationDeclaration:
4723      // We're explicity instantiating a definition for something for which we
4724      // were previously asked to suppress instantiations. That's fine.
4725      return false;
4726
4727    case TSK_ExplicitInstantiationDefinition:
4728      // C++0x [temp.spec]p5:
4729      //   For a given template and a given set of template-arguments,
4730      //     - an explicit instantiation definition shall appear at most once
4731      //       in a program,
4732      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4733        << PrevDecl;
4734      Diag(PrevPointOfInstantiation,
4735           diag::note_previous_explicit_instantiation);
4736      HasNoEffect = true;
4737      return false;
4738    }
4739    break;
4740  }
4741
4742  assert(false && "Missing specialization/instantiation case?");
4743
4744  return false;
4745}
4746
4747/// \brief Perform semantic analysis for the given dependent function
4748/// template specialization.  The only possible way to get a dependent
4749/// function template specialization is with a friend declaration,
4750/// like so:
4751///
4752///   template <class T> void foo(T);
4753///   template <class T> class A {
4754///     friend void foo<>(T);
4755///   };
4756///
4757/// There really isn't any useful analysis we can do here, so we
4758/// just store the information.
4759bool
4760Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
4761                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
4762                                                   LookupResult &Previous) {
4763  // Remove anything from Previous that isn't a function template in
4764  // the correct context.
4765  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4766  LookupResult::Filter F = Previous.makeFilter();
4767  while (F.hasNext()) {
4768    NamedDecl *D = F.next()->getUnderlyingDecl();
4769    if (!isa<FunctionTemplateDecl>(D) ||
4770        !FDLookupContext->InEnclosingNamespaceSetOf(
4771                              D->getDeclContext()->getRedeclContext()))
4772      F.erase();
4773  }
4774  F.done();
4775
4776  // Should this be diagnosed here?
4777  if (Previous.empty()) return true;
4778
4779  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
4780                                         ExplicitTemplateArgs);
4781  return false;
4782}
4783
4784/// \brief Perform semantic analysis for the given function template
4785/// specialization.
4786///
4787/// This routine performs all of the semantic analysis required for an
4788/// explicit function template specialization. On successful completion,
4789/// the function declaration \p FD will become a function template
4790/// specialization.
4791///
4792/// \param FD the function declaration, which will be updated to become a
4793/// function template specialization.
4794///
4795/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4796/// if any. Note that this may be valid info even when 0 arguments are
4797/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
4798/// as it anyway contains info on the angle brackets locations.
4799///
4800/// \param PrevDecl the set of declarations that may be specialized by
4801/// this function specialization.
4802bool
4803Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4804                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
4805                                          LookupResult &Previous) {
4806  // The set of function template specializations that could match this
4807  // explicit function template specialization.
4808  UnresolvedSet<8> Candidates;
4809
4810  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4811  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4812         I != E; ++I) {
4813    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4814    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4815      // Only consider templates found within the same semantic lookup scope as
4816      // FD.
4817      if (!FDLookupContext->InEnclosingNamespaceSetOf(
4818                                Ovl->getDeclContext()->getRedeclContext()))
4819        continue;
4820
4821      // C++ [temp.expl.spec]p11:
4822      //   A trailing template-argument can be left unspecified in the
4823      //   template-id naming an explicit function template specialization
4824      //   provided it can be deduced from the function argument type.
4825      // Perform template argument deduction to determine whether we may be
4826      // specializing this template.
4827      // FIXME: It is somewhat wasteful to build
4828      TemplateDeductionInfo Info(Context, FD->getLocation());
4829      FunctionDecl *Specialization = 0;
4830      if (TemplateDeductionResult TDK
4831            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4832                                      FD->getType(),
4833                                      Specialization,
4834                                      Info)) {
4835        // FIXME: Template argument deduction failed; record why it failed, so
4836        // that we can provide nifty diagnostics.
4837        (void)TDK;
4838        continue;
4839      }
4840
4841      // Record this candidate.
4842      Candidates.addDecl(Specialization, I.getAccess());
4843    }
4844  }
4845
4846  // Find the most specialized function template.
4847  UnresolvedSetIterator Result
4848    = getMostSpecialized(Candidates.begin(), Candidates.end(),
4849                         TPOC_Other, 0, FD->getLocation(),
4850                  PDiag(diag::err_function_template_spec_no_match)
4851                    << FD->getDeclName(),
4852                  PDiag(diag::err_function_template_spec_ambiguous)
4853                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4854                  PDiag(diag::note_function_template_spec_matched));
4855  if (Result == Candidates.end())
4856    return true;
4857
4858  // Ignore access information;  it doesn't figure into redeclaration checking.
4859  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4860  Specialization->setLocation(FD->getLocation());
4861
4862  // FIXME: Check if the prior specialization has a point of instantiation.
4863  // If so, we have run afoul of .
4864
4865  // If this is a friend declaration, then we're not really declaring
4866  // an explicit specialization.
4867  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4868
4869  // Check the scope of this explicit specialization.
4870  if (!isFriend &&
4871      CheckTemplateSpecializationScope(*this,
4872                                       Specialization->getPrimaryTemplate(),
4873                                       Specialization, FD->getLocation(),
4874                                       false))
4875    return true;
4876
4877  // C++ [temp.expl.spec]p6:
4878  //   If a template, a member template or the member of a class template is
4879  //   explicitly specialized then that specialization shall be declared
4880  //   before the first use of that specialization that would cause an implicit
4881  //   instantiation to take place, in every translation unit in which such a
4882  //   use occurs; no diagnostic is required.
4883  FunctionTemplateSpecializationInfo *SpecInfo
4884    = Specialization->getTemplateSpecializationInfo();
4885  assert(SpecInfo && "Function template specialization info missing?");
4886
4887  bool HasNoEffect = false;
4888  if (!isFriend &&
4889      CheckSpecializationInstantiationRedecl(FD->getLocation(),
4890                                             TSK_ExplicitSpecialization,
4891                                             Specialization,
4892                                   SpecInfo->getTemplateSpecializationKind(),
4893                                         SpecInfo->getPointOfInstantiation(),
4894                                             HasNoEffect))
4895    return true;
4896
4897  // Mark the prior declaration as an explicit specialization, so that later
4898  // clients know that this is an explicit specialization.
4899  if (!isFriend) {
4900    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
4901    MarkUnusedFileScopedDecl(Specialization);
4902  }
4903
4904  // Turn the given function declaration into a function template
4905  // specialization, with the template arguments from the previous
4906  // specialization.
4907  // Take copies of (semantic and syntactic) template argument lists.
4908  const TemplateArgumentList* TemplArgs = new (Context)
4909    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
4910  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
4911    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
4912  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
4913                                        TemplArgs, /*InsertPos=*/0,
4914                                    SpecInfo->getTemplateSpecializationKind(),
4915                                        TemplArgsAsWritten);
4916
4917  // The "previous declaration" for this function template specialization is
4918  // the prior function template specialization.
4919  Previous.clear();
4920  Previous.addDecl(Specialization);
4921  return false;
4922}
4923
4924/// \brief Perform semantic analysis for the given non-template member
4925/// specialization.
4926///
4927/// This routine performs all of the semantic analysis required for an
4928/// explicit member function specialization. On successful completion,
4929/// the function declaration \p FD will become a member function
4930/// specialization.
4931///
4932/// \param Member the member declaration, which will be updated to become a
4933/// specialization.
4934///
4935/// \param Previous the set of declarations, one of which may be specialized
4936/// by this function specialization;  the set will be modified to contain the
4937/// redeclared member.
4938bool
4939Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
4940  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
4941
4942  // Try to find the member we are instantiating.
4943  NamedDecl *Instantiation = 0;
4944  NamedDecl *InstantiatedFrom = 0;
4945  MemberSpecializationInfo *MSInfo = 0;
4946
4947  if (Previous.empty()) {
4948    // Nowhere to look anyway.
4949  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
4950    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4951           I != E; ++I) {
4952      NamedDecl *D = (*I)->getUnderlyingDecl();
4953      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4954        if (Context.hasSameType(Function->getType(), Method->getType())) {
4955          Instantiation = Method;
4956          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
4957          MSInfo = Method->getMemberSpecializationInfo();
4958          break;
4959        }
4960      }
4961    }
4962  } else if (isa<VarDecl>(Member)) {
4963    VarDecl *PrevVar;
4964    if (Previous.isSingleResult() &&
4965        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4966      if (PrevVar->isStaticDataMember()) {
4967        Instantiation = PrevVar;
4968        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4969        MSInfo = PrevVar->getMemberSpecializationInfo();
4970      }
4971  } else if (isa<RecordDecl>(Member)) {
4972    CXXRecordDecl *PrevRecord;
4973    if (Previous.isSingleResult() &&
4974        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4975      Instantiation = PrevRecord;
4976      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4977      MSInfo = PrevRecord->getMemberSpecializationInfo();
4978    }
4979  }
4980
4981  if (!Instantiation) {
4982    // There is no previous declaration that matches. Since member
4983    // specializations are always out-of-line, the caller will complain about
4984    // this mismatch later.
4985    return false;
4986  }
4987
4988  // If this is a friend, just bail out here before we start turning
4989  // things into explicit specializations.
4990  if (Member->getFriendObjectKind() != Decl::FOK_None) {
4991    // Preserve instantiation information.
4992    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
4993      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
4994                                      cast<CXXMethodDecl>(InstantiatedFrom),
4995        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
4996    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
4997      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4998                                      cast<CXXRecordDecl>(InstantiatedFrom),
4999        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
5000    }
5001
5002    Previous.clear();
5003    Previous.addDecl(Instantiation);
5004    return false;
5005  }
5006
5007  // Make sure that this is a specialization of a member.
5008  if (!InstantiatedFrom) {
5009    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
5010      << Member;
5011    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
5012    return true;
5013  }
5014
5015  // C++ [temp.expl.spec]p6:
5016  //   If a template, a member template or the member of a class template is
5017  //   explicitly specialized then that spe- cialization shall be declared
5018  //   before the first use of that specialization that would cause an implicit
5019  //   instantiation to take place, in every translation unit in which such a
5020  //   use occurs; no diagnostic is required.
5021  assert(MSInfo && "Member specialization info missing?");
5022
5023  bool HasNoEffect = false;
5024  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
5025                                             TSK_ExplicitSpecialization,
5026                                             Instantiation,
5027                                     MSInfo->getTemplateSpecializationKind(),
5028                                           MSInfo->getPointOfInstantiation(),
5029                                             HasNoEffect))
5030    return true;
5031
5032  // Check the scope of this explicit specialization.
5033  if (CheckTemplateSpecializationScope(*this,
5034                                       InstantiatedFrom,
5035                                       Instantiation, Member->getLocation(),
5036                                       false))
5037    return true;
5038
5039  // Note that this is an explicit instantiation of a member.
5040  // the original declaration to note that it is an explicit specialization
5041  // (if it was previously an implicit instantiation). This latter step
5042  // makes bookkeeping easier.
5043  if (isa<FunctionDecl>(Member)) {
5044    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
5045    if (InstantiationFunction->getTemplateSpecializationKind() ==
5046          TSK_ImplicitInstantiation) {
5047      InstantiationFunction->setTemplateSpecializationKind(
5048                                                  TSK_ExplicitSpecialization);
5049      InstantiationFunction->setLocation(Member->getLocation());
5050    }
5051
5052    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
5053                                        cast<CXXMethodDecl>(InstantiatedFrom),
5054                                                  TSK_ExplicitSpecialization);
5055    MarkUnusedFileScopedDecl(InstantiationFunction);
5056  } else if (isa<VarDecl>(Member)) {
5057    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
5058    if (InstantiationVar->getTemplateSpecializationKind() ==
5059          TSK_ImplicitInstantiation) {
5060      InstantiationVar->setTemplateSpecializationKind(
5061                                                  TSK_ExplicitSpecialization);
5062      InstantiationVar->setLocation(Member->getLocation());
5063    }
5064
5065    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
5066                                                cast<VarDecl>(InstantiatedFrom),
5067                                                TSK_ExplicitSpecialization);
5068    MarkUnusedFileScopedDecl(InstantiationVar);
5069  } else {
5070    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
5071    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
5072    if (InstantiationClass->getTemplateSpecializationKind() ==
5073          TSK_ImplicitInstantiation) {
5074      InstantiationClass->setTemplateSpecializationKind(
5075                                                   TSK_ExplicitSpecialization);
5076      InstantiationClass->setLocation(Member->getLocation());
5077    }
5078
5079    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5080                                        cast<CXXRecordDecl>(InstantiatedFrom),
5081                                                   TSK_ExplicitSpecialization);
5082  }
5083
5084  // Save the caller the trouble of having to figure out which declaration
5085  // this specialization matches.
5086  Previous.clear();
5087  Previous.addDecl(Instantiation);
5088  return false;
5089}
5090
5091/// \brief Check the scope of an explicit instantiation.
5092///
5093/// \returns true if a serious error occurs, false otherwise.
5094static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
5095                                            SourceLocation InstLoc,
5096                                            bool WasQualifiedName) {
5097  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
5098  DeclContext *CurContext = S.CurContext->getRedeclContext();
5099
5100  if (CurContext->isRecord()) {
5101    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
5102      << D;
5103    return true;
5104  }
5105
5106  // C++0x [temp.explicit]p2:
5107  //   An explicit instantiation shall appear in an enclosing namespace of its
5108  //   template.
5109  //
5110  // This is DR275, which we do not retroactively apply to C++98/03.
5111  if (S.getLangOptions().CPlusPlus0x &&
5112      !CurContext->Encloses(OrigContext)) {
5113    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext))
5114      S.Diag(InstLoc,
5115             S.getLangOptions().CPlusPlus0x?
5116                 diag::err_explicit_instantiation_out_of_scope
5117               : diag::warn_explicit_instantiation_out_of_scope_0x)
5118        << D << NS;
5119    else
5120      S.Diag(InstLoc,
5121             S.getLangOptions().CPlusPlus0x?
5122                 diag::err_explicit_instantiation_must_be_global
5123               : diag::warn_explicit_instantiation_out_of_scope_0x)
5124        << D;
5125    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5126    return false;
5127  }
5128
5129  // C++0x [temp.explicit]p2:
5130  //   If the name declared in the explicit instantiation is an unqualified
5131  //   name, the explicit instantiation shall appear in the namespace where
5132  //   its template is declared or, if that namespace is inline (7.3.1), any
5133  //   namespace from its enclosing namespace set.
5134  if (WasQualifiedName)
5135    return false;
5136
5137  if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
5138    return false;
5139
5140  S.Diag(InstLoc,
5141         S.getLangOptions().CPlusPlus0x?
5142             diag::err_explicit_instantiation_unqualified_wrong_namespace
5143           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
5144    << D << OrigContext;
5145  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5146  return false;
5147}
5148
5149/// \brief Determine whether the given scope specifier has a template-id in it.
5150static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
5151  if (!SS.isSet())
5152    return false;
5153
5154  // C++0x [temp.explicit]p2:
5155  //   If the explicit instantiation is for a member function, a member class
5156  //   or a static data member of a class template specialization, the name of
5157  //   the class template specialization in the qualified-id for the member
5158  //   name shall be a simple-template-id.
5159  //
5160  // C++98 has the same restriction, just worded differently.
5161  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
5162       NNS; NNS = NNS->getPrefix())
5163    if (Type *T = NNS->getAsType())
5164      if (isa<TemplateSpecializationType>(T))
5165        return true;
5166
5167  return false;
5168}
5169
5170// Explicit instantiation of a class template specialization
5171DeclResult
5172Sema::ActOnExplicitInstantiation(Scope *S,
5173                                 SourceLocation ExternLoc,
5174                                 SourceLocation TemplateLoc,
5175                                 unsigned TagSpec,
5176                                 SourceLocation KWLoc,
5177                                 const CXXScopeSpec &SS,
5178                                 TemplateTy TemplateD,
5179                                 SourceLocation TemplateNameLoc,
5180                                 SourceLocation LAngleLoc,
5181                                 ASTTemplateArgsPtr TemplateArgsIn,
5182                                 SourceLocation RAngleLoc,
5183                                 AttributeList *Attr) {
5184  // Find the class template we're specializing
5185  TemplateName Name = TemplateD.getAsVal<TemplateName>();
5186  ClassTemplateDecl *ClassTemplate
5187    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
5188
5189  // Check that the specialization uses the same tag kind as the
5190  // original template.
5191  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5192  assert(Kind != TTK_Enum &&
5193         "Invalid enum tag in class template explicit instantiation!");
5194  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5195                                    Kind, KWLoc,
5196                                    *ClassTemplate->getIdentifier())) {
5197    Diag(KWLoc, diag::err_use_with_wrong_tag)
5198      << ClassTemplate
5199      << FixItHint::CreateReplacement(KWLoc,
5200                            ClassTemplate->getTemplatedDecl()->getKindName());
5201    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5202         diag::note_previous_use);
5203    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5204  }
5205
5206  // C++0x [temp.explicit]p2:
5207  //   There are two forms of explicit instantiation: an explicit instantiation
5208  //   definition and an explicit instantiation declaration. An explicit
5209  //   instantiation declaration begins with the extern keyword. [...]
5210  TemplateSpecializationKind TSK
5211    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5212                           : TSK_ExplicitInstantiationDeclaration;
5213
5214  // Translate the parser's template argument list in our AST format.
5215  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
5216  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5217
5218  // Check that the template argument list is well-formed for this
5219  // template.
5220  llvm::SmallVector<TemplateArgument, 4> Converted;
5221  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5222                                TemplateArgs, false, Converted))
5223    return true;
5224
5225  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
5226         "Converted template argument list is too short!");
5227
5228  // Find the class template specialization declaration that
5229  // corresponds to these arguments.
5230  void *InsertPos = 0;
5231  ClassTemplateSpecializationDecl *PrevDecl
5232    = ClassTemplate->findSpecialization(Converted.data(),
5233                                        Converted.size(), InsertPos);
5234
5235  TemplateSpecializationKind PrevDecl_TSK
5236    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
5237
5238  // C++0x [temp.explicit]p2:
5239  //   [...] An explicit instantiation shall appear in an enclosing
5240  //   namespace of its template. [...]
5241  //
5242  // This is C++ DR 275.
5243  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
5244                                      SS.isSet()))
5245    return true;
5246
5247  ClassTemplateSpecializationDecl *Specialization = 0;
5248
5249  bool ReusedDecl = false;
5250  bool HasNoEffect = false;
5251  if (PrevDecl) {
5252    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
5253                                               PrevDecl, PrevDecl_TSK,
5254                                            PrevDecl->getPointOfInstantiation(),
5255                                               HasNoEffect))
5256      return PrevDecl;
5257
5258    // Even though HasNoEffect == true means that this explicit instantiation
5259    // has no effect on semantics, we go on to put its syntax in the AST.
5260
5261    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
5262        PrevDecl_TSK == TSK_Undeclared) {
5263      // Since the only prior class template specialization with these
5264      // arguments was referenced but not declared, reuse that
5265      // declaration node as our own, updating the source location
5266      // for the template name to reflect our new declaration.
5267      // (Other source locations will be updated later.)
5268      Specialization = PrevDecl;
5269      Specialization->setLocation(TemplateNameLoc);
5270      PrevDecl = 0;
5271      ReusedDecl = true;
5272    }
5273  }
5274
5275  if (!Specialization) {
5276    // Create a new class template specialization declaration node for
5277    // this explicit specialization.
5278    Specialization
5279      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5280                                             ClassTemplate->getDeclContext(),
5281                                                TemplateNameLoc,
5282                                                ClassTemplate,
5283                                                Converted.data(),
5284                                                Converted.size(),
5285                                                PrevDecl);
5286    SetNestedNameSpecifier(Specialization, SS);
5287
5288    if (!HasNoEffect && !PrevDecl) {
5289      // Insert the new specialization.
5290      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5291    }
5292  }
5293
5294  // Build the fully-sugared type for this explicit instantiation as
5295  // the user wrote in the explicit instantiation itself. This means
5296  // that we'll pretty-print the type retrieved from the
5297  // specialization's declaration the way that the user actually wrote
5298  // the explicit instantiation, rather than formatting the name based
5299  // on the "canonical" representation used to store the template
5300  // arguments in the specialization.
5301  TypeSourceInfo *WrittenTy
5302    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5303                                                TemplateArgs,
5304                                  Context.getTypeDeclType(Specialization));
5305  Specialization->setTypeAsWritten(WrittenTy);
5306  TemplateArgsIn.release();
5307
5308  // Set source locations for keywords.
5309  Specialization->setExternLoc(ExternLoc);
5310  Specialization->setTemplateKeywordLoc(TemplateLoc);
5311
5312  // Add the explicit instantiation into its lexical context. However,
5313  // since explicit instantiations are never found by name lookup, we
5314  // just put it into the declaration context directly.
5315  Specialization->setLexicalDeclContext(CurContext);
5316  CurContext->addDecl(Specialization);
5317
5318  // Syntax is now OK, so return if it has no other effect on semantics.
5319  if (HasNoEffect) {
5320    // Set the template specialization kind.
5321    Specialization->setTemplateSpecializationKind(TSK);
5322    return Specialization;
5323  }
5324
5325  // C++ [temp.explicit]p3:
5326  //   A definition of a class template or class member template
5327  //   shall be in scope at the point of the explicit instantiation of
5328  //   the class template or class member template.
5329  //
5330  // This check comes when we actually try to perform the
5331  // instantiation.
5332  ClassTemplateSpecializationDecl *Def
5333    = cast_or_null<ClassTemplateSpecializationDecl>(
5334                                              Specialization->getDefinition());
5335  if (!Def)
5336    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
5337  else if (TSK == TSK_ExplicitInstantiationDefinition) {
5338    MarkVTableUsed(TemplateNameLoc, Specialization, true);
5339    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
5340  }
5341
5342  // Instantiate the members of this class template specialization.
5343  Def = cast_or_null<ClassTemplateSpecializationDecl>(
5344                                       Specialization->getDefinition());
5345  if (Def) {
5346    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
5347
5348    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
5349    // TSK_ExplicitInstantiationDefinition
5350    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
5351        TSK == TSK_ExplicitInstantiationDefinition)
5352      Def->setTemplateSpecializationKind(TSK);
5353
5354    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
5355  }
5356
5357  // Set the template specialization kind.
5358  Specialization->setTemplateSpecializationKind(TSK);
5359  return Specialization;
5360}
5361
5362// Explicit instantiation of a member class of a class template.
5363DeclResult
5364Sema::ActOnExplicitInstantiation(Scope *S,
5365                                 SourceLocation ExternLoc,
5366                                 SourceLocation TemplateLoc,
5367                                 unsigned TagSpec,
5368                                 SourceLocation KWLoc,
5369                                 CXXScopeSpec &SS,
5370                                 IdentifierInfo *Name,
5371                                 SourceLocation NameLoc,
5372                                 AttributeList *Attr) {
5373
5374  bool Owned = false;
5375  bool IsDependent = false;
5376  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
5377                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
5378                        MultiTemplateParamsArg(*this, 0, 0),
5379                        Owned, IsDependent, false, false,
5380                        TypeResult());
5381  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
5382
5383  if (!TagD)
5384    return true;
5385
5386  TagDecl *Tag = cast<TagDecl>(TagD);
5387  if (Tag->isEnum()) {
5388    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
5389      << Context.getTypeDeclType(Tag);
5390    return true;
5391  }
5392
5393  if (Tag->isInvalidDecl())
5394    return true;
5395
5396  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
5397  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
5398  if (!Pattern) {
5399    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
5400      << Context.getTypeDeclType(Record);
5401    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
5402    return true;
5403  }
5404
5405  // C++0x [temp.explicit]p2:
5406  //   If the explicit instantiation is for a class or member class, the
5407  //   elaborated-type-specifier in the declaration shall include a
5408  //   simple-template-id.
5409  //
5410  // C++98 has the same restriction, just worded differently.
5411  if (!ScopeSpecifierHasTemplateId(SS))
5412    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
5413      << Record << SS.getRange();
5414
5415  // C++0x [temp.explicit]p2:
5416  //   There are two forms of explicit instantiation: an explicit instantiation
5417  //   definition and an explicit instantiation declaration. An explicit
5418  //   instantiation declaration begins with the extern keyword. [...]
5419  TemplateSpecializationKind TSK
5420    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5421                           : TSK_ExplicitInstantiationDeclaration;
5422
5423  // C++0x [temp.explicit]p2:
5424  //   [...] An explicit instantiation shall appear in an enclosing
5425  //   namespace of its template. [...]
5426  //
5427  // This is C++ DR 275.
5428  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
5429
5430  // Verify that it is okay to explicitly instantiate here.
5431  CXXRecordDecl *PrevDecl
5432    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
5433  if (!PrevDecl && Record->getDefinition())
5434    PrevDecl = Record;
5435  if (PrevDecl) {
5436    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
5437    bool HasNoEffect = false;
5438    assert(MSInfo && "No member specialization information?");
5439    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
5440                                               PrevDecl,
5441                                        MSInfo->getTemplateSpecializationKind(),
5442                                             MSInfo->getPointOfInstantiation(),
5443                                               HasNoEffect))
5444      return true;
5445    if (HasNoEffect)
5446      return TagD;
5447  }
5448
5449  CXXRecordDecl *RecordDef
5450    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5451  if (!RecordDef) {
5452    // C++ [temp.explicit]p3:
5453    //   A definition of a member class of a class template shall be in scope
5454    //   at the point of an explicit instantiation of the member class.
5455    CXXRecordDecl *Def
5456      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
5457    if (!Def) {
5458      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
5459        << 0 << Record->getDeclName() << Record->getDeclContext();
5460      Diag(Pattern->getLocation(), diag::note_forward_declaration)
5461        << Pattern;
5462      return true;
5463    } else {
5464      if (InstantiateClass(NameLoc, Record, Def,
5465                           getTemplateInstantiationArgs(Record),
5466                           TSK))
5467        return true;
5468
5469      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5470      if (!RecordDef)
5471        return true;
5472    }
5473  }
5474
5475  // Instantiate all of the members of the class.
5476  InstantiateClassMembers(NameLoc, RecordDef,
5477                          getTemplateInstantiationArgs(Record), TSK);
5478
5479  if (TSK == TSK_ExplicitInstantiationDefinition)
5480    MarkVTableUsed(NameLoc, RecordDef, true);
5481
5482  // FIXME: We don't have any representation for explicit instantiations of
5483  // member classes. Such a representation is not needed for compilation, but it
5484  // should be available for clients that want to see all of the declarations in
5485  // the source code.
5486  return TagD;
5487}
5488
5489DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
5490                                            SourceLocation ExternLoc,
5491                                            SourceLocation TemplateLoc,
5492                                            Declarator &D) {
5493  // Explicit instantiations always require a name.
5494  // TODO: check if/when DNInfo should replace Name.
5495  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5496  DeclarationName Name = NameInfo.getName();
5497  if (!Name) {
5498    if (!D.isInvalidType())
5499      Diag(D.getDeclSpec().getSourceRange().getBegin(),
5500           diag::err_explicit_instantiation_requires_name)
5501        << D.getDeclSpec().getSourceRange()
5502        << D.getSourceRange();
5503
5504    return true;
5505  }
5506
5507  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5508  // we find one that is.
5509  while ((S->getFlags() & Scope::DeclScope) == 0 ||
5510         (S->getFlags() & Scope::TemplateParamScope) != 0)
5511    S = S->getParent();
5512
5513  // Determine the type of the declaration.
5514  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
5515  QualType R = T->getType();
5516  if (R.isNull())
5517    return true;
5518
5519  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5520    // Cannot explicitly instantiate a typedef.
5521    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
5522      << Name;
5523    return true;
5524  }
5525
5526  // C++0x [temp.explicit]p1:
5527  //   [...] An explicit instantiation of a function template shall not use the
5528  //   inline or constexpr specifiers.
5529  // Presumably, this also applies to member functions of class templates as
5530  // well.
5531  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
5532    Diag(D.getDeclSpec().getInlineSpecLoc(),
5533         diag::err_explicit_instantiation_inline)
5534      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5535
5536  // FIXME: check for constexpr specifier.
5537
5538  // C++0x [temp.explicit]p2:
5539  //   There are two forms of explicit instantiation: an explicit instantiation
5540  //   definition and an explicit instantiation declaration. An explicit
5541  //   instantiation declaration begins with the extern keyword. [...]
5542  TemplateSpecializationKind TSK
5543    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5544                           : TSK_ExplicitInstantiationDeclaration;
5545
5546  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
5547  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
5548
5549  if (!R->isFunctionType()) {
5550    // C++ [temp.explicit]p1:
5551    //   A [...] static data member of a class template can be explicitly
5552    //   instantiated from the member definition associated with its class
5553    //   template.
5554    if (Previous.isAmbiguous())
5555      return true;
5556
5557    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
5558    if (!Prev || !Prev->isStaticDataMember()) {
5559      // We expect to see a data data member here.
5560      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
5561        << Name;
5562      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5563           P != PEnd; ++P)
5564        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
5565      return true;
5566    }
5567
5568    if (!Prev->getInstantiatedFromStaticDataMember()) {
5569      // FIXME: Check for explicit specialization?
5570      Diag(D.getIdentifierLoc(),
5571           diag::err_explicit_instantiation_data_member_not_instantiated)
5572        << Prev;
5573      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
5574      // FIXME: Can we provide a note showing where this was declared?
5575      return true;
5576    }
5577
5578    // C++0x [temp.explicit]p2:
5579    //   If the explicit instantiation is for a member function, a member class
5580    //   or a static data member of a class template specialization, the name of
5581    //   the class template specialization in the qualified-id for the member
5582    //   name shall be a simple-template-id.
5583    //
5584    // C++98 has the same restriction, just worded differently.
5585    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5586      Diag(D.getIdentifierLoc(),
5587           diag::ext_explicit_instantiation_without_qualified_id)
5588        << Prev << D.getCXXScopeSpec().getRange();
5589
5590    // Check the scope of this explicit instantiation.
5591    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
5592
5593    // Verify that it is okay to explicitly instantiate here.
5594    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
5595    assert(MSInfo && "Missing static data member specialization info?");
5596    bool HasNoEffect = false;
5597    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
5598                                        MSInfo->getTemplateSpecializationKind(),
5599                                              MSInfo->getPointOfInstantiation(),
5600                                               HasNoEffect))
5601      return true;
5602    if (HasNoEffect)
5603      return (Decl*) 0;
5604
5605    // Instantiate static data member.
5606    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5607    if (TSK == TSK_ExplicitInstantiationDefinition)
5608      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
5609
5610    // FIXME: Create an ExplicitInstantiation node?
5611    return (Decl*) 0;
5612  }
5613
5614  // If the declarator is a template-id, translate the parser's template
5615  // argument list into our AST format.
5616  bool HasExplicitTemplateArgs = false;
5617  TemplateArgumentListInfo TemplateArgs;
5618  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5619    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5620    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5621    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5622    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5623                                       TemplateId->getTemplateArgs(),
5624                                       TemplateId->NumArgs);
5625    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5626    HasExplicitTemplateArgs = true;
5627    TemplateArgsPtr.release();
5628  }
5629
5630  // C++ [temp.explicit]p1:
5631  //   A [...] function [...] can be explicitly instantiated from its template.
5632  //   A member function [...] of a class template can be explicitly
5633  //  instantiated from the member definition associated with its class
5634  //  template.
5635  UnresolvedSet<8> Matches;
5636  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5637       P != PEnd; ++P) {
5638    NamedDecl *Prev = *P;
5639    if (!HasExplicitTemplateArgs) {
5640      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5641        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5642          Matches.clear();
5643
5644          Matches.addDecl(Method, P.getAccess());
5645          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5646            break;
5647        }
5648      }
5649    }
5650
5651    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5652    if (!FunTmpl)
5653      continue;
5654
5655    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5656    FunctionDecl *Specialization = 0;
5657    if (TemplateDeductionResult TDK
5658          = DeduceTemplateArguments(FunTmpl,
5659                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5660                                    R, Specialization, Info)) {
5661      // FIXME: Keep track of almost-matches?
5662      (void)TDK;
5663      continue;
5664    }
5665
5666    Matches.addDecl(Specialization, P.getAccess());
5667  }
5668
5669  // Find the most specialized function template specialization.
5670  UnresolvedSetIterator Result
5671    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
5672                         D.getIdentifierLoc(),
5673                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
5674                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5675                         PDiag(diag::note_explicit_instantiation_candidate));
5676
5677  if (Result == Matches.end())
5678    return true;
5679
5680  // Ignore access control bits, we don't need them for redeclaration checking.
5681  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5682
5683  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5684    Diag(D.getIdentifierLoc(),
5685         diag::err_explicit_instantiation_member_function_not_instantiated)
5686      << Specialization
5687      << (Specialization->getTemplateSpecializationKind() ==
5688          TSK_ExplicitSpecialization);
5689    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5690    return true;
5691  }
5692
5693  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5694  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5695    PrevDecl = Specialization;
5696
5697  if (PrevDecl) {
5698    bool HasNoEffect = false;
5699    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5700                                               PrevDecl,
5701                                     PrevDecl->getTemplateSpecializationKind(),
5702                                          PrevDecl->getPointOfInstantiation(),
5703                                               HasNoEffect))
5704      return true;
5705
5706    // FIXME: We may still want to build some representation of this
5707    // explicit specialization.
5708    if (HasNoEffect)
5709      return (Decl*) 0;
5710  }
5711
5712  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5713
5714  if (TSK == TSK_ExplicitInstantiationDefinition)
5715    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
5716
5717  // C++0x [temp.explicit]p2:
5718  //   If the explicit instantiation is for a member function, a member class
5719  //   or a static data member of a class template specialization, the name of
5720  //   the class template specialization in the qualified-id for the member
5721  //   name shall be a simple-template-id.
5722  //
5723  // C++98 has the same restriction, just worded differently.
5724  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5725  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5726      D.getCXXScopeSpec().isSet() &&
5727      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5728    Diag(D.getIdentifierLoc(),
5729         diag::ext_explicit_instantiation_without_qualified_id)
5730    << Specialization << D.getCXXScopeSpec().getRange();
5731
5732  CheckExplicitInstantiationScope(*this,
5733                   FunTmpl? (NamedDecl *)FunTmpl
5734                          : Specialization->getInstantiatedFromMemberFunction(),
5735                                  D.getIdentifierLoc(),
5736                                  D.getCXXScopeSpec().isSet());
5737
5738  // FIXME: Create some kind of ExplicitInstantiationDecl here.
5739  return (Decl*) 0;
5740}
5741
5742TypeResult
5743Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5744                        const CXXScopeSpec &SS, IdentifierInfo *Name,
5745                        SourceLocation TagLoc, SourceLocation NameLoc) {
5746  // This has to hold, because SS is expected to be defined.
5747  assert(Name && "Expected a name in a dependent tag");
5748
5749  NestedNameSpecifier *NNS
5750    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5751  if (!NNS)
5752    return true;
5753
5754  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5755
5756  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
5757    Diag(NameLoc, diag::err_dependent_tag_decl)
5758      << (TUK == TUK_Definition) << Kind << SS.getRange();
5759    return true;
5760  }
5761
5762  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
5763  return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name));
5764}
5765
5766TypeResult
5767Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5768                        const CXXScopeSpec &SS, const IdentifierInfo &II,
5769                        SourceLocation IdLoc) {
5770  NestedNameSpecifier *NNS
5771    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5772  if (!NNS)
5773    return true;
5774
5775  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5776      !getLangOptions().CPlusPlus0x)
5777    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5778      << FixItHint::CreateRemoval(TypenameLoc);
5779
5780  QualType T = CheckTypenameType(ETK_Typename, NNS, II,
5781                                 TypenameLoc, SS.getRange(), IdLoc);
5782  if (T.isNull())
5783    return true;
5784
5785  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5786  if (isa<DependentNameType>(T)) {
5787    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5788    TL.setKeywordLoc(TypenameLoc);
5789    TL.setQualifierRange(SS.getRange());
5790    TL.setNameLoc(IdLoc);
5791  } else {
5792    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
5793    TL.setKeywordLoc(TypenameLoc);
5794    TL.setQualifierRange(SS.getRange());
5795    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
5796  }
5797
5798  return CreateParsedType(T, TSI);
5799}
5800
5801TypeResult
5802Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5803                        const CXXScopeSpec &SS, SourceLocation TemplateLoc,
5804                        ParsedType Ty) {
5805  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5806      !getLangOptions().CPlusPlus0x)
5807    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5808      << FixItHint::CreateRemoval(TypenameLoc);
5809
5810  TypeSourceInfo *InnerTSI = 0;
5811  QualType T = GetTypeFromParser(Ty, &InnerTSI);
5812
5813  assert(isa<TemplateSpecializationType>(T) &&
5814         "Expected a template specialization type");
5815
5816  if (computeDeclContext(SS, false)) {
5817    // If we can compute a declaration context, then the "typename"
5818    // keyword was superfluous. Just build an ElaboratedType to keep
5819    // track of the nested-name-specifier.
5820
5821    // Push the inner type, preserving its source locations if possible.
5822    TypeLocBuilder Builder;
5823    if (InnerTSI)
5824      Builder.pushFullCopy(InnerTSI->getTypeLoc());
5825    else
5826      Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc);
5827
5828    /* Note: NNS already embedded in template specialization type T. */
5829    T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T);
5830    ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
5831    TL.setKeywordLoc(TypenameLoc);
5832    TL.setQualifierRange(SS.getRange());
5833
5834    TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
5835    return CreateParsedType(T, TSI);
5836  }
5837
5838  // TODO: it's really silly that we make a template specialization
5839  // type earlier only to drop it again here.
5840  TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
5841  DependentTemplateName *DTN =
5842    TST->getTemplateName().getAsDependentTemplateName();
5843  assert(DTN && "dependent template has non-dependent name?");
5844  assert(DTN->getQualifier()
5845         == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
5846  T = Context.getDependentTemplateSpecializationType(ETK_Typename,
5847                                                     DTN->getQualifier(),
5848                                                     DTN->getIdentifier(),
5849                                                     TST->getNumArgs(),
5850                                                     TST->getArgs());
5851  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5852  DependentTemplateSpecializationTypeLoc TL =
5853    cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc());
5854  if (InnerTSI) {
5855    TemplateSpecializationTypeLoc TSTL =
5856      cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc());
5857    TL.setLAngleLoc(TSTL.getLAngleLoc());
5858    TL.setRAngleLoc(TSTL.getRAngleLoc());
5859    for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I)
5860      TL.setArgLocInfo(I, TSTL.getArgLocInfo(I));
5861  } else {
5862    TL.initializeLocal(SourceLocation());
5863  }
5864  TL.setKeywordLoc(TypenameLoc);
5865  TL.setQualifierRange(SS.getRange());
5866  return CreateParsedType(T, TSI);
5867}
5868
5869/// \brief Build the type that describes a C++ typename specifier,
5870/// e.g., "typename T::type".
5871QualType
5872Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
5873                        NestedNameSpecifier *NNS, const IdentifierInfo &II,
5874                        SourceLocation KeywordLoc, SourceRange NNSRange,
5875                        SourceLocation IILoc) {
5876  CXXScopeSpec SS;
5877  SS.setScopeRep(NNS);
5878  SS.setRange(NNSRange);
5879
5880  DeclContext *Ctx = computeDeclContext(SS);
5881  if (!Ctx) {
5882    // If the nested-name-specifier is dependent and couldn't be
5883    // resolved to a type, build a typename type.
5884    assert(NNS->isDependent());
5885    return Context.getDependentNameType(Keyword, NNS, &II);
5886  }
5887
5888  // If the nested-name-specifier refers to the current instantiation,
5889  // the "typename" keyword itself is superfluous. In C++03, the
5890  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
5891  // allows such extraneous "typename" keywords, and we retroactively
5892  // apply this DR to C++03 code with only a warning. In any case we continue.
5893
5894  if (RequireCompleteDeclContext(SS, Ctx))
5895    return QualType();
5896
5897  DeclarationName Name(&II);
5898  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
5899  LookupQualifiedName(Result, Ctx);
5900  unsigned DiagID = 0;
5901  Decl *Referenced = 0;
5902  switch (Result.getResultKind()) {
5903  case LookupResult::NotFound:
5904    DiagID = diag::err_typename_nested_not_found;
5905    break;
5906
5907  case LookupResult::FoundUnresolvedValue: {
5908    // We found a using declaration that is a value. Most likely, the using
5909    // declaration itself is meant to have the 'typename' keyword.
5910    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5911                          IILoc);
5912    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
5913      << Name << Ctx << FullRange;
5914    if (UnresolvedUsingValueDecl *Using
5915          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
5916      SourceLocation Loc = Using->getTargetNestedNameRange().getBegin();
5917      Diag(Loc, diag::note_using_value_decl_missing_typename)
5918        << FixItHint::CreateInsertion(Loc, "typename ");
5919    }
5920  }
5921  // Fall through to create a dependent typename type, from which we can recover
5922  // better.
5923
5924  case LookupResult::NotFoundInCurrentInstantiation:
5925    // Okay, it's a member of an unknown instantiation.
5926    return Context.getDependentNameType(Keyword, NNS, &II);
5927
5928  case LookupResult::Found:
5929    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
5930      // We found a type. Build an ElaboratedType, since the
5931      // typename-specifier was just sugar.
5932      return Context.getElaboratedType(ETK_Typename, NNS,
5933                                       Context.getTypeDeclType(Type));
5934    }
5935
5936    DiagID = diag::err_typename_nested_not_type;
5937    Referenced = Result.getFoundDecl();
5938    break;
5939
5940
5941    llvm_unreachable("unresolved using decl in non-dependent context");
5942    return QualType();
5943
5944  case LookupResult::FoundOverloaded:
5945    DiagID = diag::err_typename_nested_not_type;
5946    Referenced = *Result.begin();
5947    break;
5948
5949  case LookupResult::Ambiguous:
5950    return QualType();
5951  }
5952
5953  // If we get here, it's because name lookup did not find a
5954  // type. Emit an appropriate diagnostic and return an error.
5955  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5956                        IILoc);
5957  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
5958  if (Referenced)
5959    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
5960      << Name;
5961  return QualType();
5962}
5963
5964namespace {
5965  // See Sema::RebuildTypeInCurrentInstantiation
5966  class CurrentInstantiationRebuilder
5967    : public TreeTransform<CurrentInstantiationRebuilder> {
5968    SourceLocation Loc;
5969    DeclarationName Entity;
5970
5971  public:
5972    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
5973
5974    CurrentInstantiationRebuilder(Sema &SemaRef,
5975                                  SourceLocation Loc,
5976                                  DeclarationName Entity)
5977    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
5978      Loc(Loc), Entity(Entity) { }
5979
5980    /// \brief Determine whether the given type \p T has already been
5981    /// transformed.
5982    ///
5983    /// For the purposes of type reconstruction, a type has already been
5984    /// transformed if it is NULL or if it is not dependent.
5985    bool AlreadyTransformed(QualType T) {
5986      return T.isNull() || !T->isDependentType();
5987    }
5988
5989    /// \brief Returns the location of the entity whose type is being
5990    /// rebuilt.
5991    SourceLocation getBaseLocation() { return Loc; }
5992
5993    /// \brief Returns the name of the entity whose type is being rebuilt.
5994    DeclarationName getBaseEntity() { return Entity; }
5995
5996    /// \brief Sets the "base" location and entity when that
5997    /// information is known based on another transformation.
5998    void setBase(SourceLocation Loc, DeclarationName Entity) {
5999      this->Loc = Loc;
6000      this->Entity = Entity;
6001    }
6002  };
6003}
6004
6005/// \brief Rebuilds a type within the context of the current instantiation.
6006///
6007/// The type \p T is part of the type of an out-of-line member definition of
6008/// a class template (or class template partial specialization) that was parsed
6009/// and constructed before we entered the scope of the class template (or
6010/// partial specialization thereof). This routine will rebuild that type now
6011/// that we have entered the declarator's scope, which may produce different
6012/// canonical types, e.g.,
6013///
6014/// \code
6015/// template<typename T>
6016/// struct X {
6017///   typedef T* pointer;
6018///   pointer data();
6019/// };
6020///
6021/// template<typename T>
6022/// typename X<T>::pointer X<T>::data() { ... }
6023/// \endcode
6024///
6025/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
6026/// since we do not know that we can look into X<T> when we parsed the type.
6027/// This function will rebuild the type, performing the lookup of "pointer"
6028/// in X<T> and returning an ElaboratedType whose canonical type is the same
6029/// as the canonical type of T*, allowing the return types of the out-of-line
6030/// definition and the declaration to match.
6031TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
6032                                                        SourceLocation Loc,
6033                                                        DeclarationName Name) {
6034  if (!T || !T->getType()->isDependentType())
6035    return T;
6036
6037  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
6038  return Rebuilder.TransformType(T);
6039}
6040
6041ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
6042  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
6043                                          DeclarationName());
6044  return Rebuilder.TransformExpr(E);
6045}
6046
6047bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
6048  if (SS.isInvalid()) return true;
6049
6050  NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6051  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
6052                                          DeclarationName());
6053  NestedNameSpecifier *Rebuilt =
6054    Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange());
6055  if (!Rebuilt) return true;
6056
6057  SS.setScopeRep(Rebuilt);
6058  return false;
6059}
6060
6061/// \brief Produces a formatted string that describes the binding of
6062/// template parameters to template arguments.
6063std::string
6064Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6065                                      const TemplateArgumentList &Args) {
6066  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
6067}
6068
6069std::string
6070Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6071                                      const TemplateArgument *Args,
6072                                      unsigned NumArgs) {
6073  llvm::SmallString<128> Str;
6074  llvm::raw_svector_ostream Out(Str);
6075
6076  if (!Params || Params->size() == 0 || NumArgs == 0)
6077    return std::string();
6078
6079  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
6080    if (I >= NumArgs)
6081      break;
6082
6083    if (I == 0)
6084      Out << "[with ";
6085    else
6086      Out << ", ";
6087
6088    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
6089      Out << Id->getName();
6090    } else {
6091      Out << '$' << I;
6092    }
6093
6094    Out << " = ";
6095    Args[I].print(Context.PrintingPolicy, Out);
6096  }
6097
6098  Out << ']';
6099  return Out.str();
6100}
6101
6102