SemaTemplate.cpp revision 5f1e0942a32657b625702aa52f82430d0120f424
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "clang/Sema/Sema.h" 13#include "clang/Sema/Lookup.h" 14#include "clang/Sema/Scope.h" 15#include "clang/Sema/Template.h" 16#include "TreeTransform.h" 17#include "clang/AST/ASTContext.h" 18#include "clang/AST/Expr.h" 19#include "clang/AST/ExprCXX.h" 20#include "clang/AST/DeclFriend.h" 21#include "clang/AST/DeclTemplate.h" 22#include "clang/Sema/DeclSpec.h" 23#include "clang/Sema/ParsedTemplate.h" 24#include "clang/Basic/LangOptions.h" 25#include "clang/Basic/PartialDiagnostic.h" 26#include "llvm/ADT/StringExtras.h" 27using namespace clang; 28 29/// \brief Determine whether the declaration found is acceptable as the name 30/// of a template and, if so, return that template declaration. Otherwise, 31/// returns NULL. 32static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 33 NamedDecl *Orig) { 34 NamedDecl *D = Orig->getUnderlyingDecl(); 35 36 if (isa<TemplateDecl>(D)) 37 return Orig; 38 39 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 40 // C++ [temp.local]p1: 41 // Like normal (non-template) classes, class templates have an 42 // injected-class-name (Clause 9). The injected-class-name 43 // can be used with or without a template-argument-list. When 44 // it is used without a template-argument-list, it is 45 // equivalent to the injected-class-name followed by the 46 // template-parameters of the class template enclosed in 47 // <>. When it is used with a template-argument-list, it 48 // refers to the specified class template specialization, 49 // which could be the current specialization or another 50 // specialization. 51 if (Record->isInjectedClassName()) { 52 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 53 if (Record->getDescribedClassTemplate()) 54 return Record->getDescribedClassTemplate(); 55 56 if (ClassTemplateSpecializationDecl *Spec 57 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 58 return Spec->getSpecializedTemplate(); 59 } 60 61 return 0; 62 } 63 64 return 0; 65} 66 67static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) { 68 // The set of class templates we've already seen. 69 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 70 LookupResult::Filter filter = R.makeFilter(); 71 while (filter.hasNext()) { 72 NamedDecl *Orig = filter.next(); 73 NamedDecl *Repl = isAcceptableTemplateName(C, Orig); 74 if (!Repl) 75 filter.erase(); 76 else if (Repl != Orig) { 77 78 // C++ [temp.local]p3: 79 // A lookup that finds an injected-class-name (10.2) can result in an 80 // ambiguity in certain cases (for example, if it is found in more than 81 // one base class). If all of the injected-class-names that are found 82 // refer to specializations of the same class template, and if the name 83 // is followed by a template-argument-list, the reference refers to the 84 // class template itself and not a specialization thereof, and is not 85 // ambiguous. 86 // 87 // FIXME: Will we eventually have to do the same for alias templates? 88 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 89 if (!ClassTemplates.insert(ClassTmpl)) { 90 filter.erase(); 91 continue; 92 } 93 94 // FIXME: we promote access to public here as a workaround to 95 // the fact that LookupResult doesn't let us remember that we 96 // found this template through a particular injected class name, 97 // which means we end up doing nasty things to the invariants. 98 // Pretending that access is public is *much* safer. 99 filter.replace(Repl, AS_public); 100 } 101 } 102 filter.done(); 103} 104 105TemplateNameKind Sema::isTemplateName(Scope *S, 106 CXXScopeSpec &SS, 107 bool hasTemplateKeyword, 108 UnqualifiedId &Name, 109 ParsedType ObjectTypePtr, 110 bool EnteringContext, 111 TemplateTy &TemplateResult, 112 bool &MemberOfUnknownSpecialization) { 113 assert(getLangOptions().CPlusPlus && "No template names in C!"); 114 115 DeclarationName TName; 116 MemberOfUnknownSpecialization = false; 117 118 switch (Name.getKind()) { 119 case UnqualifiedId::IK_Identifier: 120 TName = DeclarationName(Name.Identifier); 121 break; 122 123 case UnqualifiedId::IK_OperatorFunctionId: 124 TName = Context.DeclarationNames.getCXXOperatorName( 125 Name.OperatorFunctionId.Operator); 126 break; 127 128 case UnqualifiedId::IK_LiteralOperatorId: 129 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 130 break; 131 132 default: 133 return TNK_Non_template; 134 } 135 136 QualType ObjectType = ObjectTypePtr.get(); 137 138 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 139 LookupOrdinaryName); 140 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 141 MemberOfUnknownSpecialization); 142 if (R.empty() || R.isAmbiguous()) { 143 R.suppressDiagnostics(); 144 return TNK_Non_template; 145 } 146 147 TemplateName Template; 148 TemplateNameKind TemplateKind; 149 150 unsigned ResultCount = R.end() - R.begin(); 151 if (ResultCount > 1) { 152 // We assume that we'll preserve the qualifier from a function 153 // template name in other ways. 154 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 155 TemplateKind = TNK_Function_template; 156 157 // We'll do this lookup again later. 158 R.suppressDiagnostics(); 159 } else { 160 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 161 162 if (SS.isSet() && !SS.isInvalid()) { 163 NestedNameSpecifier *Qualifier 164 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 165 Template = Context.getQualifiedTemplateName(Qualifier, 166 hasTemplateKeyword, TD); 167 } else { 168 Template = TemplateName(TD); 169 } 170 171 if (isa<FunctionTemplateDecl>(TD)) { 172 TemplateKind = TNK_Function_template; 173 174 // We'll do this lookup again later. 175 R.suppressDiagnostics(); 176 } else { 177 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD)); 178 TemplateKind = TNK_Type_template; 179 } 180 } 181 182 TemplateResult = TemplateTy::make(Template); 183 return TemplateKind; 184} 185 186bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 187 SourceLocation IILoc, 188 Scope *S, 189 const CXXScopeSpec *SS, 190 TemplateTy &SuggestedTemplate, 191 TemplateNameKind &SuggestedKind) { 192 // We can't recover unless there's a dependent scope specifier preceding the 193 // template name. 194 // FIXME: Typo correction? 195 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 196 computeDeclContext(*SS)) 197 return false; 198 199 // The code is missing a 'template' keyword prior to the dependent template 200 // name. 201 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 202 Diag(IILoc, diag::err_template_kw_missing) 203 << Qualifier << II.getName() 204 << FixItHint::CreateInsertion(IILoc, "template "); 205 SuggestedTemplate 206 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 207 SuggestedKind = TNK_Dependent_template_name; 208 return true; 209} 210 211void Sema::LookupTemplateName(LookupResult &Found, 212 Scope *S, CXXScopeSpec &SS, 213 QualType ObjectType, 214 bool EnteringContext, 215 bool &MemberOfUnknownSpecialization) { 216 // Determine where to perform name lookup 217 MemberOfUnknownSpecialization = false; 218 DeclContext *LookupCtx = 0; 219 bool isDependent = false; 220 if (!ObjectType.isNull()) { 221 // This nested-name-specifier occurs in a member access expression, e.g., 222 // x->B::f, and we are looking into the type of the object. 223 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 224 LookupCtx = computeDeclContext(ObjectType); 225 isDependent = ObjectType->isDependentType(); 226 assert((isDependent || !ObjectType->isIncompleteType()) && 227 "Caller should have completed object type"); 228 } else if (SS.isSet()) { 229 // This nested-name-specifier occurs after another nested-name-specifier, 230 // so long into the context associated with the prior nested-name-specifier. 231 LookupCtx = computeDeclContext(SS, EnteringContext); 232 isDependent = isDependentScopeSpecifier(SS); 233 234 // The declaration context must be complete. 235 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 236 return; 237 } 238 239 bool ObjectTypeSearchedInScope = false; 240 if (LookupCtx) { 241 // Perform "qualified" name lookup into the declaration context we 242 // computed, which is either the type of the base of a member access 243 // expression or the declaration context associated with a prior 244 // nested-name-specifier. 245 LookupQualifiedName(Found, LookupCtx); 246 247 if (!ObjectType.isNull() && Found.empty()) { 248 // C++ [basic.lookup.classref]p1: 249 // In a class member access expression (5.2.5), if the . or -> token is 250 // immediately followed by an identifier followed by a <, the 251 // identifier must be looked up to determine whether the < is the 252 // beginning of a template argument list (14.2) or a less-than operator. 253 // The identifier is first looked up in the class of the object 254 // expression. If the identifier is not found, it is then looked up in 255 // the context of the entire postfix-expression and shall name a class 256 // or function template. 257 if (S) LookupName(Found, S); 258 ObjectTypeSearchedInScope = true; 259 } 260 } else if (isDependent && (!S || ObjectType.isNull())) { 261 // We cannot look into a dependent object type or nested nme 262 // specifier. 263 MemberOfUnknownSpecialization = true; 264 return; 265 } else { 266 // Perform unqualified name lookup in the current scope. 267 LookupName(Found, S); 268 } 269 270 if (Found.empty() && !isDependent) { 271 // If we did not find any names, attempt to correct any typos. 272 DeclarationName Name = Found.getLookupName(); 273 if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx, 274 false, CTC_CXXCasts)) { 275 FilterAcceptableTemplateNames(Context, Found); 276 if (!Found.empty()) { 277 if (LookupCtx) 278 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 279 << Name << LookupCtx << Found.getLookupName() << SS.getRange() 280 << FixItHint::CreateReplacement(Found.getNameLoc(), 281 Found.getLookupName().getAsString()); 282 else 283 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 284 << Name << Found.getLookupName() 285 << FixItHint::CreateReplacement(Found.getNameLoc(), 286 Found.getLookupName().getAsString()); 287 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 288 Diag(Template->getLocation(), diag::note_previous_decl) 289 << Template->getDeclName(); 290 } 291 } else { 292 Found.clear(); 293 Found.setLookupName(Name); 294 } 295 } 296 297 FilterAcceptableTemplateNames(Context, Found); 298 if (Found.empty()) { 299 if (isDependent) 300 MemberOfUnknownSpecialization = true; 301 return; 302 } 303 304 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 305 // C++ [basic.lookup.classref]p1: 306 // [...] If the lookup in the class of the object expression finds a 307 // template, the name is also looked up in the context of the entire 308 // postfix-expression and [...] 309 // 310 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 311 LookupOrdinaryName); 312 LookupName(FoundOuter, S); 313 FilterAcceptableTemplateNames(Context, FoundOuter); 314 315 if (FoundOuter.empty()) { 316 // - if the name is not found, the name found in the class of the 317 // object expression is used, otherwise 318 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 319 // - if the name is found in the context of the entire 320 // postfix-expression and does not name a class template, the name 321 // found in the class of the object expression is used, otherwise 322 } else if (!Found.isSuppressingDiagnostics()) { 323 // - if the name found is a class template, it must refer to the same 324 // entity as the one found in the class of the object expression, 325 // otherwise the program is ill-formed. 326 if (!Found.isSingleResult() || 327 Found.getFoundDecl()->getCanonicalDecl() 328 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 329 Diag(Found.getNameLoc(), 330 diag::ext_nested_name_member_ref_lookup_ambiguous) 331 << Found.getLookupName() 332 << ObjectType; 333 Diag(Found.getRepresentativeDecl()->getLocation(), 334 diag::note_ambig_member_ref_object_type) 335 << ObjectType; 336 Diag(FoundOuter.getFoundDecl()->getLocation(), 337 diag::note_ambig_member_ref_scope); 338 339 // Recover by taking the template that we found in the object 340 // expression's type. 341 } 342 } 343 } 344} 345 346/// ActOnDependentIdExpression - Handle a dependent id-expression that 347/// was just parsed. This is only possible with an explicit scope 348/// specifier naming a dependent type. 349ExprResult 350Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 351 const DeclarationNameInfo &NameInfo, 352 bool isAddressOfOperand, 353 const TemplateArgumentListInfo *TemplateArgs) { 354 NestedNameSpecifier *Qualifier 355 = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 356 357 DeclContext *DC = getFunctionLevelDeclContext(); 358 359 if (!isAddressOfOperand && 360 isa<CXXMethodDecl>(DC) && 361 cast<CXXMethodDecl>(DC)->isInstance()) { 362 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 363 364 // Since the 'this' expression is synthesized, we don't need to 365 // perform the double-lookup check. 366 NamedDecl *FirstQualifierInScope = 0; 367 368 return Owned(CXXDependentScopeMemberExpr::Create(Context, 369 /*This*/ 0, ThisType, 370 /*IsArrow*/ true, 371 /*Op*/ SourceLocation(), 372 Qualifier, SS.getRange(), 373 FirstQualifierInScope, 374 NameInfo, 375 TemplateArgs)); 376 } 377 378 return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs); 379} 380 381ExprResult 382Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 383 const DeclarationNameInfo &NameInfo, 384 const TemplateArgumentListInfo *TemplateArgs) { 385 return Owned(DependentScopeDeclRefExpr::Create(Context, 386 static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 387 SS.getRange(), 388 NameInfo, 389 TemplateArgs)); 390} 391 392/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 393/// that the template parameter 'PrevDecl' is being shadowed by a new 394/// declaration at location Loc. Returns true to indicate that this is 395/// an error, and false otherwise. 396bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 397 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 398 399 // Microsoft Visual C++ permits template parameters to be shadowed. 400 if (getLangOptions().Microsoft) 401 return false; 402 403 // C++ [temp.local]p4: 404 // A template-parameter shall not be redeclared within its 405 // scope (including nested scopes). 406 Diag(Loc, diag::err_template_param_shadow) 407 << cast<NamedDecl>(PrevDecl)->getDeclName(); 408 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 409 return true; 410} 411 412/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 413/// the parameter D to reference the templated declaration and return a pointer 414/// to the template declaration. Otherwise, do nothing to D and return null. 415TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 416 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 417 D = Temp->getTemplatedDecl(); 418 return Temp; 419 } 420 return 0; 421} 422 423static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 424 const ParsedTemplateArgument &Arg) { 425 426 switch (Arg.getKind()) { 427 case ParsedTemplateArgument::Type: { 428 TypeSourceInfo *DI; 429 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 430 if (!DI) 431 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 432 return TemplateArgumentLoc(TemplateArgument(T), DI); 433 } 434 435 case ParsedTemplateArgument::NonType: { 436 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 437 return TemplateArgumentLoc(TemplateArgument(E), E); 438 } 439 440 case ParsedTemplateArgument::Template: { 441 TemplateName Template = Arg.getAsTemplate().get(); 442 return TemplateArgumentLoc(TemplateArgument(Template), 443 Arg.getScopeSpec().getRange(), 444 Arg.getLocation()); 445 } 446 } 447 448 llvm_unreachable("Unhandled parsed template argument"); 449 return TemplateArgumentLoc(); 450} 451 452/// \brief Translates template arguments as provided by the parser 453/// into template arguments used by semantic analysis. 454void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 455 TemplateArgumentListInfo &TemplateArgs) { 456 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 457 TemplateArgs.addArgument(translateTemplateArgument(*this, 458 TemplateArgsIn[I])); 459} 460 461/// ActOnTypeParameter - Called when a C++ template type parameter 462/// (e.g., "typename T") has been parsed. Typename specifies whether 463/// the keyword "typename" was used to declare the type parameter 464/// (otherwise, "class" was used), and KeyLoc is the location of the 465/// "class" or "typename" keyword. ParamName is the name of the 466/// parameter (NULL indicates an unnamed template parameter) and 467/// ParamName is the location of the parameter name (if any). 468/// If the type parameter has a default argument, it will be added 469/// later via ActOnTypeParameterDefault. 470Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 471 SourceLocation EllipsisLoc, 472 SourceLocation KeyLoc, 473 IdentifierInfo *ParamName, 474 SourceLocation ParamNameLoc, 475 unsigned Depth, unsigned Position, 476 SourceLocation EqualLoc, 477 ParsedType DefaultArg) { 478 assert(S->isTemplateParamScope() && 479 "Template type parameter not in template parameter scope!"); 480 bool Invalid = false; 481 482 if (ParamName) { 483 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 484 LookupOrdinaryName, 485 ForRedeclaration); 486 if (PrevDecl && PrevDecl->isTemplateParameter()) 487 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 488 PrevDecl); 489 } 490 491 SourceLocation Loc = ParamNameLoc; 492 if (!ParamName) 493 Loc = KeyLoc; 494 495 TemplateTypeParmDecl *Param 496 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 497 Loc, Depth, Position, ParamName, Typename, 498 Ellipsis); 499 if (Invalid) 500 Param->setInvalidDecl(); 501 502 if (ParamName) { 503 // Add the template parameter into the current scope. 504 S->AddDecl(Param); 505 IdResolver.AddDecl(Param); 506 } 507 508 // Handle the default argument, if provided. 509 if (DefaultArg) { 510 TypeSourceInfo *DefaultTInfo; 511 GetTypeFromParser(DefaultArg, &DefaultTInfo); 512 513 assert(DefaultTInfo && "expected source information for type"); 514 515 // C++0x [temp.param]p9: 516 // A default template-argument may be specified for any kind of 517 // template-parameter that is not a template parameter pack. 518 if (Ellipsis) { 519 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 520 return Param; 521 } 522 523 // Check the template argument itself. 524 if (CheckTemplateArgument(Param, DefaultTInfo)) { 525 Param->setInvalidDecl(); 526 return Param; 527 } 528 529 Param->setDefaultArgument(DefaultTInfo, false); 530 } 531 532 return Param; 533} 534 535/// \brief Check that the type of a non-type template parameter is 536/// well-formed. 537/// 538/// \returns the (possibly-promoted) parameter type if valid; 539/// otherwise, produces a diagnostic and returns a NULL type. 540QualType 541Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 542 // We don't allow variably-modified types as the type of non-type template 543 // parameters. 544 if (T->isVariablyModifiedType()) { 545 Diag(Loc, diag::err_variably_modified_nontype_template_param) 546 << T; 547 return QualType(); 548 } 549 550 // C++ [temp.param]p4: 551 // 552 // A non-type template-parameter shall have one of the following 553 // (optionally cv-qualified) types: 554 // 555 // -- integral or enumeration type, 556 if (T->isIntegralOrEnumerationType() || 557 // -- pointer to object or pointer to function, 558 T->isPointerType() || 559 // -- reference to object or reference to function, 560 T->isReferenceType() || 561 // -- pointer to member. 562 T->isMemberPointerType() || 563 // If T is a dependent type, we can't do the check now, so we 564 // assume that it is well-formed. 565 T->isDependentType()) 566 return T; 567 // C++ [temp.param]p8: 568 // 569 // A non-type template-parameter of type "array of T" or 570 // "function returning T" is adjusted to be of type "pointer to 571 // T" or "pointer to function returning T", respectively. 572 else if (T->isArrayType()) 573 // FIXME: Keep the type prior to promotion? 574 return Context.getArrayDecayedType(T); 575 else if (T->isFunctionType()) 576 // FIXME: Keep the type prior to promotion? 577 return Context.getPointerType(T); 578 579 Diag(Loc, diag::err_template_nontype_parm_bad_type) 580 << T; 581 582 return QualType(); 583} 584 585Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 586 unsigned Depth, 587 unsigned Position, 588 SourceLocation EqualLoc, 589 Expr *Default) { 590 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 591 QualType T = TInfo->getType(); 592 593 assert(S->isTemplateParamScope() && 594 "Non-type template parameter not in template parameter scope!"); 595 bool Invalid = false; 596 597 IdentifierInfo *ParamName = D.getIdentifier(); 598 if (ParamName) { 599 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 600 LookupOrdinaryName, 601 ForRedeclaration); 602 if (PrevDecl && PrevDecl->isTemplateParameter()) 603 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 604 PrevDecl); 605 } 606 607 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 608 if (T.isNull()) { 609 T = Context.IntTy; // Recover with an 'int' type. 610 Invalid = true; 611 } 612 613 NonTypeTemplateParmDecl *Param 614 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 615 D.getIdentifierLoc(), 616 Depth, Position, ParamName, T, TInfo); 617 if (Invalid) 618 Param->setInvalidDecl(); 619 620 if (D.getIdentifier()) { 621 // Add the template parameter into the current scope. 622 S->AddDecl(Param); 623 IdResolver.AddDecl(Param); 624 } 625 626 // Check the well-formedness of the default template argument, if provided. 627 if (Default) { 628 TemplateArgument Converted; 629 if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) { 630 Param->setInvalidDecl(); 631 return Param; 632 } 633 634 Param->setDefaultArgument(Default, false); 635 } 636 637 return Param; 638} 639 640/// ActOnTemplateTemplateParameter - Called when a C++ template template 641/// parameter (e.g. T in template <template <typename> class T> class array) 642/// has been parsed. S is the current scope. 643Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 644 SourceLocation TmpLoc, 645 TemplateParamsTy *Params, 646 IdentifierInfo *Name, 647 SourceLocation NameLoc, 648 unsigned Depth, 649 unsigned Position, 650 SourceLocation EqualLoc, 651 const ParsedTemplateArgument &Default) { 652 assert(S->isTemplateParamScope() && 653 "Template template parameter not in template parameter scope!"); 654 655 // Construct the parameter object. 656 TemplateTemplateParmDecl *Param = 657 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 658 TmpLoc, Depth, Position, Name, 659 (TemplateParameterList*)Params); 660 661 // If the template template parameter has a name, then link the identifier 662 // into the scope and lookup mechanisms. 663 if (Name) { 664 S->AddDecl(Param); 665 IdResolver.AddDecl(Param); 666 } 667 668 if (!Default.isInvalid()) { 669 // Check only that we have a template template argument. We don't want to 670 // try to check well-formedness now, because our template template parameter 671 // might have dependent types in its template parameters, which we wouldn't 672 // be able to match now. 673 // 674 // If none of the template template parameter's template arguments mention 675 // other template parameters, we could actually perform more checking here. 676 // However, it isn't worth doing. 677 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 678 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 679 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 680 << DefaultArg.getSourceRange(); 681 return Param; 682 } 683 684 Param->setDefaultArgument(DefaultArg, false); 685 } 686 687 return Param; 688} 689 690/// ActOnTemplateParameterList - Builds a TemplateParameterList that 691/// contains the template parameters in Params/NumParams. 692Sema::TemplateParamsTy * 693Sema::ActOnTemplateParameterList(unsigned Depth, 694 SourceLocation ExportLoc, 695 SourceLocation TemplateLoc, 696 SourceLocation LAngleLoc, 697 Decl **Params, unsigned NumParams, 698 SourceLocation RAngleLoc) { 699 if (ExportLoc.isValid()) 700 Diag(ExportLoc, diag::warn_template_export_unsupported); 701 702 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 703 (NamedDecl**)Params, NumParams, 704 RAngleLoc); 705} 706 707static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 708 if (SS.isSet()) 709 T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 710 SS.getRange()); 711} 712 713Sema::DeclResult 714Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 715 SourceLocation KWLoc, CXXScopeSpec &SS, 716 IdentifierInfo *Name, SourceLocation NameLoc, 717 AttributeList *Attr, 718 TemplateParameterList *TemplateParams, 719 AccessSpecifier AS) { 720 assert(TemplateParams && TemplateParams->size() > 0 && 721 "No template parameters"); 722 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 723 bool Invalid = false; 724 725 // Check that we can declare a template here. 726 if (CheckTemplateDeclScope(S, TemplateParams)) 727 return true; 728 729 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 730 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 731 732 // There is no such thing as an unnamed class template. 733 if (!Name) { 734 Diag(KWLoc, diag::err_template_unnamed_class); 735 return true; 736 } 737 738 // Find any previous declaration with this name. 739 DeclContext *SemanticContext; 740 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 741 ForRedeclaration); 742 if (SS.isNotEmpty() && !SS.isInvalid()) { 743 SemanticContext = computeDeclContext(SS, true); 744 if (!SemanticContext) { 745 // FIXME: Produce a reasonable diagnostic here 746 return true; 747 } 748 749 if (RequireCompleteDeclContext(SS, SemanticContext)) 750 return true; 751 752 LookupQualifiedName(Previous, SemanticContext); 753 } else { 754 SemanticContext = CurContext; 755 LookupName(Previous, S); 756 } 757 758 if (Previous.isAmbiguous()) 759 return true; 760 761 NamedDecl *PrevDecl = 0; 762 if (Previous.begin() != Previous.end()) 763 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 764 765 // If there is a previous declaration with the same name, check 766 // whether this is a valid redeclaration. 767 ClassTemplateDecl *PrevClassTemplate 768 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 769 770 // We may have found the injected-class-name of a class template, 771 // class template partial specialization, or class template specialization. 772 // In these cases, grab the template that is being defined or specialized. 773 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 774 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 775 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 776 PrevClassTemplate 777 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 778 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 779 PrevClassTemplate 780 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 781 ->getSpecializedTemplate(); 782 } 783 } 784 785 if (TUK == TUK_Friend) { 786 // C++ [namespace.memdef]p3: 787 // [...] When looking for a prior declaration of a class or a function 788 // declared as a friend, and when the name of the friend class or 789 // function is neither a qualified name nor a template-id, scopes outside 790 // the innermost enclosing namespace scope are not considered. 791 if (!SS.isSet()) { 792 DeclContext *OutermostContext = CurContext; 793 while (!OutermostContext->isFileContext()) 794 OutermostContext = OutermostContext->getLookupParent(); 795 796 if (PrevDecl && 797 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 798 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 799 SemanticContext = PrevDecl->getDeclContext(); 800 } else { 801 // Declarations in outer scopes don't matter. However, the outermost 802 // context we computed is the semantic context for our new 803 // declaration. 804 PrevDecl = PrevClassTemplate = 0; 805 SemanticContext = OutermostContext; 806 } 807 } 808 809 if (CurContext->isDependentContext()) { 810 // If this is a dependent context, we don't want to link the friend 811 // class template to the template in scope, because that would perform 812 // checking of the template parameter lists that can't be performed 813 // until the outer context is instantiated. 814 PrevDecl = PrevClassTemplate = 0; 815 } 816 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 817 PrevDecl = PrevClassTemplate = 0; 818 819 if (PrevClassTemplate) { 820 // Ensure that the template parameter lists are compatible. 821 if (!TemplateParameterListsAreEqual(TemplateParams, 822 PrevClassTemplate->getTemplateParameters(), 823 /*Complain=*/true, 824 TPL_TemplateMatch)) 825 return true; 826 827 // C++ [temp.class]p4: 828 // In a redeclaration, partial specialization, explicit 829 // specialization or explicit instantiation of a class template, 830 // the class-key shall agree in kind with the original class 831 // template declaration (7.1.5.3). 832 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 833 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 834 Diag(KWLoc, diag::err_use_with_wrong_tag) 835 << Name 836 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 837 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 838 Kind = PrevRecordDecl->getTagKind(); 839 } 840 841 // Check for redefinition of this class template. 842 if (TUK == TUK_Definition) { 843 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 844 Diag(NameLoc, diag::err_redefinition) << Name; 845 Diag(Def->getLocation(), diag::note_previous_definition); 846 // FIXME: Would it make sense to try to "forget" the previous 847 // definition, as part of error recovery? 848 return true; 849 } 850 } 851 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 852 // Maybe we will complain about the shadowed template parameter. 853 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 854 // Just pretend that we didn't see the previous declaration. 855 PrevDecl = 0; 856 } else if (PrevDecl) { 857 // C++ [temp]p5: 858 // A class template shall not have the same name as any other 859 // template, class, function, object, enumeration, enumerator, 860 // namespace, or type in the same scope (3.3), except as specified 861 // in (14.5.4). 862 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 863 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 864 return true; 865 } 866 867 // Check the template parameter list of this declaration, possibly 868 // merging in the template parameter list from the previous class 869 // template declaration. 870 if (CheckTemplateParameterList(TemplateParams, 871 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 872 TPC_ClassTemplate)) 873 Invalid = true; 874 875 if (SS.isSet()) { 876 // If the name of the template was qualified, we must be defining the 877 // template out-of-line. 878 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate && 879 !(TUK == TUK_Friend && CurContext->isDependentContext())) 880 Diag(NameLoc, diag::err_member_def_does_not_match) 881 << Name << SemanticContext << SS.getRange(); 882 } 883 884 CXXRecordDecl *NewClass = 885 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 886 PrevClassTemplate? 887 PrevClassTemplate->getTemplatedDecl() : 0, 888 /*DelayTypeCreation=*/true); 889 SetNestedNameSpecifier(NewClass, SS); 890 891 ClassTemplateDecl *NewTemplate 892 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 893 DeclarationName(Name), TemplateParams, 894 NewClass, PrevClassTemplate); 895 NewClass->setDescribedClassTemplate(NewTemplate); 896 897 // Build the type for the class template declaration now. 898 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 899 T = Context.getInjectedClassNameType(NewClass, T); 900 assert(T->isDependentType() && "Class template type is not dependent?"); 901 (void)T; 902 903 // If we are providing an explicit specialization of a member that is a 904 // class template, make a note of that. 905 if (PrevClassTemplate && 906 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 907 PrevClassTemplate->setMemberSpecialization(); 908 909 // Set the access specifier. 910 if (!Invalid && TUK != TUK_Friend) 911 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 912 913 // Set the lexical context of these templates 914 NewClass->setLexicalDeclContext(CurContext); 915 NewTemplate->setLexicalDeclContext(CurContext); 916 917 if (TUK == TUK_Definition) 918 NewClass->startDefinition(); 919 920 if (Attr) 921 ProcessDeclAttributeList(S, NewClass, Attr); 922 923 if (TUK != TUK_Friend) 924 PushOnScopeChains(NewTemplate, S); 925 else { 926 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 927 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 928 NewClass->setAccess(PrevClassTemplate->getAccess()); 929 } 930 931 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 932 PrevClassTemplate != NULL); 933 934 // Friend templates are visible in fairly strange ways. 935 if (!CurContext->isDependentContext()) { 936 DeclContext *DC = SemanticContext->getLookupContext(); 937 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 938 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 939 PushOnScopeChains(NewTemplate, EnclosingScope, 940 /* AddToContext = */ false); 941 } 942 943 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 944 NewClass->getLocation(), 945 NewTemplate, 946 /*FIXME:*/NewClass->getLocation()); 947 Friend->setAccess(AS_public); 948 CurContext->addDecl(Friend); 949 } 950 951 if (Invalid) { 952 NewTemplate->setInvalidDecl(); 953 NewClass->setInvalidDecl(); 954 } 955 return NewTemplate; 956} 957 958/// \brief Diagnose the presence of a default template argument on a 959/// template parameter, which is ill-formed in certain contexts. 960/// 961/// \returns true if the default template argument should be dropped. 962static bool DiagnoseDefaultTemplateArgument(Sema &S, 963 Sema::TemplateParamListContext TPC, 964 SourceLocation ParamLoc, 965 SourceRange DefArgRange) { 966 switch (TPC) { 967 case Sema::TPC_ClassTemplate: 968 return false; 969 970 case Sema::TPC_FunctionTemplate: 971 // C++ [temp.param]p9: 972 // A default template-argument shall not be specified in a 973 // function template declaration or a function template 974 // definition [...] 975 // (This sentence is not in C++0x, per DR226). 976 if (!S.getLangOptions().CPlusPlus0x) 977 S.Diag(ParamLoc, 978 diag::err_template_parameter_default_in_function_template) 979 << DefArgRange; 980 return false; 981 982 case Sema::TPC_ClassTemplateMember: 983 // C++0x [temp.param]p9: 984 // A default template-argument shall not be specified in the 985 // template-parameter-lists of the definition of a member of a 986 // class template that appears outside of the member's class. 987 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 988 << DefArgRange; 989 return true; 990 991 case Sema::TPC_FriendFunctionTemplate: 992 // C++ [temp.param]p9: 993 // A default template-argument shall not be specified in a 994 // friend template declaration. 995 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 996 << DefArgRange; 997 return true; 998 999 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1000 // for friend function templates if there is only a single 1001 // declaration (and it is a definition). Strange! 1002 } 1003 1004 return false; 1005} 1006 1007/// \brief Checks the validity of a template parameter list, possibly 1008/// considering the template parameter list from a previous 1009/// declaration. 1010/// 1011/// If an "old" template parameter list is provided, it must be 1012/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1013/// template parameter list. 1014/// 1015/// \param NewParams Template parameter list for a new template 1016/// declaration. This template parameter list will be updated with any 1017/// default arguments that are carried through from the previous 1018/// template parameter list. 1019/// 1020/// \param OldParams If provided, template parameter list from a 1021/// previous declaration of the same template. Default template 1022/// arguments will be merged from the old template parameter list to 1023/// the new template parameter list. 1024/// 1025/// \param TPC Describes the context in which we are checking the given 1026/// template parameter list. 1027/// 1028/// \returns true if an error occurred, false otherwise. 1029bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1030 TemplateParameterList *OldParams, 1031 TemplateParamListContext TPC) { 1032 bool Invalid = false; 1033 1034 // C++ [temp.param]p10: 1035 // The set of default template-arguments available for use with a 1036 // template declaration or definition is obtained by merging the 1037 // default arguments from the definition (if in scope) and all 1038 // declarations in scope in the same way default function 1039 // arguments are (8.3.6). 1040 bool SawDefaultArgument = false; 1041 SourceLocation PreviousDefaultArgLoc; 1042 1043 bool SawParameterPack = false; 1044 SourceLocation ParameterPackLoc; 1045 1046 // Dummy initialization to avoid warnings. 1047 TemplateParameterList::iterator OldParam = NewParams->end(); 1048 if (OldParams) 1049 OldParam = OldParams->begin(); 1050 1051 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1052 NewParamEnd = NewParams->end(); 1053 NewParam != NewParamEnd; ++NewParam) { 1054 // Variables used to diagnose redundant default arguments 1055 bool RedundantDefaultArg = false; 1056 SourceLocation OldDefaultLoc; 1057 SourceLocation NewDefaultLoc; 1058 1059 // Variables used to diagnose missing default arguments 1060 bool MissingDefaultArg = false; 1061 1062 // C++0x [temp.param]p11: 1063 // If a template parameter of a class template is a template parameter pack, 1064 // it must be the last template parameter. 1065 if (SawParameterPack) { 1066 Diag(ParameterPackLoc, 1067 diag::err_template_param_pack_must_be_last_template_parameter); 1068 Invalid = true; 1069 } 1070 1071 if (TemplateTypeParmDecl *NewTypeParm 1072 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1073 // Check the presence of a default argument here. 1074 if (NewTypeParm->hasDefaultArgument() && 1075 DiagnoseDefaultTemplateArgument(*this, TPC, 1076 NewTypeParm->getLocation(), 1077 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1078 .getSourceRange())) 1079 NewTypeParm->removeDefaultArgument(); 1080 1081 // Merge default arguments for template type parameters. 1082 TemplateTypeParmDecl *OldTypeParm 1083 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1084 1085 if (NewTypeParm->isParameterPack()) { 1086 assert(!NewTypeParm->hasDefaultArgument() && 1087 "Parameter packs can't have a default argument!"); 1088 SawParameterPack = true; 1089 ParameterPackLoc = NewTypeParm->getLocation(); 1090 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1091 NewTypeParm->hasDefaultArgument()) { 1092 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1093 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1094 SawDefaultArgument = true; 1095 RedundantDefaultArg = true; 1096 PreviousDefaultArgLoc = NewDefaultLoc; 1097 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1098 // Merge the default argument from the old declaration to the 1099 // new declaration. 1100 SawDefaultArgument = true; 1101 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1102 true); 1103 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1104 } else if (NewTypeParm->hasDefaultArgument()) { 1105 SawDefaultArgument = true; 1106 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1107 } else if (SawDefaultArgument) 1108 MissingDefaultArg = true; 1109 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1110 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1111 // Check the presence of a default argument here. 1112 if (NewNonTypeParm->hasDefaultArgument() && 1113 DiagnoseDefaultTemplateArgument(*this, TPC, 1114 NewNonTypeParm->getLocation(), 1115 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1116 NewNonTypeParm->removeDefaultArgument(); 1117 } 1118 1119 // Merge default arguments for non-type template parameters 1120 NonTypeTemplateParmDecl *OldNonTypeParm 1121 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1122 if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1123 NewNonTypeParm->hasDefaultArgument()) { 1124 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1125 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1126 SawDefaultArgument = true; 1127 RedundantDefaultArg = true; 1128 PreviousDefaultArgLoc = NewDefaultLoc; 1129 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1130 // Merge the default argument from the old declaration to the 1131 // new declaration. 1132 SawDefaultArgument = true; 1133 // FIXME: We need to create a new kind of "default argument" 1134 // expression that points to a previous template template 1135 // parameter. 1136 NewNonTypeParm->setDefaultArgument( 1137 OldNonTypeParm->getDefaultArgument(), 1138 /*Inherited=*/ true); 1139 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1140 } else if (NewNonTypeParm->hasDefaultArgument()) { 1141 SawDefaultArgument = true; 1142 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1143 } else if (SawDefaultArgument) 1144 MissingDefaultArg = true; 1145 } else { 1146 // Check the presence of a default argument here. 1147 TemplateTemplateParmDecl *NewTemplateParm 1148 = cast<TemplateTemplateParmDecl>(*NewParam); 1149 if (NewTemplateParm->hasDefaultArgument() && 1150 DiagnoseDefaultTemplateArgument(*this, TPC, 1151 NewTemplateParm->getLocation(), 1152 NewTemplateParm->getDefaultArgument().getSourceRange())) 1153 NewTemplateParm->removeDefaultArgument(); 1154 1155 // Merge default arguments for template template parameters 1156 TemplateTemplateParmDecl *OldTemplateParm 1157 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1158 if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1159 NewTemplateParm->hasDefaultArgument()) { 1160 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1161 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1162 SawDefaultArgument = true; 1163 RedundantDefaultArg = true; 1164 PreviousDefaultArgLoc = NewDefaultLoc; 1165 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1166 // Merge the default argument from the old declaration to the 1167 // new declaration. 1168 SawDefaultArgument = true; 1169 // FIXME: We need to create a new kind of "default argument" expression 1170 // that points to a previous template template parameter. 1171 NewTemplateParm->setDefaultArgument( 1172 OldTemplateParm->getDefaultArgument(), 1173 /*Inherited=*/ true); 1174 PreviousDefaultArgLoc 1175 = OldTemplateParm->getDefaultArgument().getLocation(); 1176 } else if (NewTemplateParm->hasDefaultArgument()) { 1177 SawDefaultArgument = true; 1178 PreviousDefaultArgLoc 1179 = NewTemplateParm->getDefaultArgument().getLocation(); 1180 } else if (SawDefaultArgument) 1181 MissingDefaultArg = true; 1182 } 1183 1184 if (RedundantDefaultArg) { 1185 // C++ [temp.param]p12: 1186 // A template-parameter shall not be given default arguments 1187 // by two different declarations in the same scope. 1188 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1189 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1190 Invalid = true; 1191 } else if (MissingDefaultArg) { 1192 // C++ [temp.param]p11: 1193 // If a template-parameter has a default template-argument, 1194 // all subsequent template-parameters shall have a default 1195 // template-argument supplied. 1196 Diag((*NewParam)->getLocation(), 1197 diag::err_template_param_default_arg_missing); 1198 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1199 Invalid = true; 1200 } 1201 1202 // If we have an old template parameter list that we're merging 1203 // in, move on to the next parameter. 1204 if (OldParams) 1205 ++OldParam; 1206 } 1207 1208 return Invalid; 1209} 1210 1211/// \brief Match the given template parameter lists to the given scope 1212/// specifier, returning the template parameter list that applies to the 1213/// name. 1214/// 1215/// \param DeclStartLoc the start of the declaration that has a scope 1216/// specifier or a template parameter list. 1217/// 1218/// \param SS the scope specifier that will be matched to the given template 1219/// parameter lists. This scope specifier precedes a qualified name that is 1220/// being declared. 1221/// 1222/// \param ParamLists the template parameter lists, from the outermost to the 1223/// innermost template parameter lists. 1224/// 1225/// \param NumParamLists the number of template parameter lists in ParamLists. 1226/// 1227/// \param IsFriend Whether to apply the slightly different rules for 1228/// matching template parameters to scope specifiers in friend 1229/// declarations. 1230/// 1231/// \param IsExplicitSpecialization will be set true if the entity being 1232/// declared is an explicit specialization, false otherwise. 1233/// 1234/// \returns the template parameter list, if any, that corresponds to the 1235/// name that is preceded by the scope specifier @p SS. This template 1236/// parameter list may be have template parameters (if we're declaring a 1237/// template) or may have no template parameters (if we're declaring a 1238/// template specialization), or may be NULL (if we were's declaring isn't 1239/// itself a template). 1240TemplateParameterList * 1241Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1242 const CXXScopeSpec &SS, 1243 TemplateParameterList **ParamLists, 1244 unsigned NumParamLists, 1245 bool IsFriend, 1246 bool &IsExplicitSpecialization, 1247 bool &Invalid) { 1248 IsExplicitSpecialization = false; 1249 1250 // Find the template-ids that occur within the nested-name-specifier. These 1251 // template-ids will match up with the template parameter lists. 1252 llvm::SmallVector<const TemplateSpecializationType *, 4> 1253 TemplateIdsInSpecifier; 1254 llvm::SmallVector<ClassTemplateSpecializationDecl *, 4> 1255 ExplicitSpecializationsInSpecifier; 1256 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 1257 NNS; NNS = NNS->getPrefix()) { 1258 const Type *T = NNS->getAsType(); 1259 if (!T) break; 1260 1261 // C++0x [temp.expl.spec]p17: 1262 // A member or a member template may be nested within many 1263 // enclosing class templates. In an explicit specialization for 1264 // such a member, the member declaration shall be preceded by a 1265 // template<> for each enclosing class template that is 1266 // explicitly specialized. 1267 // 1268 // Following the existing practice of GNU and EDG, we allow a typedef of a 1269 // template specialization type. 1270 if (const TypedefType *TT = dyn_cast<TypedefType>(T)) 1271 T = TT->LookThroughTypedefs().getTypePtr(); 1272 1273 if (const TemplateSpecializationType *SpecType 1274 = dyn_cast<TemplateSpecializationType>(T)) { 1275 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 1276 if (!Template) 1277 continue; // FIXME: should this be an error? probably... 1278 1279 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 1280 ClassTemplateSpecializationDecl *SpecDecl 1281 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 1282 // If the nested name specifier refers to an explicit specialization, 1283 // we don't need a template<> header. 1284 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) { 1285 ExplicitSpecializationsInSpecifier.push_back(SpecDecl); 1286 continue; 1287 } 1288 } 1289 1290 TemplateIdsInSpecifier.push_back(SpecType); 1291 } 1292 } 1293 1294 // Reverse the list of template-ids in the scope specifier, so that we can 1295 // more easily match up the template-ids and the template parameter lists. 1296 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 1297 1298 SourceLocation FirstTemplateLoc = DeclStartLoc; 1299 if (NumParamLists) 1300 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 1301 1302 // Match the template-ids found in the specifier to the template parameter 1303 // lists. 1304 unsigned Idx = 0; 1305 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 1306 Idx != NumTemplateIds; ++Idx) { 1307 QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0); 1308 bool DependentTemplateId = TemplateId->isDependentType(); 1309 if (Idx >= NumParamLists) { 1310 // We have a template-id without a corresponding template parameter 1311 // list. 1312 1313 // ...which is fine if this is a friend declaration. 1314 if (IsFriend) { 1315 IsExplicitSpecialization = true; 1316 break; 1317 } 1318 1319 if (DependentTemplateId) { 1320 // FIXME: the location information here isn't great. 1321 Diag(SS.getRange().getBegin(), 1322 diag::err_template_spec_needs_template_parameters) 1323 << TemplateId 1324 << SS.getRange(); 1325 Invalid = true; 1326 } else { 1327 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 1328 << SS.getRange() 1329 << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> "); 1330 IsExplicitSpecialization = true; 1331 } 1332 return 0; 1333 } 1334 1335 // Check the template parameter list against its corresponding template-id. 1336 if (DependentTemplateId) { 1337 TemplateParameterList *ExpectedTemplateParams = 0; 1338 1339 // Are there cases in (e.g.) friends where this won't match? 1340 if (const InjectedClassNameType *Injected 1341 = TemplateId->getAs<InjectedClassNameType>()) { 1342 CXXRecordDecl *Record = Injected->getDecl(); 1343 if (ClassTemplatePartialSpecializationDecl *Partial = 1344 dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) 1345 ExpectedTemplateParams = Partial->getTemplateParameters(); 1346 else 1347 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1348 ->getTemplateParameters(); 1349 } 1350 1351 if (ExpectedTemplateParams) 1352 TemplateParameterListsAreEqual(ParamLists[Idx], 1353 ExpectedTemplateParams, 1354 true, TPL_TemplateMatch); 1355 1356 CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember); 1357 } else if (ParamLists[Idx]->size() > 0) 1358 Diag(ParamLists[Idx]->getTemplateLoc(), 1359 diag::err_template_param_list_matches_nontemplate) 1360 << TemplateId 1361 << ParamLists[Idx]->getSourceRange(); 1362 else 1363 IsExplicitSpecialization = true; 1364 } 1365 1366 // If there were at least as many template-ids as there were template 1367 // parameter lists, then there are no template parameter lists remaining for 1368 // the declaration itself. 1369 if (Idx >= NumParamLists) 1370 return 0; 1371 1372 // If there were too many template parameter lists, complain about that now. 1373 if (Idx != NumParamLists - 1) { 1374 while (Idx < NumParamLists - 1) { 1375 bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0; 1376 Diag(ParamLists[Idx]->getTemplateLoc(), 1377 isExplicitSpecHeader? diag::warn_template_spec_extra_headers 1378 : diag::err_template_spec_extra_headers) 1379 << SourceRange(ParamLists[Idx]->getTemplateLoc(), 1380 ParamLists[Idx]->getRAngleLoc()); 1381 1382 if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) { 1383 Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(), 1384 diag::note_explicit_template_spec_does_not_need_header) 1385 << ExplicitSpecializationsInSpecifier.back(); 1386 ExplicitSpecializationsInSpecifier.pop_back(); 1387 } 1388 1389 // We have a template parameter list with no corresponding scope, which 1390 // means that the resulting template declaration can't be instantiated 1391 // properly (we'll end up with dependent nodes when we shouldn't). 1392 if (!isExplicitSpecHeader) 1393 Invalid = true; 1394 1395 ++Idx; 1396 } 1397 } 1398 1399 // Return the last template parameter list, which corresponds to the 1400 // entity being declared. 1401 return ParamLists[NumParamLists - 1]; 1402} 1403 1404QualType Sema::CheckTemplateIdType(TemplateName Name, 1405 SourceLocation TemplateLoc, 1406 const TemplateArgumentListInfo &TemplateArgs) { 1407 TemplateDecl *Template = Name.getAsTemplateDecl(); 1408 if (!Template) { 1409 // The template name does not resolve to a template, so we just 1410 // build a dependent template-id type. 1411 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1412 } 1413 1414 // Check that the template argument list is well-formed for this 1415 // template. 1416 TemplateArgumentListBuilder Converted(Template->getTemplateParameters(), 1417 TemplateArgs.size()); 1418 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1419 false, Converted)) 1420 return QualType(); 1421 1422 assert((Converted.structuredSize() == 1423 Template->getTemplateParameters()->size()) && 1424 "Converted template argument list is too short!"); 1425 1426 QualType CanonType; 1427 1428 if (Name.isDependent() || 1429 TemplateSpecializationType::anyDependentTemplateArguments( 1430 TemplateArgs)) { 1431 // This class template specialization is a dependent 1432 // type. Therefore, its canonical type is another class template 1433 // specialization type that contains all of the converted 1434 // arguments in canonical form. This ensures that, e.g., A<T> and 1435 // A<T, T> have identical types when A is declared as: 1436 // 1437 // template<typename T, typename U = T> struct A; 1438 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1439 CanonType = Context.getTemplateSpecializationType(CanonName, 1440 Converted.getFlatArguments(), 1441 Converted.flatSize()); 1442 1443 // FIXME: CanonType is not actually the canonical type, and unfortunately 1444 // it is a TemplateSpecializationType that we will never use again. 1445 // In the future, we need to teach getTemplateSpecializationType to only 1446 // build the canonical type and return that to us. 1447 CanonType = Context.getCanonicalType(CanonType); 1448 1449 // This might work out to be a current instantiation, in which 1450 // case the canonical type needs to be the InjectedClassNameType. 1451 // 1452 // TODO: in theory this could be a simple hashtable lookup; most 1453 // changes to CurContext don't change the set of current 1454 // instantiations. 1455 if (isa<ClassTemplateDecl>(Template)) { 1456 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 1457 // If we get out to a namespace, we're done. 1458 if (Ctx->isFileContext()) break; 1459 1460 // If this isn't a record, keep looking. 1461 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 1462 if (!Record) continue; 1463 1464 // Look for one of the two cases with InjectedClassNameTypes 1465 // and check whether it's the same template. 1466 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 1467 !Record->getDescribedClassTemplate()) 1468 continue; 1469 1470 // Fetch the injected class name type and check whether its 1471 // injected type is equal to the type we just built. 1472 QualType ICNT = Context.getTypeDeclType(Record); 1473 QualType Injected = cast<InjectedClassNameType>(ICNT) 1474 ->getInjectedSpecializationType(); 1475 1476 if (CanonType != Injected->getCanonicalTypeInternal()) 1477 continue; 1478 1479 // If so, the canonical type of this TST is the injected 1480 // class name type of the record we just found. 1481 assert(ICNT.isCanonical()); 1482 CanonType = ICNT; 1483 break; 1484 } 1485 } 1486 } else if (ClassTemplateDecl *ClassTemplate 1487 = dyn_cast<ClassTemplateDecl>(Template)) { 1488 // Find the class template specialization declaration that 1489 // corresponds to these arguments. 1490 void *InsertPos = 0; 1491 ClassTemplateSpecializationDecl *Decl 1492 = ClassTemplate->findSpecialization(Converted.getFlatArguments(), 1493 Converted.flatSize(), InsertPos); 1494 if (!Decl) { 1495 // This is the first time we have referenced this class template 1496 // specialization. Create the canonical declaration and add it to 1497 // the set of specializations. 1498 Decl = ClassTemplateSpecializationDecl::Create(Context, 1499 ClassTemplate->getTemplatedDecl()->getTagKind(), 1500 ClassTemplate->getDeclContext(), 1501 ClassTemplate->getLocation(), 1502 ClassTemplate, 1503 Converted, 0); 1504 ClassTemplate->AddSpecialization(Decl, InsertPos); 1505 Decl->setLexicalDeclContext(CurContext); 1506 } 1507 1508 CanonType = Context.getTypeDeclType(Decl); 1509 assert(isa<RecordType>(CanonType) && 1510 "type of non-dependent specialization is not a RecordType"); 1511 } 1512 1513 // Build the fully-sugared type for this class template 1514 // specialization, which refers back to the class template 1515 // specialization we created or found. 1516 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 1517} 1518 1519Action::TypeResult 1520Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1521 SourceLocation LAngleLoc, 1522 ASTTemplateArgsPtr TemplateArgsIn, 1523 SourceLocation RAngleLoc) { 1524 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1525 1526 // Translate the parser's template argument list in our AST format. 1527 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 1528 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 1529 1530 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 1531 TemplateArgsIn.release(); 1532 1533 if (Result.isNull()) 1534 return true; 1535 1536 TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result); 1537 TemplateSpecializationTypeLoc TL 1538 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc()); 1539 TL.setTemplateNameLoc(TemplateLoc); 1540 TL.setLAngleLoc(LAngleLoc); 1541 TL.setRAngleLoc(RAngleLoc); 1542 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 1543 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 1544 1545 return CreateParsedType(Result, DI); 1546} 1547 1548Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult, 1549 TagUseKind TUK, 1550 DeclSpec::TST TagSpec, 1551 SourceLocation TagLoc) { 1552 if (TypeResult.isInvalid()) 1553 return Sema::TypeResult(); 1554 1555 // FIXME: preserve source info, ideally without copying the DI. 1556 TypeSourceInfo *DI; 1557 QualType Type = GetTypeFromParser(TypeResult.get(), &DI); 1558 1559 // Verify the tag specifier. 1560 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 1561 1562 if (const RecordType *RT = Type->getAs<RecordType>()) { 1563 RecordDecl *D = RT->getDecl(); 1564 1565 IdentifierInfo *Id = D->getIdentifier(); 1566 assert(Id && "templated class must have an identifier"); 1567 1568 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 1569 Diag(TagLoc, diag::err_use_with_wrong_tag) 1570 << Type 1571 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 1572 Diag(D->getLocation(), diag::note_previous_use); 1573 } 1574 } 1575 1576 ElaboratedTypeKeyword Keyword 1577 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 1578 QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type); 1579 1580 return ParsedType::make(ElabType); 1581} 1582 1583ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 1584 LookupResult &R, 1585 bool RequiresADL, 1586 const TemplateArgumentListInfo &TemplateArgs) { 1587 // FIXME: Can we do any checking at this point? I guess we could check the 1588 // template arguments that we have against the template name, if the template 1589 // name refers to a single template. That's not a terribly common case, 1590 // though. 1591 1592 // These should be filtered out by our callers. 1593 assert(!R.empty() && "empty lookup results when building templateid"); 1594 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 1595 1596 NestedNameSpecifier *Qualifier = 0; 1597 SourceRange QualifierRange; 1598 if (SS.isSet()) { 1599 Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 1600 QualifierRange = SS.getRange(); 1601 } 1602 1603 // We don't want lookup warnings at this point. 1604 R.suppressDiagnostics(); 1605 1606 bool Dependent 1607 = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 1608 &TemplateArgs); 1609 UnresolvedLookupExpr *ULE 1610 = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(), 1611 Qualifier, QualifierRange, 1612 R.getLookupNameInfo(), 1613 RequiresADL, TemplateArgs, 1614 R.begin(), R.end()); 1615 1616 return Owned(ULE); 1617} 1618 1619// We actually only call this from template instantiation. 1620ExprResult 1621Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 1622 const DeclarationNameInfo &NameInfo, 1623 const TemplateArgumentListInfo &TemplateArgs) { 1624 DeclContext *DC; 1625 if (!(DC = computeDeclContext(SS, false)) || 1626 DC->isDependentContext() || 1627 RequireCompleteDeclContext(SS, DC)) 1628 return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs); 1629 1630 bool MemberOfUnknownSpecialization; 1631 LookupResult R(*this, NameInfo, LookupOrdinaryName); 1632 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 1633 MemberOfUnknownSpecialization); 1634 1635 if (R.isAmbiguous()) 1636 return ExprError(); 1637 1638 if (R.empty()) { 1639 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 1640 << NameInfo.getName() << SS.getRange(); 1641 return ExprError(); 1642 } 1643 1644 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 1645 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 1646 << (NestedNameSpecifier*) SS.getScopeRep() 1647 << NameInfo.getName() << SS.getRange(); 1648 Diag(Temp->getLocation(), diag::note_referenced_class_template); 1649 return ExprError(); 1650 } 1651 1652 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 1653} 1654 1655/// \brief Form a dependent template name. 1656/// 1657/// This action forms a dependent template name given the template 1658/// name and its (presumably dependent) scope specifier. For 1659/// example, given "MetaFun::template apply", the scope specifier \p 1660/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1661/// of the "template" keyword, and "apply" is the \p Name. 1662TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 1663 SourceLocation TemplateKWLoc, 1664 CXXScopeSpec &SS, 1665 UnqualifiedId &Name, 1666 ParsedType ObjectType, 1667 bool EnteringContext, 1668 TemplateTy &Result) { 1669 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() && 1670 !getLangOptions().CPlusPlus0x) 1671 Diag(TemplateKWLoc, diag::ext_template_outside_of_template) 1672 << FixItHint::CreateRemoval(TemplateKWLoc); 1673 1674 DeclContext *LookupCtx = 0; 1675 if (SS.isSet()) 1676 LookupCtx = computeDeclContext(SS, EnteringContext); 1677 if (!LookupCtx && ObjectType) 1678 LookupCtx = computeDeclContext(ObjectType.get()); 1679 if (LookupCtx) { 1680 // C++0x [temp.names]p5: 1681 // If a name prefixed by the keyword template is not the name of 1682 // a template, the program is ill-formed. [Note: the keyword 1683 // template may not be applied to non-template members of class 1684 // templates. -end note ] [ Note: as is the case with the 1685 // typename prefix, the template prefix is allowed in cases 1686 // where it is not strictly necessary; i.e., when the 1687 // nested-name-specifier or the expression on the left of the -> 1688 // or . is not dependent on a template-parameter, or the use 1689 // does not appear in the scope of a template. -end note] 1690 // 1691 // Note: C++03 was more strict here, because it banned the use of 1692 // the "template" keyword prior to a template-name that was not a 1693 // dependent name. C++ DR468 relaxed this requirement (the 1694 // "template" keyword is now permitted). We follow the C++0x 1695 // rules, even in C++03 mode with a warning, retroactively applying the DR. 1696 bool MemberOfUnknownSpecialization; 1697 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name, 1698 ObjectType, EnteringContext, Result, 1699 MemberOfUnknownSpecialization); 1700 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 1701 isa<CXXRecordDecl>(LookupCtx) && 1702 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) { 1703 // This is a dependent template. Handle it below. 1704 } else if (TNK == TNK_Non_template) { 1705 Diag(Name.getSourceRange().getBegin(), 1706 diag::err_template_kw_refers_to_non_template) 1707 << GetNameFromUnqualifiedId(Name).getName() 1708 << Name.getSourceRange() 1709 << TemplateKWLoc; 1710 return TNK_Non_template; 1711 } else { 1712 // We found something; return it. 1713 return TNK; 1714 } 1715 } 1716 1717 NestedNameSpecifier *Qualifier 1718 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1719 1720 switch (Name.getKind()) { 1721 case UnqualifiedId::IK_Identifier: 1722 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1723 Name.Identifier)); 1724 return TNK_Dependent_template_name; 1725 1726 case UnqualifiedId::IK_OperatorFunctionId: 1727 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1728 Name.OperatorFunctionId.Operator)); 1729 return TNK_Dependent_template_name; 1730 1731 case UnqualifiedId::IK_LiteralOperatorId: 1732 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 1733 1734 default: 1735 break; 1736 } 1737 1738 Diag(Name.getSourceRange().getBegin(), 1739 diag::err_template_kw_refers_to_non_template) 1740 << GetNameFromUnqualifiedId(Name).getName() 1741 << Name.getSourceRange() 1742 << TemplateKWLoc; 1743 return TNK_Non_template; 1744} 1745 1746bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1747 const TemplateArgumentLoc &AL, 1748 TemplateArgumentListBuilder &Converted) { 1749 const TemplateArgument &Arg = AL.getArgument(); 1750 1751 // Check template type parameter. 1752 switch(Arg.getKind()) { 1753 case TemplateArgument::Type: 1754 // C++ [temp.arg.type]p1: 1755 // A template-argument for a template-parameter which is a 1756 // type shall be a type-id. 1757 break; 1758 case TemplateArgument::Template: { 1759 // We have a template type parameter but the template argument 1760 // is a template without any arguments. 1761 SourceRange SR = AL.getSourceRange(); 1762 TemplateName Name = Arg.getAsTemplate(); 1763 Diag(SR.getBegin(), diag::err_template_missing_args) 1764 << Name << SR; 1765 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 1766 Diag(Decl->getLocation(), diag::note_template_decl_here); 1767 1768 return true; 1769 } 1770 default: { 1771 // We have a template type parameter but the template argument 1772 // is not a type. 1773 SourceRange SR = AL.getSourceRange(); 1774 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 1775 Diag(Param->getLocation(), diag::note_template_param_here); 1776 1777 return true; 1778 } 1779 } 1780 1781 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 1782 return true; 1783 1784 // Add the converted template type argument. 1785 Converted.Append( 1786 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 1787 return false; 1788} 1789 1790/// \brief Substitute template arguments into the default template argument for 1791/// the given template type parameter. 1792/// 1793/// \param SemaRef the semantic analysis object for which we are performing 1794/// the substitution. 1795/// 1796/// \param Template the template that we are synthesizing template arguments 1797/// for. 1798/// 1799/// \param TemplateLoc the location of the template name that started the 1800/// template-id we are checking. 1801/// 1802/// \param RAngleLoc the location of the right angle bracket ('>') that 1803/// terminates the template-id. 1804/// 1805/// \param Param the template template parameter whose default we are 1806/// substituting into. 1807/// 1808/// \param Converted the list of template arguments provided for template 1809/// parameters that precede \p Param in the template parameter list. 1810/// 1811/// \returns the substituted template argument, or NULL if an error occurred. 1812static TypeSourceInfo * 1813SubstDefaultTemplateArgument(Sema &SemaRef, 1814 TemplateDecl *Template, 1815 SourceLocation TemplateLoc, 1816 SourceLocation RAngleLoc, 1817 TemplateTypeParmDecl *Param, 1818 TemplateArgumentListBuilder &Converted) { 1819 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 1820 1821 // If the argument type is dependent, instantiate it now based 1822 // on the previously-computed template arguments. 1823 if (ArgType->getType()->isDependentType()) { 1824 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1825 /*TakeArgs=*/false); 1826 1827 MultiLevelTemplateArgumentList AllTemplateArgs 1828 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1829 1830 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1831 Template, Converted.getFlatArguments(), 1832 Converted.flatSize(), 1833 SourceRange(TemplateLoc, RAngleLoc)); 1834 1835 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 1836 Param->getDefaultArgumentLoc(), 1837 Param->getDeclName()); 1838 } 1839 1840 return ArgType; 1841} 1842 1843/// \brief Substitute template arguments into the default template argument for 1844/// the given non-type template parameter. 1845/// 1846/// \param SemaRef the semantic analysis object for which we are performing 1847/// the substitution. 1848/// 1849/// \param Template the template that we are synthesizing template arguments 1850/// for. 1851/// 1852/// \param TemplateLoc the location of the template name that started the 1853/// template-id we are checking. 1854/// 1855/// \param RAngleLoc the location of the right angle bracket ('>') that 1856/// terminates the template-id. 1857/// 1858/// \param Param the non-type template parameter whose default we are 1859/// substituting into. 1860/// 1861/// \param Converted the list of template arguments provided for template 1862/// parameters that precede \p Param in the template parameter list. 1863/// 1864/// \returns the substituted template argument, or NULL if an error occurred. 1865static ExprResult 1866SubstDefaultTemplateArgument(Sema &SemaRef, 1867 TemplateDecl *Template, 1868 SourceLocation TemplateLoc, 1869 SourceLocation RAngleLoc, 1870 NonTypeTemplateParmDecl *Param, 1871 TemplateArgumentListBuilder &Converted) { 1872 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1873 /*TakeArgs=*/false); 1874 1875 MultiLevelTemplateArgumentList AllTemplateArgs 1876 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1877 1878 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1879 Template, Converted.getFlatArguments(), 1880 Converted.flatSize(), 1881 SourceRange(TemplateLoc, RAngleLoc)); 1882 1883 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 1884} 1885 1886/// \brief Substitute template arguments into the default template argument for 1887/// the given template template parameter. 1888/// 1889/// \param SemaRef the semantic analysis object for which we are performing 1890/// the substitution. 1891/// 1892/// \param Template the template that we are synthesizing template arguments 1893/// for. 1894/// 1895/// \param TemplateLoc the location of the template name that started the 1896/// template-id we are checking. 1897/// 1898/// \param RAngleLoc the location of the right angle bracket ('>') that 1899/// terminates the template-id. 1900/// 1901/// \param Param the template template parameter whose default we are 1902/// substituting into. 1903/// 1904/// \param Converted the list of template arguments provided for template 1905/// parameters that precede \p Param in the template parameter list. 1906/// 1907/// \returns the substituted template argument, or NULL if an error occurred. 1908static TemplateName 1909SubstDefaultTemplateArgument(Sema &SemaRef, 1910 TemplateDecl *Template, 1911 SourceLocation TemplateLoc, 1912 SourceLocation RAngleLoc, 1913 TemplateTemplateParmDecl *Param, 1914 TemplateArgumentListBuilder &Converted) { 1915 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1916 /*TakeArgs=*/false); 1917 1918 MultiLevelTemplateArgumentList AllTemplateArgs 1919 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1920 1921 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1922 Template, Converted.getFlatArguments(), 1923 Converted.flatSize(), 1924 SourceRange(TemplateLoc, RAngleLoc)); 1925 1926 return SemaRef.SubstTemplateName( 1927 Param->getDefaultArgument().getArgument().getAsTemplate(), 1928 Param->getDefaultArgument().getTemplateNameLoc(), 1929 AllTemplateArgs); 1930} 1931 1932/// \brief If the given template parameter has a default template 1933/// argument, substitute into that default template argument and 1934/// return the corresponding template argument. 1935TemplateArgumentLoc 1936Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 1937 SourceLocation TemplateLoc, 1938 SourceLocation RAngleLoc, 1939 Decl *Param, 1940 TemplateArgumentListBuilder &Converted) { 1941 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 1942 if (!TypeParm->hasDefaultArgument()) 1943 return TemplateArgumentLoc(); 1944 1945 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 1946 TemplateLoc, 1947 RAngleLoc, 1948 TypeParm, 1949 Converted); 1950 if (DI) 1951 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 1952 1953 return TemplateArgumentLoc(); 1954 } 1955 1956 if (NonTypeTemplateParmDecl *NonTypeParm 1957 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 1958 if (!NonTypeParm->hasDefaultArgument()) 1959 return TemplateArgumentLoc(); 1960 1961 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 1962 TemplateLoc, 1963 RAngleLoc, 1964 NonTypeParm, 1965 Converted); 1966 if (Arg.isInvalid()) 1967 return TemplateArgumentLoc(); 1968 1969 Expr *ArgE = Arg.takeAs<Expr>(); 1970 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 1971 } 1972 1973 TemplateTemplateParmDecl *TempTempParm 1974 = cast<TemplateTemplateParmDecl>(Param); 1975 if (!TempTempParm->hasDefaultArgument()) 1976 return TemplateArgumentLoc(); 1977 1978 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 1979 TemplateLoc, 1980 RAngleLoc, 1981 TempTempParm, 1982 Converted); 1983 if (TName.isNull()) 1984 return TemplateArgumentLoc(); 1985 1986 return TemplateArgumentLoc(TemplateArgument(TName), 1987 TempTempParm->getDefaultArgument().getTemplateQualifierRange(), 1988 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 1989} 1990 1991/// \brief Check that the given template argument corresponds to the given 1992/// template parameter. 1993bool Sema::CheckTemplateArgument(NamedDecl *Param, 1994 const TemplateArgumentLoc &Arg, 1995 TemplateDecl *Template, 1996 SourceLocation TemplateLoc, 1997 SourceLocation RAngleLoc, 1998 TemplateArgumentListBuilder &Converted, 1999 CheckTemplateArgumentKind CTAK) { 2000 // Check template type parameters. 2001 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2002 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2003 2004 // Check non-type template parameters. 2005 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2006 // Do substitution on the type of the non-type template parameter 2007 // with the template arguments we've seen thus far. 2008 QualType NTTPType = NTTP->getType(); 2009 if (NTTPType->isDependentType()) { 2010 // Do substitution on the type of the non-type template parameter. 2011 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2012 NTTP, Converted.getFlatArguments(), 2013 Converted.flatSize(), 2014 SourceRange(TemplateLoc, RAngleLoc)); 2015 2016 TemplateArgumentList TemplateArgs(Context, Converted, 2017 /*TakeArgs=*/false); 2018 NTTPType = SubstType(NTTPType, 2019 MultiLevelTemplateArgumentList(TemplateArgs), 2020 NTTP->getLocation(), 2021 NTTP->getDeclName()); 2022 // If that worked, check the non-type template parameter type 2023 // for validity. 2024 if (!NTTPType.isNull()) 2025 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2026 NTTP->getLocation()); 2027 if (NTTPType.isNull()) 2028 return true; 2029 } 2030 2031 switch (Arg.getArgument().getKind()) { 2032 case TemplateArgument::Null: 2033 assert(false && "Should never see a NULL template argument here"); 2034 return true; 2035 2036 case TemplateArgument::Expression: { 2037 Expr *E = Arg.getArgument().getAsExpr(); 2038 TemplateArgument Result; 2039 if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK)) 2040 return true; 2041 2042 Converted.Append(Result); 2043 break; 2044 } 2045 2046 case TemplateArgument::Declaration: 2047 case TemplateArgument::Integral: 2048 // We've already checked this template argument, so just copy 2049 // it to the list of converted arguments. 2050 Converted.Append(Arg.getArgument()); 2051 break; 2052 2053 case TemplateArgument::Template: 2054 // We were given a template template argument. It may not be ill-formed; 2055 // see below. 2056 if (DependentTemplateName *DTN 2057 = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) { 2058 // We have a template argument such as \c T::template X, which we 2059 // parsed as a template template argument. However, since we now 2060 // know that we need a non-type template argument, convert this 2061 // template name into an expression. 2062 2063 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 2064 Arg.getTemplateNameLoc()); 2065 2066 Expr *E = DependentScopeDeclRefExpr::Create(Context, 2067 DTN->getQualifier(), 2068 Arg.getTemplateQualifierRange(), 2069 NameInfo); 2070 2071 TemplateArgument Result; 2072 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 2073 return true; 2074 2075 Converted.Append(Result); 2076 break; 2077 } 2078 2079 // We have a template argument that actually does refer to a class 2080 // template, template alias, or template template parameter, and 2081 // therefore cannot be a non-type template argument. 2082 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2083 << Arg.getSourceRange(); 2084 2085 Diag(Param->getLocation(), diag::note_template_param_here); 2086 return true; 2087 2088 case TemplateArgument::Type: { 2089 // We have a non-type template parameter but the template 2090 // argument is a type. 2091 2092 // C++ [temp.arg]p2: 2093 // In a template-argument, an ambiguity between a type-id and 2094 // an expression is resolved to a type-id, regardless of the 2095 // form of the corresponding template-parameter. 2096 // 2097 // We warn specifically about this case, since it can be rather 2098 // confusing for users. 2099 QualType T = Arg.getArgument().getAsType(); 2100 SourceRange SR = Arg.getSourceRange(); 2101 if (T->isFunctionType()) 2102 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2103 else 2104 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2105 Diag(Param->getLocation(), diag::note_template_param_here); 2106 return true; 2107 } 2108 2109 case TemplateArgument::Pack: 2110 llvm_unreachable("Caller must expand template argument packs"); 2111 break; 2112 } 2113 2114 return false; 2115 } 2116 2117 2118 // Check template template parameters. 2119 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2120 2121 // Substitute into the template parameter list of the template 2122 // template parameter, since previously-supplied template arguments 2123 // may appear within the template template parameter. 2124 { 2125 // Set up a template instantiation context. 2126 LocalInstantiationScope Scope(*this); 2127 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2128 TempParm, Converted.getFlatArguments(), 2129 Converted.flatSize(), 2130 SourceRange(TemplateLoc, RAngleLoc)); 2131 2132 TemplateArgumentList TemplateArgs(Context, Converted, 2133 /*TakeArgs=*/false); 2134 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2135 SubstDecl(TempParm, CurContext, 2136 MultiLevelTemplateArgumentList(TemplateArgs))); 2137 if (!TempParm) 2138 return true; 2139 2140 // FIXME: TempParam is leaked. 2141 } 2142 2143 switch (Arg.getArgument().getKind()) { 2144 case TemplateArgument::Null: 2145 assert(false && "Should never see a NULL template argument here"); 2146 return true; 2147 2148 case TemplateArgument::Template: 2149 if (CheckTemplateArgument(TempParm, Arg)) 2150 return true; 2151 2152 Converted.Append(Arg.getArgument()); 2153 break; 2154 2155 case TemplateArgument::Expression: 2156 case TemplateArgument::Type: 2157 // We have a template template parameter but the template 2158 // argument does not refer to a template. 2159 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 2160 return true; 2161 2162 case TemplateArgument::Declaration: 2163 llvm_unreachable( 2164 "Declaration argument with template template parameter"); 2165 break; 2166 case TemplateArgument::Integral: 2167 llvm_unreachable( 2168 "Integral argument with template template parameter"); 2169 break; 2170 2171 case TemplateArgument::Pack: 2172 llvm_unreachable("Caller must expand template argument packs"); 2173 break; 2174 } 2175 2176 return false; 2177} 2178 2179/// \brief Check that the given template argument list is well-formed 2180/// for specializing the given template. 2181bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2182 SourceLocation TemplateLoc, 2183 const TemplateArgumentListInfo &TemplateArgs, 2184 bool PartialTemplateArgs, 2185 TemplateArgumentListBuilder &Converted) { 2186 TemplateParameterList *Params = Template->getTemplateParameters(); 2187 unsigned NumParams = Params->size(); 2188 unsigned NumArgs = TemplateArgs.size(); 2189 bool Invalid = false; 2190 2191 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2192 2193 bool HasParameterPack = 2194 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2195 2196 if ((NumArgs > NumParams && !HasParameterPack) || 2197 (NumArgs < Params->getMinRequiredArguments() && 2198 !PartialTemplateArgs)) { 2199 // FIXME: point at either the first arg beyond what we can handle, 2200 // or the '>', depending on whether we have too many or too few 2201 // arguments. 2202 SourceRange Range; 2203 if (NumArgs > NumParams) 2204 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2205 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2206 << (NumArgs > NumParams) 2207 << (isa<ClassTemplateDecl>(Template)? 0 : 2208 isa<FunctionTemplateDecl>(Template)? 1 : 2209 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2210 << Template << Range; 2211 Diag(Template->getLocation(), diag::note_template_decl_here) 2212 << Params->getSourceRange(); 2213 Invalid = true; 2214 } 2215 2216 // C++ [temp.arg]p1: 2217 // [...] The type and form of each template-argument specified in 2218 // a template-id shall match the type and form specified for the 2219 // corresponding parameter declared by the template in its 2220 // template-parameter-list. 2221 unsigned ArgIdx = 0; 2222 for (TemplateParameterList::iterator Param = Params->begin(), 2223 ParamEnd = Params->end(); 2224 Param != ParamEnd; ++Param, ++ArgIdx) { 2225 if (ArgIdx > NumArgs && PartialTemplateArgs) 2226 break; 2227 2228 // If we have a template parameter pack, check every remaining template 2229 // argument against that template parameter pack. 2230 if ((*Param)->isTemplateParameterPack()) { 2231 Converted.BeginPack(); 2232 for (; ArgIdx < NumArgs; ++ArgIdx) { 2233 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2234 TemplateLoc, RAngleLoc, Converted)) { 2235 Invalid = true; 2236 break; 2237 } 2238 } 2239 Converted.EndPack(); 2240 continue; 2241 } 2242 2243 if (ArgIdx < NumArgs) { 2244 // Check the template argument we were given. 2245 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2246 TemplateLoc, RAngleLoc, Converted)) 2247 return true; 2248 2249 continue; 2250 } 2251 2252 // We have a default template argument that we will use. 2253 TemplateArgumentLoc Arg; 2254 2255 // Retrieve the default template argument from the template 2256 // parameter. For each kind of template parameter, we substitute the 2257 // template arguments provided thus far and any "outer" template arguments 2258 // (when the template parameter was part of a nested template) into 2259 // the default argument. 2260 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2261 if (!TTP->hasDefaultArgument()) { 2262 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2263 break; 2264 } 2265 2266 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2267 Template, 2268 TemplateLoc, 2269 RAngleLoc, 2270 TTP, 2271 Converted); 2272 if (!ArgType) 2273 return true; 2274 2275 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2276 ArgType); 2277 } else if (NonTypeTemplateParmDecl *NTTP 2278 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2279 if (!NTTP->hasDefaultArgument()) { 2280 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2281 break; 2282 } 2283 2284 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 2285 TemplateLoc, 2286 RAngleLoc, 2287 NTTP, 2288 Converted); 2289 if (E.isInvalid()) 2290 return true; 2291 2292 Expr *Ex = E.takeAs<Expr>(); 2293 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2294 } else { 2295 TemplateTemplateParmDecl *TempParm 2296 = cast<TemplateTemplateParmDecl>(*Param); 2297 2298 if (!TempParm->hasDefaultArgument()) { 2299 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2300 break; 2301 } 2302 2303 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2304 TemplateLoc, 2305 RAngleLoc, 2306 TempParm, 2307 Converted); 2308 if (Name.isNull()) 2309 return true; 2310 2311 Arg = TemplateArgumentLoc(TemplateArgument(Name), 2312 TempParm->getDefaultArgument().getTemplateQualifierRange(), 2313 TempParm->getDefaultArgument().getTemplateNameLoc()); 2314 } 2315 2316 // Introduce an instantiation record that describes where we are using 2317 // the default template argument. 2318 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 2319 Converted.getFlatArguments(), 2320 Converted.flatSize(), 2321 SourceRange(TemplateLoc, RAngleLoc)); 2322 2323 // Check the default template argument. 2324 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 2325 RAngleLoc, Converted)) 2326 return true; 2327 } 2328 2329 return Invalid; 2330} 2331 2332/// \brief Check a template argument against its corresponding 2333/// template type parameter. 2334/// 2335/// This routine implements the semantics of C++ [temp.arg.type]. It 2336/// returns true if an error occurred, and false otherwise. 2337bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 2338 TypeSourceInfo *ArgInfo) { 2339 assert(ArgInfo && "invalid TypeSourceInfo"); 2340 QualType Arg = ArgInfo->getType(); 2341 2342 // C++ [temp.arg.type]p2: 2343 // A local type, a type with no linkage, an unnamed type or a type 2344 // compounded from any of these types shall not be used as a 2345 // template-argument for a template type-parameter. 2346 // 2347 // FIXME: Perform the unnamed type check. 2348 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 2349 const TagType *Tag = 0; 2350 if (const EnumType *EnumT = Arg->getAs<EnumType>()) 2351 Tag = EnumT; 2352 else if (const RecordType *RecordT = Arg->getAs<RecordType>()) 2353 Tag = RecordT; 2354 if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) { 2355 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 2356 return Diag(SR.getBegin(), diag::err_template_arg_local_type) 2357 << QualType(Tag, 0) << SR; 2358 } else if (Tag && !Tag->getDecl()->getDeclName() && 2359 !Tag->getDecl()->getTypedefForAnonDecl()) { 2360 Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR; 2361 Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here); 2362 return true; 2363 } else if (Arg->isVariablyModifiedType()) { 2364 Diag(SR.getBegin(), diag::err_variably_modified_template_arg) 2365 << Arg; 2366 return true; 2367 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 2368 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 2369 } 2370 2371 return false; 2372} 2373 2374/// \brief Checks whether the given template argument is the address 2375/// of an object or function according to C++ [temp.arg.nontype]p1. 2376static bool 2377CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 2378 NonTypeTemplateParmDecl *Param, 2379 QualType ParamType, 2380 Expr *ArgIn, 2381 TemplateArgument &Converted) { 2382 bool Invalid = false; 2383 Expr *Arg = ArgIn; 2384 QualType ArgType = Arg->getType(); 2385 2386 // See through any implicit casts we added to fix the type. 2387 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2388 Arg = Cast->getSubExpr(); 2389 2390 // C++ [temp.arg.nontype]p1: 2391 // 2392 // A template-argument for a non-type, non-template 2393 // template-parameter shall be one of: [...] 2394 // 2395 // -- the address of an object or function with external 2396 // linkage, including function templates and function 2397 // template-ids but excluding non-static class members, 2398 // expressed as & id-expression where the & is optional if 2399 // the name refers to a function or array, or if the 2400 // corresponding template-parameter is a reference; or 2401 DeclRefExpr *DRE = 0; 2402 2403 // Ignore (and complain about) any excess parentheses. 2404 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2405 if (!Invalid) { 2406 S.Diag(Arg->getSourceRange().getBegin(), 2407 diag::err_template_arg_extra_parens) 2408 << Arg->getSourceRange(); 2409 Invalid = true; 2410 } 2411 2412 Arg = Parens->getSubExpr(); 2413 } 2414 2415 bool AddressTaken = false; 2416 SourceLocation AddrOpLoc; 2417 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2418 if (UnOp->getOpcode() == UnaryOperator::AddrOf) { 2419 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2420 AddressTaken = true; 2421 AddrOpLoc = UnOp->getOperatorLoc(); 2422 } 2423 } else 2424 DRE = dyn_cast<DeclRefExpr>(Arg); 2425 2426 if (!DRE) { 2427 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 2428 << Arg->getSourceRange(); 2429 S.Diag(Param->getLocation(), diag::note_template_param_here); 2430 return true; 2431 } 2432 2433 // Stop checking the precise nature of the argument if it is value dependent, 2434 // it should be checked when instantiated. 2435 if (Arg->isValueDependent()) { 2436 Converted = TemplateArgument(ArgIn->Retain()); 2437 return false; 2438 } 2439 2440 if (!isa<ValueDecl>(DRE->getDecl())) { 2441 S.Diag(Arg->getSourceRange().getBegin(), 2442 diag::err_template_arg_not_object_or_func_form) 2443 << Arg->getSourceRange(); 2444 S.Diag(Param->getLocation(), diag::note_template_param_here); 2445 return true; 2446 } 2447 2448 NamedDecl *Entity = 0; 2449 2450 // Cannot refer to non-static data members 2451 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) { 2452 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 2453 << Field << Arg->getSourceRange(); 2454 S.Diag(Param->getLocation(), diag::note_template_param_here); 2455 return true; 2456 } 2457 2458 // Cannot refer to non-static member functions 2459 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 2460 if (!Method->isStatic()) { 2461 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method) 2462 << Method << Arg->getSourceRange(); 2463 S.Diag(Param->getLocation(), diag::note_template_param_here); 2464 return true; 2465 } 2466 2467 // Functions must have external linkage. 2468 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 2469 if (!isExternalLinkage(Func->getLinkage())) { 2470 S.Diag(Arg->getSourceRange().getBegin(), 2471 diag::err_template_arg_function_not_extern) 2472 << Func << Arg->getSourceRange(); 2473 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object) 2474 << true; 2475 return true; 2476 } 2477 2478 // Okay: we've named a function with external linkage. 2479 Entity = Func; 2480 2481 // If the template parameter has pointer type, the function decays. 2482 if (ParamType->isPointerType() && !AddressTaken) 2483 ArgType = S.Context.getPointerType(Func->getType()); 2484 else if (AddressTaken && ParamType->isReferenceType()) { 2485 // If we originally had an address-of operator, but the 2486 // parameter has reference type, complain and (if things look 2487 // like they will work) drop the address-of operator. 2488 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 2489 ParamType.getNonReferenceType())) { 2490 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2491 << ParamType; 2492 S.Diag(Param->getLocation(), diag::note_template_param_here); 2493 return true; 2494 } 2495 2496 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2497 << ParamType 2498 << FixItHint::CreateRemoval(AddrOpLoc); 2499 S.Diag(Param->getLocation(), diag::note_template_param_here); 2500 2501 ArgType = Func->getType(); 2502 } 2503 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 2504 if (!isExternalLinkage(Var->getLinkage())) { 2505 S.Diag(Arg->getSourceRange().getBegin(), 2506 diag::err_template_arg_object_not_extern) 2507 << Var << Arg->getSourceRange(); 2508 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object) 2509 << true; 2510 return true; 2511 } 2512 2513 // A value of reference type is not an object. 2514 if (Var->getType()->isReferenceType()) { 2515 S.Diag(Arg->getSourceRange().getBegin(), 2516 diag::err_template_arg_reference_var) 2517 << Var->getType() << Arg->getSourceRange(); 2518 S.Diag(Param->getLocation(), diag::note_template_param_here); 2519 return true; 2520 } 2521 2522 // Okay: we've named an object with external linkage 2523 Entity = Var; 2524 2525 // If the template parameter has pointer type, we must have taken 2526 // the address of this object. 2527 if (ParamType->isReferenceType()) { 2528 if (AddressTaken) { 2529 // If we originally had an address-of operator, but the 2530 // parameter has reference type, complain and (if things look 2531 // like they will work) drop the address-of operator. 2532 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 2533 ParamType.getNonReferenceType())) { 2534 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2535 << ParamType; 2536 S.Diag(Param->getLocation(), diag::note_template_param_here); 2537 return true; 2538 } 2539 2540 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2541 << ParamType 2542 << FixItHint::CreateRemoval(AddrOpLoc); 2543 S.Diag(Param->getLocation(), diag::note_template_param_here); 2544 2545 ArgType = Var->getType(); 2546 } 2547 } else if (!AddressTaken && ParamType->isPointerType()) { 2548 if (Var->getType()->isArrayType()) { 2549 // Array-to-pointer decay. 2550 ArgType = S.Context.getArrayDecayedType(Var->getType()); 2551 } else { 2552 // If the template parameter has pointer type but the address of 2553 // this object was not taken, complain and (possibly) recover by 2554 // taking the address of the entity. 2555 ArgType = S.Context.getPointerType(Var->getType()); 2556 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 2557 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 2558 << ParamType; 2559 S.Diag(Param->getLocation(), diag::note_template_param_here); 2560 return true; 2561 } 2562 2563 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 2564 << ParamType 2565 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 2566 2567 S.Diag(Param->getLocation(), diag::note_template_param_here); 2568 } 2569 } 2570 } else { 2571 // We found something else, but we don't know specifically what it is. 2572 S.Diag(Arg->getSourceRange().getBegin(), 2573 diag::err_template_arg_not_object_or_func) 2574 << Arg->getSourceRange(); 2575 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 2576 return true; 2577 } 2578 2579 if (ParamType->isPointerType() && 2580 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 2581 S.IsQualificationConversion(ArgType, ParamType)) { 2582 // For pointer-to-object types, qualification conversions are 2583 // permitted. 2584 } else { 2585 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 2586 if (!ParamRef->getPointeeType()->isFunctionType()) { 2587 // C++ [temp.arg.nontype]p5b3: 2588 // For a non-type template-parameter of type reference to 2589 // object, no conversions apply. The type referred to by the 2590 // reference may be more cv-qualified than the (otherwise 2591 // identical) type of the template- argument. The 2592 // template-parameter is bound directly to the 2593 // template-argument, which shall be an lvalue. 2594 2595 // FIXME: Other qualifiers? 2596 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 2597 unsigned ArgQuals = ArgType.getCVRQualifiers(); 2598 2599 if ((ParamQuals | ArgQuals) != ParamQuals) { 2600 S.Diag(Arg->getSourceRange().getBegin(), 2601 diag::err_template_arg_ref_bind_ignores_quals) 2602 << ParamType << Arg->getType() 2603 << Arg->getSourceRange(); 2604 S.Diag(Param->getLocation(), diag::note_template_param_here); 2605 return true; 2606 } 2607 } 2608 } 2609 2610 // At this point, the template argument refers to an object or 2611 // function with external linkage. We now need to check whether the 2612 // argument and parameter types are compatible. 2613 if (!S.Context.hasSameUnqualifiedType(ArgType, 2614 ParamType.getNonReferenceType())) { 2615 // We can't perform this conversion or binding. 2616 if (ParamType->isReferenceType()) 2617 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 2618 << ParamType << Arg->getType() << Arg->getSourceRange(); 2619 else 2620 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 2621 << Arg->getType() << ParamType << Arg->getSourceRange(); 2622 S.Diag(Param->getLocation(), diag::note_template_param_here); 2623 return true; 2624 } 2625 } 2626 2627 // Create the template argument. 2628 Converted = TemplateArgument(Entity->getCanonicalDecl()); 2629 S.MarkDeclarationReferenced(Arg->getLocStart(), Entity); 2630 return false; 2631} 2632 2633/// \brief Checks whether the given template argument is a pointer to 2634/// member constant according to C++ [temp.arg.nontype]p1. 2635bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 2636 TemplateArgument &Converted) { 2637 bool Invalid = false; 2638 2639 // See through any implicit casts we added to fix the type. 2640 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2641 Arg = Cast->getSubExpr(); 2642 2643 // C++ [temp.arg.nontype]p1: 2644 // 2645 // A template-argument for a non-type, non-template 2646 // template-parameter shall be one of: [...] 2647 // 2648 // -- a pointer to member expressed as described in 5.3.1. 2649 DeclRefExpr *DRE = 0; 2650 2651 // Ignore (and complain about) any excess parentheses. 2652 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2653 if (!Invalid) { 2654 Diag(Arg->getSourceRange().getBegin(), 2655 diag::err_template_arg_extra_parens) 2656 << Arg->getSourceRange(); 2657 Invalid = true; 2658 } 2659 2660 Arg = Parens->getSubExpr(); 2661 } 2662 2663 // A pointer-to-member constant written &Class::member. 2664 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2665 if (UnOp->getOpcode() == UnaryOperator::AddrOf) { 2666 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2667 if (DRE && !DRE->getQualifier()) 2668 DRE = 0; 2669 } 2670 } 2671 // A constant of pointer-to-member type. 2672 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 2673 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 2674 if (VD->getType()->isMemberPointerType()) { 2675 if (isa<NonTypeTemplateParmDecl>(VD) || 2676 (isa<VarDecl>(VD) && 2677 Context.getCanonicalType(VD->getType()).isConstQualified())) { 2678 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2679 Converted = TemplateArgument(Arg->Retain()); 2680 else 2681 Converted = TemplateArgument(VD->getCanonicalDecl()); 2682 return Invalid; 2683 } 2684 } 2685 } 2686 2687 DRE = 0; 2688 } 2689 2690 if (!DRE) 2691 return Diag(Arg->getSourceRange().getBegin(), 2692 diag::err_template_arg_not_pointer_to_member_form) 2693 << Arg->getSourceRange(); 2694 2695 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 2696 assert((isa<FieldDecl>(DRE->getDecl()) || 2697 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 2698 "Only non-static member pointers can make it here"); 2699 2700 // Okay: this is the address of a non-static member, and therefore 2701 // a member pointer constant. 2702 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2703 Converted = TemplateArgument(Arg->Retain()); 2704 else 2705 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 2706 return Invalid; 2707 } 2708 2709 // We found something else, but we don't know specifically what it is. 2710 Diag(Arg->getSourceRange().getBegin(), 2711 diag::err_template_arg_not_pointer_to_member_form) 2712 << Arg->getSourceRange(); 2713 Diag(DRE->getDecl()->getLocation(), 2714 diag::note_template_arg_refers_here); 2715 return true; 2716} 2717 2718/// \brief Check a template argument against its corresponding 2719/// non-type template parameter. 2720/// 2721/// This routine implements the semantics of C++ [temp.arg.nontype]. 2722/// It returns true if an error occurred, and false otherwise. \p 2723/// InstantiatedParamType is the type of the non-type template 2724/// parameter after it has been instantiated. 2725/// 2726/// If no error was detected, Converted receives the converted template argument. 2727bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 2728 QualType InstantiatedParamType, Expr *&Arg, 2729 TemplateArgument &Converted, 2730 CheckTemplateArgumentKind CTAK) { 2731 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 2732 2733 // If either the parameter has a dependent type or the argument is 2734 // type-dependent, there's nothing we can check now. 2735 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 2736 // FIXME: Produce a cloned, canonical expression? 2737 Converted = TemplateArgument(Arg); 2738 return false; 2739 } 2740 2741 // C++ [temp.arg.nontype]p5: 2742 // The following conversions are performed on each expression used 2743 // as a non-type template-argument. If a non-type 2744 // template-argument cannot be converted to the type of the 2745 // corresponding template-parameter then the program is 2746 // ill-formed. 2747 // 2748 // -- for a non-type template-parameter of integral or 2749 // enumeration type, integral promotions (4.5) and integral 2750 // conversions (4.7) are applied. 2751 QualType ParamType = InstantiatedParamType; 2752 QualType ArgType = Arg->getType(); 2753 if (ParamType->isIntegralOrEnumerationType()) { 2754 // C++ [temp.arg.nontype]p1: 2755 // A template-argument for a non-type, non-template 2756 // template-parameter shall be one of: 2757 // 2758 // -- an integral constant-expression of integral or enumeration 2759 // type; or 2760 // -- the name of a non-type template-parameter; or 2761 SourceLocation NonConstantLoc; 2762 llvm::APSInt Value; 2763 if (!ArgType->isIntegralOrEnumerationType()) { 2764 Diag(Arg->getSourceRange().getBegin(), 2765 diag::err_template_arg_not_integral_or_enumeral) 2766 << ArgType << Arg->getSourceRange(); 2767 Diag(Param->getLocation(), diag::note_template_param_here); 2768 return true; 2769 } else if (!Arg->isValueDependent() && 2770 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 2771 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 2772 << ArgType << Arg->getSourceRange(); 2773 return true; 2774 } 2775 2776 // From here on out, all we care about are the unqualified forms 2777 // of the parameter and argument types. 2778 ParamType = ParamType.getUnqualifiedType(); 2779 ArgType = ArgType.getUnqualifiedType(); 2780 2781 // Try to convert the argument to the parameter's type. 2782 if (Context.hasSameType(ParamType, ArgType)) { 2783 // Okay: no conversion necessary 2784 } else if (CTAK == CTAK_Deduced) { 2785 // C++ [temp.deduct.type]p17: 2786 // If, in the declaration of a function template with a non-type 2787 // template-parameter, the non-type template- parameter is used 2788 // in an expression in the function parameter-list and, if the 2789 // corresponding template-argument is deduced, the 2790 // template-argument type shall match the type of the 2791 // template-parameter exactly, except that a template-argument 2792 // deduced from an array bound may be of any integral type. 2793 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 2794 << ArgType << ParamType; 2795 Diag(Param->getLocation(), diag::note_template_param_here); 2796 return true; 2797 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 2798 !ParamType->isEnumeralType()) { 2799 // This is an integral promotion or conversion. 2800 ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast); 2801 } else { 2802 // We can't perform this conversion. 2803 Diag(Arg->getSourceRange().getBegin(), 2804 diag::err_template_arg_not_convertible) 2805 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2806 Diag(Param->getLocation(), diag::note_template_param_here); 2807 return true; 2808 } 2809 2810 QualType IntegerType = Context.getCanonicalType(ParamType); 2811 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 2812 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 2813 2814 if (!Arg->isValueDependent()) { 2815 llvm::APSInt OldValue = Value; 2816 2817 // Coerce the template argument's value to the value it will have 2818 // based on the template parameter's type. 2819 unsigned AllowedBits = Context.getTypeSize(IntegerType); 2820 if (Value.getBitWidth() != AllowedBits) 2821 Value.extOrTrunc(AllowedBits); 2822 Value.setIsSigned(IntegerType->isSignedIntegerType()); 2823 2824 // Complain if an unsigned parameter received a negative value. 2825 if (IntegerType->isUnsignedIntegerType() 2826 && (OldValue.isSigned() && OldValue.isNegative())) { 2827 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative) 2828 << OldValue.toString(10) << Value.toString(10) << Param->getType() 2829 << Arg->getSourceRange(); 2830 Diag(Param->getLocation(), diag::note_template_param_here); 2831 } 2832 2833 // Complain if we overflowed the template parameter's type. 2834 unsigned RequiredBits; 2835 if (IntegerType->isUnsignedIntegerType()) 2836 RequiredBits = OldValue.getActiveBits(); 2837 else if (OldValue.isUnsigned()) 2838 RequiredBits = OldValue.getActiveBits() + 1; 2839 else 2840 RequiredBits = OldValue.getMinSignedBits(); 2841 if (RequiredBits > AllowedBits) { 2842 Diag(Arg->getSourceRange().getBegin(), 2843 diag::warn_template_arg_too_large) 2844 << OldValue.toString(10) << Value.toString(10) << Param->getType() 2845 << Arg->getSourceRange(); 2846 Diag(Param->getLocation(), diag::note_template_param_here); 2847 } 2848 } 2849 2850 // Add the value of this argument to the list of converted 2851 // arguments. We use the bitwidth and signedness of the template 2852 // parameter. 2853 if (Arg->isValueDependent()) { 2854 // The argument is value-dependent. Create a new 2855 // TemplateArgument with the converted expression. 2856 Converted = TemplateArgument(Arg); 2857 return false; 2858 } 2859 2860 Converted = TemplateArgument(Value, 2861 ParamType->isEnumeralType() ? ParamType 2862 : IntegerType); 2863 return false; 2864 } 2865 2866 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 2867 2868 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion 2869 // from a template argument of type std::nullptr_t to a non-type 2870 // template parameter of type pointer to object, pointer to 2871 // function, or pointer-to-member, respectively. 2872 if (ArgType->isNullPtrType() && 2873 (ParamType->isPointerType() || ParamType->isMemberPointerType())) { 2874 Converted = TemplateArgument((NamedDecl *)0); 2875 return false; 2876 } 2877 2878 // Handle pointer-to-function, reference-to-function, and 2879 // pointer-to-member-function all in (roughly) the same way. 2880 if (// -- For a non-type template-parameter of type pointer to 2881 // function, only the function-to-pointer conversion (4.3) is 2882 // applied. If the template-argument represents a set of 2883 // overloaded functions (or a pointer to such), the matching 2884 // function is selected from the set (13.4). 2885 (ParamType->isPointerType() && 2886 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 2887 // -- For a non-type template-parameter of type reference to 2888 // function, no conversions apply. If the template-argument 2889 // represents a set of overloaded functions, the matching 2890 // function is selected from the set (13.4). 2891 (ParamType->isReferenceType() && 2892 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 2893 // -- For a non-type template-parameter of type pointer to 2894 // member function, no conversions apply. If the 2895 // template-argument represents a set of overloaded member 2896 // functions, the matching member function is selected from 2897 // the set (13.4). 2898 (ParamType->isMemberPointerType() && 2899 ParamType->getAs<MemberPointerType>()->getPointeeType() 2900 ->isFunctionType())) { 2901 2902 if (Arg->getType() == Context.OverloadTy) { 2903 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 2904 true, 2905 FoundResult)) { 2906 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2907 return true; 2908 2909 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 2910 ArgType = Arg->getType(); 2911 } else 2912 return true; 2913 } 2914 2915 if (!ParamType->isMemberPointerType()) 2916 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 2917 ParamType, 2918 Arg, Converted); 2919 2920 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) { 2921 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp, CastCategory(Arg)); 2922 } else if (!Context.hasSameUnqualifiedType(ArgType, 2923 ParamType.getNonReferenceType())) { 2924 // We can't perform this conversion. 2925 Diag(Arg->getSourceRange().getBegin(), 2926 diag::err_template_arg_not_convertible) 2927 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2928 Diag(Param->getLocation(), diag::note_template_param_here); 2929 return true; 2930 } 2931 2932 return CheckTemplateArgumentPointerToMember(Arg, Converted); 2933 } 2934 2935 if (ParamType->isPointerType()) { 2936 // -- for a non-type template-parameter of type pointer to 2937 // object, qualification conversions (4.4) and the 2938 // array-to-pointer conversion (4.2) are applied. 2939 // C++0x also allows a value of std::nullptr_t. 2940 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 2941 "Only object pointers allowed here"); 2942 2943 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 2944 ParamType, 2945 Arg, Converted); 2946 } 2947 2948 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 2949 // -- For a non-type template-parameter of type reference to 2950 // object, no conversions apply. The type referred to by the 2951 // reference may be more cv-qualified than the (otherwise 2952 // identical) type of the template-argument. The 2953 // template-parameter is bound directly to the 2954 // template-argument, which must be an lvalue. 2955 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 2956 "Only object references allowed here"); 2957 2958 if (Arg->getType() == Context.OverloadTy) { 2959 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 2960 ParamRefType->getPointeeType(), 2961 true, 2962 FoundResult)) { 2963 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2964 return true; 2965 2966 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 2967 ArgType = Arg->getType(); 2968 } else 2969 return true; 2970 } 2971 2972 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 2973 ParamType, 2974 Arg, Converted); 2975 } 2976 2977 // -- For a non-type template-parameter of type pointer to data 2978 // member, qualification conversions (4.4) are applied. 2979 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 2980 2981 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 2982 // Types match exactly: nothing more to do here. 2983 } else if (IsQualificationConversion(ArgType, ParamType)) { 2984 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp, CastCategory(Arg)); 2985 } else { 2986 // We can't perform this conversion. 2987 Diag(Arg->getSourceRange().getBegin(), 2988 diag::err_template_arg_not_convertible) 2989 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2990 Diag(Param->getLocation(), diag::note_template_param_here); 2991 return true; 2992 } 2993 2994 return CheckTemplateArgumentPointerToMember(Arg, Converted); 2995} 2996 2997/// \brief Check a template argument against its corresponding 2998/// template template parameter. 2999/// 3000/// This routine implements the semantics of C++ [temp.arg.template]. 3001/// It returns true if an error occurred, and false otherwise. 3002bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 3003 const TemplateArgumentLoc &Arg) { 3004 TemplateName Name = Arg.getArgument().getAsTemplate(); 3005 TemplateDecl *Template = Name.getAsTemplateDecl(); 3006 if (!Template) { 3007 // Any dependent template name is fine. 3008 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 3009 return false; 3010 } 3011 3012 // C++ [temp.arg.template]p1: 3013 // A template-argument for a template template-parameter shall be 3014 // the name of a class template, expressed as id-expression. Only 3015 // primary class templates are considered when matching the 3016 // template template argument with the corresponding parameter; 3017 // partial specializations are not considered even if their 3018 // parameter lists match that of the template template parameter. 3019 // 3020 // Note that we also allow template template parameters here, which 3021 // will happen when we are dealing with, e.g., class template 3022 // partial specializations. 3023 if (!isa<ClassTemplateDecl>(Template) && 3024 !isa<TemplateTemplateParmDecl>(Template)) { 3025 assert(isa<FunctionTemplateDecl>(Template) && 3026 "Only function templates are possible here"); 3027 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 3028 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 3029 << Template; 3030 } 3031 3032 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 3033 Param->getTemplateParameters(), 3034 true, 3035 TPL_TemplateTemplateArgumentMatch, 3036 Arg.getLocation()); 3037} 3038 3039/// \brief Given a non-type template argument that refers to a 3040/// declaration and the type of its corresponding non-type template 3041/// parameter, produce an expression that properly refers to that 3042/// declaration. 3043ExprResult 3044Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 3045 QualType ParamType, 3046 SourceLocation Loc) { 3047 assert(Arg.getKind() == TemplateArgument::Declaration && 3048 "Only declaration template arguments permitted here"); 3049 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 3050 3051 if (VD->getDeclContext()->isRecord() && 3052 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 3053 // If the value is a class member, we might have a pointer-to-member. 3054 // Determine whether the non-type template template parameter is of 3055 // pointer-to-member type. If so, we need to build an appropriate 3056 // expression for a pointer-to-member, since a "normal" DeclRefExpr 3057 // would refer to the member itself. 3058 if (ParamType->isMemberPointerType()) { 3059 QualType ClassType 3060 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 3061 NestedNameSpecifier *Qualifier 3062 = NestedNameSpecifier::Create(Context, 0, false, 3063 ClassType.getTypePtr()); 3064 CXXScopeSpec SS; 3065 SS.setScopeRep(Qualifier); 3066 ExprResult RefExpr = BuildDeclRefExpr(VD, 3067 VD->getType().getNonReferenceType(), 3068 Loc, 3069 &SS); 3070 if (RefExpr.isInvalid()) 3071 return ExprError(); 3072 3073 RefExpr = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, RefExpr.get()); 3074 3075 // We might need to perform a trailing qualification conversion, since 3076 // the element type on the parameter could be more qualified than the 3077 // element type in the expression we constructed. 3078 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 3079 ParamType.getUnqualifiedType())) { 3080 Expr *RefE = RefExpr.takeAs<Expr>(); 3081 ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), 3082 CastExpr::CK_NoOp); 3083 RefExpr = Owned(RefE); 3084 } 3085 3086 assert(!RefExpr.isInvalid() && 3087 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 3088 ParamType.getUnqualifiedType())); 3089 return move(RefExpr); 3090 } 3091 } 3092 3093 QualType T = VD->getType().getNonReferenceType(); 3094 if (ParamType->isPointerType()) { 3095 // When the non-type template parameter is a pointer, take the 3096 // address of the declaration. 3097 ExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc); 3098 if (RefExpr.isInvalid()) 3099 return ExprError(); 3100 3101 if (T->isFunctionType() || T->isArrayType()) { 3102 // Decay functions and arrays. 3103 Expr *RefE = (Expr *)RefExpr.get(); 3104 DefaultFunctionArrayConversion(RefE); 3105 if (RefE != RefExpr.get()) { 3106 RefExpr.release(); 3107 RefExpr = Owned(RefE); 3108 } 3109 3110 return move(RefExpr); 3111 } 3112 3113 // Take the address of everything else 3114 return CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, RefExpr.get()); 3115 } 3116 3117 // If the non-type template parameter has reference type, qualify the 3118 // resulting declaration reference with the extra qualifiers on the 3119 // type that the reference refers to. 3120 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) 3121 T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers()); 3122 3123 return BuildDeclRefExpr(VD, T, Loc); 3124} 3125 3126/// \brief Construct a new expression that refers to the given 3127/// integral template argument with the given source-location 3128/// information. 3129/// 3130/// This routine takes care of the mapping from an integral template 3131/// argument (which may have any integral type) to the appropriate 3132/// literal value. 3133ExprResult 3134Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 3135 SourceLocation Loc) { 3136 assert(Arg.getKind() == TemplateArgument::Integral && 3137 "Operation is only value for integral template arguments"); 3138 QualType T = Arg.getIntegralType(); 3139 if (T->isCharType() || T->isWideCharType()) 3140 return Owned(new (Context) CharacterLiteral( 3141 Arg.getAsIntegral()->getZExtValue(), 3142 T->isWideCharType(), 3143 T, 3144 Loc)); 3145 if (T->isBooleanType()) 3146 return Owned(new (Context) CXXBoolLiteralExpr( 3147 Arg.getAsIntegral()->getBoolValue(), 3148 T, 3149 Loc)); 3150 3151 return Owned(new (Context) IntegerLiteral(*Arg.getAsIntegral(), T, Loc)); 3152} 3153 3154 3155/// \brief Determine whether the given template parameter lists are 3156/// equivalent. 3157/// 3158/// \param New The new template parameter list, typically written in the 3159/// source code as part of a new template declaration. 3160/// 3161/// \param Old The old template parameter list, typically found via 3162/// name lookup of the template declared with this template parameter 3163/// list. 3164/// 3165/// \param Complain If true, this routine will produce a diagnostic if 3166/// the template parameter lists are not equivalent. 3167/// 3168/// \param Kind describes how we are to match the template parameter lists. 3169/// 3170/// \param TemplateArgLoc If this source location is valid, then we 3171/// are actually checking the template parameter list of a template 3172/// argument (New) against the template parameter list of its 3173/// corresponding template template parameter (Old). We produce 3174/// slightly different diagnostics in this scenario. 3175/// 3176/// \returns True if the template parameter lists are equal, false 3177/// otherwise. 3178bool 3179Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 3180 TemplateParameterList *Old, 3181 bool Complain, 3182 TemplateParameterListEqualKind Kind, 3183 SourceLocation TemplateArgLoc) { 3184 if (Old->size() != New->size()) { 3185 if (Complain) { 3186 unsigned NextDiag = diag::err_template_param_list_different_arity; 3187 if (TemplateArgLoc.isValid()) { 3188 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3189 NextDiag = diag::note_template_param_list_different_arity; 3190 } 3191 Diag(New->getTemplateLoc(), NextDiag) 3192 << (New->size() > Old->size()) 3193 << (Kind != TPL_TemplateMatch) 3194 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 3195 Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 3196 << (Kind != TPL_TemplateMatch) 3197 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 3198 } 3199 3200 return false; 3201 } 3202 3203 for (TemplateParameterList::iterator OldParm = Old->begin(), 3204 OldParmEnd = Old->end(), NewParm = New->begin(); 3205 OldParm != OldParmEnd; ++OldParm, ++NewParm) { 3206 if ((*OldParm)->getKind() != (*NewParm)->getKind()) { 3207 if (Complain) { 3208 unsigned NextDiag = diag::err_template_param_different_kind; 3209 if (TemplateArgLoc.isValid()) { 3210 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3211 NextDiag = diag::note_template_param_different_kind; 3212 } 3213 Diag((*NewParm)->getLocation(), NextDiag) 3214 << (Kind != TPL_TemplateMatch); 3215 Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration) 3216 << (Kind != TPL_TemplateMatch); 3217 } 3218 return false; 3219 } 3220 3221 if (TemplateTypeParmDecl *OldTTP 3222 = dyn_cast<TemplateTypeParmDecl>(*OldParm)) { 3223 // Template type parameters are equivalent if either both are template 3224 // type parameter packs or neither are (since we know we're at the same 3225 // index). 3226 TemplateTypeParmDecl *NewTTP = cast<TemplateTypeParmDecl>(*NewParm); 3227 if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) { 3228 // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that 3229 // allow one to match a template parameter pack in the template 3230 // parameter list of a template template parameter to one or more 3231 // template parameters in the template parameter list of the 3232 // corresponding template template argument. 3233 if (Complain) { 3234 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 3235 if (TemplateArgLoc.isValid()) { 3236 Diag(TemplateArgLoc, 3237 diag::err_template_arg_template_params_mismatch); 3238 NextDiag = diag::note_template_parameter_pack_non_pack; 3239 } 3240 Diag(NewTTP->getLocation(), NextDiag) 3241 << 0 << NewTTP->isParameterPack(); 3242 Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here) 3243 << 0 << OldTTP->isParameterPack(); 3244 } 3245 return false; 3246 } 3247 } else if (NonTypeTemplateParmDecl *OldNTTP 3248 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) { 3249 // The types of non-type template parameters must agree. 3250 NonTypeTemplateParmDecl *NewNTTP 3251 = cast<NonTypeTemplateParmDecl>(*NewParm); 3252 3253 // If we are matching a template template argument to a template 3254 // template parameter and one of the non-type template parameter types 3255 // is dependent, then we must wait until template instantiation time 3256 // to actually compare the arguments. 3257 if (Kind == TPL_TemplateTemplateArgumentMatch && 3258 (OldNTTP->getType()->isDependentType() || 3259 NewNTTP->getType()->isDependentType())) 3260 continue; 3261 3262 if (Context.getCanonicalType(OldNTTP->getType()) != 3263 Context.getCanonicalType(NewNTTP->getType())) { 3264 if (Complain) { 3265 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 3266 if (TemplateArgLoc.isValid()) { 3267 Diag(TemplateArgLoc, 3268 diag::err_template_arg_template_params_mismatch); 3269 NextDiag = diag::note_template_nontype_parm_different_type; 3270 } 3271 Diag(NewNTTP->getLocation(), NextDiag) 3272 << NewNTTP->getType() 3273 << (Kind != TPL_TemplateMatch); 3274 Diag(OldNTTP->getLocation(), 3275 diag::note_template_nontype_parm_prev_declaration) 3276 << OldNTTP->getType(); 3277 } 3278 return false; 3279 } 3280 } else { 3281 // The template parameter lists of template template 3282 // parameters must agree. 3283 assert(isa<TemplateTemplateParmDecl>(*OldParm) && 3284 "Only template template parameters handled here"); 3285 TemplateTemplateParmDecl *OldTTP 3286 = cast<TemplateTemplateParmDecl>(*OldParm); 3287 TemplateTemplateParmDecl *NewTTP 3288 = cast<TemplateTemplateParmDecl>(*NewParm); 3289 if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 3290 OldTTP->getTemplateParameters(), 3291 Complain, 3292 (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind), 3293 TemplateArgLoc)) 3294 return false; 3295 } 3296 } 3297 3298 return true; 3299} 3300 3301/// \brief Check whether a template can be declared within this scope. 3302/// 3303/// If the template declaration is valid in this scope, returns 3304/// false. Otherwise, issues a diagnostic and returns true. 3305bool 3306Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 3307 // Find the nearest enclosing declaration scope. 3308 while ((S->getFlags() & Scope::DeclScope) == 0 || 3309 (S->getFlags() & Scope::TemplateParamScope) != 0) 3310 S = S->getParent(); 3311 3312 // C++ [temp]p2: 3313 // A template-declaration can appear only as a namespace scope or 3314 // class scope declaration. 3315 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 3316 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 3317 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 3318 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 3319 << TemplateParams->getSourceRange(); 3320 3321 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 3322 Ctx = Ctx->getParent(); 3323 3324 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 3325 return false; 3326 3327 return Diag(TemplateParams->getTemplateLoc(), 3328 diag::err_template_outside_namespace_or_class_scope) 3329 << TemplateParams->getSourceRange(); 3330} 3331 3332/// \brief Determine what kind of template specialization the given declaration 3333/// is. 3334static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 3335 if (!D) 3336 return TSK_Undeclared; 3337 3338 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 3339 return Record->getTemplateSpecializationKind(); 3340 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 3341 return Function->getTemplateSpecializationKind(); 3342 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 3343 return Var->getTemplateSpecializationKind(); 3344 3345 return TSK_Undeclared; 3346} 3347 3348/// \brief Check whether a specialization is well-formed in the current 3349/// context. 3350/// 3351/// This routine determines whether a template specialization can be declared 3352/// in the current context (C++ [temp.expl.spec]p2). 3353/// 3354/// \param S the semantic analysis object for which this check is being 3355/// performed. 3356/// 3357/// \param Specialized the entity being specialized or instantiated, which 3358/// may be a kind of template (class template, function template, etc.) or 3359/// a member of a class template (member function, static data member, 3360/// member class). 3361/// 3362/// \param PrevDecl the previous declaration of this entity, if any. 3363/// 3364/// \param Loc the location of the explicit specialization or instantiation of 3365/// this entity. 3366/// 3367/// \param IsPartialSpecialization whether this is a partial specialization of 3368/// a class template. 3369/// 3370/// \returns true if there was an error that we cannot recover from, false 3371/// otherwise. 3372static bool CheckTemplateSpecializationScope(Sema &S, 3373 NamedDecl *Specialized, 3374 NamedDecl *PrevDecl, 3375 SourceLocation Loc, 3376 bool IsPartialSpecialization) { 3377 // Keep these "kind" numbers in sync with the %select statements in the 3378 // various diagnostics emitted by this routine. 3379 int EntityKind = 0; 3380 bool isTemplateSpecialization = false; 3381 if (isa<ClassTemplateDecl>(Specialized)) { 3382 EntityKind = IsPartialSpecialization? 1 : 0; 3383 isTemplateSpecialization = true; 3384 } else if (isa<FunctionTemplateDecl>(Specialized)) { 3385 EntityKind = 2; 3386 isTemplateSpecialization = true; 3387 } else if (isa<CXXMethodDecl>(Specialized)) 3388 EntityKind = 3; 3389 else if (isa<VarDecl>(Specialized)) 3390 EntityKind = 4; 3391 else if (isa<RecordDecl>(Specialized)) 3392 EntityKind = 5; 3393 else { 3394 S.Diag(Loc, diag::err_template_spec_unknown_kind); 3395 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3396 return true; 3397 } 3398 3399 // C++ [temp.expl.spec]p2: 3400 // An explicit specialization shall be declared in the namespace 3401 // of which the template is a member, or, for member templates, in 3402 // the namespace of which the enclosing class or enclosing class 3403 // template is a member. An explicit specialization of a member 3404 // function, member class or static data member of a class 3405 // template shall be declared in the namespace of which the class 3406 // template is a member. Such a declaration may also be a 3407 // definition. If the declaration is not a definition, the 3408 // specialization may be defined later in the name- space in which 3409 // the explicit specialization was declared, or in a namespace 3410 // that encloses the one in which the explicit specialization was 3411 // declared. 3412 if (S.CurContext->getLookupContext()->isFunctionOrMethod()) { 3413 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 3414 << Specialized; 3415 return true; 3416 } 3417 3418 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 3419 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 3420 << Specialized; 3421 return true; 3422 } 3423 3424 // C++ [temp.class.spec]p6: 3425 // A class template partial specialization may be declared or redeclared 3426 // in any namespace scope in which its definition may be defined (14.5.1 3427 // and 14.5.2). 3428 bool ComplainedAboutScope = false; 3429 DeclContext *SpecializedContext 3430 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 3431 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 3432 if ((!PrevDecl || 3433 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 3434 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 3435 // There is no prior declaration of this entity, so this 3436 // specialization must be in the same context as the template 3437 // itself. 3438 if (!DC->Equals(SpecializedContext)) { 3439 if (isa<TranslationUnitDecl>(SpecializedContext)) 3440 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 3441 << EntityKind << Specialized; 3442 else if (isa<NamespaceDecl>(SpecializedContext)) 3443 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope) 3444 << EntityKind << Specialized 3445 << cast<NamedDecl>(SpecializedContext); 3446 3447 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3448 ComplainedAboutScope = true; 3449 } 3450 } 3451 3452 // Make sure that this redeclaration (or definition) occurs in an enclosing 3453 // namespace. 3454 // Note that HandleDeclarator() performs this check for explicit 3455 // specializations of function templates, static data members, and member 3456 // functions, so we skip the check here for those kinds of entities. 3457 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 3458 // Should we refactor that check, so that it occurs later? 3459 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 3460 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 3461 isa<FunctionDecl>(Specialized))) { 3462 if (isa<TranslationUnitDecl>(SpecializedContext)) 3463 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 3464 << EntityKind << Specialized; 3465 else if (isa<NamespaceDecl>(SpecializedContext)) 3466 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 3467 << EntityKind << Specialized 3468 << cast<NamedDecl>(SpecializedContext); 3469 3470 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3471 } 3472 3473 // FIXME: check for specialization-after-instantiation errors and such. 3474 3475 return false; 3476} 3477 3478/// \brief Check the non-type template arguments of a class template 3479/// partial specialization according to C++ [temp.class.spec]p9. 3480/// 3481/// \param TemplateParams the template parameters of the primary class 3482/// template. 3483/// 3484/// \param TemplateArg the template arguments of the class template 3485/// partial specialization. 3486/// 3487/// \param MirrorsPrimaryTemplate will be set true if the class 3488/// template partial specialization arguments are identical to the 3489/// implicit template arguments of the primary template. This is not 3490/// necessarily an error (C++0x), and it is left to the caller to diagnose 3491/// this condition when it is an error. 3492/// 3493/// \returns true if there was an error, false otherwise. 3494bool Sema::CheckClassTemplatePartialSpecializationArgs( 3495 TemplateParameterList *TemplateParams, 3496 const TemplateArgumentListBuilder &TemplateArgs, 3497 bool &MirrorsPrimaryTemplate) { 3498 // FIXME: the interface to this function will have to change to 3499 // accommodate variadic templates. 3500 MirrorsPrimaryTemplate = true; 3501 3502 const TemplateArgument *ArgList = TemplateArgs.getFlatArguments(); 3503 3504 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3505 // Determine whether the template argument list of the partial 3506 // specialization is identical to the implicit argument list of 3507 // the primary template. The caller may need to diagnostic this as 3508 // an error per C++ [temp.class.spec]p9b3. 3509 if (MirrorsPrimaryTemplate) { 3510 if (TemplateTypeParmDecl *TTP 3511 = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) { 3512 if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) != 3513 Context.getCanonicalType(ArgList[I].getAsType())) 3514 MirrorsPrimaryTemplate = false; 3515 } else if (TemplateTemplateParmDecl *TTP 3516 = dyn_cast<TemplateTemplateParmDecl>( 3517 TemplateParams->getParam(I))) { 3518 TemplateName Name = ArgList[I].getAsTemplate(); 3519 TemplateTemplateParmDecl *ArgDecl 3520 = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()); 3521 if (!ArgDecl || 3522 ArgDecl->getIndex() != TTP->getIndex() || 3523 ArgDecl->getDepth() != TTP->getDepth()) 3524 MirrorsPrimaryTemplate = false; 3525 } 3526 } 3527 3528 NonTypeTemplateParmDecl *Param 3529 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 3530 if (!Param) { 3531 continue; 3532 } 3533 3534 Expr *ArgExpr = ArgList[I].getAsExpr(); 3535 if (!ArgExpr) { 3536 MirrorsPrimaryTemplate = false; 3537 continue; 3538 } 3539 3540 // C++ [temp.class.spec]p8: 3541 // A non-type argument is non-specialized if it is the name of a 3542 // non-type parameter. All other non-type arguments are 3543 // specialized. 3544 // 3545 // Below, we check the two conditions that only apply to 3546 // specialized non-type arguments, so skip any non-specialized 3547 // arguments. 3548 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 3549 if (NonTypeTemplateParmDecl *NTTP 3550 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) { 3551 if (MirrorsPrimaryTemplate && 3552 (Param->getIndex() != NTTP->getIndex() || 3553 Param->getDepth() != NTTP->getDepth())) 3554 MirrorsPrimaryTemplate = false; 3555 3556 continue; 3557 } 3558 3559 // C++ [temp.class.spec]p9: 3560 // Within the argument list of a class template partial 3561 // specialization, the following restrictions apply: 3562 // -- A partially specialized non-type argument expression 3563 // shall not involve a template parameter of the partial 3564 // specialization except when the argument expression is a 3565 // simple identifier. 3566 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 3567 Diag(ArgExpr->getLocStart(), 3568 diag::err_dependent_non_type_arg_in_partial_spec) 3569 << ArgExpr->getSourceRange(); 3570 return true; 3571 } 3572 3573 // -- The type of a template parameter corresponding to a 3574 // specialized non-type argument shall not be dependent on a 3575 // parameter of the specialization. 3576 if (Param->getType()->isDependentType()) { 3577 Diag(ArgExpr->getLocStart(), 3578 diag::err_dependent_typed_non_type_arg_in_partial_spec) 3579 << Param->getType() 3580 << ArgExpr->getSourceRange(); 3581 Diag(Param->getLocation(), diag::note_template_param_here); 3582 return true; 3583 } 3584 3585 MirrorsPrimaryTemplate = false; 3586 } 3587 3588 return false; 3589} 3590 3591/// \brief Retrieve the previous declaration of the given declaration. 3592static NamedDecl *getPreviousDecl(NamedDecl *ND) { 3593 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 3594 return VD->getPreviousDeclaration(); 3595 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 3596 return FD->getPreviousDeclaration(); 3597 if (TagDecl *TD = dyn_cast<TagDecl>(ND)) 3598 return TD->getPreviousDeclaration(); 3599 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND)) 3600 return TD->getPreviousDeclaration(); 3601 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 3602 return FTD->getPreviousDeclaration(); 3603 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND)) 3604 return CTD->getPreviousDeclaration(); 3605 return 0; 3606} 3607 3608DeclResult 3609Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 3610 TagUseKind TUK, 3611 SourceLocation KWLoc, 3612 CXXScopeSpec &SS, 3613 TemplateTy TemplateD, 3614 SourceLocation TemplateNameLoc, 3615 SourceLocation LAngleLoc, 3616 ASTTemplateArgsPtr TemplateArgsIn, 3617 SourceLocation RAngleLoc, 3618 AttributeList *Attr, 3619 MultiTemplateParamsArg TemplateParameterLists) { 3620 assert(TUK != TUK_Reference && "References are not specializations"); 3621 3622 // Find the class template we're specializing 3623 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 3624 ClassTemplateDecl *ClassTemplate 3625 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 3626 3627 if (!ClassTemplate) { 3628 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 3629 << (Name.getAsTemplateDecl() && 3630 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 3631 return true; 3632 } 3633 3634 bool isExplicitSpecialization = false; 3635 bool isPartialSpecialization = false; 3636 3637 // Check the validity of the template headers that introduce this 3638 // template. 3639 // FIXME: We probably shouldn't complain about these headers for 3640 // friend declarations. 3641 bool Invalid = false; 3642 TemplateParameterList *TemplateParams 3643 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 3644 (TemplateParameterList**)TemplateParameterLists.get(), 3645 TemplateParameterLists.size(), 3646 TUK == TUK_Friend, 3647 isExplicitSpecialization, 3648 Invalid); 3649 if (Invalid) 3650 return true; 3651 3652 unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size(); 3653 if (TemplateParams) 3654 --NumMatchedTemplateParamLists; 3655 3656 if (TemplateParams && TemplateParams->size() > 0) { 3657 isPartialSpecialization = true; 3658 3659 // C++ [temp.class.spec]p10: 3660 // The template parameter list of a specialization shall not 3661 // contain default template argument values. 3662 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3663 Decl *Param = TemplateParams->getParam(I); 3664 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 3665 if (TTP->hasDefaultArgument()) { 3666 Diag(TTP->getDefaultArgumentLoc(), 3667 diag::err_default_arg_in_partial_spec); 3668 TTP->removeDefaultArgument(); 3669 } 3670 } else if (NonTypeTemplateParmDecl *NTTP 3671 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3672 if (Expr *DefArg = NTTP->getDefaultArgument()) { 3673 Diag(NTTP->getDefaultArgumentLoc(), 3674 diag::err_default_arg_in_partial_spec) 3675 << DefArg->getSourceRange(); 3676 NTTP->removeDefaultArgument(); 3677 } 3678 } else { 3679 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 3680 if (TTP->hasDefaultArgument()) { 3681 Diag(TTP->getDefaultArgument().getLocation(), 3682 diag::err_default_arg_in_partial_spec) 3683 << TTP->getDefaultArgument().getSourceRange(); 3684 TTP->removeDefaultArgument(); 3685 } 3686 } 3687 } 3688 } else if (TemplateParams) { 3689 if (TUK == TUK_Friend) 3690 Diag(KWLoc, diag::err_template_spec_friend) 3691 << FixItHint::CreateRemoval( 3692 SourceRange(TemplateParams->getTemplateLoc(), 3693 TemplateParams->getRAngleLoc())) 3694 << SourceRange(LAngleLoc, RAngleLoc); 3695 else 3696 isExplicitSpecialization = true; 3697 } else if (TUK != TUK_Friend) { 3698 Diag(KWLoc, diag::err_template_spec_needs_header) 3699 << FixItHint::CreateInsertion(KWLoc, "template<> "); 3700 isExplicitSpecialization = true; 3701 } 3702 3703 // Check that the specialization uses the same tag kind as the 3704 // original template. 3705 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 3706 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 3707 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 3708 Kind, KWLoc, 3709 *ClassTemplate->getIdentifier())) { 3710 Diag(KWLoc, diag::err_use_with_wrong_tag) 3711 << ClassTemplate 3712 << FixItHint::CreateReplacement(KWLoc, 3713 ClassTemplate->getTemplatedDecl()->getKindName()); 3714 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 3715 diag::note_previous_use); 3716 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 3717 } 3718 3719 // Translate the parser's template argument list in our AST format. 3720 TemplateArgumentListInfo TemplateArgs; 3721 TemplateArgs.setLAngleLoc(LAngleLoc); 3722 TemplateArgs.setRAngleLoc(RAngleLoc); 3723 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3724 3725 // Check that the template argument list is well-formed for this 3726 // template. 3727 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 3728 TemplateArgs.size()); 3729 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 3730 TemplateArgs, false, Converted)) 3731 return true; 3732 3733 assert((Converted.structuredSize() == 3734 ClassTemplate->getTemplateParameters()->size()) && 3735 "Converted template argument list is too short!"); 3736 3737 // Find the class template (partial) specialization declaration that 3738 // corresponds to these arguments. 3739 if (isPartialSpecialization) { 3740 bool MirrorsPrimaryTemplate; 3741 if (CheckClassTemplatePartialSpecializationArgs( 3742 ClassTemplate->getTemplateParameters(), 3743 Converted, MirrorsPrimaryTemplate)) 3744 return true; 3745 3746 if (MirrorsPrimaryTemplate) { 3747 // C++ [temp.class.spec]p9b3: 3748 // 3749 // -- The argument list of the specialization shall not be identical 3750 // to the implicit argument list of the primary template. 3751 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 3752 << (TUK == TUK_Definition) 3753 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 3754 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 3755 ClassTemplate->getIdentifier(), 3756 TemplateNameLoc, 3757 Attr, 3758 TemplateParams, 3759 AS_none); 3760 } 3761 3762 // FIXME: Diagnose friend partial specializations 3763 3764 if (!Name.isDependent() && 3765 !TemplateSpecializationType::anyDependentTemplateArguments( 3766 TemplateArgs.getArgumentArray(), 3767 TemplateArgs.size())) { 3768 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 3769 << ClassTemplate->getDeclName(); 3770 isPartialSpecialization = false; 3771 } 3772 } 3773 3774 void *InsertPos = 0; 3775 ClassTemplateSpecializationDecl *PrevDecl = 0; 3776 3777 if (isPartialSpecialization) 3778 // FIXME: Template parameter list matters, too 3779 PrevDecl 3780 = ClassTemplate->findPartialSpecialization(Converted.getFlatArguments(), 3781 Converted.flatSize(), 3782 InsertPos); 3783 else 3784 PrevDecl 3785 = ClassTemplate->findSpecialization(Converted.getFlatArguments(), 3786 Converted.flatSize(), InsertPos); 3787 3788 ClassTemplateSpecializationDecl *Specialization = 0; 3789 3790 // Check whether we can declare a class template specialization in 3791 // the current scope. 3792 if (TUK != TUK_Friend && 3793 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 3794 TemplateNameLoc, 3795 isPartialSpecialization)) 3796 return true; 3797 3798 // The canonical type 3799 QualType CanonType; 3800 if (PrevDecl && 3801 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 3802 TUK == TUK_Friend)) { 3803 // Since the only prior class template specialization with these 3804 // arguments was referenced but not declared, or we're only 3805 // referencing this specialization as a friend, reuse that 3806 // declaration node as our own, updating its source location to 3807 // reflect our new declaration. 3808 Specialization = PrevDecl; 3809 Specialization->setLocation(TemplateNameLoc); 3810 PrevDecl = 0; 3811 CanonType = Context.getTypeDeclType(Specialization); 3812 } else if (isPartialSpecialization) { 3813 // Build the canonical type that describes the converted template 3814 // arguments of the class template partial specialization. 3815 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 3816 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 3817 Converted.getFlatArguments(), 3818 Converted.flatSize()); 3819 3820 // Create a new class template partial specialization declaration node. 3821 ClassTemplatePartialSpecializationDecl *PrevPartial 3822 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 3823 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 3824 : ClassTemplate->getNextPartialSpecSequenceNumber(); 3825 ClassTemplatePartialSpecializationDecl *Partial 3826 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 3827 ClassTemplate->getDeclContext(), 3828 TemplateNameLoc, 3829 TemplateParams, 3830 ClassTemplate, 3831 Converted, 3832 TemplateArgs, 3833 CanonType, 3834 PrevPartial, 3835 SequenceNumber); 3836 SetNestedNameSpecifier(Partial, SS); 3837 if (NumMatchedTemplateParamLists > 0 && SS.isSet()) { 3838 Partial->setTemplateParameterListsInfo(Context, 3839 NumMatchedTemplateParamLists, 3840 (TemplateParameterList**) TemplateParameterLists.release()); 3841 } 3842 3843 if (!PrevPartial) 3844 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 3845 Specialization = Partial; 3846 3847 // If we are providing an explicit specialization of a member class 3848 // template specialization, make a note of that. 3849 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 3850 PrevPartial->setMemberSpecialization(); 3851 3852 // Check that all of the template parameters of the class template 3853 // partial specialization are deducible from the template 3854 // arguments. If not, this class template partial specialization 3855 // will never be used. 3856 llvm::SmallVector<bool, 8> DeducibleParams; 3857 DeducibleParams.resize(TemplateParams->size()); 3858 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 3859 TemplateParams->getDepth(), 3860 DeducibleParams); 3861 unsigned NumNonDeducible = 0; 3862 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 3863 if (!DeducibleParams[I]) 3864 ++NumNonDeducible; 3865 3866 if (NumNonDeducible) { 3867 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 3868 << (NumNonDeducible > 1) 3869 << SourceRange(TemplateNameLoc, RAngleLoc); 3870 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 3871 if (!DeducibleParams[I]) { 3872 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 3873 if (Param->getDeclName()) 3874 Diag(Param->getLocation(), 3875 diag::note_partial_spec_unused_parameter) 3876 << Param->getDeclName(); 3877 else 3878 Diag(Param->getLocation(), 3879 diag::note_partial_spec_unused_parameter) 3880 << "<anonymous>"; 3881 } 3882 } 3883 } 3884 } else { 3885 // Create a new class template specialization declaration node for 3886 // this explicit specialization or friend declaration. 3887 Specialization 3888 = ClassTemplateSpecializationDecl::Create(Context, Kind, 3889 ClassTemplate->getDeclContext(), 3890 TemplateNameLoc, 3891 ClassTemplate, 3892 Converted, 3893 PrevDecl); 3894 SetNestedNameSpecifier(Specialization, SS); 3895 if (NumMatchedTemplateParamLists > 0 && SS.isSet()) { 3896 Specialization->setTemplateParameterListsInfo(Context, 3897 NumMatchedTemplateParamLists, 3898 (TemplateParameterList**) TemplateParameterLists.release()); 3899 } 3900 3901 if (!PrevDecl) 3902 ClassTemplate->AddSpecialization(Specialization, InsertPos); 3903 3904 CanonType = Context.getTypeDeclType(Specialization); 3905 } 3906 3907 // C++ [temp.expl.spec]p6: 3908 // If a template, a member template or the member of a class template is 3909 // explicitly specialized then that specialization shall be declared 3910 // before the first use of that specialization that would cause an implicit 3911 // instantiation to take place, in every translation unit in which such a 3912 // use occurs; no diagnostic is required. 3913 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 3914 bool Okay = false; 3915 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 3916 // Is there any previous explicit specialization declaration? 3917 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 3918 Okay = true; 3919 break; 3920 } 3921 } 3922 3923 if (!Okay) { 3924 SourceRange Range(TemplateNameLoc, RAngleLoc); 3925 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 3926 << Context.getTypeDeclType(Specialization) << Range; 3927 3928 Diag(PrevDecl->getPointOfInstantiation(), 3929 diag::note_instantiation_required_here) 3930 << (PrevDecl->getTemplateSpecializationKind() 3931 != TSK_ImplicitInstantiation); 3932 return true; 3933 } 3934 } 3935 3936 // If this is not a friend, note that this is an explicit specialization. 3937 if (TUK != TUK_Friend) 3938 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 3939 3940 // Check that this isn't a redefinition of this specialization. 3941 if (TUK == TUK_Definition) { 3942 if (RecordDecl *Def = Specialization->getDefinition()) { 3943 SourceRange Range(TemplateNameLoc, RAngleLoc); 3944 Diag(TemplateNameLoc, diag::err_redefinition) 3945 << Context.getTypeDeclType(Specialization) << Range; 3946 Diag(Def->getLocation(), diag::note_previous_definition); 3947 Specialization->setInvalidDecl(); 3948 return true; 3949 } 3950 } 3951 3952 // Build the fully-sugared type for this class template 3953 // specialization as the user wrote in the specialization 3954 // itself. This means that we'll pretty-print the type retrieved 3955 // from the specialization's declaration the way that the user 3956 // actually wrote the specialization, rather than formatting the 3957 // name based on the "canonical" representation used to store the 3958 // template arguments in the specialization. 3959 TypeSourceInfo *WrittenTy 3960 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 3961 TemplateArgs, CanonType); 3962 if (TUK != TUK_Friend) { 3963 Specialization->setTypeAsWritten(WrittenTy); 3964 if (TemplateParams) 3965 Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc()); 3966 } 3967 TemplateArgsIn.release(); 3968 3969 // C++ [temp.expl.spec]p9: 3970 // A template explicit specialization is in the scope of the 3971 // namespace in which the template was defined. 3972 // 3973 // We actually implement this paragraph where we set the semantic 3974 // context (in the creation of the ClassTemplateSpecializationDecl), 3975 // but we also maintain the lexical context where the actual 3976 // definition occurs. 3977 Specialization->setLexicalDeclContext(CurContext); 3978 3979 // We may be starting the definition of this specialization. 3980 if (TUK == TUK_Definition) 3981 Specialization->startDefinition(); 3982 3983 if (TUK == TUK_Friend) { 3984 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 3985 TemplateNameLoc, 3986 WrittenTy, 3987 /*FIXME:*/KWLoc); 3988 Friend->setAccess(AS_public); 3989 CurContext->addDecl(Friend); 3990 } else { 3991 // Add the specialization into its lexical context, so that it can 3992 // be seen when iterating through the list of declarations in that 3993 // context. However, specializations are not found by name lookup. 3994 CurContext->addDecl(Specialization); 3995 } 3996 return Specialization; 3997} 3998 3999Decl *Sema::ActOnTemplateDeclarator(Scope *S, 4000 MultiTemplateParamsArg TemplateParameterLists, 4001 Declarator &D) { 4002 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 4003} 4004 4005Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 4006 MultiTemplateParamsArg TemplateParameterLists, 4007 Declarator &D) { 4008 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 4009 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && 4010 "Not a function declarator!"); 4011 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; 4012 4013 if (FTI.hasPrototype) { 4014 // FIXME: Diagnose arguments without names in C. 4015 } 4016 4017 Scope *ParentScope = FnBodyScope->getParent(); 4018 4019 Decl *DP = HandleDeclarator(ParentScope, D, 4020 move(TemplateParameterLists), 4021 /*IsFunctionDefinition=*/true); 4022 if (FunctionTemplateDecl *FunctionTemplate 4023 = dyn_cast_or_null<FunctionTemplateDecl>(DP)) 4024 return ActOnStartOfFunctionDef(FnBodyScope, 4025 FunctionTemplate->getTemplatedDecl()); 4026 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP)) 4027 return ActOnStartOfFunctionDef(FnBodyScope, Function); 4028 return 0; 4029} 4030 4031/// \brief Strips various properties off an implicit instantiation 4032/// that has just been explicitly specialized. 4033static void StripImplicitInstantiation(NamedDecl *D) { 4034 D->dropAttrs(); 4035 4036 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 4037 FD->setInlineSpecified(false); 4038 } 4039} 4040 4041/// \brief Diagnose cases where we have an explicit template specialization 4042/// before/after an explicit template instantiation, producing diagnostics 4043/// for those cases where they are required and determining whether the 4044/// new specialization/instantiation will have any effect. 4045/// 4046/// \param NewLoc the location of the new explicit specialization or 4047/// instantiation. 4048/// 4049/// \param NewTSK the kind of the new explicit specialization or instantiation. 4050/// 4051/// \param PrevDecl the previous declaration of the entity. 4052/// 4053/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 4054/// 4055/// \param PrevPointOfInstantiation if valid, indicates where the previus 4056/// declaration was instantiated (either implicitly or explicitly). 4057/// 4058/// \param HasNoEffect will be set to true to indicate that the new 4059/// specialization or instantiation has no effect and should be ignored. 4060/// 4061/// \returns true if there was an error that should prevent the introduction of 4062/// the new declaration into the AST, false otherwise. 4063bool 4064Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 4065 TemplateSpecializationKind NewTSK, 4066 NamedDecl *PrevDecl, 4067 TemplateSpecializationKind PrevTSK, 4068 SourceLocation PrevPointOfInstantiation, 4069 bool &HasNoEffect) { 4070 HasNoEffect = false; 4071 4072 switch (NewTSK) { 4073 case TSK_Undeclared: 4074 case TSK_ImplicitInstantiation: 4075 assert(false && "Don't check implicit instantiations here"); 4076 return false; 4077 4078 case TSK_ExplicitSpecialization: 4079 switch (PrevTSK) { 4080 case TSK_Undeclared: 4081 case TSK_ExplicitSpecialization: 4082 // Okay, we're just specializing something that is either already 4083 // explicitly specialized or has merely been mentioned without any 4084 // instantiation. 4085 return false; 4086 4087 case TSK_ImplicitInstantiation: 4088 if (PrevPointOfInstantiation.isInvalid()) { 4089 // The declaration itself has not actually been instantiated, so it is 4090 // still okay to specialize it. 4091 StripImplicitInstantiation(PrevDecl); 4092 return false; 4093 } 4094 // Fall through 4095 4096 case TSK_ExplicitInstantiationDeclaration: 4097 case TSK_ExplicitInstantiationDefinition: 4098 assert((PrevTSK == TSK_ImplicitInstantiation || 4099 PrevPointOfInstantiation.isValid()) && 4100 "Explicit instantiation without point of instantiation?"); 4101 4102 // C++ [temp.expl.spec]p6: 4103 // If a template, a member template or the member of a class template 4104 // is explicitly specialized then that specialization shall be declared 4105 // before the first use of that specialization that would cause an 4106 // implicit instantiation to take place, in every translation unit in 4107 // which such a use occurs; no diagnostic is required. 4108 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 4109 // Is there any previous explicit specialization declaration? 4110 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 4111 return false; 4112 } 4113 4114 Diag(NewLoc, diag::err_specialization_after_instantiation) 4115 << PrevDecl; 4116 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 4117 << (PrevTSK != TSK_ImplicitInstantiation); 4118 4119 return true; 4120 } 4121 break; 4122 4123 case TSK_ExplicitInstantiationDeclaration: 4124 switch (PrevTSK) { 4125 case TSK_ExplicitInstantiationDeclaration: 4126 // This explicit instantiation declaration is redundant (that's okay). 4127 HasNoEffect = true; 4128 return false; 4129 4130 case TSK_Undeclared: 4131 case TSK_ImplicitInstantiation: 4132 // We're explicitly instantiating something that may have already been 4133 // implicitly instantiated; that's fine. 4134 return false; 4135 4136 case TSK_ExplicitSpecialization: 4137 // C++0x [temp.explicit]p4: 4138 // For a given set of template parameters, if an explicit instantiation 4139 // of a template appears after a declaration of an explicit 4140 // specialization for that template, the explicit instantiation has no 4141 // effect. 4142 HasNoEffect = true; 4143 return false; 4144 4145 case TSK_ExplicitInstantiationDefinition: 4146 // C++0x [temp.explicit]p10: 4147 // If an entity is the subject of both an explicit instantiation 4148 // declaration and an explicit instantiation definition in the same 4149 // translation unit, the definition shall follow the declaration. 4150 Diag(NewLoc, 4151 diag::err_explicit_instantiation_declaration_after_definition); 4152 Diag(PrevPointOfInstantiation, 4153 diag::note_explicit_instantiation_definition_here); 4154 assert(PrevPointOfInstantiation.isValid() && 4155 "Explicit instantiation without point of instantiation?"); 4156 HasNoEffect = true; 4157 return false; 4158 } 4159 break; 4160 4161 case TSK_ExplicitInstantiationDefinition: 4162 switch (PrevTSK) { 4163 case TSK_Undeclared: 4164 case TSK_ImplicitInstantiation: 4165 // We're explicitly instantiating something that may have already been 4166 // implicitly instantiated; that's fine. 4167 return false; 4168 4169 case TSK_ExplicitSpecialization: 4170 // C++ DR 259, C++0x [temp.explicit]p4: 4171 // For a given set of template parameters, if an explicit 4172 // instantiation of a template appears after a declaration of 4173 // an explicit specialization for that template, the explicit 4174 // instantiation has no effect. 4175 // 4176 // In C++98/03 mode, we only give an extension warning here, because it 4177 // is not harmful to try to explicitly instantiate something that 4178 // has been explicitly specialized. 4179 if (!getLangOptions().CPlusPlus0x) { 4180 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 4181 << PrevDecl; 4182 Diag(PrevDecl->getLocation(), 4183 diag::note_previous_template_specialization); 4184 } 4185 HasNoEffect = true; 4186 return false; 4187 4188 case TSK_ExplicitInstantiationDeclaration: 4189 // We're explicity instantiating a definition for something for which we 4190 // were previously asked to suppress instantiations. That's fine. 4191 return false; 4192 4193 case TSK_ExplicitInstantiationDefinition: 4194 // C++0x [temp.spec]p5: 4195 // For a given template and a given set of template-arguments, 4196 // - an explicit instantiation definition shall appear at most once 4197 // in a program, 4198 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 4199 << PrevDecl; 4200 Diag(PrevPointOfInstantiation, 4201 diag::note_previous_explicit_instantiation); 4202 HasNoEffect = true; 4203 return false; 4204 } 4205 break; 4206 } 4207 4208 assert(false && "Missing specialization/instantiation case?"); 4209 4210 return false; 4211} 4212 4213/// \brief Perform semantic analysis for the given dependent function 4214/// template specialization. The only possible way to get a dependent 4215/// function template specialization is with a friend declaration, 4216/// like so: 4217/// 4218/// template <class T> void foo(T); 4219/// template <class T> class A { 4220/// friend void foo<>(T); 4221/// }; 4222/// 4223/// There really isn't any useful analysis we can do here, so we 4224/// just store the information. 4225bool 4226Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 4227 const TemplateArgumentListInfo &ExplicitTemplateArgs, 4228 LookupResult &Previous) { 4229 // Remove anything from Previous that isn't a function template in 4230 // the correct context. 4231 DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext(); 4232 LookupResult::Filter F = Previous.makeFilter(); 4233 while (F.hasNext()) { 4234 NamedDecl *D = F.next()->getUnderlyingDecl(); 4235 if (!isa<FunctionTemplateDecl>(D) || 4236 !FDLookupContext->Equals(D->getDeclContext()->getLookupContext())) 4237 F.erase(); 4238 } 4239 F.done(); 4240 4241 // Should this be diagnosed here? 4242 if (Previous.empty()) return true; 4243 4244 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 4245 ExplicitTemplateArgs); 4246 return false; 4247} 4248 4249/// \brief Perform semantic analysis for the given function template 4250/// specialization. 4251/// 4252/// This routine performs all of the semantic analysis required for an 4253/// explicit function template specialization. On successful completion, 4254/// the function declaration \p FD will become a function template 4255/// specialization. 4256/// 4257/// \param FD the function declaration, which will be updated to become a 4258/// function template specialization. 4259/// 4260/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 4261/// if any. Note that this may be valid info even when 0 arguments are 4262/// explicitly provided as in, e.g., \c void sort<>(char*, char*); 4263/// as it anyway contains info on the angle brackets locations. 4264/// 4265/// \param PrevDecl the set of declarations that may be specialized by 4266/// this function specialization. 4267bool 4268Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 4269 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4270 LookupResult &Previous) { 4271 // The set of function template specializations that could match this 4272 // explicit function template specialization. 4273 UnresolvedSet<8> Candidates; 4274 4275 DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext(); 4276 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4277 I != E; ++I) { 4278 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 4279 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 4280 // Only consider templates found within the same semantic lookup scope as 4281 // FD. 4282 if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext())) 4283 continue; 4284 4285 // C++ [temp.expl.spec]p11: 4286 // A trailing template-argument can be left unspecified in the 4287 // template-id naming an explicit function template specialization 4288 // provided it can be deduced from the function argument type. 4289 // Perform template argument deduction to determine whether we may be 4290 // specializing this template. 4291 // FIXME: It is somewhat wasteful to build 4292 TemplateDeductionInfo Info(Context, FD->getLocation()); 4293 FunctionDecl *Specialization = 0; 4294 if (TemplateDeductionResult TDK 4295 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 4296 FD->getType(), 4297 Specialization, 4298 Info)) { 4299 // FIXME: Template argument deduction failed; record why it failed, so 4300 // that we can provide nifty diagnostics. 4301 (void)TDK; 4302 continue; 4303 } 4304 4305 // Record this candidate. 4306 Candidates.addDecl(Specialization, I.getAccess()); 4307 } 4308 } 4309 4310 // Find the most specialized function template. 4311 UnresolvedSetIterator Result 4312 = getMostSpecialized(Candidates.begin(), Candidates.end(), 4313 TPOC_Other, FD->getLocation(), 4314 PDiag(diag::err_function_template_spec_no_match) 4315 << FD->getDeclName(), 4316 PDiag(diag::err_function_template_spec_ambiguous) 4317 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 4318 PDiag(diag::note_function_template_spec_matched)); 4319 if (Result == Candidates.end()) 4320 return true; 4321 4322 // Ignore access information; it doesn't figure into redeclaration checking. 4323 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 4324 Specialization->setLocation(FD->getLocation()); 4325 4326 // FIXME: Check if the prior specialization has a point of instantiation. 4327 // If so, we have run afoul of . 4328 4329 // If this is a friend declaration, then we're not really declaring 4330 // an explicit specialization. 4331 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 4332 4333 // Check the scope of this explicit specialization. 4334 if (!isFriend && 4335 CheckTemplateSpecializationScope(*this, 4336 Specialization->getPrimaryTemplate(), 4337 Specialization, FD->getLocation(), 4338 false)) 4339 return true; 4340 4341 // C++ [temp.expl.spec]p6: 4342 // If a template, a member template or the member of a class template is 4343 // explicitly specialized then that specialization shall be declared 4344 // before the first use of that specialization that would cause an implicit 4345 // instantiation to take place, in every translation unit in which such a 4346 // use occurs; no diagnostic is required. 4347 FunctionTemplateSpecializationInfo *SpecInfo 4348 = Specialization->getTemplateSpecializationInfo(); 4349 assert(SpecInfo && "Function template specialization info missing?"); 4350 4351 bool HasNoEffect = false; 4352 if (!isFriend && 4353 CheckSpecializationInstantiationRedecl(FD->getLocation(), 4354 TSK_ExplicitSpecialization, 4355 Specialization, 4356 SpecInfo->getTemplateSpecializationKind(), 4357 SpecInfo->getPointOfInstantiation(), 4358 HasNoEffect)) 4359 return true; 4360 4361 // Mark the prior declaration as an explicit specialization, so that later 4362 // clients know that this is an explicit specialization. 4363 if (!isFriend) { 4364 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 4365 MarkUnusedFileScopedDecl(Specialization); 4366 } 4367 4368 // Turn the given function declaration into a function template 4369 // specialization, with the template arguments from the previous 4370 // specialization. 4371 // Take copies of (semantic and syntactic) template argument lists. 4372 const TemplateArgumentList* TemplArgs = new (Context) 4373 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 4374 const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs 4375 ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0; 4376 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 4377 TemplArgs, /*InsertPos=*/0, 4378 SpecInfo->getTemplateSpecializationKind(), 4379 TemplArgsAsWritten); 4380 4381 // The "previous declaration" for this function template specialization is 4382 // the prior function template specialization. 4383 Previous.clear(); 4384 Previous.addDecl(Specialization); 4385 return false; 4386} 4387 4388/// \brief Perform semantic analysis for the given non-template member 4389/// specialization. 4390/// 4391/// This routine performs all of the semantic analysis required for an 4392/// explicit member function specialization. On successful completion, 4393/// the function declaration \p FD will become a member function 4394/// specialization. 4395/// 4396/// \param Member the member declaration, which will be updated to become a 4397/// specialization. 4398/// 4399/// \param Previous the set of declarations, one of which may be specialized 4400/// by this function specialization; the set will be modified to contain the 4401/// redeclared member. 4402bool 4403Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 4404 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 4405 4406 // Try to find the member we are instantiating. 4407 NamedDecl *Instantiation = 0; 4408 NamedDecl *InstantiatedFrom = 0; 4409 MemberSpecializationInfo *MSInfo = 0; 4410 4411 if (Previous.empty()) { 4412 // Nowhere to look anyway. 4413 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 4414 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4415 I != E; ++I) { 4416 NamedDecl *D = (*I)->getUnderlyingDecl(); 4417 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 4418 if (Context.hasSameType(Function->getType(), Method->getType())) { 4419 Instantiation = Method; 4420 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 4421 MSInfo = Method->getMemberSpecializationInfo(); 4422 break; 4423 } 4424 } 4425 } 4426 } else if (isa<VarDecl>(Member)) { 4427 VarDecl *PrevVar; 4428 if (Previous.isSingleResult() && 4429 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 4430 if (PrevVar->isStaticDataMember()) { 4431 Instantiation = PrevVar; 4432 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 4433 MSInfo = PrevVar->getMemberSpecializationInfo(); 4434 } 4435 } else if (isa<RecordDecl>(Member)) { 4436 CXXRecordDecl *PrevRecord; 4437 if (Previous.isSingleResult() && 4438 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 4439 Instantiation = PrevRecord; 4440 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 4441 MSInfo = PrevRecord->getMemberSpecializationInfo(); 4442 } 4443 } 4444 4445 if (!Instantiation) { 4446 // There is no previous declaration that matches. Since member 4447 // specializations are always out-of-line, the caller will complain about 4448 // this mismatch later. 4449 return false; 4450 } 4451 4452 // If this is a friend, just bail out here before we start turning 4453 // things into explicit specializations. 4454 if (Member->getFriendObjectKind() != Decl::FOK_None) { 4455 // Preserve instantiation information. 4456 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 4457 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 4458 cast<CXXMethodDecl>(InstantiatedFrom), 4459 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 4460 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 4461 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 4462 cast<CXXRecordDecl>(InstantiatedFrom), 4463 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 4464 } 4465 4466 Previous.clear(); 4467 Previous.addDecl(Instantiation); 4468 return false; 4469 } 4470 4471 // Make sure that this is a specialization of a member. 4472 if (!InstantiatedFrom) { 4473 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 4474 << Member; 4475 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 4476 return true; 4477 } 4478 4479 // C++ [temp.expl.spec]p6: 4480 // If a template, a member template or the member of a class template is 4481 // explicitly specialized then that spe- cialization shall be declared 4482 // before the first use of that specialization that would cause an implicit 4483 // instantiation to take place, in every translation unit in which such a 4484 // use occurs; no diagnostic is required. 4485 assert(MSInfo && "Member specialization info missing?"); 4486 4487 bool HasNoEffect = false; 4488 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 4489 TSK_ExplicitSpecialization, 4490 Instantiation, 4491 MSInfo->getTemplateSpecializationKind(), 4492 MSInfo->getPointOfInstantiation(), 4493 HasNoEffect)) 4494 return true; 4495 4496 // Check the scope of this explicit specialization. 4497 if (CheckTemplateSpecializationScope(*this, 4498 InstantiatedFrom, 4499 Instantiation, Member->getLocation(), 4500 false)) 4501 return true; 4502 4503 // Note that this is an explicit instantiation of a member. 4504 // the original declaration to note that it is an explicit specialization 4505 // (if it was previously an implicit instantiation). This latter step 4506 // makes bookkeeping easier. 4507 if (isa<FunctionDecl>(Member)) { 4508 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 4509 if (InstantiationFunction->getTemplateSpecializationKind() == 4510 TSK_ImplicitInstantiation) { 4511 InstantiationFunction->setTemplateSpecializationKind( 4512 TSK_ExplicitSpecialization); 4513 InstantiationFunction->setLocation(Member->getLocation()); 4514 } 4515 4516 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 4517 cast<CXXMethodDecl>(InstantiatedFrom), 4518 TSK_ExplicitSpecialization); 4519 MarkUnusedFileScopedDecl(InstantiationFunction); 4520 } else if (isa<VarDecl>(Member)) { 4521 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 4522 if (InstantiationVar->getTemplateSpecializationKind() == 4523 TSK_ImplicitInstantiation) { 4524 InstantiationVar->setTemplateSpecializationKind( 4525 TSK_ExplicitSpecialization); 4526 InstantiationVar->setLocation(Member->getLocation()); 4527 } 4528 4529 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 4530 cast<VarDecl>(InstantiatedFrom), 4531 TSK_ExplicitSpecialization); 4532 MarkUnusedFileScopedDecl(InstantiationVar); 4533 } else { 4534 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 4535 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 4536 if (InstantiationClass->getTemplateSpecializationKind() == 4537 TSK_ImplicitInstantiation) { 4538 InstantiationClass->setTemplateSpecializationKind( 4539 TSK_ExplicitSpecialization); 4540 InstantiationClass->setLocation(Member->getLocation()); 4541 } 4542 4543 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 4544 cast<CXXRecordDecl>(InstantiatedFrom), 4545 TSK_ExplicitSpecialization); 4546 } 4547 4548 // Save the caller the trouble of having to figure out which declaration 4549 // this specialization matches. 4550 Previous.clear(); 4551 Previous.addDecl(Instantiation); 4552 return false; 4553} 4554 4555/// \brief Check the scope of an explicit instantiation. 4556/// 4557/// \returns true if a serious error occurs, false otherwise. 4558static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 4559 SourceLocation InstLoc, 4560 bool WasQualifiedName) { 4561 DeclContext *ExpectedContext 4562 = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext(); 4563 DeclContext *CurContext = S.CurContext->getLookupContext(); 4564 4565 if (CurContext->isRecord()) { 4566 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 4567 << D; 4568 return true; 4569 } 4570 4571 // C++0x [temp.explicit]p2: 4572 // An explicit instantiation shall appear in an enclosing namespace of its 4573 // template. 4574 // 4575 // This is DR275, which we do not retroactively apply to C++98/03. 4576 if (S.getLangOptions().CPlusPlus0x && 4577 !CurContext->Encloses(ExpectedContext)) { 4578 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext)) 4579 S.Diag(InstLoc, 4580 S.getLangOptions().CPlusPlus0x? 4581 diag::err_explicit_instantiation_out_of_scope 4582 : diag::warn_explicit_instantiation_out_of_scope_0x) 4583 << D << NS; 4584 else 4585 S.Diag(InstLoc, 4586 S.getLangOptions().CPlusPlus0x? 4587 diag::err_explicit_instantiation_must_be_global 4588 : diag::warn_explicit_instantiation_out_of_scope_0x) 4589 << D; 4590 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4591 return false; 4592 } 4593 4594 // C++0x [temp.explicit]p2: 4595 // If the name declared in the explicit instantiation is an unqualified 4596 // name, the explicit instantiation shall appear in the namespace where 4597 // its template is declared or, if that namespace is inline (7.3.1), any 4598 // namespace from its enclosing namespace set. 4599 if (WasQualifiedName) 4600 return false; 4601 4602 if (CurContext->Equals(ExpectedContext)) 4603 return false; 4604 4605 S.Diag(InstLoc, 4606 S.getLangOptions().CPlusPlus0x? 4607 diag::err_explicit_instantiation_unqualified_wrong_namespace 4608 : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 4609 << D << ExpectedContext; 4610 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4611 return false; 4612} 4613 4614/// \brief Determine whether the given scope specifier has a template-id in it. 4615static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 4616 if (!SS.isSet()) 4617 return false; 4618 4619 // C++0x [temp.explicit]p2: 4620 // If the explicit instantiation is for a member function, a member class 4621 // or a static data member of a class template specialization, the name of 4622 // the class template specialization in the qualified-id for the member 4623 // name shall be a simple-template-id. 4624 // 4625 // C++98 has the same restriction, just worded differently. 4626 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 4627 NNS; NNS = NNS->getPrefix()) 4628 if (Type *T = NNS->getAsType()) 4629 if (isa<TemplateSpecializationType>(T)) 4630 return true; 4631 4632 return false; 4633} 4634 4635// Explicit instantiation of a class template specialization 4636Sema::DeclResult 4637Sema::ActOnExplicitInstantiation(Scope *S, 4638 SourceLocation ExternLoc, 4639 SourceLocation TemplateLoc, 4640 unsigned TagSpec, 4641 SourceLocation KWLoc, 4642 const CXXScopeSpec &SS, 4643 TemplateTy TemplateD, 4644 SourceLocation TemplateNameLoc, 4645 SourceLocation LAngleLoc, 4646 ASTTemplateArgsPtr TemplateArgsIn, 4647 SourceLocation RAngleLoc, 4648 AttributeList *Attr) { 4649 // Find the class template we're specializing 4650 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4651 ClassTemplateDecl *ClassTemplate 4652 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4653 4654 // Check that the specialization uses the same tag kind as the 4655 // original template. 4656 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4657 assert(Kind != TTK_Enum && 4658 "Invalid enum tag in class template explicit instantiation!"); 4659 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4660 Kind, KWLoc, 4661 *ClassTemplate->getIdentifier())) { 4662 Diag(KWLoc, diag::err_use_with_wrong_tag) 4663 << ClassTemplate 4664 << FixItHint::CreateReplacement(KWLoc, 4665 ClassTemplate->getTemplatedDecl()->getKindName()); 4666 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4667 diag::note_previous_use); 4668 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4669 } 4670 4671 // C++0x [temp.explicit]p2: 4672 // There are two forms of explicit instantiation: an explicit instantiation 4673 // definition and an explicit instantiation declaration. An explicit 4674 // instantiation declaration begins with the extern keyword. [...] 4675 TemplateSpecializationKind TSK 4676 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4677 : TSK_ExplicitInstantiationDeclaration; 4678 4679 // Translate the parser's template argument list in our AST format. 4680 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 4681 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4682 4683 // Check that the template argument list is well-formed for this 4684 // template. 4685 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 4686 TemplateArgs.size()); 4687 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4688 TemplateArgs, false, Converted)) 4689 return true; 4690 4691 assert((Converted.structuredSize() == 4692 ClassTemplate->getTemplateParameters()->size()) && 4693 "Converted template argument list is too short!"); 4694 4695 // Find the class template specialization declaration that 4696 // corresponds to these arguments. 4697 void *InsertPos = 0; 4698 ClassTemplateSpecializationDecl *PrevDecl 4699 = ClassTemplate->findSpecialization(Converted.getFlatArguments(), 4700 Converted.flatSize(), InsertPos); 4701 4702 TemplateSpecializationKind PrevDecl_TSK 4703 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 4704 4705 // C++0x [temp.explicit]p2: 4706 // [...] An explicit instantiation shall appear in an enclosing 4707 // namespace of its template. [...] 4708 // 4709 // This is C++ DR 275. 4710 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 4711 SS.isSet())) 4712 return true; 4713 4714 ClassTemplateSpecializationDecl *Specialization = 0; 4715 4716 bool ReusedDecl = false; 4717 bool HasNoEffect = false; 4718 if (PrevDecl) { 4719 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 4720 PrevDecl, PrevDecl_TSK, 4721 PrevDecl->getPointOfInstantiation(), 4722 HasNoEffect)) 4723 return PrevDecl; 4724 4725 // Even though HasNoEffect == true means that this explicit instantiation 4726 // has no effect on semantics, we go on to put its syntax in the AST. 4727 4728 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 4729 PrevDecl_TSK == TSK_Undeclared) { 4730 // Since the only prior class template specialization with these 4731 // arguments was referenced but not declared, reuse that 4732 // declaration node as our own, updating the source location 4733 // for the template name to reflect our new declaration. 4734 // (Other source locations will be updated later.) 4735 Specialization = PrevDecl; 4736 Specialization->setLocation(TemplateNameLoc); 4737 PrevDecl = 0; 4738 ReusedDecl = true; 4739 } 4740 } 4741 4742 if (!Specialization) { 4743 // Create a new class template specialization declaration node for 4744 // this explicit specialization. 4745 Specialization 4746 = ClassTemplateSpecializationDecl::Create(Context, Kind, 4747 ClassTemplate->getDeclContext(), 4748 TemplateNameLoc, 4749 ClassTemplate, 4750 Converted, PrevDecl); 4751 SetNestedNameSpecifier(Specialization, SS); 4752 4753 if (!HasNoEffect && !PrevDecl) { 4754 // Insert the new specialization. 4755 ClassTemplate->AddSpecialization(Specialization, InsertPos); 4756 } 4757 } 4758 4759 // Build the fully-sugared type for this explicit instantiation as 4760 // the user wrote in the explicit instantiation itself. This means 4761 // that we'll pretty-print the type retrieved from the 4762 // specialization's declaration the way that the user actually wrote 4763 // the explicit instantiation, rather than formatting the name based 4764 // on the "canonical" representation used to store the template 4765 // arguments in the specialization. 4766 TypeSourceInfo *WrittenTy 4767 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 4768 TemplateArgs, 4769 Context.getTypeDeclType(Specialization)); 4770 Specialization->setTypeAsWritten(WrittenTy); 4771 TemplateArgsIn.release(); 4772 4773 // Set source locations for keywords. 4774 Specialization->setExternLoc(ExternLoc); 4775 Specialization->setTemplateKeywordLoc(TemplateLoc); 4776 4777 // Add the explicit instantiation into its lexical context. However, 4778 // since explicit instantiations are never found by name lookup, we 4779 // just put it into the declaration context directly. 4780 Specialization->setLexicalDeclContext(CurContext); 4781 CurContext->addDecl(Specialization); 4782 4783 // Syntax is now OK, so return if it has no other effect on semantics. 4784 if (HasNoEffect) { 4785 // Set the template specialization kind. 4786 Specialization->setTemplateSpecializationKind(TSK); 4787 return Specialization; 4788 } 4789 4790 // C++ [temp.explicit]p3: 4791 // A definition of a class template or class member template 4792 // shall be in scope at the point of the explicit instantiation of 4793 // the class template or class member template. 4794 // 4795 // This check comes when we actually try to perform the 4796 // instantiation. 4797 ClassTemplateSpecializationDecl *Def 4798 = cast_or_null<ClassTemplateSpecializationDecl>( 4799 Specialization->getDefinition()); 4800 if (!Def) 4801 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 4802 else if (TSK == TSK_ExplicitInstantiationDefinition) { 4803 MarkVTableUsed(TemplateNameLoc, Specialization, true); 4804 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 4805 } 4806 4807 // Instantiate the members of this class template specialization. 4808 Def = cast_or_null<ClassTemplateSpecializationDecl>( 4809 Specialization->getDefinition()); 4810 if (Def) { 4811 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 4812 4813 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 4814 // TSK_ExplicitInstantiationDefinition 4815 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 4816 TSK == TSK_ExplicitInstantiationDefinition) 4817 Def->setTemplateSpecializationKind(TSK); 4818 4819 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 4820 } 4821 4822 // Set the template specialization kind. 4823 Specialization->setTemplateSpecializationKind(TSK); 4824 return Specialization; 4825} 4826 4827// Explicit instantiation of a member class of a class template. 4828DeclResult 4829Sema::ActOnExplicitInstantiation(Scope *S, 4830 SourceLocation ExternLoc, 4831 SourceLocation TemplateLoc, 4832 unsigned TagSpec, 4833 SourceLocation KWLoc, 4834 CXXScopeSpec &SS, 4835 IdentifierInfo *Name, 4836 SourceLocation NameLoc, 4837 AttributeList *Attr) { 4838 4839 bool Owned = false; 4840 bool IsDependent = false; 4841 Decl *TagD = ActOnTag(S, TagSpec, Action::TUK_Reference, 4842 KWLoc, SS, Name, NameLoc, Attr, AS_none, 4843 MultiTemplateParamsArg(*this, 0, 0), 4844 Owned, IsDependent); 4845 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 4846 4847 if (!TagD) 4848 return true; 4849 4850 TagDecl *Tag = cast<TagDecl>(TagD); 4851 if (Tag->isEnum()) { 4852 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 4853 << Context.getTypeDeclType(Tag); 4854 return true; 4855 } 4856 4857 if (Tag->isInvalidDecl()) 4858 return true; 4859 4860 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 4861 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 4862 if (!Pattern) { 4863 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 4864 << Context.getTypeDeclType(Record); 4865 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 4866 return true; 4867 } 4868 4869 // C++0x [temp.explicit]p2: 4870 // If the explicit instantiation is for a class or member class, the 4871 // elaborated-type-specifier in the declaration shall include a 4872 // simple-template-id. 4873 // 4874 // C++98 has the same restriction, just worded differently. 4875 if (!ScopeSpecifierHasTemplateId(SS)) 4876 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 4877 << Record << SS.getRange(); 4878 4879 // C++0x [temp.explicit]p2: 4880 // There are two forms of explicit instantiation: an explicit instantiation 4881 // definition and an explicit instantiation declaration. An explicit 4882 // instantiation declaration begins with the extern keyword. [...] 4883 TemplateSpecializationKind TSK 4884 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4885 : TSK_ExplicitInstantiationDeclaration; 4886 4887 // C++0x [temp.explicit]p2: 4888 // [...] An explicit instantiation shall appear in an enclosing 4889 // namespace of its template. [...] 4890 // 4891 // This is C++ DR 275. 4892 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 4893 4894 // Verify that it is okay to explicitly instantiate here. 4895 CXXRecordDecl *PrevDecl 4896 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 4897 if (!PrevDecl && Record->getDefinition()) 4898 PrevDecl = Record; 4899 if (PrevDecl) { 4900 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 4901 bool HasNoEffect = false; 4902 assert(MSInfo && "No member specialization information?"); 4903 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 4904 PrevDecl, 4905 MSInfo->getTemplateSpecializationKind(), 4906 MSInfo->getPointOfInstantiation(), 4907 HasNoEffect)) 4908 return true; 4909 if (HasNoEffect) 4910 return TagD; 4911 } 4912 4913 CXXRecordDecl *RecordDef 4914 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 4915 if (!RecordDef) { 4916 // C++ [temp.explicit]p3: 4917 // A definition of a member class of a class template shall be in scope 4918 // at the point of an explicit instantiation of the member class. 4919 CXXRecordDecl *Def 4920 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 4921 if (!Def) { 4922 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 4923 << 0 << Record->getDeclName() << Record->getDeclContext(); 4924 Diag(Pattern->getLocation(), diag::note_forward_declaration) 4925 << Pattern; 4926 return true; 4927 } else { 4928 if (InstantiateClass(NameLoc, Record, Def, 4929 getTemplateInstantiationArgs(Record), 4930 TSK)) 4931 return true; 4932 4933 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 4934 if (!RecordDef) 4935 return true; 4936 } 4937 } 4938 4939 // Instantiate all of the members of the class. 4940 InstantiateClassMembers(NameLoc, RecordDef, 4941 getTemplateInstantiationArgs(Record), TSK); 4942 4943 if (TSK == TSK_ExplicitInstantiationDefinition) 4944 MarkVTableUsed(NameLoc, RecordDef, true); 4945 4946 // FIXME: We don't have any representation for explicit instantiations of 4947 // member classes. Such a representation is not needed for compilation, but it 4948 // should be available for clients that want to see all of the declarations in 4949 // the source code. 4950 return TagD; 4951} 4952 4953Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 4954 SourceLocation ExternLoc, 4955 SourceLocation TemplateLoc, 4956 Declarator &D) { 4957 // Explicit instantiations always require a name. 4958 // TODO: check if/when DNInfo should replace Name. 4959 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 4960 DeclarationName Name = NameInfo.getName(); 4961 if (!Name) { 4962 if (!D.isInvalidType()) 4963 Diag(D.getDeclSpec().getSourceRange().getBegin(), 4964 diag::err_explicit_instantiation_requires_name) 4965 << D.getDeclSpec().getSourceRange() 4966 << D.getSourceRange(); 4967 4968 return true; 4969 } 4970 4971 // The scope passed in may not be a decl scope. Zip up the scope tree until 4972 // we find one that is. 4973 while ((S->getFlags() & Scope::DeclScope) == 0 || 4974 (S->getFlags() & Scope::TemplateParamScope) != 0) 4975 S = S->getParent(); 4976 4977 // Determine the type of the declaration. 4978 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 4979 QualType R = T->getType(); 4980 if (R.isNull()) 4981 return true; 4982 4983 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 4984 // Cannot explicitly instantiate a typedef. 4985 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 4986 << Name; 4987 return true; 4988 } 4989 4990 // C++0x [temp.explicit]p1: 4991 // [...] An explicit instantiation of a function template shall not use the 4992 // inline or constexpr specifiers. 4993 // Presumably, this also applies to member functions of class templates as 4994 // well. 4995 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 4996 Diag(D.getDeclSpec().getInlineSpecLoc(), 4997 diag::err_explicit_instantiation_inline) 4998 <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 4999 5000 // FIXME: check for constexpr specifier. 5001 5002 // C++0x [temp.explicit]p2: 5003 // There are two forms of explicit instantiation: an explicit instantiation 5004 // definition and an explicit instantiation declaration. An explicit 5005 // instantiation declaration begins with the extern keyword. [...] 5006 TemplateSpecializationKind TSK 5007 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5008 : TSK_ExplicitInstantiationDeclaration; 5009 5010 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 5011 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 5012 5013 if (!R->isFunctionType()) { 5014 // C++ [temp.explicit]p1: 5015 // A [...] static data member of a class template can be explicitly 5016 // instantiated from the member definition associated with its class 5017 // template. 5018 if (Previous.isAmbiguous()) 5019 return true; 5020 5021 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 5022 if (!Prev || !Prev->isStaticDataMember()) { 5023 // We expect to see a data data member here. 5024 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 5025 << Name; 5026 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 5027 P != PEnd; ++P) 5028 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 5029 return true; 5030 } 5031 5032 if (!Prev->getInstantiatedFromStaticDataMember()) { 5033 // FIXME: Check for explicit specialization? 5034 Diag(D.getIdentifierLoc(), 5035 diag::err_explicit_instantiation_data_member_not_instantiated) 5036 << Prev; 5037 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 5038 // FIXME: Can we provide a note showing where this was declared? 5039 return true; 5040 } 5041 5042 // C++0x [temp.explicit]p2: 5043 // If the explicit instantiation is for a member function, a member class 5044 // or a static data member of a class template specialization, the name of 5045 // the class template specialization in the qualified-id for the member 5046 // name shall be a simple-template-id. 5047 // 5048 // C++98 has the same restriction, just worded differently. 5049 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5050 Diag(D.getIdentifierLoc(), 5051 diag::ext_explicit_instantiation_without_qualified_id) 5052 << Prev << D.getCXXScopeSpec().getRange(); 5053 5054 // Check the scope of this explicit instantiation. 5055 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 5056 5057 // Verify that it is okay to explicitly instantiate here. 5058 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 5059 assert(MSInfo && "Missing static data member specialization info?"); 5060 bool HasNoEffect = false; 5061 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 5062 MSInfo->getTemplateSpecializationKind(), 5063 MSInfo->getPointOfInstantiation(), 5064 HasNoEffect)) 5065 return true; 5066 if (HasNoEffect) 5067 return (Decl*) 0; 5068 5069 // Instantiate static data member. 5070 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5071 if (TSK == TSK_ExplicitInstantiationDefinition) 5072 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false, 5073 /*DefinitionRequired=*/true); 5074 5075 // FIXME: Create an ExplicitInstantiation node? 5076 return (Decl*) 0; 5077 } 5078 5079 // If the declarator is a template-id, translate the parser's template 5080 // argument list into our AST format. 5081 bool HasExplicitTemplateArgs = false; 5082 TemplateArgumentListInfo TemplateArgs; 5083 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 5084 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 5085 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 5086 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 5087 ASTTemplateArgsPtr TemplateArgsPtr(*this, 5088 TemplateId->getTemplateArgs(), 5089 TemplateId->NumArgs); 5090 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 5091 HasExplicitTemplateArgs = true; 5092 TemplateArgsPtr.release(); 5093 } 5094 5095 // C++ [temp.explicit]p1: 5096 // A [...] function [...] can be explicitly instantiated from its template. 5097 // A member function [...] of a class template can be explicitly 5098 // instantiated from the member definition associated with its class 5099 // template. 5100 UnresolvedSet<8> Matches; 5101 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 5102 P != PEnd; ++P) { 5103 NamedDecl *Prev = *P; 5104 if (!HasExplicitTemplateArgs) { 5105 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 5106 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 5107 Matches.clear(); 5108 5109 Matches.addDecl(Method, P.getAccess()); 5110 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 5111 break; 5112 } 5113 } 5114 } 5115 5116 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 5117 if (!FunTmpl) 5118 continue; 5119 5120 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 5121 FunctionDecl *Specialization = 0; 5122 if (TemplateDeductionResult TDK 5123 = DeduceTemplateArguments(FunTmpl, 5124 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 5125 R, Specialization, Info)) { 5126 // FIXME: Keep track of almost-matches? 5127 (void)TDK; 5128 continue; 5129 } 5130 5131 Matches.addDecl(Specialization, P.getAccess()); 5132 } 5133 5134 // Find the most specialized function template specialization. 5135 UnresolvedSetIterator Result 5136 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 5137 D.getIdentifierLoc(), 5138 PDiag(diag::err_explicit_instantiation_not_known) << Name, 5139 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 5140 PDiag(diag::note_explicit_instantiation_candidate)); 5141 5142 if (Result == Matches.end()) 5143 return true; 5144 5145 // Ignore access control bits, we don't need them for redeclaration checking. 5146 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5147 5148 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 5149 Diag(D.getIdentifierLoc(), 5150 diag::err_explicit_instantiation_member_function_not_instantiated) 5151 << Specialization 5152 << (Specialization->getTemplateSpecializationKind() == 5153 TSK_ExplicitSpecialization); 5154 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 5155 return true; 5156 } 5157 5158 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 5159 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 5160 PrevDecl = Specialization; 5161 5162 if (PrevDecl) { 5163 bool HasNoEffect = false; 5164 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 5165 PrevDecl, 5166 PrevDecl->getTemplateSpecializationKind(), 5167 PrevDecl->getPointOfInstantiation(), 5168 HasNoEffect)) 5169 return true; 5170 5171 // FIXME: We may still want to build some representation of this 5172 // explicit specialization. 5173 if (HasNoEffect) 5174 return (Decl*) 0; 5175 } 5176 5177 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5178 5179 if (TSK == TSK_ExplicitInstantiationDefinition) 5180 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization, 5181 false, /*DefinitionRequired=*/true); 5182 5183 // C++0x [temp.explicit]p2: 5184 // If the explicit instantiation is for a member function, a member class 5185 // or a static data member of a class template specialization, the name of 5186 // the class template specialization in the qualified-id for the member 5187 // name shall be a simple-template-id. 5188 // 5189 // C++98 has the same restriction, just worded differently. 5190 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 5191 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 5192 D.getCXXScopeSpec().isSet() && 5193 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5194 Diag(D.getIdentifierLoc(), 5195 diag::ext_explicit_instantiation_without_qualified_id) 5196 << Specialization << D.getCXXScopeSpec().getRange(); 5197 5198 CheckExplicitInstantiationScope(*this, 5199 FunTmpl? (NamedDecl *)FunTmpl 5200 : Specialization->getInstantiatedFromMemberFunction(), 5201 D.getIdentifierLoc(), 5202 D.getCXXScopeSpec().isSet()); 5203 5204 // FIXME: Create some kind of ExplicitInstantiationDecl here. 5205 return (Decl*) 0; 5206} 5207 5208Sema::TypeResult 5209Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 5210 const CXXScopeSpec &SS, IdentifierInfo *Name, 5211 SourceLocation TagLoc, SourceLocation NameLoc) { 5212 // This has to hold, because SS is expected to be defined. 5213 assert(Name && "Expected a name in a dependent tag"); 5214 5215 NestedNameSpecifier *NNS 5216 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5217 if (!NNS) 5218 return true; 5219 5220 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5221 5222 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 5223 Diag(NameLoc, diag::err_dependent_tag_decl) 5224 << (TUK == TUK_Definition) << Kind << SS.getRange(); 5225 return true; 5226 } 5227 5228 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 5229 return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name)); 5230} 5231 5232Sema::TypeResult 5233Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 5234 const CXXScopeSpec &SS, const IdentifierInfo &II, 5235 SourceLocation IdLoc) { 5236 NestedNameSpecifier *NNS 5237 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5238 if (!NNS) 5239 return true; 5240 5241 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 5242 !getLangOptions().CPlusPlus0x) 5243 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 5244 << FixItHint::CreateRemoval(TypenameLoc); 5245 5246 QualType T = CheckTypenameType(ETK_Typename, NNS, II, 5247 TypenameLoc, SS.getRange(), IdLoc); 5248 if (T.isNull()) 5249 return true; 5250 5251 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5252 if (isa<DependentNameType>(T)) { 5253 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 5254 TL.setKeywordLoc(TypenameLoc); 5255 TL.setQualifierRange(SS.getRange()); 5256 TL.setNameLoc(IdLoc); 5257 } else { 5258 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 5259 TL.setKeywordLoc(TypenameLoc); 5260 TL.setQualifierRange(SS.getRange()); 5261 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc); 5262 } 5263 5264 return CreateParsedType(T, TSI); 5265} 5266 5267Sema::TypeResult 5268Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 5269 const CXXScopeSpec &SS, SourceLocation TemplateLoc, 5270 ParsedType Ty) { 5271 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 5272 !getLangOptions().CPlusPlus0x) 5273 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 5274 << FixItHint::CreateRemoval(TypenameLoc); 5275 5276 TypeSourceInfo *InnerTSI = 0; 5277 QualType T = GetTypeFromParser(Ty, &InnerTSI); 5278 5279 assert(isa<TemplateSpecializationType>(T) && 5280 "Expected a template specialization type"); 5281 5282 if (computeDeclContext(SS, false)) { 5283 // If we can compute a declaration context, then the "typename" 5284 // keyword was superfluous. Just build an ElaboratedType to keep 5285 // track of the nested-name-specifier. 5286 5287 // Push the inner type, preserving its source locations if possible. 5288 TypeLocBuilder Builder; 5289 if (InnerTSI) 5290 Builder.pushFullCopy(InnerTSI->getTypeLoc()); 5291 else 5292 Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc); 5293 5294 /* Note: NNS already embedded in template specialization type T. */ 5295 T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T); 5296 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 5297 TL.setKeywordLoc(TypenameLoc); 5298 TL.setQualifierRange(SS.getRange()); 5299 5300 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 5301 return CreateParsedType(T, TSI); 5302 } 5303 5304 // TODO: it's really silly that we make a template specialization 5305 // type earlier only to drop it again here. 5306 TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T); 5307 DependentTemplateName *DTN = 5308 TST->getTemplateName().getAsDependentTemplateName(); 5309 assert(DTN && "dependent template has non-dependent name?"); 5310 assert(DTN->getQualifier() 5311 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 5312 T = Context.getDependentTemplateSpecializationType(ETK_Typename, 5313 DTN->getQualifier(), 5314 DTN->getIdentifier(), 5315 TST->getNumArgs(), 5316 TST->getArgs()); 5317 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5318 DependentTemplateSpecializationTypeLoc TL = 5319 cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc()); 5320 if (InnerTSI) { 5321 TemplateSpecializationTypeLoc TSTL = 5322 cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc()); 5323 TL.setLAngleLoc(TSTL.getLAngleLoc()); 5324 TL.setRAngleLoc(TSTL.getRAngleLoc()); 5325 for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I) 5326 TL.setArgLocInfo(I, TSTL.getArgLocInfo(I)); 5327 } else { 5328 TL.initializeLocal(SourceLocation()); 5329 } 5330 TL.setKeywordLoc(TypenameLoc); 5331 TL.setQualifierRange(SS.getRange()); 5332 return CreateParsedType(T, TSI); 5333} 5334 5335/// \brief Build the type that describes a C++ typename specifier, 5336/// e.g., "typename T::type". 5337QualType 5338Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 5339 NestedNameSpecifier *NNS, const IdentifierInfo &II, 5340 SourceLocation KeywordLoc, SourceRange NNSRange, 5341 SourceLocation IILoc) { 5342 CXXScopeSpec SS; 5343 SS.setScopeRep(NNS); 5344 SS.setRange(NNSRange); 5345 5346 DeclContext *Ctx = computeDeclContext(SS); 5347 if (!Ctx) { 5348 // If the nested-name-specifier is dependent and couldn't be 5349 // resolved to a type, build a typename type. 5350 assert(NNS->isDependent()); 5351 return Context.getDependentNameType(Keyword, NNS, &II); 5352 } 5353 5354 // If the nested-name-specifier refers to the current instantiation, 5355 // the "typename" keyword itself is superfluous. In C++03, the 5356 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 5357 // allows such extraneous "typename" keywords, and we retroactively 5358 // apply this DR to C++03 code with only a warning. In any case we continue. 5359 5360 if (RequireCompleteDeclContext(SS, Ctx)) 5361 return QualType(); 5362 5363 DeclarationName Name(&II); 5364 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 5365 LookupQualifiedName(Result, Ctx); 5366 unsigned DiagID = 0; 5367 Decl *Referenced = 0; 5368 switch (Result.getResultKind()) { 5369 case LookupResult::NotFound: 5370 DiagID = diag::err_typename_nested_not_found; 5371 break; 5372 5373 case LookupResult::NotFoundInCurrentInstantiation: 5374 // Okay, it's a member of an unknown instantiation. 5375 return Context.getDependentNameType(Keyword, NNS, &II); 5376 5377 case LookupResult::Found: 5378 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 5379 // We found a type. Build an ElaboratedType, since the 5380 // typename-specifier was just sugar. 5381 return Context.getElaboratedType(ETK_Typename, NNS, 5382 Context.getTypeDeclType(Type)); 5383 } 5384 5385 DiagID = diag::err_typename_nested_not_type; 5386 Referenced = Result.getFoundDecl(); 5387 break; 5388 5389 case LookupResult::FoundUnresolvedValue: 5390 llvm_unreachable("unresolved using decl in non-dependent context"); 5391 return QualType(); 5392 5393 case LookupResult::FoundOverloaded: 5394 DiagID = diag::err_typename_nested_not_type; 5395 Referenced = *Result.begin(); 5396 break; 5397 5398 case LookupResult::Ambiguous: 5399 return QualType(); 5400 } 5401 5402 // If we get here, it's because name lookup did not find a 5403 // type. Emit an appropriate diagnostic and return an error. 5404 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(), 5405 IILoc); 5406 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 5407 if (Referenced) 5408 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 5409 << Name; 5410 return QualType(); 5411} 5412 5413namespace { 5414 // See Sema::RebuildTypeInCurrentInstantiation 5415 class CurrentInstantiationRebuilder 5416 : public TreeTransform<CurrentInstantiationRebuilder> { 5417 SourceLocation Loc; 5418 DeclarationName Entity; 5419 5420 public: 5421 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 5422 5423 CurrentInstantiationRebuilder(Sema &SemaRef, 5424 SourceLocation Loc, 5425 DeclarationName Entity) 5426 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 5427 Loc(Loc), Entity(Entity) { } 5428 5429 /// \brief Determine whether the given type \p T has already been 5430 /// transformed. 5431 /// 5432 /// For the purposes of type reconstruction, a type has already been 5433 /// transformed if it is NULL or if it is not dependent. 5434 bool AlreadyTransformed(QualType T) { 5435 return T.isNull() || !T->isDependentType(); 5436 } 5437 5438 /// \brief Returns the location of the entity whose type is being 5439 /// rebuilt. 5440 SourceLocation getBaseLocation() { return Loc; } 5441 5442 /// \brief Returns the name of the entity whose type is being rebuilt. 5443 DeclarationName getBaseEntity() { return Entity; } 5444 5445 /// \brief Sets the "base" location and entity when that 5446 /// information is known based on another transformation. 5447 void setBase(SourceLocation Loc, DeclarationName Entity) { 5448 this->Loc = Loc; 5449 this->Entity = Entity; 5450 } 5451 }; 5452} 5453 5454/// \brief Rebuilds a type within the context of the current instantiation. 5455/// 5456/// The type \p T is part of the type of an out-of-line member definition of 5457/// a class template (or class template partial specialization) that was parsed 5458/// and constructed before we entered the scope of the class template (or 5459/// partial specialization thereof). This routine will rebuild that type now 5460/// that we have entered the declarator's scope, which may produce different 5461/// canonical types, e.g., 5462/// 5463/// \code 5464/// template<typename T> 5465/// struct X { 5466/// typedef T* pointer; 5467/// pointer data(); 5468/// }; 5469/// 5470/// template<typename T> 5471/// typename X<T>::pointer X<T>::data() { ... } 5472/// \endcode 5473/// 5474/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 5475/// since we do not know that we can look into X<T> when we parsed the type. 5476/// This function will rebuild the type, performing the lookup of "pointer" 5477/// in X<T> and returning an ElaboratedType whose canonical type is the same 5478/// as the canonical type of T*, allowing the return types of the out-of-line 5479/// definition and the declaration to match. 5480TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 5481 SourceLocation Loc, 5482 DeclarationName Name) { 5483 if (!T || !T->getType()->isDependentType()) 5484 return T; 5485 5486 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 5487 return Rebuilder.TransformType(T); 5488} 5489 5490ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 5491 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 5492 DeclarationName()); 5493 return Rebuilder.TransformExpr(E); 5494} 5495 5496bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 5497 if (SS.isInvalid()) return true; 5498 5499 NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 5500 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 5501 DeclarationName()); 5502 NestedNameSpecifier *Rebuilt = 5503 Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange()); 5504 if (!Rebuilt) return true; 5505 5506 SS.setScopeRep(Rebuilt); 5507 return false; 5508} 5509 5510/// \brief Produces a formatted string that describes the binding of 5511/// template parameters to template arguments. 5512std::string 5513Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 5514 const TemplateArgumentList &Args) { 5515 // FIXME: For variadic templates, we'll need to get the structured list. 5516 return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(), 5517 Args.flat_size()); 5518} 5519 5520std::string 5521Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 5522 const TemplateArgument *Args, 5523 unsigned NumArgs) { 5524 std::string Result; 5525 5526 if (!Params || Params->size() == 0 || NumArgs == 0) 5527 return Result; 5528 5529 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 5530 if (I >= NumArgs) 5531 break; 5532 5533 if (I == 0) 5534 Result += "[with "; 5535 else 5536 Result += ", "; 5537 5538 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 5539 Result += Id->getName(); 5540 } else { 5541 Result += '$'; 5542 Result += llvm::utostr(I); 5543 } 5544 5545 Result += " = "; 5546 5547 switch (Args[I].getKind()) { 5548 case TemplateArgument::Null: 5549 Result += "<no value>"; 5550 break; 5551 5552 case TemplateArgument::Type: { 5553 std::string TypeStr; 5554 Args[I].getAsType().getAsStringInternal(TypeStr, 5555 Context.PrintingPolicy); 5556 Result += TypeStr; 5557 break; 5558 } 5559 5560 case TemplateArgument::Declaration: { 5561 bool Unnamed = true; 5562 if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) { 5563 if (ND->getDeclName()) { 5564 Unnamed = false; 5565 Result += ND->getNameAsString(); 5566 } 5567 } 5568 5569 if (Unnamed) { 5570 Result += "<anonymous>"; 5571 } 5572 break; 5573 } 5574 5575 case TemplateArgument::Template: { 5576 std::string Str; 5577 llvm::raw_string_ostream OS(Str); 5578 Args[I].getAsTemplate().print(OS, Context.PrintingPolicy); 5579 Result += OS.str(); 5580 break; 5581 } 5582 5583 case TemplateArgument::Integral: { 5584 Result += Args[I].getAsIntegral()->toString(10); 5585 break; 5586 } 5587 5588 case TemplateArgument::Expression: { 5589 // FIXME: This is non-optimal, since we're regurgitating the 5590 // expression we were given. 5591 std::string Str; 5592 { 5593 llvm::raw_string_ostream OS(Str); 5594 Args[I].getAsExpr()->printPretty(OS, Context, 0, 5595 Context.PrintingPolicy); 5596 } 5597 Result += Str; 5598 break; 5599 } 5600 5601 case TemplateArgument::Pack: 5602 // FIXME: Format template argument packs 5603 Result += "<template argument pack>"; 5604 break; 5605 } 5606 } 5607 5608 Result += ']'; 5609 return Result; 5610} 5611