SemaTemplate.cpp revision 66874fb18afbffb8b2ca05576851a64534be3352
14a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 24a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair// 34a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair// The LLVM Compiler Infrastructure 44a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair// 54a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair// This file is distributed under the University of Illinois Open Source 64a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair// License. See LICENSE.TXT for details. 74a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair//===----------------------------------------------------------------------===/ 84a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair// 94a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair// This file implements semantic analysis for C++ templates. 104a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair//===----------------------------------------------------------------------===/ 114a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair 124a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair#include "TreeTransform.h" 134a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair#include "clang/AST/ASTContext.h" 144a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair#include "clang/AST/DeclFriend.h" 154a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair#include "clang/AST/DeclTemplate.h" 164a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair#include "clang/AST/Expr.h" 174a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair#include "clang/AST/ExprCXX.h" 184a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair#include "clang/AST/RecursiveASTVisitor.h" 194a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair#include "clang/AST/TypeVisitor.h" 204a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair#include "clang/Basic/LangOptions.h" 214a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair#include "clang/Basic/PartialDiagnostic.h" 224a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair#include "clang/Sema/DeclSpec.h" 234a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair#include "clang/Sema/Lookup.h" 244a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair#include "clang/Sema/ParsedTemplate.h" 254a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair#include "clang/Sema/Scope.h" 264a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair#include "clang/Sema/SemaInternal.h" 274a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair#include "clang/Sema/Template.h" 284a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair#include "clang/Sema/TemplateDeduction.h" 294a4f2fe02baf385f6c24fc98c6e17bf6ac5e0724Dan Sinclair#include "llvm/ADT/SmallBitVector.h" 30#include "llvm/ADT/SmallString.h" 31#include "llvm/ADT/StringExtras.h" 32using namespace clang; 33using namespace sema; 34 35// Exported for use by Parser. 36SourceRange 37clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 38 unsigned N) { 39 if (!N) return SourceRange(); 40 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 41} 42 43/// \brief Determine whether the declaration found is acceptable as the name 44/// of a template and, if so, return that template declaration. Otherwise, 45/// returns NULL. 46static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 47 NamedDecl *Orig, 48 bool AllowFunctionTemplates) { 49 NamedDecl *D = Orig->getUnderlyingDecl(); 50 51 if (isa<TemplateDecl>(D)) { 52 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D)) 53 return 0; 54 55 return Orig; 56 } 57 58 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 59 // C++ [temp.local]p1: 60 // Like normal (non-template) classes, class templates have an 61 // injected-class-name (Clause 9). The injected-class-name 62 // can be used with or without a template-argument-list. When 63 // it is used without a template-argument-list, it is 64 // equivalent to the injected-class-name followed by the 65 // template-parameters of the class template enclosed in 66 // <>. When it is used with a template-argument-list, it 67 // refers to the specified class template specialization, 68 // which could be the current specialization or another 69 // specialization. 70 if (Record->isInjectedClassName()) { 71 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 72 if (Record->getDescribedClassTemplate()) 73 return Record->getDescribedClassTemplate(); 74 75 if (ClassTemplateSpecializationDecl *Spec 76 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 77 return Spec->getSpecializedTemplate(); 78 } 79 80 return 0; 81 } 82 83 return 0; 84} 85 86void Sema::FilterAcceptableTemplateNames(LookupResult &R, 87 bool AllowFunctionTemplates) { 88 // The set of class templates we've already seen. 89 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 90 LookupResult::Filter filter = R.makeFilter(); 91 while (filter.hasNext()) { 92 NamedDecl *Orig = filter.next(); 93 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig, 94 AllowFunctionTemplates); 95 if (!Repl) 96 filter.erase(); 97 else if (Repl != Orig) { 98 99 // C++ [temp.local]p3: 100 // A lookup that finds an injected-class-name (10.2) can result in an 101 // ambiguity in certain cases (for example, if it is found in more than 102 // one base class). If all of the injected-class-names that are found 103 // refer to specializations of the same class template, and if the name 104 // is used as a template-name, the reference refers to the class 105 // template itself and not a specialization thereof, and is not 106 // ambiguous. 107 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 108 if (!ClassTemplates.insert(ClassTmpl)) { 109 filter.erase(); 110 continue; 111 } 112 113 // FIXME: we promote access to public here as a workaround to 114 // the fact that LookupResult doesn't let us remember that we 115 // found this template through a particular injected class name, 116 // which means we end up doing nasty things to the invariants. 117 // Pretending that access is public is *much* safer. 118 filter.replace(Repl, AS_public); 119 } 120 } 121 filter.done(); 122} 123 124bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, 125 bool AllowFunctionTemplates) { 126 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) 127 if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates)) 128 return true; 129 130 return false; 131} 132 133TemplateNameKind Sema::isTemplateName(Scope *S, 134 CXXScopeSpec &SS, 135 bool hasTemplateKeyword, 136 UnqualifiedId &Name, 137 ParsedType ObjectTypePtr, 138 bool EnteringContext, 139 TemplateTy &TemplateResult, 140 bool &MemberOfUnknownSpecialization) { 141 assert(getLangOpts().CPlusPlus && "No template names in C!"); 142 143 DeclarationName TName; 144 MemberOfUnknownSpecialization = false; 145 146 switch (Name.getKind()) { 147 case UnqualifiedId::IK_Identifier: 148 TName = DeclarationName(Name.Identifier); 149 break; 150 151 case UnqualifiedId::IK_OperatorFunctionId: 152 TName = Context.DeclarationNames.getCXXOperatorName( 153 Name.OperatorFunctionId.Operator); 154 break; 155 156 case UnqualifiedId::IK_LiteralOperatorId: 157 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 158 break; 159 160 default: 161 return TNK_Non_template; 162 } 163 164 QualType ObjectType = ObjectTypePtr.get(); 165 166 LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName); 167 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 168 MemberOfUnknownSpecialization); 169 if (R.empty()) return TNK_Non_template; 170 if (R.isAmbiguous()) { 171 // Suppress diagnostics; we'll redo this lookup later. 172 R.suppressDiagnostics(); 173 174 // FIXME: we might have ambiguous templates, in which case we 175 // should at least parse them properly! 176 return TNK_Non_template; 177 } 178 179 TemplateName Template; 180 TemplateNameKind TemplateKind; 181 182 unsigned ResultCount = R.end() - R.begin(); 183 if (ResultCount > 1) { 184 // We assume that we'll preserve the qualifier from a function 185 // template name in other ways. 186 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 187 TemplateKind = TNK_Function_template; 188 189 // We'll do this lookup again later. 190 R.suppressDiagnostics(); 191 } else { 192 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 193 194 if (SS.isSet() && !SS.isInvalid()) { 195 NestedNameSpecifier *Qualifier 196 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 197 Template = Context.getQualifiedTemplateName(Qualifier, 198 hasTemplateKeyword, TD); 199 } else { 200 Template = TemplateName(TD); 201 } 202 203 if (isa<FunctionTemplateDecl>(TD)) { 204 TemplateKind = TNK_Function_template; 205 206 // We'll do this lookup again later. 207 R.suppressDiagnostics(); 208 } else { 209 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 210 isa<TypeAliasTemplateDecl>(TD)); 211 TemplateKind = TNK_Type_template; 212 } 213 } 214 215 TemplateResult = TemplateTy::make(Template); 216 return TemplateKind; 217} 218 219bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 220 SourceLocation IILoc, 221 Scope *S, 222 const CXXScopeSpec *SS, 223 TemplateTy &SuggestedTemplate, 224 TemplateNameKind &SuggestedKind) { 225 // We can't recover unless there's a dependent scope specifier preceding the 226 // template name. 227 // FIXME: Typo correction? 228 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 229 computeDeclContext(*SS)) 230 return false; 231 232 // The code is missing a 'template' keyword prior to the dependent template 233 // name. 234 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 235 Diag(IILoc, diag::err_template_kw_missing) 236 << Qualifier << II.getName() 237 << FixItHint::CreateInsertion(IILoc, "template "); 238 SuggestedTemplate 239 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 240 SuggestedKind = TNK_Dependent_template_name; 241 return true; 242} 243 244void Sema::LookupTemplateName(LookupResult &Found, 245 Scope *S, CXXScopeSpec &SS, 246 QualType ObjectType, 247 bool EnteringContext, 248 bool &MemberOfUnknownSpecialization) { 249 // Determine where to perform name lookup 250 MemberOfUnknownSpecialization = false; 251 DeclContext *LookupCtx = 0; 252 bool isDependent = false; 253 if (!ObjectType.isNull()) { 254 // This nested-name-specifier occurs in a member access expression, e.g., 255 // x->B::f, and we are looking into the type of the object. 256 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 257 LookupCtx = computeDeclContext(ObjectType); 258 isDependent = ObjectType->isDependentType(); 259 assert((isDependent || !ObjectType->isIncompleteType()) && 260 "Caller should have completed object type"); 261 262 // Template names cannot appear inside an Objective-C class or object type. 263 if (ObjectType->isObjCObjectOrInterfaceType()) { 264 Found.clear(); 265 return; 266 } 267 } else if (SS.isSet()) { 268 // This nested-name-specifier occurs after another nested-name-specifier, 269 // so long into the context associated with the prior nested-name-specifier. 270 LookupCtx = computeDeclContext(SS, EnteringContext); 271 isDependent = isDependentScopeSpecifier(SS); 272 273 // The declaration context must be complete. 274 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 275 return; 276 } 277 278 bool ObjectTypeSearchedInScope = false; 279 bool AllowFunctionTemplatesInLookup = true; 280 if (LookupCtx) { 281 // Perform "qualified" name lookup into the declaration context we 282 // computed, which is either the type of the base of a member access 283 // expression or the declaration context associated with a prior 284 // nested-name-specifier. 285 LookupQualifiedName(Found, LookupCtx); 286 if (!ObjectType.isNull() && Found.empty()) { 287 // C++ [basic.lookup.classref]p1: 288 // In a class member access expression (5.2.5), if the . or -> token is 289 // immediately followed by an identifier followed by a <, the 290 // identifier must be looked up to determine whether the < is the 291 // beginning of a template argument list (14.2) or a less-than operator. 292 // The identifier is first looked up in the class of the object 293 // expression. If the identifier is not found, it is then looked up in 294 // the context of the entire postfix-expression and shall name a class 295 // or function template. 296 if (S) LookupName(Found, S); 297 ObjectTypeSearchedInScope = true; 298 AllowFunctionTemplatesInLookup = false; 299 } 300 } else if (isDependent && (!S || ObjectType.isNull())) { 301 // We cannot look into a dependent object type or nested nme 302 // specifier. 303 MemberOfUnknownSpecialization = true; 304 return; 305 } else { 306 // Perform unqualified name lookup in the current scope. 307 LookupName(Found, S); 308 309 if (!ObjectType.isNull()) 310 AllowFunctionTemplatesInLookup = false; 311 } 312 313 if (Found.empty() && !isDependent) { 314 // If we did not find any names, attempt to correct any typos. 315 DeclarationName Name = Found.getLookupName(); 316 Found.clear(); 317 // Simple filter callback that, for keywords, only accepts the C++ *_cast 318 CorrectionCandidateCallback FilterCCC; 319 FilterCCC.WantTypeSpecifiers = false; 320 FilterCCC.WantExpressionKeywords = false; 321 FilterCCC.WantRemainingKeywords = false; 322 FilterCCC.WantCXXNamedCasts = true; 323 if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(), 324 Found.getLookupKind(), S, &SS, 325 FilterCCC, LookupCtx)) { 326 Found.setLookupName(Corrected.getCorrection()); 327 if (Corrected.getCorrectionDecl()) 328 Found.addDecl(Corrected.getCorrectionDecl()); 329 FilterAcceptableTemplateNames(Found); 330 if (!Found.empty()) { 331 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 332 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts())); 333 if (LookupCtx) 334 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 335 << Name << LookupCtx << CorrectedQuotedStr << SS.getRange() 336 << FixItHint::CreateReplacement(Corrected.getCorrectionRange(), 337 CorrectedStr); 338 else 339 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 340 << Name << CorrectedQuotedStr 341 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); 342 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 343 Diag(Template->getLocation(), diag::note_previous_decl) 344 << CorrectedQuotedStr; 345 } 346 } else { 347 Found.setLookupName(Name); 348 } 349 } 350 351 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup); 352 if (Found.empty()) { 353 if (isDependent) 354 MemberOfUnknownSpecialization = true; 355 return; 356 } 357 358 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope && 359 !(getLangOpts().CPlusPlus11 && !Found.empty())) { 360 // C++03 [basic.lookup.classref]p1: 361 // [...] If the lookup in the class of the object expression finds a 362 // template, the name is also looked up in the context of the entire 363 // postfix-expression and [...] 364 // 365 // Note: C++11 does not perform this second lookup. 366 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 367 LookupOrdinaryName); 368 LookupName(FoundOuter, S); 369 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false); 370 371 if (FoundOuter.empty()) { 372 // - if the name is not found, the name found in the class of the 373 // object expression is used, otherwise 374 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() || 375 FoundOuter.isAmbiguous()) { 376 // - if the name is found in the context of the entire 377 // postfix-expression and does not name a class template, the name 378 // found in the class of the object expression is used, otherwise 379 FoundOuter.clear(); 380 } else if (!Found.isSuppressingDiagnostics()) { 381 // - if the name found is a class template, it must refer to the same 382 // entity as the one found in the class of the object expression, 383 // otherwise the program is ill-formed. 384 if (!Found.isSingleResult() || 385 Found.getFoundDecl()->getCanonicalDecl() 386 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 387 Diag(Found.getNameLoc(), 388 diag::ext_nested_name_member_ref_lookup_ambiguous) 389 << Found.getLookupName() 390 << ObjectType; 391 Diag(Found.getRepresentativeDecl()->getLocation(), 392 diag::note_ambig_member_ref_object_type) 393 << ObjectType; 394 Diag(FoundOuter.getFoundDecl()->getLocation(), 395 diag::note_ambig_member_ref_scope); 396 397 // Recover by taking the template that we found in the object 398 // expression's type. 399 } 400 } 401 } 402} 403 404/// ActOnDependentIdExpression - Handle a dependent id-expression that 405/// was just parsed. This is only possible with an explicit scope 406/// specifier naming a dependent type. 407ExprResult 408Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 409 SourceLocation TemplateKWLoc, 410 const DeclarationNameInfo &NameInfo, 411 bool isAddressOfOperand, 412 const TemplateArgumentListInfo *TemplateArgs) { 413 DeclContext *DC = getFunctionLevelDeclContext(); 414 415 if (!isAddressOfOperand && 416 isa<CXXMethodDecl>(DC) && 417 cast<CXXMethodDecl>(DC)->isInstance()) { 418 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 419 420 // Since the 'this' expression is synthesized, we don't need to 421 // perform the double-lookup check. 422 NamedDecl *FirstQualifierInScope = 0; 423 424 return Owned(CXXDependentScopeMemberExpr::Create(Context, 425 /*This*/ 0, ThisType, 426 /*IsArrow*/ true, 427 /*Op*/ SourceLocation(), 428 SS.getWithLocInContext(Context), 429 TemplateKWLoc, 430 FirstQualifierInScope, 431 NameInfo, 432 TemplateArgs)); 433 } 434 435 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 436} 437 438ExprResult 439Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 440 SourceLocation TemplateKWLoc, 441 const DeclarationNameInfo &NameInfo, 442 const TemplateArgumentListInfo *TemplateArgs) { 443 return Owned(DependentScopeDeclRefExpr::Create(Context, 444 SS.getWithLocInContext(Context), 445 TemplateKWLoc, 446 NameInfo, 447 TemplateArgs)); 448} 449 450/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 451/// that the template parameter 'PrevDecl' is being shadowed by a new 452/// declaration at location Loc. Returns true to indicate that this is 453/// an error, and false otherwise. 454void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 455 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 456 457 // Microsoft Visual C++ permits template parameters to be shadowed. 458 if (getLangOpts().MicrosoftExt) 459 return; 460 461 // C++ [temp.local]p4: 462 // A template-parameter shall not be redeclared within its 463 // scope (including nested scopes). 464 Diag(Loc, diag::err_template_param_shadow) 465 << cast<NamedDecl>(PrevDecl)->getDeclName(); 466 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 467 return; 468} 469 470/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 471/// the parameter D to reference the templated declaration and return a pointer 472/// to the template declaration. Otherwise, do nothing to D and return null. 473TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 474 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 475 D = Temp->getTemplatedDecl(); 476 return Temp; 477 } 478 return 0; 479} 480 481ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 482 SourceLocation EllipsisLoc) const { 483 assert(Kind == Template && 484 "Only template template arguments can be pack expansions here"); 485 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 486 "Template template argument pack expansion without packs"); 487 ParsedTemplateArgument Result(*this); 488 Result.EllipsisLoc = EllipsisLoc; 489 return Result; 490} 491 492static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 493 const ParsedTemplateArgument &Arg) { 494 495 switch (Arg.getKind()) { 496 case ParsedTemplateArgument::Type: { 497 TypeSourceInfo *DI; 498 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 499 if (!DI) 500 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 501 return TemplateArgumentLoc(TemplateArgument(T), DI); 502 } 503 504 case ParsedTemplateArgument::NonType: { 505 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 506 return TemplateArgumentLoc(TemplateArgument(E), E); 507 } 508 509 case ParsedTemplateArgument::Template: { 510 TemplateName Template = Arg.getAsTemplate().get(); 511 TemplateArgument TArg; 512 if (Arg.getEllipsisLoc().isValid()) 513 TArg = TemplateArgument(Template, Optional<unsigned int>()); 514 else 515 TArg = Template; 516 return TemplateArgumentLoc(TArg, 517 Arg.getScopeSpec().getWithLocInContext( 518 SemaRef.Context), 519 Arg.getLocation(), 520 Arg.getEllipsisLoc()); 521 } 522 } 523 524 llvm_unreachable("Unhandled parsed template argument"); 525} 526 527/// \brief Translates template arguments as provided by the parser 528/// into template arguments used by semantic analysis. 529void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 530 TemplateArgumentListInfo &TemplateArgs) { 531 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 532 TemplateArgs.addArgument(translateTemplateArgument(*this, 533 TemplateArgsIn[I])); 534} 535 536/// ActOnTypeParameter - Called when a C++ template type parameter 537/// (e.g., "typename T") has been parsed. Typename specifies whether 538/// the keyword "typename" was used to declare the type parameter 539/// (otherwise, "class" was used), and KeyLoc is the location of the 540/// "class" or "typename" keyword. ParamName is the name of the 541/// parameter (NULL indicates an unnamed template parameter) and 542/// ParamNameLoc is the location of the parameter name (if any). 543/// If the type parameter has a default argument, it will be added 544/// later via ActOnTypeParameterDefault. 545Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 546 SourceLocation EllipsisLoc, 547 SourceLocation KeyLoc, 548 IdentifierInfo *ParamName, 549 SourceLocation ParamNameLoc, 550 unsigned Depth, unsigned Position, 551 SourceLocation EqualLoc, 552 ParsedType DefaultArg) { 553 assert(S->isTemplateParamScope() && 554 "Template type parameter not in template parameter scope!"); 555 bool Invalid = false; 556 557 if (ParamName) { 558 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 559 LookupOrdinaryName, 560 ForRedeclaration); 561 if (PrevDecl && PrevDecl->isTemplateParameter()) { 562 DiagnoseTemplateParameterShadow(ParamNameLoc, PrevDecl); 563 PrevDecl = 0; 564 } 565 } 566 567 SourceLocation Loc = ParamNameLoc; 568 if (!ParamName) 569 Loc = KeyLoc; 570 571 TemplateTypeParmDecl *Param 572 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 573 KeyLoc, Loc, Depth, Position, ParamName, 574 Typename, Ellipsis); 575 Param->setAccess(AS_public); 576 if (Invalid) 577 Param->setInvalidDecl(); 578 579 if (ParamName) { 580 // Add the template parameter into the current scope. 581 S->AddDecl(Param); 582 IdResolver.AddDecl(Param); 583 } 584 585 // C++0x [temp.param]p9: 586 // A default template-argument may be specified for any kind of 587 // template-parameter that is not a template parameter pack. 588 if (DefaultArg && Ellipsis) { 589 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 590 DefaultArg = ParsedType(); 591 } 592 593 // Handle the default argument, if provided. 594 if (DefaultArg) { 595 TypeSourceInfo *DefaultTInfo; 596 GetTypeFromParser(DefaultArg, &DefaultTInfo); 597 598 assert(DefaultTInfo && "expected source information for type"); 599 600 // Check for unexpanded parameter packs. 601 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, 602 UPPC_DefaultArgument)) 603 return Param; 604 605 // Check the template argument itself. 606 if (CheckTemplateArgument(Param, DefaultTInfo)) { 607 Param->setInvalidDecl(); 608 return Param; 609 } 610 611 Param->setDefaultArgument(DefaultTInfo, false); 612 } 613 614 return Param; 615} 616 617/// \brief Check that the type of a non-type template parameter is 618/// well-formed. 619/// 620/// \returns the (possibly-promoted) parameter type if valid; 621/// otherwise, produces a diagnostic and returns a NULL type. 622QualType 623Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 624 // We don't allow variably-modified types as the type of non-type template 625 // parameters. 626 if (T->isVariablyModifiedType()) { 627 Diag(Loc, diag::err_variably_modified_nontype_template_param) 628 << T; 629 return QualType(); 630 } 631 632 // C++ [temp.param]p4: 633 // 634 // A non-type template-parameter shall have one of the following 635 // (optionally cv-qualified) types: 636 // 637 // -- integral or enumeration type, 638 if (T->isIntegralOrEnumerationType() || 639 // -- pointer to object or pointer to function, 640 T->isPointerType() || 641 // -- reference to object or reference to function, 642 T->isReferenceType() || 643 // -- pointer to member, 644 T->isMemberPointerType() || 645 // -- std::nullptr_t. 646 T->isNullPtrType() || 647 // If T is a dependent type, we can't do the check now, so we 648 // assume that it is well-formed. 649 T->isDependentType()) { 650 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter 651 // are ignored when determining its type. 652 return T.getUnqualifiedType(); 653 } 654 655 // C++ [temp.param]p8: 656 // 657 // A non-type template-parameter of type "array of T" or 658 // "function returning T" is adjusted to be of type "pointer to 659 // T" or "pointer to function returning T", respectively. 660 else if (T->isArrayType()) 661 // FIXME: Keep the type prior to promotion? 662 return Context.getArrayDecayedType(T); 663 else if (T->isFunctionType()) 664 // FIXME: Keep the type prior to promotion? 665 return Context.getPointerType(T); 666 667 Diag(Loc, diag::err_template_nontype_parm_bad_type) 668 << T; 669 670 return QualType(); 671} 672 673Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 674 unsigned Depth, 675 unsigned Position, 676 SourceLocation EqualLoc, 677 Expr *Default) { 678 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 679 QualType T = TInfo->getType(); 680 681 assert(S->isTemplateParamScope() && 682 "Non-type template parameter not in template parameter scope!"); 683 bool Invalid = false; 684 685 IdentifierInfo *ParamName = D.getIdentifier(); 686 if (ParamName) { 687 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 688 LookupOrdinaryName, 689 ForRedeclaration); 690 if (PrevDecl && PrevDecl->isTemplateParameter()) { 691 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 692 PrevDecl = 0; 693 } 694 } 695 696 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 697 if (T.isNull()) { 698 T = Context.IntTy; // Recover with an 'int' type. 699 Invalid = true; 700 } 701 702 bool IsParameterPack = D.hasEllipsis(); 703 NonTypeTemplateParmDecl *Param 704 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 705 D.getLocStart(), 706 D.getIdentifierLoc(), 707 Depth, Position, ParamName, T, 708 IsParameterPack, TInfo); 709 Param->setAccess(AS_public); 710 711 if (Invalid) 712 Param->setInvalidDecl(); 713 714 if (D.getIdentifier()) { 715 // Add the template parameter into the current scope. 716 S->AddDecl(Param); 717 IdResolver.AddDecl(Param); 718 } 719 720 // C++0x [temp.param]p9: 721 // A default template-argument may be specified for any kind of 722 // template-parameter that is not a template parameter pack. 723 if (Default && IsParameterPack) { 724 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 725 Default = 0; 726 } 727 728 // Check the well-formedness of the default template argument, if provided. 729 if (Default) { 730 // Check for unexpanded parameter packs. 731 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 732 return Param; 733 734 TemplateArgument Converted; 735 ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted); 736 if (DefaultRes.isInvalid()) { 737 Param->setInvalidDecl(); 738 return Param; 739 } 740 Default = DefaultRes.take(); 741 742 Param->setDefaultArgument(Default, false); 743 } 744 745 return Param; 746} 747 748/// ActOnTemplateTemplateParameter - Called when a C++ template template 749/// parameter (e.g. T in template <template \<typename> class T> class array) 750/// has been parsed. S is the current scope. 751Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 752 SourceLocation TmpLoc, 753 TemplateParameterList *Params, 754 SourceLocation EllipsisLoc, 755 IdentifierInfo *Name, 756 SourceLocation NameLoc, 757 unsigned Depth, 758 unsigned Position, 759 SourceLocation EqualLoc, 760 ParsedTemplateArgument Default) { 761 assert(S->isTemplateParamScope() && 762 "Template template parameter not in template parameter scope!"); 763 764 // Construct the parameter object. 765 bool IsParameterPack = EllipsisLoc.isValid(); 766 TemplateTemplateParmDecl *Param = 767 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 768 NameLoc.isInvalid()? TmpLoc : NameLoc, 769 Depth, Position, IsParameterPack, 770 Name, Params); 771 Param->setAccess(AS_public); 772 773 // If the template template parameter has a name, then link the identifier 774 // into the scope and lookup mechanisms. 775 if (Name) { 776 S->AddDecl(Param); 777 IdResolver.AddDecl(Param); 778 } 779 780 if (Params->size() == 0) { 781 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 782 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 783 Param->setInvalidDecl(); 784 } 785 786 // C++0x [temp.param]p9: 787 // A default template-argument may be specified for any kind of 788 // template-parameter that is not a template parameter pack. 789 if (IsParameterPack && !Default.isInvalid()) { 790 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 791 Default = ParsedTemplateArgument(); 792 } 793 794 if (!Default.isInvalid()) { 795 // Check only that we have a template template argument. We don't want to 796 // try to check well-formedness now, because our template template parameter 797 // might have dependent types in its template parameters, which we wouldn't 798 // be able to match now. 799 // 800 // If none of the template template parameter's template arguments mention 801 // other template parameters, we could actually perform more checking here. 802 // However, it isn't worth doing. 803 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 804 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 805 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 806 << DefaultArg.getSourceRange(); 807 return Param; 808 } 809 810 // Check for unexpanded parameter packs. 811 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 812 DefaultArg.getArgument().getAsTemplate(), 813 UPPC_DefaultArgument)) 814 return Param; 815 816 Param->setDefaultArgument(DefaultArg, false); 817 } 818 819 return Param; 820} 821 822/// ActOnTemplateParameterList - Builds a TemplateParameterList that 823/// contains the template parameters in Params/NumParams. 824TemplateParameterList * 825Sema::ActOnTemplateParameterList(unsigned Depth, 826 SourceLocation ExportLoc, 827 SourceLocation TemplateLoc, 828 SourceLocation LAngleLoc, 829 Decl **Params, unsigned NumParams, 830 SourceLocation RAngleLoc) { 831 if (ExportLoc.isValid()) 832 Diag(ExportLoc, diag::warn_template_export_unsupported); 833 834 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 835 (NamedDecl**)Params, NumParams, 836 RAngleLoc); 837} 838 839static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 840 if (SS.isSet()) 841 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext())); 842} 843 844DeclResult 845Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 846 SourceLocation KWLoc, CXXScopeSpec &SS, 847 IdentifierInfo *Name, SourceLocation NameLoc, 848 AttributeList *Attr, 849 TemplateParameterList *TemplateParams, 850 AccessSpecifier AS, SourceLocation ModulePrivateLoc, 851 unsigned NumOuterTemplateParamLists, 852 TemplateParameterList** OuterTemplateParamLists) { 853 assert(TemplateParams && TemplateParams->size() > 0 && 854 "No template parameters"); 855 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 856 bool Invalid = false; 857 858 // Check that we can declare a template here. 859 if (CheckTemplateDeclScope(S, TemplateParams)) 860 return true; 861 862 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 863 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 864 865 // There is no such thing as an unnamed class template. 866 if (!Name) { 867 Diag(KWLoc, diag::err_template_unnamed_class); 868 return true; 869 } 870 871 // Find any previous declaration with this name. For a friend with no 872 // scope explicitly specified, we only look for tag declarations (per 873 // C++11 [basic.lookup.elab]p2). 874 DeclContext *SemanticContext; 875 LookupResult Previous(*this, Name, NameLoc, 876 (SS.isEmpty() && TUK == TUK_Friend) 877 ? LookupTagName : LookupOrdinaryName, 878 ForRedeclaration); 879 if (SS.isNotEmpty() && !SS.isInvalid()) { 880 SemanticContext = computeDeclContext(SS, true); 881 if (!SemanticContext) { 882 // FIXME: Horrible, horrible hack! We can't currently represent this 883 // in the AST, and historically we have just ignored such friend 884 // class templates, so don't complain here. 885 if (TUK != TUK_Friend) 886 Diag(NameLoc, diag::err_template_qualified_declarator_no_match) 887 << SS.getScopeRep() << SS.getRange(); 888 return true; 889 } 890 891 if (RequireCompleteDeclContext(SS, SemanticContext)) 892 return true; 893 894 // If we're adding a template to a dependent context, we may need to 895 // rebuilding some of the types used within the template parameter list, 896 // now that we know what the current instantiation is. 897 if (SemanticContext->isDependentContext()) { 898 ContextRAII SavedContext(*this, SemanticContext); 899 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 900 Invalid = true; 901 } else if (TUK != TUK_Friend && TUK != TUK_Reference) 902 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc); 903 904 LookupQualifiedName(Previous, SemanticContext); 905 } else { 906 SemanticContext = CurContext; 907 LookupName(Previous, S); 908 } 909 910 if (Previous.isAmbiguous()) 911 return true; 912 913 NamedDecl *PrevDecl = 0; 914 if (Previous.begin() != Previous.end()) 915 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 916 917 // If there is a previous declaration with the same name, check 918 // whether this is a valid redeclaration. 919 ClassTemplateDecl *PrevClassTemplate 920 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 921 922 // We may have found the injected-class-name of a class template, 923 // class template partial specialization, or class template specialization. 924 // In these cases, grab the template that is being defined or specialized. 925 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 926 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 927 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 928 PrevClassTemplate 929 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 930 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 931 PrevClassTemplate 932 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 933 ->getSpecializedTemplate(); 934 } 935 } 936 937 if (TUK == TUK_Friend) { 938 // C++ [namespace.memdef]p3: 939 // [...] When looking for a prior declaration of a class or a function 940 // declared as a friend, and when the name of the friend class or 941 // function is neither a qualified name nor a template-id, scopes outside 942 // the innermost enclosing namespace scope are not considered. 943 if (!SS.isSet()) { 944 DeclContext *OutermostContext = CurContext; 945 while (!OutermostContext->isFileContext()) 946 OutermostContext = OutermostContext->getLookupParent(); 947 948 if (PrevDecl && 949 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 950 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 951 SemanticContext = PrevDecl->getDeclContext(); 952 } else { 953 // Declarations in outer scopes don't matter. However, the outermost 954 // context we computed is the semantic context for our new 955 // declaration. 956 PrevDecl = PrevClassTemplate = 0; 957 SemanticContext = OutermostContext; 958 959 // Check that the chosen semantic context doesn't already contain a 960 // declaration of this name as a non-tag type. 961 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 962 ForRedeclaration); 963 DeclContext *LookupContext = SemanticContext; 964 while (LookupContext->isTransparentContext()) 965 LookupContext = LookupContext->getLookupParent(); 966 LookupQualifiedName(Previous, LookupContext); 967 968 if (Previous.isAmbiguous()) 969 return true; 970 971 if (Previous.begin() != Previous.end()) 972 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 973 } 974 } 975 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 976 PrevDecl = PrevClassTemplate = 0; 977 978 if (PrevClassTemplate) { 979 // Ensure that the template parameter lists are compatible. Skip this check 980 // for a friend in a dependent context: the template parameter list itself 981 // could be dependent. 982 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 983 !TemplateParameterListsAreEqual(TemplateParams, 984 PrevClassTemplate->getTemplateParameters(), 985 /*Complain=*/true, 986 TPL_TemplateMatch)) 987 return true; 988 989 // C++ [temp.class]p4: 990 // In a redeclaration, partial specialization, explicit 991 // specialization or explicit instantiation of a class template, 992 // the class-key shall agree in kind with the original class 993 // template declaration (7.1.5.3). 994 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 995 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, 996 TUK == TUK_Definition, KWLoc, *Name)) { 997 Diag(KWLoc, diag::err_use_with_wrong_tag) 998 << Name 999 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 1000 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 1001 Kind = PrevRecordDecl->getTagKind(); 1002 } 1003 1004 // Check for redefinition of this class template. 1005 if (TUK == TUK_Definition) { 1006 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 1007 Diag(NameLoc, diag::err_redefinition) << Name; 1008 Diag(Def->getLocation(), diag::note_previous_definition); 1009 // FIXME: Would it make sense to try to "forget" the previous 1010 // definition, as part of error recovery? 1011 return true; 1012 } 1013 } 1014 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 1015 // Maybe we will complain about the shadowed template parameter. 1016 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 1017 // Just pretend that we didn't see the previous declaration. 1018 PrevDecl = 0; 1019 } else if (PrevDecl) { 1020 // C++ [temp]p5: 1021 // A class template shall not have the same name as any other 1022 // template, class, function, object, enumeration, enumerator, 1023 // namespace, or type in the same scope (3.3), except as specified 1024 // in (14.5.4). 1025 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 1026 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1027 return true; 1028 } 1029 1030 // Check the template parameter list of this declaration, possibly 1031 // merging in the template parameter list from the previous class 1032 // template declaration. Skip this check for a friend in a dependent 1033 // context, because the template parameter list might be dependent. 1034 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 1035 CheckTemplateParameterList(TemplateParams, 1036 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 1037 (SS.isSet() && SemanticContext && 1038 SemanticContext->isRecord() && 1039 SemanticContext->isDependentContext()) 1040 ? TPC_ClassTemplateMember 1041 : TPC_ClassTemplate)) 1042 Invalid = true; 1043 1044 if (SS.isSet()) { 1045 // If the name of the template was qualified, we must be defining the 1046 // template out-of-line. 1047 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) { 1048 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match 1049 : diag::err_member_def_does_not_match) 1050 << Name << SemanticContext << SS.getRange(); 1051 Invalid = true; 1052 } 1053 } 1054 1055 CXXRecordDecl *NewClass = 1056 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 1057 PrevClassTemplate? 1058 PrevClassTemplate->getTemplatedDecl() : 0, 1059 /*DelayTypeCreation=*/true); 1060 SetNestedNameSpecifier(NewClass, SS); 1061 if (NumOuterTemplateParamLists > 0) 1062 NewClass->setTemplateParameterListsInfo(Context, 1063 NumOuterTemplateParamLists, 1064 OuterTemplateParamLists); 1065 1066 // Add alignment attributes if necessary; these attributes are checked when 1067 // the ASTContext lays out the structure. 1068 if (TUK == TUK_Definition) { 1069 AddAlignmentAttributesForRecord(NewClass); 1070 AddMsStructLayoutForRecord(NewClass); 1071 } 1072 1073 ClassTemplateDecl *NewTemplate 1074 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 1075 DeclarationName(Name), TemplateParams, 1076 NewClass, PrevClassTemplate); 1077 NewClass->setDescribedClassTemplate(NewTemplate); 1078 1079 if (ModulePrivateLoc.isValid()) 1080 NewTemplate->setModulePrivate(); 1081 1082 // Build the type for the class template declaration now. 1083 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 1084 T = Context.getInjectedClassNameType(NewClass, T); 1085 assert(T->isDependentType() && "Class template type is not dependent?"); 1086 (void)T; 1087 1088 // If we are providing an explicit specialization of a member that is a 1089 // class template, make a note of that. 1090 if (PrevClassTemplate && 1091 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 1092 PrevClassTemplate->setMemberSpecialization(); 1093 1094 // Set the access specifier. 1095 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord()) 1096 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 1097 1098 // Set the lexical context of these templates 1099 NewClass->setLexicalDeclContext(CurContext); 1100 NewTemplate->setLexicalDeclContext(CurContext); 1101 1102 if (TUK == TUK_Definition) 1103 NewClass->startDefinition(); 1104 1105 if (Attr) 1106 ProcessDeclAttributeList(S, NewClass, Attr); 1107 1108 if (PrevClassTemplate) 1109 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl()); 1110 1111 AddPushedVisibilityAttribute(NewClass); 1112 1113 if (TUK != TUK_Friend) 1114 PushOnScopeChains(NewTemplate, S); 1115 else { 1116 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1117 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1118 NewClass->setAccess(PrevClassTemplate->getAccess()); 1119 } 1120 1121 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 1122 PrevClassTemplate != NULL); 1123 1124 // Friend templates are visible in fairly strange ways. 1125 if (!CurContext->isDependentContext()) { 1126 DeclContext *DC = SemanticContext->getRedeclContext(); 1127 DC->makeDeclVisibleInContext(NewTemplate); 1128 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1129 PushOnScopeChains(NewTemplate, EnclosingScope, 1130 /* AddToContext = */ false); 1131 } 1132 1133 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 1134 NewClass->getLocation(), 1135 NewTemplate, 1136 /*FIXME:*/NewClass->getLocation()); 1137 Friend->setAccess(AS_public); 1138 CurContext->addDecl(Friend); 1139 } 1140 1141 if (Invalid) { 1142 NewTemplate->setInvalidDecl(); 1143 NewClass->setInvalidDecl(); 1144 } 1145 1146 ActOnDocumentableDecl(NewTemplate); 1147 1148 return NewTemplate; 1149} 1150 1151/// \brief Diagnose the presence of a default template argument on a 1152/// template parameter, which is ill-formed in certain contexts. 1153/// 1154/// \returns true if the default template argument should be dropped. 1155static bool DiagnoseDefaultTemplateArgument(Sema &S, 1156 Sema::TemplateParamListContext TPC, 1157 SourceLocation ParamLoc, 1158 SourceRange DefArgRange) { 1159 switch (TPC) { 1160 case Sema::TPC_ClassTemplate: 1161 case Sema::TPC_TypeAliasTemplate: 1162 return false; 1163 1164 case Sema::TPC_FunctionTemplate: 1165 case Sema::TPC_FriendFunctionTemplateDefinition: 1166 // C++ [temp.param]p9: 1167 // A default template-argument shall not be specified in a 1168 // function template declaration or a function template 1169 // definition [...] 1170 // If a friend function template declaration specifies a default 1171 // template-argument, that declaration shall be a definition and shall be 1172 // the only declaration of the function template in the translation unit. 1173 // (C++98/03 doesn't have this wording; see DR226). 1174 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ? 1175 diag::warn_cxx98_compat_template_parameter_default_in_function_template 1176 : diag::ext_template_parameter_default_in_function_template) 1177 << DefArgRange; 1178 return false; 1179 1180 case Sema::TPC_ClassTemplateMember: 1181 // C++0x [temp.param]p9: 1182 // A default template-argument shall not be specified in the 1183 // template-parameter-lists of the definition of a member of a 1184 // class template that appears outside of the member's class. 1185 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1186 << DefArgRange; 1187 return true; 1188 1189 case Sema::TPC_FriendFunctionTemplate: 1190 // C++ [temp.param]p9: 1191 // A default template-argument shall not be specified in a 1192 // friend template declaration. 1193 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1194 << DefArgRange; 1195 return true; 1196 1197 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1198 // for friend function templates if there is only a single 1199 // declaration (and it is a definition). Strange! 1200 } 1201 1202 llvm_unreachable("Invalid TemplateParamListContext!"); 1203} 1204 1205/// \brief Check for unexpanded parameter packs within the template parameters 1206/// of a template template parameter, recursively. 1207static bool DiagnoseUnexpandedParameterPacks(Sema &S, 1208 TemplateTemplateParmDecl *TTP) { 1209 // A template template parameter which is a parameter pack is also a pack 1210 // expansion. 1211 if (TTP->isParameterPack()) 1212 return false; 1213 1214 TemplateParameterList *Params = TTP->getTemplateParameters(); 1215 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 1216 NamedDecl *P = Params->getParam(I); 1217 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 1218 if (!NTTP->isParameterPack() && 1219 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 1220 NTTP->getTypeSourceInfo(), 1221 Sema::UPPC_NonTypeTemplateParameterType)) 1222 return true; 1223 1224 continue; 1225 } 1226 1227 if (TemplateTemplateParmDecl *InnerTTP 1228 = dyn_cast<TemplateTemplateParmDecl>(P)) 1229 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 1230 return true; 1231 } 1232 1233 return false; 1234} 1235 1236/// \brief Checks the validity of a template parameter list, possibly 1237/// considering the template parameter list from a previous 1238/// declaration. 1239/// 1240/// If an "old" template parameter list is provided, it must be 1241/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1242/// template parameter list. 1243/// 1244/// \param NewParams Template parameter list for a new template 1245/// declaration. This template parameter list will be updated with any 1246/// default arguments that are carried through from the previous 1247/// template parameter list. 1248/// 1249/// \param OldParams If provided, template parameter list from a 1250/// previous declaration of the same template. Default template 1251/// arguments will be merged from the old template parameter list to 1252/// the new template parameter list. 1253/// 1254/// \param TPC Describes the context in which we are checking the given 1255/// template parameter list. 1256/// 1257/// \returns true if an error occurred, false otherwise. 1258bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1259 TemplateParameterList *OldParams, 1260 TemplateParamListContext TPC) { 1261 bool Invalid = false; 1262 1263 // C++ [temp.param]p10: 1264 // The set of default template-arguments available for use with a 1265 // template declaration or definition is obtained by merging the 1266 // default arguments from the definition (if in scope) and all 1267 // declarations in scope in the same way default function 1268 // arguments are (8.3.6). 1269 bool SawDefaultArgument = false; 1270 SourceLocation PreviousDefaultArgLoc; 1271 1272 // Dummy initialization to avoid warnings. 1273 TemplateParameterList::iterator OldParam = NewParams->end(); 1274 if (OldParams) 1275 OldParam = OldParams->begin(); 1276 1277 bool RemoveDefaultArguments = false; 1278 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1279 NewParamEnd = NewParams->end(); 1280 NewParam != NewParamEnd; ++NewParam) { 1281 // Variables used to diagnose redundant default arguments 1282 bool RedundantDefaultArg = false; 1283 SourceLocation OldDefaultLoc; 1284 SourceLocation NewDefaultLoc; 1285 1286 // Variable used to diagnose missing default arguments 1287 bool MissingDefaultArg = false; 1288 1289 // Variable used to diagnose non-final parameter packs 1290 bool SawParameterPack = false; 1291 1292 if (TemplateTypeParmDecl *NewTypeParm 1293 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1294 // Check the presence of a default argument here. 1295 if (NewTypeParm->hasDefaultArgument() && 1296 DiagnoseDefaultTemplateArgument(*this, TPC, 1297 NewTypeParm->getLocation(), 1298 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1299 .getSourceRange())) 1300 NewTypeParm->removeDefaultArgument(); 1301 1302 // Merge default arguments for template type parameters. 1303 TemplateTypeParmDecl *OldTypeParm 1304 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1305 1306 if (NewTypeParm->isParameterPack()) { 1307 assert(!NewTypeParm->hasDefaultArgument() && 1308 "Parameter packs can't have a default argument!"); 1309 SawParameterPack = true; 1310 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1311 NewTypeParm->hasDefaultArgument()) { 1312 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1313 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1314 SawDefaultArgument = true; 1315 RedundantDefaultArg = true; 1316 PreviousDefaultArgLoc = NewDefaultLoc; 1317 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1318 // Merge the default argument from the old declaration to the 1319 // new declaration. 1320 SawDefaultArgument = true; 1321 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1322 true); 1323 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1324 } else if (NewTypeParm->hasDefaultArgument()) { 1325 SawDefaultArgument = true; 1326 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1327 } else if (SawDefaultArgument) 1328 MissingDefaultArg = true; 1329 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1330 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1331 // Check for unexpanded parameter packs. 1332 if (!NewNonTypeParm->isParameterPack() && 1333 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 1334 NewNonTypeParm->getTypeSourceInfo(), 1335 UPPC_NonTypeTemplateParameterType)) { 1336 Invalid = true; 1337 continue; 1338 } 1339 1340 // Check the presence of a default argument here. 1341 if (NewNonTypeParm->hasDefaultArgument() && 1342 DiagnoseDefaultTemplateArgument(*this, TPC, 1343 NewNonTypeParm->getLocation(), 1344 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1345 NewNonTypeParm->removeDefaultArgument(); 1346 } 1347 1348 // Merge default arguments for non-type template parameters 1349 NonTypeTemplateParmDecl *OldNonTypeParm 1350 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1351 if (NewNonTypeParm->isParameterPack()) { 1352 assert(!NewNonTypeParm->hasDefaultArgument() && 1353 "Parameter packs can't have a default argument!"); 1354 if (!NewNonTypeParm->isPackExpansion()) 1355 SawParameterPack = true; 1356 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1357 NewNonTypeParm->hasDefaultArgument()) { 1358 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1359 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1360 SawDefaultArgument = true; 1361 RedundantDefaultArg = true; 1362 PreviousDefaultArgLoc = NewDefaultLoc; 1363 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1364 // Merge the default argument from the old declaration to the 1365 // new declaration. 1366 SawDefaultArgument = true; 1367 // FIXME: We need to create a new kind of "default argument" 1368 // expression that points to a previous non-type template 1369 // parameter. 1370 NewNonTypeParm->setDefaultArgument( 1371 OldNonTypeParm->getDefaultArgument(), 1372 /*Inherited=*/ true); 1373 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1374 } else if (NewNonTypeParm->hasDefaultArgument()) { 1375 SawDefaultArgument = true; 1376 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1377 } else if (SawDefaultArgument) 1378 MissingDefaultArg = true; 1379 } else { 1380 TemplateTemplateParmDecl *NewTemplateParm 1381 = cast<TemplateTemplateParmDecl>(*NewParam); 1382 1383 // Check for unexpanded parameter packs, recursively. 1384 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 1385 Invalid = true; 1386 continue; 1387 } 1388 1389 // Check the presence of a default argument here. 1390 if (NewTemplateParm->hasDefaultArgument() && 1391 DiagnoseDefaultTemplateArgument(*this, TPC, 1392 NewTemplateParm->getLocation(), 1393 NewTemplateParm->getDefaultArgument().getSourceRange())) 1394 NewTemplateParm->removeDefaultArgument(); 1395 1396 // Merge default arguments for template template parameters 1397 TemplateTemplateParmDecl *OldTemplateParm 1398 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1399 if (NewTemplateParm->isParameterPack()) { 1400 assert(!NewTemplateParm->hasDefaultArgument() && 1401 "Parameter packs can't have a default argument!"); 1402 if (!NewTemplateParm->isPackExpansion()) 1403 SawParameterPack = true; 1404 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1405 NewTemplateParm->hasDefaultArgument()) { 1406 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1407 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1408 SawDefaultArgument = true; 1409 RedundantDefaultArg = true; 1410 PreviousDefaultArgLoc = NewDefaultLoc; 1411 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1412 // Merge the default argument from the old declaration to the 1413 // new declaration. 1414 SawDefaultArgument = true; 1415 // FIXME: We need to create a new kind of "default argument" expression 1416 // that points to a previous template template parameter. 1417 NewTemplateParm->setDefaultArgument( 1418 OldTemplateParm->getDefaultArgument(), 1419 /*Inherited=*/ true); 1420 PreviousDefaultArgLoc 1421 = OldTemplateParm->getDefaultArgument().getLocation(); 1422 } else if (NewTemplateParm->hasDefaultArgument()) { 1423 SawDefaultArgument = true; 1424 PreviousDefaultArgLoc 1425 = NewTemplateParm->getDefaultArgument().getLocation(); 1426 } else if (SawDefaultArgument) 1427 MissingDefaultArg = true; 1428 } 1429 1430 // C++11 [temp.param]p11: 1431 // If a template parameter of a primary class template or alias template 1432 // is a template parameter pack, it shall be the last template parameter. 1433 if (SawParameterPack && (NewParam + 1) != NewParamEnd && 1434 (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) { 1435 Diag((*NewParam)->getLocation(), 1436 diag::err_template_param_pack_must_be_last_template_parameter); 1437 Invalid = true; 1438 } 1439 1440 if (RedundantDefaultArg) { 1441 // C++ [temp.param]p12: 1442 // A template-parameter shall not be given default arguments 1443 // by two different declarations in the same scope. 1444 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1445 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1446 Invalid = true; 1447 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 1448 // C++ [temp.param]p11: 1449 // If a template-parameter of a class template has a default 1450 // template-argument, each subsequent template-parameter shall either 1451 // have a default template-argument supplied or be a template parameter 1452 // pack. 1453 Diag((*NewParam)->getLocation(), 1454 diag::err_template_param_default_arg_missing); 1455 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1456 Invalid = true; 1457 RemoveDefaultArguments = true; 1458 } 1459 1460 // If we have an old template parameter list that we're merging 1461 // in, move on to the next parameter. 1462 if (OldParams) 1463 ++OldParam; 1464 } 1465 1466 // We were missing some default arguments at the end of the list, so remove 1467 // all of the default arguments. 1468 if (RemoveDefaultArguments) { 1469 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1470 NewParamEnd = NewParams->end(); 1471 NewParam != NewParamEnd; ++NewParam) { 1472 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 1473 TTP->removeDefaultArgument(); 1474 else if (NonTypeTemplateParmDecl *NTTP 1475 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 1476 NTTP->removeDefaultArgument(); 1477 else 1478 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 1479 } 1480 } 1481 1482 return Invalid; 1483} 1484 1485namespace { 1486 1487/// A class which looks for a use of a certain level of template 1488/// parameter. 1489struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 1490 typedef RecursiveASTVisitor<DependencyChecker> super; 1491 1492 unsigned Depth; 1493 bool Match; 1494 1495 DependencyChecker(TemplateParameterList *Params) : Match(false) { 1496 NamedDecl *ND = Params->getParam(0); 1497 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 1498 Depth = PD->getDepth(); 1499 } else if (NonTypeTemplateParmDecl *PD = 1500 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 1501 Depth = PD->getDepth(); 1502 } else { 1503 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 1504 } 1505 } 1506 1507 bool Matches(unsigned ParmDepth) { 1508 if (ParmDepth >= Depth) { 1509 Match = true; 1510 return true; 1511 } 1512 return false; 1513 } 1514 1515 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 1516 return !Matches(T->getDepth()); 1517 } 1518 1519 bool TraverseTemplateName(TemplateName N) { 1520 if (TemplateTemplateParmDecl *PD = 1521 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 1522 if (Matches(PD->getDepth())) return false; 1523 return super::TraverseTemplateName(N); 1524 } 1525 1526 bool VisitDeclRefExpr(DeclRefExpr *E) { 1527 if (NonTypeTemplateParmDecl *PD = 1528 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) { 1529 if (PD->getDepth() == Depth) { 1530 Match = true; 1531 return false; 1532 } 1533 } 1534 return super::VisitDeclRefExpr(E); 1535 } 1536 1537 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 1538 return TraverseType(T->getInjectedSpecializationType()); 1539 } 1540}; 1541} 1542 1543/// Determines whether a given type depends on the given parameter 1544/// list. 1545static bool 1546DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 1547 DependencyChecker Checker(Params); 1548 Checker.TraverseType(T); 1549 return Checker.Match; 1550} 1551 1552// Find the source range corresponding to the named type in the given 1553// nested-name-specifier, if any. 1554static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 1555 QualType T, 1556 const CXXScopeSpec &SS) { 1557 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 1558 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 1559 if (const Type *CurType = NNS->getAsType()) { 1560 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 1561 return NNSLoc.getTypeLoc().getSourceRange(); 1562 } else 1563 break; 1564 1565 NNSLoc = NNSLoc.getPrefix(); 1566 } 1567 1568 return SourceRange(); 1569} 1570 1571/// \brief Match the given template parameter lists to the given scope 1572/// specifier, returning the template parameter list that applies to the 1573/// name. 1574/// 1575/// \param DeclStartLoc the start of the declaration that has a scope 1576/// specifier or a template parameter list. 1577/// 1578/// \param DeclLoc The location of the declaration itself. 1579/// 1580/// \param SS the scope specifier that will be matched to the given template 1581/// parameter lists. This scope specifier precedes a qualified name that is 1582/// being declared. 1583/// 1584/// \param ParamLists the template parameter lists, from the outermost to the 1585/// innermost template parameter lists. 1586/// 1587/// \param NumParamLists the number of template parameter lists in ParamLists. 1588/// 1589/// \param IsFriend Whether to apply the slightly different rules for 1590/// matching template parameters to scope specifiers in friend 1591/// declarations. 1592/// 1593/// \param IsExplicitSpecialization will be set true if the entity being 1594/// declared is an explicit specialization, false otherwise. 1595/// 1596/// \returns the template parameter list, if any, that corresponds to the 1597/// name that is preceded by the scope specifier @p SS. This template 1598/// parameter list may have template parameters (if we're declaring a 1599/// template) or may have no template parameters (if we're declaring a 1600/// template specialization), or may be NULL (if what we're declaring isn't 1601/// itself a template). 1602TemplateParameterList * 1603Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1604 SourceLocation DeclLoc, 1605 const CXXScopeSpec &SS, 1606 TemplateParameterList **ParamLists, 1607 unsigned NumParamLists, 1608 bool IsFriend, 1609 bool &IsExplicitSpecialization, 1610 bool &Invalid) { 1611 IsExplicitSpecialization = false; 1612 Invalid = false; 1613 1614 // The sequence of nested types to which we will match up the template 1615 // parameter lists. We first build this list by starting with the type named 1616 // by the nested-name-specifier and walking out until we run out of types. 1617 SmallVector<QualType, 4> NestedTypes; 1618 QualType T; 1619 if (SS.getScopeRep()) { 1620 if (CXXRecordDecl *Record 1621 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 1622 T = Context.getTypeDeclType(Record); 1623 else 1624 T = QualType(SS.getScopeRep()->getAsType(), 0); 1625 } 1626 1627 // If we found an explicit specialization that prevents us from needing 1628 // 'template<>' headers, this will be set to the location of that 1629 // explicit specialization. 1630 SourceLocation ExplicitSpecLoc; 1631 1632 while (!T.isNull()) { 1633 NestedTypes.push_back(T); 1634 1635 // Retrieve the parent of a record type. 1636 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1637 // If this type is an explicit specialization, we're done. 1638 if (ClassTemplateSpecializationDecl *Spec 1639 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1640 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 1641 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 1642 ExplicitSpecLoc = Spec->getLocation(); 1643 break; 1644 } 1645 } else if (Record->getTemplateSpecializationKind() 1646 == TSK_ExplicitSpecialization) { 1647 ExplicitSpecLoc = Record->getLocation(); 1648 break; 1649 } 1650 1651 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 1652 T = Context.getTypeDeclType(Parent); 1653 else 1654 T = QualType(); 1655 continue; 1656 } 1657 1658 if (const TemplateSpecializationType *TST 1659 = T->getAs<TemplateSpecializationType>()) { 1660 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1661 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 1662 T = Context.getTypeDeclType(Parent); 1663 else 1664 T = QualType(); 1665 continue; 1666 } 1667 } 1668 1669 // Look one step prior in a dependent template specialization type. 1670 if (const DependentTemplateSpecializationType *DependentTST 1671 = T->getAs<DependentTemplateSpecializationType>()) { 1672 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 1673 T = QualType(NNS->getAsType(), 0); 1674 else 1675 T = QualType(); 1676 continue; 1677 } 1678 1679 // Look one step prior in a dependent name type. 1680 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 1681 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 1682 T = QualType(NNS->getAsType(), 0); 1683 else 1684 T = QualType(); 1685 continue; 1686 } 1687 1688 // Retrieve the parent of an enumeration type. 1689 if (const EnumType *EnumT = T->getAs<EnumType>()) { 1690 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 1691 // check here. 1692 EnumDecl *Enum = EnumT->getDecl(); 1693 1694 // Get to the parent type. 1695 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 1696 T = Context.getTypeDeclType(Parent); 1697 else 1698 T = QualType(); 1699 continue; 1700 } 1701 1702 T = QualType(); 1703 } 1704 // Reverse the nested types list, since we want to traverse from the outermost 1705 // to the innermost while checking template-parameter-lists. 1706 std::reverse(NestedTypes.begin(), NestedTypes.end()); 1707 1708 // C++0x [temp.expl.spec]p17: 1709 // A member or a member template may be nested within many 1710 // enclosing class templates. In an explicit specialization for 1711 // such a member, the member declaration shall be preceded by a 1712 // template<> for each enclosing class template that is 1713 // explicitly specialized. 1714 bool SawNonEmptyTemplateParameterList = false; 1715 unsigned ParamIdx = 0; 1716 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 1717 ++TypeIdx) { 1718 T = NestedTypes[TypeIdx]; 1719 1720 // Whether we expect a 'template<>' header. 1721 bool NeedEmptyTemplateHeader = false; 1722 1723 // Whether we expect a template header with parameters. 1724 bool NeedNonemptyTemplateHeader = false; 1725 1726 // For a dependent type, the set of template parameters that we 1727 // expect to see. 1728 TemplateParameterList *ExpectedTemplateParams = 0; 1729 1730 // C++0x [temp.expl.spec]p15: 1731 // A member or a member template may be nested within many enclosing 1732 // class templates. In an explicit specialization for such a member, the 1733 // member declaration shall be preceded by a template<> for each 1734 // enclosing class template that is explicitly specialized. 1735 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1736 if (ClassTemplatePartialSpecializationDecl *Partial 1737 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 1738 ExpectedTemplateParams = Partial->getTemplateParameters(); 1739 NeedNonemptyTemplateHeader = true; 1740 } else if (Record->isDependentType()) { 1741 if (Record->getDescribedClassTemplate()) { 1742 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1743 ->getTemplateParameters(); 1744 NeedNonemptyTemplateHeader = true; 1745 } 1746 } else if (ClassTemplateSpecializationDecl *Spec 1747 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1748 // C++0x [temp.expl.spec]p4: 1749 // Members of an explicitly specialized class template are defined 1750 // in the same manner as members of normal classes, and not using 1751 // the template<> syntax. 1752 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 1753 NeedEmptyTemplateHeader = true; 1754 else 1755 continue; 1756 } else if (Record->getTemplateSpecializationKind()) { 1757 if (Record->getTemplateSpecializationKind() 1758 != TSK_ExplicitSpecialization && 1759 TypeIdx == NumTypes - 1) 1760 IsExplicitSpecialization = true; 1761 1762 continue; 1763 } 1764 } else if (const TemplateSpecializationType *TST 1765 = T->getAs<TemplateSpecializationType>()) { 1766 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1767 ExpectedTemplateParams = Template->getTemplateParameters(); 1768 NeedNonemptyTemplateHeader = true; 1769 } 1770 } else if (T->getAs<DependentTemplateSpecializationType>()) { 1771 // FIXME: We actually could/should check the template arguments here 1772 // against the corresponding template parameter list. 1773 NeedNonemptyTemplateHeader = false; 1774 } 1775 1776 // C++ [temp.expl.spec]p16: 1777 // In an explicit specialization declaration for a member of a class 1778 // template or a member template that ap- pears in namespace scope, the 1779 // member template and some of its enclosing class templates may remain 1780 // unspecialized, except that the declaration shall not explicitly 1781 // specialize a class member template if its en- closing class templates 1782 // are not explicitly specialized as well. 1783 if (ParamIdx < NumParamLists) { 1784 if (ParamLists[ParamIdx]->size() == 0) { 1785 if (SawNonEmptyTemplateParameterList) { 1786 Diag(DeclLoc, diag::err_specialize_member_of_template) 1787 << ParamLists[ParamIdx]->getSourceRange(); 1788 Invalid = true; 1789 IsExplicitSpecialization = false; 1790 return 0; 1791 } 1792 } else 1793 SawNonEmptyTemplateParameterList = true; 1794 } 1795 1796 if (NeedEmptyTemplateHeader) { 1797 // If we're on the last of the types, and we need a 'template<>' header 1798 // here, then it's an explicit specialization. 1799 if (TypeIdx == NumTypes - 1) 1800 IsExplicitSpecialization = true; 1801 1802 if (ParamIdx < NumParamLists) { 1803 if (ParamLists[ParamIdx]->size() > 0) { 1804 // The header has template parameters when it shouldn't. Complain. 1805 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1806 diag::err_template_param_list_matches_nontemplate) 1807 << T 1808 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 1809 ParamLists[ParamIdx]->getRAngleLoc()) 1810 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1811 Invalid = true; 1812 return 0; 1813 } 1814 1815 // Consume this template header. 1816 ++ParamIdx; 1817 continue; 1818 } 1819 1820 if (!IsFriend) { 1821 // We don't have a template header, but we should. 1822 SourceLocation ExpectedTemplateLoc; 1823 if (NumParamLists > 0) 1824 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 1825 else 1826 ExpectedTemplateLoc = DeclStartLoc; 1827 1828 Diag(DeclLoc, diag::err_template_spec_needs_header) 1829 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS) 1830 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 1831 } 1832 1833 continue; 1834 } 1835 1836 if (NeedNonemptyTemplateHeader) { 1837 // In friend declarations we can have template-ids which don't 1838 // depend on the corresponding template parameter lists. But 1839 // assume that empty parameter lists are supposed to match this 1840 // template-id. 1841 if (IsFriend && T->isDependentType()) { 1842 if (ParamIdx < NumParamLists && 1843 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 1844 ExpectedTemplateParams = 0; 1845 else 1846 continue; 1847 } 1848 1849 if (ParamIdx < NumParamLists) { 1850 // Check the template parameter list, if we can. 1851 if (ExpectedTemplateParams && 1852 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 1853 ExpectedTemplateParams, 1854 true, TPL_TemplateMatch)) 1855 Invalid = true; 1856 1857 if (!Invalid && 1858 CheckTemplateParameterList(ParamLists[ParamIdx], 0, 1859 TPC_ClassTemplateMember)) 1860 Invalid = true; 1861 1862 ++ParamIdx; 1863 continue; 1864 } 1865 1866 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 1867 << T 1868 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1869 Invalid = true; 1870 continue; 1871 } 1872 } 1873 1874 // If there were at least as many template-ids as there were template 1875 // parameter lists, then there are no template parameter lists remaining for 1876 // the declaration itself. 1877 if (ParamIdx >= NumParamLists) 1878 return 0; 1879 1880 // If there were too many template parameter lists, complain about that now. 1881 if (ParamIdx < NumParamLists - 1) { 1882 bool HasAnyExplicitSpecHeader = false; 1883 bool AllExplicitSpecHeaders = true; 1884 for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) { 1885 if (ParamLists[I]->size() == 0) 1886 HasAnyExplicitSpecHeader = true; 1887 else 1888 AllExplicitSpecHeaders = false; 1889 } 1890 1891 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1892 AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers 1893 : diag::err_template_spec_extra_headers) 1894 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 1895 ParamLists[NumParamLists - 2]->getRAngleLoc()); 1896 1897 // If there was a specialization somewhere, such that 'template<>' is 1898 // not required, and there were any 'template<>' headers, note where the 1899 // specialization occurred. 1900 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader) 1901 Diag(ExplicitSpecLoc, 1902 diag::note_explicit_template_spec_does_not_need_header) 1903 << NestedTypes.back(); 1904 1905 // We have a template parameter list with no corresponding scope, which 1906 // means that the resulting template declaration can't be instantiated 1907 // properly (we'll end up with dependent nodes when we shouldn't). 1908 if (!AllExplicitSpecHeaders) 1909 Invalid = true; 1910 } 1911 1912 // C++ [temp.expl.spec]p16: 1913 // In an explicit specialization declaration for a member of a class 1914 // template or a member template that ap- pears in namespace scope, the 1915 // member template and some of its enclosing class templates may remain 1916 // unspecialized, except that the declaration shall not explicitly 1917 // specialize a class member template if its en- closing class templates 1918 // are not explicitly specialized as well. 1919 if (ParamLists[NumParamLists - 1]->size() == 0 && 1920 SawNonEmptyTemplateParameterList) { 1921 Diag(DeclLoc, diag::err_specialize_member_of_template) 1922 << ParamLists[ParamIdx]->getSourceRange(); 1923 Invalid = true; 1924 IsExplicitSpecialization = false; 1925 return 0; 1926 } 1927 1928 // Return the last template parameter list, which corresponds to the 1929 // entity being declared. 1930 return ParamLists[NumParamLists - 1]; 1931} 1932 1933void Sema::NoteAllFoundTemplates(TemplateName Name) { 1934 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 1935 Diag(Template->getLocation(), diag::note_template_declared_here) 1936 << (isa<FunctionTemplateDecl>(Template)? 0 1937 : isa<ClassTemplateDecl>(Template)? 1 1938 : isa<TypeAliasTemplateDecl>(Template)? 2 1939 : 3) 1940 << Template->getDeclName(); 1941 return; 1942 } 1943 1944 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 1945 for (OverloadedTemplateStorage::iterator I = OST->begin(), 1946 IEnd = OST->end(); 1947 I != IEnd; ++I) 1948 Diag((*I)->getLocation(), diag::note_template_declared_here) 1949 << 0 << (*I)->getDeclName(); 1950 1951 return; 1952 } 1953} 1954 1955QualType Sema::CheckTemplateIdType(TemplateName Name, 1956 SourceLocation TemplateLoc, 1957 TemplateArgumentListInfo &TemplateArgs) { 1958 DependentTemplateName *DTN 1959 = Name.getUnderlying().getAsDependentTemplateName(); 1960 if (DTN && DTN->isIdentifier()) 1961 // When building a template-id where the template-name is dependent, 1962 // assume the template is a type template. Either our assumption is 1963 // correct, or the code is ill-formed and will be diagnosed when the 1964 // dependent name is substituted. 1965 return Context.getDependentTemplateSpecializationType(ETK_None, 1966 DTN->getQualifier(), 1967 DTN->getIdentifier(), 1968 TemplateArgs); 1969 1970 TemplateDecl *Template = Name.getAsTemplateDecl(); 1971 if (!Template || isa<FunctionTemplateDecl>(Template)) { 1972 // We might have a substituted template template parameter pack. If so, 1973 // build a template specialization type for it. 1974 if (Name.getAsSubstTemplateTemplateParmPack()) 1975 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1976 1977 Diag(TemplateLoc, diag::err_template_id_not_a_type) 1978 << Name; 1979 NoteAllFoundTemplates(Name); 1980 return QualType(); 1981 } 1982 1983 // Check that the template argument list is well-formed for this 1984 // template. 1985 SmallVector<TemplateArgument, 4> Converted; 1986 bool ExpansionIntoFixedList = false; 1987 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1988 false, Converted, &ExpansionIntoFixedList)) 1989 return QualType(); 1990 1991 QualType CanonType; 1992 1993 bool InstantiationDependent = false; 1994 TypeAliasTemplateDecl *AliasTemplate = 0; 1995 if (!ExpansionIntoFixedList && 1996 (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) { 1997 // Find the canonical type for this type alias template specialization. 1998 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 1999 if (Pattern->isInvalidDecl()) 2000 return QualType(); 2001 2002 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2003 Converted.data(), Converted.size()); 2004 2005 // Only substitute for the innermost template argument list. 2006 MultiLevelTemplateArgumentList TemplateArgLists; 2007 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 2008 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth(); 2009 for (unsigned I = 0; I < Depth; ++I) 2010 TemplateArgLists.addOuterTemplateArguments(0, 0); 2011 2012 LocalInstantiationScope Scope(*this); 2013 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 2014 if (Inst) 2015 return QualType(); 2016 2017 CanonType = SubstType(Pattern->getUnderlyingType(), 2018 TemplateArgLists, AliasTemplate->getLocation(), 2019 AliasTemplate->getDeclName()); 2020 if (CanonType.isNull()) 2021 return QualType(); 2022 } else if (Name.isDependent() || 2023 TemplateSpecializationType::anyDependentTemplateArguments( 2024 TemplateArgs, InstantiationDependent)) { 2025 // This class template specialization is a dependent 2026 // type. Therefore, its canonical type is another class template 2027 // specialization type that contains all of the converted 2028 // arguments in canonical form. This ensures that, e.g., A<T> and 2029 // A<T, T> have identical types when A is declared as: 2030 // 2031 // template<typename T, typename U = T> struct A; 2032 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 2033 CanonType = Context.getTemplateSpecializationType(CanonName, 2034 Converted.data(), 2035 Converted.size()); 2036 2037 // FIXME: CanonType is not actually the canonical type, and unfortunately 2038 // it is a TemplateSpecializationType that we will never use again. 2039 // In the future, we need to teach getTemplateSpecializationType to only 2040 // build the canonical type and return that to us. 2041 CanonType = Context.getCanonicalType(CanonType); 2042 2043 // This might work out to be a current instantiation, in which 2044 // case the canonical type needs to be the InjectedClassNameType. 2045 // 2046 // TODO: in theory this could be a simple hashtable lookup; most 2047 // changes to CurContext don't change the set of current 2048 // instantiations. 2049 if (isa<ClassTemplateDecl>(Template)) { 2050 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 2051 // If we get out to a namespace, we're done. 2052 if (Ctx->isFileContext()) break; 2053 2054 // If this isn't a record, keep looking. 2055 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 2056 if (!Record) continue; 2057 2058 // Look for one of the two cases with InjectedClassNameTypes 2059 // and check whether it's the same template. 2060 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 2061 !Record->getDescribedClassTemplate()) 2062 continue; 2063 2064 // Fetch the injected class name type and check whether its 2065 // injected type is equal to the type we just built. 2066 QualType ICNT = Context.getTypeDeclType(Record); 2067 QualType Injected = cast<InjectedClassNameType>(ICNT) 2068 ->getInjectedSpecializationType(); 2069 2070 if (CanonType != Injected->getCanonicalTypeInternal()) 2071 continue; 2072 2073 // If so, the canonical type of this TST is the injected 2074 // class name type of the record we just found. 2075 assert(ICNT.isCanonical()); 2076 CanonType = ICNT; 2077 break; 2078 } 2079 } 2080 } else if (ClassTemplateDecl *ClassTemplate 2081 = dyn_cast<ClassTemplateDecl>(Template)) { 2082 // Find the class template specialization declaration that 2083 // corresponds to these arguments. 2084 void *InsertPos = 0; 2085 ClassTemplateSpecializationDecl *Decl 2086 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(), 2087 InsertPos); 2088 if (!Decl) { 2089 // This is the first time we have referenced this class template 2090 // specialization. Create the canonical declaration and add it to 2091 // the set of specializations. 2092 Decl = ClassTemplateSpecializationDecl::Create(Context, 2093 ClassTemplate->getTemplatedDecl()->getTagKind(), 2094 ClassTemplate->getDeclContext(), 2095 ClassTemplate->getTemplatedDecl()->getLocStart(), 2096 ClassTemplate->getLocation(), 2097 ClassTemplate, 2098 Converted.data(), 2099 Converted.size(), 0); 2100 ClassTemplate->AddSpecialization(Decl, InsertPos); 2101 if (ClassTemplate->isOutOfLine()) 2102 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext()); 2103 } 2104 2105 CanonType = Context.getTypeDeclType(Decl); 2106 assert(isa<RecordType>(CanonType) && 2107 "type of non-dependent specialization is not a RecordType"); 2108 } 2109 2110 // Build the fully-sugared type for this class template 2111 // specialization, which refers back to the class template 2112 // specialization we created or found. 2113 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 2114} 2115 2116TypeResult 2117Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc, 2118 TemplateTy TemplateD, SourceLocation TemplateLoc, 2119 SourceLocation LAngleLoc, 2120 ASTTemplateArgsPtr TemplateArgsIn, 2121 SourceLocation RAngleLoc, 2122 bool IsCtorOrDtorName) { 2123 if (SS.isInvalid()) 2124 return true; 2125 2126 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2127 2128 // Translate the parser's template argument list in our AST format. 2129 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2130 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2131 2132 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2133 QualType T 2134 = Context.getDependentTemplateSpecializationType(ETK_None, 2135 DTN->getQualifier(), 2136 DTN->getIdentifier(), 2137 TemplateArgs); 2138 // Build type-source information. 2139 TypeLocBuilder TLB; 2140 DependentTemplateSpecializationTypeLoc SpecTL 2141 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2142 SpecTL.setElaboratedKeywordLoc(SourceLocation()); 2143 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2144 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2145 SpecTL.setTemplateNameLoc(TemplateLoc); 2146 SpecTL.setLAngleLoc(LAngleLoc); 2147 SpecTL.setRAngleLoc(RAngleLoc); 2148 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2149 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2150 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2151 } 2152 2153 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2154 2155 if (Result.isNull()) 2156 return true; 2157 2158 // Build type-source information. 2159 TypeLocBuilder TLB; 2160 TemplateSpecializationTypeLoc SpecTL 2161 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2162 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2163 SpecTL.setTemplateNameLoc(TemplateLoc); 2164 SpecTL.setLAngleLoc(LAngleLoc); 2165 SpecTL.setRAngleLoc(RAngleLoc); 2166 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2167 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2168 2169 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a 2170 // constructor or destructor name (in such a case, the scope specifier 2171 // will be attached to the enclosing Decl or Expr node). 2172 if (SS.isNotEmpty() && !IsCtorOrDtorName) { 2173 // Create an elaborated-type-specifier containing the nested-name-specifier. 2174 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); 2175 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2176 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 2177 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2178 } 2179 2180 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2181} 2182 2183TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 2184 TypeSpecifierType TagSpec, 2185 SourceLocation TagLoc, 2186 CXXScopeSpec &SS, 2187 SourceLocation TemplateKWLoc, 2188 TemplateTy TemplateD, 2189 SourceLocation TemplateLoc, 2190 SourceLocation LAngleLoc, 2191 ASTTemplateArgsPtr TemplateArgsIn, 2192 SourceLocation RAngleLoc) { 2193 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2194 2195 // Translate the parser's template argument list in our AST format. 2196 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2197 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2198 2199 // Determine the tag kind 2200 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 2201 ElaboratedTypeKeyword Keyword 2202 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 2203 2204 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2205 QualType T = Context.getDependentTemplateSpecializationType(Keyword, 2206 DTN->getQualifier(), 2207 DTN->getIdentifier(), 2208 TemplateArgs); 2209 2210 // Build type-source information. 2211 TypeLocBuilder TLB; 2212 DependentTemplateSpecializationTypeLoc SpecTL 2213 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2214 SpecTL.setElaboratedKeywordLoc(TagLoc); 2215 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2216 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2217 SpecTL.setTemplateNameLoc(TemplateLoc); 2218 SpecTL.setLAngleLoc(LAngleLoc); 2219 SpecTL.setRAngleLoc(RAngleLoc); 2220 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2221 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2222 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2223 } 2224 2225 if (TypeAliasTemplateDecl *TAT = 2226 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 2227 // C++0x [dcl.type.elab]p2: 2228 // If the identifier resolves to a typedef-name or the simple-template-id 2229 // resolves to an alias template specialization, the 2230 // elaborated-type-specifier is ill-formed. 2231 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4; 2232 Diag(TAT->getLocation(), diag::note_declared_at); 2233 } 2234 2235 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2236 if (Result.isNull()) 2237 return TypeResult(true); 2238 2239 // Check the tag kind 2240 if (const RecordType *RT = Result->getAs<RecordType>()) { 2241 RecordDecl *D = RT->getDecl(); 2242 2243 IdentifierInfo *Id = D->getIdentifier(); 2244 assert(Id && "templated class must have an identifier"); 2245 2246 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, 2247 TagLoc, *Id)) { 2248 Diag(TagLoc, diag::err_use_with_wrong_tag) 2249 << Result 2250 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 2251 Diag(D->getLocation(), diag::note_previous_use); 2252 } 2253 } 2254 2255 // Provide source-location information for the template specialization. 2256 TypeLocBuilder TLB; 2257 TemplateSpecializationTypeLoc SpecTL 2258 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2259 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2260 SpecTL.setTemplateNameLoc(TemplateLoc); 2261 SpecTL.setLAngleLoc(LAngleLoc); 2262 SpecTL.setRAngleLoc(RAngleLoc); 2263 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2264 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2265 2266 // Construct an elaborated type containing the nested-name-specifier (if any) 2267 // and tag keyword. 2268 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 2269 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2270 ElabTL.setElaboratedKeywordLoc(TagLoc); 2271 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2272 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2273} 2274 2275ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 2276 SourceLocation TemplateKWLoc, 2277 LookupResult &R, 2278 bool RequiresADL, 2279 const TemplateArgumentListInfo *TemplateArgs) { 2280 // FIXME: Can we do any checking at this point? I guess we could check the 2281 // template arguments that we have against the template name, if the template 2282 // name refers to a single template. That's not a terribly common case, 2283 // though. 2284 // foo<int> could identify a single function unambiguously 2285 // This approach does NOT work, since f<int>(1); 2286 // gets resolved prior to resorting to overload resolution 2287 // i.e., template<class T> void f(double); 2288 // vs template<class T, class U> void f(U); 2289 2290 // These should be filtered out by our callers. 2291 assert(!R.empty() && "empty lookup results when building templateid"); 2292 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 2293 2294 // We don't want lookup warnings at this point. 2295 R.suppressDiagnostics(); 2296 2297 UnresolvedLookupExpr *ULE 2298 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 2299 SS.getWithLocInContext(Context), 2300 TemplateKWLoc, 2301 R.getLookupNameInfo(), 2302 RequiresADL, TemplateArgs, 2303 R.begin(), R.end()); 2304 2305 return Owned(ULE); 2306} 2307 2308// We actually only call this from template instantiation. 2309ExprResult 2310Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 2311 SourceLocation TemplateKWLoc, 2312 const DeclarationNameInfo &NameInfo, 2313 const TemplateArgumentListInfo *TemplateArgs) { 2314 assert(TemplateArgs || TemplateKWLoc.isValid()); 2315 DeclContext *DC; 2316 if (!(DC = computeDeclContext(SS, false)) || 2317 DC->isDependentContext() || 2318 RequireCompleteDeclContext(SS, DC)) 2319 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 2320 2321 bool MemberOfUnknownSpecialization; 2322 LookupResult R(*this, NameInfo, LookupOrdinaryName); 2323 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 2324 MemberOfUnknownSpecialization); 2325 2326 if (R.isAmbiguous()) 2327 return ExprError(); 2328 2329 if (R.empty()) { 2330 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 2331 << NameInfo.getName() << SS.getRange(); 2332 return ExprError(); 2333 } 2334 2335 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 2336 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 2337 << (NestedNameSpecifier*) SS.getScopeRep() 2338 << NameInfo.getName() << SS.getRange(); 2339 Diag(Temp->getLocation(), diag::note_referenced_class_template); 2340 return ExprError(); 2341 } 2342 2343 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs); 2344} 2345 2346/// \brief Form a dependent template name. 2347/// 2348/// This action forms a dependent template name given the template 2349/// name and its (presumably dependent) scope specifier. For 2350/// example, given "MetaFun::template apply", the scope specifier \p 2351/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 2352/// of the "template" keyword, and "apply" is the \p Name. 2353TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 2354 CXXScopeSpec &SS, 2355 SourceLocation TemplateKWLoc, 2356 UnqualifiedId &Name, 2357 ParsedType ObjectType, 2358 bool EnteringContext, 2359 TemplateTy &Result) { 2360 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) 2361 Diag(TemplateKWLoc, 2362 getLangOpts().CPlusPlus11 ? 2363 diag::warn_cxx98_compat_template_outside_of_template : 2364 diag::ext_template_outside_of_template) 2365 << FixItHint::CreateRemoval(TemplateKWLoc); 2366 2367 DeclContext *LookupCtx = 0; 2368 if (SS.isSet()) 2369 LookupCtx = computeDeclContext(SS, EnteringContext); 2370 if (!LookupCtx && ObjectType) 2371 LookupCtx = computeDeclContext(ObjectType.get()); 2372 if (LookupCtx) { 2373 // C++0x [temp.names]p5: 2374 // If a name prefixed by the keyword template is not the name of 2375 // a template, the program is ill-formed. [Note: the keyword 2376 // template may not be applied to non-template members of class 2377 // templates. -end note ] [ Note: as is the case with the 2378 // typename prefix, the template prefix is allowed in cases 2379 // where it is not strictly necessary; i.e., when the 2380 // nested-name-specifier or the expression on the left of the -> 2381 // or . is not dependent on a template-parameter, or the use 2382 // does not appear in the scope of a template. -end note] 2383 // 2384 // Note: C++03 was more strict here, because it banned the use of 2385 // the "template" keyword prior to a template-name that was not a 2386 // dependent name. C++ DR468 relaxed this requirement (the 2387 // "template" keyword is now permitted). We follow the C++0x 2388 // rules, even in C++03 mode with a warning, retroactively applying the DR. 2389 bool MemberOfUnknownSpecialization; 2390 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name, 2391 ObjectType, EnteringContext, Result, 2392 MemberOfUnknownSpecialization); 2393 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 2394 isa<CXXRecordDecl>(LookupCtx) && 2395 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() || 2396 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) { 2397 // This is a dependent template. Handle it below. 2398 } else if (TNK == TNK_Non_template) { 2399 Diag(Name.getLocStart(), 2400 diag::err_template_kw_refers_to_non_template) 2401 << GetNameFromUnqualifiedId(Name).getName() 2402 << Name.getSourceRange() 2403 << TemplateKWLoc; 2404 return TNK_Non_template; 2405 } else { 2406 // We found something; return it. 2407 return TNK; 2408 } 2409 } 2410 2411 NestedNameSpecifier *Qualifier 2412 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 2413 2414 switch (Name.getKind()) { 2415 case UnqualifiedId::IK_Identifier: 2416 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2417 Name.Identifier)); 2418 return TNK_Dependent_template_name; 2419 2420 case UnqualifiedId::IK_OperatorFunctionId: 2421 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2422 Name.OperatorFunctionId.Operator)); 2423 return TNK_Dependent_template_name; 2424 2425 case UnqualifiedId::IK_LiteralOperatorId: 2426 llvm_unreachable( 2427 "We don't support these; Parse shouldn't have allowed propagation"); 2428 2429 default: 2430 break; 2431 } 2432 2433 Diag(Name.getLocStart(), 2434 diag::err_template_kw_refers_to_non_template) 2435 << GetNameFromUnqualifiedId(Name).getName() 2436 << Name.getSourceRange() 2437 << TemplateKWLoc; 2438 return TNK_Non_template; 2439} 2440 2441bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 2442 const TemplateArgumentLoc &AL, 2443 SmallVectorImpl<TemplateArgument> &Converted) { 2444 const TemplateArgument &Arg = AL.getArgument(); 2445 2446 // Check template type parameter. 2447 switch(Arg.getKind()) { 2448 case TemplateArgument::Type: 2449 // C++ [temp.arg.type]p1: 2450 // A template-argument for a template-parameter which is a 2451 // type shall be a type-id. 2452 break; 2453 case TemplateArgument::Template: { 2454 // We have a template type parameter but the template argument 2455 // is a template without any arguments. 2456 SourceRange SR = AL.getSourceRange(); 2457 TemplateName Name = Arg.getAsTemplate(); 2458 Diag(SR.getBegin(), diag::err_template_missing_args) 2459 << Name << SR; 2460 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 2461 Diag(Decl->getLocation(), diag::note_template_decl_here); 2462 2463 return true; 2464 } 2465 case TemplateArgument::Expression: { 2466 // We have a template type parameter but the template argument is an 2467 // expression; see if maybe it is missing the "typename" keyword. 2468 CXXScopeSpec SS; 2469 DeclarationNameInfo NameInfo; 2470 2471 if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) { 2472 SS.Adopt(ArgExpr->getQualifierLoc()); 2473 NameInfo = ArgExpr->getNameInfo(); 2474 } else if (DependentScopeDeclRefExpr *ArgExpr = 2475 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) { 2476 SS.Adopt(ArgExpr->getQualifierLoc()); 2477 NameInfo = ArgExpr->getNameInfo(); 2478 } else if (CXXDependentScopeMemberExpr *ArgExpr = 2479 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) { 2480 if (ArgExpr->isImplicitAccess()) { 2481 SS.Adopt(ArgExpr->getQualifierLoc()); 2482 NameInfo = ArgExpr->getMemberNameInfo(); 2483 } 2484 } 2485 2486 if (NameInfo.getName().isIdentifier()) { 2487 LookupResult Result(*this, NameInfo, LookupOrdinaryName); 2488 LookupParsedName(Result, CurScope, &SS); 2489 2490 if (Result.getAsSingle<TypeDecl>() || 2491 Result.getResultKind() == 2492 LookupResult::NotFoundInCurrentInstantiation) { 2493 // FIXME: Add a FixIt and fix up the template argument for recovery. 2494 SourceLocation Loc = AL.getSourceRange().getBegin(); 2495 Diag(Loc, diag::err_template_arg_must_be_type_suggest); 2496 Diag(Param->getLocation(), diag::note_template_param_here); 2497 return true; 2498 } 2499 } 2500 // fallthrough 2501 } 2502 default: { 2503 // We have a template type parameter but the template argument 2504 // is not a type. 2505 SourceRange SR = AL.getSourceRange(); 2506 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 2507 Diag(Param->getLocation(), diag::note_template_param_here); 2508 2509 return true; 2510 } 2511 } 2512 2513 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 2514 return true; 2515 2516 // Add the converted template type argument. 2517 QualType ArgType = Context.getCanonicalType(Arg.getAsType()); 2518 2519 // Objective-C ARC: 2520 // If an explicitly-specified template argument type is a lifetime type 2521 // with no lifetime qualifier, the __strong lifetime qualifier is inferred. 2522 if (getLangOpts().ObjCAutoRefCount && 2523 ArgType->isObjCLifetimeType() && 2524 !ArgType.getObjCLifetime()) { 2525 Qualifiers Qs; 2526 Qs.setObjCLifetime(Qualifiers::OCL_Strong); 2527 ArgType = Context.getQualifiedType(ArgType, Qs); 2528 } 2529 2530 Converted.push_back(TemplateArgument(ArgType)); 2531 return false; 2532} 2533 2534/// \brief Substitute template arguments into the default template argument for 2535/// the given template type parameter. 2536/// 2537/// \param SemaRef the semantic analysis object for which we are performing 2538/// the substitution. 2539/// 2540/// \param Template the template that we are synthesizing template arguments 2541/// for. 2542/// 2543/// \param TemplateLoc the location of the template name that started the 2544/// template-id we are checking. 2545/// 2546/// \param RAngleLoc the location of the right angle bracket ('>') that 2547/// terminates the template-id. 2548/// 2549/// \param Param the template template parameter whose default we are 2550/// substituting into. 2551/// 2552/// \param Converted the list of template arguments provided for template 2553/// parameters that precede \p Param in the template parameter list. 2554/// \returns the substituted template argument, or NULL if an error occurred. 2555static TypeSourceInfo * 2556SubstDefaultTemplateArgument(Sema &SemaRef, 2557 TemplateDecl *Template, 2558 SourceLocation TemplateLoc, 2559 SourceLocation RAngleLoc, 2560 TemplateTypeParmDecl *Param, 2561 SmallVectorImpl<TemplateArgument> &Converted) { 2562 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 2563 2564 // If the argument type is dependent, instantiate it now based 2565 // on the previously-computed template arguments. 2566 if (ArgType->getType()->isDependentType()) { 2567 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2568 Converted.data(), Converted.size()); 2569 2570 MultiLevelTemplateArgumentList AllTemplateArgs 2571 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2572 2573 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2574 Template, Converted, 2575 SourceRange(TemplateLoc, RAngleLoc)); 2576 if (Inst) 2577 return 0; 2578 2579 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 2580 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 2581 Param->getDefaultArgumentLoc(), 2582 Param->getDeclName()); 2583 } 2584 2585 return ArgType; 2586} 2587 2588/// \brief Substitute template arguments into the default template argument for 2589/// the given non-type template parameter. 2590/// 2591/// \param SemaRef the semantic analysis object for which we are performing 2592/// the substitution. 2593/// 2594/// \param Template the template that we are synthesizing template arguments 2595/// for. 2596/// 2597/// \param TemplateLoc the location of the template name that started the 2598/// template-id we are checking. 2599/// 2600/// \param RAngleLoc the location of the right angle bracket ('>') that 2601/// terminates the template-id. 2602/// 2603/// \param Param the non-type template parameter whose default we are 2604/// substituting into. 2605/// 2606/// \param Converted the list of template arguments provided for template 2607/// parameters that precede \p Param in the template parameter list. 2608/// 2609/// \returns the substituted template argument, or NULL if an error occurred. 2610static ExprResult 2611SubstDefaultTemplateArgument(Sema &SemaRef, 2612 TemplateDecl *Template, 2613 SourceLocation TemplateLoc, 2614 SourceLocation RAngleLoc, 2615 NonTypeTemplateParmDecl *Param, 2616 SmallVectorImpl<TemplateArgument> &Converted) { 2617 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2618 Converted.data(), Converted.size()); 2619 2620 MultiLevelTemplateArgumentList AllTemplateArgs 2621 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2622 2623 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2624 Template, Converted, 2625 SourceRange(TemplateLoc, RAngleLoc)); 2626 if (Inst) 2627 return ExprError(); 2628 2629 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 2630 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated); 2631 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 2632} 2633 2634/// \brief Substitute template arguments into the default template argument for 2635/// the given template template parameter. 2636/// 2637/// \param SemaRef the semantic analysis object for which we are performing 2638/// the substitution. 2639/// 2640/// \param Template the template that we are synthesizing template arguments 2641/// for. 2642/// 2643/// \param TemplateLoc the location of the template name that started the 2644/// template-id we are checking. 2645/// 2646/// \param RAngleLoc the location of the right angle bracket ('>') that 2647/// terminates the template-id. 2648/// 2649/// \param Param the template template parameter whose default we are 2650/// substituting into. 2651/// 2652/// \param Converted the list of template arguments provided for template 2653/// parameters that precede \p Param in the template parameter list. 2654/// 2655/// \param QualifierLoc Will be set to the nested-name-specifier (with 2656/// source-location information) that precedes the template name. 2657/// 2658/// \returns the substituted template argument, or NULL if an error occurred. 2659static TemplateName 2660SubstDefaultTemplateArgument(Sema &SemaRef, 2661 TemplateDecl *Template, 2662 SourceLocation TemplateLoc, 2663 SourceLocation RAngleLoc, 2664 TemplateTemplateParmDecl *Param, 2665 SmallVectorImpl<TemplateArgument> &Converted, 2666 NestedNameSpecifierLoc &QualifierLoc) { 2667 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2668 Converted.data(), Converted.size()); 2669 2670 MultiLevelTemplateArgumentList AllTemplateArgs 2671 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2672 2673 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2674 Template, Converted, 2675 SourceRange(TemplateLoc, RAngleLoc)); 2676 if (Inst) 2677 return TemplateName(); 2678 2679 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 2680 // Substitute into the nested-name-specifier first, 2681 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 2682 if (QualifierLoc) { 2683 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 2684 AllTemplateArgs); 2685 if (!QualifierLoc) 2686 return TemplateName(); 2687 } 2688 2689 return SemaRef.SubstTemplateName(QualifierLoc, 2690 Param->getDefaultArgument().getArgument().getAsTemplate(), 2691 Param->getDefaultArgument().getTemplateNameLoc(), 2692 AllTemplateArgs); 2693} 2694 2695/// \brief If the given template parameter has a default template 2696/// argument, substitute into that default template argument and 2697/// return the corresponding template argument. 2698TemplateArgumentLoc 2699Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 2700 SourceLocation TemplateLoc, 2701 SourceLocation RAngleLoc, 2702 Decl *Param, 2703 SmallVectorImpl<TemplateArgument> &Converted) { 2704 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 2705 if (!TypeParm->hasDefaultArgument()) 2706 return TemplateArgumentLoc(); 2707 2708 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 2709 TemplateLoc, 2710 RAngleLoc, 2711 TypeParm, 2712 Converted); 2713 if (DI) 2714 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 2715 2716 return TemplateArgumentLoc(); 2717 } 2718 2719 if (NonTypeTemplateParmDecl *NonTypeParm 2720 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2721 if (!NonTypeParm->hasDefaultArgument()) 2722 return TemplateArgumentLoc(); 2723 2724 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 2725 TemplateLoc, 2726 RAngleLoc, 2727 NonTypeParm, 2728 Converted); 2729 if (Arg.isInvalid()) 2730 return TemplateArgumentLoc(); 2731 2732 Expr *ArgE = Arg.takeAs<Expr>(); 2733 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 2734 } 2735 2736 TemplateTemplateParmDecl *TempTempParm 2737 = cast<TemplateTemplateParmDecl>(Param); 2738 if (!TempTempParm->hasDefaultArgument()) 2739 return TemplateArgumentLoc(); 2740 2741 2742 NestedNameSpecifierLoc QualifierLoc; 2743 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 2744 TemplateLoc, 2745 RAngleLoc, 2746 TempTempParm, 2747 Converted, 2748 QualifierLoc); 2749 if (TName.isNull()) 2750 return TemplateArgumentLoc(); 2751 2752 return TemplateArgumentLoc(TemplateArgument(TName), 2753 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 2754 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 2755} 2756 2757/// \brief Check that the given template argument corresponds to the given 2758/// template parameter. 2759/// 2760/// \param Param The template parameter against which the argument will be 2761/// checked. 2762/// 2763/// \param Arg The template argument. 2764/// 2765/// \param Template The template in which the template argument resides. 2766/// 2767/// \param TemplateLoc The location of the template name for the template 2768/// whose argument list we're matching. 2769/// 2770/// \param RAngleLoc The location of the right angle bracket ('>') that closes 2771/// the template argument list. 2772/// 2773/// \param ArgumentPackIndex The index into the argument pack where this 2774/// argument will be placed. Only valid if the parameter is a parameter pack. 2775/// 2776/// \param Converted The checked, converted argument will be added to the 2777/// end of this small vector. 2778/// 2779/// \param CTAK Describes how we arrived at this particular template argument: 2780/// explicitly written, deduced, etc. 2781/// 2782/// \returns true on error, false otherwise. 2783bool Sema::CheckTemplateArgument(NamedDecl *Param, 2784 const TemplateArgumentLoc &Arg, 2785 NamedDecl *Template, 2786 SourceLocation TemplateLoc, 2787 SourceLocation RAngleLoc, 2788 unsigned ArgumentPackIndex, 2789 SmallVectorImpl<TemplateArgument> &Converted, 2790 CheckTemplateArgumentKind CTAK) { 2791 // Check template type parameters. 2792 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2793 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2794 2795 // Check non-type template parameters. 2796 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2797 // Do substitution on the type of the non-type template parameter 2798 // with the template arguments we've seen thus far. But if the 2799 // template has a dependent context then we cannot substitute yet. 2800 QualType NTTPType = NTTP->getType(); 2801 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 2802 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 2803 2804 if (NTTPType->isDependentType() && 2805 !isa<TemplateTemplateParmDecl>(Template) && 2806 !Template->getDeclContext()->isDependentContext()) { 2807 // Do substitution on the type of the non-type template parameter. 2808 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2809 NTTP, Converted, 2810 SourceRange(TemplateLoc, RAngleLoc)); 2811 if (Inst) 2812 return true; 2813 2814 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2815 Converted.data(), Converted.size()); 2816 NTTPType = SubstType(NTTPType, 2817 MultiLevelTemplateArgumentList(TemplateArgs), 2818 NTTP->getLocation(), 2819 NTTP->getDeclName()); 2820 // If that worked, check the non-type template parameter type 2821 // for validity. 2822 if (!NTTPType.isNull()) 2823 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2824 NTTP->getLocation()); 2825 if (NTTPType.isNull()) 2826 return true; 2827 } 2828 2829 switch (Arg.getArgument().getKind()) { 2830 case TemplateArgument::Null: 2831 llvm_unreachable("Should never see a NULL template argument here"); 2832 2833 case TemplateArgument::Expression: { 2834 TemplateArgument Result; 2835 ExprResult Res = 2836 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), 2837 Result, CTAK); 2838 if (Res.isInvalid()) 2839 return true; 2840 2841 Converted.push_back(Result); 2842 break; 2843 } 2844 2845 case TemplateArgument::Declaration: 2846 case TemplateArgument::Integral: 2847 case TemplateArgument::NullPtr: 2848 // We've already checked this template argument, so just copy 2849 // it to the list of converted arguments. 2850 Converted.push_back(Arg.getArgument()); 2851 break; 2852 2853 case TemplateArgument::Template: 2854 case TemplateArgument::TemplateExpansion: 2855 // We were given a template template argument. It may not be ill-formed; 2856 // see below. 2857 if (DependentTemplateName *DTN 2858 = Arg.getArgument().getAsTemplateOrTemplatePattern() 2859 .getAsDependentTemplateName()) { 2860 // We have a template argument such as \c T::template X, which we 2861 // parsed as a template template argument. However, since we now 2862 // know that we need a non-type template argument, convert this 2863 // template name into an expression. 2864 2865 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 2866 Arg.getTemplateNameLoc()); 2867 2868 CXXScopeSpec SS; 2869 SS.Adopt(Arg.getTemplateQualifierLoc()); 2870 // FIXME: the template-template arg was a DependentTemplateName, 2871 // so it was provided with a template keyword. However, its source 2872 // location is not stored in the template argument structure. 2873 SourceLocation TemplateKWLoc; 2874 ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context, 2875 SS.getWithLocInContext(Context), 2876 TemplateKWLoc, 2877 NameInfo, 0)); 2878 2879 // If we parsed the template argument as a pack expansion, create a 2880 // pack expansion expression. 2881 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 2882 E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc()); 2883 if (E.isInvalid()) 2884 return true; 2885 } 2886 2887 TemplateArgument Result; 2888 E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result); 2889 if (E.isInvalid()) 2890 return true; 2891 2892 Converted.push_back(Result); 2893 break; 2894 } 2895 2896 // We have a template argument that actually does refer to a class 2897 // template, alias template, or template template parameter, and 2898 // therefore cannot be a non-type template argument. 2899 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2900 << Arg.getSourceRange(); 2901 2902 Diag(Param->getLocation(), diag::note_template_param_here); 2903 return true; 2904 2905 case TemplateArgument::Type: { 2906 // We have a non-type template parameter but the template 2907 // argument is a type. 2908 2909 // C++ [temp.arg]p2: 2910 // In a template-argument, an ambiguity between a type-id and 2911 // an expression is resolved to a type-id, regardless of the 2912 // form of the corresponding template-parameter. 2913 // 2914 // We warn specifically about this case, since it can be rather 2915 // confusing for users. 2916 QualType T = Arg.getArgument().getAsType(); 2917 SourceRange SR = Arg.getSourceRange(); 2918 if (T->isFunctionType()) 2919 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2920 else 2921 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2922 Diag(Param->getLocation(), diag::note_template_param_here); 2923 return true; 2924 } 2925 2926 case TemplateArgument::Pack: 2927 llvm_unreachable("Caller must expand template argument packs"); 2928 } 2929 2930 return false; 2931 } 2932 2933 2934 // Check template template parameters. 2935 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2936 2937 // Substitute into the template parameter list of the template 2938 // template parameter, since previously-supplied template arguments 2939 // may appear within the template template parameter. 2940 { 2941 // Set up a template instantiation context. 2942 LocalInstantiationScope Scope(*this); 2943 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2944 TempParm, Converted, 2945 SourceRange(TemplateLoc, RAngleLoc)); 2946 if (Inst) 2947 return true; 2948 2949 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2950 Converted.data(), Converted.size()); 2951 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2952 SubstDecl(TempParm, CurContext, 2953 MultiLevelTemplateArgumentList(TemplateArgs))); 2954 if (!TempParm) 2955 return true; 2956 } 2957 2958 switch (Arg.getArgument().getKind()) { 2959 case TemplateArgument::Null: 2960 llvm_unreachable("Should never see a NULL template argument here"); 2961 2962 case TemplateArgument::Template: 2963 case TemplateArgument::TemplateExpansion: 2964 if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex)) 2965 return true; 2966 2967 Converted.push_back(Arg.getArgument()); 2968 break; 2969 2970 case TemplateArgument::Expression: 2971 case TemplateArgument::Type: 2972 // We have a template template parameter but the template 2973 // argument does not refer to a template. 2974 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 2975 << getLangOpts().CPlusPlus11; 2976 return true; 2977 2978 case TemplateArgument::Declaration: 2979 llvm_unreachable("Declaration argument with template template parameter"); 2980 case TemplateArgument::Integral: 2981 llvm_unreachable("Integral argument with template template parameter"); 2982 case TemplateArgument::NullPtr: 2983 llvm_unreachable("Null pointer argument with template template parameter"); 2984 2985 case TemplateArgument::Pack: 2986 llvm_unreachable("Caller must expand template argument packs"); 2987 } 2988 2989 return false; 2990} 2991 2992/// \brief Diagnose an arity mismatch in the 2993static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template, 2994 SourceLocation TemplateLoc, 2995 TemplateArgumentListInfo &TemplateArgs) { 2996 TemplateParameterList *Params = Template->getTemplateParameters(); 2997 unsigned NumParams = Params->size(); 2998 unsigned NumArgs = TemplateArgs.size(); 2999 3000 SourceRange Range; 3001 if (NumArgs > NumParams) 3002 Range = SourceRange(TemplateArgs[NumParams].getLocation(), 3003 TemplateArgs.getRAngleLoc()); 3004 S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 3005 << (NumArgs > NumParams) 3006 << (isa<ClassTemplateDecl>(Template)? 0 : 3007 isa<FunctionTemplateDecl>(Template)? 1 : 3008 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 3009 << Template << Range; 3010 S.Diag(Template->getLocation(), diag::note_template_decl_here) 3011 << Params->getSourceRange(); 3012 return true; 3013} 3014 3015/// \brief Check whether the template parameter is a pack expansion, and if so, 3016/// determine the number of parameters produced by that expansion. For instance: 3017/// 3018/// \code 3019/// template<typename ...Ts> struct A { 3020/// template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B; 3021/// }; 3022/// \endcode 3023/// 3024/// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us 3025/// is not a pack expansion, so returns an empty Optional. 3026static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) { 3027 if (NonTypeTemplateParmDecl *NTTP 3028 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3029 if (NTTP->isExpandedParameterPack()) 3030 return NTTP->getNumExpansionTypes(); 3031 } 3032 3033 if (TemplateTemplateParmDecl *TTP 3034 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 3035 if (TTP->isExpandedParameterPack()) 3036 return TTP->getNumExpansionTemplateParameters(); 3037 } 3038 3039 return None; 3040} 3041 3042/// \brief Check that the given template argument list is well-formed 3043/// for specializing the given template. 3044bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 3045 SourceLocation TemplateLoc, 3046 TemplateArgumentListInfo &TemplateArgs, 3047 bool PartialTemplateArgs, 3048 SmallVectorImpl<TemplateArgument> &Converted, 3049 bool *ExpansionIntoFixedList) { 3050 if (ExpansionIntoFixedList) 3051 *ExpansionIntoFixedList = false; 3052 3053 TemplateParameterList *Params = Template->getTemplateParameters(); 3054 3055 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 3056 3057 // C++ [temp.arg]p1: 3058 // [...] The type and form of each template-argument specified in 3059 // a template-id shall match the type and form specified for the 3060 // corresponding parameter declared by the template in its 3061 // template-parameter-list. 3062 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 3063 SmallVector<TemplateArgument, 2> ArgumentPack; 3064 unsigned ArgIdx = 0, NumArgs = TemplateArgs.size(); 3065 LocalInstantiationScope InstScope(*this, true); 3066 for (TemplateParameterList::iterator Param = Params->begin(), 3067 ParamEnd = Params->end(); 3068 Param != ParamEnd; /* increment in loop */) { 3069 // If we have an expanded parameter pack, make sure we don't have too 3070 // many arguments. 3071 if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) { 3072 if (*Expansions == ArgumentPack.size()) { 3073 // We're done with this parameter pack. Pack up its arguments and add 3074 // them to the list. 3075 Converted.push_back( 3076 TemplateArgument::CreatePackCopy(Context, 3077 ArgumentPack.data(), 3078 ArgumentPack.size())); 3079 ArgumentPack.clear(); 3080 3081 // This argument is assigned to the next parameter. 3082 ++Param; 3083 continue; 3084 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) { 3085 // Not enough arguments for this parameter pack. 3086 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 3087 << false 3088 << (isa<ClassTemplateDecl>(Template)? 0 : 3089 isa<FunctionTemplateDecl>(Template)? 1 : 3090 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 3091 << Template; 3092 Diag(Template->getLocation(), diag::note_template_decl_here) 3093 << Params->getSourceRange(); 3094 return true; 3095 } 3096 } 3097 3098 if (ArgIdx < NumArgs) { 3099 // Check the template argument we were given. 3100 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 3101 TemplateLoc, RAngleLoc, 3102 ArgumentPack.size(), Converted)) 3103 return true; 3104 3105 // We're now done with this argument. 3106 ++ArgIdx; 3107 3108 if ((*Param)->isTemplateParameterPack()) { 3109 // The template parameter was a template parameter pack, so take the 3110 // deduced argument and place it on the argument pack. Note that we 3111 // stay on the same template parameter so that we can deduce more 3112 // arguments. 3113 ArgumentPack.push_back(Converted.back()); 3114 Converted.pop_back(); 3115 } else { 3116 // Move to the next template parameter. 3117 ++Param; 3118 } 3119 3120 // If we just saw a pack expansion, then directly convert the remaining 3121 // arguments, because we don't know what parameters they'll match up 3122 // with. 3123 if (TemplateArgs[ArgIdx-1].getArgument().isPackExpansion()) { 3124 bool InFinalParameterPack = Param != ParamEnd && 3125 Param + 1 == ParamEnd && 3126 (*Param)->isTemplateParameterPack() && 3127 !getExpandedPackSize(*Param); 3128 3129 if (!InFinalParameterPack && !ArgumentPack.empty()) { 3130 // If we were part way through filling in an expanded parameter pack, 3131 // fall back to just producing individual arguments. 3132 Converted.insert(Converted.end(), 3133 ArgumentPack.begin(), ArgumentPack.end()); 3134 ArgumentPack.clear(); 3135 } 3136 3137 while (ArgIdx < NumArgs) { 3138 if (InFinalParameterPack) 3139 ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument()); 3140 else 3141 Converted.push_back(TemplateArgs[ArgIdx].getArgument()); 3142 ++ArgIdx; 3143 } 3144 3145 // Push the argument pack onto the list of converted arguments. 3146 if (InFinalParameterPack) { 3147 Converted.push_back( 3148 TemplateArgument::CreatePackCopy(Context, 3149 ArgumentPack.data(), 3150 ArgumentPack.size())); 3151 ArgumentPack.clear(); 3152 } else if (ExpansionIntoFixedList) { 3153 // We have expanded a pack into a fixed list. 3154 *ExpansionIntoFixedList = true; 3155 } 3156 3157 return false; 3158 } 3159 3160 continue; 3161 } 3162 3163 // If we're checking a partial template argument list, we're done. 3164 if (PartialTemplateArgs) { 3165 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty()) 3166 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 3167 ArgumentPack.data(), 3168 ArgumentPack.size())); 3169 3170 return false; 3171 } 3172 3173 // If we have a template parameter pack with no more corresponding 3174 // arguments, just break out now and we'll fill in the argument pack below. 3175 if ((*Param)->isTemplateParameterPack()) { 3176 assert(!getExpandedPackSize(*Param) && 3177 "Should have dealt with this already"); 3178 3179 // A non-expanded parameter pack before the end of the parameter list 3180 // only occurs for an ill-formed template parameter list, unless we've 3181 // got a partial argument list for a function template, so just bail out. 3182 if (Param + 1 != ParamEnd) 3183 return true; 3184 3185 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 3186 ArgumentPack.data(), 3187 ArgumentPack.size())); 3188 ArgumentPack.clear(); 3189 3190 ++Param; 3191 continue; 3192 } 3193 3194 // Check whether we have a default argument. 3195 TemplateArgumentLoc Arg; 3196 3197 // Retrieve the default template argument from the template 3198 // parameter. For each kind of template parameter, we substitute the 3199 // template arguments provided thus far and any "outer" template arguments 3200 // (when the template parameter was part of a nested template) into 3201 // the default argument. 3202 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 3203 if (!TTP->hasDefaultArgument()) 3204 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3205 TemplateArgs); 3206 3207 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 3208 Template, 3209 TemplateLoc, 3210 RAngleLoc, 3211 TTP, 3212 Converted); 3213 if (!ArgType) 3214 return true; 3215 3216 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 3217 ArgType); 3218 } else if (NonTypeTemplateParmDecl *NTTP 3219 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 3220 if (!NTTP->hasDefaultArgument()) 3221 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3222 TemplateArgs); 3223 3224 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 3225 TemplateLoc, 3226 RAngleLoc, 3227 NTTP, 3228 Converted); 3229 if (E.isInvalid()) 3230 return true; 3231 3232 Expr *Ex = E.takeAs<Expr>(); 3233 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 3234 } else { 3235 TemplateTemplateParmDecl *TempParm 3236 = cast<TemplateTemplateParmDecl>(*Param); 3237 3238 if (!TempParm->hasDefaultArgument()) 3239 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3240 TemplateArgs); 3241 3242 NestedNameSpecifierLoc QualifierLoc; 3243 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 3244 TemplateLoc, 3245 RAngleLoc, 3246 TempParm, 3247 Converted, 3248 QualifierLoc); 3249 if (Name.isNull()) 3250 return true; 3251 3252 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc, 3253 TempParm->getDefaultArgument().getTemplateNameLoc()); 3254 } 3255 3256 // Introduce an instantiation record that describes where we are using 3257 // the default template argument. 3258 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, 3259 *Param, Converted, 3260 SourceRange(TemplateLoc, RAngleLoc)); 3261 if (Instantiating) 3262 return true; 3263 3264 // Check the default template argument. 3265 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 3266 RAngleLoc, 0, Converted)) 3267 return true; 3268 3269 // Core issue 150 (assumed resolution): if this is a template template 3270 // parameter, keep track of the default template arguments from the 3271 // template definition. 3272 if (isTemplateTemplateParameter) 3273 TemplateArgs.addArgument(Arg); 3274 3275 // Move to the next template parameter and argument. 3276 ++Param; 3277 ++ArgIdx; 3278 } 3279 3280 // If we have any leftover arguments, then there were too many arguments. 3281 // Complain and fail. 3282 if (ArgIdx < NumArgs) 3283 return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs); 3284 3285 return false; 3286} 3287 3288namespace { 3289 class UnnamedLocalNoLinkageFinder 3290 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 3291 { 3292 Sema &S; 3293 SourceRange SR; 3294 3295 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 3296 3297 public: 3298 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 3299 3300 bool Visit(QualType T) { 3301 return inherited::Visit(T.getTypePtr()); 3302 } 3303 3304#define TYPE(Class, Parent) \ 3305 bool Visit##Class##Type(const Class##Type *); 3306#define ABSTRACT_TYPE(Class, Parent) \ 3307 bool Visit##Class##Type(const Class##Type *) { return false; } 3308#define NON_CANONICAL_TYPE(Class, Parent) \ 3309 bool Visit##Class##Type(const Class##Type *) { return false; } 3310#include "clang/AST/TypeNodes.def" 3311 3312 bool VisitTagDecl(const TagDecl *Tag); 3313 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 3314 }; 3315} 3316 3317bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 3318 return false; 3319} 3320 3321bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 3322 return Visit(T->getElementType()); 3323} 3324 3325bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 3326 return Visit(T->getPointeeType()); 3327} 3328 3329bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 3330 const BlockPointerType* T) { 3331 return Visit(T->getPointeeType()); 3332} 3333 3334bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 3335 const LValueReferenceType* T) { 3336 return Visit(T->getPointeeType()); 3337} 3338 3339bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 3340 const RValueReferenceType* T) { 3341 return Visit(T->getPointeeType()); 3342} 3343 3344bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 3345 const MemberPointerType* T) { 3346 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 3347} 3348 3349bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 3350 const ConstantArrayType* T) { 3351 return Visit(T->getElementType()); 3352} 3353 3354bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 3355 const IncompleteArrayType* T) { 3356 return Visit(T->getElementType()); 3357} 3358 3359bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 3360 const VariableArrayType* T) { 3361 return Visit(T->getElementType()); 3362} 3363 3364bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 3365 const DependentSizedArrayType* T) { 3366 return Visit(T->getElementType()); 3367} 3368 3369bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 3370 const DependentSizedExtVectorType* T) { 3371 return Visit(T->getElementType()); 3372} 3373 3374bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 3375 return Visit(T->getElementType()); 3376} 3377 3378bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 3379 return Visit(T->getElementType()); 3380} 3381 3382bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 3383 const FunctionProtoType* T) { 3384 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), 3385 AEnd = T->arg_type_end(); 3386 A != AEnd; ++A) { 3387 if (Visit(*A)) 3388 return true; 3389 } 3390 3391 return Visit(T->getResultType()); 3392} 3393 3394bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 3395 const FunctionNoProtoType* T) { 3396 return Visit(T->getResultType()); 3397} 3398 3399bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 3400 const UnresolvedUsingType*) { 3401 return false; 3402} 3403 3404bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 3405 return false; 3406} 3407 3408bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 3409 return Visit(T->getUnderlyingType()); 3410} 3411 3412bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 3413 return false; 3414} 3415 3416bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 3417 const UnaryTransformType*) { 3418 return false; 3419} 3420 3421bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 3422 return Visit(T->getDeducedType()); 3423} 3424 3425bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 3426 return VisitTagDecl(T->getDecl()); 3427} 3428 3429bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 3430 return VisitTagDecl(T->getDecl()); 3431} 3432 3433bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 3434 const TemplateTypeParmType*) { 3435 return false; 3436} 3437 3438bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 3439 const SubstTemplateTypeParmPackType *) { 3440 return false; 3441} 3442 3443bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 3444 const TemplateSpecializationType*) { 3445 return false; 3446} 3447 3448bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 3449 const InjectedClassNameType* T) { 3450 return VisitTagDecl(T->getDecl()); 3451} 3452 3453bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 3454 const DependentNameType* T) { 3455 return VisitNestedNameSpecifier(T->getQualifier()); 3456} 3457 3458bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 3459 const DependentTemplateSpecializationType* T) { 3460 return VisitNestedNameSpecifier(T->getQualifier()); 3461} 3462 3463bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 3464 const PackExpansionType* T) { 3465 return Visit(T->getPattern()); 3466} 3467 3468bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 3469 return false; 3470} 3471 3472bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 3473 const ObjCInterfaceType *) { 3474 return false; 3475} 3476 3477bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 3478 const ObjCObjectPointerType *) { 3479 return false; 3480} 3481 3482bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { 3483 return Visit(T->getValueType()); 3484} 3485 3486bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 3487 if (Tag->getDeclContext()->isFunctionOrMethod()) { 3488 S.Diag(SR.getBegin(), 3489 S.getLangOpts().CPlusPlus11 ? 3490 diag::warn_cxx98_compat_template_arg_local_type : 3491 diag::ext_template_arg_local_type) 3492 << S.Context.getTypeDeclType(Tag) << SR; 3493 return true; 3494 } 3495 3496 if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) { 3497 S.Diag(SR.getBegin(), 3498 S.getLangOpts().CPlusPlus11 ? 3499 diag::warn_cxx98_compat_template_arg_unnamed_type : 3500 diag::ext_template_arg_unnamed_type) << SR; 3501 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 3502 return true; 3503 } 3504 3505 return false; 3506} 3507 3508bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 3509 NestedNameSpecifier *NNS) { 3510 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 3511 return true; 3512 3513 switch (NNS->getKind()) { 3514 case NestedNameSpecifier::Identifier: 3515 case NestedNameSpecifier::Namespace: 3516 case NestedNameSpecifier::NamespaceAlias: 3517 case NestedNameSpecifier::Global: 3518 return false; 3519 3520 case NestedNameSpecifier::TypeSpec: 3521 case NestedNameSpecifier::TypeSpecWithTemplate: 3522 return Visit(QualType(NNS->getAsType(), 0)); 3523 } 3524 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 3525} 3526 3527 3528/// \brief Check a template argument against its corresponding 3529/// template type parameter. 3530/// 3531/// This routine implements the semantics of C++ [temp.arg.type]. It 3532/// returns true if an error occurred, and false otherwise. 3533bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 3534 TypeSourceInfo *ArgInfo) { 3535 assert(ArgInfo && "invalid TypeSourceInfo"); 3536 QualType Arg = ArgInfo->getType(); 3537 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 3538 3539 if (Arg->isVariablyModifiedType()) { 3540 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 3541 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 3542 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 3543 } 3544 3545 // C++03 [temp.arg.type]p2: 3546 // A local type, a type with no linkage, an unnamed type or a type 3547 // compounded from any of these types shall not be used as a 3548 // template-argument for a template type-parameter. 3549 // 3550 // C++11 allows these, and even in C++03 we allow them as an extension with 3551 // a warning. 3552 if (LangOpts.CPlusPlus11 ? 3553 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type, 3554 SR.getBegin()) != DiagnosticsEngine::Ignored || 3555 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type, 3556 SR.getBegin()) != DiagnosticsEngine::Ignored : 3557 Arg->hasUnnamedOrLocalType()) { 3558 UnnamedLocalNoLinkageFinder Finder(*this, SR); 3559 (void)Finder.Visit(Context.getCanonicalType(Arg)); 3560 } 3561 3562 return false; 3563} 3564 3565enum NullPointerValueKind { 3566 NPV_NotNullPointer, 3567 NPV_NullPointer, 3568 NPV_Error 3569}; 3570 3571/// \brief Determine whether the given template argument is a null pointer 3572/// value of the appropriate type. 3573static NullPointerValueKind 3574isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param, 3575 QualType ParamType, Expr *Arg) { 3576 if (Arg->isValueDependent() || Arg->isTypeDependent()) 3577 return NPV_NotNullPointer; 3578 3579 if (!S.getLangOpts().CPlusPlus11) 3580 return NPV_NotNullPointer; 3581 3582 // Determine whether we have a constant expression. 3583 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg); 3584 if (ArgRV.isInvalid()) 3585 return NPV_Error; 3586 Arg = ArgRV.take(); 3587 3588 Expr::EvalResult EvalResult; 3589 SmallVector<PartialDiagnosticAt, 8> Notes; 3590 EvalResult.Diag = &Notes; 3591 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) || 3592 EvalResult.HasSideEffects) { 3593 SourceLocation DiagLoc = Arg->getExprLoc(); 3594 3595 // If our only note is the usual "invalid subexpression" note, just point 3596 // the caret at its location rather than producing an essentially 3597 // redundant note. 3598 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 3599 diag::note_invalid_subexpr_in_const_expr) { 3600 DiagLoc = Notes[0].first; 3601 Notes.clear(); 3602 } 3603 3604 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant) 3605 << Arg->getType() << Arg->getSourceRange(); 3606 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 3607 S.Diag(Notes[I].first, Notes[I].second); 3608 3609 S.Diag(Param->getLocation(), diag::note_template_param_here); 3610 return NPV_Error; 3611 } 3612 3613 // C++11 [temp.arg.nontype]p1: 3614 // - an address constant expression of type std::nullptr_t 3615 if (Arg->getType()->isNullPtrType()) 3616 return NPV_NullPointer; 3617 3618 // - a constant expression that evaluates to a null pointer value (4.10); or 3619 // - a constant expression that evaluates to a null member pointer value 3620 // (4.11); or 3621 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) || 3622 (EvalResult.Val.isMemberPointer() && 3623 !EvalResult.Val.getMemberPointerDecl())) { 3624 // If our expression has an appropriate type, we've succeeded. 3625 bool ObjCLifetimeConversion; 3626 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) || 3627 S.IsQualificationConversion(Arg->getType(), ParamType, false, 3628 ObjCLifetimeConversion)) 3629 return NPV_NullPointer; 3630 3631 // The types didn't match, but we know we got a null pointer; complain, 3632 // then recover as if the types were correct. 3633 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant) 3634 << Arg->getType() << ParamType << Arg->getSourceRange(); 3635 S.Diag(Param->getLocation(), diag::note_template_param_here); 3636 return NPV_NullPointer; 3637 } 3638 3639 // If we don't have a null pointer value, but we do have a NULL pointer 3640 // constant, suggest a cast to the appropriate type. 3641 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) { 3642 std::string Code = "static_cast<" + ParamType.getAsString() + ">("; 3643 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant) 3644 << ParamType 3645 << FixItHint::CreateInsertion(Arg->getLocStart(), Code) 3646 << FixItHint::CreateInsertion(S.PP.getLocForEndOfToken(Arg->getLocEnd()), 3647 ")"); 3648 S.Diag(Param->getLocation(), diag::note_template_param_here); 3649 return NPV_NullPointer; 3650 } 3651 3652 // FIXME: If we ever want to support general, address-constant expressions 3653 // as non-type template arguments, we should return the ExprResult here to 3654 // be interpreted by the caller. 3655 return NPV_NotNullPointer; 3656} 3657 3658/// \brief Checks whether the given template argument is the address 3659/// of an object or function according to C++ [temp.arg.nontype]p1. 3660static bool 3661CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 3662 NonTypeTemplateParmDecl *Param, 3663 QualType ParamType, 3664 Expr *ArgIn, 3665 TemplateArgument &Converted) { 3666 bool Invalid = false; 3667 Expr *Arg = ArgIn; 3668 QualType ArgType = Arg->getType(); 3669 3670 // If our parameter has pointer type, check for a null template value. 3671 if (ParamType->isPointerType() || ParamType->isNullPtrType()) { 3672 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) { 3673 case NPV_NullPointer: 3674 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 3675 Converted = TemplateArgument(ParamType, /*isNullPtr*/true); 3676 return false; 3677 3678 case NPV_Error: 3679 return true; 3680 3681 case NPV_NotNullPointer: 3682 break; 3683 } 3684 } 3685 3686 // See through any implicit casts we added to fix the type. 3687 Arg = Arg->IgnoreImpCasts(); 3688 3689 // C++ [temp.arg.nontype]p1: 3690 // 3691 // A template-argument for a non-type, non-template 3692 // template-parameter shall be one of: [...] 3693 // 3694 // -- the address of an object or function with external 3695 // linkage, including function templates and function 3696 // template-ids but excluding non-static class members, 3697 // expressed as & id-expression where the & is optional if 3698 // the name refers to a function or array, or if the 3699 // corresponding template-parameter is a reference; or 3700 3701 // In C++98/03 mode, give an extension warning on any extra parentheses. 3702 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3703 bool ExtraParens = false; 3704 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3705 if (!Invalid && !ExtraParens) { 3706 S.Diag(Arg->getLocStart(), 3707 S.getLangOpts().CPlusPlus11 ? 3708 diag::warn_cxx98_compat_template_arg_extra_parens : 3709 diag::ext_template_arg_extra_parens) 3710 << Arg->getSourceRange(); 3711 ExtraParens = true; 3712 } 3713 3714 Arg = Parens->getSubExpr(); 3715 } 3716 3717 while (SubstNonTypeTemplateParmExpr *subst = 3718 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3719 Arg = subst->getReplacement()->IgnoreImpCasts(); 3720 3721 bool AddressTaken = false; 3722 SourceLocation AddrOpLoc; 3723 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3724 if (UnOp->getOpcode() == UO_AddrOf) { 3725 Arg = UnOp->getSubExpr(); 3726 AddressTaken = true; 3727 AddrOpLoc = UnOp->getOperatorLoc(); 3728 } 3729 } 3730 3731 if (S.getLangOpts().MicrosoftExt && isa<CXXUuidofExpr>(Arg)) { 3732 Converted = TemplateArgument(ArgIn); 3733 return false; 3734 } 3735 3736 while (SubstNonTypeTemplateParmExpr *subst = 3737 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3738 Arg = subst->getReplacement()->IgnoreImpCasts(); 3739 3740 // Stop checking the precise nature of the argument if it is value dependent, 3741 // it should be checked when instantiated. 3742 if (Arg->isValueDependent()) { 3743 Converted = TemplateArgument(ArgIn); 3744 return false; 3745 } 3746 3747 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg); 3748 if (!DRE) { 3749 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 3750 << Arg->getSourceRange(); 3751 S.Diag(Param->getLocation(), diag::note_template_param_here); 3752 return true; 3753 } 3754 3755 if (!isa<ValueDecl>(DRE->getDecl())) { 3756 S.Diag(Arg->getLocStart(), 3757 diag::err_template_arg_not_object_or_func_form) 3758 << Arg->getSourceRange(); 3759 S.Diag(Param->getLocation(), diag::note_template_param_here); 3760 return true; 3761 } 3762 3763 ValueDecl *Entity = DRE->getDecl(); 3764 3765 // Cannot refer to non-static data members 3766 if (FieldDecl *Field = dyn_cast<FieldDecl>(Entity)) { 3767 S.Diag(Arg->getLocStart(), diag::err_template_arg_field) 3768 << Field << Arg->getSourceRange(); 3769 S.Diag(Param->getLocation(), diag::note_template_param_here); 3770 return true; 3771 } 3772 3773 // Cannot refer to non-static member functions 3774 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) { 3775 if (!Method->isStatic()) { 3776 S.Diag(Arg->getLocStart(), diag::err_template_arg_method) 3777 << Method << Arg->getSourceRange(); 3778 S.Diag(Param->getLocation(), diag::note_template_param_here); 3779 return true; 3780 } 3781 } 3782 3783 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity); 3784 VarDecl *Var = dyn_cast<VarDecl>(Entity); 3785 3786 // A non-type template argument must refer to an object or function. 3787 if (!Func && !Var) { 3788 // We found something, but we don't know specifically what it is. 3789 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func) 3790 << Arg->getSourceRange(); 3791 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 3792 return true; 3793 } 3794 3795 // Address / reference template args must have external linkage in C++98. 3796 if (Entity->getLinkage() == InternalLinkage) { 3797 S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ? 3798 diag::warn_cxx98_compat_template_arg_object_internal : 3799 diag::ext_template_arg_object_internal) 3800 << !Func << Entity << Arg->getSourceRange(); 3801 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 3802 << !Func; 3803 } else if (Entity->getLinkage() == NoLinkage) { 3804 S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage) 3805 << !Func << Entity << Arg->getSourceRange(); 3806 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 3807 << !Func; 3808 return true; 3809 } 3810 3811 if (Func) { 3812 // If the template parameter has pointer type, the function decays. 3813 if (ParamType->isPointerType() && !AddressTaken) 3814 ArgType = S.Context.getPointerType(Func->getType()); 3815 else if (AddressTaken && ParamType->isReferenceType()) { 3816 // If we originally had an address-of operator, but the 3817 // parameter has reference type, complain and (if things look 3818 // like they will work) drop the address-of operator. 3819 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 3820 ParamType.getNonReferenceType())) { 3821 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3822 << ParamType; 3823 S.Diag(Param->getLocation(), diag::note_template_param_here); 3824 return true; 3825 } 3826 3827 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3828 << ParamType 3829 << FixItHint::CreateRemoval(AddrOpLoc); 3830 S.Diag(Param->getLocation(), diag::note_template_param_here); 3831 3832 ArgType = Func->getType(); 3833 } 3834 } else { 3835 // A value of reference type is not an object. 3836 if (Var->getType()->isReferenceType()) { 3837 S.Diag(Arg->getLocStart(), 3838 diag::err_template_arg_reference_var) 3839 << Var->getType() << Arg->getSourceRange(); 3840 S.Diag(Param->getLocation(), diag::note_template_param_here); 3841 return true; 3842 } 3843 3844 // A template argument must have static storage duration. 3845 // FIXME: Ensure this works for thread_local as well as __thread. 3846 if (Var->isThreadSpecified()) { 3847 S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local) 3848 << Arg->getSourceRange(); 3849 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here); 3850 return true; 3851 } 3852 3853 // If the template parameter has pointer type, we must have taken 3854 // the address of this object. 3855 if (ParamType->isReferenceType()) { 3856 if (AddressTaken) { 3857 // If we originally had an address-of operator, but the 3858 // parameter has reference type, complain and (if things look 3859 // like they will work) drop the address-of operator. 3860 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 3861 ParamType.getNonReferenceType())) { 3862 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3863 << ParamType; 3864 S.Diag(Param->getLocation(), diag::note_template_param_here); 3865 return true; 3866 } 3867 3868 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3869 << ParamType 3870 << FixItHint::CreateRemoval(AddrOpLoc); 3871 S.Diag(Param->getLocation(), diag::note_template_param_here); 3872 3873 ArgType = Var->getType(); 3874 } 3875 } else if (!AddressTaken && ParamType->isPointerType()) { 3876 if (Var->getType()->isArrayType()) { 3877 // Array-to-pointer decay. 3878 ArgType = S.Context.getArrayDecayedType(Var->getType()); 3879 } else { 3880 // If the template parameter has pointer type but the address of 3881 // this object was not taken, complain and (possibly) recover by 3882 // taking the address of the entity. 3883 ArgType = S.Context.getPointerType(Var->getType()); 3884 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 3885 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3886 << ParamType; 3887 S.Diag(Param->getLocation(), diag::note_template_param_here); 3888 return true; 3889 } 3890 3891 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3892 << ParamType 3893 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 3894 3895 S.Diag(Param->getLocation(), diag::note_template_param_here); 3896 } 3897 } 3898 } 3899 3900 bool ObjCLifetimeConversion; 3901 if (ParamType->isPointerType() && 3902 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 3903 S.IsQualificationConversion(ArgType, ParamType, false, 3904 ObjCLifetimeConversion)) { 3905 // For pointer-to-object types, qualification conversions are 3906 // permitted. 3907 } else { 3908 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 3909 if (!ParamRef->getPointeeType()->isFunctionType()) { 3910 // C++ [temp.arg.nontype]p5b3: 3911 // For a non-type template-parameter of type reference to 3912 // object, no conversions apply. The type referred to by the 3913 // reference may be more cv-qualified than the (otherwise 3914 // identical) type of the template- argument. The 3915 // template-parameter is bound directly to the 3916 // template-argument, which shall be an lvalue. 3917 3918 // FIXME: Other qualifiers? 3919 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 3920 unsigned ArgQuals = ArgType.getCVRQualifiers(); 3921 3922 if ((ParamQuals | ArgQuals) != ParamQuals) { 3923 S.Diag(Arg->getLocStart(), 3924 diag::err_template_arg_ref_bind_ignores_quals) 3925 << ParamType << Arg->getType() 3926 << Arg->getSourceRange(); 3927 S.Diag(Param->getLocation(), diag::note_template_param_here); 3928 return true; 3929 } 3930 } 3931 } 3932 3933 // At this point, the template argument refers to an object or 3934 // function with external linkage. We now need to check whether the 3935 // argument and parameter types are compatible. 3936 if (!S.Context.hasSameUnqualifiedType(ArgType, 3937 ParamType.getNonReferenceType())) { 3938 // We can't perform this conversion or binding. 3939 if (ParamType->isReferenceType()) 3940 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 3941 << ParamType << ArgIn->getType() << Arg->getSourceRange(); 3942 else 3943 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3944 << ArgIn->getType() << ParamType << Arg->getSourceRange(); 3945 S.Diag(Param->getLocation(), diag::note_template_param_here); 3946 return true; 3947 } 3948 } 3949 3950 // Create the template argument. 3951 Converted = TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), 3952 ParamType->isReferenceType()); 3953 S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false); 3954 return false; 3955} 3956 3957/// \brief Checks whether the given template argument is a pointer to 3958/// member constant according to C++ [temp.arg.nontype]p1. 3959static bool CheckTemplateArgumentPointerToMember(Sema &S, 3960 NonTypeTemplateParmDecl *Param, 3961 QualType ParamType, 3962 Expr *&ResultArg, 3963 TemplateArgument &Converted) { 3964 bool Invalid = false; 3965 3966 // Check for a null pointer value. 3967 Expr *Arg = ResultArg; 3968 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) { 3969 case NPV_Error: 3970 return true; 3971 case NPV_NullPointer: 3972 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 3973 Converted = TemplateArgument(ParamType, /*isNullPtr*/true); 3974 return false; 3975 case NPV_NotNullPointer: 3976 break; 3977 } 3978 3979 bool ObjCLifetimeConversion; 3980 if (S.IsQualificationConversion(Arg->getType(), 3981 ParamType.getNonReferenceType(), 3982 false, ObjCLifetimeConversion)) { 3983 Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp, 3984 Arg->getValueKind()).take(); 3985 ResultArg = Arg; 3986 } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(), 3987 ParamType.getNonReferenceType())) { 3988 // We can't perform this conversion. 3989 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3990 << Arg->getType() << ParamType << Arg->getSourceRange(); 3991 S.Diag(Param->getLocation(), diag::note_template_param_here); 3992 return true; 3993 } 3994 3995 // See through any implicit casts we added to fix the type. 3996 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 3997 Arg = Cast->getSubExpr(); 3998 3999 // C++ [temp.arg.nontype]p1: 4000 // 4001 // A template-argument for a non-type, non-template 4002 // template-parameter shall be one of: [...] 4003 // 4004 // -- a pointer to member expressed as described in 5.3.1. 4005 DeclRefExpr *DRE = 0; 4006 4007 // In C++98/03 mode, give an extension warning on any extra parentheses. 4008 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 4009 bool ExtraParens = false; 4010 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 4011 if (!Invalid && !ExtraParens) { 4012 S.Diag(Arg->getLocStart(), 4013 S.getLangOpts().CPlusPlus11 ? 4014 diag::warn_cxx98_compat_template_arg_extra_parens : 4015 diag::ext_template_arg_extra_parens) 4016 << Arg->getSourceRange(); 4017 ExtraParens = true; 4018 } 4019 4020 Arg = Parens->getSubExpr(); 4021 } 4022 4023 while (SubstNonTypeTemplateParmExpr *subst = 4024 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 4025 Arg = subst->getReplacement()->IgnoreImpCasts(); 4026 4027 // A pointer-to-member constant written &Class::member. 4028 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 4029 if (UnOp->getOpcode() == UO_AddrOf) { 4030 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 4031 if (DRE && !DRE->getQualifier()) 4032 DRE = 0; 4033 } 4034 } 4035 // A constant of pointer-to-member type. 4036 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 4037 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 4038 if (VD->getType()->isMemberPointerType()) { 4039 if (isa<NonTypeTemplateParmDecl>(VD) || 4040 (isa<VarDecl>(VD) && 4041 S.Context.getCanonicalType(VD->getType()).isConstQualified())) { 4042 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 4043 Converted = TemplateArgument(Arg); 4044 } else { 4045 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 4046 Converted = TemplateArgument(VD, /*isReferenceParam*/false); 4047 } 4048 return Invalid; 4049 } 4050 } 4051 } 4052 4053 DRE = 0; 4054 } 4055 4056 if (!DRE) 4057 return S.Diag(Arg->getLocStart(), 4058 diag::err_template_arg_not_pointer_to_member_form) 4059 << Arg->getSourceRange(); 4060 4061 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 4062 assert((isa<FieldDecl>(DRE->getDecl()) || 4063 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 4064 "Only non-static member pointers can make it here"); 4065 4066 // Okay: this is the address of a non-static member, and therefore 4067 // a member pointer constant. 4068 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 4069 Converted = TemplateArgument(Arg); 4070 } else { 4071 ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); 4072 Converted = TemplateArgument(D, /*isReferenceParam*/false); 4073 } 4074 return Invalid; 4075 } 4076 4077 // We found something else, but we don't know specifically what it is. 4078 S.Diag(Arg->getLocStart(), 4079 diag::err_template_arg_not_pointer_to_member_form) 4080 << Arg->getSourceRange(); 4081 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 4082 return true; 4083} 4084 4085/// \brief Check a template argument against its corresponding 4086/// non-type template parameter. 4087/// 4088/// This routine implements the semantics of C++ [temp.arg.nontype]. 4089/// If an error occurred, it returns ExprError(); otherwise, it 4090/// returns the converted template argument. \p 4091/// InstantiatedParamType is the type of the non-type template 4092/// parameter after it has been instantiated. 4093ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 4094 QualType InstantiatedParamType, Expr *Arg, 4095 TemplateArgument &Converted, 4096 CheckTemplateArgumentKind CTAK) { 4097 SourceLocation StartLoc = Arg->getLocStart(); 4098 4099 // If either the parameter has a dependent type or the argument is 4100 // type-dependent, there's nothing we can check now. 4101 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 4102 // FIXME: Produce a cloned, canonical expression? 4103 Converted = TemplateArgument(Arg); 4104 return Owned(Arg); 4105 } 4106 4107 // C++ [temp.arg.nontype]p5: 4108 // The following conversions are performed on each expression used 4109 // as a non-type template-argument. If a non-type 4110 // template-argument cannot be converted to the type of the 4111 // corresponding template-parameter then the program is 4112 // ill-formed. 4113 QualType ParamType = InstantiatedParamType; 4114 if (ParamType->isIntegralOrEnumerationType()) { 4115 // C++11: 4116 // -- for a non-type template-parameter of integral or 4117 // enumeration type, conversions permitted in a converted 4118 // constant expression are applied. 4119 // 4120 // C++98: 4121 // -- for a non-type template-parameter of integral or 4122 // enumeration type, integral promotions (4.5) and integral 4123 // conversions (4.7) are applied. 4124 4125 if (CTAK == CTAK_Deduced && 4126 !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) { 4127 // C++ [temp.deduct.type]p17: 4128 // If, in the declaration of a function template with a non-type 4129 // template-parameter, the non-type template-parameter is used 4130 // in an expression in the function parameter-list and, if the 4131 // corresponding template-argument is deduced, the 4132 // template-argument type shall match the type of the 4133 // template-parameter exactly, except that a template-argument 4134 // deduced from an array bound may be of any integral type. 4135 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 4136 << Arg->getType().getUnqualifiedType() 4137 << ParamType.getUnqualifiedType(); 4138 Diag(Param->getLocation(), diag::note_template_param_here); 4139 return ExprError(); 4140 } 4141 4142 if (getLangOpts().CPlusPlus11) { 4143 // We can't check arbitrary value-dependent arguments. 4144 // FIXME: If there's no viable conversion to the template parameter type, 4145 // we should be able to diagnose that prior to instantiation. 4146 if (Arg->isValueDependent()) { 4147 Converted = TemplateArgument(Arg); 4148 return Owned(Arg); 4149 } 4150 4151 // C++ [temp.arg.nontype]p1: 4152 // A template-argument for a non-type, non-template template-parameter 4153 // shall be one of: 4154 // 4155 // -- for a non-type template-parameter of integral or enumeration 4156 // type, a converted constant expression of the type of the 4157 // template-parameter; or 4158 llvm::APSInt Value; 4159 ExprResult ArgResult = 4160 CheckConvertedConstantExpression(Arg, ParamType, Value, 4161 CCEK_TemplateArg); 4162 if (ArgResult.isInvalid()) 4163 return ExprError(); 4164 4165 // Widen the argument value to sizeof(parameter type). This is almost 4166 // always a no-op, except when the parameter type is bool. In 4167 // that case, this may extend the argument from 1 bit to 8 bits. 4168 QualType IntegerType = ParamType; 4169 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 4170 IntegerType = Enum->getDecl()->getIntegerType(); 4171 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType)); 4172 4173 Converted = TemplateArgument(Context, Value, 4174 Context.getCanonicalType(ParamType)); 4175 return ArgResult; 4176 } 4177 4178 ExprResult ArgResult = DefaultLvalueConversion(Arg); 4179 if (ArgResult.isInvalid()) 4180 return ExprError(); 4181 Arg = ArgResult.take(); 4182 4183 QualType ArgType = Arg->getType(); 4184 4185 // C++ [temp.arg.nontype]p1: 4186 // A template-argument for a non-type, non-template 4187 // template-parameter shall be one of: 4188 // 4189 // -- an integral constant-expression of integral or enumeration 4190 // type; or 4191 // -- the name of a non-type template-parameter; or 4192 SourceLocation NonConstantLoc; 4193 llvm::APSInt Value; 4194 if (!ArgType->isIntegralOrEnumerationType()) { 4195 Diag(Arg->getLocStart(), 4196 diag::err_template_arg_not_integral_or_enumeral) 4197 << ArgType << Arg->getSourceRange(); 4198 Diag(Param->getLocation(), diag::note_template_param_here); 4199 return ExprError(); 4200 } else if (!Arg->isValueDependent()) { 4201 class TmplArgICEDiagnoser : public VerifyICEDiagnoser { 4202 QualType T; 4203 4204 public: 4205 TmplArgICEDiagnoser(QualType T) : T(T) { } 4206 4207 virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, 4208 SourceRange SR) { 4209 S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR; 4210 } 4211 } Diagnoser(ArgType); 4212 4213 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser, 4214 false).take(); 4215 if (!Arg) 4216 return ExprError(); 4217 } 4218 4219 // From here on out, all we care about are the unqualified forms 4220 // of the parameter and argument types. 4221 ParamType = ParamType.getUnqualifiedType(); 4222 ArgType = ArgType.getUnqualifiedType(); 4223 4224 // Try to convert the argument to the parameter's type. 4225 if (Context.hasSameType(ParamType, ArgType)) { 4226 // Okay: no conversion necessary 4227 } else if (ParamType->isBooleanType()) { 4228 // This is an integral-to-boolean conversion. 4229 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take(); 4230 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 4231 !ParamType->isEnumeralType()) { 4232 // This is an integral promotion or conversion. 4233 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take(); 4234 } else { 4235 // We can't perform this conversion. 4236 Diag(Arg->getLocStart(), 4237 diag::err_template_arg_not_convertible) 4238 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 4239 Diag(Param->getLocation(), diag::note_template_param_here); 4240 return ExprError(); 4241 } 4242 4243 // Add the value of this argument to the list of converted 4244 // arguments. We use the bitwidth and signedness of the template 4245 // parameter. 4246 if (Arg->isValueDependent()) { 4247 // The argument is value-dependent. Create a new 4248 // TemplateArgument with the converted expression. 4249 Converted = TemplateArgument(Arg); 4250 return Owned(Arg); 4251 } 4252 4253 QualType IntegerType = Context.getCanonicalType(ParamType); 4254 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 4255 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 4256 4257 if (ParamType->isBooleanType()) { 4258 // Value must be zero or one. 4259 Value = Value != 0; 4260 unsigned AllowedBits = Context.getTypeSize(IntegerType); 4261 if (Value.getBitWidth() != AllowedBits) 4262 Value = Value.extOrTrunc(AllowedBits); 4263 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 4264 } else { 4265 llvm::APSInt OldValue = Value; 4266 4267 // Coerce the template argument's value to the value it will have 4268 // based on the template parameter's type. 4269 unsigned AllowedBits = Context.getTypeSize(IntegerType); 4270 if (Value.getBitWidth() != AllowedBits) 4271 Value = Value.extOrTrunc(AllowedBits); 4272 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 4273 4274 // Complain if an unsigned parameter received a negative value. 4275 if (IntegerType->isUnsignedIntegerOrEnumerationType() 4276 && (OldValue.isSigned() && OldValue.isNegative())) { 4277 Diag(Arg->getLocStart(), diag::warn_template_arg_negative) 4278 << OldValue.toString(10) << Value.toString(10) << Param->getType() 4279 << Arg->getSourceRange(); 4280 Diag(Param->getLocation(), diag::note_template_param_here); 4281 } 4282 4283 // Complain if we overflowed the template parameter's type. 4284 unsigned RequiredBits; 4285 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 4286 RequiredBits = OldValue.getActiveBits(); 4287 else if (OldValue.isUnsigned()) 4288 RequiredBits = OldValue.getActiveBits() + 1; 4289 else 4290 RequiredBits = OldValue.getMinSignedBits(); 4291 if (RequiredBits > AllowedBits) { 4292 Diag(Arg->getLocStart(), 4293 diag::warn_template_arg_too_large) 4294 << OldValue.toString(10) << Value.toString(10) << Param->getType() 4295 << Arg->getSourceRange(); 4296 Diag(Param->getLocation(), diag::note_template_param_here); 4297 } 4298 } 4299 4300 Converted = TemplateArgument(Context, Value, 4301 ParamType->isEnumeralType() 4302 ? Context.getCanonicalType(ParamType) 4303 : IntegerType); 4304 return Owned(Arg); 4305 } 4306 4307 QualType ArgType = Arg->getType(); 4308 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 4309 4310 // Handle pointer-to-function, reference-to-function, and 4311 // pointer-to-member-function all in (roughly) the same way. 4312 if (// -- For a non-type template-parameter of type pointer to 4313 // function, only the function-to-pointer conversion (4.3) is 4314 // applied. If the template-argument represents a set of 4315 // overloaded functions (or a pointer to such), the matching 4316 // function is selected from the set (13.4). 4317 (ParamType->isPointerType() && 4318 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 4319 // -- For a non-type template-parameter of type reference to 4320 // function, no conversions apply. If the template-argument 4321 // represents a set of overloaded functions, the matching 4322 // function is selected from the set (13.4). 4323 (ParamType->isReferenceType() && 4324 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 4325 // -- For a non-type template-parameter of type pointer to 4326 // member function, no conversions apply. If the 4327 // template-argument represents a set of overloaded member 4328 // functions, the matching member function is selected from 4329 // the set (13.4). 4330 (ParamType->isMemberPointerType() && 4331 ParamType->getAs<MemberPointerType>()->getPointeeType() 4332 ->isFunctionType())) { 4333 4334 if (Arg->getType() == Context.OverloadTy) { 4335 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 4336 true, 4337 FoundResult)) { 4338 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart())) 4339 return ExprError(); 4340 4341 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 4342 ArgType = Arg->getType(); 4343 } else 4344 return ExprError(); 4345 } 4346 4347 if (!ParamType->isMemberPointerType()) { 4348 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4349 ParamType, 4350 Arg, Converted)) 4351 return ExprError(); 4352 return Owned(Arg); 4353 } 4354 4355 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 4356 Converted)) 4357 return ExprError(); 4358 return Owned(Arg); 4359 } 4360 4361 if (ParamType->isPointerType()) { 4362 // -- for a non-type template-parameter of type pointer to 4363 // object, qualification conversions (4.4) and the 4364 // array-to-pointer conversion (4.2) are applied. 4365 // C++0x also allows a value of std::nullptr_t. 4366 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 4367 "Only object pointers allowed here"); 4368 4369 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4370 ParamType, 4371 Arg, Converted)) 4372 return ExprError(); 4373 return Owned(Arg); 4374 } 4375 4376 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 4377 // -- For a non-type template-parameter of type reference to 4378 // object, no conversions apply. The type referred to by the 4379 // reference may be more cv-qualified than the (otherwise 4380 // identical) type of the template-argument. The 4381 // template-parameter is bound directly to the 4382 // template-argument, which must be an lvalue. 4383 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 4384 "Only object references allowed here"); 4385 4386 if (Arg->getType() == Context.OverloadTy) { 4387 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 4388 ParamRefType->getPointeeType(), 4389 true, 4390 FoundResult)) { 4391 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart())) 4392 return ExprError(); 4393 4394 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 4395 ArgType = Arg->getType(); 4396 } else 4397 return ExprError(); 4398 } 4399 4400 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4401 ParamType, 4402 Arg, Converted)) 4403 return ExprError(); 4404 return Owned(Arg); 4405 } 4406 4407 // Deal with parameters of type std::nullptr_t. 4408 if (ParamType->isNullPtrType()) { 4409 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 4410 Converted = TemplateArgument(Arg); 4411 return Owned(Arg); 4412 } 4413 4414 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) { 4415 case NPV_NotNullPointer: 4416 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible) 4417 << Arg->getType() << ParamType; 4418 Diag(Param->getLocation(), diag::note_template_param_here); 4419 return ExprError(); 4420 4421 case NPV_Error: 4422 return ExprError(); 4423 4424 case NPV_NullPointer: 4425 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 4426 Converted = TemplateArgument(ParamType, /*isNullPtr*/true); 4427 return Owned(Arg); 4428 } 4429 } 4430 4431 // -- For a non-type template-parameter of type pointer to data 4432 // member, qualification conversions (4.4) are applied. 4433 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 4434 4435 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 4436 Converted)) 4437 return ExprError(); 4438 return Owned(Arg); 4439} 4440 4441/// \brief Check a template argument against its corresponding 4442/// template template parameter. 4443/// 4444/// This routine implements the semantics of C++ [temp.arg.template]. 4445/// It returns true if an error occurred, and false otherwise. 4446bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 4447 const TemplateArgumentLoc &Arg, 4448 unsigned ArgumentPackIndex) { 4449 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern(); 4450 TemplateDecl *Template = Name.getAsTemplateDecl(); 4451 if (!Template) { 4452 // Any dependent template name is fine. 4453 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 4454 return false; 4455 } 4456 4457 // C++0x [temp.arg.template]p1: 4458 // A template-argument for a template template-parameter shall be 4459 // the name of a class template or an alias template, expressed as an 4460 // id-expression. When the template-argument names a class template, only 4461 // primary class templates are considered when matching the 4462 // template template argument with the corresponding parameter; 4463 // partial specializations are not considered even if their 4464 // parameter lists match that of the template template parameter. 4465 // 4466 // Note that we also allow template template parameters here, which 4467 // will happen when we are dealing with, e.g., class template 4468 // partial specializations. 4469 if (!isa<ClassTemplateDecl>(Template) && 4470 !isa<TemplateTemplateParmDecl>(Template) && 4471 !isa<TypeAliasTemplateDecl>(Template)) { 4472 assert(isa<FunctionTemplateDecl>(Template) && 4473 "Only function templates are possible here"); 4474 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 4475 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 4476 << Template; 4477 } 4478 4479 TemplateParameterList *Params = Param->getTemplateParameters(); 4480 if (Param->isExpandedParameterPack()) 4481 Params = Param->getExpansionTemplateParameters(ArgumentPackIndex); 4482 4483 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 4484 Params, 4485 true, 4486 TPL_TemplateTemplateArgumentMatch, 4487 Arg.getLocation()); 4488} 4489 4490/// \brief Given a non-type template argument that refers to a 4491/// declaration and the type of its corresponding non-type template 4492/// parameter, produce an expression that properly refers to that 4493/// declaration. 4494ExprResult 4495Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 4496 QualType ParamType, 4497 SourceLocation Loc) { 4498 // For a NULL non-type template argument, return nullptr casted to the 4499 // parameter's type. 4500 if (Arg.getKind() == TemplateArgument::NullPtr) { 4501 return ImpCastExprToType( 4502 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc), 4503 ParamType, 4504 ParamType->getAs<MemberPointerType>() 4505 ? CK_NullToMemberPointer 4506 : CK_NullToPointer); 4507 } 4508 assert(Arg.getKind() == TemplateArgument::Declaration && 4509 "Only declaration template arguments permitted here"); 4510 4511 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 4512 4513 if (VD->getDeclContext()->isRecord() && 4514 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 4515 // If the value is a class member, we might have a pointer-to-member. 4516 // Determine whether the non-type template template parameter is of 4517 // pointer-to-member type. If so, we need to build an appropriate 4518 // expression for a pointer-to-member, since a "normal" DeclRefExpr 4519 // would refer to the member itself. 4520 if (ParamType->isMemberPointerType()) { 4521 QualType ClassType 4522 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 4523 NestedNameSpecifier *Qualifier 4524 = NestedNameSpecifier::Create(Context, 0, false, 4525 ClassType.getTypePtr()); 4526 CXXScopeSpec SS; 4527 SS.MakeTrivial(Context, Qualifier, Loc); 4528 4529 // The actual value-ness of this is unimportant, but for 4530 // internal consistency's sake, references to instance methods 4531 // are r-values. 4532 ExprValueKind VK = VK_LValue; 4533 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 4534 VK = VK_RValue; 4535 4536 ExprResult RefExpr = BuildDeclRefExpr(VD, 4537 VD->getType().getNonReferenceType(), 4538 VK, 4539 Loc, 4540 &SS); 4541 if (RefExpr.isInvalid()) 4542 return ExprError(); 4543 4544 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4545 4546 // We might need to perform a trailing qualification conversion, since 4547 // the element type on the parameter could be more qualified than the 4548 // element type in the expression we constructed. 4549 bool ObjCLifetimeConversion; 4550 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 4551 ParamType.getUnqualifiedType(), false, 4552 ObjCLifetimeConversion)) 4553 RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp); 4554 4555 assert(!RefExpr.isInvalid() && 4556 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 4557 ParamType.getUnqualifiedType())); 4558 return RefExpr; 4559 } 4560 } 4561 4562 QualType T = VD->getType().getNonReferenceType(); 4563 // C++ [temp.param]p8: 4564 // 4565 // A non-type template-parameter of type "array of T" or 4566 // "function returning T" is adjusted to be of type "pointer to 4567 // T" or "pointer to function returning T", respectively. 4568 if (ParamType->isArrayType()) 4569 ParamType = Context.getArrayDecayedType(ParamType); 4570 else if (ParamType->isFunctionType()) 4571 ParamType = Context.getPointerType(ParamType); 4572 4573 if (ParamType->isPointerType()) { 4574 // When the non-type template parameter is a pointer, take the 4575 // address of the declaration. 4576 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 4577 if (RefExpr.isInvalid()) 4578 return ExprError(); 4579 4580 if (T->isFunctionType() || T->isArrayType()) { 4581 // Decay functions and arrays. 4582 RefExpr = DefaultFunctionArrayConversion(RefExpr.take()); 4583 if (RefExpr.isInvalid()) 4584 return ExprError(); 4585 4586 return RefExpr; 4587 } 4588 4589 // Take the address of everything else 4590 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4591 } 4592 4593 ExprValueKind VK = VK_RValue; 4594 4595 // If the non-type template parameter has reference type, qualify the 4596 // resulting declaration reference with the extra qualifiers on the 4597 // type that the reference refers to. 4598 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 4599 VK = VK_LValue; 4600 T = Context.getQualifiedType(T, 4601 TargetRef->getPointeeType().getQualifiers()); 4602 } else if (isa<FunctionDecl>(VD)) { 4603 // References to functions are always lvalues. 4604 VK = VK_LValue; 4605 } 4606 4607 return BuildDeclRefExpr(VD, T, VK, Loc); 4608} 4609 4610/// \brief Construct a new expression that refers to the given 4611/// integral template argument with the given source-location 4612/// information. 4613/// 4614/// This routine takes care of the mapping from an integral template 4615/// argument (which may have any integral type) to the appropriate 4616/// literal value. 4617ExprResult 4618Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 4619 SourceLocation Loc) { 4620 assert(Arg.getKind() == TemplateArgument::Integral && 4621 "Operation is only valid for integral template arguments"); 4622 QualType OrigT = Arg.getIntegralType(); 4623 4624 // If this is an enum type that we're instantiating, we need to use an integer 4625 // type the same size as the enumerator. We don't want to build an 4626 // IntegerLiteral with enum type. The integer type of an enum type can be of 4627 // any integral type with C++11 enum classes, make sure we create the right 4628 // type of literal for it. 4629 QualType T = OrigT; 4630 if (const EnumType *ET = OrigT->getAs<EnumType>()) 4631 T = ET->getDecl()->getIntegerType(); 4632 4633 Expr *E; 4634 if (T->isAnyCharacterType()) { 4635 CharacterLiteral::CharacterKind Kind; 4636 if (T->isWideCharType()) 4637 Kind = CharacterLiteral::Wide; 4638 else if (T->isChar16Type()) 4639 Kind = CharacterLiteral::UTF16; 4640 else if (T->isChar32Type()) 4641 Kind = CharacterLiteral::UTF32; 4642 else 4643 Kind = CharacterLiteral::Ascii; 4644 4645 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(), 4646 Kind, T, Loc); 4647 } else if (T->isBooleanType()) { 4648 E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(), 4649 T, Loc); 4650 } else if (T->isNullPtrType()) { 4651 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 4652 } else { 4653 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc); 4654 } 4655 4656 if (OrigT->isEnumeralType()) { 4657 // FIXME: This is a hack. We need a better way to handle substituted 4658 // non-type template parameters. 4659 E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E, 0, 4660 Context.getTrivialTypeSourceInfo(OrigT, Loc), 4661 Loc, Loc); 4662 } 4663 4664 return Owned(E); 4665} 4666 4667/// \brief Match two template parameters within template parameter lists. 4668static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 4669 bool Complain, 4670 Sema::TemplateParameterListEqualKind Kind, 4671 SourceLocation TemplateArgLoc) { 4672 // Check the actual kind (type, non-type, template). 4673 if (Old->getKind() != New->getKind()) { 4674 if (Complain) { 4675 unsigned NextDiag = diag::err_template_param_different_kind; 4676 if (TemplateArgLoc.isValid()) { 4677 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4678 NextDiag = diag::note_template_param_different_kind; 4679 } 4680 S.Diag(New->getLocation(), NextDiag) 4681 << (Kind != Sema::TPL_TemplateMatch); 4682 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 4683 << (Kind != Sema::TPL_TemplateMatch); 4684 } 4685 4686 return false; 4687 } 4688 4689 // Check that both are parameter packs are neither are parameter packs. 4690 // However, if we are matching a template template argument to a 4691 // template template parameter, the template template parameter can have 4692 // a parameter pack where the template template argument does not. 4693 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 4694 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4695 Old->isTemplateParameterPack())) { 4696 if (Complain) { 4697 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 4698 if (TemplateArgLoc.isValid()) { 4699 S.Diag(TemplateArgLoc, 4700 diag::err_template_arg_template_params_mismatch); 4701 NextDiag = diag::note_template_parameter_pack_non_pack; 4702 } 4703 4704 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 4705 : isa<NonTypeTemplateParmDecl>(New)? 1 4706 : 2; 4707 S.Diag(New->getLocation(), NextDiag) 4708 << ParamKind << New->isParameterPack(); 4709 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 4710 << ParamKind << Old->isParameterPack(); 4711 } 4712 4713 return false; 4714 } 4715 4716 // For non-type template parameters, check the type of the parameter. 4717 if (NonTypeTemplateParmDecl *OldNTTP 4718 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 4719 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 4720 4721 // If we are matching a template template argument to a template 4722 // template parameter and one of the non-type template parameter types 4723 // is dependent, then we must wait until template instantiation time 4724 // to actually compare the arguments. 4725 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4726 (OldNTTP->getType()->isDependentType() || 4727 NewNTTP->getType()->isDependentType())) 4728 return true; 4729 4730 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 4731 if (Complain) { 4732 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 4733 if (TemplateArgLoc.isValid()) { 4734 S.Diag(TemplateArgLoc, 4735 diag::err_template_arg_template_params_mismatch); 4736 NextDiag = diag::note_template_nontype_parm_different_type; 4737 } 4738 S.Diag(NewNTTP->getLocation(), NextDiag) 4739 << NewNTTP->getType() 4740 << (Kind != Sema::TPL_TemplateMatch); 4741 S.Diag(OldNTTP->getLocation(), 4742 diag::note_template_nontype_parm_prev_declaration) 4743 << OldNTTP->getType(); 4744 } 4745 4746 return false; 4747 } 4748 4749 return true; 4750 } 4751 4752 // For template template parameters, check the template parameter types. 4753 // The template parameter lists of template template 4754 // parameters must agree. 4755 if (TemplateTemplateParmDecl *OldTTP 4756 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 4757 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 4758 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 4759 OldTTP->getTemplateParameters(), 4760 Complain, 4761 (Kind == Sema::TPL_TemplateMatch 4762 ? Sema::TPL_TemplateTemplateParmMatch 4763 : Kind), 4764 TemplateArgLoc); 4765 } 4766 4767 return true; 4768} 4769 4770/// \brief Diagnose a known arity mismatch when comparing template argument 4771/// lists. 4772static 4773void DiagnoseTemplateParameterListArityMismatch(Sema &S, 4774 TemplateParameterList *New, 4775 TemplateParameterList *Old, 4776 Sema::TemplateParameterListEqualKind Kind, 4777 SourceLocation TemplateArgLoc) { 4778 unsigned NextDiag = diag::err_template_param_list_different_arity; 4779 if (TemplateArgLoc.isValid()) { 4780 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4781 NextDiag = diag::note_template_param_list_different_arity; 4782 } 4783 S.Diag(New->getTemplateLoc(), NextDiag) 4784 << (New->size() > Old->size()) 4785 << (Kind != Sema::TPL_TemplateMatch) 4786 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 4787 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 4788 << (Kind != Sema::TPL_TemplateMatch) 4789 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 4790} 4791 4792/// \brief Determine whether the given template parameter lists are 4793/// equivalent. 4794/// 4795/// \param New The new template parameter list, typically written in the 4796/// source code as part of a new template declaration. 4797/// 4798/// \param Old The old template parameter list, typically found via 4799/// name lookup of the template declared with this template parameter 4800/// list. 4801/// 4802/// \param Complain If true, this routine will produce a diagnostic if 4803/// the template parameter lists are not equivalent. 4804/// 4805/// \param Kind describes how we are to match the template parameter lists. 4806/// 4807/// \param TemplateArgLoc If this source location is valid, then we 4808/// are actually checking the template parameter list of a template 4809/// argument (New) against the template parameter list of its 4810/// corresponding template template parameter (Old). We produce 4811/// slightly different diagnostics in this scenario. 4812/// 4813/// \returns True if the template parameter lists are equal, false 4814/// otherwise. 4815bool 4816Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 4817 TemplateParameterList *Old, 4818 bool Complain, 4819 TemplateParameterListEqualKind Kind, 4820 SourceLocation TemplateArgLoc) { 4821 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 4822 if (Complain) 4823 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4824 TemplateArgLoc); 4825 4826 return false; 4827 } 4828 4829 // C++0x [temp.arg.template]p3: 4830 // A template-argument matches a template template-parameter (call it P) 4831 // when each of the template parameters in the template-parameter-list of 4832 // the template-argument's corresponding class template or alias template 4833 // (call it A) matches the corresponding template parameter in the 4834 // template-parameter-list of P. [...] 4835 TemplateParameterList::iterator NewParm = New->begin(); 4836 TemplateParameterList::iterator NewParmEnd = New->end(); 4837 for (TemplateParameterList::iterator OldParm = Old->begin(), 4838 OldParmEnd = Old->end(); 4839 OldParm != OldParmEnd; ++OldParm) { 4840 if (Kind != TPL_TemplateTemplateArgumentMatch || 4841 !(*OldParm)->isTemplateParameterPack()) { 4842 if (NewParm == NewParmEnd) { 4843 if (Complain) 4844 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4845 TemplateArgLoc); 4846 4847 return false; 4848 } 4849 4850 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4851 Kind, TemplateArgLoc)) 4852 return false; 4853 4854 ++NewParm; 4855 continue; 4856 } 4857 4858 // C++0x [temp.arg.template]p3: 4859 // [...] When P's template- parameter-list contains a template parameter 4860 // pack (14.5.3), the template parameter pack will match zero or more 4861 // template parameters or template parameter packs in the 4862 // template-parameter-list of A with the same type and form as the 4863 // template parameter pack in P (ignoring whether those template 4864 // parameters are template parameter packs). 4865 for (; NewParm != NewParmEnd; ++NewParm) { 4866 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4867 Kind, TemplateArgLoc)) 4868 return false; 4869 } 4870 } 4871 4872 // Make sure we exhausted all of the arguments. 4873 if (NewParm != NewParmEnd) { 4874 if (Complain) 4875 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4876 TemplateArgLoc); 4877 4878 return false; 4879 } 4880 4881 return true; 4882} 4883 4884/// \brief Check whether a template can be declared within this scope. 4885/// 4886/// If the template declaration is valid in this scope, returns 4887/// false. Otherwise, issues a diagnostic and returns true. 4888bool 4889Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 4890 if (!S) 4891 return false; 4892 4893 // Find the nearest enclosing declaration scope. 4894 while ((S->getFlags() & Scope::DeclScope) == 0 || 4895 (S->getFlags() & Scope::TemplateParamScope) != 0) 4896 S = S->getParent(); 4897 4898 // C++ [temp]p2: 4899 // A template-declaration can appear only as a namespace scope or 4900 // class scope declaration. 4901 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 4902 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 4903 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 4904 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 4905 << TemplateParams->getSourceRange(); 4906 4907 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 4908 Ctx = Ctx->getParent(); 4909 4910 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 4911 return false; 4912 4913 return Diag(TemplateParams->getTemplateLoc(), 4914 diag::err_template_outside_namespace_or_class_scope) 4915 << TemplateParams->getSourceRange(); 4916} 4917 4918/// \brief Determine what kind of template specialization the given declaration 4919/// is. 4920static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { 4921 if (!D) 4922 return TSK_Undeclared; 4923 4924 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 4925 return Record->getTemplateSpecializationKind(); 4926 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 4927 return Function->getTemplateSpecializationKind(); 4928 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 4929 return Var->getTemplateSpecializationKind(); 4930 4931 return TSK_Undeclared; 4932} 4933 4934/// \brief Check whether a specialization is well-formed in the current 4935/// context. 4936/// 4937/// This routine determines whether a template specialization can be declared 4938/// in the current context (C++ [temp.expl.spec]p2). 4939/// 4940/// \param S the semantic analysis object for which this check is being 4941/// performed. 4942/// 4943/// \param Specialized the entity being specialized or instantiated, which 4944/// may be a kind of template (class template, function template, etc.) or 4945/// a member of a class template (member function, static data member, 4946/// member class). 4947/// 4948/// \param PrevDecl the previous declaration of this entity, if any. 4949/// 4950/// \param Loc the location of the explicit specialization or instantiation of 4951/// this entity. 4952/// 4953/// \param IsPartialSpecialization whether this is a partial specialization of 4954/// a class template. 4955/// 4956/// \returns true if there was an error that we cannot recover from, false 4957/// otherwise. 4958static bool CheckTemplateSpecializationScope(Sema &S, 4959 NamedDecl *Specialized, 4960 NamedDecl *PrevDecl, 4961 SourceLocation Loc, 4962 bool IsPartialSpecialization) { 4963 // Keep these "kind" numbers in sync with the %select statements in the 4964 // various diagnostics emitted by this routine. 4965 int EntityKind = 0; 4966 if (isa<ClassTemplateDecl>(Specialized)) 4967 EntityKind = IsPartialSpecialization? 1 : 0; 4968 else if (isa<FunctionTemplateDecl>(Specialized)) 4969 EntityKind = 2; 4970 else if (isa<CXXMethodDecl>(Specialized)) 4971 EntityKind = 3; 4972 else if (isa<VarDecl>(Specialized)) 4973 EntityKind = 4; 4974 else if (isa<RecordDecl>(Specialized)) 4975 EntityKind = 5; 4976 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11) 4977 EntityKind = 6; 4978 else { 4979 S.Diag(Loc, diag::err_template_spec_unknown_kind) 4980 << S.getLangOpts().CPlusPlus11; 4981 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4982 return true; 4983 } 4984 4985 // C++ [temp.expl.spec]p2: 4986 // An explicit specialization shall be declared in the namespace 4987 // of which the template is a member, or, for member templates, in 4988 // the namespace of which the enclosing class or enclosing class 4989 // template is a member. An explicit specialization of a member 4990 // function, member class or static data member of a class 4991 // template shall be declared in the namespace of which the class 4992 // template is a member. Such a declaration may also be a 4993 // definition. If the declaration is not a definition, the 4994 // specialization may be defined later in the name- space in which 4995 // the explicit specialization was declared, or in a namespace 4996 // that encloses the one in which the explicit specialization was 4997 // declared. 4998 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 4999 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 5000 << Specialized; 5001 return true; 5002 } 5003 5004 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 5005 if (S.getLangOpts().MicrosoftExt) { 5006 // Do not warn for class scope explicit specialization during 5007 // instantiation, warning was already emitted during pattern 5008 // semantic analysis. 5009 if (!S.ActiveTemplateInstantiations.size()) 5010 S.Diag(Loc, diag::ext_function_specialization_in_class) 5011 << Specialized; 5012 } else { 5013 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 5014 << Specialized; 5015 return true; 5016 } 5017 } 5018 5019 if (S.CurContext->isRecord() && 5020 !S.CurContext->Equals(Specialized->getDeclContext())) { 5021 // Make sure that we're specializing in the right record context. 5022 // Otherwise, things can go horribly wrong. 5023 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 5024 << Specialized; 5025 return true; 5026 } 5027 5028 // C++ [temp.class.spec]p6: 5029 // A class template partial specialization may be declared or redeclared 5030 // in any namespace scope in which its definition may be defined (14.5.1 5031 // and 14.5.2). 5032 bool ComplainedAboutScope = false; 5033 DeclContext *SpecializedContext 5034 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 5035 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 5036 if ((!PrevDecl || 5037 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 5038 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 5039 // C++ [temp.exp.spec]p2: 5040 // An explicit specialization shall be declared in the namespace of which 5041 // the template is a member, or, for member templates, in the namespace 5042 // of which the enclosing class or enclosing class template is a member. 5043 // An explicit specialization of a member function, member class or 5044 // static data member of a class template shall be declared in the 5045 // namespace of which the class template is a member. 5046 // 5047 // C++0x [temp.expl.spec]p2: 5048 // An explicit specialization shall be declared in a namespace enclosing 5049 // the specialized template. 5050 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) { 5051 bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext); 5052 if (isa<TranslationUnitDecl>(SpecializedContext)) { 5053 assert(!IsCPlusPlus11Extension && 5054 "DC encloses TU but isn't in enclosing namespace set"); 5055 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 5056 << EntityKind << Specialized; 5057 } else if (isa<NamespaceDecl>(SpecializedContext)) { 5058 int Diag; 5059 if (!IsCPlusPlus11Extension) 5060 Diag = diag::err_template_spec_decl_out_of_scope; 5061 else if (!S.getLangOpts().CPlusPlus11) 5062 Diag = diag::ext_template_spec_decl_out_of_scope; 5063 else 5064 Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope; 5065 S.Diag(Loc, Diag) 5066 << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext); 5067 } 5068 5069 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 5070 ComplainedAboutScope = 5071 !(IsCPlusPlus11Extension && S.getLangOpts().CPlusPlus11); 5072 } 5073 } 5074 5075 // Make sure that this redeclaration (or definition) occurs in an enclosing 5076 // namespace. 5077 // Note that HandleDeclarator() performs this check for explicit 5078 // specializations of function templates, static data members, and member 5079 // functions, so we skip the check here for those kinds of entities. 5080 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 5081 // Should we refactor that check, so that it occurs later? 5082 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 5083 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 5084 isa<FunctionDecl>(Specialized))) { 5085 if (isa<TranslationUnitDecl>(SpecializedContext)) 5086 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 5087 << EntityKind << Specialized; 5088 else if (isa<NamespaceDecl>(SpecializedContext)) 5089 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 5090 << EntityKind << Specialized 5091 << cast<NamedDecl>(SpecializedContext); 5092 5093 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 5094 } 5095 5096 // FIXME: check for specialization-after-instantiation errors and such. 5097 5098 return false; 5099} 5100 5101/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs 5102/// that checks non-type template partial specialization arguments. 5103static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S, 5104 NonTypeTemplateParmDecl *Param, 5105 const TemplateArgument *Args, 5106 unsigned NumArgs) { 5107 for (unsigned I = 0; I != NumArgs; ++I) { 5108 if (Args[I].getKind() == TemplateArgument::Pack) { 5109 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 5110 Args[I].pack_begin(), 5111 Args[I].pack_size())) 5112 return true; 5113 5114 continue; 5115 } 5116 5117 if (Args[I].getKind() != TemplateArgument::Expression) 5118 continue; 5119 5120 Expr *ArgExpr = Args[I].getAsExpr(); 5121 5122 // We can have a pack expansion of any of the bullets below. 5123 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 5124 ArgExpr = Expansion->getPattern(); 5125 5126 // Strip off any implicit casts we added as part of type checking. 5127 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 5128 ArgExpr = ICE->getSubExpr(); 5129 5130 // C++ [temp.class.spec]p8: 5131 // A non-type argument is non-specialized if it is the name of a 5132 // non-type parameter. All other non-type arguments are 5133 // specialized. 5134 // 5135 // Below, we check the two conditions that only apply to 5136 // specialized non-type arguments, so skip any non-specialized 5137 // arguments. 5138 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 5139 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 5140 continue; 5141 5142 // C++ [temp.class.spec]p9: 5143 // Within the argument list of a class template partial 5144 // specialization, the following restrictions apply: 5145 // -- A partially specialized non-type argument expression 5146 // shall not involve a template parameter of the partial 5147 // specialization except when the argument expression is a 5148 // simple identifier. 5149 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 5150 S.Diag(ArgExpr->getLocStart(), 5151 diag::err_dependent_non_type_arg_in_partial_spec) 5152 << ArgExpr->getSourceRange(); 5153 return true; 5154 } 5155 5156 // -- The type of a template parameter corresponding to a 5157 // specialized non-type argument shall not be dependent on a 5158 // parameter of the specialization. 5159 if (Param->getType()->isDependentType()) { 5160 S.Diag(ArgExpr->getLocStart(), 5161 diag::err_dependent_typed_non_type_arg_in_partial_spec) 5162 << Param->getType() 5163 << ArgExpr->getSourceRange(); 5164 S.Diag(Param->getLocation(), diag::note_template_param_here); 5165 return true; 5166 } 5167 } 5168 5169 return false; 5170} 5171 5172/// \brief Check the non-type template arguments of a class template 5173/// partial specialization according to C++ [temp.class.spec]p9. 5174/// 5175/// \param TemplateParams the template parameters of the primary class 5176/// template. 5177/// 5178/// \param TemplateArgs the template arguments of the class template 5179/// partial specialization. 5180/// 5181/// \returns true if there was an error, false otherwise. 5182static bool CheckClassTemplatePartialSpecializationArgs(Sema &S, 5183 TemplateParameterList *TemplateParams, 5184 SmallVectorImpl<TemplateArgument> &TemplateArgs) { 5185 const TemplateArgument *ArgList = TemplateArgs.data(); 5186 5187 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 5188 NonTypeTemplateParmDecl *Param 5189 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 5190 if (!Param) 5191 continue; 5192 5193 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 5194 &ArgList[I], 1)) 5195 return true; 5196 } 5197 5198 return false; 5199} 5200 5201DeclResult 5202Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 5203 TagUseKind TUK, 5204 SourceLocation KWLoc, 5205 SourceLocation ModulePrivateLoc, 5206 CXXScopeSpec &SS, 5207 TemplateTy TemplateD, 5208 SourceLocation TemplateNameLoc, 5209 SourceLocation LAngleLoc, 5210 ASTTemplateArgsPtr TemplateArgsIn, 5211 SourceLocation RAngleLoc, 5212 AttributeList *Attr, 5213 MultiTemplateParamsArg TemplateParameterLists) { 5214 assert(TUK != TUK_Reference && "References are not specializations"); 5215 5216 // NOTE: KWLoc is the location of the tag keyword. This will instead 5217 // store the location of the outermost template keyword in the declaration. 5218 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 5219 ? TemplateParameterLists[0]->getTemplateLoc() : SourceLocation(); 5220 5221 // Find the class template we're specializing 5222 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 5223 ClassTemplateDecl *ClassTemplate 5224 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 5225 5226 if (!ClassTemplate) { 5227 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 5228 << (Name.getAsTemplateDecl() && 5229 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 5230 return true; 5231 } 5232 5233 bool isExplicitSpecialization = false; 5234 bool isPartialSpecialization = false; 5235 5236 // Check the validity of the template headers that introduce this 5237 // template. 5238 // FIXME: We probably shouldn't complain about these headers for 5239 // friend declarations. 5240 bool Invalid = false; 5241 TemplateParameterList *TemplateParams 5242 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, 5243 TemplateNameLoc, 5244 SS, 5245 TemplateParameterLists.data(), 5246 TemplateParameterLists.size(), 5247 TUK == TUK_Friend, 5248 isExplicitSpecialization, 5249 Invalid); 5250 if (Invalid) 5251 return true; 5252 5253 if (TemplateParams && TemplateParams->size() > 0) { 5254 isPartialSpecialization = true; 5255 5256 if (TUK == TUK_Friend) { 5257 Diag(KWLoc, diag::err_partial_specialization_friend) 5258 << SourceRange(LAngleLoc, RAngleLoc); 5259 return true; 5260 } 5261 5262 // C++ [temp.class.spec]p10: 5263 // The template parameter list of a specialization shall not 5264 // contain default template argument values. 5265 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 5266 Decl *Param = TemplateParams->getParam(I); 5267 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 5268 if (TTP->hasDefaultArgument()) { 5269 Diag(TTP->getDefaultArgumentLoc(), 5270 diag::err_default_arg_in_partial_spec); 5271 TTP->removeDefaultArgument(); 5272 } 5273 } else if (NonTypeTemplateParmDecl *NTTP 5274 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5275 if (Expr *DefArg = NTTP->getDefaultArgument()) { 5276 Diag(NTTP->getDefaultArgumentLoc(), 5277 diag::err_default_arg_in_partial_spec) 5278 << DefArg->getSourceRange(); 5279 NTTP->removeDefaultArgument(); 5280 } 5281 } else { 5282 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 5283 if (TTP->hasDefaultArgument()) { 5284 Diag(TTP->getDefaultArgument().getLocation(), 5285 diag::err_default_arg_in_partial_spec) 5286 << TTP->getDefaultArgument().getSourceRange(); 5287 TTP->removeDefaultArgument(); 5288 } 5289 } 5290 } 5291 } else if (TemplateParams) { 5292 if (TUK == TUK_Friend) 5293 Diag(KWLoc, diag::err_template_spec_friend) 5294 << FixItHint::CreateRemoval( 5295 SourceRange(TemplateParams->getTemplateLoc(), 5296 TemplateParams->getRAngleLoc())) 5297 << SourceRange(LAngleLoc, RAngleLoc); 5298 else 5299 isExplicitSpecialization = true; 5300 } else if (TUK != TUK_Friend) { 5301 Diag(KWLoc, diag::err_template_spec_needs_header) 5302 << FixItHint::CreateInsertion(KWLoc, "template<> "); 5303 isExplicitSpecialization = true; 5304 } 5305 5306 // Check that the specialization uses the same tag kind as the 5307 // original template. 5308 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5309 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 5310 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 5311 Kind, TUK == TUK_Definition, KWLoc, 5312 *ClassTemplate->getIdentifier())) { 5313 Diag(KWLoc, diag::err_use_with_wrong_tag) 5314 << ClassTemplate 5315 << FixItHint::CreateReplacement(KWLoc, 5316 ClassTemplate->getTemplatedDecl()->getKindName()); 5317 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 5318 diag::note_previous_use); 5319 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 5320 } 5321 5322 // Translate the parser's template argument list in our AST format. 5323 TemplateArgumentListInfo TemplateArgs; 5324 TemplateArgs.setLAngleLoc(LAngleLoc); 5325 TemplateArgs.setRAngleLoc(RAngleLoc); 5326 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 5327 5328 // Check for unexpanded parameter packs in any of the template arguments. 5329 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 5330 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 5331 UPPC_PartialSpecialization)) 5332 return true; 5333 5334 // Check that the template argument list is well-formed for this 5335 // template. 5336 SmallVector<TemplateArgument, 4> Converted; 5337 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 5338 TemplateArgs, false, Converted)) 5339 return true; 5340 5341 // Find the class template (partial) specialization declaration that 5342 // corresponds to these arguments. 5343 if (isPartialSpecialization) { 5344 if (CheckClassTemplatePartialSpecializationArgs(*this, 5345 ClassTemplate->getTemplateParameters(), 5346 Converted)) 5347 return true; 5348 5349 bool InstantiationDependent; 5350 if (!Name.isDependent() && 5351 !TemplateSpecializationType::anyDependentTemplateArguments( 5352 TemplateArgs.getArgumentArray(), 5353 TemplateArgs.size(), 5354 InstantiationDependent)) { 5355 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 5356 << ClassTemplate->getDeclName(); 5357 isPartialSpecialization = false; 5358 } 5359 } 5360 5361 void *InsertPos = 0; 5362 ClassTemplateSpecializationDecl *PrevDecl = 0; 5363 5364 if (isPartialSpecialization) 5365 // FIXME: Template parameter list matters, too 5366 PrevDecl 5367 = ClassTemplate->findPartialSpecialization(Converted.data(), 5368 Converted.size(), 5369 InsertPos); 5370 else 5371 PrevDecl 5372 = ClassTemplate->findSpecialization(Converted.data(), 5373 Converted.size(), InsertPos); 5374 5375 ClassTemplateSpecializationDecl *Specialization = 0; 5376 5377 // Check whether we can declare a class template specialization in 5378 // the current scope. 5379 if (TUK != TUK_Friend && 5380 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 5381 TemplateNameLoc, 5382 isPartialSpecialization)) 5383 return true; 5384 5385 // The canonical type 5386 QualType CanonType; 5387 if (PrevDecl && 5388 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 5389 TUK == TUK_Friend)) { 5390 // Since the only prior class template specialization with these 5391 // arguments was referenced but not declared, or we're only 5392 // referencing this specialization as a friend, reuse that 5393 // declaration node as our own, updating its source location and 5394 // the list of outer template parameters to reflect our new declaration. 5395 Specialization = PrevDecl; 5396 Specialization->setLocation(TemplateNameLoc); 5397 if (TemplateParameterLists.size() > 0) { 5398 Specialization->setTemplateParameterListsInfo(Context, 5399 TemplateParameterLists.size(), 5400 TemplateParameterLists.data()); 5401 } 5402 PrevDecl = 0; 5403 CanonType = Context.getTypeDeclType(Specialization); 5404 } else if (isPartialSpecialization) { 5405 // Build the canonical type that describes the converted template 5406 // arguments of the class template partial specialization. 5407 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 5408 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 5409 Converted.data(), 5410 Converted.size()); 5411 5412 if (Context.hasSameType(CanonType, 5413 ClassTemplate->getInjectedClassNameSpecialization())) { 5414 // C++ [temp.class.spec]p9b3: 5415 // 5416 // -- The argument list of the specialization shall not be identical 5417 // to the implicit argument list of the primary template. 5418 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 5419 << (TUK == TUK_Definition) 5420 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 5421 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 5422 ClassTemplate->getIdentifier(), 5423 TemplateNameLoc, 5424 Attr, 5425 TemplateParams, 5426 AS_none, /*ModulePrivateLoc=*/SourceLocation(), 5427 TemplateParameterLists.size() - 1, 5428 TemplateParameterLists.data()); 5429 } 5430 5431 // Create a new class template partial specialization declaration node. 5432 ClassTemplatePartialSpecializationDecl *PrevPartial 5433 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 5434 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 5435 : ClassTemplate->getNextPartialSpecSequenceNumber(); 5436 ClassTemplatePartialSpecializationDecl *Partial 5437 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 5438 ClassTemplate->getDeclContext(), 5439 KWLoc, TemplateNameLoc, 5440 TemplateParams, 5441 ClassTemplate, 5442 Converted.data(), 5443 Converted.size(), 5444 TemplateArgs, 5445 CanonType, 5446 PrevPartial, 5447 SequenceNumber); 5448 SetNestedNameSpecifier(Partial, SS); 5449 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 5450 Partial->setTemplateParameterListsInfo(Context, 5451 TemplateParameterLists.size() - 1, 5452 TemplateParameterLists.data()); 5453 } 5454 5455 if (!PrevPartial) 5456 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 5457 Specialization = Partial; 5458 5459 // If we are providing an explicit specialization of a member class 5460 // template specialization, make a note of that. 5461 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 5462 PrevPartial->setMemberSpecialization(); 5463 5464 // Check that all of the template parameters of the class template 5465 // partial specialization are deducible from the template 5466 // arguments. If not, this class template partial specialization 5467 // will never be used. 5468 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 5469 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 5470 TemplateParams->getDepth(), 5471 DeducibleParams); 5472 5473 if (!DeducibleParams.all()) { 5474 unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count(); 5475 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 5476 << (NumNonDeducible > 1) 5477 << SourceRange(TemplateNameLoc, RAngleLoc); 5478 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 5479 if (!DeducibleParams[I]) { 5480 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 5481 if (Param->getDeclName()) 5482 Diag(Param->getLocation(), 5483 diag::note_partial_spec_unused_parameter) 5484 << Param->getDeclName(); 5485 else 5486 Diag(Param->getLocation(), 5487 diag::note_partial_spec_unused_parameter) 5488 << "<anonymous>"; 5489 } 5490 } 5491 } 5492 } else { 5493 // Create a new class template specialization declaration node for 5494 // this explicit specialization or friend declaration. 5495 Specialization 5496 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5497 ClassTemplate->getDeclContext(), 5498 KWLoc, TemplateNameLoc, 5499 ClassTemplate, 5500 Converted.data(), 5501 Converted.size(), 5502 PrevDecl); 5503 SetNestedNameSpecifier(Specialization, SS); 5504 if (TemplateParameterLists.size() > 0) { 5505 Specialization->setTemplateParameterListsInfo(Context, 5506 TemplateParameterLists.size(), 5507 TemplateParameterLists.data()); 5508 } 5509 5510 if (!PrevDecl) 5511 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5512 5513 CanonType = Context.getTypeDeclType(Specialization); 5514 } 5515 5516 // C++ [temp.expl.spec]p6: 5517 // If a template, a member template or the member of a class template is 5518 // explicitly specialized then that specialization shall be declared 5519 // before the first use of that specialization that would cause an implicit 5520 // instantiation to take place, in every translation unit in which such a 5521 // use occurs; no diagnostic is required. 5522 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 5523 bool Okay = false; 5524 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5525 // Is there any previous explicit specialization declaration? 5526 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 5527 Okay = true; 5528 break; 5529 } 5530 } 5531 5532 if (!Okay) { 5533 SourceRange Range(TemplateNameLoc, RAngleLoc); 5534 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 5535 << Context.getTypeDeclType(Specialization) << Range; 5536 5537 Diag(PrevDecl->getPointOfInstantiation(), 5538 diag::note_instantiation_required_here) 5539 << (PrevDecl->getTemplateSpecializationKind() 5540 != TSK_ImplicitInstantiation); 5541 return true; 5542 } 5543 } 5544 5545 // If this is not a friend, note that this is an explicit specialization. 5546 if (TUK != TUK_Friend) 5547 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 5548 5549 // Check that this isn't a redefinition of this specialization. 5550 if (TUK == TUK_Definition) { 5551 if (RecordDecl *Def = Specialization->getDefinition()) { 5552 SourceRange Range(TemplateNameLoc, RAngleLoc); 5553 Diag(TemplateNameLoc, diag::err_redefinition) 5554 << Context.getTypeDeclType(Specialization) << Range; 5555 Diag(Def->getLocation(), diag::note_previous_definition); 5556 Specialization->setInvalidDecl(); 5557 return true; 5558 } 5559 } 5560 5561 if (Attr) 5562 ProcessDeclAttributeList(S, Specialization, Attr); 5563 5564 // Add alignment attributes if necessary; these attributes are checked when 5565 // the ASTContext lays out the structure. 5566 if (TUK == TUK_Definition) { 5567 AddAlignmentAttributesForRecord(Specialization); 5568 AddMsStructLayoutForRecord(Specialization); 5569 } 5570 5571 if (ModulePrivateLoc.isValid()) 5572 Diag(Specialization->getLocation(), diag::err_module_private_specialization) 5573 << (isPartialSpecialization? 1 : 0) 5574 << FixItHint::CreateRemoval(ModulePrivateLoc); 5575 5576 // Build the fully-sugared type for this class template 5577 // specialization as the user wrote in the specialization 5578 // itself. This means that we'll pretty-print the type retrieved 5579 // from the specialization's declaration the way that the user 5580 // actually wrote the specialization, rather than formatting the 5581 // name based on the "canonical" representation used to store the 5582 // template arguments in the specialization. 5583 TypeSourceInfo *WrittenTy 5584 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5585 TemplateArgs, CanonType); 5586 if (TUK != TUK_Friend) { 5587 Specialization->setTypeAsWritten(WrittenTy); 5588 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 5589 } 5590 5591 // C++ [temp.expl.spec]p9: 5592 // A template explicit specialization is in the scope of the 5593 // namespace in which the template was defined. 5594 // 5595 // We actually implement this paragraph where we set the semantic 5596 // context (in the creation of the ClassTemplateSpecializationDecl), 5597 // but we also maintain the lexical context where the actual 5598 // definition occurs. 5599 Specialization->setLexicalDeclContext(CurContext); 5600 5601 // We may be starting the definition of this specialization. 5602 if (TUK == TUK_Definition) 5603 Specialization->startDefinition(); 5604 5605 if (TUK == TUK_Friend) { 5606 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 5607 TemplateNameLoc, 5608 WrittenTy, 5609 /*FIXME:*/KWLoc); 5610 Friend->setAccess(AS_public); 5611 CurContext->addDecl(Friend); 5612 } else { 5613 // Add the specialization into its lexical context, so that it can 5614 // be seen when iterating through the list of declarations in that 5615 // context. However, specializations are not found by name lookup. 5616 CurContext->addDecl(Specialization); 5617 } 5618 return Specialization; 5619} 5620 5621Decl *Sema::ActOnTemplateDeclarator(Scope *S, 5622 MultiTemplateParamsArg TemplateParameterLists, 5623 Declarator &D) { 5624 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists); 5625 ActOnDocumentableDecl(NewDecl); 5626 return NewDecl; 5627} 5628 5629Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 5630 MultiTemplateParamsArg TemplateParameterLists, 5631 Declarator &D) { 5632 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 5633 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 5634 5635 if (FTI.hasPrototype) { 5636 // FIXME: Diagnose arguments without names in C. 5637 } 5638 5639 Scope *ParentScope = FnBodyScope->getParent(); 5640 5641 D.setFunctionDefinitionKind(FDK_Definition); 5642 Decl *DP = HandleDeclarator(ParentScope, D, 5643 TemplateParameterLists); 5644 return ActOnStartOfFunctionDef(FnBodyScope, DP); 5645} 5646 5647/// \brief Strips various properties off an implicit instantiation 5648/// that has just been explicitly specialized. 5649static void StripImplicitInstantiation(NamedDecl *D) { 5650 // FIXME: "make check" is clean if the call to dropAttrs() is commented out. 5651 D->dropAttrs(); 5652 5653 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5654 FD->setInlineSpecified(false); 5655 } 5656} 5657 5658/// \brief Compute the diagnostic location for an explicit instantiation 5659// declaration or definition. 5660static SourceLocation DiagLocForExplicitInstantiation( 5661 NamedDecl* D, SourceLocation PointOfInstantiation) { 5662 // Explicit instantiations following a specialization have no effect and 5663 // hence no PointOfInstantiation. In that case, walk decl backwards 5664 // until a valid name loc is found. 5665 SourceLocation PrevDiagLoc = PointOfInstantiation; 5666 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); 5667 Prev = Prev->getPreviousDecl()) { 5668 PrevDiagLoc = Prev->getLocation(); 5669 } 5670 assert(PrevDiagLoc.isValid() && 5671 "Explicit instantiation without point of instantiation?"); 5672 return PrevDiagLoc; 5673} 5674 5675/// \brief Diagnose cases where we have an explicit template specialization 5676/// before/after an explicit template instantiation, producing diagnostics 5677/// for those cases where they are required and determining whether the 5678/// new specialization/instantiation will have any effect. 5679/// 5680/// \param NewLoc the location of the new explicit specialization or 5681/// instantiation. 5682/// 5683/// \param NewTSK the kind of the new explicit specialization or instantiation. 5684/// 5685/// \param PrevDecl the previous declaration of the entity. 5686/// 5687/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 5688/// 5689/// \param PrevPointOfInstantiation if valid, indicates where the previus 5690/// declaration was instantiated (either implicitly or explicitly). 5691/// 5692/// \param HasNoEffect will be set to true to indicate that the new 5693/// specialization or instantiation has no effect and should be ignored. 5694/// 5695/// \returns true if there was an error that should prevent the introduction of 5696/// the new declaration into the AST, false otherwise. 5697bool 5698Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 5699 TemplateSpecializationKind NewTSK, 5700 NamedDecl *PrevDecl, 5701 TemplateSpecializationKind PrevTSK, 5702 SourceLocation PrevPointOfInstantiation, 5703 bool &HasNoEffect) { 5704 HasNoEffect = false; 5705 5706 switch (NewTSK) { 5707 case TSK_Undeclared: 5708 case TSK_ImplicitInstantiation: 5709 llvm_unreachable("Don't check implicit instantiations here"); 5710 5711 case TSK_ExplicitSpecialization: 5712 switch (PrevTSK) { 5713 case TSK_Undeclared: 5714 case TSK_ExplicitSpecialization: 5715 // Okay, we're just specializing something that is either already 5716 // explicitly specialized or has merely been mentioned without any 5717 // instantiation. 5718 return false; 5719 5720 case TSK_ImplicitInstantiation: 5721 if (PrevPointOfInstantiation.isInvalid()) { 5722 // The declaration itself has not actually been instantiated, so it is 5723 // still okay to specialize it. 5724 StripImplicitInstantiation(PrevDecl); 5725 return false; 5726 } 5727 // Fall through 5728 5729 case TSK_ExplicitInstantiationDeclaration: 5730 case TSK_ExplicitInstantiationDefinition: 5731 assert((PrevTSK == TSK_ImplicitInstantiation || 5732 PrevPointOfInstantiation.isValid()) && 5733 "Explicit instantiation without point of instantiation?"); 5734 5735 // C++ [temp.expl.spec]p6: 5736 // If a template, a member template or the member of a class template 5737 // is explicitly specialized then that specialization shall be declared 5738 // before the first use of that specialization that would cause an 5739 // implicit instantiation to take place, in every translation unit in 5740 // which such a use occurs; no diagnostic is required. 5741 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5742 // Is there any previous explicit specialization declaration? 5743 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 5744 return false; 5745 } 5746 5747 Diag(NewLoc, diag::err_specialization_after_instantiation) 5748 << PrevDecl; 5749 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 5750 << (PrevTSK != TSK_ImplicitInstantiation); 5751 5752 return true; 5753 } 5754 5755 case TSK_ExplicitInstantiationDeclaration: 5756 switch (PrevTSK) { 5757 case TSK_ExplicitInstantiationDeclaration: 5758 // This explicit instantiation declaration is redundant (that's okay). 5759 HasNoEffect = true; 5760 return false; 5761 5762 case TSK_Undeclared: 5763 case TSK_ImplicitInstantiation: 5764 // We're explicitly instantiating something that may have already been 5765 // implicitly instantiated; that's fine. 5766 return false; 5767 5768 case TSK_ExplicitSpecialization: 5769 // C++0x [temp.explicit]p4: 5770 // For a given set of template parameters, if an explicit instantiation 5771 // of a template appears after a declaration of an explicit 5772 // specialization for that template, the explicit instantiation has no 5773 // effect. 5774 HasNoEffect = true; 5775 return false; 5776 5777 case TSK_ExplicitInstantiationDefinition: 5778 // C++0x [temp.explicit]p10: 5779 // If an entity is the subject of both an explicit instantiation 5780 // declaration and an explicit instantiation definition in the same 5781 // translation unit, the definition shall follow the declaration. 5782 Diag(NewLoc, 5783 diag::err_explicit_instantiation_declaration_after_definition); 5784 5785 // Explicit instantiations following a specialization have no effect and 5786 // hence no PrevPointOfInstantiation. In that case, walk decl backwards 5787 // until a valid name loc is found. 5788 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 5789 diag::note_explicit_instantiation_definition_here); 5790 HasNoEffect = true; 5791 return false; 5792 } 5793 5794 case TSK_ExplicitInstantiationDefinition: 5795 switch (PrevTSK) { 5796 case TSK_Undeclared: 5797 case TSK_ImplicitInstantiation: 5798 // We're explicitly instantiating something that may have already been 5799 // implicitly instantiated; that's fine. 5800 return false; 5801 5802 case TSK_ExplicitSpecialization: 5803 // C++ DR 259, C++0x [temp.explicit]p4: 5804 // For a given set of template parameters, if an explicit 5805 // instantiation of a template appears after a declaration of 5806 // an explicit specialization for that template, the explicit 5807 // instantiation has no effect. 5808 // 5809 // In C++98/03 mode, we only give an extension warning here, because it 5810 // is not harmful to try to explicitly instantiate something that 5811 // has been explicitly specialized. 5812 Diag(NewLoc, getLangOpts().CPlusPlus11 ? 5813 diag::warn_cxx98_compat_explicit_instantiation_after_specialization : 5814 diag::ext_explicit_instantiation_after_specialization) 5815 << PrevDecl; 5816 Diag(PrevDecl->getLocation(), 5817 diag::note_previous_template_specialization); 5818 HasNoEffect = true; 5819 return false; 5820 5821 case TSK_ExplicitInstantiationDeclaration: 5822 // We're explicity instantiating a definition for something for which we 5823 // were previously asked to suppress instantiations. That's fine. 5824 5825 // C++0x [temp.explicit]p4: 5826 // For a given set of template parameters, if an explicit instantiation 5827 // of a template appears after a declaration of an explicit 5828 // specialization for that template, the explicit instantiation has no 5829 // effect. 5830 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5831 // Is there any previous explicit specialization declaration? 5832 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 5833 HasNoEffect = true; 5834 break; 5835 } 5836 } 5837 5838 return false; 5839 5840 case TSK_ExplicitInstantiationDefinition: 5841 // C++0x [temp.spec]p5: 5842 // For a given template and a given set of template-arguments, 5843 // - an explicit instantiation definition shall appear at most once 5844 // in a program, 5845 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 5846 << PrevDecl; 5847 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 5848 diag::note_previous_explicit_instantiation); 5849 HasNoEffect = true; 5850 return false; 5851 } 5852 } 5853 5854 llvm_unreachable("Missing specialization/instantiation case?"); 5855} 5856 5857/// \brief Perform semantic analysis for the given dependent function 5858/// template specialization. 5859/// 5860/// The only possible way to get a dependent function template specialization 5861/// is with a friend declaration, like so: 5862/// 5863/// \code 5864/// template \<class T> void foo(T); 5865/// template \<class T> class A { 5866/// friend void foo<>(T); 5867/// }; 5868/// \endcode 5869/// 5870/// There really isn't any useful analysis we can do here, so we 5871/// just store the information. 5872bool 5873Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 5874 const TemplateArgumentListInfo &ExplicitTemplateArgs, 5875 LookupResult &Previous) { 5876 // Remove anything from Previous that isn't a function template in 5877 // the correct context. 5878 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5879 LookupResult::Filter F = Previous.makeFilter(); 5880 while (F.hasNext()) { 5881 NamedDecl *D = F.next()->getUnderlyingDecl(); 5882 if (!isa<FunctionTemplateDecl>(D) || 5883 !FDLookupContext->InEnclosingNamespaceSetOf( 5884 D->getDeclContext()->getRedeclContext())) 5885 F.erase(); 5886 } 5887 F.done(); 5888 5889 // Should this be diagnosed here? 5890 if (Previous.empty()) return true; 5891 5892 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 5893 ExplicitTemplateArgs); 5894 return false; 5895} 5896 5897/// \brief Perform semantic analysis for the given function template 5898/// specialization. 5899/// 5900/// This routine performs all of the semantic analysis required for an 5901/// explicit function template specialization. On successful completion, 5902/// the function declaration \p FD will become a function template 5903/// specialization. 5904/// 5905/// \param FD the function declaration, which will be updated to become a 5906/// function template specialization. 5907/// 5908/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 5909/// if any. Note that this may be valid info even when 0 arguments are 5910/// explicitly provided as in, e.g., \c void sort<>(char*, char*); 5911/// as it anyway contains info on the angle brackets locations. 5912/// 5913/// \param Previous the set of declarations that may be specialized by 5914/// this function specialization. 5915bool 5916Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 5917 TemplateArgumentListInfo *ExplicitTemplateArgs, 5918 LookupResult &Previous) { 5919 // The set of function template specializations that could match this 5920 // explicit function template specialization. 5921 UnresolvedSet<8> Candidates; 5922 5923 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5924 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5925 I != E; ++I) { 5926 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 5927 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 5928 // Only consider templates found within the same semantic lookup scope as 5929 // FD. 5930 if (!FDLookupContext->InEnclosingNamespaceSetOf( 5931 Ovl->getDeclContext()->getRedeclContext())) 5932 continue; 5933 5934 // When matching a constexpr member function template specialization 5935 // against the primary template, we don't yet know whether the 5936 // specialization has an implicit 'const' (because we don't know whether 5937 // it will be a static member function until we know which template it 5938 // specializes), so adjust it now assuming it specializes this template. 5939 QualType FT = FD->getType(); 5940 if (FD->isConstexpr()) { 5941 CXXMethodDecl *OldMD = 5942 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl()); 5943 if (OldMD && OldMD->isConst()) { 5944 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>(); 5945 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 5946 EPI.TypeQuals |= Qualifiers::Const; 5947 FT = Context.getFunctionType(FPT->getResultType(), 5948 FPT->arg_type_begin(), 5949 FPT->getNumArgs(), EPI); 5950 } 5951 } 5952 5953 // C++ [temp.expl.spec]p11: 5954 // A trailing template-argument can be left unspecified in the 5955 // template-id naming an explicit function template specialization 5956 // provided it can be deduced from the function argument type. 5957 // Perform template argument deduction to determine whether we may be 5958 // specializing this template. 5959 // FIXME: It is somewhat wasteful to build 5960 TemplateDeductionInfo Info(FD->getLocation()); 5961 FunctionDecl *Specialization = 0; 5962 if (TemplateDeductionResult TDK 5963 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, FT, 5964 Specialization, Info)) { 5965 // FIXME: Template argument deduction failed; record why it failed, so 5966 // that we can provide nifty diagnostics. 5967 (void)TDK; 5968 continue; 5969 } 5970 5971 // Record this candidate. 5972 Candidates.addDecl(Specialization, I.getAccess()); 5973 } 5974 } 5975 5976 // Find the most specialized function template. 5977 UnresolvedSetIterator Result 5978 = getMostSpecialized(Candidates.begin(), Candidates.end(), 5979 TPOC_Other, 0, FD->getLocation(), 5980 PDiag(diag::err_function_template_spec_no_match) 5981 << FD->getDeclName(), 5982 PDiag(diag::err_function_template_spec_ambiguous) 5983 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 5984 PDiag(diag::note_function_template_spec_matched)); 5985 if (Result == Candidates.end()) 5986 return true; 5987 5988 // Ignore access information; it doesn't figure into redeclaration checking. 5989 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5990 5991 FunctionTemplateSpecializationInfo *SpecInfo 5992 = Specialization->getTemplateSpecializationInfo(); 5993 assert(SpecInfo && "Function template specialization info missing?"); 5994 5995 // Note: do not overwrite location info if previous template 5996 // specialization kind was explicit. 5997 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 5998 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) { 5999 Specialization->setLocation(FD->getLocation()); 6000 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr 6001 // function can differ from the template declaration with respect to 6002 // the constexpr specifier. 6003 Specialization->setConstexpr(FD->isConstexpr()); 6004 } 6005 6006 // FIXME: Check if the prior specialization has a point of instantiation. 6007 // If so, we have run afoul of . 6008 6009 // If this is a friend declaration, then we're not really declaring 6010 // an explicit specialization. 6011 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 6012 6013 // Check the scope of this explicit specialization. 6014 if (!isFriend && 6015 CheckTemplateSpecializationScope(*this, 6016 Specialization->getPrimaryTemplate(), 6017 Specialization, FD->getLocation(), 6018 false)) 6019 return true; 6020 6021 // C++ [temp.expl.spec]p6: 6022 // If a template, a member template or the member of a class template is 6023 // explicitly specialized then that specialization shall be declared 6024 // before the first use of that specialization that would cause an implicit 6025 // instantiation to take place, in every translation unit in which such a 6026 // use occurs; no diagnostic is required. 6027 bool HasNoEffect = false; 6028 if (!isFriend && 6029 CheckSpecializationInstantiationRedecl(FD->getLocation(), 6030 TSK_ExplicitSpecialization, 6031 Specialization, 6032 SpecInfo->getTemplateSpecializationKind(), 6033 SpecInfo->getPointOfInstantiation(), 6034 HasNoEffect)) 6035 return true; 6036 6037 // Mark the prior declaration as an explicit specialization, so that later 6038 // clients know that this is an explicit specialization. 6039 if (!isFriend) { 6040 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 6041 MarkUnusedFileScopedDecl(Specialization); 6042 } 6043 6044 // Turn the given function declaration into a function template 6045 // specialization, with the template arguments from the previous 6046 // specialization. 6047 // Take copies of (semantic and syntactic) template argument lists. 6048 const TemplateArgumentList* TemplArgs = new (Context) 6049 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 6050 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 6051 TemplArgs, /*InsertPos=*/0, 6052 SpecInfo->getTemplateSpecializationKind(), 6053 ExplicitTemplateArgs); 6054 FD->setStorageClass(Specialization->getStorageClass()); 6055 6056 // The "previous declaration" for this function template specialization is 6057 // the prior function template specialization. 6058 Previous.clear(); 6059 Previous.addDecl(Specialization); 6060 return false; 6061} 6062 6063/// \brief Perform semantic analysis for the given non-template member 6064/// specialization. 6065/// 6066/// This routine performs all of the semantic analysis required for an 6067/// explicit member function specialization. On successful completion, 6068/// the function declaration \p FD will become a member function 6069/// specialization. 6070/// 6071/// \param Member the member declaration, which will be updated to become a 6072/// specialization. 6073/// 6074/// \param Previous the set of declarations, one of which may be specialized 6075/// by this function specialization; the set will be modified to contain the 6076/// redeclared member. 6077bool 6078Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 6079 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 6080 6081 // Try to find the member we are instantiating. 6082 NamedDecl *Instantiation = 0; 6083 NamedDecl *InstantiatedFrom = 0; 6084 MemberSpecializationInfo *MSInfo = 0; 6085 6086 if (Previous.empty()) { 6087 // Nowhere to look anyway. 6088 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 6089 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 6090 I != E; ++I) { 6091 NamedDecl *D = (*I)->getUnderlyingDecl(); 6092 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 6093 if (Context.hasSameType(Function->getType(), Method->getType())) { 6094 Instantiation = Method; 6095 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 6096 MSInfo = Method->getMemberSpecializationInfo(); 6097 break; 6098 } 6099 } 6100 } 6101 } else if (isa<VarDecl>(Member)) { 6102 VarDecl *PrevVar; 6103 if (Previous.isSingleResult() && 6104 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 6105 if (PrevVar->isStaticDataMember()) { 6106 Instantiation = PrevVar; 6107 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 6108 MSInfo = PrevVar->getMemberSpecializationInfo(); 6109 } 6110 } else if (isa<RecordDecl>(Member)) { 6111 CXXRecordDecl *PrevRecord; 6112 if (Previous.isSingleResult() && 6113 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 6114 Instantiation = PrevRecord; 6115 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 6116 MSInfo = PrevRecord->getMemberSpecializationInfo(); 6117 } 6118 } else if (isa<EnumDecl>(Member)) { 6119 EnumDecl *PrevEnum; 6120 if (Previous.isSingleResult() && 6121 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) { 6122 Instantiation = PrevEnum; 6123 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum(); 6124 MSInfo = PrevEnum->getMemberSpecializationInfo(); 6125 } 6126 } 6127 6128 if (!Instantiation) { 6129 // There is no previous declaration that matches. Since member 6130 // specializations are always out-of-line, the caller will complain about 6131 // this mismatch later. 6132 return false; 6133 } 6134 6135 // If this is a friend, just bail out here before we start turning 6136 // things into explicit specializations. 6137 if (Member->getFriendObjectKind() != Decl::FOK_None) { 6138 // Preserve instantiation information. 6139 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 6140 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 6141 cast<CXXMethodDecl>(InstantiatedFrom), 6142 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 6143 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 6144 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 6145 cast<CXXRecordDecl>(InstantiatedFrom), 6146 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 6147 } 6148 6149 Previous.clear(); 6150 Previous.addDecl(Instantiation); 6151 return false; 6152 } 6153 6154 // Make sure that this is a specialization of a member. 6155 if (!InstantiatedFrom) { 6156 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 6157 << Member; 6158 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 6159 return true; 6160 } 6161 6162 // C++ [temp.expl.spec]p6: 6163 // If a template, a member template or the member of a class template is 6164 // explicitly specialized then that specialization shall be declared 6165 // before the first use of that specialization that would cause an implicit 6166 // instantiation to take place, in every translation unit in which such a 6167 // use occurs; no diagnostic is required. 6168 assert(MSInfo && "Member specialization info missing?"); 6169 6170 bool HasNoEffect = false; 6171 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 6172 TSK_ExplicitSpecialization, 6173 Instantiation, 6174 MSInfo->getTemplateSpecializationKind(), 6175 MSInfo->getPointOfInstantiation(), 6176 HasNoEffect)) 6177 return true; 6178 6179 // Check the scope of this explicit specialization. 6180 if (CheckTemplateSpecializationScope(*this, 6181 InstantiatedFrom, 6182 Instantiation, Member->getLocation(), 6183 false)) 6184 return true; 6185 6186 // Note that this is an explicit instantiation of a member. 6187 // the original declaration to note that it is an explicit specialization 6188 // (if it was previously an implicit instantiation). This latter step 6189 // makes bookkeeping easier. 6190 if (isa<FunctionDecl>(Member)) { 6191 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 6192 if (InstantiationFunction->getTemplateSpecializationKind() == 6193 TSK_ImplicitInstantiation) { 6194 InstantiationFunction->setTemplateSpecializationKind( 6195 TSK_ExplicitSpecialization); 6196 InstantiationFunction->setLocation(Member->getLocation()); 6197 } 6198 6199 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 6200 cast<CXXMethodDecl>(InstantiatedFrom), 6201 TSK_ExplicitSpecialization); 6202 MarkUnusedFileScopedDecl(InstantiationFunction); 6203 } else if (isa<VarDecl>(Member)) { 6204 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 6205 if (InstantiationVar->getTemplateSpecializationKind() == 6206 TSK_ImplicitInstantiation) { 6207 InstantiationVar->setTemplateSpecializationKind( 6208 TSK_ExplicitSpecialization); 6209 InstantiationVar->setLocation(Member->getLocation()); 6210 } 6211 6212 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 6213 cast<VarDecl>(InstantiatedFrom), 6214 TSK_ExplicitSpecialization); 6215 MarkUnusedFileScopedDecl(InstantiationVar); 6216 } else if (isa<CXXRecordDecl>(Member)) { 6217 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 6218 if (InstantiationClass->getTemplateSpecializationKind() == 6219 TSK_ImplicitInstantiation) { 6220 InstantiationClass->setTemplateSpecializationKind( 6221 TSK_ExplicitSpecialization); 6222 InstantiationClass->setLocation(Member->getLocation()); 6223 } 6224 6225 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 6226 cast<CXXRecordDecl>(InstantiatedFrom), 6227 TSK_ExplicitSpecialization); 6228 } else { 6229 assert(isa<EnumDecl>(Member) && "Only member enums remain"); 6230 EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation); 6231 if (InstantiationEnum->getTemplateSpecializationKind() == 6232 TSK_ImplicitInstantiation) { 6233 InstantiationEnum->setTemplateSpecializationKind( 6234 TSK_ExplicitSpecialization); 6235 InstantiationEnum->setLocation(Member->getLocation()); 6236 } 6237 6238 cast<EnumDecl>(Member)->setInstantiationOfMemberEnum( 6239 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 6240 } 6241 6242 // Save the caller the trouble of having to figure out which declaration 6243 // this specialization matches. 6244 Previous.clear(); 6245 Previous.addDecl(Instantiation); 6246 return false; 6247} 6248 6249/// \brief Check the scope of an explicit instantiation. 6250/// 6251/// \returns true if a serious error occurs, false otherwise. 6252static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 6253 SourceLocation InstLoc, 6254 bool WasQualifiedName) { 6255 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 6256 DeclContext *CurContext = S.CurContext->getRedeclContext(); 6257 6258 if (CurContext->isRecord()) { 6259 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 6260 << D; 6261 return true; 6262 } 6263 6264 // C++11 [temp.explicit]p3: 6265 // An explicit instantiation shall appear in an enclosing namespace of its 6266 // template. If the name declared in the explicit instantiation is an 6267 // unqualified name, the explicit instantiation shall appear in the 6268 // namespace where its template is declared or, if that namespace is inline 6269 // (7.3.1), any namespace from its enclosing namespace set. 6270 // 6271 // This is DR275, which we do not retroactively apply to C++98/03. 6272 if (WasQualifiedName) { 6273 if (CurContext->Encloses(OrigContext)) 6274 return false; 6275 } else { 6276 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 6277 return false; 6278 } 6279 6280 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) { 6281 if (WasQualifiedName) 6282 S.Diag(InstLoc, 6283 S.getLangOpts().CPlusPlus11? 6284 diag::err_explicit_instantiation_out_of_scope : 6285 diag::warn_explicit_instantiation_out_of_scope_0x) 6286 << D << NS; 6287 else 6288 S.Diag(InstLoc, 6289 S.getLangOpts().CPlusPlus11? 6290 diag::err_explicit_instantiation_unqualified_wrong_namespace : 6291 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 6292 << D << NS; 6293 } else 6294 S.Diag(InstLoc, 6295 S.getLangOpts().CPlusPlus11? 6296 diag::err_explicit_instantiation_must_be_global : 6297 diag::warn_explicit_instantiation_must_be_global_0x) 6298 << D; 6299 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 6300 return false; 6301} 6302 6303/// \brief Determine whether the given scope specifier has a template-id in it. 6304static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 6305 if (!SS.isSet()) 6306 return false; 6307 6308 // C++11 [temp.explicit]p3: 6309 // If the explicit instantiation is for a member function, a member class 6310 // or a static data member of a class template specialization, the name of 6311 // the class template specialization in the qualified-id for the member 6312 // name shall be a simple-template-id. 6313 // 6314 // C++98 has the same restriction, just worded differently. 6315 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 6316 NNS; NNS = NNS->getPrefix()) 6317 if (const Type *T = NNS->getAsType()) 6318 if (isa<TemplateSpecializationType>(T)) 6319 return true; 6320 6321 return false; 6322} 6323 6324// Explicit instantiation of a class template specialization 6325DeclResult 6326Sema::ActOnExplicitInstantiation(Scope *S, 6327 SourceLocation ExternLoc, 6328 SourceLocation TemplateLoc, 6329 unsigned TagSpec, 6330 SourceLocation KWLoc, 6331 const CXXScopeSpec &SS, 6332 TemplateTy TemplateD, 6333 SourceLocation TemplateNameLoc, 6334 SourceLocation LAngleLoc, 6335 ASTTemplateArgsPtr TemplateArgsIn, 6336 SourceLocation RAngleLoc, 6337 AttributeList *Attr) { 6338 // Find the class template we're specializing 6339 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 6340 ClassTemplateDecl *ClassTemplate 6341 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 6342 6343 // Check that the specialization uses the same tag kind as the 6344 // original template. 6345 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 6346 assert(Kind != TTK_Enum && 6347 "Invalid enum tag in class template explicit instantiation!"); 6348 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 6349 Kind, /*isDefinition*/false, KWLoc, 6350 *ClassTemplate->getIdentifier())) { 6351 Diag(KWLoc, diag::err_use_with_wrong_tag) 6352 << ClassTemplate 6353 << FixItHint::CreateReplacement(KWLoc, 6354 ClassTemplate->getTemplatedDecl()->getKindName()); 6355 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 6356 diag::note_previous_use); 6357 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 6358 } 6359 6360 // C++0x [temp.explicit]p2: 6361 // There are two forms of explicit instantiation: an explicit instantiation 6362 // definition and an explicit instantiation declaration. An explicit 6363 // instantiation declaration begins with the extern keyword. [...] 6364 TemplateSpecializationKind TSK 6365 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6366 : TSK_ExplicitInstantiationDeclaration; 6367 6368 // Translate the parser's template argument list in our AST format. 6369 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 6370 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 6371 6372 // Check that the template argument list is well-formed for this 6373 // template. 6374 SmallVector<TemplateArgument, 4> Converted; 6375 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 6376 TemplateArgs, false, Converted)) 6377 return true; 6378 6379 // Find the class template specialization declaration that 6380 // corresponds to these arguments. 6381 void *InsertPos = 0; 6382 ClassTemplateSpecializationDecl *PrevDecl 6383 = ClassTemplate->findSpecialization(Converted.data(), 6384 Converted.size(), InsertPos); 6385 6386 TemplateSpecializationKind PrevDecl_TSK 6387 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 6388 6389 // C++0x [temp.explicit]p2: 6390 // [...] An explicit instantiation shall appear in an enclosing 6391 // namespace of its template. [...] 6392 // 6393 // This is C++ DR 275. 6394 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 6395 SS.isSet())) 6396 return true; 6397 6398 ClassTemplateSpecializationDecl *Specialization = 0; 6399 6400 bool HasNoEffect = false; 6401 if (PrevDecl) { 6402 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 6403 PrevDecl, PrevDecl_TSK, 6404 PrevDecl->getPointOfInstantiation(), 6405 HasNoEffect)) 6406 return PrevDecl; 6407 6408 // Even though HasNoEffect == true means that this explicit instantiation 6409 // has no effect on semantics, we go on to put its syntax in the AST. 6410 6411 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 6412 PrevDecl_TSK == TSK_Undeclared) { 6413 // Since the only prior class template specialization with these 6414 // arguments was referenced but not declared, reuse that 6415 // declaration node as our own, updating the source location 6416 // for the template name to reflect our new declaration. 6417 // (Other source locations will be updated later.) 6418 Specialization = PrevDecl; 6419 Specialization->setLocation(TemplateNameLoc); 6420 PrevDecl = 0; 6421 } 6422 } 6423 6424 if (!Specialization) { 6425 // Create a new class template specialization declaration node for 6426 // this explicit specialization. 6427 Specialization 6428 = ClassTemplateSpecializationDecl::Create(Context, Kind, 6429 ClassTemplate->getDeclContext(), 6430 KWLoc, TemplateNameLoc, 6431 ClassTemplate, 6432 Converted.data(), 6433 Converted.size(), 6434 PrevDecl); 6435 SetNestedNameSpecifier(Specialization, SS); 6436 6437 if (!HasNoEffect && !PrevDecl) { 6438 // Insert the new specialization. 6439 ClassTemplate->AddSpecialization(Specialization, InsertPos); 6440 } 6441 } 6442 6443 // Build the fully-sugared type for this explicit instantiation as 6444 // the user wrote in the explicit instantiation itself. This means 6445 // that we'll pretty-print the type retrieved from the 6446 // specialization's declaration the way that the user actually wrote 6447 // the explicit instantiation, rather than formatting the name based 6448 // on the "canonical" representation used to store the template 6449 // arguments in the specialization. 6450 TypeSourceInfo *WrittenTy 6451 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 6452 TemplateArgs, 6453 Context.getTypeDeclType(Specialization)); 6454 Specialization->setTypeAsWritten(WrittenTy); 6455 6456 // Set source locations for keywords. 6457 Specialization->setExternLoc(ExternLoc); 6458 Specialization->setTemplateKeywordLoc(TemplateLoc); 6459 6460 if (Attr) 6461 ProcessDeclAttributeList(S, Specialization, Attr); 6462 6463 // Add the explicit instantiation into its lexical context. However, 6464 // since explicit instantiations are never found by name lookup, we 6465 // just put it into the declaration context directly. 6466 Specialization->setLexicalDeclContext(CurContext); 6467 CurContext->addDecl(Specialization); 6468 6469 // Syntax is now OK, so return if it has no other effect on semantics. 6470 if (HasNoEffect) { 6471 // Set the template specialization kind. 6472 Specialization->setTemplateSpecializationKind(TSK); 6473 return Specialization; 6474 } 6475 6476 // C++ [temp.explicit]p3: 6477 // A definition of a class template or class member template 6478 // shall be in scope at the point of the explicit instantiation of 6479 // the class template or class member template. 6480 // 6481 // This check comes when we actually try to perform the 6482 // instantiation. 6483 ClassTemplateSpecializationDecl *Def 6484 = cast_or_null<ClassTemplateSpecializationDecl>( 6485 Specialization->getDefinition()); 6486 if (!Def) 6487 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 6488 else if (TSK == TSK_ExplicitInstantiationDefinition) { 6489 MarkVTableUsed(TemplateNameLoc, Specialization, true); 6490 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 6491 } 6492 6493 // Instantiate the members of this class template specialization. 6494 Def = cast_or_null<ClassTemplateSpecializationDecl>( 6495 Specialization->getDefinition()); 6496 if (Def) { 6497 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 6498 6499 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 6500 // TSK_ExplicitInstantiationDefinition 6501 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 6502 TSK == TSK_ExplicitInstantiationDefinition) 6503 Def->setTemplateSpecializationKind(TSK); 6504 6505 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 6506 } 6507 6508 // Set the template specialization kind. 6509 Specialization->setTemplateSpecializationKind(TSK); 6510 return Specialization; 6511} 6512 6513// Explicit instantiation of a member class of a class template. 6514DeclResult 6515Sema::ActOnExplicitInstantiation(Scope *S, 6516 SourceLocation ExternLoc, 6517 SourceLocation TemplateLoc, 6518 unsigned TagSpec, 6519 SourceLocation KWLoc, 6520 CXXScopeSpec &SS, 6521 IdentifierInfo *Name, 6522 SourceLocation NameLoc, 6523 AttributeList *Attr) { 6524 6525 bool Owned = false; 6526 bool IsDependent = false; 6527 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 6528 KWLoc, SS, Name, NameLoc, Attr, AS_none, 6529 /*ModulePrivateLoc=*/SourceLocation(), 6530 MultiTemplateParamsArg(), Owned, IsDependent, 6531 SourceLocation(), false, TypeResult()); 6532 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 6533 6534 if (!TagD) 6535 return true; 6536 6537 TagDecl *Tag = cast<TagDecl>(TagD); 6538 assert(!Tag->isEnum() && "shouldn't see enumerations here"); 6539 6540 if (Tag->isInvalidDecl()) 6541 return true; 6542 6543 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 6544 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 6545 if (!Pattern) { 6546 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 6547 << Context.getTypeDeclType(Record); 6548 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 6549 return true; 6550 } 6551 6552 // C++0x [temp.explicit]p2: 6553 // If the explicit instantiation is for a class or member class, the 6554 // elaborated-type-specifier in the declaration shall include a 6555 // simple-template-id. 6556 // 6557 // C++98 has the same restriction, just worded differently. 6558 if (!ScopeSpecifierHasTemplateId(SS)) 6559 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 6560 << Record << SS.getRange(); 6561 6562 // C++0x [temp.explicit]p2: 6563 // There are two forms of explicit instantiation: an explicit instantiation 6564 // definition and an explicit instantiation declaration. An explicit 6565 // instantiation declaration begins with the extern keyword. [...] 6566 TemplateSpecializationKind TSK 6567 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6568 : TSK_ExplicitInstantiationDeclaration; 6569 6570 // C++0x [temp.explicit]p2: 6571 // [...] An explicit instantiation shall appear in an enclosing 6572 // namespace of its template. [...] 6573 // 6574 // This is C++ DR 275. 6575 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 6576 6577 // Verify that it is okay to explicitly instantiate here. 6578 CXXRecordDecl *PrevDecl 6579 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl()); 6580 if (!PrevDecl && Record->getDefinition()) 6581 PrevDecl = Record; 6582 if (PrevDecl) { 6583 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 6584 bool HasNoEffect = false; 6585 assert(MSInfo && "No member specialization information?"); 6586 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 6587 PrevDecl, 6588 MSInfo->getTemplateSpecializationKind(), 6589 MSInfo->getPointOfInstantiation(), 6590 HasNoEffect)) 6591 return true; 6592 if (HasNoEffect) 6593 return TagD; 6594 } 6595 6596 CXXRecordDecl *RecordDef 6597 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 6598 if (!RecordDef) { 6599 // C++ [temp.explicit]p3: 6600 // A definition of a member class of a class template shall be in scope 6601 // at the point of an explicit instantiation of the member class. 6602 CXXRecordDecl *Def 6603 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 6604 if (!Def) { 6605 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 6606 << 0 << Record->getDeclName() << Record->getDeclContext(); 6607 Diag(Pattern->getLocation(), diag::note_forward_declaration) 6608 << Pattern; 6609 return true; 6610 } else { 6611 if (InstantiateClass(NameLoc, Record, Def, 6612 getTemplateInstantiationArgs(Record), 6613 TSK)) 6614 return true; 6615 6616 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 6617 if (!RecordDef) 6618 return true; 6619 } 6620 } 6621 6622 // Instantiate all of the members of the class. 6623 InstantiateClassMembers(NameLoc, RecordDef, 6624 getTemplateInstantiationArgs(Record), TSK); 6625 6626 if (TSK == TSK_ExplicitInstantiationDefinition) 6627 MarkVTableUsed(NameLoc, RecordDef, true); 6628 6629 // FIXME: We don't have any representation for explicit instantiations of 6630 // member classes. Such a representation is not needed for compilation, but it 6631 // should be available for clients that want to see all of the declarations in 6632 // the source code. 6633 return TagD; 6634} 6635 6636DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 6637 SourceLocation ExternLoc, 6638 SourceLocation TemplateLoc, 6639 Declarator &D) { 6640 // Explicit instantiations always require a name. 6641 // TODO: check if/when DNInfo should replace Name. 6642 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 6643 DeclarationName Name = NameInfo.getName(); 6644 if (!Name) { 6645 if (!D.isInvalidType()) 6646 Diag(D.getDeclSpec().getLocStart(), 6647 diag::err_explicit_instantiation_requires_name) 6648 << D.getDeclSpec().getSourceRange() 6649 << D.getSourceRange(); 6650 6651 return true; 6652 } 6653 6654 // The scope passed in may not be a decl scope. Zip up the scope tree until 6655 // we find one that is. 6656 while ((S->getFlags() & Scope::DeclScope) == 0 || 6657 (S->getFlags() & Scope::TemplateParamScope) != 0) 6658 S = S->getParent(); 6659 6660 // Determine the type of the declaration. 6661 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 6662 QualType R = T->getType(); 6663 if (R.isNull()) 6664 return true; 6665 6666 // C++ [dcl.stc]p1: 6667 // A storage-class-specifier shall not be specified in [...] an explicit 6668 // instantiation (14.7.2) directive. 6669 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 6670 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 6671 << Name; 6672 return true; 6673 } else if (D.getDeclSpec().getStorageClassSpec() 6674 != DeclSpec::SCS_unspecified) { 6675 // Complain about then remove the storage class specifier. 6676 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 6677 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6678 6679 D.getMutableDeclSpec().ClearStorageClassSpecs(); 6680 } 6681 6682 // C++0x [temp.explicit]p1: 6683 // [...] An explicit instantiation of a function template shall not use the 6684 // inline or constexpr specifiers. 6685 // Presumably, this also applies to member functions of class templates as 6686 // well. 6687 if (D.getDeclSpec().isInlineSpecified()) 6688 Diag(D.getDeclSpec().getInlineSpecLoc(), 6689 getLangOpts().CPlusPlus11 ? 6690 diag::err_explicit_instantiation_inline : 6691 diag::warn_explicit_instantiation_inline_0x) 6692 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 6693 if (D.getDeclSpec().isConstexprSpecified()) 6694 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is 6695 // not already specified. 6696 Diag(D.getDeclSpec().getConstexprSpecLoc(), 6697 diag::err_explicit_instantiation_constexpr); 6698 6699 // C++0x [temp.explicit]p2: 6700 // There are two forms of explicit instantiation: an explicit instantiation 6701 // definition and an explicit instantiation declaration. An explicit 6702 // instantiation declaration begins with the extern keyword. [...] 6703 TemplateSpecializationKind TSK 6704 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6705 : TSK_ExplicitInstantiationDeclaration; 6706 6707 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 6708 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 6709 6710 if (!R->isFunctionType()) { 6711 // C++ [temp.explicit]p1: 6712 // A [...] static data member of a class template can be explicitly 6713 // instantiated from the member definition associated with its class 6714 // template. 6715 if (Previous.isAmbiguous()) 6716 return true; 6717 6718 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 6719 if (!Prev || !Prev->isStaticDataMember()) { 6720 // We expect to see a data data member here. 6721 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 6722 << Name; 6723 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6724 P != PEnd; ++P) 6725 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 6726 return true; 6727 } 6728 6729 if (!Prev->getInstantiatedFromStaticDataMember()) { 6730 // FIXME: Check for explicit specialization? 6731 Diag(D.getIdentifierLoc(), 6732 diag::err_explicit_instantiation_data_member_not_instantiated) 6733 << Prev; 6734 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 6735 // FIXME: Can we provide a note showing where this was declared? 6736 return true; 6737 } 6738 6739 // C++0x [temp.explicit]p2: 6740 // If the explicit instantiation is for a member function, a member class 6741 // or a static data member of a class template specialization, the name of 6742 // the class template specialization in the qualified-id for the member 6743 // name shall be a simple-template-id. 6744 // 6745 // C++98 has the same restriction, just worded differently. 6746 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6747 Diag(D.getIdentifierLoc(), 6748 diag::ext_explicit_instantiation_without_qualified_id) 6749 << Prev << D.getCXXScopeSpec().getRange(); 6750 6751 // Check the scope of this explicit instantiation. 6752 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 6753 6754 // Verify that it is okay to explicitly instantiate here. 6755 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 6756 assert(MSInfo && "Missing static data member specialization info?"); 6757 bool HasNoEffect = false; 6758 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 6759 MSInfo->getTemplateSpecializationKind(), 6760 MSInfo->getPointOfInstantiation(), 6761 HasNoEffect)) 6762 return true; 6763 if (HasNoEffect) 6764 return (Decl*) 0; 6765 6766 // Instantiate static data member. 6767 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6768 if (TSK == TSK_ExplicitInstantiationDefinition) 6769 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev); 6770 6771 // FIXME: Create an ExplicitInstantiation node? 6772 return (Decl*) 0; 6773 } 6774 6775 // If the declarator is a template-id, translate the parser's template 6776 // argument list into our AST format. 6777 bool HasExplicitTemplateArgs = false; 6778 TemplateArgumentListInfo TemplateArgs; 6779 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 6780 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 6781 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 6782 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 6783 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 6784 TemplateId->NumArgs); 6785 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 6786 HasExplicitTemplateArgs = true; 6787 } 6788 6789 // C++ [temp.explicit]p1: 6790 // A [...] function [...] can be explicitly instantiated from its template. 6791 // A member function [...] of a class template can be explicitly 6792 // instantiated from the member definition associated with its class 6793 // template. 6794 UnresolvedSet<8> Matches; 6795 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6796 P != PEnd; ++P) { 6797 NamedDecl *Prev = *P; 6798 if (!HasExplicitTemplateArgs) { 6799 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 6800 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 6801 Matches.clear(); 6802 6803 Matches.addDecl(Method, P.getAccess()); 6804 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 6805 break; 6806 } 6807 } 6808 } 6809 6810 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 6811 if (!FunTmpl) 6812 continue; 6813 6814 TemplateDeductionInfo Info(D.getIdentifierLoc()); 6815 FunctionDecl *Specialization = 0; 6816 if (TemplateDeductionResult TDK 6817 = DeduceTemplateArguments(FunTmpl, 6818 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 6819 R, Specialization, Info)) { 6820 // FIXME: Keep track of almost-matches? 6821 (void)TDK; 6822 continue; 6823 } 6824 6825 Matches.addDecl(Specialization, P.getAccess()); 6826 } 6827 6828 // Find the most specialized function template specialization. 6829 UnresolvedSetIterator Result 6830 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0, 6831 D.getIdentifierLoc(), 6832 PDiag(diag::err_explicit_instantiation_not_known) << Name, 6833 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 6834 PDiag(diag::note_explicit_instantiation_candidate)); 6835 6836 if (Result == Matches.end()) 6837 return true; 6838 6839 // Ignore access control bits, we don't need them for redeclaration checking. 6840 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 6841 6842 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 6843 Diag(D.getIdentifierLoc(), 6844 diag::err_explicit_instantiation_member_function_not_instantiated) 6845 << Specialization 6846 << (Specialization->getTemplateSpecializationKind() == 6847 TSK_ExplicitSpecialization); 6848 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 6849 return true; 6850 } 6851 6852 FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); 6853 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 6854 PrevDecl = Specialization; 6855 6856 if (PrevDecl) { 6857 bool HasNoEffect = false; 6858 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 6859 PrevDecl, 6860 PrevDecl->getTemplateSpecializationKind(), 6861 PrevDecl->getPointOfInstantiation(), 6862 HasNoEffect)) 6863 return true; 6864 6865 // FIXME: We may still want to build some representation of this 6866 // explicit specialization. 6867 if (HasNoEffect) 6868 return (Decl*) 0; 6869 } 6870 6871 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6872 AttributeList *Attr = D.getDeclSpec().getAttributes().getList(); 6873 if (Attr) 6874 ProcessDeclAttributeList(S, Specialization, Attr); 6875 6876 if (TSK == TSK_ExplicitInstantiationDefinition) 6877 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 6878 6879 // C++0x [temp.explicit]p2: 6880 // If the explicit instantiation is for a member function, a member class 6881 // or a static data member of a class template specialization, the name of 6882 // the class template specialization in the qualified-id for the member 6883 // name shall be a simple-template-id. 6884 // 6885 // C++98 has the same restriction, just worded differently. 6886 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 6887 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 6888 D.getCXXScopeSpec().isSet() && 6889 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6890 Diag(D.getIdentifierLoc(), 6891 diag::ext_explicit_instantiation_without_qualified_id) 6892 << Specialization << D.getCXXScopeSpec().getRange(); 6893 6894 CheckExplicitInstantiationScope(*this, 6895 FunTmpl? (NamedDecl *)FunTmpl 6896 : Specialization->getInstantiatedFromMemberFunction(), 6897 D.getIdentifierLoc(), 6898 D.getCXXScopeSpec().isSet()); 6899 6900 // FIXME: Create some kind of ExplicitInstantiationDecl here. 6901 return (Decl*) 0; 6902} 6903 6904TypeResult 6905Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 6906 const CXXScopeSpec &SS, IdentifierInfo *Name, 6907 SourceLocation TagLoc, SourceLocation NameLoc) { 6908 // This has to hold, because SS is expected to be defined. 6909 assert(Name && "Expected a name in a dependent tag"); 6910 6911 NestedNameSpecifier *NNS 6912 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 6913 if (!NNS) 6914 return true; 6915 6916 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 6917 6918 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 6919 Diag(NameLoc, diag::err_dependent_tag_decl) 6920 << (TUK == TUK_Definition) << Kind << SS.getRange(); 6921 return true; 6922 } 6923 6924 // Create the resulting type. 6925 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 6926 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 6927 6928 // Create type-source location information for this type. 6929 TypeLocBuilder TLB; 6930 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 6931 TL.setElaboratedKeywordLoc(TagLoc); 6932 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6933 TL.setNameLoc(NameLoc); 6934 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 6935} 6936 6937TypeResult 6938Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 6939 const CXXScopeSpec &SS, const IdentifierInfo &II, 6940 SourceLocation IdLoc) { 6941 if (SS.isInvalid()) 6942 return true; 6943 6944 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 6945 Diag(TypenameLoc, 6946 getLangOpts().CPlusPlus11 ? 6947 diag::warn_cxx98_compat_typename_outside_of_template : 6948 diag::ext_typename_outside_of_template) 6949 << FixItHint::CreateRemoval(TypenameLoc); 6950 6951 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 6952 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, 6953 TypenameLoc, QualifierLoc, II, IdLoc); 6954 if (T.isNull()) 6955 return true; 6956 6957 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 6958 if (isa<DependentNameType>(T)) { 6959 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 6960 TL.setElaboratedKeywordLoc(TypenameLoc); 6961 TL.setQualifierLoc(QualifierLoc); 6962 TL.setNameLoc(IdLoc); 6963 } else { 6964 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>(); 6965 TL.setElaboratedKeywordLoc(TypenameLoc); 6966 TL.setQualifierLoc(QualifierLoc); 6967 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc); 6968 } 6969 6970 return CreateParsedType(T, TSI); 6971} 6972 6973TypeResult 6974Sema::ActOnTypenameType(Scope *S, 6975 SourceLocation TypenameLoc, 6976 const CXXScopeSpec &SS, 6977 SourceLocation TemplateKWLoc, 6978 TemplateTy TemplateIn, 6979 SourceLocation TemplateNameLoc, 6980 SourceLocation LAngleLoc, 6981 ASTTemplateArgsPtr TemplateArgsIn, 6982 SourceLocation RAngleLoc) { 6983 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 6984 Diag(TypenameLoc, 6985 getLangOpts().CPlusPlus11 ? 6986 diag::warn_cxx98_compat_typename_outside_of_template : 6987 diag::ext_typename_outside_of_template) 6988 << FixItHint::CreateRemoval(TypenameLoc); 6989 6990 // Translate the parser's template argument list in our AST format. 6991 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 6992 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 6993 6994 TemplateName Template = TemplateIn.get(); 6995 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 6996 // Construct a dependent template specialization type. 6997 assert(DTN && "dependent template has non-dependent name?"); 6998 assert(DTN->getQualifier() 6999 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 7000 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, 7001 DTN->getQualifier(), 7002 DTN->getIdentifier(), 7003 TemplateArgs); 7004 7005 // Create source-location information for this type. 7006 TypeLocBuilder Builder; 7007 DependentTemplateSpecializationTypeLoc SpecTL 7008 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 7009 SpecTL.setElaboratedKeywordLoc(TypenameLoc); 7010 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 7011 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 7012 SpecTL.setTemplateNameLoc(TemplateNameLoc); 7013 SpecTL.setLAngleLoc(LAngleLoc); 7014 SpecTL.setRAngleLoc(RAngleLoc); 7015 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 7016 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 7017 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 7018 } 7019 7020 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs); 7021 if (T.isNull()) 7022 return true; 7023 7024 // Provide source-location information for the template specialization type. 7025 TypeLocBuilder Builder; 7026 TemplateSpecializationTypeLoc SpecTL 7027 = Builder.push<TemplateSpecializationTypeLoc>(T); 7028 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 7029 SpecTL.setTemplateNameLoc(TemplateNameLoc); 7030 SpecTL.setLAngleLoc(LAngleLoc); 7031 SpecTL.setRAngleLoc(RAngleLoc); 7032 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 7033 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 7034 7035 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); 7036 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 7037 TL.setElaboratedKeywordLoc(TypenameLoc); 7038 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 7039 7040 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 7041 return CreateParsedType(T, TSI); 7042} 7043 7044 7045/// Determine whether this failed name lookup should be treated as being 7046/// disabled by a usage of std::enable_if. 7047static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II, 7048 SourceRange &CondRange) { 7049 // We must be looking for a ::type... 7050 if (!II.isStr("type")) 7051 return false; 7052 7053 // ... within an explicitly-written template specialization... 7054 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType()) 7055 return false; 7056 TypeLoc EnableIfTy = NNS.getTypeLoc(); 7057 TemplateSpecializationTypeLoc EnableIfTSTLoc = 7058 EnableIfTy.getAs<TemplateSpecializationTypeLoc>(); 7059 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0) 7060 return false; 7061 const TemplateSpecializationType *EnableIfTST = 7062 cast<TemplateSpecializationType>(EnableIfTSTLoc.getTypePtr()); 7063 7064 // ... which names a complete class template declaration... 7065 const TemplateDecl *EnableIfDecl = 7066 EnableIfTST->getTemplateName().getAsTemplateDecl(); 7067 if (!EnableIfDecl || EnableIfTST->isIncompleteType()) 7068 return false; 7069 7070 // ... called "enable_if". 7071 const IdentifierInfo *EnableIfII = 7072 EnableIfDecl->getDeclName().getAsIdentifierInfo(); 7073 if (!EnableIfII || !EnableIfII->isStr("enable_if")) 7074 return false; 7075 7076 // Assume the first template argument is the condition. 7077 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange(); 7078 return true; 7079} 7080 7081/// \brief Build the type that describes a C++ typename specifier, 7082/// e.g., "typename T::type". 7083QualType 7084Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 7085 SourceLocation KeywordLoc, 7086 NestedNameSpecifierLoc QualifierLoc, 7087 const IdentifierInfo &II, 7088 SourceLocation IILoc) { 7089 CXXScopeSpec SS; 7090 SS.Adopt(QualifierLoc); 7091 7092 DeclContext *Ctx = computeDeclContext(SS); 7093 if (!Ctx) { 7094 // If the nested-name-specifier is dependent and couldn't be 7095 // resolved to a type, build a typename type. 7096 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 7097 return Context.getDependentNameType(Keyword, 7098 QualifierLoc.getNestedNameSpecifier(), 7099 &II); 7100 } 7101 7102 // If the nested-name-specifier refers to the current instantiation, 7103 // the "typename" keyword itself is superfluous. In C++03, the 7104 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 7105 // allows such extraneous "typename" keywords, and we retroactively 7106 // apply this DR to C++03 code with only a warning. In any case we continue. 7107 7108 if (RequireCompleteDeclContext(SS, Ctx)) 7109 return QualType(); 7110 7111 DeclarationName Name(&II); 7112 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 7113 LookupQualifiedName(Result, Ctx); 7114 unsigned DiagID = 0; 7115 Decl *Referenced = 0; 7116 switch (Result.getResultKind()) { 7117 case LookupResult::NotFound: { 7118 // If we're looking up 'type' within a template named 'enable_if', produce 7119 // a more specific diagnostic. 7120 SourceRange CondRange; 7121 if (isEnableIf(QualifierLoc, II, CondRange)) { 7122 Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if) 7123 << Ctx << CondRange; 7124 return QualType(); 7125 } 7126 7127 DiagID = diag::err_typename_nested_not_found; 7128 break; 7129 } 7130 7131 case LookupResult::FoundUnresolvedValue: { 7132 // We found a using declaration that is a value. Most likely, the using 7133 // declaration itself is meant to have the 'typename' keyword. 7134 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 7135 IILoc); 7136 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 7137 << Name << Ctx << FullRange; 7138 if (UnresolvedUsingValueDecl *Using 7139 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 7140 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 7141 Diag(Loc, diag::note_using_value_decl_missing_typename) 7142 << FixItHint::CreateInsertion(Loc, "typename "); 7143 } 7144 } 7145 // Fall through to create a dependent typename type, from which we can recover 7146 // better. 7147 7148 case LookupResult::NotFoundInCurrentInstantiation: 7149 // Okay, it's a member of an unknown instantiation. 7150 return Context.getDependentNameType(Keyword, 7151 QualifierLoc.getNestedNameSpecifier(), 7152 &II); 7153 7154 case LookupResult::Found: 7155 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 7156 // We found a type. Build an ElaboratedType, since the 7157 // typename-specifier was just sugar. 7158 return Context.getElaboratedType(ETK_Typename, 7159 QualifierLoc.getNestedNameSpecifier(), 7160 Context.getTypeDeclType(Type)); 7161 } 7162 7163 DiagID = diag::err_typename_nested_not_type; 7164 Referenced = Result.getFoundDecl(); 7165 break; 7166 7167 case LookupResult::FoundOverloaded: 7168 DiagID = diag::err_typename_nested_not_type; 7169 Referenced = *Result.begin(); 7170 break; 7171 7172 case LookupResult::Ambiguous: 7173 return QualType(); 7174 } 7175 7176 // If we get here, it's because name lookup did not find a 7177 // type. Emit an appropriate diagnostic and return an error. 7178 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 7179 IILoc); 7180 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 7181 if (Referenced) 7182 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 7183 << Name; 7184 return QualType(); 7185} 7186 7187namespace { 7188 // See Sema::RebuildTypeInCurrentInstantiation 7189 class CurrentInstantiationRebuilder 7190 : public TreeTransform<CurrentInstantiationRebuilder> { 7191 SourceLocation Loc; 7192 DeclarationName Entity; 7193 7194 public: 7195 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 7196 7197 CurrentInstantiationRebuilder(Sema &SemaRef, 7198 SourceLocation Loc, 7199 DeclarationName Entity) 7200 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 7201 Loc(Loc), Entity(Entity) { } 7202 7203 /// \brief Determine whether the given type \p T has already been 7204 /// transformed. 7205 /// 7206 /// For the purposes of type reconstruction, a type has already been 7207 /// transformed if it is NULL or if it is not dependent. 7208 bool AlreadyTransformed(QualType T) { 7209 return T.isNull() || !T->isDependentType(); 7210 } 7211 7212 /// \brief Returns the location of the entity whose type is being 7213 /// rebuilt. 7214 SourceLocation getBaseLocation() { return Loc; } 7215 7216 /// \brief Returns the name of the entity whose type is being rebuilt. 7217 DeclarationName getBaseEntity() { return Entity; } 7218 7219 /// \brief Sets the "base" location and entity when that 7220 /// information is known based on another transformation. 7221 void setBase(SourceLocation Loc, DeclarationName Entity) { 7222 this->Loc = Loc; 7223 this->Entity = Entity; 7224 } 7225 7226 ExprResult TransformLambdaExpr(LambdaExpr *E) { 7227 // Lambdas never need to be transformed. 7228 return E; 7229 } 7230 }; 7231} 7232 7233/// \brief Rebuilds a type within the context of the current instantiation. 7234/// 7235/// The type \p T is part of the type of an out-of-line member definition of 7236/// a class template (or class template partial specialization) that was parsed 7237/// and constructed before we entered the scope of the class template (or 7238/// partial specialization thereof). This routine will rebuild that type now 7239/// that we have entered the declarator's scope, which may produce different 7240/// canonical types, e.g., 7241/// 7242/// \code 7243/// template<typename T> 7244/// struct X { 7245/// typedef T* pointer; 7246/// pointer data(); 7247/// }; 7248/// 7249/// template<typename T> 7250/// typename X<T>::pointer X<T>::data() { ... } 7251/// \endcode 7252/// 7253/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 7254/// since we do not know that we can look into X<T> when we parsed the type. 7255/// This function will rebuild the type, performing the lookup of "pointer" 7256/// in X<T> and returning an ElaboratedType whose canonical type is the same 7257/// as the canonical type of T*, allowing the return types of the out-of-line 7258/// definition and the declaration to match. 7259TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 7260 SourceLocation Loc, 7261 DeclarationName Name) { 7262 if (!T || !T->getType()->isDependentType()) 7263 return T; 7264 7265 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 7266 return Rebuilder.TransformType(T); 7267} 7268 7269ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 7270 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 7271 DeclarationName()); 7272 return Rebuilder.TransformExpr(E); 7273} 7274 7275bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 7276 if (SS.isInvalid()) 7277 return true; 7278 7279 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 7280 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 7281 DeclarationName()); 7282 NestedNameSpecifierLoc Rebuilt 7283 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 7284 if (!Rebuilt) 7285 return true; 7286 7287 SS.Adopt(Rebuilt); 7288 return false; 7289} 7290 7291/// \brief Rebuild the template parameters now that we know we're in a current 7292/// instantiation. 7293bool Sema::RebuildTemplateParamsInCurrentInstantiation( 7294 TemplateParameterList *Params) { 7295 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 7296 Decl *Param = Params->getParam(I); 7297 7298 // There is nothing to rebuild in a type parameter. 7299 if (isa<TemplateTypeParmDecl>(Param)) 7300 continue; 7301 7302 // Rebuild the template parameter list of a template template parameter. 7303 if (TemplateTemplateParmDecl *TTP 7304 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 7305 if (RebuildTemplateParamsInCurrentInstantiation( 7306 TTP->getTemplateParameters())) 7307 return true; 7308 7309 continue; 7310 } 7311 7312 // Rebuild the type of a non-type template parameter. 7313 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param); 7314 TypeSourceInfo *NewTSI 7315 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(), 7316 NTTP->getLocation(), 7317 NTTP->getDeclName()); 7318 if (!NewTSI) 7319 return true; 7320 7321 if (NewTSI != NTTP->getTypeSourceInfo()) { 7322 NTTP->setTypeSourceInfo(NewTSI); 7323 NTTP->setType(NewTSI->getType()); 7324 } 7325 } 7326 7327 return false; 7328} 7329 7330/// \brief Produces a formatted string that describes the binding of 7331/// template parameters to template arguments. 7332std::string 7333Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 7334 const TemplateArgumentList &Args) { 7335 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 7336} 7337 7338std::string 7339Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 7340 const TemplateArgument *Args, 7341 unsigned NumArgs) { 7342 SmallString<128> Str; 7343 llvm::raw_svector_ostream Out(Str); 7344 7345 if (!Params || Params->size() == 0 || NumArgs == 0) 7346 return std::string(); 7347 7348 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 7349 if (I >= NumArgs) 7350 break; 7351 7352 if (I == 0) 7353 Out << "[with "; 7354 else 7355 Out << ", "; 7356 7357 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 7358 Out << Id->getName(); 7359 } else { 7360 Out << '$' << I; 7361 } 7362 7363 Out << " = "; 7364 Args[I].print(getPrintingPolicy(), Out); 7365 } 7366 7367 Out << ']'; 7368 return Out.str(); 7369} 7370 7371void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) { 7372 if (!FD) 7373 return; 7374 FD->setLateTemplateParsed(Flag); 7375} 7376 7377bool Sema::IsInsideALocalClassWithinATemplateFunction() { 7378 DeclContext *DC = CurContext; 7379 7380 while (DC) { 7381 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 7382 const FunctionDecl *FD = RD->isLocalClass(); 7383 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 7384 } else if (DC->isTranslationUnit() || DC->isNamespace()) 7385 return false; 7386 7387 DC = DC->getParent(); 7388 } 7389 return false; 7390} 7391