SemaTemplate.cpp revision 67dd1d4df1b28973e12e0981129b2517d2033b66
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "Sema.h" 13#include "Lookup.h" 14#include "TreeTransform.h" 15#include "clang/AST/ASTContext.h" 16#include "clang/AST/Expr.h" 17#include "clang/AST/ExprCXX.h" 18#include "clang/AST/DeclTemplate.h" 19#include "clang/Parse/DeclSpec.h" 20#include "clang/Parse/Template.h" 21#include "clang/Basic/LangOptions.h" 22#include "clang/Basic/PartialDiagnostic.h" 23#include "llvm/ADT/StringExtras.h" 24using namespace clang; 25 26/// \brief Determine whether the declaration found is acceptable as the name 27/// of a template and, if so, return that template declaration. Otherwise, 28/// returns NULL. 29static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) { 30 if (!D) 31 return 0; 32 33 if (isa<TemplateDecl>(D)) 34 return D; 35 36 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 37 // C++ [temp.local]p1: 38 // Like normal (non-template) classes, class templates have an 39 // injected-class-name (Clause 9). The injected-class-name 40 // can be used with or without a template-argument-list. When 41 // it is used without a template-argument-list, it is 42 // equivalent to the injected-class-name followed by the 43 // template-parameters of the class template enclosed in 44 // <>. When it is used with a template-argument-list, it 45 // refers to the specified class template specialization, 46 // which could be the current specialization or another 47 // specialization. 48 if (Record->isInjectedClassName()) { 49 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 50 if (Record->getDescribedClassTemplate()) 51 return Record->getDescribedClassTemplate(); 52 53 if (ClassTemplateSpecializationDecl *Spec 54 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 55 return Spec->getSpecializedTemplate(); 56 } 57 58 return 0; 59 } 60 61 return 0; 62} 63 64static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) { 65 LookupResult::Filter filter = R.makeFilter(); 66 while (filter.hasNext()) { 67 NamedDecl *Orig = filter.next(); 68 NamedDecl *Repl = isAcceptableTemplateName(C, Orig->getUnderlyingDecl()); 69 if (!Repl) 70 filter.erase(); 71 else if (Repl != Orig) 72 filter.replace(Repl); 73 } 74 filter.done(); 75} 76 77TemplateNameKind Sema::isTemplateName(Scope *S, 78 const CXXScopeSpec &SS, 79 UnqualifiedId &Name, 80 TypeTy *ObjectTypePtr, 81 bool EnteringContext, 82 TemplateTy &TemplateResult) { 83 DeclarationName TName; 84 85 switch (Name.getKind()) { 86 case UnqualifiedId::IK_Identifier: 87 TName = DeclarationName(Name.Identifier); 88 break; 89 90 case UnqualifiedId::IK_OperatorFunctionId: 91 TName = Context.DeclarationNames.getCXXOperatorName( 92 Name.OperatorFunctionId.Operator); 93 break; 94 95 case UnqualifiedId::IK_LiteralOperatorId: 96 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 97 break; 98 99 default: 100 return TNK_Non_template; 101 } 102 103 QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr); 104 105 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 106 LookupOrdinaryName); 107 R.suppressDiagnostics(); 108 LookupTemplateName(R, S, SS, ObjectType, EnteringContext); 109 if (R.empty()) 110 return TNK_Non_template; 111 112 TemplateName Template; 113 TemplateNameKind TemplateKind; 114 115 unsigned ResultCount = R.end() - R.begin(); 116 if (ResultCount > 1) { 117 // We assume that we'll preserve the qualifier from a function 118 // template name in other ways. 119 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 120 TemplateKind = TNK_Function_template; 121 } else { 122 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 123 124 if (SS.isSet() && !SS.isInvalid()) { 125 NestedNameSpecifier *Qualifier 126 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 127 Template = Context.getQualifiedTemplateName(Qualifier, false, TD); 128 } else { 129 Template = TemplateName(TD); 130 } 131 132 if (isa<FunctionTemplateDecl>(TD)) 133 TemplateKind = TNK_Function_template; 134 else { 135 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD)); 136 TemplateKind = TNK_Type_template; 137 } 138 } 139 140 TemplateResult = TemplateTy::make(Template); 141 return TemplateKind; 142} 143 144void Sema::LookupTemplateName(LookupResult &Found, 145 Scope *S, const CXXScopeSpec &SS, 146 QualType ObjectType, 147 bool EnteringContext) { 148 // Determine where to perform name lookup 149 DeclContext *LookupCtx = 0; 150 bool isDependent = false; 151 if (!ObjectType.isNull()) { 152 // This nested-name-specifier occurs in a member access expression, e.g., 153 // x->B::f, and we are looking into the type of the object. 154 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 155 LookupCtx = computeDeclContext(ObjectType); 156 isDependent = ObjectType->isDependentType(); 157 assert((isDependent || !ObjectType->isIncompleteType()) && 158 "Caller should have completed object type"); 159 } else if (SS.isSet()) { 160 // This nested-name-specifier occurs after another nested-name-specifier, 161 // so long into the context associated with the prior nested-name-specifier. 162 LookupCtx = computeDeclContext(SS, EnteringContext); 163 isDependent = isDependentScopeSpecifier(SS); 164 165 // The declaration context must be complete. 166 if (LookupCtx && RequireCompleteDeclContext(SS)) 167 return; 168 } 169 170 bool ObjectTypeSearchedInScope = false; 171 if (LookupCtx) { 172 // Perform "qualified" name lookup into the declaration context we 173 // computed, which is either the type of the base of a member access 174 // expression or the declaration context associated with a prior 175 // nested-name-specifier. 176 LookupQualifiedName(Found, LookupCtx); 177 178 if (!ObjectType.isNull() && Found.empty()) { 179 // C++ [basic.lookup.classref]p1: 180 // In a class member access expression (5.2.5), if the . or -> token is 181 // immediately followed by an identifier followed by a <, the 182 // identifier must be looked up to determine whether the < is the 183 // beginning of a template argument list (14.2) or a less-than operator. 184 // The identifier is first looked up in the class of the object 185 // expression. If the identifier is not found, it is then looked up in 186 // the context of the entire postfix-expression and shall name a class 187 // or function template. 188 // 189 // FIXME: When we're instantiating a template, do we actually have to 190 // look in the scope of the template? Seems fishy... 191 if (S) LookupName(Found, S); 192 ObjectTypeSearchedInScope = true; 193 } 194 } else if (isDependent) { 195 // We cannot look into a dependent object type or 196 return; 197 } else { 198 // Perform unqualified name lookup in the current scope. 199 LookupName(Found, S); 200 } 201 202 // FIXME: Cope with ambiguous name-lookup results. 203 assert(!Found.isAmbiguous() && 204 "Cannot handle template name-lookup ambiguities"); 205 206 if (Found.empty()) { 207 // If we did not find any names, attempt to correct any typos. 208 DeclarationName Name = Found.getLookupName(); 209 if (CorrectTypo(Found, S, &SS, LookupCtx)) { 210 FilterAcceptableTemplateNames(Context, Found); 211 if (!Found.empty() && isa<TemplateDecl>(*Found.begin())) { 212 if (LookupCtx) 213 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 214 << Name << LookupCtx << Found.getLookupName() << SS.getRange() 215 << CodeModificationHint::CreateReplacement(Found.getNameLoc(), 216 Found.getLookupName().getAsString()); 217 else 218 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 219 << Name << Found.getLookupName() 220 << CodeModificationHint::CreateReplacement(Found.getNameLoc(), 221 Found.getLookupName().getAsString()); 222 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 223 Diag(Template->getLocation(), diag::note_previous_decl) 224 << Template->getDeclName(); 225 } else 226 Found.clear(); 227 } else { 228 Found.clear(); 229 } 230 } 231 232 FilterAcceptableTemplateNames(Context, Found); 233 if (Found.empty()) 234 return; 235 236 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 237 // C++ [basic.lookup.classref]p1: 238 // [...] If the lookup in the class of the object expression finds a 239 // template, the name is also looked up in the context of the entire 240 // postfix-expression and [...] 241 // 242 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 243 LookupOrdinaryName); 244 LookupName(FoundOuter, S); 245 FilterAcceptableTemplateNames(Context, FoundOuter); 246 // FIXME: Handle ambiguities in this lookup better 247 248 if (FoundOuter.empty()) { 249 // - if the name is not found, the name found in the class of the 250 // object expression is used, otherwise 251 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 252 // - if the name is found in the context of the entire 253 // postfix-expression and does not name a class template, the name 254 // found in the class of the object expression is used, otherwise 255 } else { 256 // - if the name found is a class template, it must refer to the same 257 // entity as the one found in the class of the object expression, 258 // otherwise the program is ill-formed. 259 if (!Found.isSingleResult() || 260 Found.getFoundDecl()->getCanonicalDecl() 261 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 262 Diag(Found.getNameLoc(), 263 diag::err_nested_name_member_ref_lookup_ambiguous) 264 << Found.getLookupName(); 265 Diag(Found.getRepresentativeDecl()->getLocation(), 266 diag::note_ambig_member_ref_object_type) 267 << ObjectType; 268 Diag(FoundOuter.getFoundDecl()->getLocation(), 269 diag::note_ambig_member_ref_scope); 270 271 // Recover by taking the template that we found in the object 272 // expression's type. 273 } 274 } 275 } 276} 277 278/// ActOnDependentIdExpression - Handle a dependent id-expression that 279/// was just parsed. This is only possible with an explicit scope 280/// specifier naming a dependent type. 281Sema::OwningExprResult 282Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 283 DeclarationName Name, 284 SourceLocation NameLoc, 285 bool isAddressOfOperand, 286 const TemplateArgumentListInfo *TemplateArgs) { 287 NestedNameSpecifier *Qualifier 288 = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 289 290 if (!isAddressOfOperand && 291 isa<CXXMethodDecl>(CurContext) && 292 cast<CXXMethodDecl>(CurContext)->isInstance()) { 293 QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context); 294 295 // Since the 'this' expression is synthesized, we don't need to 296 // perform the double-lookup check. 297 NamedDecl *FirstQualifierInScope = 0; 298 299 return Owned(CXXDependentScopeMemberExpr::Create(Context, 300 /*This*/ 0, ThisType, 301 /*IsArrow*/ true, 302 /*Op*/ SourceLocation(), 303 Qualifier, SS.getRange(), 304 FirstQualifierInScope, 305 Name, NameLoc, 306 TemplateArgs)); 307 } 308 309 return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs); 310} 311 312Sema::OwningExprResult 313Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 314 DeclarationName Name, 315 SourceLocation NameLoc, 316 const TemplateArgumentListInfo *TemplateArgs) { 317 return Owned(DependentScopeDeclRefExpr::Create(Context, 318 static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 319 SS.getRange(), 320 Name, NameLoc, 321 TemplateArgs)); 322} 323 324/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 325/// that the template parameter 'PrevDecl' is being shadowed by a new 326/// declaration at location Loc. Returns true to indicate that this is 327/// an error, and false otherwise. 328bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 329 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 330 331 // Microsoft Visual C++ permits template parameters to be shadowed. 332 if (getLangOptions().Microsoft) 333 return false; 334 335 // C++ [temp.local]p4: 336 // A template-parameter shall not be redeclared within its 337 // scope (including nested scopes). 338 Diag(Loc, diag::err_template_param_shadow) 339 << cast<NamedDecl>(PrevDecl)->getDeclName(); 340 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 341 return true; 342} 343 344/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 345/// the parameter D to reference the templated declaration and return a pointer 346/// to the template declaration. Otherwise, do nothing to D and return null. 347TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) { 348 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) { 349 D = DeclPtrTy::make(Temp->getTemplatedDecl()); 350 return Temp; 351 } 352 return 0; 353} 354 355static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 356 const ParsedTemplateArgument &Arg) { 357 358 switch (Arg.getKind()) { 359 case ParsedTemplateArgument::Type: { 360 TypeSourceInfo *DI; 361 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 362 if (!DI) 363 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 364 return TemplateArgumentLoc(TemplateArgument(T), DI); 365 } 366 367 case ParsedTemplateArgument::NonType: { 368 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 369 return TemplateArgumentLoc(TemplateArgument(E), E); 370 } 371 372 case ParsedTemplateArgument::Template: { 373 TemplateName Template 374 = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get()); 375 return TemplateArgumentLoc(TemplateArgument(Template), 376 Arg.getScopeSpec().getRange(), 377 Arg.getLocation()); 378 } 379 } 380 381 llvm_unreachable("Unhandled parsed template argument"); 382 return TemplateArgumentLoc(); 383} 384 385/// \brief Translates template arguments as provided by the parser 386/// into template arguments used by semantic analysis. 387void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 388 TemplateArgumentListInfo &TemplateArgs) { 389 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 390 TemplateArgs.addArgument(translateTemplateArgument(*this, 391 TemplateArgsIn[I])); 392} 393 394/// ActOnTypeParameter - Called when a C++ template type parameter 395/// (e.g., "typename T") has been parsed. Typename specifies whether 396/// the keyword "typename" was used to declare the type parameter 397/// (otherwise, "class" was used), and KeyLoc is the location of the 398/// "class" or "typename" keyword. ParamName is the name of the 399/// parameter (NULL indicates an unnamed template parameter) and 400/// ParamName is the location of the parameter name (if any). 401/// If the type parameter has a default argument, it will be added 402/// later via ActOnTypeParameterDefault. 403Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 404 SourceLocation EllipsisLoc, 405 SourceLocation KeyLoc, 406 IdentifierInfo *ParamName, 407 SourceLocation ParamNameLoc, 408 unsigned Depth, unsigned Position) { 409 assert(S->isTemplateParamScope() && 410 "Template type parameter not in template parameter scope!"); 411 bool Invalid = false; 412 413 if (ParamName) { 414 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName); 415 if (PrevDecl && PrevDecl->isTemplateParameter()) 416 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 417 PrevDecl); 418 } 419 420 SourceLocation Loc = ParamNameLoc; 421 if (!ParamName) 422 Loc = KeyLoc; 423 424 TemplateTypeParmDecl *Param 425 = TemplateTypeParmDecl::Create(Context, CurContext, Loc, 426 Depth, Position, ParamName, Typename, 427 Ellipsis); 428 if (Invalid) 429 Param->setInvalidDecl(); 430 431 if (ParamName) { 432 // Add the template parameter into the current scope. 433 S->AddDecl(DeclPtrTy::make(Param)); 434 IdResolver.AddDecl(Param); 435 } 436 437 return DeclPtrTy::make(Param); 438} 439 440/// ActOnTypeParameterDefault - Adds a default argument (the type 441/// Default) to the given template type parameter (TypeParam). 442void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam, 443 SourceLocation EqualLoc, 444 SourceLocation DefaultLoc, 445 TypeTy *DefaultT) { 446 TemplateTypeParmDecl *Parm 447 = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>()); 448 449 TypeSourceInfo *DefaultTInfo; 450 GetTypeFromParser(DefaultT, &DefaultTInfo); 451 452 assert(DefaultTInfo && "expected source information for type"); 453 454 // C++0x [temp.param]p9: 455 // A default template-argument may be specified for any kind of 456 // template-parameter that is not a template parameter pack. 457 if (Parm->isParameterPack()) { 458 Diag(DefaultLoc, diag::err_template_param_pack_default_arg); 459 return; 460 } 461 462 // C++ [temp.param]p14: 463 // A template-parameter shall not be used in its own default argument. 464 // FIXME: Implement this check! Needs a recursive walk over the types. 465 466 // Check the template argument itself. 467 if (CheckTemplateArgument(Parm, DefaultTInfo)) { 468 Parm->setInvalidDecl(); 469 return; 470 } 471 472 Parm->setDefaultArgument(DefaultTInfo, false); 473} 474 475/// \brief Check that the type of a non-type template parameter is 476/// well-formed. 477/// 478/// \returns the (possibly-promoted) parameter type if valid; 479/// otherwise, produces a diagnostic and returns a NULL type. 480QualType 481Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 482 // C++ [temp.param]p4: 483 // 484 // A non-type template-parameter shall have one of the following 485 // (optionally cv-qualified) types: 486 // 487 // -- integral or enumeration type, 488 if (T->isIntegralType() || T->isEnumeralType() || 489 // -- pointer to object or pointer to function, 490 (T->isPointerType() && 491 (T->getAs<PointerType>()->getPointeeType()->isObjectType() || 492 T->getAs<PointerType>()->getPointeeType()->isFunctionType())) || 493 // -- reference to object or reference to function, 494 T->isReferenceType() || 495 // -- pointer to member. 496 T->isMemberPointerType() || 497 // If T is a dependent type, we can't do the check now, so we 498 // assume that it is well-formed. 499 T->isDependentType()) 500 return T; 501 // C++ [temp.param]p8: 502 // 503 // A non-type template-parameter of type "array of T" or 504 // "function returning T" is adjusted to be of type "pointer to 505 // T" or "pointer to function returning T", respectively. 506 else if (T->isArrayType()) 507 // FIXME: Keep the type prior to promotion? 508 return Context.getArrayDecayedType(T); 509 else if (T->isFunctionType()) 510 // FIXME: Keep the type prior to promotion? 511 return Context.getPointerType(T); 512 513 Diag(Loc, diag::err_template_nontype_parm_bad_type) 514 << T; 515 516 return QualType(); 517} 518 519/// ActOnNonTypeTemplateParameter - Called when a C++ non-type 520/// template parameter (e.g., "int Size" in "template<int Size> 521/// class Array") has been parsed. S is the current scope and D is 522/// the parsed declarator. 523Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 524 unsigned Depth, 525 unsigned Position) { 526 TypeSourceInfo *TInfo = 0; 527 QualType T = GetTypeForDeclarator(D, S, &TInfo); 528 529 assert(S->isTemplateParamScope() && 530 "Non-type template parameter not in template parameter scope!"); 531 bool Invalid = false; 532 533 IdentifierInfo *ParamName = D.getIdentifier(); 534 if (ParamName) { 535 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName); 536 if (PrevDecl && PrevDecl->isTemplateParameter()) 537 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 538 PrevDecl); 539 } 540 541 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 542 if (T.isNull()) { 543 T = Context.IntTy; // Recover with an 'int' type. 544 Invalid = true; 545 } 546 547 NonTypeTemplateParmDecl *Param 548 = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(), 549 Depth, Position, ParamName, T, TInfo); 550 if (Invalid) 551 Param->setInvalidDecl(); 552 553 if (D.getIdentifier()) { 554 // Add the template parameter into the current scope. 555 S->AddDecl(DeclPtrTy::make(Param)); 556 IdResolver.AddDecl(Param); 557 } 558 return DeclPtrTy::make(Param); 559} 560 561/// \brief Adds a default argument to the given non-type template 562/// parameter. 563void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD, 564 SourceLocation EqualLoc, 565 ExprArg DefaultE) { 566 NonTypeTemplateParmDecl *TemplateParm 567 = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 568 Expr *Default = static_cast<Expr *>(DefaultE.get()); 569 570 // C++ [temp.param]p14: 571 // A template-parameter shall not be used in its own default argument. 572 // FIXME: Implement this check! Needs a recursive walk over the types. 573 574 // Check the well-formedness of the default template argument. 575 TemplateArgument Converted; 576 if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default, 577 Converted)) { 578 TemplateParm->setInvalidDecl(); 579 return; 580 } 581 582 TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>()); 583} 584 585 586/// ActOnTemplateTemplateParameter - Called when a C++ template template 587/// parameter (e.g. T in template <template <typename> class T> class array) 588/// has been parsed. S is the current scope. 589Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S, 590 SourceLocation TmpLoc, 591 TemplateParamsTy *Params, 592 IdentifierInfo *Name, 593 SourceLocation NameLoc, 594 unsigned Depth, 595 unsigned Position) { 596 assert(S->isTemplateParamScope() && 597 "Template template parameter not in template parameter scope!"); 598 599 // Construct the parameter object. 600 TemplateTemplateParmDecl *Param = 601 TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth, 602 Position, Name, 603 (TemplateParameterList*)Params); 604 605 // Make sure the parameter is valid. 606 // FIXME: Decl object is not currently invalidated anywhere so this doesn't 607 // do anything yet. However, if the template parameter list or (eventual) 608 // default value is ever invalidated, that will propagate here. 609 bool Invalid = false; 610 if (Invalid) { 611 Param->setInvalidDecl(); 612 } 613 614 // If the tt-param has a name, then link the identifier into the scope 615 // and lookup mechanisms. 616 if (Name) { 617 S->AddDecl(DeclPtrTy::make(Param)); 618 IdResolver.AddDecl(Param); 619 } 620 621 return DeclPtrTy::make(Param); 622} 623 624/// \brief Adds a default argument to the given template template 625/// parameter. 626void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD, 627 SourceLocation EqualLoc, 628 const ParsedTemplateArgument &Default) { 629 TemplateTemplateParmDecl *TemplateParm 630 = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 631 632 // C++ [temp.param]p14: 633 // A template-parameter shall not be used in its own default argument. 634 // FIXME: Implement this check! Needs a recursive walk over the types. 635 636 // Check only that we have a template template argument. We don't want to 637 // try to check well-formedness now, because our template template parameter 638 // might have dependent types in its template parameters, which we wouldn't 639 // be able to match now. 640 // 641 // If none of the template template parameter's template arguments mention 642 // other template parameters, we could actually perform more checking here. 643 // However, it isn't worth doing. 644 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 645 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 646 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 647 << DefaultArg.getSourceRange(); 648 return; 649 } 650 651 TemplateParm->setDefaultArgument(DefaultArg); 652} 653 654/// ActOnTemplateParameterList - Builds a TemplateParameterList that 655/// contains the template parameters in Params/NumParams. 656Sema::TemplateParamsTy * 657Sema::ActOnTemplateParameterList(unsigned Depth, 658 SourceLocation ExportLoc, 659 SourceLocation TemplateLoc, 660 SourceLocation LAngleLoc, 661 DeclPtrTy *Params, unsigned NumParams, 662 SourceLocation RAngleLoc) { 663 if (ExportLoc.isValid()) 664 Diag(ExportLoc, diag::warn_template_export_unsupported); 665 666 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 667 (NamedDecl**)Params, NumParams, 668 RAngleLoc); 669} 670 671Sema::DeclResult 672Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 673 SourceLocation KWLoc, const CXXScopeSpec &SS, 674 IdentifierInfo *Name, SourceLocation NameLoc, 675 AttributeList *Attr, 676 TemplateParameterList *TemplateParams, 677 AccessSpecifier AS) { 678 assert(TemplateParams && TemplateParams->size() > 0 && 679 "No template parameters"); 680 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 681 bool Invalid = false; 682 683 // Check that we can declare a template here. 684 if (CheckTemplateDeclScope(S, TemplateParams)) 685 return true; 686 687 TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec); 688 assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type"); 689 690 // There is no such thing as an unnamed class template. 691 if (!Name) { 692 Diag(KWLoc, diag::err_template_unnamed_class); 693 return true; 694 } 695 696 // Find any previous declaration with this name. 697 DeclContext *SemanticContext; 698 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 699 ForRedeclaration); 700 if (SS.isNotEmpty() && !SS.isInvalid()) { 701 if (RequireCompleteDeclContext(SS)) 702 return true; 703 704 SemanticContext = computeDeclContext(SS, true); 705 if (!SemanticContext) { 706 // FIXME: Produce a reasonable diagnostic here 707 return true; 708 } 709 710 LookupQualifiedName(Previous, SemanticContext); 711 } else { 712 SemanticContext = CurContext; 713 LookupName(Previous, S); 714 } 715 716 assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?"); 717 NamedDecl *PrevDecl = 0; 718 if (Previous.begin() != Previous.end()) 719 PrevDecl = *Previous.begin(); 720 721 // If there is a previous declaration with the same name, check 722 // whether this is a valid redeclaration. 723 ClassTemplateDecl *PrevClassTemplate 724 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 725 726 // We may have found the injected-class-name of a class template, 727 // class template partial specialization, or class template specialization. 728 // In these cases, grab the template that is being defined or specialized. 729 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 730 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 731 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 732 PrevClassTemplate 733 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 734 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 735 PrevClassTemplate 736 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 737 ->getSpecializedTemplate(); 738 } 739 } 740 741 if (TUK == TUK_Friend) { 742 // C++ [namespace.memdef]p3: 743 // [...] When looking for a prior declaration of a class or a function 744 // declared as a friend, and when the name of the friend class or 745 // function is neither a qualified name nor a template-id, scopes outside 746 // the innermost enclosing namespace scope are not considered. 747 DeclContext *OutermostContext = CurContext; 748 while (!OutermostContext->isFileContext()) 749 OutermostContext = OutermostContext->getLookupParent(); 750 751 if (PrevDecl && 752 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 753 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 754 SemanticContext = PrevDecl->getDeclContext(); 755 } else { 756 // Declarations in outer scopes don't matter. However, the outermost 757 // context we computed is the semantic context for our new 758 // declaration. 759 PrevDecl = PrevClassTemplate = 0; 760 SemanticContext = OutermostContext; 761 } 762 763 if (CurContext->isDependentContext()) { 764 // If this is a dependent context, we don't want to link the friend 765 // class template to the template in scope, because that would perform 766 // checking of the template parameter lists that can't be performed 767 // until the outer context is instantiated. 768 PrevDecl = PrevClassTemplate = 0; 769 } 770 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 771 PrevDecl = PrevClassTemplate = 0; 772 773 if (PrevClassTemplate) { 774 // Ensure that the template parameter lists are compatible. 775 if (!TemplateParameterListsAreEqual(TemplateParams, 776 PrevClassTemplate->getTemplateParameters(), 777 /*Complain=*/true, 778 TPL_TemplateMatch)) 779 return true; 780 781 // C++ [temp.class]p4: 782 // In a redeclaration, partial specialization, explicit 783 // specialization or explicit instantiation of a class template, 784 // the class-key shall agree in kind with the original class 785 // template declaration (7.1.5.3). 786 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 787 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 788 Diag(KWLoc, diag::err_use_with_wrong_tag) 789 << Name 790 << CodeModificationHint::CreateReplacement(KWLoc, 791 PrevRecordDecl->getKindName()); 792 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 793 Kind = PrevRecordDecl->getTagKind(); 794 } 795 796 // Check for redefinition of this class template. 797 if (TUK == TUK_Definition) { 798 if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) { 799 Diag(NameLoc, diag::err_redefinition) << Name; 800 Diag(Def->getLocation(), diag::note_previous_definition); 801 // FIXME: Would it make sense to try to "forget" the previous 802 // definition, as part of error recovery? 803 return true; 804 } 805 } 806 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 807 // Maybe we will complain about the shadowed template parameter. 808 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 809 // Just pretend that we didn't see the previous declaration. 810 PrevDecl = 0; 811 } else if (PrevDecl) { 812 // C++ [temp]p5: 813 // A class template shall not have the same name as any other 814 // template, class, function, object, enumeration, enumerator, 815 // namespace, or type in the same scope (3.3), except as specified 816 // in (14.5.4). 817 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 818 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 819 return true; 820 } 821 822 // Check the template parameter list of this declaration, possibly 823 // merging in the template parameter list from the previous class 824 // template declaration. 825 if (CheckTemplateParameterList(TemplateParams, 826 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 827 TPC_ClassTemplate)) 828 Invalid = true; 829 830 // FIXME: If we had a scope specifier, we better have a previous template 831 // declaration! 832 833 CXXRecordDecl *NewClass = 834 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 835 PrevClassTemplate? 836 PrevClassTemplate->getTemplatedDecl() : 0, 837 /*DelayTypeCreation=*/true); 838 839 ClassTemplateDecl *NewTemplate 840 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 841 DeclarationName(Name), TemplateParams, 842 NewClass, PrevClassTemplate); 843 NewClass->setDescribedClassTemplate(NewTemplate); 844 845 // Build the type for the class template declaration now. 846 QualType T = 847 Context.getTypeDeclType(NewClass, 848 PrevClassTemplate? 849 PrevClassTemplate->getTemplatedDecl() : 0); 850 assert(T->isDependentType() && "Class template type is not dependent?"); 851 (void)T; 852 853 // If we are providing an explicit specialization of a member that is a 854 // class template, make a note of that. 855 if (PrevClassTemplate && 856 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 857 PrevClassTemplate->setMemberSpecialization(); 858 859 // Set the access specifier. 860 if (!Invalid && TUK != TUK_Friend) 861 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 862 863 // Set the lexical context of these templates 864 NewClass->setLexicalDeclContext(CurContext); 865 NewTemplate->setLexicalDeclContext(CurContext); 866 867 if (TUK == TUK_Definition) 868 NewClass->startDefinition(); 869 870 if (Attr) 871 ProcessDeclAttributeList(S, NewClass, Attr); 872 873 if (TUK != TUK_Friend) 874 PushOnScopeChains(NewTemplate, S); 875 else { 876 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 877 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 878 NewClass->setAccess(PrevClassTemplate->getAccess()); 879 } 880 881 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 882 PrevClassTemplate != NULL); 883 884 // Friend templates are visible in fairly strange ways. 885 if (!CurContext->isDependentContext()) { 886 DeclContext *DC = SemanticContext->getLookupContext(); 887 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 888 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 889 PushOnScopeChains(NewTemplate, EnclosingScope, 890 /* AddToContext = */ false); 891 } 892 893 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 894 NewClass->getLocation(), 895 NewTemplate, 896 /*FIXME:*/NewClass->getLocation()); 897 Friend->setAccess(AS_public); 898 CurContext->addDecl(Friend); 899 } 900 901 if (Invalid) { 902 NewTemplate->setInvalidDecl(); 903 NewClass->setInvalidDecl(); 904 } 905 return DeclPtrTy::make(NewTemplate); 906} 907 908/// \brief Diagnose the presence of a default template argument on a 909/// template parameter, which is ill-formed in certain contexts. 910/// 911/// \returns true if the default template argument should be dropped. 912static bool DiagnoseDefaultTemplateArgument(Sema &S, 913 Sema::TemplateParamListContext TPC, 914 SourceLocation ParamLoc, 915 SourceRange DefArgRange) { 916 switch (TPC) { 917 case Sema::TPC_ClassTemplate: 918 return false; 919 920 case Sema::TPC_FunctionTemplate: 921 // C++ [temp.param]p9: 922 // A default template-argument shall not be specified in a 923 // function template declaration or a function template 924 // definition [...] 925 // (This sentence is not in C++0x, per DR226). 926 if (!S.getLangOptions().CPlusPlus0x) 927 S.Diag(ParamLoc, 928 diag::err_template_parameter_default_in_function_template) 929 << DefArgRange; 930 return false; 931 932 case Sema::TPC_ClassTemplateMember: 933 // C++0x [temp.param]p9: 934 // A default template-argument shall not be specified in the 935 // template-parameter-lists of the definition of a member of a 936 // class template that appears outside of the member's class. 937 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 938 << DefArgRange; 939 return true; 940 941 case Sema::TPC_FriendFunctionTemplate: 942 // C++ [temp.param]p9: 943 // A default template-argument shall not be specified in a 944 // friend template declaration. 945 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 946 << DefArgRange; 947 return true; 948 949 // FIXME: C++0x [temp.param]p9 allows default template-arguments 950 // for friend function templates if there is only a single 951 // declaration (and it is a definition). Strange! 952 } 953 954 return false; 955} 956 957/// \brief Checks the validity of a template parameter list, possibly 958/// considering the template parameter list from a previous 959/// declaration. 960/// 961/// If an "old" template parameter list is provided, it must be 962/// equivalent (per TemplateParameterListsAreEqual) to the "new" 963/// template parameter list. 964/// 965/// \param NewParams Template parameter list for a new template 966/// declaration. This template parameter list will be updated with any 967/// default arguments that are carried through from the previous 968/// template parameter list. 969/// 970/// \param OldParams If provided, template parameter list from a 971/// previous declaration of the same template. Default template 972/// arguments will be merged from the old template parameter list to 973/// the new template parameter list. 974/// 975/// \param TPC Describes the context in which we are checking the given 976/// template parameter list. 977/// 978/// \returns true if an error occurred, false otherwise. 979bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 980 TemplateParameterList *OldParams, 981 TemplateParamListContext TPC) { 982 bool Invalid = false; 983 984 // C++ [temp.param]p10: 985 // The set of default template-arguments available for use with a 986 // template declaration or definition is obtained by merging the 987 // default arguments from the definition (if in scope) and all 988 // declarations in scope in the same way default function 989 // arguments are (8.3.6). 990 bool SawDefaultArgument = false; 991 SourceLocation PreviousDefaultArgLoc; 992 993 bool SawParameterPack = false; 994 SourceLocation ParameterPackLoc; 995 996 // Dummy initialization to avoid warnings. 997 TemplateParameterList::iterator OldParam = NewParams->end(); 998 if (OldParams) 999 OldParam = OldParams->begin(); 1000 1001 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1002 NewParamEnd = NewParams->end(); 1003 NewParam != NewParamEnd; ++NewParam) { 1004 // Variables used to diagnose redundant default arguments 1005 bool RedundantDefaultArg = false; 1006 SourceLocation OldDefaultLoc; 1007 SourceLocation NewDefaultLoc; 1008 1009 // Variables used to diagnose missing default arguments 1010 bool MissingDefaultArg = false; 1011 1012 // C++0x [temp.param]p11: 1013 // If a template parameter of a class template is a template parameter pack, 1014 // it must be the last template parameter. 1015 if (SawParameterPack) { 1016 Diag(ParameterPackLoc, 1017 diag::err_template_param_pack_must_be_last_template_parameter); 1018 Invalid = true; 1019 } 1020 1021 if (TemplateTypeParmDecl *NewTypeParm 1022 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1023 // Check the presence of a default argument here. 1024 if (NewTypeParm->hasDefaultArgument() && 1025 DiagnoseDefaultTemplateArgument(*this, TPC, 1026 NewTypeParm->getLocation(), 1027 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1028 .getFullSourceRange())) 1029 NewTypeParm->removeDefaultArgument(); 1030 1031 // Merge default arguments for template type parameters. 1032 TemplateTypeParmDecl *OldTypeParm 1033 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1034 1035 if (NewTypeParm->isParameterPack()) { 1036 assert(!NewTypeParm->hasDefaultArgument() && 1037 "Parameter packs can't have a default argument!"); 1038 SawParameterPack = true; 1039 ParameterPackLoc = NewTypeParm->getLocation(); 1040 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1041 NewTypeParm->hasDefaultArgument()) { 1042 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1043 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1044 SawDefaultArgument = true; 1045 RedundantDefaultArg = true; 1046 PreviousDefaultArgLoc = NewDefaultLoc; 1047 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1048 // Merge the default argument from the old declaration to the 1049 // new declaration. 1050 SawDefaultArgument = true; 1051 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1052 true); 1053 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1054 } else if (NewTypeParm->hasDefaultArgument()) { 1055 SawDefaultArgument = true; 1056 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1057 } else if (SawDefaultArgument) 1058 MissingDefaultArg = true; 1059 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1060 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1061 // Check the presence of a default argument here. 1062 if (NewNonTypeParm->hasDefaultArgument() && 1063 DiagnoseDefaultTemplateArgument(*this, TPC, 1064 NewNonTypeParm->getLocation(), 1065 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1066 NewNonTypeParm->getDefaultArgument()->Destroy(Context); 1067 NewNonTypeParm->setDefaultArgument(0); 1068 } 1069 1070 // Merge default arguments for non-type template parameters 1071 NonTypeTemplateParmDecl *OldNonTypeParm 1072 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1073 if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1074 NewNonTypeParm->hasDefaultArgument()) { 1075 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1076 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1077 SawDefaultArgument = true; 1078 RedundantDefaultArg = true; 1079 PreviousDefaultArgLoc = NewDefaultLoc; 1080 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1081 // Merge the default argument from the old declaration to the 1082 // new declaration. 1083 SawDefaultArgument = true; 1084 // FIXME: We need to create a new kind of "default argument" 1085 // expression that points to a previous template template 1086 // parameter. 1087 NewNonTypeParm->setDefaultArgument( 1088 OldNonTypeParm->getDefaultArgument()); 1089 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1090 } else if (NewNonTypeParm->hasDefaultArgument()) { 1091 SawDefaultArgument = true; 1092 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1093 } else if (SawDefaultArgument) 1094 MissingDefaultArg = true; 1095 } else { 1096 // Check the presence of a default argument here. 1097 TemplateTemplateParmDecl *NewTemplateParm 1098 = cast<TemplateTemplateParmDecl>(*NewParam); 1099 if (NewTemplateParm->hasDefaultArgument() && 1100 DiagnoseDefaultTemplateArgument(*this, TPC, 1101 NewTemplateParm->getLocation(), 1102 NewTemplateParm->getDefaultArgument().getSourceRange())) 1103 NewTemplateParm->setDefaultArgument(TemplateArgumentLoc()); 1104 1105 // Merge default arguments for template template parameters 1106 TemplateTemplateParmDecl *OldTemplateParm 1107 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1108 if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1109 NewTemplateParm->hasDefaultArgument()) { 1110 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1111 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1112 SawDefaultArgument = true; 1113 RedundantDefaultArg = true; 1114 PreviousDefaultArgLoc = NewDefaultLoc; 1115 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1116 // Merge the default argument from the old declaration to the 1117 // new declaration. 1118 SawDefaultArgument = true; 1119 // FIXME: We need to create a new kind of "default argument" expression 1120 // that points to a previous template template parameter. 1121 NewTemplateParm->setDefaultArgument( 1122 OldTemplateParm->getDefaultArgument()); 1123 PreviousDefaultArgLoc 1124 = OldTemplateParm->getDefaultArgument().getLocation(); 1125 } else if (NewTemplateParm->hasDefaultArgument()) { 1126 SawDefaultArgument = true; 1127 PreviousDefaultArgLoc 1128 = NewTemplateParm->getDefaultArgument().getLocation(); 1129 } else if (SawDefaultArgument) 1130 MissingDefaultArg = true; 1131 } 1132 1133 if (RedundantDefaultArg) { 1134 // C++ [temp.param]p12: 1135 // A template-parameter shall not be given default arguments 1136 // by two different declarations in the same scope. 1137 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1138 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1139 Invalid = true; 1140 } else if (MissingDefaultArg) { 1141 // C++ [temp.param]p11: 1142 // If a template-parameter has a default template-argument, 1143 // all subsequent template-parameters shall have a default 1144 // template-argument supplied. 1145 Diag((*NewParam)->getLocation(), 1146 diag::err_template_param_default_arg_missing); 1147 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1148 Invalid = true; 1149 } 1150 1151 // If we have an old template parameter list that we're merging 1152 // in, move on to the next parameter. 1153 if (OldParams) 1154 ++OldParam; 1155 } 1156 1157 return Invalid; 1158} 1159 1160/// \brief Match the given template parameter lists to the given scope 1161/// specifier, returning the template parameter list that applies to the 1162/// name. 1163/// 1164/// \param DeclStartLoc the start of the declaration that has a scope 1165/// specifier or a template parameter list. 1166/// 1167/// \param SS the scope specifier that will be matched to the given template 1168/// parameter lists. This scope specifier precedes a qualified name that is 1169/// being declared. 1170/// 1171/// \param ParamLists the template parameter lists, from the outermost to the 1172/// innermost template parameter lists. 1173/// 1174/// \param NumParamLists the number of template parameter lists in ParamLists. 1175/// 1176/// \param IsExplicitSpecialization will be set true if the entity being 1177/// declared is an explicit specialization, false otherwise. 1178/// 1179/// \returns the template parameter list, if any, that corresponds to the 1180/// name that is preceded by the scope specifier @p SS. This template 1181/// parameter list may be have template parameters (if we're declaring a 1182/// template) or may have no template parameters (if we're declaring a 1183/// template specialization), or may be NULL (if we were's declaring isn't 1184/// itself a template). 1185TemplateParameterList * 1186Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1187 const CXXScopeSpec &SS, 1188 TemplateParameterList **ParamLists, 1189 unsigned NumParamLists, 1190 bool &IsExplicitSpecialization) { 1191 IsExplicitSpecialization = false; 1192 1193 // Find the template-ids that occur within the nested-name-specifier. These 1194 // template-ids will match up with the template parameter lists. 1195 llvm::SmallVector<const TemplateSpecializationType *, 4> 1196 TemplateIdsInSpecifier; 1197 llvm::SmallVector<ClassTemplateSpecializationDecl *, 4> 1198 ExplicitSpecializationsInSpecifier; 1199 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 1200 NNS; NNS = NNS->getPrefix()) { 1201 const Type *T = NNS->getAsType(); 1202 if (!T) break; 1203 1204 // C++0x [temp.expl.spec]p17: 1205 // A member or a member template may be nested within many 1206 // enclosing class templates. In an explicit specialization for 1207 // such a member, the member declaration shall be preceded by a 1208 // template<> for each enclosing class template that is 1209 // explicitly specialized. 1210 // We interpret this as forbidding typedefs of template 1211 // specializations in the scope specifiers of out-of-line decls. 1212 if (const TypedefType *TT = dyn_cast<TypedefType>(T)) { 1213 const Type *UnderlyingT = TT->LookThroughTypedefs().getTypePtr(); 1214 if (isa<TemplateSpecializationType>(UnderlyingT)) 1215 // FIXME: better source location information. 1216 Diag(DeclStartLoc, diag::err_typedef_in_def_scope) << QualType(T,0); 1217 T = UnderlyingT; 1218 } 1219 1220 if (const TemplateSpecializationType *SpecType 1221 = dyn_cast<TemplateSpecializationType>(T)) { 1222 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 1223 if (!Template) 1224 continue; // FIXME: should this be an error? probably... 1225 1226 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 1227 ClassTemplateSpecializationDecl *SpecDecl 1228 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 1229 // If the nested name specifier refers to an explicit specialization, 1230 // we don't need a template<> header. 1231 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) { 1232 ExplicitSpecializationsInSpecifier.push_back(SpecDecl); 1233 continue; 1234 } 1235 } 1236 1237 TemplateIdsInSpecifier.push_back(SpecType); 1238 } 1239 } 1240 1241 // Reverse the list of template-ids in the scope specifier, so that we can 1242 // more easily match up the template-ids and the template parameter lists. 1243 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 1244 1245 SourceLocation FirstTemplateLoc = DeclStartLoc; 1246 if (NumParamLists) 1247 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 1248 1249 // Match the template-ids found in the specifier to the template parameter 1250 // lists. 1251 unsigned Idx = 0; 1252 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 1253 Idx != NumTemplateIds; ++Idx) { 1254 QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0); 1255 bool DependentTemplateId = TemplateId->isDependentType(); 1256 if (Idx >= NumParamLists) { 1257 // We have a template-id without a corresponding template parameter 1258 // list. 1259 if (DependentTemplateId) { 1260 // FIXME: the location information here isn't great. 1261 Diag(SS.getRange().getBegin(), 1262 diag::err_template_spec_needs_template_parameters) 1263 << TemplateId 1264 << SS.getRange(); 1265 } else { 1266 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 1267 << SS.getRange() 1268 << CodeModificationHint::CreateInsertion(FirstTemplateLoc, 1269 "template<> "); 1270 IsExplicitSpecialization = true; 1271 } 1272 return 0; 1273 } 1274 1275 // Check the template parameter list against its corresponding template-id. 1276 if (DependentTemplateId) { 1277 TemplateDecl *Template 1278 = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl(); 1279 1280 if (ClassTemplateDecl *ClassTemplate 1281 = dyn_cast<ClassTemplateDecl>(Template)) { 1282 TemplateParameterList *ExpectedTemplateParams = 0; 1283 // Is this template-id naming the primary template? 1284 if (Context.hasSameType(TemplateId, 1285 ClassTemplate->getInjectedClassNameType(Context))) 1286 ExpectedTemplateParams = ClassTemplate->getTemplateParameters(); 1287 // ... or a partial specialization? 1288 else if (ClassTemplatePartialSpecializationDecl *PartialSpec 1289 = ClassTemplate->findPartialSpecialization(TemplateId)) 1290 ExpectedTemplateParams = PartialSpec->getTemplateParameters(); 1291 1292 if (ExpectedTemplateParams) 1293 TemplateParameterListsAreEqual(ParamLists[Idx], 1294 ExpectedTemplateParams, 1295 true, TPL_TemplateMatch); 1296 } 1297 1298 CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember); 1299 } else if (ParamLists[Idx]->size() > 0) 1300 Diag(ParamLists[Idx]->getTemplateLoc(), 1301 diag::err_template_param_list_matches_nontemplate) 1302 << TemplateId 1303 << ParamLists[Idx]->getSourceRange(); 1304 else 1305 IsExplicitSpecialization = true; 1306 } 1307 1308 // If there were at least as many template-ids as there were template 1309 // parameter lists, then there are no template parameter lists remaining for 1310 // the declaration itself. 1311 if (Idx >= NumParamLists) 1312 return 0; 1313 1314 // If there were too many template parameter lists, complain about that now. 1315 if (Idx != NumParamLists - 1) { 1316 while (Idx < NumParamLists - 1) { 1317 bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0; 1318 Diag(ParamLists[Idx]->getTemplateLoc(), 1319 isExplicitSpecHeader? diag::warn_template_spec_extra_headers 1320 : diag::err_template_spec_extra_headers) 1321 << SourceRange(ParamLists[Idx]->getTemplateLoc(), 1322 ParamLists[Idx]->getRAngleLoc()); 1323 1324 if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) { 1325 Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(), 1326 diag::note_explicit_template_spec_does_not_need_header) 1327 << ExplicitSpecializationsInSpecifier.back(); 1328 ExplicitSpecializationsInSpecifier.pop_back(); 1329 } 1330 1331 ++Idx; 1332 } 1333 } 1334 1335 // Return the last template parameter list, which corresponds to the 1336 // entity being declared. 1337 return ParamLists[NumParamLists - 1]; 1338} 1339 1340QualType Sema::CheckTemplateIdType(TemplateName Name, 1341 SourceLocation TemplateLoc, 1342 const TemplateArgumentListInfo &TemplateArgs) { 1343 TemplateDecl *Template = Name.getAsTemplateDecl(); 1344 if (!Template) { 1345 // The template name does not resolve to a template, so we just 1346 // build a dependent template-id type. 1347 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1348 } 1349 1350 // Check that the template argument list is well-formed for this 1351 // template. 1352 TemplateArgumentListBuilder Converted(Template->getTemplateParameters(), 1353 TemplateArgs.size()); 1354 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1355 false, Converted)) 1356 return QualType(); 1357 1358 assert((Converted.structuredSize() == 1359 Template->getTemplateParameters()->size()) && 1360 "Converted template argument list is too short!"); 1361 1362 QualType CanonType; 1363 1364 if (Name.isDependent() || 1365 TemplateSpecializationType::anyDependentTemplateArguments( 1366 TemplateArgs)) { 1367 // This class template specialization is a dependent 1368 // type. Therefore, its canonical type is another class template 1369 // specialization type that contains all of the converted 1370 // arguments in canonical form. This ensures that, e.g., A<T> and 1371 // A<T, T> have identical types when A is declared as: 1372 // 1373 // template<typename T, typename U = T> struct A; 1374 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1375 CanonType = Context.getTemplateSpecializationType(CanonName, 1376 Converted.getFlatArguments(), 1377 Converted.flatSize()); 1378 1379 // FIXME: CanonType is not actually the canonical type, and unfortunately 1380 // it is a TemplateSpecializationType that we will never use again. 1381 // In the future, we need to teach getTemplateSpecializationType to only 1382 // build the canonical type and return that to us. 1383 CanonType = Context.getCanonicalType(CanonType); 1384 } else if (ClassTemplateDecl *ClassTemplate 1385 = dyn_cast<ClassTemplateDecl>(Template)) { 1386 // Find the class template specialization declaration that 1387 // corresponds to these arguments. 1388 llvm::FoldingSetNodeID ID; 1389 ClassTemplateSpecializationDecl::Profile(ID, 1390 Converted.getFlatArguments(), 1391 Converted.flatSize(), 1392 Context); 1393 void *InsertPos = 0; 1394 ClassTemplateSpecializationDecl *Decl 1395 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 1396 if (!Decl) { 1397 // This is the first time we have referenced this class template 1398 // specialization. Create the canonical declaration and add it to 1399 // the set of specializations. 1400 Decl = ClassTemplateSpecializationDecl::Create(Context, 1401 ClassTemplate->getDeclContext(), 1402 ClassTemplate->getLocation(), 1403 ClassTemplate, 1404 Converted, 0); 1405 ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos); 1406 Decl->setLexicalDeclContext(CurContext); 1407 } 1408 1409 CanonType = Context.getTypeDeclType(Decl); 1410 } 1411 1412 // Build the fully-sugared type for this class template 1413 // specialization, which refers back to the class template 1414 // specialization we created or found. 1415 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 1416} 1417 1418Action::TypeResult 1419Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1420 SourceLocation LAngleLoc, 1421 ASTTemplateArgsPtr TemplateArgsIn, 1422 SourceLocation RAngleLoc) { 1423 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1424 1425 // Translate the parser's template argument list in our AST format. 1426 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 1427 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 1428 1429 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 1430 TemplateArgsIn.release(); 1431 1432 if (Result.isNull()) 1433 return true; 1434 1435 TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result); 1436 TemplateSpecializationTypeLoc TL 1437 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc()); 1438 TL.setTemplateNameLoc(TemplateLoc); 1439 TL.setLAngleLoc(LAngleLoc); 1440 TL.setRAngleLoc(RAngleLoc); 1441 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 1442 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 1443 1444 return CreateLocInfoType(Result, DI).getAsOpaquePtr(); 1445} 1446 1447Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult, 1448 TagUseKind TUK, 1449 DeclSpec::TST TagSpec, 1450 SourceLocation TagLoc) { 1451 if (TypeResult.isInvalid()) 1452 return Sema::TypeResult(); 1453 1454 // FIXME: preserve source info, ideally without copying the DI. 1455 TypeSourceInfo *DI; 1456 QualType Type = GetTypeFromParser(TypeResult.get(), &DI); 1457 1458 // Verify the tag specifier. 1459 TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec); 1460 1461 if (const RecordType *RT = Type->getAs<RecordType>()) { 1462 RecordDecl *D = RT->getDecl(); 1463 1464 IdentifierInfo *Id = D->getIdentifier(); 1465 assert(Id && "templated class must have an identifier"); 1466 1467 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 1468 Diag(TagLoc, diag::err_use_with_wrong_tag) 1469 << Type 1470 << CodeModificationHint::CreateReplacement(SourceRange(TagLoc), 1471 D->getKindName()); 1472 Diag(D->getLocation(), diag::note_previous_use); 1473 } 1474 } 1475 1476 QualType ElabType = Context.getElaboratedType(Type, TagKind); 1477 1478 return ElabType.getAsOpaquePtr(); 1479} 1480 1481Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 1482 LookupResult &R, 1483 bool RequiresADL, 1484 const TemplateArgumentListInfo &TemplateArgs) { 1485 // FIXME: Can we do any checking at this point? I guess we could check the 1486 // template arguments that we have against the template name, if the template 1487 // name refers to a single template. That's not a terribly common case, 1488 // though. 1489 1490 // These should be filtered out by our callers. 1491 assert(!R.empty() && "empty lookup results when building templateid"); 1492 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 1493 1494 NestedNameSpecifier *Qualifier = 0; 1495 SourceRange QualifierRange; 1496 if (SS.isSet()) { 1497 Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 1498 QualifierRange = SS.getRange(); 1499 } 1500 1501 bool Dependent 1502 = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 1503 &TemplateArgs); 1504 UnresolvedLookupExpr *ULE 1505 = UnresolvedLookupExpr::Create(Context, Dependent, 1506 Qualifier, QualifierRange, 1507 R.getLookupName(), R.getNameLoc(), 1508 RequiresADL, TemplateArgs); 1509 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 1510 ULE->addDecl(*I); 1511 1512 return Owned(ULE); 1513} 1514 1515// We actually only call this from template instantiation. 1516Sema::OwningExprResult 1517Sema::BuildQualifiedTemplateIdExpr(const CXXScopeSpec &SS, 1518 DeclarationName Name, 1519 SourceLocation NameLoc, 1520 const TemplateArgumentListInfo &TemplateArgs) { 1521 DeclContext *DC; 1522 if (!(DC = computeDeclContext(SS, false)) || 1523 DC->isDependentContext() || 1524 RequireCompleteDeclContext(SS)) 1525 return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs); 1526 1527 LookupResult R(*this, Name, NameLoc, LookupOrdinaryName); 1528 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false); 1529 1530 if (R.isAmbiguous()) 1531 return ExprError(); 1532 1533 if (R.empty()) { 1534 Diag(NameLoc, diag::err_template_kw_refers_to_non_template) 1535 << Name << SS.getRange(); 1536 return ExprError(); 1537 } 1538 1539 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 1540 Diag(NameLoc, diag::err_template_kw_refers_to_class_template) 1541 << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange(); 1542 Diag(Temp->getLocation(), diag::note_referenced_class_template); 1543 return ExprError(); 1544 } 1545 1546 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 1547} 1548 1549/// \brief Form a dependent template name. 1550/// 1551/// This action forms a dependent template name given the template 1552/// name and its (presumably dependent) scope specifier. For 1553/// example, given "MetaFun::template apply", the scope specifier \p 1554/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1555/// of the "template" keyword, and "apply" is the \p Name. 1556Sema::TemplateTy 1557Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc, 1558 const CXXScopeSpec &SS, 1559 UnqualifiedId &Name, 1560 TypeTy *ObjectType, 1561 bool EnteringContext) { 1562 if ((ObjectType && 1563 computeDeclContext(QualType::getFromOpaquePtr(ObjectType))) || 1564 (SS.isSet() && computeDeclContext(SS, EnteringContext))) { 1565 // C++0x [temp.names]p5: 1566 // If a name prefixed by the keyword template is not the name of 1567 // a template, the program is ill-formed. [Note: the keyword 1568 // template may not be applied to non-template members of class 1569 // templates. -end note ] [ Note: as is the case with the 1570 // typename prefix, the template prefix is allowed in cases 1571 // where it is not strictly necessary; i.e., when the 1572 // nested-name-specifier or the expression on the left of the -> 1573 // or . is not dependent on a template-parameter, or the use 1574 // does not appear in the scope of a template. -end note] 1575 // 1576 // Note: C++03 was more strict here, because it banned the use of 1577 // the "template" keyword prior to a template-name that was not a 1578 // dependent name. C++ DR468 relaxed this requirement (the 1579 // "template" keyword is now permitted). We follow the C++0x 1580 // rules, even in C++03 mode, retroactively applying the DR. 1581 TemplateTy Template; 1582 TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType, 1583 EnteringContext, Template); 1584 if (TNK == TNK_Non_template) { 1585 Diag(Name.getSourceRange().getBegin(), 1586 diag::err_template_kw_refers_to_non_template) 1587 << GetNameFromUnqualifiedId(Name) 1588 << Name.getSourceRange(); 1589 return TemplateTy(); 1590 } 1591 1592 return Template; 1593 } 1594 1595 NestedNameSpecifier *Qualifier 1596 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1597 1598 switch (Name.getKind()) { 1599 case UnqualifiedId::IK_Identifier: 1600 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1601 Name.Identifier)); 1602 1603 case UnqualifiedId::IK_OperatorFunctionId: 1604 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1605 Name.OperatorFunctionId.Operator)); 1606 1607 case UnqualifiedId::IK_LiteralOperatorId: 1608 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 1609 1610 default: 1611 break; 1612 } 1613 1614 Diag(Name.getSourceRange().getBegin(), 1615 diag::err_template_kw_refers_to_non_template) 1616 << GetNameFromUnqualifiedId(Name) 1617 << Name.getSourceRange(); 1618 return TemplateTy(); 1619} 1620 1621bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1622 const TemplateArgumentLoc &AL, 1623 TemplateArgumentListBuilder &Converted) { 1624 const TemplateArgument &Arg = AL.getArgument(); 1625 1626 // Check template type parameter. 1627 if (Arg.getKind() != TemplateArgument::Type) { 1628 // C++ [temp.arg.type]p1: 1629 // A template-argument for a template-parameter which is a 1630 // type shall be a type-id. 1631 1632 // We have a template type parameter but the template argument 1633 // is not a type. 1634 SourceRange SR = AL.getSourceRange(); 1635 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 1636 Diag(Param->getLocation(), diag::note_template_param_here); 1637 1638 return true; 1639 } 1640 1641 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 1642 return true; 1643 1644 // Add the converted template type argument. 1645 Converted.Append( 1646 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 1647 return false; 1648} 1649 1650/// \brief Substitute template arguments into the default template argument for 1651/// the given template type parameter. 1652/// 1653/// \param SemaRef the semantic analysis object for which we are performing 1654/// the substitution. 1655/// 1656/// \param Template the template that we are synthesizing template arguments 1657/// for. 1658/// 1659/// \param TemplateLoc the location of the template name that started the 1660/// template-id we are checking. 1661/// 1662/// \param RAngleLoc the location of the right angle bracket ('>') that 1663/// terminates the template-id. 1664/// 1665/// \param Param the template template parameter whose default we are 1666/// substituting into. 1667/// 1668/// \param Converted the list of template arguments provided for template 1669/// parameters that precede \p Param in the template parameter list. 1670/// 1671/// \returns the substituted template argument, or NULL if an error occurred. 1672static TypeSourceInfo * 1673SubstDefaultTemplateArgument(Sema &SemaRef, 1674 TemplateDecl *Template, 1675 SourceLocation TemplateLoc, 1676 SourceLocation RAngleLoc, 1677 TemplateTypeParmDecl *Param, 1678 TemplateArgumentListBuilder &Converted) { 1679 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 1680 1681 // If the argument type is dependent, instantiate it now based 1682 // on the previously-computed template arguments. 1683 if (ArgType->getType()->isDependentType()) { 1684 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1685 /*TakeArgs=*/false); 1686 1687 MultiLevelTemplateArgumentList AllTemplateArgs 1688 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1689 1690 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1691 Template, Converted.getFlatArguments(), 1692 Converted.flatSize(), 1693 SourceRange(TemplateLoc, RAngleLoc)); 1694 1695 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 1696 Param->getDefaultArgumentLoc(), 1697 Param->getDeclName()); 1698 } 1699 1700 return ArgType; 1701} 1702 1703/// \brief Substitute template arguments into the default template argument for 1704/// the given non-type template parameter. 1705/// 1706/// \param SemaRef the semantic analysis object for which we are performing 1707/// the substitution. 1708/// 1709/// \param Template the template that we are synthesizing template arguments 1710/// for. 1711/// 1712/// \param TemplateLoc the location of the template name that started the 1713/// template-id we are checking. 1714/// 1715/// \param RAngleLoc the location of the right angle bracket ('>') that 1716/// terminates the template-id. 1717/// 1718/// \param Param the non-type template parameter whose default we are 1719/// substituting into. 1720/// 1721/// \param Converted the list of template arguments provided for template 1722/// parameters that precede \p Param in the template parameter list. 1723/// 1724/// \returns the substituted template argument, or NULL if an error occurred. 1725static Sema::OwningExprResult 1726SubstDefaultTemplateArgument(Sema &SemaRef, 1727 TemplateDecl *Template, 1728 SourceLocation TemplateLoc, 1729 SourceLocation RAngleLoc, 1730 NonTypeTemplateParmDecl *Param, 1731 TemplateArgumentListBuilder &Converted) { 1732 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1733 /*TakeArgs=*/false); 1734 1735 MultiLevelTemplateArgumentList AllTemplateArgs 1736 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1737 1738 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1739 Template, Converted.getFlatArguments(), 1740 Converted.flatSize(), 1741 SourceRange(TemplateLoc, RAngleLoc)); 1742 1743 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 1744} 1745 1746/// \brief Substitute template arguments into the default template argument for 1747/// the given template template parameter. 1748/// 1749/// \param SemaRef the semantic analysis object for which we are performing 1750/// the substitution. 1751/// 1752/// \param Template the template that we are synthesizing template arguments 1753/// for. 1754/// 1755/// \param TemplateLoc the location of the template name that started the 1756/// template-id we are checking. 1757/// 1758/// \param RAngleLoc the location of the right angle bracket ('>') that 1759/// terminates the template-id. 1760/// 1761/// \param Param the template template parameter whose default we are 1762/// substituting into. 1763/// 1764/// \param Converted the list of template arguments provided for template 1765/// parameters that precede \p Param in the template parameter list. 1766/// 1767/// \returns the substituted template argument, or NULL if an error occurred. 1768static TemplateName 1769SubstDefaultTemplateArgument(Sema &SemaRef, 1770 TemplateDecl *Template, 1771 SourceLocation TemplateLoc, 1772 SourceLocation RAngleLoc, 1773 TemplateTemplateParmDecl *Param, 1774 TemplateArgumentListBuilder &Converted) { 1775 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1776 /*TakeArgs=*/false); 1777 1778 MultiLevelTemplateArgumentList AllTemplateArgs 1779 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1780 1781 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1782 Template, Converted.getFlatArguments(), 1783 Converted.flatSize(), 1784 SourceRange(TemplateLoc, RAngleLoc)); 1785 1786 return SemaRef.SubstTemplateName( 1787 Param->getDefaultArgument().getArgument().getAsTemplate(), 1788 Param->getDefaultArgument().getTemplateNameLoc(), 1789 AllTemplateArgs); 1790} 1791 1792/// \brief If the given template parameter has a default template 1793/// argument, substitute into that default template argument and 1794/// return the corresponding template argument. 1795TemplateArgumentLoc 1796Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 1797 SourceLocation TemplateLoc, 1798 SourceLocation RAngleLoc, 1799 Decl *Param, 1800 TemplateArgumentListBuilder &Converted) { 1801 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 1802 if (!TypeParm->hasDefaultArgument()) 1803 return TemplateArgumentLoc(); 1804 1805 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 1806 TemplateLoc, 1807 RAngleLoc, 1808 TypeParm, 1809 Converted); 1810 if (DI) 1811 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 1812 1813 return TemplateArgumentLoc(); 1814 } 1815 1816 if (NonTypeTemplateParmDecl *NonTypeParm 1817 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 1818 if (!NonTypeParm->hasDefaultArgument()) 1819 return TemplateArgumentLoc(); 1820 1821 OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 1822 TemplateLoc, 1823 RAngleLoc, 1824 NonTypeParm, 1825 Converted); 1826 if (Arg.isInvalid()) 1827 return TemplateArgumentLoc(); 1828 1829 Expr *ArgE = Arg.takeAs<Expr>(); 1830 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 1831 } 1832 1833 TemplateTemplateParmDecl *TempTempParm 1834 = cast<TemplateTemplateParmDecl>(Param); 1835 if (!TempTempParm->hasDefaultArgument()) 1836 return TemplateArgumentLoc(); 1837 1838 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 1839 TemplateLoc, 1840 RAngleLoc, 1841 TempTempParm, 1842 Converted); 1843 if (TName.isNull()) 1844 return TemplateArgumentLoc(); 1845 1846 return TemplateArgumentLoc(TemplateArgument(TName), 1847 TempTempParm->getDefaultArgument().getTemplateQualifierRange(), 1848 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 1849} 1850 1851/// \brief Check that the given template argument corresponds to the given 1852/// template parameter. 1853bool Sema::CheckTemplateArgument(NamedDecl *Param, 1854 const TemplateArgumentLoc &Arg, 1855 TemplateDecl *Template, 1856 SourceLocation TemplateLoc, 1857 SourceLocation RAngleLoc, 1858 TemplateArgumentListBuilder &Converted) { 1859 // Check template type parameters. 1860 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 1861 return CheckTemplateTypeArgument(TTP, Arg, Converted); 1862 1863 // Check non-type template parameters. 1864 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 1865 // Do substitution on the type of the non-type template parameter 1866 // with the template arguments we've seen thus far. 1867 QualType NTTPType = NTTP->getType(); 1868 if (NTTPType->isDependentType()) { 1869 // Do substitution on the type of the non-type template parameter. 1870 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 1871 NTTP, Converted.getFlatArguments(), 1872 Converted.flatSize(), 1873 SourceRange(TemplateLoc, RAngleLoc)); 1874 1875 TemplateArgumentList TemplateArgs(Context, Converted, 1876 /*TakeArgs=*/false); 1877 NTTPType = SubstType(NTTPType, 1878 MultiLevelTemplateArgumentList(TemplateArgs), 1879 NTTP->getLocation(), 1880 NTTP->getDeclName()); 1881 // If that worked, check the non-type template parameter type 1882 // for validity. 1883 if (!NTTPType.isNull()) 1884 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 1885 NTTP->getLocation()); 1886 if (NTTPType.isNull()) 1887 return true; 1888 } 1889 1890 switch (Arg.getArgument().getKind()) { 1891 case TemplateArgument::Null: 1892 assert(false && "Should never see a NULL template argument here"); 1893 return true; 1894 1895 case TemplateArgument::Expression: { 1896 Expr *E = Arg.getArgument().getAsExpr(); 1897 TemplateArgument Result; 1898 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 1899 return true; 1900 1901 Converted.Append(Result); 1902 break; 1903 } 1904 1905 case TemplateArgument::Declaration: 1906 case TemplateArgument::Integral: 1907 // We've already checked this template argument, so just copy 1908 // it to the list of converted arguments. 1909 Converted.Append(Arg.getArgument()); 1910 break; 1911 1912 case TemplateArgument::Template: 1913 // We were given a template template argument. It may not be ill-formed; 1914 // see below. 1915 if (DependentTemplateName *DTN 1916 = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) { 1917 // We have a template argument such as \c T::template X, which we 1918 // parsed as a template template argument. However, since we now 1919 // know that we need a non-type template argument, convert this 1920 // template name into an expression. 1921 Expr *E = DependentScopeDeclRefExpr::Create(Context, 1922 DTN->getQualifier(), 1923 Arg.getTemplateQualifierRange(), 1924 DTN->getIdentifier(), 1925 Arg.getTemplateNameLoc()); 1926 1927 TemplateArgument Result; 1928 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 1929 return true; 1930 1931 Converted.Append(Result); 1932 break; 1933 } 1934 1935 // We have a template argument that actually does refer to a class 1936 // template, template alias, or template template parameter, and 1937 // therefore cannot be a non-type template argument. 1938 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 1939 << Arg.getSourceRange(); 1940 1941 Diag(Param->getLocation(), diag::note_template_param_here); 1942 return true; 1943 1944 case TemplateArgument::Type: { 1945 // We have a non-type template parameter but the template 1946 // argument is a type. 1947 1948 // C++ [temp.arg]p2: 1949 // In a template-argument, an ambiguity between a type-id and 1950 // an expression is resolved to a type-id, regardless of the 1951 // form of the corresponding template-parameter. 1952 // 1953 // We warn specifically about this case, since it can be rather 1954 // confusing for users. 1955 QualType T = Arg.getArgument().getAsType(); 1956 SourceRange SR = Arg.getSourceRange(); 1957 if (T->isFunctionType()) 1958 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 1959 else 1960 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 1961 Diag(Param->getLocation(), diag::note_template_param_here); 1962 return true; 1963 } 1964 1965 case TemplateArgument::Pack: 1966 llvm_unreachable("Caller must expand template argument packs"); 1967 break; 1968 } 1969 1970 return false; 1971 } 1972 1973 1974 // Check template template parameters. 1975 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 1976 1977 // Substitute into the template parameter list of the template 1978 // template parameter, since previously-supplied template arguments 1979 // may appear within the template template parameter. 1980 { 1981 // Set up a template instantiation context. 1982 LocalInstantiationScope Scope(*this); 1983 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 1984 TempParm, Converted.getFlatArguments(), 1985 Converted.flatSize(), 1986 SourceRange(TemplateLoc, RAngleLoc)); 1987 1988 TemplateArgumentList TemplateArgs(Context, Converted, 1989 /*TakeArgs=*/false); 1990 TempParm = cast_or_null<TemplateTemplateParmDecl>( 1991 SubstDecl(TempParm, CurContext, 1992 MultiLevelTemplateArgumentList(TemplateArgs))); 1993 if (!TempParm) 1994 return true; 1995 1996 // FIXME: TempParam is leaked. 1997 } 1998 1999 switch (Arg.getArgument().getKind()) { 2000 case TemplateArgument::Null: 2001 assert(false && "Should never see a NULL template argument here"); 2002 return true; 2003 2004 case TemplateArgument::Template: 2005 if (CheckTemplateArgument(TempParm, Arg)) 2006 return true; 2007 2008 Converted.Append(Arg.getArgument()); 2009 break; 2010 2011 case TemplateArgument::Expression: 2012 case TemplateArgument::Type: 2013 // We have a template template parameter but the template 2014 // argument does not refer to a template. 2015 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 2016 return true; 2017 2018 case TemplateArgument::Declaration: 2019 llvm_unreachable( 2020 "Declaration argument with template template parameter"); 2021 break; 2022 case TemplateArgument::Integral: 2023 llvm_unreachable( 2024 "Integral argument with template template parameter"); 2025 break; 2026 2027 case TemplateArgument::Pack: 2028 llvm_unreachable("Caller must expand template argument packs"); 2029 break; 2030 } 2031 2032 return false; 2033} 2034 2035/// \brief Check that the given template argument list is well-formed 2036/// for specializing the given template. 2037bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2038 SourceLocation TemplateLoc, 2039 const TemplateArgumentListInfo &TemplateArgs, 2040 bool PartialTemplateArgs, 2041 TemplateArgumentListBuilder &Converted) { 2042 TemplateParameterList *Params = Template->getTemplateParameters(); 2043 unsigned NumParams = Params->size(); 2044 unsigned NumArgs = TemplateArgs.size(); 2045 bool Invalid = false; 2046 2047 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2048 2049 bool HasParameterPack = 2050 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2051 2052 if ((NumArgs > NumParams && !HasParameterPack) || 2053 (NumArgs < Params->getMinRequiredArguments() && 2054 !PartialTemplateArgs)) { 2055 // FIXME: point at either the first arg beyond what we can handle, 2056 // or the '>', depending on whether we have too many or too few 2057 // arguments. 2058 SourceRange Range; 2059 if (NumArgs > NumParams) 2060 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2061 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2062 << (NumArgs > NumParams) 2063 << (isa<ClassTemplateDecl>(Template)? 0 : 2064 isa<FunctionTemplateDecl>(Template)? 1 : 2065 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2066 << Template << Range; 2067 Diag(Template->getLocation(), diag::note_template_decl_here) 2068 << Params->getSourceRange(); 2069 Invalid = true; 2070 } 2071 2072 // C++ [temp.arg]p1: 2073 // [...] The type and form of each template-argument specified in 2074 // a template-id shall match the type and form specified for the 2075 // corresponding parameter declared by the template in its 2076 // template-parameter-list. 2077 unsigned ArgIdx = 0; 2078 for (TemplateParameterList::iterator Param = Params->begin(), 2079 ParamEnd = Params->end(); 2080 Param != ParamEnd; ++Param, ++ArgIdx) { 2081 if (ArgIdx > NumArgs && PartialTemplateArgs) 2082 break; 2083 2084 // If we have a template parameter pack, check every remaining template 2085 // argument against that template parameter pack. 2086 if ((*Param)->isTemplateParameterPack()) { 2087 Converted.BeginPack(); 2088 for (; ArgIdx < NumArgs; ++ArgIdx) { 2089 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2090 TemplateLoc, RAngleLoc, Converted)) { 2091 Invalid = true; 2092 break; 2093 } 2094 } 2095 Converted.EndPack(); 2096 continue; 2097 } 2098 2099 if (ArgIdx < NumArgs) { 2100 // Check the template argument we were given. 2101 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2102 TemplateLoc, RAngleLoc, Converted)) 2103 return true; 2104 2105 continue; 2106 } 2107 2108 // We have a default template argument that we will use. 2109 TemplateArgumentLoc Arg; 2110 2111 // Retrieve the default template argument from the template 2112 // parameter. For each kind of template parameter, we substitute the 2113 // template arguments provided thus far and any "outer" template arguments 2114 // (when the template parameter was part of a nested template) into 2115 // the default argument. 2116 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2117 if (!TTP->hasDefaultArgument()) { 2118 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2119 break; 2120 } 2121 2122 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2123 Template, 2124 TemplateLoc, 2125 RAngleLoc, 2126 TTP, 2127 Converted); 2128 if (!ArgType) 2129 return true; 2130 2131 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2132 ArgType); 2133 } else if (NonTypeTemplateParmDecl *NTTP 2134 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2135 if (!NTTP->hasDefaultArgument()) { 2136 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2137 break; 2138 } 2139 2140 Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template, 2141 TemplateLoc, 2142 RAngleLoc, 2143 NTTP, 2144 Converted); 2145 if (E.isInvalid()) 2146 return true; 2147 2148 Expr *Ex = E.takeAs<Expr>(); 2149 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2150 } else { 2151 TemplateTemplateParmDecl *TempParm 2152 = cast<TemplateTemplateParmDecl>(*Param); 2153 2154 if (!TempParm->hasDefaultArgument()) { 2155 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2156 break; 2157 } 2158 2159 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2160 TemplateLoc, 2161 RAngleLoc, 2162 TempParm, 2163 Converted); 2164 if (Name.isNull()) 2165 return true; 2166 2167 Arg = TemplateArgumentLoc(TemplateArgument(Name), 2168 TempParm->getDefaultArgument().getTemplateQualifierRange(), 2169 TempParm->getDefaultArgument().getTemplateNameLoc()); 2170 } 2171 2172 // Introduce an instantiation record that describes where we are using 2173 // the default template argument. 2174 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 2175 Converted.getFlatArguments(), 2176 Converted.flatSize(), 2177 SourceRange(TemplateLoc, RAngleLoc)); 2178 2179 // Check the default template argument. 2180 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 2181 RAngleLoc, Converted)) 2182 return true; 2183 } 2184 2185 return Invalid; 2186} 2187 2188/// \brief Check a template argument against its corresponding 2189/// template type parameter. 2190/// 2191/// This routine implements the semantics of C++ [temp.arg.type]. It 2192/// returns true if an error occurred, and false otherwise. 2193bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 2194 TypeSourceInfo *ArgInfo) { 2195 assert(ArgInfo && "invalid TypeSourceInfo"); 2196 QualType Arg = ArgInfo->getType(); 2197 2198 // C++ [temp.arg.type]p2: 2199 // A local type, a type with no linkage, an unnamed type or a type 2200 // compounded from any of these types shall not be used as a 2201 // template-argument for a template type-parameter. 2202 // 2203 // FIXME: Perform the recursive and no-linkage type checks. 2204 const TagType *Tag = 0; 2205 if (const EnumType *EnumT = Arg->getAs<EnumType>()) 2206 Tag = EnumT; 2207 else if (const RecordType *RecordT = Arg->getAs<RecordType>()) 2208 Tag = RecordT; 2209 if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) { 2210 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2211 return Diag(SR.getBegin(), diag::err_template_arg_local_type) 2212 << QualType(Tag, 0) << SR; 2213 } else if (Tag && !Tag->getDecl()->getDeclName() && 2214 !Tag->getDecl()->getTypedefForAnonDecl()) { 2215 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2216 Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR; 2217 Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here); 2218 return true; 2219 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 2220 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2221 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 2222 } 2223 2224 return false; 2225} 2226 2227/// \brief Checks whether the given template argument is the address 2228/// of an object or function according to C++ [temp.arg.nontype]p1. 2229bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg, 2230 NamedDecl *&Entity) { 2231 bool Invalid = false; 2232 2233 // See through any implicit casts we added to fix the type. 2234 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2235 Arg = Cast->getSubExpr(); 2236 2237 // C++0x allows nullptr, and there's no further checking to be done for that. 2238 if (Arg->getType()->isNullPtrType()) 2239 return false; 2240 2241 // C++ [temp.arg.nontype]p1: 2242 // 2243 // A template-argument for a non-type, non-template 2244 // template-parameter shall be one of: [...] 2245 // 2246 // -- the address of an object or function with external 2247 // linkage, including function templates and function 2248 // template-ids but excluding non-static class members, 2249 // expressed as & id-expression where the & is optional if 2250 // the name refers to a function or array, or if the 2251 // corresponding template-parameter is a reference; or 2252 DeclRefExpr *DRE = 0; 2253 2254 // Ignore (and complain about) any excess parentheses. 2255 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2256 if (!Invalid) { 2257 Diag(Arg->getSourceRange().getBegin(), 2258 diag::err_template_arg_extra_parens) 2259 << Arg->getSourceRange(); 2260 Invalid = true; 2261 } 2262 2263 Arg = Parens->getSubExpr(); 2264 } 2265 2266 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2267 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 2268 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2269 } else 2270 DRE = dyn_cast<DeclRefExpr>(Arg); 2271 2272 if (!DRE || !isa<ValueDecl>(DRE->getDecl())) 2273 return Diag(Arg->getSourceRange().getBegin(), 2274 diag::err_template_arg_not_object_or_func_form) 2275 << Arg->getSourceRange(); 2276 2277 // Cannot refer to non-static data members 2278 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) 2279 return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 2280 << Field << Arg->getSourceRange(); 2281 2282 // Cannot refer to non-static member functions 2283 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 2284 if (!Method->isStatic()) 2285 return Diag(Arg->getSourceRange().getBegin(), 2286 diag::err_template_arg_method) 2287 << Method << Arg->getSourceRange(); 2288 2289 // Functions must have external linkage. 2290 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 2291 if (Func->getLinkage() != NamedDecl::ExternalLinkage) { 2292 Diag(Arg->getSourceRange().getBegin(), 2293 diag::err_template_arg_function_not_extern) 2294 << Func << Arg->getSourceRange(); 2295 Diag(Func->getLocation(), diag::note_template_arg_internal_object) 2296 << true; 2297 return true; 2298 } 2299 2300 // Okay: we've named a function with external linkage. 2301 Entity = Func; 2302 return Invalid; 2303 } 2304 2305 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 2306 if (Var->getLinkage() != NamedDecl::ExternalLinkage) { 2307 Diag(Arg->getSourceRange().getBegin(), 2308 diag::err_template_arg_object_not_extern) 2309 << Var << Arg->getSourceRange(); 2310 Diag(Var->getLocation(), diag::note_template_arg_internal_object) 2311 << true; 2312 return true; 2313 } 2314 2315 // Okay: we've named an object with external linkage 2316 Entity = Var; 2317 return Invalid; 2318 } 2319 2320 // We found something else, but we don't know specifically what it is. 2321 Diag(Arg->getSourceRange().getBegin(), 2322 diag::err_template_arg_not_object_or_func) 2323 << Arg->getSourceRange(); 2324 Diag(DRE->getDecl()->getLocation(), 2325 diag::note_template_arg_refers_here); 2326 return true; 2327} 2328 2329/// \brief Checks whether the given template argument is a pointer to 2330/// member constant according to C++ [temp.arg.nontype]p1. 2331bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 2332 TemplateArgument &Converted) { 2333 bool Invalid = false; 2334 2335 // See through any implicit casts we added to fix the type. 2336 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2337 Arg = Cast->getSubExpr(); 2338 2339 // C++0x allows nullptr, and there's no further checking to be done for that. 2340 if (Arg->getType()->isNullPtrType()) 2341 return false; 2342 2343 // C++ [temp.arg.nontype]p1: 2344 // 2345 // A template-argument for a non-type, non-template 2346 // template-parameter shall be one of: [...] 2347 // 2348 // -- a pointer to member expressed as described in 5.3.1. 2349 DeclRefExpr *DRE = 0; 2350 2351 // Ignore (and complain about) any excess parentheses. 2352 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2353 if (!Invalid) { 2354 Diag(Arg->getSourceRange().getBegin(), 2355 diag::err_template_arg_extra_parens) 2356 << Arg->getSourceRange(); 2357 Invalid = true; 2358 } 2359 2360 Arg = Parens->getSubExpr(); 2361 } 2362 2363 // A pointer-to-member constant written &Class::member. 2364 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2365 if (UnOp->getOpcode() == UnaryOperator::AddrOf) { 2366 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2367 if (DRE && !DRE->getQualifier()) 2368 DRE = 0; 2369 } 2370 } 2371 // A constant of pointer-to-member type. 2372 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 2373 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 2374 if (VD->getType()->isMemberPointerType()) { 2375 if (isa<NonTypeTemplateParmDecl>(VD) || 2376 (isa<VarDecl>(VD) && 2377 Context.getCanonicalType(VD->getType()).isConstQualified())) { 2378 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2379 Converted = TemplateArgument(Arg->Retain()); 2380 else 2381 Converted = TemplateArgument(VD->getCanonicalDecl()); 2382 return Invalid; 2383 } 2384 } 2385 } 2386 2387 DRE = 0; 2388 } 2389 2390 if (!DRE) 2391 return Diag(Arg->getSourceRange().getBegin(), 2392 diag::err_template_arg_not_pointer_to_member_form) 2393 << Arg->getSourceRange(); 2394 2395 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 2396 assert((isa<FieldDecl>(DRE->getDecl()) || 2397 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 2398 "Only non-static member pointers can make it here"); 2399 2400 // Okay: this is the address of a non-static member, and therefore 2401 // a member pointer constant. 2402 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2403 Converted = TemplateArgument(Arg->Retain()); 2404 else 2405 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 2406 return Invalid; 2407 } 2408 2409 // We found something else, but we don't know specifically what it is. 2410 Diag(Arg->getSourceRange().getBegin(), 2411 diag::err_template_arg_not_pointer_to_member_form) 2412 << Arg->getSourceRange(); 2413 Diag(DRE->getDecl()->getLocation(), 2414 diag::note_template_arg_refers_here); 2415 return true; 2416} 2417 2418/// \brief Check a template argument against its corresponding 2419/// non-type template parameter. 2420/// 2421/// This routine implements the semantics of C++ [temp.arg.nontype]. 2422/// It returns true if an error occurred, and false otherwise. \p 2423/// InstantiatedParamType is the type of the non-type template 2424/// parameter after it has been instantiated. 2425/// 2426/// If no error was detected, Converted receives the converted template argument. 2427bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 2428 QualType InstantiatedParamType, Expr *&Arg, 2429 TemplateArgument &Converted) { 2430 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 2431 2432 // If either the parameter has a dependent type or the argument is 2433 // type-dependent, there's nothing we can check now. 2434 // FIXME: Add template argument to Converted! 2435 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 2436 // FIXME: Produce a cloned, canonical expression? 2437 Converted = TemplateArgument(Arg); 2438 return false; 2439 } 2440 2441 // C++ [temp.arg.nontype]p5: 2442 // The following conversions are performed on each expression used 2443 // as a non-type template-argument. If a non-type 2444 // template-argument cannot be converted to the type of the 2445 // corresponding template-parameter then the program is 2446 // ill-formed. 2447 // 2448 // -- for a non-type template-parameter of integral or 2449 // enumeration type, integral promotions (4.5) and integral 2450 // conversions (4.7) are applied. 2451 QualType ParamType = InstantiatedParamType; 2452 QualType ArgType = Arg->getType(); 2453 if (ParamType->isIntegralType() || ParamType->isEnumeralType()) { 2454 // C++ [temp.arg.nontype]p1: 2455 // A template-argument for a non-type, non-template 2456 // template-parameter shall be one of: 2457 // 2458 // -- an integral constant-expression of integral or enumeration 2459 // type; or 2460 // -- the name of a non-type template-parameter; or 2461 SourceLocation NonConstantLoc; 2462 llvm::APSInt Value; 2463 if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) { 2464 Diag(Arg->getSourceRange().getBegin(), 2465 diag::err_template_arg_not_integral_or_enumeral) 2466 << ArgType << Arg->getSourceRange(); 2467 Diag(Param->getLocation(), diag::note_template_param_here); 2468 return true; 2469 } else if (!Arg->isValueDependent() && 2470 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 2471 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 2472 << ArgType << Arg->getSourceRange(); 2473 return true; 2474 } 2475 2476 // FIXME: We need some way to more easily get the unqualified form 2477 // of the types without going all the way to the 2478 // canonical type. 2479 if (Context.getCanonicalType(ParamType).getCVRQualifiers()) 2480 ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType(); 2481 if (Context.getCanonicalType(ArgType).getCVRQualifiers()) 2482 ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType(); 2483 2484 // Try to convert the argument to the parameter's type. 2485 if (Context.hasSameType(ParamType, ArgType)) { 2486 // Okay: no conversion necessary 2487 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 2488 !ParamType->isEnumeralType()) { 2489 // This is an integral promotion or conversion. 2490 ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast); 2491 } else { 2492 // We can't perform this conversion. 2493 Diag(Arg->getSourceRange().getBegin(), 2494 diag::err_template_arg_not_convertible) 2495 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2496 Diag(Param->getLocation(), diag::note_template_param_here); 2497 return true; 2498 } 2499 2500 QualType IntegerType = Context.getCanonicalType(ParamType); 2501 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 2502 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 2503 2504 if (!Arg->isValueDependent()) { 2505 // Check that an unsigned parameter does not receive a negative 2506 // value. 2507 if (IntegerType->isUnsignedIntegerType() 2508 && (Value.isSigned() && Value.isNegative())) { 2509 Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative) 2510 << Value.toString(10) << Param->getType() 2511 << Arg->getSourceRange(); 2512 Diag(Param->getLocation(), diag::note_template_param_here); 2513 return true; 2514 } 2515 2516 // Check that we don't overflow the template parameter type. 2517 unsigned AllowedBits = Context.getTypeSize(IntegerType); 2518 unsigned RequiredBits; 2519 if (IntegerType->isUnsignedIntegerType()) 2520 RequiredBits = Value.getActiveBits(); 2521 else if (Value.isUnsigned()) 2522 RequiredBits = Value.getActiveBits() + 1; 2523 else 2524 RequiredBits = Value.getMinSignedBits(); 2525 if (RequiredBits > AllowedBits) { 2526 Diag(Arg->getSourceRange().getBegin(), 2527 diag::err_template_arg_too_large) 2528 << Value.toString(10) << Param->getType() 2529 << Arg->getSourceRange(); 2530 Diag(Param->getLocation(), diag::note_template_param_here); 2531 return true; 2532 } 2533 2534 if (Value.getBitWidth() != AllowedBits) 2535 Value.extOrTrunc(AllowedBits); 2536 Value.setIsSigned(IntegerType->isSignedIntegerType()); 2537 } 2538 2539 // Add the value of this argument to the list of converted 2540 // arguments. We use the bitwidth and signedness of the template 2541 // parameter. 2542 if (Arg->isValueDependent()) { 2543 // The argument is value-dependent. Create a new 2544 // TemplateArgument with the converted expression. 2545 Converted = TemplateArgument(Arg); 2546 return false; 2547 } 2548 2549 Converted = TemplateArgument(Value, 2550 ParamType->isEnumeralType() ? ParamType 2551 : IntegerType); 2552 return false; 2553 } 2554 2555 // Handle pointer-to-function, reference-to-function, and 2556 // pointer-to-member-function all in (roughly) the same way. 2557 if (// -- For a non-type template-parameter of type pointer to 2558 // function, only the function-to-pointer conversion (4.3) is 2559 // applied. If the template-argument represents a set of 2560 // overloaded functions (or a pointer to such), the matching 2561 // function is selected from the set (13.4). 2562 // In C++0x, any std::nullptr_t value can be converted. 2563 (ParamType->isPointerType() && 2564 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 2565 // -- For a non-type template-parameter of type reference to 2566 // function, no conversions apply. If the template-argument 2567 // represents a set of overloaded functions, the matching 2568 // function is selected from the set (13.4). 2569 (ParamType->isReferenceType() && 2570 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 2571 // -- For a non-type template-parameter of type pointer to 2572 // member function, no conversions apply. If the 2573 // template-argument represents a set of overloaded member 2574 // functions, the matching member function is selected from 2575 // the set (13.4). 2576 // Again, C++0x allows a std::nullptr_t value. 2577 (ParamType->isMemberPointerType() && 2578 ParamType->getAs<MemberPointerType>()->getPointeeType() 2579 ->isFunctionType())) { 2580 if (Context.hasSameUnqualifiedType(ArgType, 2581 ParamType.getNonReferenceType())) { 2582 // We don't have to do anything: the types already match. 2583 } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() || 2584 ParamType->isMemberPointerType())) { 2585 ArgType = ParamType; 2586 if (ParamType->isMemberPointerType()) 2587 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer); 2588 else 2589 ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast); 2590 } else if (ArgType->isFunctionType() && ParamType->isPointerType()) { 2591 ArgType = Context.getPointerType(ArgType); 2592 ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay); 2593 } else if (FunctionDecl *Fn 2594 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) { 2595 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2596 return true; 2597 2598 Arg = FixOverloadedFunctionReference(Arg, Fn); 2599 ArgType = Arg->getType(); 2600 if (ArgType->isFunctionType() && ParamType->isPointerType()) { 2601 ArgType = Context.getPointerType(Arg->getType()); 2602 ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay); 2603 } 2604 } 2605 2606 if (!Context.hasSameUnqualifiedType(ArgType, 2607 ParamType.getNonReferenceType())) { 2608 // We can't perform this conversion. 2609 Diag(Arg->getSourceRange().getBegin(), 2610 diag::err_template_arg_not_convertible) 2611 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2612 Diag(Param->getLocation(), diag::note_template_param_here); 2613 return true; 2614 } 2615 2616 if (ParamType->isMemberPointerType()) 2617 return CheckTemplateArgumentPointerToMember(Arg, Converted); 2618 2619 NamedDecl *Entity = 0; 2620 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2621 return true; 2622 2623 if (Entity) 2624 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2625 Converted = TemplateArgument(Entity); 2626 return false; 2627 } 2628 2629 if (ParamType->isPointerType()) { 2630 // -- for a non-type template-parameter of type pointer to 2631 // object, qualification conversions (4.4) and the 2632 // array-to-pointer conversion (4.2) are applied. 2633 // C++0x also allows a value of std::nullptr_t. 2634 assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() && 2635 "Only object pointers allowed here"); 2636 2637 if (ArgType->isNullPtrType()) { 2638 ArgType = ParamType; 2639 ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast); 2640 } else if (ArgType->isArrayType()) { 2641 ArgType = Context.getArrayDecayedType(ArgType); 2642 ImpCastExprToType(Arg, ArgType, CastExpr::CK_ArrayToPointerDecay); 2643 } 2644 2645 if (IsQualificationConversion(ArgType, ParamType)) { 2646 ArgType = ParamType; 2647 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp); 2648 } 2649 2650 if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) { 2651 // We can't perform this conversion. 2652 Diag(Arg->getSourceRange().getBegin(), 2653 diag::err_template_arg_not_convertible) 2654 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2655 Diag(Param->getLocation(), diag::note_template_param_here); 2656 return true; 2657 } 2658 2659 NamedDecl *Entity = 0; 2660 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2661 return true; 2662 2663 if (Entity) 2664 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2665 Converted = TemplateArgument(Entity); 2666 return false; 2667 } 2668 2669 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 2670 // -- For a non-type template-parameter of type reference to 2671 // object, no conversions apply. The type referred to by the 2672 // reference may be more cv-qualified than the (otherwise 2673 // identical) type of the template-argument. The 2674 // template-parameter is bound directly to the 2675 // template-argument, which must be an lvalue. 2676 assert(ParamRefType->getPointeeType()->isObjectType() && 2677 "Only object references allowed here"); 2678 2679 if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) { 2680 Diag(Arg->getSourceRange().getBegin(), 2681 diag::err_template_arg_no_ref_bind) 2682 << InstantiatedParamType << Arg->getType() 2683 << Arg->getSourceRange(); 2684 Diag(Param->getLocation(), diag::note_template_param_here); 2685 return true; 2686 } 2687 2688 unsigned ParamQuals 2689 = Context.getCanonicalType(ParamType).getCVRQualifiers(); 2690 unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers(); 2691 2692 if ((ParamQuals | ArgQuals) != ParamQuals) { 2693 Diag(Arg->getSourceRange().getBegin(), 2694 diag::err_template_arg_ref_bind_ignores_quals) 2695 << InstantiatedParamType << Arg->getType() 2696 << Arg->getSourceRange(); 2697 Diag(Param->getLocation(), diag::note_template_param_here); 2698 return true; 2699 } 2700 2701 NamedDecl *Entity = 0; 2702 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2703 return true; 2704 2705 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2706 Converted = TemplateArgument(Entity); 2707 return false; 2708 } 2709 2710 // -- For a non-type template-parameter of type pointer to data 2711 // member, qualification conversions (4.4) are applied. 2712 // C++0x allows std::nullptr_t values. 2713 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 2714 2715 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 2716 // Types match exactly: nothing more to do here. 2717 } else if (ArgType->isNullPtrType()) { 2718 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer); 2719 } else if (IsQualificationConversion(ArgType, ParamType)) { 2720 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp); 2721 } else { 2722 // We can't perform this conversion. 2723 Diag(Arg->getSourceRange().getBegin(), 2724 diag::err_template_arg_not_convertible) 2725 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2726 Diag(Param->getLocation(), diag::note_template_param_here); 2727 return true; 2728 } 2729 2730 return CheckTemplateArgumentPointerToMember(Arg, Converted); 2731} 2732 2733/// \brief Check a template argument against its corresponding 2734/// template template parameter. 2735/// 2736/// This routine implements the semantics of C++ [temp.arg.template]. 2737/// It returns true if an error occurred, and false otherwise. 2738bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 2739 const TemplateArgumentLoc &Arg) { 2740 TemplateName Name = Arg.getArgument().getAsTemplate(); 2741 TemplateDecl *Template = Name.getAsTemplateDecl(); 2742 if (!Template) { 2743 // Any dependent template name is fine. 2744 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 2745 return false; 2746 } 2747 2748 // C++ [temp.arg.template]p1: 2749 // A template-argument for a template template-parameter shall be 2750 // the name of a class template, expressed as id-expression. Only 2751 // primary class templates are considered when matching the 2752 // template template argument with the corresponding parameter; 2753 // partial specializations are not considered even if their 2754 // parameter lists match that of the template template parameter. 2755 // 2756 // Note that we also allow template template parameters here, which 2757 // will happen when we are dealing with, e.g., class template 2758 // partial specializations. 2759 if (!isa<ClassTemplateDecl>(Template) && 2760 !isa<TemplateTemplateParmDecl>(Template)) { 2761 assert(isa<FunctionTemplateDecl>(Template) && 2762 "Only function templates are possible here"); 2763 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 2764 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 2765 << Template; 2766 } 2767 2768 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 2769 Param->getTemplateParameters(), 2770 true, 2771 TPL_TemplateTemplateArgumentMatch, 2772 Arg.getLocation()); 2773} 2774 2775/// \brief Determine whether the given template parameter lists are 2776/// equivalent. 2777/// 2778/// \param New The new template parameter list, typically written in the 2779/// source code as part of a new template declaration. 2780/// 2781/// \param Old The old template parameter list, typically found via 2782/// name lookup of the template declared with this template parameter 2783/// list. 2784/// 2785/// \param Complain If true, this routine will produce a diagnostic if 2786/// the template parameter lists are not equivalent. 2787/// 2788/// \param Kind describes how we are to match the template parameter lists. 2789/// 2790/// \param TemplateArgLoc If this source location is valid, then we 2791/// are actually checking the template parameter list of a template 2792/// argument (New) against the template parameter list of its 2793/// corresponding template template parameter (Old). We produce 2794/// slightly different diagnostics in this scenario. 2795/// 2796/// \returns True if the template parameter lists are equal, false 2797/// otherwise. 2798bool 2799Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 2800 TemplateParameterList *Old, 2801 bool Complain, 2802 TemplateParameterListEqualKind Kind, 2803 SourceLocation TemplateArgLoc) { 2804 if (Old->size() != New->size()) { 2805 if (Complain) { 2806 unsigned NextDiag = diag::err_template_param_list_different_arity; 2807 if (TemplateArgLoc.isValid()) { 2808 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 2809 NextDiag = diag::note_template_param_list_different_arity; 2810 } 2811 Diag(New->getTemplateLoc(), NextDiag) 2812 << (New->size() > Old->size()) 2813 << (Kind != TPL_TemplateMatch) 2814 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 2815 Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 2816 << (Kind != TPL_TemplateMatch) 2817 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 2818 } 2819 2820 return false; 2821 } 2822 2823 for (TemplateParameterList::iterator OldParm = Old->begin(), 2824 OldParmEnd = Old->end(), NewParm = New->begin(); 2825 OldParm != OldParmEnd; ++OldParm, ++NewParm) { 2826 if ((*OldParm)->getKind() != (*NewParm)->getKind()) { 2827 if (Complain) { 2828 unsigned NextDiag = diag::err_template_param_different_kind; 2829 if (TemplateArgLoc.isValid()) { 2830 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 2831 NextDiag = diag::note_template_param_different_kind; 2832 } 2833 Diag((*NewParm)->getLocation(), NextDiag) 2834 << (Kind != TPL_TemplateMatch); 2835 Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration) 2836 << (Kind != TPL_TemplateMatch); 2837 } 2838 return false; 2839 } 2840 2841 if (isa<TemplateTypeParmDecl>(*OldParm)) { 2842 // Okay; all template type parameters are equivalent (since we 2843 // know we're at the same index). 2844 } else if (NonTypeTemplateParmDecl *OldNTTP 2845 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) { 2846 // The types of non-type template parameters must agree. 2847 NonTypeTemplateParmDecl *NewNTTP 2848 = cast<NonTypeTemplateParmDecl>(*NewParm); 2849 2850 // If we are matching a template template argument to a template 2851 // template parameter and one of the non-type template parameter types 2852 // is dependent, then we must wait until template instantiation time 2853 // to actually compare the arguments. 2854 if (Kind == TPL_TemplateTemplateArgumentMatch && 2855 (OldNTTP->getType()->isDependentType() || 2856 NewNTTP->getType()->isDependentType())) 2857 continue; 2858 2859 if (Context.getCanonicalType(OldNTTP->getType()) != 2860 Context.getCanonicalType(NewNTTP->getType())) { 2861 if (Complain) { 2862 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 2863 if (TemplateArgLoc.isValid()) { 2864 Diag(TemplateArgLoc, 2865 diag::err_template_arg_template_params_mismatch); 2866 NextDiag = diag::note_template_nontype_parm_different_type; 2867 } 2868 Diag(NewNTTP->getLocation(), NextDiag) 2869 << NewNTTP->getType() 2870 << (Kind != TPL_TemplateMatch); 2871 Diag(OldNTTP->getLocation(), 2872 diag::note_template_nontype_parm_prev_declaration) 2873 << OldNTTP->getType(); 2874 } 2875 return false; 2876 } 2877 } else { 2878 // The template parameter lists of template template 2879 // parameters must agree. 2880 assert(isa<TemplateTemplateParmDecl>(*OldParm) && 2881 "Only template template parameters handled here"); 2882 TemplateTemplateParmDecl *OldTTP 2883 = cast<TemplateTemplateParmDecl>(*OldParm); 2884 TemplateTemplateParmDecl *NewTTP 2885 = cast<TemplateTemplateParmDecl>(*NewParm); 2886 if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 2887 OldTTP->getTemplateParameters(), 2888 Complain, 2889 (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind), 2890 TemplateArgLoc)) 2891 return false; 2892 } 2893 } 2894 2895 return true; 2896} 2897 2898/// \brief Check whether a template can be declared within this scope. 2899/// 2900/// If the template declaration is valid in this scope, returns 2901/// false. Otherwise, issues a diagnostic and returns true. 2902bool 2903Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 2904 // Find the nearest enclosing declaration scope. 2905 while ((S->getFlags() & Scope::DeclScope) == 0 || 2906 (S->getFlags() & Scope::TemplateParamScope) != 0) 2907 S = S->getParent(); 2908 2909 // C++ [temp]p2: 2910 // A template-declaration can appear only as a namespace scope or 2911 // class scope declaration. 2912 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 2913 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 2914 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 2915 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 2916 << TemplateParams->getSourceRange(); 2917 2918 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 2919 Ctx = Ctx->getParent(); 2920 2921 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 2922 return false; 2923 2924 return Diag(TemplateParams->getTemplateLoc(), 2925 diag::err_template_outside_namespace_or_class_scope) 2926 << TemplateParams->getSourceRange(); 2927} 2928 2929/// \brief Determine what kind of template specialization the given declaration 2930/// is. 2931static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 2932 if (!D) 2933 return TSK_Undeclared; 2934 2935 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 2936 return Record->getTemplateSpecializationKind(); 2937 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 2938 return Function->getTemplateSpecializationKind(); 2939 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 2940 return Var->getTemplateSpecializationKind(); 2941 2942 return TSK_Undeclared; 2943} 2944 2945/// \brief Check whether a specialization is well-formed in the current 2946/// context. 2947/// 2948/// This routine determines whether a template specialization can be declared 2949/// in the current context (C++ [temp.expl.spec]p2). 2950/// 2951/// \param S the semantic analysis object for which this check is being 2952/// performed. 2953/// 2954/// \param Specialized the entity being specialized or instantiated, which 2955/// may be a kind of template (class template, function template, etc.) or 2956/// a member of a class template (member function, static data member, 2957/// member class). 2958/// 2959/// \param PrevDecl the previous declaration of this entity, if any. 2960/// 2961/// \param Loc the location of the explicit specialization or instantiation of 2962/// this entity. 2963/// 2964/// \param IsPartialSpecialization whether this is a partial specialization of 2965/// a class template. 2966/// 2967/// \returns true if there was an error that we cannot recover from, false 2968/// otherwise. 2969static bool CheckTemplateSpecializationScope(Sema &S, 2970 NamedDecl *Specialized, 2971 NamedDecl *PrevDecl, 2972 SourceLocation Loc, 2973 bool IsPartialSpecialization) { 2974 // Keep these "kind" numbers in sync with the %select statements in the 2975 // various diagnostics emitted by this routine. 2976 int EntityKind = 0; 2977 bool isTemplateSpecialization = false; 2978 if (isa<ClassTemplateDecl>(Specialized)) { 2979 EntityKind = IsPartialSpecialization? 1 : 0; 2980 isTemplateSpecialization = true; 2981 } else if (isa<FunctionTemplateDecl>(Specialized)) { 2982 EntityKind = 2; 2983 isTemplateSpecialization = true; 2984 } else if (isa<CXXMethodDecl>(Specialized)) 2985 EntityKind = 3; 2986 else if (isa<VarDecl>(Specialized)) 2987 EntityKind = 4; 2988 else if (isa<RecordDecl>(Specialized)) 2989 EntityKind = 5; 2990 else { 2991 S.Diag(Loc, diag::err_template_spec_unknown_kind); 2992 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 2993 return true; 2994 } 2995 2996 // C++ [temp.expl.spec]p2: 2997 // An explicit specialization shall be declared in the namespace 2998 // of which the template is a member, or, for member templates, in 2999 // the namespace of which the enclosing class or enclosing class 3000 // template is a member. An explicit specialization of a member 3001 // function, member class or static data member of a class 3002 // template shall be declared in the namespace of which the class 3003 // template is a member. Such a declaration may also be a 3004 // definition. If the declaration is not a definition, the 3005 // specialization may be defined later in the name- space in which 3006 // the explicit specialization was declared, or in a namespace 3007 // that encloses the one in which the explicit specialization was 3008 // declared. 3009 if (S.CurContext->getLookupContext()->isFunctionOrMethod()) { 3010 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 3011 << Specialized; 3012 return true; 3013 } 3014 3015 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 3016 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 3017 << Specialized; 3018 return true; 3019 } 3020 3021 // C++ [temp.class.spec]p6: 3022 // A class template partial specialization may be declared or redeclared 3023 // in any namespace scope in which its definition may be defined (14.5.1 3024 // and 14.5.2). 3025 bool ComplainedAboutScope = false; 3026 DeclContext *SpecializedContext 3027 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 3028 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 3029 if ((!PrevDecl || 3030 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 3031 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 3032 // There is no prior declaration of this entity, so this 3033 // specialization must be in the same context as the template 3034 // itself. 3035 if (!DC->Equals(SpecializedContext)) { 3036 if (isa<TranslationUnitDecl>(SpecializedContext)) 3037 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 3038 << EntityKind << Specialized; 3039 else if (isa<NamespaceDecl>(SpecializedContext)) 3040 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope) 3041 << EntityKind << Specialized 3042 << cast<NamedDecl>(SpecializedContext); 3043 3044 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3045 ComplainedAboutScope = true; 3046 } 3047 } 3048 3049 // Make sure that this redeclaration (or definition) occurs in an enclosing 3050 // namespace. 3051 // Note that HandleDeclarator() performs this check for explicit 3052 // specializations of function templates, static data members, and member 3053 // functions, so we skip the check here for those kinds of entities. 3054 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 3055 // Should we refactor that check, so that it occurs later? 3056 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 3057 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 3058 isa<FunctionDecl>(Specialized))) { 3059 if (isa<TranslationUnitDecl>(SpecializedContext)) 3060 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 3061 << EntityKind << Specialized; 3062 else if (isa<NamespaceDecl>(SpecializedContext)) 3063 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 3064 << EntityKind << Specialized 3065 << cast<NamedDecl>(SpecializedContext); 3066 3067 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3068 } 3069 3070 // FIXME: check for specialization-after-instantiation errors and such. 3071 3072 return false; 3073} 3074 3075/// \brief Check the non-type template arguments of a class template 3076/// partial specialization according to C++ [temp.class.spec]p9. 3077/// 3078/// \param TemplateParams the template parameters of the primary class 3079/// template. 3080/// 3081/// \param TemplateArg the template arguments of the class template 3082/// partial specialization. 3083/// 3084/// \param MirrorsPrimaryTemplate will be set true if the class 3085/// template partial specialization arguments are identical to the 3086/// implicit template arguments of the primary template. This is not 3087/// necessarily an error (C++0x), and it is left to the caller to diagnose 3088/// this condition when it is an error. 3089/// 3090/// \returns true if there was an error, false otherwise. 3091bool Sema::CheckClassTemplatePartialSpecializationArgs( 3092 TemplateParameterList *TemplateParams, 3093 const TemplateArgumentListBuilder &TemplateArgs, 3094 bool &MirrorsPrimaryTemplate) { 3095 // FIXME: the interface to this function will have to change to 3096 // accommodate variadic templates. 3097 MirrorsPrimaryTemplate = true; 3098 3099 const TemplateArgument *ArgList = TemplateArgs.getFlatArguments(); 3100 3101 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3102 // Determine whether the template argument list of the partial 3103 // specialization is identical to the implicit argument list of 3104 // the primary template. The caller may need to diagnostic this as 3105 // an error per C++ [temp.class.spec]p9b3. 3106 if (MirrorsPrimaryTemplate) { 3107 if (TemplateTypeParmDecl *TTP 3108 = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) { 3109 if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) != 3110 Context.getCanonicalType(ArgList[I].getAsType())) 3111 MirrorsPrimaryTemplate = false; 3112 } else if (TemplateTemplateParmDecl *TTP 3113 = dyn_cast<TemplateTemplateParmDecl>( 3114 TemplateParams->getParam(I))) { 3115 TemplateName Name = ArgList[I].getAsTemplate(); 3116 TemplateTemplateParmDecl *ArgDecl 3117 = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()); 3118 if (!ArgDecl || 3119 ArgDecl->getIndex() != TTP->getIndex() || 3120 ArgDecl->getDepth() != TTP->getDepth()) 3121 MirrorsPrimaryTemplate = false; 3122 } 3123 } 3124 3125 NonTypeTemplateParmDecl *Param 3126 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 3127 if (!Param) { 3128 continue; 3129 } 3130 3131 Expr *ArgExpr = ArgList[I].getAsExpr(); 3132 if (!ArgExpr) { 3133 MirrorsPrimaryTemplate = false; 3134 continue; 3135 } 3136 3137 // C++ [temp.class.spec]p8: 3138 // A non-type argument is non-specialized if it is the name of a 3139 // non-type parameter. All other non-type arguments are 3140 // specialized. 3141 // 3142 // Below, we check the two conditions that only apply to 3143 // specialized non-type arguments, so skip any non-specialized 3144 // arguments. 3145 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 3146 if (NonTypeTemplateParmDecl *NTTP 3147 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) { 3148 if (MirrorsPrimaryTemplate && 3149 (Param->getIndex() != NTTP->getIndex() || 3150 Param->getDepth() != NTTP->getDepth())) 3151 MirrorsPrimaryTemplate = false; 3152 3153 continue; 3154 } 3155 3156 // C++ [temp.class.spec]p9: 3157 // Within the argument list of a class template partial 3158 // specialization, the following restrictions apply: 3159 // -- A partially specialized non-type argument expression 3160 // shall not involve a template parameter of the partial 3161 // specialization except when the argument expression is a 3162 // simple identifier. 3163 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 3164 Diag(ArgExpr->getLocStart(), 3165 diag::err_dependent_non_type_arg_in_partial_spec) 3166 << ArgExpr->getSourceRange(); 3167 return true; 3168 } 3169 3170 // -- The type of a template parameter corresponding to a 3171 // specialized non-type argument shall not be dependent on a 3172 // parameter of the specialization. 3173 if (Param->getType()->isDependentType()) { 3174 Diag(ArgExpr->getLocStart(), 3175 diag::err_dependent_typed_non_type_arg_in_partial_spec) 3176 << Param->getType() 3177 << ArgExpr->getSourceRange(); 3178 Diag(Param->getLocation(), diag::note_template_param_here); 3179 return true; 3180 } 3181 3182 MirrorsPrimaryTemplate = false; 3183 } 3184 3185 return false; 3186} 3187 3188Sema::DeclResult 3189Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 3190 TagUseKind TUK, 3191 SourceLocation KWLoc, 3192 const CXXScopeSpec &SS, 3193 TemplateTy TemplateD, 3194 SourceLocation TemplateNameLoc, 3195 SourceLocation LAngleLoc, 3196 ASTTemplateArgsPtr TemplateArgsIn, 3197 SourceLocation RAngleLoc, 3198 AttributeList *Attr, 3199 MultiTemplateParamsArg TemplateParameterLists) { 3200 assert(TUK != TUK_Reference && "References are not specializations"); 3201 3202 // Find the class template we're specializing 3203 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 3204 ClassTemplateDecl *ClassTemplate 3205 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 3206 3207 if (!ClassTemplate) { 3208 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 3209 << (Name.getAsTemplateDecl() && 3210 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 3211 return true; 3212 } 3213 3214 bool isExplicitSpecialization = false; 3215 bool isPartialSpecialization = false; 3216 3217 // Check the validity of the template headers that introduce this 3218 // template. 3219 // FIXME: We probably shouldn't complain about these headers for 3220 // friend declarations. 3221 TemplateParameterList *TemplateParams 3222 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 3223 (TemplateParameterList**)TemplateParameterLists.get(), 3224 TemplateParameterLists.size(), 3225 isExplicitSpecialization); 3226 if (TemplateParams && TemplateParams->size() > 0) { 3227 isPartialSpecialization = true; 3228 3229 // C++ [temp.class.spec]p10: 3230 // The template parameter list of a specialization shall not 3231 // contain default template argument values. 3232 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3233 Decl *Param = TemplateParams->getParam(I); 3234 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 3235 if (TTP->hasDefaultArgument()) { 3236 Diag(TTP->getDefaultArgumentLoc(), 3237 diag::err_default_arg_in_partial_spec); 3238 TTP->removeDefaultArgument(); 3239 } 3240 } else if (NonTypeTemplateParmDecl *NTTP 3241 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3242 if (Expr *DefArg = NTTP->getDefaultArgument()) { 3243 Diag(NTTP->getDefaultArgumentLoc(), 3244 diag::err_default_arg_in_partial_spec) 3245 << DefArg->getSourceRange(); 3246 NTTP->setDefaultArgument(0); 3247 DefArg->Destroy(Context); 3248 } 3249 } else { 3250 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 3251 if (TTP->hasDefaultArgument()) { 3252 Diag(TTP->getDefaultArgument().getLocation(), 3253 diag::err_default_arg_in_partial_spec) 3254 << TTP->getDefaultArgument().getSourceRange(); 3255 TTP->setDefaultArgument(TemplateArgumentLoc()); 3256 } 3257 } 3258 } 3259 } else if (TemplateParams) { 3260 if (TUK == TUK_Friend) 3261 Diag(KWLoc, diag::err_template_spec_friend) 3262 << CodeModificationHint::CreateRemoval( 3263 SourceRange(TemplateParams->getTemplateLoc(), 3264 TemplateParams->getRAngleLoc())) 3265 << SourceRange(LAngleLoc, RAngleLoc); 3266 else 3267 isExplicitSpecialization = true; 3268 } else if (TUK != TUK_Friend) { 3269 Diag(KWLoc, diag::err_template_spec_needs_header) 3270 << CodeModificationHint::CreateInsertion(KWLoc, "template<> "); 3271 isExplicitSpecialization = true; 3272 } 3273 3274 // Check that the specialization uses the same tag kind as the 3275 // original template. 3276 TagDecl::TagKind Kind; 3277 switch (TagSpec) { 3278 default: assert(0 && "Unknown tag type!"); 3279 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 3280 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 3281 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 3282 } 3283 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 3284 Kind, KWLoc, 3285 *ClassTemplate->getIdentifier())) { 3286 Diag(KWLoc, diag::err_use_with_wrong_tag) 3287 << ClassTemplate 3288 << CodeModificationHint::CreateReplacement(KWLoc, 3289 ClassTemplate->getTemplatedDecl()->getKindName()); 3290 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 3291 diag::note_previous_use); 3292 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 3293 } 3294 3295 // Translate the parser's template argument list in our AST format. 3296 TemplateArgumentListInfo TemplateArgs; 3297 TemplateArgs.setLAngleLoc(LAngleLoc); 3298 TemplateArgs.setRAngleLoc(RAngleLoc); 3299 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3300 3301 // Check that the template argument list is well-formed for this 3302 // template. 3303 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 3304 TemplateArgs.size()); 3305 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 3306 TemplateArgs, false, Converted)) 3307 return true; 3308 3309 assert((Converted.structuredSize() == 3310 ClassTemplate->getTemplateParameters()->size()) && 3311 "Converted template argument list is too short!"); 3312 3313 // Find the class template (partial) specialization declaration that 3314 // corresponds to these arguments. 3315 llvm::FoldingSetNodeID ID; 3316 if (isPartialSpecialization) { 3317 bool MirrorsPrimaryTemplate; 3318 if (CheckClassTemplatePartialSpecializationArgs( 3319 ClassTemplate->getTemplateParameters(), 3320 Converted, MirrorsPrimaryTemplate)) 3321 return true; 3322 3323 if (MirrorsPrimaryTemplate) { 3324 // C++ [temp.class.spec]p9b3: 3325 // 3326 // -- The argument list of the specialization shall not be identical 3327 // to the implicit argument list of the primary template. 3328 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 3329 << (TUK == TUK_Definition) 3330 << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc, 3331 RAngleLoc)); 3332 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 3333 ClassTemplate->getIdentifier(), 3334 TemplateNameLoc, 3335 Attr, 3336 TemplateParams, 3337 AS_none); 3338 } 3339 3340 // FIXME: Diagnose friend partial specializations 3341 3342 // FIXME: Template parameter list matters, too 3343 ClassTemplatePartialSpecializationDecl::Profile(ID, 3344 Converted.getFlatArguments(), 3345 Converted.flatSize(), 3346 Context); 3347 } else 3348 ClassTemplateSpecializationDecl::Profile(ID, 3349 Converted.getFlatArguments(), 3350 Converted.flatSize(), 3351 Context); 3352 void *InsertPos = 0; 3353 ClassTemplateSpecializationDecl *PrevDecl = 0; 3354 3355 if (isPartialSpecialization) 3356 PrevDecl 3357 = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID, 3358 InsertPos); 3359 else 3360 PrevDecl 3361 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 3362 3363 ClassTemplateSpecializationDecl *Specialization = 0; 3364 3365 // Check whether we can declare a class template specialization in 3366 // the current scope. 3367 if (TUK != TUK_Friend && 3368 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 3369 TemplateNameLoc, 3370 isPartialSpecialization)) 3371 return true; 3372 3373 // The canonical type 3374 QualType CanonType; 3375 if (PrevDecl && 3376 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 3377 TUK == TUK_Friend)) { 3378 // Since the only prior class template specialization with these 3379 // arguments was referenced but not declared, or we're only 3380 // referencing this specialization as a friend, reuse that 3381 // declaration node as our own, updating its source location to 3382 // reflect our new declaration. 3383 Specialization = PrevDecl; 3384 Specialization->setLocation(TemplateNameLoc); 3385 PrevDecl = 0; 3386 CanonType = Context.getTypeDeclType(Specialization); 3387 } else if (isPartialSpecialization) { 3388 // Build the canonical type that describes the converted template 3389 // arguments of the class template partial specialization. 3390 CanonType = Context.getTemplateSpecializationType( 3391 TemplateName(ClassTemplate), 3392 Converted.getFlatArguments(), 3393 Converted.flatSize()); 3394 3395 // Create a new class template partial specialization declaration node. 3396 ClassTemplatePartialSpecializationDecl *PrevPartial 3397 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 3398 ClassTemplatePartialSpecializationDecl *Partial 3399 = ClassTemplatePartialSpecializationDecl::Create(Context, 3400 ClassTemplate->getDeclContext(), 3401 TemplateNameLoc, 3402 TemplateParams, 3403 ClassTemplate, 3404 Converted, 3405 TemplateArgs, 3406 PrevPartial); 3407 3408 if (PrevPartial) { 3409 ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial); 3410 ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial); 3411 } else { 3412 ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos); 3413 } 3414 Specialization = Partial; 3415 3416 // If we are providing an explicit specialization of a member class 3417 // template specialization, make a note of that. 3418 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 3419 PrevPartial->setMemberSpecialization(); 3420 3421 // Check that all of the template parameters of the class template 3422 // partial specialization are deducible from the template 3423 // arguments. If not, this class template partial specialization 3424 // will never be used. 3425 llvm::SmallVector<bool, 8> DeducibleParams; 3426 DeducibleParams.resize(TemplateParams->size()); 3427 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 3428 TemplateParams->getDepth(), 3429 DeducibleParams); 3430 unsigned NumNonDeducible = 0; 3431 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 3432 if (!DeducibleParams[I]) 3433 ++NumNonDeducible; 3434 3435 if (NumNonDeducible) { 3436 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 3437 << (NumNonDeducible > 1) 3438 << SourceRange(TemplateNameLoc, RAngleLoc); 3439 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 3440 if (!DeducibleParams[I]) { 3441 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 3442 if (Param->getDeclName()) 3443 Diag(Param->getLocation(), 3444 diag::note_partial_spec_unused_parameter) 3445 << Param->getDeclName(); 3446 else 3447 Diag(Param->getLocation(), 3448 diag::note_partial_spec_unused_parameter) 3449 << std::string("<anonymous>"); 3450 } 3451 } 3452 } 3453 } else { 3454 // Create a new class template specialization declaration node for 3455 // this explicit specialization or friend declaration. 3456 Specialization 3457 = ClassTemplateSpecializationDecl::Create(Context, 3458 ClassTemplate->getDeclContext(), 3459 TemplateNameLoc, 3460 ClassTemplate, 3461 Converted, 3462 PrevDecl); 3463 3464 if (PrevDecl) { 3465 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 3466 ClassTemplate->getSpecializations().GetOrInsertNode(Specialization); 3467 } else { 3468 ClassTemplate->getSpecializations().InsertNode(Specialization, 3469 InsertPos); 3470 } 3471 3472 CanonType = Context.getTypeDeclType(Specialization); 3473 } 3474 3475 // C++ [temp.expl.spec]p6: 3476 // If a template, a member template or the member of a class template is 3477 // explicitly specialized then that specialization shall be declared 3478 // before the first use of that specialization that would cause an implicit 3479 // instantiation to take place, in every translation unit in which such a 3480 // use occurs; no diagnostic is required. 3481 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 3482 SourceRange Range(TemplateNameLoc, RAngleLoc); 3483 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 3484 << Context.getTypeDeclType(Specialization) << Range; 3485 3486 Diag(PrevDecl->getPointOfInstantiation(), 3487 diag::note_instantiation_required_here) 3488 << (PrevDecl->getTemplateSpecializationKind() 3489 != TSK_ImplicitInstantiation); 3490 return true; 3491 } 3492 3493 // If this is not a friend, note that this is an explicit specialization. 3494 if (TUK != TUK_Friend) 3495 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 3496 3497 // Check that this isn't a redefinition of this specialization. 3498 if (TUK == TUK_Definition) { 3499 if (RecordDecl *Def = Specialization->getDefinition(Context)) { 3500 SourceRange Range(TemplateNameLoc, RAngleLoc); 3501 Diag(TemplateNameLoc, diag::err_redefinition) 3502 << Context.getTypeDeclType(Specialization) << Range; 3503 Diag(Def->getLocation(), diag::note_previous_definition); 3504 Specialization->setInvalidDecl(); 3505 return true; 3506 } 3507 } 3508 3509 // Build the fully-sugared type for this class template 3510 // specialization as the user wrote in the specialization 3511 // itself. This means that we'll pretty-print the type retrieved 3512 // from the specialization's declaration the way that the user 3513 // actually wrote the specialization, rather than formatting the 3514 // name based on the "canonical" representation used to store the 3515 // template arguments in the specialization. 3516 QualType WrittenTy 3517 = Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 3518 if (TUK != TUK_Friend) 3519 Specialization->setTypeAsWritten(WrittenTy); 3520 TemplateArgsIn.release(); 3521 3522 // C++ [temp.expl.spec]p9: 3523 // A template explicit specialization is in the scope of the 3524 // namespace in which the template was defined. 3525 // 3526 // We actually implement this paragraph where we set the semantic 3527 // context (in the creation of the ClassTemplateSpecializationDecl), 3528 // but we also maintain the lexical context where the actual 3529 // definition occurs. 3530 Specialization->setLexicalDeclContext(CurContext); 3531 3532 // We may be starting the definition of this specialization. 3533 if (TUK == TUK_Definition) 3534 Specialization->startDefinition(); 3535 3536 if (TUK == TUK_Friend) { 3537 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 3538 TemplateNameLoc, 3539 WrittenTy.getTypePtr(), 3540 /*FIXME:*/KWLoc); 3541 Friend->setAccess(AS_public); 3542 CurContext->addDecl(Friend); 3543 } else { 3544 // Add the specialization into its lexical context, so that it can 3545 // be seen when iterating through the list of declarations in that 3546 // context. However, specializations are not found by name lookup. 3547 CurContext->addDecl(Specialization); 3548 } 3549 return DeclPtrTy::make(Specialization); 3550} 3551 3552Sema::DeclPtrTy 3553Sema::ActOnTemplateDeclarator(Scope *S, 3554 MultiTemplateParamsArg TemplateParameterLists, 3555 Declarator &D) { 3556 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 3557} 3558 3559Sema::DeclPtrTy 3560Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 3561 MultiTemplateParamsArg TemplateParameterLists, 3562 Declarator &D) { 3563 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 3564 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && 3565 "Not a function declarator!"); 3566 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; 3567 3568 if (FTI.hasPrototype) { 3569 // FIXME: Diagnose arguments without names in C. 3570 } 3571 3572 Scope *ParentScope = FnBodyScope->getParent(); 3573 3574 DeclPtrTy DP = HandleDeclarator(ParentScope, D, 3575 move(TemplateParameterLists), 3576 /*IsFunctionDefinition=*/true); 3577 if (FunctionTemplateDecl *FunctionTemplate 3578 = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>())) 3579 return ActOnStartOfFunctionDef(FnBodyScope, 3580 DeclPtrTy::make(FunctionTemplate->getTemplatedDecl())); 3581 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>())) 3582 return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function)); 3583 return DeclPtrTy(); 3584} 3585 3586/// \brief Diagnose cases where we have an explicit template specialization 3587/// before/after an explicit template instantiation, producing diagnostics 3588/// for those cases where they are required and determining whether the 3589/// new specialization/instantiation will have any effect. 3590/// 3591/// \param NewLoc the location of the new explicit specialization or 3592/// instantiation. 3593/// 3594/// \param NewTSK the kind of the new explicit specialization or instantiation. 3595/// 3596/// \param PrevDecl the previous declaration of the entity. 3597/// 3598/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 3599/// 3600/// \param PrevPointOfInstantiation if valid, indicates where the previus 3601/// declaration was instantiated (either implicitly or explicitly). 3602/// 3603/// \param SuppressNew will be set to true to indicate that the new 3604/// specialization or instantiation has no effect and should be ignored. 3605/// 3606/// \returns true if there was an error that should prevent the introduction of 3607/// the new declaration into the AST, false otherwise. 3608bool 3609Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 3610 TemplateSpecializationKind NewTSK, 3611 NamedDecl *PrevDecl, 3612 TemplateSpecializationKind PrevTSK, 3613 SourceLocation PrevPointOfInstantiation, 3614 bool &SuppressNew) { 3615 SuppressNew = false; 3616 3617 switch (NewTSK) { 3618 case TSK_Undeclared: 3619 case TSK_ImplicitInstantiation: 3620 assert(false && "Don't check implicit instantiations here"); 3621 return false; 3622 3623 case TSK_ExplicitSpecialization: 3624 switch (PrevTSK) { 3625 case TSK_Undeclared: 3626 case TSK_ExplicitSpecialization: 3627 // Okay, we're just specializing something that is either already 3628 // explicitly specialized or has merely been mentioned without any 3629 // instantiation. 3630 return false; 3631 3632 case TSK_ImplicitInstantiation: 3633 if (PrevPointOfInstantiation.isInvalid()) { 3634 // The declaration itself has not actually been instantiated, so it is 3635 // still okay to specialize it. 3636 return false; 3637 } 3638 // Fall through 3639 3640 case TSK_ExplicitInstantiationDeclaration: 3641 case TSK_ExplicitInstantiationDefinition: 3642 assert((PrevTSK == TSK_ImplicitInstantiation || 3643 PrevPointOfInstantiation.isValid()) && 3644 "Explicit instantiation without point of instantiation?"); 3645 3646 // C++ [temp.expl.spec]p6: 3647 // If a template, a member template or the member of a class template 3648 // is explicitly specialized then that specialization shall be declared 3649 // before the first use of that specialization that would cause an 3650 // implicit instantiation to take place, in every translation unit in 3651 // which such a use occurs; no diagnostic is required. 3652 Diag(NewLoc, diag::err_specialization_after_instantiation) 3653 << PrevDecl; 3654 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 3655 << (PrevTSK != TSK_ImplicitInstantiation); 3656 3657 return true; 3658 } 3659 break; 3660 3661 case TSK_ExplicitInstantiationDeclaration: 3662 switch (PrevTSK) { 3663 case TSK_ExplicitInstantiationDeclaration: 3664 // This explicit instantiation declaration is redundant (that's okay). 3665 SuppressNew = true; 3666 return false; 3667 3668 case TSK_Undeclared: 3669 case TSK_ImplicitInstantiation: 3670 // We're explicitly instantiating something that may have already been 3671 // implicitly instantiated; that's fine. 3672 return false; 3673 3674 case TSK_ExplicitSpecialization: 3675 // C++0x [temp.explicit]p4: 3676 // For a given set of template parameters, if an explicit instantiation 3677 // of a template appears after a declaration of an explicit 3678 // specialization for that template, the explicit instantiation has no 3679 // effect. 3680 return false; 3681 3682 case TSK_ExplicitInstantiationDefinition: 3683 // C++0x [temp.explicit]p10: 3684 // If an entity is the subject of both an explicit instantiation 3685 // declaration and an explicit instantiation definition in the same 3686 // translation unit, the definition shall follow the declaration. 3687 Diag(NewLoc, 3688 diag::err_explicit_instantiation_declaration_after_definition); 3689 Diag(PrevPointOfInstantiation, 3690 diag::note_explicit_instantiation_definition_here); 3691 assert(PrevPointOfInstantiation.isValid() && 3692 "Explicit instantiation without point of instantiation?"); 3693 SuppressNew = true; 3694 return false; 3695 } 3696 break; 3697 3698 case TSK_ExplicitInstantiationDefinition: 3699 switch (PrevTSK) { 3700 case TSK_Undeclared: 3701 case TSK_ImplicitInstantiation: 3702 // We're explicitly instantiating something that may have already been 3703 // implicitly instantiated; that's fine. 3704 return false; 3705 3706 case TSK_ExplicitSpecialization: 3707 // C++ DR 259, C++0x [temp.explicit]p4: 3708 // For a given set of template parameters, if an explicit 3709 // instantiation of a template appears after a declaration of 3710 // an explicit specialization for that template, the explicit 3711 // instantiation has no effect. 3712 // 3713 // In C++98/03 mode, we only give an extension warning here, because it 3714 // is not not harmful to try to explicitly instantiate something that 3715 // has been explicitly specialized. 3716 if (!getLangOptions().CPlusPlus0x) { 3717 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 3718 << PrevDecl; 3719 Diag(PrevDecl->getLocation(), 3720 diag::note_previous_template_specialization); 3721 } 3722 SuppressNew = true; 3723 return false; 3724 3725 case TSK_ExplicitInstantiationDeclaration: 3726 // We're explicity instantiating a definition for something for which we 3727 // were previously asked to suppress instantiations. That's fine. 3728 return false; 3729 3730 case TSK_ExplicitInstantiationDefinition: 3731 // C++0x [temp.spec]p5: 3732 // For a given template and a given set of template-arguments, 3733 // - an explicit instantiation definition shall appear at most once 3734 // in a program, 3735 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 3736 << PrevDecl; 3737 Diag(PrevPointOfInstantiation, 3738 diag::note_previous_explicit_instantiation); 3739 SuppressNew = true; 3740 return false; 3741 } 3742 break; 3743 } 3744 3745 assert(false && "Missing specialization/instantiation case?"); 3746 3747 return false; 3748} 3749 3750/// \brief Perform semantic analysis for the given function template 3751/// specialization. 3752/// 3753/// This routine performs all of the semantic analysis required for an 3754/// explicit function template specialization. On successful completion, 3755/// the function declaration \p FD will become a function template 3756/// specialization. 3757/// 3758/// \param FD the function declaration, which will be updated to become a 3759/// function template specialization. 3760/// 3761/// \param HasExplicitTemplateArgs whether any template arguments were 3762/// explicitly provided. 3763/// 3764/// \param LAngleLoc the location of the left angle bracket ('<'), if 3765/// template arguments were explicitly provided. 3766/// 3767/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 3768/// if any. 3769/// 3770/// \param NumExplicitTemplateArgs the number of explicitly-provided template 3771/// arguments. This number may be zero even when HasExplicitTemplateArgs is 3772/// true as in, e.g., \c void sort<>(char*, char*); 3773/// 3774/// \param RAngleLoc the location of the right angle bracket ('>'), if 3775/// template arguments were explicitly provided. 3776/// 3777/// \param PrevDecl the set of declarations that 3778bool 3779Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 3780 const TemplateArgumentListInfo *ExplicitTemplateArgs, 3781 LookupResult &Previous) { 3782 // The set of function template specializations that could match this 3783 // explicit function template specialization. 3784 typedef llvm::SmallVector<FunctionDecl *, 8> CandidateSet; 3785 CandidateSet Candidates; 3786 3787 DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext(); 3788 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 3789 I != E; ++I) { 3790 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 3791 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 3792 // Only consider templates found within the same semantic lookup scope as 3793 // FD. 3794 if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext())) 3795 continue; 3796 3797 // C++ [temp.expl.spec]p11: 3798 // A trailing template-argument can be left unspecified in the 3799 // template-id naming an explicit function template specialization 3800 // provided it can be deduced from the function argument type. 3801 // Perform template argument deduction to determine whether we may be 3802 // specializing this template. 3803 // FIXME: It is somewhat wasteful to build 3804 TemplateDeductionInfo Info(Context); 3805 FunctionDecl *Specialization = 0; 3806 if (TemplateDeductionResult TDK 3807 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 3808 FD->getType(), 3809 Specialization, 3810 Info)) { 3811 // FIXME: Template argument deduction failed; record why it failed, so 3812 // that we can provide nifty diagnostics. 3813 (void)TDK; 3814 continue; 3815 } 3816 3817 // Record this candidate. 3818 Candidates.push_back(Specialization); 3819 } 3820 } 3821 3822 // Find the most specialized function template. 3823 FunctionDecl *Specialization = getMostSpecialized(Candidates.data(), 3824 Candidates.size(), 3825 TPOC_Other, 3826 FD->getLocation(), 3827 PartialDiagnostic(diag::err_function_template_spec_no_match) 3828 << FD->getDeclName(), 3829 PartialDiagnostic(diag::err_function_template_spec_ambiguous) 3830 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 3831 PartialDiagnostic(diag::note_function_template_spec_matched)); 3832 if (!Specialization) 3833 return true; 3834 3835 // FIXME: Check if the prior specialization has a point of instantiation. 3836 // If so, we have run afoul of . 3837 3838 // Check the scope of this explicit specialization. 3839 if (CheckTemplateSpecializationScope(*this, 3840 Specialization->getPrimaryTemplate(), 3841 Specialization, FD->getLocation(), 3842 false)) 3843 return true; 3844 3845 // C++ [temp.expl.spec]p6: 3846 // If a template, a member template or the member of a class template is 3847 // explicitly specialized then that specialization shall be declared 3848 // before the first use of that specialization that would cause an implicit 3849 // instantiation to take place, in every translation unit in which such a 3850 // use occurs; no diagnostic is required. 3851 FunctionTemplateSpecializationInfo *SpecInfo 3852 = Specialization->getTemplateSpecializationInfo(); 3853 assert(SpecInfo && "Function template specialization info missing?"); 3854 if (SpecInfo->getPointOfInstantiation().isValid()) { 3855 Diag(FD->getLocation(), diag::err_specialization_after_instantiation) 3856 << FD; 3857 Diag(SpecInfo->getPointOfInstantiation(), 3858 diag::note_instantiation_required_here) 3859 << (Specialization->getTemplateSpecializationKind() 3860 != TSK_ImplicitInstantiation); 3861 return true; 3862 } 3863 3864 // Mark the prior declaration as an explicit specialization, so that later 3865 // clients know that this is an explicit specialization. 3866 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 3867 3868 // Turn the given function declaration into a function template 3869 // specialization, with the template arguments from the previous 3870 // specialization. 3871 FD->setFunctionTemplateSpecialization(Context, 3872 Specialization->getPrimaryTemplate(), 3873 new (Context) TemplateArgumentList( 3874 *Specialization->getTemplateSpecializationArgs()), 3875 /*InsertPos=*/0, 3876 TSK_ExplicitSpecialization); 3877 3878 // The "previous declaration" for this function template specialization is 3879 // the prior function template specialization. 3880 Previous.clear(); 3881 Previous.addDecl(Specialization); 3882 return false; 3883} 3884 3885/// \brief Perform semantic analysis for the given non-template member 3886/// specialization. 3887/// 3888/// This routine performs all of the semantic analysis required for an 3889/// explicit member function specialization. On successful completion, 3890/// the function declaration \p FD will become a member function 3891/// specialization. 3892/// 3893/// \param Member the member declaration, which will be updated to become a 3894/// specialization. 3895/// 3896/// \param Previous the set of declarations, one of which may be specialized 3897/// by this function specialization; the set will be modified to contain the 3898/// redeclared member. 3899bool 3900Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 3901 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 3902 3903 // Try to find the member we are instantiating. 3904 NamedDecl *Instantiation = 0; 3905 NamedDecl *InstantiatedFrom = 0; 3906 MemberSpecializationInfo *MSInfo = 0; 3907 3908 if (Previous.empty()) { 3909 // Nowhere to look anyway. 3910 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 3911 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 3912 I != E; ++I) { 3913 NamedDecl *D = (*I)->getUnderlyingDecl(); 3914 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 3915 if (Context.hasSameType(Function->getType(), Method->getType())) { 3916 Instantiation = Method; 3917 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 3918 MSInfo = Method->getMemberSpecializationInfo(); 3919 break; 3920 } 3921 } 3922 } 3923 } else if (isa<VarDecl>(Member)) { 3924 VarDecl *PrevVar; 3925 if (Previous.isSingleResult() && 3926 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 3927 if (PrevVar->isStaticDataMember()) { 3928 Instantiation = PrevVar; 3929 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 3930 MSInfo = PrevVar->getMemberSpecializationInfo(); 3931 } 3932 } else if (isa<RecordDecl>(Member)) { 3933 CXXRecordDecl *PrevRecord; 3934 if (Previous.isSingleResult() && 3935 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 3936 Instantiation = PrevRecord; 3937 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 3938 MSInfo = PrevRecord->getMemberSpecializationInfo(); 3939 } 3940 } 3941 3942 if (!Instantiation) { 3943 // There is no previous declaration that matches. Since member 3944 // specializations are always out-of-line, the caller will complain about 3945 // this mismatch later. 3946 return false; 3947 } 3948 3949 // Make sure that this is a specialization of a member. 3950 if (!InstantiatedFrom) { 3951 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 3952 << Member; 3953 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 3954 return true; 3955 } 3956 3957 // C++ [temp.expl.spec]p6: 3958 // If a template, a member template or the member of a class template is 3959 // explicitly specialized then that spe- cialization shall be declared 3960 // before the first use of that specialization that would cause an implicit 3961 // instantiation to take place, in every translation unit in which such a 3962 // use occurs; no diagnostic is required. 3963 assert(MSInfo && "Member specialization info missing?"); 3964 if (MSInfo->getPointOfInstantiation().isValid()) { 3965 Diag(Member->getLocation(), diag::err_specialization_after_instantiation) 3966 << Member; 3967 Diag(MSInfo->getPointOfInstantiation(), 3968 diag::note_instantiation_required_here) 3969 << (MSInfo->getTemplateSpecializationKind() != TSK_ImplicitInstantiation); 3970 return true; 3971 } 3972 3973 // Check the scope of this explicit specialization. 3974 if (CheckTemplateSpecializationScope(*this, 3975 InstantiatedFrom, 3976 Instantiation, Member->getLocation(), 3977 false)) 3978 return true; 3979 3980 // Note that this is an explicit instantiation of a member. 3981 // the original declaration to note that it is an explicit specialization 3982 // (if it was previously an implicit instantiation). This latter step 3983 // makes bookkeeping easier. 3984 if (isa<FunctionDecl>(Member)) { 3985 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 3986 if (InstantiationFunction->getTemplateSpecializationKind() == 3987 TSK_ImplicitInstantiation) { 3988 InstantiationFunction->setTemplateSpecializationKind( 3989 TSK_ExplicitSpecialization); 3990 InstantiationFunction->setLocation(Member->getLocation()); 3991 } 3992 3993 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 3994 cast<CXXMethodDecl>(InstantiatedFrom), 3995 TSK_ExplicitSpecialization); 3996 } else if (isa<VarDecl>(Member)) { 3997 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 3998 if (InstantiationVar->getTemplateSpecializationKind() == 3999 TSK_ImplicitInstantiation) { 4000 InstantiationVar->setTemplateSpecializationKind( 4001 TSK_ExplicitSpecialization); 4002 InstantiationVar->setLocation(Member->getLocation()); 4003 } 4004 4005 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 4006 cast<VarDecl>(InstantiatedFrom), 4007 TSK_ExplicitSpecialization); 4008 } else { 4009 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 4010 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 4011 if (InstantiationClass->getTemplateSpecializationKind() == 4012 TSK_ImplicitInstantiation) { 4013 InstantiationClass->setTemplateSpecializationKind( 4014 TSK_ExplicitSpecialization); 4015 InstantiationClass->setLocation(Member->getLocation()); 4016 } 4017 4018 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 4019 cast<CXXRecordDecl>(InstantiatedFrom), 4020 TSK_ExplicitSpecialization); 4021 } 4022 4023 // Save the caller the trouble of having to figure out which declaration 4024 // this specialization matches. 4025 Previous.clear(); 4026 Previous.addDecl(Instantiation); 4027 return false; 4028} 4029 4030/// \brief Check the scope of an explicit instantiation. 4031static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 4032 SourceLocation InstLoc, 4033 bool WasQualifiedName) { 4034 DeclContext *ExpectedContext 4035 = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext(); 4036 DeclContext *CurContext = S.CurContext->getLookupContext(); 4037 4038 // C++0x [temp.explicit]p2: 4039 // An explicit instantiation shall appear in an enclosing namespace of its 4040 // template. 4041 // 4042 // This is DR275, which we do not retroactively apply to C++98/03. 4043 if (S.getLangOptions().CPlusPlus0x && 4044 !CurContext->Encloses(ExpectedContext)) { 4045 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext)) 4046 S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope) 4047 << D << NS; 4048 else 4049 S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global) 4050 << D; 4051 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4052 return; 4053 } 4054 4055 // C++0x [temp.explicit]p2: 4056 // If the name declared in the explicit instantiation is an unqualified 4057 // name, the explicit instantiation shall appear in the namespace where 4058 // its template is declared or, if that namespace is inline (7.3.1), any 4059 // namespace from its enclosing namespace set. 4060 if (WasQualifiedName) 4061 return; 4062 4063 if (CurContext->Equals(ExpectedContext)) 4064 return; 4065 4066 S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace) 4067 << D << ExpectedContext; 4068 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4069} 4070 4071/// \brief Determine whether the given scope specifier has a template-id in it. 4072static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 4073 if (!SS.isSet()) 4074 return false; 4075 4076 // C++0x [temp.explicit]p2: 4077 // If the explicit instantiation is for a member function, a member class 4078 // or a static data member of a class template specialization, the name of 4079 // the class template specialization in the qualified-id for the member 4080 // name shall be a simple-template-id. 4081 // 4082 // C++98 has the same restriction, just worded differently. 4083 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 4084 NNS; NNS = NNS->getPrefix()) 4085 if (Type *T = NNS->getAsType()) 4086 if (isa<TemplateSpecializationType>(T)) 4087 return true; 4088 4089 return false; 4090} 4091 4092// Explicit instantiation of a class template specialization 4093// FIXME: Implement extern template semantics 4094Sema::DeclResult 4095Sema::ActOnExplicitInstantiation(Scope *S, 4096 SourceLocation ExternLoc, 4097 SourceLocation TemplateLoc, 4098 unsigned TagSpec, 4099 SourceLocation KWLoc, 4100 const CXXScopeSpec &SS, 4101 TemplateTy TemplateD, 4102 SourceLocation TemplateNameLoc, 4103 SourceLocation LAngleLoc, 4104 ASTTemplateArgsPtr TemplateArgsIn, 4105 SourceLocation RAngleLoc, 4106 AttributeList *Attr) { 4107 // Find the class template we're specializing 4108 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4109 ClassTemplateDecl *ClassTemplate 4110 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4111 4112 // Check that the specialization uses the same tag kind as the 4113 // original template. 4114 TagDecl::TagKind Kind; 4115 switch (TagSpec) { 4116 default: assert(0 && "Unknown tag type!"); 4117 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 4118 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 4119 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 4120 } 4121 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4122 Kind, KWLoc, 4123 *ClassTemplate->getIdentifier())) { 4124 Diag(KWLoc, diag::err_use_with_wrong_tag) 4125 << ClassTemplate 4126 << CodeModificationHint::CreateReplacement(KWLoc, 4127 ClassTemplate->getTemplatedDecl()->getKindName()); 4128 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4129 diag::note_previous_use); 4130 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4131 } 4132 4133 // C++0x [temp.explicit]p2: 4134 // There are two forms of explicit instantiation: an explicit instantiation 4135 // definition and an explicit instantiation declaration. An explicit 4136 // instantiation declaration begins with the extern keyword. [...] 4137 TemplateSpecializationKind TSK 4138 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4139 : TSK_ExplicitInstantiationDeclaration; 4140 4141 // Translate the parser's template argument list in our AST format. 4142 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 4143 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4144 4145 // Check that the template argument list is well-formed for this 4146 // template. 4147 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 4148 TemplateArgs.size()); 4149 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4150 TemplateArgs, false, Converted)) 4151 return true; 4152 4153 assert((Converted.structuredSize() == 4154 ClassTemplate->getTemplateParameters()->size()) && 4155 "Converted template argument list is too short!"); 4156 4157 // Find the class template specialization declaration that 4158 // corresponds to these arguments. 4159 llvm::FoldingSetNodeID ID; 4160 ClassTemplateSpecializationDecl::Profile(ID, 4161 Converted.getFlatArguments(), 4162 Converted.flatSize(), 4163 Context); 4164 void *InsertPos = 0; 4165 ClassTemplateSpecializationDecl *PrevDecl 4166 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 4167 4168 // C++0x [temp.explicit]p2: 4169 // [...] An explicit instantiation shall appear in an enclosing 4170 // namespace of its template. [...] 4171 // 4172 // This is C++ DR 275. 4173 CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 4174 SS.isSet()); 4175 4176 ClassTemplateSpecializationDecl *Specialization = 0; 4177 4178 bool ReusedDecl = false; 4179 if (PrevDecl) { 4180 bool SuppressNew = false; 4181 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 4182 PrevDecl, 4183 PrevDecl->getSpecializationKind(), 4184 PrevDecl->getPointOfInstantiation(), 4185 SuppressNew)) 4186 return DeclPtrTy::make(PrevDecl); 4187 4188 if (SuppressNew) 4189 return DeclPtrTy::make(PrevDecl); 4190 4191 if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation || 4192 PrevDecl->getSpecializationKind() == TSK_Undeclared) { 4193 // Since the only prior class template specialization with these 4194 // arguments was referenced but not declared, reuse that 4195 // declaration node as our own, updating its source location to 4196 // reflect our new declaration. 4197 Specialization = PrevDecl; 4198 Specialization->setLocation(TemplateNameLoc); 4199 PrevDecl = 0; 4200 ReusedDecl = true; 4201 } 4202 } 4203 4204 if (!Specialization) { 4205 // Create a new class template specialization declaration node for 4206 // this explicit specialization. 4207 Specialization 4208 = ClassTemplateSpecializationDecl::Create(Context, 4209 ClassTemplate->getDeclContext(), 4210 TemplateNameLoc, 4211 ClassTemplate, 4212 Converted, PrevDecl); 4213 4214 if (PrevDecl) { 4215 // Remove the previous declaration from the folding set, since we want 4216 // to introduce a new declaration. 4217 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 4218 ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 4219 } 4220 4221 // Insert the new specialization. 4222 ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos); 4223 } 4224 4225 // Build the fully-sugared type for this explicit instantiation as 4226 // the user wrote in the explicit instantiation itself. This means 4227 // that we'll pretty-print the type retrieved from the 4228 // specialization's declaration the way that the user actually wrote 4229 // the explicit instantiation, rather than formatting the name based 4230 // on the "canonical" representation used to store the template 4231 // arguments in the specialization. 4232 QualType WrittenTy 4233 = Context.getTemplateSpecializationType(Name, TemplateArgs, 4234 Context.getTypeDeclType(Specialization)); 4235 Specialization->setTypeAsWritten(WrittenTy); 4236 TemplateArgsIn.release(); 4237 4238 if (!ReusedDecl) { 4239 // Add the explicit instantiation into its lexical context. However, 4240 // since explicit instantiations are never found by name lookup, we 4241 // just put it into the declaration context directly. 4242 Specialization->setLexicalDeclContext(CurContext); 4243 CurContext->addDecl(Specialization); 4244 } 4245 4246 // C++ [temp.explicit]p3: 4247 // A definition of a class template or class member template 4248 // shall be in scope at the point of the explicit instantiation of 4249 // the class template or class member template. 4250 // 4251 // This check comes when we actually try to perform the 4252 // instantiation. 4253 ClassTemplateSpecializationDecl *Def 4254 = cast_or_null<ClassTemplateSpecializationDecl>( 4255 Specialization->getDefinition(Context)); 4256 if (!Def) 4257 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 4258 4259 // Instantiate the members of this class template specialization. 4260 Def = cast_or_null<ClassTemplateSpecializationDecl>( 4261 Specialization->getDefinition(Context)); 4262 if (Def) 4263 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 4264 4265 return DeclPtrTy::make(Specialization); 4266} 4267 4268// Explicit instantiation of a member class of a class template. 4269Sema::DeclResult 4270Sema::ActOnExplicitInstantiation(Scope *S, 4271 SourceLocation ExternLoc, 4272 SourceLocation TemplateLoc, 4273 unsigned TagSpec, 4274 SourceLocation KWLoc, 4275 const CXXScopeSpec &SS, 4276 IdentifierInfo *Name, 4277 SourceLocation NameLoc, 4278 AttributeList *Attr) { 4279 4280 bool Owned = false; 4281 bool IsDependent = false; 4282 DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference, 4283 KWLoc, SS, Name, NameLoc, Attr, AS_none, 4284 MultiTemplateParamsArg(*this, 0, 0), 4285 Owned, IsDependent); 4286 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 4287 4288 if (!TagD) 4289 return true; 4290 4291 TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>()); 4292 if (Tag->isEnum()) { 4293 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 4294 << Context.getTypeDeclType(Tag); 4295 return true; 4296 } 4297 4298 if (Tag->isInvalidDecl()) 4299 return true; 4300 4301 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 4302 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 4303 if (!Pattern) { 4304 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 4305 << Context.getTypeDeclType(Record); 4306 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 4307 return true; 4308 } 4309 4310 // C++0x [temp.explicit]p2: 4311 // If the explicit instantiation is for a class or member class, the 4312 // elaborated-type-specifier in the declaration shall include a 4313 // simple-template-id. 4314 // 4315 // C++98 has the same restriction, just worded differently. 4316 if (!ScopeSpecifierHasTemplateId(SS)) 4317 Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id) 4318 << Record << SS.getRange(); 4319 4320 // C++0x [temp.explicit]p2: 4321 // There are two forms of explicit instantiation: an explicit instantiation 4322 // definition and an explicit instantiation declaration. An explicit 4323 // instantiation declaration begins with the extern keyword. [...] 4324 TemplateSpecializationKind TSK 4325 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4326 : TSK_ExplicitInstantiationDeclaration; 4327 4328 // C++0x [temp.explicit]p2: 4329 // [...] An explicit instantiation shall appear in an enclosing 4330 // namespace of its template. [...] 4331 // 4332 // This is C++ DR 275. 4333 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 4334 4335 // Verify that it is okay to explicitly instantiate here. 4336 CXXRecordDecl *PrevDecl 4337 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 4338 if (!PrevDecl && Record->getDefinition(Context)) 4339 PrevDecl = Record; 4340 if (PrevDecl) { 4341 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 4342 bool SuppressNew = false; 4343 assert(MSInfo && "No member specialization information?"); 4344 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 4345 PrevDecl, 4346 MSInfo->getTemplateSpecializationKind(), 4347 MSInfo->getPointOfInstantiation(), 4348 SuppressNew)) 4349 return true; 4350 if (SuppressNew) 4351 return TagD; 4352 } 4353 4354 CXXRecordDecl *RecordDef 4355 = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context)); 4356 if (!RecordDef) { 4357 // C++ [temp.explicit]p3: 4358 // A definition of a member class of a class template shall be in scope 4359 // at the point of an explicit instantiation of the member class. 4360 CXXRecordDecl *Def 4361 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context)); 4362 if (!Def) { 4363 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 4364 << 0 << Record->getDeclName() << Record->getDeclContext(); 4365 Diag(Pattern->getLocation(), diag::note_forward_declaration) 4366 << Pattern; 4367 return true; 4368 } else { 4369 if (InstantiateClass(NameLoc, Record, Def, 4370 getTemplateInstantiationArgs(Record), 4371 TSK)) 4372 return true; 4373 4374 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context)); 4375 if (!RecordDef) 4376 return true; 4377 } 4378 } 4379 4380 // Instantiate all of the members of the class. 4381 InstantiateClassMembers(NameLoc, RecordDef, 4382 getTemplateInstantiationArgs(Record), TSK); 4383 4384 // FIXME: We don't have any representation for explicit instantiations of 4385 // member classes. Such a representation is not needed for compilation, but it 4386 // should be available for clients that want to see all of the declarations in 4387 // the source code. 4388 return TagD; 4389} 4390 4391Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 4392 SourceLocation ExternLoc, 4393 SourceLocation TemplateLoc, 4394 Declarator &D) { 4395 // Explicit instantiations always require a name. 4396 DeclarationName Name = GetNameForDeclarator(D); 4397 if (!Name) { 4398 if (!D.isInvalidType()) 4399 Diag(D.getDeclSpec().getSourceRange().getBegin(), 4400 diag::err_explicit_instantiation_requires_name) 4401 << D.getDeclSpec().getSourceRange() 4402 << D.getSourceRange(); 4403 4404 return true; 4405 } 4406 4407 // The scope passed in may not be a decl scope. Zip up the scope tree until 4408 // we find one that is. 4409 while ((S->getFlags() & Scope::DeclScope) == 0 || 4410 (S->getFlags() & Scope::TemplateParamScope) != 0) 4411 S = S->getParent(); 4412 4413 // Determine the type of the declaration. 4414 QualType R = GetTypeForDeclarator(D, S, 0); 4415 if (R.isNull()) 4416 return true; 4417 4418 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 4419 // Cannot explicitly instantiate a typedef. 4420 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 4421 << Name; 4422 return true; 4423 } 4424 4425 // C++0x [temp.explicit]p1: 4426 // [...] An explicit instantiation of a function template shall not use the 4427 // inline or constexpr specifiers. 4428 // Presumably, this also applies to member functions of class templates as 4429 // well. 4430 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 4431 Diag(D.getDeclSpec().getInlineSpecLoc(), 4432 diag::err_explicit_instantiation_inline) 4433 <<CodeModificationHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 4434 4435 // FIXME: check for constexpr specifier. 4436 4437 // C++0x [temp.explicit]p2: 4438 // There are two forms of explicit instantiation: an explicit instantiation 4439 // definition and an explicit instantiation declaration. An explicit 4440 // instantiation declaration begins with the extern keyword. [...] 4441 TemplateSpecializationKind TSK 4442 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4443 : TSK_ExplicitInstantiationDeclaration; 4444 4445 LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName); 4446 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 4447 4448 if (!R->isFunctionType()) { 4449 // C++ [temp.explicit]p1: 4450 // A [...] static data member of a class template can be explicitly 4451 // instantiated from the member definition associated with its class 4452 // template. 4453 if (Previous.isAmbiguous()) 4454 return true; 4455 4456 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 4457 if (!Prev || !Prev->isStaticDataMember()) { 4458 // We expect to see a data data member here. 4459 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 4460 << Name; 4461 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 4462 P != PEnd; ++P) 4463 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 4464 return true; 4465 } 4466 4467 if (!Prev->getInstantiatedFromStaticDataMember()) { 4468 // FIXME: Check for explicit specialization? 4469 Diag(D.getIdentifierLoc(), 4470 diag::err_explicit_instantiation_data_member_not_instantiated) 4471 << Prev; 4472 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 4473 // FIXME: Can we provide a note showing where this was declared? 4474 return true; 4475 } 4476 4477 // C++0x [temp.explicit]p2: 4478 // If the explicit instantiation is for a member function, a member class 4479 // or a static data member of a class template specialization, the name of 4480 // the class template specialization in the qualified-id for the member 4481 // name shall be a simple-template-id. 4482 // 4483 // C++98 has the same restriction, just worded differently. 4484 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 4485 Diag(D.getIdentifierLoc(), 4486 diag::err_explicit_instantiation_without_qualified_id) 4487 << Prev << D.getCXXScopeSpec().getRange(); 4488 4489 // Check the scope of this explicit instantiation. 4490 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 4491 4492 // Verify that it is okay to explicitly instantiate here. 4493 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 4494 assert(MSInfo && "Missing static data member specialization info?"); 4495 bool SuppressNew = false; 4496 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 4497 MSInfo->getTemplateSpecializationKind(), 4498 MSInfo->getPointOfInstantiation(), 4499 SuppressNew)) 4500 return true; 4501 if (SuppressNew) 4502 return DeclPtrTy(); 4503 4504 // Instantiate static data member. 4505 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 4506 if (TSK == TSK_ExplicitInstantiationDefinition) 4507 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false, 4508 /*DefinitionRequired=*/true); 4509 4510 // FIXME: Create an ExplicitInstantiation node? 4511 return DeclPtrTy(); 4512 } 4513 4514 // If the declarator is a template-id, translate the parser's template 4515 // argument list into our AST format. 4516 bool HasExplicitTemplateArgs = false; 4517 TemplateArgumentListInfo TemplateArgs; 4518 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 4519 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 4520 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 4521 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 4522 ASTTemplateArgsPtr TemplateArgsPtr(*this, 4523 TemplateId->getTemplateArgs(), 4524 TemplateId->NumArgs); 4525 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 4526 HasExplicitTemplateArgs = true; 4527 TemplateArgsPtr.release(); 4528 } 4529 4530 // C++ [temp.explicit]p1: 4531 // A [...] function [...] can be explicitly instantiated from its template. 4532 // A member function [...] of a class template can be explicitly 4533 // instantiated from the member definition associated with its class 4534 // template. 4535 llvm::SmallVector<FunctionDecl *, 8> Matches; 4536 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 4537 P != PEnd; ++P) { 4538 NamedDecl *Prev = *P; 4539 if (!HasExplicitTemplateArgs) { 4540 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 4541 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 4542 Matches.clear(); 4543 Matches.push_back(Method); 4544 break; 4545 } 4546 } 4547 } 4548 4549 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 4550 if (!FunTmpl) 4551 continue; 4552 4553 TemplateDeductionInfo Info(Context); 4554 FunctionDecl *Specialization = 0; 4555 if (TemplateDeductionResult TDK 4556 = DeduceTemplateArguments(FunTmpl, 4557 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 4558 R, Specialization, Info)) { 4559 // FIXME: Keep track of almost-matches? 4560 (void)TDK; 4561 continue; 4562 } 4563 4564 Matches.push_back(Specialization); 4565 } 4566 4567 // Find the most specialized function template specialization. 4568 FunctionDecl *Specialization 4569 = getMostSpecialized(Matches.data(), Matches.size(), TPOC_Other, 4570 D.getIdentifierLoc(), 4571 PartialDiagnostic(diag::err_explicit_instantiation_not_known) << Name, 4572 PartialDiagnostic(diag::err_explicit_instantiation_ambiguous) << Name, 4573 PartialDiagnostic(diag::note_explicit_instantiation_candidate)); 4574 4575 if (!Specialization) 4576 return true; 4577 4578 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 4579 Diag(D.getIdentifierLoc(), 4580 diag::err_explicit_instantiation_member_function_not_instantiated) 4581 << Specialization 4582 << (Specialization->getTemplateSpecializationKind() == 4583 TSK_ExplicitSpecialization); 4584 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 4585 return true; 4586 } 4587 4588 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 4589 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 4590 PrevDecl = Specialization; 4591 4592 if (PrevDecl) { 4593 bool SuppressNew = false; 4594 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 4595 PrevDecl, 4596 PrevDecl->getTemplateSpecializationKind(), 4597 PrevDecl->getPointOfInstantiation(), 4598 SuppressNew)) 4599 return true; 4600 4601 // FIXME: We may still want to build some representation of this 4602 // explicit specialization. 4603 if (SuppressNew) 4604 return DeclPtrTy(); 4605 } 4606 4607 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 4608 4609 if (TSK == TSK_ExplicitInstantiationDefinition) 4610 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization, 4611 false, /*DefinitionRequired=*/true); 4612 4613 // C++0x [temp.explicit]p2: 4614 // If the explicit instantiation is for a member function, a member class 4615 // or a static data member of a class template specialization, the name of 4616 // the class template specialization in the qualified-id for the member 4617 // name shall be a simple-template-id. 4618 // 4619 // C++98 has the same restriction, just worded differently. 4620 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 4621 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 4622 D.getCXXScopeSpec().isSet() && 4623 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 4624 Diag(D.getIdentifierLoc(), 4625 diag::err_explicit_instantiation_without_qualified_id) 4626 << Specialization << D.getCXXScopeSpec().getRange(); 4627 4628 CheckExplicitInstantiationScope(*this, 4629 FunTmpl? (NamedDecl *)FunTmpl 4630 : Specialization->getInstantiatedFromMemberFunction(), 4631 D.getIdentifierLoc(), 4632 D.getCXXScopeSpec().isSet()); 4633 4634 // FIXME: Create some kind of ExplicitInstantiationDecl here. 4635 return DeclPtrTy(); 4636} 4637 4638Sema::TypeResult 4639Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 4640 const CXXScopeSpec &SS, IdentifierInfo *Name, 4641 SourceLocation TagLoc, SourceLocation NameLoc) { 4642 // This has to hold, because SS is expected to be defined. 4643 assert(Name && "Expected a name in a dependent tag"); 4644 4645 NestedNameSpecifier *NNS 4646 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 4647 if (!NNS) 4648 return true; 4649 4650 QualType T = CheckTypenameType(NNS, *Name, SourceRange(TagLoc, NameLoc)); 4651 if (T.isNull()) 4652 return true; 4653 4654 TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec); 4655 QualType ElabType = Context.getElaboratedType(T, TagKind); 4656 4657 return ElabType.getAsOpaquePtr(); 4658} 4659 4660Sema::TypeResult 4661Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 4662 const IdentifierInfo &II, SourceLocation IdLoc) { 4663 NestedNameSpecifier *NNS 4664 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 4665 if (!NNS) 4666 return true; 4667 4668 QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc)); 4669 if (T.isNull()) 4670 return true; 4671 return T.getAsOpaquePtr(); 4672} 4673 4674Sema::TypeResult 4675Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 4676 SourceLocation TemplateLoc, TypeTy *Ty) { 4677 QualType T = GetTypeFromParser(Ty); 4678 NestedNameSpecifier *NNS 4679 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 4680 const TemplateSpecializationType *TemplateId 4681 = T->getAs<TemplateSpecializationType>(); 4682 assert(TemplateId && "Expected a template specialization type"); 4683 4684 if (computeDeclContext(SS, false)) { 4685 // If we can compute a declaration context, then the "typename" 4686 // keyword was superfluous. Just build a QualifiedNameType to keep 4687 // track of the nested-name-specifier. 4688 4689 // FIXME: Note that the QualifiedNameType had the "typename" keyword! 4690 return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr(); 4691 } 4692 4693 return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr(); 4694} 4695 4696/// \brief Build the type that describes a C++ typename specifier, 4697/// e.g., "typename T::type". 4698QualType 4699Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II, 4700 SourceRange Range) { 4701 CXXRecordDecl *CurrentInstantiation = 0; 4702 if (NNS->isDependent()) { 4703 CurrentInstantiation = getCurrentInstantiationOf(NNS); 4704 4705 // If the nested-name-specifier does not refer to the current 4706 // instantiation, then build a typename type. 4707 if (!CurrentInstantiation) 4708 return Context.getTypenameType(NNS, &II); 4709 4710 // The nested-name-specifier refers to the current instantiation, so the 4711 // "typename" keyword itself is superfluous. In C++03, the program is 4712 // actually ill-formed. However, DR 382 (in C++0x CD1) allows such 4713 // extraneous "typename" keywords, and we retroactively apply this DR to 4714 // C++03 code. 4715 } 4716 4717 DeclContext *Ctx = 0; 4718 4719 if (CurrentInstantiation) 4720 Ctx = CurrentInstantiation; 4721 else { 4722 CXXScopeSpec SS; 4723 SS.setScopeRep(NNS); 4724 SS.setRange(Range); 4725 if (RequireCompleteDeclContext(SS)) 4726 return QualType(); 4727 4728 Ctx = computeDeclContext(SS); 4729 } 4730 assert(Ctx && "No declaration context?"); 4731 4732 DeclarationName Name(&II); 4733 LookupResult Result(*this, Name, Range.getEnd(), LookupOrdinaryName); 4734 LookupQualifiedName(Result, Ctx); 4735 unsigned DiagID = 0; 4736 Decl *Referenced = 0; 4737 switch (Result.getResultKind()) { 4738 case LookupResult::NotFound: 4739 DiagID = diag::err_typename_nested_not_found; 4740 break; 4741 4742 case LookupResult::Found: 4743 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 4744 // We found a type. Build a QualifiedNameType, since the 4745 // typename-specifier was just sugar. FIXME: Tell 4746 // QualifiedNameType that it has a "typename" prefix. 4747 return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type)); 4748 } 4749 4750 DiagID = diag::err_typename_nested_not_type; 4751 Referenced = Result.getFoundDecl(); 4752 break; 4753 4754 case LookupResult::FoundUnresolvedValue: 4755 llvm_unreachable("unresolved using decl in non-dependent context"); 4756 return QualType(); 4757 4758 case LookupResult::FoundOverloaded: 4759 DiagID = diag::err_typename_nested_not_type; 4760 Referenced = *Result.begin(); 4761 break; 4762 4763 case LookupResult::Ambiguous: 4764 return QualType(); 4765 } 4766 4767 // If we get here, it's because name lookup did not find a 4768 // type. Emit an appropriate diagnostic and return an error. 4769 Diag(Range.getEnd(), DiagID) << Range << Name << Ctx; 4770 if (Referenced) 4771 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 4772 << Name; 4773 return QualType(); 4774} 4775 4776namespace { 4777 // See Sema::RebuildTypeInCurrentInstantiation 4778 class CurrentInstantiationRebuilder 4779 : public TreeTransform<CurrentInstantiationRebuilder> { 4780 SourceLocation Loc; 4781 DeclarationName Entity; 4782 4783 public: 4784 CurrentInstantiationRebuilder(Sema &SemaRef, 4785 SourceLocation Loc, 4786 DeclarationName Entity) 4787 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 4788 Loc(Loc), Entity(Entity) { } 4789 4790 /// \brief Determine whether the given type \p T has already been 4791 /// transformed. 4792 /// 4793 /// For the purposes of type reconstruction, a type has already been 4794 /// transformed if it is NULL or if it is not dependent. 4795 bool AlreadyTransformed(QualType T) { 4796 return T.isNull() || !T->isDependentType(); 4797 } 4798 4799 /// \brief Returns the location of the entity whose type is being 4800 /// rebuilt. 4801 SourceLocation getBaseLocation() { return Loc; } 4802 4803 /// \brief Returns the name of the entity whose type is being rebuilt. 4804 DeclarationName getBaseEntity() { return Entity; } 4805 4806 /// \brief Sets the "base" location and entity when that 4807 /// information is known based on another transformation. 4808 void setBase(SourceLocation Loc, DeclarationName Entity) { 4809 this->Loc = Loc; 4810 this->Entity = Entity; 4811 } 4812 4813 /// \brief Transforms an expression by returning the expression itself 4814 /// (an identity function). 4815 /// 4816 /// FIXME: This is completely unsafe; we will need to actually clone the 4817 /// expressions. 4818 Sema::OwningExprResult TransformExpr(Expr *E) { 4819 return getSema().Owned(E); 4820 } 4821 4822 /// \brief Transforms a typename type by determining whether the type now 4823 /// refers to a member of the current instantiation, and then 4824 /// type-checking and building a QualifiedNameType (when possible). 4825 QualType TransformTypenameType(TypeLocBuilder &TLB, TypenameTypeLoc TL); 4826 }; 4827} 4828 4829QualType 4830CurrentInstantiationRebuilder::TransformTypenameType(TypeLocBuilder &TLB, 4831 TypenameTypeLoc TL) { 4832 TypenameType *T = TL.getTypePtr(); 4833 4834 NestedNameSpecifier *NNS 4835 = TransformNestedNameSpecifier(T->getQualifier(), 4836 /*FIXME:*/SourceRange(getBaseLocation())); 4837 if (!NNS) 4838 return QualType(); 4839 4840 // If the nested-name-specifier did not change, and we cannot compute the 4841 // context corresponding to the nested-name-specifier, then this 4842 // typename type will not change; exit early. 4843 CXXScopeSpec SS; 4844 SS.setRange(SourceRange(getBaseLocation())); 4845 SS.setScopeRep(NNS); 4846 4847 QualType Result; 4848 if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0) 4849 Result = QualType(T, 0); 4850 4851 // Rebuild the typename type, which will probably turn into a 4852 // QualifiedNameType. 4853 else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) { 4854 QualType NewTemplateId 4855 = TransformType(QualType(TemplateId, 0)); 4856 if (NewTemplateId.isNull()) 4857 return QualType(); 4858 4859 if (NNS == T->getQualifier() && 4860 NewTemplateId == QualType(TemplateId, 0)) 4861 Result = QualType(T, 0); 4862 else 4863 Result = getDerived().RebuildTypenameType(NNS, NewTemplateId); 4864 } else 4865 Result = getDerived().RebuildTypenameType(NNS, T->getIdentifier(), 4866 SourceRange(TL.getNameLoc())); 4867 4868 TypenameTypeLoc NewTL = TLB.push<TypenameTypeLoc>(Result); 4869 NewTL.setNameLoc(TL.getNameLoc()); 4870 return Result; 4871} 4872 4873/// \brief Rebuilds a type within the context of the current instantiation. 4874/// 4875/// The type \p T is part of the type of an out-of-line member definition of 4876/// a class template (or class template partial specialization) that was parsed 4877/// and constructed before we entered the scope of the class template (or 4878/// partial specialization thereof). This routine will rebuild that type now 4879/// that we have entered the declarator's scope, which may produce different 4880/// canonical types, e.g., 4881/// 4882/// \code 4883/// template<typename T> 4884/// struct X { 4885/// typedef T* pointer; 4886/// pointer data(); 4887/// }; 4888/// 4889/// template<typename T> 4890/// typename X<T>::pointer X<T>::data() { ... } 4891/// \endcode 4892/// 4893/// Here, the type "typename X<T>::pointer" will be created as a TypenameType, 4894/// since we do not know that we can look into X<T> when we parsed the type. 4895/// This function will rebuild the type, performing the lookup of "pointer" 4896/// in X<T> and returning a QualifiedNameType whose canonical type is the same 4897/// as the canonical type of T*, allowing the return types of the out-of-line 4898/// definition and the declaration to match. 4899QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc, 4900 DeclarationName Name) { 4901 if (T.isNull() || !T->isDependentType()) 4902 return T; 4903 4904 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 4905 return Rebuilder.TransformType(T); 4906} 4907 4908/// \brief Produces a formatted string that describes the binding of 4909/// template parameters to template arguments. 4910std::string 4911Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 4912 const TemplateArgumentList &Args) { 4913 // FIXME: For variadic templates, we'll need to get the structured list. 4914 return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(), 4915 Args.flat_size()); 4916} 4917 4918std::string 4919Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 4920 const TemplateArgument *Args, 4921 unsigned NumArgs) { 4922 std::string Result; 4923 4924 if (!Params || Params->size() == 0 || NumArgs == 0) 4925 return Result; 4926 4927 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 4928 if (I >= NumArgs) 4929 break; 4930 4931 if (I == 0) 4932 Result += "[with "; 4933 else 4934 Result += ", "; 4935 4936 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 4937 Result += Id->getName(); 4938 } else { 4939 Result += '$'; 4940 Result += llvm::utostr(I); 4941 } 4942 4943 Result += " = "; 4944 4945 switch (Args[I].getKind()) { 4946 case TemplateArgument::Null: 4947 Result += "<no value>"; 4948 break; 4949 4950 case TemplateArgument::Type: { 4951 std::string TypeStr; 4952 Args[I].getAsType().getAsStringInternal(TypeStr, 4953 Context.PrintingPolicy); 4954 Result += TypeStr; 4955 break; 4956 } 4957 4958 case TemplateArgument::Declaration: { 4959 bool Unnamed = true; 4960 if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) { 4961 if (ND->getDeclName()) { 4962 Unnamed = false; 4963 Result += ND->getNameAsString(); 4964 } 4965 } 4966 4967 if (Unnamed) { 4968 Result += "<anonymous>"; 4969 } 4970 break; 4971 } 4972 4973 case TemplateArgument::Template: { 4974 std::string Str; 4975 llvm::raw_string_ostream OS(Str); 4976 Args[I].getAsTemplate().print(OS, Context.PrintingPolicy); 4977 Result += OS.str(); 4978 break; 4979 } 4980 4981 case TemplateArgument::Integral: { 4982 Result += Args[I].getAsIntegral()->toString(10); 4983 break; 4984 } 4985 4986 case TemplateArgument::Expression: { 4987 assert(false && "No expressions in deduced template arguments!"); 4988 Result += "<expression>"; 4989 break; 4990 } 4991 4992 case TemplateArgument::Pack: 4993 // FIXME: Format template argument packs 4994 Result += "<template argument pack>"; 4995 break; 4996 } 4997 } 4998 4999 Result += ']'; 5000 return Result; 5001} 5002