SemaTemplate.cpp revision 6813d7ba5fa79e36bdb3986e7f3f8100915a61ab
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "Sema.h"
13#include "Lookup.h"
14#include "TreeTransform.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/DeclFriend.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Parse/Template.h"
22#include "clang/Basic/LangOptions.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "llvm/ADT/StringExtras.h"
25using namespace clang;
26
27/// \brief Determine whether the declaration found is acceptable as the name
28/// of a template and, if so, return that template declaration. Otherwise,
29/// returns NULL.
30static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
31                                           NamedDecl *Orig) {
32  NamedDecl *D = Orig->getUnderlyingDecl();
33
34  if (isa<TemplateDecl>(D))
35    return Orig;
36
37  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
38    // C++ [temp.local]p1:
39    //   Like normal (non-template) classes, class templates have an
40    //   injected-class-name (Clause 9). The injected-class-name
41    //   can be used with or without a template-argument-list. When
42    //   it is used without a template-argument-list, it is
43    //   equivalent to the injected-class-name followed by the
44    //   template-parameters of the class template enclosed in
45    //   <>. When it is used with a template-argument-list, it
46    //   refers to the specified class template specialization,
47    //   which could be the current specialization or another
48    //   specialization.
49    if (Record->isInjectedClassName()) {
50      Record = cast<CXXRecordDecl>(Record->getDeclContext());
51      if (Record->getDescribedClassTemplate())
52        return Record->getDescribedClassTemplate();
53
54      if (ClassTemplateSpecializationDecl *Spec
55            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
56        return Spec->getSpecializedTemplate();
57    }
58
59    return 0;
60  }
61
62  return 0;
63}
64
65static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
66  // The set of class templates we've already seen.
67  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
68  LookupResult::Filter filter = R.makeFilter();
69  while (filter.hasNext()) {
70    NamedDecl *Orig = filter.next();
71    NamedDecl *Repl = isAcceptableTemplateName(C, Orig);
72    if (!Repl)
73      filter.erase();
74    else if (Repl != Orig) {
75
76      // C++ [temp.local]p3:
77      //   A lookup that finds an injected-class-name (10.2) can result in an
78      //   ambiguity in certain cases (for example, if it is found in more than
79      //   one base class). If all of the injected-class-names that are found
80      //   refer to specializations of the same class template, and if the name
81      //   is followed by a template-argument-list, the reference refers to the
82      //   class template itself and not a specialization thereof, and is not
83      //   ambiguous.
84      //
85      // FIXME: Will we eventually have to do the same for alias templates?
86      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
87        if (!ClassTemplates.insert(ClassTmpl)) {
88          filter.erase();
89          continue;
90        }
91
92      filter.replace(Repl);
93    }
94  }
95  filter.done();
96}
97
98TemplateNameKind Sema::isTemplateName(Scope *S,
99                                      CXXScopeSpec &SS,
100                                      UnqualifiedId &Name,
101                                      TypeTy *ObjectTypePtr,
102                                      bool EnteringContext,
103                                      TemplateTy &TemplateResult,
104                                      bool &MemberOfUnknownSpecialization) {
105  assert(getLangOptions().CPlusPlus && "No template names in C!");
106
107  DeclarationName TName;
108  MemberOfUnknownSpecialization = false;
109
110  switch (Name.getKind()) {
111  case UnqualifiedId::IK_Identifier:
112    TName = DeclarationName(Name.Identifier);
113    break;
114
115  case UnqualifiedId::IK_OperatorFunctionId:
116    TName = Context.DeclarationNames.getCXXOperatorName(
117                                              Name.OperatorFunctionId.Operator);
118    break;
119
120  case UnqualifiedId::IK_LiteralOperatorId:
121    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
122    break;
123
124  default:
125    return TNK_Non_template;
126  }
127
128  QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
129
130  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
131                 LookupOrdinaryName);
132  R.suppressDiagnostics();
133  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
134                     MemberOfUnknownSpecialization);
135  if (R.empty() || R.isAmbiguous())
136    return TNK_Non_template;
137
138  TemplateName Template;
139  TemplateNameKind TemplateKind;
140
141  unsigned ResultCount = R.end() - R.begin();
142  if (ResultCount > 1) {
143    // We assume that we'll preserve the qualifier from a function
144    // template name in other ways.
145    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
146    TemplateKind = TNK_Function_template;
147  } else {
148    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
149
150    if (SS.isSet() && !SS.isInvalid()) {
151      NestedNameSpecifier *Qualifier
152        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
153      Template = Context.getQualifiedTemplateName(Qualifier, false, TD);
154    } else {
155      Template = TemplateName(TD);
156    }
157
158    if (isa<FunctionTemplateDecl>(TD))
159      TemplateKind = TNK_Function_template;
160    else {
161      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
162      TemplateKind = TNK_Type_template;
163    }
164  }
165
166  TemplateResult = TemplateTy::make(Template);
167  return TemplateKind;
168}
169
170bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
171                                       SourceLocation IILoc,
172                                       Scope *S,
173                                       const CXXScopeSpec *SS,
174                                       TemplateTy &SuggestedTemplate,
175                                       TemplateNameKind &SuggestedKind) {
176  // We can't recover unless there's a dependent scope specifier preceding the
177  // template name.
178  // FIXME: Typo correction?
179  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
180      computeDeclContext(*SS))
181    return false;
182
183  // The code is missing a 'template' keyword prior to the dependent template
184  // name.
185  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
186  Diag(IILoc, diag::err_template_kw_missing)
187    << Qualifier << II.getName()
188    << FixItHint::CreateInsertion(IILoc, "template ");
189  SuggestedTemplate
190    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
191  SuggestedKind = TNK_Dependent_template_name;
192  return true;
193}
194
195void Sema::LookupTemplateName(LookupResult &Found,
196                              Scope *S, CXXScopeSpec &SS,
197                              QualType ObjectType,
198                              bool EnteringContext,
199                              bool &MemberOfUnknownSpecialization) {
200  // Determine where to perform name lookup
201  MemberOfUnknownSpecialization = false;
202  DeclContext *LookupCtx = 0;
203  bool isDependent = false;
204  if (!ObjectType.isNull()) {
205    // This nested-name-specifier occurs in a member access expression, e.g.,
206    // x->B::f, and we are looking into the type of the object.
207    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
208    LookupCtx = computeDeclContext(ObjectType);
209    isDependent = ObjectType->isDependentType();
210    assert((isDependent || !ObjectType->isIncompleteType()) &&
211           "Caller should have completed object type");
212  } else if (SS.isSet()) {
213    // This nested-name-specifier occurs after another nested-name-specifier,
214    // so long into the context associated with the prior nested-name-specifier.
215    LookupCtx = computeDeclContext(SS, EnteringContext);
216    isDependent = isDependentScopeSpecifier(SS);
217
218    // The declaration context must be complete.
219    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
220      return;
221  }
222
223  bool ObjectTypeSearchedInScope = false;
224  if (LookupCtx) {
225    // Perform "qualified" name lookup into the declaration context we
226    // computed, which is either the type of the base of a member access
227    // expression or the declaration context associated with a prior
228    // nested-name-specifier.
229    LookupQualifiedName(Found, LookupCtx);
230
231    if (!ObjectType.isNull() && Found.empty()) {
232      // C++ [basic.lookup.classref]p1:
233      //   In a class member access expression (5.2.5), if the . or -> token is
234      //   immediately followed by an identifier followed by a <, the
235      //   identifier must be looked up to determine whether the < is the
236      //   beginning of a template argument list (14.2) or a less-than operator.
237      //   The identifier is first looked up in the class of the object
238      //   expression. If the identifier is not found, it is then looked up in
239      //   the context of the entire postfix-expression and shall name a class
240      //   or function template.
241      if (S) LookupName(Found, S);
242      ObjectTypeSearchedInScope = true;
243    }
244  } else if (isDependent && (!S || ObjectType.isNull())) {
245    // We cannot look into a dependent object type or nested nme
246    // specifier.
247    MemberOfUnknownSpecialization = true;
248    return;
249  } else {
250    // Perform unqualified name lookup in the current scope.
251    LookupName(Found, S);
252  }
253
254  if (Found.empty() && !isDependent) {
255    // If we did not find any names, attempt to correct any typos.
256    DeclarationName Name = Found.getLookupName();
257    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
258                                                false, CTC_CXXCasts)) {
259      FilterAcceptableTemplateNames(Context, Found);
260      if (!Found.empty()) {
261        if (LookupCtx)
262          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
263            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
264            << FixItHint::CreateReplacement(Found.getNameLoc(),
265                                          Found.getLookupName().getAsString());
266        else
267          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
268            << Name << Found.getLookupName()
269            << FixItHint::CreateReplacement(Found.getNameLoc(),
270                                          Found.getLookupName().getAsString());
271        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
272          Diag(Template->getLocation(), diag::note_previous_decl)
273            << Template->getDeclName();
274      }
275    } else {
276      Found.clear();
277      Found.setLookupName(Name);
278    }
279  }
280
281  FilterAcceptableTemplateNames(Context, Found);
282  if (Found.empty()) {
283    if (isDependent)
284      MemberOfUnknownSpecialization = true;
285    return;
286  }
287
288  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
289    // C++ [basic.lookup.classref]p1:
290    //   [...] If the lookup in the class of the object expression finds a
291    //   template, the name is also looked up in the context of the entire
292    //   postfix-expression and [...]
293    //
294    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
295                            LookupOrdinaryName);
296    LookupName(FoundOuter, S);
297    FilterAcceptableTemplateNames(Context, FoundOuter);
298
299    if (FoundOuter.empty()) {
300      //   - if the name is not found, the name found in the class of the
301      //     object expression is used, otherwise
302    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
303      //   - if the name is found in the context of the entire
304      //     postfix-expression and does not name a class template, the name
305      //     found in the class of the object expression is used, otherwise
306    } else if (!Found.isSuppressingDiagnostics()) {
307      //   - if the name found is a class template, it must refer to the same
308      //     entity as the one found in the class of the object expression,
309      //     otherwise the program is ill-formed.
310      if (!Found.isSingleResult() ||
311          Found.getFoundDecl()->getCanonicalDecl()
312            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
313        Diag(Found.getNameLoc(),
314             diag::ext_nested_name_member_ref_lookup_ambiguous)
315          << Found.getLookupName()
316          << ObjectType;
317        Diag(Found.getRepresentativeDecl()->getLocation(),
318             diag::note_ambig_member_ref_object_type)
319          << ObjectType;
320        Diag(FoundOuter.getFoundDecl()->getLocation(),
321             diag::note_ambig_member_ref_scope);
322
323        // Recover by taking the template that we found in the object
324        // expression's type.
325      }
326    }
327  }
328}
329
330/// ActOnDependentIdExpression - Handle a dependent id-expression that
331/// was just parsed.  This is only possible with an explicit scope
332/// specifier naming a dependent type.
333Sema::OwningExprResult
334Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
335                                 DeclarationName Name,
336                                 SourceLocation NameLoc,
337                                 bool isAddressOfOperand,
338                           const TemplateArgumentListInfo *TemplateArgs) {
339  NestedNameSpecifier *Qualifier
340    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
341
342  DeclContext *DC = getFunctionLevelDeclContext();
343
344  if (!isAddressOfOperand &&
345      isa<CXXMethodDecl>(DC) &&
346      cast<CXXMethodDecl>(DC)->isInstance()) {
347    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
348
349    // Since the 'this' expression is synthesized, we don't need to
350    // perform the double-lookup check.
351    NamedDecl *FirstQualifierInScope = 0;
352
353    return Owned(CXXDependentScopeMemberExpr::Create(Context,
354                                                     /*This*/ 0, ThisType,
355                                                     /*IsArrow*/ true,
356                                                     /*Op*/ SourceLocation(),
357                                                     Qualifier, SS.getRange(),
358                                                     FirstQualifierInScope,
359                                                     Name, NameLoc,
360                                                     TemplateArgs));
361  }
362
363  return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs);
364}
365
366Sema::OwningExprResult
367Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
368                                DeclarationName Name,
369                                SourceLocation NameLoc,
370                                const TemplateArgumentListInfo *TemplateArgs) {
371  return Owned(DependentScopeDeclRefExpr::Create(Context,
372               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
373                                                 SS.getRange(),
374                                                 Name, NameLoc,
375                                                 TemplateArgs));
376}
377
378/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
379/// that the template parameter 'PrevDecl' is being shadowed by a new
380/// declaration at location Loc. Returns true to indicate that this is
381/// an error, and false otherwise.
382bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
383  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
384
385  // Microsoft Visual C++ permits template parameters to be shadowed.
386  if (getLangOptions().Microsoft)
387    return false;
388
389  // C++ [temp.local]p4:
390  //   A template-parameter shall not be redeclared within its
391  //   scope (including nested scopes).
392  Diag(Loc, diag::err_template_param_shadow)
393    << cast<NamedDecl>(PrevDecl)->getDeclName();
394  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
395  return true;
396}
397
398/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
399/// the parameter D to reference the templated declaration and return a pointer
400/// to the template declaration. Otherwise, do nothing to D and return null.
401TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
402  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) {
403    D = DeclPtrTy::make(Temp->getTemplatedDecl());
404    return Temp;
405  }
406  return 0;
407}
408
409static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
410                                            const ParsedTemplateArgument &Arg) {
411
412  switch (Arg.getKind()) {
413  case ParsedTemplateArgument::Type: {
414    TypeSourceInfo *DI;
415    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
416    if (!DI)
417      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
418    return TemplateArgumentLoc(TemplateArgument(T), DI);
419  }
420
421  case ParsedTemplateArgument::NonType: {
422    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
423    return TemplateArgumentLoc(TemplateArgument(E), E);
424  }
425
426  case ParsedTemplateArgument::Template: {
427    TemplateName Template
428      = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get());
429    return TemplateArgumentLoc(TemplateArgument(Template),
430                               Arg.getScopeSpec().getRange(),
431                               Arg.getLocation());
432  }
433  }
434
435  llvm_unreachable("Unhandled parsed template argument");
436  return TemplateArgumentLoc();
437}
438
439/// \brief Translates template arguments as provided by the parser
440/// into template arguments used by semantic analysis.
441void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
442                                      TemplateArgumentListInfo &TemplateArgs) {
443 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
444   TemplateArgs.addArgument(translateTemplateArgument(*this,
445                                                      TemplateArgsIn[I]));
446}
447
448/// ActOnTypeParameter - Called when a C++ template type parameter
449/// (e.g., "typename T") has been parsed. Typename specifies whether
450/// the keyword "typename" was used to declare the type parameter
451/// (otherwise, "class" was used), and KeyLoc is the location of the
452/// "class" or "typename" keyword. ParamName is the name of the
453/// parameter (NULL indicates an unnamed template parameter) and
454/// ParamName is the location of the parameter name (if any).
455/// If the type parameter has a default argument, it will be added
456/// later via ActOnTypeParameterDefault.
457Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
458                                         SourceLocation EllipsisLoc,
459                                         SourceLocation KeyLoc,
460                                         IdentifierInfo *ParamName,
461                                         SourceLocation ParamNameLoc,
462                                         unsigned Depth, unsigned Position,
463                                         SourceLocation EqualLoc,
464                                         TypeTy *DefaultArg) {
465  assert(S->isTemplateParamScope() &&
466         "Template type parameter not in template parameter scope!");
467  bool Invalid = false;
468
469  if (ParamName) {
470    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
471                                           LookupOrdinaryName,
472                                           ForRedeclaration);
473    if (PrevDecl && PrevDecl->isTemplateParameter())
474      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
475                                                           PrevDecl);
476  }
477
478  SourceLocation Loc = ParamNameLoc;
479  if (!ParamName)
480    Loc = KeyLoc;
481
482  TemplateTypeParmDecl *Param
483    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
484                                   Loc, Depth, Position, ParamName, Typename,
485                                   Ellipsis);
486  if (Invalid)
487    Param->setInvalidDecl();
488
489  if (ParamName) {
490    // Add the template parameter into the current scope.
491    S->AddDecl(DeclPtrTy::make(Param));
492    IdResolver.AddDecl(Param);
493  }
494
495  // Handle the default argument, if provided.
496  if (DefaultArg) {
497    TypeSourceInfo *DefaultTInfo;
498    GetTypeFromParser(DefaultArg, &DefaultTInfo);
499
500    assert(DefaultTInfo && "expected source information for type");
501
502    // C++0x [temp.param]p9:
503    // A default template-argument may be specified for any kind of
504    // template-parameter that is not a template parameter pack.
505    if (Ellipsis) {
506      Diag(EqualLoc, diag::err_template_param_pack_default_arg);
507      return DeclPtrTy::make(Param);
508    }
509
510    // Check the template argument itself.
511    if (CheckTemplateArgument(Param, DefaultTInfo)) {
512      Param->setInvalidDecl();
513      return DeclPtrTy::make(Param);;
514    }
515
516    Param->setDefaultArgument(DefaultTInfo, false);
517  }
518
519  return DeclPtrTy::make(Param);
520}
521
522/// \brief Check that the type of a non-type template parameter is
523/// well-formed.
524///
525/// \returns the (possibly-promoted) parameter type if valid;
526/// otherwise, produces a diagnostic and returns a NULL type.
527QualType
528Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
529  // We don't allow variably-modified types as the type of non-type template
530  // parameters.
531  if (T->isVariablyModifiedType()) {
532    Diag(Loc, diag::err_variably_modified_nontype_template_param)
533      << T;
534    return QualType();
535  }
536
537  // C++ [temp.param]p4:
538  //
539  // A non-type template-parameter shall have one of the following
540  // (optionally cv-qualified) types:
541  //
542  //       -- integral or enumeration type,
543  if (T->isIntegralOrEnumerationType() ||
544      //   -- pointer to object or pointer to function,
545      (T->isPointerType() &&
546       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
547        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
548      //   -- reference to object or reference to function,
549      T->isReferenceType() ||
550      //   -- pointer to member.
551      T->isMemberPointerType() ||
552      // If T is a dependent type, we can't do the check now, so we
553      // assume that it is well-formed.
554      T->isDependentType())
555    return T;
556  // C++ [temp.param]p8:
557  //
558  //   A non-type template-parameter of type "array of T" or
559  //   "function returning T" is adjusted to be of type "pointer to
560  //   T" or "pointer to function returning T", respectively.
561  else if (T->isArrayType())
562    // FIXME: Keep the type prior to promotion?
563    return Context.getArrayDecayedType(T);
564  else if (T->isFunctionType())
565    // FIXME: Keep the type prior to promotion?
566    return Context.getPointerType(T);
567
568  Diag(Loc, diag::err_template_nontype_parm_bad_type)
569    << T;
570
571  return QualType();
572}
573
574Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
575                                                    unsigned Depth,
576                                                    unsigned Position,
577                                                    SourceLocation EqualLoc,
578                                                    ExprArg DefaultArg) {
579  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
580  QualType T = TInfo->getType();
581
582  assert(S->isTemplateParamScope() &&
583         "Non-type template parameter not in template parameter scope!");
584  bool Invalid = false;
585
586  IdentifierInfo *ParamName = D.getIdentifier();
587  if (ParamName) {
588    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
589                                           LookupOrdinaryName,
590                                           ForRedeclaration);
591    if (PrevDecl && PrevDecl->isTemplateParameter())
592      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
593                                                           PrevDecl);
594  }
595
596  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
597  if (T.isNull()) {
598    T = Context.IntTy; // Recover with an 'int' type.
599    Invalid = true;
600  }
601
602  NonTypeTemplateParmDecl *Param
603    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
604                                      D.getIdentifierLoc(),
605                                      Depth, Position, ParamName, T, TInfo);
606  if (Invalid)
607    Param->setInvalidDecl();
608
609  if (D.getIdentifier()) {
610    // Add the template parameter into the current scope.
611    S->AddDecl(DeclPtrTy::make(Param));
612    IdResolver.AddDecl(Param);
613  }
614
615  // Check the well-formedness of the default template argument, if provided.
616  if (Expr *Default = static_cast<Expr *>(DefaultArg.get())) {
617    TemplateArgument Converted;
618    if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) {
619      Param->setInvalidDecl();
620      return DeclPtrTy::make(Param);;
621    }
622
623    Param->setDefaultArgument(DefaultArg.takeAs<Expr>(), false);
624  }
625
626  return DeclPtrTy::make(Param);
627}
628
629/// ActOnTemplateTemplateParameter - Called when a C++ template template
630/// parameter (e.g. T in template <template <typename> class T> class array)
631/// has been parsed. S is the current scope.
632Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
633                                                     SourceLocation TmpLoc,
634                                                     TemplateParamsTy *Params,
635                                                     IdentifierInfo *Name,
636                                                     SourceLocation NameLoc,
637                                                     unsigned Depth,
638                                                     unsigned Position,
639                                                     SourceLocation EqualLoc,
640                                       const ParsedTemplateArgument &Default) {
641  assert(S->isTemplateParamScope() &&
642         "Template template parameter not in template parameter scope!");
643
644  // Construct the parameter object.
645  TemplateTemplateParmDecl *Param =
646    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
647                                     TmpLoc, Depth, Position, Name,
648                                     (TemplateParameterList*)Params);
649
650  // If the template template parameter has a name, then link the identifier
651  // into the scope and lookup mechanisms.
652  if (Name) {
653    S->AddDecl(DeclPtrTy::make(Param));
654    IdResolver.AddDecl(Param);
655  }
656
657  if (!Default.isInvalid()) {
658    // Check only that we have a template template argument. We don't want to
659    // try to check well-formedness now, because our template template parameter
660    // might have dependent types in its template parameters, which we wouldn't
661    // be able to match now.
662    //
663    // If none of the template template parameter's template arguments mention
664    // other template parameters, we could actually perform more checking here.
665    // However, it isn't worth doing.
666    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
667    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
668      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
669        << DefaultArg.getSourceRange();
670      return DeclPtrTy::make(Param);
671    }
672
673    Param->setDefaultArgument(DefaultArg, false);
674  }
675
676  return DeclPtrTy::make(Param);
677}
678
679/// ActOnTemplateParameterList - Builds a TemplateParameterList that
680/// contains the template parameters in Params/NumParams.
681Sema::TemplateParamsTy *
682Sema::ActOnTemplateParameterList(unsigned Depth,
683                                 SourceLocation ExportLoc,
684                                 SourceLocation TemplateLoc,
685                                 SourceLocation LAngleLoc,
686                                 DeclPtrTy *Params, unsigned NumParams,
687                                 SourceLocation RAngleLoc) {
688  if (ExportLoc.isValid())
689    Diag(ExportLoc, diag::warn_template_export_unsupported);
690
691  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
692                                       (NamedDecl**)Params, NumParams,
693                                       RAngleLoc);
694}
695
696static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
697  if (SS.isSet())
698    T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
699                        SS.getRange());
700}
701
702Sema::DeclResult
703Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
704                         SourceLocation KWLoc, CXXScopeSpec &SS,
705                         IdentifierInfo *Name, SourceLocation NameLoc,
706                         AttributeList *Attr,
707                         TemplateParameterList *TemplateParams,
708                         AccessSpecifier AS) {
709  assert(TemplateParams && TemplateParams->size() > 0 &&
710         "No template parameters");
711  assert(TUK != TUK_Reference && "Can only declare or define class templates");
712  bool Invalid = false;
713
714  // Check that we can declare a template here.
715  if (CheckTemplateDeclScope(S, TemplateParams))
716    return true;
717
718  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
719  assert(Kind != TTK_Enum && "can't build template of enumerated type");
720
721  // There is no such thing as an unnamed class template.
722  if (!Name) {
723    Diag(KWLoc, diag::err_template_unnamed_class);
724    return true;
725  }
726
727  // Find any previous declaration with this name.
728  DeclContext *SemanticContext;
729  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
730                        ForRedeclaration);
731  if (SS.isNotEmpty() && !SS.isInvalid()) {
732    SemanticContext = computeDeclContext(SS, true);
733    if (!SemanticContext) {
734      // FIXME: Produce a reasonable diagnostic here
735      return true;
736    }
737
738    if (RequireCompleteDeclContext(SS, SemanticContext))
739      return true;
740
741    LookupQualifiedName(Previous, SemanticContext);
742  } else {
743    SemanticContext = CurContext;
744    LookupName(Previous, S);
745  }
746
747  if (Previous.isAmbiguous())
748    return true;
749
750  NamedDecl *PrevDecl = 0;
751  if (Previous.begin() != Previous.end())
752    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
753
754  // If there is a previous declaration with the same name, check
755  // whether this is a valid redeclaration.
756  ClassTemplateDecl *PrevClassTemplate
757    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
758
759  // We may have found the injected-class-name of a class template,
760  // class template partial specialization, or class template specialization.
761  // In these cases, grab the template that is being defined or specialized.
762  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
763      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
764    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
765    PrevClassTemplate
766      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
767    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
768      PrevClassTemplate
769        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
770            ->getSpecializedTemplate();
771    }
772  }
773
774  if (TUK == TUK_Friend) {
775    // C++ [namespace.memdef]p3:
776    //   [...] When looking for a prior declaration of a class or a function
777    //   declared as a friend, and when the name of the friend class or
778    //   function is neither a qualified name nor a template-id, scopes outside
779    //   the innermost enclosing namespace scope are not considered.
780    if (!SS.isSet()) {
781      DeclContext *OutermostContext = CurContext;
782      while (!OutermostContext->isFileContext())
783        OutermostContext = OutermostContext->getLookupParent();
784
785      if (PrevDecl &&
786          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
787           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
788        SemanticContext = PrevDecl->getDeclContext();
789      } else {
790        // Declarations in outer scopes don't matter. However, the outermost
791        // context we computed is the semantic context for our new
792        // declaration.
793        PrevDecl = PrevClassTemplate = 0;
794        SemanticContext = OutermostContext;
795      }
796    }
797
798    if (CurContext->isDependentContext()) {
799      // If this is a dependent context, we don't want to link the friend
800      // class template to the template in scope, because that would perform
801      // checking of the template parameter lists that can't be performed
802      // until the outer context is instantiated.
803      PrevDecl = PrevClassTemplate = 0;
804    }
805  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
806    PrevDecl = PrevClassTemplate = 0;
807
808  if (PrevClassTemplate) {
809    // Ensure that the template parameter lists are compatible.
810    if (!TemplateParameterListsAreEqual(TemplateParams,
811                                   PrevClassTemplate->getTemplateParameters(),
812                                        /*Complain=*/true,
813                                        TPL_TemplateMatch))
814      return true;
815
816    // C++ [temp.class]p4:
817    //   In a redeclaration, partial specialization, explicit
818    //   specialization or explicit instantiation of a class template,
819    //   the class-key shall agree in kind with the original class
820    //   template declaration (7.1.5.3).
821    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
822    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
823      Diag(KWLoc, diag::err_use_with_wrong_tag)
824        << Name
825        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
826      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
827      Kind = PrevRecordDecl->getTagKind();
828    }
829
830    // Check for redefinition of this class template.
831    if (TUK == TUK_Definition) {
832      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
833        Diag(NameLoc, diag::err_redefinition) << Name;
834        Diag(Def->getLocation(), diag::note_previous_definition);
835        // FIXME: Would it make sense to try to "forget" the previous
836        // definition, as part of error recovery?
837        return true;
838      }
839    }
840  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
841    // Maybe we will complain about the shadowed template parameter.
842    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
843    // Just pretend that we didn't see the previous declaration.
844    PrevDecl = 0;
845  } else if (PrevDecl) {
846    // C++ [temp]p5:
847    //   A class template shall not have the same name as any other
848    //   template, class, function, object, enumeration, enumerator,
849    //   namespace, or type in the same scope (3.3), except as specified
850    //   in (14.5.4).
851    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
852    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
853    return true;
854  }
855
856  // Check the template parameter list of this declaration, possibly
857  // merging in the template parameter list from the previous class
858  // template declaration.
859  if (CheckTemplateParameterList(TemplateParams,
860            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
861                                 TPC_ClassTemplate))
862    Invalid = true;
863
864  if (SS.isSet()) {
865    // If the name of the template was qualified, we must be defining the
866    // template out-of-line.
867    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
868        !(TUK == TUK_Friend && CurContext->isDependentContext()))
869      Diag(NameLoc, diag::err_member_def_does_not_match)
870        << Name << SemanticContext << SS.getRange();
871  }
872
873  CXXRecordDecl *NewClass =
874    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
875                          PrevClassTemplate?
876                            PrevClassTemplate->getTemplatedDecl() : 0,
877                          /*DelayTypeCreation=*/true);
878  SetNestedNameSpecifier(NewClass, SS);
879
880  ClassTemplateDecl *NewTemplate
881    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
882                                DeclarationName(Name), TemplateParams,
883                                NewClass, PrevClassTemplate);
884  NewClass->setDescribedClassTemplate(NewTemplate);
885
886  // Build the type for the class template declaration now.
887  QualType T = NewTemplate->getInjectedClassNameSpecialization();
888  T = Context.getInjectedClassNameType(NewClass, T);
889  assert(T->isDependentType() && "Class template type is not dependent?");
890  (void)T;
891
892  // If we are providing an explicit specialization of a member that is a
893  // class template, make a note of that.
894  if (PrevClassTemplate &&
895      PrevClassTemplate->getInstantiatedFromMemberTemplate())
896    PrevClassTemplate->setMemberSpecialization();
897
898  // Set the access specifier.
899  if (!Invalid && TUK != TUK_Friend)
900    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
901
902  // Set the lexical context of these templates
903  NewClass->setLexicalDeclContext(CurContext);
904  NewTemplate->setLexicalDeclContext(CurContext);
905
906  if (TUK == TUK_Definition)
907    NewClass->startDefinition();
908
909  if (Attr)
910    ProcessDeclAttributeList(S, NewClass, Attr);
911
912  if (TUK != TUK_Friend)
913    PushOnScopeChains(NewTemplate, S);
914  else {
915    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
916      NewTemplate->setAccess(PrevClassTemplate->getAccess());
917      NewClass->setAccess(PrevClassTemplate->getAccess());
918    }
919
920    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
921                                       PrevClassTemplate != NULL);
922
923    // Friend templates are visible in fairly strange ways.
924    if (!CurContext->isDependentContext()) {
925      DeclContext *DC = SemanticContext->getLookupContext();
926      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
927      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
928        PushOnScopeChains(NewTemplate, EnclosingScope,
929                          /* AddToContext = */ false);
930    }
931
932    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
933                                            NewClass->getLocation(),
934                                            NewTemplate,
935                                    /*FIXME:*/NewClass->getLocation());
936    Friend->setAccess(AS_public);
937    CurContext->addDecl(Friend);
938  }
939
940  if (Invalid) {
941    NewTemplate->setInvalidDecl();
942    NewClass->setInvalidDecl();
943  }
944  return DeclPtrTy::make(NewTemplate);
945}
946
947/// \brief Diagnose the presence of a default template argument on a
948/// template parameter, which is ill-formed in certain contexts.
949///
950/// \returns true if the default template argument should be dropped.
951static bool DiagnoseDefaultTemplateArgument(Sema &S,
952                                            Sema::TemplateParamListContext TPC,
953                                            SourceLocation ParamLoc,
954                                            SourceRange DefArgRange) {
955  switch (TPC) {
956  case Sema::TPC_ClassTemplate:
957    return false;
958
959  case Sema::TPC_FunctionTemplate:
960    // C++ [temp.param]p9:
961    //   A default template-argument shall not be specified in a
962    //   function template declaration or a function template
963    //   definition [...]
964    // (This sentence is not in C++0x, per DR226).
965    if (!S.getLangOptions().CPlusPlus0x)
966      S.Diag(ParamLoc,
967             diag::err_template_parameter_default_in_function_template)
968        << DefArgRange;
969    return false;
970
971  case Sema::TPC_ClassTemplateMember:
972    // C++0x [temp.param]p9:
973    //   A default template-argument shall not be specified in the
974    //   template-parameter-lists of the definition of a member of a
975    //   class template that appears outside of the member's class.
976    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
977      << DefArgRange;
978    return true;
979
980  case Sema::TPC_FriendFunctionTemplate:
981    // C++ [temp.param]p9:
982    //   A default template-argument shall not be specified in a
983    //   friend template declaration.
984    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
985      << DefArgRange;
986    return true;
987
988    // FIXME: C++0x [temp.param]p9 allows default template-arguments
989    // for friend function templates if there is only a single
990    // declaration (and it is a definition). Strange!
991  }
992
993  return false;
994}
995
996/// \brief Checks the validity of a template parameter list, possibly
997/// considering the template parameter list from a previous
998/// declaration.
999///
1000/// If an "old" template parameter list is provided, it must be
1001/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1002/// template parameter list.
1003///
1004/// \param NewParams Template parameter list for a new template
1005/// declaration. This template parameter list will be updated with any
1006/// default arguments that are carried through from the previous
1007/// template parameter list.
1008///
1009/// \param OldParams If provided, template parameter list from a
1010/// previous declaration of the same template. Default template
1011/// arguments will be merged from the old template parameter list to
1012/// the new template parameter list.
1013///
1014/// \param TPC Describes the context in which we are checking the given
1015/// template parameter list.
1016///
1017/// \returns true if an error occurred, false otherwise.
1018bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1019                                      TemplateParameterList *OldParams,
1020                                      TemplateParamListContext TPC) {
1021  bool Invalid = false;
1022
1023  // C++ [temp.param]p10:
1024  //   The set of default template-arguments available for use with a
1025  //   template declaration or definition is obtained by merging the
1026  //   default arguments from the definition (if in scope) and all
1027  //   declarations in scope in the same way default function
1028  //   arguments are (8.3.6).
1029  bool SawDefaultArgument = false;
1030  SourceLocation PreviousDefaultArgLoc;
1031
1032  bool SawParameterPack = false;
1033  SourceLocation ParameterPackLoc;
1034
1035  // Dummy initialization to avoid warnings.
1036  TemplateParameterList::iterator OldParam = NewParams->end();
1037  if (OldParams)
1038    OldParam = OldParams->begin();
1039
1040  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1041                                    NewParamEnd = NewParams->end();
1042       NewParam != NewParamEnd; ++NewParam) {
1043    // Variables used to diagnose redundant default arguments
1044    bool RedundantDefaultArg = false;
1045    SourceLocation OldDefaultLoc;
1046    SourceLocation NewDefaultLoc;
1047
1048    // Variables used to diagnose missing default arguments
1049    bool MissingDefaultArg = false;
1050
1051    // C++0x [temp.param]p11:
1052    // If a template parameter of a class template is a template parameter pack,
1053    // it must be the last template parameter.
1054    if (SawParameterPack) {
1055      Diag(ParameterPackLoc,
1056           diag::err_template_param_pack_must_be_last_template_parameter);
1057      Invalid = true;
1058    }
1059
1060    if (TemplateTypeParmDecl *NewTypeParm
1061          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1062      // Check the presence of a default argument here.
1063      if (NewTypeParm->hasDefaultArgument() &&
1064          DiagnoseDefaultTemplateArgument(*this, TPC,
1065                                          NewTypeParm->getLocation(),
1066               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1067                                                       .getSourceRange()))
1068        NewTypeParm->removeDefaultArgument();
1069
1070      // Merge default arguments for template type parameters.
1071      TemplateTypeParmDecl *OldTypeParm
1072          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1073
1074      if (NewTypeParm->isParameterPack()) {
1075        assert(!NewTypeParm->hasDefaultArgument() &&
1076               "Parameter packs can't have a default argument!");
1077        SawParameterPack = true;
1078        ParameterPackLoc = NewTypeParm->getLocation();
1079      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1080                 NewTypeParm->hasDefaultArgument()) {
1081        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1082        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1083        SawDefaultArgument = true;
1084        RedundantDefaultArg = true;
1085        PreviousDefaultArgLoc = NewDefaultLoc;
1086      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1087        // Merge the default argument from the old declaration to the
1088        // new declaration.
1089        SawDefaultArgument = true;
1090        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1091                                        true);
1092        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1093      } else if (NewTypeParm->hasDefaultArgument()) {
1094        SawDefaultArgument = true;
1095        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1096      } else if (SawDefaultArgument)
1097        MissingDefaultArg = true;
1098    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1099               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1100      // Check the presence of a default argument here.
1101      if (NewNonTypeParm->hasDefaultArgument() &&
1102          DiagnoseDefaultTemplateArgument(*this, TPC,
1103                                          NewNonTypeParm->getLocation(),
1104                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1105        NewNonTypeParm->removeDefaultArgument();
1106      }
1107
1108      // Merge default arguments for non-type template parameters
1109      NonTypeTemplateParmDecl *OldNonTypeParm
1110        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1111      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1112          NewNonTypeParm->hasDefaultArgument()) {
1113        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1114        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1115        SawDefaultArgument = true;
1116        RedundantDefaultArg = true;
1117        PreviousDefaultArgLoc = NewDefaultLoc;
1118      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1119        // Merge the default argument from the old declaration to the
1120        // new declaration.
1121        SawDefaultArgument = true;
1122        // FIXME: We need to create a new kind of "default argument"
1123        // expression that points to a previous template template
1124        // parameter.
1125        NewNonTypeParm->setDefaultArgument(
1126                                         OldNonTypeParm->getDefaultArgument(),
1127                                         /*Inherited=*/ true);
1128        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1129      } else if (NewNonTypeParm->hasDefaultArgument()) {
1130        SawDefaultArgument = true;
1131        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1132      } else if (SawDefaultArgument)
1133        MissingDefaultArg = true;
1134    } else {
1135      // Check the presence of a default argument here.
1136      TemplateTemplateParmDecl *NewTemplateParm
1137        = cast<TemplateTemplateParmDecl>(*NewParam);
1138      if (NewTemplateParm->hasDefaultArgument() &&
1139          DiagnoseDefaultTemplateArgument(*this, TPC,
1140                                          NewTemplateParm->getLocation(),
1141                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1142        NewTemplateParm->removeDefaultArgument();
1143
1144      // Merge default arguments for template template parameters
1145      TemplateTemplateParmDecl *OldTemplateParm
1146        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1147      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1148          NewTemplateParm->hasDefaultArgument()) {
1149        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1150        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1151        SawDefaultArgument = true;
1152        RedundantDefaultArg = true;
1153        PreviousDefaultArgLoc = NewDefaultLoc;
1154      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1155        // Merge the default argument from the old declaration to the
1156        // new declaration.
1157        SawDefaultArgument = true;
1158        // FIXME: We need to create a new kind of "default argument" expression
1159        // that points to a previous template template parameter.
1160        NewTemplateParm->setDefaultArgument(
1161                                          OldTemplateParm->getDefaultArgument(),
1162                                          /*Inherited=*/ true);
1163        PreviousDefaultArgLoc
1164          = OldTemplateParm->getDefaultArgument().getLocation();
1165      } else if (NewTemplateParm->hasDefaultArgument()) {
1166        SawDefaultArgument = true;
1167        PreviousDefaultArgLoc
1168          = NewTemplateParm->getDefaultArgument().getLocation();
1169      } else if (SawDefaultArgument)
1170        MissingDefaultArg = true;
1171    }
1172
1173    if (RedundantDefaultArg) {
1174      // C++ [temp.param]p12:
1175      //   A template-parameter shall not be given default arguments
1176      //   by two different declarations in the same scope.
1177      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1178      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1179      Invalid = true;
1180    } else if (MissingDefaultArg) {
1181      // C++ [temp.param]p11:
1182      //   If a template-parameter has a default template-argument,
1183      //   all subsequent template-parameters shall have a default
1184      //   template-argument supplied.
1185      Diag((*NewParam)->getLocation(),
1186           diag::err_template_param_default_arg_missing);
1187      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1188      Invalid = true;
1189    }
1190
1191    // If we have an old template parameter list that we're merging
1192    // in, move on to the next parameter.
1193    if (OldParams)
1194      ++OldParam;
1195  }
1196
1197  return Invalid;
1198}
1199
1200/// \brief Match the given template parameter lists to the given scope
1201/// specifier, returning the template parameter list that applies to the
1202/// name.
1203///
1204/// \param DeclStartLoc the start of the declaration that has a scope
1205/// specifier or a template parameter list.
1206///
1207/// \param SS the scope specifier that will be matched to the given template
1208/// parameter lists. This scope specifier precedes a qualified name that is
1209/// being declared.
1210///
1211/// \param ParamLists the template parameter lists, from the outermost to the
1212/// innermost template parameter lists.
1213///
1214/// \param NumParamLists the number of template parameter lists in ParamLists.
1215///
1216/// \param IsFriend Whether to apply the slightly different rules for
1217/// matching template parameters to scope specifiers in friend
1218/// declarations.
1219///
1220/// \param IsExplicitSpecialization will be set true if the entity being
1221/// declared is an explicit specialization, false otherwise.
1222///
1223/// \returns the template parameter list, if any, that corresponds to the
1224/// name that is preceded by the scope specifier @p SS. This template
1225/// parameter list may be have template parameters (if we're declaring a
1226/// template) or may have no template parameters (if we're declaring a
1227/// template specialization), or may be NULL (if we were's declaring isn't
1228/// itself a template).
1229TemplateParameterList *
1230Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1231                                              const CXXScopeSpec &SS,
1232                                          TemplateParameterList **ParamLists,
1233                                              unsigned NumParamLists,
1234                                              bool IsFriend,
1235                                              bool &IsExplicitSpecialization,
1236                                              bool &Invalid) {
1237  IsExplicitSpecialization = false;
1238
1239  // Find the template-ids that occur within the nested-name-specifier. These
1240  // template-ids will match up with the template parameter lists.
1241  llvm::SmallVector<const TemplateSpecializationType *, 4>
1242    TemplateIdsInSpecifier;
1243  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1244    ExplicitSpecializationsInSpecifier;
1245  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1246       NNS; NNS = NNS->getPrefix()) {
1247    const Type *T = NNS->getAsType();
1248    if (!T) break;
1249
1250    // C++0x [temp.expl.spec]p17:
1251    //   A member or a member template may be nested within many
1252    //   enclosing class templates. In an explicit specialization for
1253    //   such a member, the member declaration shall be preceded by a
1254    //   template<> for each enclosing class template that is
1255    //   explicitly specialized.
1256    //
1257    // Following the existing practice of GNU and EDG, we allow a typedef of a
1258    // template specialization type.
1259    if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1260      T = TT->LookThroughTypedefs().getTypePtr();
1261
1262    if (const TemplateSpecializationType *SpecType
1263                                  = dyn_cast<TemplateSpecializationType>(T)) {
1264      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1265      if (!Template)
1266        continue; // FIXME: should this be an error? probably...
1267
1268      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1269        ClassTemplateSpecializationDecl *SpecDecl
1270          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1271        // If the nested name specifier refers to an explicit specialization,
1272        // we don't need a template<> header.
1273        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1274          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1275          continue;
1276        }
1277      }
1278
1279      TemplateIdsInSpecifier.push_back(SpecType);
1280    }
1281  }
1282
1283  // Reverse the list of template-ids in the scope specifier, so that we can
1284  // more easily match up the template-ids and the template parameter lists.
1285  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1286
1287  SourceLocation FirstTemplateLoc = DeclStartLoc;
1288  if (NumParamLists)
1289    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1290
1291  // Match the template-ids found in the specifier to the template parameter
1292  // lists.
1293  unsigned Idx = 0;
1294  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1295       Idx != NumTemplateIds; ++Idx) {
1296    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
1297    bool DependentTemplateId = TemplateId->isDependentType();
1298    if (Idx >= NumParamLists) {
1299      // We have a template-id without a corresponding template parameter
1300      // list.
1301
1302      // ...which is fine if this is a friend declaration.
1303      if (IsFriend) {
1304        IsExplicitSpecialization = true;
1305        break;
1306      }
1307
1308      if (DependentTemplateId) {
1309        // FIXME: the location information here isn't great.
1310        Diag(SS.getRange().getBegin(),
1311             diag::err_template_spec_needs_template_parameters)
1312          << TemplateId
1313          << SS.getRange();
1314        Invalid = true;
1315      } else {
1316        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1317          << SS.getRange()
1318          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1319        IsExplicitSpecialization = true;
1320      }
1321      return 0;
1322    }
1323
1324    // Check the template parameter list against its corresponding template-id.
1325    if (DependentTemplateId) {
1326      TemplateParameterList *ExpectedTemplateParams = 0;
1327
1328      // Are there cases in (e.g.) friends where this won't match?
1329      if (const InjectedClassNameType *Injected
1330            = TemplateId->getAs<InjectedClassNameType>()) {
1331        CXXRecordDecl *Record = Injected->getDecl();
1332        if (ClassTemplatePartialSpecializationDecl *Partial =
1333              dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1334          ExpectedTemplateParams = Partial->getTemplateParameters();
1335        else
1336          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1337            ->getTemplateParameters();
1338      }
1339
1340      if (ExpectedTemplateParams)
1341        TemplateParameterListsAreEqual(ParamLists[Idx],
1342                                       ExpectedTemplateParams,
1343                                       true, TPL_TemplateMatch);
1344
1345      CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember);
1346    } else if (ParamLists[Idx]->size() > 0)
1347      Diag(ParamLists[Idx]->getTemplateLoc(),
1348           diag::err_template_param_list_matches_nontemplate)
1349        << TemplateId
1350        << ParamLists[Idx]->getSourceRange();
1351    else
1352      IsExplicitSpecialization = true;
1353  }
1354
1355  // If there were at least as many template-ids as there were template
1356  // parameter lists, then there are no template parameter lists remaining for
1357  // the declaration itself.
1358  if (Idx >= NumParamLists)
1359    return 0;
1360
1361  // If there were too many template parameter lists, complain about that now.
1362  if (Idx != NumParamLists - 1) {
1363    while (Idx < NumParamLists - 1) {
1364      bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0;
1365      Diag(ParamLists[Idx]->getTemplateLoc(),
1366           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1367                               : diag::err_template_spec_extra_headers)
1368        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1369                       ParamLists[Idx]->getRAngleLoc());
1370
1371      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1372        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1373             diag::note_explicit_template_spec_does_not_need_header)
1374          << ExplicitSpecializationsInSpecifier.back();
1375        ExplicitSpecializationsInSpecifier.pop_back();
1376      }
1377
1378      // We have a template parameter list with no corresponding scope, which
1379      // means that the resulting template declaration can't be instantiated
1380      // properly (we'll end up with dependent nodes when we shouldn't).
1381      if (!isExplicitSpecHeader)
1382        Invalid = true;
1383
1384      ++Idx;
1385    }
1386  }
1387
1388  // Return the last template parameter list, which corresponds to the
1389  // entity being declared.
1390  return ParamLists[NumParamLists - 1];
1391}
1392
1393QualType Sema::CheckTemplateIdType(TemplateName Name,
1394                                   SourceLocation TemplateLoc,
1395                              const TemplateArgumentListInfo &TemplateArgs) {
1396  TemplateDecl *Template = Name.getAsTemplateDecl();
1397  if (!Template) {
1398    // The template name does not resolve to a template, so we just
1399    // build a dependent template-id type.
1400    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1401  }
1402
1403  // Check that the template argument list is well-formed for this
1404  // template.
1405  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1406                                        TemplateArgs.size());
1407  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1408                                false, Converted))
1409    return QualType();
1410
1411  assert((Converted.structuredSize() ==
1412            Template->getTemplateParameters()->size()) &&
1413         "Converted template argument list is too short!");
1414
1415  QualType CanonType;
1416
1417  if (Name.isDependent() ||
1418      TemplateSpecializationType::anyDependentTemplateArguments(
1419                                                      TemplateArgs)) {
1420    // This class template specialization is a dependent
1421    // type. Therefore, its canonical type is another class template
1422    // specialization type that contains all of the converted
1423    // arguments in canonical form. This ensures that, e.g., A<T> and
1424    // A<T, T> have identical types when A is declared as:
1425    //
1426    //   template<typename T, typename U = T> struct A;
1427    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1428    CanonType = Context.getTemplateSpecializationType(CanonName,
1429                                                   Converted.getFlatArguments(),
1430                                                   Converted.flatSize());
1431
1432    // FIXME: CanonType is not actually the canonical type, and unfortunately
1433    // it is a TemplateSpecializationType that we will never use again.
1434    // In the future, we need to teach getTemplateSpecializationType to only
1435    // build the canonical type and return that to us.
1436    CanonType = Context.getCanonicalType(CanonType);
1437
1438    // This might work out to be a current instantiation, in which
1439    // case the canonical type needs to be the InjectedClassNameType.
1440    //
1441    // TODO: in theory this could be a simple hashtable lookup; most
1442    // changes to CurContext don't change the set of current
1443    // instantiations.
1444    if (isa<ClassTemplateDecl>(Template)) {
1445      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1446        // If we get out to a namespace, we're done.
1447        if (Ctx->isFileContext()) break;
1448
1449        // If this isn't a record, keep looking.
1450        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1451        if (!Record) continue;
1452
1453        // Look for one of the two cases with InjectedClassNameTypes
1454        // and check whether it's the same template.
1455        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1456            !Record->getDescribedClassTemplate())
1457          continue;
1458
1459        // Fetch the injected class name type and check whether its
1460        // injected type is equal to the type we just built.
1461        QualType ICNT = Context.getTypeDeclType(Record);
1462        QualType Injected = cast<InjectedClassNameType>(ICNT)
1463          ->getInjectedSpecializationType();
1464
1465        if (CanonType != Injected->getCanonicalTypeInternal())
1466          continue;
1467
1468        // If so, the canonical type of this TST is the injected
1469        // class name type of the record we just found.
1470        assert(ICNT.isCanonical());
1471        CanonType = ICNT;
1472        break;
1473      }
1474    }
1475  } else if (ClassTemplateDecl *ClassTemplate
1476               = dyn_cast<ClassTemplateDecl>(Template)) {
1477    // Find the class template specialization declaration that
1478    // corresponds to these arguments.
1479    void *InsertPos = 0;
1480    ClassTemplateSpecializationDecl *Decl
1481      = ClassTemplate->findSpecialization(Converted.getFlatArguments(),
1482                                          Converted.flatSize(), InsertPos);
1483    if (!Decl) {
1484      // This is the first time we have referenced this class template
1485      // specialization. Create the canonical declaration and add it to
1486      // the set of specializations.
1487      Decl = ClassTemplateSpecializationDecl::Create(Context,
1488                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1489                                                ClassTemplate->getDeclContext(),
1490                                                ClassTemplate->getLocation(),
1491                                                ClassTemplate,
1492                                                Converted, 0);
1493      ClassTemplate->AddSpecialization(Decl, InsertPos);
1494      Decl->setLexicalDeclContext(CurContext);
1495    }
1496
1497    CanonType = Context.getTypeDeclType(Decl);
1498    assert(isa<RecordType>(CanonType) &&
1499           "type of non-dependent specialization is not a RecordType");
1500  }
1501
1502  // Build the fully-sugared type for this class template
1503  // specialization, which refers back to the class template
1504  // specialization we created or found.
1505  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1506}
1507
1508Action::TypeResult
1509Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1510                          SourceLocation LAngleLoc,
1511                          ASTTemplateArgsPtr TemplateArgsIn,
1512                          SourceLocation RAngleLoc) {
1513  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1514
1515  // Translate the parser's template argument list in our AST format.
1516  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1517  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1518
1519  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1520  TemplateArgsIn.release();
1521
1522  if (Result.isNull())
1523    return true;
1524
1525  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1526  TemplateSpecializationTypeLoc TL
1527    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1528  TL.setTemplateNameLoc(TemplateLoc);
1529  TL.setLAngleLoc(LAngleLoc);
1530  TL.setRAngleLoc(RAngleLoc);
1531  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1532    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1533
1534  return CreateLocInfoType(Result, DI).getAsOpaquePtr();
1535}
1536
1537Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1538                                              TagUseKind TUK,
1539                                              DeclSpec::TST TagSpec,
1540                                              SourceLocation TagLoc) {
1541  if (TypeResult.isInvalid())
1542    return Sema::TypeResult();
1543
1544  // FIXME: preserve source info, ideally without copying the DI.
1545  TypeSourceInfo *DI;
1546  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1547
1548  // Verify the tag specifier.
1549  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1550
1551  if (const RecordType *RT = Type->getAs<RecordType>()) {
1552    RecordDecl *D = RT->getDecl();
1553
1554    IdentifierInfo *Id = D->getIdentifier();
1555    assert(Id && "templated class must have an identifier");
1556
1557    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1558      Diag(TagLoc, diag::err_use_with_wrong_tag)
1559        << Type
1560        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1561      Diag(D->getLocation(), diag::note_previous_use);
1562    }
1563  }
1564
1565  ElaboratedTypeKeyword Keyword
1566    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
1567  QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type);
1568
1569  return ElabType.getAsOpaquePtr();
1570}
1571
1572Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1573                                                 LookupResult &R,
1574                                                 bool RequiresADL,
1575                                 const TemplateArgumentListInfo &TemplateArgs) {
1576  // FIXME: Can we do any checking at this point? I guess we could check the
1577  // template arguments that we have against the template name, if the template
1578  // name refers to a single template. That's not a terribly common case,
1579  // though.
1580
1581  // These should be filtered out by our callers.
1582  assert(!R.empty() && "empty lookup results when building templateid");
1583  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1584
1585  NestedNameSpecifier *Qualifier = 0;
1586  SourceRange QualifierRange;
1587  if (SS.isSet()) {
1588    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1589    QualifierRange = SS.getRange();
1590  }
1591
1592  // We don't want lookup warnings at this point.
1593  R.suppressDiagnostics();
1594
1595  bool Dependent
1596    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(),
1597                                              &TemplateArgs);
1598  UnresolvedLookupExpr *ULE
1599    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1600                                   Qualifier, QualifierRange,
1601                                   R.getLookupName(), R.getNameLoc(),
1602                                   RequiresADL, TemplateArgs,
1603                                   R.begin(), R.end());
1604
1605  return Owned(ULE);
1606}
1607
1608// We actually only call this from template instantiation.
1609Sema::OwningExprResult
1610Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1611                                   DeclarationName Name,
1612                                   SourceLocation NameLoc,
1613                             const TemplateArgumentListInfo &TemplateArgs) {
1614  DeclContext *DC;
1615  if (!(DC = computeDeclContext(SS, false)) ||
1616      DC->isDependentContext() ||
1617      RequireCompleteDeclContext(SS, DC))
1618    return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs);
1619
1620  bool MemberOfUnknownSpecialization;
1621  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1622  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
1623                     MemberOfUnknownSpecialization);
1624
1625  if (R.isAmbiguous())
1626    return ExprError();
1627
1628  if (R.empty()) {
1629    Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
1630      << Name << SS.getRange();
1631    return ExprError();
1632  }
1633
1634  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1635    Diag(NameLoc, diag::err_template_kw_refers_to_class_template)
1636      << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange();
1637    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1638    return ExprError();
1639  }
1640
1641  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1642}
1643
1644/// \brief Form a dependent template name.
1645///
1646/// This action forms a dependent template name given the template
1647/// name and its (presumably dependent) scope specifier. For
1648/// example, given "MetaFun::template apply", the scope specifier \p
1649/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1650/// of the "template" keyword, and "apply" is the \p Name.
1651TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
1652                                                  SourceLocation TemplateKWLoc,
1653                                                  CXXScopeSpec &SS,
1654                                                  UnqualifiedId &Name,
1655                                                  TypeTy *ObjectType,
1656                                                  bool EnteringContext,
1657                                                  TemplateTy &Result) {
1658  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
1659      !getLangOptions().CPlusPlus0x)
1660    Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
1661      << FixItHint::CreateRemoval(TemplateKWLoc);
1662
1663  DeclContext *LookupCtx = 0;
1664  if (SS.isSet())
1665    LookupCtx = computeDeclContext(SS, EnteringContext);
1666  if (!LookupCtx && ObjectType)
1667    LookupCtx = computeDeclContext(QualType::getFromOpaquePtr(ObjectType));
1668  if (LookupCtx) {
1669    // C++0x [temp.names]p5:
1670    //   If a name prefixed by the keyword template is not the name of
1671    //   a template, the program is ill-formed. [Note: the keyword
1672    //   template may not be applied to non-template members of class
1673    //   templates. -end note ] [ Note: as is the case with the
1674    //   typename prefix, the template prefix is allowed in cases
1675    //   where it is not strictly necessary; i.e., when the
1676    //   nested-name-specifier or the expression on the left of the ->
1677    //   or . is not dependent on a template-parameter, or the use
1678    //   does not appear in the scope of a template. -end note]
1679    //
1680    // Note: C++03 was more strict here, because it banned the use of
1681    // the "template" keyword prior to a template-name that was not a
1682    // dependent name. C++ DR468 relaxed this requirement (the
1683    // "template" keyword is now permitted). We follow the C++0x
1684    // rules, even in C++03 mode with a warning, retroactively applying the DR.
1685    bool MemberOfUnknownSpecialization;
1686    TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType,
1687                                          EnteringContext, Result,
1688                                          MemberOfUnknownSpecialization);
1689    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1690        isa<CXXRecordDecl>(LookupCtx) &&
1691        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1692      // This is a dependent template. Handle it below.
1693    } else if (TNK == TNK_Non_template) {
1694      Diag(Name.getSourceRange().getBegin(),
1695           diag::err_template_kw_refers_to_non_template)
1696        << GetNameFromUnqualifiedId(Name)
1697        << Name.getSourceRange()
1698        << TemplateKWLoc;
1699      return TNK_Non_template;
1700    } else {
1701      // We found something; return it.
1702      return TNK;
1703    }
1704  }
1705
1706  NestedNameSpecifier *Qualifier
1707    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1708
1709  switch (Name.getKind()) {
1710  case UnqualifiedId::IK_Identifier:
1711    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1712                                                              Name.Identifier));
1713    return TNK_Dependent_template_name;
1714
1715  case UnqualifiedId::IK_OperatorFunctionId:
1716    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1717                                             Name.OperatorFunctionId.Operator));
1718    return TNK_Dependent_template_name;
1719
1720  case UnqualifiedId::IK_LiteralOperatorId:
1721    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1722
1723  default:
1724    break;
1725  }
1726
1727  Diag(Name.getSourceRange().getBegin(),
1728       diag::err_template_kw_refers_to_non_template)
1729    << GetNameFromUnqualifiedId(Name)
1730    << Name.getSourceRange()
1731    << TemplateKWLoc;
1732  return TNK_Non_template;
1733}
1734
1735bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1736                                     const TemplateArgumentLoc &AL,
1737                                     TemplateArgumentListBuilder &Converted) {
1738  const TemplateArgument &Arg = AL.getArgument();
1739
1740  // Check template type parameter.
1741  switch(Arg.getKind()) {
1742  case TemplateArgument::Type:
1743    // C++ [temp.arg.type]p1:
1744    //   A template-argument for a template-parameter which is a
1745    //   type shall be a type-id.
1746    break;
1747  case TemplateArgument::Template: {
1748    // We have a template type parameter but the template argument
1749    // is a template without any arguments.
1750    SourceRange SR = AL.getSourceRange();
1751    TemplateName Name = Arg.getAsTemplate();
1752    Diag(SR.getBegin(), diag::err_template_missing_args)
1753      << Name << SR;
1754    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
1755      Diag(Decl->getLocation(), diag::note_template_decl_here);
1756
1757    return true;
1758  }
1759  default: {
1760    // We have a template type parameter but the template argument
1761    // is not a type.
1762    SourceRange SR = AL.getSourceRange();
1763    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1764    Diag(Param->getLocation(), diag::note_template_param_here);
1765
1766    return true;
1767  }
1768  }
1769
1770  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1771    return true;
1772
1773  // Add the converted template type argument.
1774  Converted.Append(
1775                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1776  return false;
1777}
1778
1779/// \brief Substitute template arguments into the default template argument for
1780/// the given template type parameter.
1781///
1782/// \param SemaRef the semantic analysis object for which we are performing
1783/// the substitution.
1784///
1785/// \param Template the template that we are synthesizing template arguments
1786/// for.
1787///
1788/// \param TemplateLoc the location of the template name that started the
1789/// template-id we are checking.
1790///
1791/// \param RAngleLoc the location of the right angle bracket ('>') that
1792/// terminates the template-id.
1793///
1794/// \param Param the template template parameter whose default we are
1795/// substituting into.
1796///
1797/// \param Converted the list of template arguments provided for template
1798/// parameters that precede \p Param in the template parameter list.
1799///
1800/// \returns the substituted template argument, or NULL if an error occurred.
1801static TypeSourceInfo *
1802SubstDefaultTemplateArgument(Sema &SemaRef,
1803                             TemplateDecl *Template,
1804                             SourceLocation TemplateLoc,
1805                             SourceLocation RAngleLoc,
1806                             TemplateTypeParmDecl *Param,
1807                             TemplateArgumentListBuilder &Converted) {
1808  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
1809
1810  // If the argument type is dependent, instantiate it now based
1811  // on the previously-computed template arguments.
1812  if (ArgType->getType()->isDependentType()) {
1813    TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1814                                      /*TakeArgs=*/false);
1815
1816    MultiLevelTemplateArgumentList AllTemplateArgs
1817      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1818
1819    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1820                                     Template, Converted.getFlatArguments(),
1821                                     Converted.flatSize(),
1822                                     SourceRange(TemplateLoc, RAngleLoc));
1823
1824    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1825                                Param->getDefaultArgumentLoc(),
1826                                Param->getDeclName());
1827  }
1828
1829  return ArgType;
1830}
1831
1832/// \brief Substitute template arguments into the default template argument for
1833/// the given non-type template parameter.
1834///
1835/// \param SemaRef the semantic analysis object for which we are performing
1836/// the substitution.
1837///
1838/// \param Template the template that we are synthesizing template arguments
1839/// for.
1840///
1841/// \param TemplateLoc the location of the template name that started the
1842/// template-id we are checking.
1843///
1844/// \param RAngleLoc the location of the right angle bracket ('>') that
1845/// terminates the template-id.
1846///
1847/// \param Param the non-type template parameter whose default we are
1848/// substituting into.
1849///
1850/// \param Converted the list of template arguments provided for template
1851/// parameters that precede \p Param in the template parameter list.
1852///
1853/// \returns the substituted template argument, or NULL if an error occurred.
1854static Sema::OwningExprResult
1855SubstDefaultTemplateArgument(Sema &SemaRef,
1856                             TemplateDecl *Template,
1857                             SourceLocation TemplateLoc,
1858                             SourceLocation RAngleLoc,
1859                             NonTypeTemplateParmDecl *Param,
1860                             TemplateArgumentListBuilder &Converted) {
1861  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1862                                    /*TakeArgs=*/false);
1863
1864  MultiLevelTemplateArgumentList AllTemplateArgs
1865    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1866
1867  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1868                                   Template, Converted.getFlatArguments(),
1869                                   Converted.flatSize(),
1870                                   SourceRange(TemplateLoc, RAngleLoc));
1871
1872  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1873}
1874
1875/// \brief Substitute template arguments into the default template argument for
1876/// the given template template parameter.
1877///
1878/// \param SemaRef the semantic analysis object for which we are performing
1879/// the substitution.
1880///
1881/// \param Template the template that we are synthesizing template arguments
1882/// for.
1883///
1884/// \param TemplateLoc the location of the template name that started the
1885/// template-id we are checking.
1886///
1887/// \param RAngleLoc the location of the right angle bracket ('>') that
1888/// terminates the template-id.
1889///
1890/// \param Param the template template parameter whose default we are
1891/// substituting into.
1892///
1893/// \param Converted the list of template arguments provided for template
1894/// parameters that precede \p Param in the template parameter list.
1895///
1896/// \returns the substituted template argument, or NULL if an error occurred.
1897static TemplateName
1898SubstDefaultTemplateArgument(Sema &SemaRef,
1899                             TemplateDecl *Template,
1900                             SourceLocation TemplateLoc,
1901                             SourceLocation RAngleLoc,
1902                             TemplateTemplateParmDecl *Param,
1903                             TemplateArgumentListBuilder &Converted) {
1904  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1905                                    /*TakeArgs=*/false);
1906
1907  MultiLevelTemplateArgumentList AllTemplateArgs
1908    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1909
1910  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1911                                   Template, Converted.getFlatArguments(),
1912                                   Converted.flatSize(),
1913                                   SourceRange(TemplateLoc, RAngleLoc));
1914
1915  return SemaRef.SubstTemplateName(
1916                      Param->getDefaultArgument().getArgument().getAsTemplate(),
1917                              Param->getDefaultArgument().getTemplateNameLoc(),
1918                                   AllTemplateArgs);
1919}
1920
1921/// \brief If the given template parameter has a default template
1922/// argument, substitute into that default template argument and
1923/// return the corresponding template argument.
1924TemplateArgumentLoc
1925Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
1926                                              SourceLocation TemplateLoc,
1927                                              SourceLocation RAngleLoc,
1928                                              Decl *Param,
1929                                     TemplateArgumentListBuilder &Converted) {
1930  if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
1931    if (!TypeParm->hasDefaultArgument())
1932      return TemplateArgumentLoc();
1933
1934    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
1935                                                      TemplateLoc,
1936                                                      RAngleLoc,
1937                                                      TypeParm,
1938                                                      Converted);
1939    if (DI)
1940      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
1941
1942    return TemplateArgumentLoc();
1943  }
1944
1945  if (NonTypeTemplateParmDecl *NonTypeParm
1946        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1947    if (!NonTypeParm->hasDefaultArgument())
1948      return TemplateArgumentLoc();
1949
1950    OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
1951                                                        TemplateLoc,
1952                                                        RAngleLoc,
1953                                                        NonTypeParm,
1954                                                        Converted);
1955    if (Arg.isInvalid())
1956      return TemplateArgumentLoc();
1957
1958    Expr *ArgE = Arg.takeAs<Expr>();
1959    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
1960  }
1961
1962  TemplateTemplateParmDecl *TempTempParm
1963    = cast<TemplateTemplateParmDecl>(Param);
1964  if (!TempTempParm->hasDefaultArgument())
1965    return TemplateArgumentLoc();
1966
1967  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
1968                                                    TemplateLoc,
1969                                                    RAngleLoc,
1970                                                    TempTempParm,
1971                                                    Converted);
1972  if (TName.isNull())
1973    return TemplateArgumentLoc();
1974
1975  return TemplateArgumentLoc(TemplateArgument(TName),
1976                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
1977                TempTempParm->getDefaultArgument().getTemplateNameLoc());
1978}
1979
1980/// \brief Check that the given template argument corresponds to the given
1981/// template parameter.
1982bool Sema::CheckTemplateArgument(NamedDecl *Param,
1983                                 const TemplateArgumentLoc &Arg,
1984                                 TemplateDecl *Template,
1985                                 SourceLocation TemplateLoc,
1986                                 SourceLocation RAngleLoc,
1987                                 TemplateArgumentListBuilder &Converted,
1988                                 CheckTemplateArgumentKind CTAK) {
1989  // Check template type parameters.
1990  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
1991    return CheckTemplateTypeArgument(TTP, Arg, Converted);
1992
1993  // Check non-type template parameters.
1994  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1995    // Do substitution on the type of the non-type template parameter
1996    // with the template arguments we've seen thus far.
1997    QualType NTTPType = NTTP->getType();
1998    if (NTTPType->isDependentType()) {
1999      // Do substitution on the type of the non-type template parameter.
2000      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2001                                 NTTP, Converted.getFlatArguments(),
2002                                 Converted.flatSize(),
2003                                 SourceRange(TemplateLoc, RAngleLoc));
2004
2005      TemplateArgumentList TemplateArgs(Context, Converted,
2006                                        /*TakeArgs=*/false);
2007      NTTPType = SubstType(NTTPType,
2008                           MultiLevelTemplateArgumentList(TemplateArgs),
2009                           NTTP->getLocation(),
2010                           NTTP->getDeclName());
2011      // If that worked, check the non-type template parameter type
2012      // for validity.
2013      if (!NTTPType.isNull())
2014        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2015                                                     NTTP->getLocation());
2016      if (NTTPType.isNull())
2017        return true;
2018    }
2019
2020    switch (Arg.getArgument().getKind()) {
2021    case TemplateArgument::Null:
2022      assert(false && "Should never see a NULL template argument here");
2023      return true;
2024
2025    case TemplateArgument::Expression: {
2026      Expr *E = Arg.getArgument().getAsExpr();
2027      TemplateArgument Result;
2028      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
2029        return true;
2030
2031      Converted.Append(Result);
2032      break;
2033    }
2034
2035    case TemplateArgument::Declaration:
2036    case TemplateArgument::Integral:
2037      // We've already checked this template argument, so just copy
2038      // it to the list of converted arguments.
2039      Converted.Append(Arg.getArgument());
2040      break;
2041
2042    case TemplateArgument::Template:
2043      // We were given a template template argument. It may not be ill-formed;
2044      // see below.
2045      if (DependentTemplateName *DTN
2046            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
2047        // We have a template argument such as \c T::template X, which we
2048        // parsed as a template template argument. However, since we now
2049        // know that we need a non-type template argument, convert this
2050        // template name into an expression.
2051        Expr *E = DependentScopeDeclRefExpr::Create(Context,
2052                                                    DTN->getQualifier(),
2053                                               Arg.getTemplateQualifierRange(),
2054                                                    DTN->getIdentifier(),
2055                                                    Arg.getTemplateNameLoc());
2056
2057        TemplateArgument Result;
2058        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2059          return true;
2060
2061        Converted.Append(Result);
2062        break;
2063      }
2064
2065      // We have a template argument that actually does refer to a class
2066      // template, template alias, or template template parameter, and
2067      // therefore cannot be a non-type template argument.
2068      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2069        << Arg.getSourceRange();
2070
2071      Diag(Param->getLocation(), diag::note_template_param_here);
2072      return true;
2073
2074    case TemplateArgument::Type: {
2075      // We have a non-type template parameter but the template
2076      // argument is a type.
2077
2078      // C++ [temp.arg]p2:
2079      //   In a template-argument, an ambiguity between a type-id and
2080      //   an expression is resolved to a type-id, regardless of the
2081      //   form of the corresponding template-parameter.
2082      //
2083      // We warn specifically about this case, since it can be rather
2084      // confusing for users.
2085      QualType T = Arg.getArgument().getAsType();
2086      SourceRange SR = Arg.getSourceRange();
2087      if (T->isFunctionType())
2088        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2089      else
2090        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2091      Diag(Param->getLocation(), diag::note_template_param_here);
2092      return true;
2093    }
2094
2095    case TemplateArgument::Pack:
2096      llvm_unreachable("Caller must expand template argument packs");
2097      break;
2098    }
2099
2100    return false;
2101  }
2102
2103
2104  // Check template template parameters.
2105  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2106
2107  // Substitute into the template parameter list of the template
2108  // template parameter, since previously-supplied template arguments
2109  // may appear within the template template parameter.
2110  {
2111    // Set up a template instantiation context.
2112    LocalInstantiationScope Scope(*this);
2113    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2114                               TempParm, Converted.getFlatArguments(),
2115                               Converted.flatSize(),
2116                               SourceRange(TemplateLoc, RAngleLoc));
2117
2118    TemplateArgumentList TemplateArgs(Context, Converted,
2119                                      /*TakeArgs=*/false);
2120    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2121                      SubstDecl(TempParm, CurContext,
2122                                MultiLevelTemplateArgumentList(TemplateArgs)));
2123    if (!TempParm)
2124      return true;
2125
2126    // FIXME: TempParam is leaked.
2127  }
2128
2129  switch (Arg.getArgument().getKind()) {
2130  case TemplateArgument::Null:
2131    assert(false && "Should never see a NULL template argument here");
2132    return true;
2133
2134  case TemplateArgument::Template:
2135    if (CheckTemplateArgument(TempParm, Arg))
2136      return true;
2137
2138    Converted.Append(Arg.getArgument());
2139    break;
2140
2141  case TemplateArgument::Expression:
2142  case TemplateArgument::Type:
2143    // We have a template template parameter but the template
2144    // argument does not refer to a template.
2145    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2146    return true;
2147
2148  case TemplateArgument::Declaration:
2149    llvm_unreachable(
2150                       "Declaration argument with template template parameter");
2151    break;
2152  case TemplateArgument::Integral:
2153    llvm_unreachable(
2154                          "Integral argument with template template parameter");
2155    break;
2156
2157  case TemplateArgument::Pack:
2158    llvm_unreachable("Caller must expand template argument packs");
2159    break;
2160  }
2161
2162  return false;
2163}
2164
2165/// \brief Check that the given template argument list is well-formed
2166/// for specializing the given template.
2167bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2168                                     SourceLocation TemplateLoc,
2169                                const TemplateArgumentListInfo &TemplateArgs,
2170                                     bool PartialTemplateArgs,
2171                                     TemplateArgumentListBuilder &Converted) {
2172  TemplateParameterList *Params = Template->getTemplateParameters();
2173  unsigned NumParams = Params->size();
2174  unsigned NumArgs = TemplateArgs.size();
2175  bool Invalid = false;
2176
2177  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2178
2179  bool HasParameterPack =
2180    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2181
2182  if ((NumArgs > NumParams && !HasParameterPack) ||
2183      (NumArgs < Params->getMinRequiredArguments() &&
2184       !PartialTemplateArgs)) {
2185    // FIXME: point at either the first arg beyond what we can handle,
2186    // or the '>', depending on whether we have too many or too few
2187    // arguments.
2188    SourceRange Range;
2189    if (NumArgs > NumParams)
2190      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2191    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2192      << (NumArgs > NumParams)
2193      << (isa<ClassTemplateDecl>(Template)? 0 :
2194          isa<FunctionTemplateDecl>(Template)? 1 :
2195          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2196      << Template << Range;
2197    Diag(Template->getLocation(), diag::note_template_decl_here)
2198      << Params->getSourceRange();
2199    Invalid = true;
2200  }
2201
2202  // C++ [temp.arg]p1:
2203  //   [...] The type and form of each template-argument specified in
2204  //   a template-id shall match the type and form specified for the
2205  //   corresponding parameter declared by the template in its
2206  //   template-parameter-list.
2207  unsigned ArgIdx = 0;
2208  for (TemplateParameterList::iterator Param = Params->begin(),
2209                                       ParamEnd = Params->end();
2210       Param != ParamEnd; ++Param, ++ArgIdx) {
2211    if (ArgIdx > NumArgs && PartialTemplateArgs)
2212      break;
2213
2214    // If we have a template parameter pack, check every remaining template
2215    // argument against that template parameter pack.
2216    if ((*Param)->isTemplateParameterPack()) {
2217      Converted.BeginPack();
2218      for (; ArgIdx < NumArgs; ++ArgIdx) {
2219        if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2220                                  TemplateLoc, RAngleLoc, Converted)) {
2221          Invalid = true;
2222          break;
2223        }
2224      }
2225      Converted.EndPack();
2226      continue;
2227    }
2228
2229    if (ArgIdx < NumArgs) {
2230      // Check the template argument we were given.
2231      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2232                                TemplateLoc, RAngleLoc, Converted))
2233        return true;
2234
2235      continue;
2236    }
2237
2238    // We have a default template argument that we will use.
2239    TemplateArgumentLoc Arg;
2240
2241    // Retrieve the default template argument from the template
2242    // parameter. For each kind of template parameter, we substitute the
2243    // template arguments provided thus far and any "outer" template arguments
2244    // (when the template parameter was part of a nested template) into
2245    // the default argument.
2246    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2247      if (!TTP->hasDefaultArgument()) {
2248        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2249        break;
2250      }
2251
2252      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2253                                                             Template,
2254                                                             TemplateLoc,
2255                                                             RAngleLoc,
2256                                                             TTP,
2257                                                             Converted);
2258      if (!ArgType)
2259        return true;
2260
2261      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2262                                ArgType);
2263    } else if (NonTypeTemplateParmDecl *NTTP
2264                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2265      if (!NTTP->hasDefaultArgument()) {
2266        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2267        break;
2268      }
2269
2270      Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template,
2271                                                              TemplateLoc,
2272                                                              RAngleLoc,
2273                                                              NTTP,
2274                                                              Converted);
2275      if (E.isInvalid())
2276        return true;
2277
2278      Expr *Ex = E.takeAs<Expr>();
2279      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2280    } else {
2281      TemplateTemplateParmDecl *TempParm
2282        = cast<TemplateTemplateParmDecl>(*Param);
2283
2284      if (!TempParm->hasDefaultArgument()) {
2285        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2286        break;
2287      }
2288
2289      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2290                                                       TemplateLoc,
2291                                                       RAngleLoc,
2292                                                       TempParm,
2293                                                       Converted);
2294      if (Name.isNull())
2295        return true;
2296
2297      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2298                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2299                  TempParm->getDefaultArgument().getTemplateNameLoc());
2300    }
2301
2302    // Introduce an instantiation record that describes where we are using
2303    // the default template argument.
2304    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2305                                        Converted.getFlatArguments(),
2306                                        Converted.flatSize(),
2307                                        SourceRange(TemplateLoc, RAngleLoc));
2308
2309    // Check the default template argument.
2310    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2311                              RAngleLoc, Converted))
2312      return true;
2313  }
2314
2315  return Invalid;
2316}
2317
2318/// \brief Check a template argument against its corresponding
2319/// template type parameter.
2320///
2321/// This routine implements the semantics of C++ [temp.arg.type]. It
2322/// returns true if an error occurred, and false otherwise.
2323bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2324                                 TypeSourceInfo *ArgInfo) {
2325  assert(ArgInfo && "invalid TypeSourceInfo");
2326  QualType Arg = ArgInfo->getType();
2327
2328  // C++ [temp.arg.type]p2:
2329  //   A local type, a type with no linkage, an unnamed type or a type
2330  //   compounded from any of these types shall not be used as a
2331  //   template-argument for a template type-parameter.
2332  //
2333  // FIXME: Perform the unnamed type check.
2334  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2335  const TagType *Tag = 0;
2336  if (const EnumType *EnumT = Arg->getAs<EnumType>())
2337    Tag = EnumT;
2338  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
2339    Tag = RecordT;
2340  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
2341    SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2342    return Diag(SR.getBegin(), diag::err_template_arg_local_type)
2343      << QualType(Tag, 0) << SR;
2344  } else if (Tag && !Tag->getDecl()->getDeclName() &&
2345           !Tag->getDecl()->getTypedefForAnonDecl()) {
2346    Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR;
2347    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
2348    return true;
2349  } else if (Arg->isVariablyModifiedType()) {
2350    Diag(SR.getBegin(), diag::err_variably_modified_template_arg)
2351      << Arg;
2352    return true;
2353  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2354    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2355  }
2356
2357  return false;
2358}
2359
2360/// \brief Checks whether the given template argument is the address
2361/// of an object or function according to C++ [temp.arg.nontype]p1.
2362static bool
2363CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2364                                               NonTypeTemplateParmDecl *Param,
2365                                               QualType ParamType,
2366                                               Expr *ArgIn,
2367                                               TemplateArgument &Converted) {
2368  bool Invalid = false;
2369  Expr *Arg = ArgIn;
2370  QualType ArgType = Arg->getType();
2371
2372  // See through any implicit casts we added to fix the type.
2373  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2374    Arg = Cast->getSubExpr();
2375
2376  // C++ [temp.arg.nontype]p1:
2377  //
2378  //   A template-argument for a non-type, non-template
2379  //   template-parameter shall be one of: [...]
2380  //
2381  //     -- the address of an object or function with external
2382  //        linkage, including function templates and function
2383  //        template-ids but excluding non-static class members,
2384  //        expressed as & id-expression where the & is optional if
2385  //        the name refers to a function or array, or if the
2386  //        corresponding template-parameter is a reference; or
2387  DeclRefExpr *DRE = 0;
2388
2389  // Ignore (and complain about) any excess parentheses.
2390  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2391    if (!Invalid) {
2392      S.Diag(Arg->getSourceRange().getBegin(),
2393             diag::err_template_arg_extra_parens)
2394        << Arg->getSourceRange();
2395      Invalid = true;
2396    }
2397
2398    Arg = Parens->getSubExpr();
2399  }
2400
2401  bool AddressTaken = false;
2402  SourceLocation AddrOpLoc;
2403  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2404    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2405      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2406      AddressTaken = true;
2407      AddrOpLoc = UnOp->getOperatorLoc();
2408    }
2409  } else
2410    DRE = dyn_cast<DeclRefExpr>(Arg);
2411
2412  if (!DRE) {
2413    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2414      << Arg->getSourceRange();
2415    S.Diag(Param->getLocation(), diag::note_template_param_here);
2416    return true;
2417  }
2418
2419  // Stop checking the precise nature of the argument if it is value dependent,
2420  // it should be checked when instantiated.
2421  if (Arg->isValueDependent()) {
2422    Converted = TemplateArgument(ArgIn->Retain());
2423    return false;
2424  }
2425
2426  if (!isa<ValueDecl>(DRE->getDecl())) {
2427    S.Diag(Arg->getSourceRange().getBegin(),
2428           diag::err_template_arg_not_object_or_func_form)
2429      << Arg->getSourceRange();
2430    S.Diag(Param->getLocation(), diag::note_template_param_here);
2431    return true;
2432  }
2433
2434  NamedDecl *Entity = 0;
2435
2436  // Cannot refer to non-static data members
2437  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
2438    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2439      << Field << Arg->getSourceRange();
2440    S.Diag(Param->getLocation(), diag::note_template_param_here);
2441    return true;
2442  }
2443
2444  // Cannot refer to non-static member functions
2445  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2446    if (!Method->isStatic()) {
2447      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
2448        << Method << Arg->getSourceRange();
2449      S.Diag(Param->getLocation(), diag::note_template_param_here);
2450      return true;
2451    }
2452
2453  // Functions must have external linkage.
2454  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2455    if (!isExternalLinkage(Func->getLinkage())) {
2456      S.Diag(Arg->getSourceRange().getBegin(),
2457             diag::err_template_arg_function_not_extern)
2458        << Func << Arg->getSourceRange();
2459      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2460        << true;
2461      return true;
2462    }
2463
2464    // Okay: we've named a function with external linkage.
2465    Entity = Func;
2466
2467    // If the template parameter has pointer type, the function decays.
2468    if (ParamType->isPointerType() && !AddressTaken)
2469      ArgType = S.Context.getPointerType(Func->getType());
2470    else if (AddressTaken && ParamType->isReferenceType()) {
2471      // If we originally had an address-of operator, but the
2472      // parameter has reference type, complain and (if things look
2473      // like they will work) drop the address-of operator.
2474      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
2475                                            ParamType.getNonReferenceType())) {
2476        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2477          << ParamType;
2478        S.Diag(Param->getLocation(), diag::note_template_param_here);
2479        return true;
2480      }
2481
2482      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2483        << ParamType
2484        << FixItHint::CreateRemoval(AddrOpLoc);
2485      S.Diag(Param->getLocation(), diag::note_template_param_here);
2486
2487      ArgType = Func->getType();
2488    }
2489  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2490    if (!isExternalLinkage(Var->getLinkage())) {
2491      S.Diag(Arg->getSourceRange().getBegin(),
2492             diag::err_template_arg_object_not_extern)
2493        << Var << Arg->getSourceRange();
2494      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2495        << true;
2496      return true;
2497    }
2498
2499    // A value of reference type is not an object.
2500    if (Var->getType()->isReferenceType()) {
2501      S.Diag(Arg->getSourceRange().getBegin(),
2502             diag::err_template_arg_reference_var)
2503        << Var->getType() << Arg->getSourceRange();
2504      S.Diag(Param->getLocation(), diag::note_template_param_here);
2505      return true;
2506    }
2507
2508    // Okay: we've named an object with external linkage
2509    Entity = Var;
2510
2511    // If the template parameter has pointer type, we must have taken
2512    // the address of this object.
2513    if (ParamType->isReferenceType()) {
2514      if (AddressTaken) {
2515        // If we originally had an address-of operator, but the
2516        // parameter has reference type, complain and (if things look
2517        // like they will work) drop the address-of operator.
2518        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
2519                                            ParamType.getNonReferenceType())) {
2520          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2521            << ParamType;
2522          S.Diag(Param->getLocation(), diag::note_template_param_here);
2523          return true;
2524        }
2525
2526        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2527          << ParamType
2528          << FixItHint::CreateRemoval(AddrOpLoc);
2529        S.Diag(Param->getLocation(), diag::note_template_param_here);
2530
2531        ArgType = Var->getType();
2532      }
2533    } else if (!AddressTaken && ParamType->isPointerType()) {
2534      if (Var->getType()->isArrayType()) {
2535        // Array-to-pointer decay.
2536        ArgType = S.Context.getArrayDecayedType(Var->getType());
2537      } else {
2538        // If the template parameter has pointer type but the address of
2539        // this object was not taken, complain and (possibly) recover by
2540        // taking the address of the entity.
2541        ArgType = S.Context.getPointerType(Var->getType());
2542        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2543          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2544            << ParamType;
2545          S.Diag(Param->getLocation(), diag::note_template_param_here);
2546          return true;
2547        }
2548
2549        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2550          << ParamType
2551          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
2552
2553        S.Diag(Param->getLocation(), diag::note_template_param_here);
2554      }
2555    }
2556  } else {
2557    // We found something else, but we don't know specifically what it is.
2558    S.Diag(Arg->getSourceRange().getBegin(),
2559           diag::err_template_arg_not_object_or_func)
2560      << Arg->getSourceRange();
2561    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
2562    return true;
2563  }
2564
2565  if (ParamType->isPointerType() &&
2566      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
2567      S.IsQualificationConversion(ArgType, ParamType)) {
2568    // For pointer-to-object types, qualification conversions are
2569    // permitted.
2570  } else {
2571    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
2572      if (!ParamRef->getPointeeType()->isFunctionType()) {
2573        // C++ [temp.arg.nontype]p5b3:
2574        //   For a non-type template-parameter of type reference to
2575        //   object, no conversions apply. The type referred to by the
2576        //   reference may be more cv-qualified than the (otherwise
2577        //   identical) type of the template- argument. The
2578        //   template-parameter is bound directly to the
2579        //   template-argument, which shall be an lvalue.
2580
2581        // FIXME: Other qualifiers?
2582        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
2583        unsigned ArgQuals = ArgType.getCVRQualifiers();
2584
2585        if ((ParamQuals | ArgQuals) != ParamQuals) {
2586          S.Diag(Arg->getSourceRange().getBegin(),
2587                 diag::err_template_arg_ref_bind_ignores_quals)
2588            << ParamType << Arg->getType()
2589            << Arg->getSourceRange();
2590          S.Diag(Param->getLocation(), diag::note_template_param_here);
2591          return true;
2592        }
2593      }
2594    }
2595
2596    // At this point, the template argument refers to an object or
2597    // function with external linkage. We now need to check whether the
2598    // argument and parameter types are compatible.
2599    if (!S.Context.hasSameUnqualifiedType(ArgType,
2600                                          ParamType.getNonReferenceType())) {
2601      // We can't perform this conversion or binding.
2602      if (ParamType->isReferenceType())
2603        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
2604          << ParamType << Arg->getType() << Arg->getSourceRange();
2605      else
2606        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
2607          << Arg->getType() << ParamType << Arg->getSourceRange();
2608      S.Diag(Param->getLocation(), diag::note_template_param_here);
2609      return true;
2610    }
2611  }
2612
2613  // Create the template argument.
2614  Converted = TemplateArgument(Entity->getCanonicalDecl());
2615  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
2616  return false;
2617}
2618
2619/// \brief Checks whether the given template argument is a pointer to
2620/// member constant according to C++ [temp.arg.nontype]p1.
2621bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2622                                                TemplateArgument &Converted) {
2623  bool Invalid = false;
2624
2625  // See through any implicit casts we added to fix the type.
2626  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2627    Arg = Cast->getSubExpr();
2628
2629  // C++ [temp.arg.nontype]p1:
2630  //
2631  //   A template-argument for a non-type, non-template
2632  //   template-parameter shall be one of: [...]
2633  //
2634  //     -- a pointer to member expressed as described in 5.3.1.
2635  DeclRefExpr *DRE = 0;
2636
2637  // Ignore (and complain about) any excess parentheses.
2638  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2639    if (!Invalid) {
2640      Diag(Arg->getSourceRange().getBegin(),
2641           diag::err_template_arg_extra_parens)
2642        << Arg->getSourceRange();
2643      Invalid = true;
2644    }
2645
2646    Arg = Parens->getSubExpr();
2647  }
2648
2649  // A pointer-to-member constant written &Class::member.
2650  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2651    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2652      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2653      if (DRE && !DRE->getQualifier())
2654        DRE = 0;
2655    }
2656  }
2657  // A constant of pointer-to-member type.
2658  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2659    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2660      if (VD->getType()->isMemberPointerType()) {
2661        if (isa<NonTypeTemplateParmDecl>(VD) ||
2662            (isa<VarDecl>(VD) &&
2663             Context.getCanonicalType(VD->getType()).isConstQualified())) {
2664          if (Arg->isTypeDependent() || Arg->isValueDependent())
2665            Converted = TemplateArgument(Arg->Retain());
2666          else
2667            Converted = TemplateArgument(VD->getCanonicalDecl());
2668          return Invalid;
2669        }
2670      }
2671    }
2672
2673    DRE = 0;
2674  }
2675
2676  if (!DRE)
2677    return Diag(Arg->getSourceRange().getBegin(),
2678                diag::err_template_arg_not_pointer_to_member_form)
2679      << Arg->getSourceRange();
2680
2681  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2682    assert((isa<FieldDecl>(DRE->getDecl()) ||
2683            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2684           "Only non-static member pointers can make it here");
2685
2686    // Okay: this is the address of a non-static member, and therefore
2687    // a member pointer constant.
2688    if (Arg->isTypeDependent() || Arg->isValueDependent())
2689      Converted = TemplateArgument(Arg->Retain());
2690    else
2691      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
2692    return Invalid;
2693  }
2694
2695  // We found something else, but we don't know specifically what it is.
2696  Diag(Arg->getSourceRange().getBegin(),
2697       diag::err_template_arg_not_pointer_to_member_form)
2698      << Arg->getSourceRange();
2699  Diag(DRE->getDecl()->getLocation(),
2700       diag::note_template_arg_refers_here);
2701  return true;
2702}
2703
2704/// \brief Check a template argument against its corresponding
2705/// non-type template parameter.
2706///
2707/// This routine implements the semantics of C++ [temp.arg.nontype].
2708/// It returns true if an error occurred, and false otherwise. \p
2709/// InstantiatedParamType is the type of the non-type template
2710/// parameter after it has been instantiated.
2711///
2712/// If no error was detected, Converted receives the converted template argument.
2713bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
2714                                 QualType InstantiatedParamType, Expr *&Arg,
2715                                 TemplateArgument &Converted,
2716                                 CheckTemplateArgumentKind CTAK) {
2717  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
2718
2719  // If either the parameter has a dependent type or the argument is
2720  // type-dependent, there's nothing we can check now.
2721  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
2722    // FIXME: Produce a cloned, canonical expression?
2723    Converted = TemplateArgument(Arg);
2724    return false;
2725  }
2726
2727  // C++ [temp.arg.nontype]p5:
2728  //   The following conversions are performed on each expression used
2729  //   as a non-type template-argument. If a non-type
2730  //   template-argument cannot be converted to the type of the
2731  //   corresponding template-parameter then the program is
2732  //   ill-formed.
2733  //
2734  //     -- for a non-type template-parameter of integral or
2735  //        enumeration type, integral promotions (4.5) and integral
2736  //        conversions (4.7) are applied.
2737  QualType ParamType = InstantiatedParamType;
2738  QualType ArgType = Arg->getType();
2739  if (ParamType->isIntegralOrEnumerationType()) {
2740    // C++ [temp.arg.nontype]p1:
2741    //   A template-argument for a non-type, non-template
2742    //   template-parameter shall be one of:
2743    //
2744    //     -- an integral constant-expression of integral or enumeration
2745    //        type; or
2746    //     -- the name of a non-type template-parameter; or
2747    SourceLocation NonConstantLoc;
2748    llvm::APSInt Value;
2749    if (!ArgType->isIntegralOrEnumerationType()) {
2750      Diag(Arg->getSourceRange().getBegin(),
2751           diag::err_template_arg_not_integral_or_enumeral)
2752        << ArgType << Arg->getSourceRange();
2753      Diag(Param->getLocation(), diag::note_template_param_here);
2754      return true;
2755    } else if (!Arg->isValueDependent() &&
2756               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
2757      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
2758        << ArgType << Arg->getSourceRange();
2759      return true;
2760    }
2761
2762    // From here on out, all we care about are the unqualified forms
2763    // of the parameter and argument types.
2764    ParamType = ParamType.getUnqualifiedType();
2765    ArgType = ArgType.getUnqualifiedType();
2766
2767    // Try to convert the argument to the parameter's type.
2768    if (Context.hasSameType(ParamType, ArgType)) {
2769      // Okay: no conversion necessary
2770    } else if (CTAK == CTAK_Deduced) {
2771      // C++ [temp.deduct.type]p17:
2772      //   If, in the declaration of a function template with a non-type
2773      //   template-parameter, the non-type template- parameter is used
2774      //   in an expression in the function parameter-list and, if the
2775      //   corresponding template-argument is deduced, the
2776      //   template-argument type shall match the type of the
2777      //   template-parameter exactly, except that a template-argument
2778      //   deduced from an array bound may be of any integral type.
2779      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
2780        << ArgType << ParamType;
2781      Diag(Param->getLocation(), diag::note_template_param_here);
2782      return true;
2783    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
2784               !ParamType->isEnumeralType()) {
2785      // This is an integral promotion or conversion.
2786      ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast);
2787    } else {
2788      // We can't perform this conversion.
2789      Diag(Arg->getSourceRange().getBegin(),
2790           diag::err_template_arg_not_convertible)
2791        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2792      Diag(Param->getLocation(), diag::note_template_param_here);
2793      return true;
2794    }
2795
2796    QualType IntegerType = Context.getCanonicalType(ParamType);
2797    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
2798      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
2799
2800    if (!Arg->isValueDependent()) {
2801      llvm::APSInt OldValue = Value;
2802
2803      // Coerce the template argument's value to the value it will have
2804      // based on the template parameter's type.
2805      unsigned AllowedBits = Context.getTypeSize(IntegerType);
2806      if (Value.getBitWidth() != AllowedBits)
2807        Value.extOrTrunc(AllowedBits);
2808      Value.setIsSigned(IntegerType->isSignedIntegerType());
2809
2810      // Complain if an unsigned parameter received a negative value.
2811      if (IntegerType->isUnsignedIntegerType()
2812          && (OldValue.isSigned() && OldValue.isNegative())) {
2813        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
2814          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2815          << Arg->getSourceRange();
2816        Diag(Param->getLocation(), diag::note_template_param_here);
2817      }
2818
2819      // Complain if we overflowed the template parameter's type.
2820      unsigned RequiredBits;
2821      if (IntegerType->isUnsignedIntegerType())
2822        RequiredBits = OldValue.getActiveBits();
2823      else if (OldValue.isUnsigned())
2824        RequiredBits = OldValue.getActiveBits() + 1;
2825      else
2826        RequiredBits = OldValue.getMinSignedBits();
2827      if (RequiredBits > AllowedBits) {
2828        Diag(Arg->getSourceRange().getBegin(),
2829             diag::warn_template_arg_too_large)
2830          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2831          << Arg->getSourceRange();
2832        Diag(Param->getLocation(), diag::note_template_param_here);
2833      }
2834    }
2835
2836    // Add the value of this argument to the list of converted
2837    // arguments. We use the bitwidth and signedness of the template
2838    // parameter.
2839    if (Arg->isValueDependent()) {
2840      // The argument is value-dependent. Create a new
2841      // TemplateArgument with the converted expression.
2842      Converted = TemplateArgument(Arg);
2843      return false;
2844    }
2845
2846    Converted = TemplateArgument(Value,
2847                                 ParamType->isEnumeralType() ? ParamType
2848                                                             : IntegerType);
2849    return false;
2850  }
2851
2852  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
2853
2854  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
2855  // from a template argument of type std::nullptr_t to a non-type
2856  // template parameter of type pointer to object, pointer to
2857  // function, or pointer-to-member, respectively.
2858  if (ArgType->isNullPtrType() &&
2859      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
2860    Converted = TemplateArgument((NamedDecl *)0);
2861    return false;
2862  }
2863
2864  // Handle pointer-to-function, reference-to-function, and
2865  // pointer-to-member-function all in (roughly) the same way.
2866  if (// -- For a non-type template-parameter of type pointer to
2867      //    function, only the function-to-pointer conversion (4.3) is
2868      //    applied. If the template-argument represents a set of
2869      //    overloaded functions (or a pointer to such), the matching
2870      //    function is selected from the set (13.4).
2871      (ParamType->isPointerType() &&
2872       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
2873      // -- For a non-type template-parameter of type reference to
2874      //    function, no conversions apply. If the template-argument
2875      //    represents a set of overloaded functions, the matching
2876      //    function is selected from the set (13.4).
2877      (ParamType->isReferenceType() &&
2878       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
2879      // -- For a non-type template-parameter of type pointer to
2880      //    member function, no conversions apply. If the
2881      //    template-argument represents a set of overloaded member
2882      //    functions, the matching member function is selected from
2883      //    the set (13.4).
2884      (ParamType->isMemberPointerType() &&
2885       ParamType->getAs<MemberPointerType>()->getPointeeType()
2886         ->isFunctionType())) {
2887
2888    if (Arg->getType() == Context.OverloadTy) {
2889      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
2890                                                                true,
2891                                                                FoundResult)) {
2892        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2893          return true;
2894
2895        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2896        ArgType = Arg->getType();
2897      } else
2898        return true;
2899    }
2900
2901    if (!ParamType->isMemberPointerType())
2902      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2903                                                            ParamType,
2904                                                            Arg, Converted);
2905
2906    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) {
2907      ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp, CastCategory(Arg));
2908    } else if (!Context.hasSameUnqualifiedType(ArgType,
2909                                           ParamType.getNonReferenceType())) {
2910      // We can't perform this conversion.
2911      Diag(Arg->getSourceRange().getBegin(),
2912           diag::err_template_arg_not_convertible)
2913        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2914      Diag(Param->getLocation(), diag::note_template_param_here);
2915      return true;
2916    }
2917
2918    return CheckTemplateArgumentPointerToMember(Arg, Converted);
2919  }
2920
2921  if (ParamType->isPointerType()) {
2922    //   -- for a non-type template-parameter of type pointer to
2923    //      object, qualification conversions (4.4) and the
2924    //      array-to-pointer conversion (4.2) are applied.
2925    // C++0x also allows a value of std::nullptr_t.
2926    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
2927           "Only object pointers allowed here");
2928
2929    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2930                                                          ParamType,
2931                                                          Arg, Converted);
2932  }
2933
2934  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2935    //   -- For a non-type template-parameter of type reference to
2936    //      object, no conversions apply. The type referred to by the
2937    //      reference may be more cv-qualified than the (otherwise
2938    //      identical) type of the template-argument. The
2939    //      template-parameter is bound directly to the
2940    //      template-argument, which must be an lvalue.
2941    assert(ParamRefType->getPointeeType()->isObjectType() &&
2942           "Only object references allowed here");
2943
2944    if (Arg->getType() == Context.OverloadTy) {
2945      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
2946                                                 ParamRefType->getPointeeType(),
2947                                                                true,
2948                                                                FoundResult)) {
2949        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2950          return true;
2951
2952        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2953        ArgType = Arg->getType();
2954      } else
2955        return true;
2956    }
2957
2958    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2959                                                          ParamType,
2960                                                          Arg, Converted);
2961  }
2962
2963  //     -- For a non-type template-parameter of type pointer to data
2964  //        member, qualification conversions (4.4) are applied.
2965  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
2966
2967  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
2968    // Types match exactly: nothing more to do here.
2969  } else if (IsQualificationConversion(ArgType, ParamType)) {
2970    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp, CastCategory(Arg));
2971  } else {
2972    // We can't perform this conversion.
2973    Diag(Arg->getSourceRange().getBegin(),
2974         diag::err_template_arg_not_convertible)
2975      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2976    Diag(Param->getLocation(), diag::note_template_param_here);
2977    return true;
2978  }
2979
2980  return CheckTemplateArgumentPointerToMember(Arg, Converted);
2981}
2982
2983/// \brief Check a template argument against its corresponding
2984/// template template parameter.
2985///
2986/// This routine implements the semantics of C++ [temp.arg.template].
2987/// It returns true if an error occurred, and false otherwise.
2988bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
2989                                 const TemplateArgumentLoc &Arg) {
2990  TemplateName Name = Arg.getArgument().getAsTemplate();
2991  TemplateDecl *Template = Name.getAsTemplateDecl();
2992  if (!Template) {
2993    // Any dependent template name is fine.
2994    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
2995    return false;
2996  }
2997
2998  // C++ [temp.arg.template]p1:
2999  //   A template-argument for a template template-parameter shall be
3000  //   the name of a class template, expressed as id-expression. Only
3001  //   primary class templates are considered when matching the
3002  //   template template argument with the corresponding parameter;
3003  //   partial specializations are not considered even if their
3004  //   parameter lists match that of the template template parameter.
3005  //
3006  // Note that we also allow template template parameters here, which
3007  // will happen when we are dealing with, e.g., class template
3008  // partial specializations.
3009  if (!isa<ClassTemplateDecl>(Template) &&
3010      !isa<TemplateTemplateParmDecl>(Template)) {
3011    assert(isa<FunctionTemplateDecl>(Template) &&
3012           "Only function templates are possible here");
3013    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3014    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3015      << Template;
3016  }
3017
3018  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3019                                         Param->getTemplateParameters(),
3020                                         true,
3021                                         TPL_TemplateTemplateArgumentMatch,
3022                                         Arg.getLocation());
3023}
3024
3025/// \brief Given a non-type template argument that refers to a
3026/// declaration and the type of its corresponding non-type template
3027/// parameter, produce an expression that properly refers to that
3028/// declaration.
3029Sema::OwningExprResult
3030Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3031                                              QualType ParamType,
3032                                              SourceLocation Loc) {
3033  assert(Arg.getKind() == TemplateArgument::Declaration &&
3034         "Only declaration template arguments permitted here");
3035  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3036
3037  if (VD->getDeclContext()->isRecord() &&
3038      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3039    // If the value is a class member, we might have a pointer-to-member.
3040    // Determine whether the non-type template template parameter is of
3041    // pointer-to-member type. If so, we need to build an appropriate
3042    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3043    // would refer to the member itself.
3044    if (ParamType->isMemberPointerType()) {
3045      QualType ClassType
3046        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3047      NestedNameSpecifier *Qualifier
3048        = NestedNameSpecifier::Create(Context, 0, false, ClassType.getTypePtr());
3049      CXXScopeSpec SS;
3050      SS.setScopeRep(Qualifier);
3051      OwningExprResult RefExpr = BuildDeclRefExpr(VD,
3052                                           VD->getType().getNonReferenceType(),
3053                                                  Loc,
3054                                                  &SS);
3055      if (RefExpr.isInvalid())
3056        return ExprError();
3057
3058      RefExpr = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr));
3059
3060      // We might need to perform a trailing qualification conversion, since
3061      // the element type on the parameter could be more qualified than the
3062      // element type in the expression we constructed.
3063      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
3064                                    ParamType.getUnqualifiedType())) {
3065        Expr *RefE = RefExpr.takeAs<Expr>();
3066        ImpCastExprToType(RefE, ParamType.getUnqualifiedType(),
3067                          CastExpr::CK_NoOp);
3068        RefExpr = Owned(RefE);
3069      }
3070
3071      assert(!RefExpr.isInvalid() &&
3072             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3073                                 ParamType.getUnqualifiedType()));
3074      return move(RefExpr);
3075    }
3076  }
3077
3078  QualType T = VD->getType().getNonReferenceType();
3079  if (ParamType->isPointerType()) {
3080    // When the non-type template parameter is a pointer, take the
3081    // address of the declaration.
3082    OwningExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc);
3083    if (RefExpr.isInvalid())
3084      return ExprError();
3085
3086    if (T->isFunctionType() || T->isArrayType()) {
3087      // Decay functions and arrays.
3088      Expr *RefE = (Expr *)RefExpr.get();
3089      DefaultFunctionArrayConversion(RefE);
3090      if (RefE != RefExpr.get()) {
3091        RefExpr.release();
3092        RefExpr = Owned(RefE);
3093      }
3094
3095      return move(RefExpr);
3096    }
3097
3098    // Take the address of everything else
3099    return CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr));
3100  }
3101
3102  // If the non-type template parameter has reference type, qualify the
3103  // resulting declaration reference with the extra qualifiers on the
3104  // type that the reference refers to.
3105  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>())
3106    T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers());
3107
3108  return BuildDeclRefExpr(VD, T, Loc);
3109}
3110
3111/// \brief Construct a new expression that refers to the given
3112/// integral template argument with the given source-location
3113/// information.
3114///
3115/// This routine takes care of the mapping from an integral template
3116/// argument (which may have any integral type) to the appropriate
3117/// literal value.
3118Sema::OwningExprResult
3119Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3120                                                  SourceLocation Loc) {
3121  assert(Arg.getKind() == TemplateArgument::Integral &&
3122         "Operation is only value for integral template arguments");
3123  QualType T = Arg.getIntegralType();
3124  if (T->isCharType() || T->isWideCharType())
3125    return Owned(new (Context) CharacterLiteral(
3126                                             Arg.getAsIntegral()->getZExtValue(),
3127                                             T->isWideCharType(),
3128                                             T,
3129                                             Loc));
3130  if (T->isBooleanType())
3131    return Owned(new (Context) CXXBoolLiteralExpr(
3132                                            Arg.getAsIntegral()->getBoolValue(),
3133                                            T,
3134                                            Loc));
3135
3136  return Owned(new (Context) IntegerLiteral(*Arg.getAsIntegral(), T, Loc));
3137}
3138
3139
3140/// \brief Determine whether the given template parameter lists are
3141/// equivalent.
3142///
3143/// \param New  The new template parameter list, typically written in the
3144/// source code as part of a new template declaration.
3145///
3146/// \param Old  The old template parameter list, typically found via
3147/// name lookup of the template declared with this template parameter
3148/// list.
3149///
3150/// \param Complain  If true, this routine will produce a diagnostic if
3151/// the template parameter lists are not equivalent.
3152///
3153/// \param Kind describes how we are to match the template parameter lists.
3154///
3155/// \param TemplateArgLoc If this source location is valid, then we
3156/// are actually checking the template parameter list of a template
3157/// argument (New) against the template parameter list of its
3158/// corresponding template template parameter (Old). We produce
3159/// slightly different diagnostics in this scenario.
3160///
3161/// \returns True if the template parameter lists are equal, false
3162/// otherwise.
3163bool
3164Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3165                                     TemplateParameterList *Old,
3166                                     bool Complain,
3167                                     TemplateParameterListEqualKind Kind,
3168                                     SourceLocation TemplateArgLoc) {
3169  if (Old->size() != New->size()) {
3170    if (Complain) {
3171      unsigned NextDiag = diag::err_template_param_list_different_arity;
3172      if (TemplateArgLoc.isValid()) {
3173        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3174        NextDiag = diag::note_template_param_list_different_arity;
3175      }
3176      Diag(New->getTemplateLoc(), NextDiag)
3177          << (New->size() > Old->size())
3178          << (Kind != TPL_TemplateMatch)
3179          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3180      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3181        << (Kind != TPL_TemplateMatch)
3182        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3183    }
3184
3185    return false;
3186  }
3187
3188  for (TemplateParameterList::iterator OldParm = Old->begin(),
3189         OldParmEnd = Old->end(), NewParm = New->begin();
3190       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
3191    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
3192      if (Complain) {
3193        unsigned NextDiag = diag::err_template_param_different_kind;
3194        if (TemplateArgLoc.isValid()) {
3195          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3196          NextDiag = diag::note_template_param_different_kind;
3197        }
3198        Diag((*NewParm)->getLocation(), NextDiag)
3199          << (Kind != TPL_TemplateMatch);
3200        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
3201          << (Kind != TPL_TemplateMatch);
3202      }
3203      return false;
3204    }
3205
3206    if (TemplateTypeParmDecl *OldTTP
3207                                  = dyn_cast<TemplateTypeParmDecl>(*OldParm)) {
3208      // Template type parameters are equivalent if either both are template
3209      // type parameter packs or neither are (since we know we're at the same
3210      // index).
3211      TemplateTypeParmDecl *NewTTP = cast<TemplateTypeParmDecl>(*NewParm);
3212      if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) {
3213        // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that
3214        // allow one to match a template parameter pack in the template
3215        // parameter list of a template template parameter to one or more
3216        // template parameters in the template parameter list of the
3217        // corresponding template template argument.
3218        if (Complain) {
3219          unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3220          if (TemplateArgLoc.isValid()) {
3221            Diag(TemplateArgLoc,
3222                 diag::err_template_arg_template_params_mismatch);
3223            NextDiag = diag::note_template_parameter_pack_non_pack;
3224          }
3225          Diag(NewTTP->getLocation(), NextDiag)
3226            << 0 << NewTTP->isParameterPack();
3227          Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here)
3228            << 0 << OldTTP->isParameterPack();
3229        }
3230        return false;
3231      }
3232    } else if (NonTypeTemplateParmDecl *OldNTTP
3233                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
3234      // The types of non-type template parameters must agree.
3235      NonTypeTemplateParmDecl *NewNTTP
3236        = cast<NonTypeTemplateParmDecl>(*NewParm);
3237
3238      // If we are matching a template template argument to a template
3239      // template parameter and one of the non-type template parameter types
3240      // is dependent, then we must wait until template instantiation time
3241      // to actually compare the arguments.
3242      if (Kind == TPL_TemplateTemplateArgumentMatch &&
3243          (OldNTTP->getType()->isDependentType() ||
3244           NewNTTP->getType()->isDependentType()))
3245        continue;
3246
3247      if (Context.getCanonicalType(OldNTTP->getType()) !=
3248            Context.getCanonicalType(NewNTTP->getType())) {
3249        if (Complain) {
3250          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3251          if (TemplateArgLoc.isValid()) {
3252            Diag(TemplateArgLoc,
3253                 diag::err_template_arg_template_params_mismatch);
3254            NextDiag = diag::note_template_nontype_parm_different_type;
3255          }
3256          Diag(NewNTTP->getLocation(), NextDiag)
3257            << NewNTTP->getType()
3258            << (Kind != TPL_TemplateMatch);
3259          Diag(OldNTTP->getLocation(),
3260               diag::note_template_nontype_parm_prev_declaration)
3261            << OldNTTP->getType();
3262        }
3263        return false;
3264      }
3265    } else {
3266      // The template parameter lists of template template
3267      // parameters must agree.
3268      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
3269             "Only template template parameters handled here");
3270      TemplateTemplateParmDecl *OldTTP
3271        = cast<TemplateTemplateParmDecl>(*OldParm);
3272      TemplateTemplateParmDecl *NewTTP
3273        = cast<TemplateTemplateParmDecl>(*NewParm);
3274      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3275                                          OldTTP->getTemplateParameters(),
3276                                          Complain,
3277              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
3278                                          TemplateArgLoc))
3279        return false;
3280    }
3281  }
3282
3283  return true;
3284}
3285
3286/// \brief Check whether a template can be declared within this scope.
3287///
3288/// If the template declaration is valid in this scope, returns
3289/// false. Otherwise, issues a diagnostic and returns true.
3290bool
3291Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3292  // Find the nearest enclosing declaration scope.
3293  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3294         (S->getFlags() & Scope::TemplateParamScope) != 0)
3295    S = S->getParent();
3296
3297  // C++ [temp]p2:
3298  //   A template-declaration can appear only as a namespace scope or
3299  //   class scope declaration.
3300  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3301  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3302      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3303    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3304             << TemplateParams->getSourceRange();
3305
3306  while (Ctx && isa<LinkageSpecDecl>(Ctx))
3307    Ctx = Ctx->getParent();
3308
3309  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3310    return false;
3311
3312  return Diag(TemplateParams->getTemplateLoc(),
3313              diag::err_template_outside_namespace_or_class_scope)
3314    << TemplateParams->getSourceRange();
3315}
3316
3317/// \brief Determine what kind of template specialization the given declaration
3318/// is.
3319static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3320  if (!D)
3321    return TSK_Undeclared;
3322
3323  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3324    return Record->getTemplateSpecializationKind();
3325  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3326    return Function->getTemplateSpecializationKind();
3327  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3328    return Var->getTemplateSpecializationKind();
3329
3330  return TSK_Undeclared;
3331}
3332
3333/// \brief Check whether a specialization is well-formed in the current
3334/// context.
3335///
3336/// This routine determines whether a template specialization can be declared
3337/// in the current context (C++ [temp.expl.spec]p2).
3338///
3339/// \param S the semantic analysis object for which this check is being
3340/// performed.
3341///
3342/// \param Specialized the entity being specialized or instantiated, which
3343/// may be a kind of template (class template, function template, etc.) or
3344/// a member of a class template (member function, static data member,
3345/// member class).
3346///
3347/// \param PrevDecl the previous declaration of this entity, if any.
3348///
3349/// \param Loc the location of the explicit specialization or instantiation of
3350/// this entity.
3351///
3352/// \param IsPartialSpecialization whether this is a partial specialization of
3353/// a class template.
3354///
3355/// \returns true if there was an error that we cannot recover from, false
3356/// otherwise.
3357static bool CheckTemplateSpecializationScope(Sema &S,
3358                                             NamedDecl *Specialized,
3359                                             NamedDecl *PrevDecl,
3360                                             SourceLocation Loc,
3361                                             bool IsPartialSpecialization) {
3362  // Keep these "kind" numbers in sync with the %select statements in the
3363  // various diagnostics emitted by this routine.
3364  int EntityKind = 0;
3365  bool isTemplateSpecialization = false;
3366  if (isa<ClassTemplateDecl>(Specialized)) {
3367    EntityKind = IsPartialSpecialization? 1 : 0;
3368    isTemplateSpecialization = true;
3369  } else if (isa<FunctionTemplateDecl>(Specialized)) {
3370    EntityKind = 2;
3371    isTemplateSpecialization = true;
3372  } else if (isa<CXXMethodDecl>(Specialized))
3373    EntityKind = 3;
3374  else if (isa<VarDecl>(Specialized))
3375    EntityKind = 4;
3376  else if (isa<RecordDecl>(Specialized))
3377    EntityKind = 5;
3378  else {
3379    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3380    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3381    return true;
3382  }
3383
3384  // C++ [temp.expl.spec]p2:
3385  //   An explicit specialization shall be declared in the namespace
3386  //   of which the template is a member, or, for member templates, in
3387  //   the namespace of which the enclosing class or enclosing class
3388  //   template is a member. An explicit specialization of a member
3389  //   function, member class or static data member of a class
3390  //   template shall be declared in the namespace of which the class
3391  //   template is a member. Such a declaration may also be a
3392  //   definition. If the declaration is not a definition, the
3393  //   specialization may be defined later in the name- space in which
3394  //   the explicit specialization was declared, or in a namespace
3395  //   that encloses the one in which the explicit specialization was
3396  //   declared.
3397  if (S.CurContext->getLookupContext()->isFunctionOrMethod()) {
3398    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3399      << Specialized;
3400    return true;
3401  }
3402
3403  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3404    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3405      << Specialized;
3406    return true;
3407  }
3408
3409  // C++ [temp.class.spec]p6:
3410  //   A class template partial specialization may be declared or redeclared
3411  //   in any namespace scope in which its definition may be defined (14.5.1
3412  //   and 14.5.2).
3413  bool ComplainedAboutScope = false;
3414  DeclContext *SpecializedContext
3415    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3416  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3417  if ((!PrevDecl ||
3418       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3419       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3420    // There is no prior declaration of this entity, so this
3421    // specialization must be in the same context as the template
3422    // itself.
3423    if (!DC->Equals(SpecializedContext)) {
3424      if (isa<TranslationUnitDecl>(SpecializedContext))
3425        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
3426        << EntityKind << Specialized;
3427      else if (isa<NamespaceDecl>(SpecializedContext))
3428        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope)
3429        << EntityKind << Specialized
3430        << cast<NamedDecl>(SpecializedContext);
3431
3432      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3433      ComplainedAboutScope = true;
3434    }
3435  }
3436
3437  // Make sure that this redeclaration (or definition) occurs in an enclosing
3438  // namespace.
3439  // Note that HandleDeclarator() performs this check for explicit
3440  // specializations of function templates, static data members, and member
3441  // functions, so we skip the check here for those kinds of entities.
3442  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3443  // Should we refactor that check, so that it occurs later?
3444  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3445      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3446        isa<FunctionDecl>(Specialized))) {
3447    if (isa<TranslationUnitDecl>(SpecializedContext))
3448      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3449        << EntityKind << Specialized;
3450    else if (isa<NamespaceDecl>(SpecializedContext))
3451      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3452        << EntityKind << Specialized
3453        << cast<NamedDecl>(SpecializedContext);
3454
3455    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3456  }
3457
3458  // FIXME: check for specialization-after-instantiation errors and such.
3459
3460  return false;
3461}
3462
3463/// \brief Check the non-type template arguments of a class template
3464/// partial specialization according to C++ [temp.class.spec]p9.
3465///
3466/// \param TemplateParams the template parameters of the primary class
3467/// template.
3468///
3469/// \param TemplateArg the template arguments of the class template
3470/// partial specialization.
3471///
3472/// \param MirrorsPrimaryTemplate will be set true if the class
3473/// template partial specialization arguments are identical to the
3474/// implicit template arguments of the primary template. This is not
3475/// necessarily an error (C++0x), and it is left to the caller to diagnose
3476/// this condition when it is an error.
3477///
3478/// \returns true if there was an error, false otherwise.
3479bool Sema::CheckClassTemplatePartialSpecializationArgs(
3480                                        TemplateParameterList *TemplateParams,
3481                             const TemplateArgumentListBuilder &TemplateArgs,
3482                                        bool &MirrorsPrimaryTemplate) {
3483  // FIXME: the interface to this function will have to change to
3484  // accommodate variadic templates.
3485  MirrorsPrimaryTemplate = true;
3486
3487  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
3488
3489  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3490    // Determine whether the template argument list of the partial
3491    // specialization is identical to the implicit argument list of
3492    // the primary template. The caller may need to diagnostic this as
3493    // an error per C++ [temp.class.spec]p9b3.
3494    if (MirrorsPrimaryTemplate) {
3495      if (TemplateTypeParmDecl *TTP
3496            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3497        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3498              Context.getCanonicalType(ArgList[I].getAsType()))
3499          MirrorsPrimaryTemplate = false;
3500      } else if (TemplateTemplateParmDecl *TTP
3501                   = dyn_cast<TemplateTemplateParmDecl>(
3502                                                 TemplateParams->getParam(I))) {
3503        TemplateName Name = ArgList[I].getAsTemplate();
3504        TemplateTemplateParmDecl *ArgDecl
3505          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3506        if (!ArgDecl ||
3507            ArgDecl->getIndex() != TTP->getIndex() ||
3508            ArgDecl->getDepth() != TTP->getDepth())
3509          MirrorsPrimaryTemplate = false;
3510      }
3511    }
3512
3513    NonTypeTemplateParmDecl *Param
3514      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3515    if (!Param) {
3516      continue;
3517    }
3518
3519    Expr *ArgExpr = ArgList[I].getAsExpr();
3520    if (!ArgExpr) {
3521      MirrorsPrimaryTemplate = false;
3522      continue;
3523    }
3524
3525    // C++ [temp.class.spec]p8:
3526    //   A non-type argument is non-specialized if it is the name of a
3527    //   non-type parameter. All other non-type arguments are
3528    //   specialized.
3529    //
3530    // Below, we check the two conditions that only apply to
3531    // specialized non-type arguments, so skip any non-specialized
3532    // arguments.
3533    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3534      if (NonTypeTemplateParmDecl *NTTP
3535            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3536        if (MirrorsPrimaryTemplate &&
3537            (Param->getIndex() != NTTP->getIndex() ||
3538             Param->getDepth() != NTTP->getDepth()))
3539          MirrorsPrimaryTemplate = false;
3540
3541        continue;
3542      }
3543
3544    // C++ [temp.class.spec]p9:
3545    //   Within the argument list of a class template partial
3546    //   specialization, the following restrictions apply:
3547    //     -- A partially specialized non-type argument expression
3548    //        shall not involve a template parameter of the partial
3549    //        specialization except when the argument expression is a
3550    //        simple identifier.
3551    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3552      Diag(ArgExpr->getLocStart(),
3553           diag::err_dependent_non_type_arg_in_partial_spec)
3554        << ArgExpr->getSourceRange();
3555      return true;
3556    }
3557
3558    //     -- The type of a template parameter corresponding to a
3559    //        specialized non-type argument shall not be dependent on a
3560    //        parameter of the specialization.
3561    if (Param->getType()->isDependentType()) {
3562      Diag(ArgExpr->getLocStart(),
3563           diag::err_dependent_typed_non_type_arg_in_partial_spec)
3564        << Param->getType()
3565        << ArgExpr->getSourceRange();
3566      Diag(Param->getLocation(), diag::note_template_param_here);
3567      return true;
3568    }
3569
3570    MirrorsPrimaryTemplate = false;
3571  }
3572
3573  return false;
3574}
3575
3576/// \brief Retrieve the previous declaration of the given declaration.
3577static NamedDecl *getPreviousDecl(NamedDecl *ND) {
3578  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
3579    return VD->getPreviousDeclaration();
3580  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
3581    return FD->getPreviousDeclaration();
3582  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
3583    return TD->getPreviousDeclaration();
3584  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
3585    return TD->getPreviousDeclaration();
3586  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
3587    return FTD->getPreviousDeclaration();
3588  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
3589    return CTD->getPreviousDeclaration();
3590  return 0;
3591}
3592
3593Sema::DeclResult
3594Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
3595                                       TagUseKind TUK,
3596                                       SourceLocation KWLoc,
3597                                       CXXScopeSpec &SS,
3598                                       TemplateTy TemplateD,
3599                                       SourceLocation TemplateNameLoc,
3600                                       SourceLocation LAngleLoc,
3601                                       ASTTemplateArgsPtr TemplateArgsIn,
3602                                       SourceLocation RAngleLoc,
3603                                       AttributeList *Attr,
3604                               MultiTemplateParamsArg TemplateParameterLists) {
3605  assert(TUK != TUK_Reference && "References are not specializations");
3606
3607  // Find the class template we're specializing
3608  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3609  ClassTemplateDecl *ClassTemplate
3610    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
3611
3612  if (!ClassTemplate) {
3613    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
3614      << (Name.getAsTemplateDecl() &&
3615          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
3616    return true;
3617  }
3618
3619  bool isExplicitSpecialization = false;
3620  bool isPartialSpecialization = false;
3621
3622  // Check the validity of the template headers that introduce this
3623  // template.
3624  // FIXME: We probably shouldn't complain about these headers for
3625  // friend declarations.
3626  bool Invalid = false;
3627  TemplateParameterList *TemplateParams
3628    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
3629                        (TemplateParameterList**)TemplateParameterLists.get(),
3630                                              TemplateParameterLists.size(),
3631                                              TUK == TUK_Friend,
3632                                              isExplicitSpecialization,
3633                                              Invalid);
3634  if (Invalid)
3635    return true;
3636
3637  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
3638  if (TemplateParams)
3639    --NumMatchedTemplateParamLists;
3640
3641  if (TemplateParams && TemplateParams->size() > 0) {
3642    isPartialSpecialization = true;
3643
3644    // C++ [temp.class.spec]p10:
3645    //   The template parameter list of a specialization shall not
3646    //   contain default template argument values.
3647    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3648      Decl *Param = TemplateParams->getParam(I);
3649      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
3650        if (TTP->hasDefaultArgument()) {
3651          Diag(TTP->getDefaultArgumentLoc(),
3652               diag::err_default_arg_in_partial_spec);
3653          TTP->removeDefaultArgument();
3654        }
3655      } else if (NonTypeTemplateParmDecl *NTTP
3656                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3657        if (Expr *DefArg = NTTP->getDefaultArgument()) {
3658          Diag(NTTP->getDefaultArgumentLoc(),
3659               diag::err_default_arg_in_partial_spec)
3660            << DefArg->getSourceRange();
3661          NTTP->removeDefaultArgument();
3662        }
3663      } else {
3664        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
3665        if (TTP->hasDefaultArgument()) {
3666          Diag(TTP->getDefaultArgument().getLocation(),
3667               diag::err_default_arg_in_partial_spec)
3668            << TTP->getDefaultArgument().getSourceRange();
3669          TTP->removeDefaultArgument();
3670        }
3671      }
3672    }
3673  } else if (TemplateParams) {
3674    if (TUK == TUK_Friend)
3675      Diag(KWLoc, diag::err_template_spec_friend)
3676        << FixItHint::CreateRemoval(
3677                                SourceRange(TemplateParams->getTemplateLoc(),
3678                                            TemplateParams->getRAngleLoc()))
3679        << SourceRange(LAngleLoc, RAngleLoc);
3680    else
3681      isExplicitSpecialization = true;
3682  } else if (TUK != TUK_Friend) {
3683    Diag(KWLoc, diag::err_template_spec_needs_header)
3684      << FixItHint::CreateInsertion(KWLoc, "template<> ");
3685    isExplicitSpecialization = true;
3686  }
3687
3688  // Check that the specialization uses the same tag kind as the
3689  // original template.
3690  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
3691  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
3692  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3693                                    Kind, KWLoc,
3694                                    *ClassTemplate->getIdentifier())) {
3695    Diag(KWLoc, diag::err_use_with_wrong_tag)
3696      << ClassTemplate
3697      << FixItHint::CreateReplacement(KWLoc,
3698                            ClassTemplate->getTemplatedDecl()->getKindName());
3699    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3700         diag::note_previous_use);
3701    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3702  }
3703
3704  // Translate the parser's template argument list in our AST format.
3705  TemplateArgumentListInfo TemplateArgs;
3706  TemplateArgs.setLAngleLoc(LAngleLoc);
3707  TemplateArgs.setRAngleLoc(RAngleLoc);
3708  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3709
3710  // Check that the template argument list is well-formed for this
3711  // template.
3712  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3713                                        TemplateArgs.size());
3714  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
3715                                TemplateArgs, false, Converted))
3716    return true;
3717
3718  assert((Converted.structuredSize() ==
3719            ClassTemplate->getTemplateParameters()->size()) &&
3720         "Converted template argument list is too short!");
3721
3722  // Find the class template (partial) specialization declaration that
3723  // corresponds to these arguments.
3724  if (isPartialSpecialization) {
3725    bool MirrorsPrimaryTemplate;
3726    if (CheckClassTemplatePartialSpecializationArgs(
3727                                         ClassTemplate->getTemplateParameters(),
3728                                         Converted, MirrorsPrimaryTemplate))
3729      return true;
3730
3731    if (MirrorsPrimaryTemplate) {
3732      // C++ [temp.class.spec]p9b3:
3733      //
3734      //   -- The argument list of the specialization shall not be identical
3735      //      to the implicit argument list of the primary template.
3736      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3737        << (TUK == TUK_Definition)
3738        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
3739      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
3740                                ClassTemplate->getIdentifier(),
3741                                TemplateNameLoc,
3742                                Attr,
3743                                TemplateParams,
3744                                AS_none);
3745    }
3746
3747    // FIXME: Diagnose friend partial specializations
3748
3749    if (!Name.isDependent() &&
3750        !TemplateSpecializationType::anyDependentTemplateArguments(
3751                                             TemplateArgs.getArgumentArray(),
3752                                                         TemplateArgs.size())) {
3753      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
3754        << ClassTemplate->getDeclName();
3755      isPartialSpecialization = false;
3756    }
3757  }
3758
3759  void *InsertPos = 0;
3760  ClassTemplateSpecializationDecl *PrevDecl = 0;
3761
3762  if (isPartialSpecialization)
3763    // FIXME: Template parameter list matters, too
3764    PrevDecl
3765      = ClassTemplate->findPartialSpecialization(Converted.getFlatArguments(),
3766                                                 Converted.flatSize(),
3767                                                 InsertPos);
3768  else
3769    PrevDecl
3770      = ClassTemplate->findSpecialization(Converted.getFlatArguments(),
3771                                          Converted.flatSize(), InsertPos);
3772
3773  ClassTemplateSpecializationDecl *Specialization = 0;
3774
3775  // Check whether we can declare a class template specialization in
3776  // the current scope.
3777  if (TUK != TUK_Friend &&
3778      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
3779                                       TemplateNameLoc,
3780                                       isPartialSpecialization))
3781    return true;
3782
3783  // The canonical type
3784  QualType CanonType;
3785  if (PrevDecl &&
3786      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
3787               TUK == TUK_Friend)) {
3788    // Since the only prior class template specialization with these
3789    // arguments was referenced but not declared, or we're only
3790    // referencing this specialization as a friend, reuse that
3791    // declaration node as our own, updating its source location to
3792    // reflect our new declaration.
3793    Specialization = PrevDecl;
3794    Specialization->setLocation(TemplateNameLoc);
3795    PrevDecl = 0;
3796    CanonType = Context.getTypeDeclType(Specialization);
3797  } else if (isPartialSpecialization) {
3798    // Build the canonical type that describes the converted template
3799    // arguments of the class template partial specialization.
3800    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
3801    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
3802                                                  Converted.getFlatArguments(),
3803                                                  Converted.flatSize());
3804
3805    // Create a new class template partial specialization declaration node.
3806    ClassTemplatePartialSpecializationDecl *PrevPartial
3807      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
3808    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
3809                            : ClassTemplate->getNextPartialSpecSequenceNumber();
3810    ClassTemplatePartialSpecializationDecl *Partial
3811      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
3812                                             ClassTemplate->getDeclContext(),
3813                                                       TemplateNameLoc,
3814                                                       TemplateParams,
3815                                                       ClassTemplate,
3816                                                       Converted,
3817                                                       TemplateArgs,
3818                                                       CanonType,
3819                                                       PrevPartial,
3820                                                       SequenceNumber);
3821    SetNestedNameSpecifier(Partial, SS);
3822    if (NumMatchedTemplateParamLists > 0) {
3823      Partial->setTemplateParameterListsInfo(Context,
3824                                             NumMatchedTemplateParamLists,
3825                    (TemplateParameterList**) TemplateParameterLists.release());
3826    }
3827
3828    if (!PrevPartial)
3829      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
3830    Specialization = Partial;
3831
3832    // If we are providing an explicit specialization of a member class
3833    // template specialization, make a note of that.
3834    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3835      PrevPartial->setMemberSpecialization();
3836
3837    // Check that all of the template parameters of the class template
3838    // partial specialization are deducible from the template
3839    // arguments. If not, this class template partial specialization
3840    // will never be used.
3841    llvm::SmallVector<bool, 8> DeducibleParams;
3842    DeducibleParams.resize(TemplateParams->size());
3843    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3844                               TemplateParams->getDepth(),
3845                               DeducibleParams);
3846    unsigned NumNonDeducible = 0;
3847    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
3848      if (!DeducibleParams[I])
3849        ++NumNonDeducible;
3850
3851    if (NumNonDeducible) {
3852      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
3853        << (NumNonDeducible > 1)
3854        << SourceRange(TemplateNameLoc, RAngleLoc);
3855      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3856        if (!DeducibleParams[I]) {
3857          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3858          if (Param->getDeclName())
3859            Diag(Param->getLocation(),
3860                 diag::note_partial_spec_unused_parameter)
3861              << Param->getDeclName();
3862          else
3863            Diag(Param->getLocation(),
3864                 diag::note_partial_spec_unused_parameter)
3865              << std::string("<anonymous>");
3866        }
3867      }
3868    }
3869  } else {
3870    // Create a new class template specialization declaration node for
3871    // this explicit specialization or friend declaration.
3872    Specialization
3873      = ClassTemplateSpecializationDecl::Create(Context, Kind,
3874                                             ClassTemplate->getDeclContext(),
3875                                                TemplateNameLoc,
3876                                                ClassTemplate,
3877                                                Converted,
3878                                                PrevDecl);
3879    SetNestedNameSpecifier(Specialization, SS);
3880    if (NumMatchedTemplateParamLists > 0) {
3881      Specialization->setTemplateParameterListsInfo(Context,
3882                                                  NumMatchedTemplateParamLists,
3883                    (TemplateParameterList**) TemplateParameterLists.release());
3884    }
3885
3886    if (!PrevDecl)
3887      ClassTemplate->AddSpecialization(Specialization, InsertPos);
3888
3889    CanonType = Context.getTypeDeclType(Specialization);
3890  }
3891
3892  // C++ [temp.expl.spec]p6:
3893  //   If a template, a member template or the member of a class template is
3894  //   explicitly specialized then that specialization shall be declared
3895  //   before the first use of that specialization that would cause an implicit
3896  //   instantiation to take place, in every translation unit in which such a
3897  //   use occurs; no diagnostic is required.
3898  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3899    bool Okay = false;
3900    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
3901      // Is there any previous explicit specialization declaration?
3902      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
3903        Okay = true;
3904        break;
3905      }
3906    }
3907
3908    if (!Okay) {
3909      SourceRange Range(TemplateNameLoc, RAngleLoc);
3910      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3911        << Context.getTypeDeclType(Specialization) << Range;
3912
3913      Diag(PrevDecl->getPointOfInstantiation(),
3914           diag::note_instantiation_required_here)
3915        << (PrevDecl->getTemplateSpecializationKind()
3916                                                != TSK_ImplicitInstantiation);
3917      return true;
3918    }
3919  }
3920
3921  // If this is not a friend, note that this is an explicit specialization.
3922  if (TUK != TUK_Friend)
3923    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3924
3925  // Check that this isn't a redefinition of this specialization.
3926  if (TUK == TUK_Definition) {
3927    if (RecordDecl *Def = Specialization->getDefinition()) {
3928      SourceRange Range(TemplateNameLoc, RAngleLoc);
3929      Diag(TemplateNameLoc, diag::err_redefinition)
3930        << Context.getTypeDeclType(Specialization) << Range;
3931      Diag(Def->getLocation(), diag::note_previous_definition);
3932      Specialization->setInvalidDecl();
3933      return true;
3934    }
3935  }
3936
3937  // Build the fully-sugared type for this class template
3938  // specialization as the user wrote in the specialization
3939  // itself. This means that we'll pretty-print the type retrieved
3940  // from the specialization's declaration the way that the user
3941  // actually wrote the specialization, rather than formatting the
3942  // name based on the "canonical" representation used to store the
3943  // template arguments in the specialization.
3944  TypeSourceInfo *WrittenTy
3945    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
3946                                                TemplateArgs, CanonType);
3947  if (TUK != TUK_Friend) {
3948    Specialization->setTypeAsWritten(WrittenTy);
3949    if (TemplateParams)
3950      Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc());
3951  }
3952  TemplateArgsIn.release();
3953
3954  // C++ [temp.expl.spec]p9:
3955  //   A template explicit specialization is in the scope of the
3956  //   namespace in which the template was defined.
3957  //
3958  // We actually implement this paragraph where we set the semantic
3959  // context (in the creation of the ClassTemplateSpecializationDecl),
3960  // but we also maintain the lexical context where the actual
3961  // definition occurs.
3962  Specialization->setLexicalDeclContext(CurContext);
3963
3964  // We may be starting the definition of this specialization.
3965  if (TUK == TUK_Definition)
3966    Specialization->startDefinition();
3967
3968  if (TUK == TUK_Friend) {
3969    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
3970                                            TemplateNameLoc,
3971                                            WrittenTy,
3972                                            /*FIXME:*/KWLoc);
3973    Friend->setAccess(AS_public);
3974    CurContext->addDecl(Friend);
3975  } else {
3976    // Add the specialization into its lexical context, so that it can
3977    // be seen when iterating through the list of declarations in that
3978    // context. However, specializations are not found by name lookup.
3979    CurContext->addDecl(Specialization);
3980  }
3981  return DeclPtrTy::make(Specialization);
3982}
3983
3984Sema::DeclPtrTy
3985Sema::ActOnTemplateDeclarator(Scope *S,
3986                              MultiTemplateParamsArg TemplateParameterLists,
3987                              Declarator &D) {
3988  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
3989}
3990
3991Sema::DeclPtrTy
3992Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
3993                               MultiTemplateParamsArg TemplateParameterLists,
3994                                      Declarator &D) {
3995  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3996  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3997         "Not a function declarator!");
3998  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3999
4000  if (FTI.hasPrototype) {
4001    // FIXME: Diagnose arguments without names in C.
4002  }
4003
4004  Scope *ParentScope = FnBodyScope->getParent();
4005
4006  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4007                                  move(TemplateParameterLists),
4008                                  /*IsFunctionDefinition=*/true);
4009  if (FunctionTemplateDecl *FunctionTemplate
4010        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
4011    return ActOnStartOfFunctionDef(FnBodyScope,
4012                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
4013  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
4014    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
4015  return DeclPtrTy();
4016}
4017
4018/// \brief Strips various properties off an implicit instantiation
4019/// that has just been explicitly specialized.
4020static void StripImplicitInstantiation(NamedDecl *D) {
4021  D->invalidateAttrs();
4022
4023  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4024    FD->setInlineSpecified(false);
4025  }
4026}
4027
4028/// \brief Diagnose cases where we have an explicit template specialization
4029/// before/after an explicit template instantiation, producing diagnostics
4030/// for those cases where they are required and determining whether the
4031/// new specialization/instantiation will have any effect.
4032///
4033/// \param NewLoc the location of the new explicit specialization or
4034/// instantiation.
4035///
4036/// \param NewTSK the kind of the new explicit specialization or instantiation.
4037///
4038/// \param PrevDecl the previous declaration of the entity.
4039///
4040/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4041///
4042/// \param PrevPointOfInstantiation if valid, indicates where the previus
4043/// declaration was instantiated (either implicitly or explicitly).
4044///
4045/// \param HasNoEffect will be set to true to indicate that the new
4046/// specialization or instantiation has no effect and should be ignored.
4047///
4048/// \returns true if there was an error that should prevent the introduction of
4049/// the new declaration into the AST, false otherwise.
4050bool
4051Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4052                                             TemplateSpecializationKind NewTSK,
4053                                             NamedDecl *PrevDecl,
4054                                             TemplateSpecializationKind PrevTSK,
4055                                        SourceLocation PrevPointOfInstantiation,
4056                                             bool &HasNoEffect) {
4057  HasNoEffect = false;
4058
4059  switch (NewTSK) {
4060  case TSK_Undeclared:
4061  case TSK_ImplicitInstantiation:
4062    assert(false && "Don't check implicit instantiations here");
4063    return false;
4064
4065  case TSK_ExplicitSpecialization:
4066    switch (PrevTSK) {
4067    case TSK_Undeclared:
4068    case TSK_ExplicitSpecialization:
4069      // Okay, we're just specializing something that is either already
4070      // explicitly specialized or has merely been mentioned without any
4071      // instantiation.
4072      return false;
4073
4074    case TSK_ImplicitInstantiation:
4075      if (PrevPointOfInstantiation.isInvalid()) {
4076        // The declaration itself has not actually been instantiated, so it is
4077        // still okay to specialize it.
4078        StripImplicitInstantiation(PrevDecl);
4079        return false;
4080      }
4081      // Fall through
4082
4083    case TSK_ExplicitInstantiationDeclaration:
4084    case TSK_ExplicitInstantiationDefinition:
4085      assert((PrevTSK == TSK_ImplicitInstantiation ||
4086              PrevPointOfInstantiation.isValid()) &&
4087             "Explicit instantiation without point of instantiation?");
4088
4089      // C++ [temp.expl.spec]p6:
4090      //   If a template, a member template or the member of a class template
4091      //   is explicitly specialized then that specialization shall be declared
4092      //   before the first use of that specialization that would cause an
4093      //   implicit instantiation to take place, in every translation unit in
4094      //   which such a use occurs; no diagnostic is required.
4095      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4096        // Is there any previous explicit specialization declaration?
4097        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4098          return false;
4099      }
4100
4101      Diag(NewLoc, diag::err_specialization_after_instantiation)
4102        << PrevDecl;
4103      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4104        << (PrevTSK != TSK_ImplicitInstantiation);
4105
4106      return true;
4107    }
4108    break;
4109
4110  case TSK_ExplicitInstantiationDeclaration:
4111    switch (PrevTSK) {
4112    case TSK_ExplicitInstantiationDeclaration:
4113      // This explicit instantiation declaration is redundant (that's okay).
4114      HasNoEffect = true;
4115      return false;
4116
4117    case TSK_Undeclared:
4118    case TSK_ImplicitInstantiation:
4119      // We're explicitly instantiating something that may have already been
4120      // implicitly instantiated; that's fine.
4121      return false;
4122
4123    case TSK_ExplicitSpecialization:
4124      // C++0x [temp.explicit]p4:
4125      //   For a given set of template parameters, if an explicit instantiation
4126      //   of a template appears after a declaration of an explicit
4127      //   specialization for that template, the explicit instantiation has no
4128      //   effect.
4129      HasNoEffect = true;
4130      return false;
4131
4132    case TSK_ExplicitInstantiationDefinition:
4133      // C++0x [temp.explicit]p10:
4134      //   If an entity is the subject of both an explicit instantiation
4135      //   declaration and an explicit instantiation definition in the same
4136      //   translation unit, the definition shall follow the declaration.
4137      Diag(NewLoc,
4138           diag::err_explicit_instantiation_declaration_after_definition);
4139      Diag(PrevPointOfInstantiation,
4140           diag::note_explicit_instantiation_definition_here);
4141      assert(PrevPointOfInstantiation.isValid() &&
4142             "Explicit instantiation without point of instantiation?");
4143      HasNoEffect = true;
4144      return false;
4145    }
4146    break;
4147
4148  case TSK_ExplicitInstantiationDefinition:
4149    switch (PrevTSK) {
4150    case TSK_Undeclared:
4151    case TSK_ImplicitInstantiation:
4152      // We're explicitly instantiating something that may have already been
4153      // implicitly instantiated; that's fine.
4154      return false;
4155
4156    case TSK_ExplicitSpecialization:
4157      // C++ DR 259, C++0x [temp.explicit]p4:
4158      //   For a given set of template parameters, if an explicit
4159      //   instantiation of a template appears after a declaration of
4160      //   an explicit specialization for that template, the explicit
4161      //   instantiation has no effect.
4162      //
4163      // In C++98/03 mode, we only give an extension warning here, because it
4164      // is not harmful to try to explicitly instantiate something that
4165      // has been explicitly specialized.
4166      if (!getLangOptions().CPlusPlus0x) {
4167        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4168          << PrevDecl;
4169        Diag(PrevDecl->getLocation(),
4170             diag::note_previous_template_specialization);
4171      }
4172      HasNoEffect = true;
4173      return false;
4174
4175    case TSK_ExplicitInstantiationDeclaration:
4176      // We're explicity instantiating a definition for something for which we
4177      // were previously asked to suppress instantiations. That's fine.
4178      return false;
4179
4180    case TSK_ExplicitInstantiationDefinition:
4181      // C++0x [temp.spec]p5:
4182      //   For a given template and a given set of template-arguments,
4183      //     - an explicit instantiation definition shall appear at most once
4184      //       in a program,
4185      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4186        << PrevDecl;
4187      Diag(PrevPointOfInstantiation,
4188           diag::note_previous_explicit_instantiation);
4189      HasNoEffect = true;
4190      return false;
4191    }
4192    break;
4193  }
4194
4195  assert(false && "Missing specialization/instantiation case?");
4196
4197  return false;
4198}
4199
4200/// \brief Perform semantic analysis for the given dependent function
4201/// template specialization.  The only possible way to get a dependent
4202/// function template specialization is with a friend declaration,
4203/// like so:
4204///
4205///   template <class T> void foo(T);
4206///   template <class T> class A {
4207///     friend void foo<>(T);
4208///   };
4209///
4210/// There really isn't any useful analysis we can do here, so we
4211/// just store the information.
4212bool
4213Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
4214                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
4215                                                   LookupResult &Previous) {
4216  // Remove anything from Previous that isn't a function template in
4217  // the correct context.
4218  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
4219  LookupResult::Filter F = Previous.makeFilter();
4220  while (F.hasNext()) {
4221    NamedDecl *D = F.next()->getUnderlyingDecl();
4222    if (!isa<FunctionTemplateDecl>(D) ||
4223        !FDLookupContext->Equals(D->getDeclContext()->getLookupContext()))
4224      F.erase();
4225  }
4226  F.done();
4227
4228  // Should this be diagnosed here?
4229  if (Previous.empty()) return true;
4230
4231  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
4232                                         ExplicitTemplateArgs);
4233  return false;
4234}
4235
4236/// \brief Perform semantic analysis for the given function template
4237/// specialization.
4238///
4239/// This routine performs all of the semantic analysis required for an
4240/// explicit function template specialization. On successful completion,
4241/// the function declaration \p FD will become a function template
4242/// specialization.
4243///
4244/// \param FD the function declaration, which will be updated to become a
4245/// function template specialization.
4246///
4247/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4248/// if any. Note that this may be valid info even when 0 arguments are
4249/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
4250/// as it anyway contains info on the angle brackets locations.
4251///
4252/// \param PrevDecl the set of declarations that may be specialized by
4253/// this function specialization.
4254bool
4255Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4256                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
4257                                          LookupResult &Previous) {
4258  // The set of function template specializations that could match this
4259  // explicit function template specialization.
4260  UnresolvedSet<8> Candidates;
4261
4262  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
4263  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4264         I != E; ++I) {
4265    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4266    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4267      // Only consider templates found within the same semantic lookup scope as
4268      // FD.
4269      if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext()))
4270        continue;
4271
4272      // C++ [temp.expl.spec]p11:
4273      //   A trailing template-argument can be left unspecified in the
4274      //   template-id naming an explicit function template specialization
4275      //   provided it can be deduced from the function argument type.
4276      // Perform template argument deduction to determine whether we may be
4277      // specializing this template.
4278      // FIXME: It is somewhat wasteful to build
4279      TemplateDeductionInfo Info(Context, FD->getLocation());
4280      FunctionDecl *Specialization = 0;
4281      if (TemplateDeductionResult TDK
4282            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4283                                      FD->getType(),
4284                                      Specialization,
4285                                      Info)) {
4286        // FIXME: Template argument deduction failed; record why it failed, so
4287        // that we can provide nifty diagnostics.
4288        (void)TDK;
4289        continue;
4290      }
4291
4292      // Record this candidate.
4293      Candidates.addDecl(Specialization, I.getAccess());
4294    }
4295  }
4296
4297  // Find the most specialized function template.
4298  UnresolvedSetIterator Result
4299    = getMostSpecialized(Candidates.begin(), Candidates.end(),
4300                         TPOC_Other, FD->getLocation(),
4301                  PDiag(diag::err_function_template_spec_no_match)
4302                    << FD->getDeclName(),
4303                  PDiag(diag::err_function_template_spec_ambiguous)
4304                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4305                  PDiag(diag::note_function_template_spec_matched));
4306  if (Result == Candidates.end())
4307    return true;
4308
4309  // Ignore access information;  it doesn't figure into redeclaration checking.
4310  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4311  Specialization->setLocation(FD->getLocation());
4312
4313  // FIXME: Check if the prior specialization has a point of instantiation.
4314  // If so, we have run afoul of .
4315
4316  // If this is a friend declaration, then we're not really declaring
4317  // an explicit specialization.
4318  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4319
4320  // Check the scope of this explicit specialization.
4321  if (!isFriend &&
4322      CheckTemplateSpecializationScope(*this,
4323                                       Specialization->getPrimaryTemplate(),
4324                                       Specialization, FD->getLocation(),
4325                                       false))
4326    return true;
4327
4328  // C++ [temp.expl.spec]p6:
4329  //   If a template, a member template or the member of a class template is
4330  //   explicitly specialized then that specialization shall be declared
4331  //   before the first use of that specialization that would cause an implicit
4332  //   instantiation to take place, in every translation unit in which such a
4333  //   use occurs; no diagnostic is required.
4334  FunctionTemplateSpecializationInfo *SpecInfo
4335    = Specialization->getTemplateSpecializationInfo();
4336  assert(SpecInfo && "Function template specialization info missing?");
4337
4338  bool HasNoEffect = false;
4339  if (!isFriend &&
4340      CheckSpecializationInstantiationRedecl(FD->getLocation(),
4341                                             TSK_ExplicitSpecialization,
4342                                             Specialization,
4343                                   SpecInfo->getTemplateSpecializationKind(),
4344                                         SpecInfo->getPointOfInstantiation(),
4345                                             HasNoEffect))
4346    return true;
4347
4348  // Mark the prior declaration as an explicit specialization, so that later
4349  // clients know that this is an explicit specialization.
4350  if (!isFriend)
4351    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
4352
4353  // Turn the given function declaration into a function template
4354  // specialization, with the template arguments from the previous
4355  // specialization.
4356  // Take copies of (semantic and syntactic) template argument lists.
4357  const TemplateArgumentList* TemplArgs = new (Context)
4358    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
4359  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
4360    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
4361  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
4362                                        TemplArgs, /*InsertPos=*/0,
4363                                    SpecInfo->getTemplateSpecializationKind(),
4364                                        TemplArgsAsWritten);
4365
4366  // The "previous declaration" for this function template specialization is
4367  // the prior function template specialization.
4368  Previous.clear();
4369  Previous.addDecl(Specialization);
4370  return false;
4371}
4372
4373/// \brief Perform semantic analysis for the given non-template member
4374/// specialization.
4375///
4376/// This routine performs all of the semantic analysis required for an
4377/// explicit member function specialization. On successful completion,
4378/// the function declaration \p FD will become a member function
4379/// specialization.
4380///
4381/// \param Member the member declaration, which will be updated to become a
4382/// specialization.
4383///
4384/// \param Previous the set of declarations, one of which may be specialized
4385/// by this function specialization;  the set will be modified to contain the
4386/// redeclared member.
4387bool
4388Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
4389  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
4390
4391  // Try to find the member we are instantiating.
4392  NamedDecl *Instantiation = 0;
4393  NamedDecl *InstantiatedFrom = 0;
4394  MemberSpecializationInfo *MSInfo = 0;
4395
4396  if (Previous.empty()) {
4397    // Nowhere to look anyway.
4398  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
4399    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4400           I != E; ++I) {
4401      NamedDecl *D = (*I)->getUnderlyingDecl();
4402      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4403        if (Context.hasSameType(Function->getType(), Method->getType())) {
4404          Instantiation = Method;
4405          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
4406          MSInfo = Method->getMemberSpecializationInfo();
4407          break;
4408        }
4409      }
4410    }
4411  } else if (isa<VarDecl>(Member)) {
4412    VarDecl *PrevVar;
4413    if (Previous.isSingleResult() &&
4414        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4415      if (PrevVar->isStaticDataMember()) {
4416        Instantiation = PrevVar;
4417        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4418        MSInfo = PrevVar->getMemberSpecializationInfo();
4419      }
4420  } else if (isa<RecordDecl>(Member)) {
4421    CXXRecordDecl *PrevRecord;
4422    if (Previous.isSingleResult() &&
4423        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4424      Instantiation = PrevRecord;
4425      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4426      MSInfo = PrevRecord->getMemberSpecializationInfo();
4427    }
4428  }
4429
4430  if (!Instantiation) {
4431    // There is no previous declaration that matches. Since member
4432    // specializations are always out-of-line, the caller will complain about
4433    // this mismatch later.
4434    return false;
4435  }
4436
4437  // If this is a friend, just bail out here before we start turning
4438  // things into explicit specializations.
4439  if (Member->getFriendObjectKind() != Decl::FOK_None) {
4440    // Preserve instantiation information.
4441    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
4442      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
4443                                      cast<CXXMethodDecl>(InstantiatedFrom),
4444        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
4445    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
4446      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4447                                      cast<CXXRecordDecl>(InstantiatedFrom),
4448        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
4449    }
4450
4451    Previous.clear();
4452    Previous.addDecl(Instantiation);
4453    return false;
4454  }
4455
4456  // Make sure that this is a specialization of a member.
4457  if (!InstantiatedFrom) {
4458    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
4459      << Member;
4460    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
4461    return true;
4462  }
4463
4464  // C++ [temp.expl.spec]p6:
4465  //   If a template, a member template or the member of a class template is
4466  //   explicitly specialized then that spe- cialization shall be declared
4467  //   before the first use of that specialization that would cause an implicit
4468  //   instantiation to take place, in every translation unit in which such a
4469  //   use occurs; no diagnostic is required.
4470  assert(MSInfo && "Member specialization info missing?");
4471
4472  bool HasNoEffect = false;
4473  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
4474                                             TSK_ExplicitSpecialization,
4475                                             Instantiation,
4476                                     MSInfo->getTemplateSpecializationKind(),
4477                                           MSInfo->getPointOfInstantiation(),
4478                                             HasNoEffect))
4479    return true;
4480
4481  // Check the scope of this explicit specialization.
4482  if (CheckTemplateSpecializationScope(*this,
4483                                       InstantiatedFrom,
4484                                       Instantiation, Member->getLocation(),
4485                                       false))
4486    return true;
4487
4488  // Note that this is an explicit instantiation of a member.
4489  // the original declaration to note that it is an explicit specialization
4490  // (if it was previously an implicit instantiation). This latter step
4491  // makes bookkeeping easier.
4492  if (isa<FunctionDecl>(Member)) {
4493    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4494    if (InstantiationFunction->getTemplateSpecializationKind() ==
4495          TSK_ImplicitInstantiation) {
4496      InstantiationFunction->setTemplateSpecializationKind(
4497                                                  TSK_ExplicitSpecialization);
4498      InstantiationFunction->setLocation(Member->getLocation());
4499    }
4500
4501    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4502                                        cast<CXXMethodDecl>(InstantiatedFrom),
4503                                                  TSK_ExplicitSpecialization);
4504  } else if (isa<VarDecl>(Member)) {
4505    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4506    if (InstantiationVar->getTemplateSpecializationKind() ==
4507          TSK_ImplicitInstantiation) {
4508      InstantiationVar->setTemplateSpecializationKind(
4509                                                  TSK_ExplicitSpecialization);
4510      InstantiationVar->setLocation(Member->getLocation());
4511    }
4512
4513    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4514                                                cast<VarDecl>(InstantiatedFrom),
4515                                                TSK_ExplicitSpecialization);
4516  } else {
4517    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4518    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4519    if (InstantiationClass->getTemplateSpecializationKind() ==
4520          TSK_ImplicitInstantiation) {
4521      InstantiationClass->setTemplateSpecializationKind(
4522                                                   TSK_ExplicitSpecialization);
4523      InstantiationClass->setLocation(Member->getLocation());
4524    }
4525
4526    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4527                                        cast<CXXRecordDecl>(InstantiatedFrom),
4528                                                   TSK_ExplicitSpecialization);
4529  }
4530
4531  // Save the caller the trouble of having to figure out which declaration
4532  // this specialization matches.
4533  Previous.clear();
4534  Previous.addDecl(Instantiation);
4535  return false;
4536}
4537
4538/// \brief Check the scope of an explicit instantiation.
4539///
4540/// \returns true if a serious error occurs, false otherwise.
4541static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4542                                            SourceLocation InstLoc,
4543                                            bool WasQualifiedName) {
4544  DeclContext *ExpectedContext
4545    = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext();
4546  DeclContext *CurContext = S.CurContext->getLookupContext();
4547
4548  if (CurContext->isRecord()) {
4549    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
4550      << D;
4551    return true;
4552  }
4553
4554  // C++0x [temp.explicit]p2:
4555  //   An explicit instantiation shall appear in an enclosing namespace of its
4556  //   template.
4557  //
4558  // This is DR275, which we do not retroactively apply to C++98/03.
4559  if (S.getLangOptions().CPlusPlus0x &&
4560      !CurContext->Encloses(ExpectedContext)) {
4561    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext))
4562      S.Diag(InstLoc,
4563             S.getLangOptions().CPlusPlus0x?
4564                 diag::err_explicit_instantiation_out_of_scope
4565               : diag::warn_explicit_instantiation_out_of_scope_0x)
4566        << D << NS;
4567    else
4568      S.Diag(InstLoc,
4569             S.getLangOptions().CPlusPlus0x?
4570                 diag::err_explicit_instantiation_must_be_global
4571               : diag::warn_explicit_instantiation_out_of_scope_0x)
4572        << D;
4573    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4574    return false;
4575  }
4576
4577  // C++0x [temp.explicit]p2:
4578  //   If the name declared in the explicit instantiation is an unqualified
4579  //   name, the explicit instantiation shall appear in the namespace where
4580  //   its template is declared or, if that namespace is inline (7.3.1), any
4581  //   namespace from its enclosing namespace set.
4582  if (WasQualifiedName)
4583    return false;
4584
4585  if (CurContext->Equals(ExpectedContext))
4586    return false;
4587
4588  S.Diag(InstLoc,
4589         S.getLangOptions().CPlusPlus0x?
4590             diag::err_explicit_instantiation_unqualified_wrong_namespace
4591           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
4592    << D << ExpectedContext;
4593  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4594  return false;
4595}
4596
4597/// \brief Determine whether the given scope specifier has a template-id in it.
4598static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
4599  if (!SS.isSet())
4600    return false;
4601
4602  // C++0x [temp.explicit]p2:
4603  //   If the explicit instantiation is for a member function, a member class
4604  //   or a static data member of a class template specialization, the name of
4605  //   the class template specialization in the qualified-id for the member
4606  //   name shall be a simple-template-id.
4607  //
4608  // C++98 has the same restriction, just worded differently.
4609  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
4610       NNS; NNS = NNS->getPrefix())
4611    if (Type *T = NNS->getAsType())
4612      if (isa<TemplateSpecializationType>(T))
4613        return true;
4614
4615  return false;
4616}
4617
4618// Explicit instantiation of a class template specialization
4619Sema::DeclResult
4620Sema::ActOnExplicitInstantiation(Scope *S,
4621                                 SourceLocation ExternLoc,
4622                                 SourceLocation TemplateLoc,
4623                                 unsigned TagSpec,
4624                                 SourceLocation KWLoc,
4625                                 const CXXScopeSpec &SS,
4626                                 TemplateTy TemplateD,
4627                                 SourceLocation TemplateNameLoc,
4628                                 SourceLocation LAngleLoc,
4629                                 ASTTemplateArgsPtr TemplateArgsIn,
4630                                 SourceLocation RAngleLoc,
4631                                 AttributeList *Attr) {
4632  // Find the class template we're specializing
4633  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4634  ClassTemplateDecl *ClassTemplate
4635    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
4636
4637  // Check that the specialization uses the same tag kind as the
4638  // original template.
4639  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4640  assert(Kind != TTK_Enum &&
4641         "Invalid enum tag in class template explicit instantiation!");
4642  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4643                                    Kind, KWLoc,
4644                                    *ClassTemplate->getIdentifier())) {
4645    Diag(KWLoc, diag::err_use_with_wrong_tag)
4646      << ClassTemplate
4647      << FixItHint::CreateReplacement(KWLoc,
4648                            ClassTemplate->getTemplatedDecl()->getKindName());
4649    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4650         diag::note_previous_use);
4651    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4652  }
4653
4654  // C++0x [temp.explicit]p2:
4655  //   There are two forms of explicit instantiation: an explicit instantiation
4656  //   definition and an explicit instantiation declaration. An explicit
4657  //   instantiation declaration begins with the extern keyword. [...]
4658  TemplateSpecializationKind TSK
4659    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4660                           : TSK_ExplicitInstantiationDeclaration;
4661
4662  // Translate the parser's template argument list in our AST format.
4663  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4664  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4665
4666  // Check that the template argument list is well-formed for this
4667  // template.
4668  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
4669                                        TemplateArgs.size());
4670  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4671                                TemplateArgs, false, Converted))
4672    return true;
4673
4674  assert((Converted.structuredSize() ==
4675            ClassTemplate->getTemplateParameters()->size()) &&
4676         "Converted template argument list is too short!");
4677
4678  // Find the class template specialization declaration that
4679  // corresponds to these arguments.
4680  void *InsertPos = 0;
4681  ClassTemplateSpecializationDecl *PrevDecl
4682    = ClassTemplate->findSpecialization(Converted.getFlatArguments(),
4683                                        Converted.flatSize(), InsertPos);
4684
4685  TemplateSpecializationKind PrevDecl_TSK
4686    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
4687
4688  // C++0x [temp.explicit]p2:
4689  //   [...] An explicit instantiation shall appear in an enclosing
4690  //   namespace of its template. [...]
4691  //
4692  // This is C++ DR 275.
4693  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
4694                                      SS.isSet()))
4695    return true;
4696
4697  ClassTemplateSpecializationDecl *Specialization = 0;
4698
4699  bool ReusedDecl = false;
4700  bool HasNoEffect = false;
4701  if (PrevDecl) {
4702    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
4703                                               PrevDecl, PrevDecl_TSK,
4704                                            PrevDecl->getPointOfInstantiation(),
4705                                               HasNoEffect))
4706      return DeclPtrTy::make(PrevDecl);
4707
4708    // Even though HasNoEffect == true means that this explicit instantiation
4709    // has no effect on semantics, we go on to put its syntax in the AST.
4710
4711    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
4712        PrevDecl_TSK == TSK_Undeclared) {
4713      // Since the only prior class template specialization with these
4714      // arguments was referenced but not declared, reuse that
4715      // declaration node as our own, updating the source location
4716      // for the template name to reflect our new declaration.
4717      // (Other source locations will be updated later.)
4718      Specialization = PrevDecl;
4719      Specialization->setLocation(TemplateNameLoc);
4720      PrevDecl = 0;
4721      ReusedDecl = true;
4722    }
4723  }
4724
4725  if (!Specialization) {
4726    // Create a new class template specialization declaration node for
4727    // this explicit specialization.
4728    Specialization
4729      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4730                                             ClassTemplate->getDeclContext(),
4731                                                TemplateNameLoc,
4732                                                ClassTemplate,
4733                                                Converted, PrevDecl);
4734    SetNestedNameSpecifier(Specialization, SS);
4735
4736    if (!HasNoEffect && !PrevDecl) {
4737      // Insert the new specialization.
4738      ClassTemplate->AddSpecialization(Specialization, InsertPos);
4739    }
4740  }
4741
4742  // Build the fully-sugared type for this explicit instantiation as
4743  // the user wrote in the explicit instantiation itself. This means
4744  // that we'll pretty-print the type retrieved from the
4745  // specialization's declaration the way that the user actually wrote
4746  // the explicit instantiation, rather than formatting the name based
4747  // on the "canonical" representation used to store the template
4748  // arguments in the specialization.
4749  TypeSourceInfo *WrittenTy
4750    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4751                                                TemplateArgs,
4752                                  Context.getTypeDeclType(Specialization));
4753  Specialization->setTypeAsWritten(WrittenTy);
4754  TemplateArgsIn.release();
4755
4756  // Set source locations for keywords.
4757  Specialization->setExternLoc(ExternLoc);
4758  Specialization->setTemplateKeywordLoc(TemplateLoc);
4759
4760  // Add the explicit instantiation into its lexical context. However,
4761  // since explicit instantiations are never found by name lookup, we
4762  // just put it into the declaration context directly.
4763  Specialization->setLexicalDeclContext(CurContext);
4764  CurContext->addDecl(Specialization);
4765
4766  // Syntax is now OK, so return if it has no other effect on semantics.
4767  if (HasNoEffect) {
4768    // Set the template specialization kind.
4769    Specialization->setTemplateSpecializationKind(TSK);
4770    return DeclPtrTy::make(Specialization);
4771  }
4772
4773  // C++ [temp.explicit]p3:
4774  //   A definition of a class template or class member template
4775  //   shall be in scope at the point of the explicit instantiation of
4776  //   the class template or class member template.
4777  //
4778  // This check comes when we actually try to perform the
4779  // instantiation.
4780  ClassTemplateSpecializationDecl *Def
4781    = cast_or_null<ClassTemplateSpecializationDecl>(
4782                                              Specialization->getDefinition());
4783  if (!Def)
4784    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
4785  else if (TSK == TSK_ExplicitInstantiationDefinition) {
4786    MarkVTableUsed(TemplateNameLoc, Specialization, true);
4787    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
4788  }
4789
4790  // Instantiate the members of this class template specialization.
4791  Def = cast_or_null<ClassTemplateSpecializationDecl>(
4792                                       Specialization->getDefinition());
4793  if (Def) {
4794    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
4795
4796    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
4797    // TSK_ExplicitInstantiationDefinition
4798    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
4799        TSK == TSK_ExplicitInstantiationDefinition)
4800      Def->setTemplateSpecializationKind(TSK);
4801
4802    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
4803  }
4804
4805  // Set the template specialization kind.
4806  Specialization->setTemplateSpecializationKind(TSK);
4807  return DeclPtrTy::make(Specialization);
4808}
4809
4810// Explicit instantiation of a member class of a class template.
4811Sema::DeclResult
4812Sema::ActOnExplicitInstantiation(Scope *S,
4813                                 SourceLocation ExternLoc,
4814                                 SourceLocation TemplateLoc,
4815                                 unsigned TagSpec,
4816                                 SourceLocation KWLoc,
4817                                 CXXScopeSpec &SS,
4818                                 IdentifierInfo *Name,
4819                                 SourceLocation NameLoc,
4820                                 AttributeList *Attr) {
4821
4822  bool Owned = false;
4823  bool IsDependent = false;
4824  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
4825                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
4826                            MultiTemplateParamsArg(*this, 0, 0),
4827                            Owned, IsDependent);
4828  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
4829
4830  if (!TagD)
4831    return true;
4832
4833  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4834  if (Tag->isEnum()) {
4835    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
4836      << Context.getTypeDeclType(Tag);
4837    return true;
4838  }
4839
4840  if (Tag->isInvalidDecl())
4841    return true;
4842
4843  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
4844  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
4845  if (!Pattern) {
4846    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
4847      << Context.getTypeDeclType(Record);
4848    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
4849    return true;
4850  }
4851
4852  // C++0x [temp.explicit]p2:
4853  //   If the explicit instantiation is for a class or member class, the
4854  //   elaborated-type-specifier in the declaration shall include a
4855  //   simple-template-id.
4856  //
4857  // C++98 has the same restriction, just worded differently.
4858  if (!ScopeSpecifierHasTemplateId(SS))
4859    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
4860      << Record << SS.getRange();
4861
4862  // C++0x [temp.explicit]p2:
4863  //   There are two forms of explicit instantiation: an explicit instantiation
4864  //   definition and an explicit instantiation declaration. An explicit
4865  //   instantiation declaration begins with the extern keyword. [...]
4866  TemplateSpecializationKind TSK
4867    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4868                           : TSK_ExplicitInstantiationDeclaration;
4869
4870  // C++0x [temp.explicit]p2:
4871  //   [...] An explicit instantiation shall appear in an enclosing
4872  //   namespace of its template. [...]
4873  //
4874  // This is C++ DR 275.
4875  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
4876
4877  // Verify that it is okay to explicitly instantiate here.
4878  CXXRecordDecl *PrevDecl
4879    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
4880  if (!PrevDecl && Record->getDefinition())
4881    PrevDecl = Record;
4882  if (PrevDecl) {
4883    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
4884    bool HasNoEffect = false;
4885    assert(MSInfo && "No member specialization information?");
4886    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
4887                                               PrevDecl,
4888                                        MSInfo->getTemplateSpecializationKind(),
4889                                             MSInfo->getPointOfInstantiation(),
4890                                               HasNoEffect))
4891      return true;
4892    if (HasNoEffect)
4893      return TagD;
4894  }
4895
4896  CXXRecordDecl *RecordDef
4897    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4898  if (!RecordDef) {
4899    // C++ [temp.explicit]p3:
4900    //   A definition of a member class of a class template shall be in scope
4901    //   at the point of an explicit instantiation of the member class.
4902    CXXRecordDecl *Def
4903      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
4904    if (!Def) {
4905      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
4906        << 0 << Record->getDeclName() << Record->getDeclContext();
4907      Diag(Pattern->getLocation(), diag::note_forward_declaration)
4908        << Pattern;
4909      return true;
4910    } else {
4911      if (InstantiateClass(NameLoc, Record, Def,
4912                           getTemplateInstantiationArgs(Record),
4913                           TSK))
4914        return true;
4915
4916      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4917      if (!RecordDef)
4918        return true;
4919    }
4920  }
4921
4922  // Instantiate all of the members of the class.
4923  InstantiateClassMembers(NameLoc, RecordDef,
4924                          getTemplateInstantiationArgs(Record), TSK);
4925
4926  if (TSK == TSK_ExplicitInstantiationDefinition)
4927    MarkVTableUsed(NameLoc, RecordDef, true);
4928
4929  // FIXME: We don't have any representation for explicit instantiations of
4930  // member classes. Such a representation is not needed for compilation, but it
4931  // should be available for clients that want to see all of the declarations in
4932  // the source code.
4933  return TagD;
4934}
4935
4936Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
4937                                                  SourceLocation ExternLoc,
4938                                                  SourceLocation TemplateLoc,
4939                                                  Declarator &D) {
4940  // Explicit instantiations always require a name.
4941  DeclarationName Name = GetNameForDeclarator(D);
4942  if (!Name) {
4943    if (!D.isInvalidType())
4944      Diag(D.getDeclSpec().getSourceRange().getBegin(),
4945           diag::err_explicit_instantiation_requires_name)
4946        << D.getDeclSpec().getSourceRange()
4947        << D.getSourceRange();
4948
4949    return true;
4950  }
4951
4952  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4953  // we find one that is.
4954  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4955         (S->getFlags() & Scope::TemplateParamScope) != 0)
4956    S = S->getParent();
4957
4958  // Determine the type of the declaration.
4959  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
4960  QualType R = T->getType();
4961  if (R.isNull())
4962    return true;
4963
4964  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4965    // Cannot explicitly instantiate a typedef.
4966    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
4967      << Name;
4968    return true;
4969  }
4970
4971  // C++0x [temp.explicit]p1:
4972  //   [...] An explicit instantiation of a function template shall not use the
4973  //   inline or constexpr specifiers.
4974  // Presumably, this also applies to member functions of class templates as
4975  // well.
4976  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
4977    Diag(D.getDeclSpec().getInlineSpecLoc(),
4978         diag::err_explicit_instantiation_inline)
4979      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4980
4981  // FIXME: check for constexpr specifier.
4982
4983  // C++0x [temp.explicit]p2:
4984  //   There are two forms of explicit instantiation: an explicit instantiation
4985  //   definition and an explicit instantiation declaration. An explicit
4986  //   instantiation declaration begins with the extern keyword. [...]
4987  TemplateSpecializationKind TSK
4988    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4989                           : TSK_ExplicitInstantiationDeclaration;
4990
4991  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName);
4992  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
4993
4994  if (!R->isFunctionType()) {
4995    // C++ [temp.explicit]p1:
4996    //   A [...] static data member of a class template can be explicitly
4997    //   instantiated from the member definition associated with its class
4998    //   template.
4999    if (Previous.isAmbiguous())
5000      return true;
5001
5002    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
5003    if (!Prev || !Prev->isStaticDataMember()) {
5004      // We expect to see a data data member here.
5005      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
5006        << Name;
5007      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5008           P != PEnd; ++P)
5009        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
5010      return true;
5011    }
5012
5013    if (!Prev->getInstantiatedFromStaticDataMember()) {
5014      // FIXME: Check for explicit specialization?
5015      Diag(D.getIdentifierLoc(),
5016           diag::err_explicit_instantiation_data_member_not_instantiated)
5017        << Prev;
5018      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
5019      // FIXME: Can we provide a note showing where this was declared?
5020      return true;
5021    }
5022
5023    // C++0x [temp.explicit]p2:
5024    //   If the explicit instantiation is for a member function, a member class
5025    //   or a static data member of a class template specialization, the name of
5026    //   the class template specialization in the qualified-id for the member
5027    //   name shall be a simple-template-id.
5028    //
5029    // C++98 has the same restriction, just worded differently.
5030    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5031      Diag(D.getIdentifierLoc(),
5032           diag::ext_explicit_instantiation_without_qualified_id)
5033        << Prev << D.getCXXScopeSpec().getRange();
5034
5035    // Check the scope of this explicit instantiation.
5036    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
5037
5038    // Verify that it is okay to explicitly instantiate here.
5039    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
5040    assert(MSInfo && "Missing static data member specialization info?");
5041    bool HasNoEffect = false;
5042    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
5043                                        MSInfo->getTemplateSpecializationKind(),
5044                                              MSInfo->getPointOfInstantiation(),
5045                                               HasNoEffect))
5046      return true;
5047    if (HasNoEffect)
5048      return DeclPtrTy();
5049
5050    // Instantiate static data member.
5051    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5052    if (TSK == TSK_ExplicitInstantiationDefinition)
5053      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false,
5054                                            /*DefinitionRequired=*/true);
5055
5056    // FIXME: Create an ExplicitInstantiation node?
5057    return DeclPtrTy();
5058  }
5059
5060  // If the declarator is a template-id, translate the parser's template
5061  // argument list into our AST format.
5062  bool HasExplicitTemplateArgs = false;
5063  TemplateArgumentListInfo TemplateArgs;
5064  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5065    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5066    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5067    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5068    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5069                                       TemplateId->getTemplateArgs(),
5070                                       TemplateId->NumArgs);
5071    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5072    HasExplicitTemplateArgs = true;
5073    TemplateArgsPtr.release();
5074  }
5075
5076  // C++ [temp.explicit]p1:
5077  //   A [...] function [...] can be explicitly instantiated from its template.
5078  //   A member function [...] of a class template can be explicitly
5079  //  instantiated from the member definition associated with its class
5080  //  template.
5081  UnresolvedSet<8> Matches;
5082  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5083       P != PEnd; ++P) {
5084    NamedDecl *Prev = *P;
5085    if (!HasExplicitTemplateArgs) {
5086      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5087        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5088          Matches.clear();
5089
5090          Matches.addDecl(Method, P.getAccess());
5091          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5092            break;
5093        }
5094      }
5095    }
5096
5097    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5098    if (!FunTmpl)
5099      continue;
5100
5101    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5102    FunctionDecl *Specialization = 0;
5103    if (TemplateDeductionResult TDK
5104          = DeduceTemplateArguments(FunTmpl,
5105                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5106                                    R, Specialization, Info)) {
5107      // FIXME: Keep track of almost-matches?
5108      (void)TDK;
5109      continue;
5110    }
5111
5112    Matches.addDecl(Specialization, P.getAccess());
5113  }
5114
5115  // Find the most specialized function template specialization.
5116  UnresolvedSetIterator Result
5117    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other,
5118                         D.getIdentifierLoc(),
5119                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
5120                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5121                         PDiag(diag::note_explicit_instantiation_candidate));
5122
5123  if (Result == Matches.end())
5124    return true;
5125
5126  // Ignore access control bits, we don't need them for redeclaration checking.
5127  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5128
5129  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5130    Diag(D.getIdentifierLoc(),
5131         diag::err_explicit_instantiation_member_function_not_instantiated)
5132      << Specialization
5133      << (Specialization->getTemplateSpecializationKind() ==
5134          TSK_ExplicitSpecialization);
5135    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5136    return true;
5137  }
5138
5139  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5140  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5141    PrevDecl = Specialization;
5142
5143  if (PrevDecl) {
5144    bool HasNoEffect = false;
5145    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5146                                               PrevDecl,
5147                                     PrevDecl->getTemplateSpecializationKind(),
5148                                          PrevDecl->getPointOfInstantiation(),
5149                                               HasNoEffect))
5150      return true;
5151
5152    // FIXME: We may still want to build some representation of this
5153    // explicit specialization.
5154    if (HasNoEffect)
5155      return DeclPtrTy();
5156  }
5157
5158  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5159
5160  if (TSK == TSK_ExplicitInstantiationDefinition)
5161    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization,
5162                                  false, /*DefinitionRequired=*/true);
5163
5164  // C++0x [temp.explicit]p2:
5165  //   If the explicit instantiation is for a member function, a member class
5166  //   or a static data member of a class template specialization, the name of
5167  //   the class template specialization in the qualified-id for the member
5168  //   name shall be a simple-template-id.
5169  //
5170  // C++98 has the same restriction, just worded differently.
5171  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5172  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5173      D.getCXXScopeSpec().isSet() &&
5174      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5175    Diag(D.getIdentifierLoc(),
5176         diag::ext_explicit_instantiation_without_qualified_id)
5177    << Specialization << D.getCXXScopeSpec().getRange();
5178
5179  CheckExplicitInstantiationScope(*this,
5180                   FunTmpl? (NamedDecl *)FunTmpl
5181                          : Specialization->getInstantiatedFromMemberFunction(),
5182                                  D.getIdentifierLoc(),
5183                                  D.getCXXScopeSpec().isSet());
5184
5185  // FIXME: Create some kind of ExplicitInstantiationDecl here.
5186  return DeclPtrTy();
5187}
5188
5189Sema::TypeResult
5190Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5191                        const CXXScopeSpec &SS, IdentifierInfo *Name,
5192                        SourceLocation TagLoc, SourceLocation NameLoc) {
5193  // This has to hold, because SS is expected to be defined.
5194  assert(Name && "Expected a name in a dependent tag");
5195
5196  NestedNameSpecifier *NNS
5197    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5198  if (!NNS)
5199    return true;
5200
5201  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5202
5203  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
5204    Diag(NameLoc, diag::err_dependent_tag_decl)
5205      << (TUK == TUK_Definition) << Kind << SS.getRange();
5206    return true;
5207  }
5208
5209  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
5210  return Context.getDependentNameType(Kwd, NNS, Name).getAsOpaquePtr();
5211}
5212
5213Sema::TypeResult
5214Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5215                        const CXXScopeSpec &SS, const IdentifierInfo &II,
5216                        SourceLocation IdLoc) {
5217  NestedNameSpecifier *NNS
5218    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5219  if (!NNS)
5220    return true;
5221
5222  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5223      !getLangOptions().CPlusPlus0x)
5224    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5225      << FixItHint::CreateRemoval(TypenameLoc);
5226
5227  QualType T = CheckTypenameType(ETK_Typename, NNS, II,
5228                                 TypenameLoc, SS.getRange(), IdLoc);
5229  if (T.isNull())
5230    return true;
5231
5232  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5233  if (isa<DependentNameType>(T)) {
5234    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5235    TL.setKeywordLoc(TypenameLoc);
5236    TL.setQualifierRange(SS.getRange());
5237    TL.setNameLoc(IdLoc);
5238  } else {
5239    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
5240    TL.setKeywordLoc(TypenameLoc);
5241    TL.setQualifierRange(SS.getRange());
5242    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
5243  }
5244
5245  return CreateLocInfoType(T, TSI).getAsOpaquePtr();
5246}
5247
5248Sema::TypeResult
5249Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5250                        const CXXScopeSpec &SS, SourceLocation TemplateLoc,
5251                        TypeTy *Ty) {
5252  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5253      !getLangOptions().CPlusPlus0x)
5254    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5255      << FixItHint::CreateRemoval(TypenameLoc);
5256
5257  TypeSourceInfo *InnerTSI = 0;
5258  QualType T = GetTypeFromParser(Ty, &InnerTSI);
5259  NestedNameSpecifier *NNS
5260    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5261
5262  assert(isa<TemplateSpecializationType>(T) &&
5263         "Expected a template specialization type");
5264
5265  if (computeDeclContext(SS, false)) {
5266    // If we can compute a declaration context, then the "typename"
5267    // keyword was superfluous. Just build an ElaboratedType to keep
5268    // track of the nested-name-specifier.
5269
5270    // Push the inner type, preserving its source locations if possible.
5271    TypeLocBuilder Builder;
5272    if (InnerTSI)
5273      Builder.pushFullCopy(InnerTSI->getTypeLoc());
5274    else
5275      Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc);
5276
5277    T = Context.getElaboratedType(ETK_Typename, NNS, T);
5278    ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
5279    TL.setKeywordLoc(TypenameLoc);
5280    TL.setQualifierRange(SS.getRange());
5281
5282    TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
5283    return CreateLocInfoType(T, TSI).getAsOpaquePtr();
5284  }
5285
5286  // TODO: it's really silly that we make a template specialization
5287  // type earlier only to drop it again here.
5288  TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
5289  DependentTemplateName *DTN =
5290    TST->getTemplateName().getAsDependentTemplateName();
5291  assert(DTN && "dependent template has non-dependent name?");
5292  T = Context.getDependentTemplateSpecializationType(ETK_Typename, NNS,
5293                                                     DTN->getIdentifier(),
5294                                                     TST->getNumArgs(),
5295                                                     TST->getArgs());
5296  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5297  DependentTemplateSpecializationTypeLoc TL =
5298    cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc());
5299  if (InnerTSI) {
5300    TemplateSpecializationTypeLoc TSTL =
5301      cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc());
5302    TL.setLAngleLoc(TSTL.getLAngleLoc());
5303    TL.setRAngleLoc(TSTL.getRAngleLoc());
5304    for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I)
5305      TL.setArgLocInfo(I, TSTL.getArgLocInfo(I));
5306  } else {
5307    TL.initializeLocal(SourceLocation());
5308  }
5309  TL.setKeywordLoc(TypenameLoc);
5310  TL.setQualifierRange(SS.getRange());
5311  return CreateLocInfoType(T, TSI).getAsOpaquePtr();
5312}
5313
5314/// \brief Build the type that describes a C++ typename specifier,
5315/// e.g., "typename T::type".
5316QualType
5317Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
5318                        NestedNameSpecifier *NNS, const IdentifierInfo &II,
5319                        SourceLocation KeywordLoc, SourceRange NNSRange,
5320                        SourceLocation IILoc) {
5321  CXXScopeSpec SS;
5322  SS.setScopeRep(NNS);
5323  SS.setRange(NNSRange);
5324
5325  DeclContext *Ctx = computeDeclContext(SS);
5326  if (!Ctx) {
5327    // If the nested-name-specifier is dependent and couldn't be
5328    // resolved to a type, build a typename type.
5329    assert(NNS->isDependent());
5330    return Context.getDependentNameType(Keyword, NNS, &II);
5331  }
5332
5333  // If the nested-name-specifier refers to the current instantiation,
5334  // the "typename" keyword itself is superfluous. In C++03, the
5335  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
5336  // allows such extraneous "typename" keywords, and we retroactively
5337  // apply this DR to C++03 code with only a warning. In any case we continue.
5338
5339  if (RequireCompleteDeclContext(SS, Ctx))
5340    return QualType();
5341
5342  DeclarationName Name(&II);
5343  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
5344  LookupQualifiedName(Result, Ctx);
5345  unsigned DiagID = 0;
5346  Decl *Referenced = 0;
5347  switch (Result.getResultKind()) {
5348  case LookupResult::NotFound:
5349    DiagID = diag::err_typename_nested_not_found;
5350    break;
5351
5352  case LookupResult::NotFoundInCurrentInstantiation:
5353    // Okay, it's a member of an unknown instantiation.
5354    return Context.getDependentNameType(Keyword, NNS, &II);
5355
5356  case LookupResult::Found:
5357    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
5358      // We found a type. Build an ElaboratedType, since the
5359      // typename-specifier was just sugar.
5360      return Context.getElaboratedType(ETK_Typename, NNS,
5361                                       Context.getTypeDeclType(Type));
5362    }
5363
5364    DiagID = diag::err_typename_nested_not_type;
5365    Referenced = Result.getFoundDecl();
5366    break;
5367
5368  case LookupResult::FoundUnresolvedValue:
5369    llvm_unreachable("unresolved using decl in non-dependent context");
5370    return QualType();
5371
5372  case LookupResult::FoundOverloaded:
5373    DiagID = diag::err_typename_nested_not_type;
5374    Referenced = *Result.begin();
5375    break;
5376
5377  case LookupResult::Ambiguous:
5378    return QualType();
5379  }
5380
5381  // If we get here, it's because name lookup did not find a
5382  // type. Emit an appropriate diagnostic and return an error.
5383  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5384                        IILoc);
5385  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
5386  if (Referenced)
5387    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
5388      << Name;
5389  return QualType();
5390}
5391
5392namespace {
5393  // See Sema::RebuildTypeInCurrentInstantiation
5394  class CurrentInstantiationRebuilder
5395    : public TreeTransform<CurrentInstantiationRebuilder> {
5396    SourceLocation Loc;
5397    DeclarationName Entity;
5398
5399  public:
5400    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
5401
5402    CurrentInstantiationRebuilder(Sema &SemaRef,
5403                                  SourceLocation Loc,
5404                                  DeclarationName Entity)
5405    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
5406      Loc(Loc), Entity(Entity) { }
5407
5408    /// \brief Determine whether the given type \p T has already been
5409    /// transformed.
5410    ///
5411    /// For the purposes of type reconstruction, a type has already been
5412    /// transformed if it is NULL or if it is not dependent.
5413    bool AlreadyTransformed(QualType T) {
5414      return T.isNull() || !T->isDependentType();
5415    }
5416
5417    /// \brief Returns the location of the entity whose type is being
5418    /// rebuilt.
5419    SourceLocation getBaseLocation() { return Loc; }
5420
5421    /// \brief Returns the name of the entity whose type is being rebuilt.
5422    DeclarationName getBaseEntity() { return Entity; }
5423
5424    /// \brief Sets the "base" location and entity when that
5425    /// information is known based on another transformation.
5426    void setBase(SourceLocation Loc, DeclarationName Entity) {
5427      this->Loc = Loc;
5428      this->Entity = Entity;
5429    }
5430  };
5431}
5432
5433/// \brief Rebuilds a type within the context of the current instantiation.
5434///
5435/// The type \p T is part of the type of an out-of-line member definition of
5436/// a class template (or class template partial specialization) that was parsed
5437/// and constructed before we entered the scope of the class template (or
5438/// partial specialization thereof). This routine will rebuild that type now
5439/// that we have entered the declarator's scope, which may produce different
5440/// canonical types, e.g.,
5441///
5442/// \code
5443/// template<typename T>
5444/// struct X {
5445///   typedef T* pointer;
5446///   pointer data();
5447/// };
5448///
5449/// template<typename T>
5450/// typename X<T>::pointer X<T>::data() { ... }
5451/// \endcode
5452///
5453/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
5454/// since we do not know that we can look into X<T> when we parsed the type.
5455/// This function will rebuild the type, performing the lookup of "pointer"
5456/// in X<T> and returning an ElaboratedType whose canonical type is the same
5457/// as the canonical type of T*, allowing the return types of the out-of-line
5458/// definition and the declaration to match.
5459TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
5460                                                        SourceLocation Loc,
5461                                                        DeclarationName Name) {
5462  if (!T || !T->getType()->isDependentType())
5463    return T;
5464
5465  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
5466  return Rebuilder.TransformType(T);
5467}
5468
5469bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
5470  if (SS.isInvalid()) return true;
5471
5472  NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5473  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
5474                                          DeclarationName());
5475  NestedNameSpecifier *Rebuilt =
5476    Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange());
5477  if (!Rebuilt) return true;
5478
5479  SS.setScopeRep(Rebuilt);
5480  return false;
5481}
5482
5483/// \brief Produces a formatted string that describes the binding of
5484/// template parameters to template arguments.
5485std::string
5486Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5487                                      const TemplateArgumentList &Args) {
5488  // FIXME: For variadic templates, we'll need to get the structured list.
5489  return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
5490                                         Args.flat_size());
5491}
5492
5493std::string
5494Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5495                                      const TemplateArgument *Args,
5496                                      unsigned NumArgs) {
5497  std::string Result;
5498
5499  if (!Params || Params->size() == 0 || NumArgs == 0)
5500    return Result;
5501
5502  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
5503    if (I >= NumArgs)
5504      break;
5505
5506    if (I == 0)
5507      Result += "[with ";
5508    else
5509      Result += ", ";
5510
5511    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
5512      Result += Id->getName();
5513    } else {
5514      Result += '$';
5515      Result += llvm::utostr(I);
5516    }
5517
5518    Result += " = ";
5519
5520    switch (Args[I].getKind()) {
5521      case TemplateArgument::Null:
5522        Result += "<no value>";
5523        break;
5524
5525      case TemplateArgument::Type: {
5526        std::string TypeStr;
5527        Args[I].getAsType().getAsStringInternal(TypeStr,
5528                                                Context.PrintingPolicy);
5529        Result += TypeStr;
5530        break;
5531      }
5532
5533      case TemplateArgument::Declaration: {
5534        bool Unnamed = true;
5535        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
5536          if (ND->getDeclName()) {
5537            Unnamed = false;
5538            Result += ND->getNameAsString();
5539          }
5540        }
5541
5542        if (Unnamed) {
5543          Result += "<anonymous>";
5544        }
5545        break;
5546      }
5547
5548      case TemplateArgument::Template: {
5549        std::string Str;
5550        llvm::raw_string_ostream OS(Str);
5551        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
5552        Result += OS.str();
5553        break;
5554      }
5555
5556      case TemplateArgument::Integral: {
5557        Result += Args[I].getAsIntegral()->toString(10);
5558        break;
5559      }
5560
5561      case TemplateArgument::Expression: {
5562        // FIXME: This is non-optimal, since we're regurgitating the
5563        // expression we were given.
5564        std::string Str;
5565        {
5566          llvm::raw_string_ostream OS(Str);
5567          Args[I].getAsExpr()->printPretty(OS, Context, 0,
5568                                           Context.PrintingPolicy);
5569        }
5570        Result += Str;
5571        break;
5572      }
5573
5574      case TemplateArgument::Pack:
5575        // FIXME: Format template argument packs
5576        Result += "<template argument pack>";
5577        break;
5578    }
5579  }
5580
5581  Result += ']';
5582  return Result;
5583}
5584