SemaTemplate.cpp revision 6813d7ba5fa79e36bdb3986e7f3f8100915a61ab
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "Sema.h" 13#include "Lookup.h" 14#include "TreeTransform.h" 15#include "clang/AST/ASTContext.h" 16#include "clang/AST/Expr.h" 17#include "clang/AST/ExprCXX.h" 18#include "clang/AST/DeclFriend.h" 19#include "clang/AST/DeclTemplate.h" 20#include "clang/Parse/DeclSpec.h" 21#include "clang/Parse/Template.h" 22#include "clang/Basic/LangOptions.h" 23#include "clang/Basic/PartialDiagnostic.h" 24#include "llvm/ADT/StringExtras.h" 25using namespace clang; 26 27/// \brief Determine whether the declaration found is acceptable as the name 28/// of a template and, if so, return that template declaration. Otherwise, 29/// returns NULL. 30static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 31 NamedDecl *Orig) { 32 NamedDecl *D = Orig->getUnderlyingDecl(); 33 34 if (isa<TemplateDecl>(D)) 35 return Orig; 36 37 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 38 // C++ [temp.local]p1: 39 // Like normal (non-template) classes, class templates have an 40 // injected-class-name (Clause 9). The injected-class-name 41 // can be used with or without a template-argument-list. When 42 // it is used without a template-argument-list, it is 43 // equivalent to the injected-class-name followed by the 44 // template-parameters of the class template enclosed in 45 // <>. When it is used with a template-argument-list, it 46 // refers to the specified class template specialization, 47 // which could be the current specialization or another 48 // specialization. 49 if (Record->isInjectedClassName()) { 50 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 51 if (Record->getDescribedClassTemplate()) 52 return Record->getDescribedClassTemplate(); 53 54 if (ClassTemplateSpecializationDecl *Spec 55 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 56 return Spec->getSpecializedTemplate(); 57 } 58 59 return 0; 60 } 61 62 return 0; 63} 64 65static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) { 66 // The set of class templates we've already seen. 67 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 68 LookupResult::Filter filter = R.makeFilter(); 69 while (filter.hasNext()) { 70 NamedDecl *Orig = filter.next(); 71 NamedDecl *Repl = isAcceptableTemplateName(C, Orig); 72 if (!Repl) 73 filter.erase(); 74 else if (Repl != Orig) { 75 76 // C++ [temp.local]p3: 77 // A lookup that finds an injected-class-name (10.2) can result in an 78 // ambiguity in certain cases (for example, if it is found in more than 79 // one base class). If all of the injected-class-names that are found 80 // refer to specializations of the same class template, and if the name 81 // is followed by a template-argument-list, the reference refers to the 82 // class template itself and not a specialization thereof, and is not 83 // ambiguous. 84 // 85 // FIXME: Will we eventually have to do the same for alias templates? 86 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 87 if (!ClassTemplates.insert(ClassTmpl)) { 88 filter.erase(); 89 continue; 90 } 91 92 filter.replace(Repl); 93 } 94 } 95 filter.done(); 96} 97 98TemplateNameKind Sema::isTemplateName(Scope *S, 99 CXXScopeSpec &SS, 100 UnqualifiedId &Name, 101 TypeTy *ObjectTypePtr, 102 bool EnteringContext, 103 TemplateTy &TemplateResult, 104 bool &MemberOfUnknownSpecialization) { 105 assert(getLangOptions().CPlusPlus && "No template names in C!"); 106 107 DeclarationName TName; 108 MemberOfUnknownSpecialization = false; 109 110 switch (Name.getKind()) { 111 case UnqualifiedId::IK_Identifier: 112 TName = DeclarationName(Name.Identifier); 113 break; 114 115 case UnqualifiedId::IK_OperatorFunctionId: 116 TName = Context.DeclarationNames.getCXXOperatorName( 117 Name.OperatorFunctionId.Operator); 118 break; 119 120 case UnqualifiedId::IK_LiteralOperatorId: 121 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 122 break; 123 124 default: 125 return TNK_Non_template; 126 } 127 128 QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr); 129 130 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 131 LookupOrdinaryName); 132 R.suppressDiagnostics(); 133 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 134 MemberOfUnknownSpecialization); 135 if (R.empty() || R.isAmbiguous()) 136 return TNK_Non_template; 137 138 TemplateName Template; 139 TemplateNameKind TemplateKind; 140 141 unsigned ResultCount = R.end() - R.begin(); 142 if (ResultCount > 1) { 143 // We assume that we'll preserve the qualifier from a function 144 // template name in other ways. 145 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 146 TemplateKind = TNK_Function_template; 147 } else { 148 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 149 150 if (SS.isSet() && !SS.isInvalid()) { 151 NestedNameSpecifier *Qualifier 152 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 153 Template = Context.getQualifiedTemplateName(Qualifier, false, TD); 154 } else { 155 Template = TemplateName(TD); 156 } 157 158 if (isa<FunctionTemplateDecl>(TD)) 159 TemplateKind = TNK_Function_template; 160 else { 161 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD)); 162 TemplateKind = TNK_Type_template; 163 } 164 } 165 166 TemplateResult = TemplateTy::make(Template); 167 return TemplateKind; 168} 169 170bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 171 SourceLocation IILoc, 172 Scope *S, 173 const CXXScopeSpec *SS, 174 TemplateTy &SuggestedTemplate, 175 TemplateNameKind &SuggestedKind) { 176 // We can't recover unless there's a dependent scope specifier preceding the 177 // template name. 178 // FIXME: Typo correction? 179 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 180 computeDeclContext(*SS)) 181 return false; 182 183 // The code is missing a 'template' keyword prior to the dependent template 184 // name. 185 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 186 Diag(IILoc, diag::err_template_kw_missing) 187 << Qualifier << II.getName() 188 << FixItHint::CreateInsertion(IILoc, "template "); 189 SuggestedTemplate 190 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 191 SuggestedKind = TNK_Dependent_template_name; 192 return true; 193} 194 195void Sema::LookupTemplateName(LookupResult &Found, 196 Scope *S, CXXScopeSpec &SS, 197 QualType ObjectType, 198 bool EnteringContext, 199 bool &MemberOfUnknownSpecialization) { 200 // Determine where to perform name lookup 201 MemberOfUnknownSpecialization = false; 202 DeclContext *LookupCtx = 0; 203 bool isDependent = false; 204 if (!ObjectType.isNull()) { 205 // This nested-name-specifier occurs in a member access expression, e.g., 206 // x->B::f, and we are looking into the type of the object. 207 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 208 LookupCtx = computeDeclContext(ObjectType); 209 isDependent = ObjectType->isDependentType(); 210 assert((isDependent || !ObjectType->isIncompleteType()) && 211 "Caller should have completed object type"); 212 } else if (SS.isSet()) { 213 // This nested-name-specifier occurs after another nested-name-specifier, 214 // so long into the context associated with the prior nested-name-specifier. 215 LookupCtx = computeDeclContext(SS, EnteringContext); 216 isDependent = isDependentScopeSpecifier(SS); 217 218 // The declaration context must be complete. 219 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 220 return; 221 } 222 223 bool ObjectTypeSearchedInScope = false; 224 if (LookupCtx) { 225 // Perform "qualified" name lookup into the declaration context we 226 // computed, which is either the type of the base of a member access 227 // expression or the declaration context associated with a prior 228 // nested-name-specifier. 229 LookupQualifiedName(Found, LookupCtx); 230 231 if (!ObjectType.isNull() && Found.empty()) { 232 // C++ [basic.lookup.classref]p1: 233 // In a class member access expression (5.2.5), if the . or -> token is 234 // immediately followed by an identifier followed by a <, the 235 // identifier must be looked up to determine whether the < is the 236 // beginning of a template argument list (14.2) or a less-than operator. 237 // The identifier is first looked up in the class of the object 238 // expression. If the identifier is not found, it is then looked up in 239 // the context of the entire postfix-expression and shall name a class 240 // or function template. 241 if (S) LookupName(Found, S); 242 ObjectTypeSearchedInScope = true; 243 } 244 } else if (isDependent && (!S || ObjectType.isNull())) { 245 // We cannot look into a dependent object type or nested nme 246 // specifier. 247 MemberOfUnknownSpecialization = true; 248 return; 249 } else { 250 // Perform unqualified name lookup in the current scope. 251 LookupName(Found, S); 252 } 253 254 if (Found.empty() && !isDependent) { 255 // If we did not find any names, attempt to correct any typos. 256 DeclarationName Name = Found.getLookupName(); 257 if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx, 258 false, CTC_CXXCasts)) { 259 FilterAcceptableTemplateNames(Context, Found); 260 if (!Found.empty()) { 261 if (LookupCtx) 262 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 263 << Name << LookupCtx << Found.getLookupName() << SS.getRange() 264 << FixItHint::CreateReplacement(Found.getNameLoc(), 265 Found.getLookupName().getAsString()); 266 else 267 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 268 << Name << Found.getLookupName() 269 << FixItHint::CreateReplacement(Found.getNameLoc(), 270 Found.getLookupName().getAsString()); 271 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 272 Diag(Template->getLocation(), diag::note_previous_decl) 273 << Template->getDeclName(); 274 } 275 } else { 276 Found.clear(); 277 Found.setLookupName(Name); 278 } 279 } 280 281 FilterAcceptableTemplateNames(Context, Found); 282 if (Found.empty()) { 283 if (isDependent) 284 MemberOfUnknownSpecialization = true; 285 return; 286 } 287 288 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 289 // C++ [basic.lookup.classref]p1: 290 // [...] If the lookup in the class of the object expression finds a 291 // template, the name is also looked up in the context of the entire 292 // postfix-expression and [...] 293 // 294 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 295 LookupOrdinaryName); 296 LookupName(FoundOuter, S); 297 FilterAcceptableTemplateNames(Context, FoundOuter); 298 299 if (FoundOuter.empty()) { 300 // - if the name is not found, the name found in the class of the 301 // object expression is used, otherwise 302 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 303 // - if the name is found in the context of the entire 304 // postfix-expression and does not name a class template, the name 305 // found in the class of the object expression is used, otherwise 306 } else if (!Found.isSuppressingDiagnostics()) { 307 // - if the name found is a class template, it must refer to the same 308 // entity as the one found in the class of the object expression, 309 // otherwise the program is ill-formed. 310 if (!Found.isSingleResult() || 311 Found.getFoundDecl()->getCanonicalDecl() 312 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 313 Diag(Found.getNameLoc(), 314 diag::ext_nested_name_member_ref_lookup_ambiguous) 315 << Found.getLookupName() 316 << ObjectType; 317 Diag(Found.getRepresentativeDecl()->getLocation(), 318 diag::note_ambig_member_ref_object_type) 319 << ObjectType; 320 Diag(FoundOuter.getFoundDecl()->getLocation(), 321 diag::note_ambig_member_ref_scope); 322 323 // Recover by taking the template that we found in the object 324 // expression's type. 325 } 326 } 327 } 328} 329 330/// ActOnDependentIdExpression - Handle a dependent id-expression that 331/// was just parsed. This is only possible with an explicit scope 332/// specifier naming a dependent type. 333Sema::OwningExprResult 334Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 335 DeclarationName Name, 336 SourceLocation NameLoc, 337 bool isAddressOfOperand, 338 const TemplateArgumentListInfo *TemplateArgs) { 339 NestedNameSpecifier *Qualifier 340 = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 341 342 DeclContext *DC = getFunctionLevelDeclContext(); 343 344 if (!isAddressOfOperand && 345 isa<CXXMethodDecl>(DC) && 346 cast<CXXMethodDecl>(DC)->isInstance()) { 347 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 348 349 // Since the 'this' expression is synthesized, we don't need to 350 // perform the double-lookup check. 351 NamedDecl *FirstQualifierInScope = 0; 352 353 return Owned(CXXDependentScopeMemberExpr::Create(Context, 354 /*This*/ 0, ThisType, 355 /*IsArrow*/ true, 356 /*Op*/ SourceLocation(), 357 Qualifier, SS.getRange(), 358 FirstQualifierInScope, 359 Name, NameLoc, 360 TemplateArgs)); 361 } 362 363 return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs); 364} 365 366Sema::OwningExprResult 367Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 368 DeclarationName Name, 369 SourceLocation NameLoc, 370 const TemplateArgumentListInfo *TemplateArgs) { 371 return Owned(DependentScopeDeclRefExpr::Create(Context, 372 static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 373 SS.getRange(), 374 Name, NameLoc, 375 TemplateArgs)); 376} 377 378/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 379/// that the template parameter 'PrevDecl' is being shadowed by a new 380/// declaration at location Loc. Returns true to indicate that this is 381/// an error, and false otherwise. 382bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 383 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 384 385 // Microsoft Visual C++ permits template parameters to be shadowed. 386 if (getLangOptions().Microsoft) 387 return false; 388 389 // C++ [temp.local]p4: 390 // A template-parameter shall not be redeclared within its 391 // scope (including nested scopes). 392 Diag(Loc, diag::err_template_param_shadow) 393 << cast<NamedDecl>(PrevDecl)->getDeclName(); 394 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 395 return true; 396} 397 398/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 399/// the parameter D to reference the templated declaration and return a pointer 400/// to the template declaration. Otherwise, do nothing to D and return null. 401TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) { 402 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) { 403 D = DeclPtrTy::make(Temp->getTemplatedDecl()); 404 return Temp; 405 } 406 return 0; 407} 408 409static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 410 const ParsedTemplateArgument &Arg) { 411 412 switch (Arg.getKind()) { 413 case ParsedTemplateArgument::Type: { 414 TypeSourceInfo *DI; 415 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 416 if (!DI) 417 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 418 return TemplateArgumentLoc(TemplateArgument(T), DI); 419 } 420 421 case ParsedTemplateArgument::NonType: { 422 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 423 return TemplateArgumentLoc(TemplateArgument(E), E); 424 } 425 426 case ParsedTemplateArgument::Template: { 427 TemplateName Template 428 = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get()); 429 return TemplateArgumentLoc(TemplateArgument(Template), 430 Arg.getScopeSpec().getRange(), 431 Arg.getLocation()); 432 } 433 } 434 435 llvm_unreachable("Unhandled parsed template argument"); 436 return TemplateArgumentLoc(); 437} 438 439/// \brief Translates template arguments as provided by the parser 440/// into template arguments used by semantic analysis. 441void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 442 TemplateArgumentListInfo &TemplateArgs) { 443 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 444 TemplateArgs.addArgument(translateTemplateArgument(*this, 445 TemplateArgsIn[I])); 446} 447 448/// ActOnTypeParameter - Called when a C++ template type parameter 449/// (e.g., "typename T") has been parsed. Typename specifies whether 450/// the keyword "typename" was used to declare the type parameter 451/// (otherwise, "class" was used), and KeyLoc is the location of the 452/// "class" or "typename" keyword. ParamName is the name of the 453/// parameter (NULL indicates an unnamed template parameter) and 454/// ParamName is the location of the parameter name (if any). 455/// If the type parameter has a default argument, it will be added 456/// later via ActOnTypeParameterDefault. 457Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 458 SourceLocation EllipsisLoc, 459 SourceLocation KeyLoc, 460 IdentifierInfo *ParamName, 461 SourceLocation ParamNameLoc, 462 unsigned Depth, unsigned Position, 463 SourceLocation EqualLoc, 464 TypeTy *DefaultArg) { 465 assert(S->isTemplateParamScope() && 466 "Template type parameter not in template parameter scope!"); 467 bool Invalid = false; 468 469 if (ParamName) { 470 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 471 LookupOrdinaryName, 472 ForRedeclaration); 473 if (PrevDecl && PrevDecl->isTemplateParameter()) 474 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 475 PrevDecl); 476 } 477 478 SourceLocation Loc = ParamNameLoc; 479 if (!ParamName) 480 Loc = KeyLoc; 481 482 TemplateTypeParmDecl *Param 483 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 484 Loc, Depth, Position, ParamName, Typename, 485 Ellipsis); 486 if (Invalid) 487 Param->setInvalidDecl(); 488 489 if (ParamName) { 490 // Add the template parameter into the current scope. 491 S->AddDecl(DeclPtrTy::make(Param)); 492 IdResolver.AddDecl(Param); 493 } 494 495 // Handle the default argument, if provided. 496 if (DefaultArg) { 497 TypeSourceInfo *DefaultTInfo; 498 GetTypeFromParser(DefaultArg, &DefaultTInfo); 499 500 assert(DefaultTInfo && "expected source information for type"); 501 502 // C++0x [temp.param]p9: 503 // A default template-argument may be specified for any kind of 504 // template-parameter that is not a template parameter pack. 505 if (Ellipsis) { 506 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 507 return DeclPtrTy::make(Param); 508 } 509 510 // Check the template argument itself. 511 if (CheckTemplateArgument(Param, DefaultTInfo)) { 512 Param->setInvalidDecl(); 513 return DeclPtrTy::make(Param);; 514 } 515 516 Param->setDefaultArgument(DefaultTInfo, false); 517 } 518 519 return DeclPtrTy::make(Param); 520} 521 522/// \brief Check that the type of a non-type template parameter is 523/// well-formed. 524/// 525/// \returns the (possibly-promoted) parameter type if valid; 526/// otherwise, produces a diagnostic and returns a NULL type. 527QualType 528Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 529 // We don't allow variably-modified types as the type of non-type template 530 // parameters. 531 if (T->isVariablyModifiedType()) { 532 Diag(Loc, diag::err_variably_modified_nontype_template_param) 533 << T; 534 return QualType(); 535 } 536 537 // C++ [temp.param]p4: 538 // 539 // A non-type template-parameter shall have one of the following 540 // (optionally cv-qualified) types: 541 // 542 // -- integral or enumeration type, 543 if (T->isIntegralOrEnumerationType() || 544 // -- pointer to object or pointer to function, 545 (T->isPointerType() && 546 (T->getAs<PointerType>()->getPointeeType()->isObjectType() || 547 T->getAs<PointerType>()->getPointeeType()->isFunctionType())) || 548 // -- reference to object or reference to function, 549 T->isReferenceType() || 550 // -- pointer to member. 551 T->isMemberPointerType() || 552 // If T is a dependent type, we can't do the check now, so we 553 // assume that it is well-formed. 554 T->isDependentType()) 555 return T; 556 // C++ [temp.param]p8: 557 // 558 // A non-type template-parameter of type "array of T" or 559 // "function returning T" is adjusted to be of type "pointer to 560 // T" or "pointer to function returning T", respectively. 561 else if (T->isArrayType()) 562 // FIXME: Keep the type prior to promotion? 563 return Context.getArrayDecayedType(T); 564 else if (T->isFunctionType()) 565 // FIXME: Keep the type prior to promotion? 566 return Context.getPointerType(T); 567 568 Diag(Loc, diag::err_template_nontype_parm_bad_type) 569 << T; 570 571 return QualType(); 572} 573 574Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 575 unsigned Depth, 576 unsigned Position, 577 SourceLocation EqualLoc, 578 ExprArg DefaultArg) { 579 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 580 QualType T = TInfo->getType(); 581 582 assert(S->isTemplateParamScope() && 583 "Non-type template parameter not in template parameter scope!"); 584 bool Invalid = false; 585 586 IdentifierInfo *ParamName = D.getIdentifier(); 587 if (ParamName) { 588 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 589 LookupOrdinaryName, 590 ForRedeclaration); 591 if (PrevDecl && PrevDecl->isTemplateParameter()) 592 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 593 PrevDecl); 594 } 595 596 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 597 if (T.isNull()) { 598 T = Context.IntTy; // Recover with an 'int' type. 599 Invalid = true; 600 } 601 602 NonTypeTemplateParmDecl *Param 603 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 604 D.getIdentifierLoc(), 605 Depth, Position, ParamName, T, TInfo); 606 if (Invalid) 607 Param->setInvalidDecl(); 608 609 if (D.getIdentifier()) { 610 // Add the template parameter into the current scope. 611 S->AddDecl(DeclPtrTy::make(Param)); 612 IdResolver.AddDecl(Param); 613 } 614 615 // Check the well-formedness of the default template argument, if provided. 616 if (Expr *Default = static_cast<Expr *>(DefaultArg.get())) { 617 TemplateArgument Converted; 618 if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) { 619 Param->setInvalidDecl(); 620 return DeclPtrTy::make(Param);; 621 } 622 623 Param->setDefaultArgument(DefaultArg.takeAs<Expr>(), false); 624 } 625 626 return DeclPtrTy::make(Param); 627} 628 629/// ActOnTemplateTemplateParameter - Called when a C++ template template 630/// parameter (e.g. T in template <template <typename> class T> class array) 631/// has been parsed. S is the current scope. 632Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S, 633 SourceLocation TmpLoc, 634 TemplateParamsTy *Params, 635 IdentifierInfo *Name, 636 SourceLocation NameLoc, 637 unsigned Depth, 638 unsigned Position, 639 SourceLocation EqualLoc, 640 const ParsedTemplateArgument &Default) { 641 assert(S->isTemplateParamScope() && 642 "Template template parameter not in template parameter scope!"); 643 644 // Construct the parameter object. 645 TemplateTemplateParmDecl *Param = 646 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 647 TmpLoc, Depth, Position, Name, 648 (TemplateParameterList*)Params); 649 650 // If the template template parameter has a name, then link the identifier 651 // into the scope and lookup mechanisms. 652 if (Name) { 653 S->AddDecl(DeclPtrTy::make(Param)); 654 IdResolver.AddDecl(Param); 655 } 656 657 if (!Default.isInvalid()) { 658 // Check only that we have a template template argument. We don't want to 659 // try to check well-formedness now, because our template template parameter 660 // might have dependent types in its template parameters, which we wouldn't 661 // be able to match now. 662 // 663 // If none of the template template parameter's template arguments mention 664 // other template parameters, we could actually perform more checking here. 665 // However, it isn't worth doing. 666 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 667 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 668 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 669 << DefaultArg.getSourceRange(); 670 return DeclPtrTy::make(Param); 671 } 672 673 Param->setDefaultArgument(DefaultArg, false); 674 } 675 676 return DeclPtrTy::make(Param); 677} 678 679/// ActOnTemplateParameterList - Builds a TemplateParameterList that 680/// contains the template parameters in Params/NumParams. 681Sema::TemplateParamsTy * 682Sema::ActOnTemplateParameterList(unsigned Depth, 683 SourceLocation ExportLoc, 684 SourceLocation TemplateLoc, 685 SourceLocation LAngleLoc, 686 DeclPtrTy *Params, unsigned NumParams, 687 SourceLocation RAngleLoc) { 688 if (ExportLoc.isValid()) 689 Diag(ExportLoc, diag::warn_template_export_unsupported); 690 691 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 692 (NamedDecl**)Params, NumParams, 693 RAngleLoc); 694} 695 696static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 697 if (SS.isSet()) 698 T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 699 SS.getRange()); 700} 701 702Sema::DeclResult 703Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 704 SourceLocation KWLoc, CXXScopeSpec &SS, 705 IdentifierInfo *Name, SourceLocation NameLoc, 706 AttributeList *Attr, 707 TemplateParameterList *TemplateParams, 708 AccessSpecifier AS) { 709 assert(TemplateParams && TemplateParams->size() > 0 && 710 "No template parameters"); 711 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 712 bool Invalid = false; 713 714 // Check that we can declare a template here. 715 if (CheckTemplateDeclScope(S, TemplateParams)) 716 return true; 717 718 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 719 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 720 721 // There is no such thing as an unnamed class template. 722 if (!Name) { 723 Diag(KWLoc, diag::err_template_unnamed_class); 724 return true; 725 } 726 727 // Find any previous declaration with this name. 728 DeclContext *SemanticContext; 729 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 730 ForRedeclaration); 731 if (SS.isNotEmpty() && !SS.isInvalid()) { 732 SemanticContext = computeDeclContext(SS, true); 733 if (!SemanticContext) { 734 // FIXME: Produce a reasonable diagnostic here 735 return true; 736 } 737 738 if (RequireCompleteDeclContext(SS, SemanticContext)) 739 return true; 740 741 LookupQualifiedName(Previous, SemanticContext); 742 } else { 743 SemanticContext = CurContext; 744 LookupName(Previous, S); 745 } 746 747 if (Previous.isAmbiguous()) 748 return true; 749 750 NamedDecl *PrevDecl = 0; 751 if (Previous.begin() != Previous.end()) 752 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 753 754 // If there is a previous declaration with the same name, check 755 // whether this is a valid redeclaration. 756 ClassTemplateDecl *PrevClassTemplate 757 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 758 759 // We may have found the injected-class-name of a class template, 760 // class template partial specialization, or class template specialization. 761 // In these cases, grab the template that is being defined or specialized. 762 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 763 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 764 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 765 PrevClassTemplate 766 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 767 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 768 PrevClassTemplate 769 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 770 ->getSpecializedTemplate(); 771 } 772 } 773 774 if (TUK == TUK_Friend) { 775 // C++ [namespace.memdef]p3: 776 // [...] When looking for a prior declaration of a class or a function 777 // declared as a friend, and when the name of the friend class or 778 // function is neither a qualified name nor a template-id, scopes outside 779 // the innermost enclosing namespace scope are not considered. 780 if (!SS.isSet()) { 781 DeclContext *OutermostContext = CurContext; 782 while (!OutermostContext->isFileContext()) 783 OutermostContext = OutermostContext->getLookupParent(); 784 785 if (PrevDecl && 786 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 787 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 788 SemanticContext = PrevDecl->getDeclContext(); 789 } else { 790 // Declarations in outer scopes don't matter. However, the outermost 791 // context we computed is the semantic context for our new 792 // declaration. 793 PrevDecl = PrevClassTemplate = 0; 794 SemanticContext = OutermostContext; 795 } 796 } 797 798 if (CurContext->isDependentContext()) { 799 // If this is a dependent context, we don't want to link the friend 800 // class template to the template in scope, because that would perform 801 // checking of the template parameter lists that can't be performed 802 // until the outer context is instantiated. 803 PrevDecl = PrevClassTemplate = 0; 804 } 805 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 806 PrevDecl = PrevClassTemplate = 0; 807 808 if (PrevClassTemplate) { 809 // Ensure that the template parameter lists are compatible. 810 if (!TemplateParameterListsAreEqual(TemplateParams, 811 PrevClassTemplate->getTemplateParameters(), 812 /*Complain=*/true, 813 TPL_TemplateMatch)) 814 return true; 815 816 // C++ [temp.class]p4: 817 // In a redeclaration, partial specialization, explicit 818 // specialization or explicit instantiation of a class template, 819 // the class-key shall agree in kind with the original class 820 // template declaration (7.1.5.3). 821 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 822 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 823 Diag(KWLoc, diag::err_use_with_wrong_tag) 824 << Name 825 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 826 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 827 Kind = PrevRecordDecl->getTagKind(); 828 } 829 830 // Check for redefinition of this class template. 831 if (TUK == TUK_Definition) { 832 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 833 Diag(NameLoc, diag::err_redefinition) << Name; 834 Diag(Def->getLocation(), diag::note_previous_definition); 835 // FIXME: Would it make sense to try to "forget" the previous 836 // definition, as part of error recovery? 837 return true; 838 } 839 } 840 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 841 // Maybe we will complain about the shadowed template parameter. 842 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 843 // Just pretend that we didn't see the previous declaration. 844 PrevDecl = 0; 845 } else if (PrevDecl) { 846 // C++ [temp]p5: 847 // A class template shall not have the same name as any other 848 // template, class, function, object, enumeration, enumerator, 849 // namespace, or type in the same scope (3.3), except as specified 850 // in (14.5.4). 851 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 852 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 853 return true; 854 } 855 856 // Check the template parameter list of this declaration, possibly 857 // merging in the template parameter list from the previous class 858 // template declaration. 859 if (CheckTemplateParameterList(TemplateParams, 860 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 861 TPC_ClassTemplate)) 862 Invalid = true; 863 864 if (SS.isSet()) { 865 // If the name of the template was qualified, we must be defining the 866 // template out-of-line. 867 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate && 868 !(TUK == TUK_Friend && CurContext->isDependentContext())) 869 Diag(NameLoc, diag::err_member_def_does_not_match) 870 << Name << SemanticContext << SS.getRange(); 871 } 872 873 CXXRecordDecl *NewClass = 874 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 875 PrevClassTemplate? 876 PrevClassTemplate->getTemplatedDecl() : 0, 877 /*DelayTypeCreation=*/true); 878 SetNestedNameSpecifier(NewClass, SS); 879 880 ClassTemplateDecl *NewTemplate 881 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 882 DeclarationName(Name), TemplateParams, 883 NewClass, PrevClassTemplate); 884 NewClass->setDescribedClassTemplate(NewTemplate); 885 886 // Build the type for the class template declaration now. 887 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 888 T = Context.getInjectedClassNameType(NewClass, T); 889 assert(T->isDependentType() && "Class template type is not dependent?"); 890 (void)T; 891 892 // If we are providing an explicit specialization of a member that is a 893 // class template, make a note of that. 894 if (PrevClassTemplate && 895 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 896 PrevClassTemplate->setMemberSpecialization(); 897 898 // Set the access specifier. 899 if (!Invalid && TUK != TUK_Friend) 900 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 901 902 // Set the lexical context of these templates 903 NewClass->setLexicalDeclContext(CurContext); 904 NewTemplate->setLexicalDeclContext(CurContext); 905 906 if (TUK == TUK_Definition) 907 NewClass->startDefinition(); 908 909 if (Attr) 910 ProcessDeclAttributeList(S, NewClass, Attr); 911 912 if (TUK != TUK_Friend) 913 PushOnScopeChains(NewTemplate, S); 914 else { 915 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 916 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 917 NewClass->setAccess(PrevClassTemplate->getAccess()); 918 } 919 920 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 921 PrevClassTemplate != NULL); 922 923 // Friend templates are visible in fairly strange ways. 924 if (!CurContext->isDependentContext()) { 925 DeclContext *DC = SemanticContext->getLookupContext(); 926 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 927 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 928 PushOnScopeChains(NewTemplate, EnclosingScope, 929 /* AddToContext = */ false); 930 } 931 932 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 933 NewClass->getLocation(), 934 NewTemplate, 935 /*FIXME:*/NewClass->getLocation()); 936 Friend->setAccess(AS_public); 937 CurContext->addDecl(Friend); 938 } 939 940 if (Invalid) { 941 NewTemplate->setInvalidDecl(); 942 NewClass->setInvalidDecl(); 943 } 944 return DeclPtrTy::make(NewTemplate); 945} 946 947/// \brief Diagnose the presence of a default template argument on a 948/// template parameter, which is ill-formed in certain contexts. 949/// 950/// \returns true if the default template argument should be dropped. 951static bool DiagnoseDefaultTemplateArgument(Sema &S, 952 Sema::TemplateParamListContext TPC, 953 SourceLocation ParamLoc, 954 SourceRange DefArgRange) { 955 switch (TPC) { 956 case Sema::TPC_ClassTemplate: 957 return false; 958 959 case Sema::TPC_FunctionTemplate: 960 // C++ [temp.param]p9: 961 // A default template-argument shall not be specified in a 962 // function template declaration or a function template 963 // definition [...] 964 // (This sentence is not in C++0x, per DR226). 965 if (!S.getLangOptions().CPlusPlus0x) 966 S.Diag(ParamLoc, 967 diag::err_template_parameter_default_in_function_template) 968 << DefArgRange; 969 return false; 970 971 case Sema::TPC_ClassTemplateMember: 972 // C++0x [temp.param]p9: 973 // A default template-argument shall not be specified in the 974 // template-parameter-lists of the definition of a member of a 975 // class template that appears outside of the member's class. 976 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 977 << DefArgRange; 978 return true; 979 980 case Sema::TPC_FriendFunctionTemplate: 981 // C++ [temp.param]p9: 982 // A default template-argument shall not be specified in a 983 // friend template declaration. 984 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 985 << DefArgRange; 986 return true; 987 988 // FIXME: C++0x [temp.param]p9 allows default template-arguments 989 // for friend function templates if there is only a single 990 // declaration (and it is a definition). Strange! 991 } 992 993 return false; 994} 995 996/// \brief Checks the validity of a template parameter list, possibly 997/// considering the template parameter list from a previous 998/// declaration. 999/// 1000/// If an "old" template parameter list is provided, it must be 1001/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1002/// template parameter list. 1003/// 1004/// \param NewParams Template parameter list for a new template 1005/// declaration. This template parameter list will be updated with any 1006/// default arguments that are carried through from the previous 1007/// template parameter list. 1008/// 1009/// \param OldParams If provided, template parameter list from a 1010/// previous declaration of the same template. Default template 1011/// arguments will be merged from the old template parameter list to 1012/// the new template parameter list. 1013/// 1014/// \param TPC Describes the context in which we are checking the given 1015/// template parameter list. 1016/// 1017/// \returns true if an error occurred, false otherwise. 1018bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1019 TemplateParameterList *OldParams, 1020 TemplateParamListContext TPC) { 1021 bool Invalid = false; 1022 1023 // C++ [temp.param]p10: 1024 // The set of default template-arguments available for use with a 1025 // template declaration or definition is obtained by merging the 1026 // default arguments from the definition (if in scope) and all 1027 // declarations in scope in the same way default function 1028 // arguments are (8.3.6). 1029 bool SawDefaultArgument = false; 1030 SourceLocation PreviousDefaultArgLoc; 1031 1032 bool SawParameterPack = false; 1033 SourceLocation ParameterPackLoc; 1034 1035 // Dummy initialization to avoid warnings. 1036 TemplateParameterList::iterator OldParam = NewParams->end(); 1037 if (OldParams) 1038 OldParam = OldParams->begin(); 1039 1040 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1041 NewParamEnd = NewParams->end(); 1042 NewParam != NewParamEnd; ++NewParam) { 1043 // Variables used to diagnose redundant default arguments 1044 bool RedundantDefaultArg = false; 1045 SourceLocation OldDefaultLoc; 1046 SourceLocation NewDefaultLoc; 1047 1048 // Variables used to diagnose missing default arguments 1049 bool MissingDefaultArg = false; 1050 1051 // C++0x [temp.param]p11: 1052 // If a template parameter of a class template is a template parameter pack, 1053 // it must be the last template parameter. 1054 if (SawParameterPack) { 1055 Diag(ParameterPackLoc, 1056 diag::err_template_param_pack_must_be_last_template_parameter); 1057 Invalid = true; 1058 } 1059 1060 if (TemplateTypeParmDecl *NewTypeParm 1061 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1062 // Check the presence of a default argument here. 1063 if (NewTypeParm->hasDefaultArgument() && 1064 DiagnoseDefaultTemplateArgument(*this, TPC, 1065 NewTypeParm->getLocation(), 1066 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1067 .getSourceRange())) 1068 NewTypeParm->removeDefaultArgument(); 1069 1070 // Merge default arguments for template type parameters. 1071 TemplateTypeParmDecl *OldTypeParm 1072 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1073 1074 if (NewTypeParm->isParameterPack()) { 1075 assert(!NewTypeParm->hasDefaultArgument() && 1076 "Parameter packs can't have a default argument!"); 1077 SawParameterPack = true; 1078 ParameterPackLoc = NewTypeParm->getLocation(); 1079 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1080 NewTypeParm->hasDefaultArgument()) { 1081 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1082 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1083 SawDefaultArgument = true; 1084 RedundantDefaultArg = true; 1085 PreviousDefaultArgLoc = NewDefaultLoc; 1086 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1087 // Merge the default argument from the old declaration to the 1088 // new declaration. 1089 SawDefaultArgument = true; 1090 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1091 true); 1092 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1093 } else if (NewTypeParm->hasDefaultArgument()) { 1094 SawDefaultArgument = true; 1095 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1096 } else if (SawDefaultArgument) 1097 MissingDefaultArg = true; 1098 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1099 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1100 // Check the presence of a default argument here. 1101 if (NewNonTypeParm->hasDefaultArgument() && 1102 DiagnoseDefaultTemplateArgument(*this, TPC, 1103 NewNonTypeParm->getLocation(), 1104 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1105 NewNonTypeParm->removeDefaultArgument(); 1106 } 1107 1108 // Merge default arguments for non-type template parameters 1109 NonTypeTemplateParmDecl *OldNonTypeParm 1110 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1111 if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1112 NewNonTypeParm->hasDefaultArgument()) { 1113 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1114 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1115 SawDefaultArgument = true; 1116 RedundantDefaultArg = true; 1117 PreviousDefaultArgLoc = NewDefaultLoc; 1118 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1119 // Merge the default argument from the old declaration to the 1120 // new declaration. 1121 SawDefaultArgument = true; 1122 // FIXME: We need to create a new kind of "default argument" 1123 // expression that points to a previous template template 1124 // parameter. 1125 NewNonTypeParm->setDefaultArgument( 1126 OldNonTypeParm->getDefaultArgument(), 1127 /*Inherited=*/ true); 1128 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1129 } else if (NewNonTypeParm->hasDefaultArgument()) { 1130 SawDefaultArgument = true; 1131 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1132 } else if (SawDefaultArgument) 1133 MissingDefaultArg = true; 1134 } else { 1135 // Check the presence of a default argument here. 1136 TemplateTemplateParmDecl *NewTemplateParm 1137 = cast<TemplateTemplateParmDecl>(*NewParam); 1138 if (NewTemplateParm->hasDefaultArgument() && 1139 DiagnoseDefaultTemplateArgument(*this, TPC, 1140 NewTemplateParm->getLocation(), 1141 NewTemplateParm->getDefaultArgument().getSourceRange())) 1142 NewTemplateParm->removeDefaultArgument(); 1143 1144 // Merge default arguments for template template parameters 1145 TemplateTemplateParmDecl *OldTemplateParm 1146 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1147 if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1148 NewTemplateParm->hasDefaultArgument()) { 1149 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1150 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1151 SawDefaultArgument = true; 1152 RedundantDefaultArg = true; 1153 PreviousDefaultArgLoc = NewDefaultLoc; 1154 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1155 // Merge the default argument from the old declaration to the 1156 // new declaration. 1157 SawDefaultArgument = true; 1158 // FIXME: We need to create a new kind of "default argument" expression 1159 // that points to a previous template template parameter. 1160 NewTemplateParm->setDefaultArgument( 1161 OldTemplateParm->getDefaultArgument(), 1162 /*Inherited=*/ true); 1163 PreviousDefaultArgLoc 1164 = OldTemplateParm->getDefaultArgument().getLocation(); 1165 } else if (NewTemplateParm->hasDefaultArgument()) { 1166 SawDefaultArgument = true; 1167 PreviousDefaultArgLoc 1168 = NewTemplateParm->getDefaultArgument().getLocation(); 1169 } else if (SawDefaultArgument) 1170 MissingDefaultArg = true; 1171 } 1172 1173 if (RedundantDefaultArg) { 1174 // C++ [temp.param]p12: 1175 // A template-parameter shall not be given default arguments 1176 // by two different declarations in the same scope. 1177 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1178 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1179 Invalid = true; 1180 } else if (MissingDefaultArg) { 1181 // C++ [temp.param]p11: 1182 // If a template-parameter has a default template-argument, 1183 // all subsequent template-parameters shall have a default 1184 // template-argument supplied. 1185 Diag((*NewParam)->getLocation(), 1186 diag::err_template_param_default_arg_missing); 1187 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1188 Invalid = true; 1189 } 1190 1191 // If we have an old template parameter list that we're merging 1192 // in, move on to the next parameter. 1193 if (OldParams) 1194 ++OldParam; 1195 } 1196 1197 return Invalid; 1198} 1199 1200/// \brief Match the given template parameter lists to the given scope 1201/// specifier, returning the template parameter list that applies to the 1202/// name. 1203/// 1204/// \param DeclStartLoc the start of the declaration that has a scope 1205/// specifier or a template parameter list. 1206/// 1207/// \param SS the scope specifier that will be matched to the given template 1208/// parameter lists. This scope specifier precedes a qualified name that is 1209/// being declared. 1210/// 1211/// \param ParamLists the template parameter lists, from the outermost to the 1212/// innermost template parameter lists. 1213/// 1214/// \param NumParamLists the number of template parameter lists in ParamLists. 1215/// 1216/// \param IsFriend Whether to apply the slightly different rules for 1217/// matching template parameters to scope specifiers in friend 1218/// declarations. 1219/// 1220/// \param IsExplicitSpecialization will be set true if the entity being 1221/// declared is an explicit specialization, false otherwise. 1222/// 1223/// \returns the template parameter list, if any, that corresponds to the 1224/// name that is preceded by the scope specifier @p SS. This template 1225/// parameter list may be have template parameters (if we're declaring a 1226/// template) or may have no template parameters (if we're declaring a 1227/// template specialization), or may be NULL (if we were's declaring isn't 1228/// itself a template). 1229TemplateParameterList * 1230Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1231 const CXXScopeSpec &SS, 1232 TemplateParameterList **ParamLists, 1233 unsigned NumParamLists, 1234 bool IsFriend, 1235 bool &IsExplicitSpecialization, 1236 bool &Invalid) { 1237 IsExplicitSpecialization = false; 1238 1239 // Find the template-ids that occur within the nested-name-specifier. These 1240 // template-ids will match up with the template parameter lists. 1241 llvm::SmallVector<const TemplateSpecializationType *, 4> 1242 TemplateIdsInSpecifier; 1243 llvm::SmallVector<ClassTemplateSpecializationDecl *, 4> 1244 ExplicitSpecializationsInSpecifier; 1245 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 1246 NNS; NNS = NNS->getPrefix()) { 1247 const Type *T = NNS->getAsType(); 1248 if (!T) break; 1249 1250 // C++0x [temp.expl.spec]p17: 1251 // A member or a member template may be nested within many 1252 // enclosing class templates. In an explicit specialization for 1253 // such a member, the member declaration shall be preceded by a 1254 // template<> for each enclosing class template that is 1255 // explicitly specialized. 1256 // 1257 // Following the existing practice of GNU and EDG, we allow a typedef of a 1258 // template specialization type. 1259 if (const TypedefType *TT = dyn_cast<TypedefType>(T)) 1260 T = TT->LookThroughTypedefs().getTypePtr(); 1261 1262 if (const TemplateSpecializationType *SpecType 1263 = dyn_cast<TemplateSpecializationType>(T)) { 1264 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 1265 if (!Template) 1266 continue; // FIXME: should this be an error? probably... 1267 1268 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 1269 ClassTemplateSpecializationDecl *SpecDecl 1270 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 1271 // If the nested name specifier refers to an explicit specialization, 1272 // we don't need a template<> header. 1273 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) { 1274 ExplicitSpecializationsInSpecifier.push_back(SpecDecl); 1275 continue; 1276 } 1277 } 1278 1279 TemplateIdsInSpecifier.push_back(SpecType); 1280 } 1281 } 1282 1283 // Reverse the list of template-ids in the scope specifier, so that we can 1284 // more easily match up the template-ids and the template parameter lists. 1285 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 1286 1287 SourceLocation FirstTemplateLoc = DeclStartLoc; 1288 if (NumParamLists) 1289 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 1290 1291 // Match the template-ids found in the specifier to the template parameter 1292 // lists. 1293 unsigned Idx = 0; 1294 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 1295 Idx != NumTemplateIds; ++Idx) { 1296 QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0); 1297 bool DependentTemplateId = TemplateId->isDependentType(); 1298 if (Idx >= NumParamLists) { 1299 // We have a template-id without a corresponding template parameter 1300 // list. 1301 1302 // ...which is fine if this is a friend declaration. 1303 if (IsFriend) { 1304 IsExplicitSpecialization = true; 1305 break; 1306 } 1307 1308 if (DependentTemplateId) { 1309 // FIXME: the location information here isn't great. 1310 Diag(SS.getRange().getBegin(), 1311 diag::err_template_spec_needs_template_parameters) 1312 << TemplateId 1313 << SS.getRange(); 1314 Invalid = true; 1315 } else { 1316 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 1317 << SS.getRange() 1318 << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> "); 1319 IsExplicitSpecialization = true; 1320 } 1321 return 0; 1322 } 1323 1324 // Check the template parameter list against its corresponding template-id. 1325 if (DependentTemplateId) { 1326 TemplateParameterList *ExpectedTemplateParams = 0; 1327 1328 // Are there cases in (e.g.) friends where this won't match? 1329 if (const InjectedClassNameType *Injected 1330 = TemplateId->getAs<InjectedClassNameType>()) { 1331 CXXRecordDecl *Record = Injected->getDecl(); 1332 if (ClassTemplatePartialSpecializationDecl *Partial = 1333 dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) 1334 ExpectedTemplateParams = Partial->getTemplateParameters(); 1335 else 1336 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1337 ->getTemplateParameters(); 1338 } 1339 1340 if (ExpectedTemplateParams) 1341 TemplateParameterListsAreEqual(ParamLists[Idx], 1342 ExpectedTemplateParams, 1343 true, TPL_TemplateMatch); 1344 1345 CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember); 1346 } else if (ParamLists[Idx]->size() > 0) 1347 Diag(ParamLists[Idx]->getTemplateLoc(), 1348 diag::err_template_param_list_matches_nontemplate) 1349 << TemplateId 1350 << ParamLists[Idx]->getSourceRange(); 1351 else 1352 IsExplicitSpecialization = true; 1353 } 1354 1355 // If there were at least as many template-ids as there were template 1356 // parameter lists, then there are no template parameter lists remaining for 1357 // the declaration itself. 1358 if (Idx >= NumParamLists) 1359 return 0; 1360 1361 // If there were too many template parameter lists, complain about that now. 1362 if (Idx != NumParamLists - 1) { 1363 while (Idx < NumParamLists - 1) { 1364 bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0; 1365 Diag(ParamLists[Idx]->getTemplateLoc(), 1366 isExplicitSpecHeader? diag::warn_template_spec_extra_headers 1367 : diag::err_template_spec_extra_headers) 1368 << SourceRange(ParamLists[Idx]->getTemplateLoc(), 1369 ParamLists[Idx]->getRAngleLoc()); 1370 1371 if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) { 1372 Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(), 1373 diag::note_explicit_template_spec_does_not_need_header) 1374 << ExplicitSpecializationsInSpecifier.back(); 1375 ExplicitSpecializationsInSpecifier.pop_back(); 1376 } 1377 1378 // We have a template parameter list with no corresponding scope, which 1379 // means that the resulting template declaration can't be instantiated 1380 // properly (we'll end up with dependent nodes when we shouldn't). 1381 if (!isExplicitSpecHeader) 1382 Invalid = true; 1383 1384 ++Idx; 1385 } 1386 } 1387 1388 // Return the last template parameter list, which corresponds to the 1389 // entity being declared. 1390 return ParamLists[NumParamLists - 1]; 1391} 1392 1393QualType Sema::CheckTemplateIdType(TemplateName Name, 1394 SourceLocation TemplateLoc, 1395 const TemplateArgumentListInfo &TemplateArgs) { 1396 TemplateDecl *Template = Name.getAsTemplateDecl(); 1397 if (!Template) { 1398 // The template name does not resolve to a template, so we just 1399 // build a dependent template-id type. 1400 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1401 } 1402 1403 // Check that the template argument list is well-formed for this 1404 // template. 1405 TemplateArgumentListBuilder Converted(Template->getTemplateParameters(), 1406 TemplateArgs.size()); 1407 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1408 false, Converted)) 1409 return QualType(); 1410 1411 assert((Converted.structuredSize() == 1412 Template->getTemplateParameters()->size()) && 1413 "Converted template argument list is too short!"); 1414 1415 QualType CanonType; 1416 1417 if (Name.isDependent() || 1418 TemplateSpecializationType::anyDependentTemplateArguments( 1419 TemplateArgs)) { 1420 // This class template specialization is a dependent 1421 // type. Therefore, its canonical type is another class template 1422 // specialization type that contains all of the converted 1423 // arguments in canonical form. This ensures that, e.g., A<T> and 1424 // A<T, T> have identical types when A is declared as: 1425 // 1426 // template<typename T, typename U = T> struct A; 1427 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1428 CanonType = Context.getTemplateSpecializationType(CanonName, 1429 Converted.getFlatArguments(), 1430 Converted.flatSize()); 1431 1432 // FIXME: CanonType is not actually the canonical type, and unfortunately 1433 // it is a TemplateSpecializationType that we will never use again. 1434 // In the future, we need to teach getTemplateSpecializationType to only 1435 // build the canonical type and return that to us. 1436 CanonType = Context.getCanonicalType(CanonType); 1437 1438 // This might work out to be a current instantiation, in which 1439 // case the canonical type needs to be the InjectedClassNameType. 1440 // 1441 // TODO: in theory this could be a simple hashtable lookup; most 1442 // changes to CurContext don't change the set of current 1443 // instantiations. 1444 if (isa<ClassTemplateDecl>(Template)) { 1445 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 1446 // If we get out to a namespace, we're done. 1447 if (Ctx->isFileContext()) break; 1448 1449 // If this isn't a record, keep looking. 1450 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 1451 if (!Record) continue; 1452 1453 // Look for one of the two cases with InjectedClassNameTypes 1454 // and check whether it's the same template. 1455 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 1456 !Record->getDescribedClassTemplate()) 1457 continue; 1458 1459 // Fetch the injected class name type and check whether its 1460 // injected type is equal to the type we just built. 1461 QualType ICNT = Context.getTypeDeclType(Record); 1462 QualType Injected = cast<InjectedClassNameType>(ICNT) 1463 ->getInjectedSpecializationType(); 1464 1465 if (CanonType != Injected->getCanonicalTypeInternal()) 1466 continue; 1467 1468 // If so, the canonical type of this TST is the injected 1469 // class name type of the record we just found. 1470 assert(ICNT.isCanonical()); 1471 CanonType = ICNT; 1472 break; 1473 } 1474 } 1475 } else if (ClassTemplateDecl *ClassTemplate 1476 = dyn_cast<ClassTemplateDecl>(Template)) { 1477 // Find the class template specialization declaration that 1478 // corresponds to these arguments. 1479 void *InsertPos = 0; 1480 ClassTemplateSpecializationDecl *Decl 1481 = ClassTemplate->findSpecialization(Converted.getFlatArguments(), 1482 Converted.flatSize(), InsertPos); 1483 if (!Decl) { 1484 // This is the first time we have referenced this class template 1485 // specialization. Create the canonical declaration and add it to 1486 // the set of specializations. 1487 Decl = ClassTemplateSpecializationDecl::Create(Context, 1488 ClassTemplate->getTemplatedDecl()->getTagKind(), 1489 ClassTemplate->getDeclContext(), 1490 ClassTemplate->getLocation(), 1491 ClassTemplate, 1492 Converted, 0); 1493 ClassTemplate->AddSpecialization(Decl, InsertPos); 1494 Decl->setLexicalDeclContext(CurContext); 1495 } 1496 1497 CanonType = Context.getTypeDeclType(Decl); 1498 assert(isa<RecordType>(CanonType) && 1499 "type of non-dependent specialization is not a RecordType"); 1500 } 1501 1502 // Build the fully-sugared type for this class template 1503 // specialization, which refers back to the class template 1504 // specialization we created or found. 1505 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 1506} 1507 1508Action::TypeResult 1509Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1510 SourceLocation LAngleLoc, 1511 ASTTemplateArgsPtr TemplateArgsIn, 1512 SourceLocation RAngleLoc) { 1513 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1514 1515 // Translate the parser's template argument list in our AST format. 1516 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 1517 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 1518 1519 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 1520 TemplateArgsIn.release(); 1521 1522 if (Result.isNull()) 1523 return true; 1524 1525 TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result); 1526 TemplateSpecializationTypeLoc TL 1527 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc()); 1528 TL.setTemplateNameLoc(TemplateLoc); 1529 TL.setLAngleLoc(LAngleLoc); 1530 TL.setRAngleLoc(RAngleLoc); 1531 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 1532 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 1533 1534 return CreateLocInfoType(Result, DI).getAsOpaquePtr(); 1535} 1536 1537Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult, 1538 TagUseKind TUK, 1539 DeclSpec::TST TagSpec, 1540 SourceLocation TagLoc) { 1541 if (TypeResult.isInvalid()) 1542 return Sema::TypeResult(); 1543 1544 // FIXME: preserve source info, ideally without copying the DI. 1545 TypeSourceInfo *DI; 1546 QualType Type = GetTypeFromParser(TypeResult.get(), &DI); 1547 1548 // Verify the tag specifier. 1549 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 1550 1551 if (const RecordType *RT = Type->getAs<RecordType>()) { 1552 RecordDecl *D = RT->getDecl(); 1553 1554 IdentifierInfo *Id = D->getIdentifier(); 1555 assert(Id && "templated class must have an identifier"); 1556 1557 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 1558 Diag(TagLoc, diag::err_use_with_wrong_tag) 1559 << Type 1560 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 1561 Diag(D->getLocation(), diag::note_previous_use); 1562 } 1563 } 1564 1565 ElaboratedTypeKeyword Keyword 1566 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 1567 QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type); 1568 1569 return ElabType.getAsOpaquePtr(); 1570} 1571 1572Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 1573 LookupResult &R, 1574 bool RequiresADL, 1575 const TemplateArgumentListInfo &TemplateArgs) { 1576 // FIXME: Can we do any checking at this point? I guess we could check the 1577 // template arguments that we have against the template name, if the template 1578 // name refers to a single template. That's not a terribly common case, 1579 // though. 1580 1581 // These should be filtered out by our callers. 1582 assert(!R.empty() && "empty lookup results when building templateid"); 1583 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 1584 1585 NestedNameSpecifier *Qualifier = 0; 1586 SourceRange QualifierRange; 1587 if (SS.isSet()) { 1588 Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 1589 QualifierRange = SS.getRange(); 1590 } 1591 1592 // We don't want lookup warnings at this point. 1593 R.suppressDiagnostics(); 1594 1595 bool Dependent 1596 = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 1597 &TemplateArgs); 1598 UnresolvedLookupExpr *ULE 1599 = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(), 1600 Qualifier, QualifierRange, 1601 R.getLookupName(), R.getNameLoc(), 1602 RequiresADL, TemplateArgs, 1603 R.begin(), R.end()); 1604 1605 return Owned(ULE); 1606} 1607 1608// We actually only call this from template instantiation. 1609Sema::OwningExprResult 1610Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 1611 DeclarationName Name, 1612 SourceLocation NameLoc, 1613 const TemplateArgumentListInfo &TemplateArgs) { 1614 DeclContext *DC; 1615 if (!(DC = computeDeclContext(SS, false)) || 1616 DC->isDependentContext() || 1617 RequireCompleteDeclContext(SS, DC)) 1618 return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs); 1619 1620 bool MemberOfUnknownSpecialization; 1621 LookupResult R(*this, Name, NameLoc, LookupOrdinaryName); 1622 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 1623 MemberOfUnknownSpecialization); 1624 1625 if (R.isAmbiguous()) 1626 return ExprError(); 1627 1628 if (R.empty()) { 1629 Diag(NameLoc, diag::err_template_kw_refers_to_non_template) 1630 << Name << SS.getRange(); 1631 return ExprError(); 1632 } 1633 1634 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 1635 Diag(NameLoc, diag::err_template_kw_refers_to_class_template) 1636 << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange(); 1637 Diag(Temp->getLocation(), diag::note_referenced_class_template); 1638 return ExprError(); 1639 } 1640 1641 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 1642} 1643 1644/// \brief Form a dependent template name. 1645/// 1646/// This action forms a dependent template name given the template 1647/// name and its (presumably dependent) scope specifier. For 1648/// example, given "MetaFun::template apply", the scope specifier \p 1649/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1650/// of the "template" keyword, and "apply" is the \p Name. 1651TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 1652 SourceLocation TemplateKWLoc, 1653 CXXScopeSpec &SS, 1654 UnqualifiedId &Name, 1655 TypeTy *ObjectType, 1656 bool EnteringContext, 1657 TemplateTy &Result) { 1658 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() && 1659 !getLangOptions().CPlusPlus0x) 1660 Diag(TemplateKWLoc, diag::ext_template_outside_of_template) 1661 << FixItHint::CreateRemoval(TemplateKWLoc); 1662 1663 DeclContext *LookupCtx = 0; 1664 if (SS.isSet()) 1665 LookupCtx = computeDeclContext(SS, EnteringContext); 1666 if (!LookupCtx && ObjectType) 1667 LookupCtx = computeDeclContext(QualType::getFromOpaquePtr(ObjectType)); 1668 if (LookupCtx) { 1669 // C++0x [temp.names]p5: 1670 // If a name prefixed by the keyword template is not the name of 1671 // a template, the program is ill-formed. [Note: the keyword 1672 // template may not be applied to non-template members of class 1673 // templates. -end note ] [ Note: as is the case with the 1674 // typename prefix, the template prefix is allowed in cases 1675 // where it is not strictly necessary; i.e., when the 1676 // nested-name-specifier or the expression on the left of the -> 1677 // or . is not dependent on a template-parameter, or the use 1678 // does not appear in the scope of a template. -end note] 1679 // 1680 // Note: C++03 was more strict here, because it banned the use of 1681 // the "template" keyword prior to a template-name that was not a 1682 // dependent name. C++ DR468 relaxed this requirement (the 1683 // "template" keyword is now permitted). We follow the C++0x 1684 // rules, even in C++03 mode with a warning, retroactively applying the DR. 1685 bool MemberOfUnknownSpecialization; 1686 TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType, 1687 EnteringContext, Result, 1688 MemberOfUnknownSpecialization); 1689 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 1690 isa<CXXRecordDecl>(LookupCtx) && 1691 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) { 1692 // This is a dependent template. Handle it below. 1693 } else if (TNK == TNK_Non_template) { 1694 Diag(Name.getSourceRange().getBegin(), 1695 diag::err_template_kw_refers_to_non_template) 1696 << GetNameFromUnqualifiedId(Name) 1697 << Name.getSourceRange() 1698 << TemplateKWLoc; 1699 return TNK_Non_template; 1700 } else { 1701 // We found something; return it. 1702 return TNK; 1703 } 1704 } 1705 1706 NestedNameSpecifier *Qualifier 1707 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1708 1709 switch (Name.getKind()) { 1710 case UnqualifiedId::IK_Identifier: 1711 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1712 Name.Identifier)); 1713 return TNK_Dependent_template_name; 1714 1715 case UnqualifiedId::IK_OperatorFunctionId: 1716 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1717 Name.OperatorFunctionId.Operator)); 1718 return TNK_Dependent_template_name; 1719 1720 case UnqualifiedId::IK_LiteralOperatorId: 1721 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 1722 1723 default: 1724 break; 1725 } 1726 1727 Diag(Name.getSourceRange().getBegin(), 1728 diag::err_template_kw_refers_to_non_template) 1729 << GetNameFromUnqualifiedId(Name) 1730 << Name.getSourceRange() 1731 << TemplateKWLoc; 1732 return TNK_Non_template; 1733} 1734 1735bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1736 const TemplateArgumentLoc &AL, 1737 TemplateArgumentListBuilder &Converted) { 1738 const TemplateArgument &Arg = AL.getArgument(); 1739 1740 // Check template type parameter. 1741 switch(Arg.getKind()) { 1742 case TemplateArgument::Type: 1743 // C++ [temp.arg.type]p1: 1744 // A template-argument for a template-parameter which is a 1745 // type shall be a type-id. 1746 break; 1747 case TemplateArgument::Template: { 1748 // We have a template type parameter but the template argument 1749 // is a template without any arguments. 1750 SourceRange SR = AL.getSourceRange(); 1751 TemplateName Name = Arg.getAsTemplate(); 1752 Diag(SR.getBegin(), diag::err_template_missing_args) 1753 << Name << SR; 1754 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 1755 Diag(Decl->getLocation(), diag::note_template_decl_here); 1756 1757 return true; 1758 } 1759 default: { 1760 // We have a template type parameter but the template argument 1761 // is not a type. 1762 SourceRange SR = AL.getSourceRange(); 1763 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 1764 Diag(Param->getLocation(), diag::note_template_param_here); 1765 1766 return true; 1767 } 1768 } 1769 1770 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 1771 return true; 1772 1773 // Add the converted template type argument. 1774 Converted.Append( 1775 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 1776 return false; 1777} 1778 1779/// \brief Substitute template arguments into the default template argument for 1780/// the given template type parameter. 1781/// 1782/// \param SemaRef the semantic analysis object for which we are performing 1783/// the substitution. 1784/// 1785/// \param Template the template that we are synthesizing template arguments 1786/// for. 1787/// 1788/// \param TemplateLoc the location of the template name that started the 1789/// template-id we are checking. 1790/// 1791/// \param RAngleLoc the location of the right angle bracket ('>') that 1792/// terminates the template-id. 1793/// 1794/// \param Param the template template parameter whose default we are 1795/// substituting into. 1796/// 1797/// \param Converted the list of template arguments provided for template 1798/// parameters that precede \p Param in the template parameter list. 1799/// 1800/// \returns the substituted template argument, or NULL if an error occurred. 1801static TypeSourceInfo * 1802SubstDefaultTemplateArgument(Sema &SemaRef, 1803 TemplateDecl *Template, 1804 SourceLocation TemplateLoc, 1805 SourceLocation RAngleLoc, 1806 TemplateTypeParmDecl *Param, 1807 TemplateArgumentListBuilder &Converted) { 1808 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 1809 1810 // If the argument type is dependent, instantiate it now based 1811 // on the previously-computed template arguments. 1812 if (ArgType->getType()->isDependentType()) { 1813 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1814 /*TakeArgs=*/false); 1815 1816 MultiLevelTemplateArgumentList AllTemplateArgs 1817 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1818 1819 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1820 Template, Converted.getFlatArguments(), 1821 Converted.flatSize(), 1822 SourceRange(TemplateLoc, RAngleLoc)); 1823 1824 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 1825 Param->getDefaultArgumentLoc(), 1826 Param->getDeclName()); 1827 } 1828 1829 return ArgType; 1830} 1831 1832/// \brief Substitute template arguments into the default template argument for 1833/// the given non-type template parameter. 1834/// 1835/// \param SemaRef the semantic analysis object for which we are performing 1836/// the substitution. 1837/// 1838/// \param Template the template that we are synthesizing template arguments 1839/// for. 1840/// 1841/// \param TemplateLoc the location of the template name that started the 1842/// template-id we are checking. 1843/// 1844/// \param RAngleLoc the location of the right angle bracket ('>') that 1845/// terminates the template-id. 1846/// 1847/// \param Param the non-type template parameter whose default we are 1848/// substituting into. 1849/// 1850/// \param Converted the list of template arguments provided for template 1851/// parameters that precede \p Param in the template parameter list. 1852/// 1853/// \returns the substituted template argument, or NULL if an error occurred. 1854static Sema::OwningExprResult 1855SubstDefaultTemplateArgument(Sema &SemaRef, 1856 TemplateDecl *Template, 1857 SourceLocation TemplateLoc, 1858 SourceLocation RAngleLoc, 1859 NonTypeTemplateParmDecl *Param, 1860 TemplateArgumentListBuilder &Converted) { 1861 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1862 /*TakeArgs=*/false); 1863 1864 MultiLevelTemplateArgumentList AllTemplateArgs 1865 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1866 1867 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1868 Template, Converted.getFlatArguments(), 1869 Converted.flatSize(), 1870 SourceRange(TemplateLoc, RAngleLoc)); 1871 1872 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 1873} 1874 1875/// \brief Substitute template arguments into the default template argument for 1876/// the given template template parameter. 1877/// 1878/// \param SemaRef the semantic analysis object for which we are performing 1879/// the substitution. 1880/// 1881/// \param Template the template that we are synthesizing template arguments 1882/// for. 1883/// 1884/// \param TemplateLoc the location of the template name that started the 1885/// template-id we are checking. 1886/// 1887/// \param RAngleLoc the location of the right angle bracket ('>') that 1888/// terminates the template-id. 1889/// 1890/// \param Param the template template parameter whose default we are 1891/// substituting into. 1892/// 1893/// \param Converted the list of template arguments provided for template 1894/// parameters that precede \p Param in the template parameter list. 1895/// 1896/// \returns the substituted template argument, or NULL if an error occurred. 1897static TemplateName 1898SubstDefaultTemplateArgument(Sema &SemaRef, 1899 TemplateDecl *Template, 1900 SourceLocation TemplateLoc, 1901 SourceLocation RAngleLoc, 1902 TemplateTemplateParmDecl *Param, 1903 TemplateArgumentListBuilder &Converted) { 1904 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1905 /*TakeArgs=*/false); 1906 1907 MultiLevelTemplateArgumentList AllTemplateArgs 1908 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1909 1910 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1911 Template, Converted.getFlatArguments(), 1912 Converted.flatSize(), 1913 SourceRange(TemplateLoc, RAngleLoc)); 1914 1915 return SemaRef.SubstTemplateName( 1916 Param->getDefaultArgument().getArgument().getAsTemplate(), 1917 Param->getDefaultArgument().getTemplateNameLoc(), 1918 AllTemplateArgs); 1919} 1920 1921/// \brief If the given template parameter has a default template 1922/// argument, substitute into that default template argument and 1923/// return the corresponding template argument. 1924TemplateArgumentLoc 1925Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 1926 SourceLocation TemplateLoc, 1927 SourceLocation RAngleLoc, 1928 Decl *Param, 1929 TemplateArgumentListBuilder &Converted) { 1930 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 1931 if (!TypeParm->hasDefaultArgument()) 1932 return TemplateArgumentLoc(); 1933 1934 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 1935 TemplateLoc, 1936 RAngleLoc, 1937 TypeParm, 1938 Converted); 1939 if (DI) 1940 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 1941 1942 return TemplateArgumentLoc(); 1943 } 1944 1945 if (NonTypeTemplateParmDecl *NonTypeParm 1946 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 1947 if (!NonTypeParm->hasDefaultArgument()) 1948 return TemplateArgumentLoc(); 1949 1950 OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 1951 TemplateLoc, 1952 RAngleLoc, 1953 NonTypeParm, 1954 Converted); 1955 if (Arg.isInvalid()) 1956 return TemplateArgumentLoc(); 1957 1958 Expr *ArgE = Arg.takeAs<Expr>(); 1959 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 1960 } 1961 1962 TemplateTemplateParmDecl *TempTempParm 1963 = cast<TemplateTemplateParmDecl>(Param); 1964 if (!TempTempParm->hasDefaultArgument()) 1965 return TemplateArgumentLoc(); 1966 1967 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 1968 TemplateLoc, 1969 RAngleLoc, 1970 TempTempParm, 1971 Converted); 1972 if (TName.isNull()) 1973 return TemplateArgumentLoc(); 1974 1975 return TemplateArgumentLoc(TemplateArgument(TName), 1976 TempTempParm->getDefaultArgument().getTemplateQualifierRange(), 1977 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 1978} 1979 1980/// \brief Check that the given template argument corresponds to the given 1981/// template parameter. 1982bool Sema::CheckTemplateArgument(NamedDecl *Param, 1983 const TemplateArgumentLoc &Arg, 1984 TemplateDecl *Template, 1985 SourceLocation TemplateLoc, 1986 SourceLocation RAngleLoc, 1987 TemplateArgumentListBuilder &Converted, 1988 CheckTemplateArgumentKind CTAK) { 1989 // Check template type parameters. 1990 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 1991 return CheckTemplateTypeArgument(TTP, Arg, Converted); 1992 1993 // Check non-type template parameters. 1994 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 1995 // Do substitution on the type of the non-type template parameter 1996 // with the template arguments we've seen thus far. 1997 QualType NTTPType = NTTP->getType(); 1998 if (NTTPType->isDependentType()) { 1999 // Do substitution on the type of the non-type template parameter. 2000 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2001 NTTP, Converted.getFlatArguments(), 2002 Converted.flatSize(), 2003 SourceRange(TemplateLoc, RAngleLoc)); 2004 2005 TemplateArgumentList TemplateArgs(Context, Converted, 2006 /*TakeArgs=*/false); 2007 NTTPType = SubstType(NTTPType, 2008 MultiLevelTemplateArgumentList(TemplateArgs), 2009 NTTP->getLocation(), 2010 NTTP->getDeclName()); 2011 // If that worked, check the non-type template parameter type 2012 // for validity. 2013 if (!NTTPType.isNull()) 2014 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2015 NTTP->getLocation()); 2016 if (NTTPType.isNull()) 2017 return true; 2018 } 2019 2020 switch (Arg.getArgument().getKind()) { 2021 case TemplateArgument::Null: 2022 assert(false && "Should never see a NULL template argument here"); 2023 return true; 2024 2025 case TemplateArgument::Expression: { 2026 Expr *E = Arg.getArgument().getAsExpr(); 2027 TemplateArgument Result; 2028 if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK)) 2029 return true; 2030 2031 Converted.Append(Result); 2032 break; 2033 } 2034 2035 case TemplateArgument::Declaration: 2036 case TemplateArgument::Integral: 2037 // We've already checked this template argument, so just copy 2038 // it to the list of converted arguments. 2039 Converted.Append(Arg.getArgument()); 2040 break; 2041 2042 case TemplateArgument::Template: 2043 // We were given a template template argument. It may not be ill-formed; 2044 // see below. 2045 if (DependentTemplateName *DTN 2046 = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) { 2047 // We have a template argument such as \c T::template X, which we 2048 // parsed as a template template argument. However, since we now 2049 // know that we need a non-type template argument, convert this 2050 // template name into an expression. 2051 Expr *E = DependentScopeDeclRefExpr::Create(Context, 2052 DTN->getQualifier(), 2053 Arg.getTemplateQualifierRange(), 2054 DTN->getIdentifier(), 2055 Arg.getTemplateNameLoc()); 2056 2057 TemplateArgument Result; 2058 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 2059 return true; 2060 2061 Converted.Append(Result); 2062 break; 2063 } 2064 2065 // We have a template argument that actually does refer to a class 2066 // template, template alias, or template template parameter, and 2067 // therefore cannot be a non-type template argument. 2068 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2069 << Arg.getSourceRange(); 2070 2071 Diag(Param->getLocation(), diag::note_template_param_here); 2072 return true; 2073 2074 case TemplateArgument::Type: { 2075 // We have a non-type template parameter but the template 2076 // argument is a type. 2077 2078 // C++ [temp.arg]p2: 2079 // In a template-argument, an ambiguity between a type-id and 2080 // an expression is resolved to a type-id, regardless of the 2081 // form of the corresponding template-parameter. 2082 // 2083 // We warn specifically about this case, since it can be rather 2084 // confusing for users. 2085 QualType T = Arg.getArgument().getAsType(); 2086 SourceRange SR = Arg.getSourceRange(); 2087 if (T->isFunctionType()) 2088 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2089 else 2090 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2091 Diag(Param->getLocation(), diag::note_template_param_here); 2092 return true; 2093 } 2094 2095 case TemplateArgument::Pack: 2096 llvm_unreachable("Caller must expand template argument packs"); 2097 break; 2098 } 2099 2100 return false; 2101 } 2102 2103 2104 // Check template template parameters. 2105 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2106 2107 // Substitute into the template parameter list of the template 2108 // template parameter, since previously-supplied template arguments 2109 // may appear within the template template parameter. 2110 { 2111 // Set up a template instantiation context. 2112 LocalInstantiationScope Scope(*this); 2113 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2114 TempParm, Converted.getFlatArguments(), 2115 Converted.flatSize(), 2116 SourceRange(TemplateLoc, RAngleLoc)); 2117 2118 TemplateArgumentList TemplateArgs(Context, Converted, 2119 /*TakeArgs=*/false); 2120 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2121 SubstDecl(TempParm, CurContext, 2122 MultiLevelTemplateArgumentList(TemplateArgs))); 2123 if (!TempParm) 2124 return true; 2125 2126 // FIXME: TempParam is leaked. 2127 } 2128 2129 switch (Arg.getArgument().getKind()) { 2130 case TemplateArgument::Null: 2131 assert(false && "Should never see a NULL template argument here"); 2132 return true; 2133 2134 case TemplateArgument::Template: 2135 if (CheckTemplateArgument(TempParm, Arg)) 2136 return true; 2137 2138 Converted.Append(Arg.getArgument()); 2139 break; 2140 2141 case TemplateArgument::Expression: 2142 case TemplateArgument::Type: 2143 // We have a template template parameter but the template 2144 // argument does not refer to a template. 2145 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 2146 return true; 2147 2148 case TemplateArgument::Declaration: 2149 llvm_unreachable( 2150 "Declaration argument with template template parameter"); 2151 break; 2152 case TemplateArgument::Integral: 2153 llvm_unreachable( 2154 "Integral argument with template template parameter"); 2155 break; 2156 2157 case TemplateArgument::Pack: 2158 llvm_unreachable("Caller must expand template argument packs"); 2159 break; 2160 } 2161 2162 return false; 2163} 2164 2165/// \brief Check that the given template argument list is well-formed 2166/// for specializing the given template. 2167bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2168 SourceLocation TemplateLoc, 2169 const TemplateArgumentListInfo &TemplateArgs, 2170 bool PartialTemplateArgs, 2171 TemplateArgumentListBuilder &Converted) { 2172 TemplateParameterList *Params = Template->getTemplateParameters(); 2173 unsigned NumParams = Params->size(); 2174 unsigned NumArgs = TemplateArgs.size(); 2175 bool Invalid = false; 2176 2177 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2178 2179 bool HasParameterPack = 2180 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2181 2182 if ((NumArgs > NumParams && !HasParameterPack) || 2183 (NumArgs < Params->getMinRequiredArguments() && 2184 !PartialTemplateArgs)) { 2185 // FIXME: point at either the first arg beyond what we can handle, 2186 // or the '>', depending on whether we have too many or too few 2187 // arguments. 2188 SourceRange Range; 2189 if (NumArgs > NumParams) 2190 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2191 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2192 << (NumArgs > NumParams) 2193 << (isa<ClassTemplateDecl>(Template)? 0 : 2194 isa<FunctionTemplateDecl>(Template)? 1 : 2195 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2196 << Template << Range; 2197 Diag(Template->getLocation(), diag::note_template_decl_here) 2198 << Params->getSourceRange(); 2199 Invalid = true; 2200 } 2201 2202 // C++ [temp.arg]p1: 2203 // [...] The type and form of each template-argument specified in 2204 // a template-id shall match the type and form specified for the 2205 // corresponding parameter declared by the template in its 2206 // template-parameter-list. 2207 unsigned ArgIdx = 0; 2208 for (TemplateParameterList::iterator Param = Params->begin(), 2209 ParamEnd = Params->end(); 2210 Param != ParamEnd; ++Param, ++ArgIdx) { 2211 if (ArgIdx > NumArgs && PartialTemplateArgs) 2212 break; 2213 2214 // If we have a template parameter pack, check every remaining template 2215 // argument against that template parameter pack. 2216 if ((*Param)->isTemplateParameterPack()) { 2217 Converted.BeginPack(); 2218 for (; ArgIdx < NumArgs; ++ArgIdx) { 2219 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2220 TemplateLoc, RAngleLoc, Converted)) { 2221 Invalid = true; 2222 break; 2223 } 2224 } 2225 Converted.EndPack(); 2226 continue; 2227 } 2228 2229 if (ArgIdx < NumArgs) { 2230 // Check the template argument we were given. 2231 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2232 TemplateLoc, RAngleLoc, Converted)) 2233 return true; 2234 2235 continue; 2236 } 2237 2238 // We have a default template argument that we will use. 2239 TemplateArgumentLoc Arg; 2240 2241 // Retrieve the default template argument from the template 2242 // parameter. For each kind of template parameter, we substitute the 2243 // template arguments provided thus far and any "outer" template arguments 2244 // (when the template parameter was part of a nested template) into 2245 // the default argument. 2246 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2247 if (!TTP->hasDefaultArgument()) { 2248 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2249 break; 2250 } 2251 2252 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2253 Template, 2254 TemplateLoc, 2255 RAngleLoc, 2256 TTP, 2257 Converted); 2258 if (!ArgType) 2259 return true; 2260 2261 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2262 ArgType); 2263 } else if (NonTypeTemplateParmDecl *NTTP 2264 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2265 if (!NTTP->hasDefaultArgument()) { 2266 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2267 break; 2268 } 2269 2270 Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template, 2271 TemplateLoc, 2272 RAngleLoc, 2273 NTTP, 2274 Converted); 2275 if (E.isInvalid()) 2276 return true; 2277 2278 Expr *Ex = E.takeAs<Expr>(); 2279 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2280 } else { 2281 TemplateTemplateParmDecl *TempParm 2282 = cast<TemplateTemplateParmDecl>(*Param); 2283 2284 if (!TempParm->hasDefaultArgument()) { 2285 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2286 break; 2287 } 2288 2289 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2290 TemplateLoc, 2291 RAngleLoc, 2292 TempParm, 2293 Converted); 2294 if (Name.isNull()) 2295 return true; 2296 2297 Arg = TemplateArgumentLoc(TemplateArgument(Name), 2298 TempParm->getDefaultArgument().getTemplateQualifierRange(), 2299 TempParm->getDefaultArgument().getTemplateNameLoc()); 2300 } 2301 2302 // Introduce an instantiation record that describes where we are using 2303 // the default template argument. 2304 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 2305 Converted.getFlatArguments(), 2306 Converted.flatSize(), 2307 SourceRange(TemplateLoc, RAngleLoc)); 2308 2309 // Check the default template argument. 2310 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 2311 RAngleLoc, Converted)) 2312 return true; 2313 } 2314 2315 return Invalid; 2316} 2317 2318/// \brief Check a template argument against its corresponding 2319/// template type parameter. 2320/// 2321/// This routine implements the semantics of C++ [temp.arg.type]. It 2322/// returns true if an error occurred, and false otherwise. 2323bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 2324 TypeSourceInfo *ArgInfo) { 2325 assert(ArgInfo && "invalid TypeSourceInfo"); 2326 QualType Arg = ArgInfo->getType(); 2327 2328 // C++ [temp.arg.type]p2: 2329 // A local type, a type with no linkage, an unnamed type or a type 2330 // compounded from any of these types shall not be used as a 2331 // template-argument for a template type-parameter. 2332 // 2333 // FIXME: Perform the unnamed type check. 2334 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 2335 const TagType *Tag = 0; 2336 if (const EnumType *EnumT = Arg->getAs<EnumType>()) 2337 Tag = EnumT; 2338 else if (const RecordType *RecordT = Arg->getAs<RecordType>()) 2339 Tag = RecordT; 2340 if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) { 2341 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 2342 return Diag(SR.getBegin(), diag::err_template_arg_local_type) 2343 << QualType(Tag, 0) << SR; 2344 } else if (Tag && !Tag->getDecl()->getDeclName() && 2345 !Tag->getDecl()->getTypedefForAnonDecl()) { 2346 Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR; 2347 Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here); 2348 return true; 2349 } else if (Arg->isVariablyModifiedType()) { 2350 Diag(SR.getBegin(), diag::err_variably_modified_template_arg) 2351 << Arg; 2352 return true; 2353 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 2354 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 2355 } 2356 2357 return false; 2358} 2359 2360/// \brief Checks whether the given template argument is the address 2361/// of an object or function according to C++ [temp.arg.nontype]p1. 2362static bool 2363CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 2364 NonTypeTemplateParmDecl *Param, 2365 QualType ParamType, 2366 Expr *ArgIn, 2367 TemplateArgument &Converted) { 2368 bool Invalid = false; 2369 Expr *Arg = ArgIn; 2370 QualType ArgType = Arg->getType(); 2371 2372 // See through any implicit casts we added to fix the type. 2373 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2374 Arg = Cast->getSubExpr(); 2375 2376 // C++ [temp.arg.nontype]p1: 2377 // 2378 // A template-argument for a non-type, non-template 2379 // template-parameter shall be one of: [...] 2380 // 2381 // -- the address of an object or function with external 2382 // linkage, including function templates and function 2383 // template-ids but excluding non-static class members, 2384 // expressed as & id-expression where the & is optional if 2385 // the name refers to a function or array, or if the 2386 // corresponding template-parameter is a reference; or 2387 DeclRefExpr *DRE = 0; 2388 2389 // Ignore (and complain about) any excess parentheses. 2390 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2391 if (!Invalid) { 2392 S.Diag(Arg->getSourceRange().getBegin(), 2393 diag::err_template_arg_extra_parens) 2394 << Arg->getSourceRange(); 2395 Invalid = true; 2396 } 2397 2398 Arg = Parens->getSubExpr(); 2399 } 2400 2401 bool AddressTaken = false; 2402 SourceLocation AddrOpLoc; 2403 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2404 if (UnOp->getOpcode() == UnaryOperator::AddrOf) { 2405 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2406 AddressTaken = true; 2407 AddrOpLoc = UnOp->getOperatorLoc(); 2408 } 2409 } else 2410 DRE = dyn_cast<DeclRefExpr>(Arg); 2411 2412 if (!DRE) { 2413 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 2414 << Arg->getSourceRange(); 2415 S.Diag(Param->getLocation(), diag::note_template_param_here); 2416 return true; 2417 } 2418 2419 // Stop checking the precise nature of the argument if it is value dependent, 2420 // it should be checked when instantiated. 2421 if (Arg->isValueDependent()) { 2422 Converted = TemplateArgument(ArgIn->Retain()); 2423 return false; 2424 } 2425 2426 if (!isa<ValueDecl>(DRE->getDecl())) { 2427 S.Diag(Arg->getSourceRange().getBegin(), 2428 diag::err_template_arg_not_object_or_func_form) 2429 << Arg->getSourceRange(); 2430 S.Diag(Param->getLocation(), diag::note_template_param_here); 2431 return true; 2432 } 2433 2434 NamedDecl *Entity = 0; 2435 2436 // Cannot refer to non-static data members 2437 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) { 2438 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 2439 << Field << Arg->getSourceRange(); 2440 S.Diag(Param->getLocation(), diag::note_template_param_here); 2441 return true; 2442 } 2443 2444 // Cannot refer to non-static member functions 2445 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 2446 if (!Method->isStatic()) { 2447 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method) 2448 << Method << Arg->getSourceRange(); 2449 S.Diag(Param->getLocation(), diag::note_template_param_here); 2450 return true; 2451 } 2452 2453 // Functions must have external linkage. 2454 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 2455 if (!isExternalLinkage(Func->getLinkage())) { 2456 S.Diag(Arg->getSourceRange().getBegin(), 2457 diag::err_template_arg_function_not_extern) 2458 << Func << Arg->getSourceRange(); 2459 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object) 2460 << true; 2461 return true; 2462 } 2463 2464 // Okay: we've named a function with external linkage. 2465 Entity = Func; 2466 2467 // If the template parameter has pointer type, the function decays. 2468 if (ParamType->isPointerType() && !AddressTaken) 2469 ArgType = S.Context.getPointerType(Func->getType()); 2470 else if (AddressTaken && ParamType->isReferenceType()) { 2471 // If we originally had an address-of operator, but the 2472 // parameter has reference type, complain and (if things look 2473 // like they will work) drop the address-of operator. 2474 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 2475 ParamType.getNonReferenceType())) { 2476 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2477 << ParamType; 2478 S.Diag(Param->getLocation(), diag::note_template_param_here); 2479 return true; 2480 } 2481 2482 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2483 << ParamType 2484 << FixItHint::CreateRemoval(AddrOpLoc); 2485 S.Diag(Param->getLocation(), diag::note_template_param_here); 2486 2487 ArgType = Func->getType(); 2488 } 2489 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 2490 if (!isExternalLinkage(Var->getLinkage())) { 2491 S.Diag(Arg->getSourceRange().getBegin(), 2492 diag::err_template_arg_object_not_extern) 2493 << Var << Arg->getSourceRange(); 2494 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object) 2495 << true; 2496 return true; 2497 } 2498 2499 // A value of reference type is not an object. 2500 if (Var->getType()->isReferenceType()) { 2501 S.Diag(Arg->getSourceRange().getBegin(), 2502 diag::err_template_arg_reference_var) 2503 << Var->getType() << Arg->getSourceRange(); 2504 S.Diag(Param->getLocation(), diag::note_template_param_here); 2505 return true; 2506 } 2507 2508 // Okay: we've named an object with external linkage 2509 Entity = Var; 2510 2511 // If the template parameter has pointer type, we must have taken 2512 // the address of this object. 2513 if (ParamType->isReferenceType()) { 2514 if (AddressTaken) { 2515 // If we originally had an address-of operator, but the 2516 // parameter has reference type, complain and (if things look 2517 // like they will work) drop the address-of operator. 2518 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 2519 ParamType.getNonReferenceType())) { 2520 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2521 << ParamType; 2522 S.Diag(Param->getLocation(), diag::note_template_param_here); 2523 return true; 2524 } 2525 2526 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2527 << ParamType 2528 << FixItHint::CreateRemoval(AddrOpLoc); 2529 S.Diag(Param->getLocation(), diag::note_template_param_here); 2530 2531 ArgType = Var->getType(); 2532 } 2533 } else if (!AddressTaken && ParamType->isPointerType()) { 2534 if (Var->getType()->isArrayType()) { 2535 // Array-to-pointer decay. 2536 ArgType = S.Context.getArrayDecayedType(Var->getType()); 2537 } else { 2538 // If the template parameter has pointer type but the address of 2539 // this object was not taken, complain and (possibly) recover by 2540 // taking the address of the entity. 2541 ArgType = S.Context.getPointerType(Var->getType()); 2542 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 2543 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 2544 << ParamType; 2545 S.Diag(Param->getLocation(), diag::note_template_param_here); 2546 return true; 2547 } 2548 2549 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 2550 << ParamType 2551 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 2552 2553 S.Diag(Param->getLocation(), diag::note_template_param_here); 2554 } 2555 } 2556 } else { 2557 // We found something else, but we don't know specifically what it is. 2558 S.Diag(Arg->getSourceRange().getBegin(), 2559 diag::err_template_arg_not_object_or_func) 2560 << Arg->getSourceRange(); 2561 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 2562 return true; 2563 } 2564 2565 if (ParamType->isPointerType() && 2566 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 2567 S.IsQualificationConversion(ArgType, ParamType)) { 2568 // For pointer-to-object types, qualification conversions are 2569 // permitted. 2570 } else { 2571 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 2572 if (!ParamRef->getPointeeType()->isFunctionType()) { 2573 // C++ [temp.arg.nontype]p5b3: 2574 // For a non-type template-parameter of type reference to 2575 // object, no conversions apply. The type referred to by the 2576 // reference may be more cv-qualified than the (otherwise 2577 // identical) type of the template- argument. The 2578 // template-parameter is bound directly to the 2579 // template-argument, which shall be an lvalue. 2580 2581 // FIXME: Other qualifiers? 2582 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 2583 unsigned ArgQuals = ArgType.getCVRQualifiers(); 2584 2585 if ((ParamQuals | ArgQuals) != ParamQuals) { 2586 S.Diag(Arg->getSourceRange().getBegin(), 2587 diag::err_template_arg_ref_bind_ignores_quals) 2588 << ParamType << Arg->getType() 2589 << Arg->getSourceRange(); 2590 S.Diag(Param->getLocation(), diag::note_template_param_here); 2591 return true; 2592 } 2593 } 2594 } 2595 2596 // At this point, the template argument refers to an object or 2597 // function with external linkage. We now need to check whether the 2598 // argument and parameter types are compatible. 2599 if (!S.Context.hasSameUnqualifiedType(ArgType, 2600 ParamType.getNonReferenceType())) { 2601 // We can't perform this conversion or binding. 2602 if (ParamType->isReferenceType()) 2603 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 2604 << ParamType << Arg->getType() << Arg->getSourceRange(); 2605 else 2606 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 2607 << Arg->getType() << ParamType << Arg->getSourceRange(); 2608 S.Diag(Param->getLocation(), diag::note_template_param_here); 2609 return true; 2610 } 2611 } 2612 2613 // Create the template argument. 2614 Converted = TemplateArgument(Entity->getCanonicalDecl()); 2615 S.MarkDeclarationReferenced(Arg->getLocStart(), Entity); 2616 return false; 2617} 2618 2619/// \brief Checks whether the given template argument is a pointer to 2620/// member constant according to C++ [temp.arg.nontype]p1. 2621bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 2622 TemplateArgument &Converted) { 2623 bool Invalid = false; 2624 2625 // See through any implicit casts we added to fix the type. 2626 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2627 Arg = Cast->getSubExpr(); 2628 2629 // C++ [temp.arg.nontype]p1: 2630 // 2631 // A template-argument for a non-type, non-template 2632 // template-parameter shall be one of: [...] 2633 // 2634 // -- a pointer to member expressed as described in 5.3.1. 2635 DeclRefExpr *DRE = 0; 2636 2637 // Ignore (and complain about) any excess parentheses. 2638 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2639 if (!Invalid) { 2640 Diag(Arg->getSourceRange().getBegin(), 2641 diag::err_template_arg_extra_parens) 2642 << Arg->getSourceRange(); 2643 Invalid = true; 2644 } 2645 2646 Arg = Parens->getSubExpr(); 2647 } 2648 2649 // A pointer-to-member constant written &Class::member. 2650 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2651 if (UnOp->getOpcode() == UnaryOperator::AddrOf) { 2652 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2653 if (DRE && !DRE->getQualifier()) 2654 DRE = 0; 2655 } 2656 } 2657 // A constant of pointer-to-member type. 2658 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 2659 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 2660 if (VD->getType()->isMemberPointerType()) { 2661 if (isa<NonTypeTemplateParmDecl>(VD) || 2662 (isa<VarDecl>(VD) && 2663 Context.getCanonicalType(VD->getType()).isConstQualified())) { 2664 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2665 Converted = TemplateArgument(Arg->Retain()); 2666 else 2667 Converted = TemplateArgument(VD->getCanonicalDecl()); 2668 return Invalid; 2669 } 2670 } 2671 } 2672 2673 DRE = 0; 2674 } 2675 2676 if (!DRE) 2677 return Diag(Arg->getSourceRange().getBegin(), 2678 diag::err_template_arg_not_pointer_to_member_form) 2679 << Arg->getSourceRange(); 2680 2681 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 2682 assert((isa<FieldDecl>(DRE->getDecl()) || 2683 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 2684 "Only non-static member pointers can make it here"); 2685 2686 // Okay: this is the address of a non-static member, and therefore 2687 // a member pointer constant. 2688 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2689 Converted = TemplateArgument(Arg->Retain()); 2690 else 2691 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 2692 return Invalid; 2693 } 2694 2695 // We found something else, but we don't know specifically what it is. 2696 Diag(Arg->getSourceRange().getBegin(), 2697 diag::err_template_arg_not_pointer_to_member_form) 2698 << Arg->getSourceRange(); 2699 Diag(DRE->getDecl()->getLocation(), 2700 diag::note_template_arg_refers_here); 2701 return true; 2702} 2703 2704/// \brief Check a template argument against its corresponding 2705/// non-type template parameter. 2706/// 2707/// This routine implements the semantics of C++ [temp.arg.nontype]. 2708/// It returns true if an error occurred, and false otherwise. \p 2709/// InstantiatedParamType is the type of the non-type template 2710/// parameter after it has been instantiated. 2711/// 2712/// If no error was detected, Converted receives the converted template argument. 2713bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 2714 QualType InstantiatedParamType, Expr *&Arg, 2715 TemplateArgument &Converted, 2716 CheckTemplateArgumentKind CTAK) { 2717 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 2718 2719 // If either the parameter has a dependent type or the argument is 2720 // type-dependent, there's nothing we can check now. 2721 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 2722 // FIXME: Produce a cloned, canonical expression? 2723 Converted = TemplateArgument(Arg); 2724 return false; 2725 } 2726 2727 // C++ [temp.arg.nontype]p5: 2728 // The following conversions are performed on each expression used 2729 // as a non-type template-argument. If a non-type 2730 // template-argument cannot be converted to the type of the 2731 // corresponding template-parameter then the program is 2732 // ill-formed. 2733 // 2734 // -- for a non-type template-parameter of integral or 2735 // enumeration type, integral promotions (4.5) and integral 2736 // conversions (4.7) are applied. 2737 QualType ParamType = InstantiatedParamType; 2738 QualType ArgType = Arg->getType(); 2739 if (ParamType->isIntegralOrEnumerationType()) { 2740 // C++ [temp.arg.nontype]p1: 2741 // A template-argument for a non-type, non-template 2742 // template-parameter shall be one of: 2743 // 2744 // -- an integral constant-expression of integral or enumeration 2745 // type; or 2746 // -- the name of a non-type template-parameter; or 2747 SourceLocation NonConstantLoc; 2748 llvm::APSInt Value; 2749 if (!ArgType->isIntegralOrEnumerationType()) { 2750 Diag(Arg->getSourceRange().getBegin(), 2751 diag::err_template_arg_not_integral_or_enumeral) 2752 << ArgType << Arg->getSourceRange(); 2753 Diag(Param->getLocation(), diag::note_template_param_here); 2754 return true; 2755 } else if (!Arg->isValueDependent() && 2756 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 2757 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 2758 << ArgType << Arg->getSourceRange(); 2759 return true; 2760 } 2761 2762 // From here on out, all we care about are the unqualified forms 2763 // of the parameter and argument types. 2764 ParamType = ParamType.getUnqualifiedType(); 2765 ArgType = ArgType.getUnqualifiedType(); 2766 2767 // Try to convert the argument to the parameter's type. 2768 if (Context.hasSameType(ParamType, ArgType)) { 2769 // Okay: no conversion necessary 2770 } else if (CTAK == CTAK_Deduced) { 2771 // C++ [temp.deduct.type]p17: 2772 // If, in the declaration of a function template with a non-type 2773 // template-parameter, the non-type template- parameter is used 2774 // in an expression in the function parameter-list and, if the 2775 // corresponding template-argument is deduced, the 2776 // template-argument type shall match the type of the 2777 // template-parameter exactly, except that a template-argument 2778 // deduced from an array bound may be of any integral type. 2779 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 2780 << ArgType << ParamType; 2781 Diag(Param->getLocation(), diag::note_template_param_here); 2782 return true; 2783 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 2784 !ParamType->isEnumeralType()) { 2785 // This is an integral promotion or conversion. 2786 ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast); 2787 } else { 2788 // We can't perform this conversion. 2789 Diag(Arg->getSourceRange().getBegin(), 2790 diag::err_template_arg_not_convertible) 2791 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2792 Diag(Param->getLocation(), diag::note_template_param_here); 2793 return true; 2794 } 2795 2796 QualType IntegerType = Context.getCanonicalType(ParamType); 2797 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 2798 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 2799 2800 if (!Arg->isValueDependent()) { 2801 llvm::APSInt OldValue = Value; 2802 2803 // Coerce the template argument's value to the value it will have 2804 // based on the template parameter's type. 2805 unsigned AllowedBits = Context.getTypeSize(IntegerType); 2806 if (Value.getBitWidth() != AllowedBits) 2807 Value.extOrTrunc(AllowedBits); 2808 Value.setIsSigned(IntegerType->isSignedIntegerType()); 2809 2810 // Complain if an unsigned parameter received a negative value. 2811 if (IntegerType->isUnsignedIntegerType() 2812 && (OldValue.isSigned() && OldValue.isNegative())) { 2813 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative) 2814 << OldValue.toString(10) << Value.toString(10) << Param->getType() 2815 << Arg->getSourceRange(); 2816 Diag(Param->getLocation(), diag::note_template_param_here); 2817 } 2818 2819 // Complain if we overflowed the template parameter's type. 2820 unsigned RequiredBits; 2821 if (IntegerType->isUnsignedIntegerType()) 2822 RequiredBits = OldValue.getActiveBits(); 2823 else if (OldValue.isUnsigned()) 2824 RequiredBits = OldValue.getActiveBits() + 1; 2825 else 2826 RequiredBits = OldValue.getMinSignedBits(); 2827 if (RequiredBits > AllowedBits) { 2828 Diag(Arg->getSourceRange().getBegin(), 2829 diag::warn_template_arg_too_large) 2830 << OldValue.toString(10) << Value.toString(10) << Param->getType() 2831 << Arg->getSourceRange(); 2832 Diag(Param->getLocation(), diag::note_template_param_here); 2833 } 2834 } 2835 2836 // Add the value of this argument to the list of converted 2837 // arguments. We use the bitwidth and signedness of the template 2838 // parameter. 2839 if (Arg->isValueDependent()) { 2840 // The argument is value-dependent. Create a new 2841 // TemplateArgument with the converted expression. 2842 Converted = TemplateArgument(Arg); 2843 return false; 2844 } 2845 2846 Converted = TemplateArgument(Value, 2847 ParamType->isEnumeralType() ? ParamType 2848 : IntegerType); 2849 return false; 2850 } 2851 2852 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 2853 2854 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion 2855 // from a template argument of type std::nullptr_t to a non-type 2856 // template parameter of type pointer to object, pointer to 2857 // function, or pointer-to-member, respectively. 2858 if (ArgType->isNullPtrType() && 2859 (ParamType->isPointerType() || ParamType->isMemberPointerType())) { 2860 Converted = TemplateArgument((NamedDecl *)0); 2861 return false; 2862 } 2863 2864 // Handle pointer-to-function, reference-to-function, and 2865 // pointer-to-member-function all in (roughly) the same way. 2866 if (// -- For a non-type template-parameter of type pointer to 2867 // function, only the function-to-pointer conversion (4.3) is 2868 // applied. If the template-argument represents a set of 2869 // overloaded functions (or a pointer to such), the matching 2870 // function is selected from the set (13.4). 2871 (ParamType->isPointerType() && 2872 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 2873 // -- For a non-type template-parameter of type reference to 2874 // function, no conversions apply. If the template-argument 2875 // represents a set of overloaded functions, the matching 2876 // function is selected from the set (13.4). 2877 (ParamType->isReferenceType() && 2878 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 2879 // -- For a non-type template-parameter of type pointer to 2880 // member function, no conversions apply. If the 2881 // template-argument represents a set of overloaded member 2882 // functions, the matching member function is selected from 2883 // the set (13.4). 2884 (ParamType->isMemberPointerType() && 2885 ParamType->getAs<MemberPointerType>()->getPointeeType() 2886 ->isFunctionType())) { 2887 2888 if (Arg->getType() == Context.OverloadTy) { 2889 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 2890 true, 2891 FoundResult)) { 2892 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2893 return true; 2894 2895 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 2896 ArgType = Arg->getType(); 2897 } else 2898 return true; 2899 } 2900 2901 if (!ParamType->isMemberPointerType()) 2902 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 2903 ParamType, 2904 Arg, Converted); 2905 2906 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) { 2907 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp, CastCategory(Arg)); 2908 } else if (!Context.hasSameUnqualifiedType(ArgType, 2909 ParamType.getNonReferenceType())) { 2910 // We can't perform this conversion. 2911 Diag(Arg->getSourceRange().getBegin(), 2912 diag::err_template_arg_not_convertible) 2913 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2914 Diag(Param->getLocation(), diag::note_template_param_here); 2915 return true; 2916 } 2917 2918 return CheckTemplateArgumentPointerToMember(Arg, Converted); 2919 } 2920 2921 if (ParamType->isPointerType()) { 2922 // -- for a non-type template-parameter of type pointer to 2923 // object, qualification conversions (4.4) and the 2924 // array-to-pointer conversion (4.2) are applied. 2925 // C++0x also allows a value of std::nullptr_t. 2926 assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() && 2927 "Only object pointers allowed here"); 2928 2929 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 2930 ParamType, 2931 Arg, Converted); 2932 } 2933 2934 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 2935 // -- For a non-type template-parameter of type reference to 2936 // object, no conversions apply. The type referred to by the 2937 // reference may be more cv-qualified than the (otherwise 2938 // identical) type of the template-argument. The 2939 // template-parameter is bound directly to the 2940 // template-argument, which must be an lvalue. 2941 assert(ParamRefType->getPointeeType()->isObjectType() && 2942 "Only object references allowed here"); 2943 2944 if (Arg->getType() == Context.OverloadTy) { 2945 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 2946 ParamRefType->getPointeeType(), 2947 true, 2948 FoundResult)) { 2949 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2950 return true; 2951 2952 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 2953 ArgType = Arg->getType(); 2954 } else 2955 return true; 2956 } 2957 2958 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 2959 ParamType, 2960 Arg, Converted); 2961 } 2962 2963 // -- For a non-type template-parameter of type pointer to data 2964 // member, qualification conversions (4.4) are applied. 2965 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 2966 2967 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 2968 // Types match exactly: nothing more to do here. 2969 } else if (IsQualificationConversion(ArgType, ParamType)) { 2970 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp, CastCategory(Arg)); 2971 } else { 2972 // We can't perform this conversion. 2973 Diag(Arg->getSourceRange().getBegin(), 2974 diag::err_template_arg_not_convertible) 2975 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2976 Diag(Param->getLocation(), diag::note_template_param_here); 2977 return true; 2978 } 2979 2980 return CheckTemplateArgumentPointerToMember(Arg, Converted); 2981} 2982 2983/// \brief Check a template argument against its corresponding 2984/// template template parameter. 2985/// 2986/// This routine implements the semantics of C++ [temp.arg.template]. 2987/// It returns true if an error occurred, and false otherwise. 2988bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 2989 const TemplateArgumentLoc &Arg) { 2990 TemplateName Name = Arg.getArgument().getAsTemplate(); 2991 TemplateDecl *Template = Name.getAsTemplateDecl(); 2992 if (!Template) { 2993 // Any dependent template name is fine. 2994 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 2995 return false; 2996 } 2997 2998 // C++ [temp.arg.template]p1: 2999 // A template-argument for a template template-parameter shall be 3000 // the name of a class template, expressed as id-expression. Only 3001 // primary class templates are considered when matching the 3002 // template template argument with the corresponding parameter; 3003 // partial specializations are not considered even if their 3004 // parameter lists match that of the template template parameter. 3005 // 3006 // Note that we also allow template template parameters here, which 3007 // will happen when we are dealing with, e.g., class template 3008 // partial specializations. 3009 if (!isa<ClassTemplateDecl>(Template) && 3010 !isa<TemplateTemplateParmDecl>(Template)) { 3011 assert(isa<FunctionTemplateDecl>(Template) && 3012 "Only function templates are possible here"); 3013 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 3014 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 3015 << Template; 3016 } 3017 3018 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 3019 Param->getTemplateParameters(), 3020 true, 3021 TPL_TemplateTemplateArgumentMatch, 3022 Arg.getLocation()); 3023} 3024 3025/// \brief Given a non-type template argument that refers to a 3026/// declaration and the type of its corresponding non-type template 3027/// parameter, produce an expression that properly refers to that 3028/// declaration. 3029Sema::OwningExprResult 3030Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 3031 QualType ParamType, 3032 SourceLocation Loc) { 3033 assert(Arg.getKind() == TemplateArgument::Declaration && 3034 "Only declaration template arguments permitted here"); 3035 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 3036 3037 if (VD->getDeclContext()->isRecord() && 3038 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 3039 // If the value is a class member, we might have a pointer-to-member. 3040 // Determine whether the non-type template template parameter is of 3041 // pointer-to-member type. If so, we need to build an appropriate 3042 // expression for a pointer-to-member, since a "normal" DeclRefExpr 3043 // would refer to the member itself. 3044 if (ParamType->isMemberPointerType()) { 3045 QualType ClassType 3046 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 3047 NestedNameSpecifier *Qualifier 3048 = NestedNameSpecifier::Create(Context, 0, false, ClassType.getTypePtr()); 3049 CXXScopeSpec SS; 3050 SS.setScopeRep(Qualifier); 3051 OwningExprResult RefExpr = BuildDeclRefExpr(VD, 3052 VD->getType().getNonReferenceType(), 3053 Loc, 3054 &SS); 3055 if (RefExpr.isInvalid()) 3056 return ExprError(); 3057 3058 RefExpr = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr)); 3059 3060 // We might need to perform a trailing qualification conversion, since 3061 // the element type on the parameter could be more qualified than the 3062 // element type in the expression we constructed. 3063 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 3064 ParamType.getUnqualifiedType())) { 3065 Expr *RefE = RefExpr.takeAs<Expr>(); 3066 ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), 3067 CastExpr::CK_NoOp); 3068 RefExpr = Owned(RefE); 3069 } 3070 3071 assert(!RefExpr.isInvalid() && 3072 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 3073 ParamType.getUnqualifiedType())); 3074 return move(RefExpr); 3075 } 3076 } 3077 3078 QualType T = VD->getType().getNonReferenceType(); 3079 if (ParamType->isPointerType()) { 3080 // When the non-type template parameter is a pointer, take the 3081 // address of the declaration. 3082 OwningExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc); 3083 if (RefExpr.isInvalid()) 3084 return ExprError(); 3085 3086 if (T->isFunctionType() || T->isArrayType()) { 3087 // Decay functions and arrays. 3088 Expr *RefE = (Expr *)RefExpr.get(); 3089 DefaultFunctionArrayConversion(RefE); 3090 if (RefE != RefExpr.get()) { 3091 RefExpr.release(); 3092 RefExpr = Owned(RefE); 3093 } 3094 3095 return move(RefExpr); 3096 } 3097 3098 // Take the address of everything else 3099 return CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr)); 3100 } 3101 3102 // If the non-type template parameter has reference type, qualify the 3103 // resulting declaration reference with the extra qualifiers on the 3104 // type that the reference refers to. 3105 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) 3106 T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers()); 3107 3108 return BuildDeclRefExpr(VD, T, Loc); 3109} 3110 3111/// \brief Construct a new expression that refers to the given 3112/// integral template argument with the given source-location 3113/// information. 3114/// 3115/// This routine takes care of the mapping from an integral template 3116/// argument (which may have any integral type) to the appropriate 3117/// literal value. 3118Sema::OwningExprResult 3119Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 3120 SourceLocation Loc) { 3121 assert(Arg.getKind() == TemplateArgument::Integral && 3122 "Operation is only value for integral template arguments"); 3123 QualType T = Arg.getIntegralType(); 3124 if (T->isCharType() || T->isWideCharType()) 3125 return Owned(new (Context) CharacterLiteral( 3126 Arg.getAsIntegral()->getZExtValue(), 3127 T->isWideCharType(), 3128 T, 3129 Loc)); 3130 if (T->isBooleanType()) 3131 return Owned(new (Context) CXXBoolLiteralExpr( 3132 Arg.getAsIntegral()->getBoolValue(), 3133 T, 3134 Loc)); 3135 3136 return Owned(new (Context) IntegerLiteral(*Arg.getAsIntegral(), T, Loc)); 3137} 3138 3139 3140/// \brief Determine whether the given template parameter lists are 3141/// equivalent. 3142/// 3143/// \param New The new template parameter list, typically written in the 3144/// source code as part of a new template declaration. 3145/// 3146/// \param Old The old template parameter list, typically found via 3147/// name lookup of the template declared with this template parameter 3148/// list. 3149/// 3150/// \param Complain If true, this routine will produce a diagnostic if 3151/// the template parameter lists are not equivalent. 3152/// 3153/// \param Kind describes how we are to match the template parameter lists. 3154/// 3155/// \param TemplateArgLoc If this source location is valid, then we 3156/// are actually checking the template parameter list of a template 3157/// argument (New) against the template parameter list of its 3158/// corresponding template template parameter (Old). We produce 3159/// slightly different diagnostics in this scenario. 3160/// 3161/// \returns True if the template parameter lists are equal, false 3162/// otherwise. 3163bool 3164Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 3165 TemplateParameterList *Old, 3166 bool Complain, 3167 TemplateParameterListEqualKind Kind, 3168 SourceLocation TemplateArgLoc) { 3169 if (Old->size() != New->size()) { 3170 if (Complain) { 3171 unsigned NextDiag = diag::err_template_param_list_different_arity; 3172 if (TemplateArgLoc.isValid()) { 3173 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3174 NextDiag = diag::note_template_param_list_different_arity; 3175 } 3176 Diag(New->getTemplateLoc(), NextDiag) 3177 << (New->size() > Old->size()) 3178 << (Kind != TPL_TemplateMatch) 3179 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 3180 Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 3181 << (Kind != TPL_TemplateMatch) 3182 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 3183 } 3184 3185 return false; 3186 } 3187 3188 for (TemplateParameterList::iterator OldParm = Old->begin(), 3189 OldParmEnd = Old->end(), NewParm = New->begin(); 3190 OldParm != OldParmEnd; ++OldParm, ++NewParm) { 3191 if ((*OldParm)->getKind() != (*NewParm)->getKind()) { 3192 if (Complain) { 3193 unsigned NextDiag = diag::err_template_param_different_kind; 3194 if (TemplateArgLoc.isValid()) { 3195 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3196 NextDiag = diag::note_template_param_different_kind; 3197 } 3198 Diag((*NewParm)->getLocation(), NextDiag) 3199 << (Kind != TPL_TemplateMatch); 3200 Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration) 3201 << (Kind != TPL_TemplateMatch); 3202 } 3203 return false; 3204 } 3205 3206 if (TemplateTypeParmDecl *OldTTP 3207 = dyn_cast<TemplateTypeParmDecl>(*OldParm)) { 3208 // Template type parameters are equivalent if either both are template 3209 // type parameter packs or neither are (since we know we're at the same 3210 // index). 3211 TemplateTypeParmDecl *NewTTP = cast<TemplateTypeParmDecl>(*NewParm); 3212 if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) { 3213 // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that 3214 // allow one to match a template parameter pack in the template 3215 // parameter list of a template template parameter to one or more 3216 // template parameters in the template parameter list of the 3217 // corresponding template template argument. 3218 if (Complain) { 3219 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 3220 if (TemplateArgLoc.isValid()) { 3221 Diag(TemplateArgLoc, 3222 diag::err_template_arg_template_params_mismatch); 3223 NextDiag = diag::note_template_parameter_pack_non_pack; 3224 } 3225 Diag(NewTTP->getLocation(), NextDiag) 3226 << 0 << NewTTP->isParameterPack(); 3227 Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here) 3228 << 0 << OldTTP->isParameterPack(); 3229 } 3230 return false; 3231 } 3232 } else if (NonTypeTemplateParmDecl *OldNTTP 3233 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) { 3234 // The types of non-type template parameters must agree. 3235 NonTypeTemplateParmDecl *NewNTTP 3236 = cast<NonTypeTemplateParmDecl>(*NewParm); 3237 3238 // If we are matching a template template argument to a template 3239 // template parameter and one of the non-type template parameter types 3240 // is dependent, then we must wait until template instantiation time 3241 // to actually compare the arguments. 3242 if (Kind == TPL_TemplateTemplateArgumentMatch && 3243 (OldNTTP->getType()->isDependentType() || 3244 NewNTTP->getType()->isDependentType())) 3245 continue; 3246 3247 if (Context.getCanonicalType(OldNTTP->getType()) != 3248 Context.getCanonicalType(NewNTTP->getType())) { 3249 if (Complain) { 3250 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 3251 if (TemplateArgLoc.isValid()) { 3252 Diag(TemplateArgLoc, 3253 diag::err_template_arg_template_params_mismatch); 3254 NextDiag = diag::note_template_nontype_parm_different_type; 3255 } 3256 Diag(NewNTTP->getLocation(), NextDiag) 3257 << NewNTTP->getType() 3258 << (Kind != TPL_TemplateMatch); 3259 Diag(OldNTTP->getLocation(), 3260 diag::note_template_nontype_parm_prev_declaration) 3261 << OldNTTP->getType(); 3262 } 3263 return false; 3264 } 3265 } else { 3266 // The template parameter lists of template template 3267 // parameters must agree. 3268 assert(isa<TemplateTemplateParmDecl>(*OldParm) && 3269 "Only template template parameters handled here"); 3270 TemplateTemplateParmDecl *OldTTP 3271 = cast<TemplateTemplateParmDecl>(*OldParm); 3272 TemplateTemplateParmDecl *NewTTP 3273 = cast<TemplateTemplateParmDecl>(*NewParm); 3274 if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 3275 OldTTP->getTemplateParameters(), 3276 Complain, 3277 (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind), 3278 TemplateArgLoc)) 3279 return false; 3280 } 3281 } 3282 3283 return true; 3284} 3285 3286/// \brief Check whether a template can be declared within this scope. 3287/// 3288/// If the template declaration is valid in this scope, returns 3289/// false. Otherwise, issues a diagnostic and returns true. 3290bool 3291Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 3292 // Find the nearest enclosing declaration scope. 3293 while ((S->getFlags() & Scope::DeclScope) == 0 || 3294 (S->getFlags() & Scope::TemplateParamScope) != 0) 3295 S = S->getParent(); 3296 3297 // C++ [temp]p2: 3298 // A template-declaration can appear only as a namespace scope or 3299 // class scope declaration. 3300 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 3301 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 3302 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 3303 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 3304 << TemplateParams->getSourceRange(); 3305 3306 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 3307 Ctx = Ctx->getParent(); 3308 3309 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 3310 return false; 3311 3312 return Diag(TemplateParams->getTemplateLoc(), 3313 diag::err_template_outside_namespace_or_class_scope) 3314 << TemplateParams->getSourceRange(); 3315} 3316 3317/// \brief Determine what kind of template specialization the given declaration 3318/// is. 3319static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 3320 if (!D) 3321 return TSK_Undeclared; 3322 3323 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 3324 return Record->getTemplateSpecializationKind(); 3325 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 3326 return Function->getTemplateSpecializationKind(); 3327 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 3328 return Var->getTemplateSpecializationKind(); 3329 3330 return TSK_Undeclared; 3331} 3332 3333/// \brief Check whether a specialization is well-formed in the current 3334/// context. 3335/// 3336/// This routine determines whether a template specialization can be declared 3337/// in the current context (C++ [temp.expl.spec]p2). 3338/// 3339/// \param S the semantic analysis object for which this check is being 3340/// performed. 3341/// 3342/// \param Specialized the entity being specialized or instantiated, which 3343/// may be a kind of template (class template, function template, etc.) or 3344/// a member of a class template (member function, static data member, 3345/// member class). 3346/// 3347/// \param PrevDecl the previous declaration of this entity, if any. 3348/// 3349/// \param Loc the location of the explicit specialization or instantiation of 3350/// this entity. 3351/// 3352/// \param IsPartialSpecialization whether this is a partial specialization of 3353/// a class template. 3354/// 3355/// \returns true if there was an error that we cannot recover from, false 3356/// otherwise. 3357static bool CheckTemplateSpecializationScope(Sema &S, 3358 NamedDecl *Specialized, 3359 NamedDecl *PrevDecl, 3360 SourceLocation Loc, 3361 bool IsPartialSpecialization) { 3362 // Keep these "kind" numbers in sync with the %select statements in the 3363 // various diagnostics emitted by this routine. 3364 int EntityKind = 0; 3365 bool isTemplateSpecialization = false; 3366 if (isa<ClassTemplateDecl>(Specialized)) { 3367 EntityKind = IsPartialSpecialization? 1 : 0; 3368 isTemplateSpecialization = true; 3369 } else if (isa<FunctionTemplateDecl>(Specialized)) { 3370 EntityKind = 2; 3371 isTemplateSpecialization = true; 3372 } else if (isa<CXXMethodDecl>(Specialized)) 3373 EntityKind = 3; 3374 else if (isa<VarDecl>(Specialized)) 3375 EntityKind = 4; 3376 else if (isa<RecordDecl>(Specialized)) 3377 EntityKind = 5; 3378 else { 3379 S.Diag(Loc, diag::err_template_spec_unknown_kind); 3380 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3381 return true; 3382 } 3383 3384 // C++ [temp.expl.spec]p2: 3385 // An explicit specialization shall be declared in the namespace 3386 // of which the template is a member, or, for member templates, in 3387 // the namespace of which the enclosing class or enclosing class 3388 // template is a member. An explicit specialization of a member 3389 // function, member class or static data member of a class 3390 // template shall be declared in the namespace of which the class 3391 // template is a member. Such a declaration may also be a 3392 // definition. If the declaration is not a definition, the 3393 // specialization may be defined later in the name- space in which 3394 // the explicit specialization was declared, or in a namespace 3395 // that encloses the one in which the explicit specialization was 3396 // declared. 3397 if (S.CurContext->getLookupContext()->isFunctionOrMethod()) { 3398 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 3399 << Specialized; 3400 return true; 3401 } 3402 3403 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 3404 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 3405 << Specialized; 3406 return true; 3407 } 3408 3409 // C++ [temp.class.spec]p6: 3410 // A class template partial specialization may be declared or redeclared 3411 // in any namespace scope in which its definition may be defined (14.5.1 3412 // and 14.5.2). 3413 bool ComplainedAboutScope = false; 3414 DeclContext *SpecializedContext 3415 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 3416 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 3417 if ((!PrevDecl || 3418 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 3419 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 3420 // There is no prior declaration of this entity, so this 3421 // specialization must be in the same context as the template 3422 // itself. 3423 if (!DC->Equals(SpecializedContext)) { 3424 if (isa<TranslationUnitDecl>(SpecializedContext)) 3425 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 3426 << EntityKind << Specialized; 3427 else if (isa<NamespaceDecl>(SpecializedContext)) 3428 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope) 3429 << EntityKind << Specialized 3430 << cast<NamedDecl>(SpecializedContext); 3431 3432 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3433 ComplainedAboutScope = true; 3434 } 3435 } 3436 3437 // Make sure that this redeclaration (or definition) occurs in an enclosing 3438 // namespace. 3439 // Note that HandleDeclarator() performs this check for explicit 3440 // specializations of function templates, static data members, and member 3441 // functions, so we skip the check here for those kinds of entities. 3442 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 3443 // Should we refactor that check, so that it occurs later? 3444 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 3445 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 3446 isa<FunctionDecl>(Specialized))) { 3447 if (isa<TranslationUnitDecl>(SpecializedContext)) 3448 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 3449 << EntityKind << Specialized; 3450 else if (isa<NamespaceDecl>(SpecializedContext)) 3451 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 3452 << EntityKind << Specialized 3453 << cast<NamedDecl>(SpecializedContext); 3454 3455 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3456 } 3457 3458 // FIXME: check for specialization-after-instantiation errors and such. 3459 3460 return false; 3461} 3462 3463/// \brief Check the non-type template arguments of a class template 3464/// partial specialization according to C++ [temp.class.spec]p9. 3465/// 3466/// \param TemplateParams the template parameters of the primary class 3467/// template. 3468/// 3469/// \param TemplateArg the template arguments of the class template 3470/// partial specialization. 3471/// 3472/// \param MirrorsPrimaryTemplate will be set true if the class 3473/// template partial specialization arguments are identical to the 3474/// implicit template arguments of the primary template. This is not 3475/// necessarily an error (C++0x), and it is left to the caller to diagnose 3476/// this condition when it is an error. 3477/// 3478/// \returns true if there was an error, false otherwise. 3479bool Sema::CheckClassTemplatePartialSpecializationArgs( 3480 TemplateParameterList *TemplateParams, 3481 const TemplateArgumentListBuilder &TemplateArgs, 3482 bool &MirrorsPrimaryTemplate) { 3483 // FIXME: the interface to this function will have to change to 3484 // accommodate variadic templates. 3485 MirrorsPrimaryTemplate = true; 3486 3487 const TemplateArgument *ArgList = TemplateArgs.getFlatArguments(); 3488 3489 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3490 // Determine whether the template argument list of the partial 3491 // specialization is identical to the implicit argument list of 3492 // the primary template. The caller may need to diagnostic this as 3493 // an error per C++ [temp.class.spec]p9b3. 3494 if (MirrorsPrimaryTemplate) { 3495 if (TemplateTypeParmDecl *TTP 3496 = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) { 3497 if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) != 3498 Context.getCanonicalType(ArgList[I].getAsType())) 3499 MirrorsPrimaryTemplate = false; 3500 } else if (TemplateTemplateParmDecl *TTP 3501 = dyn_cast<TemplateTemplateParmDecl>( 3502 TemplateParams->getParam(I))) { 3503 TemplateName Name = ArgList[I].getAsTemplate(); 3504 TemplateTemplateParmDecl *ArgDecl 3505 = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()); 3506 if (!ArgDecl || 3507 ArgDecl->getIndex() != TTP->getIndex() || 3508 ArgDecl->getDepth() != TTP->getDepth()) 3509 MirrorsPrimaryTemplate = false; 3510 } 3511 } 3512 3513 NonTypeTemplateParmDecl *Param 3514 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 3515 if (!Param) { 3516 continue; 3517 } 3518 3519 Expr *ArgExpr = ArgList[I].getAsExpr(); 3520 if (!ArgExpr) { 3521 MirrorsPrimaryTemplate = false; 3522 continue; 3523 } 3524 3525 // C++ [temp.class.spec]p8: 3526 // A non-type argument is non-specialized if it is the name of a 3527 // non-type parameter. All other non-type arguments are 3528 // specialized. 3529 // 3530 // Below, we check the two conditions that only apply to 3531 // specialized non-type arguments, so skip any non-specialized 3532 // arguments. 3533 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 3534 if (NonTypeTemplateParmDecl *NTTP 3535 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) { 3536 if (MirrorsPrimaryTemplate && 3537 (Param->getIndex() != NTTP->getIndex() || 3538 Param->getDepth() != NTTP->getDepth())) 3539 MirrorsPrimaryTemplate = false; 3540 3541 continue; 3542 } 3543 3544 // C++ [temp.class.spec]p9: 3545 // Within the argument list of a class template partial 3546 // specialization, the following restrictions apply: 3547 // -- A partially specialized non-type argument expression 3548 // shall not involve a template parameter of the partial 3549 // specialization except when the argument expression is a 3550 // simple identifier. 3551 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 3552 Diag(ArgExpr->getLocStart(), 3553 diag::err_dependent_non_type_arg_in_partial_spec) 3554 << ArgExpr->getSourceRange(); 3555 return true; 3556 } 3557 3558 // -- The type of a template parameter corresponding to a 3559 // specialized non-type argument shall not be dependent on a 3560 // parameter of the specialization. 3561 if (Param->getType()->isDependentType()) { 3562 Diag(ArgExpr->getLocStart(), 3563 diag::err_dependent_typed_non_type_arg_in_partial_spec) 3564 << Param->getType() 3565 << ArgExpr->getSourceRange(); 3566 Diag(Param->getLocation(), diag::note_template_param_here); 3567 return true; 3568 } 3569 3570 MirrorsPrimaryTemplate = false; 3571 } 3572 3573 return false; 3574} 3575 3576/// \brief Retrieve the previous declaration of the given declaration. 3577static NamedDecl *getPreviousDecl(NamedDecl *ND) { 3578 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 3579 return VD->getPreviousDeclaration(); 3580 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 3581 return FD->getPreviousDeclaration(); 3582 if (TagDecl *TD = dyn_cast<TagDecl>(ND)) 3583 return TD->getPreviousDeclaration(); 3584 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND)) 3585 return TD->getPreviousDeclaration(); 3586 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 3587 return FTD->getPreviousDeclaration(); 3588 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND)) 3589 return CTD->getPreviousDeclaration(); 3590 return 0; 3591} 3592 3593Sema::DeclResult 3594Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 3595 TagUseKind TUK, 3596 SourceLocation KWLoc, 3597 CXXScopeSpec &SS, 3598 TemplateTy TemplateD, 3599 SourceLocation TemplateNameLoc, 3600 SourceLocation LAngleLoc, 3601 ASTTemplateArgsPtr TemplateArgsIn, 3602 SourceLocation RAngleLoc, 3603 AttributeList *Attr, 3604 MultiTemplateParamsArg TemplateParameterLists) { 3605 assert(TUK != TUK_Reference && "References are not specializations"); 3606 3607 // Find the class template we're specializing 3608 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 3609 ClassTemplateDecl *ClassTemplate 3610 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 3611 3612 if (!ClassTemplate) { 3613 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 3614 << (Name.getAsTemplateDecl() && 3615 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 3616 return true; 3617 } 3618 3619 bool isExplicitSpecialization = false; 3620 bool isPartialSpecialization = false; 3621 3622 // Check the validity of the template headers that introduce this 3623 // template. 3624 // FIXME: We probably shouldn't complain about these headers for 3625 // friend declarations. 3626 bool Invalid = false; 3627 TemplateParameterList *TemplateParams 3628 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 3629 (TemplateParameterList**)TemplateParameterLists.get(), 3630 TemplateParameterLists.size(), 3631 TUK == TUK_Friend, 3632 isExplicitSpecialization, 3633 Invalid); 3634 if (Invalid) 3635 return true; 3636 3637 unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size(); 3638 if (TemplateParams) 3639 --NumMatchedTemplateParamLists; 3640 3641 if (TemplateParams && TemplateParams->size() > 0) { 3642 isPartialSpecialization = true; 3643 3644 // C++ [temp.class.spec]p10: 3645 // The template parameter list of a specialization shall not 3646 // contain default template argument values. 3647 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3648 Decl *Param = TemplateParams->getParam(I); 3649 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 3650 if (TTP->hasDefaultArgument()) { 3651 Diag(TTP->getDefaultArgumentLoc(), 3652 diag::err_default_arg_in_partial_spec); 3653 TTP->removeDefaultArgument(); 3654 } 3655 } else if (NonTypeTemplateParmDecl *NTTP 3656 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3657 if (Expr *DefArg = NTTP->getDefaultArgument()) { 3658 Diag(NTTP->getDefaultArgumentLoc(), 3659 diag::err_default_arg_in_partial_spec) 3660 << DefArg->getSourceRange(); 3661 NTTP->removeDefaultArgument(); 3662 } 3663 } else { 3664 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 3665 if (TTP->hasDefaultArgument()) { 3666 Diag(TTP->getDefaultArgument().getLocation(), 3667 diag::err_default_arg_in_partial_spec) 3668 << TTP->getDefaultArgument().getSourceRange(); 3669 TTP->removeDefaultArgument(); 3670 } 3671 } 3672 } 3673 } else if (TemplateParams) { 3674 if (TUK == TUK_Friend) 3675 Diag(KWLoc, diag::err_template_spec_friend) 3676 << FixItHint::CreateRemoval( 3677 SourceRange(TemplateParams->getTemplateLoc(), 3678 TemplateParams->getRAngleLoc())) 3679 << SourceRange(LAngleLoc, RAngleLoc); 3680 else 3681 isExplicitSpecialization = true; 3682 } else if (TUK != TUK_Friend) { 3683 Diag(KWLoc, diag::err_template_spec_needs_header) 3684 << FixItHint::CreateInsertion(KWLoc, "template<> "); 3685 isExplicitSpecialization = true; 3686 } 3687 3688 // Check that the specialization uses the same tag kind as the 3689 // original template. 3690 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 3691 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 3692 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 3693 Kind, KWLoc, 3694 *ClassTemplate->getIdentifier())) { 3695 Diag(KWLoc, diag::err_use_with_wrong_tag) 3696 << ClassTemplate 3697 << FixItHint::CreateReplacement(KWLoc, 3698 ClassTemplate->getTemplatedDecl()->getKindName()); 3699 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 3700 diag::note_previous_use); 3701 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 3702 } 3703 3704 // Translate the parser's template argument list in our AST format. 3705 TemplateArgumentListInfo TemplateArgs; 3706 TemplateArgs.setLAngleLoc(LAngleLoc); 3707 TemplateArgs.setRAngleLoc(RAngleLoc); 3708 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3709 3710 // Check that the template argument list is well-formed for this 3711 // template. 3712 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 3713 TemplateArgs.size()); 3714 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 3715 TemplateArgs, false, Converted)) 3716 return true; 3717 3718 assert((Converted.structuredSize() == 3719 ClassTemplate->getTemplateParameters()->size()) && 3720 "Converted template argument list is too short!"); 3721 3722 // Find the class template (partial) specialization declaration that 3723 // corresponds to these arguments. 3724 if (isPartialSpecialization) { 3725 bool MirrorsPrimaryTemplate; 3726 if (CheckClassTemplatePartialSpecializationArgs( 3727 ClassTemplate->getTemplateParameters(), 3728 Converted, MirrorsPrimaryTemplate)) 3729 return true; 3730 3731 if (MirrorsPrimaryTemplate) { 3732 // C++ [temp.class.spec]p9b3: 3733 // 3734 // -- The argument list of the specialization shall not be identical 3735 // to the implicit argument list of the primary template. 3736 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 3737 << (TUK == TUK_Definition) 3738 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 3739 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 3740 ClassTemplate->getIdentifier(), 3741 TemplateNameLoc, 3742 Attr, 3743 TemplateParams, 3744 AS_none); 3745 } 3746 3747 // FIXME: Diagnose friend partial specializations 3748 3749 if (!Name.isDependent() && 3750 !TemplateSpecializationType::anyDependentTemplateArguments( 3751 TemplateArgs.getArgumentArray(), 3752 TemplateArgs.size())) { 3753 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 3754 << ClassTemplate->getDeclName(); 3755 isPartialSpecialization = false; 3756 } 3757 } 3758 3759 void *InsertPos = 0; 3760 ClassTemplateSpecializationDecl *PrevDecl = 0; 3761 3762 if (isPartialSpecialization) 3763 // FIXME: Template parameter list matters, too 3764 PrevDecl 3765 = ClassTemplate->findPartialSpecialization(Converted.getFlatArguments(), 3766 Converted.flatSize(), 3767 InsertPos); 3768 else 3769 PrevDecl 3770 = ClassTemplate->findSpecialization(Converted.getFlatArguments(), 3771 Converted.flatSize(), InsertPos); 3772 3773 ClassTemplateSpecializationDecl *Specialization = 0; 3774 3775 // Check whether we can declare a class template specialization in 3776 // the current scope. 3777 if (TUK != TUK_Friend && 3778 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 3779 TemplateNameLoc, 3780 isPartialSpecialization)) 3781 return true; 3782 3783 // The canonical type 3784 QualType CanonType; 3785 if (PrevDecl && 3786 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 3787 TUK == TUK_Friend)) { 3788 // Since the only prior class template specialization with these 3789 // arguments was referenced but not declared, or we're only 3790 // referencing this specialization as a friend, reuse that 3791 // declaration node as our own, updating its source location to 3792 // reflect our new declaration. 3793 Specialization = PrevDecl; 3794 Specialization->setLocation(TemplateNameLoc); 3795 PrevDecl = 0; 3796 CanonType = Context.getTypeDeclType(Specialization); 3797 } else if (isPartialSpecialization) { 3798 // Build the canonical type that describes the converted template 3799 // arguments of the class template partial specialization. 3800 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 3801 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 3802 Converted.getFlatArguments(), 3803 Converted.flatSize()); 3804 3805 // Create a new class template partial specialization declaration node. 3806 ClassTemplatePartialSpecializationDecl *PrevPartial 3807 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 3808 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 3809 : ClassTemplate->getNextPartialSpecSequenceNumber(); 3810 ClassTemplatePartialSpecializationDecl *Partial 3811 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 3812 ClassTemplate->getDeclContext(), 3813 TemplateNameLoc, 3814 TemplateParams, 3815 ClassTemplate, 3816 Converted, 3817 TemplateArgs, 3818 CanonType, 3819 PrevPartial, 3820 SequenceNumber); 3821 SetNestedNameSpecifier(Partial, SS); 3822 if (NumMatchedTemplateParamLists > 0) { 3823 Partial->setTemplateParameterListsInfo(Context, 3824 NumMatchedTemplateParamLists, 3825 (TemplateParameterList**) TemplateParameterLists.release()); 3826 } 3827 3828 if (!PrevPartial) 3829 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 3830 Specialization = Partial; 3831 3832 // If we are providing an explicit specialization of a member class 3833 // template specialization, make a note of that. 3834 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 3835 PrevPartial->setMemberSpecialization(); 3836 3837 // Check that all of the template parameters of the class template 3838 // partial specialization are deducible from the template 3839 // arguments. If not, this class template partial specialization 3840 // will never be used. 3841 llvm::SmallVector<bool, 8> DeducibleParams; 3842 DeducibleParams.resize(TemplateParams->size()); 3843 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 3844 TemplateParams->getDepth(), 3845 DeducibleParams); 3846 unsigned NumNonDeducible = 0; 3847 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 3848 if (!DeducibleParams[I]) 3849 ++NumNonDeducible; 3850 3851 if (NumNonDeducible) { 3852 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 3853 << (NumNonDeducible > 1) 3854 << SourceRange(TemplateNameLoc, RAngleLoc); 3855 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 3856 if (!DeducibleParams[I]) { 3857 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 3858 if (Param->getDeclName()) 3859 Diag(Param->getLocation(), 3860 diag::note_partial_spec_unused_parameter) 3861 << Param->getDeclName(); 3862 else 3863 Diag(Param->getLocation(), 3864 diag::note_partial_spec_unused_parameter) 3865 << std::string("<anonymous>"); 3866 } 3867 } 3868 } 3869 } else { 3870 // Create a new class template specialization declaration node for 3871 // this explicit specialization or friend declaration. 3872 Specialization 3873 = ClassTemplateSpecializationDecl::Create(Context, Kind, 3874 ClassTemplate->getDeclContext(), 3875 TemplateNameLoc, 3876 ClassTemplate, 3877 Converted, 3878 PrevDecl); 3879 SetNestedNameSpecifier(Specialization, SS); 3880 if (NumMatchedTemplateParamLists > 0) { 3881 Specialization->setTemplateParameterListsInfo(Context, 3882 NumMatchedTemplateParamLists, 3883 (TemplateParameterList**) TemplateParameterLists.release()); 3884 } 3885 3886 if (!PrevDecl) 3887 ClassTemplate->AddSpecialization(Specialization, InsertPos); 3888 3889 CanonType = Context.getTypeDeclType(Specialization); 3890 } 3891 3892 // C++ [temp.expl.spec]p6: 3893 // If a template, a member template or the member of a class template is 3894 // explicitly specialized then that specialization shall be declared 3895 // before the first use of that specialization that would cause an implicit 3896 // instantiation to take place, in every translation unit in which such a 3897 // use occurs; no diagnostic is required. 3898 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 3899 bool Okay = false; 3900 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 3901 // Is there any previous explicit specialization declaration? 3902 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 3903 Okay = true; 3904 break; 3905 } 3906 } 3907 3908 if (!Okay) { 3909 SourceRange Range(TemplateNameLoc, RAngleLoc); 3910 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 3911 << Context.getTypeDeclType(Specialization) << Range; 3912 3913 Diag(PrevDecl->getPointOfInstantiation(), 3914 diag::note_instantiation_required_here) 3915 << (PrevDecl->getTemplateSpecializationKind() 3916 != TSK_ImplicitInstantiation); 3917 return true; 3918 } 3919 } 3920 3921 // If this is not a friend, note that this is an explicit specialization. 3922 if (TUK != TUK_Friend) 3923 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 3924 3925 // Check that this isn't a redefinition of this specialization. 3926 if (TUK == TUK_Definition) { 3927 if (RecordDecl *Def = Specialization->getDefinition()) { 3928 SourceRange Range(TemplateNameLoc, RAngleLoc); 3929 Diag(TemplateNameLoc, diag::err_redefinition) 3930 << Context.getTypeDeclType(Specialization) << Range; 3931 Diag(Def->getLocation(), diag::note_previous_definition); 3932 Specialization->setInvalidDecl(); 3933 return true; 3934 } 3935 } 3936 3937 // Build the fully-sugared type for this class template 3938 // specialization as the user wrote in the specialization 3939 // itself. This means that we'll pretty-print the type retrieved 3940 // from the specialization's declaration the way that the user 3941 // actually wrote the specialization, rather than formatting the 3942 // name based on the "canonical" representation used to store the 3943 // template arguments in the specialization. 3944 TypeSourceInfo *WrittenTy 3945 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 3946 TemplateArgs, CanonType); 3947 if (TUK != TUK_Friend) { 3948 Specialization->setTypeAsWritten(WrittenTy); 3949 if (TemplateParams) 3950 Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc()); 3951 } 3952 TemplateArgsIn.release(); 3953 3954 // C++ [temp.expl.spec]p9: 3955 // A template explicit specialization is in the scope of the 3956 // namespace in which the template was defined. 3957 // 3958 // We actually implement this paragraph where we set the semantic 3959 // context (in the creation of the ClassTemplateSpecializationDecl), 3960 // but we also maintain the lexical context where the actual 3961 // definition occurs. 3962 Specialization->setLexicalDeclContext(CurContext); 3963 3964 // We may be starting the definition of this specialization. 3965 if (TUK == TUK_Definition) 3966 Specialization->startDefinition(); 3967 3968 if (TUK == TUK_Friend) { 3969 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 3970 TemplateNameLoc, 3971 WrittenTy, 3972 /*FIXME:*/KWLoc); 3973 Friend->setAccess(AS_public); 3974 CurContext->addDecl(Friend); 3975 } else { 3976 // Add the specialization into its lexical context, so that it can 3977 // be seen when iterating through the list of declarations in that 3978 // context. However, specializations are not found by name lookup. 3979 CurContext->addDecl(Specialization); 3980 } 3981 return DeclPtrTy::make(Specialization); 3982} 3983 3984Sema::DeclPtrTy 3985Sema::ActOnTemplateDeclarator(Scope *S, 3986 MultiTemplateParamsArg TemplateParameterLists, 3987 Declarator &D) { 3988 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 3989} 3990 3991Sema::DeclPtrTy 3992Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 3993 MultiTemplateParamsArg TemplateParameterLists, 3994 Declarator &D) { 3995 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 3996 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && 3997 "Not a function declarator!"); 3998 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; 3999 4000 if (FTI.hasPrototype) { 4001 // FIXME: Diagnose arguments without names in C. 4002 } 4003 4004 Scope *ParentScope = FnBodyScope->getParent(); 4005 4006 DeclPtrTy DP = HandleDeclarator(ParentScope, D, 4007 move(TemplateParameterLists), 4008 /*IsFunctionDefinition=*/true); 4009 if (FunctionTemplateDecl *FunctionTemplate 4010 = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>())) 4011 return ActOnStartOfFunctionDef(FnBodyScope, 4012 DeclPtrTy::make(FunctionTemplate->getTemplatedDecl())); 4013 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>())) 4014 return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function)); 4015 return DeclPtrTy(); 4016} 4017 4018/// \brief Strips various properties off an implicit instantiation 4019/// that has just been explicitly specialized. 4020static void StripImplicitInstantiation(NamedDecl *D) { 4021 D->invalidateAttrs(); 4022 4023 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 4024 FD->setInlineSpecified(false); 4025 } 4026} 4027 4028/// \brief Diagnose cases where we have an explicit template specialization 4029/// before/after an explicit template instantiation, producing diagnostics 4030/// for those cases where they are required and determining whether the 4031/// new specialization/instantiation will have any effect. 4032/// 4033/// \param NewLoc the location of the new explicit specialization or 4034/// instantiation. 4035/// 4036/// \param NewTSK the kind of the new explicit specialization or instantiation. 4037/// 4038/// \param PrevDecl the previous declaration of the entity. 4039/// 4040/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 4041/// 4042/// \param PrevPointOfInstantiation if valid, indicates where the previus 4043/// declaration was instantiated (either implicitly or explicitly). 4044/// 4045/// \param HasNoEffect will be set to true to indicate that the new 4046/// specialization or instantiation has no effect and should be ignored. 4047/// 4048/// \returns true if there was an error that should prevent the introduction of 4049/// the new declaration into the AST, false otherwise. 4050bool 4051Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 4052 TemplateSpecializationKind NewTSK, 4053 NamedDecl *PrevDecl, 4054 TemplateSpecializationKind PrevTSK, 4055 SourceLocation PrevPointOfInstantiation, 4056 bool &HasNoEffect) { 4057 HasNoEffect = false; 4058 4059 switch (NewTSK) { 4060 case TSK_Undeclared: 4061 case TSK_ImplicitInstantiation: 4062 assert(false && "Don't check implicit instantiations here"); 4063 return false; 4064 4065 case TSK_ExplicitSpecialization: 4066 switch (PrevTSK) { 4067 case TSK_Undeclared: 4068 case TSK_ExplicitSpecialization: 4069 // Okay, we're just specializing something that is either already 4070 // explicitly specialized or has merely been mentioned without any 4071 // instantiation. 4072 return false; 4073 4074 case TSK_ImplicitInstantiation: 4075 if (PrevPointOfInstantiation.isInvalid()) { 4076 // The declaration itself has not actually been instantiated, so it is 4077 // still okay to specialize it. 4078 StripImplicitInstantiation(PrevDecl); 4079 return false; 4080 } 4081 // Fall through 4082 4083 case TSK_ExplicitInstantiationDeclaration: 4084 case TSK_ExplicitInstantiationDefinition: 4085 assert((PrevTSK == TSK_ImplicitInstantiation || 4086 PrevPointOfInstantiation.isValid()) && 4087 "Explicit instantiation without point of instantiation?"); 4088 4089 // C++ [temp.expl.spec]p6: 4090 // If a template, a member template or the member of a class template 4091 // is explicitly specialized then that specialization shall be declared 4092 // before the first use of that specialization that would cause an 4093 // implicit instantiation to take place, in every translation unit in 4094 // which such a use occurs; no diagnostic is required. 4095 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 4096 // Is there any previous explicit specialization declaration? 4097 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 4098 return false; 4099 } 4100 4101 Diag(NewLoc, diag::err_specialization_after_instantiation) 4102 << PrevDecl; 4103 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 4104 << (PrevTSK != TSK_ImplicitInstantiation); 4105 4106 return true; 4107 } 4108 break; 4109 4110 case TSK_ExplicitInstantiationDeclaration: 4111 switch (PrevTSK) { 4112 case TSK_ExplicitInstantiationDeclaration: 4113 // This explicit instantiation declaration is redundant (that's okay). 4114 HasNoEffect = true; 4115 return false; 4116 4117 case TSK_Undeclared: 4118 case TSK_ImplicitInstantiation: 4119 // We're explicitly instantiating something that may have already been 4120 // implicitly instantiated; that's fine. 4121 return false; 4122 4123 case TSK_ExplicitSpecialization: 4124 // C++0x [temp.explicit]p4: 4125 // For a given set of template parameters, if an explicit instantiation 4126 // of a template appears after a declaration of an explicit 4127 // specialization for that template, the explicit instantiation has no 4128 // effect. 4129 HasNoEffect = true; 4130 return false; 4131 4132 case TSK_ExplicitInstantiationDefinition: 4133 // C++0x [temp.explicit]p10: 4134 // If an entity is the subject of both an explicit instantiation 4135 // declaration and an explicit instantiation definition in the same 4136 // translation unit, the definition shall follow the declaration. 4137 Diag(NewLoc, 4138 diag::err_explicit_instantiation_declaration_after_definition); 4139 Diag(PrevPointOfInstantiation, 4140 diag::note_explicit_instantiation_definition_here); 4141 assert(PrevPointOfInstantiation.isValid() && 4142 "Explicit instantiation without point of instantiation?"); 4143 HasNoEffect = true; 4144 return false; 4145 } 4146 break; 4147 4148 case TSK_ExplicitInstantiationDefinition: 4149 switch (PrevTSK) { 4150 case TSK_Undeclared: 4151 case TSK_ImplicitInstantiation: 4152 // We're explicitly instantiating something that may have already been 4153 // implicitly instantiated; that's fine. 4154 return false; 4155 4156 case TSK_ExplicitSpecialization: 4157 // C++ DR 259, C++0x [temp.explicit]p4: 4158 // For a given set of template parameters, if an explicit 4159 // instantiation of a template appears after a declaration of 4160 // an explicit specialization for that template, the explicit 4161 // instantiation has no effect. 4162 // 4163 // In C++98/03 mode, we only give an extension warning here, because it 4164 // is not harmful to try to explicitly instantiate something that 4165 // has been explicitly specialized. 4166 if (!getLangOptions().CPlusPlus0x) { 4167 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 4168 << PrevDecl; 4169 Diag(PrevDecl->getLocation(), 4170 diag::note_previous_template_specialization); 4171 } 4172 HasNoEffect = true; 4173 return false; 4174 4175 case TSK_ExplicitInstantiationDeclaration: 4176 // We're explicity instantiating a definition for something for which we 4177 // were previously asked to suppress instantiations. That's fine. 4178 return false; 4179 4180 case TSK_ExplicitInstantiationDefinition: 4181 // C++0x [temp.spec]p5: 4182 // For a given template and a given set of template-arguments, 4183 // - an explicit instantiation definition shall appear at most once 4184 // in a program, 4185 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 4186 << PrevDecl; 4187 Diag(PrevPointOfInstantiation, 4188 diag::note_previous_explicit_instantiation); 4189 HasNoEffect = true; 4190 return false; 4191 } 4192 break; 4193 } 4194 4195 assert(false && "Missing specialization/instantiation case?"); 4196 4197 return false; 4198} 4199 4200/// \brief Perform semantic analysis for the given dependent function 4201/// template specialization. The only possible way to get a dependent 4202/// function template specialization is with a friend declaration, 4203/// like so: 4204/// 4205/// template <class T> void foo(T); 4206/// template <class T> class A { 4207/// friend void foo<>(T); 4208/// }; 4209/// 4210/// There really isn't any useful analysis we can do here, so we 4211/// just store the information. 4212bool 4213Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 4214 const TemplateArgumentListInfo &ExplicitTemplateArgs, 4215 LookupResult &Previous) { 4216 // Remove anything from Previous that isn't a function template in 4217 // the correct context. 4218 DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext(); 4219 LookupResult::Filter F = Previous.makeFilter(); 4220 while (F.hasNext()) { 4221 NamedDecl *D = F.next()->getUnderlyingDecl(); 4222 if (!isa<FunctionTemplateDecl>(D) || 4223 !FDLookupContext->Equals(D->getDeclContext()->getLookupContext())) 4224 F.erase(); 4225 } 4226 F.done(); 4227 4228 // Should this be diagnosed here? 4229 if (Previous.empty()) return true; 4230 4231 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 4232 ExplicitTemplateArgs); 4233 return false; 4234} 4235 4236/// \brief Perform semantic analysis for the given function template 4237/// specialization. 4238/// 4239/// This routine performs all of the semantic analysis required for an 4240/// explicit function template specialization. On successful completion, 4241/// the function declaration \p FD will become a function template 4242/// specialization. 4243/// 4244/// \param FD the function declaration, which will be updated to become a 4245/// function template specialization. 4246/// 4247/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 4248/// if any. Note that this may be valid info even when 0 arguments are 4249/// explicitly provided as in, e.g., \c void sort<>(char*, char*); 4250/// as it anyway contains info on the angle brackets locations. 4251/// 4252/// \param PrevDecl the set of declarations that may be specialized by 4253/// this function specialization. 4254bool 4255Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 4256 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4257 LookupResult &Previous) { 4258 // The set of function template specializations that could match this 4259 // explicit function template specialization. 4260 UnresolvedSet<8> Candidates; 4261 4262 DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext(); 4263 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4264 I != E; ++I) { 4265 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 4266 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 4267 // Only consider templates found within the same semantic lookup scope as 4268 // FD. 4269 if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext())) 4270 continue; 4271 4272 // C++ [temp.expl.spec]p11: 4273 // A trailing template-argument can be left unspecified in the 4274 // template-id naming an explicit function template specialization 4275 // provided it can be deduced from the function argument type. 4276 // Perform template argument deduction to determine whether we may be 4277 // specializing this template. 4278 // FIXME: It is somewhat wasteful to build 4279 TemplateDeductionInfo Info(Context, FD->getLocation()); 4280 FunctionDecl *Specialization = 0; 4281 if (TemplateDeductionResult TDK 4282 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 4283 FD->getType(), 4284 Specialization, 4285 Info)) { 4286 // FIXME: Template argument deduction failed; record why it failed, so 4287 // that we can provide nifty diagnostics. 4288 (void)TDK; 4289 continue; 4290 } 4291 4292 // Record this candidate. 4293 Candidates.addDecl(Specialization, I.getAccess()); 4294 } 4295 } 4296 4297 // Find the most specialized function template. 4298 UnresolvedSetIterator Result 4299 = getMostSpecialized(Candidates.begin(), Candidates.end(), 4300 TPOC_Other, FD->getLocation(), 4301 PDiag(diag::err_function_template_spec_no_match) 4302 << FD->getDeclName(), 4303 PDiag(diag::err_function_template_spec_ambiguous) 4304 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 4305 PDiag(diag::note_function_template_spec_matched)); 4306 if (Result == Candidates.end()) 4307 return true; 4308 4309 // Ignore access information; it doesn't figure into redeclaration checking. 4310 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 4311 Specialization->setLocation(FD->getLocation()); 4312 4313 // FIXME: Check if the prior specialization has a point of instantiation. 4314 // If so, we have run afoul of . 4315 4316 // If this is a friend declaration, then we're not really declaring 4317 // an explicit specialization. 4318 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 4319 4320 // Check the scope of this explicit specialization. 4321 if (!isFriend && 4322 CheckTemplateSpecializationScope(*this, 4323 Specialization->getPrimaryTemplate(), 4324 Specialization, FD->getLocation(), 4325 false)) 4326 return true; 4327 4328 // C++ [temp.expl.spec]p6: 4329 // If a template, a member template or the member of a class template is 4330 // explicitly specialized then that specialization shall be declared 4331 // before the first use of that specialization that would cause an implicit 4332 // instantiation to take place, in every translation unit in which such a 4333 // use occurs; no diagnostic is required. 4334 FunctionTemplateSpecializationInfo *SpecInfo 4335 = Specialization->getTemplateSpecializationInfo(); 4336 assert(SpecInfo && "Function template specialization info missing?"); 4337 4338 bool HasNoEffect = false; 4339 if (!isFriend && 4340 CheckSpecializationInstantiationRedecl(FD->getLocation(), 4341 TSK_ExplicitSpecialization, 4342 Specialization, 4343 SpecInfo->getTemplateSpecializationKind(), 4344 SpecInfo->getPointOfInstantiation(), 4345 HasNoEffect)) 4346 return true; 4347 4348 // Mark the prior declaration as an explicit specialization, so that later 4349 // clients know that this is an explicit specialization. 4350 if (!isFriend) 4351 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 4352 4353 // Turn the given function declaration into a function template 4354 // specialization, with the template arguments from the previous 4355 // specialization. 4356 // Take copies of (semantic and syntactic) template argument lists. 4357 const TemplateArgumentList* TemplArgs = new (Context) 4358 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 4359 const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs 4360 ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0; 4361 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 4362 TemplArgs, /*InsertPos=*/0, 4363 SpecInfo->getTemplateSpecializationKind(), 4364 TemplArgsAsWritten); 4365 4366 // The "previous declaration" for this function template specialization is 4367 // the prior function template specialization. 4368 Previous.clear(); 4369 Previous.addDecl(Specialization); 4370 return false; 4371} 4372 4373/// \brief Perform semantic analysis for the given non-template member 4374/// specialization. 4375/// 4376/// This routine performs all of the semantic analysis required for an 4377/// explicit member function specialization. On successful completion, 4378/// the function declaration \p FD will become a member function 4379/// specialization. 4380/// 4381/// \param Member the member declaration, which will be updated to become a 4382/// specialization. 4383/// 4384/// \param Previous the set of declarations, one of which may be specialized 4385/// by this function specialization; the set will be modified to contain the 4386/// redeclared member. 4387bool 4388Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 4389 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 4390 4391 // Try to find the member we are instantiating. 4392 NamedDecl *Instantiation = 0; 4393 NamedDecl *InstantiatedFrom = 0; 4394 MemberSpecializationInfo *MSInfo = 0; 4395 4396 if (Previous.empty()) { 4397 // Nowhere to look anyway. 4398 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 4399 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4400 I != E; ++I) { 4401 NamedDecl *D = (*I)->getUnderlyingDecl(); 4402 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 4403 if (Context.hasSameType(Function->getType(), Method->getType())) { 4404 Instantiation = Method; 4405 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 4406 MSInfo = Method->getMemberSpecializationInfo(); 4407 break; 4408 } 4409 } 4410 } 4411 } else if (isa<VarDecl>(Member)) { 4412 VarDecl *PrevVar; 4413 if (Previous.isSingleResult() && 4414 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 4415 if (PrevVar->isStaticDataMember()) { 4416 Instantiation = PrevVar; 4417 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 4418 MSInfo = PrevVar->getMemberSpecializationInfo(); 4419 } 4420 } else if (isa<RecordDecl>(Member)) { 4421 CXXRecordDecl *PrevRecord; 4422 if (Previous.isSingleResult() && 4423 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 4424 Instantiation = PrevRecord; 4425 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 4426 MSInfo = PrevRecord->getMemberSpecializationInfo(); 4427 } 4428 } 4429 4430 if (!Instantiation) { 4431 // There is no previous declaration that matches. Since member 4432 // specializations are always out-of-line, the caller will complain about 4433 // this mismatch later. 4434 return false; 4435 } 4436 4437 // If this is a friend, just bail out here before we start turning 4438 // things into explicit specializations. 4439 if (Member->getFriendObjectKind() != Decl::FOK_None) { 4440 // Preserve instantiation information. 4441 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 4442 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 4443 cast<CXXMethodDecl>(InstantiatedFrom), 4444 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 4445 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 4446 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 4447 cast<CXXRecordDecl>(InstantiatedFrom), 4448 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 4449 } 4450 4451 Previous.clear(); 4452 Previous.addDecl(Instantiation); 4453 return false; 4454 } 4455 4456 // Make sure that this is a specialization of a member. 4457 if (!InstantiatedFrom) { 4458 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 4459 << Member; 4460 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 4461 return true; 4462 } 4463 4464 // C++ [temp.expl.spec]p6: 4465 // If a template, a member template or the member of a class template is 4466 // explicitly specialized then that spe- cialization shall be declared 4467 // before the first use of that specialization that would cause an implicit 4468 // instantiation to take place, in every translation unit in which such a 4469 // use occurs; no diagnostic is required. 4470 assert(MSInfo && "Member specialization info missing?"); 4471 4472 bool HasNoEffect = false; 4473 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 4474 TSK_ExplicitSpecialization, 4475 Instantiation, 4476 MSInfo->getTemplateSpecializationKind(), 4477 MSInfo->getPointOfInstantiation(), 4478 HasNoEffect)) 4479 return true; 4480 4481 // Check the scope of this explicit specialization. 4482 if (CheckTemplateSpecializationScope(*this, 4483 InstantiatedFrom, 4484 Instantiation, Member->getLocation(), 4485 false)) 4486 return true; 4487 4488 // Note that this is an explicit instantiation of a member. 4489 // the original declaration to note that it is an explicit specialization 4490 // (if it was previously an implicit instantiation). This latter step 4491 // makes bookkeeping easier. 4492 if (isa<FunctionDecl>(Member)) { 4493 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 4494 if (InstantiationFunction->getTemplateSpecializationKind() == 4495 TSK_ImplicitInstantiation) { 4496 InstantiationFunction->setTemplateSpecializationKind( 4497 TSK_ExplicitSpecialization); 4498 InstantiationFunction->setLocation(Member->getLocation()); 4499 } 4500 4501 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 4502 cast<CXXMethodDecl>(InstantiatedFrom), 4503 TSK_ExplicitSpecialization); 4504 } else if (isa<VarDecl>(Member)) { 4505 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 4506 if (InstantiationVar->getTemplateSpecializationKind() == 4507 TSK_ImplicitInstantiation) { 4508 InstantiationVar->setTemplateSpecializationKind( 4509 TSK_ExplicitSpecialization); 4510 InstantiationVar->setLocation(Member->getLocation()); 4511 } 4512 4513 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 4514 cast<VarDecl>(InstantiatedFrom), 4515 TSK_ExplicitSpecialization); 4516 } else { 4517 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 4518 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 4519 if (InstantiationClass->getTemplateSpecializationKind() == 4520 TSK_ImplicitInstantiation) { 4521 InstantiationClass->setTemplateSpecializationKind( 4522 TSK_ExplicitSpecialization); 4523 InstantiationClass->setLocation(Member->getLocation()); 4524 } 4525 4526 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 4527 cast<CXXRecordDecl>(InstantiatedFrom), 4528 TSK_ExplicitSpecialization); 4529 } 4530 4531 // Save the caller the trouble of having to figure out which declaration 4532 // this specialization matches. 4533 Previous.clear(); 4534 Previous.addDecl(Instantiation); 4535 return false; 4536} 4537 4538/// \brief Check the scope of an explicit instantiation. 4539/// 4540/// \returns true if a serious error occurs, false otherwise. 4541static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 4542 SourceLocation InstLoc, 4543 bool WasQualifiedName) { 4544 DeclContext *ExpectedContext 4545 = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext(); 4546 DeclContext *CurContext = S.CurContext->getLookupContext(); 4547 4548 if (CurContext->isRecord()) { 4549 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 4550 << D; 4551 return true; 4552 } 4553 4554 // C++0x [temp.explicit]p2: 4555 // An explicit instantiation shall appear in an enclosing namespace of its 4556 // template. 4557 // 4558 // This is DR275, which we do not retroactively apply to C++98/03. 4559 if (S.getLangOptions().CPlusPlus0x && 4560 !CurContext->Encloses(ExpectedContext)) { 4561 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext)) 4562 S.Diag(InstLoc, 4563 S.getLangOptions().CPlusPlus0x? 4564 diag::err_explicit_instantiation_out_of_scope 4565 : diag::warn_explicit_instantiation_out_of_scope_0x) 4566 << D << NS; 4567 else 4568 S.Diag(InstLoc, 4569 S.getLangOptions().CPlusPlus0x? 4570 diag::err_explicit_instantiation_must_be_global 4571 : diag::warn_explicit_instantiation_out_of_scope_0x) 4572 << D; 4573 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4574 return false; 4575 } 4576 4577 // C++0x [temp.explicit]p2: 4578 // If the name declared in the explicit instantiation is an unqualified 4579 // name, the explicit instantiation shall appear in the namespace where 4580 // its template is declared or, if that namespace is inline (7.3.1), any 4581 // namespace from its enclosing namespace set. 4582 if (WasQualifiedName) 4583 return false; 4584 4585 if (CurContext->Equals(ExpectedContext)) 4586 return false; 4587 4588 S.Diag(InstLoc, 4589 S.getLangOptions().CPlusPlus0x? 4590 diag::err_explicit_instantiation_unqualified_wrong_namespace 4591 : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 4592 << D << ExpectedContext; 4593 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4594 return false; 4595} 4596 4597/// \brief Determine whether the given scope specifier has a template-id in it. 4598static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 4599 if (!SS.isSet()) 4600 return false; 4601 4602 // C++0x [temp.explicit]p2: 4603 // If the explicit instantiation is for a member function, a member class 4604 // or a static data member of a class template specialization, the name of 4605 // the class template specialization in the qualified-id for the member 4606 // name shall be a simple-template-id. 4607 // 4608 // C++98 has the same restriction, just worded differently. 4609 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 4610 NNS; NNS = NNS->getPrefix()) 4611 if (Type *T = NNS->getAsType()) 4612 if (isa<TemplateSpecializationType>(T)) 4613 return true; 4614 4615 return false; 4616} 4617 4618// Explicit instantiation of a class template specialization 4619Sema::DeclResult 4620Sema::ActOnExplicitInstantiation(Scope *S, 4621 SourceLocation ExternLoc, 4622 SourceLocation TemplateLoc, 4623 unsigned TagSpec, 4624 SourceLocation KWLoc, 4625 const CXXScopeSpec &SS, 4626 TemplateTy TemplateD, 4627 SourceLocation TemplateNameLoc, 4628 SourceLocation LAngleLoc, 4629 ASTTemplateArgsPtr TemplateArgsIn, 4630 SourceLocation RAngleLoc, 4631 AttributeList *Attr) { 4632 // Find the class template we're specializing 4633 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4634 ClassTemplateDecl *ClassTemplate 4635 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4636 4637 // Check that the specialization uses the same tag kind as the 4638 // original template. 4639 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4640 assert(Kind != TTK_Enum && 4641 "Invalid enum tag in class template explicit instantiation!"); 4642 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4643 Kind, KWLoc, 4644 *ClassTemplate->getIdentifier())) { 4645 Diag(KWLoc, diag::err_use_with_wrong_tag) 4646 << ClassTemplate 4647 << FixItHint::CreateReplacement(KWLoc, 4648 ClassTemplate->getTemplatedDecl()->getKindName()); 4649 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4650 diag::note_previous_use); 4651 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4652 } 4653 4654 // C++0x [temp.explicit]p2: 4655 // There are two forms of explicit instantiation: an explicit instantiation 4656 // definition and an explicit instantiation declaration. An explicit 4657 // instantiation declaration begins with the extern keyword. [...] 4658 TemplateSpecializationKind TSK 4659 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4660 : TSK_ExplicitInstantiationDeclaration; 4661 4662 // Translate the parser's template argument list in our AST format. 4663 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 4664 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4665 4666 // Check that the template argument list is well-formed for this 4667 // template. 4668 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 4669 TemplateArgs.size()); 4670 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4671 TemplateArgs, false, Converted)) 4672 return true; 4673 4674 assert((Converted.structuredSize() == 4675 ClassTemplate->getTemplateParameters()->size()) && 4676 "Converted template argument list is too short!"); 4677 4678 // Find the class template specialization declaration that 4679 // corresponds to these arguments. 4680 void *InsertPos = 0; 4681 ClassTemplateSpecializationDecl *PrevDecl 4682 = ClassTemplate->findSpecialization(Converted.getFlatArguments(), 4683 Converted.flatSize(), InsertPos); 4684 4685 TemplateSpecializationKind PrevDecl_TSK 4686 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 4687 4688 // C++0x [temp.explicit]p2: 4689 // [...] An explicit instantiation shall appear in an enclosing 4690 // namespace of its template. [...] 4691 // 4692 // This is C++ DR 275. 4693 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 4694 SS.isSet())) 4695 return true; 4696 4697 ClassTemplateSpecializationDecl *Specialization = 0; 4698 4699 bool ReusedDecl = false; 4700 bool HasNoEffect = false; 4701 if (PrevDecl) { 4702 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 4703 PrevDecl, PrevDecl_TSK, 4704 PrevDecl->getPointOfInstantiation(), 4705 HasNoEffect)) 4706 return DeclPtrTy::make(PrevDecl); 4707 4708 // Even though HasNoEffect == true means that this explicit instantiation 4709 // has no effect on semantics, we go on to put its syntax in the AST. 4710 4711 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 4712 PrevDecl_TSK == TSK_Undeclared) { 4713 // Since the only prior class template specialization with these 4714 // arguments was referenced but not declared, reuse that 4715 // declaration node as our own, updating the source location 4716 // for the template name to reflect our new declaration. 4717 // (Other source locations will be updated later.) 4718 Specialization = PrevDecl; 4719 Specialization->setLocation(TemplateNameLoc); 4720 PrevDecl = 0; 4721 ReusedDecl = true; 4722 } 4723 } 4724 4725 if (!Specialization) { 4726 // Create a new class template specialization declaration node for 4727 // this explicit specialization. 4728 Specialization 4729 = ClassTemplateSpecializationDecl::Create(Context, Kind, 4730 ClassTemplate->getDeclContext(), 4731 TemplateNameLoc, 4732 ClassTemplate, 4733 Converted, PrevDecl); 4734 SetNestedNameSpecifier(Specialization, SS); 4735 4736 if (!HasNoEffect && !PrevDecl) { 4737 // Insert the new specialization. 4738 ClassTemplate->AddSpecialization(Specialization, InsertPos); 4739 } 4740 } 4741 4742 // Build the fully-sugared type for this explicit instantiation as 4743 // the user wrote in the explicit instantiation itself. This means 4744 // that we'll pretty-print the type retrieved from the 4745 // specialization's declaration the way that the user actually wrote 4746 // the explicit instantiation, rather than formatting the name based 4747 // on the "canonical" representation used to store the template 4748 // arguments in the specialization. 4749 TypeSourceInfo *WrittenTy 4750 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 4751 TemplateArgs, 4752 Context.getTypeDeclType(Specialization)); 4753 Specialization->setTypeAsWritten(WrittenTy); 4754 TemplateArgsIn.release(); 4755 4756 // Set source locations for keywords. 4757 Specialization->setExternLoc(ExternLoc); 4758 Specialization->setTemplateKeywordLoc(TemplateLoc); 4759 4760 // Add the explicit instantiation into its lexical context. However, 4761 // since explicit instantiations are never found by name lookup, we 4762 // just put it into the declaration context directly. 4763 Specialization->setLexicalDeclContext(CurContext); 4764 CurContext->addDecl(Specialization); 4765 4766 // Syntax is now OK, so return if it has no other effect on semantics. 4767 if (HasNoEffect) { 4768 // Set the template specialization kind. 4769 Specialization->setTemplateSpecializationKind(TSK); 4770 return DeclPtrTy::make(Specialization); 4771 } 4772 4773 // C++ [temp.explicit]p3: 4774 // A definition of a class template or class member template 4775 // shall be in scope at the point of the explicit instantiation of 4776 // the class template or class member template. 4777 // 4778 // This check comes when we actually try to perform the 4779 // instantiation. 4780 ClassTemplateSpecializationDecl *Def 4781 = cast_or_null<ClassTemplateSpecializationDecl>( 4782 Specialization->getDefinition()); 4783 if (!Def) 4784 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 4785 else if (TSK == TSK_ExplicitInstantiationDefinition) { 4786 MarkVTableUsed(TemplateNameLoc, Specialization, true); 4787 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 4788 } 4789 4790 // Instantiate the members of this class template specialization. 4791 Def = cast_or_null<ClassTemplateSpecializationDecl>( 4792 Specialization->getDefinition()); 4793 if (Def) { 4794 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 4795 4796 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 4797 // TSK_ExplicitInstantiationDefinition 4798 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 4799 TSK == TSK_ExplicitInstantiationDefinition) 4800 Def->setTemplateSpecializationKind(TSK); 4801 4802 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 4803 } 4804 4805 // Set the template specialization kind. 4806 Specialization->setTemplateSpecializationKind(TSK); 4807 return DeclPtrTy::make(Specialization); 4808} 4809 4810// Explicit instantiation of a member class of a class template. 4811Sema::DeclResult 4812Sema::ActOnExplicitInstantiation(Scope *S, 4813 SourceLocation ExternLoc, 4814 SourceLocation TemplateLoc, 4815 unsigned TagSpec, 4816 SourceLocation KWLoc, 4817 CXXScopeSpec &SS, 4818 IdentifierInfo *Name, 4819 SourceLocation NameLoc, 4820 AttributeList *Attr) { 4821 4822 bool Owned = false; 4823 bool IsDependent = false; 4824 DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference, 4825 KWLoc, SS, Name, NameLoc, Attr, AS_none, 4826 MultiTemplateParamsArg(*this, 0, 0), 4827 Owned, IsDependent); 4828 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 4829 4830 if (!TagD) 4831 return true; 4832 4833 TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>()); 4834 if (Tag->isEnum()) { 4835 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 4836 << Context.getTypeDeclType(Tag); 4837 return true; 4838 } 4839 4840 if (Tag->isInvalidDecl()) 4841 return true; 4842 4843 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 4844 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 4845 if (!Pattern) { 4846 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 4847 << Context.getTypeDeclType(Record); 4848 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 4849 return true; 4850 } 4851 4852 // C++0x [temp.explicit]p2: 4853 // If the explicit instantiation is for a class or member class, the 4854 // elaborated-type-specifier in the declaration shall include a 4855 // simple-template-id. 4856 // 4857 // C++98 has the same restriction, just worded differently. 4858 if (!ScopeSpecifierHasTemplateId(SS)) 4859 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 4860 << Record << SS.getRange(); 4861 4862 // C++0x [temp.explicit]p2: 4863 // There are two forms of explicit instantiation: an explicit instantiation 4864 // definition and an explicit instantiation declaration. An explicit 4865 // instantiation declaration begins with the extern keyword. [...] 4866 TemplateSpecializationKind TSK 4867 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4868 : TSK_ExplicitInstantiationDeclaration; 4869 4870 // C++0x [temp.explicit]p2: 4871 // [...] An explicit instantiation shall appear in an enclosing 4872 // namespace of its template. [...] 4873 // 4874 // This is C++ DR 275. 4875 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 4876 4877 // Verify that it is okay to explicitly instantiate here. 4878 CXXRecordDecl *PrevDecl 4879 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 4880 if (!PrevDecl && Record->getDefinition()) 4881 PrevDecl = Record; 4882 if (PrevDecl) { 4883 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 4884 bool HasNoEffect = false; 4885 assert(MSInfo && "No member specialization information?"); 4886 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 4887 PrevDecl, 4888 MSInfo->getTemplateSpecializationKind(), 4889 MSInfo->getPointOfInstantiation(), 4890 HasNoEffect)) 4891 return true; 4892 if (HasNoEffect) 4893 return TagD; 4894 } 4895 4896 CXXRecordDecl *RecordDef 4897 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 4898 if (!RecordDef) { 4899 // C++ [temp.explicit]p3: 4900 // A definition of a member class of a class template shall be in scope 4901 // at the point of an explicit instantiation of the member class. 4902 CXXRecordDecl *Def 4903 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 4904 if (!Def) { 4905 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 4906 << 0 << Record->getDeclName() << Record->getDeclContext(); 4907 Diag(Pattern->getLocation(), diag::note_forward_declaration) 4908 << Pattern; 4909 return true; 4910 } else { 4911 if (InstantiateClass(NameLoc, Record, Def, 4912 getTemplateInstantiationArgs(Record), 4913 TSK)) 4914 return true; 4915 4916 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 4917 if (!RecordDef) 4918 return true; 4919 } 4920 } 4921 4922 // Instantiate all of the members of the class. 4923 InstantiateClassMembers(NameLoc, RecordDef, 4924 getTemplateInstantiationArgs(Record), TSK); 4925 4926 if (TSK == TSK_ExplicitInstantiationDefinition) 4927 MarkVTableUsed(NameLoc, RecordDef, true); 4928 4929 // FIXME: We don't have any representation for explicit instantiations of 4930 // member classes. Such a representation is not needed for compilation, but it 4931 // should be available for clients that want to see all of the declarations in 4932 // the source code. 4933 return TagD; 4934} 4935 4936Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 4937 SourceLocation ExternLoc, 4938 SourceLocation TemplateLoc, 4939 Declarator &D) { 4940 // Explicit instantiations always require a name. 4941 DeclarationName Name = GetNameForDeclarator(D); 4942 if (!Name) { 4943 if (!D.isInvalidType()) 4944 Diag(D.getDeclSpec().getSourceRange().getBegin(), 4945 diag::err_explicit_instantiation_requires_name) 4946 << D.getDeclSpec().getSourceRange() 4947 << D.getSourceRange(); 4948 4949 return true; 4950 } 4951 4952 // The scope passed in may not be a decl scope. Zip up the scope tree until 4953 // we find one that is. 4954 while ((S->getFlags() & Scope::DeclScope) == 0 || 4955 (S->getFlags() & Scope::TemplateParamScope) != 0) 4956 S = S->getParent(); 4957 4958 // Determine the type of the declaration. 4959 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 4960 QualType R = T->getType(); 4961 if (R.isNull()) 4962 return true; 4963 4964 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 4965 // Cannot explicitly instantiate a typedef. 4966 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 4967 << Name; 4968 return true; 4969 } 4970 4971 // C++0x [temp.explicit]p1: 4972 // [...] An explicit instantiation of a function template shall not use the 4973 // inline or constexpr specifiers. 4974 // Presumably, this also applies to member functions of class templates as 4975 // well. 4976 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 4977 Diag(D.getDeclSpec().getInlineSpecLoc(), 4978 diag::err_explicit_instantiation_inline) 4979 <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 4980 4981 // FIXME: check for constexpr specifier. 4982 4983 // C++0x [temp.explicit]p2: 4984 // There are two forms of explicit instantiation: an explicit instantiation 4985 // definition and an explicit instantiation declaration. An explicit 4986 // instantiation declaration begins with the extern keyword. [...] 4987 TemplateSpecializationKind TSK 4988 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4989 : TSK_ExplicitInstantiationDeclaration; 4990 4991 LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName); 4992 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 4993 4994 if (!R->isFunctionType()) { 4995 // C++ [temp.explicit]p1: 4996 // A [...] static data member of a class template can be explicitly 4997 // instantiated from the member definition associated with its class 4998 // template. 4999 if (Previous.isAmbiguous()) 5000 return true; 5001 5002 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 5003 if (!Prev || !Prev->isStaticDataMember()) { 5004 // We expect to see a data data member here. 5005 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 5006 << Name; 5007 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 5008 P != PEnd; ++P) 5009 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 5010 return true; 5011 } 5012 5013 if (!Prev->getInstantiatedFromStaticDataMember()) { 5014 // FIXME: Check for explicit specialization? 5015 Diag(D.getIdentifierLoc(), 5016 diag::err_explicit_instantiation_data_member_not_instantiated) 5017 << Prev; 5018 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 5019 // FIXME: Can we provide a note showing where this was declared? 5020 return true; 5021 } 5022 5023 // C++0x [temp.explicit]p2: 5024 // If the explicit instantiation is for a member function, a member class 5025 // or a static data member of a class template specialization, the name of 5026 // the class template specialization in the qualified-id for the member 5027 // name shall be a simple-template-id. 5028 // 5029 // C++98 has the same restriction, just worded differently. 5030 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5031 Diag(D.getIdentifierLoc(), 5032 diag::ext_explicit_instantiation_without_qualified_id) 5033 << Prev << D.getCXXScopeSpec().getRange(); 5034 5035 // Check the scope of this explicit instantiation. 5036 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 5037 5038 // Verify that it is okay to explicitly instantiate here. 5039 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 5040 assert(MSInfo && "Missing static data member specialization info?"); 5041 bool HasNoEffect = false; 5042 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 5043 MSInfo->getTemplateSpecializationKind(), 5044 MSInfo->getPointOfInstantiation(), 5045 HasNoEffect)) 5046 return true; 5047 if (HasNoEffect) 5048 return DeclPtrTy(); 5049 5050 // Instantiate static data member. 5051 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5052 if (TSK == TSK_ExplicitInstantiationDefinition) 5053 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false, 5054 /*DefinitionRequired=*/true); 5055 5056 // FIXME: Create an ExplicitInstantiation node? 5057 return DeclPtrTy(); 5058 } 5059 5060 // If the declarator is a template-id, translate the parser's template 5061 // argument list into our AST format. 5062 bool HasExplicitTemplateArgs = false; 5063 TemplateArgumentListInfo TemplateArgs; 5064 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 5065 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 5066 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 5067 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 5068 ASTTemplateArgsPtr TemplateArgsPtr(*this, 5069 TemplateId->getTemplateArgs(), 5070 TemplateId->NumArgs); 5071 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 5072 HasExplicitTemplateArgs = true; 5073 TemplateArgsPtr.release(); 5074 } 5075 5076 // C++ [temp.explicit]p1: 5077 // A [...] function [...] can be explicitly instantiated from its template. 5078 // A member function [...] of a class template can be explicitly 5079 // instantiated from the member definition associated with its class 5080 // template. 5081 UnresolvedSet<8> Matches; 5082 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 5083 P != PEnd; ++P) { 5084 NamedDecl *Prev = *P; 5085 if (!HasExplicitTemplateArgs) { 5086 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 5087 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 5088 Matches.clear(); 5089 5090 Matches.addDecl(Method, P.getAccess()); 5091 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 5092 break; 5093 } 5094 } 5095 } 5096 5097 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 5098 if (!FunTmpl) 5099 continue; 5100 5101 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 5102 FunctionDecl *Specialization = 0; 5103 if (TemplateDeductionResult TDK 5104 = DeduceTemplateArguments(FunTmpl, 5105 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 5106 R, Specialization, Info)) { 5107 // FIXME: Keep track of almost-matches? 5108 (void)TDK; 5109 continue; 5110 } 5111 5112 Matches.addDecl(Specialization, P.getAccess()); 5113 } 5114 5115 // Find the most specialized function template specialization. 5116 UnresolvedSetIterator Result 5117 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 5118 D.getIdentifierLoc(), 5119 PDiag(diag::err_explicit_instantiation_not_known) << Name, 5120 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 5121 PDiag(diag::note_explicit_instantiation_candidate)); 5122 5123 if (Result == Matches.end()) 5124 return true; 5125 5126 // Ignore access control bits, we don't need them for redeclaration checking. 5127 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5128 5129 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 5130 Diag(D.getIdentifierLoc(), 5131 diag::err_explicit_instantiation_member_function_not_instantiated) 5132 << Specialization 5133 << (Specialization->getTemplateSpecializationKind() == 5134 TSK_ExplicitSpecialization); 5135 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 5136 return true; 5137 } 5138 5139 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 5140 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 5141 PrevDecl = Specialization; 5142 5143 if (PrevDecl) { 5144 bool HasNoEffect = false; 5145 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 5146 PrevDecl, 5147 PrevDecl->getTemplateSpecializationKind(), 5148 PrevDecl->getPointOfInstantiation(), 5149 HasNoEffect)) 5150 return true; 5151 5152 // FIXME: We may still want to build some representation of this 5153 // explicit specialization. 5154 if (HasNoEffect) 5155 return DeclPtrTy(); 5156 } 5157 5158 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5159 5160 if (TSK == TSK_ExplicitInstantiationDefinition) 5161 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization, 5162 false, /*DefinitionRequired=*/true); 5163 5164 // C++0x [temp.explicit]p2: 5165 // If the explicit instantiation is for a member function, a member class 5166 // or a static data member of a class template specialization, the name of 5167 // the class template specialization in the qualified-id for the member 5168 // name shall be a simple-template-id. 5169 // 5170 // C++98 has the same restriction, just worded differently. 5171 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 5172 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 5173 D.getCXXScopeSpec().isSet() && 5174 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5175 Diag(D.getIdentifierLoc(), 5176 diag::ext_explicit_instantiation_without_qualified_id) 5177 << Specialization << D.getCXXScopeSpec().getRange(); 5178 5179 CheckExplicitInstantiationScope(*this, 5180 FunTmpl? (NamedDecl *)FunTmpl 5181 : Specialization->getInstantiatedFromMemberFunction(), 5182 D.getIdentifierLoc(), 5183 D.getCXXScopeSpec().isSet()); 5184 5185 // FIXME: Create some kind of ExplicitInstantiationDecl here. 5186 return DeclPtrTy(); 5187} 5188 5189Sema::TypeResult 5190Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 5191 const CXXScopeSpec &SS, IdentifierInfo *Name, 5192 SourceLocation TagLoc, SourceLocation NameLoc) { 5193 // This has to hold, because SS is expected to be defined. 5194 assert(Name && "Expected a name in a dependent tag"); 5195 5196 NestedNameSpecifier *NNS 5197 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5198 if (!NNS) 5199 return true; 5200 5201 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5202 5203 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 5204 Diag(NameLoc, diag::err_dependent_tag_decl) 5205 << (TUK == TUK_Definition) << Kind << SS.getRange(); 5206 return true; 5207 } 5208 5209 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 5210 return Context.getDependentNameType(Kwd, NNS, Name).getAsOpaquePtr(); 5211} 5212 5213Sema::TypeResult 5214Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 5215 const CXXScopeSpec &SS, const IdentifierInfo &II, 5216 SourceLocation IdLoc) { 5217 NestedNameSpecifier *NNS 5218 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5219 if (!NNS) 5220 return true; 5221 5222 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 5223 !getLangOptions().CPlusPlus0x) 5224 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 5225 << FixItHint::CreateRemoval(TypenameLoc); 5226 5227 QualType T = CheckTypenameType(ETK_Typename, NNS, II, 5228 TypenameLoc, SS.getRange(), IdLoc); 5229 if (T.isNull()) 5230 return true; 5231 5232 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5233 if (isa<DependentNameType>(T)) { 5234 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 5235 TL.setKeywordLoc(TypenameLoc); 5236 TL.setQualifierRange(SS.getRange()); 5237 TL.setNameLoc(IdLoc); 5238 } else { 5239 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 5240 TL.setKeywordLoc(TypenameLoc); 5241 TL.setQualifierRange(SS.getRange()); 5242 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc); 5243 } 5244 5245 return CreateLocInfoType(T, TSI).getAsOpaquePtr(); 5246} 5247 5248Sema::TypeResult 5249Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 5250 const CXXScopeSpec &SS, SourceLocation TemplateLoc, 5251 TypeTy *Ty) { 5252 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 5253 !getLangOptions().CPlusPlus0x) 5254 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 5255 << FixItHint::CreateRemoval(TypenameLoc); 5256 5257 TypeSourceInfo *InnerTSI = 0; 5258 QualType T = GetTypeFromParser(Ty, &InnerTSI); 5259 NestedNameSpecifier *NNS 5260 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5261 5262 assert(isa<TemplateSpecializationType>(T) && 5263 "Expected a template specialization type"); 5264 5265 if (computeDeclContext(SS, false)) { 5266 // If we can compute a declaration context, then the "typename" 5267 // keyword was superfluous. Just build an ElaboratedType to keep 5268 // track of the nested-name-specifier. 5269 5270 // Push the inner type, preserving its source locations if possible. 5271 TypeLocBuilder Builder; 5272 if (InnerTSI) 5273 Builder.pushFullCopy(InnerTSI->getTypeLoc()); 5274 else 5275 Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc); 5276 5277 T = Context.getElaboratedType(ETK_Typename, NNS, T); 5278 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 5279 TL.setKeywordLoc(TypenameLoc); 5280 TL.setQualifierRange(SS.getRange()); 5281 5282 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 5283 return CreateLocInfoType(T, TSI).getAsOpaquePtr(); 5284 } 5285 5286 // TODO: it's really silly that we make a template specialization 5287 // type earlier only to drop it again here. 5288 TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T); 5289 DependentTemplateName *DTN = 5290 TST->getTemplateName().getAsDependentTemplateName(); 5291 assert(DTN && "dependent template has non-dependent name?"); 5292 T = Context.getDependentTemplateSpecializationType(ETK_Typename, NNS, 5293 DTN->getIdentifier(), 5294 TST->getNumArgs(), 5295 TST->getArgs()); 5296 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5297 DependentTemplateSpecializationTypeLoc TL = 5298 cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc()); 5299 if (InnerTSI) { 5300 TemplateSpecializationTypeLoc TSTL = 5301 cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc()); 5302 TL.setLAngleLoc(TSTL.getLAngleLoc()); 5303 TL.setRAngleLoc(TSTL.getRAngleLoc()); 5304 for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I) 5305 TL.setArgLocInfo(I, TSTL.getArgLocInfo(I)); 5306 } else { 5307 TL.initializeLocal(SourceLocation()); 5308 } 5309 TL.setKeywordLoc(TypenameLoc); 5310 TL.setQualifierRange(SS.getRange()); 5311 return CreateLocInfoType(T, TSI).getAsOpaquePtr(); 5312} 5313 5314/// \brief Build the type that describes a C++ typename specifier, 5315/// e.g., "typename T::type". 5316QualType 5317Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 5318 NestedNameSpecifier *NNS, const IdentifierInfo &II, 5319 SourceLocation KeywordLoc, SourceRange NNSRange, 5320 SourceLocation IILoc) { 5321 CXXScopeSpec SS; 5322 SS.setScopeRep(NNS); 5323 SS.setRange(NNSRange); 5324 5325 DeclContext *Ctx = computeDeclContext(SS); 5326 if (!Ctx) { 5327 // If the nested-name-specifier is dependent and couldn't be 5328 // resolved to a type, build a typename type. 5329 assert(NNS->isDependent()); 5330 return Context.getDependentNameType(Keyword, NNS, &II); 5331 } 5332 5333 // If the nested-name-specifier refers to the current instantiation, 5334 // the "typename" keyword itself is superfluous. In C++03, the 5335 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 5336 // allows such extraneous "typename" keywords, and we retroactively 5337 // apply this DR to C++03 code with only a warning. In any case we continue. 5338 5339 if (RequireCompleteDeclContext(SS, Ctx)) 5340 return QualType(); 5341 5342 DeclarationName Name(&II); 5343 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 5344 LookupQualifiedName(Result, Ctx); 5345 unsigned DiagID = 0; 5346 Decl *Referenced = 0; 5347 switch (Result.getResultKind()) { 5348 case LookupResult::NotFound: 5349 DiagID = diag::err_typename_nested_not_found; 5350 break; 5351 5352 case LookupResult::NotFoundInCurrentInstantiation: 5353 // Okay, it's a member of an unknown instantiation. 5354 return Context.getDependentNameType(Keyword, NNS, &II); 5355 5356 case LookupResult::Found: 5357 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 5358 // We found a type. Build an ElaboratedType, since the 5359 // typename-specifier was just sugar. 5360 return Context.getElaboratedType(ETK_Typename, NNS, 5361 Context.getTypeDeclType(Type)); 5362 } 5363 5364 DiagID = diag::err_typename_nested_not_type; 5365 Referenced = Result.getFoundDecl(); 5366 break; 5367 5368 case LookupResult::FoundUnresolvedValue: 5369 llvm_unreachable("unresolved using decl in non-dependent context"); 5370 return QualType(); 5371 5372 case LookupResult::FoundOverloaded: 5373 DiagID = diag::err_typename_nested_not_type; 5374 Referenced = *Result.begin(); 5375 break; 5376 5377 case LookupResult::Ambiguous: 5378 return QualType(); 5379 } 5380 5381 // If we get here, it's because name lookup did not find a 5382 // type. Emit an appropriate diagnostic and return an error. 5383 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(), 5384 IILoc); 5385 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 5386 if (Referenced) 5387 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 5388 << Name; 5389 return QualType(); 5390} 5391 5392namespace { 5393 // See Sema::RebuildTypeInCurrentInstantiation 5394 class CurrentInstantiationRebuilder 5395 : public TreeTransform<CurrentInstantiationRebuilder> { 5396 SourceLocation Loc; 5397 DeclarationName Entity; 5398 5399 public: 5400 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 5401 5402 CurrentInstantiationRebuilder(Sema &SemaRef, 5403 SourceLocation Loc, 5404 DeclarationName Entity) 5405 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 5406 Loc(Loc), Entity(Entity) { } 5407 5408 /// \brief Determine whether the given type \p T has already been 5409 /// transformed. 5410 /// 5411 /// For the purposes of type reconstruction, a type has already been 5412 /// transformed if it is NULL or if it is not dependent. 5413 bool AlreadyTransformed(QualType T) { 5414 return T.isNull() || !T->isDependentType(); 5415 } 5416 5417 /// \brief Returns the location of the entity whose type is being 5418 /// rebuilt. 5419 SourceLocation getBaseLocation() { return Loc; } 5420 5421 /// \brief Returns the name of the entity whose type is being rebuilt. 5422 DeclarationName getBaseEntity() { return Entity; } 5423 5424 /// \brief Sets the "base" location and entity when that 5425 /// information is known based on another transformation. 5426 void setBase(SourceLocation Loc, DeclarationName Entity) { 5427 this->Loc = Loc; 5428 this->Entity = Entity; 5429 } 5430 }; 5431} 5432 5433/// \brief Rebuilds a type within the context of the current instantiation. 5434/// 5435/// The type \p T is part of the type of an out-of-line member definition of 5436/// a class template (or class template partial specialization) that was parsed 5437/// and constructed before we entered the scope of the class template (or 5438/// partial specialization thereof). This routine will rebuild that type now 5439/// that we have entered the declarator's scope, which may produce different 5440/// canonical types, e.g., 5441/// 5442/// \code 5443/// template<typename T> 5444/// struct X { 5445/// typedef T* pointer; 5446/// pointer data(); 5447/// }; 5448/// 5449/// template<typename T> 5450/// typename X<T>::pointer X<T>::data() { ... } 5451/// \endcode 5452/// 5453/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 5454/// since we do not know that we can look into X<T> when we parsed the type. 5455/// This function will rebuild the type, performing the lookup of "pointer" 5456/// in X<T> and returning an ElaboratedType whose canonical type is the same 5457/// as the canonical type of T*, allowing the return types of the out-of-line 5458/// definition and the declaration to match. 5459TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 5460 SourceLocation Loc, 5461 DeclarationName Name) { 5462 if (!T || !T->getType()->isDependentType()) 5463 return T; 5464 5465 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 5466 return Rebuilder.TransformType(T); 5467} 5468 5469bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 5470 if (SS.isInvalid()) return true; 5471 5472 NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 5473 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 5474 DeclarationName()); 5475 NestedNameSpecifier *Rebuilt = 5476 Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange()); 5477 if (!Rebuilt) return true; 5478 5479 SS.setScopeRep(Rebuilt); 5480 return false; 5481} 5482 5483/// \brief Produces a formatted string that describes the binding of 5484/// template parameters to template arguments. 5485std::string 5486Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 5487 const TemplateArgumentList &Args) { 5488 // FIXME: For variadic templates, we'll need to get the structured list. 5489 return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(), 5490 Args.flat_size()); 5491} 5492 5493std::string 5494Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 5495 const TemplateArgument *Args, 5496 unsigned NumArgs) { 5497 std::string Result; 5498 5499 if (!Params || Params->size() == 0 || NumArgs == 0) 5500 return Result; 5501 5502 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 5503 if (I >= NumArgs) 5504 break; 5505 5506 if (I == 0) 5507 Result += "[with "; 5508 else 5509 Result += ", "; 5510 5511 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 5512 Result += Id->getName(); 5513 } else { 5514 Result += '$'; 5515 Result += llvm::utostr(I); 5516 } 5517 5518 Result += " = "; 5519 5520 switch (Args[I].getKind()) { 5521 case TemplateArgument::Null: 5522 Result += "<no value>"; 5523 break; 5524 5525 case TemplateArgument::Type: { 5526 std::string TypeStr; 5527 Args[I].getAsType().getAsStringInternal(TypeStr, 5528 Context.PrintingPolicy); 5529 Result += TypeStr; 5530 break; 5531 } 5532 5533 case TemplateArgument::Declaration: { 5534 bool Unnamed = true; 5535 if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) { 5536 if (ND->getDeclName()) { 5537 Unnamed = false; 5538 Result += ND->getNameAsString(); 5539 } 5540 } 5541 5542 if (Unnamed) { 5543 Result += "<anonymous>"; 5544 } 5545 break; 5546 } 5547 5548 case TemplateArgument::Template: { 5549 std::string Str; 5550 llvm::raw_string_ostream OS(Str); 5551 Args[I].getAsTemplate().print(OS, Context.PrintingPolicy); 5552 Result += OS.str(); 5553 break; 5554 } 5555 5556 case TemplateArgument::Integral: { 5557 Result += Args[I].getAsIntegral()->toString(10); 5558 break; 5559 } 5560 5561 case TemplateArgument::Expression: { 5562 // FIXME: This is non-optimal, since we're regurgitating the 5563 // expression we were given. 5564 std::string Str; 5565 { 5566 llvm::raw_string_ostream OS(Str); 5567 Args[I].getAsExpr()->printPretty(OS, Context, 0, 5568 Context.PrintingPolicy); 5569 } 5570 Result += Str; 5571 break; 5572 } 5573 5574 case TemplateArgument::Pack: 5575 // FIXME: Format template argument packs 5576 Result += "<template argument pack>"; 5577 break; 5578 } 5579 } 5580 5581 Result += ']'; 5582 return Result; 5583} 5584