SemaTemplate.cpp revision 6960587df0bd1b421c11715807a4d2302a3aae3c
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/SmallBitVector.h"
30#include "llvm/ADT/SmallString.h"
31#include "llvm/ADT/StringExtras.h"
32using namespace clang;
33using namespace sema;
34
35// Exported for use by Parser.
36SourceRange
37clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
38                              unsigned N) {
39  if (!N) return SourceRange();
40  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
41}
42
43/// \brief Determine whether the declaration found is acceptable as the name
44/// of a template and, if so, return that template declaration. Otherwise,
45/// returns NULL.
46static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
47                                           NamedDecl *Orig,
48                                           bool AllowFunctionTemplates) {
49  NamedDecl *D = Orig->getUnderlyingDecl();
50
51  if (isa<TemplateDecl>(D)) {
52    if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
53      return 0;
54
55    return Orig;
56  }
57
58  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
59    // C++ [temp.local]p1:
60    //   Like normal (non-template) classes, class templates have an
61    //   injected-class-name (Clause 9). The injected-class-name
62    //   can be used with or without a template-argument-list. When
63    //   it is used without a template-argument-list, it is
64    //   equivalent to the injected-class-name followed by the
65    //   template-parameters of the class template enclosed in
66    //   <>. When it is used with a template-argument-list, it
67    //   refers to the specified class template specialization,
68    //   which could be the current specialization or another
69    //   specialization.
70    if (Record->isInjectedClassName()) {
71      Record = cast<CXXRecordDecl>(Record->getDeclContext());
72      if (Record->getDescribedClassTemplate())
73        return Record->getDescribedClassTemplate();
74
75      if (ClassTemplateSpecializationDecl *Spec
76            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
77        return Spec->getSpecializedTemplate();
78    }
79
80    return 0;
81  }
82
83  return 0;
84}
85
86void Sema::FilterAcceptableTemplateNames(LookupResult &R,
87                                         bool AllowFunctionTemplates) {
88  // The set of class templates we've already seen.
89  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
90  LookupResult::Filter filter = R.makeFilter();
91  while (filter.hasNext()) {
92    NamedDecl *Orig = filter.next();
93    NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
94                                               AllowFunctionTemplates);
95    if (!Repl)
96      filter.erase();
97    else if (Repl != Orig) {
98
99      // C++ [temp.local]p3:
100      //   A lookup that finds an injected-class-name (10.2) can result in an
101      //   ambiguity in certain cases (for example, if it is found in more than
102      //   one base class). If all of the injected-class-names that are found
103      //   refer to specializations of the same class template, and if the name
104      //   is used as a template-name, the reference refers to the class
105      //   template itself and not a specialization thereof, and is not
106      //   ambiguous.
107      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
108        if (!ClassTemplates.insert(ClassTmpl)) {
109          filter.erase();
110          continue;
111        }
112
113      // FIXME: we promote access to public here as a workaround to
114      // the fact that LookupResult doesn't let us remember that we
115      // found this template through a particular injected class name,
116      // which means we end up doing nasty things to the invariants.
117      // Pretending that access is public is *much* safer.
118      filter.replace(Repl, AS_public);
119    }
120  }
121  filter.done();
122}
123
124bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
125                                         bool AllowFunctionTemplates) {
126  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
127    if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
128      return true;
129
130  return false;
131}
132
133TemplateNameKind Sema::isTemplateName(Scope *S,
134                                      CXXScopeSpec &SS,
135                                      bool hasTemplateKeyword,
136                                      UnqualifiedId &Name,
137                                      ParsedType ObjectTypePtr,
138                                      bool EnteringContext,
139                                      TemplateTy &TemplateResult,
140                                      bool &MemberOfUnknownSpecialization) {
141  assert(getLangOpts().CPlusPlus && "No template names in C!");
142
143  DeclarationName TName;
144  MemberOfUnknownSpecialization = false;
145
146  switch (Name.getKind()) {
147  case UnqualifiedId::IK_Identifier:
148    TName = DeclarationName(Name.Identifier);
149    break;
150
151  case UnqualifiedId::IK_OperatorFunctionId:
152    TName = Context.DeclarationNames.getCXXOperatorName(
153                                              Name.OperatorFunctionId.Operator);
154    break;
155
156  case UnqualifiedId::IK_LiteralOperatorId:
157    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
158    break;
159
160  default:
161    return TNK_Non_template;
162  }
163
164  QualType ObjectType = ObjectTypePtr.get();
165
166  LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
167  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
168                     MemberOfUnknownSpecialization);
169  if (R.empty()) return TNK_Non_template;
170  if (R.isAmbiguous()) {
171    // Suppress diagnostics;  we'll redo this lookup later.
172    R.suppressDiagnostics();
173
174    // FIXME: we might have ambiguous templates, in which case we
175    // should at least parse them properly!
176    return TNK_Non_template;
177  }
178
179  TemplateName Template;
180  TemplateNameKind TemplateKind;
181
182  unsigned ResultCount = R.end() - R.begin();
183  if (ResultCount > 1) {
184    // We assume that we'll preserve the qualifier from a function
185    // template name in other ways.
186    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
187    TemplateKind = TNK_Function_template;
188
189    // We'll do this lookup again later.
190    R.suppressDiagnostics();
191  } else {
192    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
193
194    if (SS.isSet() && !SS.isInvalid()) {
195      NestedNameSpecifier *Qualifier
196        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
197      Template = Context.getQualifiedTemplateName(Qualifier,
198                                                  hasTemplateKeyword, TD);
199    } else {
200      Template = TemplateName(TD);
201    }
202
203    if (isa<FunctionTemplateDecl>(TD)) {
204      TemplateKind = TNK_Function_template;
205
206      // We'll do this lookup again later.
207      R.suppressDiagnostics();
208    } else {
209      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
210             isa<TypeAliasTemplateDecl>(TD));
211      TemplateKind = TNK_Type_template;
212    }
213  }
214
215  TemplateResult = TemplateTy::make(Template);
216  return TemplateKind;
217}
218
219bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
220                                       SourceLocation IILoc,
221                                       Scope *S,
222                                       const CXXScopeSpec *SS,
223                                       TemplateTy &SuggestedTemplate,
224                                       TemplateNameKind &SuggestedKind) {
225  // We can't recover unless there's a dependent scope specifier preceding the
226  // template name.
227  // FIXME: Typo correction?
228  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
229      computeDeclContext(*SS))
230    return false;
231
232  // The code is missing a 'template' keyword prior to the dependent template
233  // name.
234  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
235  Diag(IILoc, diag::err_template_kw_missing)
236    << Qualifier << II.getName()
237    << FixItHint::CreateInsertion(IILoc, "template ");
238  SuggestedTemplate
239    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
240  SuggestedKind = TNK_Dependent_template_name;
241  return true;
242}
243
244void Sema::LookupTemplateName(LookupResult &Found,
245                              Scope *S, CXXScopeSpec &SS,
246                              QualType ObjectType,
247                              bool EnteringContext,
248                              bool &MemberOfUnknownSpecialization) {
249  // Determine where to perform name lookup
250  MemberOfUnknownSpecialization = false;
251  DeclContext *LookupCtx = 0;
252  bool isDependent = false;
253  if (!ObjectType.isNull()) {
254    // This nested-name-specifier occurs in a member access expression, e.g.,
255    // x->B::f, and we are looking into the type of the object.
256    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
257    LookupCtx = computeDeclContext(ObjectType);
258    isDependent = ObjectType->isDependentType();
259    assert((isDependent || !ObjectType->isIncompleteType()) &&
260           "Caller should have completed object type");
261
262    // Template names cannot appear inside an Objective-C class or object type.
263    if (ObjectType->isObjCObjectOrInterfaceType()) {
264      Found.clear();
265      return;
266    }
267  } else if (SS.isSet()) {
268    // This nested-name-specifier occurs after another nested-name-specifier,
269    // so long into the context associated with the prior nested-name-specifier.
270    LookupCtx = computeDeclContext(SS, EnteringContext);
271    isDependent = isDependentScopeSpecifier(SS);
272
273    // The declaration context must be complete.
274    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
275      return;
276  }
277
278  bool ObjectTypeSearchedInScope = false;
279  bool AllowFunctionTemplatesInLookup = true;
280  if (LookupCtx) {
281    // Perform "qualified" name lookup into the declaration context we
282    // computed, which is either the type of the base of a member access
283    // expression or the declaration context associated with a prior
284    // nested-name-specifier.
285    LookupQualifiedName(Found, LookupCtx);
286    if (!ObjectType.isNull() && Found.empty()) {
287      // C++ [basic.lookup.classref]p1:
288      //   In a class member access expression (5.2.5), if the . or -> token is
289      //   immediately followed by an identifier followed by a <, the
290      //   identifier must be looked up to determine whether the < is the
291      //   beginning of a template argument list (14.2) or a less-than operator.
292      //   The identifier is first looked up in the class of the object
293      //   expression. If the identifier is not found, it is then looked up in
294      //   the context of the entire postfix-expression and shall name a class
295      //   or function template.
296      if (S) LookupName(Found, S);
297      ObjectTypeSearchedInScope = true;
298      AllowFunctionTemplatesInLookup = false;
299    }
300  } else if (isDependent && (!S || ObjectType.isNull())) {
301    // We cannot look into a dependent object type or nested nme
302    // specifier.
303    MemberOfUnknownSpecialization = true;
304    return;
305  } else {
306    // Perform unqualified name lookup in the current scope.
307    LookupName(Found, S);
308
309    if (!ObjectType.isNull())
310      AllowFunctionTemplatesInLookup = false;
311  }
312
313  if (Found.empty() && !isDependent) {
314    // If we did not find any names, attempt to correct any typos.
315    DeclarationName Name = Found.getLookupName();
316    Found.clear();
317    // Simple filter callback that, for keywords, only accepts the C++ *_cast
318    CorrectionCandidateCallback FilterCCC;
319    FilterCCC.WantTypeSpecifiers = false;
320    FilterCCC.WantExpressionKeywords = false;
321    FilterCCC.WantRemainingKeywords = false;
322    FilterCCC.WantCXXNamedCasts = true;
323    if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
324                                               Found.getLookupKind(), S, &SS,
325                                               FilterCCC, LookupCtx)) {
326      Found.setLookupName(Corrected.getCorrection());
327      if (Corrected.getCorrectionDecl())
328        Found.addDecl(Corrected.getCorrectionDecl());
329      FilterAcceptableTemplateNames(Found);
330      if (!Found.empty()) {
331        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
332        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
333        if (LookupCtx)
334          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
335            << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
336            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
337        else
338          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
339            << Name << CorrectedQuotedStr
340            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
341        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
342          Diag(Template->getLocation(), diag::note_previous_decl)
343            << CorrectedQuotedStr;
344      }
345    } else {
346      Found.setLookupName(Name);
347    }
348  }
349
350  FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
351  if (Found.empty()) {
352    if (isDependent)
353      MemberOfUnknownSpecialization = true;
354    return;
355  }
356
357  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
358    // C++ [basic.lookup.classref]p1:
359    //   [...] If the lookup in the class of the object expression finds a
360    //   template, the name is also looked up in the context of the entire
361    //   postfix-expression and [...]
362    //
363    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
364                            LookupOrdinaryName);
365    LookupName(FoundOuter, S);
366    FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
367
368    if (FoundOuter.empty()) {
369      //   - if the name is not found, the name found in the class of the
370      //     object expression is used, otherwise
371    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
372               FoundOuter.isAmbiguous()) {
373      //   - if the name is found in the context of the entire
374      //     postfix-expression and does not name a class template, the name
375      //     found in the class of the object expression is used, otherwise
376      FoundOuter.clear();
377    } else if (!Found.isSuppressingDiagnostics()) {
378      //   - if the name found is a class template, it must refer to the same
379      //     entity as the one found in the class of the object expression,
380      //     otherwise the program is ill-formed.
381      if (!Found.isSingleResult() ||
382          Found.getFoundDecl()->getCanonicalDecl()
383            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
384        Diag(Found.getNameLoc(),
385             diag::ext_nested_name_member_ref_lookup_ambiguous)
386          << Found.getLookupName()
387          << ObjectType;
388        Diag(Found.getRepresentativeDecl()->getLocation(),
389             diag::note_ambig_member_ref_object_type)
390          << ObjectType;
391        Diag(FoundOuter.getFoundDecl()->getLocation(),
392             diag::note_ambig_member_ref_scope);
393
394        // Recover by taking the template that we found in the object
395        // expression's type.
396      }
397    }
398  }
399}
400
401/// ActOnDependentIdExpression - Handle a dependent id-expression that
402/// was just parsed.  This is only possible with an explicit scope
403/// specifier naming a dependent type.
404ExprResult
405Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
406                                 SourceLocation TemplateKWLoc,
407                                 const DeclarationNameInfo &NameInfo,
408                                 bool isAddressOfOperand,
409                           const TemplateArgumentListInfo *TemplateArgs) {
410  DeclContext *DC = getFunctionLevelDeclContext();
411
412  if (!isAddressOfOperand &&
413      isa<CXXMethodDecl>(DC) &&
414      cast<CXXMethodDecl>(DC)->isInstance()) {
415    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
416
417    // Since the 'this' expression is synthesized, we don't need to
418    // perform the double-lookup check.
419    NamedDecl *FirstQualifierInScope = 0;
420
421    return Owned(CXXDependentScopeMemberExpr::Create(Context,
422                                                     /*This*/ 0, ThisType,
423                                                     /*IsArrow*/ true,
424                                                     /*Op*/ SourceLocation(),
425                                               SS.getWithLocInContext(Context),
426                                                     TemplateKWLoc,
427                                                     FirstQualifierInScope,
428                                                     NameInfo,
429                                                     TemplateArgs));
430  }
431
432  return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
433}
434
435ExprResult
436Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
437                                SourceLocation TemplateKWLoc,
438                                const DeclarationNameInfo &NameInfo,
439                                const TemplateArgumentListInfo *TemplateArgs) {
440  return Owned(DependentScopeDeclRefExpr::Create(Context,
441                                               SS.getWithLocInContext(Context),
442                                                 TemplateKWLoc,
443                                                 NameInfo,
444                                                 TemplateArgs));
445}
446
447/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
448/// that the template parameter 'PrevDecl' is being shadowed by a new
449/// declaration at location Loc. Returns true to indicate that this is
450/// an error, and false otherwise.
451void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
452  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
453
454  // Microsoft Visual C++ permits template parameters to be shadowed.
455  if (getLangOpts().MicrosoftExt)
456    return;
457
458  // C++ [temp.local]p4:
459  //   A template-parameter shall not be redeclared within its
460  //   scope (including nested scopes).
461  Diag(Loc, diag::err_template_param_shadow)
462    << cast<NamedDecl>(PrevDecl)->getDeclName();
463  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
464  return;
465}
466
467/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
468/// the parameter D to reference the templated declaration and return a pointer
469/// to the template declaration. Otherwise, do nothing to D and return null.
470TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
471  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
472    D = Temp->getTemplatedDecl();
473    return Temp;
474  }
475  return 0;
476}
477
478ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
479                                             SourceLocation EllipsisLoc) const {
480  assert(Kind == Template &&
481         "Only template template arguments can be pack expansions here");
482  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
483         "Template template argument pack expansion without packs");
484  ParsedTemplateArgument Result(*this);
485  Result.EllipsisLoc = EllipsisLoc;
486  return Result;
487}
488
489static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
490                                            const ParsedTemplateArgument &Arg) {
491
492  switch (Arg.getKind()) {
493  case ParsedTemplateArgument::Type: {
494    TypeSourceInfo *DI;
495    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
496    if (!DI)
497      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
498    return TemplateArgumentLoc(TemplateArgument(T), DI);
499  }
500
501  case ParsedTemplateArgument::NonType: {
502    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
503    return TemplateArgumentLoc(TemplateArgument(E), E);
504  }
505
506  case ParsedTemplateArgument::Template: {
507    TemplateName Template = Arg.getAsTemplate().get();
508    TemplateArgument TArg;
509    if (Arg.getEllipsisLoc().isValid())
510      TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
511    else
512      TArg = Template;
513    return TemplateArgumentLoc(TArg,
514                               Arg.getScopeSpec().getWithLocInContext(
515                                                              SemaRef.Context),
516                               Arg.getLocation(),
517                               Arg.getEllipsisLoc());
518  }
519  }
520
521  llvm_unreachable("Unhandled parsed template argument");
522}
523
524/// \brief Translates template arguments as provided by the parser
525/// into template arguments used by semantic analysis.
526void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
527                                      TemplateArgumentListInfo &TemplateArgs) {
528 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
529   TemplateArgs.addArgument(translateTemplateArgument(*this,
530                                                      TemplateArgsIn[I]));
531}
532
533/// ActOnTypeParameter - Called when a C++ template type parameter
534/// (e.g., "typename T") has been parsed. Typename specifies whether
535/// the keyword "typename" was used to declare the type parameter
536/// (otherwise, "class" was used), and KeyLoc is the location of the
537/// "class" or "typename" keyword. ParamName is the name of the
538/// parameter (NULL indicates an unnamed template parameter) and
539/// ParamNameLoc is the location of the parameter name (if any).
540/// If the type parameter has a default argument, it will be added
541/// later via ActOnTypeParameterDefault.
542Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
543                               SourceLocation EllipsisLoc,
544                               SourceLocation KeyLoc,
545                               IdentifierInfo *ParamName,
546                               SourceLocation ParamNameLoc,
547                               unsigned Depth, unsigned Position,
548                               SourceLocation EqualLoc,
549                               ParsedType DefaultArg) {
550  assert(S->isTemplateParamScope() &&
551         "Template type parameter not in template parameter scope!");
552  bool Invalid = false;
553
554  if (ParamName) {
555    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
556                                           LookupOrdinaryName,
557                                           ForRedeclaration);
558    if (PrevDecl && PrevDecl->isTemplateParameter()) {
559      DiagnoseTemplateParameterShadow(ParamNameLoc, PrevDecl);
560      PrevDecl = 0;
561    }
562  }
563
564  SourceLocation Loc = ParamNameLoc;
565  if (!ParamName)
566    Loc = KeyLoc;
567
568  TemplateTypeParmDecl *Param
569    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
570                                   KeyLoc, Loc, Depth, Position, ParamName,
571                                   Typename, Ellipsis);
572  Param->setAccess(AS_public);
573  if (Invalid)
574    Param->setInvalidDecl();
575
576  if (ParamName) {
577    // Add the template parameter into the current scope.
578    S->AddDecl(Param);
579    IdResolver.AddDecl(Param);
580  }
581
582  // C++0x [temp.param]p9:
583  //   A default template-argument may be specified for any kind of
584  //   template-parameter that is not a template parameter pack.
585  if (DefaultArg && Ellipsis) {
586    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
587    DefaultArg = ParsedType();
588  }
589
590  // Handle the default argument, if provided.
591  if (DefaultArg) {
592    TypeSourceInfo *DefaultTInfo;
593    GetTypeFromParser(DefaultArg, &DefaultTInfo);
594
595    assert(DefaultTInfo && "expected source information for type");
596
597    // Check for unexpanded parameter packs.
598    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
599                                        UPPC_DefaultArgument))
600      return Param;
601
602    // Check the template argument itself.
603    if (CheckTemplateArgument(Param, DefaultTInfo)) {
604      Param->setInvalidDecl();
605      return Param;
606    }
607
608    Param->setDefaultArgument(DefaultTInfo, false);
609  }
610
611  return Param;
612}
613
614/// \brief Check that the type of a non-type template parameter is
615/// well-formed.
616///
617/// \returns the (possibly-promoted) parameter type if valid;
618/// otherwise, produces a diagnostic and returns a NULL type.
619QualType
620Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
621  // We don't allow variably-modified types as the type of non-type template
622  // parameters.
623  if (T->isVariablyModifiedType()) {
624    Diag(Loc, diag::err_variably_modified_nontype_template_param)
625      << T;
626    return QualType();
627  }
628
629  // C++ [temp.param]p4:
630  //
631  // A non-type template-parameter shall have one of the following
632  // (optionally cv-qualified) types:
633  //
634  //       -- integral or enumeration type,
635  if (T->isIntegralOrEnumerationType() ||
636      //   -- pointer to object or pointer to function,
637      T->isPointerType() ||
638      //   -- reference to object or reference to function,
639      T->isReferenceType() ||
640      //   -- pointer to member,
641      T->isMemberPointerType() ||
642      //   -- std::nullptr_t.
643      T->isNullPtrType() ||
644      // If T is a dependent type, we can't do the check now, so we
645      // assume that it is well-formed.
646      T->isDependentType()) {
647    // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
648    // are ignored when determining its type.
649    return T.getUnqualifiedType();
650  }
651
652  // C++ [temp.param]p8:
653  //
654  //   A non-type template-parameter of type "array of T" or
655  //   "function returning T" is adjusted to be of type "pointer to
656  //   T" or "pointer to function returning T", respectively.
657  else if (T->isArrayType())
658    // FIXME: Keep the type prior to promotion?
659    return Context.getArrayDecayedType(T);
660  else if (T->isFunctionType())
661    // FIXME: Keep the type prior to promotion?
662    return Context.getPointerType(T);
663
664  Diag(Loc, diag::err_template_nontype_parm_bad_type)
665    << T;
666
667  return QualType();
668}
669
670Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
671                                          unsigned Depth,
672                                          unsigned Position,
673                                          SourceLocation EqualLoc,
674                                          Expr *Default) {
675  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
676  QualType T = TInfo->getType();
677
678  assert(S->isTemplateParamScope() &&
679         "Non-type template parameter not in template parameter scope!");
680  bool Invalid = false;
681
682  IdentifierInfo *ParamName = D.getIdentifier();
683  if (ParamName) {
684    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
685                                           LookupOrdinaryName,
686                                           ForRedeclaration);
687    if (PrevDecl && PrevDecl->isTemplateParameter()) {
688      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
689      PrevDecl = 0;
690    }
691  }
692
693  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
694  if (T.isNull()) {
695    T = Context.IntTy; // Recover with an 'int' type.
696    Invalid = true;
697  }
698
699  bool IsParameterPack = D.hasEllipsis();
700  NonTypeTemplateParmDecl *Param
701    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
702                                      D.getLocStart(),
703                                      D.getIdentifierLoc(),
704                                      Depth, Position, ParamName, T,
705                                      IsParameterPack, TInfo);
706  Param->setAccess(AS_public);
707
708  if (Invalid)
709    Param->setInvalidDecl();
710
711  if (D.getIdentifier()) {
712    // Add the template parameter into the current scope.
713    S->AddDecl(Param);
714    IdResolver.AddDecl(Param);
715  }
716
717  // C++0x [temp.param]p9:
718  //   A default template-argument may be specified for any kind of
719  //   template-parameter that is not a template parameter pack.
720  if (Default && IsParameterPack) {
721    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
722    Default = 0;
723  }
724
725  // Check the well-formedness of the default template argument, if provided.
726  if (Default) {
727    // Check for unexpanded parameter packs.
728    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
729      return Param;
730
731    TemplateArgument Converted;
732    ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
733    if (DefaultRes.isInvalid()) {
734      Param->setInvalidDecl();
735      return Param;
736    }
737    Default = DefaultRes.take();
738
739    Param->setDefaultArgument(Default, false);
740  }
741
742  return Param;
743}
744
745/// ActOnTemplateTemplateParameter - Called when a C++ template template
746/// parameter (e.g. T in template <template <typename> class T> class array)
747/// has been parsed. S is the current scope.
748Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
749                                           SourceLocation TmpLoc,
750                                           TemplateParameterList *Params,
751                                           SourceLocation EllipsisLoc,
752                                           IdentifierInfo *Name,
753                                           SourceLocation NameLoc,
754                                           unsigned Depth,
755                                           unsigned Position,
756                                           SourceLocation EqualLoc,
757                                           ParsedTemplateArgument Default) {
758  assert(S->isTemplateParamScope() &&
759         "Template template parameter not in template parameter scope!");
760
761  // Construct the parameter object.
762  bool IsParameterPack = EllipsisLoc.isValid();
763  TemplateTemplateParmDecl *Param =
764    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
765                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
766                                     Depth, Position, IsParameterPack,
767                                     Name, Params);
768  Param->setAccess(AS_public);
769
770  // If the template template parameter has a name, then link the identifier
771  // into the scope and lookup mechanisms.
772  if (Name) {
773    S->AddDecl(Param);
774    IdResolver.AddDecl(Param);
775  }
776
777  if (Params->size() == 0) {
778    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
779    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
780    Param->setInvalidDecl();
781  }
782
783  // C++0x [temp.param]p9:
784  //   A default template-argument may be specified for any kind of
785  //   template-parameter that is not a template parameter pack.
786  if (IsParameterPack && !Default.isInvalid()) {
787    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
788    Default = ParsedTemplateArgument();
789  }
790
791  if (!Default.isInvalid()) {
792    // Check only that we have a template template argument. We don't want to
793    // try to check well-formedness now, because our template template parameter
794    // might have dependent types in its template parameters, which we wouldn't
795    // be able to match now.
796    //
797    // If none of the template template parameter's template arguments mention
798    // other template parameters, we could actually perform more checking here.
799    // However, it isn't worth doing.
800    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
801    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
802      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
803        << DefaultArg.getSourceRange();
804      return Param;
805    }
806
807    // Check for unexpanded parameter packs.
808    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
809                                        DefaultArg.getArgument().getAsTemplate(),
810                                        UPPC_DefaultArgument))
811      return Param;
812
813    Param->setDefaultArgument(DefaultArg, false);
814  }
815
816  return Param;
817}
818
819/// ActOnTemplateParameterList - Builds a TemplateParameterList that
820/// contains the template parameters in Params/NumParams.
821TemplateParameterList *
822Sema::ActOnTemplateParameterList(unsigned Depth,
823                                 SourceLocation ExportLoc,
824                                 SourceLocation TemplateLoc,
825                                 SourceLocation LAngleLoc,
826                                 Decl **Params, unsigned NumParams,
827                                 SourceLocation RAngleLoc) {
828  if (ExportLoc.isValid())
829    Diag(ExportLoc, diag::warn_template_export_unsupported);
830
831  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
832                                       (NamedDecl**)Params, NumParams,
833                                       RAngleLoc);
834}
835
836static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
837  if (SS.isSet())
838    T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
839}
840
841DeclResult
842Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
843                         SourceLocation KWLoc, CXXScopeSpec &SS,
844                         IdentifierInfo *Name, SourceLocation NameLoc,
845                         AttributeList *Attr,
846                         TemplateParameterList *TemplateParams,
847                         AccessSpecifier AS, SourceLocation ModulePrivateLoc,
848                         unsigned NumOuterTemplateParamLists,
849                         TemplateParameterList** OuterTemplateParamLists) {
850  assert(TemplateParams && TemplateParams->size() > 0 &&
851         "No template parameters");
852  assert(TUK != TUK_Reference && "Can only declare or define class templates");
853  bool Invalid = false;
854
855  // Check that we can declare a template here.
856  if (CheckTemplateDeclScope(S, TemplateParams))
857    return true;
858
859  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
860  assert(Kind != TTK_Enum && "can't build template of enumerated type");
861
862  // There is no such thing as an unnamed class template.
863  if (!Name) {
864    Diag(KWLoc, diag::err_template_unnamed_class);
865    return true;
866  }
867
868  // Find any previous declaration with this name.
869  DeclContext *SemanticContext;
870  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
871                        ForRedeclaration);
872  if (SS.isNotEmpty() && !SS.isInvalid()) {
873    SemanticContext = computeDeclContext(SS, true);
874    if (!SemanticContext) {
875      Diag(NameLoc, diag::err_template_qualified_declarator_no_match)
876        << SS.getScopeRep() << SS.getRange();
877      return true;
878    }
879
880    if (RequireCompleteDeclContext(SS, SemanticContext))
881      return true;
882
883    // If we're adding a template to a dependent context, we may need to
884    // rebuilding some of the types used within the template parameter list,
885    // now that we know what the current instantiation is.
886    if (SemanticContext->isDependentContext()) {
887      ContextRAII SavedContext(*this, SemanticContext);
888      if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
889        Invalid = true;
890    } else if (TUK != TUK_Friend && TUK != TUK_Reference)
891      diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
892
893    LookupQualifiedName(Previous, SemanticContext);
894  } else {
895    SemanticContext = CurContext;
896    LookupName(Previous, S);
897  }
898
899  if (Previous.isAmbiguous())
900    return true;
901
902  NamedDecl *PrevDecl = 0;
903  if (Previous.begin() != Previous.end())
904    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
905
906  // If there is a previous declaration with the same name, check
907  // whether this is a valid redeclaration.
908  ClassTemplateDecl *PrevClassTemplate
909    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
910
911  // We may have found the injected-class-name of a class template,
912  // class template partial specialization, or class template specialization.
913  // In these cases, grab the template that is being defined or specialized.
914  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
915      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
916    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
917    PrevClassTemplate
918      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
919    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
920      PrevClassTemplate
921        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
922            ->getSpecializedTemplate();
923    }
924  }
925
926  if (TUK == TUK_Friend) {
927    // C++ [namespace.memdef]p3:
928    //   [...] When looking for a prior declaration of a class or a function
929    //   declared as a friend, and when the name of the friend class or
930    //   function is neither a qualified name nor a template-id, scopes outside
931    //   the innermost enclosing namespace scope are not considered.
932    if (!SS.isSet()) {
933      DeclContext *OutermostContext = CurContext;
934      while (!OutermostContext->isFileContext())
935        OutermostContext = OutermostContext->getLookupParent();
936
937      if (PrevDecl &&
938          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
939           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
940        SemanticContext = PrevDecl->getDeclContext();
941      } else {
942        // Declarations in outer scopes don't matter. However, the outermost
943        // context we computed is the semantic context for our new
944        // declaration.
945        PrevDecl = PrevClassTemplate = 0;
946        SemanticContext = OutermostContext;
947      }
948    }
949
950    if (CurContext->isDependentContext()) {
951      // If this is a dependent context, we don't want to link the friend
952      // class template to the template in scope, because that would perform
953      // checking of the template parameter lists that can't be performed
954      // until the outer context is instantiated.
955      PrevDecl = PrevClassTemplate = 0;
956    }
957  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
958    PrevDecl = PrevClassTemplate = 0;
959
960  if (PrevClassTemplate) {
961    // Ensure that the template parameter lists are compatible.
962    if (!TemplateParameterListsAreEqual(TemplateParams,
963                                   PrevClassTemplate->getTemplateParameters(),
964                                        /*Complain=*/true,
965                                        TPL_TemplateMatch))
966      return true;
967
968    // C++ [temp.class]p4:
969    //   In a redeclaration, partial specialization, explicit
970    //   specialization or explicit instantiation of a class template,
971    //   the class-key shall agree in kind with the original class
972    //   template declaration (7.1.5.3).
973    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
974    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
975                                      TUK == TUK_Definition,  KWLoc, *Name)) {
976      Diag(KWLoc, diag::err_use_with_wrong_tag)
977        << Name
978        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
979      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
980      Kind = PrevRecordDecl->getTagKind();
981    }
982
983    // Check for redefinition of this class template.
984    if (TUK == TUK_Definition) {
985      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
986        Diag(NameLoc, diag::err_redefinition) << Name;
987        Diag(Def->getLocation(), diag::note_previous_definition);
988        // FIXME: Would it make sense to try to "forget" the previous
989        // definition, as part of error recovery?
990        return true;
991      }
992    }
993  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
994    // Maybe we will complain about the shadowed template parameter.
995    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
996    // Just pretend that we didn't see the previous declaration.
997    PrevDecl = 0;
998  } else if (PrevDecl) {
999    // C++ [temp]p5:
1000    //   A class template shall not have the same name as any other
1001    //   template, class, function, object, enumeration, enumerator,
1002    //   namespace, or type in the same scope (3.3), except as specified
1003    //   in (14.5.4).
1004    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1005    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1006    return true;
1007  }
1008
1009  // Check the template parameter list of this declaration, possibly
1010  // merging in the template parameter list from the previous class
1011  // template declaration.
1012  if (CheckTemplateParameterList(TemplateParams,
1013            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
1014                                 (SS.isSet() && SemanticContext &&
1015                                  SemanticContext->isRecord() &&
1016                                  SemanticContext->isDependentContext())
1017                                   ? TPC_ClassTemplateMember
1018                                   : TPC_ClassTemplate))
1019    Invalid = true;
1020
1021  if (SS.isSet()) {
1022    // If the name of the template was qualified, we must be defining the
1023    // template out-of-line.
1024    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
1025        !(TUK == TUK_Friend && CurContext->isDependentContext())) {
1026      Diag(NameLoc, diag::err_member_def_does_not_match)
1027        << Name << SemanticContext << SS.getRange();
1028      Invalid = true;
1029    }
1030  }
1031
1032  CXXRecordDecl *NewClass =
1033    CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1034                          PrevClassTemplate?
1035                            PrevClassTemplate->getTemplatedDecl() : 0,
1036                          /*DelayTypeCreation=*/true);
1037  SetNestedNameSpecifier(NewClass, SS);
1038  if (NumOuterTemplateParamLists > 0)
1039    NewClass->setTemplateParameterListsInfo(Context,
1040                                            NumOuterTemplateParamLists,
1041                                            OuterTemplateParamLists);
1042
1043  // Add alignment attributes if necessary; these attributes are checked when
1044  // the ASTContext lays out the structure.
1045  AddAlignmentAttributesForRecord(NewClass);
1046  AddMsStructLayoutForRecord(NewClass);
1047
1048  ClassTemplateDecl *NewTemplate
1049    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1050                                DeclarationName(Name), TemplateParams,
1051                                NewClass, PrevClassTemplate);
1052  NewClass->setDescribedClassTemplate(NewTemplate);
1053
1054  if (ModulePrivateLoc.isValid())
1055    NewTemplate->setModulePrivate();
1056
1057  // Build the type for the class template declaration now.
1058  QualType T = NewTemplate->getInjectedClassNameSpecialization();
1059  T = Context.getInjectedClassNameType(NewClass, T);
1060  assert(T->isDependentType() && "Class template type is not dependent?");
1061  (void)T;
1062
1063  // If we are providing an explicit specialization of a member that is a
1064  // class template, make a note of that.
1065  if (PrevClassTemplate &&
1066      PrevClassTemplate->getInstantiatedFromMemberTemplate())
1067    PrevClassTemplate->setMemberSpecialization();
1068
1069  // Set the access specifier.
1070  if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1071    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1072
1073  // Set the lexical context of these templates
1074  NewClass->setLexicalDeclContext(CurContext);
1075  NewTemplate->setLexicalDeclContext(CurContext);
1076
1077  if (TUK == TUK_Definition)
1078    NewClass->startDefinition();
1079
1080  if (Attr)
1081    ProcessDeclAttributeList(S, NewClass, Attr);
1082
1083  if (TUK != TUK_Friend)
1084    PushOnScopeChains(NewTemplate, S);
1085  else {
1086    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1087      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1088      NewClass->setAccess(PrevClassTemplate->getAccess());
1089    }
1090
1091    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1092                                       PrevClassTemplate != NULL);
1093
1094    // Friend templates are visible in fairly strange ways.
1095    if (!CurContext->isDependentContext()) {
1096      DeclContext *DC = SemanticContext->getRedeclContext();
1097      DC->makeDeclVisibleInContext(NewTemplate);
1098      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1099        PushOnScopeChains(NewTemplate, EnclosingScope,
1100                          /* AddToContext = */ false);
1101    }
1102
1103    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1104                                            NewClass->getLocation(),
1105                                            NewTemplate,
1106                                    /*FIXME:*/NewClass->getLocation());
1107    Friend->setAccess(AS_public);
1108    CurContext->addDecl(Friend);
1109  }
1110
1111  if (Invalid) {
1112    NewTemplate->setInvalidDecl();
1113    NewClass->setInvalidDecl();
1114  }
1115  return NewTemplate;
1116}
1117
1118/// \brief Diagnose the presence of a default template argument on a
1119/// template parameter, which is ill-formed in certain contexts.
1120///
1121/// \returns true if the default template argument should be dropped.
1122static bool DiagnoseDefaultTemplateArgument(Sema &S,
1123                                            Sema::TemplateParamListContext TPC,
1124                                            SourceLocation ParamLoc,
1125                                            SourceRange DefArgRange) {
1126  switch (TPC) {
1127  case Sema::TPC_ClassTemplate:
1128  case Sema::TPC_TypeAliasTemplate:
1129    return false;
1130
1131  case Sema::TPC_FunctionTemplate:
1132  case Sema::TPC_FriendFunctionTemplateDefinition:
1133    // C++ [temp.param]p9:
1134    //   A default template-argument shall not be specified in a
1135    //   function template declaration or a function template
1136    //   definition [...]
1137    //   If a friend function template declaration specifies a default
1138    //   template-argument, that declaration shall be a definition and shall be
1139    //   the only declaration of the function template in the translation unit.
1140    // (C++98/03 doesn't have this wording; see DR226).
1141    S.Diag(ParamLoc, S.getLangOpts().CPlusPlus0x ?
1142         diag::warn_cxx98_compat_template_parameter_default_in_function_template
1143           : diag::ext_template_parameter_default_in_function_template)
1144      << DefArgRange;
1145    return false;
1146
1147  case Sema::TPC_ClassTemplateMember:
1148    // C++0x [temp.param]p9:
1149    //   A default template-argument shall not be specified in the
1150    //   template-parameter-lists of the definition of a member of a
1151    //   class template that appears outside of the member's class.
1152    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1153      << DefArgRange;
1154    return true;
1155
1156  case Sema::TPC_FriendFunctionTemplate:
1157    // C++ [temp.param]p9:
1158    //   A default template-argument shall not be specified in a
1159    //   friend template declaration.
1160    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1161      << DefArgRange;
1162    return true;
1163
1164    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1165    // for friend function templates if there is only a single
1166    // declaration (and it is a definition). Strange!
1167  }
1168
1169  llvm_unreachable("Invalid TemplateParamListContext!");
1170}
1171
1172/// \brief Check for unexpanded parameter packs within the template parameters
1173/// of a template template parameter, recursively.
1174static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1175                                             TemplateTemplateParmDecl *TTP) {
1176  TemplateParameterList *Params = TTP->getTemplateParameters();
1177  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1178    NamedDecl *P = Params->getParam(I);
1179    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1180      if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1181                                            NTTP->getTypeSourceInfo(),
1182                                      Sema::UPPC_NonTypeTemplateParameterType))
1183        return true;
1184
1185      continue;
1186    }
1187
1188    if (TemplateTemplateParmDecl *InnerTTP
1189                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1190      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1191        return true;
1192  }
1193
1194  return false;
1195}
1196
1197/// \brief Checks the validity of a template parameter list, possibly
1198/// considering the template parameter list from a previous
1199/// declaration.
1200///
1201/// If an "old" template parameter list is provided, it must be
1202/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1203/// template parameter list.
1204///
1205/// \param NewParams Template parameter list for a new template
1206/// declaration. This template parameter list will be updated with any
1207/// default arguments that are carried through from the previous
1208/// template parameter list.
1209///
1210/// \param OldParams If provided, template parameter list from a
1211/// previous declaration of the same template. Default template
1212/// arguments will be merged from the old template parameter list to
1213/// the new template parameter list.
1214///
1215/// \param TPC Describes the context in which we are checking the given
1216/// template parameter list.
1217///
1218/// \returns true if an error occurred, false otherwise.
1219bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1220                                      TemplateParameterList *OldParams,
1221                                      TemplateParamListContext TPC) {
1222  bool Invalid = false;
1223
1224  // C++ [temp.param]p10:
1225  //   The set of default template-arguments available for use with a
1226  //   template declaration or definition is obtained by merging the
1227  //   default arguments from the definition (if in scope) and all
1228  //   declarations in scope in the same way default function
1229  //   arguments are (8.3.6).
1230  bool SawDefaultArgument = false;
1231  SourceLocation PreviousDefaultArgLoc;
1232
1233  // Dummy initialization to avoid warnings.
1234  TemplateParameterList::iterator OldParam = NewParams->end();
1235  if (OldParams)
1236    OldParam = OldParams->begin();
1237
1238  bool RemoveDefaultArguments = false;
1239  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1240                                    NewParamEnd = NewParams->end();
1241       NewParam != NewParamEnd; ++NewParam) {
1242    // Variables used to diagnose redundant default arguments
1243    bool RedundantDefaultArg = false;
1244    SourceLocation OldDefaultLoc;
1245    SourceLocation NewDefaultLoc;
1246
1247    // Variable used to diagnose missing default arguments
1248    bool MissingDefaultArg = false;
1249
1250    // Variable used to diagnose non-final parameter packs
1251    bool SawParameterPack = false;
1252
1253    if (TemplateTypeParmDecl *NewTypeParm
1254          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1255      // Check the presence of a default argument here.
1256      if (NewTypeParm->hasDefaultArgument() &&
1257          DiagnoseDefaultTemplateArgument(*this, TPC,
1258                                          NewTypeParm->getLocation(),
1259               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1260                                                       .getSourceRange()))
1261        NewTypeParm->removeDefaultArgument();
1262
1263      // Merge default arguments for template type parameters.
1264      TemplateTypeParmDecl *OldTypeParm
1265          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1266
1267      if (NewTypeParm->isParameterPack()) {
1268        assert(!NewTypeParm->hasDefaultArgument() &&
1269               "Parameter packs can't have a default argument!");
1270        SawParameterPack = true;
1271      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1272                 NewTypeParm->hasDefaultArgument()) {
1273        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1274        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1275        SawDefaultArgument = true;
1276        RedundantDefaultArg = true;
1277        PreviousDefaultArgLoc = NewDefaultLoc;
1278      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1279        // Merge the default argument from the old declaration to the
1280        // new declaration.
1281        SawDefaultArgument = true;
1282        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1283                                        true);
1284        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1285      } else if (NewTypeParm->hasDefaultArgument()) {
1286        SawDefaultArgument = true;
1287        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1288      } else if (SawDefaultArgument)
1289        MissingDefaultArg = true;
1290    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1291               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1292      // Check for unexpanded parameter packs.
1293      if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1294                                          NewNonTypeParm->getTypeSourceInfo(),
1295                                          UPPC_NonTypeTemplateParameterType)) {
1296        Invalid = true;
1297        continue;
1298      }
1299
1300      // Check the presence of a default argument here.
1301      if (NewNonTypeParm->hasDefaultArgument() &&
1302          DiagnoseDefaultTemplateArgument(*this, TPC,
1303                                          NewNonTypeParm->getLocation(),
1304                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1305        NewNonTypeParm->removeDefaultArgument();
1306      }
1307
1308      // Merge default arguments for non-type template parameters
1309      NonTypeTemplateParmDecl *OldNonTypeParm
1310        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1311      if (NewNonTypeParm->isParameterPack()) {
1312        assert(!NewNonTypeParm->hasDefaultArgument() &&
1313               "Parameter packs can't have a default argument!");
1314        SawParameterPack = true;
1315      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1316          NewNonTypeParm->hasDefaultArgument()) {
1317        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1318        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1319        SawDefaultArgument = true;
1320        RedundantDefaultArg = true;
1321        PreviousDefaultArgLoc = NewDefaultLoc;
1322      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1323        // Merge the default argument from the old declaration to the
1324        // new declaration.
1325        SawDefaultArgument = true;
1326        // FIXME: We need to create a new kind of "default argument"
1327        // expression that points to a previous non-type template
1328        // parameter.
1329        NewNonTypeParm->setDefaultArgument(
1330                                         OldNonTypeParm->getDefaultArgument(),
1331                                         /*Inherited=*/ true);
1332        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1333      } else if (NewNonTypeParm->hasDefaultArgument()) {
1334        SawDefaultArgument = true;
1335        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1336      } else if (SawDefaultArgument)
1337        MissingDefaultArg = true;
1338    } else {
1339      TemplateTemplateParmDecl *NewTemplateParm
1340        = cast<TemplateTemplateParmDecl>(*NewParam);
1341
1342      // Check for unexpanded parameter packs, recursively.
1343      if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1344        Invalid = true;
1345        continue;
1346      }
1347
1348      // Check the presence of a default argument here.
1349      if (NewTemplateParm->hasDefaultArgument() &&
1350          DiagnoseDefaultTemplateArgument(*this, TPC,
1351                                          NewTemplateParm->getLocation(),
1352                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1353        NewTemplateParm->removeDefaultArgument();
1354
1355      // Merge default arguments for template template parameters
1356      TemplateTemplateParmDecl *OldTemplateParm
1357        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1358      if (NewTemplateParm->isParameterPack()) {
1359        assert(!NewTemplateParm->hasDefaultArgument() &&
1360               "Parameter packs can't have a default argument!");
1361        SawParameterPack = true;
1362      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1363          NewTemplateParm->hasDefaultArgument()) {
1364        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1365        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1366        SawDefaultArgument = true;
1367        RedundantDefaultArg = true;
1368        PreviousDefaultArgLoc = NewDefaultLoc;
1369      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1370        // Merge the default argument from the old declaration to the
1371        // new declaration.
1372        SawDefaultArgument = true;
1373        // FIXME: We need to create a new kind of "default argument" expression
1374        // that points to a previous template template parameter.
1375        NewTemplateParm->setDefaultArgument(
1376                                          OldTemplateParm->getDefaultArgument(),
1377                                          /*Inherited=*/ true);
1378        PreviousDefaultArgLoc
1379          = OldTemplateParm->getDefaultArgument().getLocation();
1380      } else if (NewTemplateParm->hasDefaultArgument()) {
1381        SawDefaultArgument = true;
1382        PreviousDefaultArgLoc
1383          = NewTemplateParm->getDefaultArgument().getLocation();
1384      } else if (SawDefaultArgument)
1385        MissingDefaultArg = true;
1386    }
1387
1388    // C++0x [temp.param]p11:
1389    //   If a template parameter of a primary class template or alias template
1390    //   is a template parameter pack, it shall be the last template parameter.
1391    if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1392        (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) {
1393      Diag((*NewParam)->getLocation(),
1394           diag::err_template_param_pack_must_be_last_template_parameter);
1395      Invalid = true;
1396    }
1397
1398    if (RedundantDefaultArg) {
1399      // C++ [temp.param]p12:
1400      //   A template-parameter shall not be given default arguments
1401      //   by two different declarations in the same scope.
1402      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1403      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1404      Invalid = true;
1405    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1406      // C++ [temp.param]p11:
1407      //   If a template-parameter of a class template has a default
1408      //   template-argument, each subsequent template-parameter shall either
1409      //   have a default template-argument supplied or be a template parameter
1410      //   pack.
1411      Diag((*NewParam)->getLocation(),
1412           diag::err_template_param_default_arg_missing);
1413      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1414      Invalid = true;
1415      RemoveDefaultArguments = true;
1416    }
1417
1418    // If we have an old template parameter list that we're merging
1419    // in, move on to the next parameter.
1420    if (OldParams)
1421      ++OldParam;
1422  }
1423
1424  // We were missing some default arguments at the end of the list, so remove
1425  // all of the default arguments.
1426  if (RemoveDefaultArguments) {
1427    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1428                                      NewParamEnd = NewParams->end();
1429         NewParam != NewParamEnd; ++NewParam) {
1430      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1431        TTP->removeDefaultArgument();
1432      else if (NonTypeTemplateParmDecl *NTTP
1433                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1434        NTTP->removeDefaultArgument();
1435      else
1436        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1437    }
1438  }
1439
1440  return Invalid;
1441}
1442
1443namespace {
1444
1445/// A class which looks for a use of a certain level of template
1446/// parameter.
1447struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1448  typedef RecursiveASTVisitor<DependencyChecker> super;
1449
1450  unsigned Depth;
1451  bool Match;
1452
1453  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1454    NamedDecl *ND = Params->getParam(0);
1455    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1456      Depth = PD->getDepth();
1457    } else if (NonTypeTemplateParmDecl *PD =
1458                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1459      Depth = PD->getDepth();
1460    } else {
1461      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1462    }
1463  }
1464
1465  bool Matches(unsigned ParmDepth) {
1466    if (ParmDepth >= Depth) {
1467      Match = true;
1468      return true;
1469    }
1470    return false;
1471  }
1472
1473  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1474    return !Matches(T->getDepth());
1475  }
1476
1477  bool TraverseTemplateName(TemplateName N) {
1478    if (TemplateTemplateParmDecl *PD =
1479          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1480      if (Matches(PD->getDepth())) return false;
1481    return super::TraverseTemplateName(N);
1482  }
1483
1484  bool VisitDeclRefExpr(DeclRefExpr *E) {
1485    if (NonTypeTemplateParmDecl *PD =
1486          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1487      if (PD->getDepth() == Depth) {
1488        Match = true;
1489        return false;
1490      }
1491    }
1492    return super::VisitDeclRefExpr(E);
1493  }
1494
1495  bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1496    return TraverseType(T->getInjectedSpecializationType());
1497  }
1498};
1499}
1500
1501/// Determines whether a given type depends on the given parameter
1502/// list.
1503static bool
1504DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1505  DependencyChecker Checker(Params);
1506  Checker.TraverseType(T);
1507  return Checker.Match;
1508}
1509
1510// Find the source range corresponding to the named type in the given
1511// nested-name-specifier, if any.
1512static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1513                                                       QualType T,
1514                                                       const CXXScopeSpec &SS) {
1515  NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1516  while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1517    if (const Type *CurType = NNS->getAsType()) {
1518      if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1519        return NNSLoc.getTypeLoc().getSourceRange();
1520    } else
1521      break;
1522
1523    NNSLoc = NNSLoc.getPrefix();
1524  }
1525
1526  return SourceRange();
1527}
1528
1529/// \brief Match the given template parameter lists to the given scope
1530/// specifier, returning the template parameter list that applies to the
1531/// name.
1532///
1533/// \param DeclStartLoc the start of the declaration that has a scope
1534/// specifier or a template parameter list.
1535///
1536/// \param DeclLoc The location of the declaration itself.
1537///
1538/// \param SS the scope specifier that will be matched to the given template
1539/// parameter lists. This scope specifier precedes a qualified name that is
1540/// being declared.
1541///
1542/// \param ParamLists the template parameter lists, from the outermost to the
1543/// innermost template parameter lists.
1544///
1545/// \param NumParamLists the number of template parameter lists in ParamLists.
1546///
1547/// \param IsFriend Whether to apply the slightly different rules for
1548/// matching template parameters to scope specifiers in friend
1549/// declarations.
1550///
1551/// \param IsExplicitSpecialization will be set true if the entity being
1552/// declared is an explicit specialization, false otherwise.
1553///
1554/// \returns the template parameter list, if any, that corresponds to the
1555/// name that is preceded by the scope specifier @p SS. This template
1556/// parameter list may have template parameters (if we're declaring a
1557/// template) or may have no template parameters (if we're declaring a
1558/// template specialization), or may be NULL (if what we're declaring isn't
1559/// itself a template).
1560TemplateParameterList *
1561Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1562                                              SourceLocation DeclLoc,
1563                                              const CXXScopeSpec &SS,
1564                                          TemplateParameterList **ParamLists,
1565                                              unsigned NumParamLists,
1566                                              bool IsFriend,
1567                                              bool &IsExplicitSpecialization,
1568                                              bool &Invalid) {
1569  IsExplicitSpecialization = false;
1570  Invalid = false;
1571
1572  // The sequence of nested types to which we will match up the template
1573  // parameter lists. We first build this list by starting with the type named
1574  // by the nested-name-specifier and walking out until we run out of types.
1575  SmallVector<QualType, 4> NestedTypes;
1576  QualType T;
1577  if (SS.getScopeRep()) {
1578    if (CXXRecordDecl *Record
1579              = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1580      T = Context.getTypeDeclType(Record);
1581    else
1582      T = QualType(SS.getScopeRep()->getAsType(), 0);
1583  }
1584
1585  // If we found an explicit specialization that prevents us from needing
1586  // 'template<>' headers, this will be set to the location of that
1587  // explicit specialization.
1588  SourceLocation ExplicitSpecLoc;
1589
1590  while (!T.isNull()) {
1591    NestedTypes.push_back(T);
1592
1593    // Retrieve the parent of a record type.
1594    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1595      // If this type is an explicit specialization, we're done.
1596      if (ClassTemplateSpecializationDecl *Spec
1597          = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1598        if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1599            Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1600          ExplicitSpecLoc = Spec->getLocation();
1601          break;
1602        }
1603      } else if (Record->getTemplateSpecializationKind()
1604                                                == TSK_ExplicitSpecialization) {
1605        ExplicitSpecLoc = Record->getLocation();
1606        break;
1607      }
1608
1609      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1610        T = Context.getTypeDeclType(Parent);
1611      else
1612        T = QualType();
1613      continue;
1614    }
1615
1616    if (const TemplateSpecializationType *TST
1617                                     = T->getAs<TemplateSpecializationType>()) {
1618      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1619        if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1620          T = Context.getTypeDeclType(Parent);
1621        else
1622          T = QualType();
1623        continue;
1624      }
1625    }
1626
1627    // Look one step prior in a dependent template specialization type.
1628    if (const DependentTemplateSpecializationType *DependentTST
1629                          = T->getAs<DependentTemplateSpecializationType>()) {
1630      if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1631        T = QualType(NNS->getAsType(), 0);
1632      else
1633        T = QualType();
1634      continue;
1635    }
1636
1637    // Look one step prior in a dependent name type.
1638    if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1639      if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1640        T = QualType(NNS->getAsType(), 0);
1641      else
1642        T = QualType();
1643      continue;
1644    }
1645
1646    // Retrieve the parent of an enumeration type.
1647    if (const EnumType *EnumT = T->getAs<EnumType>()) {
1648      // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1649      // check here.
1650      EnumDecl *Enum = EnumT->getDecl();
1651
1652      // Get to the parent type.
1653      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1654        T = Context.getTypeDeclType(Parent);
1655      else
1656        T = QualType();
1657      continue;
1658    }
1659
1660    T = QualType();
1661  }
1662  // Reverse the nested types list, since we want to traverse from the outermost
1663  // to the innermost while checking template-parameter-lists.
1664  std::reverse(NestedTypes.begin(), NestedTypes.end());
1665
1666  // C++0x [temp.expl.spec]p17:
1667  //   A member or a member template may be nested within many
1668  //   enclosing class templates. In an explicit specialization for
1669  //   such a member, the member declaration shall be preceded by a
1670  //   template<> for each enclosing class template that is
1671  //   explicitly specialized.
1672  bool SawNonEmptyTemplateParameterList = false;
1673  unsigned ParamIdx = 0;
1674  for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1675       ++TypeIdx) {
1676    T = NestedTypes[TypeIdx];
1677
1678    // Whether we expect a 'template<>' header.
1679    bool NeedEmptyTemplateHeader = false;
1680
1681    // Whether we expect a template header with parameters.
1682    bool NeedNonemptyTemplateHeader = false;
1683
1684    // For a dependent type, the set of template parameters that we
1685    // expect to see.
1686    TemplateParameterList *ExpectedTemplateParams = 0;
1687
1688    // C++0x [temp.expl.spec]p15:
1689    //   A member or a member template may be nested within many enclosing
1690    //   class templates. In an explicit specialization for such a member, the
1691    //   member declaration shall be preceded by a template<> for each
1692    //   enclosing class template that is explicitly specialized.
1693    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1694      if (ClassTemplatePartialSpecializationDecl *Partial
1695            = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1696        ExpectedTemplateParams = Partial->getTemplateParameters();
1697        NeedNonemptyTemplateHeader = true;
1698      } else if (Record->isDependentType()) {
1699        if (Record->getDescribedClassTemplate()) {
1700          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1701                                                      ->getTemplateParameters();
1702          NeedNonemptyTemplateHeader = true;
1703        }
1704      } else if (ClassTemplateSpecializationDecl *Spec
1705                     = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1706        // C++0x [temp.expl.spec]p4:
1707        //   Members of an explicitly specialized class template are defined
1708        //   in the same manner as members of normal classes, and not using
1709        //   the template<> syntax.
1710        if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1711          NeedEmptyTemplateHeader = true;
1712        else
1713          continue;
1714      } else if (Record->getTemplateSpecializationKind()) {
1715        if (Record->getTemplateSpecializationKind()
1716                                                != TSK_ExplicitSpecialization &&
1717            TypeIdx == NumTypes - 1)
1718          IsExplicitSpecialization = true;
1719
1720        continue;
1721      }
1722    } else if (const TemplateSpecializationType *TST
1723                                     = T->getAs<TemplateSpecializationType>()) {
1724      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1725        ExpectedTemplateParams = Template->getTemplateParameters();
1726        NeedNonemptyTemplateHeader = true;
1727      }
1728    } else if (T->getAs<DependentTemplateSpecializationType>()) {
1729      // FIXME:  We actually could/should check the template arguments here
1730      // against the corresponding template parameter list.
1731      NeedNonemptyTemplateHeader = false;
1732    }
1733
1734    // C++ [temp.expl.spec]p16:
1735    //   In an explicit specialization declaration for a member of a class
1736    //   template or a member template that ap- pears in namespace scope, the
1737    //   member template and some of its enclosing class templates may remain
1738    //   unspecialized, except that the declaration shall not explicitly
1739    //   specialize a class member template if its en- closing class templates
1740    //   are not explicitly specialized as well.
1741    if (ParamIdx < NumParamLists) {
1742      if (ParamLists[ParamIdx]->size() == 0) {
1743        if (SawNonEmptyTemplateParameterList) {
1744          Diag(DeclLoc, diag::err_specialize_member_of_template)
1745            << ParamLists[ParamIdx]->getSourceRange();
1746          Invalid = true;
1747          IsExplicitSpecialization = false;
1748          return 0;
1749        }
1750      } else
1751        SawNonEmptyTemplateParameterList = true;
1752    }
1753
1754    if (NeedEmptyTemplateHeader) {
1755      // If we're on the last of the types, and we need a 'template<>' header
1756      // here, then it's an explicit specialization.
1757      if (TypeIdx == NumTypes - 1)
1758        IsExplicitSpecialization = true;
1759
1760      if (ParamIdx < NumParamLists) {
1761        if (ParamLists[ParamIdx]->size() > 0) {
1762          // The header has template parameters when it shouldn't. Complain.
1763          Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1764               diag::err_template_param_list_matches_nontemplate)
1765            << T
1766            << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1767                           ParamLists[ParamIdx]->getRAngleLoc())
1768            << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1769          Invalid = true;
1770          return 0;
1771        }
1772
1773        // Consume this template header.
1774        ++ParamIdx;
1775        continue;
1776      }
1777
1778      if (!IsFriend) {
1779        // We don't have a template header, but we should.
1780        SourceLocation ExpectedTemplateLoc;
1781        if (NumParamLists > 0)
1782          ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1783        else
1784          ExpectedTemplateLoc = DeclStartLoc;
1785
1786        Diag(DeclLoc, diag::err_template_spec_needs_header)
1787          << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
1788          << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1789      }
1790
1791      continue;
1792    }
1793
1794    if (NeedNonemptyTemplateHeader) {
1795      // In friend declarations we can have template-ids which don't
1796      // depend on the corresponding template parameter lists.  But
1797      // assume that empty parameter lists are supposed to match this
1798      // template-id.
1799      if (IsFriend && T->isDependentType()) {
1800        if (ParamIdx < NumParamLists &&
1801            DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1802          ExpectedTemplateParams = 0;
1803        else
1804          continue;
1805      }
1806
1807      if (ParamIdx < NumParamLists) {
1808        // Check the template parameter list, if we can.
1809        if (ExpectedTemplateParams &&
1810            !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1811                                            ExpectedTemplateParams,
1812                                            true, TPL_TemplateMatch))
1813          Invalid = true;
1814
1815        if (!Invalid &&
1816            CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1817                                       TPC_ClassTemplateMember))
1818          Invalid = true;
1819
1820        ++ParamIdx;
1821        continue;
1822      }
1823
1824      Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1825        << T
1826        << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1827      Invalid = true;
1828      continue;
1829    }
1830  }
1831
1832  // If there were at least as many template-ids as there were template
1833  // parameter lists, then there are no template parameter lists remaining for
1834  // the declaration itself.
1835  if (ParamIdx >= NumParamLists)
1836    return 0;
1837
1838  // If there were too many template parameter lists, complain about that now.
1839  if (ParamIdx < NumParamLists - 1) {
1840    bool HasAnyExplicitSpecHeader = false;
1841    bool AllExplicitSpecHeaders = true;
1842    for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) {
1843      if (ParamLists[I]->size() == 0)
1844        HasAnyExplicitSpecHeader = true;
1845      else
1846        AllExplicitSpecHeaders = false;
1847    }
1848
1849    Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1850         AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers
1851                               : diag::err_template_spec_extra_headers)
1852      << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1853                     ParamLists[NumParamLists - 2]->getRAngleLoc());
1854
1855    // If there was a specialization somewhere, such that 'template<>' is
1856    // not required, and there were any 'template<>' headers, note where the
1857    // specialization occurred.
1858    if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1859      Diag(ExplicitSpecLoc,
1860           diag::note_explicit_template_spec_does_not_need_header)
1861        << NestedTypes.back();
1862
1863    // We have a template parameter list with no corresponding scope, which
1864    // means that the resulting template declaration can't be instantiated
1865    // properly (we'll end up with dependent nodes when we shouldn't).
1866    if (!AllExplicitSpecHeaders)
1867      Invalid = true;
1868  }
1869
1870  // C++ [temp.expl.spec]p16:
1871  //   In an explicit specialization declaration for a member of a class
1872  //   template or a member template that ap- pears in namespace scope, the
1873  //   member template and some of its enclosing class templates may remain
1874  //   unspecialized, except that the declaration shall not explicitly
1875  //   specialize a class member template if its en- closing class templates
1876  //   are not explicitly specialized as well.
1877  if (ParamLists[NumParamLists - 1]->size() == 0 &&
1878      SawNonEmptyTemplateParameterList) {
1879    Diag(DeclLoc, diag::err_specialize_member_of_template)
1880      << ParamLists[ParamIdx]->getSourceRange();
1881    Invalid = true;
1882    IsExplicitSpecialization = false;
1883    return 0;
1884  }
1885
1886  // Return the last template parameter list, which corresponds to the
1887  // entity being declared.
1888  return ParamLists[NumParamLists - 1];
1889}
1890
1891void Sema::NoteAllFoundTemplates(TemplateName Name) {
1892  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1893    Diag(Template->getLocation(), diag::note_template_declared_here)
1894      << (isa<FunctionTemplateDecl>(Template)? 0
1895          : isa<ClassTemplateDecl>(Template)? 1
1896          : isa<TypeAliasTemplateDecl>(Template)? 2
1897          : 3)
1898      << Template->getDeclName();
1899    return;
1900  }
1901
1902  if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1903    for (OverloadedTemplateStorage::iterator I = OST->begin(),
1904                                          IEnd = OST->end();
1905         I != IEnd; ++I)
1906      Diag((*I)->getLocation(), diag::note_template_declared_here)
1907        << 0 << (*I)->getDeclName();
1908
1909    return;
1910  }
1911}
1912
1913QualType Sema::CheckTemplateIdType(TemplateName Name,
1914                                   SourceLocation TemplateLoc,
1915                                   TemplateArgumentListInfo &TemplateArgs) {
1916  DependentTemplateName *DTN
1917    = Name.getUnderlying().getAsDependentTemplateName();
1918  if (DTN && DTN->isIdentifier())
1919    // When building a template-id where the template-name is dependent,
1920    // assume the template is a type template. Either our assumption is
1921    // correct, or the code is ill-formed and will be diagnosed when the
1922    // dependent name is substituted.
1923    return Context.getDependentTemplateSpecializationType(ETK_None,
1924                                                          DTN->getQualifier(),
1925                                                          DTN->getIdentifier(),
1926                                                          TemplateArgs);
1927
1928  TemplateDecl *Template = Name.getAsTemplateDecl();
1929  if (!Template || isa<FunctionTemplateDecl>(Template)) {
1930    // We might have a substituted template template parameter pack. If so,
1931    // build a template specialization type for it.
1932    if (Name.getAsSubstTemplateTemplateParmPack())
1933      return Context.getTemplateSpecializationType(Name, TemplateArgs);
1934
1935    Diag(TemplateLoc, diag::err_template_id_not_a_type)
1936      << Name;
1937    NoteAllFoundTemplates(Name);
1938    return QualType();
1939  }
1940
1941  // Check that the template argument list is well-formed for this
1942  // template.
1943  SmallVector<TemplateArgument, 4> Converted;
1944  bool ExpansionIntoFixedList = false;
1945  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1946                                false, Converted, &ExpansionIntoFixedList))
1947    return QualType();
1948
1949  QualType CanonType;
1950
1951  bool InstantiationDependent = false;
1952  TypeAliasTemplateDecl *AliasTemplate = 0;
1953  if (!ExpansionIntoFixedList &&
1954      (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) {
1955    // Find the canonical type for this type alias template specialization.
1956    TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
1957    if (Pattern->isInvalidDecl())
1958      return QualType();
1959
1960    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1961                                      Converted.data(), Converted.size());
1962
1963    // Only substitute for the innermost template argument list.
1964    MultiLevelTemplateArgumentList TemplateArgLists;
1965    TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
1966    unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
1967    for (unsigned I = 0; I < Depth; ++I)
1968      TemplateArgLists.addOuterTemplateArguments(0, 0);
1969
1970    InstantiatingTemplate Inst(*this, TemplateLoc, Template);
1971    CanonType = SubstType(Pattern->getUnderlyingType(),
1972                          TemplateArgLists, AliasTemplate->getLocation(),
1973                          AliasTemplate->getDeclName());
1974    if (CanonType.isNull())
1975      return QualType();
1976  } else if (Name.isDependent() ||
1977             TemplateSpecializationType::anyDependentTemplateArguments(
1978               TemplateArgs, InstantiationDependent)) {
1979    // This class template specialization is a dependent
1980    // type. Therefore, its canonical type is another class template
1981    // specialization type that contains all of the converted
1982    // arguments in canonical form. This ensures that, e.g., A<T> and
1983    // A<T, T> have identical types when A is declared as:
1984    //
1985    //   template<typename T, typename U = T> struct A;
1986    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1987    CanonType = Context.getTemplateSpecializationType(CanonName,
1988                                                      Converted.data(),
1989                                                      Converted.size());
1990
1991    // FIXME: CanonType is not actually the canonical type, and unfortunately
1992    // it is a TemplateSpecializationType that we will never use again.
1993    // In the future, we need to teach getTemplateSpecializationType to only
1994    // build the canonical type and return that to us.
1995    CanonType = Context.getCanonicalType(CanonType);
1996
1997    // This might work out to be a current instantiation, in which
1998    // case the canonical type needs to be the InjectedClassNameType.
1999    //
2000    // TODO: in theory this could be a simple hashtable lookup; most
2001    // changes to CurContext don't change the set of current
2002    // instantiations.
2003    if (isa<ClassTemplateDecl>(Template)) {
2004      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
2005        // If we get out to a namespace, we're done.
2006        if (Ctx->isFileContext()) break;
2007
2008        // If this isn't a record, keep looking.
2009        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
2010        if (!Record) continue;
2011
2012        // Look for one of the two cases with InjectedClassNameTypes
2013        // and check whether it's the same template.
2014        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
2015            !Record->getDescribedClassTemplate())
2016          continue;
2017
2018        // Fetch the injected class name type and check whether its
2019        // injected type is equal to the type we just built.
2020        QualType ICNT = Context.getTypeDeclType(Record);
2021        QualType Injected = cast<InjectedClassNameType>(ICNT)
2022          ->getInjectedSpecializationType();
2023
2024        if (CanonType != Injected->getCanonicalTypeInternal())
2025          continue;
2026
2027        // If so, the canonical type of this TST is the injected
2028        // class name type of the record we just found.
2029        assert(ICNT.isCanonical());
2030        CanonType = ICNT;
2031        break;
2032      }
2033    }
2034  } else if (ClassTemplateDecl *ClassTemplate
2035               = dyn_cast<ClassTemplateDecl>(Template)) {
2036    // Find the class template specialization declaration that
2037    // corresponds to these arguments.
2038    void *InsertPos = 0;
2039    ClassTemplateSpecializationDecl *Decl
2040      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
2041                                          InsertPos);
2042    if (!Decl) {
2043      // This is the first time we have referenced this class template
2044      // specialization. Create the canonical declaration and add it to
2045      // the set of specializations.
2046      Decl = ClassTemplateSpecializationDecl::Create(Context,
2047                            ClassTemplate->getTemplatedDecl()->getTagKind(),
2048                                                ClassTemplate->getDeclContext(),
2049                            ClassTemplate->getTemplatedDecl()->getLocStart(),
2050                                                ClassTemplate->getLocation(),
2051                                                     ClassTemplate,
2052                                                     Converted.data(),
2053                                                     Converted.size(), 0);
2054      ClassTemplate->AddSpecialization(Decl, InsertPos);
2055      Decl->setLexicalDeclContext(CurContext);
2056    }
2057
2058    CanonType = Context.getTypeDeclType(Decl);
2059    assert(isa<RecordType>(CanonType) &&
2060           "type of non-dependent specialization is not a RecordType");
2061  }
2062
2063  // Build the fully-sugared type for this class template
2064  // specialization, which refers back to the class template
2065  // specialization we created or found.
2066  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2067}
2068
2069TypeResult
2070Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
2071                          TemplateTy TemplateD, SourceLocation TemplateLoc,
2072                          SourceLocation LAngleLoc,
2073                          ASTTemplateArgsPtr TemplateArgsIn,
2074                          SourceLocation RAngleLoc,
2075                          bool IsCtorOrDtorName) {
2076  if (SS.isInvalid())
2077    return true;
2078
2079  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2080
2081  // Translate the parser's template argument list in our AST format.
2082  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2083  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2084
2085  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2086    QualType T
2087      = Context.getDependentTemplateSpecializationType(ETK_None,
2088                                                       DTN->getQualifier(),
2089                                                       DTN->getIdentifier(),
2090                                                       TemplateArgs);
2091    // Build type-source information.
2092    TypeLocBuilder TLB;
2093    DependentTemplateSpecializationTypeLoc SpecTL
2094      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2095    SpecTL.setElaboratedKeywordLoc(SourceLocation());
2096    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2097    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2098    SpecTL.setTemplateNameLoc(TemplateLoc);
2099    SpecTL.setLAngleLoc(LAngleLoc);
2100    SpecTL.setRAngleLoc(RAngleLoc);
2101    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2102      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2103    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2104  }
2105
2106  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2107  TemplateArgsIn.release();
2108
2109  if (Result.isNull())
2110    return true;
2111
2112  // Build type-source information.
2113  TypeLocBuilder TLB;
2114  TemplateSpecializationTypeLoc SpecTL
2115    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2116  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2117  SpecTL.setTemplateNameLoc(TemplateLoc);
2118  SpecTL.setLAngleLoc(LAngleLoc);
2119  SpecTL.setRAngleLoc(RAngleLoc);
2120  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2121    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2122
2123  // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2124  // constructor or destructor name (in such a case, the scope specifier
2125  // will be attached to the enclosing Decl or Expr node).
2126  if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2127    // Create an elaborated-type-specifier containing the nested-name-specifier.
2128    Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2129    ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2130    ElabTL.setElaboratedKeywordLoc(SourceLocation());
2131    ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2132  }
2133
2134  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2135}
2136
2137TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2138                                        TypeSpecifierType TagSpec,
2139                                        SourceLocation TagLoc,
2140                                        CXXScopeSpec &SS,
2141                                        SourceLocation TemplateKWLoc,
2142                                        TemplateTy TemplateD,
2143                                        SourceLocation TemplateLoc,
2144                                        SourceLocation LAngleLoc,
2145                                        ASTTemplateArgsPtr TemplateArgsIn,
2146                                        SourceLocation RAngleLoc) {
2147  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2148
2149  // Translate the parser's template argument list in our AST format.
2150  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2151  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2152
2153  // Determine the tag kind
2154  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2155  ElaboratedTypeKeyword Keyword
2156    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2157
2158  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2159    QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2160                                                          DTN->getQualifier(),
2161                                                          DTN->getIdentifier(),
2162                                                                TemplateArgs);
2163
2164    // Build type-source information.
2165    TypeLocBuilder TLB;
2166    DependentTemplateSpecializationTypeLoc SpecTL
2167      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2168    SpecTL.setElaboratedKeywordLoc(TagLoc);
2169    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2170    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2171    SpecTL.setTemplateNameLoc(TemplateLoc);
2172    SpecTL.setLAngleLoc(LAngleLoc);
2173    SpecTL.setRAngleLoc(RAngleLoc);
2174    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2175      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2176    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2177  }
2178
2179  if (TypeAliasTemplateDecl *TAT =
2180        dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2181    // C++0x [dcl.type.elab]p2:
2182    //   If the identifier resolves to a typedef-name or the simple-template-id
2183    //   resolves to an alias template specialization, the
2184    //   elaborated-type-specifier is ill-formed.
2185    Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2186    Diag(TAT->getLocation(), diag::note_declared_at);
2187  }
2188
2189  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2190  if (Result.isNull())
2191    return TypeResult(true);
2192
2193  // Check the tag kind
2194  if (const RecordType *RT = Result->getAs<RecordType>()) {
2195    RecordDecl *D = RT->getDecl();
2196
2197    IdentifierInfo *Id = D->getIdentifier();
2198    assert(Id && "templated class must have an identifier");
2199
2200    if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2201                                      TagLoc, *Id)) {
2202      Diag(TagLoc, diag::err_use_with_wrong_tag)
2203        << Result
2204        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2205      Diag(D->getLocation(), diag::note_previous_use);
2206    }
2207  }
2208
2209  // Provide source-location information for the template specialization.
2210  TypeLocBuilder TLB;
2211  TemplateSpecializationTypeLoc SpecTL
2212    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2213  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2214  SpecTL.setTemplateNameLoc(TemplateLoc);
2215  SpecTL.setLAngleLoc(LAngleLoc);
2216  SpecTL.setRAngleLoc(RAngleLoc);
2217  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2218    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2219
2220  // Construct an elaborated type containing the nested-name-specifier (if any)
2221  // and tag keyword.
2222  Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2223  ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2224  ElabTL.setElaboratedKeywordLoc(TagLoc);
2225  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2226  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2227}
2228
2229ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2230                                     SourceLocation TemplateKWLoc,
2231                                     LookupResult &R,
2232                                     bool RequiresADL,
2233                                 const TemplateArgumentListInfo *TemplateArgs) {
2234  // FIXME: Can we do any checking at this point? I guess we could check the
2235  // template arguments that we have against the template name, if the template
2236  // name refers to a single template. That's not a terribly common case,
2237  // though.
2238  // foo<int> could identify a single function unambiguously
2239  // This approach does NOT work, since f<int>(1);
2240  // gets resolved prior to resorting to overload resolution
2241  // i.e., template<class T> void f(double);
2242  //       vs template<class T, class U> void f(U);
2243
2244  // These should be filtered out by our callers.
2245  assert(!R.empty() && "empty lookup results when building templateid");
2246  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2247
2248  // We don't want lookup warnings at this point.
2249  R.suppressDiagnostics();
2250
2251  UnresolvedLookupExpr *ULE
2252    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2253                                   SS.getWithLocInContext(Context),
2254                                   TemplateKWLoc,
2255                                   R.getLookupNameInfo(),
2256                                   RequiresADL, TemplateArgs,
2257                                   R.begin(), R.end());
2258
2259  return Owned(ULE);
2260}
2261
2262// We actually only call this from template instantiation.
2263ExprResult
2264Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2265                                   SourceLocation TemplateKWLoc,
2266                                   const DeclarationNameInfo &NameInfo,
2267                             const TemplateArgumentListInfo *TemplateArgs) {
2268  assert(TemplateArgs || TemplateKWLoc.isValid());
2269  DeclContext *DC;
2270  if (!(DC = computeDeclContext(SS, false)) ||
2271      DC->isDependentContext() ||
2272      RequireCompleteDeclContext(SS, DC))
2273    return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
2274
2275  bool MemberOfUnknownSpecialization;
2276  LookupResult R(*this, NameInfo, LookupOrdinaryName);
2277  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
2278                     MemberOfUnknownSpecialization);
2279
2280  if (R.isAmbiguous())
2281    return ExprError();
2282
2283  if (R.empty()) {
2284    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2285      << NameInfo.getName() << SS.getRange();
2286    return ExprError();
2287  }
2288
2289  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2290    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2291      << (NestedNameSpecifier*) SS.getScopeRep()
2292      << NameInfo.getName() << SS.getRange();
2293    Diag(Temp->getLocation(), diag::note_referenced_class_template);
2294    return ExprError();
2295  }
2296
2297  return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
2298}
2299
2300/// \brief Form a dependent template name.
2301///
2302/// This action forms a dependent template name given the template
2303/// name and its (presumably dependent) scope specifier. For
2304/// example, given "MetaFun::template apply", the scope specifier \p
2305/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2306/// of the "template" keyword, and "apply" is the \p Name.
2307TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2308                                                  CXXScopeSpec &SS,
2309                                                  SourceLocation TemplateKWLoc,
2310                                                  UnqualifiedId &Name,
2311                                                  ParsedType ObjectType,
2312                                                  bool EnteringContext,
2313                                                  TemplateTy &Result) {
2314  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
2315    Diag(TemplateKWLoc,
2316         getLangOpts().CPlusPlus0x ?
2317           diag::warn_cxx98_compat_template_outside_of_template :
2318           diag::ext_template_outside_of_template)
2319      << FixItHint::CreateRemoval(TemplateKWLoc);
2320
2321  DeclContext *LookupCtx = 0;
2322  if (SS.isSet())
2323    LookupCtx = computeDeclContext(SS, EnteringContext);
2324  if (!LookupCtx && ObjectType)
2325    LookupCtx = computeDeclContext(ObjectType.get());
2326  if (LookupCtx) {
2327    // C++0x [temp.names]p5:
2328    //   If a name prefixed by the keyword template is not the name of
2329    //   a template, the program is ill-formed. [Note: the keyword
2330    //   template may not be applied to non-template members of class
2331    //   templates. -end note ] [ Note: as is the case with the
2332    //   typename prefix, the template prefix is allowed in cases
2333    //   where it is not strictly necessary; i.e., when the
2334    //   nested-name-specifier or the expression on the left of the ->
2335    //   or . is not dependent on a template-parameter, or the use
2336    //   does not appear in the scope of a template. -end note]
2337    //
2338    // Note: C++03 was more strict here, because it banned the use of
2339    // the "template" keyword prior to a template-name that was not a
2340    // dependent name. C++ DR468 relaxed this requirement (the
2341    // "template" keyword is now permitted). We follow the C++0x
2342    // rules, even in C++03 mode with a warning, retroactively applying the DR.
2343    bool MemberOfUnknownSpecialization;
2344    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
2345                                          ObjectType, EnteringContext, Result,
2346                                          MemberOfUnknownSpecialization);
2347    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2348        isa<CXXRecordDecl>(LookupCtx) &&
2349        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2350         cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2351      // This is a dependent template. Handle it below.
2352    } else if (TNK == TNK_Non_template) {
2353      Diag(Name.getLocStart(),
2354           diag::err_template_kw_refers_to_non_template)
2355        << GetNameFromUnqualifiedId(Name).getName()
2356        << Name.getSourceRange()
2357        << TemplateKWLoc;
2358      return TNK_Non_template;
2359    } else {
2360      // We found something; return it.
2361      return TNK;
2362    }
2363  }
2364
2365  NestedNameSpecifier *Qualifier
2366    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2367
2368  switch (Name.getKind()) {
2369  case UnqualifiedId::IK_Identifier:
2370    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2371                                                              Name.Identifier));
2372    return TNK_Dependent_template_name;
2373
2374  case UnqualifiedId::IK_OperatorFunctionId:
2375    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2376                                             Name.OperatorFunctionId.Operator));
2377    return TNK_Dependent_template_name;
2378
2379  case UnqualifiedId::IK_LiteralOperatorId:
2380    llvm_unreachable(
2381            "We don't support these; Parse shouldn't have allowed propagation");
2382
2383  default:
2384    break;
2385  }
2386
2387  Diag(Name.getLocStart(),
2388       diag::err_template_kw_refers_to_non_template)
2389    << GetNameFromUnqualifiedId(Name).getName()
2390    << Name.getSourceRange()
2391    << TemplateKWLoc;
2392  return TNK_Non_template;
2393}
2394
2395bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2396                                     const TemplateArgumentLoc &AL,
2397                          SmallVectorImpl<TemplateArgument> &Converted) {
2398  const TemplateArgument &Arg = AL.getArgument();
2399
2400  // Check template type parameter.
2401  switch(Arg.getKind()) {
2402  case TemplateArgument::Type:
2403    // C++ [temp.arg.type]p1:
2404    //   A template-argument for a template-parameter which is a
2405    //   type shall be a type-id.
2406    break;
2407  case TemplateArgument::Template: {
2408    // We have a template type parameter but the template argument
2409    // is a template without any arguments.
2410    SourceRange SR = AL.getSourceRange();
2411    TemplateName Name = Arg.getAsTemplate();
2412    Diag(SR.getBegin(), diag::err_template_missing_args)
2413      << Name << SR;
2414    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2415      Diag(Decl->getLocation(), diag::note_template_decl_here);
2416
2417    return true;
2418  }
2419  default: {
2420    // We have a template type parameter but the template argument
2421    // is not a type.
2422    SourceRange SR = AL.getSourceRange();
2423    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2424    Diag(Param->getLocation(), diag::note_template_param_here);
2425
2426    return true;
2427  }
2428  }
2429
2430  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2431    return true;
2432
2433  // Add the converted template type argument.
2434  QualType ArgType = Context.getCanonicalType(Arg.getAsType());
2435
2436  // Objective-C ARC:
2437  //   If an explicitly-specified template argument type is a lifetime type
2438  //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
2439  if (getLangOpts().ObjCAutoRefCount &&
2440      ArgType->isObjCLifetimeType() &&
2441      !ArgType.getObjCLifetime()) {
2442    Qualifiers Qs;
2443    Qs.setObjCLifetime(Qualifiers::OCL_Strong);
2444    ArgType = Context.getQualifiedType(ArgType, Qs);
2445  }
2446
2447  Converted.push_back(TemplateArgument(ArgType));
2448  return false;
2449}
2450
2451/// \brief Substitute template arguments into the default template argument for
2452/// the given template type parameter.
2453///
2454/// \param SemaRef the semantic analysis object for which we are performing
2455/// the substitution.
2456///
2457/// \param Template the template that we are synthesizing template arguments
2458/// for.
2459///
2460/// \param TemplateLoc the location of the template name that started the
2461/// template-id we are checking.
2462///
2463/// \param RAngleLoc the location of the right angle bracket ('>') that
2464/// terminates the template-id.
2465///
2466/// \param Param the template template parameter whose default we are
2467/// substituting into.
2468///
2469/// \param Converted the list of template arguments provided for template
2470/// parameters that precede \p Param in the template parameter list.
2471/// \returns the substituted template argument, or NULL if an error occurred.
2472static TypeSourceInfo *
2473SubstDefaultTemplateArgument(Sema &SemaRef,
2474                             TemplateDecl *Template,
2475                             SourceLocation TemplateLoc,
2476                             SourceLocation RAngleLoc,
2477                             TemplateTypeParmDecl *Param,
2478                         SmallVectorImpl<TemplateArgument> &Converted) {
2479  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2480
2481  // If the argument type is dependent, instantiate it now based
2482  // on the previously-computed template arguments.
2483  if (ArgType->getType()->isDependentType()) {
2484    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2485                                      Converted.data(), Converted.size());
2486
2487    MultiLevelTemplateArgumentList AllTemplateArgs
2488      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2489
2490    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2491                                     Template, Converted.data(),
2492                                     Converted.size(),
2493                                     SourceRange(TemplateLoc, RAngleLoc));
2494
2495    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2496                                Param->getDefaultArgumentLoc(),
2497                                Param->getDeclName());
2498  }
2499
2500  return ArgType;
2501}
2502
2503/// \brief Substitute template arguments into the default template argument for
2504/// the given non-type template parameter.
2505///
2506/// \param SemaRef the semantic analysis object for which we are performing
2507/// the substitution.
2508///
2509/// \param Template the template that we are synthesizing template arguments
2510/// for.
2511///
2512/// \param TemplateLoc the location of the template name that started the
2513/// template-id we are checking.
2514///
2515/// \param RAngleLoc the location of the right angle bracket ('>') that
2516/// terminates the template-id.
2517///
2518/// \param Param the non-type template parameter whose default we are
2519/// substituting into.
2520///
2521/// \param Converted the list of template arguments provided for template
2522/// parameters that precede \p Param in the template parameter list.
2523///
2524/// \returns the substituted template argument, or NULL if an error occurred.
2525static ExprResult
2526SubstDefaultTemplateArgument(Sema &SemaRef,
2527                             TemplateDecl *Template,
2528                             SourceLocation TemplateLoc,
2529                             SourceLocation RAngleLoc,
2530                             NonTypeTemplateParmDecl *Param,
2531                        SmallVectorImpl<TemplateArgument> &Converted) {
2532  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2533                                    Converted.data(), Converted.size());
2534
2535  MultiLevelTemplateArgumentList AllTemplateArgs
2536    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2537
2538  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2539                                   Template, Converted.data(),
2540                                   Converted.size(),
2541                                   SourceRange(TemplateLoc, RAngleLoc));
2542
2543  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2544}
2545
2546/// \brief Substitute template arguments into the default template argument for
2547/// the given template template parameter.
2548///
2549/// \param SemaRef the semantic analysis object for which we are performing
2550/// the substitution.
2551///
2552/// \param Template the template that we are synthesizing template arguments
2553/// for.
2554///
2555/// \param TemplateLoc the location of the template name that started the
2556/// template-id we are checking.
2557///
2558/// \param RAngleLoc the location of the right angle bracket ('>') that
2559/// terminates the template-id.
2560///
2561/// \param Param the template template parameter whose default we are
2562/// substituting into.
2563///
2564/// \param Converted the list of template arguments provided for template
2565/// parameters that precede \p Param in the template parameter list.
2566///
2567/// \param QualifierLoc Will be set to the nested-name-specifier (with
2568/// source-location information) that precedes the template name.
2569///
2570/// \returns the substituted template argument, or NULL if an error occurred.
2571static TemplateName
2572SubstDefaultTemplateArgument(Sema &SemaRef,
2573                             TemplateDecl *Template,
2574                             SourceLocation TemplateLoc,
2575                             SourceLocation RAngleLoc,
2576                             TemplateTemplateParmDecl *Param,
2577                       SmallVectorImpl<TemplateArgument> &Converted,
2578                             NestedNameSpecifierLoc &QualifierLoc) {
2579  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2580                                    Converted.data(), Converted.size());
2581
2582  MultiLevelTemplateArgumentList AllTemplateArgs
2583    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2584
2585  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2586                                   Template, Converted.data(),
2587                                   Converted.size(),
2588                                   SourceRange(TemplateLoc, RAngleLoc));
2589
2590  // Substitute into the nested-name-specifier first,
2591  QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
2592  if (QualifierLoc) {
2593    QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2594                                                       AllTemplateArgs);
2595    if (!QualifierLoc)
2596      return TemplateName();
2597  }
2598
2599  return SemaRef.SubstTemplateName(QualifierLoc,
2600                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2601                              Param->getDefaultArgument().getTemplateNameLoc(),
2602                                   AllTemplateArgs);
2603}
2604
2605/// \brief If the given template parameter has a default template
2606/// argument, substitute into that default template argument and
2607/// return the corresponding template argument.
2608TemplateArgumentLoc
2609Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2610                                              SourceLocation TemplateLoc,
2611                                              SourceLocation RAngleLoc,
2612                                              Decl *Param,
2613                      SmallVectorImpl<TemplateArgument> &Converted) {
2614   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2615    if (!TypeParm->hasDefaultArgument())
2616      return TemplateArgumentLoc();
2617
2618    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2619                                                      TemplateLoc,
2620                                                      RAngleLoc,
2621                                                      TypeParm,
2622                                                      Converted);
2623    if (DI)
2624      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2625
2626    return TemplateArgumentLoc();
2627  }
2628
2629  if (NonTypeTemplateParmDecl *NonTypeParm
2630        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2631    if (!NonTypeParm->hasDefaultArgument())
2632      return TemplateArgumentLoc();
2633
2634    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2635                                                  TemplateLoc,
2636                                                  RAngleLoc,
2637                                                  NonTypeParm,
2638                                                  Converted);
2639    if (Arg.isInvalid())
2640      return TemplateArgumentLoc();
2641
2642    Expr *ArgE = Arg.takeAs<Expr>();
2643    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2644  }
2645
2646  TemplateTemplateParmDecl *TempTempParm
2647    = cast<TemplateTemplateParmDecl>(Param);
2648  if (!TempTempParm->hasDefaultArgument())
2649    return TemplateArgumentLoc();
2650
2651
2652  NestedNameSpecifierLoc QualifierLoc;
2653  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2654                                                    TemplateLoc,
2655                                                    RAngleLoc,
2656                                                    TempTempParm,
2657                                                    Converted,
2658                                                    QualifierLoc);
2659  if (TName.isNull())
2660    return TemplateArgumentLoc();
2661
2662  return TemplateArgumentLoc(TemplateArgument(TName),
2663                TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
2664                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2665}
2666
2667/// \brief Check that the given template argument corresponds to the given
2668/// template parameter.
2669///
2670/// \param Param The template parameter against which the argument will be
2671/// checked.
2672///
2673/// \param Arg The template argument.
2674///
2675/// \param Template The template in which the template argument resides.
2676///
2677/// \param TemplateLoc The location of the template name for the template
2678/// whose argument list we're matching.
2679///
2680/// \param RAngleLoc The location of the right angle bracket ('>') that closes
2681/// the template argument list.
2682///
2683/// \param ArgumentPackIndex The index into the argument pack where this
2684/// argument will be placed. Only valid if the parameter is a parameter pack.
2685///
2686/// \param Converted The checked, converted argument will be added to the
2687/// end of this small vector.
2688///
2689/// \param CTAK Describes how we arrived at this particular template argument:
2690/// explicitly written, deduced, etc.
2691///
2692/// \returns true on error, false otherwise.
2693bool Sema::CheckTemplateArgument(NamedDecl *Param,
2694                                 const TemplateArgumentLoc &Arg,
2695                                 NamedDecl *Template,
2696                                 SourceLocation TemplateLoc,
2697                                 SourceLocation RAngleLoc,
2698                                 unsigned ArgumentPackIndex,
2699                            SmallVectorImpl<TemplateArgument> &Converted,
2700                                 CheckTemplateArgumentKind CTAK) {
2701  // Check template type parameters.
2702  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2703    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2704
2705  // Check non-type template parameters.
2706  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2707    // Do substitution on the type of the non-type template parameter
2708    // with the template arguments we've seen thus far.  But if the
2709    // template has a dependent context then we cannot substitute yet.
2710    QualType NTTPType = NTTP->getType();
2711    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
2712      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
2713
2714    if (NTTPType->isDependentType() &&
2715        !isa<TemplateTemplateParmDecl>(Template) &&
2716        !Template->getDeclContext()->isDependentContext()) {
2717      // Do substitution on the type of the non-type template parameter.
2718      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2719                                 NTTP, Converted.data(), Converted.size(),
2720                                 SourceRange(TemplateLoc, RAngleLoc));
2721
2722      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2723                                        Converted.data(), Converted.size());
2724      NTTPType = SubstType(NTTPType,
2725                           MultiLevelTemplateArgumentList(TemplateArgs),
2726                           NTTP->getLocation(),
2727                           NTTP->getDeclName());
2728      // If that worked, check the non-type template parameter type
2729      // for validity.
2730      if (!NTTPType.isNull())
2731        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2732                                                     NTTP->getLocation());
2733      if (NTTPType.isNull())
2734        return true;
2735    }
2736
2737    switch (Arg.getArgument().getKind()) {
2738    case TemplateArgument::Null:
2739      llvm_unreachable("Should never see a NULL template argument here");
2740
2741    case TemplateArgument::Expression: {
2742      TemplateArgument Result;
2743      ExprResult Res =
2744        CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
2745                              Result, CTAK);
2746      if (Res.isInvalid())
2747        return true;
2748
2749      Converted.push_back(Result);
2750      break;
2751    }
2752
2753    case TemplateArgument::Declaration:
2754    case TemplateArgument::Integral:
2755      // We've already checked this template argument, so just copy
2756      // it to the list of converted arguments.
2757      Converted.push_back(Arg.getArgument());
2758      break;
2759
2760    case TemplateArgument::Template:
2761    case TemplateArgument::TemplateExpansion:
2762      // We were given a template template argument. It may not be ill-formed;
2763      // see below.
2764      if (DependentTemplateName *DTN
2765            = Arg.getArgument().getAsTemplateOrTemplatePattern()
2766                                              .getAsDependentTemplateName()) {
2767        // We have a template argument such as \c T::template X, which we
2768        // parsed as a template template argument. However, since we now
2769        // know that we need a non-type template argument, convert this
2770        // template name into an expression.
2771
2772        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2773                                     Arg.getTemplateNameLoc());
2774
2775        CXXScopeSpec SS;
2776        SS.Adopt(Arg.getTemplateQualifierLoc());
2777        // FIXME: the template-template arg was a DependentTemplateName,
2778        // so it was provided with a template keyword. However, its source
2779        // location is not stored in the template argument structure.
2780        SourceLocation TemplateKWLoc;
2781        ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
2782                                                SS.getWithLocInContext(Context),
2783                                                               TemplateKWLoc,
2784                                                               NameInfo, 0));
2785
2786        // If we parsed the template argument as a pack expansion, create a
2787        // pack expansion expression.
2788        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2789          E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
2790          if (E.isInvalid())
2791            return true;
2792        }
2793
2794        TemplateArgument Result;
2795        E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
2796        if (E.isInvalid())
2797          return true;
2798
2799        Converted.push_back(Result);
2800        break;
2801      }
2802
2803      // We have a template argument that actually does refer to a class
2804      // template, alias template, or template template parameter, and
2805      // therefore cannot be a non-type template argument.
2806      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2807        << Arg.getSourceRange();
2808
2809      Diag(Param->getLocation(), diag::note_template_param_here);
2810      return true;
2811
2812    case TemplateArgument::Type: {
2813      // We have a non-type template parameter but the template
2814      // argument is a type.
2815
2816      // C++ [temp.arg]p2:
2817      //   In a template-argument, an ambiguity between a type-id and
2818      //   an expression is resolved to a type-id, regardless of the
2819      //   form of the corresponding template-parameter.
2820      //
2821      // We warn specifically about this case, since it can be rather
2822      // confusing for users.
2823      QualType T = Arg.getArgument().getAsType();
2824      SourceRange SR = Arg.getSourceRange();
2825      if (T->isFunctionType())
2826        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2827      else
2828        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2829      Diag(Param->getLocation(), diag::note_template_param_here);
2830      return true;
2831    }
2832
2833    case TemplateArgument::Pack:
2834      llvm_unreachable("Caller must expand template argument packs");
2835    }
2836
2837    return false;
2838  }
2839
2840
2841  // Check template template parameters.
2842  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2843
2844  // Substitute into the template parameter list of the template
2845  // template parameter, since previously-supplied template arguments
2846  // may appear within the template template parameter.
2847  {
2848    // Set up a template instantiation context.
2849    LocalInstantiationScope Scope(*this);
2850    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2851                               TempParm, Converted.data(), Converted.size(),
2852                               SourceRange(TemplateLoc, RAngleLoc));
2853
2854    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2855                                      Converted.data(), Converted.size());
2856    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2857                      SubstDecl(TempParm, CurContext,
2858                                MultiLevelTemplateArgumentList(TemplateArgs)));
2859    if (!TempParm)
2860      return true;
2861  }
2862
2863  switch (Arg.getArgument().getKind()) {
2864  case TemplateArgument::Null:
2865    llvm_unreachable("Should never see a NULL template argument here");
2866
2867  case TemplateArgument::Template:
2868  case TemplateArgument::TemplateExpansion:
2869    if (CheckTemplateArgument(TempParm, Arg))
2870      return true;
2871
2872    Converted.push_back(Arg.getArgument());
2873    break;
2874
2875  case TemplateArgument::Expression:
2876  case TemplateArgument::Type:
2877    // We have a template template parameter but the template
2878    // argument does not refer to a template.
2879    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
2880      << getLangOpts().CPlusPlus0x;
2881    return true;
2882
2883  case TemplateArgument::Declaration:
2884    llvm_unreachable("Declaration argument with template template parameter");
2885  case TemplateArgument::Integral:
2886    llvm_unreachable("Integral argument with template template parameter");
2887
2888  case TemplateArgument::Pack:
2889    llvm_unreachable("Caller must expand template argument packs");
2890  }
2891
2892  return false;
2893}
2894
2895/// \brief Diagnose an arity mismatch in the
2896static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
2897                                  SourceLocation TemplateLoc,
2898                                  TemplateArgumentListInfo &TemplateArgs) {
2899  TemplateParameterList *Params = Template->getTemplateParameters();
2900  unsigned NumParams = Params->size();
2901  unsigned NumArgs = TemplateArgs.size();
2902
2903  SourceRange Range;
2904  if (NumArgs > NumParams)
2905    Range = SourceRange(TemplateArgs[NumParams].getLocation(),
2906                        TemplateArgs.getRAngleLoc());
2907  S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2908    << (NumArgs > NumParams)
2909    << (isa<ClassTemplateDecl>(Template)? 0 :
2910        isa<FunctionTemplateDecl>(Template)? 1 :
2911        isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2912    << Template << Range;
2913  S.Diag(Template->getLocation(), diag::note_template_decl_here)
2914    << Params->getSourceRange();
2915  return true;
2916}
2917
2918/// \brief Check that the given template argument list is well-formed
2919/// for specializing the given template.
2920bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2921                                     SourceLocation TemplateLoc,
2922                                     TemplateArgumentListInfo &TemplateArgs,
2923                                     bool PartialTemplateArgs,
2924                          SmallVectorImpl<TemplateArgument> &Converted,
2925                                     bool *ExpansionIntoFixedList) {
2926  if (ExpansionIntoFixedList)
2927    *ExpansionIntoFixedList = false;
2928
2929  TemplateParameterList *Params = Template->getTemplateParameters();
2930  unsigned NumParams = Params->size();
2931  unsigned NumArgs = TemplateArgs.size();
2932  bool Invalid = false;
2933
2934  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2935
2936  bool HasParameterPack =
2937    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2938
2939  // C++ [temp.arg]p1:
2940  //   [...] The type and form of each template-argument specified in
2941  //   a template-id shall match the type and form specified for the
2942  //   corresponding parameter declared by the template in its
2943  //   template-parameter-list.
2944  bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
2945  SmallVector<TemplateArgument, 2> ArgumentPack;
2946  TemplateParameterList::iterator Param = Params->begin(),
2947                               ParamEnd = Params->end();
2948  unsigned ArgIdx = 0;
2949  LocalInstantiationScope InstScope(*this, true);
2950  bool SawPackExpansion = false;
2951  while (Param != ParamEnd) {
2952    if (ArgIdx < NumArgs) {
2953      // If we have an expanded parameter pack, make sure we don't have too
2954      // many arguments.
2955      // FIXME: This really should fall out from the normal arity checking.
2956      if (NonTypeTemplateParmDecl *NTTP
2957                                = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2958        if (NTTP->isExpandedParameterPack() &&
2959            ArgumentPack.size() >= NTTP->getNumExpansionTypes()) {
2960          Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2961            << true
2962            << (isa<ClassTemplateDecl>(Template)? 0 :
2963                isa<FunctionTemplateDecl>(Template)? 1 :
2964                isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2965            << Template;
2966          Diag(Template->getLocation(), diag::note_template_decl_here)
2967            << Params->getSourceRange();
2968          return true;
2969        }
2970      }
2971
2972      // Check the template argument we were given.
2973      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2974                                TemplateLoc, RAngleLoc,
2975                                ArgumentPack.size(), Converted))
2976        return true;
2977
2978      if ((*Param)->isTemplateParameterPack()) {
2979        // The template parameter was a template parameter pack, so take the
2980        // deduced argument and place it on the argument pack. Note that we
2981        // stay on the same template parameter so that we can deduce more
2982        // arguments.
2983        ArgumentPack.push_back(Converted.back());
2984        Converted.pop_back();
2985      } else {
2986        // Move to the next template parameter.
2987        ++Param;
2988      }
2989
2990      // If this template argument is a pack expansion, record that fact
2991      // and break out; we can't actually check any more.
2992      if (TemplateArgs[ArgIdx].getArgument().isPackExpansion()) {
2993        SawPackExpansion = true;
2994        ++ArgIdx;
2995        break;
2996      }
2997
2998      ++ArgIdx;
2999      continue;
3000    }
3001
3002    // If we're checking a partial template argument list, we're done.
3003    if (PartialTemplateArgs) {
3004      if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
3005        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3006                                                         ArgumentPack.data(),
3007                                                         ArgumentPack.size()));
3008
3009      return Invalid;
3010    }
3011
3012    // If we have a template parameter pack with no more corresponding
3013    // arguments, just break out now and we'll fill in the argument pack below.
3014    if ((*Param)->isTemplateParameterPack())
3015      break;
3016
3017    // Check whether we have a default argument.
3018    TemplateArgumentLoc Arg;
3019
3020    // Retrieve the default template argument from the template
3021    // parameter. For each kind of template parameter, we substitute the
3022    // template arguments provided thus far and any "outer" template arguments
3023    // (when the template parameter was part of a nested template) into
3024    // the default argument.
3025    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
3026      if (!TTP->hasDefaultArgument())
3027        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3028                                     TemplateArgs);
3029
3030      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
3031                                                             Template,
3032                                                             TemplateLoc,
3033                                                             RAngleLoc,
3034                                                             TTP,
3035                                                             Converted);
3036      if (!ArgType)
3037        return true;
3038
3039      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
3040                                ArgType);
3041    } else if (NonTypeTemplateParmDecl *NTTP
3042                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3043      if (!NTTP->hasDefaultArgument())
3044        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3045                                     TemplateArgs);
3046
3047      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
3048                                                              TemplateLoc,
3049                                                              RAngleLoc,
3050                                                              NTTP,
3051                                                              Converted);
3052      if (E.isInvalid())
3053        return true;
3054
3055      Expr *Ex = E.takeAs<Expr>();
3056      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
3057    } else {
3058      TemplateTemplateParmDecl *TempParm
3059        = cast<TemplateTemplateParmDecl>(*Param);
3060
3061      if (!TempParm->hasDefaultArgument())
3062        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3063                                     TemplateArgs);
3064
3065      NestedNameSpecifierLoc QualifierLoc;
3066      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3067                                                       TemplateLoc,
3068                                                       RAngleLoc,
3069                                                       TempParm,
3070                                                       Converted,
3071                                                       QualifierLoc);
3072      if (Name.isNull())
3073        return true;
3074
3075      Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3076                           TempParm->getDefaultArgument().getTemplateNameLoc());
3077    }
3078
3079    // Introduce an instantiation record that describes where we are using
3080    // the default template argument.
3081    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
3082                                        Converted.data(), Converted.size(),
3083                                        SourceRange(TemplateLoc, RAngleLoc));
3084
3085    // Check the default template argument.
3086    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3087                              RAngleLoc, 0, Converted))
3088      return true;
3089
3090    // Core issue 150 (assumed resolution): if this is a template template
3091    // parameter, keep track of the default template arguments from the
3092    // template definition.
3093    if (isTemplateTemplateParameter)
3094      TemplateArgs.addArgument(Arg);
3095
3096    // Move to the next template parameter and argument.
3097    ++Param;
3098    ++ArgIdx;
3099  }
3100
3101  // If we saw a pack expansion, then directly convert the remaining arguments,
3102  // because we don't know what parameters they'll match up with.
3103  if (SawPackExpansion) {
3104    bool AddToArgumentPack
3105      = Param != ParamEnd && (*Param)->isTemplateParameterPack();
3106    while (ArgIdx < NumArgs) {
3107      if (AddToArgumentPack)
3108        ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument());
3109      else
3110        Converted.push_back(TemplateArgs[ArgIdx].getArgument());
3111      ++ArgIdx;
3112    }
3113
3114    // Push the argument pack onto the list of converted arguments.
3115    if (AddToArgumentPack) {
3116      if (ArgumentPack.empty())
3117        Converted.push_back(TemplateArgument(0, 0));
3118      else {
3119        Converted.push_back(
3120          TemplateArgument::CreatePackCopy(Context,
3121                                           ArgumentPack.data(),
3122                                           ArgumentPack.size()));
3123        ArgumentPack.clear();
3124      }
3125    } else if (ExpansionIntoFixedList) {
3126      // We have expanded a pack into a fixed list.
3127      *ExpansionIntoFixedList = true;
3128    }
3129
3130    return Invalid;
3131  }
3132
3133  // If we have any leftover arguments, then there were too many arguments.
3134  // Complain and fail.
3135  if (ArgIdx < NumArgs)
3136    return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3137
3138  // If we have an expanded parameter pack, make sure we don't have too
3139  // many arguments.
3140  // FIXME: This really should fall out from the normal arity checking.
3141  if (Param != ParamEnd) {
3142    if (NonTypeTemplateParmDecl *NTTP
3143          = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3144      if (NTTP->isExpandedParameterPack() &&
3145          ArgumentPack.size() < NTTP->getNumExpansionTypes()) {
3146        Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3147          << false
3148          << (isa<ClassTemplateDecl>(Template)? 0 :
3149              isa<FunctionTemplateDecl>(Template)? 1 :
3150              isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3151          << Template;
3152        Diag(Template->getLocation(), diag::note_template_decl_here)
3153          << Params->getSourceRange();
3154        return true;
3155      }
3156    }
3157  }
3158
3159  // Form argument packs for each of the parameter packs remaining.
3160  while (Param != ParamEnd) {
3161    // If we're checking a partial list of template arguments, don't fill
3162    // in arguments for non-template parameter packs.
3163    if ((*Param)->isTemplateParameterPack()) {
3164      if (!HasParameterPack)
3165        return true;
3166      if (ArgumentPack.empty())
3167        Converted.push_back(TemplateArgument(0, 0));
3168      else {
3169        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3170                                                          ArgumentPack.data(),
3171                                                         ArgumentPack.size()));
3172        ArgumentPack.clear();
3173      }
3174    } else if (!PartialTemplateArgs)
3175      return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3176
3177    ++Param;
3178  }
3179
3180  return Invalid;
3181}
3182
3183namespace {
3184  class UnnamedLocalNoLinkageFinder
3185    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3186  {
3187    Sema &S;
3188    SourceRange SR;
3189
3190    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3191
3192  public:
3193    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3194
3195    bool Visit(QualType T) {
3196      return inherited::Visit(T.getTypePtr());
3197    }
3198
3199#define TYPE(Class, Parent) \
3200    bool Visit##Class##Type(const Class##Type *);
3201#define ABSTRACT_TYPE(Class, Parent) \
3202    bool Visit##Class##Type(const Class##Type *) { return false; }
3203#define NON_CANONICAL_TYPE(Class, Parent) \
3204    bool Visit##Class##Type(const Class##Type *) { return false; }
3205#include "clang/AST/TypeNodes.def"
3206
3207    bool VisitTagDecl(const TagDecl *Tag);
3208    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3209  };
3210}
3211
3212bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3213  return false;
3214}
3215
3216bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3217  return Visit(T->getElementType());
3218}
3219
3220bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3221  return Visit(T->getPointeeType());
3222}
3223
3224bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3225                                                    const BlockPointerType* T) {
3226  return Visit(T->getPointeeType());
3227}
3228
3229bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3230                                                const LValueReferenceType* T) {
3231  return Visit(T->getPointeeType());
3232}
3233
3234bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3235                                                const RValueReferenceType* T) {
3236  return Visit(T->getPointeeType());
3237}
3238
3239bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3240                                                  const MemberPointerType* T) {
3241  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3242}
3243
3244bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3245                                                  const ConstantArrayType* T) {
3246  return Visit(T->getElementType());
3247}
3248
3249bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3250                                                 const IncompleteArrayType* T) {
3251  return Visit(T->getElementType());
3252}
3253
3254bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3255                                                   const VariableArrayType* T) {
3256  return Visit(T->getElementType());
3257}
3258
3259bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3260                                            const DependentSizedArrayType* T) {
3261  return Visit(T->getElementType());
3262}
3263
3264bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3265                                         const DependentSizedExtVectorType* T) {
3266  return Visit(T->getElementType());
3267}
3268
3269bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3270  return Visit(T->getElementType());
3271}
3272
3273bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3274  return Visit(T->getElementType());
3275}
3276
3277bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3278                                                  const FunctionProtoType* T) {
3279  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
3280                                         AEnd = T->arg_type_end();
3281       A != AEnd; ++A) {
3282    if (Visit(*A))
3283      return true;
3284  }
3285
3286  return Visit(T->getResultType());
3287}
3288
3289bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3290                                               const FunctionNoProtoType* T) {
3291  return Visit(T->getResultType());
3292}
3293
3294bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
3295                                                  const UnresolvedUsingType*) {
3296  return false;
3297}
3298
3299bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
3300  return false;
3301}
3302
3303bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
3304  return Visit(T->getUnderlyingType());
3305}
3306
3307bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
3308  return false;
3309}
3310
3311bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
3312                                                    const UnaryTransformType*) {
3313  return false;
3314}
3315
3316bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
3317  return Visit(T->getDeducedType());
3318}
3319
3320bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
3321  return VisitTagDecl(T->getDecl());
3322}
3323
3324bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
3325  return VisitTagDecl(T->getDecl());
3326}
3327
3328bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
3329                                                 const TemplateTypeParmType*) {
3330  return false;
3331}
3332
3333bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
3334                                        const SubstTemplateTypeParmPackType *) {
3335  return false;
3336}
3337
3338bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
3339                                            const TemplateSpecializationType*) {
3340  return false;
3341}
3342
3343bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
3344                                              const InjectedClassNameType* T) {
3345  return VisitTagDecl(T->getDecl());
3346}
3347
3348bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
3349                                                   const DependentNameType* T) {
3350  return VisitNestedNameSpecifier(T->getQualifier());
3351}
3352
3353bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
3354                                 const DependentTemplateSpecializationType* T) {
3355  return VisitNestedNameSpecifier(T->getQualifier());
3356}
3357
3358bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
3359                                                   const PackExpansionType* T) {
3360  return Visit(T->getPattern());
3361}
3362
3363bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
3364  return false;
3365}
3366
3367bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
3368                                                   const ObjCInterfaceType *) {
3369  return false;
3370}
3371
3372bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
3373                                                const ObjCObjectPointerType *) {
3374  return false;
3375}
3376
3377bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
3378  return Visit(T->getValueType());
3379}
3380
3381bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
3382  if (Tag->getDeclContext()->isFunctionOrMethod()) {
3383    S.Diag(SR.getBegin(),
3384           S.getLangOpts().CPlusPlus0x ?
3385             diag::warn_cxx98_compat_template_arg_local_type :
3386             diag::ext_template_arg_local_type)
3387      << S.Context.getTypeDeclType(Tag) << SR;
3388    return true;
3389  }
3390
3391  if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) {
3392    S.Diag(SR.getBegin(),
3393           S.getLangOpts().CPlusPlus0x ?
3394             diag::warn_cxx98_compat_template_arg_unnamed_type :
3395             diag::ext_template_arg_unnamed_type) << SR;
3396    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
3397    return true;
3398  }
3399
3400  return false;
3401}
3402
3403bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
3404                                                    NestedNameSpecifier *NNS) {
3405  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
3406    return true;
3407
3408  switch (NNS->getKind()) {
3409  case NestedNameSpecifier::Identifier:
3410  case NestedNameSpecifier::Namespace:
3411  case NestedNameSpecifier::NamespaceAlias:
3412  case NestedNameSpecifier::Global:
3413    return false;
3414
3415  case NestedNameSpecifier::TypeSpec:
3416  case NestedNameSpecifier::TypeSpecWithTemplate:
3417    return Visit(QualType(NNS->getAsType(), 0));
3418  }
3419  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3420}
3421
3422
3423/// \brief Check a template argument against its corresponding
3424/// template type parameter.
3425///
3426/// This routine implements the semantics of C++ [temp.arg.type]. It
3427/// returns true if an error occurred, and false otherwise.
3428bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
3429                                 TypeSourceInfo *ArgInfo) {
3430  assert(ArgInfo && "invalid TypeSourceInfo");
3431  QualType Arg = ArgInfo->getType();
3432  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
3433
3434  if (Arg->isVariablyModifiedType()) {
3435    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
3436  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
3437    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
3438  }
3439
3440  // C++03 [temp.arg.type]p2:
3441  //   A local type, a type with no linkage, an unnamed type or a type
3442  //   compounded from any of these types shall not be used as a
3443  //   template-argument for a template type-parameter.
3444  //
3445  // C++11 allows these, and even in C++03 we allow them as an extension with
3446  // a warning.
3447  if (LangOpts.CPlusPlus0x ?
3448     Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type,
3449                              SR.getBegin()) != DiagnosticsEngine::Ignored ||
3450      Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type,
3451                               SR.getBegin()) != DiagnosticsEngine::Ignored :
3452      Arg->hasUnnamedOrLocalType()) {
3453    UnnamedLocalNoLinkageFinder Finder(*this, SR);
3454    (void)Finder.Visit(Context.getCanonicalType(Arg));
3455  }
3456
3457  return false;
3458}
3459
3460/// \brief Checks whether the given template argument is the address
3461/// of an object or function according to C++ [temp.arg.nontype]p1.
3462static bool
3463CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
3464                                               NonTypeTemplateParmDecl *Param,
3465                                               QualType ParamType,
3466                                               Expr *ArgIn,
3467                                               TemplateArgument &Converted) {
3468  bool Invalid = false;
3469  Expr *Arg = ArgIn;
3470  QualType ArgType = Arg->getType();
3471
3472  // See through any implicit casts we added to fix the type.
3473  Arg = Arg->IgnoreImpCasts();
3474
3475  // C++ [temp.arg.nontype]p1:
3476  //
3477  //   A template-argument for a non-type, non-template
3478  //   template-parameter shall be one of: [...]
3479  //
3480  //     -- the address of an object or function with external
3481  //        linkage, including function templates and function
3482  //        template-ids but excluding non-static class members,
3483  //        expressed as & id-expression where the & is optional if
3484  //        the name refers to a function or array, or if the
3485  //        corresponding template-parameter is a reference; or
3486
3487  // In C++98/03 mode, give an extension warning on any extra parentheses.
3488  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3489  bool ExtraParens = false;
3490  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3491    if (!Invalid && !ExtraParens) {
3492      S.Diag(Arg->getLocStart(),
3493             S.getLangOpts().CPlusPlus0x ?
3494               diag::warn_cxx98_compat_template_arg_extra_parens :
3495               diag::ext_template_arg_extra_parens)
3496        << Arg->getSourceRange();
3497      ExtraParens = true;
3498    }
3499
3500    Arg = Parens->getSubExpr();
3501  }
3502
3503  while (SubstNonTypeTemplateParmExpr *subst =
3504           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3505    Arg = subst->getReplacement()->IgnoreImpCasts();
3506
3507  bool AddressTaken = false;
3508  SourceLocation AddrOpLoc;
3509  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3510    if (UnOp->getOpcode() == UO_AddrOf) {
3511      Arg = UnOp->getSubExpr();
3512      AddressTaken = true;
3513      AddrOpLoc = UnOp->getOperatorLoc();
3514    }
3515  }
3516
3517  if (S.getLangOpts().MicrosoftExt && isa<CXXUuidofExpr>(Arg)) {
3518    Converted = TemplateArgument(ArgIn);
3519    return false;
3520  }
3521
3522  while (SubstNonTypeTemplateParmExpr *subst =
3523           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3524    Arg = subst->getReplacement()->IgnoreImpCasts();
3525
3526  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
3527  if (!DRE) {
3528    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
3529      << Arg->getSourceRange();
3530    S.Diag(Param->getLocation(), diag::note_template_param_here);
3531    return true;
3532  }
3533
3534  // Stop checking the precise nature of the argument if it is value dependent,
3535  // it should be checked when instantiated.
3536  if (Arg->isValueDependent()) {
3537    Converted = TemplateArgument(ArgIn);
3538    return false;
3539  }
3540
3541  if (!isa<ValueDecl>(DRE->getDecl())) {
3542    S.Diag(Arg->getLocStart(),
3543           diag::err_template_arg_not_object_or_func_form)
3544      << Arg->getSourceRange();
3545    S.Diag(Param->getLocation(), diag::note_template_param_here);
3546    return true;
3547  }
3548
3549  NamedDecl *Entity = 0;
3550
3551  // Cannot refer to non-static data members
3552  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
3553    S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
3554      << Field << Arg->getSourceRange();
3555    S.Diag(Param->getLocation(), diag::note_template_param_here);
3556    return true;
3557  }
3558
3559  // Cannot refer to non-static member functions
3560  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
3561    if (!Method->isStatic()) {
3562      S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
3563        << Method << Arg->getSourceRange();
3564      S.Diag(Param->getLocation(), diag::note_template_param_here);
3565      return true;
3566    }
3567
3568  // Functions must have external linkage.
3569  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
3570    if (!isExternalLinkage(Func->getLinkage())) {
3571      S.Diag(Arg->getLocStart(),
3572             diag::err_template_arg_function_not_extern)
3573        << Func << Arg->getSourceRange();
3574      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
3575        << true;
3576      return true;
3577    }
3578
3579    // Okay: we've named a function with external linkage.
3580    Entity = Func;
3581
3582    // If the template parameter has pointer type, the function decays.
3583    if (ParamType->isPointerType() && !AddressTaken)
3584      ArgType = S.Context.getPointerType(Func->getType());
3585    else if (AddressTaken && ParamType->isReferenceType()) {
3586      // If we originally had an address-of operator, but the
3587      // parameter has reference type, complain and (if things look
3588      // like they will work) drop the address-of operator.
3589      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
3590                                            ParamType.getNonReferenceType())) {
3591        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3592          << ParamType;
3593        S.Diag(Param->getLocation(), diag::note_template_param_here);
3594        return true;
3595      }
3596
3597      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3598        << ParamType
3599        << FixItHint::CreateRemoval(AddrOpLoc);
3600      S.Diag(Param->getLocation(), diag::note_template_param_here);
3601
3602      ArgType = Func->getType();
3603    }
3604  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
3605    if (!isExternalLinkage(Var->getLinkage())) {
3606      S.Diag(Arg->getLocStart(),
3607             diag::err_template_arg_object_not_extern)
3608        << Var << Arg->getSourceRange();
3609      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
3610        << true;
3611      return true;
3612    }
3613
3614    // A value of reference type is not an object.
3615    if (Var->getType()->isReferenceType()) {
3616      S.Diag(Arg->getLocStart(),
3617             diag::err_template_arg_reference_var)
3618        << Var->getType() << Arg->getSourceRange();
3619      S.Diag(Param->getLocation(), diag::note_template_param_here);
3620      return true;
3621    }
3622
3623    // Okay: we've named an object with external linkage
3624    Entity = Var;
3625
3626    // If the template parameter has pointer type, we must have taken
3627    // the address of this object.
3628    if (ParamType->isReferenceType()) {
3629      if (AddressTaken) {
3630        // If we originally had an address-of operator, but the
3631        // parameter has reference type, complain and (if things look
3632        // like they will work) drop the address-of operator.
3633        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
3634                                            ParamType.getNonReferenceType())) {
3635          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3636            << ParamType;
3637          S.Diag(Param->getLocation(), diag::note_template_param_here);
3638          return true;
3639        }
3640
3641        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3642          << ParamType
3643          << FixItHint::CreateRemoval(AddrOpLoc);
3644        S.Diag(Param->getLocation(), diag::note_template_param_here);
3645
3646        ArgType = Var->getType();
3647      }
3648    } else if (!AddressTaken && ParamType->isPointerType()) {
3649      if (Var->getType()->isArrayType()) {
3650        // Array-to-pointer decay.
3651        ArgType = S.Context.getArrayDecayedType(Var->getType());
3652      } else {
3653        // If the template parameter has pointer type but the address of
3654        // this object was not taken, complain and (possibly) recover by
3655        // taking the address of the entity.
3656        ArgType = S.Context.getPointerType(Var->getType());
3657        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3658          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3659            << ParamType;
3660          S.Diag(Param->getLocation(), diag::note_template_param_here);
3661          return true;
3662        }
3663
3664        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3665          << ParamType
3666          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3667
3668        S.Diag(Param->getLocation(), diag::note_template_param_here);
3669      }
3670    }
3671  } else {
3672    // We found something else, but we don't know specifically what it is.
3673    S.Diag(Arg->getLocStart(),
3674           diag::err_template_arg_not_object_or_func)
3675      << Arg->getSourceRange();
3676    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3677    return true;
3678  }
3679
3680  bool ObjCLifetimeConversion;
3681  if (ParamType->isPointerType() &&
3682      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3683      S.IsQualificationConversion(ArgType, ParamType, false,
3684                                  ObjCLifetimeConversion)) {
3685    // For pointer-to-object types, qualification conversions are
3686    // permitted.
3687  } else {
3688    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3689      if (!ParamRef->getPointeeType()->isFunctionType()) {
3690        // C++ [temp.arg.nontype]p5b3:
3691        //   For a non-type template-parameter of type reference to
3692        //   object, no conversions apply. The type referred to by the
3693        //   reference may be more cv-qualified than the (otherwise
3694        //   identical) type of the template- argument. The
3695        //   template-parameter is bound directly to the
3696        //   template-argument, which shall be an lvalue.
3697
3698        // FIXME: Other qualifiers?
3699        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3700        unsigned ArgQuals = ArgType.getCVRQualifiers();
3701
3702        if ((ParamQuals | ArgQuals) != ParamQuals) {
3703          S.Diag(Arg->getLocStart(),
3704                 diag::err_template_arg_ref_bind_ignores_quals)
3705            << ParamType << Arg->getType()
3706            << Arg->getSourceRange();
3707          S.Diag(Param->getLocation(), diag::note_template_param_here);
3708          return true;
3709        }
3710      }
3711    }
3712
3713    // At this point, the template argument refers to an object or
3714    // function with external linkage. We now need to check whether the
3715    // argument and parameter types are compatible.
3716    if (!S.Context.hasSameUnqualifiedType(ArgType,
3717                                          ParamType.getNonReferenceType())) {
3718      // We can't perform this conversion or binding.
3719      if (ParamType->isReferenceType())
3720        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3721          << ParamType << ArgIn->getType() << Arg->getSourceRange();
3722      else
3723        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
3724          << ArgIn->getType() << ParamType << Arg->getSourceRange();
3725      S.Diag(Param->getLocation(), diag::note_template_param_here);
3726      return true;
3727    }
3728  }
3729
3730  // Create the template argument.
3731  Converted = TemplateArgument(Entity->getCanonicalDecl());
3732  S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity);
3733  return false;
3734}
3735
3736/// \brief Checks whether the given template argument is a pointer to
3737/// member constant according to C++ [temp.arg.nontype]p1.
3738bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
3739                                                TemplateArgument &Converted) {
3740  bool Invalid = false;
3741
3742  // See through any implicit casts we added to fix the type.
3743  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3744    Arg = Cast->getSubExpr();
3745
3746  // C++ [temp.arg.nontype]p1:
3747  //
3748  //   A template-argument for a non-type, non-template
3749  //   template-parameter shall be one of: [...]
3750  //
3751  //     -- a pointer to member expressed as described in 5.3.1.
3752  DeclRefExpr *DRE = 0;
3753
3754  // In C++98/03 mode, give an extension warning on any extra parentheses.
3755  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3756  bool ExtraParens = false;
3757  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3758    if (!Invalid && !ExtraParens) {
3759      Diag(Arg->getLocStart(),
3760           getLangOpts().CPlusPlus0x ?
3761             diag::warn_cxx98_compat_template_arg_extra_parens :
3762             diag::ext_template_arg_extra_parens)
3763        << Arg->getSourceRange();
3764      ExtraParens = true;
3765    }
3766
3767    Arg = Parens->getSubExpr();
3768  }
3769
3770  while (SubstNonTypeTemplateParmExpr *subst =
3771           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3772    Arg = subst->getReplacement()->IgnoreImpCasts();
3773
3774  // A pointer-to-member constant written &Class::member.
3775  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3776    if (UnOp->getOpcode() == UO_AddrOf) {
3777      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3778      if (DRE && !DRE->getQualifier())
3779        DRE = 0;
3780    }
3781  }
3782  // A constant of pointer-to-member type.
3783  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
3784    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
3785      if (VD->getType()->isMemberPointerType()) {
3786        if (isa<NonTypeTemplateParmDecl>(VD) ||
3787            (isa<VarDecl>(VD) &&
3788             Context.getCanonicalType(VD->getType()).isConstQualified())) {
3789          if (Arg->isTypeDependent() || Arg->isValueDependent())
3790            Converted = TemplateArgument(Arg);
3791          else
3792            Converted = TemplateArgument(VD->getCanonicalDecl());
3793          return Invalid;
3794        }
3795      }
3796    }
3797
3798    DRE = 0;
3799  }
3800
3801  if (!DRE)
3802    return Diag(Arg->getLocStart(),
3803                diag::err_template_arg_not_pointer_to_member_form)
3804      << Arg->getSourceRange();
3805
3806  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
3807    assert((isa<FieldDecl>(DRE->getDecl()) ||
3808            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
3809           "Only non-static member pointers can make it here");
3810
3811    // Okay: this is the address of a non-static member, and therefore
3812    // a member pointer constant.
3813    if (Arg->isTypeDependent() || Arg->isValueDependent())
3814      Converted = TemplateArgument(Arg);
3815    else
3816      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3817    return Invalid;
3818  }
3819
3820  // We found something else, but we don't know specifically what it is.
3821  Diag(Arg->getLocStart(),
3822       diag::err_template_arg_not_pointer_to_member_form)
3823      << Arg->getSourceRange();
3824  Diag(DRE->getDecl()->getLocation(),
3825       diag::note_template_arg_refers_here);
3826  return true;
3827}
3828
3829/// \brief Check a template argument against its corresponding
3830/// non-type template parameter.
3831///
3832/// This routine implements the semantics of C++ [temp.arg.nontype].
3833/// If an error occurred, it returns ExprError(); otherwise, it
3834/// returns the converted template argument. \p
3835/// InstantiatedParamType is the type of the non-type template
3836/// parameter after it has been instantiated.
3837ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3838                                       QualType InstantiatedParamType, Expr *Arg,
3839                                       TemplateArgument &Converted,
3840                                       CheckTemplateArgumentKind CTAK) {
3841  SourceLocation StartLoc = Arg->getLocStart();
3842
3843  // If either the parameter has a dependent type or the argument is
3844  // type-dependent, there's nothing we can check now.
3845  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3846    // FIXME: Produce a cloned, canonical expression?
3847    Converted = TemplateArgument(Arg);
3848    return Owned(Arg);
3849  }
3850
3851  // C++ [temp.arg.nontype]p5:
3852  //   The following conversions are performed on each expression used
3853  //   as a non-type template-argument. If a non-type
3854  //   template-argument cannot be converted to the type of the
3855  //   corresponding template-parameter then the program is
3856  //   ill-formed.
3857  QualType ParamType = InstantiatedParamType;
3858  if (ParamType->isIntegralOrEnumerationType()) {
3859    // C++11:
3860    //   -- for a non-type template-parameter of integral or
3861    //      enumeration type, conversions permitted in a converted
3862    //      constant expression are applied.
3863    //
3864    // C++98:
3865    //   -- for a non-type template-parameter of integral or
3866    //      enumeration type, integral promotions (4.5) and integral
3867    //      conversions (4.7) are applied.
3868
3869    if (CTAK == CTAK_Deduced &&
3870        !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
3871      // C++ [temp.deduct.type]p17:
3872      //   If, in the declaration of a function template with a non-type
3873      //   template-parameter, the non-type template-parameter is used
3874      //   in an expression in the function parameter-list and, if the
3875      //   corresponding template-argument is deduced, the
3876      //   template-argument type shall match the type of the
3877      //   template-parameter exactly, except that a template-argument
3878      //   deduced from an array bound may be of any integral type.
3879      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
3880        << Arg->getType().getUnqualifiedType()
3881        << ParamType.getUnqualifiedType();
3882      Diag(Param->getLocation(), diag::note_template_param_here);
3883      return ExprError();
3884    }
3885
3886    if (getLangOpts().CPlusPlus0x) {
3887      // We can't check arbitrary value-dependent arguments.
3888      // FIXME: If there's no viable conversion to the template parameter type,
3889      // we should be able to diagnose that prior to instantiation.
3890      if (Arg->isValueDependent()) {
3891        Converted = TemplateArgument(Arg);
3892        return Owned(Arg);
3893      }
3894
3895      // C++ [temp.arg.nontype]p1:
3896      //   A template-argument for a non-type, non-template template-parameter
3897      //   shall be one of:
3898      //
3899      //     -- for a non-type template-parameter of integral or enumeration
3900      //        type, a converted constant expression of the type of the
3901      //        template-parameter; or
3902      llvm::APSInt Value;
3903      ExprResult ArgResult =
3904        CheckConvertedConstantExpression(Arg, ParamType, Value,
3905                                         CCEK_TemplateArg);
3906      if (ArgResult.isInvalid())
3907        return ExprError();
3908
3909      // Widen the argument value to sizeof(parameter type). This is almost
3910      // always a no-op, except when the parameter type is bool. In
3911      // that case, this may extend the argument from 1 bit to 8 bits.
3912      QualType IntegerType = ParamType;
3913      if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3914        IntegerType = Enum->getDecl()->getIntegerType();
3915      Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
3916
3917      Converted = TemplateArgument(Value, Context.getCanonicalType(ParamType));
3918      return ArgResult;
3919    }
3920
3921    ExprResult ArgResult = DefaultLvalueConversion(Arg);
3922    if (ArgResult.isInvalid())
3923      return ExprError();
3924    Arg = ArgResult.take();
3925
3926    QualType ArgType = Arg->getType();
3927
3928    // C++ [temp.arg.nontype]p1:
3929    //   A template-argument for a non-type, non-template
3930    //   template-parameter shall be one of:
3931    //
3932    //     -- an integral constant-expression of integral or enumeration
3933    //        type; or
3934    //     -- the name of a non-type template-parameter; or
3935    SourceLocation NonConstantLoc;
3936    llvm::APSInt Value;
3937    if (!ArgType->isIntegralOrEnumerationType()) {
3938      Diag(Arg->getLocStart(),
3939           diag::err_template_arg_not_integral_or_enumeral)
3940        << ArgType << Arg->getSourceRange();
3941      Diag(Param->getLocation(), diag::note_template_param_here);
3942      return ExprError();
3943    } else if (!Arg->isValueDependent()) {
3944      Arg = VerifyIntegerConstantExpression(Arg, &Value,
3945        PDiag(diag::err_template_arg_not_ice) << ArgType, false).take();
3946      if (!Arg)
3947        return ExprError();
3948    }
3949
3950    // From here on out, all we care about are the unqualified forms
3951    // of the parameter and argument types.
3952    ParamType = ParamType.getUnqualifiedType();
3953    ArgType = ArgType.getUnqualifiedType();
3954
3955    // Try to convert the argument to the parameter's type.
3956    if (Context.hasSameType(ParamType, ArgType)) {
3957      // Okay: no conversion necessary
3958    } else if (ParamType->isBooleanType()) {
3959      // This is an integral-to-boolean conversion.
3960      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
3961    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
3962               !ParamType->isEnumeralType()) {
3963      // This is an integral promotion or conversion.
3964      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
3965    } else {
3966      // We can't perform this conversion.
3967      Diag(Arg->getLocStart(),
3968           diag::err_template_arg_not_convertible)
3969        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3970      Diag(Param->getLocation(), diag::note_template_param_here);
3971      return ExprError();
3972    }
3973
3974    // Add the value of this argument to the list of converted
3975    // arguments. We use the bitwidth and signedness of the template
3976    // parameter.
3977    if (Arg->isValueDependent()) {
3978      // The argument is value-dependent. Create a new
3979      // TemplateArgument with the converted expression.
3980      Converted = TemplateArgument(Arg);
3981      return Owned(Arg);
3982    }
3983
3984    QualType IntegerType = Context.getCanonicalType(ParamType);
3985    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3986      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
3987
3988    if (ParamType->isBooleanType()) {
3989      // Value must be zero or one.
3990      Value = Value != 0;
3991      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3992      if (Value.getBitWidth() != AllowedBits)
3993        Value = Value.extOrTrunc(AllowedBits);
3994      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
3995    } else {
3996      llvm::APSInt OldValue = Value;
3997
3998      // Coerce the template argument's value to the value it will have
3999      // based on the template parameter's type.
4000      unsigned AllowedBits = Context.getTypeSize(IntegerType);
4001      if (Value.getBitWidth() != AllowedBits)
4002        Value = Value.extOrTrunc(AllowedBits);
4003      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4004
4005      // Complain if an unsigned parameter received a negative value.
4006      if (IntegerType->isUnsignedIntegerOrEnumerationType()
4007               && (OldValue.isSigned() && OldValue.isNegative())) {
4008        Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
4009          << OldValue.toString(10) << Value.toString(10) << Param->getType()
4010          << Arg->getSourceRange();
4011        Diag(Param->getLocation(), diag::note_template_param_here);
4012      }
4013
4014      // Complain if we overflowed the template parameter's type.
4015      unsigned RequiredBits;
4016      if (IntegerType->isUnsignedIntegerOrEnumerationType())
4017        RequiredBits = OldValue.getActiveBits();
4018      else if (OldValue.isUnsigned())
4019        RequiredBits = OldValue.getActiveBits() + 1;
4020      else
4021        RequiredBits = OldValue.getMinSignedBits();
4022      if (RequiredBits > AllowedBits) {
4023        Diag(Arg->getLocStart(),
4024             diag::warn_template_arg_too_large)
4025          << OldValue.toString(10) << Value.toString(10) << Param->getType()
4026          << Arg->getSourceRange();
4027        Diag(Param->getLocation(), diag::note_template_param_here);
4028      }
4029    }
4030
4031    Converted = TemplateArgument(Value,
4032                                 ParamType->isEnumeralType()
4033                                   ? Context.getCanonicalType(ParamType)
4034                                   : IntegerType);
4035    return Owned(Arg);
4036  }
4037
4038  QualType ArgType = Arg->getType();
4039  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
4040
4041  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
4042  // from a template argument of type std::nullptr_t to a non-type
4043  // template parameter of type pointer to object, pointer to
4044  // function, or pointer-to-member, respectively.
4045  if (ArgType->isNullPtrType()) {
4046    if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
4047      Converted = TemplateArgument((NamedDecl *)0);
4048      return Owned(Arg);
4049    }
4050
4051    if (ParamType->isNullPtrType()) {
4052      llvm::APSInt Zero(Context.getTypeSize(Context.NullPtrTy), true);
4053      Converted = TemplateArgument(Zero, Context.NullPtrTy);
4054      return Owned(Arg);
4055    }
4056  }
4057
4058  // Handle pointer-to-function, reference-to-function, and
4059  // pointer-to-member-function all in (roughly) the same way.
4060  if (// -- For a non-type template-parameter of type pointer to
4061      //    function, only the function-to-pointer conversion (4.3) is
4062      //    applied. If the template-argument represents a set of
4063      //    overloaded functions (or a pointer to such), the matching
4064      //    function is selected from the set (13.4).
4065      (ParamType->isPointerType() &&
4066       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
4067      // -- For a non-type template-parameter of type reference to
4068      //    function, no conversions apply. If the template-argument
4069      //    represents a set of overloaded functions, the matching
4070      //    function is selected from the set (13.4).
4071      (ParamType->isReferenceType() &&
4072       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
4073      // -- For a non-type template-parameter of type pointer to
4074      //    member function, no conversions apply. If the
4075      //    template-argument represents a set of overloaded member
4076      //    functions, the matching member function is selected from
4077      //    the set (13.4).
4078      (ParamType->isMemberPointerType() &&
4079       ParamType->getAs<MemberPointerType>()->getPointeeType()
4080         ->isFunctionType())) {
4081
4082    if (Arg->getType() == Context.OverloadTy) {
4083      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
4084                                                                true,
4085                                                                FoundResult)) {
4086        if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4087          return ExprError();
4088
4089        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4090        ArgType = Arg->getType();
4091      } else
4092        return ExprError();
4093    }
4094
4095    if (!ParamType->isMemberPointerType()) {
4096      if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4097                                                         ParamType,
4098                                                         Arg, Converted))
4099        return ExprError();
4100      return Owned(Arg);
4101    }
4102
4103    bool ObjCLifetimeConversion;
4104    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(),
4105                                  false, ObjCLifetimeConversion)) {
4106      Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp,
4107                              Arg->getValueKind()).take();
4108    } else if (!Context.hasSameUnqualifiedType(ArgType,
4109                                           ParamType.getNonReferenceType())) {
4110      // We can't perform this conversion.
4111      Diag(Arg->getLocStart(),
4112           diag::err_template_arg_not_convertible)
4113        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
4114      Diag(Param->getLocation(), diag::note_template_param_here);
4115      return ExprError();
4116    }
4117
4118    if (CheckTemplateArgumentPointerToMember(Arg, Converted))
4119      return ExprError();
4120    return Owned(Arg);
4121  }
4122
4123  if (ParamType->isPointerType()) {
4124    //   -- for a non-type template-parameter of type pointer to
4125    //      object, qualification conversions (4.4) and the
4126    //      array-to-pointer conversion (4.2) are applied.
4127    // C++0x also allows a value of std::nullptr_t.
4128    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
4129           "Only object pointers allowed here");
4130
4131    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4132                                                       ParamType,
4133                                                       Arg, Converted))
4134      return ExprError();
4135    return Owned(Arg);
4136  }
4137
4138  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
4139    //   -- For a non-type template-parameter of type reference to
4140    //      object, no conversions apply. The type referred to by the
4141    //      reference may be more cv-qualified than the (otherwise
4142    //      identical) type of the template-argument. The
4143    //      template-parameter is bound directly to the
4144    //      template-argument, which must be an lvalue.
4145    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
4146           "Only object references allowed here");
4147
4148    if (Arg->getType() == Context.OverloadTy) {
4149      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
4150                                                 ParamRefType->getPointeeType(),
4151                                                                true,
4152                                                                FoundResult)) {
4153        if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4154          return ExprError();
4155
4156        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4157        ArgType = Arg->getType();
4158      } else
4159        return ExprError();
4160    }
4161
4162    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4163                                                       ParamType,
4164                                                       Arg, Converted))
4165      return ExprError();
4166    return Owned(Arg);
4167  }
4168
4169  //     -- For a non-type template-parameter of type pointer to data
4170  //        member, qualification conversions (4.4) are applied.
4171  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
4172
4173  bool ObjCLifetimeConversion;
4174  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
4175    // Types match exactly: nothing more to do here.
4176  } else if (IsQualificationConversion(ArgType, ParamType, false,
4177                                       ObjCLifetimeConversion)) {
4178    Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp,
4179                            Arg->getValueKind()).take();
4180  } else {
4181    // We can't perform this conversion.
4182    Diag(Arg->getLocStart(),
4183         diag::err_template_arg_not_convertible)
4184      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
4185    Diag(Param->getLocation(), diag::note_template_param_here);
4186    return ExprError();
4187  }
4188
4189  if (CheckTemplateArgumentPointerToMember(Arg, Converted))
4190    return ExprError();
4191  return Owned(Arg);
4192}
4193
4194/// \brief Check a template argument against its corresponding
4195/// template template parameter.
4196///
4197/// This routine implements the semantics of C++ [temp.arg.template].
4198/// It returns true if an error occurred, and false otherwise.
4199bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
4200                                 const TemplateArgumentLoc &Arg) {
4201  TemplateName Name = Arg.getArgument().getAsTemplate();
4202  TemplateDecl *Template = Name.getAsTemplateDecl();
4203  if (!Template) {
4204    // Any dependent template name is fine.
4205    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
4206    return false;
4207  }
4208
4209  // C++0x [temp.arg.template]p1:
4210  //   A template-argument for a template template-parameter shall be
4211  //   the name of a class template or an alias template, expressed as an
4212  //   id-expression. When the template-argument names a class template, only
4213  //   primary class templates are considered when matching the
4214  //   template template argument with the corresponding parameter;
4215  //   partial specializations are not considered even if their
4216  //   parameter lists match that of the template template parameter.
4217  //
4218  // Note that we also allow template template parameters here, which
4219  // will happen when we are dealing with, e.g., class template
4220  // partial specializations.
4221  if (!isa<ClassTemplateDecl>(Template) &&
4222      !isa<TemplateTemplateParmDecl>(Template) &&
4223      !isa<TypeAliasTemplateDecl>(Template)) {
4224    assert(isa<FunctionTemplateDecl>(Template) &&
4225           "Only function templates are possible here");
4226    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
4227    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
4228      << Template;
4229  }
4230
4231  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
4232                                         Param->getTemplateParameters(),
4233                                         true,
4234                                         TPL_TemplateTemplateArgumentMatch,
4235                                         Arg.getLocation());
4236}
4237
4238/// \brief Given a non-type template argument that refers to a
4239/// declaration and the type of its corresponding non-type template
4240/// parameter, produce an expression that properly refers to that
4241/// declaration.
4242ExprResult
4243Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
4244                                              QualType ParamType,
4245                                              SourceLocation Loc) {
4246  assert(Arg.getKind() == TemplateArgument::Declaration &&
4247         "Only declaration template arguments permitted here");
4248  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
4249
4250  if (VD->getDeclContext()->isRecord() &&
4251      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
4252    // If the value is a class member, we might have a pointer-to-member.
4253    // Determine whether the non-type template template parameter is of
4254    // pointer-to-member type. If so, we need to build an appropriate
4255    // expression for a pointer-to-member, since a "normal" DeclRefExpr
4256    // would refer to the member itself.
4257    if (ParamType->isMemberPointerType()) {
4258      QualType ClassType
4259        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
4260      NestedNameSpecifier *Qualifier
4261        = NestedNameSpecifier::Create(Context, 0, false,
4262                                      ClassType.getTypePtr());
4263      CXXScopeSpec SS;
4264      SS.MakeTrivial(Context, Qualifier, Loc);
4265
4266      // The actual value-ness of this is unimportant, but for
4267      // internal consistency's sake, references to instance methods
4268      // are r-values.
4269      ExprValueKind VK = VK_LValue;
4270      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
4271        VK = VK_RValue;
4272
4273      ExprResult RefExpr = BuildDeclRefExpr(VD,
4274                                            VD->getType().getNonReferenceType(),
4275                                            VK,
4276                                            Loc,
4277                                            &SS);
4278      if (RefExpr.isInvalid())
4279        return ExprError();
4280
4281      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4282
4283      // We might need to perform a trailing qualification conversion, since
4284      // the element type on the parameter could be more qualified than the
4285      // element type in the expression we constructed.
4286      bool ObjCLifetimeConversion;
4287      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
4288                                    ParamType.getUnqualifiedType(), false,
4289                                    ObjCLifetimeConversion))
4290        RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
4291
4292      assert(!RefExpr.isInvalid() &&
4293             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
4294                                 ParamType.getUnqualifiedType()));
4295      return move(RefExpr);
4296    }
4297  }
4298
4299  QualType T = VD->getType().getNonReferenceType();
4300  if (ParamType->isPointerType()) {
4301    // When the non-type template parameter is a pointer, take the
4302    // address of the declaration.
4303    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
4304    if (RefExpr.isInvalid())
4305      return ExprError();
4306
4307    if (T->isFunctionType() || T->isArrayType()) {
4308      // Decay functions and arrays.
4309      RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
4310      if (RefExpr.isInvalid())
4311        return ExprError();
4312
4313      return move(RefExpr);
4314    }
4315
4316    // Take the address of everything else
4317    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4318  }
4319
4320  ExprValueKind VK = VK_RValue;
4321
4322  // If the non-type template parameter has reference type, qualify the
4323  // resulting declaration reference with the extra qualifiers on the
4324  // type that the reference refers to.
4325  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
4326    VK = VK_LValue;
4327    T = Context.getQualifiedType(T,
4328                              TargetRef->getPointeeType().getQualifiers());
4329  }
4330
4331  return BuildDeclRefExpr(VD, T, VK, Loc);
4332}
4333
4334/// \brief Construct a new expression that refers to the given
4335/// integral template argument with the given source-location
4336/// information.
4337///
4338/// This routine takes care of the mapping from an integral template
4339/// argument (which may have any integral type) to the appropriate
4340/// literal value.
4341ExprResult
4342Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
4343                                                  SourceLocation Loc) {
4344  assert(Arg.getKind() == TemplateArgument::Integral &&
4345         "Operation is only valid for integral template arguments");
4346  QualType T = Arg.getIntegralType();
4347  if (T->isAnyCharacterType()) {
4348    CharacterLiteral::CharacterKind Kind;
4349    if (T->isWideCharType())
4350      Kind = CharacterLiteral::Wide;
4351    else if (T->isChar16Type())
4352      Kind = CharacterLiteral::UTF16;
4353    else if (T->isChar32Type())
4354      Kind = CharacterLiteral::UTF32;
4355    else
4356      Kind = CharacterLiteral::Ascii;
4357
4358    return Owned(new (Context) CharacterLiteral(
4359                                            Arg.getAsIntegral()->getZExtValue(),
4360                                            Kind, T, Loc));
4361  }
4362
4363  if (T->isBooleanType())
4364    return Owned(new (Context) CXXBoolLiteralExpr(
4365                                            Arg.getAsIntegral()->getBoolValue(),
4366                                            T, Loc));
4367
4368  if (T->isNullPtrType())
4369    return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
4370
4371  // If this is an enum type that we're instantiating, we need to use an integer
4372  // type the same size as the enumerator.  We don't want to build an
4373  // IntegerLiteral with enum type.
4374  QualType BT;
4375  if (const EnumType *ET = T->getAs<EnumType>())
4376    BT = ET->getDecl()->getIntegerType();
4377  else
4378    BT = T;
4379
4380  Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
4381  if (T->isEnumeralType()) {
4382    // FIXME: This is a hack. We need a better way to handle substituted
4383    // non-type template parameters.
4384    E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0,
4385                               Context.getTrivialTypeSourceInfo(T, Loc),
4386                               Loc, Loc);
4387  }
4388
4389  return Owned(E);
4390}
4391
4392/// \brief Match two template parameters within template parameter lists.
4393static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
4394                                       bool Complain,
4395                                     Sema::TemplateParameterListEqualKind Kind,
4396                                       SourceLocation TemplateArgLoc) {
4397  // Check the actual kind (type, non-type, template).
4398  if (Old->getKind() != New->getKind()) {
4399    if (Complain) {
4400      unsigned NextDiag = diag::err_template_param_different_kind;
4401      if (TemplateArgLoc.isValid()) {
4402        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4403        NextDiag = diag::note_template_param_different_kind;
4404      }
4405      S.Diag(New->getLocation(), NextDiag)
4406        << (Kind != Sema::TPL_TemplateMatch);
4407      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
4408        << (Kind != Sema::TPL_TemplateMatch);
4409    }
4410
4411    return false;
4412  }
4413
4414  // Check that both are parameter packs are neither are parameter packs.
4415  // However, if we are matching a template template argument to a
4416  // template template parameter, the template template parameter can have
4417  // a parameter pack where the template template argument does not.
4418  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
4419      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4420        Old->isTemplateParameterPack())) {
4421    if (Complain) {
4422      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
4423      if (TemplateArgLoc.isValid()) {
4424        S.Diag(TemplateArgLoc,
4425             diag::err_template_arg_template_params_mismatch);
4426        NextDiag = diag::note_template_parameter_pack_non_pack;
4427      }
4428
4429      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
4430                      : isa<NonTypeTemplateParmDecl>(New)? 1
4431                      : 2;
4432      S.Diag(New->getLocation(), NextDiag)
4433        << ParamKind << New->isParameterPack();
4434      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
4435        << ParamKind << Old->isParameterPack();
4436    }
4437
4438    return false;
4439  }
4440
4441  // For non-type template parameters, check the type of the parameter.
4442  if (NonTypeTemplateParmDecl *OldNTTP
4443                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
4444    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
4445
4446    // If we are matching a template template argument to a template
4447    // template parameter and one of the non-type template parameter types
4448    // is dependent, then we must wait until template instantiation time
4449    // to actually compare the arguments.
4450    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4451        (OldNTTP->getType()->isDependentType() ||
4452         NewNTTP->getType()->isDependentType()))
4453      return true;
4454
4455    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
4456      if (Complain) {
4457        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
4458        if (TemplateArgLoc.isValid()) {
4459          S.Diag(TemplateArgLoc,
4460                 diag::err_template_arg_template_params_mismatch);
4461          NextDiag = diag::note_template_nontype_parm_different_type;
4462        }
4463        S.Diag(NewNTTP->getLocation(), NextDiag)
4464          << NewNTTP->getType()
4465          << (Kind != Sema::TPL_TemplateMatch);
4466        S.Diag(OldNTTP->getLocation(),
4467               diag::note_template_nontype_parm_prev_declaration)
4468          << OldNTTP->getType();
4469      }
4470
4471      return false;
4472    }
4473
4474    return true;
4475  }
4476
4477  // For template template parameters, check the template parameter types.
4478  // The template parameter lists of template template
4479  // parameters must agree.
4480  if (TemplateTemplateParmDecl *OldTTP
4481                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
4482    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
4483    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
4484                                            OldTTP->getTemplateParameters(),
4485                                            Complain,
4486                                        (Kind == Sema::TPL_TemplateMatch
4487                                           ? Sema::TPL_TemplateTemplateParmMatch
4488                                           : Kind),
4489                                            TemplateArgLoc);
4490  }
4491
4492  return true;
4493}
4494
4495/// \brief Diagnose a known arity mismatch when comparing template argument
4496/// lists.
4497static
4498void DiagnoseTemplateParameterListArityMismatch(Sema &S,
4499                                                TemplateParameterList *New,
4500                                                TemplateParameterList *Old,
4501                                      Sema::TemplateParameterListEqualKind Kind,
4502                                                SourceLocation TemplateArgLoc) {
4503  unsigned NextDiag = diag::err_template_param_list_different_arity;
4504  if (TemplateArgLoc.isValid()) {
4505    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4506    NextDiag = diag::note_template_param_list_different_arity;
4507  }
4508  S.Diag(New->getTemplateLoc(), NextDiag)
4509    << (New->size() > Old->size())
4510    << (Kind != Sema::TPL_TemplateMatch)
4511    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
4512  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
4513    << (Kind != Sema::TPL_TemplateMatch)
4514    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
4515}
4516
4517/// \brief Determine whether the given template parameter lists are
4518/// equivalent.
4519///
4520/// \param New  The new template parameter list, typically written in the
4521/// source code as part of a new template declaration.
4522///
4523/// \param Old  The old template parameter list, typically found via
4524/// name lookup of the template declared with this template parameter
4525/// list.
4526///
4527/// \param Complain  If true, this routine will produce a diagnostic if
4528/// the template parameter lists are not equivalent.
4529///
4530/// \param Kind describes how we are to match the template parameter lists.
4531///
4532/// \param TemplateArgLoc If this source location is valid, then we
4533/// are actually checking the template parameter list of a template
4534/// argument (New) against the template parameter list of its
4535/// corresponding template template parameter (Old). We produce
4536/// slightly different diagnostics in this scenario.
4537///
4538/// \returns True if the template parameter lists are equal, false
4539/// otherwise.
4540bool
4541Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
4542                                     TemplateParameterList *Old,
4543                                     bool Complain,
4544                                     TemplateParameterListEqualKind Kind,
4545                                     SourceLocation TemplateArgLoc) {
4546  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
4547    if (Complain)
4548      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4549                                                 TemplateArgLoc);
4550
4551    return false;
4552  }
4553
4554  // C++0x [temp.arg.template]p3:
4555  //   A template-argument matches a template template-parameter (call it P)
4556  //   when each of the template parameters in the template-parameter-list of
4557  //   the template-argument's corresponding class template or alias template
4558  //   (call it A) matches the corresponding template parameter in the
4559  //   template-parameter-list of P. [...]
4560  TemplateParameterList::iterator NewParm = New->begin();
4561  TemplateParameterList::iterator NewParmEnd = New->end();
4562  for (TemplateParameterList::iterator OldParm = Old->begin(),
4563                                    OldParmEnd = Old->end();
4564       OldParm != OldParmEnd; ++OldParm) {
4565    if (Kind != TPL_TemplateTemplateArgumentMatch ||
4566        !(*OldParm)->isTemplateParameterPack()) {
4567      if (NewParm == NewParmEnd) {
4568        if (Complain)
4569          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4570                                                     TemplateArgLoc);
4571
4572        return false;
4573      }
4574
4575      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4576                                      Kind, TemplateArgLoc))
4577        return false;
4578
4579      ++NewParm;
4580      continue;
4581    }
4582
4583    // C++0x [temp.arg.template]p3:
4584    //   [...] When P's template- parameter-list contains a template parameter
4585    //   pack (14.5.3), the template parameter pack will match zero or more
4586    //   template parameters or template parameter packs in the
4587    //   template-parameter-list of A with the same type and form as the
4588    //   template parameter pack in P (ignoring whether those template
4589    //   parameters are template parameter packs).
4590    for (; NewParm != NewParmEnd; ++NewParm) {
4591      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4592                                      Kind, TemplateArgLoc))
4593        return false;
4594    }
4595  }
4596
4597  // Make sure we exhausted all of the arguments.
4598  if (NewParm != NewParmEnd) {
4599    if (Complain)
4600      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4601                                                 TemplateArgLoc);
4602
4603    return false;
4604  }
4605
4606  return true;
4607}
4608
4609/// \brief Check whether a template can be declared within this scope.
4610///
4611/// If the template declaration is valid in this scope, returns
4612/// false. Otherwise, issues a diagnostic and returns true.
4613bool
4614Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
4615  if (!S)
4616    return false;
4617
4618  // Find the nearest enclosing declaration scope.
4619  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4620         (S->getFlags() & Scope::TemplateParamScope) != 0)
4621    S = S->getParent();
4622
4623  // C++ [temp]p2:
4624  //   A template-declaration can appear only as a namespace scope or
4625  //   class scope declaration.
4626  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
4627  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
4628      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
4629    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
4630             << TemplateParams->getSourceRange();
4631
4632  while (Ctx && isa<LinkageSpecDecl>(Ctx))
4633    Ctx = Ctx->getParent();
4634
4635  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
4636    return false;
4637
4638  return Diag(TemplateParams->getTemplateLoc(),
4639              diag::err_template_outside_namespace_or_class_scope)
4640    << TemplateParams->getSourceRange();
4641}
4642
4643/// \brief Determine what kind of template specialization the given declaration
4644/// is.
4645static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
4646  if (!D)
4647    return TSK_Undeclared;
4648
4649  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
4650    return Record->getTemplateSpecializationKind();
4651  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
4652    return Function->getTemplateSpecializationKind();
4653  if (VarDecl *Var = dyn_cast<VarDecl>(D))
4654    return Var->getTemplateSpecializationKind();
4655
4656  return TSK_Undeclared;
4657}
4658
4659/// \brief Check whether a specialization is well-formed in the current
4660/// context.
4661///
4662/// This routine determines whether a template specialization can be declared
4663/// in the current context (C++ [temp.expl.spec]p2).
4664///
4665/// \param S the semantic analysis object for which this check is being
4666/// performed.
4667///
4668/// \param Specialized the entity being specialized or instantiated, which
4669/// may be a kind of template (class template, function template, etc.) or
4670/// a member of a class template (member function, static data member,
4671/// member class).
4672///
4673/// \param PrevDecl the previous declaration of this entity, if any.
4674///
4675/// \param Loc the location of the explicit specialization or instantiation of
4676/// this entity.
4677///
4678/// \param IsPartialSpecialization whether this is a partial specialization of
4679/// a class template.
4680///
4681/// \returns true if there was an error that we cannot recover from, false
4682/// otherwise.
4683static bool CheckTemplateSpecializationScope(Sema &S,
4684                                             NamedDecl *Specialized,
4685                                             NamedDecl *PrevDecl,
4686                                             SourceLocation Loc,
4687                                             bool IsPartialSpecialization) {
4688  // Keep these "kind" numbers in sync with the %select statements in the
4689  // various diagnostics emitted by this routine.
4690  int EntityKind = 0;
4691  if (isa<ClassTemplateDecl>(Specialized))
4692    EntityKind = IsPartialSpecialization? 1 : 0;
4693  else if (isa<FunctionTemplateDecl>(Specialized))
4694    EntityKind = 2;
4695  else if (isa<CXXMethodDecl>(Specialized))
4696    EntityKind = 3;
4697  else if (isa<VarDecl>(Specialized))
4698    EntityKind = 4;
4699  else if (isa<RecordDecl>(Specialized))
4700    EntityKind = 5;
4701  else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus0x)
4702    EntityKind = 6;
4703  else {
4704    S.Diag(Loc, diag::err_template_spec_unknown_kind)
4705      << S.getLangOpts().CPlusPlus0x;
4706    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4707    return true;
4708  }
4709
4710  // C++ [temp.expl.spec]p2:
4711  //   An explicit specialization shall be declared in the namespace
4712  //   of which the template is a member, or, for member templates, in
4713  //   the namespace of which the enclosing class or enclosing class
4714  //   template is a member. An explicit specialization of a member
4715  //   function, member class or static data member of a class
4716  //   template shall be declared in the namespace of which the class
4717  //   template is a member. Such a declaration may also be a
4718  //   definition. If the declaration is not a definition, the
4719  //   specialization may be defined later in the name- space in which
4720  //   the explicit specialization was declared, or in a namespace
4721  //   that encloses the one in which the explicit specialization was
4722  //   declared.
4723  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4724    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
4725      << Specialized;
4726    return true;
4727  }
4728
4729  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
4730    if (S.getLangOpts().MicrosoftExt) {
4731      // Do not warn for class scope explicit specialization during
4732      // instantiation, warning was already emitted during pattern
4733      // semantic analysis.
4734      if (!S.ActiveTemplateInstantiations.size())
4735        S.Diag(Loc, diag::ext_function_specialization_in_class)
4736          << Specialized;
4737    } else {
4738      S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4739        << Specialized;
4740      return true;
4741    }
4742  }
4743
4744  if (S.CurContext->isRecord() &&
4745      !S.CurContext->Equals(Specialized->getDeclContext())) {
4746    // Make sure that we're specializing in the right record context.
4747    // Otherwise, things can go horribly wrong.
4748    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4749      << Specialized;
4750    return true;
4751  }
4752
4753  // C++ [temp.class.spec]p6:
4754  //   A class template partial specialization may be declared or redeclared
4755  //   in any namespace scope in which its definition may be defined (14.5.1
4756  //   and 14.5.2).
4757  bool ComplainedAboutScope = false;
4758  DeclContext *SpecializedContext
4759    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
4760  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
4761  if ((!PrevDecl ||
4762       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
4763       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
4764    // C++ [temp.exp.spec]p2:
4765    //   An explicit specialization shall be declared in the namespace of which
4766    //   the template is a member, or, for member templates, in the namespace
4767    //   of which the enclosing class or enclosing class template is a member.
4768    //   An explicit specialization of a member function, member class or
4769    //   static data member of a class template shall be declared in the
4770    //   namespace of which the class template is a member.
4771    //
4772    // C++0x [temp.expl.spec]p2:
4773    //   An explicit specialization shall be declared in a namespace enclosing
4774    //   the specialized template.
4775    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
4776      bool IsCPlusPlus0xExtension = DC->Encloses(SpecializedContext);
4777      if (isa<TranslationUnitDecl>(SpecializedContext)) {
4778        assert(!IsCPlusPlus0xExtension &&
4779               "DC encloses TU but isn't in enclosing namespace set");
4780        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
4781          << EntityKind << Specialized;
4782      } else if (isa<NamespaceDecl>(SpecializedContext)) {
4783        int Diag;
4784        if (!IsCPlusPlus0xExtension)
4785          Diag = diag::err_template_spec_decl_out_of_scope;
4786        else if (!S.getLangOpts().CPlusPlus0x)
4787          Diag = diag::ext_template_spec_decl_out_of_scope;
4788        else
4789          Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
4790        S.Diag(Loc, Diag)
4791          << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
4792      }
4793
4794      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4795      ComplainedAboutScope =
4796        !(IsCPlusPlus0xExtension && S.getLangOpts().CPlusPlus0x);
4797    }
4798  }
4799
4800  // Make sure that this redeclaration (or definition) occurs in an enclosing
4801  // namespace.
4802  // Note that HandleDeclarator() performs this check for explicit
4803  // specializations of function templates, static data members, and member
4804  // functions, so we skip the check here for those kinds of entities.
4805  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
4806  // Should we refactor that check, so that it occurs later?
4807  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
4808      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
4809        isa<FunctionDecl>(Specialized))) {
4810    if (isa<TranslationUnitDecl>(SpecializedContext))
4811      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
4812        << EntityKind << Specialized;
4813    else if (isa<NamespaceDecl>(SpecializedContext))
4814      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
4815        << EntityKind << Specialized
4816        << cast<NamedDecl>(SpecializedContext);
4817
4818    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4819  }
4820
4821  // FIXME: check for specialization-after-instantiation errors and such.
4822
4823  return false;
4824}
4825
4826/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
4827/// that checks non-type template partial specialization arguments.
4828static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
4829                                                NonTypeTemplateParmDecl *Param,
4830                                                  const TemplateArgument *Args,
4831                                                        unsigned NumArgs) {
4832  for (unsigned I = 0; I != NumArgs; ++I) {
4833    if (Args[I].getKind() == TemplateArgument::Pack) {
4834      if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4835                                                           Args[I].pack_begin(),
4836                                                           Args[I].pack_size()))
4837        return true;
4838
4839      continue;
4840    }
4841
4842    Expr *ArgExpr = Args[I].getAsExpr();
4843    if (!ArgExpr) {
4844      continue;
4845    }
4846
4847    // We can have a pack expansion of any of the bullets below.
4848    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
4849      ArgExpr = Expansion->getPattern();
4850
4851    // Strip off any implicit casts we added as part of type checking.
4852    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
4853      ArgExpr = ICE->getSubExpr();
4854
4855    // C++ [temp.class.spec]p8:
4856    //   A non-type argument is non-specialized if it is the name of a
4857    //   non-type parameter. All other non-type arguments are
4858    //   specialized.
4859    //
4860    // Below, we check the two conditions that only apply to
4861    // specialized non-type arguments, so skip any non-specialized
4862    // arguments.
4863    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
4864      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
4865        continue;
4866
4867    // C++ [temp.class.spec]p9:
4868    //   Within the argument list of a class template partial
4869    //   specialization, the following restrictions apply:
4870    //     -- A partially specialized non-type argument expression
4871    //        shall not involve a template parameter of the partial
4872    //        specialization except when the argument expression is a
4873    //        simple identifier.
4874    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
4875      S.Diag(ArgExpr->getLocStart(),
4876           diag::err_dependent_non_type_arg_in_partial_spec)
4877        << ArgExpr->getSourceRange();
4878      return true;
4879    }
4880
4881    //     -- The type of a template parameter corresponding to a
4882    //        specialized non-type argument shall not be dependent on a
4883    //        parameter of the specialization.
4884    if (Param->getType()->isDependentType()) {
4885      S.Diag(ArgExpr->getLocStart(),
4886           diag::err_dependent_typed_non_type_arg_in_partial_spec)
4887        << Param->getType()
4888        << ArgExpr->getSourceRange();
4889      S.Diag(Param->getLocation(), diag::note_template_param_here);
4890      return true;
4891    }
4892  }
4893
4894  return false;
4895}
4896
4897/// \brief Check the non-type template arguments of a class template
4898/// partial specialization according to C++ [temp.class.spec]p9.
4899///
4900/// \param TemplateParams the template parameters of the primary class
4901/// template.
4902///
4903/// \param TemplateArg the template arguments of the class template
4904/// partial specialization.
4905///
4906/// \returns true if there was an error, false otherwise.
4907static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
4908                                        TemplateParameterList *TemplateParams,
4909                       SmallVectorImpl<TemplateArgument> &TemplateArgs) {
4910  const TemplateArgument *ArgList = TemplateArgs.data();
4911
4912  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4913    NonTypeTemplateParmDecl *Param
4914      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
4915    if (!Param)
4916      continue;
4917
4918    if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4919                                                           &ArgList[I], 1))
4920      return true;
4921  }
4922
4923  return false;
4924}
4925
4926DeclResult
4927Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
4928                                       TagUseKind TUK,
4929                                       SourceLocation KWLoc,
4930                                       SourceLocation ModulePrivateLoc,
4931                                       CXXScopeSpec &SS,
4932                                       TemplateTy TemplateD,
4933                                       SourceLocation TemplateNameLoc,
4934                                       SourceLocation LAngleLoc,
4935                                       ASTTemplateArgsPtr TemplateArgsIn,
4936                                       SourceLocation RAngleLoc,
4937                                       AttributeList *Attr,
4938                               MultiTemplateParamsArg TemplateParameterLists) {
4939  assert(TUK != TUK_Reference && "References are not specializations");
4940
4941  // NOTE: KWLoc is the location of the tag keyword. This will instead
4942  // store the location of the outermost template keyword in the declaration.
4943  SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
4944    ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation();
4945
4946  // Find the class template we're specializing
4947  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4948  ClassTemplateDecl *ClassTemplate
4949    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
4950
4951  if (!ClassTemplate) {
4952    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
4953      << (Name.getAsTemplateDecl() &&
4954          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
4955    return true;
4956  }
4957
4958  bool isExplicitSpecialization = false;
4959  bool isPartialSpecialization = false;
4960
4961  // Check the validity of the template headers that introduce this
4962  // template.
4963  // FIXME: We probably shouldn't complain about these headers for
4964  // friend declarations.
4965  bool Invalid = false;
4966  TemplateParameterList *TemplateParams
4967    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc,
4968                                              TemplateNameLoc,
4969                                              SS,
4970                        (TemplateParameterList**)TemplateParameterLists.get(),
4971                                              TemplateParameterLists.size(),
4972                                              TUK == TUK_Friend,
4973                                              isExplicitSpecialization,
4974                                              Invalid);
4975  if (Invalid)
4976    return true;
4977
4978  if (TemplateParams && TemplateParams->size() > 0) {
4979    isPartialSpecialization = true;
4980
4981    if (TUK == TUK_Friend) {
4982      Diag(KWLoc, diag::err_partial_specialization_friend)
4983        << SourceRange(LAngleLoc, RAngleLoc);
4984      return true;
4985    }
4986
4987    // C++ [temp.class.spec]p10:
4988    //   The template parameter list of a specialization shall not
4989    //   contain default template argument values.
4990    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4991      Decl *Param = TemplateParams->getParam(I);
4992      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4993        if (TTP->hasDefaultArgument()) {
4994          Diag(TTP->getDefaultArgumentLoc(),
4995               diag::err_default_arg_in_partial_spec);
4996          TTP->removeDefaultArgument();
4997        }
4998      } else if (NonTypeTemplateParmDecl *NTTP
4999                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5000        if (Expr *DefArg = NTTP->getDefaultArgument()) {
5001          Diag(NTTP->getDefaultArgumentLoc(),
5002               diag::err_default_arg_in_partial_spec)
5003            << DefArg->getSourceRange();
5004          NTTP->removeDefaultArgument();
5005        }
5006      } else {
5007        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
5008        if (TTP->hasDefaultArgument()) {
5009          Diag(TTP->getDefaultArgument().getLocation(),
5010               diag::err_default_arg_in_partial_spec)
5011            << TTP->getDefaultArgument().getSourceRange();
5012          TTP->removeDefaultArgument();
5013        }
5014      }
5015    }
5016  } else if (TemplateParams) {
5017    if (TUK == TUK_Friend)
5018      Diag(KWLoc, diag::err_template_spec_friend)
5019        << FixItHint::CreateRemoval(
5020                                SourceRange(TemplateParams->getTemplateLoc(),
5021                                            TemplateParams->getRAngleLoc()))
5022        << SourceRange(LAngleLoc, RAngleLoc);
5023    else
5024      isExplicitSpecialization = true;
5025  } else if (TUK != TUK_Friend) {
5026    Diag(KWLoc, diag::err_template_spec_needs_header)
5027      << FixItHint::CreateInsertion(KWLoc, "template<> ");
5028    isExplicitSpecialization = true;
5029  }
5030
5031  // Check that the specialization uses the same tag kind as the
5032  // original template.
5033  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5034  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
5035  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5036                                    Kind, TUK == TUK_Definition, KWLoc,
5037                                    *ClassTemplate->getIdentifier())) {
5038    Diag(KWLoc, diag::err_use_with_wrong_tag)
5039      << ClassTemplate
5040      << FixItHint::CreateReplacement(KWLoc,
5041                            ClassTemplate->getTemplatedDecl()->getKindName());
5042    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5043         diag::note_previous_use);
5044    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5045  }
5046
5047  // Translate the parser's template argument list in our AST format.
5048  TemplateArgumentListInfo TemplateArgs;
5049  TemplateArgs.setLAngleLoc(LAngleLoc);
5050  TemplateArgs.setRAngleLoc(RAngleLoc);
5051  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5052
5053  // Check for unexpanded parameter packs in any of the template arguments.
5054  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
5055    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
5056                                        UPPC_PartialSpecialization))
5057      return true;
5058
5059  // Check that the template argument list is well-formed for this
5060  // template.
5061  SmallVector<TemplateArgument, 4> Converted;
5062  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5063                                TemplateArgs, false, Converted))
5064    return true;
5065
5066  // Find the class template (partial) specialization declaration that
5067  // corresponds to these arguments.
5068  if (isPartialSpecialization) {
5069    if (CheckClassTemplatePartialSpecializationArgs(*this,
5070                                         ClassTemplate->getTemplateParameters(),
5071                                         Converted))
5072      return true;
5073
5074    bool InstantiationDependent;
5075    if (!Name.isDependent() &&
5076        !TemplateSpecializationType::anyDependentTemplateArguments(
5077                                             TemplateArgs.getArgumentArray(),
5078                                                         TemplateArgs.size(),
5079                                                     InstantiationDependent)) {
5080      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
5081        << ClassTemplate->getDeclName();
5082      isPartialSpecialization = false;
5083    }
5084  }
5085
5086  void *InsertPos = 0;
5087  ClassTemplateSpecializationDecl *PrevDecl = 0;
5088
5089  if (isPartialSpecialization)
5090    // FIXME: Template parameter list matters, too
5091    PrevDecl
5092      = ClassTemplate->findPartialSpecialization(Converted.data(),
5093                                                 Converted.size(),
5094                                                 InsertPos);
5095  else
5096    PrevDecl
5097      = ClassTemplate->findSpecialization(Converted.data(),
5098                                          Converted.size(), InsertPos);
5099
5100  ClassTemplateSpecializationDecl *Specialization = 0;
5101
5102  // Check whether we can declare a class template specialization in
5103  // the current scope.
5104  if (TUK != TUK_Friend &&
5105      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
5106                                       TemplateNameLoc,
5107                                       isPartialSpecialization))
5108    return true;
5109
5110  // The canonical type
5111  QualType CanonType;
5112  if (PrevDecl &&
5113      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
5114               TUK == TUK_Friend)) {
5115    // Since the only prior class template specialization with these
5116    // arguments was referenced but not declared, or we're only
5117    // referencing this specialization as a friend, reuse that
5118    // declaration node as our own, updating its source location and
5119    // the list of outer template parameters to reflect our new declaration.
5120    Specialization = PrevDecl;
5121    Specialization->setLocation(TemplateNameLoc);
5122    if (TemplateParameterLists.size() > 0) {
5123      Specialization->setTemplateParameterListsInfo(Context,
5124                                              TemplateParameterLists.size(),
5125                    (TemplateParameterList**) TemplateParameterLists.release());
5126    }
5127    PrevDecl = 0;
5128    CanonType = Context.getTypeDeclType(Specialization);
5129  } else if (isPartialSpecialization) {
5130    // Build the canonical type that describes the converted template
5131    // arguments of the class template partial specialization.
5132    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
5133    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
5134                                                      Converted.data(),
5135                                                      Converted.size());
5136
5137    if (Context.hasSameType(CanonType,
5138                        ClassTemplate->getInjectedClassNameSpecialization())) {
5139      // C++ [temp.class.spec]p9b3:
5140      //
5141      //   -- The argument list of the specialization shall not be identical
5142      //      to the implicit argument list of the primary template.
5143      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
5144        << (TUK == TUK_Definition)
5145        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
5146      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
5147                                ClassTemplate->getIdentifier(),
5148                                TemplateNameLoc,
5149                                Attr,
5150                                TemplateParams,
5151                                AS_none, /*ModulePrivateLoc=*/SourceLocation(),
5152                                TemplateParameterLists.size() - 1,
5153                  (TemplateParameterList**) TemplateParameterLists.release());
5154    }
5155
5156    // Create a new class template partial specialization declaration node.
5157    ClassTemplatePartialSpecializationDecl *PrevPartial
5158      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
5159    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
5160                            : ClassTemplate->getNextPartialSpecSequenceNumber();
5161    ClassTemplatePartialSpecializationDecl *Partial
5162      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
5163                                             ClassTemplate->getDeclContext(),
5164                                                       KWLoc, TemplateNameLoc,
5165                                                       TemplateParams,
5166                                                       ClassTemplate,
5167                                                       Converted.data(),
5168                                                       Converted.size(),
5169                                                       TemplateArgs,
5170                                                       CanonType,
5171                                                       PrevPartial,
5172                                                       SequenceNumber);
5173    SetNestedNameSpecifier(Partial, SS);
5174    if (TemplateParameterLists.size() > 1 && SS.isSet()) {
5175      Partial->setTemplateParameterListsInfo(Context,
5176                                             TemplateParameterLists.size() - 1,
5177                    (TemplateParameterList**) TemplateParameterLists.release());
5178    }
5179
5180    if (!PrevPartial)
5181      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
5182    Specialization = Partial;
5183
5184    // If we are providing an explicit specialization of a member class
5185    // template specialization, make a note of that.
5186    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
5187      PrevPartial->setMemberSpecialization();
5188
5189    // Check that all of the template parameters of the class template
5190    // partial specialization are deducible from the template
5191    // arguments. If not, this class template partial specialization
5192    // will never be used.
5193    llvm::SmallBitVector DeducibleParams(TemplateParams->size());
5194    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
5195                               TemplateParams->getDepth(),
5196                               DeducibleParams);
5197
5198    if (!DeducibleParams.all()) {
5199      unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
5200      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
5201        << (NumNonDeducible > 1)
5202        << SourceRange(TemplateNameLoc, RAngleLoc);
5203      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
5204        if (!DeducibleParams[I]) {
5205          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
5206          if (Param->getDeclName())
5207            Diag(Param->getLocation(),
5208                 diag::note_partial_spec_unused_parameter)
5209              << Param->getDeclName();
5210          else
5211            Diag(Param->getLocation(),
5212                 diag::note_partial_spec_unused_parameter)
5213              << "<anonymous>";
5214        }
5215      }
5216    }
5217  } else {
5218    // Create a new class template specialization declaration node for
5219    // this explicit specialization or friend declaration.
5220    Specialization
5221      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5222                                             ClassTemplate->getDeclContext(),
5223                                                KWLoc, TemplateNameLoc,
5224                                                ClassTemplate,
5225                                                Converted.data(),
5226                                                Converted.size(),
5227                                                PrevDecl);
5228    SetNestedNameSpecifier(Specialization, SS);
5229    if (TemplateParameterLists.size() > 0) {
5230      Specialization->setTemplateParameterListsInfo(Context,
5231                                              TemplateParameterLists.size(),
5232                    (TemplateParameterList**) TemplateParameterLists.release());
5233    }
5234
5235    if (!PrevDecl)
5236      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5237
5238    CanonType = Context.getTypeDeclType(Specialization);
5239  }
5240
5241  // C++ [temp.expl.spec]p6:
5242  //   If a template, a member template or the member of a class template is
5243  //   explicitly specialized then that specialization shall be declared
5244  //   before the first use of that specialization that would cause an implicit
5245  //   instantiation to take place, in every translation unit in which such a
5246  //   use occurs; no diagnostic is required.
5247  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
5248    bool Okay = false;
5249    for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5250      // Is there any previous explicit specialization declaration?
5251      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5252        Okay = true;
5253        break;
5254      }
5255    }
5256
5257    if (!Okay) {
5258      SourceRange Range(TemplateNameLoc, RAngleLoc);
5259      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
5260        << Context.getTypeDeclType(Specialization) << Range;
5261
5262      Diag(PrevDecl->getPointOfInstantiation(),
5263           diag::note_instantiation_required_here)
5264        << (PrevDecl->getTemplateSpecializationKind()
5265                                                != TSK_ImplicitInstantiation);
5266      return true;
5267    }
5268  }
5269
5270  // If this is not a friend, note that this is an explicit specialization.
5271  if (TUK != TUK_Friend)
5272    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
5273
5274  // Check that this isn't a redefinition of this specialization.
5275  if (TUK == TUK_Definition) {
5276    if (RecordDecl *Def = Specialization->getDefinition()) {
5277      SourceRange Range(TemplateNameLoc, RAngleLoc);
5278      Diag(TemplateNameLoc, diag::err_redefinition)
5279        << Context.getTypeDeclType(Specialization) << Range;
5280      Diag(Def->getLocation(), diag::note_previous_definition);
5281      Specialization->setInvalidDecl();
5282      return true;
5283    }
5284  }
5285
5286  if (Attr)
5287    ProcessDeclAttributeList(S, Specialization, Attr);
5288
5289  if (ModulePrivateLoc.isValid())
5290    Diag(Specialization->getLocation(), diag::err_module_private_specialization)
5291      << (isPartialSpecialization? 1 : 0)
5292      << FixItHint::CreateRemoval(ModulePrivateLoc);
5293
5294  // Build the fully-sugared type for this class template
5295  // specialization as the user wrote in the specialization
5296  // itself. This means that we'll pretty-print the type retrieved
5297  // from the specialization's declaration the way that the user
5298  // actually wrote the specialization, rather than formatting the
5299  // name based on the "canonical" representation used to store the
5300  // template arguments in the specialization.
5301  TypeSourceInfo *WrittenTy
5302    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5303                                                TemplateArgs, CanonType);
5304  if (TUK != TUK_Friend) {
5305    Specialization->setTypeAsWritten(WrittenTy);
5306    Specialization->setTemplateKeywordLoc(TemplateKWLoc);
5307  }
5308  TemplateArgsIn.release();
5309
5310  // C++ [temp.expl.spec]p9:
5311  //   A template explicit specialization is in the scope of the
5312  //   namespace in which the template was defined.
5313  //
5314  // We actually implement this paragraph where we set the semantic
5315  // context (in the creation of the ClassTemplateSpecializationDecl),
5316  // but we also maintain the lexical context where the actual
5317  // definition occurs.
5318  Specialization->setLexicalDeclContext(CurContext);
5319
5320  // We may be starting the definition of this specialization.
5321  if (TUK == TUK_Definition)
5322    Specialization->startDefinition();
5323
5324  if (TUK == TUK_Friend) {
5325    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
5326                                            TemplateNameLoc,
5327                                            WrittenTy,
5328                                            /*FIXME:*/KWLoc);
5329    Friend->setAccess(AS_public);
5330    CurContext->addDecl(Friend);
5331  } else {
5332    // Add the specialization into its lexical context, so that it can
5333    // be seen when iterating through the list of declarations in that
5334    // context. However, specializations are not found by name lookup.
5335    CurContext->addDecl(Specialization);
5336  }
5337  return Specialization;
5338}
5339
5340Decl *Sema::ActOnTemplateDeclarator(Scope *S,
5341                              MultiTemplateParamsArg TemplateParameterLists,
5342                                    Declarator &D) {
5343  return HandleDeclarator(S, D, move(TemplateParameterLists));
5344}
5345
5346Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
5347                               MultiTemplateParamsArg TemplateParameterLists,
5348                                            Declarator &D) {
5349  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5350  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5351
5352  if (FTI.hasPrototype) {
5353    // FIXME: Diagnose arguments without names in C.
5354  }
5355
5356  Scope *ParentScope = FnBodyScope->getParent();
5357
5358  D.setFunctionDefinitionKind(FDK_Definition);
5359  Decl *DP = HandleDeclarator(ParentScope, D,
5360                              move(TemplateParameterLists));
5361  if (FunctionTemplateDecl *FunctionTemplate
5362        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
5363    return ActOnStartOfFunctionDef(FnBodyScope,
5364                                   FunctionTemplate->getTemplatedDecl());
5365  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
5366    return ActOnStartOfFunctionDef(FnBodyScope, Function);
5367  return 0;
5368}
5369
5370/// \brief Strips various properties off an implicit instantiation
5371/// that has just been explicitly specialized.
5372static void StripImplicitInstantiation(NamedDecl *D) {
5373  // FIXME: "make check" is clean if the call to dropAttrs() is commented out.
5374  D->dropAttrs();
5375
5376  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5377    FD->setInlineSpecified(false);
5378  }
5379}
5380
5381/// \brief Compute the diagnostic location for an explicit instantiation
5382//  declaration or definition.
5383static SourceLocation DiagLocForExplicitInstantiation(
5384    NamedDecl* D, SourceLocation PointOfInstantiation) {
5385  // Explicit instantiations following a specialization have no effect and
5386  // hence no PointOfInstantiation. In that case, walk decl backwards
5387  // until a valid name loc is found.
5388  SourceLocation PrevDiagLoc = PointOfInstantiation;
5389  for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
5390       Prev = Prev->getPreviousDecl()) {
5391    PrevDiagLoc = Prev->getLocation();
5392  }
5393  assert(PrevDiagLoc.isValid() &&
5394         "Explicit instantiation without point of instantiation?");
5395  return PrevDiagLoc;
5396}
5397
5398/// \brief Diagnose cases where we have an explicit template specialization
5399/// before/after an explicit template instantiation, producing diagnostics
5400/// for those cases where they are required and determining whether the
5401/// new specialization/instantiation will have any effect.
5402///
5403/// \param NewLoc the location of the new explicit specialization or
5404/// instantiation.
5405///
5406/// \param NewTSK the kind of the new explicit specialization or instantiation.
5407///
5408/// \param PrevDecl the previous declaration of the entity.
5409///
5410/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
5411///
5412/// \param PrevPointOfInstantiation if valid, indicates where the previus
5413/// declaration was instantiated (either implicitly or explicitly).
5414///
5415/// \param HasNoEffect will be set to true to indicate that the new
5416/// specialization or instantiation has no effect and should be ignored.
5417///
5418/// \returns true if there was an error that should prevent the introduction of
5419/// the new declaration into the AST, false otherwise.
5420bool
5421Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
5422                                             TemplateSpecializationKind NewTSK,
5423                                             NamedDecl *PrevDecl,
5424                                             TemplateSpecializationKind PrevTSK,
5425                                        SourceLocation PrevPointOfInstantiation,
5426                                             bool &HasNoEffect) {
5427  HasNoEffect = false;
5428
5429  switch (NewTSK) {
5430  case TSK_Undeclared:
5431  case TSK_ImplicitInstantiation:
5432    llvm_unreachable("Don't check implicit instantiations here");
5433
5434  case TSK_ExplicitSpecialization:
5435    switch (PrevTSK) {
5436    case TSK_Undeclared:
5437    case TSK_ExplicitSpecialization:
5438      // Okay, we're just specializing something that is either already
5439      // explicitly specialized or has merely been mentioned without any
5440      // instantiation.
5441      return false;
5442
5443    case TSK_ImplicitInstantiation:
5444      if (PrevPointOfInstantiation.isInvalid()) {
5445        // The declaration itself has not actually been instantiated, so it is
5446        // still okay to specialize it.
5447        StripImplicitInstantiation(PrevDecl);
5448        return false;
5449      }
5450      // Fall through
5451
5452    case TSK_ExplicitInstantiationDeclaration:
5453    case TSK_ExplicitInstantiationDefinition:
5454      assert((PrevTSK == TSK_ImplicitInstantiation ||
5455              PrevPointOfInstantiation.isValid()) &&
5456             "Explicit instantiation without point of instantiation?");
5457
5458      // C++ [temp.expl.spec]p6:
5459      //   If a template, a member template or the member of a class template
5460      //   is explicitly specialized then that specialization shall be declared
5461      //   before the first use of that specialization that would cause an
5462      //   implicit instantiation to take place, in every translation unit in
5463      //   which such a use occurs; no diagnostic is required.
5464      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5465        // Is there any previous explicit specialization declaration?
5466        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
5467          return false;
5468      }
5469
5470      Diag(NewLoc, diag::err_specialization_after_instantiation)
5471        << PrevDecl;
5472      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
5473        << (PrevTSK != TSK_ImplicitInstantiation);
5474
5475      return true;
5476    }
5477
5478  case TSK_ExplicitInstantiationDeclaration:
5479    switch (PrevTSK) {
5480    case TSK_ExplicitInstantiationDeclaration:
5481      // This explicit instantiation declaration is redundant (that's okay).
5482      HasNoEffect = true;
5483      return false;
5484
5485    case TSK_Undeclared:
5486    case TSK_ImplicitInstantiation:
5487      // We're explicitly instantiating something that may have already been
5488      // implicitly instantiated; that's fine.
5489      return false;
5490
5491    case TSK_ExplicitSpecialization:
5492      // C++0x [temp.explicit]p4:
5493      //   For a given set of template parameters, if an explicit instantiation
5494      //   of a template appears after a declaration of an explicit
5495      //   specialization for that template, the explicit instantiation has no
5496      //   effect.
5497      HasNoEffect = true;
5498      return false;
5499
5500    case TSK_ExplicitInstantiationDefinition:
5501      // C++0x [temp.explicit]p10:
5502      //   If an entity is the subject of both an explicit instantiation
5503      //   declaration and an explicit instantiation definition in the same
5504      //   translation unit, the definition shall follow the declaration.
5505      Diag(NewLoc,
5506           diag::err_explicit_instantiation_declaration_after_definition);
5507
5508      // Explicit instantiations following a specialization have no effect and
5509      // hence no PrevPointOfInstantiation. In that case, walk decl backwards
5510      // until a valid name loc is found.
5511      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
5512           diag::note_explicit_instantiation_definition_here);
5513      HasNoEffect = true;
5514      return false;
5515    }
5516
5517  case TSK_ExplicitInstantiationDefinition:
5518    switch (PrevTSK) {
5519    case TSK_Undeclared:
5520    case TSK_ImplicitInstantiation:
5521      // We're explicitly instantiating something that may have already been
5522      // implicitly instantiated; that's fine.
5523      return false;
5524
5525    case TSK_ExplicitSpecialization:
5526      // C++ DR 259, C++0x [temp.explicit]p4:
5527      //   For a given set of template parameters, if an explicit
5528      //   instantiation of a template appears after a declaration of
5529      //   an explicit specialization for that template, the explicit
5530      //   instantiation has no effect.
5531      //
5532      // In C++98/03 mode, we only give an extension warning here, because it
5533      // is not harmful to try to explicitly instantiate something that
5534      // has been explicitly specialized.
5535      Diag(NewLoc, getLangOpts().CPlusPlus0x ?
5536           diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
5537           diag::ext_explicit_instantiation_after_specialization)
5538        << PrevDecl;
5539      Diag(PrevDecl->getLocation(),
5540           diag::note_previous_template_specialization);
5541      HasNoEffect = true;
5542      return false;
5543
5544    case TSK_ExplicitInstantiationDeclaration:
5545      // We're explicity instantiating a definition for something for which we
5546      // were previously asked to suppress instantiations. That's fine.
5547
5548      // C++0x [temp.explicit]p4:
5549      //   For a given set of template parameters, if an explicit instantiation
5550      //   of a template appears after a declaration of an explicit
5551      //   specialization for that template, the explicit instantiation has no
5552      //   effect.
5553      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5554        // Is there any previous explicit specialization declaration?
5555        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5556          HasNoEffect = true;
5557          break;
5558        }
5559      }
5560
5561      return false;
5562
5563    case TSK_ExplicitInstantiationDefinition:
5564      // C++0x [temp.spec]p5:
5565      //   For a given template and a given set of template-arguments,
5566      //     - an explicit instantiation definition shall appear at most once
5567      //       in a program,
5568      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
5569        << PrevDecl;
5570      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
5571           diag::note_previous_explicit_instantiation);
5572      HasNoEffect = true;
5573      return false;
5574    }
5575  }
5576
5577  llvm_unreachable("Missing specialization/instantiation case?");
5578}
5579
5580/// \brief Perform semantic analysis for the given dependent function
5581/// template specialization.  The only possible way to get a dependent
5582/// function template specialization is with a friend declaration,
5583/// like so:
5584///
5585///   template <class T> void foo(T);
5586///   template <class T> class A {
5587///     friend void foo<>(T);
5588///   };
5589///
5590/// There really isn't any useful analysis we can do here, so we
5591/// just store the information.
5592bool
5593Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
5594                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
5595                                                   LookupResult &Previous) {
5596  // Remove anything from Previous that isn't a function template in
5597  // the correct context.
5598  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5599  LookupResult::Filter F = Previous.makeFilter();
5600  while (F.hasNext()) {
5601    NamedDecl *D = F.next()->getUnderlyingDecl();
5602    if (!isa<FunctionTemplateDecl>(D) ||
5603        !FDLookupContext->InEnclosingNamespaceSetOf(
5604                              D->getDeclContext()->getRedeclContext()))
5605      F.erase();
5606  }
5607  F.done();
5608
5609  // Should this be diagnosed here?
5610  if (Previous.empty()) return true;
5611
5612  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
5613                                         ExplicitTemplateArgs);
5614  return false;
5615}
5616
5617/// \brief Perform semantic analysis for the given function template
5618/// specialization.
5619///
5620/// This routine performs all of the semantic analysis required for an
5621/// explicit function template specialization. On successful completion,
5622/// the function declaration \p FD will become a function template
5623/// specialization.
5624///
5625/// \param FD the function declaration, which will be updated to become a
5626/// function template specialization.
5627///
5628/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
5629/// if any. Note that this may be valid info even when 0 arguments are
5630/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
5631/// as it anyway contains info on the angle brackets locations.
5632///
5633/// \param Previous the set of declarations that may be specialized by
5634/// this function specialization.
5635bool
5636Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
5637                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5638                                          LookupResult &Previous) {
5639  // The set of function template specializations that could match this
5640  // explicit function template specialization.
5641  UnresolvedSet<8> Candidates;
5642
5643  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5644  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5645         I != E; ++I) {
5646    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
5647    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
5648      // Only consider templates found within the same semantic lookup scope as
5649      // FD.
5650      if (!FDLookupContext->InEnclosingNamespaceSetOf(
5651                                Ovl->getDeclContext()->getRedeclContext()))
5652        continue;
5653
5654      // C++ [temp.expl.spec]p11:
5655      //   A trailing template-argument can be left unspecified in the
5656      //   template-id naming an explicit function template specialization
5657      //   provided it can be deduced from the function argument type.
5658      // Perform template argument deduction to determine whether we may be
5659      // specializing this template.
5660      // FIXME: It is somewhat wasteful to build
5661      TemplateDeductionInfo Info(Context, FD->getLocation());
5662      FunctionDecl *Specialization = 0;
5663      if (TemplateDeductionResult TDK
5664            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
5665                                      FD->getType(),
5666                                      Specialization,
5667                                      Info)) {
5668        // FIXME: Template argument deduction failed; record why it failed, so
5669        // that we can provide nifty diagnostics.
5670        (void)TDK;
5671        continue;
5672      }
5673
5674      // Record this candidate.
5675      Candidates.addDecl(Specialization, I.getAccess());
5676    }
5677  }
5678
5679  // Find the most specialized function template.
5680  UnresolvedSetIterator Result
5681    = getMostSpecialized(Candidates.begin(), Candidates.end(),
5682                         TPOC_Other, 0, FD->getLocation(),
5683                  PDiag(diag::err_function_template_spec_no_match)
5684                    << FD->getDeclName(),
5685                  PDiag(diag::err_function_template_spec_ambiguous)
5686                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
5687                  PDiag(diag::note_function_template_spec_matched));
5688  if (Result == Candidates.end())
5689    return true;
5690
5691  // Ignore access information;  it doesn't figure into redeclaration checking.
5692  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5693
5694  FunctionTemplateSpecializationInfo *SpecInfo
5695    = Specialization->getTemplateSpecializationInfo();
5696  assert(SpecInfo && "Function template specialization info missing?");
5697
5698  // Note: do not overwrite location info if previous template
5699  // specialization kind was explicit.
5700  TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
5701  if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
5702    Specialization->setLocation(FD->getLocation());
5703    // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
5704    // function can differ from the template declaration with respect to
5705    // the constexpr specifier.
5706    Specialization->setConstexpr(FD->isConstexpr());
5707  }
5708
5709  // FIXME: Check if the prior specialization has a point of instantiation.
5710  // If so, we have run afoul of .
5711
5712  // If this is a friend declaration, then we're not really declaring
5713  // an explicit specialization.
5714  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
5715
5716  // Check the scope of this explicit specialization.
5717  if (!isFriend &&
5718      CheckTemplateSpecializationScope(*this,
5719                                       Specialization->getPrimaryTemplate(),
5720                                       Specialization, FD->getLocation(),
5721                                       false))
5722    return true;
5723
5724  // C++ [temp.expl.spec]p6:
5725  //   If a template, a member template or the member of a class template is
5726  //   explicitly specialized then that specialization shall be declared
5727  //   before the first use of that specialization that would cause an implicit
5728  //   instantiation to take place, in every translation unit in which such a
5729  //   use occurs; no diagnostic is required.
5730  bool HasNoEffect = false;
5731  if (!isFriend &&
5732      CheckSpecializationInstantiationRedecl(FD->getLocation(),
5733                                             TSK_ExplicitSpecialization,
5734                                             Specialization,
5735                                   SpecInfo->getTemplateSpecializationKind(),
5736                                         SpecInfo->getPointOfInstantiation(),
5737                                             HasNoEffect))
5738    return true;
5739
5740  // Mark the prior declaration as an explicit specialization, so that later
5741  // clients know that this is an explicit specialization.
5742  if (!isFriend) {
5743    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
5744    MarkUnusedFileScopedDecl(Specialization);
5745  }
5746
5747  // Turn the given function declaration into a function template
5748  // specialization, with the template arguments from the previous
5749  // specialization.
5750  // Take copies of (semantic and syntactic) template argument lists.
5751  const TemplateArgumentList* TemplArgs = new (Context)
5752    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
5753  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
5754                                        TemplArgs, /*InsertPos=*/0,
5755                                    SpecInfo->getTemplateSpecializationKind(),
5756                                        ExplicitTemplateArgs);
5757  FD->setStorageClass(Specialization->getStorageClass());
5758
5759  // The "previous declaration" for this function template specialization is
5760  // the prior function template specialization.
5761  Previous.clear();
5762  Previous.addDecl(Specialization);
5763  return false;
5764}
5765
5766/// \brief Perform semantic analysis for the given non-template member
5767/// specialization.
5768///
5769/// This routine performs all of the semantic analysis required for an
5770/// explicit member function specialization. On successful completion,
5771/// the function declaration \p FD will become a member function
5772/// specialization.
5773///
5774/// \param Member the member declaration, which will be updated to become a
5775/// specialization.
5776///
5777/// \param Previous the set of declarations, one of which may be specialized
5778/// by this function specialization;  the set will be modified to contain the
5779/// redeclared member.
5780bool
5781Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
5782  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
5783
5784  // Try to find the member we are instantiating.
5785  NamedDecl *Instantiation = 0;
5786  NamedDecl *InstantiatedFrom = 0;
5787  MemberSpecializationInfo *MSInfo = 0;
5788
5789  if (Previous.empty()) {
5790    // Nowhere to look anyway.
5791  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
5792    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5793           I != E; ++I) {
5794      NamedDecl *D = (*I)->getUnderlyingDecl();
5795      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5796        if (Context.hasSameType(Function->getType(), Method->getType())) {
5797          Instantiation = Method;
5798          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
5799          MSInfo = Method->getMemberSpecializationInfo();
5800          break;
5801        }
5802      }
5803    }
5804  } else if (isa<VarDecl>(Member)) {
5805    VarDecl *PrevVar;
5806    if (Previous.isSingleResult() &&
5807        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
5808      if (PrevVar->isStaticDataMember()) {
5809        Instantiation = PrevVar;
5810        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
5811        MSInfo = PrevVar->getMemberSpecializationInfo();
5812      }
5813  } else if (isa<RecordDecl>(Member)) {
5814    CXXRecordDecl *PrevRecord;
5815    if (Previous.isSingleResult() &&
5816        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
5817      Instantiation = PrevRecord;
5818      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
5819      MSInfo = PrevRecord->getMemberSpecializationInfo();
5820    }
5821  } else if (isa<EnumDecl>(Member)) {
5822    EnumDecl *PrevEnum;
5823    if (Previous.isSingleResult() &&
5824        (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
5825      Instantiation = PrevEnum;
5826      InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
5827      MSInfo = PrevEnum->getMemberSpecializationInfo();
5828    }
5829  }
5830
5831  if (!Instantiation) {
5832    // There is no previous declaration that matches. Since member
5833    // specializations are always out-of-line, the caller will complain about
5834    // this mismatch later.
5835    return false;
5836  }
5837
5838  // If this is a friend, just bail out here before we start turning
5839  // things into explicit specializations.
5840  if (Member->getFriendObjectKind() != Decl::FOK_None) {
5841    // Preserve instantiation information.
5842    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
5843      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
5844                                      cast<CXXMethodDecl>(InstantiatedFrom),
5845        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
5846    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
5847      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5848                                      cast<CXXRecordDecl>(InstantiatedFrom),
5849        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
5850    }
5851
5852    Previous.clear();
5853    Previous.addDecl(Instantiation);
5854    return false;
5855  }
5856
5857  // Make sure that this is a specialization of a member.
5858  if (!InstantiatedFrom) {
5859    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
5860      << Member;
5861    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
5862    return true;
5863  }
5864
5865  // C++ [temp.expl.spec]p6:
5866  //   If a template, a member template or the member of a class template is
5867  //   explicitly specialized then that specialization shall be declared
5868  //   before the first use of that specialization that would cause an implicit
5869  //   instantiation to take place, in every translation unit in which such a
5870  //   use occurs; no diagnostic is required.
5871  assert(MSInfo && "Member specialization info missing?");
5872
5873  bool HasNoEffect = false;
5874  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
5875                                             TSK_ExplicitSpecialization,
5876                                             Instantiation,
5877                                     MSInfo->getTemplateSpecializationKind(),
5878                                           MSInfo->getPointOfInstantiation(),
5879                                             HasNoEffect))
5880    return true;
5881
5882  // Check the scope of this explicit specialization.
5883  if (CheckTemplateSpecializationScope(*this,
5884                                       InstantiatedFrom,
5885                                       Instantiation, Member->getLocation(),
5886                                       false))
5887    return true;
5888
5889  // Note that this is an explicit instantiation of a member.
5890  // the original declaration to note that it is an explicit specialization
5891  // (if it was previously an implicit instantiation). This latter step
5892  // makes bookkeeping easier.
5893  if (isa<FunctionDecl>(Member)) {
5894    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
5895    if (InstantiationFunction->getTemplateSpecializationKind() ==
5896          TSK_ImplicitInstantiation) {
5897      InstantiationFunction->setTemplateSpecializationKind(
5898                                                  TSK_ExplicitSpecialization);
5899      InstantiationFunction->setLocation(Member->getLocation());
5900    }
5901
5902    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
5903                                        cast<CXXMethodDecl>(InstantiatedFrom),
5904                                                  TSK_ExplicitSpecialization);
5905    MarkUnusedFileScopedDecl(InstantiationFunction);
5906  } else if (isa<VarDecl>(Member)) {
5907    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
5908    if (InstantiationVar->getTemplateSpecializationKind() ==
5909          TSK_ImplicitInstantiation) {
5910      InstantiationVar->setTemplateSpecializationKind(
5911                                                  TSK_ExplicitSpecialization);
5912      InstantiationVar->setLocation(Member->getLocation());
5913    }
5914
5915    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
5916                                                cast<VarDecl>(InstantiatedFrom),
5917                                                TSK_ExplicitSpecialization);
5918    MarkUnusedFileScopedDecl(InstantiationVar);
5919  } else if (isa<CXXRecordDecl>(Member)) {
5920    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
5921    if (InstantiationClass->getTemplateSpecializationKind() ==
5922          TSK_ImplicitInstantiation) {
5923      InstantiationClass->setTemplateSpecializationKind(
5924                                                   TSK_ExplicitSpecialization);
5925      InstantiationClass->setLocation(Member->getLocation());
5926    }
5927
5928    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5929                                        cast<CXXRecordDecl>(InstantiatedFrom),
5930                                                   TSK_ExplicitSpecialization);
5931  } else {
5932    assert(isa<EnumDecl>(Member) && "Only member enums remain");
5933    EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
5934    if (InstantiationEnum->getTemplateSpecializationKind() ==
5935          TSK_ImplicitInstantiation) {
5936      InstantiationEnum->setTemplateSpecializationKind(
5937                                                   TSK_ExplicitSpecialization);
5938      InstantiationEnum->setLocation(Member->getLocation());
5939    }
5940
5941    cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
5942        cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
5943  }
5944
5945  // Save the caller the trouble of having to figure out which declaration
5946  // this specialization matches.
5947  Previous.clear();
5948  Previous.addDecl(Instantiation);
5949  return false;
5950}
5951
5952/// \brief Check the scope of an explicit instantiation.
5953///
5954/// \returns true if a serious error occurs, false otherwise.
5955static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
5956                                            SourceLocation InstLoc,
5957                                            bool WasQualifiedName) {
5958  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
5959  DeclContext *CurContext = S.CurContext->getRedeclContext();
5960
5961  if (CurContext->isRecord()) {
5962    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
5963      << D;
5964    return true;
5965  }
5966
5967  // C++11 [temp.explicit]p3:
5968  //   An explicit instantiation shall appear in an enclosing namespace of its
5969  //   template. If the name declared in the explicit instantiation is an
5970  //   unqualified name, the explicit instantiation shall appear in the
5971  //   namespace where its template is declared or, if that namespace is inline
5972  //   (7.3.1), any namespace from its enclosing namespace set.
5973  //
5974  // This is DR275, which we do not retroactively apply to C++98/03.
5975  if (WasQualifiedName) {
5976    if (CurContext->Encloses(OrigContext))
5977      return false;
5978  } else {
5979    if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
5980      return false;
5981  }
5982
5983  if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
5984    if (WasQualifiedName)
5985      S.Diag(InstLoc,
5986             S.getLangOpts().CPlusPlus0x?
5987               diag::err_explicit_instantiation_out_of_scope :
5988               diag::warn_explicit_instantiation_out_of_scope_0x)
5989        << D << NS;
5990    else
5991      S.Diag(InstLoc,
5992             S.getLangOpts().CPlusPlus0x?
5993               diag::err_explicit_instantiation_unqualified_wrong_namespace :
5994               diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
5995        << D << NS;
5996  } else
5997    S.Diag(InstLoc,
5998           S.getLangOpts().CPlusPlus0x?
5999             diag::err_explicit_instantiation_must_be_global :
6000             diag::warn_explicit_instantiation_must_be_global_0x)
6001      << D;
6002  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
6003  return false;
6004}
6005
6006/// \brief Determine whether the given scope specifier has a template-id in it.
6007static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
6008  if (!SS.isSet())
6009    return false;
6010
6011  // C++11 [temp.explicit]p3:
6012  //   If the explicit instantiation is for a member function, a member class
6013  //   or a static data member of a class template specialization, the name of
6014  //   the class template specialization in the qualified-id for the member
6015  //   name shall be a simple-template-id.
6016  //
6017  // C++98 has the same restriction, just worded differently.
6018  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
6019       NNS; NNS = NNS->getPrefix())
6020    if (const Type *T = NNS->getAsType())
6021      if (isa<TemplateSpecializationType>(T))
6022        return true;
6023
6024  return false;
6025}
6026
6027// Explicit instantiation of a class template specialization
6028DeclResult
6029Sema::ActOnExplicitInstantiation(Scope *S,
6030                                 SourceLocation ExternLoc,
6031                                 SourceLocation TemplateLoc,
6032                                 unsigned TagSpec,
6033                                 SourceLocation KWLoc,
6034                                 const CXXScopeSpec &SS,
6035                                 TemplateTy TemplateD,
6036                                 SourceLocation TemplateNameLoc,
6037                                 SourceLocation LAngleLoc,
6038                                 ASTTemplateArgsPtr TemplateArgsIn,
6039                                 SourceLocation RAngleLoc,
6040                                 AttributeList *Attr) {
6041  // Find the class template we're specializing
6042  TemplateName Name = TemplateD.getAsVal<TemplateName>();
6043  ClassTemplateDecl *ClassTemplate
6044    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
6045
6046  // Check that the specialization uses the same tag kind as the
6047  // original template.
6048  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6049  assert(Kind != TTK_Enum &&
6050         "Invalid enum tag in class template explicit instantiation!");
6051  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
6052                                    Kind, /*isDefinition*/false, KWLoc,
6053                                    *ClassTemplate->getIdentifier())) {
6054    Diag(KWLoc, diag::err_use_with_wrong_tag)
6055      << ClassTemplate
6056      << FixItHint::CreateReplacement(KWLoc,
6057                            ClassTemplate->getTemplatedDecl()->getKindName());
6058    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
6059         diag::note_previous_use);
6060    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
6061  }
6062
6063  // C++0x [temp.explicit]p2:
6064  //   There are two forms of explicit instantiation: an explicit instantiation
6065  //   definition and an explicit instantiation declaration. An explicit
6066  //   instantiation declaration begins with the extern keyword. [...]
6067  TemplateSpecializationKind TSK
6068    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6069                           : TSK_ExplicitInstantiationDeclaration;
6070
6071  // Translate the parser's template argument list in our AST format.
6072  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6073  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6074
6075  // Check that the template argument list is well-formed for this
6076  // template.
6077  SmallVector<TemplateArgument, 4> Converted;
6078  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
6079                                TemplateArgs, false, Converted))
6080    return true;
6081
6082  // Find the class template specialization declaration that
6083  // corresponds to these arguments.
6084  void *InsertPos = 0;
6085  ClassTemplateSpecializationDecl *PrevDecl
6086    = ClassTemplate->findSpecialization(Converted.data(),
6087                                        Converted.size(), InsertPos);
6088
6089  TemplateSpecializationKind PrevDecl_TSK
6090    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
6091
6092  // C++0x [temp.explicit]p2:
6093  //   [...] An explicit instantiation shall appear in an enclosing
6094  //   namespace of its template. [...]
6095  //
6096  // This is C++ DR 275.
6097  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
6098                                      SS.isSet()))
6099    return true;
6100
6101  ClassTemplateSpecializationDecl *Specialization = 0;
6102
6103  bool HasNoEffect = false;
6104  if (PrevDecl) {
6105    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
6106                                               PrevDecl, PrevDecl_TSK,
6107                                            PrevDecl->getPointOfInstantiation(),
6108                                               HasNoEffect))
6109      return PrevDecl;
6110
6111    // Even though HasNoEffect == true means that this explicit instantiation
6112    // has no effect on semantics, we go on to put its syntax in the AST.
6113
6114    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
6115        PrevDecl_TSK == TSK_Undeclared) {
6116      // Since the only prior class template specialization with these
6117      // arguments was referenced but not declared, reuse that
6118      // declaration node as our own, updating the source location
6119      // for the template name to reflect our new declaration.
6120      // (Other source locations will be updated later.)
6121      Specialization = PrevDecl;
6122      Specialization->setLocation(TemplateNameLoc);
6123      PrevDecl = 0;
6124    }
6125  }
6126
6127  if (!Specialization) {
6128    // Create a new class template specialization declaration node for
6129    // this explicit specialization.
6130    Specialization
6131      = ClassTemplateSpecializationDecl::Create(Context, Kind,
6132                                             ClassTemplate->getDeclContext(),
6133                                                KWLoc, TemplateNameLoc,
6134                                                ClassTemplate,
6135                                                Converted.data(),
6136                                                Converted.size(),
6137                                                PrevDecl);
6138    SetNestedNameSpecifier(Specialization, SS);
6139
6140    if (!HasNoEffect && !PrevDecl) {
6141      // Insert the new specialization.
6142      ClassTemplate->AddSpecialization(Specialization, InsertPos);
6143    }
6144  }
6145
6146  // Build the fully-sugared type for this explicit instantiation as
6147  // the user wrote in the explicit instantiation itself. This means
6148  // that we'll pretty-print the type retrieved from the
6149  // specialization's declaration the way that the user actually wrote
6150  // the explicit instantiation, rather than formatting the name based
6151  // on the "canonical" representation used to store the template
6152  // arguments in the specialization.
6153  TypeSourceInfo *WrittenTy
6154    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6155                                                TemplateArgs,
6156                                  Context.getTypeDeclType(Specialization));
6157  Specialization->setTypeAsWritten(WrittenTy);
6158  TemplateArgsIn.release();
6159
6160  // Set source locations for keywords.
6161  Specialization->setExternLoc(ExternLoc);
6162  Specialization->setTemplateKeywordLoc(TemplateLoc);
6163
6164  if (Attr)
6165    ProcessDeclAttributeList(S, Specialization, Attr);
6166
6167  // Add the explicit instantiation into its lexical context. However,
6168  // since explicit instantiations are never found by name lookup, we
6169  // just put it into the declaration context directly.
6170  Specialization->setLexicalDeclContext(CurContext);
6171  CurContext->addDecl(Specialization);
6172
6173  // Syntax is now OK, so return if it has no other effect on semantics.
6174  if (HasNoEffect) {
6175    // Set the template specialization kind.
6176    Specialization->setTemplateSpecializationKind(TSK);
6177    return Specialization;
6178  }
6179
6180  // C++ [temp.explicit]p3:
6181  //   A definition of a class template or class member template
6182  //   shall be in scope at the point of the explicit instantiation of
6183  //   the class template or class member template.
6184  //
6185  // This check comes when we actually try to perform the
6186  // instantiation.
6187  ClassTemplateSpecializationDecl *Def
6188    = cast_or_null<ClassTemplateSpecializationDecl>(
6189                                              Specialization->getDefinition());
6190  if (!Def)
6191    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
6192  else if (TSK == TSK_ExplicitInstantiationDefinition) {
6193    MarkVTableUsed(TemplateNameLoc, Specialization, true);
6194    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
6195  }
6196
6197  // Instantiate the members of this class template specialization.
6198  Def = cast_or_null<ClassTemplateSpecializationDecl>(
6199                                       Specialization->getDefinition());
6200  if (Def) {
6201    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
6202
6203    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
6204    // TSK_ExplicitInstantiationDefinition
6205    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
6206        TSK == TSK_ExplicitInstantiationDefinition)
6207      Def->setTemplateSpecializationKind(TSK);
6208
6209    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
6210  }
6211
6212  // Set the template specialization kind.
6213  Specialization->setTemplateSpecializationKind(TSK);
6214  return Specialization;
6215}
6216
6217// Explicit instantiation of a member class of a class template.
6218DeclResult
6219Sema::ActOnExplicitInstantiation(Scope *S,
6220                                 SourceLocation ExternLoc,
6221                                 SourceLocation TemplateLoc,
6222                                 unsigned TagSpec,
6223                                 SourceLocation KWLoc,
6224                                 CXXScopeSpec &SS,
6225                                 IdentifierInfo *Name,
6226                                 SourceLocation NameLoc,
6227                                 AttributeList *Attr) {
6228
6229  bool Owned = false;
6230  bool IsDependent = false;
6231  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
6232                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
6233                        /*ModulePrivateLoc=*/SourceLocation(),
6234                        MultiTemplateParamsArg(*this, 0, 0),
6235                        Owned, IsDependent, SourceLocation(), false,
6236                        TypeResult());
6237  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
6238
6239  if (!TagD)
6240    return true;
6241
6242  TagDecl *Tag = cast<TagDecl>(TagD);
6243  assert(!Tag->isEnum() && "shouldn't see enumerations here");
6244
6245  if (Tag->isInvalidDecl())
6246    return true;
6247
6248  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
6249  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
6250  if (!Pattern) {
6251    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
6252      << Context.getTypeDeclType(Record);
6253    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
6254    return true;
6255  }
6256
6257  // C++0x [temp.explicit]p2:
6258  //   If the explicit instantiation is for a class or member class, the
6259  //   elaborated-type-specifier in the declaration shall include a
6260  //   simple-template-id.
6261  //
6262  // C++98 has the same restriction, just worded differently.
6263  if (!ScopeSpecifierHasTemplateId(SS))
6264    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
6265      << Record << SS.getRange();
6266
6267  // C++0x [temp.explicit]p2:
6268  //   There are two forms of explicit instantiation: an explicit instantiation
6269  //   definition and an explicit instantiation declaration. An explicit
6270  //   instantiation declaration begins with the extern keyword. [...]
6271  TemplateSpecializationKind TSK
6272    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6273                           : TSK_ExplicitInstantiationDeclaration;
6274
6275  // C++0x [temp.explicit]p2:
6276  //   [...] An explicit instantiation shall appear in an enclosing
6277  //   namespace of its template. [...]
6278  //
6279  // This is C++ DR 275.
6280  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
6281
6282  // Verify that it is okay to explicitly instantiate here.
6283  CXXRecordDecl *PrevDecl
6284    = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
6285  if (!PrevDecl && Record->getDefinition())
6286    PrevDecl = Record;
6287  if (PrevDecl) {
6288    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
6289    bool HasNoEffect = false;
6290    assert(MSInfo && "No member specialization information?");
6291    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
6292                                               PrevDecl,
6293                                        MSInfo->getTemplateSpecializationKind(),
6294                                             MSInfo->getPointOfInstantiation(),
6295                                               HasNoEffect))
6296      return true;
6297    if (HasNoEffect)
6298      return TagD;
6299  }
6300
6301  CXXRecordDecl *RecordDef
6302    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6303  if (!RecordDef) {
6304    // C++ [temp.explicit]p3:
6305    //   A definition of a member class of a class template shall be in scope
6306    //   at the point of an explicit instantiation of the member class.
6307    CXXRecordDecl *Def
6308      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
6309    if (!Def) {
6310      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
6311        << 0 << Record->getDeclName() << Record->getDeclContext();
6312      Diag(Pattern->getLocation(), diag::note_forward_declaration)
6313        << Pattern;
6314      return true;
6315    } else {
6316      if (InstantiateClass(NameLoc, Record, Def,
6317                           getTemplateInstantiationArgs(Record),
6318                           TSK))
6319        return true;
6320
6321      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6322      if (!RecordDef)
6323        return true;
6324    }
6325  }
6326
6327  // Instantiate all of the members of the class.
6328  InstantiateClassMembers(NameLoc, RecordDef,
6329                          getTemplateInstantiationArgs(Record), TSK);
6330
6331  if (TSK == TSK_ExplicitInstantiationDefinition)
6332    MarkVTableUsed(NameLoc, RecordDef, true);
6333
6334  // FIXME: We don't have any representation for explicit instantiations of
6335  // member classes. Such a representation is not needed for compilation, but it
6336  // should be available for clients that want to see all of the declarations in
6337  // the source code.
6338  return TagD;
6339}
6340
6341DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
6342                                            SourceLocation ExternLoc,
6343                                            SourceLocation TemplateLoc,
6344                                            Declarator &D) {
6345  // Explicit instantiations always require a name.
6346  // TODO: check if/when DNInfo should replace Name.
6347  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6348  DeclarationName Name = NameInfo.getName();
6349  if (!Name) {
6350    if (!D.isInvalidType())
6351      Diag(D.getDeclSpec().getLocStart(),
6352           diag::err_explicit_instantiation_requires_name)
6353        << D.getDeclSpec().getSourceRange()
6354        << D.getSourceRange();
6355
6356    return true;
6357  }
6358
6359  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6360  // we find one that is.
6361  while ((S->getFlags() & Scope::DeclScope) == 0 ||
6362         (S->getFlags() & Scope::TemplateParamScope) != 0)
6363    S = S->getParent();
6364
6365  // Determine the type of the declaration.
6366  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
6367  QualType R = T->getType();
6368  if (R.isNull())
6369    return true;
6370
6371  // C++ [dcl.stc]p1:
6372  //   A storage-class-specifier shall not be specified in [...] an explicit
6373  //   instantiation (14.7.2) directive.
6374  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
6375    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
6376      << Name;
6377    return true;
6378  } else if (D.getDeclSpec().getStorageClassSpec()
6379                                                != DeclSpec::SCS_unspecified) {
6380    // Complain about then remove the storage class specifier.
6381    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
6382      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6383
6384    D.getMutableDeclSpec().ClearStorageClassSpecs();
6385  }
6386
6387  // C++0x [temp.explicit]p1:
6388  //   [...] An explicit instantiation of a function template shall not use the
6389  //   inline or constexpr specifiers.
6390  // Presumably, this also applies to member functions of class templates as
6391  // well.
6392  if (D.getDeclSpec().isInlineSpecified())
6393    Diag(D.getDeclSpec().getInlineSpecLoc(),
6394         getLangOpts().CPlusPlus0x ?
6395           diag::err_explicit_instantiation_inline :
6396           diag::warn_explicit_instantiation_inline_0x)
6397      << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6398  if (D.getDeclSpec().isConstexprSpecified())
6399    // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
6400    // not already specified.
6401    Diag(D.getDeclSpec().getConstexprSpecLoc(),
6402         diag::err_explicit_instantiation_constexpr);
6403
6404  // C++0x [temp.explicit]p2:
6405  //   There are two forms of explicit instantiation: an explicit instantiation
6406  //   definition and an explicit instantiation declaration. An explicit
6407  //   instantiation declaration begins with the extern keyword. [...]
6408  TemplateSpecializationKind TSK
6409    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6410                           : TSK_ExplicitInstantiationDeclaration;
6411
6412  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
6413  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
6414
6415  if (!R->isFunctionType()) {
6416    // C++ [temp.explicit]p1:
6417    //   A [...] static data member of a class template can be explicitly
6418    //   instantiated from the member definition associated with its class
6419    //   template.
6420    if (Previous.isAmbiguous())
6421      return true;
6422
6423    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
6424    if (!Prev || !Prev->isStaticDataMember()) {
6425      // We expect to see a data data member here.
6426      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
6427        << Name;
6428      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6429           P != PEnd; ++P)
6430        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
6431      return true;
6432    }
6433
6434    if (!Prev->getInstantiatedFromStaticDataMember()) {
6435      // FIXME: Check for explicit specialization?
6436      Diag(D.getIdentifierLoc(),
6437           diag::err_explicit_instantiation_data_member_not_instantiated)
6438        << Prev;
6439      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
6440      // FIXME: Can we provide a note showing where this was declared?
6441      return true;
6442    }
6443
6444    // C++0x [temp.explicit]p2:
6445    //   If the explicit instantiation is for a member function, a member class
6446    //   or a static data member of a class template specialization, the name of
6447    //   the class template specialization in the qualified-id for the member
6448    //   name shall be a simple-template-id.
6449    //
6450    // C++98 has the same restriction, just worded differently.
6451    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6452      Diag(D.getIdentifierLoc(),
6453           diag::ext_explicit_instantiation_without_qualified_id)
6454        << Prev << D.getCXXScopeSpec().getRange();
6455
6456    // Check the scope of this explicit instantiation.
6457    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
6458
6459    // Verify that it is okay to explicitly instantiate here.
6460    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
6461    assert(MSInfo && "Missing static data member specialization info?");
6462    bool HasNoEffect = false;
6463    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
6464                                        MSInfo->getTemplateSpecializationKind(),
6465                                              MSInfo->getPointOfInstantiation(),
6466                                               HasNoEffect))
6467      return true;
6468    if (HasNoEffect)
6469      return (Decl*) 0;
6470
6471    // Instantiate static data member.
6472    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6473    if (TSK == TSK_ExplicitInstantiationDefinition)
6474      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
6475
6476    // FIXME: Create an ExplicitInstantiation node?
6477    return (Decl*) 0;
6478  }
6479
6480  // If the declarator is a template-id, translate the parser's template
6481  // argument list into our AST format.
6482  bool HasExplicitTemplateArgs = false;
6483  TemplateArgumentListInfo TemplateArgs;
6484  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6485    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6486    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6487    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6488    ASTTemplateArgsPtr TemplateArgsPtr(*this,
6489                                       TemplateId->getTemplateArgs(),
6490                                       TemplateId->NumArgs);
6491    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
6492    HasExplicitTemplateArgs = true;
6493    TemplateArgsPtr.release();
6494  }
6495
6496  // C++ [temp.explicit]p1:
6497  //   A [...] function [...] can be explicitly instantiated from its template.
6498  //   A member function [...] of a class template can be explicitly
6499  //  instantiated from the member definition associated with its class
6500  //  template.
6501  UnresolvedSet<8> Matches;
6502  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6503       P != PEnd; ++P) {
6504    NamedDecl *Prev = *P;
6505    if (!HasExplicitTemplateArgs) {
6506      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
6507        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
6508          Matches.clear();
6509
6510          Matches.addDecl(Method, P.getAccess());
6511          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
6512            break;
6513        }
6514      }
6515    }
6516
6517    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
6518    if (!FunTmpl)
6519      continue;
6520
6521    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
6522    FunctionDecl *Specialization = 0;
6523    if (TemplateDeductionResult TDK
6524          = DeduceTemplateArguments(FunTmpl,
6525                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6526                                    R, Specialization, Info)) {
6527      // FIXME: Keep track of almost-matches?
6528      (void)TDK;
6529      continue;
6530    }
6531
6532    Matches.addDecl(Specialization, P.getAccess());
6533  }
6534
6535  // Find the most specialized function template specialization.
6536  UnresolvedSetIterator Result
6537    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
6538                         D.getIdentifierLoc(),
6539                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
6540                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
6541                         PDiag(diag::note_explicit_instantiation_candidate));
6542
6543  if (Result == Matches.end())
6544    return true;
6545
6546  // Ignore access control bits, we don't need them for redeclaration checking.
6547  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6548
6549  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
6550    Diag(D.getIdentifierLoc(),
6551         diag::err_explicit_instantiation_member_function_not_instantiated)
6552      << Specialization
6553      << (Specialization->getTemplateSpecializationKind() ==
6554          TSK_ExplicitSpecialization);
6555    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
6556    return true;
6557  }
6558
6559  FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
6560  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
6561    PrevDecl = Specialization;
6562
6563  if (PrevDecl) {
6564    bool HasNoEffect = false;
6565    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
6566                                               PrevDecl,
6567                                     PrevDecl->getTemplateSpecializationKind(),
6568                                          PrevDecl->getPointOfInstantiation(),
6569                                               HasNoEffect))
6570      return true;
6571
6572    // FIXME: We may still want to build some representation of this
6573    // explicit specialization.
6574    if (HasNoEffect)
6575      return (Decl*) 0;
6576  }
6577
6578  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6579  AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
6580  if (Attr)
6581    ProcessDeclAttributeList(S, Specialization, Attr);
6582
6583  if (TSK == TSK_ExplicitInstantiationDefinition)
6584    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
6585
6586  // C++0x [temp.explicit]p2:
6587  //   If the explicit instantiation is for a member function, a member class
6588  //   or a static data member of a class template specialization, the name of
6589  //   the class template specialization in the qualified-id for the member
6590  //   name shall be a simple-template-id.
6591  //
6592  // C++98 has the same restriction, just worded differently.
6593  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
6594  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
6595      D.getCXXScopeSpec().isSet() &&
6596      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6597    Diag(D.getIdentifierLoc(),
6598         diag::ext_explicit_instantiation_without_qualified_id)
6599    << Specialization << D.getCXXScopeSpec().getRange();
6600
6601  CheckExplicitInstantiationScope(*this,
6602                   FunTmpl? (NamedDecl *)FunTmpl
6603                          : Specialization->getInstantiatedFromMemberFunction(),
6604                                  D.getIdentifierLoc(),
6605                                  D.getCXXScopeSpec().isSet());
6606
6607  // FIXME: Create some kind of ExplicitInstantiationDecl here.
6608  return (Decl*) 0;
6609}
6610
6611TypeResult
6612Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6613                        const CXXScopeSpec &SS, IdentifierInfo *Name,
6614                        SourceLocation TagLoc, SourceLocation NameLoc) {
6615  // This has to hold, because SS is expected to be defined.
6616  assert(Name && "Expected a name in a dependent tag");
6617
6618  NestedNameSpecifier *NNS
6619    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6620  if (!NNS)
6621    return true;
6622
6623  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6624
6625  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
6626    Diag(NameLoc, diag::err_dependent_tag_decl)
6627      << (TUK == TUK_Definition) << Kind << SS.getRange();
6628    return true;
6629  }
6630
6631  // Create the resulting type.
6632  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6633  QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
6634
6635  // Create type-source location information for this type.
6636  TypeLocBuilder TLB;
6637  DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
6638  TL.setElaboratedKeywordLoc(TagLoc);
6639  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6640  TL.setNameLoc(NameLoc);
6641  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
6642}
6643
6644TypeResult
6645Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6646                        const CXXScopeSpec &SS, const IdentifierInfo &II,
6647                        SourceLocation IdLoc) {
6648  if (SS.isInvalid())
6649    return true;
6650
6651  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6652    Diag(TypenameLoc,
6653         getLangOpts().CPlusPlus0x ?
6654           diag::warn_cxx98_compat_typename_outside_of_template :
6655           diag::ext_typename_outside_of_template)
6656      << FixItHint::CreateRemoval(TypenameLoc);
6657
6658  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6659  QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
6660                                 TypenameLoc, QualifierLoc, II, IdLoc);
6661  if (T.isNull())
6662    return true;
6663
6664  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6665  if (isa<DependentNameType>(T)) {
6666    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6667    TL.setElaboratedKeywordLoc(TypenameLoc);
6668    TL.setQualifierLoc(QualifierLoc);
6669    TL.setNameLoc(IdLoc);
6670  } else {
6671    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6672    TL.setElaboratedKeywordLoc(TypenameLoc);
6673    TL.setQualifierLoc(QualifierLoc);
6674    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
6675  }
6676
6677  return CreateParsedType(T, TSI);
6678}
6679
6680TypeResult
6681Sema::ActOnTypenameType(Scope *S,
6682                        SourceLocation TypenameLoc,
6683                        const CXXScopeSpec &SS,
6684                        SourceLocation TemplateKWLoc,
6685                        TemplateTy TemplateIn,
6686                        SourceLocation TemplateNameLoc,
6687                        SourceLocation LAngleLoc,
6688                        ASTTemplateArgsPtr TemplateArgsIn,
6689                        SourceLocation RAngleLoc) {
6690  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6691    Diag(TypenameLoc,
6692         getLangOpts().CPlusPlus0x ?
6693           diag::warn_cxx98_compat_typename_outside_of_template :
6694           diag::ext_typename_outside_of_template)
6695      << FixItHint::CreateRemoval(TypenameLoc);
6696
6697  // Translate the parser's template argument list in our AST format.
6698  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6699  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6700
6701  TemplateName Template = TemplateIn.get();
6702  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
6703    // Construct a dependent template specialization type.
6704    assert(DTN && "dependent template has non-dependent name?");
6705    assert(DTN->getQualifier()
6706           == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
6707    QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
6708                                                          DTN->getQualifier(),
6709                                                          DTN->getIdentifier(),
6710                                                                TemplateArgs);
6711
6712    // Create source-location information for this type.
6713    TypeLocBuilder Builder;
6714    DependentTemplateSpecializationTypeLoc SpecTL
6715    = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
6716    SpecTL.setElaboratedKeywordLoc(TypenameLoc);
6717    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
6718    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
6719    SpecTL.setTemplateNameLoc(TemplateNameLoc);
6720    SpecTL.setLAngleLoc(LAngleLoc);
6721    SpecTL.setRAngleLoc(RAngleLoc);
6722    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6723      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6724    return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
6725  }
6726
6727  QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
6728  if (T.isNull())
6729    return true;
6730
6731  // Provide source-location information for the template specialization type.
6732  TypeLocBuilder Builder;
6733  TemplateSpecializationTypeLoc SpecTL
6734    = Builder.push<TemplateSpecializationTypeLoc>(T);
6735  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
6736  SpecTL.setTemplateNameLoc(TemplateNameLoc);
6737  SpecTL.setLAngleLoc(LAngleLoc);
6738  SpecTL.setRAngleLoc(RAngleLoc);
6739  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6740    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6741
6742  T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
6743  ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
6744  TL.setElaboratedKeywordLoc(TypenameLoc);
6745  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6746
6747  TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
6748  return CreateParsedType(T, TSI);
6749}
6750
6751
6752/// \brief Build the type that describes a C++ typename specifier,
6753/// e.g., "typename T::type".
6754QualType
6755Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
6756                        SourceLocation KeywordLoc,
6757                        NestedNameSpecifierLoc QualifierLoc,
6758                        const IdentifierInfo &II,
6759                        SourceLocation IILoc) {
6760  CXXScopeSpec SS;
6761  SS.Adopt(QualifierLoc);
6762
6763  DeclContext *Ctx = computeDeclContext(SS);
6764  if (!Ctx) {
6765    // If the nested-name-specifier is dependent and couldn't be
6766    // resolved to a type, build a typename type.
6767    assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
6768    return Context.getDependentNameType(Keyword,
6769                                        QualifierLoc.getNestedNameSpecifier(),
6770                                        &II);
6771  }
6772
6773  // If the nested-name-specifier refers to the current instantiation,
6774  // the "typename" keyword itself is superfluous. In C++03, the
6775  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
6776  // allows such extraneous "typename" keywords, and we retroactively
6777  // apply this DR to C++03 code with only a warning. In any case we continue.
6778
6779  if (RequireCompleteDeclContext(SS, Ctx))
6780    return QualType();
6781
6782  DeclarationName Name(&II);
6783  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
6784  LookupQualifiedName(Result, Ctx);
6785  unsigned DiagID = 0;
6786  Decl *Referenced = 0;
6787  switch (Result.getResultKind()) {
6788  case LookupResult::NotFound:
6789    DiagID = diag::err_typename_nested_not_found;
6790    break;
6791
6792  case LookupResult::FoundUnresolvedValue: {
6793    // We found a using declaration that is a value. Most likely, the using
6794    // declaration itself is meant to have the 'typename' keyword.
6795    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6796                          IILoc);
6797    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
6798      << Name << Ctx << FullRange;
6799    if (UnresolvedUsingValueDecl *Using
6800          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
6801      SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
6802      Diag(Loc, diag::note_using_value_decl_missing_typename)
6803        << FixItHint::CreateInsertion(Loc, "typename ");
6804    }
6805  }
6806  // Fall through to create a dependent typename type, from which we can recover
6807  // better.
6808
6809  case LookupResult::NotFoundInCurrentInstantiation:
6810    // Okay, it's a member of an unknown instantiation.
6811    return Context.getDependentNameType(Keyword,
6812                                        QualifierLoc.getNestedNameSpecifier(),
6813                                        &II);
6814
6815  case LookupResult::Found:
6816    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
6817      // We found a type. Build an ElaboratedType, since the
6818      // typename-specifier was just sugar.
6819      return Context.getElaboratedType(ETK_Typename,
6820                                       QualifierLoc.getNestedNameSpecifier(),
6821                                       Context.getTypeDeclType(Type));
6822    }
6823
6824    DiagID = diag::err_typename_nested_not_type;
6825    Referenced = Result.getFoundDecl();
6826    break;
6827
6828  case LookupResult::FoundOverloaded:
6829    DiagID = diag::err_typename_nested_not_type;
6830    Referenced = *Result.begin();
6831    break;
6832
6833  case LookupResult::Ambiguous:
6834    return QualType();
6835  }
6836
6837  // If we get here, it's because name lookup did not find a
6838  // type. Emit an appropriate diagnostic and return an error.
6839  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6840                        IILoc);
6841  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
6842  if (Referenced)
6843    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
6844      << Name;
6845  return QualType();
6846}
6847
6848namespace {
6849  // See Sema::RebuildTypeInCurrentInstantiation
6850  class CurrentInstantiationRebuilder
6851    : public TreeTransform<CurrentInstantiationRebuilder> {
6852    SourceLocation Loc;
6853    DeclarationName Entity;
6854
6855  public:
6856    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
6857
6858    CurrentInstantiationRebuilder(Sema &SemaRef,
6859                                  SourceLocation Loc,
6860                                  DeclarationName Entity)
6861    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
6862      Loc(Loc), Entity(Entity) { }
6863
6864    /// \brief Determine whether the given type \p T has already been
6865    /// transformed.
6866    ///
6867    /// For the purposes of type reconstruction, a type has already been
6868    /// transformed if it is NULL or if it is not dependent.
6869    bool AlreadyTransformed(QualType T) {
6870      return T.isNull() || !T->isDependentType();
6871    }
6872
6873    /// \brief Returns the location of the entity whose type is being
6874    /// rebuilt.
6875    SourceLocation getBaseLocation() { return Loc; }
6876
6877    /// \brief Returns the name of the entity whose type is being rebuilt.
6878    DeclarationName getBaseEntity() { return Entity; }
6879
6880    /// \brief Sets the "base" location and entity when that
6881    /// information is known based on another transformation.
6882    void setBase(SourceLocation Loc, DeclarationName Entity) {
6883      this->Loc = Loc;
6884      this->Entity = Entity;
6885    }
6886
6887    ExprResult TransformLambdaExpr(LambdaExpr *E) {
6888      // Lambdas never need to be transformed.
6889      return E;
6890    }
6891  };
6892}
6893
6894/// \brief Rebuilds a type within the context of the current instantiation.
6895///
6896/// The type \p T is part of the type of an out-of-line member definition of
6897/// a class template (or class template partial specialization) that was parsed
6898/// and constructed before we entered the scope of the class template (or
6899/// partial specialization thereof). This routine will rebuild that type now
6900/// that we have entered the declarator's scope, which may produce different
6901/// canonical types, e.g.,
6902///
6903/// \code
6904/// template<typename T>
6905/// struct X {
6906///   typedef T* pointer;
6907///   pointer data();
6908/// };
6909///
6910/// template<typename T>
6911/// typename X<T>::pointer X<T>::data() { ... }
6912/// \endcode
6913///
6914/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
6915/// since we do not know that we can look into X<T> when we parsed the type.
6916/// This function will rebuild the type, performing the lookup of "pointer"
6917/// in X<T> and returning an ElaboratedType whose canonical type is the same
6918/// as the canonical type of T*, allowing the return types of the out-of-line
6919/// definition and the declaration to match.
6920TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
6921                                                        SourceLocation Loc,
6922                                                        DeclarationName Name) {
6923  if (!T || !T->getType()->isDependentType())
6924    return T;
6925
6926  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
6927  return Rebuilder.TransformType(T);
6928}
6929
6930ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
6931  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
6932                                          DeclarationName());
6933  return Rebuilder.TransformExpr(E);
6934}
6935
6936bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
6937  if (SS.isInvalid())
6938    return true;
6939
6940  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6941  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
6942                                          DeclarationName());
6943  NestedNameSpecifierLoc Rebuilt
6944    = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
6945  if (!Rebuilt)
6946    return true;
6947
6948  SS.Adopt(Rebuilt);
6949  return false;
6950}
6951
6952/// \brief Rebuild the template parameters now that we know we're in a current
6953/// instantiation.
6954bool Sema::RebuildTemplateParamsInCurrentInstantiation(
6955                                               TemplateParameterList *Params) {
6956  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
6957    Decl *Param = Params->getParam(I);
6958
6959    // There is nothing to rebuild in a type parameter.
6960    if (isa<TemplateTypeParmDecl>(Param))
6961      continue;
6962
6963    // Rebuild the template parameter list of a template template parameter.
6964    if (TemplateTemplateParmDecl *TTP
6965        = dyn_cast<TemplateTemplateParmDecl>(Param)) {
6966      if (RebuildTemplateParamsInCurrentInstantiation(
6967            TTP->getTemplateParameters()))
6968        return true;
6969
6970      continue;
6971    }
6972
6973    // Rebuild the type of a non-type template parameter.
6974    NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
6975    TypeSourceInfo *NewTSI
6976      = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
6977                                          NTTP->getLocation(),
6978                                          NTTP->getDeclName());
6979    if (!NewTSI)
6980      return true;
6981
6982    if (NewTSI != NTTP->getTypeSourceInfo()) {
6983      NTTP->setTypeSourceInfo(NewTSI);
6984      NTTP->setType(NewTSI->getType());
6985    }
6986  }
6987
6988  return false;
6989}
6990
6991/// \brief Produces a formatted string that describes the binding of
6992/// template parameters to template arguments.
6993std::string
6994Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6995                                      const TemplateArgumentList &Args) {
6996  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
6997}
6998
6999std::string
7000Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7001                                      const TemplateArgument *Args,
7002                                      unsigned NumArgs) {
7003  SmallString<128> Str;
7004  llvm::raw_svector_ostream Out(Str);
7005
7006  if (!Params || Params->size() == 0 || NumArgs == 0)
7007    return std::string();
7008
7009  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7010    if (I >= NumArgs)
7011      break;
7012
7013    if (I == 0)
7014      Out << "[with ";
7015    else
7016      Out << ", ";
7017
7018    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
7019      Out << Id->getName();
7020    } else {
7021      Out << '$' << I;
7022    }
7023
7024    Out << " = ";
7025    Args[I].print(getPrintingPolicy(), Out);
7026  }
7027
7028  Out << ']';
7029  return Out.str();
7030}
7031
7032void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) {
7033  if (!FD)
7034    return;
7035  FD->setLateTemplateParsed(Flag);
7036}
7037
7038bool Sema::IsInsideALocalClassWithinATemplateFunction() {
7039  DeclContext *DC = CurContext;
7040
7041  while (DC) {
7042    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
7043      const FunctionDecl *FD = RD->isLocalClass();
7044      return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
7045    } else if (DC->isTranslationUnit() || DC->isNamespace())
7046      return false;
7047
7048    DC = DC->getParent();
7049  }
7050  return false;
7051}
7052