SemaTemplate.cpp revision 6960587df0bd1b421c11715807a4d2302a3aae3c
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "clang/Sema/SemaInternal.h" 13#include "clang/Sema/Lookup.h" 14#include "clang/Sema/Scope.h" 15#include "clang/Sema/Template.h" 16#include "clang/Sema/TemplateDeduction.h" 17#include "TreeTransform.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ExprCXX.h" 21#include "clang/AST/DeclFriend.h" 22#include "clang/AST/DeclTemplate.h" 23#include "clang/AST/RecursiveASTVisitor.h" 24#include "clang/AST/TypeVisitor.h" 25#include "clang/Sema/DeclSpec.h" 26#include "clang/Sema/ParsedTemplate.h" 27#include "clang/Basic/LangOptions.h" 28#include "clang/Basic/PartialDiagnostic.h" 29#include "llvm/ADT/SmallBitVector.h" 30#include "llvm/ADT/SmallString.h" 31#include "llvm/ADT/StringExtras.h" 32using namespace clang; 33using namespace sema; 34 35// Exported for use by Parser. 36SourceRange 37clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 38 unsigned N) { 39 if (!N) return SourceRange(); 40 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 41} 42 43/// \brief Determine whether the declaration found is acceptable as the name 44/// of a template and, if so, return that template declaration. Otherwise, 45/// returns NULL. 46static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 47 NamedDecl *Orig, 48 bool AllowFunctionTemplates) { 49 NamedDecl *D = Orig->getUnderlyingDecl(); 50 51 if (isa<TemplateDecl>(D)) { 52 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D)) 53 return 0; 54 55 return Orig; 56 } 57 58 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 59 // C++ [temp.local]p1: 60 // Like normal (non-template) classes, class templates have an 61 // injected-class-name (Clause 9). The injected-class-name 62 // can be used with or without a template-argument-list. When 63 // it is used without a template-argument-list, it is 64 // equivalent to the injected-class-name followed by the 65 // template-parameters of the class template enclosed in 66 // <>. When it is used with a template-argument-list, it 67 // refers to the specified class template specialization, 68 // which could be the current specialization or another 69 // specialization. 70 if (Record->isInjectedClassName()) { 71 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 72 if (Record->getDescribedClassTemplate()) 73 return Record->getDescribedClassTemplate(); 74 75 if (ClassTemplateSpecializationDecl *Spec 76 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 77 return Spec->getSpecializedTemplate(); 78 } 79 80 return 0; 81 } 82 83 return 0; 84} 85 86void Sema::FilterAcceptableTemplateNames(LookupResult &R, 87 bool AllowFunctionTemplates) { 88 // The set of class templates we've already seen. 89 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 90 LookupResult::Filter filter = R.makeFilter(); 91 while (filter.hasNext()) { 92 NamedDecl *Orig = filter.next(); 93 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig, 94 AllowFunctionTemplates); 95 if (!Repl) 96 filter.erase(); 97 else if (Repl != Orig) { 98 99 // C++ [temp.local]p3: 100 // A lookup that finds an injected-class-name (10.2) can result in an 101 // ambiguity in certain cases (for example, if it is found in more than 102 // one base class). If all of the injected-class-names that are found 103 // refer to specializations of the same class template, and if the name 104 // is used as a template-name, the reference refers to the class 105 // template itself and not a specialization thereof, and is not 106 // ambiguous. 107 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 108 if (!ClassTemplates.insert(ClassTmpl)) { 109 filter.erase(); 110 continue; 111 } 112 113 // FIXME: we promote access to public here as a workaround to 114 // the fact that LookupResult doesn't let us remember that we 115 // found this template through a particular injected class name, 116 // which means we end up doing nasty things to the invariants. 117 // Pretending that access is public is *much* safer. 118 filter.replace(Repl, AS_public); 119 } 120 } 121 filter.done(); 122} 123 124bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, 125 bool AllowFunctionTemplates) { 126 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) 127 if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates)) 128 return true; 129 130 return false; 131} 132 133TemplateNameKind Sema::isTemplateName(Scope *S, 134 CXXScopeSpec &SS, 135 bool hasTemplateKeyword, 136 UnqualifiedId &Name, 137 ParsedType ObjectTypePtr, 138 bool EnteringContext, 139 TemplateTy &TemplateResult, 140 bool &MemberOfUnknownSpecialization) { 141 assert(getLangOpts().CPlusPlus && "No template names in C!"); 142 143 DeclarationName TName; 144 MemberOfUnknownSpecialization = false; 145 146 switch (Name.getKind()) { 147 case UnqualifiedId::IK_Identifier: 148 TName = DeclarationName(Name.Identifier); 149 break; 150 151 case UnqualifiedId::IK_OperatorFunctionId: 152 TName = Context.DeclarationNames.getCXXOperatorName( 153 Name.OperatorFunctionId.Operator); 154 break; 155 156 case UnqualifiedId::IK_LiteralOperatorId: 157 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 158 break; 159 160 default: 161 return TNK_Non_template; 162 } 163 164 QualType ObjectType = ObjectTypePtr.get(); 165 166 LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName); 167 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 168 MemberOfUnknownSpecialization); 169 if (R.empty()) return TNK_Non_template; 170 if (R.isAmbiguous()) { 171 // Suppress diagnostics; we'll redo this lookup later. 172 R.suppressDiagnostics(); 173 174 // FIXME: we might have ambiguous templates, in which case we 175 // should at least parse them properly! 176 return TNK_Non_template; 177 } 178 179 TemplateName Template; 180 TemplateNameKind TemplateKind; 181 182 unsigned ResultCount = R.end() - R.begin(); 183 if (ResultCount > 1) { 184 // We assume that we'll preserve the qualifier from a function 185 // template name in other ways. 186 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 187 TemplateKind = TNK_Function_template; 188 189 // We'll do this lookup again later. 190 R.suppressDiagnostics(); 191 } else { 192 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 193 194 if (SS.isSet() && !SS.isInvalid()) { 195 NestedNameSpecifier *Qualifier 196 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 197 Template = Context.getQualifiedTemplateName(Qualifier, 198 hasTemplateKeyword, TD); 199 } else { 200 Template = TemplateName(TD); 201 } 202 203 if (isa<FunctionTemplateDecl>(TD)) { 204 TemplateKind = TNK_Function_template; 205 206 // We'll do this lookup again later. 207 R.suppressDiagnostics(); 208 } else { 209 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 210 isa<TypeAliasTemplateDecl>(TD)); 211 TemplateKind = TNK_Type_template; 212 } 213 } 214 215 TemplateResult = TemplateTy::make(Template); 216 return TemplateKind; 217} 218 219bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 220 SourceLocation IILoc, 221 Scope *S, 222 const CXXScopeSpec *SS, 223 TemplateTy &SuggestedTemplate, 224 TemplateNameKind &SuggestedKind) { 225 // We can't recover unless there's a dependent scope specifier preceding the 226 // template name. 227 // FIXME: Typo correction? 228 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 229 computeDeclContext(*SS)) 230 return false; 231 232 // The code is missing a 'template' keyword prior to the dependent template 233 // name. 234 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 235 Diag(IILoc, diag::err_template_kw_missing) 236 << Qualifier << II.getName() 237 << FixItHint::CreateInsertion(IILoc, "template "); 238 SuggestedTemplate 239 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 240 SuggestedKind = TNK_Dependent_template_name; 241 return true; 242} 243 244void Sema::LookupTemplateName(LookupResult &Found, 245 Scope *S, CXXScopeSpec &SS, 246 QualType ObjectType, 247 bool EnteringContext, 248 bool &MemberOfUnknownSpecialization) { 249 // Determine where to perform name lookup 250 MemberOfUnknownSpecialization = false; 251 DeclContext *LookupCtx = 0; 252 bool isDependent = false; 253 if (!ObjectType.isNull()) { 254 // This nested-name-specifier occurs in a member access expression, e.g., 255 // x->B::f, and we are looking into the type of the object. 256 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 257 LookupCtx = computeDeclContext(ObjectType); 258 isDependent = ObjectType->isDependentType(); 259 assert((isDependent || !ObjectType->isIncompleteType()) && 260 "Caller should have completed object type"); 261 262 // Template names cannot appear inside an Objective-C class or object type. 263 if (ObjectType->isObjCObjectOrInterfaceType()) { 264 Found.clear(); 265 return; 266 } 267 } else if (SS.isSet()) { 268 // This nested-name-specifier occurs after another nested-name-specifier, 269 // so long into the context associated with the prior nested-name-specifier. 270 LookupCtx = computeDeclContext(SS, EnteringContext); 271 isDependent = isDependentScopeSpecifier(SS); 272 273 // The declaration context must be complete. 274 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 275 return; 276 } 277 278 bool ObjectTypeSearchedInScope = false; 279 bool AllowFunctionTemplatesInLookup = true; 280 if (LookupCtx) { 281 // Perform "qualified" name lookup into the declaration context we 282 // computed, which is either the type of the base of a member access 283 // expression or the declaration context associated with a prior 284 // nested-name-specifier. 285 LookupQualifiedName(Found, LookupCtx); 286 if (!ObjectType.isNull() && Found.empty()) { 287 // C++ [basic.lookup.classref]p1: 288 // In a class member access expression (5.2.5), if the . or -> token is 289 // immediately followed by an identifier followed by a <, the 290 // identifier must be looked up to determine whether the < is the 291 // beginning of a template argument list (14.2) or a less-than operator. 292 // The identifier is first looked up in the class of the object 293 // expression. If the identifier is not found, it is then looked up in 294 // the context of the entire postfix-expression and shall name a class 295 // or function template. 296 if (S) LookupName(Found, S); 297 ObjectTypeSearchedInScope = true; 298 AllowFunctionTemplatesInLookup = false; 299 } 300 } else if (isDependent && (!S || ObjectType.isNull())) { 301 // We cannot look into a dependent object type or nested nme 302 // specifier. 303 MemberOfUnknownSpecialization = true; 304 return; 305 } else { 306 // Perform unqualified name lookup in the current scope. 307 LookupName(Found, S); 308 309 if (!ObjectType.isNull()) 310 AllowFunctionTemplatesInLookup = false; 311 } 312 313 if (Found.empty() && !isDependent) { 314 // If we did not find any names, attempt to correct any typos. 315 DeclarationName Name = Found.getLookupName(); 316 Found.clear(); 317 // Simple filter callback that, for keywords, only accepts the C++ *_cast 318 CorrectionCandidateCallback FilterCCC; 319 FilterCCC.WantTypeSpecifiers = false; 320 FilterCCC.WantExpressionKeywords = false; 321 FilterCCC.WantRemainingKeywords = false; 322 FilterCCC.WantCXXNamedCasts = true; 323 if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(), 324 Found.getLookupKind(), S, &SS, 325 FilterCCC, LookupCtx)) { 326 Found.setLookupName(Corrected.getCorrection()); 327 if (Corrected.getCorrectionDecl()) 328 Found.addDecl(Corrected.getCorrectionDecl()); 329 FilterAcceptableTemplateNames(Found); 330 if (!Found.empty()) { 331 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 332 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts())); 333 if (LookupCtx) 334 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 335 << Name << LookupCtx << CorrectedQuotedStr << SS.getRange() 336 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); 337 else 338 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 339 << Name << CorrectedQuotedStr 340 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); 341 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 342 Diag(Template->getLocation(), diag::note_previous_decl) 343 << CorrectedQuotedStr; 344 } 345 } else { 346 Found.setLookupName(Name); 347 } 348 } 349 350 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup); 351 if (Found.empty()) { 352 if (isDependent) 353 MemberOfUnknownSpecialization = true; 354 return; 355 } 356 357 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 358 // C++ [basic.lookup.classref]p1: 359 // [...] If the lookup in the class of the object expression finds a 360 // template, the name is also looked up in the context of the entire 361 // postfix-expression and [...] 362 // 363 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 364 LookupOrdinaryName); 365 LookupName(FoundOuter, S); 366 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false); 367 368 if (FoundOuter.empty()) { 369 // - if the name is not found, the name found in the class of the 370 // object expression is used, otherwise 371 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() || 372 FoundOuter.isAmbiguous()) { 373 // - if the name is found in the context of the entire 374 // postfix-expression and does not name a class template, the name 375 // found in the class of the object expression is used, otherwise 376 FoundOuter.clear(); 377 } else if (!Found.isSuppressingDiagnostics()) { 378 // - if the name found is a class template, it must refer to the same 379 // entity as the one found in the class of the object expression, 380 // otherwise the program is ill-formed. 381 if (!Found.isSingleResult() || 382 Found.getFoundDecl()->getCanonicalDecl() 383 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 384 Diag(Found.getNameLoc(), 385 diag::ext_nested_name_member_ref_lookup_ambiguous) 386 << Found.getLookupName() 387 << ObjectType; 388 Diag(Found.getRepresentativeDecl()->getLocation(), 389 diag::note_ambig_member_ref_object_type) 390 << ObjectType; 391 Diag(FoundOuter.getFoundDecl()->getLocation(), 392 diag::note_ambig_member_ref_scope); 393 394 // Recover by taking the template that we found in the object 395 // expression's type. 396 } 397 } 398 } 399} 400 401/// ActOnDependentIdExpression - Handle a dependent id-expression that 402/// was just parsed. This is only possible with an explicit scope 403/// specifier naming a dependent type. 404ExprResult 405Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 406 SourceLocation TemplateKWLoc, 407 const DeclarationNameInfo &NameInfo, 408 bool isAddressOfOperand, 409 const TemplateArgumentListInfo *TemplateArgs) { 410 DeclContext *DC = getFunctionLevelDeclContext(); 411 412 if (!isAddressOfOperand && 413 isa<CXXMethodDecl>(DC) && 414 cast<CXXMethodDecl>(DC)->isInstance()) { 415 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 416 417 // Since the 'this' expression is synthesized, we don't need to 418 // perform the double-lookup check. 419 NamedDecl *FirstQualifierInScope = 0; 420 421 return Owned(CXXDependentScopeMemberExpr::Create(Context, 422 /*This*/ 0, ThisType, 423 /*IsArrow*/ true, 424 /*Op*/ SourceLocation(), 425 SS.getWithLocInContext(Context), 426 TemplateKWLoc, 427 FirstQualifierInScope, 428 NameInfo, 429 TemplateArgs)); 430 } 431 432 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 433} 434 435ExprResult 436Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 437 SourceLocation TemplateKWLoc, 438 const DeclarationNameInfo &NameInfo, 439 const TemplateArgumentListInfo *TemplateArgs) { 440 return Owned(DependentScopeDeclRefExpr::Create(Context, 441 SS.getWithLocInContext(Context), 442 TemplateKWLoc, 443 NameInfo, 444 TemplateArgs)); 445} 446 447/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 448/// that the template parameter 'PrevDecl' is being shadowed by a new 449/// declaration at location Loc. Returns true to indicate that this is 450/// an error, and false otherwise. 451void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 452 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 453 454 // Microsoft Visual C++ permits template parameters to be shadowed. 455 if (getLangOpts().MicrosoftExt) 456 return; 457 458 // C++ [temp.local]p4: 459 // A template-parameter shall not be redeclared within its 460 // scope (including nested scopes). 461 Diag(Loc, diag::err_template_param_shadow) 462 << cast<NamedDecl>(PrevDecl)->getDeclName(); 463 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 464 return; 465} 466 467/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 468/// the parameter D to reference the templated declaration and return a pointer 469/// to the template declaration. Otherwise, do nothing to D and return null. 470TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 471 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 472 D = Temp->getTemplatedDecl(); 473 return Temp; 474 } 475 return 0; 476} 477 478ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 479 SourceLocation EllipsisLoc) const { 480 assert(Kind == Template && 481 "Only template template arguments can be pack expansions here"); 482 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 483 "Template template argument pack expansion without packs"); 484 ParsedTemplateArgument Result(*this); 485 Result.EllipsisLoc = EllipsisLoc; 486 return Result; 487} 488 489static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 490 const ParsedTemplateArgument &Arg) { 491 492 switch (Arg.getKind()) { 493 case ParsedTemplateArgument::Type: { 494 TypeSourceInfo *DI; 495 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 496 if (!DI) 497 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 498 return TemplateArgumentLoc(TemplateArgument(T), DI); 499 } 500 501 case ParsedTemplateArgument::NonType: { 502 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 503 return TemplateArgumentLoc(TemplateArgument(E), E); 504 } 505 506 case ParsedTemplateArgument::Template: { 507 TemplateName Template = Arg.getAsTemplate().get(); 508 TemplateArgument TArg; 509 if (Arg.getEllipsisLoc().isValid()) 510 TArg = TemplateArgument(Template, llvm::Optional<unsigned int>()); 511 else 512 TArg = Template; 513 return TemplateArgumentLoc(TArg, 514 Arg.getScopeSpec().getWithLocInContext( 515 SemaRef.Context), 516 Arg.getLocation(), 517 Arg.getEllipsisLoc()); 518 } 519 } 520 521 llvm_unreachable("Unhandled parsed template argument"); 522} 523 524/// \brief Translates template arguments as provided by the parser 525/// into template arguments used by semantic analysis. 526void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 527 TemplateArgumentListInfo &TemplateArgs) { 528 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 529 TemplateArgs.addArgument(translateTemplateArgument(*this, 530 TemplateArgsIn[I])); 531} 532 533/// ActOnTypeParameter - Called when a C++ template type parameter 534/// (e.g., "typename T") has been parsed. Typename specifies whether 535/// the keyword "typename" was used to declare the type parameter 536/// (otherwise, "class" was used), and KeyLoc is the location of the 537/// "class" or "typename" keyword. ParamName is the name of the 538/// parameter (NULL indicates an unnamed template parameter) and 539/// ParamNameLoc is the location of the parameter name (if any). 540/// If the type parameter has a default argument, it will be added 541/// later via ActOnTypeParameterDefault. 542Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 543 SourceLocation EllipsisLoc, 544 SourceLocation KeyLoc, 545 IdentifierInfo *ParamName, 546 SourceLocation ParamNameLoc, 547 unsigned Depth, unsigned Position, 548 SourceLocation EqualLoc, 549 ParsedType DefaultArg) { 550 assert(S->isTemplateParamScope() && 551 "Template type parameter not in template parameter scope!"); 552 bool Invalid = false; 553 554 if (ParamName) { 555 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 556 LookupOrdinaryName, 557 ForRedeclaration); 558 if (PrevDecl && PrevDecl->isTemplateParameter()) { 559 DiagnoseTemplateParameterShadow(ParamNameLoc, PrevDecl); 560 PrevDecl = 0; 561 } 562 } 563 564 SourceLocation Loc = ParamNameLoc; 565 if (!ParamName) 566 Loc = KeyLoc; 567 568 TemplateTypeParmDecl *Param 569 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 570 KeyLoc, Loc, Depth, Position, ParamName, 571 Typename, Ellipsis); 572 Param->setAccess(AS_public); 573 if (Invalid) 574 Param->setInvalidDecl(); 575 576 if (ParamName) { 577 // Add the template parameter into the current scope. 578 S->AddDecl(Param); 579 IdResolver.AddDecl(Param); 580 } 581 582 // C++0x [temp.param]p9: 583 // A default template-argument may be specified for any kind of 584 // template-parameter that is not a template parameter pack. 585 if (DefaultArg && Ellipsis) { 586 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 587 DefaultArg = ParsedType(); 588 } 589 590 // Handle the default argument, if provided. 591 if (DefaultArg) { 592 TypeSourceInfo *DefaultTInfo; 593 GetTypeFromParser(DefaultArg, &DefaultTInfo); 594 595 assert(DefaultTInfo && "expected source information for type"); 596 597 // Check for unexpanded parameter packs. 598 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, 599 UPPC_DefaultArgument)) 600 return Param; 601 602 // Check the template argument itself. 603 if (CheckTemplateArgument(Param, DefaultTInfo)) { 604 Param->setInvalidDecl(); 605 return Param; 606 } 607 608 Param->setDefaultArgument(DefaultTInfo, false); 609 } 610 611 return Param; 612} 613 614/// \brief Check that the type of a non-type template parameter is 615/// well-formed. 616/// 617/// \returns the (possibly-promoted) parameter type if valid; 618/// otherwise, produces a diagnostic and returns a NULL type. 619QualType 620Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 621 // We don't allow variably-modified types as the type of non-type template 622 // parameters. 623 if (T->isVariablyModifiedType()) { 624 Diag(Loc, diag::err_variably_modified_nontype_template_param) 625 << T; 626 return QualType(); 627 } 628 629 // C++ [temp.param]p4: 630 // 631 // A non-type template-parameter shall have one of the following 632 // (optionally cv-qualified) types: 633 // 634 // -- integral or enumeration type, 635 if (T->isIntegralOrEnumerationType() || 636 // -- pointer to object or pointer to function, 637 T->isPointerType() || 638 // -- reference to object or reference to function, 639 T->isReferenceType() || 640 // -- pointer to member, 641 T->isMemberPointerType() || 642 // -- std::nullptr_t. 643 T->isNullPtrType() || 644 // If T is a dependent type, we can't do the check now, so we 645 // assume that it is well-formed. 646 T->isDependentType()) { 647 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter 648 // are ignored when determining its type. 649 return T.getUnqualifiedType(); 650 } 651 652 // C++ [temp.param]p8: 653 // 654 // A non-type template-parameter of type "array of T" or 655 // "function returning T" is adjusted to be of type "pointer to 656 // T" or "pointer to function returning T", respectively. 657 else if (T->isArrayType()) 658 // FIXME: Keep the type prior to promotion? 659 return Context.getArrayDecayedType(T); 660 else if (T->isFunctionType()) 661 // FIXME: Keep the type prior to promotion? 662 return Context.getPointerType(T); 663 664 Diag(Loc, diag::err_template_nontype_parm_bad_type) 665 << T; 666 667 return QualType(); 668} 669 670Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 671 unsigned Depth, 672 unsigned Position, 673 SourceLocation EqualLoc, 674 Expr *Default) { 675 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 676 QualType T = TInfo->getType(); 677 678 assert(S->isTemplateParamScope() && 679 "Non-type template parameter not in template parameter scope!"); 680 bool Invalid = false; 681 682 IdentifierInfo *ParamName = D.getIdentifier(); 683 if (ParamName) { 684 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 685 LookupOrdinaryName, 686 ForRedeclaration); 687 if (PrevDecl && PrevDecl->isTemplateParameter()) { 688 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 689 PrevDecl = 0; 690 } 691 } 692 693 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 694 if (T.isNull()) { 695 T = Context.IntTy; // Recover with an 'int' type. 696 Invalid = true; 697 } 698 699 bool IsParameterPack = D.hasEllipsis(); 700 NonTypeTemplateParmDecl *Param 701 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 702 D.getLocStart(), 703 D.getIdentifierLoc(), 704 Depth, Position, ParamName, T, 705 IsParameterPack, TInfo); 706 Param->setAccess(AS_public); 707 708 if (Invalid) 709 Param->setInvalidDecl(); 710 711 if (D.getIdentifier()) { 712 // Add the template parameter into the current scope. 713 S->AddDecl(Param); 714 IdResolver.AddDecl(Param); 715 } 716 717 // C++0x [temp.param]p9: 718 // A default template-argument may be specified for any kind of 719 // template-parameter that is not a template parameter pack. 720 if (Default && IsParameterPack) { 721 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 722 Default = 0; 723 } 724 725 // Check the well-formedness of the default template argument, if provided. 726 if (Default) { 727 // Check for unexpanded parameter packs. 728 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 729 return Param; 730 731 TemplateArgument Converted; 732 ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted); 733 if (DefaultRes.isInvalid()) { 734 Param->setInvalidDecl(); 735 return Param; 736 } 737 Default = DefaultRes.take(); 738 739 Param->setDefaultArgument(Default, false); 740 } 741 742 return Param; 743} 744 745/// ActOnTemplateTemplateParameter - Called when a C++ template template 746/// parameter (e.g. T in template <template <typename> class T> class array) 747/// has been parsed. S is the current scope. 748Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 749 SourceLocation TmpLoc, 750 TemplateParameterList *Params, 751 SourceLocation EllipsisLoc, 752 IdentifierInfo *Name, 753 SourceLocation NameLoc, 754 unsigned Depth, 755 unsigned Position, 756 SourceLocation EqualLoc, 757 ParsedTemplateArgument Default) { 758 assert(S->isTemplateParamScope() && 759 "Template template parameter not in template parameter scope!"); 760 761 // Construct the parameter object. 762 bool IsParameterPack = EllipsisLoc.isValid(); 763 TemplateTemplateParmDecl *Param = 764 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 765 NameLoc.isInvalid()? TmpLoc : NameLoc, 766 Depth, Position, IsParameterPack, 767 Name, Params); 768 Param->setAccess(AS_public); 769 770 // If the template template parameter has a name, then link the identifier 771 // into the scope and lookup mechanisms. 772 if (Name) { 773 S->AddDecl(Param); 774 IdResolver.AddDecl(Param); 775 } 776 777 if (Params->size() == 0) { 778 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 779 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 780 Param->setInvalidDecl(); 781 } 782 783 // C++0x [temp.param]p9: 784 // A default template-argument may be specified for any kind of 785 // template-parameter that is not a template parameter pack. 786 if (IsParameterPack && !Default.isInvalid()) { 787 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 788 Default = ParsedTemplateArgument(); 789 } 790 791 if (!Default.isInvalid()) { 792 // Check only that we have a template template argument. We don't want to 793 // try to check well-formedness now, because our template template parameter 794 // might have dependent types in its template parameters, which we wouldn't 795 // be able to match now. 796 // 797 // If none of the template template parameter's template arguments mention 798 // other template parameters, we could actually perform more checking here. 799 // However, it isn't worth doing. 800 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 801 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 802 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 803 << DefaultArg.getSourceRange(); 804 return Param; 805 } 806 807 // Check for unexpanded parameter packs. 808 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 809 DefaultArg.getArgument().getAsTemplate(), 810 UPPC_DefaultArgument)) 811 return Param; 812 813 Param->setDefaultArgument(DefaultArg, false); 814 } 815 816 return Param; 817} 818 819/// ActOnTemplateParameterList - Builds a TemplateParameterList that 820/// contains the template parameters in Params/NumParams. 821TemplateParameterList * 822Sema::ActOnTemplateParameterList(unsigned Depth, 823 SourceLocation ExportLoc, 824 SourceLocation TemplateLoc, 825 SourceLocation LAngleLoc, 826 Decl **Params, unsigned NumParams, 827 SourceLocation RAngleLoc) { 828 if (ExportLoc.isValid()) 829 Diag(ExportLoc, diag::warn_template_export_unsupported); 830 831 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 832 (NamedDecl**)Params, NumParams, 833 RAngleLoc); 834} 835 836static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 837 if (SS.isSet()) 838 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext())); 839} 840 841DeclResult 842Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 843 SourceLocation KWLoc, CXXScopeSpec &SS, 844 IdentifierInfo *Name, SourceLocation NameLoc, 845 AttributeList *Attr, 846 TemplateParameterList *TemplateParams, 847 AccessSpecifier AS, SourceLocation ModulePrivateLoc, 848 unsigned NumOuterTemplateParamLists, 849 TemplateParameterList** OuterTemplateParamLists) { 850 assert(TemplateParams && TemplateParams->size() > 0 && 851 "No template parameters"); 852 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 853 bool Invalid = false; 854 855 // Check that we can declare a template here. 856 if (CheckTemplateDeclScope(S, TemplateParams)) 857 return true; 858 859 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 860 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 861 862 // There is no such thing as an unnamed class template. 863 if (!Name) { 864 Diag(KWLoc, diag::err_template_unnamed_class); 865 return true; 866 } 867 868 // Find any previous declaration with this name. 869 DeclContext *SemanticContext; 870 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 871 ForRedeclaration); 872 if (SS.isNotEmpty() && !SS.isInvalid()) { 873 SemanticContext = computeDeclContext(SS, true); 874 if (!SemanticContext) { 875 Diag(NameLoc, diag::err_template_qualified_declarator_no_match) 876 << SS.getScopeRep() << SS.getRange(); 877 return true; 878 } 879 880 if (RequireCompleteDeclContext(SS, SemanticContext)) 881 return true; 882 883 // If we're adding a template to a dependent context, we may need to 884 // rebuilding some of the types used within the template parameter list, 885 // now that we know what the current instantiation is. 886 if (SemanticContext->isDependentContext()) { 887 ContextRAII SavedContext(*this, SemanticContext); 888 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 889 Invalid = true; 890 } else if (TUK != TUK_Friend && TUK != TUK_Reference) 891 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc); 892 893 LookupQualifiedName(Previous, SemanticContext); 894 } else { 895 SemanticContext = CurContext; 896 LookupName(Previous, S); 897 } 898 899 if (Previous.isAmbiguous()) 900 return true; 901 902 NamedDecl *PrevDecl = 0; 903 if (Previous.begin() != Previous.end()) 904 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 905 906 // If there is a previous declaration with the same name, check 907 // whether this is a valid redeclaration. 908 ClassTemplateDecl *PrevClassTemplate 909 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 910 911 // We may have found the injected-class-name of a class template, 912 // class template partial specialization, or class template specialization. 913 // In these cases, grab the template that is being defined or specialized. 914 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 915 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 916 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 917 PrevClassTemplate 918 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 919 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 920 PrevClassTemplate 921 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 922 ->getSpecializedTemplate(); 923 } 924 } 925 926 if (TUK == TUK_Friend) { 927 // C++ [namespace.memdef]p3: 928 // [...] When looking for a prior declaration of a class or a function 929 // declared as a friend, and when the name of the friend class or 930 // function is neither a qualified name nor a template-id, scopes outside 931 // the innermost enclosing namespace scope are not considered. 932 if (!SS.isSet()) { 933 DeclContext *OutermostContext = CurContext; 934 while (!OutermostContext->isFileContext()) 935 OutermostContext = OutermostContext->getLookupParent(); 936 937 if (PrevDecl && 938 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 939 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 940 SemanticContext = PrevDecl->getDeclContext(); 941 } else { 942 // Declarations in outer scopes don't matter. However, the outermost 943 // context we computed is the semantic context for our new 944 // declaration. 945 PrevDecl = PrevClassTemplate = 0; 946 SemanticContext = OutermostContext; 947 } 948 } 949 950 if (CurContext->isDependentContext()) { 951 // If this is a dependent context, we don't want to link the friend 952 // class template to the template in scope, because that would perform 953 // checking of the template parameter lists that can't be performed 954 // until the outer context is instantiated. 955 PrevDecl = PrevClassTemplate = 0; 956 } 957 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 958 PrevDecl = PrevClassTemplate = 0; 959 960 if (PrevClassTemplate) { 961 // Ensure that the template parameter lists are compatible. 962 if (!TemplateParameterListsAreEqual(TemplateParams, 963 PrevClassTemplate->getTemplateParameters(), 964 /*Complain=*/true, 965 TPL_TemplateMatch)) 966 return true; 967 968 // C++ [temp.class]p4: 969 // In a redeclaration, partial specialization, explicit 970 // specialization or explicit instantiation of a class template, 971 // the class-key shall agree in kind with the original class 972 // template declaration (7.1.5.3). 973 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 974 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, 975 TUK == TUK_Definition, KWLoc, *Name)) { 976 Diag(KWLoc, diag::err_use_with_wrong_tag) 977 << Name 978 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 979 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 980 Kind = PrevRecordDecl->getTagKind(); 981 } 982 983 // Check for redefinition of this class template. 984 if (TUK == TUK_Definition) { 985 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 986 Diag(NameLoc, diag::err_redefinition) << Name; 987 Diag(Def->getLocation(), diag::note_previous_definition); 988 // FIXME: Would it make sense to try to "forget" the previous 989 // definition, as part of error recovery? 990 return true; 991 } 992 } 993 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 994 // Maybe we will complain about the shadowed template parameter. 995 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 996 // Just pretend that we didn't see the previous declaration. 997 PrevDecl = 0; 998 } else if (PrevDecl) { 999 // C++ [temp]p5: 1000 // A class template shall not have the same name as any other 1001 // template, class, function, object, enumeration, enumerator, 1002 // namespace, or type in the same scope (3.3), except as specified 1003 // in (14.5.4). 1004 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 1005 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1006 return true; 1007 } 1008 1009 // Check the template parameter list of this declaration, possibly 1010 // merging in the template parameter list from the previous class 1011 // template declaration. 1012 if (CheckTemplateParameterList(TemplateParams, 1013 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 1014 (SS.isSet() && SemanticContext && 1015 SemanticContext->isRecord() && 1016 SemanticContext->isDependentContext()) 1017 ? TPC_ClassTemplateMember 1018 : TPC_ClassTemplate)) 1019 Invalid = true; 1020 1021 if (SS.isSet()) { 1022 // If the name of the template was qualified, we must be defining the 1023 // template out-of-line. 1024 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate && 1025 !(TUK == TUK_Friend && CurContext->isDependentContext())) { 1026 Diag(NameLoc, diag::err_member_def_does_not_match) 1027 << Name << SemanticContext << SS.getRange(); 1028 Invalid = true; 1029 } 1030 } 1031 1032 CXXRecordDecl *NewClass = 1033 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 1034 PrevClassTemplate? 1035 PrevClassTemplate->getTemplatedDecl() : 0, 1036 /*DelayTypeCreation=*/true); 1037 SetNestedNameSpecifier(NewClass, SS); 1038 if (NumOuterTemplateParamLists > 0) 1039 NewClass->setTemplateParameterListsInfo(Context, 1040 NumOuterTemplateParamLists, 1041 OuterTemplateParamLists); 1042 1043 // Add alignment attributes if necessary; these attributes are checked when 1044 // the ASTContext lays out the structure. 1045 AddAlignmentAttributesForRecord(NewClass); 1046 AddMsStructLayoutForRecord(NewClass); 1047 1048 ClassTemplateDecl *NewTemplate 1049 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 1050 DeclarationName(Name), TemplateParams, 1051 NewClass, PrevClassTemplate); 1052 NewClass->setDescribedClassTemplate(NewTemplate); 1053 1054 if (ModulePrivateLoc.isValid()) 1055 NewTemplate->setModulePrivate(); 1056 1057 // Build the type for the class template declaration now. 1058 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 1059 T = Context.getInjectedClassNameType(NewClass, T); 1060 assert(T->isDependentType() && "Class template type is not dependent?"); 1061 (void)T; 1062 1063 // If we are providing an explicit specialization of a member that is a 1064 // class template, make a note of that. 1065 if (PrevClassTemplate && 1066 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 1067 PrevClassTemplate->setMemberSpecialization(); 1068 1069 // Set the access specifier. 1070 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord()) 1071 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 1072 1073 // Set the lexical context of these templates 1074 NewClass->setLexicalDeclContext(CurContext); 1075 NewTemplate->setLexicalDeclContext(CurContext); 1076 1077 if (TUK == TUK_Definition) 1078 NewClass->startDefinition(); 1079 1080 if (Attr) 1081 ProcessDeclAttributeList(S, NewClass, Attr); 1082 1083 if (TUK != TUK_Friend) 1084 PushOnScopeChains(NewTemplate, S); 1085 else { 1086 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1087 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1088 NewClass->setAccess(PrevClassTemplate->getAccess()); 1089 } 1090 1091 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 1092 PrevClassTemplate != NULL); 1093 1094 // Friend templates are visible in fairly strange ways. 1095 if (!CurContext->isDependentContext()) { 1096 DeclContext *DC = SemanticContext->getRedeclContext(); 1097 DC->makeDeclVisibleInContext(NewTemplate); 1098 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1099 PushOnScopeChains(NewTemplate, EnclosingScope, 1100 /* AddToContext = */ false); 1101 } 1102 1103 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 1104 NewClass->getLocation(), 1105 NewTemplate, 1106 /*FIXME:*/NewClass->getLocation()); 1107 Friend->setAccess(AS_public); 1108 CurContext->addDecl(Friend); 1109 } 1110 1111 if (Invalid) { 1112 NewTemplate->setInvalidDecl(); 1113 NewClass->setInvalidDecl(); 1114 } 1115 return NewTemplate; 1116} 1117 1118/// \brief Diagnose the presence of a default template argument on a 1119/// template parameter, which is ill-formed in certain contexts. 1120/// 1121/// \returns true if the default template argument should be dropped. 1122static bool DiagnoseDefaultTemplateArgument(Sema &S, 1123 Sema::TemplateParamListContext TPC, 1124 SourceLocation ParamLoc, 1125 SourceRange DefArgRange) { 1126 switch (TPC) { 1127 case Sema::TPC_ClassTemplate: 1128 case Sema::TPC_TypeAliasTemplate: 1129 return false; 1130 1131 case Sema::TPC_FunctionTemplate: 1132 case Sema::TPC_FriendFunctionTemplateDefinition: 1133 // C++ [temp.param]p9: 1134 // A default template-argument shall not be specified in a 1135 // function template declaration or a function template 1136 // definition [...] 1137 // If a friend function template declaration specifies a default 1138 // template-argument, that declaration shall be a definition and shall be 1139 // the only declaration of the function template in the translation unit. 1140 // (C++98/03 doesn't have this wording; see DR226). 1141 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus0x ? 1142 diag::warn_cxx98_compat_template_parameter_default_in_function_template 1143 : diag::ext_template_parameter_default_in_function_template) 1144 << DefArgRange; 1145 return false; 1146 1147 case Sema::TPC_ClassTemplateMember: 1148 // C++0x [temp.param]p9: 1149 // A default template-argument shall not be specified in the 1150 // template-parameter-lists of the definition of a member of a 1151 // class template that appears outside of the member's class. 1152 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1153 << DefArgRange; 1154 return true; 1155 1156 case Sema::TPC_FriendFunctionTemplate: 1157 // C++ [temp.param]p9: 1158 // A default template-argument shall not be specified in a 1159 // friend template declaration. 1160 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1161 << DefArgRange; 1162 return true; 1163 1164 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1165 // for friend function templates if there is only a single 1166 // declaration (and it is a definition). Strange! 1167 } 1168 1169 llvm_unreachable("Invalid TemplateParamListContext!"); 1170} 1171 1172/// \brief Check for unexpanded parameter packs within the template parameters 1173/// of a template template parameter, recursively. 1174static bool DiagnoseUnexpandedParameterPacks(Sema &S, 1175 TemplateTemplateParmDecl *TTP) { 1176 TemplateParameterList *Params = TTP->getTemplateParameters(); 1177 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 1178 NamedDecl *P = Params->getParam(I); 1179 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 1180 if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 1181 NTTP->getTypeSourceInfo(), 1182 Sema::UPPC_NonTypeTemplateParameterType)) 1183 return true; 1184 1185 continue; 1186 } 1187 1188 if (TemplateTemplateParmDecl *InnerTTP 1189 = dyn_cast<TemplateTemplateParmDecl>(P)) 1190 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 1191 return true; 1192 } 1193 1194 return false; 1195} 1196 1197/// \brief Checks the validity of a template parameter list, possibly 1198/// considering the template parameter list from a previous 1199/// declaration. 1200/// 1201/// If an "old" template parameter list is provided, it must be 1202/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1203/// template parameter list. 1204/// 1205/// \param NewParams Template parameter list for a new template 1206/// declaration. This template parameter list will be updated with any 1207/// default arguments that are carried through from the previous 1208/// template parameter list. 1209/// 1210/// \param OldParams If provided, template parameter list from a 1211/// previous declaration of the same template. Default template 1212/// arguments will be merged from the old template parameter list to 1213/// the new template parameter list. 1214/// 1215/// \param TPC Describes the context in which we are checking the given 1216/// template parameter list. 1217/// 1218/// \returns true if an error occurred, false otherwise. 1219bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1220 TemplateParameterList *OldParams, 1221 TemplateParamListContext TPC) { 1222 bool Invalid = false; 1223 1224 // C++ [temp.param]p10: 1225 // The set of default template-arguments available for use with a 1226 // template declaration or definition is obtained by merging the 1227 // default arguments from the definition (if in scope) and all 1228 // declarations in scope in the same way default function 1229 // arguments are (8.3.6). 1230 bool SawDefaultArgument = false; 1231 SourceLocation PreviousDefaultArgLoc; 1232 1233 // Dummy initialization to avoid warnings. 1234 TemplateParameterList::iterator OldParam = NewParams->end(); 1235 if (OldParams) 1236 OldParam = OldParams->begin(); 1237 1238 bool RemoveDefaultArguments = false; 1239 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1240 NewParamEnd = NewParams->end(); 1241 NewParam != NewParamEnd; ++NewParam) { 1242 // Variables used to diagnose redundant default arguments 1243 bool RedundantDefaultArg = false; 1244 SourceLocation OldDefaultLoc; 1245 SourceLocation NewDefaultLoc; 1246 1247 // Variable used to diagnose missing default arguments 1248 bool MissingDefaultArg = false; 1249 1250 // Variable used to diagnose non-final parameter packs 1251 bool SawParameterPack = false; 1252 1253 if (TemplateTypeParmDecl *NewTypeParm 1254 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1255 // Check the presence of a default argument here. 1256 if (NewTypeParm->hasDefaultArgument() && 1257 DiagnoseDefaultTemplateArgument(*this, TPC, 1258 NewTypeParm->getLocation(), 1259 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1260 .getSourceRange())) 1261 NewTypeParm->removeDefaultArgument(); 1262 1263 // Merge default arguments for template type parameters. 1264 TemplateTypeParmDecl *OldTypeParm 1265 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1266 1267 if (NewTypeParm->isParameterPack()) { 1268 assert(!NewTypeParm->hasDefaultArgument() && 1269 "Parameter packs can't have a default argument!"); 1270 SawParameterPack = true; 1271 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1272 NewTypeParm->hasDefaultArgument()) { 1273 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1274 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1275 SawDefaultArgument = true; 1276 RedundantDefaultArg = true; 1277 PreviousDefaultArgLoc = NewDefaultLoc; 1278 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1279 // Merge the default argument from the old declaration to the 1280 // new declaration. 1281 SawDefaultArgument = true; 1282 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1283 true); 1284 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1285 } else if (NewTypeParm->hasDefaultArgument()) { 1286 SawDefaultArgument = true; 1287 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1288 } else if (SawDefaultArgument) 1289 MissingDefaultArg = true; 1290 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1291 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1292 // Check for unexpanded parameter packs. 1293 if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 1294 NewNonTypeParm->getTypeSourceInfo(), 1295 UPPC_NonTypeTemplateParameterType)) { 1296 Invalid = true; 1297 continue; 1298 } 1299 1300 // Check the presence of a default argument here. 1301 if (NewNonTypeParm->hasDefaultArgument() && 1302 DiagnoseDefaultTemplateArgument(*this, TPC, 1303 NewNonTypeParm->getLocation(), 1304 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1305 NewNonTypeParm->removeDefaultArgument(); 1306 } 1307 1308 // Merge default arguments for non-type template parameters 1309 NonTypeTemplateParmDecl *OldNonTypeParm 1310 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1311 if (NewNonTypeParm->isParameterPack()) { 1312 assert(!NewNonTypeParm->hasDefaultArgument() && 1313 "Parameter packs can't have a default argument!"); 1314 SawParameterPack = true; 1315 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1316 NewNonTypeParm->hasDefaultArgument()) { 1317 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1318 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1319 SawDefaultArgument = true; 1320 RedundantDefaultArg = true; 1321 PreviousDefaultArgLoc = NewDefaultLoc; 1322 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1323 // Merge the default argument from the old declaration to the 1324 // new declaration. 1325 SawDefaultArgument = true; 1326 // FIXME: We need to create a new kind of "default argument" 1327 // expression that points to a previous non-type template 1328 // parameter. 1329 NewNonTypeParm->setDefaultArgument( 1330 OldNonTypeParm->getDefaultArgument(), 1331 /*Inherited=*/ true); 1332 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1333 } else if (NewNonTypeParm->hasDefaultArgument()) { 1334 SawDefaultArgument = true; 1335 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1336 } else if (SawDefaultArgument) 1337 MissingDefaultArg = true; 1338 } else { 1339 TemplateTemplateParmDecl *NewTemplateParm 1340 = cast<TemplateTemplateParmDecl>(*NewParam); 1341 1342 // Check for unexpanded parameter packs, recursively. 1343 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 1344 Invalid = true; 1345 continue; 1346 } 1347 1348 // Check the presence of a default argument here. 1349 if (NewTemplateParm->hasDefaultArgument() && 1350 DiagnoseDefaultTemplateArgument(*this, TPC, 1351 NewTemplateParm->getLocation(), 1352 NewTemplateParm->getDefaultArgument().getSourceRange())) 1353 NewTemplateParm->removeDefaultArgument(); 1354 1355 // Merge default arguments for template template parameters 1356 TemplateTemplateParmDecl *OldTemplateParm 1357 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1358 if (NewTemplateParm->isParameterPack()) { 1359 assert(!NewTemplateParm->hasDefaultArgument() && 1360 "Parameter packs can't have a default argument!"); 1361 SawParameterPack = true; 1362 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1363 NewTemplateParm->hasDefaultArgument()) { 1364 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1365 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1366 SawDefaultArgument = true; 1367 RedundantDefaultArg = true; 1368 PreviousDefaultArgLoc = NewDefaultLoc; 1369 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1370 // Merge the default argument from the old declaration to the 1371 // new declaration. 1372 SawDefaultArgument = true; 1373 // FIXME: We need to create a new kind of "default argument" expression 1374 // that points to a previous template template parameter. 1375 NewTemplateParm->setDefaultArgument( 1376 OldTemplateParm->getDefaultArgument(), 1377 /*Inherited=*/ true); 1378 PreviousDefaultArgLoc 1379 = OldTemplateParm->getDefaultArgument().getLocation(); 1380 } else if (NewTemplateParm->hasDefaultArgument()) { 1381 SawDefaultArgument = true; 1382 PreviousDefaultArgLoc 1383 = NewTemplateParm->getDefaultArgument().getLocation(); 1384 } else if (SawDefaultArgument) 1385 MissingDefaultArg = true; 1386 } 1387 1388 // C++0x [temp.param]p11: 1389 // If a template parameter of a primary class template or alias template 1390 // is a template parameter pack, it shall be the last template parameter. 1391 if (SawParameterPack && (NewParam + 1) != NewParamEnd && 1392 (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) { 1393 Diag((*NewParam)->getLocation(), 1394 diag::err_template_param_pack_must_be_last_template_parameter); 1395 Invalid = true; 1396 } 1397 1398 if (RedundantDefaultArg) { 1399 // C++ [temp.param]p12: 1400 // A template-parameter shall not be given default arguments 1401 // by two different declarations in the same scope. 1402 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1403 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1404 Invalid = true; 1405 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 1406 // C++ [temp.param]p11: 1407 // If a template-parameter of a class template has a default 1408 // template-argument, each subsequent template-parameter shall either 1409 // have a default template-argument supplied or be a template parameter 1410 // pack. 1411 Diag((*NewParam)->getLocation(), 1412 diag::err_template_param_default_arg_missing); 1413 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1414 Invalid = true; 1415 RemoveDefaultArguments = true; 1416 } 1417 1418 // If we have an old template parameter list that we're merging 1419 // in, move on to the next parameter. 1420 if (OldParams) 1421 ++OldParam; 1422 } 1423 1424 // We were missing some default arguments at the end of the list, so remove 1425 // all of the default arguments. 1426 if (RemoveDefaultArguments) { 1427 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1428 NewParamEnd = NewParams->end(); 1429 NewParam != NewParamEnd; ++NewParam) { 1430 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 1431 TTP->removeDefaultArgument(); 1432 else if (NonTypeTemplateParmDecl *NTTP 1433 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 1434 NTTP->removeDefaultArgument(); 1435 else 1436 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 1437 } 1438 } 1439 1440 return Invalid; 1441} 1442 1443namespace { 1444 1445/// A class which looks for a use of a certain level of template 1446/// parameter. 1447struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 1448 typedef RecursiveASTVisitor<DependencyChecker> super; 1449 1450 unsigned Depth; 1451 bool Match; 1452 1453 DependencyChecker(TemplateParameterList *Params) : Match(false) { 1454 NamedDecl *ND = Params->getParam(0); 1455 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 1456 Depth = PD->getDepth(); 1457 } else if (NonTypeTemplateParmDecl *PD = 1458 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 1459 Depth = PD->getDepth(); 1460 } else { 1461 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 1462 } 1463 } 1464 1465 bool Matches(unsigned ParmDepth) { 1466 if (ParmDepth >= Depth) { 1467 Match = true; 1468 return true; 1469 } 1470 return false; 1471 } 1472 1473 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 1474 return !Matches(T->getDepth()); 1475 } 1476 1477 bool TraverseTemplateName(TemplateName N) { 1478 if (TemplateTemplateParmDecl *PD = 1479 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 1480 if (Matches(PD->getDepth())) return false; 1481 return super::TraverseTemplateName(N); 1482 } 1483 1484 bool VisitDeclRefExpr(DeclRefExpr *E) { 1485 if (NonTypeTemplateParmDecl *PD = 1486 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) { 1487 if (PD->getDepth() == Depth) { 1488 Match = true; 1489 return false; 1490 } 1491 } 1492 return super::VisitDeclRefExpr(E); 1493 } 1494 1495 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 1496 return TraverseType(T->getInjectedSpecializationType()); 1497 } 1498}; 1499} 1500 1501/// Determines whether a given type depends on the given parameter 1502/// list. 1503static bool 1504DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 1505 DependencyChecker Checker(Params); 1506 Checker.TraverseType(T); 1507 return Checker.Match; 1508} 1509 1510// Find the source range corresponding to the named type in the given 1511// nested-name-specifier, if any. 1512static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 1513 QualType T, 1514 const CXXScopeSpec &SS) { 1515 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 1516 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 1517 if (const Type *CurType = NNS->getAsType()) { 1518 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 1519 return NNSLoc.getTypeLoc().getSourceRange(); 1520 } else 1521 break; 1522 1523 NNSLoc = NNSLoc.getPrefix(); 1524 } 1525 1526 return SourceRange(); 1527} 1528 1529/// \brief Match the given template parameter lists to the given scope 1530/// specifier, returning the template parameter list that applies to the 1531/// name. 1532/// 1533/// \param DeclStartLoc the start of the declaration that has a scope 1534/// specifier or a template parameter list. 1535/// 1536/// \param DeclLoc The location of the declaration itself. 1537/// 1538/// \param SS the scope specifier that will be matched to the given template 1539/// parameter lists. This scope specifier precedes a qualified name that is 1540/// being declared. 1541/// 1542/// \param ParamLists the template parameter lists, from the outermost to the 1543/// innermost template parameter lists. 1544/// 1545/// \param NumParamLists the number of template parameter lists in ParamLists. 1546/// 1547/// \param IsFriend Whether to apply the slightly different rules for 1548/// matching template parameters to scope specifiers in friend 1549/// declarations. 1550/// 1551/// \param IsExplicitSpecialization will be set true if the entity being 1552/// declared is an explicit specialization, false otherwise. 1553/// 1554/// \returns the template parameter list, if any, that corresponds to the 1555/// name that is preceded by the scope specifier @p SS. This template 1556/// parameter list may have template parameters (if we're declaring a 1557/// template) or may have no template parameters (if we're declaring a 1558/// template specialization), or may be NULL (if what we're declaring isn't 1559/// itself a template). 1560TemplateParameterList * 1561Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1562 SourceLocation DeclLoc, 1563 const CXXScopeSpec &SS, 1564 TemplateParameterList **ParamLists, 1565 unsigned NumParamLists, 1566 bool IsFriend, 1567 bool &IsExplicitSpecialization, 1568 bool &Invalid) { 1569 IsExplicitSpecialization = false; 1570 Invalid = false; 1571 1572 // The sequence of nested types to which we will match up the template 1573 // parameter lists. We first build this list by starting with the type named 1574 // by the nested-name-specifier and walking out until we run out of types. 1575 SmallVector<QualType, 4> NestedTypes; 1576 QualType T; 1577 if (SS.getScopeRep()) { 1578 if (CXXRecordDecl *Record 1579 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 1580 T = Context.getTypeDeclType(Record); 1581 else 1582 T = QualType(SS.getScopeRep()->getAsType(), 0); 1583 } 1584 1585 // If we found an explicit specialization that prevents us from needing 1586 // 'template<>' headers, this will be set to the location of that 1587 // explicit specialization. 1588 SourceLocation ExplicitSpecLoc; 1589 1590 while (!T.isNull()) { 1591 NestedTypes.push_back(T); 1592 1593 // Retrieve the parent of a record type. 1594 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1595 // If this type is an explicit specialization, we're done. 1596 if (ClassTemplateSpecializationDecl *Spec 1597 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1598 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 1599 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 1600 ExplicitSpecLoc = Spec->getLocation(); 1601 break; 1602 } 1603 } else if (Record->getTemplateSpecializationKind() 1604 == TSK_ExplicitSpecialization) { 1605 ExplicitSpecLoc = Record->getLocation(); 1606 break; 1607 } 1608 1609 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 1610 T = Context.getTypeDeclType(Parent); 1611 else 1612 T = QualType(); 1613 continue; 1614 } 1615 1616 if (const TemplateSpecializationType *TST 1617 = T->getAs<TemplateSpecializationType>()) { 1618 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1619 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 1620 T = Context.getTypeDeclType(Parent); 1621 else 1622 T = QualType(); 1623 continue; 1624 } 1625 } 1626 1627 // Look one step prior in a dependent template specialization type. 1628 if (const DependentTemplateSpecializationType *DependentTST 1629 = T->getAs<DependentTemplateSpecializationType>()) { 1630 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 1631 T = QualType(NNS->getAsType(), 0); 1632 else 1633 T = QualType(); 1634 continue; 1635 } 1636 1637 // Look one step prior in a dependent name type. 1638 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 1639 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 1640 T = QualType(NNS->getAsType(), 0); 1641 else 1642 T = QualType(); 1643 continue; 1644 } 1645 1646 // Retrieve the parent of an enumeration type. 1647 if (const EnumType *EnumT = T->getAs<EnumType>()) { 1648 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 1649 // check here. 1650 EnumDecl *Enum = EnumT->getDecl(); 1651 1652 // Get to the parent type. 1653 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 1654 T = Context.getTypeDeclType(Parent); 1655 else 1656 T = QualType(); 1657 continue; 1658 } 1659 1660 T = QualType(); 1661 } 1662 // Reverse the nested types list, since we want to traverse from the outermost 1663 // to the innermost while checking template-parameter-lists. 1664 std::reverse(NestedTypes.begin(), NestedTypes.end()); 1665 1666 // C++0x [temp.expl.spec]p17: 1667 // A member or a member template may be nested within many 1668 // enclosing class templates. In an explicit specialization for 1669 // such a member, the member declaration shall be preceded by a 1670 // template<> for each enclosing class template that is 1671 // explicitly specialized. 1672 bool SawNonEmptyTemplateParameterList = false; 1673 unsigned ParamIdx = 0; 1674 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 1675 ++TypeIdx) { 1676 T = NestedTypes[TypeIdx]; 1677 1678 // Whether we expect a 'template<>' header. 1679 bool NeedEmptyTemplateHeader = false; 1680 1681 // Whether we expect a template header with parameters. 1682 bool NeedNonemptyTemplateHeader = false; 1683 1684 // For a dependent type, the set of template parameters that we 1685 // expect to see. 1686 TemplateParameterList *ExpectedTemplateParams = 0; 1687 1688 // C++0x [temp.expl.spec]p15: 1689 // A member or a member template may be nested within many enclosing 1690 // class templates. In an explicit specialization for such a member, the 1691 // member declaration shall be preceded by a template<> for each 1692 // enclosing class template that is explicitly specialized. 1693 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1694 if (ClassTemplatePartialSpecializationDecl *Partial 1695 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 1696 ExpectedTemplateParams = Partial->getTemplateParameters(); 1697 NeedNonemptyTemplateHeader = true; 1698 } else if (Record->isDependentType()) { 1699 if (Record->getDescribedClassTemplate()) { 1700 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1701 ->getTemplateParameters(); 1702 NeedNonemptyTemplateHeader = true; 1703 } 1704 } else if (ClassTemplateSpecializationDecl *Spec 1705 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1706 // C++0x [temp.expl.spec]p4: 1707 // Members of an explicitly specialized class template are defined 1708 // in the same manner as members of normal classes, and not using 1709 // the template<> syntax. 1710 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 1711 NeedEmptyTemplateHeader = true; 1712 else 1713 continue; 1714 } else if (Record->getTemplateSpecializationKind()) { 1715 if (Record->getTemplateSpecializationKind() 1716 != TSK_ExplicitSpecialization && 1717 TypeIdx == NumTypes - 1) 1718 IsExplicitSpecialization = true; 1719 1720 continue; 1721 } 1722 } else if (const TemplateSpecializationType *TST 1723 = T->getAs<TemplateSpecializationType>()) { 1724 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1725 ExpectedTemplateParams = Template->getTemplateParameters(); 1726 NeedNonemptyTemplateHeader = true; 1727 } 1728 } else if (T->getAs<DependentTemplateSpecializationType>()) { 1729 // FIXME: We actually could/should check the template arguments here 1730 // against the corresponding template parameter list. 1731 NeedNonemptyTemplateHeader = false; 1732 } 1733 1734 // C++ [temp.expl.spec]p16: 1735 // In an explicit specialization declaration for a member of a class 1736 // template or a member template that ap- pears in namespace scope, the 1737 // member template and some of its enclosing class templates may remain 1738 // unspecialized, except that the declaration shall not explicitly 1739 // specialize a class member template if its en- closing class templates 1740 // are not explicitly specialized as well. 1741 if (ParamIdx < NumParamLists) { 1742 if (ParamLists[ParamIdx]->size() == 0) { 1743 if (SawNonEmptyTemplateParameterList) { 1744 Diag(DeclLoc, diag::err_specialize_member_of_template) 1745 << ParamLists[ParamIdx]->getSourceRange(); 1746 Invalid = true; 1747 IsExplicitSpecialization = false; 1748 return 0; 1749 } 1750 } else 1751 SawNonEmptyTemplateParameterList = true; 1752 } 1753 1754 if (NeedEmptyTemplateHeader) { 1755 // If we're on the last of the types, and we need a 'template<>' header 1756 // here, then it's an explicit specialization. 1757 if (TypeIdx == NumTypes - 1) 1758 IsExplicitSpecialization = true; 1759 1760 if (ParamIdx < NumParamLists) { 1761 if (ParamLists[ParamIdx]->size() > 0) { 1762 // The header has template parameters when it shouldn't. Complain. 1763 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1764 diag::err_template_param_list_matches_nontemplate) 1765 << T 1766 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 1767 ParamLists[ParamIdx]->getRAngleLoc()) 1768 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1769 Invalid = true; 1770 return 0; 1771 } 1772 1773 // Consume this template header. 1774 ++ParamIdx; 1775 continue; 1776 } 1777 1778 if (!IsFriend) { 1779 // We don't have a template header, but we should. 1780 SourceLocation ExpectedTemplateLoc; 1781 if (NumParamLists > 0) 1782 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 1783 else 1784 ExpectedTemplateLoc = DeclStartLoc; 1785 1786 Diag(DeclLoc, diag::err_template_spec_needs_header) 1787 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS) 1788 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 1789 } 1790 1791 continue; 1792 } 1793 1794 if (NeedNonemptyTemplateHeader) { 1795 // In friend declarations we can have template-ids which don't 1796 // depend on the corresponding template parameter lists. But 1797 // assume that empty parameter lists are supposed to match this 1798 // template-id. 1799 if (IsFriend && T->isDependentType()) { 1800 if (ParamIdx < NumParamLists && 1801 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 1802 ExpectedTemplateParams = 0; 1803 else 1804 continue; 1805 } 1806 1807 if (ParamIdx < NumParamLists) { 1808 // Check the template parameter list, if we can. 1809 if (ExpectedTemplateParams && 1810 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 1811 ExpectedTemplateParams, 1812 true, TPL_TemplateMatch)) 1813 Invalid = true; 1814 1815 if (!Invalid && 1816 CheckTemplateParameterList(ParamLists[ParamIdx], 0, 1817 TPC_ClassTemplateMember)) 1818 Invalid = true; 1819 1820 ++ParamIdx; 1821 continue; 1822 } 1823 1824 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 1825 << T 1826 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1827 Invalid = true; 1828 continue; 1829 } 1830 } 1831 1832 // If there were at least as many template-ids as there were template 1833 // parameter lists, then there are no template parameter lists remaining for 1834 // the declaration itself. 1835 if (ParamIdx >= NumParamLists) 1836 return 0; 1837 1838 // If there were too many template parameter lists, complain about that now. 1839 if (ParamIdx < NumParamLists - 1) { 1840 bool HasAnyExplicitSpecHeader = false; 1841 bool AllExplicitSpecHeaders = true; 1842 for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) { 1843 if (ParamLists[I]->size() == 0) 1844 HasAnyExplicitSpecHeader = true; 1845 else 1846 AllExplicitSpecHeaders = false; 1847 } 1848 1849 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1850 AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers 1851 : diag::err_template_spec_extra_headers) 1852 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 1853 ParamLists[NumParamLists - 2]->getRAngleLoc()); 1854 1855 // If there was a specialization somewhere, such that 'template<>' is 1856 // not required, and there were any 'template<>' headers, note where the 1857 // specialization occurred. 1858 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader) 1859 Diag(ExplicitSpecLoc, 1860 diag::note_explicit_template_spec_does_not_need_header) 1861 << NestedTypes.back(); 1862 1863 // We have a template parameter list with no corresponding scope, which 1864 // means that the resulting template declaration can't be instantiated 1865 // properly (we'll end up with dependent nodes when we shouldn't). 1866 if (!AllExplicitSpecHeaders) 1867 Invalid = true; 1868 } 1869 1870 // C++ [temp.expl.spec]p16: 1871 // In an explicit specialization declaration for a member of a class 1872 // template or a member template that ap- pears in namespace scope, the 1873 // member template and some of its enclosing class templates may remain 1874 // unspecialized, except that the declaration shall not explicitly 1875 // specialize a class member template if its en- closing class templates 1876 // are not explicitly specialized as well. 1877 if (ParamLists[NumParamLists - 1]->size() == 0 && 1878 SawNonEmptyTemplateParameterList) { 1879 Diag(DeclLoc, diag::err_specialize_member_of_template) 1880 << ParamLists[ParamIdx]->getSourceRange(); 1881 Invalid = true; 1882 IsExplicitSpecialization = false; 1883 return 0; 1884 } 1885 1886 // Return the last template parameter list, which corresponds to the 1887 // entity being declared. 1888 return ParamLists[NumParamLists - 1]; 1889} 1890 1891void Sema::NoteAllFoundTemplates(TemplateName Name) { 1892 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 1893 Diag(Template->getLocation(), diag::note_template_declared_here) 1894 << (isa<FunctionTemplateDecl>(Template)? 0 1895 : isa<ClassTemplateDecl>(Template)? 1 1896 : isa<TypeAliasTemplateDecl>(Template)? 2 1897 : 3) 1898 << Template->getDeclName(); 1899 return; 1900 } 1901 1902 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 1903 for (OverloadedTemplateStorage::iterator I = OST->begin(), 1904 IEnd = OST->end(); 1905 I != IEnd; ++I) 1906 Diag((*I)->getLocation(), diag::note_template_declared_here) 1907 << 0 << (*I)->getDeclName(); 1908 1909 return; 1910 } 1911} 1912 1913QualType Sema::CheckTemplateIdType(TemplateName Name, 1914 SourceLocation TemplateLoc, 1915 TemplateArgumentListInfo &TemplateArgs) { 1916 DependentTemplateName *DTN 1917 = Name.getUnderlying().getAsDependentTemplateName(); 1918 if (DTN && DTN->isIdentifier()) 1919 // When building a template-id where the template-name is dependent, 1920 // assume the template is a type template. Either our assumption is 1921 // correct, or the code is ill-formed and will be diagnosed when the 1922 // dependent name is substituted. 1923 return Context.getDependentTemplateSpecializationType(ETK_None, 1924 DTN->getQualifier(), 1925 DTN->getIdentifier(), 1926 TemplateArgs); 1927 1928 TemplateDecl *Template = Name.getAsTemplateDecl(); 1929 if (!Template || isa<FunctionTemplateDecl>(Template)) { 1930 // We might have a substituted template template parameter pack. If so, 1931 // build a template specialization type for it. 1932 if (Name.getAsSubstTemplateTemplateParmPack()) 1933 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1934 1935 Diag(TemplateLoc, diag::err_template_id_not_a_type) 1936 << Name; 1937 NoteAllFoundTemplates(Name); 1938 return QualType(); 1939 } 1940 1941 // Check that the template argument list is well-formed for this 1942 // template. 1943 SmallVector<TemplateArgument, 4> Converted; 1944 bool ExpansionIntoFixedList = false; 1945 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1946 false, Converted, &ExpansionIntoFixedList)) 1947 return QualType(); 1948 1949 QualType CanonType; 1950 1951 bool InstantiationDependent = false; 1952 TypeAliasTemplateDecl *AliasTemplate = 0; 1953 if (!ExpansionIntoFixedList && 1954 (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) { 1955 // Find the canonical type for this type alias template specialization. 1956 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 1957 if (Pattern->isInvalidDecl()) 1958 return QualType(); 1959 1960 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 1961 Converted.data(), Converted.size()); 1962 1963 // Only substitute for the innermost template argument list. 1964 MultiLevelTemplateArgumentList TemplateArgLists; 1965 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 1966 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth(); 1967 for (unsigned I = 0; I < Depth; ++I) 1968 TemplateArgLists.addOuterTemplateArguments(0, 0); 1969 1970 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 1971 CanonType = SubstType(Pattern->getUnderlyingType(), 1972 TemplateArgLists, AliasTemplate->getLocation(), 1973 AliasTemplate->getDeclName()); 1974 if (CanonType.isNull()) 1975 return QualType(); 1976 } else if (Name.isDependent() || 1977 TemplateSpecializationType::anyDependentTemplateArguments( 1978 TemplateArgs, InstantiationDependent)) { 1979 // This class template specialization is a dependent 1980 // type. Therefore, its canonical type is another class template 1981 // specialization type that contains all of the converted 1982 // arguments in canonical form. This ensures that, e.g., A<T> and 1983 // A<T, T> have identical types when A is declared as: 1984 // 1985 // template<typename T, typename U = T> struct A; 1986 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1987 CanonType = Context.getTemplateSpecializationType(CanonName, 1988 Converted.data(), 1989 Converted.size()); 1990 1991 // FIXME: CanonType is not actually the canonical type, and unfortunately 1992 // it is a TemplateSpecializationType that we will never use again. 1993 // In the future, we need to teach getTemplateSpecializationType to only 1994 // build the canonical type and return that to us. 1995 CanonType = Context.getCanonicalType(CanonType); 1996 1997 // This might work out to be a current instantiation, in which 1998 // case the canonical type needs to be the InjectedClassNameType. 1999 // 2000 // TODO: in theory this could be a simple hashtable lookup; most 2001 // changes to CurContext don't change the set of current 2002 // instantiations. 2003 if (isa<ClassTemplateDecl>(Template)) { 2004 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 2005 // If we get out to a namespace, we're done. 2006 if (Ctx->isFileContext()) break; 2007 2008 // If this isn't a record, keep looking. 2009 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 2010 if (!Record) continue; 2011 2012 // Look for one of the two cases with InjectedClassNameTypes 2013 // and check whether it's the same template. 2014 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 2015 !Record->getDescribedClassTemplate()) 2016 continue; 2017 2018 // Fetch the injected class name type and check whether its 2019 // injected type is equal to the type we just built. 2020 QualType ICNT = Context.getTypeDeclType(Record); 2021 QualType Injected = cast<InjectedClassNameType>(ICNT) 2022 ->getInjectedSpecializationType(); 2023 2024 if (CanonType != Injected->getCanonicalTypeInternal()) 2025 continue; 2026 2027 // If so, the canonical type of this TST is the injected 2028 // class name type of the record we just found. 2029 assert(ICNT.isCanonical()); 2030 CanonType = ICNT; 2031 break; 2032 } 2033 } 2034 } else if (ClassTemplateDecl *ClassTemplate 2035 = dyn_cast<ClassTemplateDecl>(Template)) { 2036 // Find the class template specialization declaration that 2037 // corresponds to these arguments. 2038 void *InsertPos = 0; 2039 ClassTemplateSpecializationDecl *Decl 2040 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(), 2041 InsertPos); 2042 if (!Decl) { 2043 // This is the first time we have referenced this class template 2044 // specialization. Create the canonical declaration and add it to 2045 // the set of specializations. 2046 Decl = ClassTemplateSpecializationDecl::Create(Context, 2047 ClassTemplate->getTemplatedDecl()->getTagKind(), 2048 ClassTemplate->getDeclContext(), 2049 ClassTemplate->getTemplatedDecl()->getLocStart(), 2050 ClassTemplate->getLocation(), 2051 ClassTemplate, 2052 Converted.data(), 2053 Converted.size(), 0); 2054 ClassTemplate->AddSpecialization(Decl, InsertPos); 2055 Decl->setLexicalDeclContext(CurContext); 2056 } 2057 2058 CanonType = Context.getTypeDeclType(Decl); 2059 assert(isa<RecordType>(CanonType) && 2060 "type of non-dependent specialization is not a RecordType"); 2061 } 2062 2063 // Build the fully-sugared type for this class template 2064 // specialization, which refers back to the class template 2065 // specialization we created or found. 2066 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 2067} 2068 2069TypeResult 2070Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc, 2071 TemplateTy TemplateD, SourceLocation TemplateLoc, 2072 SourceLocation LAngleLoc, 2073 ASTTemplateArgsPtr TemplateArgsIn, 2074 SourceLocation RAngleLoc, 2075 bool IsCtorOrDtorName) { 2076 if (SS.isInvalid()) 2077 return true; 2078 2079 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2080 2081 // Translate the parser's template argument list in our AST format. 2082 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2083 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2084 2085 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2086 QualType T 2087 = Context.getDependentTemplateSpecializationType(ETK_None, 2088 DTN->getQualifier(), 2089 DTN->getIdentifier(), 2090 TemplateArgs); 2091 // Build type-source information. 2092 TypeLocBuilder TLB; 2093 DependentTemplateSpecializationTypeLoc SpecTL 2094 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2095 SpecTL.setElaboratedKeywordLoc(SourceLocation()); 2096 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2097 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2098 SpecTL.setTemplateNameLoc(TemplateLoc); 2099 SpecTL.setLAngleLoc(LAngleLoc); 2100 SpecTL.setRAngleLoc(RAngleLoc); 2101 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2102 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2103 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2104 } 2105 2106 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2107 TemplateArgsIn.release(); 2108 2109 if (Result.isNull()) 2110 return true; 2111 2112 // Build type-source information. 2113 TypeLocBuilder TLB; 2114 TemplateSpecializationTypeLoc SpecTL 2115 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2116 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2117 SpecTL.setTemplateNameLoc(TemplateLoc); 2118 SpecTL.setLAngleLoc(LAngleLoc); 2119 SpecTL.setRAngleLoc(RAngleLoc); 2120 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2121 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2122 2123 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a 2124 // constructor or destructor name (in such a case, the scope specifier 2125 // will be attached to the enclosing Decl or Expr node). 2126 if (SS.isNotEmpty() && !IsCtorOrDtorName) { 2127 // Create an elaborated-type-specifier containing the nested-name-specifier. 2128 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); 2129 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2130 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 2131 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2132 } 2133 2134 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2135} 2136 2137TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 2138 TypeSpecifierType TagSpec, 2139 SourceLocation TagLoc, 2140 CXXScopeSpec &SS, 2141 SourceLocation TemplateKWLoc, 2142 TemplateTy TemplateD, 2143 SourceLocation TemplateLoc, 2144 SourceLocation LAngleLoc, 2145 ASTTemplateArgsPtr TemplateArgsIn, 2146 SourceLocation RAngleLoc) { 2147 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2148 2149 // Translate the parser's template argument list in our AST format. 2150 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2151 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2152 2153 // Determine the tag kind 2154 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 2155 ElaboratedTypeKeyword Keyword 2156 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 2157 2158 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2159 QualType T = Context.getDependentTemplateSpecializationType(Keyword, 2160 DTN->getQualifier(), 2161 DTN->getIdentifier(), 2162 TemplateArgs); 2163 2164 // Build type-source information. 2165 TypeLocBuilder TLB; 2166 DependentTemplateSpecializationTypeLoc SpecTL 2167 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2168 SpecTL.setElaboratedKeywordLoc(TagLoc); 2169 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2170 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2171 SpecTL.setTemplateNameLoc(TemplateLoc); 2172 SpecTL.setLAngleLoc(LAngleLoc); 2173 SpecTL.setRAngleLoc(RAngleLoc); 2174 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2175 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2176 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2177 } 2178 2179 if (TypeAliasTemplateDecl *TAT = 2180 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 2181 // C++0x [dcl.type.elab]p2: 2182 // If the identifier resolves to a typedef-name or the simple-template-id 2183 // resolves to an alias template specialization, the 2184 // elaborated-type-specifier is ill-formed. 2185 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4; 2186 Diag(TAT->getLocation(), diag::note_declared_at); 2187 } 2188 2189 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2190 if (Result.isNull()) 2191 return TypeResult(true); 2192 2193 // Check the tag kind 2194 if (const RecordType *RT = Result->getAs<RecordType>()) { 2195 RecordDecl *D = RT->getDecl(); 2196 2197 IdentifierInfo *Id = D->getIdentifier(); 2198 assert(Id && "templated class must have an identifier"); 2199 2200 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, 2201 TagLoc, *Id)) { 2202 Diag(TagLoc, diag::err_use_with_wrong_tag) 2203 << Result 2204 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 2205 Diag(D->getLocation(), diag::note_previous_use); 2206 } 2207 } 2208 2209 // Provide source-location information for the template specialization. 2210 TypeLocBuilder TLB; 2211 TemplateSpecializationTypeLoc SpecTL 2212 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2213 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2214 SpecTL.setTemplateNameLoc(TemplateLoc); 2215 SpecTL.setLAngleLoc(LAngleLoc); 2216 SpecTL.setRAngleLoc(RAngleLoc); 2217 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2218 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2219 2220 // Construct an elaborated type containing the nested-name-specifier (if any) 2221 // and tag keyword. 2222 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 2223 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2224 ElabTL.setElaboratedKeywordLoc(TagLoc); 2225 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2226 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2227} 2228 2229ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 2230 SourceLocation TemplateKWLoc, 2231 LookupResult &R, 2232 bool RequiresADL, 2233 const TemplateArgumentListInfo *TemplateArgs) { 2234 // FIXME: Can we do any checking at this point? I guess we could check the 2235 // template arguments that we have against the template name, if the template 2236 // name refers to a single template. That's not a terribly common case, 2237 // though. 2238 // foo<int> could identify a single function unambiguously 2239 // This approach does NOT work, since f<int>(1); 2240 // gets resolved prior to resorting to overload resolution 2241 // i.e., template<class T> void f(double); 2242 // vs template<class T, class U> void f(U); 2243 2244 // These should be filtered out by our callers. 2245 assert(!R.empty() && "empty lookup results when building templateid"); 2246 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 2247 2248 // We don't want lookup warnings at this point. 2249 R.suppressDiagnostics(); 2250 2251 UnresolvedLookupExpr *ULE 2252 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 2253 SS.getWithLocInContext(Context), 2254 TemplateKWLoc, 2255 R.getLookupNameInfo(), 2256 RequiresADL, TemplateArgs, 2257 R.begin(), R.end()); 2258 2259 return Owned(ULE); 2260} 2261 2262// We actually only call this from template instantiation. 2263ExprResult 2264Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 2265 SourceLocation TemplateKWLoc, 2266 const DeclarationNameInfo &NameInfo, 2267 const TemplateArgumentListInfo *TemplateArgs) { 2268 assert(TemplateArgs || TemplateKWLoc.isValid()); 2269 DeclContext *DC; 2270 if (!(DC = computeDeclContext(SS, false)) || 2271 DC->isDependentContext() || 2272 RequireCompleteDeclContext(SS, DC)) 2273 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 2274 2275 bool MemberOfUnknownSpecialization; 2276 LookupResult R(*this, NameInfo, LookupOrdinaryName); 2277 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 2278 MemberOfUnknownSpecialization); 2279 2280 if (R.isAmbiguous()) 2281 return ExprError(); 2282 2283 if (R.empty()) { 2284 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 2285 << NameInfo.getName() << SS.getRange(); 2286 return ExprError(); 2287 } 2288 2289 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 2290 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 2291 << (NestedNameSpecifier*) SS.getScopeRep() 2292 << NameInfo.getName() << SS.getRange(); 2293 Diag(Temp->getLocation(), diag::note_referenced_class_template); 2294 return ExprError(); 2295 } 2296 2297 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs); 2298} 2299 2300/// \brief Form a dependent template name. 2301/// 2302/// This action forms a dependent template name given the template 2303/// name and its (presumably dependent) scope specifier. For 2304/// example, given "MetaFun::template apply", the scope specifier \p 2305/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 2306/// of the "template" keyword, and "apply" is the \p Name. 2307TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 2308 CXXScopeSpec &SS, 2309 SourceLocation TemplateKWLoc, 2310 UnqualifiedId &Name, 2311 ParsedType ObjectType, 2312 bool EnteringContext, 2313 TemplateTy &Result) { 2314 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) 2315 Diag(TemplateKWLoc, 2316 getLangOpts().CPlusPlus0x ? 2317 diag::warn_cxx98_compat_template_outside_of_template : 2318 diag::ext_template_outside_of_template) 2319 << FixItHint::CreateRemoval(TemplateKWLoc); 2320 2321 DeclContext *LookupCtx = 0; 2322 if (SS.isSet()) 2323 LookupCtx = computeDeclContext(SS, EnteringContext); 2324 if (!LookupCtx && ObjectType) 2325 LookupCtx = computeDeclContext(ObjectType.get()); 2326 if (LookupCtx) { 2327 // C++0x [temp.names]p5: 2328 // If a name prefixed by the keyword template is not the name of 2329 // a template, the program is ill-formed. [Note: the keyword 2330 // template may not be applied to non-template members of class 2331 // templates. -end note ] [ Note: as is the case with the 2332 // typename prefix, the template prefix is allowed in cases 2333 // where it is not strictly necessary; i.e., when the 2334 // nested-name-specifier or the expression on the left of the -> 2335 // or . is not dependent on a template-parameter, or the use 2336 // does not appear in the scope of a template. -end note] 2337 // 2338 // Note: C++03 was more strict here, because it banned the use of 2339 // the "template" keyword prior to a template-name that was not a 2340 // dependent name. C++ DR468 relaxed this requirement (the 2341 // "template" keyword is now permitted). We follow the C++0x 2342 // rules, even in C++03 mode with a warning, retroactively applying the DR. 2343 bool MemberOfUnknownSpecialization; 2344 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name, 2345 ObjectType, EnteringContext, Result, 2346 MemberOfUnknownSpecialization); 2347 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 2348 isa<CXXRecordDecl>(LookupCtx) && 2349 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() || 2350 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) { 2351 // This is a dependent template. Handle it below. 2352 } else if (TNK == TNK_Non_template) { 2353 Diag(Name.getLocStart(), 2354 diag::err_template_kw_refers_to_non_template) 2355 << GetNameFromUnqualifiedId(Name).getName() 2356 << Name.getSourceRange() 2357 << TemplateKWLoc; 2358 return TNK_Non_template; 2359 } else { 2360 // We found something; return it. 2361 return TNK; 2362 } 2363 } 2364 2365 NestedNameSpecifier *Qualifier 2366 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 2367 2368 switch (Name.getKind()) { 2369 case UnqualifiedId::IK_Identifier: 2370 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2371 Name.Identifier)); 2372 return TNK_Dependent_template_name; 2373 2374 case UnqualifiedId::IK_OperatorFunctionId: 2375 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2376 Name.OperatorFunctionId.Operator)); 2377 return TNK_Dependent_template_name; 2378 2379 case UnqualifiedId::IK_LiteralOperatorId: 2380 llvm_unreachable( 2381 "We don't support these; Parse shouldn't have allowed propagation"); 2382 2383 default: 2384 break; 2385 } 2386 2387 Diag(Name.getLocStart(), 2388 diag::err_template_kw_refers_to_non_template) 2389 << GetNameFromUnqualifiedId(Name).getName() 2390 << Name.getSourceRange() 2391 << TemplateKWLoc; 2392 return TNK_Non_template; 2393} 2394 2395bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 2396 const TemplateArgumentLoc &AL, 2397 SmallVectorImpl<TemplateArgument> &Converted) { 2398 const TemplateArgument &Arg = AL.getArgument(); 2399 2400 // Check template type parameter. 2401 switch(Arg.getKind()) { 2402 case TemplateArgument::Type: 2403 // C++ [temp.arg.type]p1: 2404 // A template-argument for a template-parameter which is a 2405 // type shall be a type-id. 2406 break; 2407 case TemplateArgument::Template: { 2408 // We have a template type parameter but the template argument 2409 // is a template without any arguments. 2410 SourceRange SR = AL.getSourceRange(); 2411 TemplateName Name = Arg.getAsTemplate(); 2412 Diag(SR.getBegin(), diag::err_template_missing_args) 2413 << Name << SR; 2414 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 2415 Diag(Decl->getLocation(), diag::note_template_decl_here); 2416 2417 return true; 2418 } 2419 default: { 2420 // We have a template type parameter but the template argument 2421 // is not a type. 2422 SourceRange SR = AL.getSourceRange(); 2423 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 2424 Diag(Param->getLocation(), diag::note_template_param_here); 2425 2426 return true; 2427 } 2428 } 2429 2430 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 2431 return true; 2432 2433 // Add the converted template type argument. 2434 QualType ArgType = Context.getCanonicalType(Arg.getAsType()); 2435 2436 // Objective-C ARC: 2437 // If an explicitly-specified template argument type is a lifetime type 2438 // with no lifetime qualifier, the __strong lifetime qualifier is inferred. 2439 if (getLangOpts().ObjCAutoRefCount && 2440 ArgType->isObjCLifetimeType() && 2441 !ArgType.getObjCLifetime()) { 2442 Qualifiers Qs; 2443 Qs.setObjCLifetime(Qualifiers::OCL_Strong); 2444 ArgType = Context.getQualifiedType(ArgType, Qs); 2445 } 2446 2447 Converted.push_back(TemplateArgument(ArgType)); 2448 return false; 2449} 2450 2451/// \brief Substitute template arguments into the default template argument for 2452/// the given template type parameter. 2453/// 2454/// \param SemaRef the semantic analysis object for which we are performing 2455/// the substitution. 2456/// 2457/// \param Template the template that we are synthesizing template arguments 2458/// for. 2459/// 2460/// \param TemplateLoc the location of the template name that started the 2461/// template-id we are checking. 2462/// 2463/// \param RAngleLoc the location of the right angle bracket ('>') that 2464/// terminates the template-id. 2465/// 2466/// \param Param the template template parameter whose default we are 2467/// substituting into. 2468/// 2469/// \param Converted the list of template arguments provided for template 2470/// parameters that precede \p Param in the template parameter list. 2471/// \returns the substituted template argument, or NULL if an error occurred. 2472static TypeSourceInfo * 2473SubstDefaultTemplateArgument(Sema &SemaRef, 2474 TemplateDecl *Template, 2475 SourceLocation TemplateLoc, 2476 SourceLocation RAngleLoc, 2477 TemplateTypeParmDecl *Param, 2478 SmallVectorImpl<TemplateArgument> &Converted) { 2479 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 2480 2481 // If the argument type is dependent, instantiate it now based 2482 // on the previously-computed template arguments. 2483 if (ArgType->getType()->isDependentType()) { 2484 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2485 Converted.data(), Converted.size()); 2486 2487 MultiLevelTemplateArgumentList AllTemplateArgs 2488 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2489 2490 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2491 Template, Converted.data(), 2492 Converted.size(), 2493 SourceRange(TemplateLoc, RAngleLoc)); 2494 2495 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 2496 Param->getDefaultArgumentLoc(), 2497 Param->getDeclName()); 2498 } 2499 2500 return ArgType; 2501} 2502 2503/// \brief Substitute template arguments into the default template argument for 2504/// the given non-type template parameter. 2505/// 2506/// \param SemaRef the semantic analysis object for which we are performing 2507/// the substitution. 2508/// 2509/// \param Template the template that we are synthesizing template arguments 2510/// for. 2511/// 2512/// \param TemplateLoc the location of the template name that started the 2513/// template-id we are checking. 2514/// 2515/// \param RAngleLoc the location of the right angle bracket ('>') that 2516/// terminates the template-id. 2517/// 2518/// \param Param the non-type template parameter whose default we are 2519/// substituting into. 2520/// 2521/// \param Converted the list of template arguments provided for template 2522/// parameters that precede \p Param in the template parameter list. 2523/// 2524/// \returns the substituted template argument, or NULL if an error occurred. 2525static ExprResult 2526SubstDefaultTemplateArgument(Sema &SemaRef, 2527 TemplateDecl *Template, 2528 SourceLocation TemplateLoc, 2529 SourceLocation RAngleLoc, 2530 NonTypeTemplateParmDecl *Param, 2531 SmallVectorImpl<TemplateArgument> &Converted) { 2532 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2533 Converted.data(), Converted.size()); 2534 2535 MultiLevelTemplateArgumentList AllTemplateArgs 2536 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2537 2538 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2539 Template, Converted.data(), 2540 Converted.size(), 2541 SourceRange(TemplateLoc, RAngleLoc)); 2542 2543 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 2544} 2545 2546/// \brief Substitute template arguments into the default template argument for 2547/// the given template template parameter. 2548/// 2549/// \param SemaRef the semantic analysis object for which we are performing 2550/// the substitution. 2551/// 2552/// \param Template the template that we are synthesizing template arguments 2553/// for. 2554/// 2555/// \param TemplateLoc the location of the template name that started the 2556/// template-id we are checking. 2557/// 2558/// \param RAngleLoc the location of the right angle bracket ('>') that 2559/// terminates the template-id. 2560/// 2561/// \param Param the template template parameter whose default we are 2562/// substituting into. 2563/// 2564/// \param Converted the list of template arguments provided for template 2565/// parameters that precede \p Param in the template parameter list. 2566/// 2567/// \param QualifierLoc Will be set to the nested-name-specifier (with 2568/// source-location information) that precedes the template name. 2569/// 2570/// \returns the substituted template argument, or NULL if an error occurred. 2571static TemplateName 2572SubstDefaultTemplateArgument(Sema &SemaRef, 2573 TemplateDecl *Template, 2574 SourceLocation TemplateLoc, 2575 SourceLocation RAngleLoc, 2576 TemplateTemplateParmDecl *Param, 2577 SmallVectorImpl<TemplateArgument> &Converted, 2578 NestedNameSpecifierLoc &QualifierLoc) { 2579 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2580 Converted.data(), Converted.size()); 2581 2582 MultiLevelTemplateArgumentList AllTemplateArgs 2583 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2584 2585 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2586 Template, Converted.data(), 2587 Converted.size(), 2588 SourceRange(TemplateLoc, RAngleLoc)); 2589 2590 // Substitute into the nested-name-specifier first, 2591 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 2592 if (QualifierLoc) { 2593 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 2594 AllTemplateArgs); 2595 if (!QualifierLoc) 2596 return TemplateName(); 2597 } 2598 2599 return SemaRef.SubstTemplateName(QualifierLoc, 2600 Param->getDefaultArgument().getArgument().getAsTemplate(), 2601 Param->getDefaultArgument().getTemplateNameLoc(), 2602 AllTemplateArgs); 2603} 2604 2605/// \brief If the given template parameter has a default template 2606/// argument, substitute into that default template argument and 2607/// return the corresponding template argument. 2608TemplateArgumentLoc 2609Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 2610 SourceLocation TemplateLoc, 2611 SourceLocation RAngleLoc, 2612 Decl *Param, 2613 SmallVectorImpl<TemplateArgument> &Converted) { 2614 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 2615 if (!TypeParm->hasDefaultArgument()) 2616 return TemplateArgumentLoc(); 2617 2618 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 2619 TemplateLoc, 2620 RAngleLoc, 2621 TypeParm, 2622 Converted); 2623 if (DI) 2624 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 2625 2626 return TemplateArgumentLoc(); 2627 } 2628 2629 if (NonTypeTemplateParmDecl *NonTypeParm 2630 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2631 if (!NonTypeParm->hasDefaultArgument()) 2632 return TemplateArgumentLoc(); 2633 2634 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 2635 TemplateLoc, 2636 RAngleLoc, 2637 NonTypeParm, 2638 Converted); 2639 if (Arg.isInvalid()) 2640 return TemplateArgumentLoc(); 2641 2642 Expr *ArgE = Arg.takeAs<Expr>(); 2643 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 2644 } 2645 2646 TemplateTemplateParmDecl *TempTempParm 2647 = cast<TemplateTemplateParmDecl>(Param); 2648 if (!TempTempParm->hasDefaultArgument()) 2649 return TemplateArgumentLoc(); 2650 2651 2652 NestedNameSpecifierLoc QualifierLoc; 2653 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 2654 TemplateLoc, 2655 RAngleLoc, 2656 TempTempParm, 2657 Converted, 2658 QualifierLoc); 2659 if (TName.isNull()) 2660 return TemplateArgumentLoc(); 2661 2662 return TemplateArgumentLoc(TemplateArgument(TName), 2663 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 2664 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 2665} 2666 2667/// \brief Check that the given template argument corresponds to the given 2668/// template parameter. 2669/// 2670/// \param Param The template parameter against which the argument will be 2671/// checked. 2672/// 2673/// \param Arg The template argument. 2674/// 2675/// \param Template The template in which the template argument resides. 2676/// 2677/// \param TemplateLoc The location of the template name for the template 2678/// whose argument list we're matching. 2679/// 2680/// \param RAngleLoc The location of the right angle bracket ('>') that closes 2681/// the template argument list. 2682/// 2683/// \param ArgumentPackIndex The index into the argument pack where this 2684/// argument will be placed. Only valid if the parameter is a parameter pack. 2685/// 2686/// \param Converted The checked, converted argument will be added to the 2687/// end of this small vector. 2688/// 2689/// \param CTAK Describes how we arrived at this particular template argument: 2690/// explicitly written, deduced, etc. 2691/// 2692/// \returns true on error, false otherwise. 2693bool Sema::CheckTemplateArgument(NamedDecl *Param, 2694 const TemplateArgumentLoc &Arg, 2695 NamedDecl *Template, 2696 SourceLocation TemplateLoc, 2697 SourceLocation RAngleLoc, 2698 unsigned ArgumentPackIndex, 2699 SmallVectorImpl<TemplateArgument> &Converted, 2700 CheckTemplateArgumentKind CTAK) { 2701 // Check template type parameters. 2702 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2703 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2704 2705 // Check non-type template parameters. 2706 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2707 // Do substitution on the type of the non-type template parameter 2708 // with the template arguments we've seen thus far. But if the 2709 // template has a dependent context then we cannot substitute yet. 2710 QualType NTTPType = NTTP->getType(); 2711 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 2712 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 2713 2714 if (NTTPType->isDependentType() && 2715 !isa<TemplateTemplateParmDecl>(Template) && 2716 !Template->getDeclContext()->isDependentContext()) { 2717 // Do substitution on the type of the non-type template parameter. 2718 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2719 NTTP, Converted.data(), Converted.size(), 2720 SourceRange(TemplateLoc, RAngleLoc)); 2721 2722 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2723 Converted.data(), Converted.size()); 2724 NTTPType = SubstType(NTTPType, 2725 MultiLevelTemplateArgumentList(TemplateArgs), 2726 NTTP->getLocation(), 2727 NTTP->getDeclName()); 2728 // If that worked, check the non-type template parameter type 2729 // for validity. 2730 if (!NTTPType.isNull()) 2731 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2732 NTTP->getLocation()); 2733 if (NTTPType.isNull()) 2734 return true; 2735 } 2736 2737 switch (Arg.getArgument().getKind()) { 2738 case TemplateArgument::Null: 2739 llvm_unreachable("Should never see a NULL template argument here"); 2740 2741 case TemplateArgument::Expression: { 2742 TemplateArgument Result; 2743 ExprResult Res = 2744 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), 2745 Result, CTAK); 2746 if (Res.isInvalid()) 2747 return true; 2748 2749 Converted.push_back(Result); 2750 break; 2751 } 2752 2753 case TemplateArgument::Declaration: 2754 case TemplateArgument::Integral: 2755 // We've already checked this template argument, so just copy 2756 // it to the list of converted arguments. 2757 Converted.push_back(Arg.getArgument()); 2758 break; 2759 2760 case TemplateArgument::Template: 2761 case TemplateArgument::TemplateExpansion: 2762 // We were given a template template argument. It may not be ill-formed; 2763 // see below. 2764 if (DependentTemplateName *DTN 2765 = Arg.getArgument().getAsTemplateOrTemplatePattern() 2766 .getAsDependentTemplateName()) { 2767 // We have a template argument such as \c T::template X, which we 2768 // parsed as a template template argument. However, since we now 2769 // know that we need a non-type template argument, convert this 2770 // template name into an expression. 2771 2772 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 2773 Arg.getTemplateNameLoc()); 2774 2775 CXXScopeSpec SS; 2776 SS.Adopt(Arg.getTemplateQualifierLoc()); 2777 // FIXME: the template-template arg was a DependentTemplateName, 2778 // so it was provided with a template keyword. However, its source 2779 // location is not stored in the template argument structure. 2780 SourceLocation TemplateKWLoc; 2781 ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context, 2782 SS.getWithLocInContext(Context), 2783 TemplateKWLoc, 2784 NameInfo, 0)); 2785 2786 // If we parsed the template argument as a pack expansion, create a 2787 // pack expansion expression. 2788 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 2789 E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc()); 2790 if (E.isInvalid()) 2791 return true; 2792 } 2793 2794 TemplateArgument Result; 2795 E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result); 2796 if (E.isInvalid()) 2797 return true; 2798 2799 Converted.push_back(Result); 2800 break; 2801 } 2802 2803 // We have a template argument that actually does refer to a class 2804 // template, alias template, or template template parameter, and 2805 // therefore cannot be a non-type template argument. 2806 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2807 << Arg.getSourceRange(); 2808 2809 Diag(Param->getLocation(), diag::note_template_param_here); 2810 return true; 2811 2812 case TemplateArgument::Type: { 2813 // We have a non-type template parameter but the template 2814 // argument is a type. 2815 2816 // C++ [temp.arg]p2: 2817 // In a template-argument, an ambiguity between a type-id and 2818 // an expression is resolved to a type-id, regardless of the 2819 // form of the corresponding template-parameter. 2820 // 2821 // We warn specifically about this case, since it can be rather 2822 // confusing for users. 2823 QualType T = Arg.getArgument().getAsType(); 2824 SourceRange SR = Arg.getSourceRange(); 2825 if (T->isFunctionType()) 2826 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2827 else 2828 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2829 Diag(Param->getLocation(), diag::note_template_param_here); 2830 return true; 2831 } 2832 2833 case TemplateArgument::Pack: 2834 llvm_unreachable("Caller must expand template argument packs"); 2835 } 2836 2837 return false; 2838 } 2839 2840 2841 // Check template template parameters. 2842 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2843 2844 // Substitute into the template parameter list of the template 2845 // template parameter, since previously-supplied template arguments 2846 // may appear within the template template parameter. 2847 { 2848 // Set up a template instantiation context. 2849 LocalInstantiationScope Scope(*this); 2850 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2851 TempParm, Converted.data(), Converted.size(), 2852 SourceRange(TemplateLoc, RAngleLoc)); 2853 2854 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2855 Converted.data(), Converted.size()); 2856 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2857 SubstDecl(TempParm, CurContext, 2858 MultiLevelTemplateArgumentList(TemplateArgs))); 2859 if (!TempParm) 2860 return true; 2861 } 2862 2863 switch (Arg.getArgument().getKind()) { 2864 case TemplateArgument::Null: 2865 llvm_unreachable("Should never see a NULL template argument here"); 2866 2867 case TemplateArgument::Template: 2868 case TemplateArgument::TemplateExpansion: 2869 if (CheckTemplateArgument(TempParm, Arg)) 2870 return true; 2871 2872 Converted.push_back(Arg.getArgument()); 2873 break; 2874 2875 case TemplateArgument::Expression: 2876 case TemplateArgument::Type: 2877 // We have a template template parameter but the template 2878 // argument does not refer to a template. 2879 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 2880 << getLangOpts().CPlusPlus0x; 2881 return true; 2882 2883 case TemplateArgument::Declaration: 2884 llvm_unreachable("Declaration argument with template template parameter"); 2885 case TemplateArgument::Integral: 2886 llvm_unreachable("Integral argument with template template parameter"); 2887 2888 case TemplateArgument::Pack: 2889 llvm_unreachable("Caller must expand template argument packs"); 2890 } 2891 2892 return false; 2893} 2894 2895/// \brief Diagnose an arity mismatch in the 2896static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template, 2897 SourceLocation TemplateLoc, 2898 TemplateArgumentListInfo &TemplateArgs) { 2899 TemplateParameterList *Params = Template->getTemplateParameters(); 2900 unsigned NumParams = Params->size(); 2901 unsigned NumArgs = TemplateArgs.size(); 2902 2903 SourceRange Range; 2904 if (NumArgs > NumParams) 2905 Range = SourceRange(TemplateArgs[NumParams].getLocation(), 2906 TemplateArgs.getRAngleLoc()); 2907 S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2908 << (NumArgs > NumParams) 2909 << (isa<ClassTemplateDecl>(Template)? 0 : 2910 isa<FunctionTemplateDecl>(Template)? 1 : 2911 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2912 << Template << Range; 2913 S.Diag(Template->getLocation(), diag::note_template_decl_here) 2914 << Params->getSourceRange(); 2915 return true; 2916} 2917 2918/// \brief Check that the given template argument list is well-formed 2919/// for specializing the given template. 2920bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2921 SourceLocation TemplateLoc, 2922 TemplateArgumentListInfo &TemplateArgs, 2923 bool PartialTemplateArgs, 2924 SmallVectorImpl<TemplateArgument> &Converted, 2925 bool *ExpansionIntoFixedList) { 2926 if (ExpansionIntoFixedList) 2927 *ExpansionIntoFixedList = false; 2928 2929 TemplateParameterList *Params = Template->getTemplateParameters(); 2930 unsigned NumParams = Params->size(); 2931 unsigned NumArgs = TemplateArgs.size(); 2932 bool Invalid = false; 2933 2934 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2935 2936 bool HasParameterPack = 2937 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2938 2939 // C++ [temp.arg]p1: 2940 // [...] The type and form of each template-argument specified in 2941 // a template-id shall match the type and form specified for the 2942 // corresponding parameter declared by the template in its 2943 // template-parameter-list. 2944 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 2945 SmallVector<TemplateArgument, 2> ArgumentPack; 2946 TemplateParameterList::iterator Param = Params->begin(), 2947 ParamEnd = Params->end(); 2948 unsigned ArgIdx = 0; 2949 LocalInstantiationScope InstScope(*this, true); 2950 bool SawPackExpansion = false; 2951 while (Param != ParamEnd) { 2952 if (ArgIdx < NumArgs) { 2953 // If we have an expanded parameter pack, make sure we don't have too 2954 // many arguments. 2955 // FIXME: This really should fall out from the normal arity checking. 2956 if (NonTypeTemplateParmDecl *NTTP 2957 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2958 if (NTTP->isExpandedParameterPack() && 2959 ArgumentPack.size() >= NTTP->getNumExpansionTypes()) { 2960 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2961 << true 2962 << (isa<ClassTemplateDecl>(Template)? 0 : 2963 isa<FunctionTemplateDecl>(Template)? 1 : 2964 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2965 << Template; 2966 Diag(Template->getLocation(), diag::note_template_decl_here) 2967 << Params->getSourceRange(); 2968 return true; 2969 } 2970 } 2971 2972 // Check the template argument we were given. 2973 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2974 TemplateLoc, RAngleLoc, 2975 ArgumentPack.size(), Converted)) 2976 return true; 2977 2978 if ((*Param)->isTemplateParameterPack()) { 2979 // The template parameter was a template parameter pack, so take the 2980 // deduced argument and place it on the argument pack. Note that we 2981 // stay on the same template parameter so that we can deduce more 2982 // arguments. 2983 ArgumentPack.push_back(Converted.back()); 2984 Converted.pop_back(); 2985 } else { 2986 // Move to the next template parameter. 2987 ++Param; 2988 } 2989 2990 // If this template argument is a pack expansion, record that fact 2991 // and break out; we can't actually check any more. 2992 if (TemplateArgs[ArgIdx].getArgument().isPackExpansion()) { 2993 SawPackExpansion = true; 2994 ++ArgIdx; 2995 break; 2996 } 2997 2998 ++ArgIdx; 2999 continue; 3000 } 3001 3002 // If we're checking a partial template argument list, we're done. 3003 if (PartialTemplateArgs) { 3004 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty()) 3005 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 3006 ArgumentPack.data(), 3007 ArgumentPack.size())); 3008 3009 return Invalid; 3010 } 3011 3012 // If we have a template parameter pack with no more corresponding 3013 // arguments, just break out now and we'll fill in the argument pack below. 3014 if ((*Param)->isTemplateParameterPack()) 3015 break; 3016 3017 // Check whether we have a default argument. 3018 TemplateArgumentLoc Arg; 3019 3020 // Retrieve the default template argument from the template 3021 // parameter. For each kind of template parameter, we substitute the 3022 // template arguments provided thus far and any "outer" template arguments 3023 // (when the template parameter was part of a nested template) into 3024 // the default argument. 3025 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 3026 if (!TTP->hasDefaultArgument()) 3027 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3028 TemplateArgs); 3029 3030 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 3031 Template, 3032 TemplateLoc, 3033 RAngleLoc, 3034 TTP, 3035 Converted); 3036 if (!ArgType) 3037 return true; 3038 3039 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 3040 ArgType); 3041 } else if (NonTypeTemplateParmDecl *NTTP 3042 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 3043 if (!NTTP->hasDefaultArgument()) 3044 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3045 TemplateArgs); 3046 3047 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 3048 TemplateLoc, 3049 RAngleLoc, 3050 NTTP, 3051 Converted); 3052 if (E.isInvalid()) 3053 return true; 3054 3055 Expr *Ex = E.takeAs<Expr>(); 3056 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 3057 } else { 3058 TemplateTemplateParmDecl *TempParm 3059 = cast<TemplateTemplateParmDecl>(*Param); 3060 3061 if (!TempParm->hasDefaultArgument()) 3062 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3063 TemplateArgs); 3064 3065 NestedNameSpecifierLoc QualifierLoc; 3066 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 3067 TemplateLoc, 3068 RAngleLoc, 3069 TempParm, 3070 Converted, 3071 QualifierLoc); 3072 if (Name.isNull()) 3073 return true; 3074 3075 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc, 3076 TempParm->getDefaultArgument().getTemplateNameLoc()); 3077 } 3078 3079 // Introduce an instantiation record that describes where we are using 3080 // the default template argument. 3081 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 3082 Converted.data(), Converted.size(), 3083 SourceRange(TemplateLoc, RAngleLoc)); 3084 3085 // Check the default template argument. 3086 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 3087 RAngleLoc, 0, Converted)) 3088 return true; 3089 3090 // Core issue 150 (assumed resolution): if this is a template template 3091 // parameter, keep track of the default template arguments from the 3092 // template definition. 3093 if (isTemplateTemplateParameter) 3094 TemplateArgs.addArgument(Arg); 3095 3096 // Move to the next template parameter and argument. 3097 ++Param; 3098 ++ArgIdx; 3099 } 3100 3101 // If we saw a pack expansion, then directly convert the remaining arguments, 3102 // because we don't know what parameters they'll match up with. 3103 if (SawPackExpansion) { 3104 bool AddToArgumentPack 3105 = Param != ParamEnd && (*Param)->isTemplateParameterPack(); 3106 while (ArgIdx < NumArgs) { 3107 if (AddToArgumentPack) 3108 ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument()); 3109 else 3110 Converted.push_back(TemplateArgs[ArgIdx].getArgument()); 3111 ++ArgIdx; 3112 } 3113 3114 // Push the argument pack onto the list of converted arguments. 3115 if (AddToArgumentPack) { 3116 if (ArgumentPack.empty()) 3117 Converted.push_back(TemplateArgument(0, 0)); 3118 else { 3119 Converted.push_back( 3120 TemplateArgument::CreatePackCopy(Context, 3121 ArgumentPack.data(), 3122 ArgumentPack.size())); 3123 ArgumentPack.clear(); 3124 } 3125 } else if (ExpansionIntoFixedList) { 3126 // We have expanded a pack into a fixed list. 3127 *ExpansionIntoFixedList = true; 3128 } 3129 3130 return Invalid; 3131 } 3132 3133 // If we have any leftover arguments, then there were too many arguments. 3134 // Complain and fail. 3135 if (ArgIdx < NumArgs) 3136 return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs); 3137 3138 // If we have an expanded parameter pack, make sure we don't have too 3139 // many arguments. 3140 // FIXME: This really should fall out from the normal arity checking. 3141 if (Param != ParamEnd) { 3142 if (NonTypeTemplateParmDecl *NTTP 3143 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 3144 if (NTTP->isExpandedParameterPack() && 3145 ArgumentPack.size() < NTTP->getNumExpansionTypes()) { 3146 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 3147 << false 3148 << (isa<ClassTemplateDecl>(Template)? 0 : 3149 isa<FunctionTemplateDecl>(Template)? 1 : 3150 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 3151 << Template; 3152 Diag(Template->getLocation(), diag::note_template_decl_here) 3153 << Params->getSourceRange(); 3154 return true; 3155 } 3156 } 3157 } 3158 3159 // Form argument packs for each of the parameter packs remaining. 3160 while (Param != ParamEnd) { 3161 // If we're checking a partial list of template arguments, don't fill 3162 // in arguments for non-template parameter packs. 3163 if ((*Param)->isTemplateParameterPack()) { 3164 if (!HasParameterPack) 3165 return true; 3166 if (ArgumentPack.empty()) 3167 Converted.push_back(TemplateArgument(0, 0)); 3168 else { 3169 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 3170 ArgumentPack.data(), 3171 ArgumentPack.size())); 3172 ArgumentPack.clear(); 3173 } 3174 } else if (!PartialTemplateArgs) 3175 return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs); 3176 3177 ++Param; 3178 } 3179 3180 return Invalid; 3181} 3182 3183namespace { 3184 class UnnamedLocalNoLinkageFinder 3185 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 3186 { 3187 Sema &S; 3188 SourceRange SR; 3189 3190 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 3191 3192 public: 3193 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 3194 3195 bool Visit(QualType T) { 3196 return inherited::Visit(T.getTypePtr()); 3197 } 3198 3199#define TYPE(Class, Parent) \ 3200 bool Visit##Class##Type(const Class##Type *); 3201#define ABSTRACT_TYPE(Class, Parent) \ 3202 bool Visit##Class##Type(const Class##Type *) { return false; } 3203#define NON_CANONICAL_TYPE(Class, Parent) \ 3204 bool Visit##Class##Type(const Class##Type *) { return false; } 3205#include "clang/AST/TypeNodes.def" 3206 3207 bool VisitTagDecl(const TagDecl *Tag); 3208 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 3209 }; 3210} 3211 3212bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 3213 return false; 3214} 3215 3216bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 3217 return Visit(T->getElementType()); 3218} 3219 3220bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 3221 return Visit(T->getPointeeType()); 3222} 3223 3224bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 3225 const BlockPointerType* T) { 3226 return Visit(T->getPointeeType()); 3227} 3228 3229bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 3230 const LValueReferenceType* T) { 3231 return Visit(T->getPointeeType()); 3232} 3233 3234bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 3235 const RValueReferenceType* T) { 3236 return Visit(T->getPointeeType()); 3237} 3238 3239bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 3240 const MemberPointerType* T) { 3241 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 3242} 3243 3244bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 3245 const ConstantArrayType* T) { 3246 return Visit(T->getElementType()); 3247} 3248 3249bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 3250 const IncompleteArrayType* T) { 3251 return Visit(T->getElementType()); 3252} 3253 3254bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 3255 const VariableArrayType* T) { 3256 return Visit(T->getElementType()); 3257} 3258 3259bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 3260 const DependentSizedArrayType* T) { 3261 return Visit(T->getElementType()); 3262} 3263 3264bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 3265 const DependentSizedExtVectorType* T) { 3266 return Visit(T->getElementType()); 3267} 3268 3269bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 3270 return Visit(T->getElementType()); 3271} 3272 3273bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 3274 return Visit(T->getElementType()); 3275} 3276 3277bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 3278 const FunctionProtoType* T) { 3279 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), 3280 AEnd = T->arg_type_end(); 3281 A != AEnd; ++A) { 3282 if (Visit(*A)) 3283 return true; 3284 } 3285 3286 return Visit(T->getResultType()); 3287} 3288 3289bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 3290 const FunctionNoProtoType* T) { 3291 return Visit(T->getResultType()); 3292} 3293 3294bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 3295 const UnresolvedUsingType*) { 3296 return false; 3297} 3298 3299bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 3300 return false; 3301} 3302 3303bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 3304 return Visit(T->getUnderlyingType()); 3305} 3306 3307bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 3308 return false; 3309} 3310 3311bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 3312 const UnaryTransformType*) { 3313 return false; 3314} 3315 3316bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 3317 return Visit(T->getDeducedType()); 3318} 3319 3320bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 3321 return VisitTagDecl(T->getDecl()); 3322} 3323 3324bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 3325 return VisitTagDecl(T->getDecl()); 3326} 3327 3328bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 3329 const TemplateTypeParmType*) { 3330 return false; 3331} 3332 3333bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 3334 const SubstTemplateTypeParmPackType *) { 3335 return false; 3336} 3337 3338bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 3339 const TemplateSpecializationType*) { 3340 return false; 3341} 3342 3343bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 3344 const InjectedClassNameType* T) { 3345 return VisitTagDecl(T->getDecl()); 3346} 3347 3348bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 3349 const DependentNameType* T) { 3350 return VisitNestedNameSpecifier(T->getQualifier()); 3351} 3352 3353bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 3354 const DependentTemplateSpecializationType* T) { 3355 return VisitNestedNameSpecifier(T->getQualifier()); 3356} 3357 3358bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 3359 const PackExpansionType* T) { 3360 return Visit(T->getPattern()); 3361} 3362 3363bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 3364 return false; 3365} 3366 3367bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 3368 const ObjCInterfaceType *) { 3369 return false; 3370} 3371 3372bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 3373 const ObjCObjectPointerType *) { 3374 return false; 3375} 3376 3377bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { 3378 return Visit(T->getValueType()); 3379} 3380 3381bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 3382 if (Tag->getDeclContext()->isFunctionOrMethod()) { 3383 S.Diag(SR.getBegin(), 3384 S.getLangOpts().CPlusPlus0x ? 3385 diag::warn_cxx98_compat_template_arg_local_type : 3386 diag::ext_template_arg_local_type) 3387 << S.Context.getTypeDeclType(Tag) << SR; 3388 return true; 3389 } 3390 3391 if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) { 3392 S.Diag(SR.getBegin(), 3393 S.getLangOpts().CPlusPlus0x ? 3394 diag::warn_cxx98_compat_template_arg_unnamed_type : 3395 diag::ext_template_arg_unnamed_type) << SR; 3396 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 3397 return true; 3398 } 3399 3400 return false; 3401} 3402 3403bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 3404 NestedNameSpecifier *NNS) { 3405 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 3406 return true; 3407 3408 switch (NNS->getKind()) { 3409 case NestedNameSpecifier::Identifier: 3410 case NestedNameSpecifier::Namespace: 3411 case NestedNameSpecifier::NamespaceAlias: 3412 case NestedNameSpecifier::Global: 3413 return false; 3414 3415 case NestedNameSpecifier::TypeSpec: 3416 case NestedNameSpecifier::TypeSpecWithTemplate: 3417 return Visit(QualType(NNS->getAsType(), 0)); 3418 } 3419 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 3420} 3421 3422 3423/// \brief Check a template argument against its corresponding 3424/// template type parameter. 3425/// 3426/// This routine implements the semantics of C++ [temp.arg.type]. It 3427/// returns true if an error occurred, and false otherwise. 3428bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 3429 TypeSourceInfo *ArgInfo) { 3430 assert(ArgInfo && "invalid TypeSourceInfo"); 3431 QualType Arg = ArgInfo->getType(); 3432 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 3433 3434 if (Arg->isVariablyModifiedType()) { 3435 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 3436 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 3437 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 3438 } 3439 3440 // C++03 [temp.arg.type]p2: 3441 // A local type, a type with no linkage, an unnamed type or a type 3442 // compounded from any of these types shall not be used as a 3443 // template-argument for a template type-parameter. 3444 // 3445 // C++11 allows these, and even in C++03 we allow them as an extension with 3446 // a warning. 3447 if (LangOpts.CPlusPlus0x ? 3448 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type, 3449 SR.getBegin()) != DiagnosticsEngine::Ignored || 3450 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type, 3451 SR.getBegin()) != DiagnosticsEngine::Ignored : 3452 Arg->hasUnnamedOrLocalType()) { 3453 UnnamedLocalNoLinkageFinder Finder(*this, SR); 3454 (void)Finder.Visit(Context.getCanonicalType(Arg)); 3455 } 3456 3457 return false; 3458} 3459 3460/// \brief Checks whether the given template argument is the address 3461/// of an object or function according to C++ [temp.arg.nontype]p1. 3462static bool 3463CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 3464 NonTypeTemplateParmDecl *Param, 3465 QualType ParamType, 3466 Expr *ArgIn, 3467 TemplateArgument &Converted) { 3468 bool Invalid = false; 3469 Expr *Arg = ArgIn; 3470 QualType ArgType = Arg->getType(); 3471 3472 // See through any implicit casts we added to fix the type. 3473 Arg = Arg->IgnoreImpCasts(); 3474 3475 // C++ [temp.arg.nontype]p1: 3476 // 3477 // A template-argument for a non-type, non-template 3478 // template-parameter shall be one of: [...] 3479 // 3480 // -- the address of an object or function with external 3481 // linkage, including function templates and function 3482 // template-ids but excluding non-static class members, 3483 // expressed as & id-expression where the & is optional if 3484 // the name refers to a function or array, or if the 3485 // corresponding template-parameter is a reference; or 3486 3487 // In C++98/03 mode, give an extension warning on any extra parentheses. 3488 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3489 bool ExtraParens = false; 3490 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3491 if (!Invalid && !ExtraParens) { 3492 S.Diag(Arg->getLocStart(), 3493 S.getLangOpts().CPlusPlus0x ? 3494 diag::warn_cxx98_compat_template_arg_extra_parens : 3495 diag::ext_template_arg_extra_parens) 3496 << Arg->getSourceRange(); 3497 ExtraParens = true; 3498 } 3499 3500 Arg = Parens->getSubExpr(); 3501 } 3502 3503 while (SubstNonTypeTemplateParmExpr *subst = 3504 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3505 Arg = subst->getReplacement()->IgnoreImpCasts(); 3506 3507 bool AddressTaken = false; 3508 SourceLocation AddrOpLoc; 3509 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3510 if (UnOp->getOpcode() == UO_AddrOf) { 3511 Arg = UnOp->getSubExpr(); 3512 AddressTaken = true; 3513 AddrOpLoc = UnOp->getOperatorLoc(); 3514 } 3515 } 3516 3517 if (S.getLangOpts().MicrosoftExt && isa<CXXUuidofExpr>(Arg)) { 3518 Converted = TemplateArgument(ArgIn); 3519 return false; 3520 } 3521 3522 while (SubstNonTypeTemplateParmExpr *subst = 3523 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3524 Arg = subst->getReplacement()->IgnoreImpCasts(); 3525 3526 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg); 3527 if (!DRE) { 3528 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 3529 << Arg->getSourceRange(); 3530 S.Diag(Param->getLocation(), diag::note_template_param_here); 3531 return true; 3532 } 3533 3534 // Stop checking the precise nature of the argument if it is value dependent, 3535 // it should be checked when instantiated. 3536 if (Arg->isValueDependent()) { 3537 Converted = TemplateArgument(ArgIn); 3538 return false; 3539 } 3540 3541 if (!isa<ValueDecl>(DRE->getDecl())) { 3542 S.Diag(Arg->getLocStart(), 3543 diag::err_template_arg_not_object_or_func_form) 3544 << Arg->getSourceRange(); 3545 S.Diag(Param->getLocation(), diag::note_template_param_here); 3546 return true; 3547 } 3548 3549 NamedDecl *Entity = 0; 3550 3551 // Cannot refer to non-static data members 3552 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) { 3553 S.Diag(Arg->getLocStart(), diag::err_template_arg_field) 3554 << Field << Arg->getSourceRange(); 3555 S.Diag(Param->getLocation(), diag::note_template_param_here); 3556 return true; 3557 } 3558 3559 // Cannot refer to non-static member functions 3560 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 3561 if (!Method->isStatic()) { 3562 S.Diag(Arg->getLocStart(), diag::err_template_arg_method) 3563 << Method << Arg->getSourceRange(); 3564 S.Diag(Param->getLocation(), diag::note_template_param_here); 3565 return true; 3566 } 3567 3568 // Functions must have external linkage. 3569 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 3570 if (!isExternalLinkage(Func->getLinkage())) { 3571 S.Diag(Arg->getLocStart(), 3572 diag::err_template_arg_function_not_extern) 3573 << Func << Arg->getSourceRange(); 3574 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object) 3575 << true; 3576 return true; 3577 } 3578 3579 // Okay: we've named a function with external linkage. 3580 Entity = Func; 3581 3582 // If the template parameter has pointer type, the function decays. 3583 if (ParamType->isPointerType() && !AddressTaken) 3584 ArgType = S.Context.getPointerType(Func->getType()); 3585 else if (AddressTaken && ParamType->isReferenceType()) { 3586 // If we originally had an address-of operator, but the 3587 // parameter has reference type, complain and (if things look 3588 // like they will work) drop the address-of operator. 3589 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 3590 ParamType.getNonReferenceType())) { 3591 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3592 << ParamType; 3593 S.Diag(Param->getLocation(), diag::note_template_param_here); 3594 return true; 3595 } 3596 3597 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3598 << ParamType 3599 << FixItHint::CreateRemoval(AddrOpLoc); 3600 S.Diag(Param->getLocation(), diag::note_template_param_here); 3601 3602 ArgType = Func->getType(); 3603 } 3604 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 3605 if (!isExternalLinkage(Var->getLinkage())) { 3606 S.Diag(Arg->getLocStart(), 3607 diag::err_template_arg_object_not_extern) 3608 << Var << Arg->getSourceRange(); 3609 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object) 3610 << true; 3611 return true; 3612 } 3613 3614 // A value of reference type is not an object. 3615 if (Var->getType()->isReferenceType()) { 3616 S.Diag(Arg->getLocStart(), 3617 diag::err_template_arg_reference_var) 3618 << Var->getType() << Arg->getSourceRange(); 3619 S.Diag(Param->getLocation(), diag::note_template_param_here); 3620 return true; 3621 } 3622 3623 // Okay: we've named an object with external linkage 3624 Entity = Var; 3625 3626 // If the template parameter has pointer type, we must have taken 3627 // the address of this object. 3628 if (ParamType->isReferenceType()) { 3629 if (AddressTaken) { 3630 // If we originally had an address-of operator, but the 3631 // parameter has reference type, complain and (if things look 3632 // like they will work) drop the address-of operator. 3633 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 3634 ParamType.getNonReferenceType())) { 3635 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3636 << ParamType; 3637 S.Diag(Param->getLocation(), diag::note_template_param_here); 3638 return true; 3639 } 3640 3641 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3642 << ParamType 3643 << FixItHint::CreateRemoval(AddrOpLoc); 3644 S.Diag(Param->getLocation(), diag::note_template_param_here); 3645 3646 ArgType = Var->getType(); 3647 } 3648 } else if (!AddressTaken && ParamType->isPointerType()) { 3649 if (Var->getType()->isArrayType()) { 3650 // Array-to-pointer decay. 3651 ArgType = S.Context.getArrayDecayedType(Var->getType()); 3652 } else { 3653 // If the template parameter has pointer type but the address of 3654 // this object was not taken, complain and (possibly) recover by 3655 // taking the address of the entity. 3656 ArgType = S.Context.getPointerType(Var->getType()); 3657 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 3658 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3659 << ParamType; 3660 S.Diag(Param->getLocation(), diag::note_template_param_here); 3661 return true; 3662 } 3663 3664 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3665 << ParamType 3666 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 3667 3668 S.Diag(Param->getLocation(), diag::note_template_param_here); 3669 } 3670 } 3671 } else { 3672 // We found something else, but we don't know specifically what it is. 3673 S.Diag(Arg->getLocStart(), 3674 diag::err_template_arg_not_object_or_func) 3675 << Arg->getSourceRange(); 3676 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 3677 return true; 3678 } 3679 3680 bool ObjCLifetimeConversion; 3681 if (ParamType->isPointerType() && 3682 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 3683 S.IsQualificationConversion(ArgType, ParamType, false, 3684 ObjCLifetimeConversion)) { 3685 // For pointer-to-object types, qualification conversions are 3686 // permitted. 3687 } else { 3688 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 3689 if (!ParamRef->getPointeeType()->isFunctionType()) { 3690 // C++ [temp.arg.nontype]p5b3: 3691 // For a non-type template-parameter of type reference to 3692 // object, no conversions apply. The type referred to by the 3693 // reference may be more cv-qualified than the (otherwise 3694 // identical) type of the template- argument. The 3695 // template-parameter is bound directly to the 3696 // template-argument, which shall be an lvalue. 3697 3698 // FIXME: Other qualifiers? 3699 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 3700 unsigned ArgQuals = ArgType.getCVRQualifiers(); 3701 3702 if ((ParamQuals | ArgQuals) != ParamQuals) { 3703 S.Diag(Arg->getLocStart(), 3704 diag::err_template_arg_ref_bind_ignores_quals) 3705 << ParamType << Arg->getType() 3706 << Arg->getSourceRange(); 3707 S.Diag(Param->getLocation(), diag::note_template_param_here); 3708 return true; 3709 } 3710 } 3711 } 3712 3713 // At this point, the template argument refers to an object or 3714 // function with external linkage. We now need to check whether the 3715 // argument and parameter types are compatible. 3716 if (!S.Context.hasSameUnqualifiedType(ArgType, 3717 ParamType.getNonReferenceType())) { 3718 // We can't perform this conversion or binding. 3719 if (ParamType->isReferenceType()) 3720 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 3721 << ParamType << ArgIn->getType() << Arg->getSourceRange(); 3722 else 3723 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3724 << ArgIn->getType() << ParamType << Arg->getSourceRange(); 3725 S.Diag(Param->getLocation(), diag::note_template_param_here); 3726 return true; 3727 } 3728 } 3729 3730 // Create the template argument. 3731 Converted = TemplateArgument(Entity->getCanonicalDecl()); 3732 S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity); 3733 return false; 3734} 3735 3736/// \brief Checks whether the given template argument is a pointer to 3737/// member constant according to C++ [temp.arg.nontype]p1. 3738bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 3739 TemplateArgument &Converted) { 3740 bool Invalid = false; 3741 3742 // See through any implicit casts we added to fix the type. 3743 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 3744 Arg = Cast->getSubExpr(); 3745 3746 // C++ [temp.arg.nontype]p1: 3747 // 3748 // A template-argument for a non-type, non-template 3749 // template-parameter shall be one of: [...] 3750 // 3751 // -- a pointer to member expressed as described in 5.3.1. 3752 DeclRefExpr *DRE = 0; 3753 3754 // In C++98/03 mode, give an extension warning on any extra parentheses. 3755 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3756 bool ExtraParens = false; 3757 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3758 if (!Invalid && !ExtraParens) { 3759 Diag(Arg->getLocStart(), 3760 getLangOpts().CPlusPlus0x ? 3761 diag::warn_cxx98_compat_template_arg_extra_parens : 3762 diag::ext_template_arg_extra_parens) 3763 << Arg->getSourceRange(); 3764 ExtraParens = true; 3765 } 3766 3767 Arg = Parens->getSubExpr(); 3768 } 3769 3770 while (SubstNonTypeTemplateParmExpr *subst = 3771 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3772 Arg = subst->getReplacement()->IgnoreImpCasts(); 3773 3774 // A pointer-to-member constant written &Class::member. 3775 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3776 if (UnOp->getOpcode() == UO_AddrOf) { 3777 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 3778 if (DRE && !DRE->getQualifier()) 3779 DRE = 0; 3780 } 3781 } 3782 // A constant of pointer-to-member type. 3783 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 3784 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 3785 if (VD->getType()->isMemberPointerType()) { 3786 if (isa<NonTypeTemplateParmDecl>(VD) || 3787 (isa<VarDecl>(VD) && 3788 Context.getCanonicalType(VD->getType()).isConstQualified())) { 3789 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3790 Converted = TemplateArgument(Arg); 3791 else 3792 Converted = TemplateArgument(VD->getCanonicalDecl()); 3793 return Invalid; 3794 } 3795 } 3796 } 3797 3798 DRE = 0; 3799 } 3800 3801 if (!DRE) 3802 return Diag(Arg->getLocStart(), 3803 diag::err_template_arg_not_pointer_to_member_form) 3804 << Arg->getSourceRange(); 3805 3806 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 3807 assert((isa<FieldDecl>(DRE->getDecl()) || 3808 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 3809 "Only non-static member pointers can make it here"); 3810 3811 // Okay: this is the address of a non-static member, and therefore 3812 // a member pointer constant. 3813 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3814 Converted = TemplateArgument(Arg); 3815 else 3816 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 3817 return Invalid; 3818 } 3819 3820 // We found something else, but we don't know specifically what it is. 3821 Diag(Arg->getLocStart(), 3822 diag::err_template_arg_not_pointer_to_member_form) 3823 << Arg->getSourceRange(); 3824 Diag(DRE->getDecl()->getLocation(), 3825 diag::note_template_arg_refers_here); 3826 return true; 3827} 3828 3829/// \brief Check a template argument against its corresponding 3830/// non-type template parameter. 3831/// 3832/// This routine implements the semantics of C++ [temp.arg.nontype]. 3833/// If an error occurred, it returns ExprError(); otherwise, it 3834/// returns the converted template argument. \p 3835/// InstantiatedParamType is the type of the non-type template 3836/// parameter after it has been instantiated. 3837ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 3838 QualType InstantiatedParamType, Expr *Arg, 3839 TemplateArgument &Converted, 3840 CheckTemplateArgumentKind CTAK) { 3841 SourceLocation StartLoc = Arg->getLocStart(); 3842 3843 // If either the parameter has a dependent type or the argument is 3844 // type-dependent, there's nothing we can check now. 3845 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 3846 // FIXME: Produce a cloned, canonical expression? 3847 Converted = TemplateArgument(Arg); 3848 return Owned(Arg); 3849 } 3850 3851 // C++ [temp.arg.nontype]p5: 3852 // The following conversions are performed on each expression used 3853 // as a non-type template-argument. If a non-type 3854 // template-argument cannot be converted to the type of the 3855 // corresponding template-parameter then the program is 3856 // ill-formed. 3857 QualType ParamType = InstantiatedParamType; 3858 if (ParamType->isIntegralOrEnumerationType()) { 3859 // C++11: 3860 // -- for a non-type template-parameter of integral or 3861 // enumeration type, conversions permitted in a converted 3862 // constant expression are applied. 3863 // 3864 // C++98: 3865 // -- for a non-type template-parameter of integral or 3866 // enumeration type, integral promotions (4.5) and integral 3867 // conversions (4.7) are applied. 3868 3869 if (CTAK == CTAK_Deduced && 3870 !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) { 3871 // C++ [temp.deduct.type]p17: 3872 // If, in the declaration of a function template with a non-type 3873 // template-parameter, the non-type template-parameter is used 3874 // in an expression in the function parameter-list and, if the 3875 // corresponding template-argument is deduced, the 3876 // template-argument type shall match the type of the 3877 // template-parameter exactly, except that a template-argument 3878 // deduced from an array bound may be of any integral type. 3879 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 3880 << Arg->getType().getUnqualifiedType() 3881 << ParamType.getUnqualifiedType(); 3882 Diag(Param->getLocation(), diag::note_template_param_here); 3883 return ExprError(); 3884 } 3885 3886 if (getLangOpts().CPlusPlus0x) { 3887 // We can't check arbitrary value-dependent arguments. 3888 // FIXME: If there's no viable conversion to the template parameter type, 3889 // we should be able to diagnose that prior to instantiation. 3890 if (Arg->isValueDependent()) { 3891 Converted = TemplateArgument(Arg); 3892 return Owned(Arg); 3893 } 3894 3895 // C++ [temp.arg.nontype]p1: 3896 // A template-argument for a non-type, non-template template-parameter 3897 // shall be one of: 3898 // 3899 // -- for a non-type template-parameter of integral or enumeration 3900 // type, a converted constant expression of the type of the 3901 // template-parameter; or 3902 llvm::APSInt Value; 3903 ExprResult ArgResult = 3904 CheckConvertedConstantExpression(Arg, ParamType, Value, 3905 CCEK_TemplateArg); 3906 if (ArgResult.isInvalid()) 3907 return ExprError(); 3908 3909 // Widen the argument value to sizeof(parameter type). This is almost 3910 // always a no-op, except when the parameter type is bool. In 3911 // that case, this may extend the argument from 1 bit to 8 bits. 3912 QualType IntegerType = ParamType; 3913 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 3914 IntegerType = Enum->getDecl()->getIntegerType(); 3915 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType)); 3916 3917 Converted = TemplateArgument(Value, Context.getCanonicalType(ParamType)); 3918 return ArgResult; 3919 } 3920 3921 ExprResult ArgResult = DefaultLvalueConversion(Arg); 3922 if (ArgResult.isInvalid()) 3923 return ExprError(); 3924 Arg = ArgResult.take(); 3925 3926 QualType ArgType = Arg->getType(); 3927 3928 // C++ [temp.arg.nontype]p1: 3929 // A template-argument for a non-type, non-template 3930 // template-parameter shall be one of: 3931 // 3932 // -- an integral constant-expression of integral or enumeration 3933 // type; or 3934 // -- the name of a non-type template-parameter; or 3935 SourceLocation NonConstantLoc; 3936 llvm::APSInt Value; 3937 if (!ArgType->isIntegralOrEnumerationType()) { 3938 Diag(Arg->getLocStart(), 3939 diag::err_template_arg_not_integral_or_enumeral) 3940 << ArgType << Arg->getSourceRange(); 3941 Diag(Param->getLocation(), diag::note_template_param_here); 3942 return ExprError(); 3943 } else if (!Arg->isValueDependent()) { 3944 Arg = VerifyIntegerConstantExpression(Arg, &Value, 3945 PDiag(diag::err_template_arg_not_ice) << ArgType, false).take(); 3946 if (!Arg) 3947 return ExprError(); 3948 } 3949 3950 // From here on out, all we care about are the unqualified forms 3951 // of the parameter and argument types. 3952 ParamType = ParamType.getUnqualifiedType(); 3953 ArgType = ArgType.getUnqualifiedType(); 3954 3955 // Try to convert the argument to the parameter's type. 3956 if (Context.hasSameType(ParamType, ArgType)) { 3957 // Okay: no conversion necessary 3958 } else if (ParamType->isBooleanType()) { 3959 // This is an integral-to-boolean conversion. 3960 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take(); 3961 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 3962 !ParamType->isEnumeralType()) { 3963 // This is an integral promotion or conversion. 3964 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take(); 3965 } else { 3966 // We can't perform this conversion. 3967 Diag(Arg->getLocStart(), 3968 diag::err_template_arg_not_convertible) 3969 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3970 Diag(Param->getLocation(), diag::note_template_param_here); 3971 return ExprError(); 3972 } 3973 3974 // Add the value of this argument to the list of converted 3975 // arguments. We use the bitwidth and signedness of the template 3976 // parameter. 3977 if (Arg->isValueDependent()) { 3978 // The argument is value-dependent. Create a new 3979 // TemplateArgument with the converted expression. 3980 Converted = TemplateArgument(Arg); 3981 return Owned(Arg); 3982 } 3983 3984 QualType IntegerType = Context.getCanonicalType(ParamType); 3985 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 3986 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 3987 3988 if (ParamType->isBooleanType()) { 3989 // Value must be zero or one. 3990 Value = Value != 0; 3991 unsigned AllowedBits = Context.getTypeSize(IntegerType); 3992 if (Value.getBitWidth() != AllowedBits) 3993 Value = Value.extOrTrunc(AllowedBits); 3994 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 3995 } else { 3996 llvm::APSInt OldValue = Value; 3997 3998 // Coerce the template argument's value to the value it will have 3999 // based on the template parameter's type. 4000 unsigned AllowedBits = Context.getTypeSize(IntegerType); 4001 if (Value.getBitWidth() != AllowedBits) 4002 Value = Value.extOrTrunc(AllowedBits); 4003 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 4004 4005 // Complain if an unsigned parameter received a negative value. 4006 if (IntegerType->isUnsignedIntegerOrEnumerationType() 4007 && (OldValue.isSigned() && OldValue.isNegative())) { 4008 Diag(Arg->getLocStart(), diag::warn_template_arg_negative) 4009 << OldValue.toString(10) << Value.toString(10) << Param->getType() 4010 << Arg->getSourceRange(); 4011 Diag(Param->getLocation(), diag::note_template_param_here); 4012 } 4013 4014 // Complain if we overflowed the template parameter's type. 4015 unsigned RequiredBits; 4016 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 4017 RequiredBits = OldValue.getActiveBits(); 4018 else if (OldValue.isUnsigned()) 4019 RequiredBits = OldValue.getActiveBits() + 1; 4020 else 4021 RequiredBits = OldValue.getMinSignedBits(); 4022 if (RequiredBits > AllowedBits) { 4023 Diag(Arg->getLocStart(), 4024 diag::warn_template_arg_too_large) 4025 << OldValue.toString(10) << Value.toString(10) << Param->getType() 4026 << Arg->getSourceRange(); 4027 Diag(Param->getLocation(), diag::note_template_param_here); 4028 } 4029 } 4030 4031 Converted = TemplateArgument(Value, 4032 ParamType->isEnumeralType() 4033 ? Context.getCanonicalType(ParamType) 4034 : IntegerType); 4035 return Owned(Arg); 4036 } 4037 4038 QualType ArgType = Arg->getType(); 4039 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 4040 4041 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion 4042 // from a template argument of type std::nullptr_t to a non-type 4043 // template parameter of type pointer to object, pointer to 4044 // function, or pointer-to-member, respectively. 4045 if (ArgType->isNullPtrType()) { 4046 if (ParamType->isPointerType() || ParamType->isMemberPointerType()) { 4047 Converted = TemplateArgument((NamedDecl *)0); 4048 return Owned(Arg); 4049 } 4050 4051 if (ParamType->isNullPtrType()) { 4052 llvm::APSInt Zero(Context.getTypeSize(Context.NullPtrTy), true); 4053 Converted = TemplateArgument(Zero, Context.NullPtrTy); 4054 return Owned(Arg); 4055 } 4056 } 4057 4058 // Handle pointer-to-function, reference-to-function, and 4059 // pointer-to-member-function all in (roughly) the same way. 4060 if (// -- For a non-type template-parameter of type pointer to 4061 // function, only the function-to-pointer conversion (4.3) is 4062 // applied. If the template-argument represents a set of 4063 // overloaded functions (or a pointer to such), the matching 4064 // function is selected from the set (13.4). 4065 (ParamType->isPointerType() && 4066 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 4067 // -- For a non-type template-parameter of type reference to 4068 // function, no conversions apply. If the template-argument 4069 // represents a set of overloaded functions, the matching 4070 // function is selected from the set (13.4). 4071 (ParamType->isReferenceType() && 4072 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 4073 // -- For a non-type template-parameter of type pointer to 4074 // member function, no conversions apply. If the 4075 // template-argument represents a set of overloaded member 4076 // functions, the matching member function is selected from 4077 // the set (13.4). 4078 (ParamType->isMemberPointerType() && 4079 ParamType->getAs<MemberPointerType>()->getPointeeType() 4080 ->isFunctionType())) { 4081 4082 if (Arg->getType() == Context.OverloadTy) { 4083 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 4084 true, 4085 FoundResult)) { 4086 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart())) 4087 return ExprError(); 4088 4089 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 4090 ArgType = Arg->getType(); 4091 } else 4092 return ExprError(); 4093 } 4094 4095 if (!ParamType->isMemberPointerType()) { 4096 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4097 ParamType, 4098 Arg, Converted)) 4099 return ExprError(); 4100 return Owned(Arg); 4101 } 4102 4103 bool ObjCLifetimeConversion; 4104 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(), 4105 false, ObjCLifetimeConversion)) { 4106 Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, 4107 Arg->getValueKind()).take(); 4108 } else if (!Context.hasSameUnqualifiedType(ArgType, 4109 ParamType.getNonReferenceType())) { 4110 // We can't perform this conversion. 4111 Diag(Arg->getLocStart(), 4112 diag::err_template_arg_not_convertible) 4113 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 4114 Diag(Param->getLocation(), diag::note_template_param_here); 4115 return ExprError(); 4116 } 4117 4118 if (CheckTemplateArgumentPointerToMember(Arg, Converted)) 4119 return ExprError(); 4120 return Owned(Arg); 4121 } 4122 4123 if (ParamType->isPointerType()) { 4124 // -- for a non-type template-parameter of type pointer to 4125 // object, qualification conversions (4.4) and the 4126 // array-to-pointer conversion (4.2) are applied. 4127 // C++0x also allows a value of std::nullptr_t. 4128 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 4129 "Only object pointers allowed here"); 4130 4131 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4132 ParamType, 4133 Arg, Converted)) 4134 return ExprError(); 4135 return Owned(Arg); 4136 } 4137 4138 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 4139 // -- For a non-type template-parameter of type reference to 4140 // object, no conversions apply. The type referred to by the 4141 // reference may be more cv-qualified than the (otherwise 4142 // identical) type of the template-argument. The 4143 // template-parameter is bound directly to the 4144 // template-argument, which must be an lvalue. 4145 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 4146 "Only object references allowed here"); 4147 4148 if (Arg->getType() == Context.OverloadTy) { 4149 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 4150 ParamRefType->getPointeeType(), 4151 true, 4152 FoundResult)) { 4153 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart())) 4154 return ExprError(); 4155 4156 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 4157 ArgType = Arg->getType(); 4158 } else 4159 return ExprError(); 4160 } 4161 4162 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4163 ParamType, 4164 Arg, Converted)) 4165 return ExprError(); 4166 return Owned(Arg); 4167 } 4168 4169 // -- For a non-type template-parameter of type pointer to data 4170 // member, qualification conversions (4.4) are applied. 4171 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 4172 4173 bool ObjCLifetimeConversion; 4174 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 4175 // Types match exactly: nothing more to do here. 4176 } else if (IsQualificationConversion(ArgType, ParamType, false, 4177 ObjCLifetimeConversion)) { 4178 Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, 4179 Arg->getValueKind()).take(); 4180 } else { 4181 // We can't perform this conversion. 4182 Diag(Arg->getLocStart(), 4183 diag::err_template_arg_not_convertible) 4184 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 4185 Diag(Param->getLocation(), diag::note_template_param_here); 4186 return ExprError(); 4187 } 4188 4189 if (CheckTemplateArgumentPointerToMember(Arg, Converted)) 4190 return ExprError(); 4191 return Owned(Arg); 4192} 4193 4194/// \brief Check a template argument against its corresponding 4195/// template template parameter. 4196/// 4197/// This routine implements the semantics of C++ [temp.arg.template]. 4198/// It returns true if an error occurred, and false otherwise. 4199bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 4200 const TemplateArgumentLoc &Arg) { 4201 TemplateName Name = Arg.getArgument().getAsTemplate(); 4202 TemplateDecl *Template = Name.getAsTemplateDecl(); 4203 if (!Template) { 4204 // Any dependent template name is fine. 4205 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 4206 return false; 4207 } 4208 4209 // C++0x [temp.arg.template]p1: 4210 // A template-argument for a template template-parameter shall be 4211 // the name of a class template or an alias template, expressed as an 4212 // id-expression. When the template-argument names a class template, only 4213 // primary class templates are considered when matching the 4214 // template template argument with the corresponding parameter; 4215 // partial specializations are not considered even if their 4216 // parameter lists match that of the template template parameter. 4217 // 4218 // Note that we also allow template template parameters here, which 4219 // will happen when we are dealing with, e.g., class template 4220 // partial specializations. 4221 if (!isa<ClassTemplateDecl>(Template) && 4222 !isa<TemplateTemplateParmDecl>(Template) && 4223 !isa<TypeAliasTemplateDecl>(Template)) { 4224 assert(isa<FunctionTemplateDecl>(Template) && 4225 "Only function templates are possible here"); 4226 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 4227 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 4228 << Template; 4229 } 4230 4231 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 4232 Param->getTemplateParameters(), 4233 true, 4234 TPL_TemplateTemplateArgumentMatch, 4235 Arg.getLocation()); 4236} 4237 4238/// \brief Given a non-type template argument that refers to a 4239/// declaration and the type of its corresponding non-type template 4240/// parameter, produce an expression that properly refers to that 4241/// declaration. 4242ExprResult 4243Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 4244 QualType ParamType, 4245 SourceLocation Loc) { 4246 assert(Arg.getKind() == TemplateArgument::Declaration && 4247 "Only declaration template arguments permitted here"); 4248 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 4249 4250 if (VD->getDeclContext()->isRecord() && 4251 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 4252 // If the value is a class member, we might have a pointer-to-member. 4253 // Determine whether the non-type template template parameter is of 4254 // pointer-to-member type. If so, we need to build an appropriate 4255 // expression for a pointer-to-member, since a "normal" DeclRefExpr 4256 // would refer to the member itself. 4257 if (ParamType->isMemberPointerType()) { 4258 QualType ClassType 4259 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 4260 NestedNameSpecifier *Qualifier 4261 = NestedNameSpecifier::Create(Context, 0, false, 4262 ClassType.getTypePtr()); 4263 CXXScopeSpec SS; 4264 SS.MakeTrivial(Context, Qualifier, Loc); 4265 4266 // The actual value-ness of this is unimportant, but for 4267 // internal consistency's sake, references to instance methods 4268 // are r-values. 4269 ExprValueKind VK = VK_LValue; 4270 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 4271 VK = VK_RValue; 4272 4273 ExprResult RefExpr = BuildDeclRefExpr(VD, 4274 VD->getType().getNonReferenceType(), 4275 VK, 4276 Loc, 4277 &SS); 4278 if (RefExpr.isInvalid()) 4279 return ExprError(); 4280 4281 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4282 4283 // We might need to perform a trailing qualification conversion, since 4284 // the element type on the parameter could be more qualified than the 4285 // element type in the expression we constructed. 4286 bool ObjCLifetimeConversion; 4287 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 4288 ParamType.getUnqualifiedType(), false, 4289 ObjCLifetimeConversion)) 4290 RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp); 4291 4292 assert(!RefExpr.isInvalid() && 4293 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 4294 ParamType.getUnqualifiedType())); 4295 return move(RefExpr); 4296 } 4297 } 4298 4299 QualType T = VD->getType().getNonReferenceType(); 4300 if (ParamType->isPointerType()) { 4301 // When the non-type template parameter is a pointer, take the 4302 // address of the declaration. 4303 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 4304 if (RefExpr.isInvalid()) 4305 return ExprError(); 4306 4307 if (T->isFunctionType() || T->isArrayType()) { 4308 // Decay functions and arrays. 4309 RefExpr = DefaultFunctionArrayConversion(RefExpr.take()); 4310 if (RefExpr.isInvalid()) 4311 return ExprError(); 4312 4313 return move(RefExpr); 4314 } 4315 4316 // Take the address of everything else 4317 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4318 } 4319 4320 ExprValueKind VK = VK_RValue; 4321 4322 // If the non-type template parameter has reference type, qualify the 4323 // resulting declaration reference with the extra qualifiers on the 4324 // type that the reference refers to. 4325 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 4326 VK = VK_LValue; 4327 T = Context.getQualifiedType(T, 4328 TargetRef->getPointeeType().getQualifiers()); 4329 } 4330 4331 return BuildDeclRefExpr(VD, T, VK, Loc); 4332} 4333 4334/// \brief Construct a new expression that refers to the given 4335/// integral template argument with the given source-location 4336/// information. 4337/// 4338/// This routine takes care of the mapping from an integral template 4339/// argument (which may have any integral type) to the appropriate 4340/// literal value. 4341ExprResult 4342Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 4343 SourceLocation Loc) { 4344 assert(Arg.getKind() == TemplateArgument::Integral && 4345 "Operation is only valid for integral template arguments"); 4346 QualType T = Arg.getIntegralType(); 4347 if (T->isAnyCharacterType()) { 4348 CharacterLiteral::CharacterKind Kind; 4349 if (T->isWideCharType()) 4350 Kind = CharacterLiteral::Wide; 4351 else if (T->isChar16Type()) 4352 Kind = CharacterLiteral::UTF16; 4353 else if (T->isChar32Type()) 4354 Kind = CharacterLiteral::UTF32; 4355 else 4356 Kind = CharacterLiteral::Ascii; 4357 4358 return Owned(new (Context) CharacterLiteral( 4359 Arg.getAsIntegral()->getZExtValue(), 4360 Kind, T, Loc)); 4361 } 4362 4363 if (T->isBooleanType()) 4364 return Owned(new (Context) CXXBoolLiteralExpr( 4365 Arg.getAsIntegral()->getBoolValue(), 4366 T, Loc)); 4367 4368 if (T->isNullPtrType()) 4369 return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc)); 4370 4371 // If this is an enum type that we're instantiating, we need to use an integer 4372 // type the same size as the enumerator. We don't want to build an 4373 // IntegerLiteral with enum type. 4374 QualType BT; 4375 if (const EnumType *ET = T->getAs<EnumType>()) 4376 BT = ET->getDecl()->getIntegerType(); 4377 else 4378 BT = T; 4379 4380 Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc); 4381 if (T->isEnumeralType()) { 4382 // FIXME: This is a hack. We need a better way to handle substituted 4383 // non-type template parameters. 4384 E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0, 4385 Context.getTrivialTypeSourceInfo(T, Loc), 4386 Loc, Loc); 4387 } 4388 4389 return Owned(E); 4390} 4391 4392/// \brief Match two template parameters within template parameter lists. 4393static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 4394 bool Complain, 4395 Sema::TemplateParameterListEqualKind Kind, 4396 SourceLocation TemplateArgLoc) { 4397 // Check the actual kind (type, non-type, template). 4398 if (Old->getKind() != New->getKind()) { 4399 if (Complain) { 4400 unsigned NextDiag = diag::err_template_param_different_kind; 4401 if (TemplateArgLoc.isValid()) { 4402 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4403 NextDiag = diag::note_template_param_different_kind; 4404 } 4405 S.Diag(New->getLocation(), NextDiag) 4406 << (Kind != Sema::TPL_TemplateMatch); 4407 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 4408 << (Kind != Sema::TPL_TemplateMatch); 4409 } 4410 4411 return false; 4412 } 4413 4414 // Check that both are parameter packs are neither are parameter packs. 4415 // However, if we are matching a template template argument to a 4416 // template template parameter, the template template parameter can have 4417 // a parameter pack where the template template argument does not. 4418 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 4419 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4420 Old->isTemplateParameterPack())) { 4421 if (Complain) { 4422 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 4423 if (TemplateArgLoc.isValid()) { 4424 S.Diag(TemplateArgLoc, 4425 diag::err_template_arg_template_params_mismatch); 4426 NextDiag = diag::note_template_parameter_pack_non_pack; 4427 } 4428 4429 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 4430 : isa<NonTypeTemplateParmDecl>(New)? 1 4431 : 2; 4432 S.Diag(New->getLocation(), NextDiag) 4433 << ParamKind << New->isParameterPack(); 4434 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 4435 << ParamKind << Old->isParameterPack(); 4436 } 4437 4438 return false; 4439 } 4440 4441 // For non-type template parameters, check the type of the parameter. 4442 if (NonTypeTemplateParmDecl *OldNTTP 4443 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 4444 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 4445 4446 // If we are matching a template template argument to a template 4447 // template parameter and one of the non-type template parameter types 4448 // is dependent, then we must wait until template instantiation time 4449 // to actually compare the arguments. 4450 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4451 (OldNTTP->getType()->isDependentType() || 4452 NewNTTP->getType()->isDependentType())) 4453 return true; 4454 4455 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 4456 if (Complain) { 4457 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 4458 if (TemplateArgLoc.isValid()) { 4459 S.Diag(TemplateArgLoc, 4460 diag::err_template_arg_template_params_mismatch); 4461 NextDiag = diag::note_template_nontype_parm_different_type; 4462 } 4463 S.Diag(NewNTTP->getLocation(), NextDiag) 4464 << NewNTTP->getType() 4465 << (Kind != Sema::TPL_TemplateMatch); 4466 S.Diag(OldNTTP->getLocation(), 4467 diag::note_template_nontype_parm_prev_declaration) 4468 << OldNTTP->getType(); 4469 } 4470 4471 return false; 4472 } 4473 4474 return true; 4475 } 4476 4477 // For template template parameters, check the template parameter types. 4478 // The template parameter lists of template template 4479 // parameters must agree. 4480 if (TemplateTemplateParmDecl *OldTTP 4481 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 4482 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 4483 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 4484 OldTTP->getTemplateParameters(), 4485 Complain, 4486 (Kind == Sema::TPL_TemplateMatch 4487 ? Sema::TPL_TemplateTemplateParmMatch 4488 : Kind), 4489 TemplateArgLoc); 4490 } 4491 4492 return true; 4493} 4494 4495/// \brief Diagnose a known arity mismatch when comparing template argument 4496/// lists. 4497static 4498void DiagnoseTemplateParameterListArityMismatch(Sema &S, 4499 TemplateParameterList *New, 4500 TemplateParameterList *Old, 4501 Sema::TemplateParameterListEqualKind Kind, 4502 SourceLocation TemplateArgLoc) { 4503 unsigned NextDiag = diag::err_template_param_list_different_arity; 4504 if (TemplateArgLoc.isValid()) { 4505 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4506 NextDiag = diag::note_template_param_list_different_arity; 4507 } 4508 S.Diag(New->getTemplateLoc(), NextDiag) 4509 << (New->size() > Old->size()) 4510 << (Kind != Sema::TPL_TemplateMatch) 4511 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 4512 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 4513 << (Kind != Sema::TPL_TemplateMatch) 4514 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 4515} 4516 4517/// \brief Determine whether the given template parameter lists are 4518/// equivalent. 4519/// 4520/// \param New The new template parameter list, typically written in the 4521/// source code as part of a new template declaration. 4522/// 4523/// \param Old The old template parameter list, typically found via 4524/// name lookup of the template declared with this template parameter 4525/// list. 4526/// 4527/// \param Complain If true, this routine will produce a diagnostic if 4528/// the template parameter lists are not equivalent. 4529/// 4530/// \param Kind describes how we are to match the template parameter lists. 4531/// 4532/// \param TemplateArgLoc If this source location is valid, then we 4533/// are actually checking the template parameter list of a template 4534/// argument (New) against the template parameter list of its 4535/// corresponding template template parameter (Old). We produce 4536/// slightly different diagnostics in this scenario. 4537/// 4538/// \returns True if the template parameter lists are equal, false 4539/// otherwise. 4540bool 4541Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 4542 TemplateParameterList *Old, 4543 bool Complain, 4544 TemplateParameterListEqualKind Kind, 4545 SourceLocation TemplateArgLoc) { 4546 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 4547 if (Complain) 4548 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4549 TemplateArgLoc); 4550 4551 return false; 4552 } 4553 4554 // C++0x [temp.arg.template]p3: 4555 // A template-argument matches a template template-parameter (call it P) 4556 // when each of the template parameters in the template-parameter-list of 4557 // the template-argument's corresponding class template or alias template 4558 // (call it A) matches the corresponding template parameter in the 4559 // template-parameter-list of P. [...] 4560 TemplateParameterList::iterator NewParm = New->begin(); 4561 TemplateParameterList::iterator NewParmEnd = New->end(); 4562 for (TemplateParameterList::iterator OldParm = Old->begin(), 4563 OldParmEnd = Old->end(); 4564 OldParm != OldParmEnd; ++OldParm) { 4565 if (Kind != TPL_TemplateTemplateArgumentMatch || 4566 !(*OldParm)->isTemplateParameterPack()) { 4567 if (NewParm == NewParmEnd) { 4568 if (Complain) 4569 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4570 TemplateArgLoc); 4571 4572 return false; 4573 } 4574 4575 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4576 Kind, TemplateArgLoc)) 4577 return false; 4578 4579 ++NewParm; 4580 continue; 4581 } 4582 4583 // C++0x [temp.arg.template]p3: 4584 // [...] When P's template- parameter-list contains a template parameter 4585 // pack (14.5.3), the template parameter pack will match zero or more 4586 // template parameters or template parameter packs in the 4587 // template-parameter-list of A with the same type and form as the 4588 // template parameter pack in P (ignoring whether those template 4589 // parameters are template parameter packs). 4590 for (; NewParm != NewParmEnd; ++NewParm) { 4591 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4592 Kind, TemplateArgLoc)) 4593 return false; 4594 } 4595 } 4596 4597 // Make sure we exhausted all of the arguments. 4598 if (NewParm != NewParmEnd) { 4599 if (Complain) 4600 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4601 TemplateArgLoc); 4602 4603 return false; 4604 } 4605 4606 return true; 4607} 4608 4609/// \brief Check whether a template can be declared within this scope. 4610/// 4611/// If the template declaration is valid in this scope, returns 4612/// false. Otherwise, issues a diagnostic and returns true. 4613bool 4614Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 4615 if (!S) 4616 return false; 4617 4618 // Find the nearest enclosing declaration scope. 4619 while ((S->getFlags() & Scope::DeclScope) == 0 || 4620 (S->getFlags() & Scope::TemplateParamScope) != 0) 4621 S = S->getParent(); 4622 4623 // C++ [temp]p2: 4624 // A template-declaration can appear only as a namespace scope or 4625 // class scope declaration. 4626 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 4627 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 4628 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 4629 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 4630 << TemplateParams->getSourceRange(); 4631 4632 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 4633 Ctx = Ctx->getParent(); 4634 4635 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 4636 return false; 4637 4638 return Diag(TemplateParams->getTemplateLoc(), 4639 diag::err_template_outside_namespace_or_class_scope) 4640 << TemplateParams->getSourceRange(); 4641} 4642 4643/// \brief Determine what kind of template specialization the given declaration 4644/// is. 4645static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { 4646 if (!D) 4647 return TSK_Undeclared; 4648 4649 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 4650 return Record->getTemplateSpecializationKind(); 4651 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 4652 return Function->getTemplateSpecializationKind(); 4653 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 4654 return Var->getTemplateSpecializationKind(); 4655 4656 return TSK_Undeclared; 4657} 4658 4659/// \brief Check whether a specialization is well-formed in the current 4660/// context. 4661/// 4662/// This routine determines whether a template specialization can be declared 4663/// in the current context (C++ [temp.expl.spec]p2). 4664/// 4665/// \param S the semantic analysis object for which this check is being 4666/// performed. 4667/// 4668/// \param Specialized the entity being specialized or instantiated, which 4669/// may be a kind of template (class template, function template, etc.) or 4670/// a member of a class template (member function, static data member, 4671/// member class). 4672/// 4673/// \param PrevDecl the previous declaration of this entity, if any. 4674/// 4675/// \param Loc the location of the explicit specialization or instantiation of 4676/// this entity. 4677/// 4678/// \param IsPartialSpecialization whether this is a partial specialization of 4679/// a class template. 4680/// 4681/// \returns true if there was an error that we cannot recover from, false 4682/// otherwise. 4683static bool CheckTemplateSpecializationScope(Sema &S, 4684 NamedDecl *Specialized, 4685 NamedDecl *PrevDecl, 4686 SourceLocation Loc, 4687 bool IsPartialSpecialization) { 4688 // Keep these "kind" numbers in sync with the %select statements in the 4689 // various diagnostics emitted by this routine. 4690 int EntityKind = 0; 4691 if (isa<ClassTemplateDecl>(Specialized)) 4692 EntityKind = IsPartialSpecialization? 1 : 0; 4693 else if (isa<FunctionTemplateDecl>(Specialized)) 4694 EntityKind = 2; 4695 else if (isa<CXXMethodDecl>(Specialized)) 4696 EntityKind = 3; 4697 else if (isa<VarDecl>(Specialized)) 4698 EntityKind = 4; 4699 else if (isa<RecordDecl>(Specialized)) 4700 EntityKind = 5; 4701 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus0x) 4702 EntityKind = 6; 4703 else { 4704 S.Diag(Loc, diag::err_template_spec_unknown_kind) 4705 << S.getLangOpts().CPlusPlus0x; 4706 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4707 return true; 4708 } 4709 4710 // C++ [temp.expl.spec]p2: 4711 // An explicit specialization shall be declared in the namespace 4712 // of which the template is a member, or, for member templates, in 4713 // the namespace of which the enclosing class or enclosing class 4714 // template is a member. An explicit specialization of a member 4715 // function, member class or static data member of a class 4716 // template shall be declared in the namespace of which the class 4717 // template is a member. Such a declaration may also be a 4718 // definition. If the declaration is not a definition, the 4719 // specialization may be defined later in the name- space in which 4720 // the explicit specialization was declared, or in a namespace 4721 // that encloses the one in which the explicit specialization was 4722 // declared. 4723 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 4724 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 4725 << Specialized; 4726 return true; 4727 } 4728 4729 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 4730 if (S.getLangOpts().MicrosoftExt) { 4731 // Do not warn for class scope explicit specialization during 4732 // instantiation, warning was already emitted during pattern 4733 // semantic analysis. 4734 if (!S.ActiveTemplateInstantiations.size()) 4735 S.Diag(Loc, diag::ext_function_specialization_in_class) 4736 << Specialized; 4737 } else { 4738 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 4739 << Specialized; 4740 return true; 4741 } 4742 } 4743 4744 if (S.CurContext->isRecord() && 4745 !S.CurContext->Equals(Specialized->getDeclContext())) { 4746 // Make sure that we're specializing in the right record context. 4747 // Otherwise, things can go horribly wrong. 4748 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 4749 << Specialized; 4750 return true; 4751 } 4752 4753 // C++ [temp.class.spec]p6: 4754 // A class template partial specialization may be declared or redeclared 4755 // in any namespace scope in which its definition may be defined (14.5.1 4756 // and 14.5.2). 4757 bool ComplainedAboutScope = false; 4758 DeclContext *SpecializedContext 4759 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 4760 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 4761 if ((!PrevDecl || 4762 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 4763 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 4764 // C++ [temp.exp.spec]p2: 4765 // An explicit specialization shall be declared in the namespace of which 4766 // the template is a member, or, for member templates, in the namespace 4767 // of which the enclosing class or enclosing class template is a member. 4768 // An explicit specialization of a member function, member class or 4769 // static data member of a class template shall be declared in the 4770 // namespace of which the class template is a member. 4771 // 4772 // C++0x [temp.expl.spec]p2: 4773 // An explicit specialization shall be declared in a namespace enclosing 4774 // the specialized template. 4775 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) { 4776 bool IsCPlusPlus0xExtension = DC->Encloses(SpecializedContext); 4777 if (isa<TranslationUnitDecl>(SpecializedContext)) { 4778 assert(!IsCPlusPlus0xExtension && 4779 "DC encloses TU but isn't in enclosing namespace set"); 4780 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 4781 << EntityKind << Specialized; 4782 } else if (isa<NamespaceDecl>(SpecializedContext)) { 4783 int Diag; 4784 if (!IsCPlusPlus0xExtension) 4785 Diag = diag::err_template_spec_decl_out_of_scope; 4786 else if (!S.getLangOpts().CPlusPlus0x) 4787 Diag = diag::ext_template_spec_decl_out_of_scope; 4788 else 4789 Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope; 4790 S.Diag(Loc, Diag) 4791 << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext); 4792 } 4793 4794 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4795 ComplainedAboutScope = 4796 !(IsCPlusPlus0xExtension && S.getLangOpts().CPlusPlus0x); 4797 } 4798 } 4799 4800 // Make sure that this redeclaration (or definition) occurs in an enclosing 4801 // namespace. 4802 // Note that HandleDeclarator() performs this check for explicit 4803 // specializations of function templates, static data members, and member 4804 // functions, so we skip the check here for those kinds of entities. 4805 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 4806 // Should we refactor that check, so that it occurs later? 4807 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 4808 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 4809 isa<FunctionDecl>(Specialized))) { 4810 if (isa<TranslationUnitDecl>(SpecializedContext)) 4811 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 4812 << EntityKind << Specialized; 4813 else if (isa<NamespaceDecl>(SpecializedContext)) 4814 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 4815 << EntityKind << Specialized 4816 << cast<NamedDecl>(SpecializedContext); 4817 4818 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4819 } 4820 4821 // FIXME: check for specialization-after-instantiation errors and such. 4822 4823 return false; 4824} 4825 4826/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs 4827/// that checks non-type template partial specialization arguments. 4828static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S, 4829 NonTypeTemplateParmDecl *Param, 4830 const TemplateArgument *Args, 4831 unsigned NumArgs) { 4832 for (unsigned I = 0; I != NumArgs; ++I) { 4833 if (Args[I].getKind() == TemplateArgument::Pack) { 4834 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4835 Args[I].pack_begin(), 4836 Args[I].pack_size())) 4837 return true; 4838 4839 continue; 4840 } 4841 4842 Expr *ArgExpr = Args[I].getAsExpr(); 4843 if (!ArgExpr) { 4844 continue; 4845 } 4846 4847 // We can have a pack expansion of any of the bullets below. 4848 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 4849 ArgExpr = Expansion->getPattern(); 4850 4851 // Strip off any implicit casts we added as part of type checking. 4852 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 4853 ArgExpr = ICE->getSubExpr(); 4854 4855 // C++ [temp.class.spec]p8: 4856 // A non-type argument is non-specialized if it is the name of a 4857 // non-type parameter. All other non-type arguments are 4858 // specialized. 4859 // 4860 // Below, we check the two conditions that only apply to 4861 // specialized non-type arguments, so skip any non-specialized 4862 // arguments. 4863 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 4864 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 4865 continue; 4866 4867 // C++ [temp.class.spec]p9: 4868 // Within the argument list of a class template partial 4869 // specialization, the following restrictions apply: 4870 // -- A partially specialized non-type argument expression 4871 // shall not involve a template parameter of the partial 4872 // specialization except when the argument expression is a 4873 // simple identifier. 4874 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 4875 S.Diag(ArgExpr->getLocStart(), 4876 diag::err_dependent_non_type_arg_in_partial_spec) 4877 << ArgExpr->getSourceRange(); 4878 return true; 4879 } 4880 4881 // -- The type of a template parameter corresponding to a 4882 // specialized non-type argument shall not be dependent on a 4883 // parameter of the specialization. 4884 if (Param->getType()->isDependentType()) { 4885 S.Diag(ArgExpr->getLocStart(), 4886 diag::err_dependent_typed_non_type_arg_in_partial_spec) 4887 << Param->getType() 4888 << ArgExpr->getSourceRange(); 4889 S.Diag(Param->getLocation(), diag::note_template_param_here); 4890 return true; 4891 } 4892 } 4893 4894 return false; 4895} 4896 4897/// \brief Check the non-type template arguments of a class template 4898/// partial specialization according to C++ [temp.class.spec]p9. 4899/// 4900/// \param TemplateParams the template parameters of the primary class 4901/// template. 4902/// 4903/// \param TemplateArg the template arguments of the class template 4904/// partial specialization. 4905/// 4906/// \returns true if there was an error, false otherwise. 4907static bool CheckClassTemplatePartialSpecializationArgs(Sema &S, 4908 TemplateParameterList *TemplateParams, 4909 SmallVectorImpl<TemplateArgument> &TemplateArgs) { 4910 const TemplateArgument *ArgList = TemplateArgs.data(); 4911 4912 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4913 NonTypeTemplateParmDecl *Param 4914 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 4915 if (!Param) 4916 continue; 4917 4918 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4919 &ArgList[I], 1)) 4920 return true; 4921 } 4922 4923 return false; 4924} 4925 4926DeclResult 4927Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 4928 TagUseKind TUK, 4929 SourceLocation KWLoc, 4930 SourceLocation ModulePrivateLoc, 4931 CXXScopeSpec &SS, 4932 TemplateTy TemplateD, 4933 SourceLocation TemplateNameLoc, 4934 SourceLocation LAngleLoc, 4935 ASTTemplateArgsPtr TemplateArgsIn, 4936 SourceLocation RAngleLoc, 4937 AttributeList *Attr, 4938 MultiTemplateParamsArg TemplateParameterLists) { 4939 assert(TUK != TUK_Reference && "References are not specializations"); 4940 4941 // NOTE: KWLoc is the location of the tag keyword. This will instead 4942 // store the location of the outermost template keyword in the declaration. 4943 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 4944 ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation(); 4945 4946 // Find the class template we're specializing 4947 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4948 ClassTemplateDecl *ClassTemplate 4949 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4950 4951 if (!ClassTemplate) { 4952 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 4953 << (Name.getAsTemplateDecl() && 4954 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 4955 return true; 4956 } 4957 4958 bool isExplicitSpecialization = false; 4959 bool isPartialSpecialization = false; 4960 4961 // Check the validity of the template headers that introduce this 4962 // template. 4963 // FIXME: We probably shouldn't complain about these headers for 4964 // friend declarations. 4965 bool Invalid = false; 4966 TemplateParameterList *TemplateParams 4967 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, 4968 TemplateNameLoc, 4969 SS, 4970 (TemplateParameterList**)TemplateParameterLists.get(), 4971 TemplateParameterLists.size(), 4972 TUK == TUK_Friend, 4973 isExplicitSpecialization, 4974 Invalid); 4975 if (Invalid) 4976 return true; 4977 4978 if (TemplateParams && TemplateParams->size() > 0) { 4979 isPartialSpecialization = true; 4980 4981 if (TUK == TUK_Friend) { 4982 Diag(KWLoc, diag::err_partial_specialization_friend) 4983 << SourceRange(LAngleLoc, RAngleLoc); 4984 return true; 4985 } 4986 4987 // C++ [temp.class.spec]p10: 4988 // The template parameter list of a specialization shall not 4989 // contain default template argument values. 4990 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4991 Decl *Param = TemplateParams->getParam(I); 4992 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 4993 if (TTP->hasDefaultArgument()) { 4994 Diag(TTP->getDefaultArgumentLoc(), 4995 diag::err_default_arg_in_partial_spec); 4996 TTP->removeDefaultArgument(); 4997 } 4998 } else if (NonTypeTemplateParmDecl *NTTP 4999 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5000 if (Expr *DefArg = NTTP->getDefaultArgument()) { 5001 Diag(NTTP->getDefaultArgumentLoc(), 5002 diag::err_default_arg_in_partial_spec) 5003 << DefArg->getSourceRange(); 5004 NTTP->removeDefaultArgument(); 5005 } 5006 } else { 5007 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 5008 if (TTP->hasDefaultArgument()) { 5009 Diag(TTP->getDefaultArgument().getLocation(), 5010 diag::err_default_arg_in_partial_spec) 5011 << TTP->getDefaultArgument().getSourceRange(); 5012 TTP->removeDefaultArgument(); 5013 } 5014 } 5015 } 5016 } else if (TemplateParams) { 5017 if (TUK == TUK_Friend) 5018 Diag(KWLoc, diag::err_template_spec_friend) 5019 << FixItHint::CreateRemoval( 5020 SourceRange(TemplateParams->getTemplateLoc(), 5021 TemplateParams->getRAngleLoc())) 5022 << SourceRange(LAngleLoc, RAngleLoc); 5023 else 5024 isExplicitSpecialization = true; 5025 } else if (TUK != TUK_Friend) { 5026 Diag(KWLoc, diag::err_template_spec_needs_header) 5027 << FixItHint::CreateInsertion(KWLoc, "template<> "); 5028 isExplicitSpecialization = true; 5029 } 5030 5031 // Check that the specialization uses the same tag kind as the 5032 // original template. 5033 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5034 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 5035 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 5036 Kind, TUK == TUK_Definition, KWLoc, 5037 *ClassTemplate->getIdentifier())) { 5038 Diag(KWLoc, diag::err_use_with_wrong_tag) 5039 << ClassTemplate 5040 << FixItHint::CreateReplacement(KWLoc, 5041 ClassTemplate->getTemplatedDecl()->getKindName()); 5042 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 5043 diag::note_previous_use); 5044 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 5045 } 5046 5047 // Translate the parser's template argument list in our AST format. 5048 TemplateArgumentListInfo TemplateArgs; 5049 TemplateArgs.setLAngleLoc(LAngleLoc); 5050 TemplateArgs.setRAngleLoc(RAngleLoc); 5051 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 5052 5053 // Check for unexpanded parameter packs in any of the template arguments. 5054 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 5055 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 5056 UPPC_PartialSpecialization)) 5057 return true; 5058 5059 // Check that the template argument list is well-formed for this 5060 // template. 5061 SmallVector<TemplateArgument, 4> Converted; 5062 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 5063 TemplateArgs, false, Converted)) 5064 return true; 5065 5066 // Find the class template (partial) specialization declaration that 5067 // corresponds to these arguments. 5068 if (isPartialSpecialization) { 5069 if (CheckClassTemplatePartialSpecializationArgs(*this, 5070 ClassTemplate->getTemplateParameters(), 5071 Converted)) 5072 return true; 5073 5074 bool InstantiationDependent; 5075 if (!Name.isDependent() && 5076 !TemplateSpecializationType::anyDependentTemplateArguments( 5077 TemplateArgs.getArgumentArray(), 5078 TemplateArgs.size(), 5079 InstantiationDependent)) { 5080 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 5081 << ClassTemplate->getDeclName(); 5082 isPartialSpecialization = false; 5083 } 5084 } 5085 5086 void *InsertPos = 0; 5087 ClassTemplateSpecializationDecl *PrevDecl = 0; 5088 5089 if (isPartialSpecialization) 5090 // FIXME: Template parameter list matters, too 5091 PrevDecl 5092 = ClassTemplate->findPartialSpecialization(Converted.data(), 5093 Converted.size(), 5094 InsertPos); 5095 else 5096 PrevDecl 5097 = ClassTemplate->findSpecialization(Converted.data(), 5098 Converted.size(), InsertPos); 5099 5100 ClassTemplateSpecializationDecl *Specialization = 0; 5101 5102 // Check whether we can declare a class template specialization in 5103 // the current scope. 5104 if (TUK != TUK_Friend && 5105 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 5106 TemplateNameLoc, 5107 isPartialSpecialization)) 5108 return true; 5109 5110 // The canonical type 5111 QualType CanonType; 5112 if (PrevDecl && 5113 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 5114 TUK == TUK_Friend)) { 5115 // Since the only prior class template specialization with these 5116 // arguments was referenced but not declared, or we're only 5117 // referencing this specialization as a friend, reuse that 5118 // declaration node as our own, updating its source location and 5119 // the list of outer template parameters to reflect our new declaration. 5120 Specialization = PrevDecl; 5121 Specialization->setLocation(TemplateNameLoc); 5122 if (TemplateParameterLists.size() > 0) { 5123 Specialization->setTemplateParameterListsInfo(Context, 5124 TemplateParameterLists.size(), 5125 (TemplateParameterList**) TemplateParameterLists.release()); 5126 } 5127 PrevDecl = 0; 5128 CanonType = Context.getTypeDeclType(Specialization); 5129 } else if (isPartialSpecialization) { 5130 // Build the canonical type that describes the converted template 5131 // arguments of the class template partial specialization. 5132 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 5133 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 5134 Converted.data(), 5135 Converted.size()); 5136 5137 if (Context.hasSameType(CanonType, 5138 ClassTemplate->getInjectedClassNameSpecialization())) { 5139 // C++ [temp.class.spec]p9b3: 5140 // 5141 // -- The argument list of the specialization shall not be identical 5142 // to the implicit argument list of the primary template. 5143 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 5144 << (TUK == TUK_Definition) 5145 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 5146 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 5147 ClassTemplate->getIdentifier(), 5148 TemplateNameLoc, 5149 Attr, 5150 TemplateParams, 5151 AS_none, /*ModulePrivateLoc=*/SourceLocation(), 5152 TemplateParameterLists.size() - 1, 5153 (TemplateParameterList**) TemplateParameterLists.release()); 5154 } 5155 5156 // Create a new class template partial specialization declaration node. 5157 ClassTemplatePartialSpecializationDecl *PrevPartial 5158 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 5159 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 5160 : ClassTemplate->getNextPartialSpecSequenceNumber(); 5161 ClassTemplatePartialSpecializationDecl *Partial 5162 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 5163 ClassTemplate->getDeclContext(), 5164 KWLoc, TemplateNameLoc, 5165 TemplateParams, 5166 ClassTemplate, 5167 Converted.data(), 5168 Converted.size(), 5169 TemplateArgs, 5170 CanonType, 5171 PrevPartial, 5172 SequenceNumber); 5173 SetNestedNameSpecifier(Partial, SS); 5174 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 5175 Partial->setTemplateParameterListsInfo(Context, 5176 TemplateParameterLists.size() - 1, 5177 (TemplateParameterList**) TemplateParameterLists.release()); 5178 } 5179 5180 if (!PrevPartial) 5181 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 5182 Specialization = Partial; 5183 5184 // If we are providing an explicit specialization of a member class 5185 // template specialization, make a note of that. 5186 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 5187 PrevPartial->setMemberSpecialization(); 5188 5189 // Check that all of the template parameters of the class template 5190 // partial specialization are deducible from the template 5191 // arguments. If not, this class template partial specialization 5192 // will never be used. 5193 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 5194 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 5195 TemplateParams->getDepth(), 5196 DeducibleParams); 5197 5198 if (!DeducibleParams.all()) { 5199 unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count(); 5200 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 5201 << (NumNonDeducible > 1) 5202 << SourceRange(TemplateNameLoc, RAngleLoc); 5203 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 5204 if (!DeducibleParams[I]) { 5205 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 5206 if (Param->getDeclName()) 5207 Diag(Param->getLocation(), 5208 diag::note_partial_spec_unused_parameter) 5209 << Param->getDeclName(); 5210 else 5211 Diag(Param->getLocation(), 5212 diag::note_partial_spec_unused_parameter) 5213 << "<anonymous>"; 5214 } 5215 } 5216 } 5217 } else { 5218 // Create a new class template specialization declaration node for 5219 // this explicit specialization or friend declaration. 5220 Specialization 5221 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5222 ClassTemplate->getDeclContext(), 5223 KWLoc, TemplateNameLoc, 5224 ClassTemplate, 5225 Converted.data(), 5226 Converted.size(), 5227 PrevDecl); 5228 SetNestedNameSpecifier(Specialization, SS); 5229 if (TemplateParameterLists.size() > 0) { 5230 Specialization->setTemplateParameterListsInfo(Context, 5231 TemplateParameterLists.size(), 5232 (TemplateParameterList**) TemplateParameterLists.release()); 5233 } 5234 5235 if (!PrevDecl) 5236 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5237 5238 CanonType = Context.getTypeDeclType(Specialization); 5239 } 5240 5241 // C++ [temp.expl.spec]p6: 5242 // If a template, a member template or the member of a class template is 5243 // explicitly specialized then that specialization shall be declared 5244 // before the first use of that specialization that would cause an implicit 5245 // instantiation to take place, in every translation unit in which such a 5246 // use occurs; no diagnostic is required. 5247 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 5248 bool Okay = false; 5249 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5250 // Is there any previous explicit specialization declaration? 5251 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 5252 Okay = true; 5253 break; 5254 } 5255 } 5256 5257 if (!Okay) { 5258 SourceRange Range(TemplateNameLoc, RAngleLoc); 5259 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 5260 << Context.getTypeDeclType(Specialization) << Range; 5261 5262 Diag(PrevDecl->getPointOfInstantiation(), 5263 diag::note_instantiation_required_here) 5264 << (PrevDecl->getTemplateSpecializationKind() 5265 != TSK_ImplicitInstantiation); 5266 return true; 5267 } 5268 } 5269 5270 // If this is not a friend, note that this is an explicit specialization. 5271 if (TUK != TUK_Friend) 5272 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 5273 5274 // Check that this isn't a redefinition of this specialization. 5275 if (TUK == TUK_Definition) { 5276 if (RecordDecl *Def = Specialization->getDefinition()) { 5277 SourceRange Range(TemplateNameLoc, RAngleLoc); 5278 Diag(TemplateNameLoc, diag::err_redefinition) 5279 << Context.getTypeDeclType(Specialization) << Range; 5280 Diag(Def->getLocation(), diag::note_previous_definition); 5281 Specialization->setInvalidDecl(); 5282 return true; 5283 } 5284 } 5285 5286 if (Attr) 5287 ProcessDeclAttributeList(S, Specialization, Attr); 5288 5289 if (ModulePrivateLoc.isValid()) 5290 Diag(Specialization->getLocation(), diag::err_module_private_specialization) 5291 << (isPartialSpecialization? 1 : 0) 5292 << FixItHint::CreateRemoval(ModulePrivateLoc); 5293 5294 // Build the fully-sugared type for this class template 5295 // specialization as the user wrote in the specialization 5296 // itself. This means that we'll pretty-print the type retrieved 5297 // from the specialization's declaration the way that the user 5298 // actually wrote the specialization, rather than formatting the 5299 // name based on the "canonical" representation used to store the 5300 // template arguments in the specialization. 5301 TypeSourceInfo *WrittenTy 5302 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5303 TemplateArgs, CanonType); 5304 if (TUK != TUK_Friend) { 5305 Specialization->setTypeAsWritten(WrittenTy); 5306 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 5307 } 5308 TemplateArgsIn.release(); 5309 5310 // C++ [temp.expl.spec]p9: 5311 // A template explicit specialization is in the scope of the 5312 // namespace in which the template was defined. 5313 // 5314 // We actually implement this paragraph where we set the semantic 5315 // context (in the creation of the ClassTemplateSpecializationDecl), 5316 // but we also maintain the lexical context where the actual 5317 // definition occurs. 5318 Specialization->setLexicalDeclContext(CurContext); 5319 5320 // We may be starting the definition of this specialization. 5321 if (TUK == TUK_Definition) 5322 Specialization->startDefinition(); 5323 5324 if (TUK == TUK_Friend) { 5325 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 5326 TemplateNameLoc, 5327 WrittenTy, 5328 /*FIXME:*/KWLoc); 5329 Friend->setAccess(AS_public); 5330 CurContext->addDecl(Friend); 5331 } else { 5332 // Add the specialization into its lexical context, so that it can 5333 // be seen when iterating through the list of declarations in that 5334 // context. However, specializations are not found by name lookup. 5335 CurContext->addDecl(Specialization); 5336 } 5337 return Specialization; 5338} 5339 5340Decl *Sema::ActOnTemplateDeclarator(Scope *S, 5341 MultiTemplateParamsArg TemplateParameterLists, 5342 Declarator &D) { 5343 return HandleDeclarator(S, D, move(TemplateParameterLists)); 5344} 5345 5346Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 5347 MultiTemplateParamsArg TemplateParameterLists, 5348 Declarator &D) { 5349 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 5350 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 5351 5352 if (FTI.hasPrototype) { 5353 // FIXME: Diagnose arguments without names in C. 5354 } 5355 5356 Scope *ParentScope = FnBodyScope->getParent(); 5357 5358 D.setFunctionDefinitionKind(FDK_Definition); 5359 Decl *DP = HandleDeclarator(ParentScope, D, 5360 move(TemplateParameterLists)); 5361 if (FunctionTemplateDecl *FunctionTemplate 5362 = dyn_cast_or_null<FunctionTemplateDecl>(DP)) 5363 return ActOnStartOfFunctionDef(FnBodyScope, 5364 FunctionTemplate->getTemplatedDecl()); 5365 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP)) 5366 return ActOnStartOfFunctionDef(FnBodyScope, Function); 5367 return 0; 5368} 5369 5370/// \brief Strips various properties off an implicit instantiation 5371/// that has just been explicitly specialized. 5372static void StripImplicitInstantiation(NamedDecl *D) { 5373 // FIXME: "make check" is clean if the call to dropAttrs() is commented out. 5374 D->dropAttrs(); 5375 5376 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5377 FD->setInlineSpecified(false); 5378 } 5379} 5380 5381/// \brief Compute the diagnostic location for an explicit instantiation 5382// declaration or definition. 5383static SourceLocation DiagLocForExplicitInstantiation( 5384 NamedDecl* D, SourceLocation PointOfInstantiation) { 5385 // Explicit instantiations following a specialization have no effect and 5386 // hence no PointOfInstantiation. In that case, walk decl backwards 5387 // until a valid name loc is found. 5388 SourceLocation PrevDiagLoc = PointOfInstantiation; 5389 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); 5390 Prev = Prev->getPreviousDecl()) { 5391 PrevDiagLoc = Prev->getLocation(); 5392 } 5393 assert(PrevDiagLoc.isValid() && 5394 "Explicit instantiation without point of instantiation?"); 5395 return PrevDiagLoc; 5396} 5397 5398/// \brief Diagnose cases where we have an explicit template specialization 5399/// before/after an explicit template instantiation, producing diagnostics 5400/// for those cases where they are required and determining whether the 5401/// new specialization/instantiation will have any effect. 5402/// 5403/// \param NewLoc the location of the new explicit specialization or 5404/// instantiation. 5405/// 5406/// \param NewTSK the kind of the new explicit specialization or instantiation. 5407/// 5408/// \param PrevDecl the previous declaration of the entity. 5409/// 5410/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 5411/// 5412/// \param PrevPointOfInstantiation if valid, indicates where the previus 5413/// declaration was instantiated (either implicitly or explicitly). 5414/// 5415/// \param HasNoEffect will be set to true to indicate that the new 5416/// specialization or instantiation has no effect and should be ignored. 5417/// 5418/// \returns true if there was an error that should prevent the introduction of 5419/// the new declaration into the AST, false otherwise. 5420bool 5421Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 5422 TemplateSpecializationKind NewTSK, 5423 NamedDecl *PrevDecl, 5424 TemplateSpecializationKind PrevTSK, 5425 SourceLocation PrevPointOfInstantiation, 5426 bool &HasNoEffect) { 5427 HasNoEffect = false; 5428 5429 switch (NewTSK) { 5430 case TSK_Undeclared: 5431 case TSK_ImplicitInstantiation: 5432 llvm_unreachable("Don't check implicit instantiations here"); 5433 5434 case TSK_ExplicitSpecialization: 5435 switch (PrevTSK) { 5436 case TSK_Undeclared: 5437 case TSK_ExplicitSpecialization: 5438 // Okay, we're just specializing something that is either already 5439 // explicitly specialized or has merely been mentioned without any 5440 // instantiation. 5441 return false; 5442 5443 case TSK_ImplicitInstantiation: 5444 if (PrevPointOfInstantiation.isInvalid()) { 5445 // The declaration itself has not actually been instantiated, so it is 5446 // still okay to specialize it. 5447 StripImplicitInstantiation(PrevDecl); 5448 return false; 5449 } 5450 // Fall through 5451 5452 case TSK_ExplicitInstantiationDeclaration: 5453 case TSK_ExplicitInstantiationDefinition: 5454 assert((PrevTSK == TSK_ImplicitInstantiation || 5455 PrevPointOfInstantiation.isValid()) && 5456 "Explicit instantiation without point of instantiation?"); 5457 5458 // C++ [temp.expl.spec]p6: 5459 // If a template, a member template or the member of a class template 5460 // is explicitly specialized then that specialization shall be declared 5461 // before the first use of that specialization that would cause an 5462 // implicit instantiation to take place, in every translation unit in 5463 // which such a use occurs; no diagnostic is required. 5464 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5465 // Is there any previous explicit specialization declaration? 5466 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 5467 return false; 5468 } 5469 5470 Diag(NewLoc, diag::err_specialization_after_instantiation) 5471 << PrevDecl; 5472 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 5473 << (PrevTSK != TSK_ImplicitInstantiation); 5474 5475 return true; 5476 } 5477 5478 case TSK_ExplicitInstantiationDeclaration: 5479 switch (PrevTSK) { 5480 case TSK_ExplicitInstantiationDeclaration: 5481 // This explicit instantiation declaration is redundant (that's okay). 5482 HasNoEffect = true; 5483 return false; 5484 5485 case TSK_Undeclared: 5486 case TSK_ImplicitInstantiation: 5487 // We're explicitly instantiating something that may have already been 5488 // implicitly instantiated; that's fine. 5489 return false; 5490 5491 case TSK_ExplicitSpecialization: 5492 // C++0x [temp.explicit]p4: 5493 // For a given set of template parameters, if an explicit instantiation 5494 // of a template appears after a declaration of an explicit 5495 // specialization for that template, the explicit instantiation has no 5496 // effect. 5497 HasNoEffect = true; 5498 return false; 5499 5500 case TSK_ExplicitInstantiationDefinition: 5501 // C++0x [temp.explicit]p10: 5502 // If an entity is the subject of both an explicit instantiation 5503 // declaration and an explicit instantiation definition in the same 5504 // translation unit, the definition shall follow the declaration. 5505 Diag(NewLoc, 5506 diag::err_explicit_instantiation_declaration_after_definition); 5507 5508 // Explicit instantiations following a specialization have no effect and 5509 // hence no PrevPointOfInstantiation. In that case, walk decl backwards 5510 // until a valid name loc is found. 5511 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 5512 diag::note_explicit_instantiation_definition_here); 5513 HasNoEffect = true; 5514 return false; 5515 } 5516 5517 case TSK_ExplicitInstantiationDefinition: 5518 switch (PrevTSK) { 5519 case TSK_Undeclared: 5520 case TSK_ImplicitInstantiation: 5521 // We're explicitly instantiating something that may have already been 5522 // implicitly instantiated; that's fine. 5523 return false; 5524 5525 case TSK_ExplicitSpecialization: 5526 // C++ DR 259, C++0x [temp.explicit]p4: 5527 // For a given set of template parameters, if an explicit 5528 // instantiation of a template appears after a declaration of 5529 // an explicit specialization for that template, the explicit 5530 // instantiation has no effect. 5531 // 5532 // In C++98/03 mode, we only give an extension warning here, because it 5533 // is not harmful to try to explicitly instantiate something that 5534 // has been explicitly specialized. 5535 Diag(NewLoc, getLangOpts().CPlusPlus0x ? 5536 diag::warn_cxx98_compat_explicit_instantiation_after_specialization : 5537 diag::ext_explicit_instantiation_after_specialization) 5538 << PrevDecl; 5539 Diag(PrevDecl->getLocation(), 5540 diag::note_previous_template_specialization); 5541 HasNoEffect = true; 5542 return false; 5543 5544 case TSK_ExplicitInstantiationDeclaration: 5545 // We're explicity instantiating a definition for something for which we 5546 // were previously asked to suppress instantiations. That's fine. 5547 5548 // C++0x [temp.explicit]p4: 5549 // For a given set of template parameters, if an explicit instantiation 5550 // of a template appears after a declaration of an explicit 5551 // specialization for that template, the explicit instantiation has no 5552 // effect. 5553 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5554 // Is there any previous explicit specialization declaration? 5555 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 5556 HasNoEffect = true; 5557 break; 5558 } 5559 } 5560 5561 return false; 5562 5563 case TSK_ExplicitInstantiationDefinition: 5564 // C++0x [temp.spec]p5: 5565 // For a given template and a given set of template-arguments, 5566 // - an explicit instantiation definition shall appear at most once 5567 // in a program, 5568 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 5569 << PrevDecl; 5570 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 5571 diag::note_previous_explicit_instantiation); 5572 HasNoEffect = true; 5573 return false; 5574 } 5575 } 5576 5577 llvm_unreachable("Missing specialization/instantiation case?"); 5578} 5579 5580/// \brief Perform semantic analysis for the given dependent function 5581/// template specialization. The only possible way to get a dependent 5582/// function template specialization is with a friend declaration, 5583/// like so: 5584/// 5585/// template <class T> void foo(T); 5586/// template <class T> class A { 5587/// friend void foo<>(T); 5588/// }; 5589/// 5590/// There really isn't any useful analysis we can do here, so we 5591/// just store the information. 5592bool 5593Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 5594 const TemplateArgumentListInfo &ExplicitTemplateArgs, 5595 LookupResult &Previous) { 5596 // Remove anything from Previous that isn't a function template in 5597 // the correct context. 5598 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5599 LookupResult::Filter F = Previous.makeFilter(); 5600 while (F.hasNext()) { 5601 NamedDecl *D = F.next()->getUnderlyingDecl(); 5602 if (!isa<FunctionTemplateDecl>(D) || 5603 !FDLookupContext->InEnclosingNamespaceSetOf( 5604 D->getDeclContext()->getRedeclContext())) 5605 F.erase(); 5606 } 5607 F.done(); 5608 5609 // Should this be diagnosed here? 5610 if (Previous.empty()) return true; 5611 5612 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 5613 ExplicitTemplateArgs); 5614 return false; 5615} 5616 5617/// \brief Perform semantic analysis for the given function template 5618/// specialization. 5619/// 5620/// This routine performs all of the semantic analysis required for an 5621/// explicit function template specialization. On successful completion, 5622/// the function declaration \p FD will become a function template 5623/// specialization. 5624/// 5625/// \param FD the function declaration, which will be updated to become a 5626/// function template specialization. 5627/// 5628/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 5629/// if any. Note that this may be valid info even when 0 arguments are 5630/// explicitly provided as in, e.g., \c void sort<>(char*, char*); 5631/// as it anyway contains info on the angle brackets locations. 5632/// 5633/// \param Previous the set of declarations that may be specialized by 5634/// this function specialization. 5635bool 5636Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 5637 TemplateArgumentListInfo *ExplicitTemplateArgs, 5638 LookupResult &Previous) { 5639 // The set of function template specializations that could match this 5640 // explicit function template specialization. 5641 UnresolvedSet<8> Candidates; 5642 5643 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5644 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5645 I != E; ++I) { 5646 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 5647 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 5648 // Only consider templates found within the same semantic lookup scope as 5649 // FD. 5650 if (!FDLookupContext->InEnclosingNamespaceSetOf( 5651 Ovl->getDeclContext()->getRedeclContext())) 5652 continue; 5653 5654 // C++ [temp.expl.spec]p11: 5655 // A trailing template-argument can be left unspecified in the 5656 // template-id naming an explicit function template specialization 5657 // provided it can be deduced from the function argument type. 5658 // Perform template argument deduction to determine whether we may be 5659 // specializing this template. 5660 // FIXME: It is somewhat wasteful to build 5661 TemplateDeductionInfo Info(Context, FD->getLocation()); 5662 FunctionDecl *Specialization = 0; 5663 if (TemplateDeductionResult TDK 5664 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 5665 FD->getType(), 5666 Specialization, 5667 Info)) { 5668 // FIXME: Template argument deduction failed; record why it failed, so 5669 // that we can provide nifty diagnostics. 5670 (void)TDK; 5671 continue; 5672 } 5673 5674 // Record this candidate. 5675 Candidates.addDecl(Specialization, I.getAccess()); 5676 } 5677 } 5678 5679 // Find the most specialized function template. 5680 UnresolvedSetIterator Result 5681 = getMostSpecialized(Candidates.begin(), Candidates.end(), 5682 TPOC_Other, 0, FD->getLocation(), 5683 PDiag(diag::err_function_template_spec_no_match) 5684 << FD->getDeclName(), 5685 PDiag(diag::err_function_template_spec_ambiguous) 5686 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 5687 PDiag(diag::note_function_template_spec_matched)); 5688 if (Result == Candidates.end()) 5689 return true; 5690 5691 // Ignore access information; it doesn't figure into redeclaration checking. 5692 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5693 5694 FunctionTemplateSpecializationInfo *SpecInfo 5695 = Specialization->getTemplateSpecializationInfo(); 5696 assert(SpecInfo && "Function template specialization info missing?"); 5697 5698 // Note: do not overwrite location info if previous template 5699 // specialization kind was explicit. 5700 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 5701 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) { 5702 Specialization->setLocation(FD->getLocation()); 5703 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr 5704 // function can differ from the template declaration with respect to 5705 // the constexpr specifier. 5706 Specialization->setConstexpr(FD->isConstexpr()); 5707 } 5708 5709 // FIXME: Check if the prior specialization has a point of instantiation. 5710 // If so, we have run afoul of . 5711 5712 // If this is a friend declaration, then we're not really declaring 5713 // an explicit specialization. 5714 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 5715 5716 // Check the scope of this explicit specialization. 5717 if (!isFriend && 5718 CheckTemplateSpecializationScope(*this, 5719 Specialization->getPrimaryTemplate(), 5720 Specialization, FD->getLocation(), 5721 false)) 5722 return true; 5723 5724 // C++ [temp.expl.spec]p6: 5725 // If a template, a member template or the member of a class template is 5726 // explicitly specialized then that specialization shall be declared 5727 // before the first use of that specialization that would cause an implicit 5728 // instantiation to take place, in every translation unit in which such a 5729 // use occurs; no diagnostic is required. 5730 bool HasNoEffect = false; 5731 if (!isFriend && 5732 CheckSpecializationInstantiationRedecl(FD->getLocation(), 5733 TSK_ExplicitSpecialization, 5734 Specialization, 5735 SpecInfo->getTemplateSpecializationKind(), 5736 SpecInfo->getPointOfInstantiation(), 5737 HasNoEffect)) 5738 return true; 5739 5740 // Mark the prior declaration as an explicit specialization, so that later 5741 // clients know that this is an explicit specialization. 5742 if (!isFriend) { 5743 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 5744 MarkUnusedFileScopedDecl(Specialization); 5745 } 5746 5747 // Turn the given function declaration into a function template 5748 // specialization, with the template arguments from the previous 5749 // specialization. 5750 // Take copies of (semantic and syntactic) template argument lists. 5751 const TemplateArgumentList* TemplArgs = new (Context) 5752 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 5753 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 5754 TemplArgs, /*InsertPos=*/0, 5755 SpecInfo->getTemplateSpecializationKind(), 5756 ExplicitTemplateArgs); 5757 FD->setStorageClass(Specialization->getStorageClass()); 5758 5759 // The "previous declaration" for this function template specialization is 5760 // the prior function template specialization. 5761 Previous.clear(); 5762 Previous.addDecl(Specialization); 5763 return false; 5764} 5765 5766/// \brief Perform semantic analysis for the given non-template member 5767/// specialization. 5768/// 5769/// This routine performs all of the semantic analysis required for an 5770/// explicit member function specialization. On successful completion, 5771/// the function declaration \p FD will become a member function 5772/// specialization. 5773/// 5774/// \param Member the member declaration, which will be updated to become a 5775/// specialization. 5776/// 5777/// \param Previous the set of declarations, one of which may be specialized 5778/// by this function specialization; the set will be modified to contain the 5779/// redeclared member. 5780bool 5781Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 5782 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 5783 5784 // Try to find the member we are instantiating. 5785 NamedDecl *Instantiation = 0; 5786 NamedDecl *InstantiatedFrom = 0; 5787 MemberSpecializationInfo *MSInfo = 0; 5788 5789 if (Previous.empty()) { 5790 // Nowhere to look anyway. 5791 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 5792 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5793 I != E; ++I) { 5794 NamedDecl *D = (*I)->getUnderlyingDecl(); 5795 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 5796 if (Context.hasSameType(Function->getType(), Method->getType())) { 5797 Instantiation = Method; 5798 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 5799 MSInfo = Method->getMemberSpecializationInfo(); 5800 break; 5801 } 5802 } 5803 } 5804 } else if (isa<VarDecl>(Member)) { 5805 VarDecl *PrevVar; 5806 if (Previous.isSingleResult() && 5807 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 5808 if (PrevVar->isStaticDataMember()) { 5809 Instantiation = PrevVar; 5810 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 5811 MSInfo = PrevVar->getMemberSpecializationInfo(); 5812 } 5813 } else if (isa<RecordDecl>(Member)) { 5814 CXXRecordDecl *PrevRecord; 5815 if (Previous.isSingleResult() && 5816 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 5817 Instantiation = PrevRecord; 5818 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 5819 MSInfo = PrevRecord->getMemberSpecializationInfo(); 5820 } 5821 } else if (isa<EnumDecl>(Member)) { 5822 EnumDecl *PrevEnum; 5823 if (Previous.isSingleResult() && 5824 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) { 5825 Instantiation = PrevEnum; 5826 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum(); 5827 MSInfo = PrevEnum->getMemberSpecializationInfo(); 5828 } 5829 } 5830 5831 if (!Instantiation) { 5832 // There is no previous declaration that matches. Since member 5833 // specializations are always out-of-line, the caller will complain about 5834 // this mismatch later. 5835 return false; 5836 } 5837 5838 // If this is a friend, just bail out here before we start turning 5839 // things into explicit specializations. 5840 if (Member->getFriendObjectKind() != Decl::FOK_None) { 5841 // Preserve instantiation information. 5842 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 5843 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 5844 cast<CXXMethodDecl>(InstantiatedFrom), 5845 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 5846 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 5847 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5848 cast<CXXRecordDecl>(InstantiatedFrom), 5849 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 5850 } 5851 5852 Previous.clear(); 5853 Previous.addDecl(Instantiation); 5854 return false; 5855 } 5856 5857 // Make sure that this is a specialization of a member. 5858 if (!InstantiatedFrom) { 5859 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 5860 << Member; 5861 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 5862 return true; 5863 } 5864 5865 // C++ [temp.expl.spec]p6: 5866 // If a template, a member template or the member of a class template is 5867 // explicitly specialized then that specialization shall be declared 5868 // before the first use of that specialization that would cause an implicit 5869 // instantiation to take place, in every translation unit in which such a 5870 // use occurs; no diagnostic is required. 5871 assert(MSInfo && "Member specialization info missing?"); 5872 5873 bool HasNoEffect = false; 5874 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 5875 TSK_ExplicitSpecialization, 5876 Instantiation, 5877 MSInfo->getTemplateSpecializationKind(), 5878 MSInfo->getPointOfInstantiation(), 5879 HasNoEffect)) 5880 return true; 5881 5882 // Check the scope of this explicit specialization. 5883 if (CheckTemplateSpecializationScope(*this, 5884 InstantiatedFrom, 5885 Instantiation, Member->getLocation(), 5886 false)) 5887 return true; 5888 5889 // Note that this is an explicit instantiation of a member. 5890 // the original declaration to note that it is an explicit specialization 5891 // (if it was previously an implicit instantiation). This latter step 5892 // makes bookkeeping easier. 5893 if (isa<FunctionDecl>(Member)) { 5894 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 5895 if (InstantiationFunction->getTemplateSpecializationKind() == 5896 TSK_ImplicitInstantiation) { 5897 InstantiationFunction->setTemplateSpecializationKind( 5898 TSK_ExplicitSpecialization); 5899 InstantiationFunction->setLocation(Member->getLocation()); 5900 } 5901 5902 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 5903 cast<CXXMethodDecl>(InstantiatedFrom), 5904 TSK_ExplicitSpecialization); 5905 MarkUnusedFileScopedDecl(InstantiationFunction); 5906 } else if (isa<VarDecl>(Member)) { 5907 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 5908 if (InstantiationVar->getTemplateSpecializationKind() == 5909 TSK_ImplicitInstantiation) { 5910 InstantiationVar->setTemplateSpecializationKind( 5911 TSK_ExplicitSpecialization); 5912 InstantiationVar->setLocation(Member->getLocation()); 5913 } 5914 5915 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 5916 cast<VarDecl>(InstantiatedFrom), 5917 TSK_ExplicitSpecialization); 5918 MarkUnusedFileScopedDecl(InstantiationVar); 5919 } else if (isa<CXXRecordDecl>(Member)) { 5920 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 5921 if (InstantiationClass->getTemplateSpecializationKind() == 5922 TSK_ImplicitInstantiation) { 5923 InstantiationClass->setTemplateSpecializationKind( 5924 TSK_ExplicitSpecialization); 5925 InstantiationClass->setLocation(Member->getLocation()); 5926 } 5927 5928 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5929 cast<CXXRecordDecl>(InstantiatedFrom), 5930 TSK_ExplicitSpecialization); 5931 } else { 5932 assert(isa<EnumDecl>(Member) && "Only member enums remain"); 5933 EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation); 5934 if (InstantiationEnum->getTemplateSpecializationKind() == 5935 TSK_ImplicitInstantiation) { 5936 InstantiationEnum->setTemplateSpecializationKind( 5937 TSK_ExplicitSpecialization); 5938 InstantiationEnum->setLocation(Member->getLocation()); 5939 } 5940 5941 cast<EnumDecl>(Member)->setInstantiationOfMemberEnum( 5942 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 5943 } 5944 5945 // Save the caller the trouble of having to figure out which declaration 5946 // this specialization matches. 5947 Previous.clear(); 5948 Previous.addDecl(Instantiation); 5949 return false; 5950} 5951 5952/// \brief Check the scope of an explicit instantiation. 5953/// 5954/// \returns true if a serious error occurs, false otherwise. 5955static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 5956 SourceLocation InstLoc, 5957 bool WasQualifiedName) { 5958 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 5959 DeclContext *CurContext = S.CurContext->getRedeclContext(); 5960 5961 if (CurContext->isRecord()) { 5962 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 5963 << D; 5964 return true; 5965 } 5966 5967 // C++11 [temp.explicit]p3: 5968 // An explicit instantiation shall appear in an enclosing namespace of its 5969 // template. If the name declared in the explicit instantiation is an 5970 // unqualified name, the explicit instantiation shall appear in the 5971 // namespace where its template is declared or, if that namespace is inline 5972 // (7.3.1), any namespace from its enclosing namespace set. 5973 // 5974 // This is DR275, which we do not retroactively apply to C++98/03. 5975 if (WasQualifiedName) { 5976 if (CurContext->Encloses(OrigContext)) 5977 return false; 5978 } else { 5979 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 5980 return false; 5981 } 5982 5983 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) { 5984 if (WasQualifiedName) 5985 S.Diag(InstLoc, 5986 S.getLangOpts().CPlusPlus0x? 5987 diag::err_explicit_instantiation_out_of_scope : 5988 diag::warn_explicit_instantiation_out_of_scope_0x) 5989 << D << NS; 5990 else 5991 S.Diag(InstLoc, 5992 S.getLangOpts().CPlusPlus0x? 5993 diag::err_explicit_instantiation_unqualified_wrong_namespace : 5994 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 5995 << D << NS; 5996 } else 5997 S.Diag(InstLoc, 5998 S.getLangOpts().CPlusPlus0x? 5999 diag::err_explicit_instantiation_must_be_global : 6000 diag::warn_explicit_instantiation_must_be_global_0x) 6001 << D; 6002 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 6003 return false; 6004} 6005 6006/// \brief Determine whether the given scope specifier has a template-id in it. 6007static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 6008 if (!SS.isSet()) 6009 return false; 6010 6011 // C++11 [temp.explicit]p3: 6012 // If the explicit instantiation is for a member function, a member class 6013 // or a static data member of a class template specialization, the name of 6014 // the class template specialization in the qualified-id for the member 6015 // name shall be a simple-template-id. 6016 // 6017 // C++98 has the same restriction, just worded differently. 6018 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 6019 NNS; NNS = NNS->getPrefix()) 6020 if (const Type *T = NNS->getAsType()) 6021 if (isa<TemplateSpecializationType>(T)) 6022 return true; 6023 6024 return false; 6025} 6026 6027// Explicit instantiation of a class template specialization 6028DeclResult 6029Sema::ActOnExplicitInstantiation(Scope *S, 6030 SourceLocation ExternLoc, 6031 SourceLocation TemplateLoc, 6032 unsigned TagSpec, 6033 SourceLocation KWLoc, 6034 const CXXScopeSpec &SS, 6035 TemplateTy TemplateD, 6036 SourceLocation TemplateNameLoc, 6037 SourceLocation LAngleLoc, 6038 ASTTemplateArgsPtr TemplateArgsIn, 6039 SourceLocation RAngleLoc, 6040 AttributeList *Attr) { 6041 // Find the class template we're specializing 6042 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 6043 ClassTemplateDecl *ClassTemplate 6044 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 6045 6046 // Check that the specialization uses the same tag kind as the 6047 // original template. 6048 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 6049 assert(Kind != TTK_Enum && 6050 "Invalid enum tag in class template explicit instantiation!"); 6051 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 6052 Kind, /*isDefinition*/false, KWLoc, 6053 *ClassTemplate->getIdentifier())) { 6054 Diag(KWLoc, diag::err_use_with_wrong_tag) 6055 << ClassTemplate 6056 << FixItHint::CreateReplacement(KWLoc, 6057 ClassTemplate->getTemplatedDecl()->getKindName()); 6058 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 6059 diag::note_previous_use); 6060 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 6061 } 6062 6063 // C++0x [temp.explicit]p2: 6064 // There are two forms of explicit instantiation: an explicit instantiation 6065 // definition and an explicit instantiation declaration. An explicit 6066 // instantiation declaration begins with the extern keyword. [...] 6067 TemplateSpecializationKind TSK 6068 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6069 : TSK_ExplicitInstantiationDeclaration; 6070 6071 // Translate the parser's template argument list in our AST format. 6072 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 6073 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 6074 6075 // Check that the template argument list is well-formed for this 6076 // template. 6077 SmallVector<TemplateArgument, 4> Converted; 6078 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 6079 TemplateArgs, false, Converted)) 6080 return true; 6081 6082 // Find the class template specialization declaration that 6083 // corresponds to these arguments. 6084 void *InsertPos = 0; 6085 ClassTemplateSpecializationDecl *PrevDecl 6086 = ClassTemplate->findSpecialization(Converted.data(), 6087 Converted.size(), InsertPos); 6088 6089 TemplateSpecializationKind PrevDecl_TSK 6090 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 6091 6092 // C++0x [temp.explicit]p2: 6093 // [...] An explicit instantiation shall appear in an enclosing 6094 // namespace of its template. [...] 6095 // 6096 // This is C++ DR 275. 6097 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 6098 SS.isSet())) 6099 return true; 6100 6101 ClassTemplateSpecializationDecl *Specialization = 0; 6102 6103 bool HasNoEffect = false; 6104 if (PrevDecl) { 6105 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 6106 PrevDecl, PrevDecl_TSK, 6107 PrevDecl->getPointOfInstantiation(), 6108 HasNoEffect)) 6109 return PrevDecl; 6110 6111 // Even though HasNoEffect == true means that this explicit instantiation 6112 // has no effect on semantics, we go on to put its syntax in the AST. 6113 6114 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 6115 PrevDecl_TSK == TSK_Undeclared) { 6116 // Since the only prior class template specialization with these 6117 // arguments was referenced but not declared, reuse that 6118 // declaration node as our own, updating the source location 6119 // for the template name to reflect our new declaration. 6120 // (Other source locations will be updated later.) 6121 Specialization = PrevDecl; 6122 Specialization->setLocation(TemplateNameLoc); 6123 PrevDecl = 0; 6124 } 6125 } 6126 6127 if (!Specialization) { 6128 // Create a new class template specialization declaration node for 6129 // this explicit specialization. 6130 Specialization 6131 = ClassTemplateSpecializationDecl::Create(Context, Kind, 6132 ClassTemplate->getDeclContext(), 6133 KWLoc, TemplateNameLoc, 6134 ClassTemplate, 6135 Converted.data(), 6136 Converted.size(), 6137 PrevDecl); 6138 SetNestedNameSpecifier(Specialization, SS); 6139 6140 if (!HasNoEffect && !PrevDecl) { 6141 // Insert the new specialization. 6142 ClassTemplate->AddSpecialization(Specialization, InsertPos); 6143 } 6144 } 6145 6146 // Build the fully-sugared type for this explicit instantiation as 6147 // the user wrote in the explicit instantiation itself. This means 6148 // that we'll pretty-print the type retrieved from the 6149 // specialization's declaration the way that the user actually wrote 6150 // the explicit instantiation, rather than formatting the name based 6151 // on the "canonical" representation used to store the template 6152 // arguments in the specialization. 6153 TypeSourceInfo *WrittenTy 6154 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 6155 TemplateArgs, 6156 Context.getTypeDeclType(Specialization)); 6157 Specialization->setTypeAsWritten(WrittenTy); 6158 TemplateArgsIn.release(); 6159 6160 // Set source locations for keywords. 6161 Specialization->setExternLoc(ExternLoc); 6162 Specialization->setTemplateKeywordLoc(TemplateLoc); 6163 6164 if (Attr) 6165 ProcessDeclAttributeList(S, Specialization, Attr); 6166 6167 // Add the explicit instantiation into its lexical context. However, 6168 // since explicit instantiations are never found by name lookup, we 6169 // just put it into the declaration context directly. 6170 Specialization->setLexicalDeclContext(CurContext); 6171 CurContext->addDecl(Specialization); 6172 6173 // Syntax is now OK, so return if it has no other effect on semantics. 6174 if (HasNoEffect) { 6175 // Set the template specialization kind. 6176 Specialization->setTemplateSpecializationKind(TSK); 6177 return Specialization; 6178 } 6179 6180 // C++ [temp.explicit]p3: 6181 // A definition of a class template or class member template 6182 // shall be in scope at the point of the explicit instantiation of 6183 // the class template or class member template. 6184 // 6185 // This check comes when we actually try to perform the 6186 // instantiation. 6187 ClassTemplateSpecializationDecl *Def 6188 = cast_or_null<ClassTemplateSpecializationDecl>( 6189 Specialization->getDefinition()); 6190 if (!Def) 6191 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 6192 else if (TSK == TSK_ExplicitInstantiationDefinition) { 6193 MarkVTableUsed(TemplateNameLoc, Specialization, true); 6194 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 6195 } 6196 6197 // Instantiate the members of this class template specialization. 6198 Def = cast_or_null<ClassTemplateSpecializationDecl>( 6199 Specialization->getDefinition()); 6200 if (Def) { 6201 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 6202 6203 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 6204 // TSK_ExplicitInstantiationDefinition 6205 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 6206 TSK == TSK_ExplicitInstantiationDefinition) 6207 Def->setTemplateSpecializationKind(TSK); 6208 6209 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 6210 } 6211 6212 // Set the template specialization kind. 6213 Specialization->setTemplateSpecializationKind(TSK); 6214 return Specialization; 6215} 6216 6217// Explicit instantiation of a member class of a class template. 6218DeclResult 6219Sema::ActOnExplicitInstantiation(Scope *S, 6220 SourceLocation ExternLoc, 6221 SourceLocation TemplateLoc, 6222 unsigned TagSpec, 6223 SourceLocation KWLoc, 6224 CXXScopeSpec &SS, 6225 IdentifierInfo *Name, 6226 SourceLocation NameLoc, 6227 AttributeList *Attr) { 6228 6229 bool Owned = false; 6230 bool IsDependent = false; 6231 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 6232 KWLoc, SS, Name, NameLoc, Attr, AS_none, 6233 /*ModulePrivateLoc=*/SourceLocation(), 6234 MultiTemplateParamsArg(*this, 0, 0), 6235 Owned, IsDependent, SourceLocation(), false, 6236 TypeResult()); 6237 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 6238 6239 if (!TagD) 6240 return true; 6241 6242 TagDecl *Tag = cast<TagDecl>(TagD); 6243 assert(!Tag->isEnum() && "shouldn't see enumerations here"); 6244 6245 if (Tag->isInvalidDecl()) 6246 return true; 6247 6248 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 6249 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 6250 if (!Pattern) { 6251 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 6252 << Context.getTypeDeclType(Record); 6253 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 6254 return true; 6255 } 6256 6257 // C++0x [temp.explicit]p2: 6258 // If the explicit instantiation is for a class or member class, the 6259 // elaborated-type-specifier in the declaration shall include a 6260 // simple-template-id. 6261 // 6262 // C++98 has the same restriction, just worded differently. 6263 if (!ScopeSpecifierHasTemplateId(SS)) 6264 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 6265 << Record << SS.getRange(); 6266 6267 // C++0x [temp.explicit]p2: 6268 // There are two forms of explicit instantiation: an explicit instantiation 6269 // definition and an explicit instantiation declaration. An explicit 6270 // instantiation declaration begins with the extern keyword. [...] 6271 TemplateSpecializationKind TSK 6272 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6273 : TSK_ExplicitInstantiationDeclaration; 6274 6275 // C++0x [temp.explicit]p2: 6276 // [...] An explicit instantiation shall appear in an enclosing 6277 // namespace of its template. [...] 6278 // 6279 // This is C++ DR 275. 6280 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 6281 6282 // Verify that it is okay to explicitly instantiate here. 6283 CXXRecordDecl *PrevDecl 6284 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl()); 6285 if (!PrevDecl && Record->getDefinition()) 6286 PrevDecl = Record; 6287 if (PrevDecl) { 6288 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 6289 bool HasNoEffect = false; 6290 assert(MSInfo && "No member specialization information?"); 6291 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 6292 PrevDecl, 6293 MSInfo->getTemplateSpecializationKind(), 6294 MSInfo->getPointOfInstantiation(), 6295 HasNoEffect)) 6296 return true; 6297 if (HasNoEffect) 6298 return TagD; 6299 } 6300 6301 CXXRecordDecl *RecordDef 6302 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 6303 if (!RecordDef) { 6304 // C++ [temp.explicit]p3: 6305 // A definition of a member class of a class template shall be in scope 6306 // at the point of an explicit instantiation of the member class. 6307 CXXRecordDecl *Def 6308 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 6309 if (!Def) { 6310 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 6311 << 0 << Record->getDeclName() << Record->getDeclContext(); 6312 Diag(Pattern->getLocation(), diag::note_forward_declaration) 6313 << Pattern; 6314 return true; 6315 } else { 6316 if (InstantiateClass(NameLoc, Record, Def, 6317 getTemplateInstantiationArgs(Record), 6318 TSK)) 6319 return true; 6320 6321 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 6322 if (!RecordDef) 6323 return true; 6324 } 6325 } 6326 6327 // Instantiate all of the members of the class. 6328 InstantiateClassMembers(NameLoc, RecordDef, 6329 getTemplateInstantiationArgs(Record), TSK); 6330 6331 if (TSK == TSK_ExplicitInstantiationDefinition) 6332 MarkVTableUsed(NameLoc, RecordDef, true); 6333 6334 // FIXME: We don't have any representation for explicit instantiations of 6335 // member classes. Such a representation is not needed for compilation, but it 6336 // should be available for clients that want to see all of the declarations in 6337 // the source code. 6338 return TagD; 6339} 6340 6341DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 6342 SourceLocation ExternLoc, 6343 SourceLocation TemplateLoc, 6344 Declarator &D) { 6345 // Explicit instantiations always require a name. 6346 // TODO: check if/when DNInfo should replace Name. 6347 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 6348 DeclarationName Name = NameInfo.getName(); 6349 if (!Name) { 6350 if (!D.isInvalidType()) 6351 Diag(D.getDeclSpec().getLocStart(), 6352 diag::err_explicit_instantiation_requires_name) 6353 << D.getDeclSpec().getSourceRange() 6354 << D.getSourceRange(); 6355 6356 return true; 6357 } 6358 6359 // The scope passed in may not be a decl scope. Zip up the scope tree until 6360 // we find one that is. 6361 while ((S->getFlags() & Scope::DeclScope) == 0 || 6362 (S->getFlags() & Scope::TemplateParamScope) != 0) 6363 S = S->getParent(); 6364 6365 // Determine the type of the declaration. 6366 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 6367 QualType R = T->getType(); 6368 if (R.isNull()) 6369 return true; 6370 6371 // C++ [dcl.stc]p1: 6372 // A storage-class-specifier shall not be specified in [...] an explicit 6373 // instantiation (14.7.2) directive. 6374 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 6375 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 6376 << Name; 6377 return true; 6378 } else if (D.getDeclSpec().getStorageClassSpec() 6379 != DeclSpec::SCS_unspecified) { 6380 // Complain about then remove the storage class specifier. 6381 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 6382 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6383 6384 D.getMutableDeclSpec().ClearStorageClassSpecs(); 6385 } 6386 6387 // C++0x [temp.explicit]p1: 6388 // [...] An explicit instantiation of a function template shall not use the 6389 // inline or constexpr specifiers. 6390 // Presumably, this also applies to member functions of class templates as 6391 // well. 6392 if (D.getDeclSpec().isInlineSpecified()) 6393 Diag(D.getDeclSpec().getInlineSpecLoc(), 6394 getLangOpts().CPlusPlus0x ? 6395 diag::err_explicit_instantiation_inline : 6396 diag::warn_explicit_instantiation_inline_0x) 6397 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 6398 if (D.getDeclSpec().isConstexprSpecified()) 6399 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is 6400 // not already specified. 6401 Diag(D.getDeclSpec().getConstexprSpecLoc(), 6402 diag::err_explicit_instantiation_constexpr); 6403 6404 // C++0x [temp.explicit]p2: 6405 // There are two forms of explicit instantiation: an explicit instantiation 6406 // definition and an explicit instantiation declaration. An explicit 6407 // instantiation declaration begins with the extern keyword. [...] 6408 TemplateSpecializationKind TSK 6409 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6410 : TSK_ExplicitInstantiationDeclaration; 6411 6412 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 6413 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 6414 6415 if (!R->isFunctionType()) { 6416 // C++ [temp.explicit]p1: 6417 // A [...] static data member of a class template can be explicitly 6418 // instantiated from the member definition associated with its class 6419 // template. 6420 if (Previous.isAmbiguous()) 6421 return true; 6422 6423 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 6424 if (!Prev || !Prev->isStaticDataMember()) { 6425 // We expect to see a data data member here. 6426 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 6427 << Name; 6428 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6429 P != PEnd; ++P) 6430 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 6431 return true; 6432 } 6433 6434 if (!Prev->getInstantiatedFromStaticDataMember()) { 6435 // FIXME: Check for explicit specialization? 6436 Diag(D.getIdentifierLoc(), 6437 diag::err_explicit_instantiation_data_member_not_instantiated) 6438 << Prev; 6439 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 6440 // FIXME: Can we provide a note showing where this was declared? 6441 return true; 6442 } 6443 6444 // C++0x [temp.explicit]p2: 6445 // If the explicit instantiation is for a member function, a member class 6446 // or a static data member of a class template specialization, the name of 6447 // the class template specialization in the qualified-id for the member 6448 // name shall be a simple-template-id. 6449 // 6450 // C++98 has the same restriction, just worded differently. 6451 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6452 Diag(D.getIdentifierLoc(), 6453 diag::ext_explicit_instantiation_without_qualified_id) 6454 << Prev << D.getCXXScopeSpec().getRange(); 6455 6456 // Check the scope of this explicit instantiation. 6457 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 6458 6459 // Verify that it is okay to explicitly instantiate here. 6460 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 6461 assert(MSInfo && "Missing static data member specialization info?"); 6462 bool HasNoEffect = false; 6463 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 6464 MSInfo->getTemplateSpecializationKind(), 6465 MSInfo->getPointOfInstantiation(), 6466 HasNoEffect)) 6467 return true; 6468 if (HasNoEffect) 6469 return (Decl*) 0; 6470 6471 // Instantiate static data member. 6472 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6473 if (TSK == TSK_ExplicitInstantiationDefinition) 6474 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev); 6475 6476 // FIXME: Create an ExplicitInstantiation node? 6477 return (Decl*) 0; 6478 } 6479 6480 // If the declarator is a template-id, translate the parser's template 6481 // argument list into our AST format. 6482 bool HasExplicitTemplateArgs = false; 6483 TemplateArgumentListInfo TemplateArgs; 6484 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 6485 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 6486 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 6487 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 6488 ASTTemplateArgsPtr TemplateArgsPtr(*this, 6489 TemplateId->getTemplateArgs(), 6490 TemplateId->NumArgs); 6491 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 6492 HasExplicitTemplateArgs = true; 6493 TemplateArgsPtr.release(); 6494 } 6495 6496 // C++ [temp.explicit]p1: 6497 // A [...] function [...] can be explicitly instantiated from its template. 6498 // A member function [...] of a class template can be explicitly 6499 // instantiated from the member definition associated with its class 6500 // template. 6501 UnresolvedSet<8> Matches; 6502 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6503 P != PEnd; ++P) { 6504 NamedDecl *Prev = *P; 6505 if (!HasExplicitTemplateArgs) { 6506 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 6507 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 6508 Matches.clear(); 6509 6510 Matches.addDecl(Method, P.getAccess()); 6511 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 6512 break; 6513 } 6514 } 6515 } 6516 6517 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 6518 if (!FunTmpl) 6519 continue; 6520 6521 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 6522 FunctionDecl *Specialization = 0; 6523 if (TemplateDeductionResult TDK 6524 = DeduceTemplateArguments(FunTmpl, 6525 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 6526 R, Specialization, Info)) { 6527 // FIXME: Keep track of almost-matches? 6528 (void)TDK; 6529 continue; 6530 } 6531 6532 Matches.addDecl(Specialization, P.getAccess()); 6533 } 6534 6535 // Find the most specialized function template specialization. 6536 UnresolvedSetIterator Result 6537 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0, 6538 D.getIdentifierLoc(), 6539 PDiag(diag::err_explicit_instantiation_not_known) << Name, 6540 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 6541 PDiag(diag::note_explicit_instantiation_candidate)); 6542 6543 if (Result == Matches.end()) 6544 return true; 6545 6546 // Ignore access control bits, we don't need them for redeclaration checking. 6547 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 6548 6549 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 6550 Diag(D.getIdentifierLoc(), 6551 diag::err_explicit_instantiation_member_function_not_instantiated) 6552 << Specialization 6553 << (Specialization->getTemplateSpecializationKind() == 6554 TSK_ExplicitSpecialization); 6555 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 6556 return true; 6557 } 6558 6559 FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); 6560 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 6561 PrevDecl = Specialization; 6562 6563 if (PrevDecl) { 6564 bool HasNoEffect = false; 6565 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 6566 PrevDecl, 6567 PrevDecl->getTemplateSpecializationKind(), 6568 PrevDecl->getPointOfInstantiation(), 6569 HasNoEffect)) 6570 return true; 6571 6572 // FIXME: We may still want to build some representation of this 6573 // explicit specialization. 6574 if (HasNoEffect) 6575 return (Decl*) 0; 6576 } 6577 6578 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6579 AttributeList *Attr = D.getDeclSpec().getAttributes().getList(); 6580 if (Attr) 6581 ProcessDeclAttributeList(S, Specialization, Attr); 6582 6583 if (TSK == TSK_ExplicitInstantiationDefinition) 6584 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 6585 6586 // C++0x [temp.explicit]p2: 6587 // If the explicit instantiation is for a member function, a member class 6588 // or a static data member of a class template specialization, the name of 6589 // the class template specialization in the qualified-id for the member 6590 // name shall be a simple-template-id. 6591 // 6592 // C++98 has the same restriction, just worded differently. 6593 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 6594 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 6595 D.getCXXScopeSpec().isSet() && 6596 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6597 Diag(D.getIdentifierLoc(), 6598 diag::ext_explicit_instantiation_without_qualified_id) 6599 << Specialization << D.getCXXScopeSpec().getRange(); 6600 6601 CheckExplicitInstantiationScope(*this, 6602 FunTmpl? (NamedDecl *)FunTmpl 6603 : Specialization->getInstantiatedFromMemberFunction(), 6604 D.getIdentifierLoc(), 6605 D.getCXXScopeSpec().isSet()); 6606 6607 // FIXME: Create some kind of ExplicitInstantiationDecl here. 6608 return (Decl*) 0; 6609} 6610 6611TypeResult 6612Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 6613 const CXXScopeSpec &SS, IdentifierInfo *Name, 6614 SourceLocation TagLoc, SourceLocation NameLoc) { 6615 // This has to hold, because SS is expected to be defined. 6616 assert(Name && "Expected a name in a dependent tag"); 6617 6618 NestedNameSpecifier *NNS 6619 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 6620 if (!NNS) 6621 return true; 6622 6623 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 6624 6625 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 6626 Diag(NameLoc, diag::err_dependent_tag_decl) 6627 << (TUK == TUK_Definition) << Kind << SS.getRange(); 6628 return true; 6629 } 6630 6631 // Create the resulting type. 6632 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 6633 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 6634 6635 // Create type-source location information for this type. 6636 TypeLocBuilder TLB; 6637 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 6638 TL.setElaboratedKeywordLoc(TagLoc); 6639 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6640 TL.setNameLoc(NameLoc); 6641 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 6642} 6643 6644TypeResult 6645Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 6646 const CXXScopeSpec &SS, const IdentifierInfo &II, 6647 SourceLocation IdLoc) { 6648 if (SS.isInvalid()) 6649 return true; 6650 6651 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 6652 Diag(TypenameLoc, 6653 getLangOpts().CPlusPlus0x ? 6654 diag::warn_cxx98_compat_typename_outside_of_template : 6655 diag::ext_typename_outside_of_template) 6656 << FixItHint::CreateRemoval(TypenameLoc); 6657 6658 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 6659 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, 6660 TypenameLoc, QualifierLoc, II, IdLoc); 6661 if (T.isNull()) 6662 return true; 6663 6664 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 6665 if (isa<DependentNameType>(T)) { 6666 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 6667 TL.setElaboratedKeywordLoc(TypenameLoc); 6668 TL.setQualifierLoc(QualifierLoc); 6669 TL.setNameLoc(IdLoc); 6670 } else { 6671 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 6672 TL.setElaboratedKeywordLoc(TypenameLoc); 6673 TL.setQualifierLoc(QualifierLoc); 6674 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc); 6675 } 6676 6677 return CreateParsedType(T, TSI); 6678} 6679 6680TypeResult 6681Sema::ActOnTypenameType(Scope *S, 6682 SourceLocation TypenameLoc, 6683 const CXXScopeSpec &SS, 6684 SourceLocation TemplateKWLoc, 6685 TemplateTy TemplateIn, 6686 SourceLocation TemplateNameLoc, 6687 SourceLocation LAngleLoc, 6688 ASTTemplateArgsPtr TemplateArgsIn, 6689 SourceLocation RAngleLoc) { 6690 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 6691 Diag(TypenameLoc, 6692 getLangOpts().CPlusPlus0x ? 6693 diag::warn_cxx98_compat_typename_outside_of_template : 6694 diag::ext_typename_outside_of_template) 6695 << FixItHint::CreateRemoval(TypenameLoc); 6696 6697 // Translate the parser's template argument list in our AST format. 6698 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 6699 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 6700 6701 TemplateName Template = TemplateIn.get(); 6702 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 6703 // Construct a dependent template specialization type. 6704 assert(DTN && "dependent template has non-dependent name?"); 6705 assert(DTN->getQualifier() 6706 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 6707 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, 6708 DTN->getQualifier(), 6709 DTN->getIdentifier(), 6710 TemplateArgs); 6711 6712 // Create source-location information for this type. 6713 TypeLocBuilder Builder; 6714 DependentTemplateSpecializationTypeLoc SpecTL 6715 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 6716 SpecTL.setElaboratedKeywordLoc(TypenameLoc); 6717 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 6718 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 6719 SpecTL.setTemplateNameLoc(TemplateNameLoc); 6720 SpecTL.setLAngleLoc(LAngleLoc); 6721 SpecTL.setRAngleLoc(RAngleLoc); 6722 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6723 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 6724 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 6725 } 6726 6727 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs); 6728 if (T.isNull()) 6729 return true; 6730 6731 // Provide source-location information for the template specialization type. 6732 TypeLocBuilder Builder; 6733 TemplateSpecializationTypeLoc SpecTL 6734 = Builder.push<TemplateSpecializationTypeLoc>(T); 6735 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 6736 SpecTL.setTemplateNameLoc(TemplateNameLoc); 6737 SpecTL.setLAngleLoc(LAngleLoc); 6738 SpecTL.setRAngleLoc(RAngleLoc); 6739 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6740 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 6741 6742 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); 6743 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 6744 TL.setElaboratedKeywordLoc(TypenameLoc); 6745 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6746 6747 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 6748 return CreateParsedType(T, TSI); 6749} 6750 6751 6752/// \brief Build the type that describes a C++ typename specifier, 6753/// e.g., "typename T::type". 6754QualType 6755Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 6756 SourceLocation KeywordLoc, 6757 NestedNameSpecifierLoc QualifierLoc, 6758 const IdentifierInfo &II, 6759 SourceLocation IILoc) { 6760 CXXScopeSpec SS; 6761 SS.Adopt(QualifierLoc); 6762 6763 DeclContext *Ctx = computeDeclContext(SS); 6764 if (!Ctx) { 6765 // If the nested-name-specifier is dependent and couldn't be 6766 // resolved to a type, build a typename type. 6767 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 6768 return Context.getDependentNameType(Keyword, 6769 QualifierLoc.getNestedNameSpecifier(), 6770 &II); 6771 } 6772 6773 // If the nested-name-specifier refers to the current instantiation, 6774 // the "typename" keyword itself is superfluous. In C++03, the 6775 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 6776 // allows such extraneous "typename" keywords, and we retroactively 6777 // apply this DR to C++03 code with only a warning. In any case we continue. 6778 6779 if (RequireCompleteDeclContext(SS, Ctx)) 6780 return QualType(); 6781 6782 DeclarationName Name(&II); 6783 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 6784 LookupQualifiedName(Result, Ctx); 6785 unsigned DiagID = 0; 6786 Decl *Referenced = 0; 6787 switch (Result.getResultKind()) { 6788 case LookupResult::NotFound: 6789 DiagID = diag::err_typename_nested_not_found; 6790 break; 6791 6792 case LookupResult::FoundUnresolvedValue: { 6793 // We found a using declaration that is a value. Most likely, the using 6794 // declaration itself is meant to have the 'typename' keyword. 6795 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 6796 IILoc); 6797 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 6798 << Name << Ctx << FullRange; 6799 if (UnresolvedUsingValueDecl *Using 6800 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 6801 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 6802 Diag(Loc, diag::note_using_value_decl_missing_typename) 6803 << FixItHint::CreateInsertion(Loc, "typename "); 6804 } 6805 } 6806 // Fall through to create a dependent typename type, from which we can recover 6807 // better. 6808 6809 case LookupResult::NotFoundInCurrentInstantiation: 6810 // Okay, it's a member of an unknown instantiation. 6811 return Context.getDependentNameType(Keyword, 6812 QualifierLoc.getNestedNameSpecifier(), 6813 &II); 6814 6815 case LookupResult::Found: 6816 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 6817 // We found a type. Build an ElaboratedType, since the 6818 // typename-specifier was just sugar. 6819 return Context.getElaboratedType(ETK_Typename, 6820 QualifierLoc.getNestedNameSpecifier(), 6821 Context.getTypeDeclType(Type)); 6822 } 6823 6824 DiagID = diag::err_typename_nested_not_type; 6825 Referenced = Result.getFoundDecl(); 6826 break; 6827 6828 case LookupResult::FoundOverloaded: 6829 DiagID = diag::err_typename_nested_not_type; 6830 Referenced = *Result.begin(); 6831 break; 6832 6833 case LookupResult::Ambiguous: 6834 return QualType(); 6835 } 6836 6837 // If we get here, it's because name lookup did not find a 6838 // type. Emit an appropriate diagnostic and return an error. 6839 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 6840 IILoc); 6841 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 6842 if (Referenced) 6843 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 6844 << Name; 6845 return QualType(); 6846} 6847 6848namespace { 6849 // See Sema::RebuildTypeInCurrentInstantiation 6850 class CurrentInstantiationRebuilder 6851 : public TreeTransform<CurrentInstantiationRebuilder> { 6852 SourceLocation Loc; 6853 DeclarationName Entity; 6854 6855 public: 6856 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 6857 6858 CurrentInstantiationRebuilder(Sema &SemaRef, 6859 SourceLocation Loc, 6860 DeclarationName Entity) 6861 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 6862 Loc(Loc), Entity(Entity) { } 6863 6864 /// \brief Determine whether the given type \p T has already been 6865 /// transformed. 6866 /// 6867 /// For the purposes of type reconstruction, a type has already been 6868 /// transformed if it is NULL or if it is not dependent. 6869 bool AlreadyTransformed(QualType T) { 6870 return T.isNull() || !T->isDependentType(); 6871 } 6872 6873 /// \brief Returns the location of the entity whose type is being 6874 /// rebuilt. 6875 SourceLocation getBaseLocation() { return Loc; } 6876 6877 /// \brief Returns the name of the entity whose type is being rebuilt. 6878 DeclarationName getBaseEntity() { return Entity; } 6879 6880 /// \brief Sets the "base" location and entity when that 6881 /// information is known based on another transformation. 6882 void setBase(SourceLocation Loc, DeclarationName Entity) { 6883 this->Loc = Loc; 6884 this->Entity = Entity; 6885 } 6886 6887 ExprResult TransformLambdaExpr(LambdaExpr *E) { 6888 // Lambdas never need to be transformed. 6889 return E; 6890 } 6891 }; 6892} 6893 6894/// \brief Rebuilds a type within the context of the current instantiation. 6895/// 6896/// The type \p T is part of the type of an out-of-line member definition of 6897/// a class template (or class template partial specialization) that was parsed 6898/// and constructed before we entered the scope of the class template (or 6899/// partial specialization thereof). This routine will rebuild that type now 6900/// that we have entered the declarator's scope, which may produce different 6901/// canonical types, e.g., 6902/// 6903/// \code 6904/// template<typename T> 6905/// struct X { 6906/// typedef T* pointer; 6907/// pointer data(); 6908/// }; 6909/// 6910/// template<typename T> 6911/// typename X<T>::pointer X<T>::data() { ... } 6912/// \endcode 6913/// 6914/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 6915/// since we do not know that we can look into X<T> when we parsed the type. 6916/// This function will rebuild the type, performing the lookup of "pointer" 6917/// in X<T> and returning an ElaboratedType whose canonical type is the same 6918/// as the canonical type of T*, allowing the return types of the out-of-line 6919/// definition and the declaration to match. 6920TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 6921 SourceLocation Loc, 6922 DeclarationName Name) { 6923 if (!T || !T->getType()->isDependentType()) 6924 return T; 6925 6926 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 6927 return Rebuilder.TransformType(T); 6928} 6929 6930ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 6931 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 6932 DeclarationName()); 6933 return Rebuilder.TransformExpr(E); 6934} 6935 6936bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 6937 if (SS.isInvalid()) 6938 return true; 6939 6940 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 6941 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 6942 DeclarationName()); 6943 NestedNameSpecifierLoc Rebuilt 6944 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 6945 if (!Rebuilt) 6946 return true; 6947 6948 SS.Adopt(Rebuilt); 6949 return false; 6950} 6951 6952/// \brief Rebuild the template parameters now that we know we're in a current 6953/// instantiation. 6954bool Sema::RebuildTemplateParamsInCurrentInstantiation( 6955 TemplateParameterList *Params) { 6956 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 6957 Decl *Param = Params->getParam(I); 6958 6959 // There is nothing to rebuild in a type parameter. 6960 if (isa<TemplateTypeParmDecl>(Param)) 6961 continue; 6962 6963 // Rebuild the template parameter list of a template template parameter. 6964 if (TemplateTemplateParmDecl *TTP 6965 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 6966 if (RebuildTemplateParamsInCurrentInstantiation( 6967 TTP->getTemplateParameters())) 6968 return true; 6969 6970 continue; 6971 } 6972 6973 // Rebuild the type of a non-type template parameter. 6974 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param); 6975 TypeSourceInfo *NewTSI 6976 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(), 6977 NTTP->getLocation(), 6978 NTTP->getDeclName()); 6979 if (!NewTSI) 6980 return true; 6981 6982 if (NewTSI != NTTP->getTypeSourceInfo()) { 6983 NTTP->setTypeSourceInfo(NewTSI); 6984 NTTP->setType(NewTSI->getType()); 6985 } 6986 } 6987 6988 return false; 6989} 6990 6991/// \brief Produces a formatted string that describes the binding of 6992/// template parameters to template arguments. 6993std::string 6994Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6995 const TemplateArgumentList &Args) { 6996 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 6997} 6998 6999std::string 7000Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 7001 const TemplateArgument *Args, 7002 unsigned NumArgs) { 7003 SmallString<128> Str; 7004 llvm::raw_svector_ostream Out(Str); 7005 7006 if (!Params || Params->size() == 0 || NumArgs == 0) 7007 return std::string(); 7008 7009 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 7010 if (I >= NumArgs) 7011 break; 7012 7013 if (I == 0) 7014 Out << "[with "; 7015 else 7016 Out << ", "; 7017 7018 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 7019 Out << Id->getName(); 7020 } else { 7021 Out << '$' << I; 7022 } 7023 7024 Out << " = "; 7025 Args[I].print(getPrintingPolicy(), Out); 7026 } 7027 7028 Out << ']'; 7029 return Out.str(); 7030} 7031 7032void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) { 7033 if (!FD) 7034 return; 7035 FD->setLateTemplateParsed(Flag); 7036} 7037 7038bool Sema::IsInsideALocalClassWithinATemplateFunction() { 7039 DeclContext *DC = CurContext; 7040 7041 while (DC) { 7042 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 7043 const FunctionDecl *FD = RD->isLocalClass(); 7044 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 7045 } else if (DC->isTranslationUnit() || DC->isNamespace()) 7046 return false; 7047 7048 DC = DC->getParent(); 7049 } 7050 return false; 7051} 7052