SemaTemplate.cpp revision 7536dd5e6c99584481b7dab68b7e7d8df9c54054
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/StringExtras.h"
30using namespace clang;
31using namespace sema;
32
33// Exported for use by Parser.
34SourceRange
35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
36                              unsigned N) {
37  if (!N) return SourceRange();
38  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
39}
40
41/// \brief Determine whether the declaration found is acceptable as the name
42/// of a template and, if so, return that template declaration. Otherwise,
43/// returns NULL.
44static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
45                                           NamedDecl *Orig) {
46  NamedDecl *D = Orig->getUnderlyingDecl();
47
48  if (isa<TemplateDecl>(D))
49    return Orig;
50
51  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
52    // C++ [temp.local]p1:
53    //   Like normal (non-template) classes, class templates have an
54    //   injected-class-name (Clause 9). The injected-class-name
55    //   can be used with or without a template-argument-list. When
56    //   it is used without a template-argument-list, it is
57    //   equivalent to the injected-class-name followed by the
58    //   template-parameters of the class template enclosed in
59    //   <>. When it is used with a template-argument-list, it
60    //   refers to the specified class template specialization,
61    //   which could be the current specialization or another
62    //   specialization.
63    if (Record->isInjectedClassName()) {
64      Record = cast<CXXRecordDecl>(Record->getDeclContext());
65      if (Record->getDescribedClassTemplate())
66        return Record->getDescribedClassTemplate();
67
68      if (ClassTemplateSpecializationDecl *Spec
69            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
70        return Spec->getSpecializedTemplate();
71    }
72
73    return 0;
74  }
75
76  return 0;
77}
78
79static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
80  // The set of class templates we've already seen.
81  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
82  LookupResult::Filter filter = R.makeFilter();
83  while (filter.hasNext()) {
84    NamedDecl *Orig = filter.next();
85    NamedDecl *Repl = isAcceptableTemplateName(C, Orig);
86    if (!Repl)
87      filter.erase();
88    else if (Repl != Orig) {
89
90      // C++ [temp.local]p3:
91      //   A lookup that finds an injected-class-name (10.2) can result in an
92      //   ambiguity in certain cases (for example, if it is found in more than
93      //   one base class). If all of the injected-class-names that are found
94      //   refer to specializations of the same class template, and if the name
95      //   is followed by a template-argument-list, the reference refers to the
96      //   class template itself and not a specialization thereof, and is not
97      //   ambiguous.
98      //
99      // FIXME: Will we eventually have to do the same for alias templates?
100      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
101        if (!ClassTemplates.insert(ClassTmpl)) {
102          filter.erase();
103          continue;
104        }
105
106      // FIXME: we promote access to public here as a workaround to
107      // the fact that LookupResult doesn't let us remember that we
108      // found this template through a particular injected class name,
109      // which means we end up doing nasty things to the invariants.
110      // Pretending that access is public is *much* safer.
111      filter.replace(Repl, AS_public);
112    }
113  }
114  filter.done();
115}
116
117TemplateNameKind Sema::isTemplateName(Scope *S,
118                                      CXXScopeSpec &SS,
119                                      bool hasTemplateKeyword,
120                                      UnqualifiedId &Name,
121                                      ParsedType ObjectTypePtr,
122                                      bool EnteringContext,
123                                      TemplateTy &TemplateResult,
124                                      bool &MemberOfUnknownSpecialization) {
125  assert(getLangOptions().CPlusPlus && "No template names in C!");
126
127  DeclarationName TName;
128  MemberOfUnknownSpecialization = false;
129
130  switch (Name.getKind()) {
131  case UnqualifiedId::IK_Identifier:
132    TName = DeclarationName(Name.Identifier);
133    break;
134
135  case UnqualifiedId::IK_OperatorFunctionId:
136    TName = Context.DeclarationNames.getCXXOperatorName(
137                                              Name.OperatorFunctionId.Operator);
138    break;
139
140  case UnqualifiedId::IK_LiteralOperatorId:
141    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
142    break;
143
144  default:
145    return TNK_Non_template;
146  }
147
148  QualType ObjectType = ObjectTypePtr.get();
149
150  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
151                 LookupOrdinaryName);
152  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
153                     MemberOfUnknownSpecialization);
154  if (R.empty()) return TNK_Non_template;
155  if (R.isAmbiguous()) {
156    // Suppress diagnostics;  we'll redo this lookup later.
157    R.suppressDiagnostics();
158
159    // FIXME: we might have ambiguous templates, in which case we
160    // should at least parse them properly!
161    return TNK_Non_template;
162  }
163
164  TemplateName Template;
165  TemplateNameKind TemplateKind;
166
167  unsigned ResultCount = R.end() - R.begin();
168  if (ResultCount > 1) {
169    // We assume that we'll preserve the qualifier from a function
170    // template name in other ways.
171    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
172    TemplateKind = TNK_Function_template;
173
174    // We'll do this lookup again later.
175    R.suppressDiagnostics();
176  } else {
177    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
178
179    if (SS.isSet() && !SS.isInvalid()) {
180      NestedNameSpecifier *Qualifier
181        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
182      Template = Context.getQualifiedTemplateName(Qualifier,
183                                                  hasTemplateKeyword, TD);
184    } else {
185      Template = TemplateName(TD);
186    }
187
188    if (isa<FunctionTemplateDecl>(TD)) {
189      TemplateKind = TNK_Function_template;
190
191      // We'll do this lookup again later.
192      R.suppressDiagnostics();
193    } else {
194      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
195      TemplateKind = TNK_Type_template;
196    }
197  }
198
199  TemplateResult = TemplateTy::make(Template);
200  return TemplateKind;
201}
202
203bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
204                                       SourceLocation IILoc,
205                                       Scope *S,
206                                       const CXXScopeSpec *SS,
207                                       TemplateTy &SuggestedTemplate,
208                                       TemplateNameKind &SuggestedKind) {
209  // We can't recover unless there's a dependent scope specifier preceding the
210  // template name.
211  // FIXME: Typo correction?
212  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
213      computeDeclContext(*SS))
214    return false;
215
216  // The code is missing a 'template' keyword prior to the dependent template
217  // name.
218  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
219  Diag(IILoc, diag::err_template_kw_missing)
220    << Qualifier << II.getName()
221    << FixItHint::CreateInsertion(IILoc, "template ");
222  SuggestedTemplate
223    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
224  SuggestedKind = TNK_Dependent_template_name;
225  return true;
226}
227
228void Sema::LookupTemplateName(LookupResult &Found,
229                              Scope *S, CXXScopeSpec &SS,
230                              QualType ObjectType,
231                              bool EnteringContext,
232                              bool &MemberOfUnknownSpecialization) {
233  // Determine where to perform name lookup
234  MemberOfUnknownSpecialization = false;
235  DeclContext *LookupCtx = 0;
236  bool isDependent = false;
237  if (!ObjectType.isNull()) {
238    // This nested-name-specifier occurs in a member access expression, e.g.,
239    // x->B::f, and we are looking into the type of the object.
240    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
241    LookupCtx = computeDeclContext(ObjectType);
242    isDependent = ObjectType->isDependentType();
243    assert((isDependent || !ObjectType->isIncompleteType()) &&
244           "Caller should have completed object type");
245  } else if (SS.isSet()) {
246    // This nested-name-specifier occurs after another nested-name-specifier,
247    // so long into the context associated with the prior nested-name-specifier.
248    LookupCtx = computeDeclContext(SS, EnteringContext);
249    isDependent = isDependentScopeSpecifier(SS);
250
251    // The declaration context must be complete.
252    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
253      return;
254  }
255
256  bool ObjectTypeSearchedInScope = false;
257  if (LookupCtx) {
258    // Perform "qualified" name lookup into the declaration context we
259    // computed, which is either the type of the base of a member access
260    // expression or the declaration context associated with a prior
261    // nested-name-specifier.
262    LookupQualifiedName(Found, LookupCtx);
263
264    if (!ObjectType.isNull() && Found.empty()) {
265      // C++ [basic.lookup.classref]p1:
266      //   In a class member access expression (5.2.5), if the . or -> token is
267      //   immediately followed by an identifier followed by a <, the
268      //   identifier must be looked up to determine whether the < is the
269      //   beginning of a template argument list (14.2) or a less-than operator.
270      //   The identifier is first looked up in the class of the object
271      //   expression. If the identifier is not found, it is then looked up in
272      //   the context of the entire postfix-expression and shall name a class
273      //   or function template.
274      if (S) LookupName(Found, S);
275      ObjectTypeSearchedInScope = true;
276    }
277  } else if (isDependent && (!S || ObjectType.isNull())) {
278    // We cannot look into a dependent object type or nested nme
279    // specifier.
280    MemberOfUnknownSpecialization = true;
281    return;
282  } else {
283    // Perform unqualified name lookup in the current scope.
284    LookupName(Found, S);
285  }
286
287  if (Found.empty() && !isDependent) {
288    // If we did not find any names, attempt to correct any typos.
289    DeclarationName Name = Found.getLookupName();
290    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
291                                                false, CTC_CXXCasts)) {
292      FilterAcceptableTemplateNames(Context, Found);
293      if (!Found.empty()) {
294        if (LookupCtx)
295          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
296            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
297            << FixItHint::CreateReplacement(Found.getNameLoc(),
298                                          Found.getLookupName().getAsString());
299        else
300          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
301            << Name << Found.getLookupName()
302            << FixItHint::CreateReplacement(Found.getNameLoc(),
303                                          Found.getLookupName().getAsString());
304        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
305          Diag(Template->getLocation(), diag::note_previous_decl)
306            << Template->getDeclName();
307      }
308    } else {
309      Found.clear();
310      Found.setLookupName(Name);
311    }
312  }
313
314  FilterAcceptableTemplateNames(Context, Found);
315  if (Found.empty()) {
316    if (isDependent)
317      MemberOfUnknownSpecialization = true;
318    return;
319  }
320
321  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
322    // C++ [basic.lookup.classref]p1:
323    //   [...] If the lookup in the class of the object expression finds a
324    //   template, the name is also looked up in the context of the entire
325    //   postfix-expression and [...]
326    //
327    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
328                            LookupOrdinaryName);
329    LookupName(FoundOuter, S);
330    FilterAcceptableTemplateNames(Context, FoundOuter);
331
332    if (FoundOuter.empty()) {
333      //   - if the name is not found, the name found in the class of the
334      //     object expression is used, otherwise
335    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
336      //   - if the name is found in the context of the entire
337      //     postfix-expression and does not name a class template, the name
338      //     found in the class of the object expression is used, otherwise
339    } else if (!Found.isSuppressingDiagnostics()) {
340      //   - if the name found is a class template, it must refer to the same
341      //     entity as the one found in the class of the object expression,
342      //     otherwise the program is ill-formed.
343      if (!Found.isSingleResult() ||
344          Found.getFoundDecl()->getCanonicalDecl()
345            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
346        Diag(Found.getNameLoc(),
347             diag::ext_nested_name_member_ref_lookup_ambiguous)
348          << Found.getLookupName()
349          << ObjectType;
350        Diag(Found.getRepresentativeDecl()->getLocation(),
351             diag::note_ambig_member_ref_object_type)
352          << ObjectType;
353        Diag(FoundOuter.getFoundDecl()->getLocation(),
354             diag::note_ambig_member_ref_scope);
355
356        // Recover by taking the template that we found in the object
357        // expression's type.
358      }
359    }
360  }
361}
362
363/// ActOnDependentIdExpression - Handle a dependent id-expression that
364/// was just parsed.  This is only possible with an explicit scope
365/// specifier naming a dependent type.
366ExprResult
367Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
368                                 const DeclarationNameInfo &NameInfo,
369                                 bool isAddressOfOperand,
370                           const TemplateArgumentListInfo *TemplateArgs) {
371  NestedNameSpecifier *Qualifier
372    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
373
374  DeclContext *DC = getFunctionLevelDeclContext();
375
376  if (!isAddressOfOperand &&
377      isa<CXXMethodDecl>(DC) &&
378      cast<CXXMethodDecl>(DC)->isInstance()) {
379    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
380
381    // Since the 'this' expression is synthesized, we don't need to
382    // perform the double-lookup check.
383    NamedDecl *FirstQualifierInScope = 0;
384
385    return Owned(CXXDependentScopeMemberExpr::Create(Context,
386                                                     /*This*/ 0, ThisType,
387                                                     /*IsArrow*/ true,
388                                                     /*Op*/ SourceLocation(),
389                                                     Qualifier, SS.getRange(),
390                                                     FirstQualifierInScope,
391                                                     NameInfo,
392                                                     TemplateArgs));
393  }
394
395  return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
396}
397
398ExprResult
399Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
400                                const DeclarationNameInfo &NameInfo,
401                                const TemplateArgumentListInfo *TemplateArgs) {
402  return Owned(DependentScopeDeclRefExpr::Create(Context,
403               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
404                                                 SS.getRange(),
405                                                 NameInfo,
406                                                 TemplateArgs));
407}
408
409/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
410/// that the template parameter 'PrevDecl' is being shadowed by a new
411/// declaration at location Loc. Returns true to indicate that this is
412/// an error, and false otherwise.
413bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
414  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
415
416  // Microsoft Visual C++ permits template parameters to be shadowed.
417  if (getLangOptions().Microsoft)
418    return false;
419
420  // C++ [temp.local]p4:
421  //   A template-parameter shall not be redeclared within its
422  //   scope (including nested scopes).
423  Diag(Loc, diag::err_template_param_shadow)
424    << cast<NamedDecl>(PrevDecl)->getDeclName();
425  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
426  return true;
427}
428
429/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
430/// the parameter D to reference the templated declaration and return a pointer
431/// to the template declaration. Otherwise, do nothing to D and return null.
432TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
433  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
434    D = Temp->getTemplatedDecl();
435    return Temp;
436  }
437  return 0;
438}
439
440static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
441                                            const ParsedTemplateArgument &Arg) {
442
443  switch (Arg.getKind()) {
444  case ParsedTemplateArgument::Type: {
445    TypeSourceInfo *DI;
446    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
447    if (!DI)
448      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
449    return TemplateArgumentLoc(TemplateArgument(T), DI);
450  }
451
452  case ParsedTemplateArgument::NonType: {
453    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
454    return TemplateArgumentLoc(TemplateArgument(E), E);
455  }
456
457  case ParsedTemplateArgument::Template: {
458    TemplateName Template = Arg.getAsTemplate().get();
459    return TemplateArgumentLoc(TemplateArgument(Template),
460                               Arg.getScopeSpec().getRange(),
461                               Arg.getLocation());
462  }
463  }
464
465  llvm_unreachable("Unhandled parsed template argument");
466  return TemplateArgumentLoc();
467}
468
469/// \brief Translates template arguments as provided by the parser
470/// into template arguments used by semantic analysis.
471void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
472                                      TemplateArgumentListInfo &TemplateArgs) {
473 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
474   TemplateArgs.addArgument(translateTemplateArgument(*this,
475                                                      TemplateArgsIn[I]));
476}
477
478/// ActOnTypeParameter - Called when a C++ template type parameter
479/// (e.g., "typename T") has been parsed. Typename specifies whether
480/// the keyword "typename" was used to declare the type parameter
481/// (otherwise, "class" was used), and KeyLoc is the location of the
482/// "class" or "typename" keyword. ParamName is the name of the
483/// parameter (NULL indicates an unnamed template parameter) and
484/// ParamName is the location of the parameter name (if any).
485/// If the type parameter has a default argument, it will be added
486/// later via ActOnTypeParameterDefault.
487Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
488                               SourceLocation EllipsisLoc,
489                               SourceLocation KeyLoc,
490                               IdentifierInfo *ParamName,
491                               SourceLocation ParamNameLoc,
492                               unsigned Depth, unsigned Position,
493                               SourceLocation EqualLoc,
494                               ParsedType DefaultArg) {
495  assert(S->isTemplateParamScope() &&
496         "Template type parameter not in template parameter scope!");
497  bool Invalid = false;
498
499  if (ParamName) {
500    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
501                                           LookupOrdinaryName,
502                                           ForRedeclaration);
503    if (PrevDecl && PrevDecl->isTemplateParameter())
504      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
505                                                           PrevDecl);
506  }
507
508  SourceLocation Loc = ParamNameLoc;
509  if (!ParamName)
510    Loc = KeyLoc;
511
512  TemplateTypeParmDecl *Param
513    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
514                                   Loc, Depth, Position, ParamName, Typename,
515                                   Ellipsis);
516  if (Invalid)
517    Param->setInvalidDecl();
518
519  if (ParamName) {
520    // Add the template parameter into the current scope.
521    S->AddDecl(Param);
522    IdResolver.AddDecl(Param);
523  }
524
525  // Handle the default argument, if provided.
526  if (DefaultArg) {
527    TypeSourceInfo *DefaultTInfo;
528    GetTypeFromParser(DefaultArg, &DefaultTInfo);
529
530    assert(DefaultTInfo && "expected source information for type");
531
532    // C++0x [temp.param]p9:
533    // A default template-argument may be specified for any kind of
534    // template-parameter that is not a template parameter pack.
535    if (Ellipsis) {
536      Diag(EqualLoc, diag::err_template_param_pack_default_arg);
537      return Param;
538    }
539
540    // Check for unexpanded parameter packs.
541    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
542                                        UPPC_DefaultArgument))
543      return Param;
544
545    // Check the template argument itself.
546    if (CheckTemplateArgument(Param, DefaultTInfo)) {
547      Param->setInvalidDecl();
548      return Param;
549    }
550
551    Param->setDefaultArgument(DefaultTInfo, false);
552  }
553
554  return Param;
555}
556
557/// \brief Check that the type of a non-type template parameter is
558/// well-formed.
559///
560/// \returns the (possibly-promoted) parameter type if valid;
561/// otherwise, produces a diagnostic and returns a NULL type.
562QualType
563Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
564  // We don't allow variably-modified types as the type of non-type template
565  // parameters.
566  if (T->isVariablyModifiedType()) {
567    Diag(Loc, diag::err_variably_modified_nontype_template_param)
568      << T;
569    return QualType();
570  }
571
572  // C++ [temp.param]p4:
573  //
574  // A non-type template-parameter shall have one of the following
575  // (optionally cv-qualified) types:
576  //
577  //       -- integral or enumeration type,
578  if (T->isIntegralOrEnumerationType() ||
579      //   -- pointer to object or pointer to function,
580      T->isPointerType() ||
581      //   -- reference to object or reference to function,
582      T->isReferenceType() ||
583      //   -- pointer to member.
584      T->isMemberPointerType() ||
585      // If T is a dependent type, we can't do the check now, so we
586      // assume that it is well-formed.
587      T->isDependentType())
588    return T;
589  // C++ [temp.param]p8:
590  //
591  //   A non-type template-parameter of type "array of T" or
592  //   "function returning T" is adjusted to be of type "pointer to
593  //   T" or "pointer to function returning T", respectively.
594  else if (T->isArrayType())
595    // FIXME: Keep the type prior to promotion?
596    return Context.getArrayDecayedType(T);
597  else if (T->isFunctionType())
598    // FIXME: Keep the type prior to promotion?
599    return Context.getPointerType(T);
600
601  Diag(Loc, diag::err_template_nontype_parm_bad_type)
602    << T;
603
604  return QualType();
605}
606
607Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
608                                          unsigned Depth,
609                                          unsigned Position,
610                                          SourceLocation EqualLoc,
611                                          Expr *Default) {
612  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
613  QualType T = TInfo->getType();
614
615  assert(S->isTemplateParamScope() &&
616         "Non-type template parameter not in template parameter scope!");
617  bool Invalid = false;
618
619  IdentifierInfo *ParamName = D.getIdentifier();
620  if (ParamName) {
621    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
622                                           LookupOrdinaryName,
623                                           ForRedeclaration);
624    if (PrevDecl && PrevDecl->isTemplateParameter())
625      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
626                                                           PrevDecl);
627  }
628
629  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
630  if (T.isNull()) {
631    T = Context.IntTy; // Recover with an 'int' type.
632    Invalid = true;
633  }
634
635  NonTypeTemplateParmDecl *Param
636    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
637                                      D.getIdentifierLoc(),
638                                      Depth, Position, ParamName, T, TInfo);
639  if (Invalid)
640    Param->setInvalidDecl();
641
642  if (D.getIdentifier()) {
643    // Add the template parameter into the current scope.
644    S->AddDecl(Param);
645    IdResolver.AddDecl(Param);
646  }
647
648  // Check the well-formedness of the default template argument, if provided.
649  if (Default) {
650    // Check for unexpanded parameter packs.
651    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
652      return Param;
653
654    TemplateArgument Converted;
655    if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) {
656      Param->setInvalidDecl();
657      return Param;
658    }
659
660    Param->setDefaultArgument(Default, false);
661  }
662
663  return Param;
664}
665
666/// ActOnTemplateTemplateParameter - Called when a C++ template template
667/// parameter (e.g. T in template <template <typename> class T> class array)
668/// has been parsed. S is the current scope.
669Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
670                                           SourceLocation TmpLoc,
671                                           TemplateParamsTy *Params,
672                                           IdentifierInfo *Name,
673                                           SourceLocation NameLoc,
674                                           unsigned Depth,
675                                           unsigned Position,
676                                           SourceLocation EqualLoc,
677                                       const ParsedTemplateArgument &Default) {
678  assert(S->isTemplateParamScope() &&
679         "Template template parameter not in template parameter scope!");
680
681  // Construct the parameter object.
682  TemplateTemplateParmDecl *Param =
683    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
684                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
685                                     Depth, Position, Name,
686                                     Params);
687
688  // If the template template parameter has a name, then link the identifier
689  // into the scope and lookup mechanisms.
690  if (Name) {
691    S->AddDecl(Param);
692    IdResolver.AddDecl(Param);
693  }
694
695  if (Params->size() == 0) {
696    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
697    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
698    Param->setInvalidDecl();
699  }
700
701  if (!Default.isInvalid()) {
702    // Check only that we have a template template argument. We don't want to
703    // try to check well-formedness now, because our template template parameter
704    // might have dependent types in its template parameters, which we wouldn't
705    // be able to match now.
706    //
707    // If none of the template template parameter's template arguments mention
708    // other template parameters, we could actually perform more checking here.
709    // However, it isn't worth doing.
710    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
711    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
712      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
713        << DefaultArg.getSourceRange();
714      return Param;
715    }
716
717    // Check for unexpanded parameter packs.
718    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
719                                        DefaultArg.getArgument().getAsTemplate(),
720                                        UPPC_DefaultArgument))
721      return Param;
722
723    Param->setDefaultArgument(DefaultArg, false);
724  }
725
726  return Param;
727}
728
729/// ActOnTemplateParameterList - Builds a TemplateParameterList that
730/// contains the template parameters in Params/NumParams.
731Sema::TemplateParamsTy *
732Sema::ActOnTemplateParameterList(unsigned Depth,
733                                 SourceLocation ExportLoc,
734                                 SourceLocation TemplateLoc,
735                                 SourceLocation LAngleLoc,
736                                 Decl **Params, unsigned NumParams,
737                                 SourceLocation RAngleLoc) {
738  if (ExportLoc.isValid())
739    Diag(ExportLoc, diag::warn_template_export_unsupported);
740
741  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
742                                       (NamedDecl**)Params, NumParams,
743                                       RAngleLoc);
744}
745
746static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
747  if (SS.isSet())
748    T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
749                        SS.getRange());
750}
751
752DeclResult
753Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
754                         SourceLocation KWLoc, CXXScopeSpec &SS,
755                         IdentifierInfo *Name, SourceLocation NameLoc,
756                         AttributeList *Attr,
757                         TemplateParameterList *TemplateParams,
758                         AccessSpecifier AS) {
759  assert(TemplateParams && TemplateParams->size() > 0 &&
760         "No template parameters");
761  assert(TUK != TUK_Reference && "Can only declare or define class templates");
762  bool Invalid = false;
763
764  // Check that we can declare a template here.
765  if (CheckTemplateDeclScope(S, TemplateParams))
766    return true;
767
768  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
769  assert(Kind != TTK_Enum && "can't build template of enumerated type");
770
771  // There is no such thing as an unnamed class template.
772  if (!Name) {
773    Diag(KWLoc, diag::err_template_unnamed_class);
774    return true;
775  }
776
777  // Find any previous declaration with this name.
778  DeclContext *SemanticContext;
779  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
780                        ForRedeclaration);
781  if (SS.isNotEmpty() && !SS.isInvalid()) {
782    SemanticContext = computeDeclContext(SS, true);
783    if (!SemanticContext) {
784      // FIXME: Produce a reasonable diagnostic here
785      return true;
786    }
787
788    if (RequireCompleteDeclContext(SS, SemanticContext))
789      return true;
790
791    LookupQualifiedName(Previous, SemanticContext);
792  } else {
793    SemanticContext = CurContext;
794    LookupName(Previous, S);
795  }
796
797  if (Previous.isAmbiguous())
798    return true;
799
800  NamedDecl *PrevDecl = 0;
801  if (Previous.begin() != Previous.end())
802    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
803
804  // If there is a previous declaration with the same name, check
805  // whether this is a valid redeclaration.
806  ClassTemplateDecl *PrevClassTemplate
807    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
808
809  // We may have found the injected-class-name of a class template,
810  // class template partial specialization, or class template specialization.
811  // In these cases, grab the template that is being defined or specialized.
812  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
813      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
814    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
815    PrevClassTemplate
816      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
817    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
818      PrevClassTemplate
819        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
820            ->getSpecializedTemplate();
821    }
822  }
823
824  if (TUK == TUK_Friend) {
825    // C++ [namespace.memdef]p3:
826    //   [...] When looking for a prior declaration of a class or a function
827    //   declared as a friend, and when the name of the friend class or
828    //   function is neither a qualified name nor a template-id, scopes outside
829    //   the innermost enclosing namespace scope are not considered.
830    if (!SS.isSet()) {
831      DeclContext *OutermostContext = CurContext;
832      while (!OutermostContext->isFileContext())
833        OutermostContext = OutermostContext->getLookupParent();
834
835      if (PrevDecl &&
836          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
837           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
838        SemanticContext = PrevDecl->getDeclContext();
839      } else {
840        // Declarations in outer scopes don't matter. However, the outermost
841        // context we computed is the semantic context for our new
842        // declaration.
843        PrevDecl = PrevClassTemplate = 0;
844        SemanticContext = OutermostContext;
845      }
846    }
847
848    if (CurContext->isDependentContext()) {
849      // If this is a dependent context, we don't want to link the friend
850      // class template to the template in scope, because that would perform
851      // checking of the template parameter lists that can't be performed
852      // until the outer context is instantiated.
853      PrevDecl = PrevClassTemplate = 0;
854    }
855  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
856    PrevDecl = PrevClassTemplate = 0;
857
858  if (PrevClassTemplate) {
859    // Ensure that the template parameter lists are compatible.
860    if (!TemplateParameterListsAreEqual(TemplateParams,
861                                   PrevClassTemplate->getTemplateParameters(),
862                                        /*Complain=*/true,
863                                        TPL_TemplateMatch))
864      return true;
865
866    // C++ [temp.class]p4:
867    //   In a redeclaration, partial specialization, explicit
868    //   specialization or explicit instantiation of a class template,
869    //   the class-key shall agree in kind with the original class
870    //   template declaration (7.1.5.3).
871    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
872    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
873      Diag(KWLoc, diag::err_use_with_wrong_tag)
874        << Name
875        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
876      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
877      Kind = PrevRecordDecl->getTagKind();
878    }
879
880    // Check for redefinition of this class template.
881    if (TUK == TUK_Definition) {
882      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
883        Diag(NameLoc, diag::err_redefinition) << Name;
884        Diag(Def->getLocation(), diag::note_previous_definition);
885        // FIXME: Would it make sense to try to "forget" the previous
886        // definition, as part of error recovery?
887        return true;
888      }
889    }
890  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
891    // Maybe we will complain about the shadowed template parameter.
892    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
893    // Just pretend that we didn't see the previous declaration.
894    PrevDecl = 0;
895  } else if (PrevDecl) {
896    // C++ [temp]p5:
897    //   A class template shall not have the same name as any other
898    //   template, class, function, object, enumeration, enumerator,
899    //   namespace, or type in the same scope (3.3), except as specified
900    //   in (14.5.4).
901    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
902    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
903    return true;
904  }
905
906  // Check the template parameter list of this declaration, possibly
907  // merging in the template parameter list from the previous class
908  // template declaration.
909  if (CheckTemplateParameterList(TemplateParams,
910            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
911                                 TPC_ClassTemplate))
912    Invalid = true;
913
914  if (SS.isSet()) {
915    // If the name of the template was qualified, we must be defining the
916    // template out-of-line.
917    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
918        !(TUK == TUK_Friend && CurContext->isDependentContext()))
919      Diag(NameLoc, diag::err_member_def_does_not_match)
920        << Name << SemanticContext << SS.getRange();
921  }
922
923  CXXRecordDecl *NewClass =
924    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
925                          PrevClassTemplate?
926                            PrevClassTemplate->getTemplatedDecl() : 0,
927                          /*DelayTypeCreation=*/true);
928  SetNestedNameSpecifier(NewClass, SS);
929
930  ClassTemplateDecl *NewTemplate
931    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
932                                DeclarationName(Name), TemplateParams,
933                                NewClass, PrevClassTemplate);
934  NewClass->setDescribedClassTemplate(NewTemplate);
935
936  // Build the type for the class template declaration now.
937  QualType T = NewTemplate->getInjectedClassNameSpecialization();
938  T = Context.getInjectedClassNameType(NewClass, T);
939  assert(T->isDependentType() && "Class template type is not dependent?");
940  (void)T;
941
942  // If we are providing an explicit specialization of a member that is a
943  // class template, make a note of that.
944  if (PrevClassTemplate &&
945      PrevClassTemplate->getInstantiatedFromMemberTemplate())
946    PrevClassTemplate->setMemberSpecialization();
947
948  // Set the access specifier.
949  if (!Invalid && TUK != TUK_Friend)
950    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
951
952  // Set the lexical context of these templates
953  NewClass->setLexicalDeclContext(CurContext);
954  NewTemplate->setLexicalDeclContext(CurContext);
955
956  if (TUK == TUK_Definition)
957    NewClass->startDefinition();
958
959  if (Attr)
960    ProcessDeclAttributeList(S, NewClass, Attr);
961
962  if (TUK != TUK_Friend)
963    PushOnScopeChains(NewTemplate, S);
964  else {
965    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
966      NewTemplate->setAccess(PrevClassTemplate->getAccess());
967      NewClass->setAccess(PrevClassTemplate->getAccess());
968    }
969
970    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
971                                       PrevClassTemplate != NULL);
972
973    // Friend templates are visible in fairly strange ways.
974    if (!CurContext->isDependentContext()) {
975      DeclContext *DC = SemanticContext->getRedeclContext();
976      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
977      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
978        PushOnScopeChains(NewTemplate, EnclosingScope,
979                          /* AddToContext = */ false);
980    }
981
982    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
983                                            NewClass->getLocation(),
984                                            NewTemplate,
985                                    /*FIXME:*/NewClass->getLocation());
986    Friend->setAccess(AS_public);
987    CurContext->addDecl(Friend);
988  }
989
990  if (Invalid) {
991    NewTemplate->setInvalidDecl();
992    NewClass->setInvalidDecl();
993  }
994  return NewTemplate;
995}
996
997/// \brief Diagnose the presence of a default template argument on a
998/// template parameter, which is ill-formed in certain contexts.
999///
1000/// \returns true if the default template argument should be dropped.
1001static bool DiagnoseDefaultTemplateArgument(Sema &S,
1002                                            Sema::TemplateParamListContext TPC,
1003                                            SourceLocation ParamLoc,
1004                                            SourceRange DefArgRange) {
1005  switch (TPC) {
1006  case Sema::TPC_ClassTemplate:
1007    return false;
1008
1009  case Sema::TPC_FunctionTemplate:
1010    // C++ [temp.param]p9:
1011    //   A default template-argument shall not be specified in a
1012    //   function template declaration or a function template
1013    //   definition [...]
1014    // (This sentence is not in C++0x, per DR226).
1015    if (!S.getLangOptions().CPlusPlus0x)
1016      S.Diag(ParamLoc,
1017             diag::err_template_parameter_default_in_function_template)
1018        << DefArgRange;
1019    return false;
1020
1021  case Sema::TPC_ClassTemplateMember:
1022    // C++0x [temp.param]p9:
1023    //   A default template-argument shall not be specified in the
1024    //   template-parameter-lists of the definition of a member of a
1025    //   class template that appears outside of the member's class.
1026    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1027      << DefArgRange;
1028    return true;
1029
1030  case Sema::TPC_FriendFunctionTemplate:
1031    // C++ [temp.param]p9:
1032    //   A default template-argument shall not be specified in a
1033    //   friend template declaration.
1034    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1035      << DefArgRange;
1036    return true;
1037
1038    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1039    // for friend function templates if there is only a single
1040    // declaration (and it is a definition). Strange!
1041  }
1042
1043  return false;
1044}
1045
1046/// \brief Check for unexpanded parameter packs within the template parameters
1047/// of a template template parameter, recursively.
1048bool DiagnoseUnexpandedParameterPacks(Sema &S, TemplateTemplateParmDecl *TTP){
1049  TemplateParameterList *Params = TTP->getTemplateParameters();
1050  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1051    NamedDecl *P = Params->getParam(I);
1052    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1053      if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1054                                            NTTP->getTypeSourceInfo(),
1055                                      Sema::UPPC_NonTypeTemplateParameterType))
1056        return true;
1057
1058      continue;
1059    }
1060
1061    if (TemplateTemplateParmDecl *InnerTTP
1062                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1063      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1064        return true;
1065  }
1066
1067  return false;
1068}
1069
1070/// \brief Checks the validity of a template parameter list, possibly
1071/// considering the template parameter list from a previous
1072/// declaration.
1073///
1074/// If an "old" template parameter list is provided, it must be
1075/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1076/// template parameter list.
1077///
1078/// \param NewParams Template parameter list for a new template
1079/// declaration. This template parameter list will be updated with any
1080/// default arguments that are carried through from the previous
1081/// template parameter list.
1082///
1083/// \param OldParams If provided, template parameter list from a
1084/// previous declaration of the same template. Default template
1085/// arguments will be merged from the old template parameter list to
1086/// the new template parameter list.
1087///
1088/// \param TPC Describes the context in which we are checking the given
1089/// template parameter list.
1090///
1091/// \returns true if an error occurred, false otherwise.
1092bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1093                                      TemplateParameterList *OldParams,
1094                                      TemplateParamListContext TPC) {
1095  bool Invalid = false;
1096
1097  // C++ [temp.param]p10:
1098  //   The set of default template-arguments available for use with a
1099  //   template declaration or definition is obtained by merging the
1100  //   default arguments from the definition (if in scope) and all
1101  //   declarations in scope in the same way default function
1102  //   arguments are (8.3.6).
1103  bool SawDefaultArgument = false;
1104  SourceLocation PreviousDefaultArgLoc;
1105
1106  bool SawParameterPack = false;
1107  SourceLocation ParameterPackLoc;
1108
1109  // Dummy initialization to avoid warnings.
1110  TemplateParameterList::iterator OldParam = NewParams->end();
1111  if (OldParams)
1112    OldParam = OldParams->begin();
1113
1114  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1115                                    NewParamEnd = NewParams->end();
1116       NewParam != NewParamEnd; ++NewParam) {
1117    // Variables used to diagnose redundant default arguments
1118    bool RedundantDefaultArg = false;
1119    SourceLocation OldDefaultLoc;
1120    SourceLocation NewDefaultLoc;
1121
1122    // Variables used to diagnose missing default arguments
1123    bool MissingDefaultArg = false;
1124
1125    // C++0x [temp.param]p11:
1126    // If a template parameter of a class template is a template parameter pack,
1127    // it must be the last template parameter.
1128    if (SawParameterPack) {
1129      Diag(ParameterPackLoc,
1130           diag::err_template_param_pack_must_be_last_template_parameter);
1131      Invalid = true;
1132    }
1133
1134    if (TemplateTypeParmDecl *NewTypeParm
1135          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1136      // Check the presence of a default argument here.
1137      if (NewTypeParm->hasDefaultArgument() &&
1138          DiagnoseDefaultTemplateArgument(*this, TPC,
1139                                          NewTypeParm->getLocation(),
1140               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1141                                                       .getSourceRange()))
1142        NewTypeParm->removeDefaultArgument();
1143
1144      // Merge default arguments for template type parameters.
1145      TemplateTypeParmDecl *OldTypeParm
1146          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1147
1148      if (NewTypeParm->isParameterPack()) {
1149        assert(!NewTypeParm->hasDefaultArgument() &&
1150               "Parameter packs can't have a default argument!");
1151        SawParameterPack = true;
1152        ParameterPackLoc = NewTypeParm->getLocation();
1153      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1154                 NewTypeParm->hasDefaultArgument()) {
1155        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1156        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1157        SawDefaultArgument = true;
1158        RedundantDefaultArg = true;
1159        PreviousDefaultArgLoc = NewDefaultLoc;
1160      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1161        // Merge the default argument from the old declaration to the
1162        // new declaration.
1163        SawDefaultArgument = true;
1164        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1165                                        true);
1166        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1167      } else if (NewTypeParm->hasDefaultArgument()) {
1168        SawDefaultArgument = true;
1169        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1170      } else if (SawDefaultArgument)
1171        MissingDefaultArg = true;
1172    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1173               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1174      // Check for unexpanded parameter packs.
1175      if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1176                                          NewNonTypeParm->getTypeSourceInfo(),
1177                                          UPPC_NonTypeTemplateParameterType)) {
1178        Invalid = true;
1179        continue;
1180      }
1181
1182      // Check the presence of a default argument here.
1183      if (NewNonTypeParm->hasDefaultArgument() &&
1184          DiagnoseDefaultTemplateArgument(*this, TPC,
1185                                          NewNonTypeParm->getLocation(),
1186                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1187        NewNonTypeParm->removeDefaultArgument();
1188      }
1189
1190      // Merge default arguments for non-type template parameters
1191      NonTypeTemplateParmDecl *OldNonTypeParm
1192        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1193      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1194          NewNonTypeParm->hasDefaultArgument()) {
1195        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1196        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1197        SawDefaultArgument = true;
1198        RedundantDefaultArg = true;
1199        PreviousDefaultArgLoc = NewDefaultLoc;
1200      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1201        // Merge the default argument from the old declaration to the
1202        // new declaration.
1203        SawDefaultArgument = true;
1204        // FIXME: We need to create a new kind of "default argument"
1205        // expression that points to a previous template template
1206        // parameter.
1207        NewNonTypeParm->setDefaultArgument(
1208                                         OldNonTypeParm->getDefaultArgument(),
1209                                         /*Inherited=*/ true);
1210        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1211      } else if (NewNonTypeParm->hasDefaultArgument()) {
1212        SawDefaultArgument = true;
1213        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1214      } else if (SawDefaultArgument)
1215        MissingDefaultArg = true;
1216    } else {
1217      // Check the presence of a default argument here.
1218      TemplateTemplateParmDecl *NewTemplateParm
1219        = cast<TemplateTemplateParmDecl>(*NewParam);
1220
1221      // Check for unexpanded parameter packs, recursively.
1222      if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1223        Invalid = true;
1224        continue;
1225      }
1226
1227      if (NewTemplateParm->hasDefaultArgument() &&
1228          DiagnoseDefaultTemplateArgument(*this, TPC,
1229                                          NewTemplateParm->getLocation(),
1230                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1231        NewTemplateParm->removeDefaultArgument();
1232
1233      // Merge default arguments for template template parameters
1234      TemplateTemplateParmDecl *OldTemplateParm
1235        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1236      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1237          NewTemplateParm->hasDefaultArgument()) {
1238        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1239        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1240        SawDefaultArgument = true;
1241        RedundantDefaultArg = true;
1242        PreviousDefaultArgLoc = NewDefaultLoc;
1243      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1244        // Merge the default argument from the old declaration to the
1245        // new declaration.
1246        SawDefaultArgument = true;
1247        // FIXME: We need to create a new kind of "default argument" expression
1248        // that points to a previous template template parameter.
1249        NewTemplateParm->setDefaultArgument(
1250                                          OldTemplateParm->getDefaultArgument(),
1251                                          /*Inherited=*/ true);
1252        PreviousDefaultArgLoc
1253          = OldTemplateParm->getDefaultArgument().getLocation();
1254      } else if (NewTemplateParm->hasDefaultArgument()) {
1255        SawDefaultArgument = true;
1256        PreviousDefaultArgLoc
1257          = NewTemplateParm->getDefaultArgument().getLocation();
1258      } else if (SawDefaultArgument)
1259        MissingDefaultArg = true;
1260    }
1261
1262    if (RedundantDefaultArg) {
1263      // C++ [temp.param]p12:
1264      //   A template-parameter shall not be given default arguments
1265      //   by two different declarations in the same scope.
1266      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1267      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1268      Invalid = true;
1269    } else if (MissingDefaultArg) {
1270      // C++ [temp.param]p11:
1271      //   If a template-parameter has a default template-argument,
1272      //   all subsequent template-parameters shall have a default
1273      //   template-argument supplied.
1274      Diag((*NewParam)->getLocation(),
1275           diag::err_template_param_default_arg_missing);
1276      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1277      Invalid = true;
1278    }
1279
1280    // If we have an old template parameter list that we're merging
1281    // in, move on to the next parameter.
1282    if (OldParams)
1283      ++OldParam;
1284  }
1285
1286  return Invalid;
1287}
1288
1289namespace {
1290
1291/// A class which looks for a use of a certain level of template
1292/// parameter.
1293struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1294  typedef RecursiveASTVisitor<DependencyChecker> super;
1295
1296  unsigned Depth;
1297  bool Match;
1298
1299  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1300    NamedDecl *ND = Params->getParam(0);
1301    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1302      Depth = PD->getDepth();
1303    } else if (NonTypeTemplateParmDecl *PD =
1304                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1305      Depth = PD->getDepth();
1306    } else {
1307      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1308    }
1309  }
1310
1311  bool Matches(unsigned ParmDepth) {
1312    if (ParmDepth >= Depth) {
1313      Match = true;
1314      return true;
1315    }
1316    return false;
1317  }
1318
1319  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1320    return !Matches(T->getDepth());
1321  }
1322
1323  bool TraverseTemplateName(TemplateName N) {
1324    if (TemplateTemplateParmDecl *PD =
1325          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1326      if (Matches(PD->getDepth())) return false;
1327    return super::TraverseTemplateName(N);
1328  }
1329
1330  bool VisitDeclRefExpr(DeclRefExpr *E) {
1331    if (NonTypeTemplateParmDecl *PD =
1332          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1333      if (PD->getDepth() == Depth) {
1334        Match = true;
1335        return false;
1336      }
1337    }
1338    return super::VisitDeclRefExpr(E);
1339  }
1340};
1341}
1342
1343/// Determines whether a template-id depends on the given parameter
1344/// list.
1345static bool
1346DependsOnTemplateParameters(const TemplateSpecializationType *TemplateId,
1347                            TemplateParameterList *Params) {
1348  DependencyChecker Checker(Params);
1349  Checker.TraverseType(QualType(TemplateId, 0));
1350  return Checker.Match;
1351}
1352
1353/// \brief Match the given template parameter lists to the given scope
1354/// specifier, returning the template parameter list that applies to the
1355/// name.
1356///
1357/// \param DeclStartLoc the start of the declaration that has a scope
1358/// specifier or a template parameter list.
1359///
1360/// \param SS the scope specifier that will be matched to the given template
1361/// parameter lists. This scope specifier precedes a qualified name that is
1362/// being declared.
1363///
1364/// \param ParamLists the template parameter lists, from the outermost to the
1365/// innermost template parameter lists.
1366///
1367/// \param NumParamLists the number of template parameter lists in ParamLists.
1368///
1369/// \param IsFriend Whether to apply the slightly different rules for
1370/// matching template parameters to scope specifiers in friend
1371/// declarations.
1372///
1373/// \param IsExplicitSpecialization will be set true if the entity being
1374/// declared is an explicit specialization, false otherwise.
1375///
1376/// \returns the template parameter list, if any, that corresponds to the
1377/// name that is preceded by the scope specifier @p SS. This template
1378/// parameter list may be have template parameters (if we're declaring a
1379/// template) or may have no template parameters (if we're declaring a
1380/// template specialization), or may be NULL (if we were's declaring isn't
1381/// itself a template).
1382TemplateParameterList *
1383Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1384                                              const CXXScopeSpec &SS,
1385                                          TemplateParameterList **ParamLists,
1386                                              unsigned NumParamLists,
1387                                              bool IsFriend,
1388                                              bool &IsExplicitSpecialization,
1389                                              bool &Invalid) {
1390  IsExplicitSpecialization = false;
1391
1392  // Find the template-ids that occur within the nested-name-specifier. These
1393  // template-ids will match up with the template parameter lists.
1394  llvm::SmallVector<const TemplateSpecializationType *, 4>
1395    TemplateIdsInSpecifier;
1396  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1397    ExplicitSpecializationsInSpecifier;
1398  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1399       NNS; NNS = NNS->getPrefix()) {
1400    const Type *T = NNS->getAsType();
1401    if (!T) break;
1402
1403    // C++0x [temp.expl.spec]p17:
1404    //   A member or a member template may be nested within many
1405    //   enclosing class templates. In an explicit specialization for
1406    //   such a member, the member declaration shall be preceded by a
1407    //   template<> for each enclosing class template that is
1408    //   explicitly specialized.
1409    //
1410    // Following the existing practice of GNU and EDG, we allow a typedef of a
1411    // template specialization type.
1412    while (const TypedefType *TT = dyn_cast<TypedefType>(T))
1413      T = TT->getDecl()->getUnderlyingType().getTypePtr();
1414
1415    if (const TemplateSpecializationType *SpecType
1416                                  = dyn_cast<TemplateSpecializationType>(T)) {
1417      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1418      if (!Template)
1419        continue; // FIXME: should this be an error? probably...
1420
1421      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1422        ClassTemplateSpecializationDecl *SpecDecl
1423          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1424        // If the nested name specifier refers to an explicit specialization,
1425        // we don't need a template<> header.
1426        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1427          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1428          continue;
1429        }
1430      }
1431
1432      TemplateIdsInSpecifier.push_back(SpecType);
1433    }
1434  }
1435
1436  // Reverse the list of template-ids in the scope specifier, so that we can
1437  // more easily match up the template-ids and the template parameter lists.
1438  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1439
1440  SourceLocation FirstTemplateLoc = DeclStartLoc;
1441  if (NumParamLists)
1442    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1443
1444  // Match the template-ids found in the specifier to the template parameter
1445  // lists.
1446  unsigned ParamIdx = 0, TemplateIdx = 0;
1447  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1448       TemplateIdx != NumTemplateIds; ++TemplateIdx) {
1449    const TemplateSpecializationType *TemplateId
1450      = TemplateIdsInSpecifier[TemplateIdx];
1451    bool DependentTemplateId = TemplateId->isDependentType();
1452
1453    // In friend declarations we can have template-ids which don't
1454    // depend on the corresponding template parameter lists.  But
1455    // assume that empty parameter lists are supposed to match this
1456    // template-id.
1457    if (IsFriend && ParamIdx < NumParamLists && ParamLists[ParamIdx]->size()) {
1458      if (!DependentTemplateId ||
1459          !DependsOnTemplateParameters(TemplateId, ParamLists[ParamIdx]))
1460        continue;
1461    }
1462
1463    if (ParamIdx >= NumParamLists) {
1464      // We have a template-id without a corresponding template parameter
1465      // list.
1466
1467      // ...which is fine if this is a friend declaration.
1468      if (IsFriend) {
1469        IsExplicitSpecialization = true;
1470        break;
1471      }
1472
1473      if (DependentTemplateId) {
1474        // FIXME: the location information here isn't great.
1475        Diag(SS.getRange().getBegin(),
1476             diag::err_template_spec_needs_template_parameters)
1477          << QualType(TemplateId, 0)
1478          << SS.getRange();
1479        Invalid = true;
1480      } else {
1481        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1482          << SS.getRange()
1483          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1484        IsExplicitSpecialization = true;
1485      }
1486      return 0;
1487    }
1488
1489    // Check the template parameter list against its corresponding template-id.
1490    if (DependentTemplateId) {
1491      TemplateParameterList *ExpectedTemplateParams = 0;
1492
1493      // Are there cases in (e.g.) friends where this won't match?
1494      if (const InjectedClassNameType *Injected
1495            = TemplateId->getAs<InjectedClassNameType>()) {
1496        CXXRecordDecl *Record = Injected->getDecl();
1497        if (ClassTemplatePartialSpecializationDecl *Partial =
1498              dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1499          ExpectedTemplateParams = Partial->getTemplateParameters();
1500        else
1501          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1502            ->getTemplateParameters();
1503      }
1504
1505      if (ExpectedTemplateParams)
1506        TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1507                                       ExpectedTemplateParams,
1508                                       true, TPL_TemplateMatch);
1509
1510      CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1511                                 TPC_ClassTemplateMember);
1512    } else if (ParamLists[ParamIdx]->size() > 0)
1513      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1514           diag::err_template_param_list_matches_nontemplate)
1515        << TemplateId
1516        << ParamLists[ParamIdx]->getSourceRange();
1517    else
1518      IsExplicitSpecialization = true;
1519
1520    ++ParamIdx;
1521  }
1522
1523  // If there were at least as many template-ids as there were template
1524  // parameter lists, then there are no template parameter lists remaining for
1525  // the declaration itself.
1526  if (ParamIdx >= NumParamLists)
1527    return 0;
1528
1529  // If there were too many template parameter lists, complain about that now.
1530  if (ParamIdx != NumParamLists - 1) {
1531    while (ParamIdx < NumParamLists - 1) {
1532      bool isExplicitSpecHeader = ParamLists[ParamIdx]->size() == 0;
1533      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1534           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1535                               : diag::err_template_spec_extra_headers)
1536        << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1537                       ParamLists[ParamIdx]->getRAngleLoc());
1538
1539      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1540        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1541             diag::note_explicit_template_spec_does_not_need_header)
1542          << ExplicitSpecializationsInSpecifier.back();
1543        ExplicitSpecializationsInSpecifier.pop_back();
1544      }
1545
1546      // We have a template parameter list with no corresponding scope, which
1547      // means that the resulting template declaration can't be instantiated
1548      // properly (we'll end up with dependent nodes when we shouldn't).
1549      if (!isExplicitSpecHeader)
1550        Invalid = true;
1551
1552      ++ParamIdx;
1553    }
1554  }
1555
1556  // Return the last template parameter list, which corresponds to the
1557  // entity being declared.
1558  return ParamLists[NumParamLists - 1];
1559}
1560
1561QualType Sema::CheckTemplateIdType(TemplateName Name,
1562                                   SourceLocation TemplateLoc,
1563                              const TemplateArgumentListInfo &TemplateArgs) {
1564  TemplateDecl *Template = Name.getAsTemplateDecl();
1565  if (!Template) {
1566    // The template name does not resolve to a template, so we just
1567    // build a dependent template-id type.
1568    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1569  }
1570
1571  // Check that the template argument list is well-formed for this
1572  // template.
1573  llvm::SmallVector<TemplateArgument, 4> Converted;
1574  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1575                                false, Converted))
1576    return QualType();
1577
1578  assert((Converted.size() == Template->getTemplateParameters()->size()) &&
1579         "Converted template argument list is too short!");
1580
1581  QualType CanonType;
1582
1583  if (Name.isDependent() ||
1584      TemplateSpecializationType::anyDependentTemplateArguments(
1585                                                      TemplateArgs)) {
1586    // This class template specialization is a dependent
1587    // type. Therefore, its canonical type is another class template
1588    // specialization type that contains all of the converted
1589    // arguments in canonical form. This ensures that, e.g., A<T> and
1590    // A<T, T> have identical types when A is declared as:
1591    //
1592    //   template<typename T, typename U = T> struct A;
1593    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1594    CanonType = Context.getTemplateSpecializationType(CanonName,
1595                                                      Converted.data(),
1596                                                      Converted.size());
1597
1598    // FIXME: CanonType is not actually the canonical type, and unfortunately
1599    // it is a TemplateSpecializationType that we will never use again.
1600    // In the future, we need to teach getTemplateSpecializationType to only
1601    // build the canonical type and return that to us.
1602    CanonType = Context.getCanonicalType(CanonType);
1603
1604    // This might work out to be a current instantiation, in which
1605    // case the canonical type needs to be the InjectedClassNameType.
1606    //
1607    // TODO: in theory this could be a simple hashtable lookup; most
1608    // changes to CurContext don't change the set of current
1609    // instantiations.
1610    if (isa<ClassTemplateDecl>(Template)) {
1611      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1612        // If we get out to a namespace, we're done.
1613        if (Ctx->isFileContext()) break;
1614
1615        // If this isn't a record, keep looking.
1616        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1617        if (!Record) continue;
1618
1619        // Look for one of the two cases with InjectedClassNameTypes
1620        // and check whether it's the same template.
1621        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1622            !Record->getDescribedClassTemplate())
1623          continue;
1624
1625        // Fetch the injected class name type and check whether its
1626        // injected type is equal to the type we just built.
1627        QualType ICNT = Context.getTypeDeclType(Record);
1628        QualType Injected = cast<InjectedClassNameType>(ICNT)
1629          ->getInjectedSpecializationType();
1630
1631        if (CanonType != Injected->getCanonicalTypeInternal())
1632          continue;
1633
1634        // If so, the canonical type of this TST is the injected
1635        // class name type of the record we just found.
1636        assert(ICNT.isCanonical());
1637        CanonType = ICNT;
1638        break;
1639      }
1640    }
1641  } else if (ClassTemplateDecl *ClassTemplate
1642               = dyn_cast<ClassTemplateDecl>(Template)) {
1643    // Find the class template specialization declaration that
1644    // corresponds to these arguments.
1645    void *InsertPos = 0;
1646    ClassTemplateSpecializationDecl *Decl
1647      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
1648                                          InsertPos);
1649    if (!Decl) {
1650      // This is the first time we have referenced this class template
1651      // specialization. Create the canonical declaration and add it to
1652      // the set of specializations.
1653      Decl = ClassTemplateSpecializationDecl::Create(Context,
1654                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1655                                                ClassTemplate->getDeclContext(),
1656                                                ClassTemplate->getLocation(),
1657                                                     ClassTemplate,
1658                                                     Converted.data(),
1659                                                     Converted.size(), 0);
1660      ClassTemplate->AddSpecialization(Decl, InsertPos);
1661      Decl->setLexicalDeclContext(CurContext);
1662    }
1663
1664    CanonType = Context.getTypeDeclType(Decl);
1665    assert(isa<RecordType>(CanonType) &&
1666           "type of non-dependent specialization is not a RecordType");
1667  }
1668
1669  // Build the fully-sugared type for this class template
1670  // specialization, which refers back to the class template
1671  // specialization we created or found.
1672  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1673}
1674
1675TypeResult
1676Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1677                          SourceLocation LAngleLoc,
1678                          ASTTemplateArgsPtr TemplateArgsIn,
1679                          SourceLocation RAngleLoc) {
1680  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1681
1682  // Translate the parser's template argument list in our AST format.
1683  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1684  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1685
1686  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1687  TemplateArgsIn.release();
1688
1689  if (Result.isNull())
1690    return true;
1691
1692  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1693  TemplateSpecializationTypeLoc TL
1694    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1695  TL.setTemplateNameLoc(TemplateLoc);
1696  TL.setLAngleLoc(LAngleLoc);
1697  TL.setRAngleLoc(RAngleLoc);
1698  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1699    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1700
1701  return CreateParsedType(Result, DI);
1702}
1703
1704TypeResult Sema::ActOnTagTemplateIdType(CXXScopeSpec &SS,
1705                                        TypeResult TypeResult,
1706                                        TagUseKind TUK,
1707                                        TypeSpecifierType TagSpec,
1708                                        SourceLocation TagLoc) {
1709  if (TypeResult.isInvalid())
1710    return ::TypeResult();
1711
1712  TypeSourceInfo *DI;
1713  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1714
1715  // Verify the tag specifier.
1716  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1717
1718  if (const RecordType *RT = Type->getAs<RecordType>()) {
1719    RecordDecl *D = RT->getDecl();
1720
1721    IdentifierInfo *Id = D->getIdentifier();
1722    assert(Id && "templated class must have an identifier");
1723
1724    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1725      Diag(TagLoc, diag::err_use_with_wrong_tag)
1726        << Type
1727        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1728      Diag(D->getLocation(), diag::note_previous_use);
1729    }
1730  }
1731
1732  ElaboratedTypeKeyword Keyword
1733    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
1734  QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type);
1735
1736  TypeSourceInfo *ElabDI = Context.CreateTypeSourceInfo(ElabType);
1737  ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(ElabDI->getTypeLoc());
1738  TL.setKeywordLoc(TagLoc);
1739  TL.setQualifierRange(SS.getRange());
1740  TL.getNamedTypeLoc().initializeFullCopy(DI->getTypeLoc());
1741  return CreateParsedType(ElabType, ElabDI);
1742}
1743
1744ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1745                                                 LookupResult &R,
1746                                                 bool RequiresADL,
1747                                 const TemplateArgumentListInfo &TemplateArgs) {
1748  // FIXME: Can we do any checking at this point? I guess we could check the
1749  // template arguments that we have against the template name, if the template
1750  // name refers to a single template. That's not a terribly common case,
1751  // though.
1752
1753  // These should be filtered out by our callers.
1754  assert(!R.empty() && "empty lookup results when building templateid");
1755  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1756
1757  NestedNameSpecifier *Qualifier = 0;
1758  SourceRange QualifierRange;
1759  if (SS.isSet()) {
1760    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1761    QualifierRange = SS.getRange();
1762  }
1763
1764  // We don't want lookup warnings at this point.
1765  R.suppressDiagnostics();
1766
1767  UnresolvedLookupExpr *ULE
1768    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
1769                                   Qualifier, QualifierRange,
1770                                   R.getLookupNameInfo(),
1771                                   RequiresADL, TemplateArgs,
1772                                   R.begin(), R.end());
1773
1774  return Owned(ULE);
1775}
1776
1777// We actually only call this from template instantiation.
1778ExprResult
1779Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1780                                   const DeclarationNameInfo &NameInfo,
1781                             const TemplateArgumentListInfo &TemplateArgs) {
1782  DeclContext *DC;
1783  if (!(DC = computeDeclContext(SS, false)) ||
1784      DC->isDependentContext() ||
1785      RequireCompleteDeclContext(SS, DC))
1786    return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
1787
1788  bool MemberOfUnknownSpecialization;
1789  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1790  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
1791                     MemberOfUnknownSpecialization);
1792
1793  if (R.isAmbiguous())
1794    return ExprError();
1795
1796  if (R.empty()) {
1797    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
1798      << NameInfo.getName() << SS.getRange();
1799    return ExprError();
1800  }
1801
1802  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1803    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
1804      << (NestedNameSpecifier*) SS.getScopeRep()
1805      << NameInfo.getName() << SS.getRange();
1806    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1807    return ExprError();
1808  }
1809
1810  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1811}
1812
1813/// \brief Form a dependent template name.
1814///
1815/// This action forms a dependent template name given the template
1816/// name and its (presumably dependent) scope specifier. For
1817/// example, given "MetaFun::template apply", the scope specifier \p
1818/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1819/// of the "template" keyword, and "apply" is the \p Name.
1820TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
1821                                                  SourceLocation TemplateKWLoc,
1822                                                  CXXScopeSpec &SS,
1823                                                  UnqualifiedId &Name,
1824                                                  ParsedType ObjectType,
1825                                                  bool EnteringContext,
1826                                                  TemplateTy &Result) {
1827  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
1828      !getLangOptions().CPlusPlus0x)
1829    Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
1830      << FixItHint::CreateRemoval(TemplateKWLoc);
1831
1832  DeclContext *LookupCtx = 0;
1833  if (SS.isSet())
1834    LookupCtx = computeDeclContext(SS, EnteringContext);
1835  if (!LookupCtx && ObjectType)
1836    LookupCtx = computeDeclContext(ObjectType.get());
1837  if (LookupCtx) {
1838    // C++0x [temp.names]p5:
1839    //   If a name prefixed by the keyword template is not the name of
1840    //   a template, the program is ill-formed. [Note: the keyword
1841    //   template may not be applied to non-template members of class
1842    //   templates. -end note ] [ Note: as is the case with the
1843    //   typename prefix, the template prefix is allowed in cases
1844    //   where it is not strictly necessary; i.e., when the
1845    //   nested-name-specifier or the expression on the left of the ->
1846    //   or . is not dependent on a template-parameter, or the use
1847    //   does not appear in the scope of a template. -end note]
1848    //
1849    // Note: C++03 was more strict here, because it banned the use of
1850    // the "template" keyword prior to a template-name that was not a
1851    // dependent name. C++ DR468 relaxed this requirement (the
1852    // "template" keyword is now permitted). We follow the C++0x
1853    // rules, even in C++03 mode with a warning, retroactively applying the DR.
1854    bool MemberOfUnknownSpecialization;
1855    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
1856                                          ObjectType, EnteringContext, Result,
1857                                          MemberOfUnknownSpecialization);
1858    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1859        isa<CXXRecordDecl>(LookupCtx) &&
1860        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1861      // This is a dependent template. Handle it below.
1862    } else if (TNK == TNK_Non_template) {
1863      Diag(Name.getSourceRange().getBegin(),
1864           diag::err_template_kw_refers_to_non_template)
1865        << GetNameFromUnqualifiedId(Name).getName()
1866        << Name.getSourceRange()
1867        << TemplateKWLoc;
1868      return TNK_Non_template;
1869    } else {
1870      // We found something; return it.
1871      return TNK;
1872    }
1873  }
1874
1875  NestedNameSpecifier *Qualifier
1876    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1877
1878  switch (Name.getKind()) {
1879  case UnqualifiedId::IK_Identifier:
1880    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1881                                                              Name.Identifier));
1882    return TNK_Dependent_template_name;
1883
1884  case UnqualifiedId::IK_OperatorFunctionId:
1885    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1886                                             Name.OperatorFunctionId.Operator));
1887    return TNK_Dependent_template_name;
1888
1889  case UnqualifiedId::IK_LiteralOperatorId:
1890    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1891
1892  default:
1893    break;
1894  }
1895
1896  Diag(Name.getSourceRange().getBegin(),
1897       diag::err_template_kw_refers_to_non_template)
1898    << GetNameFromUnqualifiedId(Name).getName()
1899    << Name.getSourceRange()
1900    << TemplateKWLoc;
1901  return TNK_Non_template;
1902}
1903
1904bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1905                                     const TemplateArgumentLoc &AL,
1906                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
1907  const TemplateArgument &Arg = AL.getArgument();
1908
1909  // Check template type parameter.
1910  switch(Arg.getKind()) {
1911  case TemplateArgument::Type:
1912    // C++ [temp.arg.type]p1:
1913    //   A template-argument for a template-parameter which is a
1914    //   type shall be a type-id.
1915    break;
1916  case TemplateArgument::Template: {
1917    // We have a template type parameter but the template argument
1918    // is a template without any arguments.
1919    SourceRange SR = AL.getSourceRange();
1920    TemplateName Name = Arg.getAsTemplate();
1921    Diag(SR.getBegin(), diag::err_template_missing_args)
1922      << Name << SR;
1923    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
1924      Diag(Decl->getLocation(), diag::note_template_decl_here);
1925
1926    return true;
1927  }
1928  default: {
1929    // We have a template type parameter but the template argument
1930    // is not a type.
1931    SourceRange SR = AL.getSourceRange();
1932    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1933    Diag(Param->getLocation(), diag::note_template_param_here);
1934
1935    return true;
1936  }
1937  }
1938
1939  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1940    return true;
1941
1942  // Add the converted template type argument.
1943  Converted.push_back(
1944                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1945  return false;
1946}
1947
1948/// \brief Substitute template arguments into the default template argument for
1949/// the given template type parameter.
1950///
1951/// \param SemaRef the semantic analysis object for which we are performing
1952/// the substitution.
1953///
1954/// \param Template the template that we are synthesizing template arguments
1955/// for.
1956///
1957/// \param TemplateLoc the location of the template name that started the
1958/// template-id we are checking.
1959///
1960/// \param RAngleLoc the location of the right angle bracket ('>') that
1961/// terminates the template-id.
1962///
1963/// \param Param the template template parameter whose default we are
1964/// substituting into.
1965///
1966/// \param Converted the list of template arguments provided for template
1967/// parameters that precede \p Param in the template parameter list.
1968///
1969/// \returns the substituted template argument, or NULL if an error occurred.
1970static TypeSourceInfo *
1971SubstDefaultTemplateArgument(Sema &SemaRef,
1972                             TemplateDecl *Template,
1973                             SourceLocation TemplateLoc,
1974                             SourceLocation RAngleLoc,
1975                             TemplateTypeParmDecl *Param,
1976                         llvm::SmallVectorImpl<TemplateArgument> &Converted) {
1977  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
1978
1979  // If the argument type is dependent, instantiate it now based
1980  // on the previously-computed template arguments.
1981  if (ArgType->getType()->isDependentType()) {
1982    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1983                                      Converted.data(), Converted.size());
1984
1985    MultiLevelTemplateArgumentList AllTemplateArgs
1986      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1987
1988    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1989                                     Template, Converted.data(),
1990                                     Converted.size(),
1991                                     SourceRange(TemplateLoc, RAngleLoc));
1992
1993    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1994                                Param->getDefaultArgumentLoc(),
1995                                Param->getDeclName());
1996  }
1997
1998  return ArgType;
1999}
2000
2001/// \brief Substitute template arguments into the default template argument for
2002/// the given non-type template parameter.
2003///
2004/// \param SemaRef the semantic analysis object for which we are performing
2005/// the substitution.
2006///
2007/// \param Template the template that we are synthesizing template arguments
2008/// for.
2009///
2010/// \param TemplateLoc the location of the template name that started the
2011/// template-id we are checking.
2012///
2013/// \param RAngleLoc the location of the right angle bracket ('>') that
2014/// terminates the template-id.
2015///
2016/// \param Param the non-type template parameter whose default we are
2017/// substituting into.
2018///
2019/// \param Converted the list of template arguments provided for template
2020/// parameters that precede \p Param in the template parameter list.
2021///
2022/// \returns the substituted template argument, or NULL if an error occurred.
2023static ExprResult
2024SubstDefaultTemplateArgument(Sema &SemaRef,
2025                             TemplateDecl *Template,
2026                             SourceLocation TemplateLoc,
2027                             SourceLocation RAngleLoc,
2028                             NonTypeTemplateParmDecl *Param,
2029                        llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2030  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2031                                    Converted.data(), Converted.size());
2032
2033  MultiLevelTemplateArgumentList AllTemplateArgs
2034    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2035
2036  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2037                                   Template, Converted.data(),
2038                                   Converted.size(),
2039                                   SourceRange(TemplateLoc, RAngleLoc));
2040
2041  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2042}
2043
2044/// \brief Substitute template arguments into the default template argument for
2045/// the given template template parameter.
2046///
2047/// \param SemaRef the semantic analysis object for which we are performing
2048/// the substitution.
2049///
2050/// \param Template the template that we are synthesizing template arguments
2051/// for.
2052///
2053/// \param TemplateLoc the location of the template name that started the
2054/// template-id we are checking.
2055///
2056/// \param RAngleLoc the location of the right angle bracket ('>') that
2057/// terminates the template-id.
2058///
2059/// \param Param the template template parameter whose default we are
2060/// substituting into.
2061///
2062/// \param Converted the list of template arguments provided for template
2063/// parameters that precede \p Param in the template parameter list.
2064///
2065/// \returns the substituted template argument, or NULL if an error occurred.
2066static TemplateName
2067SubstDefaultTemplateArgument(Sema &SemaRef,
2068                             TemplateDecl *Template,
2069                             SourceLocation TemplateLoc,
2070                             SourceLocation RAngleLoc,
2071                             TemplateTemplateParmDecl *Param,
2072                       llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2073  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2074                                    Converted.data(), Converted.size());
2075
2076  MultiLevelTemplateArgumentList AllTemplateArgs
2077    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2078
2079  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2080                                   Template, Converted.data(),
2081                                   Converted.size(),
2082                                   SourceRange(TemplateLoc, RAngleLoc));
2083
2084  return SemaRef.SubstTemplateName(
2085                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2086                              Param->getDefaultArgument().getTemplateNameLoc(),
2087                                   AllTemplateArgs);
2088}
2089
2090/// \brief If the given template parameter has a default template
2091/// argument, substitute into that default template argument and
2092/// return the corresponding template argument.
2093TemplateArgumentLoc
2094Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2095                                              SourceLocation TemplateLoc,
2096                                              SourceLocation RAngleLoc,
2097                                              Decl *Param,
2098                      llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2099   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2100    if (!TypeParm->hasDefaultArgument())
2101      return TemplateArgumentLoc();
2102
2103    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2104                                                      TemplateLoc,
2105                                                      RAngleLoc,
2106                                                      TypeParm,
2107                                                      Converted);
2108    if (DI)
2109      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2110
2111    return TemplateArgumentLoc();
2112  }
2113
2114  if (NonTypeTemplateParmDecl *NonTypeParm
2115        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2116    if (!NonTypeParm->hasDefaultArgument())
2117      return TemplateArgumentLoc();
2118
2119    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2120                                                        TemplateLoc,
2121                                                        RAngleLoc,
2122                                                        NonTypeParm,
2123                                                        Converted);
2124    if (Arg.isInvalid())
2125      return TemplateArgumentLoc();
2126
2127    Expr *ArgE = Arg.takeAs<Expr>();
2128    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2129  }
2130
2131  TemplateTemplateParmDecl *TempTempParm
2132    = cast<TemplateTemplateParmDecl>(Param);
2133  if (!TempTempParm->hasDefaultArgument())
2134    return TemplateArgumentLoc();
2135
2136  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2137                                                    TemplateLoc,
2138                                                    RAngleLoc,
2139                                                    TempTempParm,
2140                                                    Converted);
2141  if (TName.isNull())
2142    return TemplateArgumentLoc();
2143
2144  return TemplateArgumentLoc(TemplateArgument(TName),
2145                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
2146                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2147}
2148
2149/// \brief Check that the given template argument corresponds to the given
2150/// template parameter.
2151bool Sema::CheckTemplateArgument(NamedDecl *Param,
2152                                 const TemplateArgumentLoc &Arg,
2153                                 TemplateDecl *Template,
2154                                 SourceLocation TemplateLoc,
2155                                 SourceLocation RAngleLoc,
2156                            llvm::SmallVectorImpl<TemplateArgument> &Converted,
2157                                 CheckTemplateArgumentKind CTAK) {
2158  // Check template type parameters.
2159  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2160    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2161
2162  // Check non-type template parameters.
2163  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2164    // Do substitution on the type of the non-type template parameter
2165    // with the template arguments we've seen thus far.  But if the
2166    // template has a dependent context then we cannot substitute yet.
2167    QualType NTTPType = NTTP->getType();
2168    if (NTTPType->isDependentType() &&
2169        !isa<TemplateTemplateParmDecl>(Template) &&
2170        !Template->getDeclContext()->isDependentContext()) {
2171      // Do substitution on the type of the non-type template parameter.
2172      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2173                                 NTTP, Converted.data(), Converted.size(),
2174                                 SourceRange(TemplateLoc, RAngleLoc));
2175
2176      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2177                                        Converted.data(), Converted.size());
2178      NTTPType = SubstType(NTTPType,
2179                           MultiLevelTemplateArgumentList(TemplateArgs),
2180                           NTTP->getLocation(),
2181                           NTTP->getDeclName());
2182      // If that worked, check the non-type template parameter type
2183      // for validity.
2184      if (!NTTPType.isNull())
2185        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2186                                                     NTTP->getLocation());
2187      if (NTTPType.isNull())
2188        return true;
2189    }
2190
2191    switch (Arg.getArgument().getKind()) {
2192    case TemplateArgument::Null:
2193      assert(false && "Should never see a NULL template argument here");
2194      return true;
2195
2196    case TemplateArgument::Expression: {
2197      Expr *E = Arg.getArgument().getAsExpr();
2198      TemplateArgument Result;
2199      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
2200        return true;
2201
2202      Converted.push_back(Result);
2203      break;
2204    }
2205
2206    case TemplateArgument::Declaration:
2207    case TemplateArgument::Integral:
2208      // We've already checked this template argument, so just copy
2209      // it to the list of converted arguments.
2210      Converted.push_back(Arg.getArgument());
2211      break;
2212
2213    case TemplateArgument::Template:
2214      // We were given a template template argument. It may not be ill-formed;
2215      // see below.
2216      if (DependentTemplateName *DTN
2217            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
2218        // We have a template argument such as \c T::template X, which we
2219        // parsed as a template template argument. However, since we now
2220        // know that we need a non-type template argument, convert this
2221        // template name into an expression.
2222
2223        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2224                                     Arg.getTemplateNameLoc());
2225
2226        Expr *E = DependentScopeDeclRefExpr::Create(Context,
2227                                                    DTN->getQualifier(),
2228                                               Arg.getTemplateQualifierRange(),
2229                                                    NameInfo);
2230
2231        TemplateArgument Result;
2232        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2233          return true;
2234
2235        Converted.push_back(Result);
2236        break;
2237      }
2238
2239      // We have a template argument that actually does refer to a class
2240      // template, template alias, or template template parameter, and
2241      // therefore cannot be a non-type template argument.
2242      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2243        << Arg.getSourceRange();
2244
2245      Diag(Param->getLocation(), diag::note_template_param_here);
2246      return true;
2247
2248    case TemplateArgument::Type: {
2249      // We have a non-type template parameter but the template
2250      // argument is a type.
2251
2252      // C++ [temp.arg]p2:
2253      //   In a template-argument, an ambiguity between a type-id and
2254      //   an expression is resolved to a type-id, regardless of the
2255      //   form of the corresponding template-parameter.
2256      //
2257      // We warn specifically about this case, since it can be rather
2258      // confusing for users.
2259      QualType T = Arg.getArgument().getAsType();
2260      SourceRange SR = Arg.getSourceRange();
2261      if (T->isFunctionType())
2262        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2263      else
2264        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2265      Diag(Param->getLocation(), diag::note_template_param_here);
2266      return true;
2267    }
2268
2269    case TemplateArgument::Pack:
2270      llvm_unreachable("Caller must expand template argument packs");
2271      break;
2272    }
2273
2274    return false;
2275  }
2276
2277
2278  // Check template template parameters.
2279  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2280
2281  // Substitute into the template parameter list of the template
2282  // template parameter, since previously-supplied template arguments
2283  // may appear within the template template parameter.
2284  {
2285    // Set up a template instantiation context.
2286    LocalInstantiationScope Scope(*this);
2287    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2288                               TempParm, Converted.data(), Converted.size(),
2289                               SourceRange(TemplateLoc, RAngleLoc));
2290
2291    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2292                                      Converted.data(), Converted.size());
2293    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2294                      SubstDecl(TempParm, CurContext,
2295                                MultiLevelTemplateArgumentList(TemplateArgs)));
2296    if (!TempParm)
2297      return true;
2298
2299    // FIXME: TempParam is leaked.
2300  }
2301
2302  switch (Arg.getArgument().getKind()) {
2303  case TemplateArgument::Null:
2304    assert(false && "Should never see a NULL template argument here");
2305    return true;
2306
2307  case TemplateArgument::Template:
2308    if (CheckTemplateArgument(TempParm, Arg))
2309      return true;
2310
2311    Converted.push_back(Arg.getArgument());
2312    break;
2313
2314  case TemplateArgument::Expression:
2315  case TemplateArgument::Type:
2316    // We have a template template parameter but the template
2317    // argument does not refer to a template.
2318    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2319    return true;
2320
2321  case TemplateArgument::Declaration:
2322    llvm_unreachable(
2323                       "Declaration argument with template template parameter");
2324    break;
2325  case TemplateArgument::Integral:
2326    llvm_unreachable(
2327                          "Integral argument with template template parameter");
2328    break;
2329
2330  case TemplateArgument::Pack:
2331    llvm_unreachable("Caller must expand template argument packs");
2332    break;
2333  }
2334
2335  return false;
2336}
2337
2338/// \brief Check that the given template argument list is well-formed
2339/// for specializing the given template.
2340bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2341                                     SourceLocation TemplateLoc,
2342                                const TemplateArgumentListInfo &TemplateArgs,
2343                                     bool PartialTemplateArgs,
2344                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2345  TemplateParameterList *Params = Template->getTemplateParameters();
2346  unsigned NumParams = Params->size();
2347  unsigned NumArgs = TemplateArgs.size();
2348  bool Invalid = false;
2349
2350  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2351
2352  bool HasParameterPack =
2353    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2354
2355  if ((NumArgs > NumParams && !HasParameterPack) ||
2356      (NumArgs < Params->getMinRequiredArguments() &&
2357       !PartialTemplateArgs)) {
2358    // FIXME: point at either the first arg beyond what we can handle,
2359    // or the '>', depending on whether we have too many or too few
2360    // arguments.
2361    SourceRange Range;
2362    if (NumArgs > NumParams)
2363      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2364    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2365      << (NumArgs > NumParams)
2366      << (isa<ClassTemplateDecl>(Template)? 0 :
2367          isa<FunctionTemplateDecl>(Template)? 1 :
2368          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2369      << Template << Range;
2370    Diag(Template->getLocation(), diag::note_template_decl_here)
2371      << Params->getSourceRange();
2372    Invalid = true;
2373  }
2374
2375  // C++ [temp.arg]p1:
2376  //   [...] The type and form of each template-argument specified in
2377  //   a template-id shall match the type and form specified for the
2378  //   corresponding parameter declared by the template in its
2379  //   template-parameter-list.
2380  unsigned ArgIdx = 0;
2381  for (TemplateParameterList::iterator Param = Params->begin(),
2382                                       ParamEnd = Params->end();
2383       Param != ParamEnd; ++Param, ++ArgIdx) {
2384    if (ArgIdx > NumArgs && PartialTemplateArgs)
2385      break;
2386
2387    // If we have a template parameter pack, check every remaining template
2388    // argument against that template parameter pack.
2389    // FIXME: Variadic templates are unimplemented
2390    if ((*Param)->isTemplateParameterPack()) {
2391      Diag(TemplateLoc, diag::err_variadic_templates_unsupported);
2392      return true;
2393    }
2394
2395    if (ArgIdx < NumArgs) {
2396      // Check the template argument we were given.
2397      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2398                                TemplateLoc, RAngleLoc, Converted))
2399        return true;
2400
2401      continue;
2402    }
2403
2404    // We have a default template argument that we will use.
2405    TemplateArgumentLoc Arg;
2406
2407    // Retrieve the default template argument from the template
2408    // parameter. For each kind of template parameter, we substitute the
2409    // template arguments provided thus far and any "outer" template arguments
2410    // (when the template parameter was part of a nested template) into
2411    // the default argument.
2412    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2413      if (!TTP->hasDefaultArgument()) {
2414        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2415        break;
2416      }
2417
2418      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2419                                                             Template,
2420                                                             TemplateLoc,
2421                                                             RAngleLoc,
2422                                                             TTP,
2423                                                             Converted);
2424      if (!ArgType)
2425        return true;
2426
2427      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2428                                ArgType);
2429    } else if (NonTypeTemplateParmDecl *NTTP
2430                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2431      if (!NTTP->hasDefaultArgument()) {
2432        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2433        break;
2434      }
2435
2436      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2437                                                              TemplateLoc,
2438                                                              RAngleLoc,
2439                                                              NTTP,
2440                                                              Converted);
2441      if (E.isInvalid())
2442        return true;
2443
2444      Expr *Ex = E.takeAs<Expr>();
2445      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2446    } else {
2447      TemplateTemplateParmDecl *TempParm
2448        = cast<TemplateTemplateParmDecl>(*Param);
2449
2450      if (!TempParm->hasDefaultArgument()) {
2451        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2452        break;
2453      }
2454
2455      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2456                                                       TemplateLoc,
2457                                                       RAngleLoc,
2458                                                       TempParm,
2459                                                       Converted);
2460      if (Name.isNull())
2461        return true;
2462
2463      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2464                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2465                  TempParm->getDefaultArgument().getTemplateNameLoc());
2466    }
2467
2468    // Introduce an instantiation record that describes where we are using
2469    // the default template argument.
2470    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2471                                        Converted.data(), Converted.size(),
2472                                        SourceRange(TemplateLoc, RAngleLoc));
2473
2474    // Check the default template argument.
2475    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2476                              RAngleLoc, Converted))
2477      return true;
2478  }
2479
2480  return Invalid;
2481}
2482
2483namespace {
2484  class UnnamedLocalNoLinkageFinder
2485    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
2486  {
2487    Sema &S;
2488    SourceRange SR;
2489
2490    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
2491
2492  public:
2493    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
2494
2495    bool Visit(QualType T) {
2496      return inherited::Visit(T.getTypePtr());
2497    }
2498
2499#define TYPE(Class, Parent) \
2500    bool Visit##Class##Type(const Class##Type *);
2501#define ABSTRACT_TYPE(Class, Parent) \
2502    bool Visit##Class##Type(const Class##Type *) { return false; }
2503#define NON_CANONICAL_TYPE(Class, Parent) \
2504    bool Visit##Class##Type(const Class##Type *) { return false; }
2505#include "clang/AST/TypeNodes.def"
2506
2507    bool VisitTagDecl(const TagDecl *Tag);
2508    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
2509  };
2510}
2511
2512bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
2513  return false;
2514}
2515
2516bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
2517  return Visit(T->getElementType());
2518}
2519
2520bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
2521  return Visit(T->getPointeeType());
2522}
2523
2524bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
2525                                                    const BlockPointerType* T) {
2526  return Visit(T->getPointeeType());
2527}
2528
2529bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
2530                                                const LValueReferenceType* T) {
2531  return Visit(T->getPointeeType());
2532}
2533
2534bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
2535                                                const RValueReferenceType* T) {
2536  return Visit(T->getPointeeType());
2537}
2538
2539bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
2540                                                  const MemberPointerType* T) {
2541  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
2542}
2543
2544bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
2545                                                  const ConstantArrayType* T) {
2546  return Visit(T->getElementType());
2547}
2548
2549bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
2550                                                 const IncompleteArrayType* T) {
2551  return Visit(T->getElementType());
2552}
2553
2554bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
2555                                                   const VariableArrayType* T) {
2556  return Visit(T->getElementType());
2557}
2558
2559bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
2560                                            const DependentSizedArrayType* T) {
2561  return Visit(T->getElementType());
2562}
2563
2564bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
2565                                         const DependentSizedExtVectorType* T) {
2566  return Visit(T->getElementType());
2567}
2568
2569bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
2570  return Visit(T->getElementType());
2571}
2572
2573bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
2574  return Visit(T->getElementType());
2575}
2576
2577bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
2578                                                  const FunctionProtoType* T) {
2579  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
2580                                         AEnd = T->arg_type_end();
2581       A != AEnd; ++A) {
2582    if (Visit(*A))
2583      return true;
2584  }
2585
2586  return Visit(T->getResultType());
2587}
2588
2589bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
2590                                               const FunctionNoProtoType* T) {
2591  return Visit(T->getResultType());
2592}
2593
2594bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
2595                                                  const UnresolvedUsingType*) {
2596  return false;
2597}
2598
2599bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
2600  return false;
2601}
2602
2603bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
2604  return Visit(T->getUnderlyingType());
2605}
2606
2607bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
2608  return false;
2609}
2610
2611bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
2612  return VisitTagDecl(T->getDecl());
2613}
2614
2615bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
2616  return VisitTagDecl(T->getDecl());
2617}
2618
2619bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
2620                                                 const TemplateTypeParmType*) {
2621  return false;
2622}
2623
2624bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
2625                                            const TemplateSpecializationType*) {
2626  return false;
2627}
2628
2629bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
2630                                              const InjectedClassNameType* T) {
2631  return VisitTagDecl(T->getDecl());
2632}
2633
2634bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
2635                                                   const DependentNameType* T) {
2636  return VisitNestedNameSpecifier(T->getQualifier());
2637}
2638
2639bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
2640                                 const DependentTemplateSpecializationType* T) {
2641  return VisitNestedNameSpecifier(T->getQualifier());
2642}
2643
2644bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
2645                                                   const PackExpansionType* T) {
2646  return Visit(T->getPattern());
2647}
2648
2649bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
2650  return false;
2651}
2652
2653bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
2654                                                   const ObjCInterfaceType *) {
2655  return false;
2656}
2657
2658bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
2659                                                const ObjCObjectPointerType *) {
2660  return false;
2661}
2662
2663bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
2664  if (Tag->getDeclContext()->isFunctionOrMethod()) {
2665    S.Diag(SR.getBegin(), diag::ext_template_arg_local_type)
2666      << S.Context.getTypeDeclType(Tag) << SR;
2667    return true;
2668  }
2669
2670  if (!Tag->getDeclName() && !Tag->getTypedefForAnonDecl()) {
2671    S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR;
2672    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
2673    return true;
2674  }
2675
2676  return false;
2677}
2678
2679bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
2680                                                    NestedNameSpecifier *NNS) {
2681  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
2682    return true;
2683
2684  switch (NNS->getKind()) {
2685  case NestedNameSpecifier::Identifier:
2686  case NestedNameSpecifier::Namespace:
2687  case NestedNameSpecifier::Global:
2688    return false;
2689
2690  case NestedNameSpecifier::TypeSpec:
2691  case NestedNameSpecifier::TypeSpecWithTemplate:
2692    return Visit(QualType(NNS->getAsType(), 0));
2693  }
2694  return false;
2695}
2696
2697
2698/// \brief Check a template argument against its corresponding
2699/// template type parameter.
2700///
2701/// This routine implements the semantics of C++ [temp.arg.type]. It
2702/// returns true if an error occurred, and false otherwise.
2703bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2704                                 TypeSourceInfo *ArgInfo) {
2705  assert(ArgInfo && "invalid TypeSourceInfo");
2706  QualType Arg = ArgInfo->getType();
2707  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2708
2709  if (Arg->isVariablyModifiedType()) {
2710    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
2711  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2712    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2713  }
2714
2715  // C++03 [temp.arg.type]p2:
2716  //   A local type, a type with no linkage, an unnamed type or a type
2717  //   compounded from any of these types shall not be used as a
2718  //   template-argument for a template type-parameter.
2719  //
2720  // C++0x allows these, and even in C++03 we allow them as an extension with
2721  // a warning.
2722  if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) {
2723    UnnamedLocalNoLinkageFinder Finder(*this, SR);
2724    (void)Finder.Visit(Context.getCanonicalType(Arg));
2725  }
2726
2727  return false;
2728}
2729
2730/// \brief Checks whether the given template argument is the address
2731/// of an object or function according to C++ [temp.arg.nontype]p1.
2732static bool
2733CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2734                                               NonTypeTemplateParmDecl *Param,
2735                                               QualType ParamType,
2736                                               Expr *ArgIn,
2737                                               TemplateArgument &Converted) {
2738  bool Invalid = false;
2739  Expr *Arg = ArgIn;
2740  QualType ArgType = Arg->getType();
2741
2742  // See through any implicit casts we added to fix the type.
2743  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2744    Arg = Cast->getSubExpr();
2745
2746  // C++ [temp.arg.nontype]p1:
2747  //
2748  //   A template-argument for a non-type, non-template
2749  //   template-parameter shall be one of: [...]
2750  //
2751  //     -- the address of an object or function with external
2752  //        linkage, including function templates and function
2753  //        template-ids but excluding non-static class members,
2754  //        expressed as & id-expression where the & is optional if
2755  //        the name refers to a function or array, or if the
2756  //        corresponding template-parameter is a reference; or
2757  DeclRefExpr *DRE = 0;
2758
2759  // In C++98/03 mode, give an extension warning on any extra parentheses.
2760  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
2761  bool ExtraParens = false;
2762  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2763    if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) {
2764      S.Diag(Arg->getSourceRange().getBegin(),
2765             diag::ext_template_arg_extra_parens)
2766        << Arg->getSourceRange();
2767      ExtraParens = true;
2768    }
2769
2770    Arg = Parens->getSubExpr();
2771  }
2772
2773  bool AddressTaken = false;
2774  SourceLocation AddrOpLoc;
2775  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2776    if (UnOp->getOpcode() == UO_AddrOf) {
2777      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2778      AddressTaken = true;
2779      AddrOpLoc = UnOp->getOperatorLoc();
2780    }
2781  } else
2782    DRE = dyn_cast<DeclRefExpr>(Arg);
2783
2784  if (!DRE) {
2785    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2786      << Arg->getSourceRange();
2787    S.Diag(Param->getLocation(), diag::note_template_param_here);
2788    return true;
2789  }
2790
2791  // Stop checking the precise nature of the argument if it is value dependent,
2792  // it should be checked when instantiated.
2793  if (Arg->isValueDependent()) {
2794    Converted = TemplateArgument(ArgIn);
2795    return false;
2796  }
2797
2798  if (!isa<ValueDecl>(DRE->getDecl())) {
2799    S.Diag(Arg->getSourceRange().getBegin(),
2800           diag::err_template_arg_not_object_or_func_form)
2801      << Arg->getSourceRange();
2802    S.Diag(Param->getLocation(), diag::note_template_param_here);
2803    return true;
2804  }
2805
2806  NamedDecl *Entity = 0;
2807
2808  // Cannot refer to non-static data members
2809  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
2810    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2811      << Field << Arg->getSourceRange();
2812    S.Diag(Param->getLocation(), diag::note_template_param_here);
2813    return true;
2814  }
2815
2816  // Cannot refer to non-static member functions
2817  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2818    if (!Method->isStatic()) {
2819      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
2820        << Method << Arg->getSourceRange();
2821      S.Diag(Param->getLocation(), diag::note_template_param_here);
2822      return true;
2823    }
2824
2825  // Functions must have external linkage.
2826  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2827    if (!isExternalLinkage(Func->getLinkage())) {
2828      S.Diag(Arg->getSourceRange().getBegin(),
2829             diag::err_template_arg_function_not_extern)
2830        << Func << Arg->getSourceRange();
2831      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2832        << true;
2833      return true;
2834    }
2835
2836    // Okay: we've named a function with external linkage.
2837    Entity = Func;
2838
2839    // If the template parameter has pointer type, the function decays.
2840    if (ParamType->isPointerType() && !AddressTaken)
2841      ArgType = S.Context.getPointerType(Func->getType());
2842    else if (AddressTaken && ParamType->isReferenceType()) {
2843      // If we originally had an address-of operator, but the
2844      // parameter has reference type, complain and (if things look
2845      // like they will work) drop the address-of operator.
2846      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
2847                                            ParamType.getNonReferenceType())) {
2848        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2849          << ParamType;
2850        S.Diag(Param->getLocation(), diag::note_template_param_here);
2851        return true;
2852      }
2853
2854      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2855        << ParamType
2856        << FixItHint::CreateRemoval(AddrOpLoc);
2857      S.Diag(Param->getLocation(), diag::note_template_param_here);
2858
2859      ArgType = Func->getType();
2860    }
2861  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2862    if (!isExternalLinkage(Var->getLinkage())) {
2863      S.Diag(Arg->getSourceRange().getBegin(),
2864             diag::err_template_arg_object_not_extern)
2865        << Var << Arg->getSourceRange();
2866      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2867        << true;
2868      return true;
2869    }
2870
2871    // A value of reference type is not an object.
2872    if (Var->getType()->isReferenceType()) {
2873      S.Diag(Arg->getSourceRange().getBegin(),
2874             diag::err_template_arg_reference_var)
2875        << Var->getType() << Arg->getSourceRange();
2876      S.Diag(Param->getLocation(), diag::note_template_param_here);
2877      return true;
2878    }
2879
2880    // Okay: we've named an object with external linkage
2881    Entity = Var;
2882
2883    // If the template parameter has pointer type, we must have taken
2884    // the address of this object.
2885    if (ParamType->isReferenceType()) {
2886      if (AddressTaken) {
2887        // If we originally had an address-of operator, but the
2888        // parameter has reference type, complain and (if things look
2889        // like they will work) drop the address-of operator.
2890        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
2891                                            ParamType.getNonReferenceType())) {
2892          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2893            << ParamType;
2894          S.Diag(Param->getLocation(), diag::note_template_param_here);
2895          return true;
2896        }
2897
2898        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2899          << ParamType
2900          << FixItHint::CreateRemoval(AddrOpLoc);
2901        S.Diag(Param->getLocation(), diag::note_template_param_here);
2902
2903        ArgType = Var->getType();
2904      }
2905    } else if (!AddressTaken && ParamType->isPointerType()) {
2906      if (Var->getType()->isArrayType()) {
2907        // Array-to-pointer decay.
2908        ArgType = S.Context.getArrayDecayedType(Var->getType());
2909      } else {
2910        // If the template parameter has pointer type but the address of
2911        // this object was not taken, complain and (possibly) recover by
2912        // taking the address of the entity.
2913        ArgType = S.Context.getPointerType(Var->getType());
2914        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2915          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2916            << ParamType;
2917          S.Diag(Param->getLocation(), diag::note_template_param_here);
2918          return true;
2919        }
2920
2921        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2922          << ParamType
2923          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
2924
2925        S.Diag(Param->getLocation(), diag::note_template_param_here);
2926      }
2927    }
2928  } else {
2929    // We found something else, but we don't know specifically what it is.
2930    S.Diag(Arg->getSourceRange().getBegin(),
2931           diag::err_template_arg_not_object_or_func)
2932      << Arg->getSourceRange();
2933    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
2934    return true;
2935  }
2936
2937  if (ParamType->isPointerType() &&
2938      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
2939      S.IsQualificationConversion(ArgType, ParamType)) {
2940    // For pointer-to-object types, qualification conversions are
2941    // permitted.
2942  } else {
2943    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
2944      if (!ParamRef->getPointeeType()->isFunctionType()) {
2945        // C++ [temp.arg.nontype]p5b3:
2946        //   For a non-type template-parameter of type reference to
2947        //   object, no conversions apply. The type referred to by the
2948        //   reference may be more cv-qualified than the (otherwise
2949        //   identical) type of the template- argument. The
2950        //   template-parameter is bound directly to the
2951        //   template-argument, which shall be an lvalue.
2952
2953        // FIXME: Other qualifiers?
2954        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
2955        unsigned ArgQuals = ArgType.getCVRQualifiers();
2956
2957        if ((ParamQuals | ArgQuals) != ParamQuals) {
2958          S.Diag(Arg->getSourceRange().getBegin(),
2959                 diag::err_template_arg_ref_bind_ignores_quals)
2960            << ParamType << Arg->getType()
2961            << Arg->getSourceRange();
2962          S.Diag(Param->getLocation(), diag::note_template_param_here);
2963          return true;
2964        }
2965      }
2966    }
2967
2968    // At this point, the template argument refers to an object or
2969    // function with external linkage. We now need to check whether the
2970    // argument and parameter types are compatible.
2971    if (!S.Context.hasSameUnqualifiedType(ArgType,
2972                                          ParamType.getNonReferenceType())) {
2973      // We can't perform this conversion or binding.
2974      if (ParamType->isReferenceType())
2975        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
2976          << ParamType << Arg->getType() << Arg->getSourceRange();
2977      else
2978        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
2979          << Arg->getType() << ParamType << Arg->getSourceRange();
2980      S.Diag(Param->getLocation(), diag::note_template_param_here);
2981      return true;
2982    }
2983  }
2984
2985  // Create the template argument.
2986  Converted = TemplateArgument(Entity->getCanonicalDecl());
2987  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
2988  return false;
2989}
2990
2991/// \brief Checks whether the given template argument is a pointer to
2992/// member constant according to C++ [temp.arg.nontype]p1.
2993bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2994                                                TemplateArgument &Converted) {
2995  bool Invalid = false;
2996
2997  // See through any implicit casts we added to fix the type.
2998  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2999    Arg = Cast->getSubExpr();
3000
3001  // C++ [temp.arg.nontype]p1:
3002  //
3003  //   A template-argument for a non-type, non-template
3004  //   template-parameter shall be one of: [...]
3005  //
3006  //     -- a pointer to member expressed as described in 5.3.1.
3007  DeclRefExpr *DRE = 0;
3008
3009  // In C++98/03 mode, give an extension warning on any extra parentheses.
3010  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3011  bool ExtraParens = false;
3012  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3013    if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) {
3014      Diag(Arg->getSourceRange().getBegin(),
3015           diag::ext_template_arg_extra_parens)
3016        << Arg->getSourceRange();
3017      ExtraParens = true;
3018    }
3019
3020    Arg = Parens->getSubExpr();
3021  }
3022
3023  // A pointer-to-member constant written &Class::member.
3024  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3025    if (UnOp->getOpcode() == UO_AddrOf) {
3026      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3027      if (DRE && !DRE->getQualifier())
3028        DRE = 0;
3029    }
3030  }
3031  // A constant of pointer-to-member type.
3032  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
3033    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
3034      if (VD->getType()->isMemberPointerType()) {
3035        if (isa<NonTypeTemplateParmDecl>(VD) ||
3036            (isa<VarDecl>(VD) &&
3037             Context.getCanonicalType(VD->getType()).isConstQualified())) {
3038          if (Arg->isTypeDependent() || Arg->isValueDependent())
3039            Converted = TemplateArgument(Arg);
3040          else
3041            Converted = TemplateArgument(VD->getCanonicalDecl());
3042          return Invalid;
3043        }
3044      }
3045    }
3046
3047    DRE = 0;
3048  }
3049
3050  if (!DRE)
3051    return Diag(Arg->getSourceRange().getBegin(),
3052                diag::err_template_arg_not_pointer_to_member_form)
3053      << Arg->getSourceRange();
3054
3055  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
3056    assert((isa<FieldDecl>(DRE->getDecl()) ||
3057            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
3058           "Only non-static member pointers can make it here");
3059
3060    // Okay: this is the address of a non-static member, and therefore
3061    // a member pointer constant.
3062    if (Arg->isTypeDependent() || Arg->isValueDependent())
3063      Converted = TemplateArgument(Arg);
3064    else
3065      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3066    return Invalid;
3067  }
3068
3069  // We found something else, but we don't know specifically what it is.
3070  Diag(Arg->getSourceRange().getBegin(),
3071       diag::err_template_arg_not_pointer_to_member_form)
3072      << Arg->getSourceRange();
3073  Diag(DRE->getDecl()->getLocation(),
3074       diag::note_template_arg_refers_here);
3075  return true;
3076}
3077
3078/// \brief Check a template argument against its corresponding
3079/// non-type template parameter.
3080///
3081/// This routine implements the semantics of C++ [temp.arg.nontype].
3082/// It returns true if an error occurred, and false otherwise. \p
3083/// InstantiatedParamType is the type of the non-type template
3084/// parameter after it has been instantiated.
3085///
3086/// If no error was detected, Converted receives the converted template argument.
3087bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3088                                 QualType InstantiatedParamType, Expr *&Arg,
3089                                 TemplateArgument &Converted,
3090                                 CheckTemplateArgumentKind CTAK) {
3091  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
3092
3093  // If either the parameter has a dependent type or the argument is
3094  // type-dependent, there's nothing we can check now.
3095  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3096    // FIXME: Produce a cloned, canonical expression?
3097    Converted = TemplateArgument(Arg);
3098    return false;
3099  }
3100
3101  // C++ [temp.arg.nontype]p5:
3102  //   The following conversions are performed on each expression used
3103  //   as a non-type template-argument. If a non-type
3104  //   template-argument cannot be converted to the type of the
3105  //   corresponding template-parameter then the program is
3106  //   ill-formed.
3107  //
3108  //     -- for a non-type template-parameter of integral or
3109  //        enumeration type, integral promotions (4.5) and integral
3110  //        conversions (4.7) are applied.
3111  QualType ParamType = InstantiatedParamType;
3112  QualType ArgType = Arg->getType();
3113  if (ParamType->isIntegralOrEnumerationType()) {
3114    // C++ [temp.arg.nontype]p1:
3115    //   A template-argument for a non-type, non-template
3116    //   template-parameter shall be one of:
3117    //
3118    //     -- an integral constant-expression of integral or enumeration
3119    //        type; or
3120    //     -- the name of a non-type template-parameter; or
3121    SourceLocation NonConstantLoc;
3122    llvm::APSInt Value;
3123    if (!ArgType->isIntegralOrEnumerationType()) {
3124      Diag(Arg->getSourceRange().getBegin(),
3125           diag::err_template_arg_not_integral_or_enumeral)
3126        << ArgType << Arg->getSourceRange();
3127      Diag(Param->getLocation(), diag::note_template_param_here);
3128      return true;
3129    } else if (!Arg->isValueDependent() &&
3130               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
3131      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
3132        << ArgType << Arg->getSourceRange();
3133      return true;
3134    }
3135
3136    // From here on out, all we care about are the unqualified forms
3137    // of the parameter and argument types.
3138    ParamType = ParamType.getUnqualifiedType();
3139    ArgType = ArgType.getUnqualifiedType();
3140
3141    // Try to convert the argument to the parameter's type.
3142    if (Context.hasSameType(ParamType, ArgType)) {
3143      // Okay: no conversion necessary
3144    } else if (CTAK == CTAK_Deduced) {
3145      // C++ [temp.deduct.type]p17:
3146      //   If, in the declaration of a function template with a non-type
3147      //   template-parameter, the non-type template- parameter is used
3148      //   in an expression in the function parameter-list and, if the
3149      //   corresponding template-argument is deduced, the
3150      //   template-argument type shall match the type of the
3151      //   template-parameter exactly, except that a template-argument
3152      //   deduced from an array bound may be of any integral type.
3153      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
3154        << ArgType << ParamType;
3155      Diag(Param->getLocation(), diag::note_template_param_here);
3156      return true;
3157    } else if (ParamType->isBooleanType()) {
3158      // This is an integral-to-boolean conversion.
3159      ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean);
3160    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
3161               !ParamType->isEnumeralType()) {
3162      // This is an integral promotion or conversion.
3163      ImpCastExprToType(Arg, ParamType, CK_IntegralCast);
3164    } else {
3165      // We can't perform this conversion.
3166      Diag(Arg->getSourceRange().getBegin(),
3167           diag::err_template_arg_not_convertible)
3168        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3169      Diag(Param->getLocation(), diag::note_template_param_here);
3170      return true;
3171    }
3172
3173    QualType IntegerType = Context.getCanonicalType(ParamType);
3174    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3175      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
3176
3177    if (!Arg->isValueDependent()) {
3178      llvm::APSInt OldValue = Value;
3179
3180      // Coerce the template argument's value to the value it will have
3181      // based on the template parameter's type.
3182      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3183      if (Value.getBitWidth() != AllowedBits)
3184        Value = Value.extOrTrunc(AllowedBits);
3185      Value.setIsSigned(IntegerType->isSignedIntegerType());
3186
3187      // Complain if an unsigned parameter received a negative value.
3188      if (IntegerType->isUnsignedIntegerType()
3189          && (OldValue.isSigned() && OldValue.isNegative())) {
3190        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
3191          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3192          << Arg->getSourceRange();
3193        Diag(Param->getLocation(), diag::note_template_param_here);
3194      }
3195
3196      // Complain if we overflowed the template parameter's type.
3197      unsigned RequiredBits;
3198      if (IntegerType->isUnsignedIntegerType())
3199        RequiredBits = OldValue.getActiveBits();
3200      else if (OldValue.isUnsigned())
3201        RequiredBits = OldValue.getActiveBits() + 1;
3202      else
3203        RequiredBits = OldValue.getMinSignedBits();
3204      if (RequiredBits > AllowedBits) {
3205        Diag(Arg->getSourceRange().getBegin(),
3206             diag::warn_template_arg_too_large)
3207          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3208          << Arg->getSourceRange();
3209        Diag(Param->getLocation(), diag::note_template_param_here);
3210      }
3211    }
3212
3213    // Add the value of this argument to the list of converted
3214    // arguments. We use the bitwidth and signedness of the template
3215    // parameter.
3216    if (Arg->isValueDependent()) {
3217      // The argument is value-dependent. Create a new
3218      // TemplateArgument with the converted expression.
3219      Converted = TemplateArgument(Arg);
3220      return false;
3221    }
3222
3223    Converted = TemplateArgument(Value,
3224                                 ParamType->isEnumeralType() ? ParamType
3225                                                             : IntegerType);
3226    return false;
3227  }
3228
3229  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
3230
3231  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
3232  // from a template argument of type std::nullptr_t to a non-type
3233  // template parameter of type pointer to object, pointer to
3234  // function, or pointer-to-member, respectively.
3235  if (ArgType->isNullPtrType() &&
3236      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
3237    Converted = TemplateArgument((NamedDecl *)0);
3238    return false;
3239  }
3240
3241  // Handle pointer-to-function, reference-to-function, and
3242  // pointer-to-member-function all in (roughly) the same way.
3243  if (// -- For a non-type template-parameter of type pointer to
3244      //    function, only the function-to-pointer conversion (4.3) is
3245      //    applied. If the template-argument represents a set of
3246      //    overloaded functions (or a pointer to such), the matching
3247      //    function is selected from the set (13.4).
3248      (ParamType->isPointerType() &&
3249       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
3250      // -- For a non-type template-parameter of type reference to
3251      //    function, no conversions apply. If the template-argument
3252      //    represents a set of overloaded functions, the matching
3253      //    function is selected from the set (13.4).
3254      (ParamType->isReferenceType() &&
3255       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
3256      // -- For a non-type template-parameter of type pointer to
3257      //    member function, no conversions apply. If the
3258      //    template-argument represents a set of overloaded member
3259      //    functions, the matching member function is selected from
3260      //    the set (13.4).
3261      (ParamType->isMemberPointerType() &&
3262       ParamType->getAs<MemberPointerType>()->getPointeeType()
3263         ->isFunctionType())) {
3264
3265    if (Arg->getType() == Context.OverloadTy) {
3266      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
3267                                                                true,
3268                                                                FoundResult)) {
3269        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3270          return true;
3271
3272        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3273        ArgType = Arg->getType();
3274      } else
3275        return true;
3276    }
3277
3278    if (!ParamType->isMemberPointerType())
3279      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3280                                                            ParamType,
3281                                                            Arg, Converted);
3282
3283    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) {
3284      ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3285    } else if (!Context.hasSameUnqualifiedType(ArgType,
3286                                           ParamType.getNonReferenceType())) {
3287      // We can't perform this conversion.
3288      Diag(Arg->getSourceRange().getBegin(),
3289           diag::err_template_arg_not_convertible)
3290        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3291      Diag(Param->getLocation(), diag::note_template_param_here);
3292      return true;
3293    }
3294
3295    return CheckTemplateArgumentPointerToMember(Arg, Converted);
3296  }
3297
3298  if (ParamType->isPointerType()) {
3299    //   -- for a non-type template-parameter of type pointer to
3300    //      object, qualification conversions (4.4) and the
3301    //      array-to-pointer conversion (4.2) are applied.
3302    // C++0x also allows a value of std::nullptr_t.
3303    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
3304           "Only object pointers allowed here");
3305
3306    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3307                                                          ParamType,
3308                                                          Arg, Converted);
3309  }
3310
3311  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
3312    //   -- For a non-type template-parameter of type reference to
3313    //      object, no conversions apply. The type referred to by the
3314    //      reference may be more cv-qualified than the (otherwise
3315    //      identical) type of the template-argument. The
3316    //      template-parameter is bound directly to the
3317    //      template-argument, which must be an lvalue.
3318    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
3319           "Only object references allowed here");
3320
3321    if (Arg->getType() == Context.OverloadTy) {
3322      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
3323                                                 ParamRefType->getPointeeType(),
3324                                                                true,
3325                                                                FoundResult)) {
3326        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3327          return true;
3328
3329        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3330        ArgType = Arg->getType();
3331      } else
3332        return true;
3333    }
3334
3335    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3336                                                          ParamType,
3337                                                          Arg, Converted);
3338  }
3339
3340  //     -- For a non-type template-parameter of type pointer to data
3341  //        member, qualification conversions (4.4) are applied.
3342  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
3343
3344  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
3345    // Types match exactly: nothing more to do here.
3346  } else if (IsQualificationConversion(ArgType, ParamType)) {
3347    ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3348  } else {
3349    // We can't perform this conversion.
3350    Diag(Arg->getSourceRange().getBegin(),
3351         diag::err_template_arg_not_convertible)
3352      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3353    Diag(Param->getLocation(), diag::note_template_param_here);
3354    return true;
3355  }
3356
3357  return CheckTemplateArgumentPointerToMember(Arg, Converted);
3358}
3359
3360/// \brief Check a template argument against its corresponding
3361/// template template parameter.
3362///
3363/// This routine implements the semantics of C++ [temp.arg.template].
3364/// It returns true if an error occurred, and false otherwise.
3365bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3366                                 const TemplateArgumentLoc &Arg) {
3367  TemplateName Name = Arg.getArgument().getAsTemplate();
3368  TemplateDecl *Template = Name.getAsTemplateDecl();
3369  if (!Template) {
3370    // Any dependent template name is fine.
3371    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3372    return false;
3373  }
3374
3375  // C++ [temp.arg.template]p1:
3376  //   A template-argument for a template template-parameter shall be
3377  //   the name of a class template, expressed as id-expression. Only
3378  //   primary class templates are considered when matching the
3379  //   template template argument with the corresponding parameter;
3380  //   partial specializations are not considered even if their
3381  //   parameter lists match that of the template template parameter.
3382  //
3383  // Note that we also allow template template parameters here, which
3384  // will happen when we are dealing with, e.g., class template
3385  // partial specializations.
3386  if (!isa<ClassTemplateDecl>(Template) &&
3387      !isa<TemplateTemplateParmDecl>(Template)) {
3388    assert(isa<FunctionTemplateDecl>(Template) &&
3389           "Only function templates are possible here");
3390    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3391    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3392      << Template;
3393  }
3394
3395  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3396                                         Param->getTemplateParameters(),
3397                                         true,
3398                                         TPL_TemplateTemplateArgumentMatch,
3399                                         Arg.getLocation());
3400}
3401
3402/// \brief Given a non-type template argument that refers to a
3403/// declaration and the type of its corresponding non-type template
3404/// parameter, produce an expression that properly refers to that
3405/// declaration.
3406ExprResult
3407Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3408                                              QualType ParamType,
3409                                              SourceLocation Loc) {
3410  assert(Arg.getKind() == TemplateArgument::Declaration &&
3411         "Only declaration template arguments permitted here");
3412  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3413
3414  if (VD->getDeclContext()->isRecord() &&
3415      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3416    // If the value is a class member, we might have a pointer-to-member.
3417    // Determine whether the non-type template template parameter is of
3418    // pointer-to-member type. If so, we need to build an appropriate
3419    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3420    // would refer to the member itself.
3421    if (ParamType->isMemberPointerType()) {
3422      QualType ClassType
3423        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3424      NestedNameSpecifier *Qualifier
3425        = NestedNameSpecifier::Create(Context, 0, false,
3426                                      ClassType.getTypePtr());
3427      CXXScopeSpec SS;
3428      SS.setScopeRep(Qualifier);
3429
3430      // The actual value-ness of this is unimportant, but for
3431      // internal consistency's sake, references to instance methods
3432      // are r-values.
3433      ExprValueKind VK = VK_LValue;
3434      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
3435        VK = VK_RValue;
3436
3437      ExprResult RefExpr = BuildDeclRefExpr(VD,
3438                                            VD->getType().getNonReferenceType(),
3439                                            VK,
3440                                            Loc,
3441                                            &SS);
3442      if (RefExpr.isInvalid())
3443        return ExprError();
3444
3445      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3446
3447      // We might need to perform a trailing qualification conversion, since
3448      // the element type on the parameter could be more qualified than the
3449      // element type in the expression we constructed.
3450      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
3451                                    ParamType.getUnqualifiedType())) {
3452        Expr *RefE = RefExpr.takeAs<Expr>();
3453        ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp);
3454        RefExpr = Owned(RefE);
3455      }
3456
3457      assert(!RefExpr.isInvalid() &&
3458             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3459                                 ParamType.getUnqualifiedType()));
3460      return move(RefExpr);
3461    }
3462  }
3463
3464  QualType T = VD->getType().getNonReferenceType();
3465  if (ParamType->isPointerType()) {
3466    // When the non-type template parameter is a pointer, take the
3467    // address of the declaration.
3468    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
3469    if (RefExpr.isInvalid())
3470      return ExprError();
3471
3472    if (T->isFunctionType() || T->isArrayType()) {
3473      // Decay functions and arrays.
3474      Expr *RefE = (Expr *)RefExpr.get();
3475      DefaultFunctionArrayConversion(RefE);
3476      if (RefE != RefExpr.get()) {
3477        RefExpr.release();
3478        RefExpr = Owned(RefE);
3479      }
3480
3481      return move(RefExpr);
3482    }
3483
3484    // Take the address of everything else
3485    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3486  }
3487
3488  ExprValueKind VK = VK_RValue;
3489
3490  // If the non-type template parameter has reference type, qualify the
3491  // resulting declaration reference with the extra qualifiers on the
3492  // type that the reference refers to.
3493  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
3494    VK = VK_LValue;
3495    T = Context.getQualifiedType(T,
3496                              TargetRef->getPointeeType().getQualifiers());
3497  }
3498
3499  return BuildDeclRefExpr(VD, T, VK, Loc);
3500}
3501
3502/// \brief Construct a new expression that refers to the given
3503/// integral template argument with the given source-location
3504/// information.
3505///
3506/// This routine takes care of the mapping from an integral template
3507/// argument (which may have any integral type) to the appropriate
3508/// literal value.
3509ExprResult
3510Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3511                                                  SourceLocation Loc) {
3512  assert(Arg.getKind() == TemplateArgument::Integral &&
3513         "Operation is only value for integral template arguments");
3514  QualType T = Arg.getIntegralType();
3515  if (T->isCharType() || T->isWideCharType())
3516    return Owned(new (Context) CharacterLiteral(
3517                                             Arg.getAsIntegral()->getZExtValue(),
3518                                             T->isWideCharType(),
3519                                             T,
3520                                             Loc));
3521  if (T->isBooleanType())
3522    return Owned(new (Context) CXXBoolLiteralExpr(
3523                                            Arg.getAsIntegral()->getBoolValue(),
3524                                            T,
3525                                            Loc));
3526
3527  QualType BT;
3528  if (const EnumType *ET = T->getAs<EnumType>())
3529    BT = ET->getDecl()->getPromotionType();
3530  else
3531    BT = T;
3532
3533  Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
3534  ImpCastExprToType(E, T, CK_IntegralCast);
3535
3536  return Owned(E);
3537}
3538
3539
3540/// \brief Determine whether the given template parameter lists are
3541/// equivalent.
3542///
3543/// \param New  The new template parameter list, typically written in the
3544/// source code as part of a new template declaration.
3545///
3546/// \param Old  The old template parameter list, typically found via
3547/// name lookup of the template declared with this template parameter
3548/// list.
3549///
3550/// \param Complain  If true, this routine will produce a diagnostic if
3551/// the template parameter lists are not equivalent.
3552///
3553/// \param Kind describes how we are to match the template parameter lists.
3554///
3555/// \param TemplateArgLoc If this source location is valid, then we
3556/// are actually checking the template parameter list of a template
3557/// argument (New) against the template parameter list of its
3558/// corresponding template template parameter (Old). We produce
3559/// slightly different diagnostics in this scenario.
3560///
3561/// \returns True if the template parameter lists are equal, false
3562/// otherwise.
3563bool
3564Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3565                                     TemplateParameterList *Old,
3566                                     bool Complain,
3567                                     TemplateParameterListEqualKind Kind,
3568                                     SourceLocation TemplateArgLoc) {
3569  if (Old->size() != New->size()) {
3570    if (Complain) {
3571      unsigned NextDiag = diag::err_template_param_list_different_arity;
3572      if (TemplateArgLoc.isValid()) {
3573        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3574        NextDiag = diag::note_template_param_list_different_arity;
3575      }
3576      Diag(New->getTemplateLoc(), NextDiag)
3577          << (New->size() > Old->size())
3578          << (Kind != TPL_TemplateMatch)
3579          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3580      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3581        << (Kind != TPL_TemplateMatch)
3582        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3583    }
3584
3585    return false;
3586  }
3587
3588  for (TemplateParameterList::iterator OldParm = Old->begin(),
3589         OldParmEnd = Old->end(), NewParm = New->begin();
3590       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
3591    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
3592      if (Complain) {
3593        unsigned NextDiag = diag::err_template_param_different_kind;
3594        if (TemplateArgLoc.isValid()) {
3595          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3596          NextDiag = diag::note_template_param_different_kind;
3597        }
3598        Diag((*NewParm)->getLocation(), NextDiag)
3599          << (Kind != TPL_TemplateMatch);
3600        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
3601          << (Kind != TPL_TemplateMatch);
3602      }
3603      return false;
3604    }
3605
3606    if (TemplateTypeParmDecl *OldTTP
3607                                  = dyn_cast<TemplateTypeParmDecl>(*OldParm)) {
3608      // Template type parameters are equivalent if either both are template
3609      // type parameter packs or neither are (since we know we're at the same
3610      // index).
3611      TemplateTypeParmDecl *NewTTP = cast<TemplateTypeParmDecl>(*NewParm);
3612      if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) {
3613        // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that
3614        // allow one to match a template parameter pack in the template
3615        // parameter list of a template template parameter to one or more
3616        // template parameters in the template parameter list of the
3617        // corresponding template template argument.
3618        if (Complain) {
3619          unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3620          if (TemplateArgLoc.isValid()) {
3621            Diag(TemplateArgLoc,
3622                 diag::err_template_arg_template_params_mismatch);
3623            NextDiag = diag::note_template_parameter_pack_non_pack;
3624          }
3625          Diag(NewTTP->getLocation(), NextDiag)
3626            << 0 << NewTTP->isParameterPack();
3627          Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here)
3628            << 0 << OldTTP->isParameterPack();
3629        }
3630        return false;
3631      }
3632    } else if (NonTypeTemplateParmDecl *OldNTTP
3633                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
3634      // The types of non-type template parameters must agree.
3635      NonTypeTemplateParmDecl *NewNTTP
3636        = cast<NonTypeTemplateParmDecl>(*NewParm);
3637
3638      // If we are matching a template template argument to a template
3639      // template parameter and one of the non-type template parameter types
3640      // is dependent, then we must wait until template instantiation time
3641      // to actually compare the arguments.
3642      if (Kind == TPL_TemplateTemplateArgumentMatch &&
3643          (OldNTTP->getType()->isDependentType() ||
3644           NewNTTP->getType()->isDependentType()))
3645        continue;
3646
3647      if (Context.getCanonicalType(OldNTTP->getType()) !=
3648            Context.getCanonicalType(NewNTTP->getType())) {
3649        if (Complain) {
3650          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3651          if (TemplateArgLoc.isValid()) {
3652            Diag(TemplateArgLoc,
3653                 diag::err_template_arg_template_params_mismatch);
3654            NextDiag = diag::note_template_nontype_parm_different_type;
3655          }
3656          Diag(NewNTTP->getLocation(), NextDiag)
3657            << NewNTTP->getType()
3658            << (Kind != TPL_TemplateMatch);
3659          Diag(OldNTTP->getLocation(),
3660               diag::note_template_nontype_parm_prev_declaration)
3661            << OldNTTP->getType();
3662        }
3663        return false;
3664      }
3665    } else {
3666      // The template parameter lists of template template
3667      // parameters must agree.
3668      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
3669             "Only template template parameters handled here");
3670      TemplateTemplateParmDecl *OldTTP
3671        = cast<TemplateTemplateParmDecl>(*OldParm);
3672      TemplateTemplateParmDecl *NewTTP
3673        = cast<TemplateTemplateParmDecl>(*NewParm);
3674      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3675                                          OldTTP->getTemplateParameters(),
3676                                          Complain,
3677              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
3678                                          TemplateArgLoc))
3679        return false;
3680    }
3681  }
3682
3683  return true;
3684}
3685
3686/// \brief Check whether a template can be declared within this scope.
3687///
3688/// If the template declaration is valid in this scope, returns
3689/// false. Otherwise, issues a diagnostic and returns true.
3690bool
3691Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3692  // Find the nearest enclosing declaration scope.
3693  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3694         (S->getFlags() & Scope::TemplateParamScope) != 0)
3695    S = S->getParent();
3696
3697  // C++ [temp]p2:
3698  //   A template-declaration can appear only as a namespace scope or
3699  //   class scope declaration.
3700  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3701  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3702      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3703    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3704             << TemplateParams->getSourceRange();
3705
3706  while (Ctx && isa<LinkageSpecDecl>(Ctx))
3707    Ctx = Ctx->getParent();
3708
3709  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3710    return false;
3711
3712  return Diag(TemplateParams->getTemplateLoc(),
3713              diag::err_template_outside_namespace_or_class_scope)
3714    << TemplateParams->getSourceRange();
3715}
3716
3717/// \brief Determine what kind of template specialization the given declaration
3718/// is.
3719static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3720  if (!D)
3721    return TSK_Undeclared;
3722
3723  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3724    return Record->getTemplateSpecializationKind();
3725  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3726    return Function->getTemplateSpecializationKind();
3727  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3728    return Var->getTemplateSpecializationKind();
3729
3730  return TSK_Undeclared;
3731}
3732
3733/// \brief Check whether a specialization is well-formed in the current
3734/// context.
3735///
3736/// This routine determines whether a template specialization can be declared
3737/// in the current context (C++ [temp.expl.spec]p2).
3738///
3739/// \param S the semantic analysis object for which this check is being
3740/// performed.
3741///
3742/// \param Specialized the entity being specialized or instantiated, which
3743/// may be a kind of template (class template, function template, etc.) or
3744/// a member of a class template (member function, static data member,
3745/// member class).
3746///
3747/// \param PrevDecl the previous declaration of this entity, if any.
3748///
3749/// \param Loc the location of the explicit specialization or instantiation of
3750/// this entity.
3751///
3752/// \param IsPartialSpecialization whether this is a partial specialization of
3753/// a class template.
3754///
3755/// \returns true if there was an error that we cannot recover from, false
3756/// otherwise.
3757static bool CheckTemplateSpecializationScope(Sema &S,
3758                                             NamedDecl *Specialized,
3759                                             NamedDecl *PrevDecl,
3760                                             SourceLocation Loc,
3761                                             bool IsPartialSpecialization) {
3762  // Keep these "kind" numbers in sync with the %select statements in the
3763  // various diagnostics emitted by this routine.
3764  int EntityKind = 0;
3765  bool isTemplateSpecialization = false;
3766  if (isa<ClassTemplateDecl>(Specialized)) {
3767    EntityKind = IsPartialSpecialization? 1 : 0;
3768    isTemplateSpecialization = true;
3769  } else if (isa<FunctionTemplateDecl>(Specialized)) {
3770    EntityKind = 2;
3771    isTemplateSpecialization = true;
3772  } else if (isa<CXXMethodDecl>(Specialized))
3773    EntityKind = 3;
3774  else if (isa<VarDecl>(Specialized))
3775    EntityKind = 4;
3776  else if (isa<RecordDecl>(Specialized))
3777    EntityKind = 5;
3778  else {
3779    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3780    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3781    return true;
3782  }
3783
3784  // C++ [temp.expl.spec]p2:
3785  //   An explicit specialization shall be declared in the namespace
3786  //   of which the template is a member, or, for member templates, in
3787  //   the namespace of which the enclosing class or enclosing class
3788  //   template is a member. An explicit specialization of a member
3789  //   function, member class or static data member of a class
3790  //   template shall be declared in the namespace of which the class
3791  //   template is a member. Such a declaration may also be a
3792  //   definition. If the declaration is not a definition, the
3793  //   specialization may be defined later in the name- space in which
3794  //   the explicit specialization was declared, or in a namespace
3795  //   that encloses the one in which the explicit specialization was
3796  //   declared.
3797  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
3798    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3799      << Specialized;
3800    return true;
3801  }
3802
3803  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3804    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3805      << Specialized;
3806    return true;
3807  }
3808
3809  // C++ [temp.class.spec]p6:
3810  //   A class template partial specialization may be declared or redeclared
3811  //   in any namespace scope in which its definition may be defined (14.5.1
3812  //   and 14.5.2).
3813  bool ComplainedAboutScope = false;
3814  DeclContext *SpecializedContext
3815    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3816  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3817  if ((!PrevDecl ||
3818       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3819       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3820    // C++ [temp.exp.spec]p2:
3821    //   An explicit specialization shall be declared in the namespace of which
3822    //   the template is a member, or, for member templates, in the namespace
3823    //   of which the enclosing class or enclosing class template is a member.
3824    //   An explicit specialization of a member function, member class or
3825    //   static data member of a class template shall be declared in the
3826    //   namespace of which the class template is a member.
3827    //
3828    // C++0x [temp.expl.spec]p2:
3829    //   An explicit specialization shall be declared in a namespace enclosing
3830    //   the specialized template.
3831    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) &&
3832        !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) {
3833      bool IsCPlusPlus0xExtension
3834        = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext);
3835      if (isa<TranslationUnitDecl>(SpecializedContext))
3836        S.Diag(Loc, IsCPlusPlus0xExtension
3837                      ? diag::ext_template_spec_decl_out_of_scope_global
3838                      : diag::err_template_spec_decl_out_of_scope_global)
3839          << EntityKind << Specialized;
3840      else if (isa<NamespaceDecl>(SpecializedContext))
3841        S.Diag(Loc, IsCPlusPlus0xExtension
3842                      ? diag::ext_template_spec_decl_out_of_scope
3843                      : diag::err_template_spec_decl_out_of_scope)
3844          << EntityKind << Specialized
3845          << cast<NamedDecl>(SpecializedContext);
3846
3847      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3848      ComplainedAboutScope = true;
3849    }
3850  }
3851
3852  // Make sure that this redeclaration (or definition) occurs in an enclosing
3853  // namespace.
3854  // Note that HandleDeclarator() performs this check for explicit
3855  // specializations of function templates, static data members, and member
3856  // functions, so we skip the check here for those kinds of entities.
3857  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3858  // Should we refactor that check, so that it occurs later?
3859  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3860      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3861        isa<FunctionDecl>(Specialized))) {
3862    if (isa<TranslationUnitDecl>(SpecializedContext))
3863      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3864        << EntityKind << Specialized;
3865    else if (isa<NamespaceDecl>(SpecializedContext))
3866      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3867        << EntityKind << Specialized
3868        << cast<NamedDecl>(SpecializedContext);
3869
3870    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3871  }
3872
3873  // FIXME: check for specialization-after-instantiation errors and such.
3874
3875  return false;
3876}
3877
3878/// \brief Check the non-type template arguments of a class template
3879/// partial specialization according to C++ [temp.class.spec]p9.
3880///
3881/// \param TemplateParams the template parameters of the primary class
3882/// template.
3883///
3884/// \param TemplateArg the template arguments of the class template
3885/// partial specialization.
3886///
3887/// \param MirrorsPrimaryTemplate will be set true if the class
3888/// template partial specialization arguments are identical to the
3889/// implicit template arguments of the primary template. This is not
3890/// necessarily an error (C++0x), and it is left to the caller to diagnose
3891/// this condition when it is an error.
3892///
3893/// \returns true if there was an error, false otherwise.
3894bool Sema::CheckClassTemplatePartialSpecializationArgs(
3895                                        TemplateParameterList *TemplateParams,
3896                         llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs,
3897                                        bool &MirrorsPrimaryTemplate) {
3898  // FIXME: the interface to this function will have to change to
3899  // accommodate variadic templates.
3900  MirrorsPrimaryTemplate = true;
3901
3902  const TemplateArgument *ArgList = TemplateArgs.data();
3903
3904  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3905    // Determine whether the template argument list of the partial
3906    // specialization is identical to the implicit argument list of
3907    // the primary template. The caller may need to diagnostic this as
3908    // an error per C++ [temp.class.spec]p9b3.
3909    if (MirrorsPrimaryTemplate) {
3910      if (TemplateTypeParmDecl *TTP
3911            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3912        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3913              Context.getCanonicalType(ArgList[I].getAsType()))
3914          MirrorsPrimaryTemplate = false;
3915      } else if (TemplateTemplateParmDecl *TTP
3916                   = dyn_cast<TemplateTemplateParmDecl>(
3917                                                 TemplateParams->getParam(I))) {
3918        TemplateName Name = ArgList[I].getAsTemplate();
3919        TemplateTemplateParmDecl *ArgDecl
3920          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3921        if (!ArgDecl ||
3922            ArgDecl->getIndex() != TTP->getIndex() ||
3923            ArgDecl->getDepth() != TTP->getDepth())
3924          MirrorsPrimaryTemplate = false;
3925      }
3926    }
3927
3928    NonTypeTemplateParmDecl *Param
3929      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3930    if (!Param) {
3931      continue;
3932    }
3933
3934    Expr *ArgExpr = ArgList[I].getAsExpr();
3935    if (!ArgExpr) {
3936      MirrorsPrimaryTemplate = false;
3937      continue;
3938    }
3939
3940    // C++ [temp.class.spec]p8:
3941    //   A non-type argument is non-specialized if it is the name of a
3942    //   non-type parameter. All other non-type arguments are
3943    //   specialized.
3944    //
3945    // Below, we check the two conditions that only apply to
3946    // specialized non-type arguments, so skip any non-specialized
3947    // arguments.
3948    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3949      if (NonTypeTemplateParmDecl *NTTP
3950            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3951        if (MirrorsPrimaryTemplate &&
3952            (Param->getIndex() != NTTP->getIndex() ||
3953             Param->getDepth() != NTTP->getDepth()))
3954          MirrorsPrimaryTemplate = false;
3955
3956        continue;
3957      }
3958
3959    // C++ [temp.class.spec]p9:
3960    //   Within the argument list of a class template partial
3961    //   specialization, the following restrictions apply:
3962    //     -- A partially specialized non-type argument expression
3963    //        shall not involve a template parameter of the partial
3964    //        specialization except when the argument expression is a
3965    //        simple identifier.
3966    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3967      Diag(ArgExpr->getLocStart(),
3968           diag::err_dependent_non_type_arg_in_partial_spec)
3969        << ArgExpr->getSourceRange();
3970      return true;
3971    }
3972
3973    //     -- The type of a template parameter corresponding to a
3974    //        specialized non-type argument shall not be dependent on a
3975    //        parameter of the specialization.
3976    if (Param->getType()->isDependentType()) {
3977      Diag(ArgExpr->getLocStart(),
3978           diag::err_dependent_typed_non_type_arg_in_partial_spec)
3979        << Param->getType()
3980        << ArgExpr->getSourceRange();
3981      Diag(Param->getLocation(), diag::note_template_param_here);
3982      return true;
3983    }
3984
3985    MirrorsPrimaryTemplate = false;
3986  }
3987
3988  return false;
3989}
3990
3991/// \brief Retrieve the previous declaration of the given declaration.
3992static NamedDecl *getPreviousDecl(NamedDecl *ND) {
3993  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
3994    return VD->getPreviousDeclaration();
3995  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
3996    return FD->getPreviousDeclaration();
3997  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
3998    return TD->getPreviousDeclaration();
3999  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
4000    return TD->getPreviousDeclaration();
4001  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4002    return FTD->getPreviousDeclaration();
4003  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
4004    return CTD->getPreviousDeclaration();
4005  return 0;
4006}
4007
4008DeclResult
4009Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
4010                                       TagUseKind TUK,
4011                                       SourceLocation KWLoc,
4012                                       CXXScopeSpec &SS,
4013                                       TemplateTy TemplateD,
4014                                       SourceLocation TemplateNameLoc,
4015                                       SourceLocation LAngleLoc,
4016                                       ASTTemplateArgsPtr TemplateArgsIn,
4017                                       SourceLocation RAngleLoc,
4018                                       AttributeList *Attr,
4019                               MultiTemplateParamsArg TemplateParameterLists) {
4020  assert(TUK != TUK_Reference && "References are not specializations");
4021
4022  // Find the class template we're specializing
4023  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4024  ClassTemplateDecl *ClassTemplate
4025    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
4026
4027  if (!ClassTemplate) {
4028    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
4029      << (Name.getAsTemplateDecl() &&
4030          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
4031    return true;
4032  }
4033
4034  bool isExplicitSpecialization = false;
4035  bool isPartialSpecialization = false;
4036
4037  // Check the validity of the template headers that introduce this
4038  // template.
4039  // FIXME: We probably shouldn't complain about these headers for
4040  // friend declarations.
4041  bool Invalid = false;
4042  TemplateParameterList *TemplateParams
4043    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
4044                        (TemplateParameterList**)TemplateParameterLists.get(),
4045                                              TemplateParameterLists.size(),
4046                                              TUK == TUK_Friend,
4047                                              isExplicitSpecialization,
4048                                              Invalid);
4049  if (Invalid)
4050    return true;
4051
4052  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
4053  if (TemplateParams)
4054    --NumMatchedTemplateParamLists;
4055
4056  if (TemplateParams && TemplateParams->size() > 0) {
4057    isPartialSpecialization = true;
4058
4059    // C++ [temp.class.spec]p10:
4060    //   The template parameter list of a specialization shall not
4061    //   contain default template argument values.
4062    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4063      Decl *Param = TemplateParams->getParam(I);
4064      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4065        if (TTP->hasDefaultArgument()) {
4066          Diag(TTP->getDefaultArgumentLoc(),
4067               diag::err_default_arg_in_partial_spec);
4068          TTP->removeDefaultArgument();
4069        }
4070      } else if (NonTypeTemplateParmDecl *NTTP
4071                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4072        if (Expr *DefArg = NTTP->getDefaultArgument()) {
4073          Diag(NTTP->getDefaultArgumentLoc(),
4074               diag::err_default_arg_in_partial_spec)
4075            << DefArg->getSourceRange();
4076          NTTP->removeDefaultArgument();
4077        }
4078      } else {
4079        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
4080        if (TTP->hasDefaultArgument()) {
4081          Diag(TTP->getDefaultArgument().getLocation(),
4082               diag::err_default_arg_in_partial_spec)
4083            << TTP->getDefaultArgument().getSourceRange();
4084          TTP->removeDefaultArgument();
4085        }
4086      }
4087    }
4088  } else if (TemplateParams) {
4089    if (TUK == TUK_Friend)
4090      Diag(KWLoc, diag::err_template_spec_friend)
4091        << FixItHint::CreateRemoval(
4092                                SourceRange(TemplateParams->getTemplateLoc(),
4093                                            TemplateParams->getRAngleLoc()))
4094        << SourceRange(LAngleLoc, RAngleLoc);
4095    else
4096      isExplicitSpecialization = true;
4097  } else if (TUK != TUK_Friend) {
4098    Diag(KWLoc, diag::err_template_spec_needs_header)
4099      << FixItHint::CreateInsertion(KWLoc, "template<> ");
4100    isExplicitSpecialization = true;
4101  }
4102
4103  // Check that the specialization uses the same tag kind as the
4104  // original template.
4105  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4106  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
4107  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4108                                    Kind, KWLoc,
4109                                    *ClassTemplate->getIdentifier())) {
4110    Diag(KWLoc, diag::err_use_with_wrong_tag)
4111      << ClassTemplate
4112      << FixItHint::CreateReplacement(KWLoc,
4113                            ClassTemplate->getTemplatedDecl()->getKindName());
4114    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4115         diag::note_previous_use);
4116    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4117  }
4118
4119  // Translate the parser's template argument list in our AST format.
4120  TemplateArgumentListInfo TemplateArgs;
4121  TemplateArgs.setLAngleLoc(LAngleLoc);
4122  TemplateArgs.setRAngleLoc(RAngleLoc);
4123  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4124
4125  // Check that the template argument list is well-formed for this
4126  // template.
4127  llvm::SmallVector<TemplateArgument, 4> Converted;
4128  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4129                                TemplateArgs, false, Converted))
4130    return true;
4131
4132  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
4133         "Converted template argument list is too short!");
4134
4135  // Find the class template (partial) specialization declaration that
4136  // corresponds to these arguments.
4137  if (isPartialSpecialization) {
4138    bool MirrorsPrimaryTemplate;
4139    if (CheckClassTemplatePartialSpecializationArgs(
4140                                         ClassTemplate->getTemplateParameters(),
4141                                         Converted, MirrorsPrimaryTemplate))
4142      return true;
4143
4144    if (MirrorsPrimaryTemplate) {
4145      // C++ [temp.class.spec]p9b3:
4146      //
4147      //   -- The argument list of the specialization shall not be identical
4148      //      to the implicit argument list of the primary template.
4149      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4150        << (TUK == TUK_Definition)
4151        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4152      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
4153                                ClassTemplate->getIdentifier(),
4154                                TemplateNameLoc,
4155                                Attr,
4156                                TemplateParams,
4157                                AS_none);
4158    }
4159
4160    // FIXME: Diagnose friend partial specializations
4161
4162    if (!Name.isDependent() &&
4163        !TemplateSpecializationType::anyDependentTemplateArguments(
4164                                             TemplateArgs.getArgumentArray(),
4165                                                         TemplateArgs.size())) {
4166      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4167        << ClassTemplate->getDeclName();
4168      isPartialSpecialization = false;
4169    }
4170  }
4171
4172  void *InsertPos = 0;
4173  ClassTemplateSpecializationDecl *PrevDecl = 0;
4174
4175  if (isPartialSpecialization)
4176    // FIXME: Template parameter list matters, too
4177    PrevDecl
4178      = ClassTemplate->findPartialSpecialization(Converted.data(),
4179                                                 Converted.size(),
4180                                                 InsertPos);
4181  else
4182    PrevDecl
4183      = ClassTemplate->findSpecialization(Converted.data(),
4184                                          Converted.size(), InsertPos);
4185
4186  ClassTemplateSpecializationDecl *Specialization = 0;
4187
4188  // Check whether we can declare a class template specialization in
4189  // the current scope.
4190  if (TUK != TUK_Friend &&
4191      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
4192                                       TemplateNameLoc,
4193                                       isPartialSpecialization))
4194    return true;
4195
4196  // The canonical type
4197  QualType CanonType;
4198  if (PrevDecl &&
4199      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
4200               TUK == TUK_Friend)) {
4201    // Since the only prior class template specialization with these
4202    // arguments was referenced but not declared, or we're only
4203    // referencing this specialization as a friend, reuse that
4204    // declaration node as our own, updating its source location to
4205    // reflect our new declaration.
4206    Specialization = PrevDecl;
4207    Specialization->setLocation(TemplateNameLoc);
4208    PrevDecl = 0;
4209    CanonType = Context.getTypeDeclType(Specialization);
4210  } else if (isPartialSpecialization) {
4211    // Build the canonical type that describes the converted template
4212    // arguments of the class template partial specialization.
4213    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4214    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
4215                                                  Converted.data(),
4216                                                  Converted.size());
4217
4218    // Create a new class template partial specialization declaration node.
4219    ClassTemplatePartialSpecializationDecl *PrevPartial
4220      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
4221    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
4222                            : ClassTemplate->getNextPartialSpecSequenceNumber();
4223    ClassTemplatePartialSpecializationDecl *Partial
4224      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
4225                                             ClassTemplate->getDeclContext(),
4226                                                       TemplateNameLoc,
4227                                                       TemplateParams,
4228                                                       ClassTemplate,
4229                                                       Converted.data(),
4230                                                       Converted.size(),
4231                                                       TemplateArgs,
4232                                                       CanonType,
4233                                                       PrevPartial,
4234                                                       SequenceNumber);
4235    SetNestedNameSpecifier(Partial, SS);
4236    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4237      Partial->setTemplateParameterListsInfo(Context,
4238                                             NumMatchedTemplateParamLists,
4239                    (TemplateParameterList**) TemplateParameterLists.release());
4240    }
4241
4242    if (!PrevPartial)
4243      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
4244    Specialization = Partial;
4245
4246    // If we are providing an explicit specialization of a member class
4247    // template specialization, make a note of that.
4248    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4249      PrevPartial->setMemberSpecialization();
4250
4251    // Check that all of the template parameters of the class template
4252    // partial specialization are deducible from the template
4253    // arguments. If not, this class template partial specialization
4254    // will never be used.
4255    llvm::SmallVector<bool, 8> DeducibleParams;
4256    DeducibleParams.resize(TemplateParams->size());
4257    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4258                               TemplateParams->getDepth(),
4259                               DeducibleParams);
4260    unsigned NumNonDeducible = 0;
4261    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
4262      if (!DeducibleParams[I])
4263        ++NumNonDeducible;
4264
4265    if (NumNonDeducible) {
4266      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
4267        << (NumNonDeducible > 1)
4268        << SourceRange(TemplateNameLoc, RAngleLoc);
4269      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4270        if (!DeducibleParams[I]) {
4271          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
4272          if (Param->getDeclName())
4273            Diag(Param->getLocation(),
4274                 diag::note_partial_spec_unused_parameter)
4275              << Param->getDeclName();
4276          else
4277            Diag(Param->getLocation(),
4278                 diag::note_partial_spec_unused_parameter)
4279              << "<anonymous>";
4280        }
4281      }
4282    }
4283  } else {
4284    // Create a new class template specialization declaration node for
4285    // this explicit specialization or friend declaration.
4286    Specialization
4287      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4288                                             ClassTemplate->getDeclContext(),
4289                                                TemplateNameLoc,
4290                                                ClassTemplate,
4291                                                Converted.data(),
4292                                                Converted.size(),
4293                                                PrevDecl);
4294    SetNestedNameSpecifier(Specialization, SS);
4295    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4296      Specialization->setTemplateParameterListsInfo(Context,
4297                                                  NumMatchedTemplateParamLists,
4298                    (TemplateParameterList**) TemplateParameterLists.release());
4299    }
4300
4301    if (!PrevDecl)
4302      ClassTemplate->AddSpecialization(Specialization, InsertPos);
4303
4304    CanonType = Context.getTypeDeclType(Specialization);
4305  }
4306
4307  // C++ [temp.expl.spec]p6:
4308  //   If a template, a member template or the member of a class template is
4309  //   explicitly specialized then that specialization shall be declared
4310  //   before the first use of that specialization that would cause an implicit
4311  //   instantiation to take place, in every translation unit in which such a
4312  //   use occurs; no diagnostic is required.
4313  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4314    bool Okay = false;
4315    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4316      // Is there any previous explicit specialization declaration?
4317      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4318        Okay = true;
4319        break;
4320      }
4321    }
4322
4323    if (!Okay) {
4324      SourceRange Range(TemplateNameLoc, RAngleLoc);
4325      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4326        << Context.getTypeDeclType(Specialization) << Range;
4327
4328      Diag(PrevDecl->getPointOfInstantiation(),
4329           diag::note_instantiation_required_here)
4330        << (PrevDecl->getTemplateSpecializationKind()
4331                                                != TSK_ImplicitInstantiation);
4332      return true;
4333    }
4334  }
4335
4336  // If this is not a friend, note that this is an explicit specialization.
4337  if (TUK != TUK_Friend)
4338    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4339
4340  // Check that this isn't a redefinition of this specialization.
4341  if (TUK == TUK_Definition) {
4342    if (RecordDecl *Def = Specialization->getDefinition()) {
4343      SourceRange Range(TemplateNameLoc, RAngleLoc);
4344      Diag(TemplateNameLoc, diag::err_redefinition)
4345        << Context.getTypeDeclType(Specialization) << Range;
4346      Diag(Def->getLocation(), diag::note_previous_definition);
4347      Specialization->setInvalidDecl();
4348      return true;
4349    }
4350  }
4351
4352  if (Attr)
4353    ProcessDeclAttributeList(S, Specialization, Attr);
4354
4355  // Build the fully-sugared type for this class template
4356  // specialization as the user wrote in the specialization
4357  // itself. This means that we'll pretty-print the type retrieved
4358  // from the specialization's declaration the way that the user
4359  // actually wrote the specialization, rather than formatting the
4360  // name based on the "canonical" representation used to store the
4361  // template arguments in the specialization.
4362  TypeSourceInfo *WrittenTy
4363    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4364                                                TemplateArgs, CanonType);
4365  if (TUK != TUK_Friend) {
4366    Specialization->setTypeAsWritten(WrittenTy);
4367    if (TemplateParams)
4368      Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc());
4369  }
4370  TemplateArgsIn.release();
4371
4372  // C++ [temp.expl.spec]p9:
4373  //   A template explicit specialization is in the scope of the
4374  //   namespace in which the template was defined.
4375  //
4376  // We actually implement this paragraph where we set the semantic
4377  // context (in the creation of the ClassTemplateSpecializationDecl),
4378  // but we also maintain the lexical context where the actual
4379  // definition occurs.
4380  Specialization->setLexicalDeclContext(CurContext);
4381
4382  // We may be starting the definition of this specialization.
4383  if (TUK == TUK_Definition)
4384    Specialization->startDefinition();
4385
4386  if (TUK == TUK_Friend) {
4387    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
4388                                            TemplateNameLoc,
4389                                            WrittenTy,
4390                                            /*FIXME:*/KWLoc);
4391    Friend->setAccess(AS_public);
4392    CurContext->addDecl(Friend);
4393  } else {
4394    // Add the specialization into its lexical context, so that it can
4395    // be seen when iterating through the list of declarations in that
4396    // context. However, specializations are not found by name lookup.
4397    CurContext->addDecl(Specialization);
4398  }
4399  return Specialization;
4400}
4401
4402Decl *Sema::ActOnTemplateDeclarator(Scope *S,
4403                              MultiTemplateParamsArg TemplateParameterLists,
4404                                    Declarator &D) {
4405  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
4406}
4407
4408Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
4409                               MultiTemplateParamsArg TemplateParameterLists,
4410                                            Declarator &D) {
4411  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4412  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4413
4414  if (FTI.hasPrototype) {
4415    // FIXME: Diagnose arguments without names in C.
4416  }
4417
4418  Scope *ParentScope = FnBodyScope->getParent();
4419
4420  Decl *DP = HandleDeclarator(ParentScope, D,
4421                              move(TemplateParameterLists),
4422                              /*IsFunctionDefinition=*/true);
4423  if (FunctionTemplateDecl *FunctionTemplate
4424        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
4425    return ActOnStartOfFunctionDef(FnBodyScope,
4426                                   FunctionTemplate->getTemplatedDecl());
4427  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
4428    return ActOnStartOfFunctionDef(FnBodyScope, Function);
4429  return 0;
4430}
4431
4432/// \brief Strips various properties off an implicit instantiation
4433/// that has just been explicitly specialized.
4434static void StripImplicitInstantiation(NamedDecl *D) {
4435  D->dropAttrs();
4436
4437  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4438    FD->setInlineSpecified(false);
4439  }
4440}
4441
4442/// \brief Diagnose cases where we have an explicit template specialization
4443/// before/after an explicit template instantiation, producing diagnostics
4444/// for those cases where they are required and determining whether the
4445/// new specialization/instantiation will have any effect.
4446///
4447/// \param NewLoc the location of the new explicit specialization or
4448/// instantiation.
4449///
4450/// \param NewTSK the kind of the new explicit specialization or instantiation.
4451///
4452/// \param PrevDecl the previous declaration of the entity.
4453///
4454/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4455///
4456/// \param PrevPointOfInstantiation if valid, indicates where the previus
4457/// declaration was instantiated (either implicitly or explicitly).
4458///
4459/// \param HasNoEffect will be set to true to indicate that the new
4460/// specialization or instantiation has no effect and should be ignored.
4461///
4462/// \returns true if there was an error that should prevent the introduction of
4463/// the new declaration into the AST, false otherwise.
4464bool
4465Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4466                                             TemplateSpecializationKind NewTSK,
4467                                             NamedDecl *PrevDecl,
4468                                             TemplateSpecializationKind PrevTSK,
4469                                        SourceLocation PrevPointOfInstantiation,
4470                                             bool &HasNoEffect) {
4471  HasNoEffect = false;
4472
4473  switch (NewTSK) {
4474  case TSK_Undeclared:
4475  case TSK_ImplicitInstantiation:
4476    assert(false && "Don't check implicit instantiations here");
4477    return false;
4478
4479  case TSK_ExplicitSpecialization:
4480    switch (PrevTSK) {
4481    case TSK_Undeclared:
4482    case TSK_ExplicitSpecialization:
4483      // Okay, we're just specializing something that is either already
4484      // explicitly specialized or has merely been mentioned without any
4485      // instantiation.
4486      return false;
4487
4488    case TSK_ImplicitInstantiation:
4489      if (PrevPointOfInstantiation.isInvalid()) {
4490        // The declaration itself has not actually been instantiated, so it is
4491        // still okay to specialize it.
4492        StripImplicitInstantiation(PrevDecl);
4493        return false;
4494      }
4495      // Fall through
4496
4497    case TSK_ExplicitInstantiationDeclaration:
4498    case TSK_ExplicitInstantiationDefinition:
4499      assert((PrevTSK == TSK_ImplicitInstantiation ||
4500              PrevPointOfInstantiation.isValid()) &&
4501             "Explicit instantiation without point of instantiation?");
4502
4503      // C++ [temp.expl.spec]p6:
4504      //   If a template, a member template or the member of a class template
4505      //   is explicitly specialized then that specialization shall be declared
4506      //   before the first use of that specialization that would cause an
4507      //   implicit instantiation to take place, in every translation unit in
4508      //   which such a use occurs; no diagnostic is required.
4509      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4510        // Is there any previous explicit specialization declaration?
4511        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4512          return false;
4513      }
4514
4515      Diag(NewLoc, diag::err_specialization_after_instantiation)
4516        << PrevDecl;
4517      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4518        << (PrevTSK != TSK_ImplicitInstantiation);
4519
4520      return true;
4521    }
4522    break;
4523
4524  case TSK_ExplicitInstantiationDeclaration:
4525    switch (PrevTSK) {
4526    case TSK_ExplicitInstantiationDeclaration:
4527      // This explicit instantiation declaration is redundant (that's okay).
4528      HasNoEffect = true;
4529      return false;
4530
4531    case TSK_Undeclared:
4532    case TSK_ImplicitInstantiation:
4533      // We're explicitly instantiating something that may have already been
4534      // implicitly instantiated; that's fine.
4535      return false;
4536
4537    case TSK_ExplicitSpecialization:
4538      // C++0x [temp.explicit]p4:
4539      //   For a given set of template parameters, if an explicit instantiation
4540      //   of a template appears after a declaration of an explicit
4541      //   specialization for that template, the explicit instantiation has no
4542      //   effect.
4543      HasNoEffect = true;
4544      return false;
4545
4546    case TSK_ExplicitInstantiationDefinition:
4547      // C++0x [temp.explicit]p10:
4548      //   If an entity is the subject of both an explicit instantiation
4549      //   declaration and an explicit instantiation definition in the same
4550      //   translation unit, the definition shall follow the declaration.
4551      Diag(NewLoc,
4552           diag::err_explicit_instantiation_declaration_after_definition);
4553      Diag(PrevPointOfInstantiation,
4554           diag::note_explicit_instantiation_definition_here);
4555      assert(PrevPointOfInstantiation.isValid() &&
4556             "Explicit instantiation without point of instantiation?");
4557      HasNoEffect = true;
4558      return false;
4559    }
4560    break;
4561
4562  case TSK_ExplicitInstantiationDefinition:
4563    switch (PrevTSK) {
4564    case TSK_Undeclared:
4565    case TSK_ImplicitInstantiation:
4566      // We're explicitly instantiating something that may have already been
4567      // implicitly instantiated; that's fine.
4568      return false;
4569
4570    case TSK_ExplicitSpecialization:
4571      // C++ DR 259, C++0x [temp.explicit]p4:
4572      //   For a given set of template parameters, if an explicit
4573      //   instantiation of a template appears after a declaration of
4574      //   an explicit specialization for that template, the explicit
4575      //   instantiation has no effect.
4576      //
4577      // In C++98/03 mode, we only give an extension warning here, because it
4578      // is not harmful to try to explicitly instantiate something that
4579      // has been explicitly specialized.
4580      if (!getLangOptions().CPlusPlus0x) {
4581        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4582          << PrevDecl;
4583        Diag(PrevDecl->getLocation(),
4584             diag::note_previous_template_specialization);
4585      }
4586      HasNoEffect = true;
4587      return false;
4588
4589    case TSK_ExplicitInstantiationDeclaration:
4590      // We're explicity instantiating a definition for something for which we
4591      // were previously asked to suppress instantiations. That's fine.
4592      return false;
4593
4594    case TSK_ExplicitInstantiationDefinition:
4595      // C++0x [temp.spec]p5:
4596      //   For a given template and a given set of template-arguments,
4597      //     - an explicit instantiation definition shall appear at most once
4598      //       in a program,
4599      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4600        << PrevDecl;
4601      Diag(PrevPointOfInstantiation,
4602           diag::note_previous_explicit_instantiation);
4603      HasNoEffect = true;
4604      return false;
4605    }
4606    break;
4607  }
4608
4609  assert(false && "Missing specialization/instantiation case?");
4610
4611  return false;
4612}
4613
4614/// \brief Perform semantic analysis for the given dependent function
4615/// template specialization.  The only possible way to get a dependent
4616/// function template specialization is with a friend declaration,
4617/// like so:
4618///
4619///   template <class T> void foo(T);
4620///   template <class T> class A {
4621///     friend void foo<>(T);
4622///   };
4623///
4624/// There really isn't any useful analysis we can do here, so we
4625/// just store the information.
4626bool
4627Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
4628                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
4629                                                   LookupResult &Previous) {
4630  // Remove anything from Previous that isn't a function template in
4631  // the correct context.
4632  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4633  LookupResult::Filter F = Previous.makeFilter();
4634  while (F.hasNext()) {
4635    NamedDecl *D = F.next()->getUnderlyingDecl();
4636    if (!isa<FunctionTemplateDecl>(D) ||
4637        !FDLookupContext->InEnclosingNamespaceSetOf(
4638                              D->getDeclContext()->getRedeclContext()))
4639      F.erase();
4640  }
4641  F.done();
4642
4643  // Should this be diagnosed here?
4644  if (Previous.empty()) return true;
4645
4646  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
4647                                         ExplicitTemplateArgs);
4648  return false;
4649}
4650
4651/// \brief Perform semantic analysis for the given function template
4652/// specialization.
4653///
4654/// This routine performs all of the semantic analysis required for an
4655/// explicit function template specialization. On successful completion,
4656/// the function declaration \p FD will become a function template
4657/// specialization.
4658///
4659/// \param FD the function declaration, which will be updated to become a
4660/// function template specialization.
4661///
4662/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4663/// if any. Note that this may be valid info even when 0 arguments are
4664/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
4665/// as it anyway contains info on the angle brackets locations.
4666///
4667/// \param PrevDecl the set of declarations that may be specialized by
4668/// this function specialization.
4669bool
4670Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4671                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
4672                                          LookupResult &Previous) {
4673  // The set of function template specializations that could match this
4674  // explicit function template specialization.
4675  UnresolvedSet<8> Candidates;
4676
4677  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4678  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4679         I != E; ++I) {
4680    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4681    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4682      // Only consider templates found within the same semantic lookup scope as
4683      // FD.
4684      if (!FDLookupContext->InEnclosingNamespaceSetOf(
4685                                Ovl->getDeclContext()->getRedeclContext()))
4686        continue;
4687
4688      // C++ [temp.expl.spec]p11:
4689      //   A trailing template-argument can be left unspecified in the
4690      //   template-id naming an explicit function template specialization
4691      //   provided it can be deduced from the function argument type.
4692      // Perform template argument deduction to determine whether we may be
4693      // specializing this template.
4694      // FIXME: It is somewhat wasteful to build
4695      TemplateDeductionInfo Info(Context, FD->getLocation());
4696      FunctionDecl *Specialization = 0;
4697      if (TemplateDeductionResult TDK
4698            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4699                                      FD->getType(),
4700                                      Specialization,
4701                                      Info)) {
4702        // FIXME: Template argument deduction failed; record why it failed, so
4703        // that we can provide nifty diagnostics.
4704        (void)TDK;
4705        continue;
4706      }
4707
4708      // Record this candidate.
4709      Candidates.addDecl(Specialization, I.getAccess());
4710    }
4711  }
4712
4713  // Find the most specialized function template.
4714  UnresolvedSetIterator Result
4715    = getMostSpecialized(Candidates.begin(), Candidates.end(),
4716                         TPOC_Other, FD->getLocation(),
4717                  PDiag(diag::err_function_template_spec_no_match)
4718                    << FD->getDeclName(),
4719                  PDiag(diag::err_function_template_spec_ambiguous)
4720                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4721                  PDiag(diag::note_function_template_spec_matched));
4722  if (Result == Candidates.end())
4723    return true;
4724
4725  // Ignore access information;  it doesn't figure into redeclaration checking.
4726  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4727  Specialization->setLocation(FD->getLocation());
4728
4729  // FIXME: Check if the prior specialization has a point of instantiation.
4730  // If so, we have run afoul of .
4731
4732  // If this is a friend declaration, then we're not really declaring
4733  // an explicit specialization.
4734  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4735
4736  // Check the scope of this explicit specialization.
4737  if (!isFriend &&
4738      CheckTemplateSpecializationScope(*this,
4739                                       Specialization->getPrimaryTemplate(),
4740                                       Specialization, FD->getLocation(),
4741                                       false))
4742    return true;
4743
4744  // C++ [temp.expl.spec]p6:
4745  //   If a template, a member template or the member of a class template is
4746  //   explicitly specialized then that specialization shall be declared
4747  //   before the first use of that specialization that would cause an implicit
4748  //   instantiation to take place, in every translation unit in which such a
4749  //   use occurs; no diagnostic is required.
4750  FunctionTemplateSpecializationInfo *SpecInfo
4751    = Specialization->getTemplateSpecializationInfo();
4752  assert(SpecInfo && "Function template specialization info missing?");
4753
4754  bool HasNoEffect = false;
4755  if (!isFriend &&
4756      CheckSpecializationInstantiationRedecl(FD->getLocation(),
4757                                             TSK_ExplicitSpecialization,
4758                                             Specialization,
4759                                   SpecInfo->getTemplateSpecializationKind(),
4760                                         SpecInfo->getPointOfInstantiation(),
4761                                             HasNoEffect))
4762    return true;
4763
4764  // Mark the prior declaration as an explicit specialization, so that later
4765  // clients know that this is an explicit specialization.
4766  if (!isFriend) {
4767    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
4768    MarkUnusedFileScopedDecl(Specialization);
4769  }
4770
4771  // Turn the given function declaration into a function template
4772  // specialization, with the template arguments from the previous
4773  // specialization.
4774  // Take copies of (semantic and syntactic) template argument lists.
4775  const TemplateArgumentList* TemplArgs = new (Context)
4776    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
4777  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
4778    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
4779  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
4780                                        TemplArgs, /*InsertPos=*/0,
4781                                    SpecInfo->getTemplateSpecializationKind(),
4782                                        TemplArgsAsWritten);
4783
4784  // The "previous declaration" for this function template specialization is
4785  // the prior function template specialization.
4786  Previous.clear();
4787  Previous.addDecl(Specialization);
4788  return false;
4789}
4790
4791/// \brief Perform semantic analysis for the given non-template member
4792/// specialization.
4793///
4794/// This routine performs all of the semantic analysis required for an
4795/// explicit member function specialization. On successful completion,
4796/// the function declaration \p FD will become a member function
4797/// specialization.
4798///
4799/// \param Member the member declaration, which will be updated to become a
4800/// specialization.
4801///
4802/// \param Previous the set of declarations, one of which may be specialized
4803/// by this function specialization;  the set will be modified to contain the
4804/// redeclared member.
4805bool
4806Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
4807  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
4808
4809  // Try to find the member we are instantiating.
4810  NamedDecl *Instantiation = 0;
4811  NamedDecl *InstantiatedFrom = 0;
4812  MemberSpecializationInfo *MSInfo = 0;
4813
4814  if (Previous.empty()) {
4815    // Nowhere to look anyway.
4816  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
4817    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4818           I != E; ++I) {
4819      NamedDecl *D = (*I)->getUnderlyingDecl();
4820      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4821        if (Context.hasSameType(Function->getType(), Method->getType())) {
4822          Instantiation = Method;
4823          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
4824          MSInfo = Method->getMemberSpecializationInfo();
4825          break;
4826        }
4827      }
4828    }
4829  } else if (isa<VarDecl>(Member)) {
4830    VarDecl *PrevVar;
4831    if (Previous.isSingleResult() &&
4832        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4833      if (PrevVar->isStaticDataMember()) {
4834        Instantiation = PrevVar;
4835        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4836        MSInfo = PrevVar->getMemberSpecializationInfo();
4837      }
4838  } else if (isa<RecordDecl>(Member)) {
4839    CXXRecordDecl *PrevRecord;
4840    if (Previous.isSingleResult() &&
4841        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4842      Instantiation = PrevRecord;
4843      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4844      MSInfo = PrevRecord->getMemberSpecializationInfo();
4845    }
4846  }
4847
4848  if (!Instantiation) {
4849    // There is no previous declaration that matches. Since member
4850    // specializations are always out-of-line, the caller will complain about
4851    // this mismatch later.
4852    return false;
4853  }
4854
4855  // If this is a friend, just bail out here before we start turning
4856  // things into explicit specializations.
4857  if (Member->getFriendObjectKind() != Decl::FOK_None) {
4858    // Preserve instantiation information.
4859    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
4860      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
4861                                      cast<CXXMethodDecl>(InstantiatedFrom),
4862        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
4863    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
4864      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4865                                      cast<CXXRecordDecl>(InstantiatedFrom),
4866        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
4867    }
4868
4869    Previous.clear();
4870    Previous.addDecl(Instantiation);
4871    return false;
4872  }
4873
4874  // Make sure that this is a specialization of a member.
4875  if (!InstantiatedFrom) {
4876    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
4877      << Member;
4878    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
4879    return true;
4880  }
4881
4882  // C++ [temp.expl.spec]p6:
4883  //   If a template, a member template or the member of a class template is
4884  //   explicitly specialized then that spe- cialization shall be declared
4885  //   before the first use of that specialization that would cause an implicit
4886  //   instantiation to take place, in every translation unit in which such a
4887  //   use occurs; no diagnostic is required.
4888  assert(MSInfo && "Member specialization info missing?");
4889
4890  bool HasNoEffect = false;
4891  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
4892                                             TSK_ExplicitSpecialization,
4893                                             Instantiation,
4894                                     MSInfo->getTemplateSpecializationKind(),
4895                                           MSInfo->getPointOfInstantiation(),
4896                                             HasNoEffect))
4897    return true;
4898
4899  // Check the scope of this explicit specialization.
4900  if (CheckTemplateSpecializationScope(*this,
4901                                       InstantiatedFrom,
4902                                       Instantiation, Member->getLocation(),
4903                                       false))
4904    return true;
4905
4906  // Note that this is an explicit instantiation of a member.
4907  // the original declaration to note that it is an explicit specialization
4908  // (if it was previously an implicit instantiation). This latter step
4909  // makes bookkeeping easier.
4910  if (isa<FunctionDecl>(Member)) {
4911    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4912    if (InstantiationFunction->getTemplateSpecializationKind() ==
4913          TSK_ImplicitInstantiation) {
4914      InstantiationFunction->setTemplateSpecializationKind(
4915                                                  TSK_ExplicitSpecialization);
4916      InstantiationFunction->setLocation(Member->getLocation());
4917    }
4918
4919    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4920                                        cast<CXXMethodDecl>(InstantiatedFrom),
4921                                                  TSK_ExplicitSpecialization);
4922    MarkUnusedFileScopedDecl(InstantiationFunction);
4923  } else if (isa<VarDecl>(Member)) {
4924    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4925    if (InstantiationVar->getTemplateSpecializationKind() ==
4926          TSK_ImplicitInstantiation) {
4927      InstantiationVar->setTemplateSpecializationKind(
4928                                                  TSK_ExplicitSpecialization);
4929      InstantiationVar->setLocation(Member->getLocation());
4930    }
4931
4932    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4933                                                cast<VarDecl>(InstantiatedFrom),
4934                                                TSK_ExplicitSpecialization);
4935    MarkUnusedFileScopedDecl(InstantiationVar);
4936  } else {
4937    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4938    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4939    if (InstantiationClass->getTemplateSpecializationKind() ==
4940          TSK_ImplicitInstantiation) {
4941      InstantiationClass->setTemplateSpecializationKind(
4942                                                   TSK_ExplicitSpecialization);
4943      InstantiationClass->setLocation(Member->getLocation());
4944    }
4945
4946    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4947                                        cast<CXXRecordDecl>(InstantiatedFrom),
4948                                                   TSK_ExplicitSpecialization);
4949  }
4950
4951  // Save the caller the trouble of having to figure out which declaration
4952  // this specialization matches.
4953  Previous.clear();
4954  Previous.addDecl(Instantiation);
4955  return false;
4956}
4957
4958/// \brief Check the scope of an explicit instantiation.
4959///
4960/// \returns true if a serious error occurs, false otherwise.
4961static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4962                                            SourceLocation InstLoc,
4963                                            bool WasQualifiedName) {
4964  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
4965  DeclContext *CurContext = S.CurContext->getRedeclContext();
4966
4967  if (CurContext->isRecord()) {
4968    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
4969      << D;
4970    return true;
4971  }
4972
4973  // C++0x [temp.explicit]p2:
4974  //   An explicit instantiation shall appear in an enclosing namespace of its
4975  //   template.
4976  //
4977  // This is DR275, which we do not retroactively apply to C++98/03.
4978  if (S.getLangOptions().CPlusPlus0x &&
4979      !CurContext->Encloses(OrigContext)) {
4980    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext))
4981      S.Diag(InstLoc,
4982             S.getLangOptions().CPlusPlus0x?
4983                 diag::err_explicit_instantiation_out_of_scope
4984               : diag::warn_explicit_instantiation_out_of_scope_0x)
4985        << D << NS;
4986    else
4987      S.Diag(InstLoc,
4988             S.getLangOptions().CPlusPlus0x?
4989                 diag::err_explicit_instantiation_must_be_global
4990               : diag::warn_explicit_instantiation_out_of_scope_0x)
4991        << D;
4992    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4993    return false;
4994  }
4995
4996  // C++0x [temp.explicit]p2:
4997  //   If the name declared in the explicit instantiation is an unqualified
4998  //   name, the explicit instantiation shall appear in the namespace where
4999  //   its template is declared or, if that namespace is inline (7.3.1), any
5000  //   namespace from its enclosing namespace set.
5001  if (WasQualifiedName)
5002    return false;
5003
5004  if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
5005    return false;
5006
5007  S.Diag(InstLoc,
5008         S.getLangOptions().CPlusPlus0x?
5009             diag::err_explicit_instantiation_unqualified_wrong_namespace
5010           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
5011    << D << OrigContext;
5012  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5013  return false;
5014}
5015
5016/// \brief Determine whether the given scope specifier has a template-id in it.
5017static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
5018  if (!SS.isSet())
5019    return false;
5020
5021  // C++0x [temp.explicit]p2:
5022  //   If the explicit instantiation is for a member function, a member class
5023  //   or a static data member of a class template specialization, the name of
5024  //   the class template specialization in the qualified-id for the member
5025  //   name shall be a simple-template-id.
5026  //
5027  // C++98 has the same restriction, just worded differently.
5028  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
5029       NNS; NNS = NNS->getPrefix())
5030    if (Type *T = NNS->getAsType())
5031      if (isa<TemplateSpecializationType>(T))
5032        return true;
5033
5034  return false;
5035}
5036
5037// Explicit instantiation of a class template specialization
5038DeclResult
5039Sema::ActOnExplicitInstantiation(Scope *S,
5040                                 SourceLocation ExternLoc,
5041                                 SourceLocation TemplateLoc,
5042                                 unsigned TagSpec,
5043                                 SourceLocation KWLoc,
5044                                 const CXXScopeSpec &SS,
5045                                 TemplateTy TemplateD,
5046                                 SourceLocation TemplateNameLoc,
5047                                 SourceLocation LAngleLoc,
5048                                 ASTTemplateArgsPtr TemplateArgsIn,
5049                                 SourceLocation RAngleLoc,
5050                                 AttributeList *Attr) {
5051  // Find the class template we're specializing
5052  TemplateName Name = TemplateD.getAsVal<TemplateName>();
5053  ClassTemplateDecl *ClassTemplate
5054    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
5055
5056  // Check that the specialization uses the same tag kind as the
5057  // original template.
5058  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5059  assert(Kind != TTK_Enum &&
5060         "Invalid enum tag in class template explicit instantiation!");
5061  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5062                                    Kind, KWLoc,
5063                                    *ClassTemplate->getIdentifier())) {
5064    Diag(KWLoc, diag::err_use_with_wrong_tag)
5065      << ClassTemplate
5066      << FixItHint::CreateReplacement(KWLoc,
5067                            ClassTemplate->getTemplatedDecl()->getKindName());
5068    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5069         diag::note_previous_use);
5070    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5071  }
5072
5073  // C++0x [temp.explicit]p2:
5074  //   There are two forms of explicit instantiation: an explicit instantiation
5075  //   definition and an explicit instantiation declaration. An explicit
5076  //   instantiation declaration begins with the extern keyword. [...]
5077  TemplateSpecializationKind TSK
5078    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5079                           : TSK_ExplicitInstantiationDeclaration;
5080
5081  // Translate the parser's template argument list in our AST format.
5082  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
5083  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5084
5085  // Check that the template argument list is well-formed for this
5086  // template.
5087  llvm::SmallVector<TemplateArgument, 4> Converted;
5088  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5089                                TemplateArgs, false, Converted))
5090    return true;
5091
5092  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
5093         "Converted template argument list is too short!");
5094
5095  // Find the class template specialization declaration that
5096  // corresponds to these arguments.
5097  void *InsertPos = 0;
5098  ClassTemplateSpecializationDecl *PrevDecl
5099    = ClassTemplate->findSpecialization(Converted.data(),
5100                                        Converted.size(), InsertPos);
5101
5102  TemplateSpecializationKind PrevDecl_TSK
5103    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
5104
5105  // C++0x [temp.explicit]p2:
5106  //   [...] An explicit instantiation shall appear in an enclosing
5107  //   namespace of its template. [...]
5108  //
5109  // This is C++ DR 275.
5110  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
5111                                      SS.isSet()))
5112    return true;
5113
5114  ClassTemplateSpecializationDecl *Specialization = 0;
5115
5116  bool ReusedDecl = false;
5117  bool HasNoEffect = false;
5118  if (PrevDecl) {
5119    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
5120                                               PrevDecl, PrevDecl_TSK,
5121                                            PrevDecl->getPointOfInstantiation(),
5122                                               HasNoEffect))
5123      return PrevDecl;
5124
5125    // Even though HasNoEffect == true means that this explicit instantiation
5126    // has no effect on semantics, we go on to put its syntax in the AST.
5127
5128    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
5129        PrevDecl_TSK == TSK_Undeclared) {
5130      // Since the only prior class template specialization with these
5131      // arguments was referenced but not declared, reuse that
5132      // declaration node as our own, updating the source location
5133      // for the template name to reflect our new declaration.
5134      // (Other source locations will be updated later.)
5135      Specialization = PrevDecl;
5136      Specialization->setLocation(TemplateNameLoc);
5137      PrevDecl = 0;
5138      ReusedDecl = true;
5139    }
5140  }
5141
5142  if (!Specialization) {
5143    // Create a new class template specialization declaration node for
5144    // this explicit specialization.
5145    Specialization
5146      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5147                                             ClassTemplate->getDeclContext(),
5148                                                TemplateNameLoc,
5149                                                ClassTemplate,
5150                                                Converted.data(),
5151                                                Converted.size(),
5152                                                PrevDecl);
5153    SetNestedNameSpecifier(Specialization, SS);
5154
5155    if (!HasNoEffect && !PrevDecl) {
5156      // Insert the new specialization.
5157      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5158    }
5159  }
5160
5161  // Build the fully-sugared type for this explicit instantiation as
5162  // the user wrote in the explicit instantiation itself. This means
5163  // that we'll pretty-print the type retrieved from the
5164  // specialization's declaration the way that the user actually wrote
5165  // the explicit instantiation, rather than formatting the name based
5166  // on the "canonical" representation used to store the template
5167  // arguments in the specialization.
5168  TypeSourceInfo *WrittenTy
5169    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5170                                                TemplateArgs,
5171                                  Context.getTypeDeclType(Specialization));
5172  Specialization->setTypeAsWritten(WrittenTy);
5173  TemplateArgsIn.release();
5174
5175  // Set source locations for keywords.
5176  Specialization->setExternLoc(ExternLoc);
5177  Specialization->setTemplateKeywordLoc(TemplateLoc);
5178
5179  // Add the explicit instantiation into its lexical context. However,
5180  // since explicit instantiations are never found by name lookup, we
5181  // just put it into the declaration context directly.
5182  Specialization->setLexicalDeclContext(CurContext);
5183  CurContext->addDecl(Specialization);
5184
5185  // Syntax is now OK, so return if it has no other effect on semantics.
5186  if (HasNoEffect) {
5187    // Set the template specialization kind.
5188    Specialization->setTemplateSpecializationKind(TSK);
5189    return Specialization;
5190  }
5191
5192  // C++ [temp.explicit]p3:
5193  //   A definition of a class template or class member template
5194  //   shall be in scope at the point of the explicit instantiation of
5195  //   the class template or class member template.
5196  //
5197  // This check comes when we actually try to perform the
5198  // instantiation.
5199  ClassTemplateSpecializationDecl *Def
5200    = cast_or_null<ClassTemplateSpecializationDecl>(
5201                                              Specialization->getDefinition());
5202  if (!Def)
5203    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
5204  else if (TSK == TSK_ExplicitInstantiationDefinition) {
5205    MarkVTableUsed(TemplateNameLoc, Specialization, true);
5206    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
5207  }
5208
5209  // Instantiate the members of this class template specialization.
5210  Def = cast_or_null<ClassTemplateSpecializationDecl>(
5211                                       Specialization->getDefinition());
5212  if (Def) {
5213    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
5214
5215    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
5216    // TSK_ExplicitInstantiationDefinition
5217    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
5218        TSK == TSK_ExplicitInstantiationDefinition)
5219      Def->setTemplateSpecializationKind(TSK);
5220
5221    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
5222  }
5223
5224  // Set the template specialization kind.
5225  Specialization->setTemplateSpecializationKind(TSK);
5226  return Specialization;
5227}
5228
5229// Explicit instantiation of a member class of a class template.
5230DeclResult
5231Sema::ActOnExplicitInstantiation(Scope *S,
5232                                 SourceLocation ExternLoc,
5233                                 SourceLocation TemplateLoc,
5234                                 unsigned TagSpec,
5235                                 SourceLocation KWLoc,
5236                                 CXXScopeSpec &SS,
5237                                 IdentifierInfo *Name,
5238                                 SourceLocation NameLoc,
5239                                 AttributeList *Attr) {
5240
5241  bool Owned = false;
5242  bool IsDependent = false;
5243  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
5244                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
5245                        MultiTemplateParamsArg(*this, 0, 0),
5246                        Owned, IsDependent, false, false,
5247                        TypeResult());
5248  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
5249
5250  if (!TagD)
5251    return true;
5252
5253  TagDecl *Tag = cast<TagDecl>(TagD);
5254  if (Tag->isEnum()) {
5255    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
5256      << Context.getTypeDeclType(Tag);
5257    return true;
5258  }
5259
5260  if (Tag->isInvalidDecl())
5261    return true;
5262
5263  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
5264  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
5265  if (!Pattern) {
5266    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
5267      << Context.getTypeDeclType(Record);
5268    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
5269    return true;
5270  }
5271
5272  // C++0x [temp.explicit]p2:
5273  //   If the explicit instantiation is for a class or member class, the
5274  //   elaborated-type-specifier in the declaration shall include a
5275  //   simple-template-id.
5276  //
5277  // C++98 has the same restriction, just worded differently.
5278  if (!ScopeSpecifierHasTemplateId(SS))
5279    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
5280      << Record << SS.getRange();
5281
5282  // C++0x [temp.explicit]p2:
5283  //   There are two forms of explicit instantiation: an explicit instantiation
5284  //   definition and an explicit instantiation declaration. An explicit
5285  //   instantiation declaration begins with the extern keyword. [...]
5286  TemplateSpecializationKind TSK
5287    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5288                           : TSK_ExplicitInstantiationDeclaration;
5289
5290  // C++0x [temp.explicit]p2:
5291  //   [...] An explicit instantiation shall appear in an enclosing
5292  //   namespace of its template. [...]
5293  //
5294  // This is C++ DR 275.
5295  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
5296
5297  // Verify that it is okay to explicitly instantiate here.
5298  CXXRecordDecl *PrevDecl
5299    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
5300  if (!PrevDecl && Record->getDefinition())
5301    PrevDecl = Record;
5302  if (PrevDecl) {
5303    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
5304    bool HasNoEffect = false;
5305    assert(MSInfo && "No member specialization information?");
5306    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
5307                                               PrevDecl,
5308                                        MSInfo->getTemplateSpecializationKind(),
5309                                             MSInfo->getPointOfInstantiation(),
5310                                               HasNoEffect))
5311      return true;
5312    if (HasNoEffect)
5313      return TagD;
5314  }
5315
5316  CXXRecordDecl *RecordDef
5317    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5318  if (!RecordDef) {
5319    // C++ [temp.explicit]p3:
5320    //   A definition of a member class of a class template shall be in scope
5321    //   at the point of an explicit instantiation of the member class.
5322    CXXRecordDecl *Def
5323      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
5324    if (!Def) {
5325      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
5326        << 0 << Record->getDeclName() << Record->getDeclContext();
5327      Diag(Pattern->getLocation(), diag::note_forward_declaration)
5328        << Pattern;
5329      return true;
5330    } else {
5331      if (InstantiateClass(NameLoc, Record, Def,
5332                           getTemplateInstantiationArgs(Record),
5333                           TSK))
5334        return true;
5335
5336      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5337      if (!RecordDef)
5338        return true;
5339    }
5340  }
5341
5342  // Instantiate all of the members of the class.
5343  InstantiateClassMembers(NameLoc, RecordDef,
5344                          getTemplateInstantiationArgs(Record), TSK);
5345
5346  if (TSK == TSK_ExplicitInstantiationDefinition)
5347    MarkVTableUsed(NameLoc, RecordDef, true);
5348
5349  // FIXME: We don't have any representation for explicit instantiations of
5350  // member classes. Such a representation is not needed for compilation, but it
5351  // should be available for clients that want to see all of the declarations in
5352  // the source code.
5353  return TagD;
5354}
5355
5356DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
5357                                            SourceLocation ExternLoc,
5358                                            SourceLocation TemplateLoc,
5359                                            Declarator &D) {
5360  // Explicit instantiations always require a name.
5361  // TODO: check if/when DNInfo should replace Name.
5362  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5363  DeclarationName Name = NameInfo.getName();
5364  if (!Name) {
5365    if (!D.isInvalidType())
5366      Diag(D.getDeclSpec().getSourceRange().getBegin(),
5367           diag::err_explicit_instantiation_requires_name)
5368        << D.getDeclSpec().getSourceRange()
5369        << D.getSourceRange();
5370
5371    return true;
5372  }
5373
5374  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5375  // we find one that is.
5376  while ((S->getFlags() & Scope::DeclScope) == 0 ||
5377         (S->getFlags() & Scope::TemplateParamScope) != 0)
5378    S = S->getParent();
5379
5380  // Determine the type of the declaration.
5381  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
5382  QualType R = T->getType();
5383  if (R.isNull())
5384    return true;
5385
5386  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5387    // Cannot explicitly instantiate a typedef.
5388    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
5389      << Name;
5390    return true;
5391  }
5392
5393  // C++0x [temp.explicit]p1:
5394  //   [...] An explicit instantiation of a function template shall not use the
5395  //   inline or constexpr specifiers.
5396  // Presumably, this also applies to member functions of class templates as
5397  // well.
5398  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
5399    Diag(D.getDeclSpec().getInlineSpecLoc(),
5400         diag::err_explicit_instantiation_inline)
5401      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5402
5403  // FIXME: check for constexpr specifier.
5404
5405  // C++0x [temp.explicit]p2:
5406  //   There are two forms of explicit instantiation: an explicit instantiation
5407  //   definition and an explicit instantiation declaration. An explicit
5408  //   instantiation declaration begins with the extern keyword. [...]
5409  TemplateSpecializationKind TSK
5410    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5411                           : TSK_ExplicitInstantiationDeclaration;
5412
5413  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
5414  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
5415
5416  if (!R->isFunctionType()) {
5417    // C++ [temp.explicit]p1:
5418    //   A [...] static data member of a class template can be explicitly
5419    //   instantiated from the member definition associated with its class
5420    //   template.
5421    if (Previous.isAmbiguous())
5422      return true;
5423
5424    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
5425    if (!Prev || !Prev->isStaticDataMember()) {
5426      // We expect to see a data data member here.
5427      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
5428        << Name;
5429      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5430           P != PEnd; ++P)
5431        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
5432      return true;
5433    }
5434
5435    if (!Prev->getInstantiatedFromStaticDataMember()) {
5436      // FIXME: Check for explicit specialization?
5437      Diag(D.getIdentifierLoc(),
5438           diag::err_explicit_instantiation_data_member_not_instantiated)
5439        << Prev;
5440      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
5441      // FIXME: Can we provide a note showing where this was declared?
5442      return true;
5443    }
5444
5445    // C++0x [temp.explicit]p2:
5446    //   If the explicit instantiation is for a member function, a member class
5447    //   or a static data member of a class template specialization, the name of
5448    //   the class template specialization in the qualified-id for the member
5449    //   name shall be a simple-template-id.
5450    //
5451    // C++98 has the same restriction, just worded differently.
5452    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5453      Diag(D.getIdentifierLoc(),
5454           diag::ext_explicit_instantiation_without_qualified_id)
5455        << Prev << D.getCXXScopeSpec().getRange();
5456
5457    // Check the scope of this explicit instantiation.
5458    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
5459
5460    // Verify that it is okay to explicitly instantiate here.
5461    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
5462    assert(MSInfo && "Missing static data member specialization info?");
5463    bool HasNoEffect = false;
5464    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
5465                                        MSInfo->getTemplateSpecializationKind(),
5466                                              MSInfo->getPointOfInstantiation(),
5467                                               HasNoEffect))
5468      return true;
5469    if (HasNoEffect)
5470      return (Decl*) 0;
5471
5472    // Instantiate static data member.
5473    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5474    if (TSK == TSK_ExplicitInstantiationDefinition)
5475      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
5476
5477    // FIXME: Create an ExplicitInstantiation node?
5478    return (Decl*) 0;
5479  }
5480
5481  // If the declarator is a template-id, translate the parser's template
5482  // argument list into our AST format.
5483  bool HasExplicitTemplateArgs = false;
5484  TemplateArgumentListInfo TemplateArgs;
5485  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5486    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5487    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5488    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5489    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5490                                       TemplateId->getTemplateArgs(),
5491                                       TemplateId->NumArgs);
5492    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5493    HasExplicitTemplateArgs = true;
5494    TemplateArgsPtr.release();
5495  }
5496
5497  // C++ [temp.explicit]p1:
5498  //   A [...] function [...] can be explicitly instantiated from its template.
5499  //   A member function [...] of a class template can be explicitly
5500  //  instantiated from the member definition associated with its class
5501  //  template.
5502  UnresolvedSet<8> Matches;
5503  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5504       P != PEnd; ++P) {
5505    NamedDecl *Prev = *P;
5506    if (!HasExplicitTemplateArgs) {
5507      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5508        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5509          Matches.clear();
5510
5511          Matches.addDecl(Method, P.getAccess());
5512          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5513            break;
5514        }
5515      }
5516    }
5517
5518    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5519    if (!FunTmpl)
5520      continue;
5521
5522    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5523    FunctionDecl *Specialization = 0;
5524    if (TemplateDeductionResult TDK
5525          = DeduceTemplateArguments(FunTmpl,
5526                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5527                                    R, Specialization, Info)) {
5528      // FIXME: Keep track of almost-matches?
5529      (void)TDK;
5530      continue;
5531    }
5532
5533    Matches.addDecl(Specialization, P.getAccess());
5534  }
5535
5536  // Find the most specialized function template specialization.
5537  UnresolvedSetIterator Result
5538    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other,
5539                         D.getIdentifierLoc(),
5540                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
5541                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5542                         PDiag(diag::note_explicit_instantiation_candidate));
5543
5544  if (Result == Matches.end())
5545    return true;
5546
5547  // Ignore access control bits, we don't need them for redeclaration checking.
5548  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5549
5550  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5551    Diag(D.getIdentifierLoc(),
5552         diag::err_explicit_instantiation_member_function_not_instantiated)
5553      << Specialization
5554      << (Specialization->getTemplateSpecializationKind() ==
5555          TSK_ExplicitSpecialization);
5556    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5557    return true;
5558  }
5559
5560  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5561  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5562    PrevDecl = Specialization;
5563
5564  if (PrevDecl) {
5565    bool HasNoEffect = false;
5566    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5567                                               PrevDecl,
5568                                     PrevDecl->getTemplateSpecializationKind(),
5569                                          PrevDecl->getPointOfInstantiation(),
5570                                               HasNoEffect))
5571      return true;
5572
5573    // FIXME: We may still want to build some representation of this
5574    // explicit specialization.
5575    if (HasNoEffect)
5576      return (Decl*) 0;
5577  }
5578
5579  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5580
5581  if (TSK == TSK_ExplicitInstantiationDefinition)
5582    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
5583
5584  // C++0x [temp.explicit]p2:
5585  //   If the explicit instantiation is for a member function, a member class
5586  //   or a static data member of a class template specialization, the name of
5587  //   the class template specialization in the qualified-id for the member
5588  //   name shall be a simple-template-id.
5589  //
5590  // C++98 has the same restriction, just worded differently.
5591  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5592  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5593      D.getCXXScopeSpec().isSet() &&
5594      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5595    Diag(D.getIdentifierLoc(),
5596         diag::ext_explicit_instantiation_without_qualified_id)
5597    << Specialization << D.getCXXScopeSpec().getRange();
5598
5599  CheckExplicitInstantiationScope(*this,
5600                   FunTmpl? (NamedDecl *)FunTmpl
5601                          : Specialization->getInstantiatedFromMemberFunction(),
5602                                  D.getIdentifierLoc(),
5603                                  D.getCXXScopeSpec().isSet());
5604
5605  // FIXME: Create some kind of ExplicitInstantiationDecl here.
5606  return (Decl*) 0;
5607}
5608
5609TypeResult
5610Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5611                        const CXXScopeSpec &SS, IdentifierInfo *Name,
5612                        SourceLocation TagLoc, SourceLocation NameLoc) {
5613  // This has to hold, because SS is expected to be defined.
5614  assert(Name && "Expected a name in a dependent tag");
5615
5616  NestedNameSpecifier *NNS
5617    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5618  if (!NNS)
5619    return true;
5620
5621  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5622
5623  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
5624    Diag(NameLoc, diag::err_dependent_tag_decl)
5625      << (TUK == TUK_Definition) << Kind << SS.getRange();
5626    return true;
5627  }
5628
5629  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
5630  return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name));
5631}
5632
5633TypeResult
5634Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5635                        const CXXScopeSpec &SS, const IdentifierInfo &II,
5636                        SourceLocation IdLoc) {
5637  NestedNameSpecifier *NNS
5638    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5639  if (!NNS)
5640    return true;
5641
5642  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5643      !getLangOptions().CPlusPlus0x)
5644    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5645      << FixItHint::CreateRemoval(TypenameLoc);
5646
5647  QualType T = CheckTypenameType(ETK_Typename, NNS, II,
5648                                 TypenameLoc, SS.getRange(), IdLoc);
5649  if (T.isNull())
5650    return true;
5651
5652  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5653  if (isa<DependentNameType>(T)) {
5654    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5655    TL.setKeywordLoc(TypenameLoc);
5656    TL.setQualifierRange(SS.getRange());
5657    TL.setNameLoc(IdLoc);
5658  } else {
5659    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
5660    TL.setKeywordLoc(TypenameLoc);
5661    TL.setQualifierRange(SS.getRange());
5662    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
5663  }
5664
5665  return CreateParsedType(T, TSI);
5666}
5667
5668TypeResult
5669Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5670                        const CXXScopeSpec &SS, SourceLocation TemplateLoc,
5671                        ParsedType Ty) {
5672  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5673      !getLangOptions().CPlusPlus0x)
5674    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5675      << FixItHint::CreateRemoval(TypenameLoc);
5676
5677  TypeSourceInfo *InnerTSI = 0;
5678  QualType T = GetTypeFromParser(Ty, &InnerTSI);
5679
5680  assert(isa<TemplateSpecializationType>(T) &&
5681         "Expected a template specialization type");
5682
5683  if (computeDeclContext(SS, false)) {
5684    // If we can compute a declaration context, then the "typename"
5685    // keyword was superfluous. Just build an ElaboratedType to keep
5686    // track of the nested-name-specifier.
5687
5688    // Push the inner type, preserving its source locations if possible.
5689    TypeLocBuilder Builder;
5690    if (InnerTSI)
5691      Builder.pushFullCopy(InnerTSI->getTypeLoc());
5692    else
5693      Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc);
5694
5695    /* Note: NNS already embedded in template specialization type T. */
5696    T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T);
5697    ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
5698    TL.setKeywordLoc(TypenameLoc);
5699    TL.setQualifierRange(SS.getRange());
5700
5701    TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
5702    return CreateParsedType(T, TSI);
5703  }
5704
5705  // TODO: it's really silly that we make a template specialization
5706  // type earlier only to drop it again here.
5707  TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
5708  DependentTemplateName *DTN =
5709    TST->getTemplateName().getAsDependentTemplateName();
5710  assert(DTN && "dependent template has non-dependent name?");
5711  assert(DTN->getQualifier()
5712         == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
5713  T = Context.getDependentTemplateSpecializationType(ETK_Typename,
5714                                                     DTN->getQualifier(),
5715                                                     DTN->getIdentifier(),
5716                                                     TST->getNumArgs(),
5717                                                     TST->getArgs());
5718  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5719  DependentTemplateSpecializationTypeLoc TL =
5720    cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc());
5721  if (InnerTSI) {
5722    TemplateSpecializationTypeLoc TSTL =
5723      cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc());
5724    TL.setLAngleLoc(TSTL.getLAngleLoc());
5725    TL.setRAngleLoc(TSTL.getRAngleLoc());
5726    for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I)
5727      TL.setArgLocInfo(I, TSTL.getArgLocInfo(I));
5728  } else {
5729    TL.initializeLocal(SourceLocation());
5730  }
5731  TL.setKeywordLoc(TypenameLoc);
5732  TL.setQualifierRange(SS.getRange());
5733  return CreateParsedType(T, TSI);
5734}
5735
5736/// \brief Build the type that describes a C++ typename specifier,
5737/// e.g., "typename T::type".
5738QualType
5739Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
5740                        NestedNameSpecifier *NNS, const IdentifierInfo &II,
5741                        SourceLocation KeywordLoc, SourceRange NNSRange,
5742                        SourceLocation IILoc) {
5743  CXXScopeSpec SS;
5744  SS.setScopeRep(NNS);
5745  SS.setRange(NNSRange);
5746
5747  DeclContext *Ctx = computeDeclContext(SS);
5748  if (!Ctx) {
5749    // If the nested-name-specifier is dependent and couldn't be
5750    // resolved to a type, build a typename type.
5751    assert(NNS->isDependent());
5752    return Context.getDependentNameType(Keyword, NNS, &II);
5753  }
5754
5755  // If the nested-name-specifier refers to the current instantiation,
5756  // the "typename" keyword itself is superfluous. In C++03, the
5757  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
5758  // allows such extraneous "typename" keywords, and we retroactively
5759  // apply this DR to C++03 code with only a warning. In any case we continue.
5760
5761  if (RequireCompleteDeclContext(SS, Ctx))
5762    return QualType();
5763
5764  DeclarationName Name(&II);
5765  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
5766  LookupQualifiedName(Result, Ctx);
5767  unsigned DiagID = 0;
5768  Decl *Referenced = 0;
5769  switch (Result.getResultKind()) {
5770  case LookupResult::NotFound:
5771    DiagID = diag::err_typename_nested_not_found;
5772    break;
5773
5774  case LookupResult::FoundUnresolvedValue: {
5775    // We found a using declaration that is a value. Most likely, the using
5776    // declaration itself is meant to have the 'typename' keyword.
5777    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5778                          IILoc);
5779    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
5780      << Name << Ctx << FullRange;
5781    if (UnresolvedUsingValueDecl *Using
5782          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
5783      SourceLocation Loc = Using->getTargetNestedNameRange().getBegin();
5784      Diag(Loc, diag::note_using_value_decl_missing_typename)
5785        << FixItHint::CreateInsertion(Loc, "typename ");
5786    }
5787  }
5788  // Fall through to create a dependent typename type, from which we can recover
5789  // better.
5790
5791  case LookupResult::NotFoundInCurrentInstantiation:
5792    // Okay, it's a member of an unknown instantiation.
5793    return Context.getDependentNameType(Keyword, NNS, &II);
5794
5795  case LookupResult::Found:
5796    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
5797      // We found a type. Build an ElaboratedType, since the
5798      // typename-specifier was just sugar.
5799      return Context.getElaboratedType(ETK_Typename, NNS,
5800                                       Context.getTypeDeclType(Type));
5801    }
5802
5803    DiagID = diag::err_typename_nested_not_type;
5804    Referenced = Result.getFoundDecl();
5805    break;
5806
5807
5808    llvm_unreachable("unresolved using decl in non-dependent context");
5809    return QualType();
5810
5811  case LookupResult::FoundOverloaded:
5812    DiagID = diag::err_typename_nested_not_type;
5813    Referenced = *Result.begin();
5814    break;
5815
5816  case LookupResult::Ambiguous:
5817    return QualType();
5818  }
5819
5820  // If we get here, it's because name lookup did not find a
5821  // type. Emit an appropriate diagnostic and return an error.
5822  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5823                        IILoc);
5824  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
5825  if (Referenced)
5826    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
5827      << Name;
5828  return QualType();
5829}
5830
5831namespace {
5832  // See Sema::RebuildTypeInCurrentInstantiation
5833  class CurrentInstantiationRebuilder
5834    : public TreeTransform<CurrentInstantiationRebuilder> {
5835    SourceLocation Loc;
5836    DeclarationName Entity;
5837
5838  public:
5839    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
5840
5841    CurrentInstantiationRebuilder(Sema &SemaRef,
5842                                  SourceLocation Loc,
5843                                  DeclarationName Entity)
5844    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
5845      Loc(Loc), Entity(Entity) { }
5846
5847    /// \brief Determine whether the given type \p T has already been
5848    /// transformed.
5849    ///
5850    /// For the purposes of type reconstruction, a type has already been
5851    /// transformed if it is NULL or if it is not dependent.
5852    bool AlreadyTransformed(QualType T) {
5853      return T.isNull() || !T->isDependentType();
5854    }
5855
5856    /// \brief Returns the location of the entity whose type is being
5857    /// rebuilt.
5858    SourceLocation getBaseLocation() { return Loc; }
5859
5860    /// \brief Returns the name of the entity whose type is being rebuilt.
5861    DeclarationName getBaseEntity() { return Entity; }
5862
5863    /// \brief Sets the "base" location and entity when that
5864    /// information is known based on another transformation.
5865    void setBase(SourceLocation Loc, DeclarationName Entity) {
5866      this->Loc = Loc;
5867      this->Entity = Entity;
5868    }
5869  };
5870}
5871
5872/// \brief Rebuilds a type within the context of the current instantiation.
5873///
5874/// The type \p T is part of the type of an out-of-line member definition of
5875/// a class template (or class template partial specialization) that was parsed
5876/// and constructed before we entered the scope of the class template (or
5877/// partial specialization thereof). This routine will rebuild that type now
5878/// that we have entered the declarator's scope, which may produce different
5879/// canonical types, e.g.,
5880///
5881/// \code
5882/// template<typename T>
5883/// struct X {
5884///   typedef T* pointer;
5885///   pointer data();
5886/// };
5887///
5888/// template<typename T>
5889/// typename X<T>::pointer X<T>::data() { ... }
5890/// \endcode
5891///
5892/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
5893/// since we do not know that we can look into X<T> when we parsed the type.
5894/// This function will rebuild the type, performing the lookup of "pointer"
5895/// in X<T> and returning an ElaboratedType whose canonical type is the same
5896/// as the canonical type of T*, allowing the return types of the out-of-line
5897/// definition and the declaration to match.
5898TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
5899                                                        SourceLocation Loc,
5900                                                        DeclarationName Name) {
5901  if (!T || !T->getType()->isDependentType())
5902    return T;
5903
5904  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
5905  return Rebuilder.TransformType(T);
5906}
5907
5908ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
5909  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
5910                                          DeclarationName());
5911  return Rebuilder.TransformExpr(E);
5912}
5913
5914bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
5915  if (SS.isInvalid()) return true;
5916
5917  NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5918  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
5919                                          DeclarationName());
5920  NestedNameSpecifier *Rebuilt =
5921    Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange());
5922  if (!Rebuilt) return true;
5923
5924  SS.setScopeRep(Rebuilt);
5925  return false;
5926}
5927
5928/// \brief Produces a formatted string that describes the binding of
5929/// template parameters to template arguments.
5930std::string
5931Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5932                                      const TemplateArgumentList &Args) {
5933  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
5934}
5935
5936std::string
5937Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5938                                      const TemplateArgument *Args,
5939                                      unsigned NumArgs) {
5940  std::string Result;
5941
5942  if (!Params || Params->size() == 0 || NumArgs == 0)
5943    return Result;
5944
5945  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
5946    if (I >= NumArgs)
5947      break;
5948
5949    if (I == 0)
5950      Result += "[with ";
5951    else
5952      Result += ", ";
5953
5954    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
5955      Result += Id->getName();
5956    } else {
5957      Result += '$';
5958      Result += llvm::utostr(I);
5959    }
5960
5961    Result += " = ";
5962
5963    switch (Args[I].getKind()) {
5964      case TemplateArgument::Null:
5965        Result += "<no value>";
5966        break;
5967
5968      case TemplateArgument::Type: {
5969        std::string TypeStr;
5970        Args[I].getAsType().getAsStringInternal(TypeStr,
5971                                                Context.PrintingPolicy);
5972        Result += TypeStr;
5973        break;
5974      }
5975
5976      case TemplateArgument::Declaration: {
5977        bool Unnamed = true;
5978        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
5979          if (ND->getDeclName()) {
5980            Unnamed = false;
5981            Result += ND->getNameAsString();
5982          }
5983        }
5984
5985        if (Unnamed) {
5986          Result += "<anonymous>";
5987        }
5988        break;
5989      }
5990
5991      case TemplateArgument::Template: {
5992        std::string Str;
5993        llvm::raw_string_ostream OS(Str);
5994        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
5995        Result += OS.str();
5996        break;
5997      }
5998
5999      case TemplateArgument::Integral: {
6000        Result += Args[I].getAsIntegral()->toString(10);
6001        break;
6002      }
6003
6004      case TemplateArgument::Expression: {
6005        // FIXME: This is non-optimal, since we're regurgitating the
6006        // expression we were given.
6007        std::string Str;
6008        {
6009          llvm::raw_string_ostream OS(Str);
6010          Args[I].getAsExpr()->printPretty(OS, Context, 0,
6011                                           Context.PrintingPolicy);
6012        }
6013        Result += Str;
6014        break;
6015      }
6016
6017      case TemplateArgument::Pack:
6018        // FIXME: Format template argument packs
6019        Result += "<template argument pack>";
6020        break;
6021    }
6022  }
6023
6024  Result += ']';
6025  return Result;
6026}
6027
6028