SemaTemplate.cpp revision 7d3f576dc9ea6e866757abcd1736eb7e7433c325
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "Sema.h"
13#include "Lookup.h"
14#include "TreeTransform.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/Parse/DeclSpec.h"
20#include "clang/Parse/Template.h"
21#include "clang/Basic/LangOptions.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "llvm/ADT/StringExtras.h"
24using namespace clang;
25
26/// \brief Determine whether the declaration found is acceptable as the name
27/// of a template and, if so, return that template declaration. Otherwise,
28/// returns NULL.
29static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) {
30  if (!D)
31    return 0;
32
33  if (isa<TemplateDecl>(D))
34    return D;
35
36  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
37    // C++ [temp.local]p1:
38    //   Like normal (non-template) classes, class templates have an
39    //   injected-class-name (Clause 9). The injected-class-name
40    //   can be used with or without a template-argument-list. When
41    //   it is used without a template-argument-list, it is
42    //   equivalent to the injected-class-name followed by the
43    //   template-parameters of the class template enclosed in
44    //   <>. When it is used with a template-argument-list, it
45    //   refers to the specified class template specialization,
46    //   which could be the current specialization or another
47    //   specialization.
48    if (Record->isInjectedClassName()) {
49      Record = cast<CXXRecordDecl>(Record->getDeclContext());
50      if (Record->getDescribedClassTemplate())
51        return Record->getDescribedClassTemplate();
52
53      if (ClassTemplateSpecializationDecl *Spec
54            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
55        return Spec->getSpecializedTemplate();
56    }
57
58    return 0;
59  }
60
61  return 0;
62}
63
64static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
65  LookupResult::Filter filter = R.makeFilter();
66  while (filter.hasNext()) {
67    NamedDecl *Orig = filter.next();
68    NamedDecl *Repl = isAcceptableTemplateName(C, Orig->getUnderlyingDecl());
69    if (!Repl)
70      filter.erase();
71    else if (Repl != Orig)
72      filter.replace(Repl);
73  }
74  filter.done();
75}
76
77TemplateNameKind Sema::isTemplateName(Scope *S,
78                                      const CXXScopeSpec &SS,
79                                      UnqualifiedId &Name,
80                                      TypeTy *ObjectTypePtr,
81                                      bool EnteringContext,
82                                      TemplateTy &TemplateResult) {
83  assert(getLangOptions().CPlusPlus && "No template names in C!");
84
85  DeclarationName TName;
86
87  switch (Name.getKind()) {
88  case UnqualifiedId::IK_Identifier:
89    TName = DeclarationName(Name.Identifier);
90    break;
91
92  case UnqualifiedId::IK_OperatorFunctionId:
93    TName = Context.DeclarationNames.getCXXOperatorName(
94                                              Name.OperatorFunctionId.Operator);
95    break;
96
97  case UnqualifiedId::IK_LiteralOperatorId:
98    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
99    break;
100
101  default:
102    return TNK_Non_template;
103  }
104
105  QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
106
107  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
108                 LookupOrdinaryName);
109  R.suppressDiagnostics();
110  LookupTemplateName(R, S, SS, ObjectType, EnteringContext);
111  if (R.empty())
112    return TNK_Non_template;
113
114  TemplateName Template;
115  TemplateNameKind TemplateKind;
116
117  unsigned ResultCount = R.end() - R.begin();
118  if (ResultCount > 1) {
119    // We assume that we'll preserve the qualifier from a function
120    // template name in other ways.
121    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
122    TemplateKind = TNK_Function_template;
123  } else {
124    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
125
126    if (SS.isSet() && !SS.isInvalid()) {
127      NestedNameSpecifier *Qualifier
128        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
129      Template = Context.getQualifiedTemplateName(Qualifier, false, TD);
130    } else {
131      Template = TemplateName(TD);
132    }
133
134    if (isa<FunctionTemplateDecl>(TD))
135      TemplateKind = TNK_Function_template;
136    else {
137      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
138      TemplateKind = TNK_Type_template;
139    }
140  }
141
142  TemplateResult = TemplateTy::make(Template);
143  return TemplateKind;
144}
145
146bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
147                                       SourceLocation IILoc,
148                                       Scope *S,
149                                       const CXXScopeSpec *SS,
150                                       TemplateTy &SuggestedTemplate,
151                                       TemplateNameKind &SuggestedKind) {
152  // We can't recover unless there's a dependent scope specifier preceding the
153  // template name.
154  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
155      computeDeclContext(*SS))
156    return false;
157
158  // The code is missing a 'template' keyword prior to the dependent template
159  // name.
160  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
161  Diag(IILoc, diag::err_template_kw_missing)
162    << Qualifier << II.getName()
163    << CodeModificationHint::CreateInsertion(IILoc, "template ");
164  SuggestedTemplate
165    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
166  SuggestedKind = TNK_Dependent_template_name;
167  return true;
168}
169
170void Sema::LookupTemplateName(LookupResult &Found,
171                              Scope *S, const CXXScopeSpec &SS,
172                              QualType ObjectType,
173                              bool EnteringContext) {
174  // Determine where to perform name lookup
175  DeclContext *LookupCtx = 0;
176  bool isDependent = false;
177  if (!ObjectType.isNull()) {
178    // This nested-name-specifier occurs in a member access expression, e.g.,
179    // x->B::f, and we are looking into the type of the object.
180    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
181    LookupCtx = computeDeclContext(ObjectType);
182    isDependent = ObjectType->isDependentType();
183    assert((isDependent || !ObjectType->isIncompleteType()) &&
184           "Caller should have completed object type");
185  } else if (SS.isSet()) {
186    // This nested-name-specifier occurs after another nested-name-specifier,
187    // so long into the context associated with the prior nested-name-specifier.
188    LookupCtx = computeDeclContext(SS, EnteringContext);
189    isDependent = isDependentScopeSpecifier(SS);
190
191    // The declaration context must be complete.
192    if (LookupCtx && RequireCompleteDeclContext(SS))
193      return;
194  }
195
196  bool ObjectTypeSearchedInScope = false;
197  if (LookupCtx) {
198    // Perform "qualified" name lookup into the declaration context we
199    // computed, which is either the type of the base of a member access
200    // expression or the declaration context associated with a prior
201    // nested-name-specifier.
202    LookupQualifiedName(Found, LookupCtx);
203
204    if (!ObjectType.isNull() && Found.empty()) {
205      // C++ [basic.lookup.classref]p1:
206      //   In a class member access expression (5.2.5), if the . or -> token is
207      //   immediately followed by an identifier followed by a <, the
208      //   identifier must be looked up to determine whether the < is the
209      //   beginning of a template argument list (14.2) or a less-than operator.
210      //   The identifier is first looked up in the class of the object
211      //   expression. If the identifier is not found, it is then looked up in
212      //   the context of the entire postfix-expression and shall name a class
213      //   or function template.
214      //
215      // FIXME: When we're instantiating a template, do we actually have to
216      // look in the scope of the template? Seems fishy...
217      if (S) LookupName(Found, S);
218      ObjectTypeSearchedInScope = true;
219    }
220  } else if (isDependent) {
221    // We cannot look into a dependent object type or nested nme
222    // specifier.
223    return;
224  } else {
225    // Perform unqualified name lookup in the current scope.
226    LookupName(Found, S);
227  }
228
229  // FIXME: Cope with ambiguous name-lookup results.
230  assert(!Found.isAmbiguous() &&
231         "Cannot handle template name-lookup ambiguities");
232
233  if (Found.empty() && !isDependent) {
234    // If we did not find any names, attempt to correct any typos.
235    DeclarationName Name = Found.getLookupName();
236    if (CorrectTypo(Found, S, &SS, LookupCtx)) {
237      FilterAcceptableTemplateNames(Context, Found);
238      if (!Found.empty() && isa<TemplateDecl>(*Found.begin())) {
239        if (LookupCtx)
240          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
241            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
242            << CodeModificationHint::CreateReplacement(Found.getNameLoc(),
243                                          Found.getLookupName().getAsString());
244        else
245          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
246            << Name << Found.getLookupName()
247            << CodeModificationHint::CreateReplacement(Found.getNameLoc(),
248                                          Found.getLookupName().getAsString());
249        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
250          Diag(Template->getLocation(), diag::note_previous_decl)
251            << Template->getDeclName();
252      } else
253        Found.clear();
254    } else {
255      Found.clear();
256    }
257  }
258
259  FilterAcceptableTemplateNames(Context, Found);
260  if (Found.empty())
261    return;
262
263  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
264    // C++ [basic.lookup.classref]p1:
265    //   [...] If the lookup in the class of the object expression finds a
266    //   template, the name is also looked up in the context of the entire
267    //   postfix-expression and [...]
268    //
269    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
270                            LookupOrdinaryName);
271    LookupName(FoundOuter, S);
272    FilterAcceptableTemplateNames(Context, FoundOuter);
273    // FIXME: Handle ambiguities in this lookup better
274
275    if (FoundOuter.empty()) {
276      //   - if the name is not found, the name found in the class of the
277      //     object expression is used, otherwise
278    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
279      //   - if the name is found in the context of the entire
280      //     postfix-expression and does not name a class template, the name
281      //     found in the class of the object expression is used, otherwise
282    } else {
283      //   - if the name found is a class template, it must refer to the same
284      //     entity as the one found in the class of the object expression,
285      //     otherwise the program is ill-formed.
286      if (!Found.isSingleResult() ||
287          Found.getFoundDecl()->getCanonicalDecl()
288            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
289        Diag(Found.getNameLoc(),
290             diag::err_nested_name_member_ref_lookup_ambiguous)
291          << Found.getLookupName();
292        Diag(Found.getRepresentativeDecl()->getLocation(),
293             diag::note_ambig_member_ref_object_type)
294          << ObjectType;
295        Diag(FoundOuter.getFoundDecl()->getLocation(),
296             diag::note_ambig_member_ref_scope);
297
298        // Recover by taking the template that we found in the object
299        // expression's type.
300      }
301    }
302  }
303}
304
305/// ActOnDependentIdExpression - Handle a dependent id-expression that
306/// was just parsed.  This is only possible with an explicit scope
307/// specifier naming a dependent type.
308Sema::OwningExprResult
309Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
310                                 DeclarationName Name,
311                                 SourceLocation NameLoc,
312                                 bool isAddressOfOperand,
313                           const TemplateArgumentListInfo *TemplateArgs) {
314  NestedNameSpecifier *Qualifier
315    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
316
317  if (!isAddressOfOperand &&
318      isa<CXXMethodDecl>(CurContext) &&
319      cast<CXXMethodDecl>(CurContext)->isInstance()) {
320    QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context);
321
322    // Since the 'this' expression is synthesized, we don't need to
323    // perform the double-lookup check.
324    NamedDecl *FirstQualifierInScope = 0;
325
326    return Owned(CXXDependentScopeMemberExpr::Create(Context,
327                                                     /*This*/ 0, ThisType,
328                                                     /*IsArrow*/ true,
329                                                     /*Op*/ SourceLocation(),
330                                                     Qualifier, SS.getRange(),
331                                                     FirstQualifierInScope,
332                                                     Name, NameLoc,
333                                                     TemplateArgs));
334  }
335
336  return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs);
337}
338
339Sema::OwningExprResult
340Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
341                                DeclarationName Name,
342                                SourceLocation NameLoc,
343                                const TemplateArgumentListInfo *TemplateArgs) {
344  return Owned(DependentScopeDeclRefExpr::Create(Context,
345               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
346                                                 SS.getRange(),
347                                                 Name, NameLoc,
348                                                 TemplateArgs));
349}
350
351/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
352/// that the template parameter 'PrevDecl' is being shadowed by a new
353/// declaration at location Loc. Returns true to indicate that this is
354/// an error, and false otherwise.
355bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
356  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
357
358  // Microsoft Visual C++ permits template parameters to be shadowed.
359  if (getLangOptions().Microsoft)
360    return false;
361
362  // C++ [temp.local]p4:
363  //   A template-parameter shall not be redeclared within its
364  //   scope (including nested scopes).
365  Diag(Loc, diag::err_template_param_shadow)
366    << cast<NamedDecl>(PrevDecl)->getDeclName();
367  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
368  return true;
369}
370
371/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
372/// the parameter D to reference the templated declaration and return a pointer
373/// to the template declaration. Otherwise, do nothing to D and return null.
374TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
375  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) {
376    D = DeclPtrTy::make(Temp->getTemplatedDecl());
377    return Temp;
378  }
379  return 0;
380}
381
382static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
383                                            const ParsedTemplateArgument &Arg) {
384
385  switch (Arg.getKind()) {
386  case ParsedTemplateArgument::Type: {
387    TypeSourceInfo *DI;
388    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
389    if (!DI)
390      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
391    return TemplateArgumentLoc(TemplateArgument(T), DI);
392  }
393
394  case ParsedTemplateArgument::NonType: {
395    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
396    return TemplateArgumentLoc(TemplateArgument(E), E);
397  }
398
399  case ParsedTemplateArgument::Template: {
400    TemplateName Template
401      = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get());
402    return TemplateArgumentLoc(TemplateArgument(Template),
403                               Arg.getScopeSpec().getRange(),
404                               Arg.getLocation());
405  }
406  }
407
408  llvm_unreachable("Unhandled parsed template argument");
409  return TemplateArgumentLoc();
410}
411
412/// \brief Translates template arguments as provided by the parser
413/// into template arguments used by semantic analysis.
414void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
415                                      TemplateArgumentListInfo &TemplateArgs) {
416 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
417   TemplateArgs.addArgument(translateTemplateArgument(*this,
418                                                      TemplateArgsIn[I]));
419}
420
421/// ActOnTypeParameter - Called when a C++ template type parameter
422/// (e.g., "typename T") has been parsed. Typename specifies whether
423/// the keyword "typename" was used to declare the type parameter
424/// (otherwise, "class" was used), and KeyLoc is the location of the
425/// "class" or "typename" keyword. ParamName is the name of the
426/// parameter (NULL indicates an unnamed template parameter) and
427/// ParamName is the location of the parameter name (if any).
428/// If the type parameter has a default argument, it will be added
429/// later via ActOnTypeParameterDefault.
430Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
431                                         SourceLocation EllipsisLoc,
432                                         SourceLocation KeyLoc,
433                                         IdentifierInfo *ParamName,
434                                         SourceLocation ParamNameLoc,
435                                         unsigned Depth, unsigned Position) {
436  assert(S->isTemplateParamScope() &&
437         "Template type parameter not in template parameter scope!");
438  bool Invalid = false;
439
440  if (ParamName) {
441    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
442    if (PrevDecl && PrevDecl->isTemplateParameter())
443      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
444                                                           PrevDecl);
445  }
446
447  SourceLocation Loc = ParamNameLoc;
448  if (!ParamName)
449    Loc = KeyLoc;
450
451  TemplateTypeParmDecl *Param
452    = TemplateTypeParmDecl::Create(Context, CurContext, Loc,
453                                   Depth, Position, ParamName, Typename,
454                                   Ellipsis);
455  if (Invalid)
456    Param->setInvalidDecl();
457
458  if (ParamName) {
459    // Add the template parameter into the current scope.
460    S->AddDecl(DeclPtrTy::make(Param));
461    IdResolver.AddDecl(Param);
462  }
463
464  return DeclPtrTy::make(Param);
465}
466
467/// ActOnTypeParameterDefault - Adds a default argument (the type
468/// Default) to the given template type parameter (TypeParam).
469void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
470                                     SourceLocation EqualLoc,
471                                     SourceLocation DefaultLoc,
472                                     TypeTy *DefaultT) {
473  TemplateTypeParmDecl *Parm
474    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
475
476  TypeSourceInfo *DefaultTInfo;
477  GetTypeFromParser(DefaultT, &DefaultTInfo);
478
479  assert(DefaultTInfo && "expected source information for type");
480
481  // C++0x [temp.param]p9:
482  // A default template-argument may be specified for any kind of
483  // template-parameter that is not a template parameter pack.
484  if (Parm->isParameterPack()) {
485    Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
486    return;
487  }
488
489  // C++ [temp.param]p14:
490  //   A template-parameter shall not be used in its own default argument.
491  // FIXME: Implement this check! Needs a recursive walk over the types.
492
493  // Check the template argument itself.
494  if (CheckTemplateArgument(Parm, DefaultTInfo)) {
495    Parm->setInvalidDecl();
496    return;
497  }
498
499  Parm->setDefaultArgument(DefaultTInfo, false);
500}
501
502/// \brief Check that the type of a non-type template parameter is
503/// well-formed.
504///
505/// \returns the (possibly-promoted) parameter type if valid;
506/// otherwise, produces a diagnostic and returns a NULL type.
507QualType
508Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
509  // C++ [temp.param]p4:
510  //
511  // A non-type template-parameter shall have one of the following
512  // (optionally cv-qualified) types:
513  //
514  //       -- integral or enumeration type,
515  if (T->isIntegralType() || T->isEnumeralType() ||
516      //   -- pointer to object or pointer to function,
517      (T->isPointerType() &&
518       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
519        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
520      //   -- reference to object or reference to function,
521      T->isReferenceType() ||
522      //   -- pointer to member.
523      T->isMemberPointerType() ||
524      // If T is a dependent type, we can't do the check now, so we
525      // assume that it is well-formed.
526      T->isDependentType())
527    return T;
528  // C++ [temp.param]p8:
529  //
530  //   A non-type template-parameter of type "array of T" or
531  //   "function returning T" is adjusted to be of type "pointer to
532  //   T" or "pointer to function returning T", respectively.
533  else if (T->isArrayType())
534    // FIXME: Keep the type prior to promotion?
535    return Context.getArrayDecayedType(T);
536  else if (T->isFunctionType())
537    // FIXME: Keep the type prior to promotion?
538    return Context.getPointerType(T);
539
540  Diag(Loc, diag::err_template_nontype_parm_bad_type)
541    << T;
542
543  return QualType();
544}
545
546/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
547/// template parameter (e.g., "int Size" in "template<int Size>
548/// class Array") has been parsed. S is the current scope and D is
549/// the parsed declarator.
550Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
551                                                    unsigned Depth,
552                                                    unsigned Position) {
553  TypeSourceInfo *TInfo = 0;
554  QualType T = GetTypeForDeclarator(D, S, &TInfo);
555
556  assert(S->isTemplateParamScope() &&
557         "Non-type template parameter not in template parameter scope!");
558  bool Invalid = false;
559
560  IdentifierInfo *ParamName = D.getIdentifier();
561  if (ParamName) {
562    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
563    if (PrevDecl && PrevDecl->isTemplateParameter())
564      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
565                                                           PrevDecl);
566  }
567
568  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
569  if (T.isNull()) {
570    T = Context.IntTy; // Recover with an 'int' type.
571    Invalid = true;
572  }
573
574  NonTypeTemplateParmDecl *Param
575    = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(),
576                                      Depth, Position, ParamName, T, TInfo);
577  if (Invalid)
578    Param->setInvalidDecl();
579
580  if (D.getIdentifier()) {
581    // Add the template parameter into the current scope.
582    S->AddDecl(DeclPtrTy::make(Param));
583    IdResolver.AddDecl(Param);
584  }
585  return DeclPtrTy::make(Param);
586}
587
588/// \brief Adds a default argument to the given non-type template
589/// parameter.
590void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
591                                                SourceLocation EqualLoc,
592                                                ExprArg DefaultE) {
593  NonTypeTemplateParmDecl *TemplateParm
594    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
595  Expr *Default = static_cast<Expr *>(DefaultE.get());
596
597  // C++ [temp.param]p14:
598  //   A template-parameter shall not be used in its own default argument.
599  // FIXME: Implement this check! Needs a recursive walk over the types.
600
601  // Check the well-formedness of the default template argument.
602  TemplateArgument Converted;
603  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
604                            Converted)) {
605    TemplateParm->setInvalidDecl();
606    return;
607  }
608
609  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
610}
611
612
613/// ActOnTemplateTemplateParameter - Called when a C++ template template
614/// parameter (e.g. T in template <template <typename> class T> class array)
615/// has been parsed. S is the current scope.
616Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
617                                                     SourceLocation TmpLoc,
618                                                     TemplateParamsTy *Params,
619                                                     IdentifierInfo *Name,
620                                                     SourceLocation NameLoc,
621                                                     unsigned Depth,
622                                                     unsigned Position) {
623  assert(S->isTemplateParamScope() &&
624         "Template template parameter not in template parameter scope!");
625
626  // Construct the parameter object.
627  TemplateTemplateParmDecl *Param =
628    TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth,
629                                     Position, Name,
630                                     (TemplateParameterList*)Params);
631
632  // Make sure the parameter is valid.
633  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
634  // do anything yet. However, if the template parameter list or (eventual)
635  // default value is ever invalidated, that will propagate here.
636  bool Invalid = false;
637  if (Invalid) {
638    Param->setInvalidDecl();
639  }
640
641  // If the tt-param has a name, then link the identifier into the scope
642  // and lookup mechanisms.
643  if (Name) {
644    S->AddDecl(DeclPtrTy::make(Param));
645    IdResolver.AddDecl(Param);
646  }
647
648  return DeclPtrTy::make(Param);
649}
650
651/// \brief Adds a default argument to the given template template
652/// parameter.
653void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
654                                                 SourceLocation EqualLoc,
655                                        const ParsedTemplateArgument &Default) {
656  TemplateTemplateParmDecl *TemplateParm
657    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
658
659  // C++ [temp.param]p14:
660  //   A template-parameter shall not be used in its own default argument.
661  // FIXME: Implement this check! Needs a recursive walk over the types.
662
663  // Check only that we have a template template argument. We don't want to
664  // try to check well-formedness now, because our template template parameter
665  // might have dependent types in its template parameters, which we wouldn't
666  // be able to match now.
667  //
668  // If none of the template template parameter's template arguments mention
669  // other template parameters, we could actually perform more checking here.
670  // However, it isn't worth doing.
671  TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
672  if (DefaultArg.getArgument().getAsTemplate().isNull()) {
673    Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
674      << DefaultArg.getSourceRange();
675    return;
676  }
677
678  TemplateParm->setDefaultArgument(DefaultArg);
679}
680
681/// ActOnTemplateParameterList - Builds a TemplateParameterList that
682/// contains the template parameters in Params/NumParams.
683Sema::TemplateParamsTy *
684Sema::ActOnTemplateParameterList(unsigned Depth,
685                                 SourceLocation ExportLoc,
686                                 SourceLocation TemplateLoc,
687                                 SourceLocation LAngleLoc,
688                                 DeclPtrTy *Params, unsigned NumParams,
689                                 SourceLocation RAngleLoc) {
690  if (ExportLoc.isValid())
691    Diag(ExportLoc, diag::warn_template_export_unsupported);
692
693  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
694                                       (NamedDecl**)Params, NumParams,
695                                       RAngleLoc);
696}
697
698Sema::DeclResult
699Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
700                         SourceLocation KWLoc, const CXXScopeSpec &SS,
701                         IdentifierInfo *Name, SourceLocation NameLoc,
702                         AttributeList *Attr,
703                         TemplateParameterList *TemplateParams,
704                         AccessSpecifier AS) {
705  assert(TemplateParams && TemplateParams->size() > 0 &&
706         "No template parameters");
707  assert(TUK != TUK_Reference && "Can only declare or define class templates");
708  bool Invalid = false;
709
710  // Check that we can declare a template here.
711  if (CheckTemplateDeclScope(S, TemplateParams))
712    return true;
713
714  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
715  assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type");
716
717  // There is no such thing as an unnamed class template.
718  if (!Name) {
719    Diag(KWLoc, diag::err_template_unnamed_class);
720    return true;
721  }
722
723  // Find any previous declaration with this name.
724  DeclContext *SemanticContext;
725  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
726                        ForRedeclaration);
727  if (SS.isNotEmpty() && !SS.isInvalid()) {
728    if (RequireCompleteDeclContext(SS))
729      return true;
730
731    SemanticContext = computeDeclContext(SS, true);
732    if (!SemanticContext) {
733      // FIXME: Produce a reasonable diagnostic here
734      return true;
735    }
736
737    LookupQualifiedName(Previous, SemanticContext);
738  } else {
739    SemanticContext = CurContext;
740    LookupName(Previous, S);
741  }
742
743  assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
744  NamedDecl *PrevDecl = 0;
745  if (Previous.begin() != Previous.end())
746    PrevDecl = *Previous.begin();
747
748  // If there is a previous declaration with the same name, check
749  // whether this is a valid redeclaration.
750  ClassTemplateDecl *PrevClassTemplate
751    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
752
753  // We may have found the injected-class-name of a class template,
754  // class template partial specialization, or class template specialization.
755  // In these cases, grab the template that is being defined or specialized.
756  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
757      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
758    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
759    PrevClassTemplate
760      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
761    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
762      PrevClassTemplate
763        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
764            ->getSpecializedTemplate();
765    }
766  }
767
768  if (TUK == TUK_Friend) {
769    // C++ [namespace.memdef]p3:
770    //   [...] When looking for a prior declaration of a class or a function
771    //   declared as a friend, and when the name of the friend class or
772    //   function is neither a qualified name nor a template-id, scopes outside
773    //   the innermost enclosing namespace scope are not considered.
774    DeclContext *OutermostContext = CurContext;
775    while (!OutermostContext->isFileContext())
776      OutermostContext = OutermostContext->getLookupParent();
777
778    if (PrevDecl &&
779        (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
780         OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
781      SemanticContext = PrevDecl->getDeclContext();
782    } else {
783      // Declarations in outer scopes don't matter. However, the outermost
784      // context we computed is the semantic context for our new
785      // declaration.
786      PrevDecl = PrevClassTemplate = 0;
787      SemanticContext = OutermostContext;
788    }
789
790    if (CurContext->isDependentContext()) {
791      // If this is a dependent context, we don't want to link the friend
792      // class template to the template in scope, because that would perform
793      // checking of the template parameter lists that can't be performed
794      // until the outer context is instantiated.
795      PrevDecl = PrevClassTemplate = 0;
796    }
797  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
798    PrevDecl = PrevClassTemplate = 0;
799
800  if (PrevClassTemplate) {
801    // Ensure that the template parameter lists are compatible.
802    if (!TemplateParameterListsAreEqual(TemplateParams,
803                                   PrevClassTemplate->getTemplateParameters(),
804                                        /*Complain=*/true,
805                                        TPL_TemplateMatch))
806      return true;
807
808    // C++ [temp.class]p4:
809    //   In a redeclaration, partial specialization, explicit
810    //   specialization or explicit instantiation of a class template,
811    //   the class-key shall agree in kind with the original class
812    //   template declaration (7.1.5.3).
813    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
814    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
815      Diag(KWLoc, diag::err_use_with_wrong_tag)
816        << Name
817        << CodeModificationHint::CreateReplacement(KWLoc,
818                            PrevRecordDecl->getKindName());
819      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
820      Kind = PrevRecordDecl->getTagKind();
821    }
822
823    // Check for redefinition of this class template.
824    if (TUK == TUK_Definition) {
825      if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) {
826        Diag(NameLoc, diag::err_redefinition) << Name;
827        Diag(Def->getLocation(), diag::note_previous_definition);
828        // FIXME: Would it make sense to try to "forget" the previous
829        // definition, as part of error recovery?
830        return true;
831      }
832    }
833  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
834    // Maybe we will complain about the shadowed template parameter.
835    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
836    // Just pretend that we didn't see the previous declaration.
837    PrevDecl = 0;
838  } else if (PrevDecl) {
839    // C++ [temp]p5:
840    //   A class template shall not have the same name as any other
841    //   template, class, function, object, enumeration, enumerator,
842    //   namespace, or type in the same scope (3.3), except as specified
843    //   in (14.5.4).
844    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
845    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
846    return true;
847  }
848
849  // Check the template parameter list of this declaration, possibly
850  // merging in the template parameter list from the previous class
851  // template declaration.
852  if (CheckTemplateParameterList(TemplateParams,
853            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
854                                 TPC_ClassTemplate))
855    Invalid = true;
856
857  // FIXME: If we had a scope specifier, we better have a previous template
858  // declaration!
859
860  CXXRecordDecl *NewClass =
861    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
862                          PrevClassTemplate?
863                            PrevClassTemplate->getTemplatedDecl() : 0,
864                          /*DelayTypeCreation=*/true);
865
866  ClassTemplateDecl *NewTemplate
867    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
868                                DeclarationName(Name), TemplateParams,
869                                NewClass, PrevClassTemplate);
870  NewClass->setDescribedClassTemplate(NewTemplate);
871
872  // Build the type for the class template declaration now.
873  QualType T =
874    Context.getTypeDeclType(NewClass,
875                            PrevClassTemplate?
876                              PrevClassTemplate->getTemplatedDecl() : 0);
877  assert(T->isDependentType() && "Class template type is not dependent?");
878  (void)T;
879
880  // If we are providing an explicit specialization of a member that is a
881  // class template, make a note of that.
882  if (PrevClassTemplate &&
883      PrevClassTemplate->getInstantiatedFromMemberTemplate())
884    PrevClassTemplate->setMemberSpecialization();
885
886  // Set the access specifier.
887  if (!Invalid && TUK != TUK_Friend)
888    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
889
890  // Set the lexical context of these templates
891  NewClass->setLexicalDeclContext(CurContext);
892  NewTemplate->setLexicalDeclContext(CurContext);
893
894  if (TUK == TUK_Definition)
895    NewClass->startDefinition();
896
897  if (Attr)
898    ProcessDeclAttributeList(S, NewClass, Attr);
899
900  if (TUK != TUK_Friend)
901    PushOnScopeChains(NewTemplate, S);
902  else {
903    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
904      NewTemplate->setAccess(PrevClassTemplate->getAccess());
905      NewClass->setAccess(PrevClassTemplate->getAccess());
906    }
907
908    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
909                                       PrevClassTemplate != NULL);
910
911    // Friend templates are visible in fairly strange ways.
912    if (!CurContext->isDependentContext()) {
913      DeclContext *DC = SemanticContext->getLookupContext();
914      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
915      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
916        PushOnScopeChains(NewTemplate, EnclosingScope,
917                          /* AddToContext = */ false);
918    }
919
920    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
921                                            NewClass->getLocation(),
922                                            NewTemplate,
923                                    /*FIXME:*/NewClass->getLocation());
924    Friend->setAccess(AS_public);
925    CurContext->addDecl(Friend);
926  }
927
928  if (Invalid) {
929    NewTemplate->setInvalidDecl();
930    NewClass->setInvalidDecl();
931  }
932  return DeclPtrTy::make(NewTemplate);
933}
934
935/// \brief Diagnose the presence of a default template argument on a
936/// template parameter, which is ill-formed in certain contexts.
937///
938/// \returns true if the default template argument should be dropped.
939static bool DiagnoseDefaultTemplateArgument(Sema &S,
940                                            Sema::TemplateParamListContext TPC,
941                                            SourceLocation ParamLoc,
942                                            SourceRange DefArgRange) {
943  switch (TPC) {
944  case Sema::TPC_ClassTemplate:
945    return false;
946
947  case Sema::TPC_FunctionTemplate:
948    // C++ [temp.param]p9:
949    //   A default template-argument shall not be specified in a
950    //   function template declaration or a function template
951    //   definition [...]
952    // (This sentence is not in C++0x, per DR226).
953    if (!S.getLangOptions().CPlusPlus0x)
954      S.Diag(ParamLoc,
955             diag::err_template_parameter_default_in_function_template)
956        << DefArgRange;
957    return false;
958
959  case Sema::TPC_ClassTemplateMember:
960    // C++0x [temp.param]p9:
961    //   A default template-argument shall not be specified in the
962    //   template-parameter-lists of the definition of a member of a
963    //   class template that appears outside of the member's class.
964    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
965      << DefArgRange;
966    return true;
967
968  case Sema::TPC_FriendFunctionTemplate:
969    // C++ [temp.param]p9:
970    //   A default template-argument shall not be specified in a
971    //   friend template declaration.
972    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
973      << DefArgRange;
974    return true;
975
976    // FIXME: C++0x [temp.param]p9 allows default template-arguments
977    // for friend function templates if there is only a single
978    // declaration (and it is a definition). Strange!
979  }
980
981  return false;
982}
983
984/// \brief Checks the validity of a template parameter list, possibly
985/// considering the template parameter list from a previous
986/// declaration.
987///
988/// If an "old" template parameter list is provided, it must be
989/// equivalent (per TemplateParameterListsAreEqual) to the "new"
990/// template parameter list.
991///
992/// \param NewParams Template parameter list for a new template
993/// declaration. This template parameter list will be updated with any
994/// default arguments that are carried through from the previous
995/// template parameter list.
996///
997/// \param OldParams If provided, template parameter list from a
998/// previous declaration of the same template. Default template
999/// arguments will be merged from the old template parameter list to
1000/// the new template parameter list.
1001///
1002/// \param TPC Describes the context in which we are checking the given
1003/// template parameter list.
1004///
1005/// \returns true if an error occurred, false otherwise.
1006bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1007                                      TemplateParameterList *OldParams,
1008                                      TemplateParamListContext TPC) {
1009  bool Invalid = false;
1010
1011  // C++ [temp.param]p10:
1012  //   The set of default template-arguments available for use with a
1013  //   template declaration or definition is obtained by merging the
1014  //   default arguments from the definition (if in scope) and all
1015  //   declarations in scope in the same way default function
1016  //   arguments are (8.3.6).
1017  bool SawDefaultArgument = false;
1018  SourceLocation PreviousDefaultArgLoc;
1019
1020  bool SawParameterPack = false;
1021  SourceLocation ParameterPackLoc;
1022
1023  // Dummy initialization to avoid warnings.
1024  TemplateParameterList::iterator OldParam = NewParams->end();
1025  if (OldParams)
1026    OldParam = OldParams->begin();
1027
1028  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1029                                    NewParamEnd = NewParams->end();
1030       NewParam != NewParamEnd; ++NewParam) {
1031    // Variables used to diagnose redundant default arguments
1032    bool RedundantDefaultArg = false;
1033    SourceLocation OldDefaultLoc;
1034    SourceLocation NewDefaultLoc;
1035
1036    // Variables used to diagnose missing default arguments
1037    bool MissingDefaultArg = false;
1038
1039    // C++0x [temp.param]p11:
1040    // If a template parameter of a class template is a template parameter pack,
1041    // it must be the last template parameter.
1042    if (SawParameterPack) {
1043      Diag(ParameterPackLoc,
1044           diag::err_template_param_pack_must_be_last_template_parameter);
1045      Invalid = true;
1046    }
1047
1048    if (TemplateTypeParmDecl *NewTypeParm
1049          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1050      // Check the presence of a default argument here.
1051      if (NewTypeParm->hasDefaultArgument() &&
1052          DiagnoseDefaultTemplateArgument(*this, TPC,
1053                                          NewTypeParm->getLocation(),
1054               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1055                                                       .getFullSourceRange()))
1056        NewTypeParm->removeDefaultArgument();
1057
1058      // Merge default arguments for template type parameters.
1059      TemplateTypeParmDecl *OldTypeParm
1060          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1061
1062      if (NewTypeParm->isParameterPack()) {
1063        assert(!NewTypeParm->hasDefaultArgument() &&
1064               "Parameter packs can't have a default argument!");
1065        SawParameterPack = true;
1066        ParameterPackLoc = NewTypeParm->getLocation();
1067      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1068                 NewTypeParm->hasDefaultArgument()) {
1069        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1070        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1071        SawDefaultArgument = true;
1072        RedundantDefaultArg = true;
1073        PreviousDefaultArgLoc = NewDefaultLoc;
1074      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1075        // Merge the default argument from the old declaration to the
1076        // new declaration.
1077        SawDefaultArgument = true;
1078        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1079                                        true);
1080        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1081      } else if (NewTypeParm->hasDefaultArgument()) {
1082        SawDefaultArgument = true;
1083        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1084      } else if (SawDefaultArgument)
1085        MissingDefaultArg = true;
1086    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1087               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1088      // Check the presence of a default argument here.
1089      if (NewNonTypeParm->hasDefaultArgument() &&
1090          DiagnoseDefaultTemplateArgument(*this, TPC,
1091                                          NewNonTypeParm->getLocation(),
1092                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1093        NewNonTypeParm->getDefaultArgument()->Destroy(Context);
1094        NewNonTypeParm->setDefaultArgument(0);
1095      }
1096
1097      // Merge default arguments for non-type template parameters
1098      NonTypeTemplateParmDecl *OldNonTypeParm
1099        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1100      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1101          NewNonTypeParm->hasDefaultArgument()) {
1102        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1103        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1104        SawDefaultArgument = true;
1105        RedundantDefaultArg = true;
1106        PreviousDefaultArgLoc = NewDefaultLoc;
1107      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1108        // Merge the default argument from the old declaration to the
1109        // new declaration.
1110        SawDefaultArgument = true;
1111        // FIXME: We need to create a new kind of "default argument"
1112        // expression that points to a previous template template
1113        // parameter.
1114        NewNonTypeParm->setDefaultArgument(
1115                                        OldNonTypeParm->getDefaultArgument());
1116        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1117      } else if (NewNonTypeParm->hasDefaultArgument()) {
1118        SawDefaultArgument = true;
1119        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1120      } else if (SawDefaultArgument)
1121        MissingDefaultArg = true;
1122    } else {
1123      // Check the presence of a default argument here.
1124      TemplateTemplateParmDecl *NewTemplateParm
1125        = cast<TemplateTemplateParmDecl>(*NewParam);
1126      if (NewTemplateParm->hasDefaultArgument() &&
1127          DiagnoseDefaultTemplateArgument(*this, TPC,
1128                                          NewTemplateParm->getLocation(),
1129                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1130        NewTemplateParm->setDefaultArgument(TemplateArgumentLoc());
1131
1132      // Merge default arguments for template template parameters
1133      TemplateTemplateParmDecl *OldTemplateParm
1134        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1135      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1136          NewTemplateParm->hasDefaultArgument()) {
1137        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1138        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1139        SawDefaultArgument = true;
1140        RedundantDefaultArg = true;
1141        PreviousDefaultArgLoc = NewDefaultLoc;
1142      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1143        // Merge the default argument from the old declaration to the
1144        // new declaration.
1145        SawDefaultArgument = true;
1146        // FIXME: We need to create a new kind of "default argument" expression
1147        // that points to a previous template template parameter.
1148        NewTemplateParm->setDefaultArgument(
1149                                        OldTemplateParm->getDefaultArgument());
1150        PreviousDefaultArgLoc
1151          = OldTemplateParm->getDefaultArgument().getLocation();
1152      } else if (NewTemplateParm->hasDefaultArgument()) {
1153        SawDefaultArgument = true;
1154        PreviousDefaultArgLoc
1155          = NewTemplateParm->getDefaultArgument().getLocation();
1156      } else if (SawDefaultArgument)
1157        MissingDefaultArg = true;
1158    }
1159
1160    if (RedundantDefaultArg) {
1161      // C++ [temp.param]p12:
1162      //   A template-parameter shall not be given default arguments
1163      //   by two different declarations in the same scope.
1164      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1165      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1166      Invalid = true;
1167    } else if (MissingDefaultArg) {
1168      // C++ [temp.param]p11:
1169      //   If a template-parameter has a default template-argument,
1170      //   all subsequent template-parameters shall have a default
1171      //   template-argument supplied.
1172      Diag((*NewParam)->getLocation(),
1173           diag::err_template_param_default_arg_missing);
1174      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1175      Invalid = true;
1176    }
1177
1178    // If we have an old template parameter list that we're merging
1179    // in, move on to the next parameter.
1180    if (OldParams)
1181      ++OldParam;
1182  }
1183
1184  return Invalid;
1185}
1186
1187/// \brief Match the given template parameter lists to the given scope
1188/// specifier, returning the template parameter list that applies to the
1189/// name.
1190///
1191/// \param DeclStartLoc the start of the declaration that has a scope
1192/// specifier or a template parameter list.
1193///
1194/// \param SS the scope specifier that will be matched to the given template
1195/// parameter lists. This scope specifier precedes a qualified name that is
1196/// being declared.
1197///
1198/// \param ParamLists the template parameter lists, from the outermost to the
1199/// innermost template parameter lists.
1200///
1201/// \param NumParamLists the number of template parameter lists in ParamLists.
1202///
1203/// \param IsExplicitSpecialization will be set true if the entity being
1204/// declared is an explicit specialization, false otherwise.
1205///
1206/// \returns the template parameter list, if any, that corresponds to the
1207/// name that is preceded by the scope specifier @p SS. This template
1208/// parameter list may be have template parameters (if we're declaring a
1209/// template) or may have no template parameters (if we're declaring a
1210/// template specialization), or may be NULL (if we were's declaring isn't
1211/// itself a template).
1212TemplateParameterList *
1213Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1214                                              const CXXScopeSpec &SS,
1215                                          TemplateParameterList **ParamLists,
1216                                              unsigned NumParamLists,
1217                                              bool &IsExplicitSpecialization) {
1218  IsExplicitSpecialization = false;
1219
1220  // Find the template-ids that occur within the nested-name-specifier. These
1221  // template-ids will match up with the template parameter lists.
1222  llvm::SmallVector<const TemplateSpecializationType *, 4>
1223    TemplateIdsInSpecifier;
1224  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1225    ExplicitSpecializationsInSpecifier;
1226  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1227       NNS; NNS = NNS->getPrefix()) {
1228    const Type *T = NNS->getAsType();
1229    if (!T) break;
1230
1231    // C++0x [temp.expl.spec]p17:
1232    //   A member or a member template may be nested within many
1233    //   enclosing class templates. In an explicit specialization for
1234    //   such a member, the member declaration shall be preceded by a
1235    //   template<> for each enclosing class template that is
1236    //   explicitly specialized.
1237    // We interpret this as forbidding typedefs of template
1238    // specializations in the scope specifiers of out-of-line decls.
1239    if (const TypedefType *TT = dyn_cast<TypedefType>(T)) {
1240      const Type *UnderlyingT = TT->LookThroughTypedefs().getTypePtr();
1241      if (isa<TemplateSpecializationType>(UnderlyingT))
1242        // FIXME: better source location information.
1243        Diag(DeclStartLoc, diag::err_typedef_in_def_scope) << QualType(T,0);
1244      T = UnderlyingT;
1245    }
1246
1247    if (const TemplateSpecializationType *SpecType
1248          = dyn_cast<TemplateSpecializationType>(T)) {
1249      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1250      if (!Template)
1251        continue; // FIXME: should this be an error? probably...
1252
1253      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1254        ClassTemplateSpecializationDecl *SpecDecl
1255          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1256        // If the nested name specifier refers to an explicit specialization,
1257        // we don't need a template<> header.
1258        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1259          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1260          continue;
1261        }
1262      }
1263
1264      TemplateIdsInSpecifier.push_back(SpecType);
1265    }
1266  }
1267
1268  // Reverse the list of template-ids in the scope specifier, so that we can
1269  // more easily match up the template-ids and the template parameter lists.
1270  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1271
1272  SourceLocation FirstTemplateLoc = DeclStartLoc;
1273  if (NumParamLists)
1274    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1275
1276  // Match the template-ids found in the specifier to the template parameter
1277  // lists.
1278  unsigned Idx = 0;
1279  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1280       Idx != NumTemplateIds; ++Idx) {
1281    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
1282    bool DependentTemplateId = TemplateId->isDependentType();
1283    if (Idx >= NumParamLists) {
1284      // We have a template-id without a corresponding template parameter
1285      // list.
1286      if (DependentTemplateId) {
1287        // FIXME: the location information here isn't great.
1288        Diag(SS.getRange().getBegin(),
1289             diag::err_template_spec_needs_template_parameters)
1290          << TemplateId
1291          << SS.getRange();
1292      } else {
1293        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1294          << SS.getRange()
1295          << CodeModificationHint::CreateInsertion(FirstTemplateLoc,
1296                                                   "template<> ");
1297        IsExplicitSpecialization = true;
1298      }
1299      return 0;
1300    }
1301
1302    // Check the template parameter list against its corresponding template-id.
1303    if (DependentTemplateId) {
1304      TemplateDecl *Template
1305        = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl();
1306
1307      if (ClassTemplateDecl *ClassTemplate
1308            = dyn_cast<ClassTemplateDecl>(Template)) {
1309        TemplateParameterList *ExpectedTemplateParams = 0;
1310        // Is this template-id naming the primary template?
1311        if (Context.hasSameType(TemplateId,
1312                             ClassTemplate->getInjectedClassNameType(Context)))
1313          ExpectedTemplateParams = ClassTemplate->getTemplateParameters();
1314        // ... or a partial specialization?
1315        else if (ClassTemplatePartialSpecializationDecl *PartialSpec
1316                   = ClassTemplate->findPartialSpecialization(TemplateId))
1317          ExpectedTemplateParams = PartialSpec->getTemplateParameters();
1318
1319        if (ExpectedTemplateParams)
1320          TemplateParameterListsAreEqual(ParamLists[Idx],
1321                                         ExpectedTemplateParams,
1322                                         true, TPL_TemplateMatch);
1323      }
1324
1325      CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember);
1326    } else if (ParamLists[Idx]->size() > 0)
1327      Diag(ParamLists[Idx]->getTemplateLoc(),
1328           diag::err_template_param_list_matches_nontemplate)
1329        << TemplateId
1330        << ParamLists[Idx]->getSourceRange();
1331    else
1332      IsExplicitSpecialization = true;
1333  }
1334
1335  // If there were at least as many template-ids as there were template
1336  // parameter lists, then there are no template parameter lists remaining for
1337  // the declaration itself.
1338  if (Idx >= NumParamLists)
1339    return 0;
1340
1341  // If there were too many template parameter lists, complain about that now.
1342  if (Idx != NumParamLists - 1) {
1343    while (Idx < NumParamLists - 1) {
1344      bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0;
1345      Diag(ParamLists[Idx]->getTemplateLoc(),
1346           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1347                               : diag::err_template_spec_extra_headers)
1348        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1349                       ParamLists[Idx]->getRAngleLoc());
1350
1351      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1352        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1353             diag::note_explicit_template_spec_does_not_need_header)
1354          << ExplicitSpecializationsInSpecifier.back();
1355        ExplicitSpecializationsInSpecifier.pop_back();
1356      }
1357
1358      ++Idx;
1359    }
1360  }
1361
1362  // Return the last template parameter list, which corresponds to the
1363  // entity being declared.
1364  return ParamLists[NumParamLists - 1];
1365}
1366
1367QualType Sema::CheckTemplateIdType(TemplateName Name,
1368                                   SourceLocation TemplateLoc,
1369                              const TemplateArgumentListInfo &TemplateArgs) {
1370  TemplateDecl *Template = Name.getAsTemplateDecl();
1371  if (!Template) {
1372    // The template name does not resolve to a template, so we just
1373    // build a dependent template-id type.
1374    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1375  }
1376
1377  // Check that the template argument list is well-formed for this
1378  // template.
1379  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1380                                        TemplateArgs.size());
1381  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1382                                false, Converted))
1383    return QualType();
1384
1385  assert((Converted.structuredSize() ==
1386            Template->getTemplateParameters()->size()) &&
1387         "Converted template argument list is too short!");
1388
1389  QualType CanonType;
1390
1391  if (Name.isDependent() ||
1392      TemplateSpecializationType::anyDependentTemplateArguments(
1393                                                      TemplateArgs)) {
1394    // This class template specialization is a dependent
1395    // type. Therefore, its canonical type is another class template
1396    // specialization type that contains all of the converted
1397    // arguments in canonical form. This ensures that, e.g., A<T> and
1398    // A<T, T> have identical types when A is declared as:
1399    //
1400    //   template<typename T, typename U = T> struct A;
1401    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1402    CanonType = Context.getTemplateSpecializationType(CanonName,
1403                                                   Converted.getFlatArguments(),
1404                                                   Converted.flatSize());
1405
1406    // FIXME: CanonType is not actually the canonical type, and unfortunately
1407    // it is a TemplateSpecializationType that we will never use again.
1408    // In the future, we need to teach getTemplateSpecializationType to only
1409    // build the canonical type and return that to us.
1410    CanonType = Context.getCanonicalType(CanonType);
1411  } else if (ClassTemplateDecl *ClassTemplate
1412               = dyn_cast<ClassTemplateDecl>(Template)) {
1413    // Find the class template specialization declaration that
1414    // corresponds to these arguments.
1415    llvm::FoldingSetNodeID ID;
1416    ClassTemplateSpecializationDecl::Profile(ID,
1417                                             Converted.getFlatArguments(),
1418                                             Converted.flatSize(),
1419                                             Context);
1420    void *InsertPos = 0;
1421    ClassTemplateSpecializationDecl *Decl
1422      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
1423    if (!Decl) {
1424      // This is the first time we have referenced this class template
1425      // specialization. Create the canonical declaration and add it to
1426      // the set of specializations.
1427      Decl = ClassTemplateSpecializationDecl::Create(Context,
1428                                    ClassTemplate->getDeclContext(),
1429                                    ClassTemplate->getLocation(),
1430                                    ClassTemplate,
1431                                    Converted, 0);
1432      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
1433      Decl->setLexicalDeclContext(CurContext);
1434    }
1435
1436    CanonType = Context.getTypeDeclType(Decl);
1437  }
1438
1439  // Build the fully-sugared type for this class template
1440  // specialization, which refers back to the class template
1441  // specialization we created or found.
1442  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1443}
1444
1445Action::TypeResult
1446Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1447                          SourceLocation LAngleLoc,
1448                          ASTTemplateArgsPtr TemplateArgsIn,
1449                          SourceLocation RAngleLoc) {
1450  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1451
1452  // Translate the parser's template argument list in our AST format.
1453  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1454  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1455
1456  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1457  TemplateArgsIn.release();
1458
1459  if (Result.isNull())
1460    return true;
1461
1462  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1463  TemplateSpecializationTypeLoc TL
1464    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1465  TL.setTemplateNameLoc(TemplateLoc);
1466  TL.setLAngleLoc(LAngleLoc);
1467  TL.setRAngleLoc(RAngleLoc);
1468  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1469    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1470
1471  return CreateLocInfoType(Result, DI).getAsOpaquePtr();
1472}
1473
1474Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1475                                              TagUseKind TUK,
1476                                              DeclSpec::TST TagSpec,
1477                                              SourceLocation TagLoc) {
1478  if (TypeResult.isInvalid())
1479    return Sema::TypeResult();
1480
1481  // FIXME: preserve source info, ideally without copying the DI.
1482  TypeSourceInfo *DI;
1483  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1484
1485  // Verify the tag specifier.
1486  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
1487
1488  if (const RecordType *RT = Type->getAs<RecordType>()) {
1489    RecordDecl *D = RT->getDecl();
1490
1491    IdentifierInfo *Id = D->getIdentifier();
1492    assert(Id && "templated class must have an identifier");
1493
1494    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1495      Diag(TagLoc, diag::err_use_with_wrong_tag)
1496        << Type
1497        << CodeModificationHint::CreateReplacement(SourceRange(TagLoc),
1498                                                   D->getKindName());
1499      Diag(D->getLocation(), diag::note_previous_use);
1500    }
1501  }
1502
1503  QualType ElabType = Context.getElaboratedType(Type, TagKind);
1504
1505  return ElabType.getAsOpaquePtr();
1506}
1507
1508Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1509                                                 LookupResult &R,
1510                                                 bool RequiresADL,
1511                                 const TemplateArgumentListInfo &TemplateArgs) {
1512  // FIXME: Can we do any checking at this point? I guess we could check the
1513  // template arguments that we have against the template name, if the template
1514  // name refers to a single template. That's not a terribly common case,
1515  // though.
1516
1517  // These should be filtered out by our callers.
1518  assert(!R.empty() && "empty lookup results when building templateid");
1519  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1520
1521  NestedNameSpecifier *Qualifier = 0;
1522  SourceRange QualifierRange;
1523  if (SS.isSet()) {
1524    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1525    QualifierRange = SS.getRange();
1526  }
1527
1528  bool Dependent
1529    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(),
1530                                              &TemplateArgs);
1531  UnresolvedLookupExpr *ULE
1532    = UnresolvedLookupExpr::Create(Context, Dependent,
1533                                   Qualifier, QualifierRange,
1534                                   R.getLookupName(), R.getNameLoc(),
1535                                   RequiresADL, TemplateArgs);
1536  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1537    ULE->addDecl(*I);
1538
1539  return Owned(ULE);
1540}
1541
1542// We actually only call this from template instantiation.
1543Sema::OwningExprResult
1544Sema::BuildQualifiedTemplateIdExpr(const CXXScopeSpec &SS,
1545                                   DeclarationName Name,
1546                                   SourceLocation NameLoc,
1547                             const TemplateArgumentListInfo &TemplateArgs) {
1548  DeclContext *DC;
1549  if (!(DC = computeDeclContext(SS, false)) ||
1550      DC->isDependentContext() ||
1551      RequireCompleteDeclContext(SS))
1552    return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs);
1553
1554  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1555  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false);
1556
1557  if (R.isAmbiguous())
1558    return ExprError();
1559
1560  if (R.empty()) {
1561    Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
1562      << Name << SS.getRange();
1563    return ExprError();
1564  }
1565
1566  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1567    Diag(NameLoc, diag::err_template_kw_refers_to_class_template)
1568      << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange();
1569    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1570    return ExprError();
1571  }
1572
1573  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1574}
1575
1576/// \brief Form a dependent template name.
1577///
1578/// This action forms a dependent template name given the template
1579/// name and its (presumably dependent) scope specifier. For
1580/// example, given "MetaFun::template apply", the scope specifier \p
1581/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1582/// of the "template" keyword, and "apply" is the \p Name.
1583Sema::TemplateTy
1584Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
1585                                 const CXXScopeSpec &SS,
1586                                 UnqualifiedId &Name,
1587                                 TypeTy *ObjectType,
1588                                 bool EnteringContext) {
1589  if ((ObjectType &&
1590       computeDeclContext(QualType::getFromOpaquePtr(ObjectType))) ||
1591      (SS.isSet() && computeDeclContext(SS, EnteringContext))) {
1592    // C++0x [temp.names]p5:
1593    //   If a name prefixed by the keyword template is not the name of
1594    //   a template, the program is ill-formed. [Note: the keyword
1595    //   template may not be applied to non-template members of class
1596    //   templates. -end note ] [ Note: as is the case with the
1597    //   typename prefix, the template prefix is allowed in cases
1598    //   where it is not strictly necessary; i.e., when the
1599    //   nested-name-specifier or the expression on the left of the ->
1600    //   or . is not dependent on a template-parameter, or the use
1601    //   does not appear in the scope of a template. -end note]
1602    //
1603    // Note: C++03 was more strict here, because it banned the use of
1604    // the "template" keyword prior to a template-name that was not a
1605    // dependent name. C++ DR468 relaxed this requirement (the
1606    // "template" keyword is now permitted). We follow the C++0x
1607    // rules, even in C++03 mode, retroactively applying the DR.
1608    TemplateTy Template;
1609    TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType,
1610                                          EnteringContext, Template);
1611    if (TNK == TNK_Non_template &&
1612        isCurrentInstantiationWithDependentBases(SS)) {
1613      // This is a dependent template.
1614    } else if (TNK == TNK_Non_template) {
1615      Diag(Name.getSourceRange().getBegin(),
1616           diag::err_template_kw_refers_to_non_template)
1617        << GetNameFromUnqualifiedId(Name)
1618        << Name.getSourceRange();
1619      return TemplateTy();
1620    } else {
1621      // We found something; return it.
1622      return Template;
1623    }
1624  }
1625
1626  NestedNameSpecifier *Qualifier
1627    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1628
1629  switch (Name.getKind()) {
1630  case UnqualifiedId::IK_Identifier:
1631    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1632                                                             Name.Identifier));
1633
1634  case UnqualifiedId::IK_OperatorFunctionId:
1635    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1636                                             Name.OperatorFunctionId.Operator));
1637
1638  case UnqualifiedId::IK_LiteralOperatorId:
1639    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1640
1641  default:
1642    break;
1643  }
1644
1645  Diag(Name.getSourceRange().getBegin(),
1646       diag::err_template_kw_refers_to_non_template)
1647    << GetNameFromUnqualifiedId(Name)
1648    << Name.getSourceRange();
1649  return TemplateTy();
1650}
1651
1652bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1653                                     const TemplateArgumentLoc &AL,
1654                                     TemplateArgumentListBuilder &Converted) {
1655  const TemplateArgument &Arg = AL.getArgument();
1656
1657  // Check template type parameter.
1658  if (Arg.getKind() != TemplateArgument::Type) {
1659    // C++ [temp.arg.type]p1:
1660    //   A template-argument for a template-parameter which is a
1661    //   type shall be a type-id.
1662
1663    // We have a template type parameter but the template argument
1664    // is not a type.
1665    SourceRange SR = AL.getSourceRange();
1666    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1667    Diag(Param->getLocation(), diag::note_template_param_here);
1668
1669    return true;
1670  }
1671
1672  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1673    return true;
1674
1675  // Add the converted template type argument.
1676  Converted.Append(
1677                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1678  return false;
1679}
1680
1681/// \brief Substitute template arguments into the default template argument for
1682/// the given template type parameter.
1683///
1684/// \param SemaRef the semantic analysis object for which we are performing
1685/// the substitution.
1686///
1687/// \param Template the template that we are synthesizing template arguments
1688/// for.
1689///
1690/// \param TemplateLoc the location of the template name that started the
1691/// template-id we are checking.
1692///
1693/// \param RAngleLoc the location of the right angle bracket ('>') that
1694/// terminates the template-id.
1695///
1696/// \param Param the template template parameter whose default we are
1697/// substituting into.
1698///
1699/// \param Converted the list of template arguments provided for template
1700/// parameters that precede \p Param in the template parameter list.
1701///
1702/// \returns the substituted template argument, or NULL if an error occurred.
1703static TypeSourceInfo *
1704SubstDefaultTemplateArgument(Sema &SemaRef,
1705                             TemplateDecl *Template,
1706                             SourceLocation TemplateLoc,
1707                             SourceLocation RAngleLoc,
1708                             TemplateTypeParmDecl *Param,
1709                             TemplateArgumentListBuilder &Converted) {
1710  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
1711
1712  // If the argument type is dependent, instantiate it now based
1713  // on the previously-computed template arguments.
1714  if (ArgType->getType()->isDependentType()) {
1715    TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1716                                      /*TakeArgs=*/false);
1717
1718    MultiLevelTemplateArgumentList AllTemplateArgs
1719      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1720
1721    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1722                                     Template, Converted.getFlatArguments(),
1723                                     Converted.flatSize(),
1724                                     SourceRange(TemplateLoc, RAngleLoc));
1725
1726    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1727                                Param->getDefaultArgumentLoc(),
1728                                Param->getDeclName());
1729  }
1730
1731  return ArgType;
1732}
1733
1734/// \brief Substitute template arguments into the default template argument for
1735/// the given non-type template parameter.
1736///
1737/// \param SemaRef the semantic analysis object for which we are performing
1738/// the substitution.
1739///
1740/// \param Template the template that we are synthesizing template arguments
1741/// for.
1742///
1743/// \param TemplateLoc the location of the template name that started the
1744/// template-id we are checking.
1745///
1746/// \param RAngleLoc the location of the right angle bracket ('>') that
1747/// terminates the template-id.
1748///
1749/// \param Param the non-type template parameter whose default we are
1750/// substituting into.
1751///
1752/// \param Converted the list of template arguments provided for template
1753/// parameters that precede \p Param in the template parameter list.
1754///
1755/// \returns the substituted template argument, or NULL if an error occurred.
1756static Sema::OwningExprResult
1757SubstDefaultTemplateArgument(Sema &SemaRef,
1758                             TemplateDecl *Template,
1759                             SourceLocation TemplateLoc,
1760                             SourceLocation RAngleLoc,
1761                             NonTypeTemplateParmDecl *Param,
1762                             TemplateArgumentListBuilder &Converted) {
1763  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1764                                    /*TakeArgs=*/false);
1765
1766  MultiLevelTemplateArgumentList AllTemplateArgs
1767    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1768
1769  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1770                                   Template, Converted.getFlatArguments(),
1771                                   Converted.flatSize(),
1772                                   SourceRange(TemplateLoc, RAngleLoc));
1773
1774  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1775}
1776
1777/// \brief Substitute template arguments into the default template argument for
1778/// the given template template parameter.
1779///
1780/// \param SemaRef the semantic analysis object for which we are performing
1781/// the substitution.
1782///
1783/// \param Template the template that we are synthesizing template arguments
1784/// for.
1785///
1786/// \param TemplateLoc the location of the template name that started the
1787/// template-id we are checking.
1788///
1789/// \param RAngleLoc the location of the right angle bracket ('>') that
1790/// terminates the template-id.
1791///
1792/// \param Param the template template parameter whose default we are
1793/// substituting into.
1794///
1795/// \param Converted the list of template arguments provided for template
1796/// parameters that precede \p Param in the template parameter list.
1797///
1798/// \returns the substituted template argument, or NULL if an error occurred.
1799static TemplateName
1800SubstDefaultTemplateArgument(Sema &SemaRef,
1801                             TemplateDecl *Template,
1802                             SourceLocation TemplateLoc,
1803                             SourceLocation RAngleLoc,
1804                             TemplateTemplateParmDecl *Param,
1805                             TemplateArgumentListBuilder &Converted) {
1806  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1807                                    /*TakeArgs=*/false);
1808
1809  MultiLevelTemplateArgumentList AllTemplateArgs
1810    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1811
1812  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1813                                   Template, Converted.getFlatArguments(),
1814                                   Converted.flatSize(),
1815                                   SourceRange(TemplateLoc, RAngleLoc));
1816
1817  return SemaRef.SubstTemplateName(
1818                      Param->getDefaultArgument().getArgument().getAsTemplate(),
1819                              Param->getDefaultArgument().getTemplateNameLoc(),
1820                                   AllTemplateArgs);
1821}
1822
1823/// \brief If the given template parameter has a default template
1824/// argument, substitute into that default template argument and
1825/// return the corresponding template argument.
1826TemplateArgumentLoc
1827Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
1828                                              SourceLocation TemplateLoc,
1829                                              SourceLocation RAngleLoc,
1830                                              Decl *Param,
1831                                     TemplateArgumentListBuilder &Converted) {
1832  if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
1833    if (!TypeParm->hasDefaultArgument())
1834      return TemplateArgumentLoc();
1835
1836    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
1837                                                      TemplateLoc,
1838                                                      RAngleLoc,
1839                                                      TypeParm,
1840                                                      Converted);
1841    if (DI)
1842      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
1843
1844    return TemplateArgumentLoc();
1845  }
1846
1847  if (NonTypeTemplateParmDecl *NonTypeParm
1848        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1849    if (!NonTypeParm->hasDefaultArgument())
1850      return TemplateArgumentLoc();
1851
1852    OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
1853                                                        TemplateLoc,
1854                                                        RAngleLoc,
1855                                                        NonTypeParm,
1856                                                        Converted);
1857    if (Arg.isInvalid())
1858      return TemplateArgumentLoc();
1859
1860    Expr *ArgE = Arg.takeAs<Expr>();
1861    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
1862  }
1863
1864  TemplateTemplateParmDecl *TempTempParm
1865    = cast<TemplateTemplateParmDecl>(Param);
1866  if (!TempTempParm->hasDefaultArgument())
1867    return TemplateArgumentLoc();
1868
1869  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
1870                                                    TemplateLoc,
1871                                                    RAngleLoc,
1872                                                    TempTempParm,
1873                                                    Converted);
1874  if (TName.isNull())
1875    return TemplateArgumentLoc();
1876
1877  return TemplateArgumentLoc(TemplateArgument(TName),
1878                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
1879                TempTempParm->getDefaultArgument().getTemplateNameLoc());
1880}
1881
1882/// \brief Check that the given template argument corresponds to the given
1883/// template parameter.
1884bool Sema::CheckTemplateArgument(NamedDecl *Param,
1885                                 const TemplateArgumentLoc &Arg,
1886                                 TemplateDecl *Template,
1887                                 SourceLocation TemplateLoc,
1888                                 SourceLocation RAngleLoc,
1889                                 TemplateArgumentListBuilder &Converted) {
1890  // Check template type parameters.
1891  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
1892    return CheckTemplateTypeArgument(TTP, Arg, Converted);
1893
1894  // Check non-type template parameters.
1895  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1896    // Do substitution on the type of the non-type template parameter
1897    // with the template arguments we've seen thus far.
1898    QualType NTTPType = NTTP->getType();
1899    if (NTTPType->isDependentType()) {
1900      // Do substitution on the type of the non-type template parameter.
1901      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
1902                                 NTTP, Converted.getFlatArguments(),
1903                                 Converted.flatSize(),
1904                                 SourceRange(TemplateLoc, RAngleLoc));
1905
1906      TemplateArgumentList TemplateArgs(Context, Converted,
1907                                        /*TakeArgs=*/false);
1908      NTTPType = SubstType(NTTPType,
1909                           MultiLevelTemplateArgumentList(TemplateArgs),
1910                           NTTP->getLocation(),
1911                           NTTP->getDeclName());
1912      // If that worked, check the non-type template parameter type
1913      // for validity.
1914      if (!NTTPType.isNull())
1915        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
1916                                                     NTTP->getLocation());
1917      if (NTTPType.isNull())
1918        return true;
1919    }
1920
1921    switch (Arg.getArgument().getKind()) {
1922    case TemplateArgument::Null:
1923      assert(false && "Should never see a NULL template argument here");
1924      return true;
1925
1926    case TemplateArgument::Expression: {
1927      Expr *E = Arg.getArgument().getAsExpr();
1928      TemplateArgument Result;
1929      if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1930        return true;
1931
1932      Converted.Append(Result);
1933      break;
1934    }
1935
1936    case TemplateArgument::Declaration:
1937    case TemplateArgument::Integral:
1938      // We've already checked this template argument, so just copy
1939      // it to the list of converted arguments.
1940      Converted.Append(Arg.getArgument());
1941      break;
1942
1943    case TemplateArgument::Template:
1944      // We were given a template template argument. It may not be ill-formed;
1945      // see below.
1946      if (DependentTemplateName *DTN
1947            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
1948        // We have a template argument such as \c T::template X, which we
1949        // parsed as a template template argument. However, since we now
1950        // know that we need a non-type template argument, convert this
1951        // template name into an expression.
1952        Expr *E = DependentScopeDeclRefExpr::Create(Context,
1953                                                    DTN->getQualifier(),
1954                                               Arg.getTemplateQualifierRange(),
1955                                                    DTN->getIdentifier(),
1956                                                    Arg.getTemplateNameLoc());
1957
1958        TemplateArgument Result;
1959        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1960          return true;
1961
1962        Converted.Append(Result);
1963        break;
1964      }
1965
1966      // We have a template argument that actually does refer to a class
1967      // template, template alias, or template template parameter, and
1968      // therefore cannot be a non-type template argument.
1969      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
1970        << Arg.getSourceRange();
1971
1972      Diag(Param->getLocation(), diag::note_template_param_here);
1973      return true;
1974
1975    case TemplateArgument::Type: {
1976      // We have a non-type template parameter but the template
1977      // argument is a type.
1978
1979      // C++ [temp.arg]p2:
1980      //   In a template-argument, an ambiguity between a type-id and
1981      //   an expression is resolved to a type-id, regardless of the
1982      //   form of the corresponding template-parameter.
1983      //
1984      // We warn specifically about this case, since it can be rather
1985      // confusing for users.
1986      QualType T = Arg.getArgument().getAsType();
1987      SourceRange SR = Arg.getSourceRange();
1988      if (T->isFunctionType())
1989        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
1990      else
1991        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
1992      Diag(Param->getLocation(), diag::note_template_param_here);
1993      return true;
1994    }
1995
1996    case TemplateArgument::Pack:
1997      llvm_unreachable("Caller must expand template argument packs");
1998      break;
1999    }
2000
2001    return false;
2002  }
2003
2004
2005  // Check template template parameters.
2006  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2007
2008  // Substitute into the template parameter list of the template
2009  // template parameter, since previously-supplied template arguments
2010  // may appear within the template template parameter.
2011  {
2012    // Set up a template instantiation context.
2013    LocalInstantiationScope Scope(*this);
2014    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2015                               TempParm, Converted.getFlatArguments(),
2016                               Converted.flatSize(),
2017                               SourceRange(TemplateLoc, RAngleLoc));
2018
2019    TemplateArgumentList TemplateArgs(Context, Converted,
2020                                      /*TakeArgs=*/false);
2021    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2022                      SubstDecl(TempParm, CurContext,
2023                                MultiLevelTemplateArgumentList(TemplateArgs)));
2024    if (!TempParm)
2025      return true;
2026
2027    // FIXME: TempParam is leaked.
2028  }
2029
2030  switch (Arg.getArgument().getKind()) {
2031  case TemplateArgument::Null:
2032    assert(false && "Should never see a NULL template argument here");
2033    return true;
2034
2035  case TemplateArgument::Template:
2036    if (CheckTemplateArgument(TempParm, Arg))
2037      return true;
2038
2039    Converted.Append(Arg.getArgument());
2040    break;
2041
2042  case TemplateArgument::Expression:
2043  case TemplateArgument::Type:
2044    // We have a template template parameter but the template
2045    // argument does not refer to a template.
2046    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2047    return true;
2048
2049  case TemplateArgument::Declaration:
2050    llvm_unreachable(
2051                       "Declaration argument with template template parameter");
2052    break;
2053  case TemplateArgument::Integral:
2054    llvm_unreachable(
2055                          "Integral argument with template template parameter");
2056    break;
2057
2058  case TemplateArgument::Pack:
2059    llvm_unreachable("Caller must expand template argument packs");
2060    break;
2061  }
2062
2063  return false;
2064}
2065
2066/// \brief Check that the given template argument list is well-formed
2067/// for specializing the given template.
2068bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2069                                     SourceLocation TemplateLoc,
2070                                const TemplateArgumentListInfo &TemplateArgs,
2071                                     bool PartialTemplateArgs,
2072                                     TemplateArgumentListBuilder &Converted) {
2073  TemplateParameterList *Params = Template->getTemplateParameters();
2074  unsigned NumParams = Params->size();
2075  unsigned NumArgs = TemplateArgs.size();
2076  bool Invalid = false;
2077
2078  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2079
2080  bool HasParameterPack =
2081    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2082
2083  if ((NumArgs > NumParams && !HasParameterPack) ||
2084      (NumArgs < Params->getMinRequiredArguments() &&
2085       !PartialTemplateArgs)) {
2086    // FIXME: point at either the first arg beyond what we can handle,
2087    // or the '>', depending on whether we have too many or too few
2088    // arguments.
2089    SourceRange Range;
2090    if (NumArgs > NumParams)
2091      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2092    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2093      << (NumArgs > NumParams)
2094      << (isa<ClassTemplateDecl>(Template)? 0 :
2095          isa<FunctionTemplateDecl>(Template)? 1 :
2096          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2097      << Template << Range;
2098    Diag(Template->getLocation(), diag::note_template_decl_here)
2099      << Params->getSourceRange();
2100    Invalid = true;
2101  }
2102
2103  // C++ [temp.arg]p1:
2104  //   [...] The type and form of each template-argument specified in
2105  //   a template-id shall match the type and form specified for the
2106  //   corresponding parameter declared by the template in its
2107  //   template-parameter-list.
2108  unsigned ArgIdx = 0;
2109  for (TemplateParameterList::iterator Param = Params->begin(),
2110                                       ParamEnd = Params->end();
2111       Param != ParamEnd; ++Param, ++ArgIdx) {
2112    if (ArgIdx > NumArgs && PartialTemplateArgs)
2113      break;
2114
2115    // If we have a template parameter pack, check every remaining template
2116    // argument against that template parameter pack.
2117    if ((*Param)->isTemplateParameterPack()) {
2118      Converted.BeginPack();
2119      for (; ArgIdx < NumArgs; ++ArgIdx) {
2120        if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2121                                  TemplateLoc, RAngleLoc, Converted)) {
2122          Invalid = true;
2123          break;
2124        }
2125      }
2126      Converted.EndPack();
2127      continue;
2128    }
2129
2130    if (ArgIdx < NumArgs) {
2131      // Check the template argument we were given.
2132      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2133                                TemplateLoc, RAngleLoc, Converted))
2134        return true;
2135
2136      continue;
2137    }
2138
2139    // We have a default template argument that we will use.
2140    TemplateArgumentLoc Arg;
2141
2142    // Retrieve the default template argument from the template
2143    // parameter. For each kind of template parameter, we substitute the
2144    // template arguments provided thus far and any "outer" template arguments
2145    // (when the template parameter was part of a nested template) into
2146    // the default argument.
2147    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2148      if (!TTP->hasDefaultArgument()) {
2149        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2150        break;
2151      }
2152
2153      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2154                                                             Template,
2155                                                             TemplateLoc,
2156                                                             RAngleLoc,
2157                                                             TTP,
2158                                                             Converted);
2159      if (!ArgType)
2160        return true;
2161
2162      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2163                                ArgType);
2164    } else if (NonTypeTemplateParmDecl *NTTP
2165                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2166      if (!NTTP->hasDefaultArgument()) {
2167        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2168        break;
2169      }
2170
2171      Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template,
2172                                                              TemplateLoc,
2173                                                              RAngleLoc,
2174                                                              NTTP,
2175                                                              Converted);
2176      if (E.isInvalid())
2177        return true;
2178
2179      Expr *Ex = E.takeAs<Expr>();
2180      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2181    } else {
2182      TemplateTemplateParmDecl *TempParm
2183        = cast<TemplateTemplateParmDecl>(*Param);
2184
2185      if (!TempParm->hasDefaultArgument()) {
2186        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2187        break;
2188      }
2189
2190      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2191                                                       TemplateLoc,
2192                                                       RAngleLoc,
2193                                                       TempParm,
2194                                                       Converted);
2195      if (Name.isNull())
2196        return true;
2197
2198      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2199                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2200                  TempParm->getDefaultArgument().getTemplateNameLoc());
2201    }
2202
2203    // Introduce an instantiation record that describes where we are using
2204    // the default template argument.
2205    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2206                                        Converted.getFlatArguments(),
2207                                        Converted.flatSize(),
2208                                        SourceRange(TemplateLoc, RAngleLoc));
2209
2210    // Check the default template argument.
2211    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2212                              RAngleLoc, Converted))
2213      return true;
2214  }
2215
2216  return Invalid;
2217}
2218
2219/// \brief Check a template argument against its corresponding
2220/// template type parameter.
2221///
2222/// This routine implements the semantics of C++ [temp.arg.type]. It
2223/// returns true if an error occurred, and false otherwise.
2224bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2225                                 TypeSourceInfo *ArgInfo) {
2226  assert(ArgInfo && "invalid TypeSourceInfo");
2227  QualType Arg = ArgInfo->getType();
2228
2229  // C++ [temp.arg.type]p2:
2230  //   A local type, a type with no linkage, an unnamed type or a type
2231  //   compounded from any of these types shall not be used as a
2232  //   template-argument for a template type-parameter.
2233  //
2234  // FIXME: Perform the recursive and no-linkage type checks.
2235  const TagType *Tag = 0;
2236  if (const EnumType *EnumT = Arg->getAs<EnumType>())
2237    Tag = EnumT;
2238  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
2239    Tag = RecordT;
2240  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
2241    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2242    return Diag(SR.getBegin(), diag::err_template_arg_local_type)
2243      << QualType(Tag, 0) << SR;
2244  } else if (Tag && !Tag->getDecl()->getDeclName() &&
2245           !Tag->getDecl()->getTypedefForAnonDecl()) {
2246    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2247    Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR;
2248    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
2249    return true;
2250  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2251    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2252    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2253  }
2254
2255  return false;
2256}
2257
2258/// \brief Checks whether the given template argument is the address
2259/// of an object or function according to C++ [temp.arg.nontype]p1.
2260bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
2261                                                          NamedDecl *&Entity) {
2262  bool Invalid = false;
2263
2264  // See through any implicit casts we added to fix the type.
2265  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2266    Arg = Cast->getSubExpr();
2267
2268  // C++0x allows nullptr, and there's no further checking to be done for that.
2269  if (Arg->getType()->isNullPtrType())
2270    return false;
2271
2272  // C++ [temp.arg.nontype]p1:
2273  //
2274  //   A template-argument for a non-type, non-template
2275  //   template-parameter shall be one of: [...]
2276  //
2277  //     -- the address of an object or function with external
2278  //        linkage, including function templates and function
2279  //        template-ids but excluding non-static class members,
2280  //        expressed as & id-expression where the & is optional if
2281  //        the name refers to a function or array, or if the
2282  //        corresponding template-parameter is a reference; or
2283  DeclRefExpr *DRE = 0;
2284
2285  // Ignore (and complain about) any excess parentheses.
2286  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2287    if (!Invalid) {
2288      Diag(Arg->getSourceRange().getBegin(),
2289           diag::err_template_arg_extra_parens)
2290        << Arg->getSourceRange();
2291      Invalid = true;
2292    }
2293
2294    Arg = Parens->getSubExpr();
2295  }
2296
2297  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2298    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
2299      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2300  } else
2301    DRE = dyn_cast<DeclRefExpr>(Arg);
2302
2303  if (!DRE || !isa<ValueDecl>(DRE->getDecl()))
2304    return Diag(Arg->getSourceRange().getBegin(),
2305                diag::err_template_arg_not_object_or_func_form)
2306      << Arg->getSourceRange();
2307
2308  // Cannot refer to non-static data members
2309  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
2310    return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2311      << Field << Arg->getSourceRange();
2312
2313  // Cannot refer to non-static member functions
2314  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2315    if (!Method->isStatic())
2316      return Diag(Arg->getSourceRange().getBegin(),
2317                  diag::err_template_arg_method)
2318        << Method << Arg->getSourceRange();
2319
2320  // Functions must have external linkage.
2321  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2322    if (Func->getLinkage() != NamedDecl::ExternalLinkage) {
2323      Diag(Arg->getSourceRange().getBegin(),
2324           diag::err_template_arg_function_not_extern)
2325        << Func << Arg->getSourceRange();
2326      Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2327        << true;
2328      return true;
2329    }
2330
2331    // Okay: we've named a function with external linkage.
2332    Entity = Func;
2333    return Invalid;
2334  }
2335
2336  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2337    if (Var->getLinkage() != NamedDecl::ExternalLinkage) {
2338      Diag(Arg->getSourceRange().getBegin(),
2339           diag::err_template_arg_object_not_extern)
2340        << Var << Arg->getSourceRange();
2341      Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2342        << true;
2343      return true;
2344    }
2345
2346    // Okay: we've named an object with external linkage
2347    Entity = Var;
2348    return Invalid;
2349  }
2350
2351  // We found something else, but we don't know specifically what it is.
2352  Diag(Arg->getSourceRange().getBegin(),
2353       diag::err_template_arg_not_object_or_func)
2354      << Arg->getSourceRange();
2355  Diag(DRE->getDecl()->getLocation(),
2356       diag::note_template_arg_refers_here);
2357  return true;
2358}
2359
2360/// \brief Checks whether the given template argument is a pointer to
2361/// member constant according to C++ [temp.arg.nontype]p1.
2362bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2363                                                TemplateArgument &Converted) {
2364  bool Invalid = false;
2365
2366  // See through any implicit casts we added to fix the type.
2367  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2368    Arg = Cast->getSubExpr();
2369
2370  // C++0x allows nullptr, and there's no further checking to be done for that.
2371  if (Arg->getType()->isNullPtrType())
2372    return false;
2373
2374  // C++ [temp.arg.nontype]p1:
2375  //
2376  //   A template-argument for a non-type, non-template
2377  //   template-parameter shall be one of: [...]
2378  //
2379  //     -- a pointer to member expressed as described in 5.3.1.
2380  DeclRefExpr *DRE = 0;
2381
2382  // Ignore (and complain about) any excess parentheses.
2383  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2384    if (!Invalid) {
2385      Diag(Arg->getSourceRange().getBegin(),
2386           diag::err_template_arg_extra_parens)
2387        << Arg->getSourceRange();
2388      Invalid = true;
2389    }
2390
2391    Arg = Parens->getSubExpr();
2392  }
2393
2394  // A pointer-to-member constant written &Class::member.
2395  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2396    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2397      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2398      if (DRE && !DRE->getQualifier())
2399        DRE = 0;
2400    }
2401  }
2402  // A constant of pointer-to-member type.
2403  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2404    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2405      if (VD->getType()->isMemberPointerType()) {
2406        if (isa<NonTypeTemplateParmDecl>(VD) ||
2407            (isa<VarDecl>(VD) &&
2408             Context.getCanonicalType(VD->getType()).isConstQualified())) {
2409          if (Arg->isTypeDependent() || Arg->isValueDependent())
2410            Converted = TemplateArgument(Arg->Retain());
2411          else
2412            Converted = TemplateArgument(VD->getCanonicalDecl());
2413          return Invalid;
2414        }
2415      }
2416    }
2417
2418    DRE = 0;
2419  }
2420
2421  if (!DRE)
2422    return Diag(Arg->getSourceRange().getBegin(),
2423                diag::err_template_arg_not_pointer_to_member_form)
2424      << Arg->getSourceRange();
2425
2426  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2427    assert((isa<FieldDecl>(DRE->getDecl()) ||
2428            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2429           "Only non-static member pointers can make it here");
2430
2431    // Okay: this is the address of a non-static member, and therefore
2432    // a member pointer constant.
2433    if (Arg->isTypeDependent() || Arg->isValueDependent())
2434      Converted = TemplateArgument(Arg->Retain());
2435    else
2436      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
2437    return Invalid;
2438  }
2439
2440  // We found something else, but we don't know specifically what it is.
2441  Diag(Arg->getSourceRange().getBegin(),
2442       diag::err_template_arg_not_pointer_to_member_form)
2443      << Arg->getSourceRange();
2444  Diag(DRE->getDecl()->getLocation(),
2445       diag::note_template_arg_refers_here);
2446  return true;
2447}
2448
2449/// \brief Check a template argument against its corresponding
2450/// non-type template parameter.
2451///
2452/// This routine implements the semantics of C++ [temp.arg.nontype].
2453/// It returns true if an error occurred, and false otherwise. \p
2454/// InstantiatedParamType is the type of the non-type template
2455/// parameter after it has been instantiated.
2456///
2457/// If no error was detected, Converted receives the converted template argument.
2458bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
2459                                 QualType InstantiatedParamType, Expr *&Arg,
2460                                 TemplateArgument &Converted) {
2461  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
2462
2463  // If either the parameter has a dependent type or the argument is
2464  // type-dependent, there's nothing we can check now.
2465  // FIXME: Add template argument to Converted!
2466  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
2467    // FIXME: Produce a cloned, canonical expression?
2468    Converted = TemplateArgument(Arg);
2469    return false;
2470  }
2471
2472  // C++ [temp.arg.nontype]p5:
2473  //   The following conversions are performed on each expression used
2474  //   as a non-type template-argument. If a non-type
2475  //   template-argument cannot be converted to the type of the
2476  //   corresponding template-parameter then the program is
2477  //   ill-formed.
2478  //
2479  //     -- for a non-type template-parameter of integral or
2480  //        enumeration type, integral promotions (4.5) and integral
2481  //        conversions (4.7) are applied.
2482  QualType ParamType = InstantiatedParamType;
2483  QualType ArgType = Arg->getType();
2484  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
2485    // C++ [temp.arg.nontype]p1:
2486    //   A template-argument for a non-type, non-template
2487    //   template-parameter shall be one of:
2488    //
2489    //     -- an integral constant-expression of integral or enumeration
2490    //        type; or
2491    //     -- the name of a non-type template-parameter; or
2492    SourceLocation NonConstantLoc;
2493    llvm::APSInt Value;
2494    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
2495      Diag(Arg->getSourceRange().getBegin(),
2496           diag::err_template_arg_not_integral_or_enumeral)
2497        << ArgType << Arg->getSourceRange();
2498      Diag(Param->getLocation(), diag::note_template_param_here);
2499      return true;
2500    } else if (!Arg->isValueDependent() &&
2501               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
2502      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
2503        << ArgType << Arg->getSourceRange();
2504      return true;
2505    }
2506
2507    // FIXME: We need some way to more easily get the unqualified form
2508    // of the types without going all the way to the
2509    // canonical type.
2510    if (Context.getCanonicalType(ParamType).getCVRQualifiers())
2511      ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType();
2512    if (Context.getCanonicalType(ArgType).getCVRQualifiers())
2513      ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType();
2514
2515    // Try to convert the argument to the parameter's type.
2516    if (Context.hasSameType(ParamType, ArgType)) {
2517      // Okay: no conversion necessary
2518    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
2519               !ParamType->isEnumeralType()) {
2520      // This is an integral promotion or conversion.
2521      ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast);
2522    } else {
2523      // We can't perform this conversion.
2524      Diag(Arg->getSourceRange().getBegin(),
2525           diag::err_template_arg_not_convertible)
2526        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2527      Diag(Param->getLocation(), diag::note_template_param_here);
2528      return true;
2529    }
2530
2531    QualType IntegerType = Context.getCanonicalType(ParamType);
2532    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
2533      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
2534
2535    if (!Arg->isValueDependent()) {
2536      // Check that an unsigned parameter does not receive a negative
2537      // value.
2538      if (IntegerType->isUnsignedIntegerType()
2539          && (Value.isSigned() && Value.isNegative())) {
2540        Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative)
2541          << Value.toString(10) << Param->getType()
2542          << Arg->getSourceRange();
2543        Diag(Param->getLocation(), diag::note_template_param_here);
2544        return true;
2545      }
2546
2547      // Check that we don't overflow the template parameter type.
2548      unsigned AllowedBits = Context.getTypeSize(IntegerType);
2549      unsigned RequiredBits;
2550      if (IntegerType->isUnsignedIntegerType())
2551        RequiredBits = Value.getActiveBits();
2552      else if (Value.isUnsigned())
2553        RequiredBits = Value.getActiveBits() + 1;
2554      else
2555        RequiredBits = Value.getMinSignedBits();
2556      if (RequiredBits > AllowedBits) {
2557        Diag(Arg->getSourceRange().getBegin(),
2558             diag::err_template_arg_too_large)
2559          << Value.toString(10) << Param->getType()
2560          << Arg->getSourceRange();
2561        Diag(Param->getLocation(), diag::note_template_param_here);
2562        return true;
2563      }
2564
2565      if (Value.getBitWidth() != AllowedBits)
2566        Value.extOrTrunc(AllowedBits);
2567      Value.setIsSigned(IntegerType->isSignedIntegerType());
2568    }
2569
2570    // Add the value of this argument to the list of converted
2571    // arguments. We use the bitwidth and signedness of the template
2572    // parameter.
2573    if (Arg->isValueDependent()) {
2574      // The argument is value-dependent. Create a new
2575      // TemplateArgument with the converted expression.
2576      Converted = TemplateArgument(Arg);
2577      return false;
2578    }
2579
2580    Converted = TemplateArgument(Value,
2581                                 ParamType->isEnumeralType() ? ParamType
2582                                                             : IntegerType);
2583    return false;
2584  }
2585
2586  // Handle pointer-to-function, reference-to-function, and
2587  // pointer-to-member-function all in (roughly) the same way.
2588  if (// -- For a non-type template-parameter of type pointer to
2589      //    function, only the function-to-pointer conversion (4.3) is
2590      //    applied. If the template-argument represents a set of
2591      //    overloaded functions (or a pointer to such), the matching
2592      //    function is selected from the set (13.4).
2593      // In C++0x, any std::nullptr_t value can be converted.
2594      (ParamType->isPointerType() &&
2595       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
2596      // -- For a non-type template-parameter of type reference to
2597      //    function, no conversions apply. If the template-argument
2598      //    represents a set of overloaded functions, the matching
2599      //    function is selected from the set (13.4).
2600      (ParamType->isReferenceType() &&
2601       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
2602      // -- For a non-type template-parameter of type pointer to
2603      //    member function, no conversions apply. If the
2604      //    template-argument represents a set of overloaded member
2605      //    functions, the matching member function is selected from
2606      //    the set (13.4).
2607      // Again, C++0x allows a std::nullptr_t value.
2608      (ParamType->isMemberPointerType() &&
2609       ParamType->getAs<MemberPointerType>()->getPointeeType()
2610         ->isFunctionType())) {
2611    if (Context.hasSameUnqualifiedType(ArgType,
2612                                       ParamType.getNonReferenceType())) {
2613      // We don't have to do anything: the types already match.
2614    } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() ||
2615                 ParamType->isMemberPointerType())) {
2616      ArgType = ParamType;
2617      if (ParamType->isMemberPointerType())
2618        ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer);
2619      else
2620        ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast);
2621    } else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
2622      ArgType = Context.getPointerType(ArgType);
2623      ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay);
2624    } else if (FunctionDecl *Fn
2625                 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) {
2626      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2627        return true;
2628
2629      Arg = FixOverloadedFunctionReference(Arg, Fn);
2630      ArgType = Arg->getType();
2631      if (ArgType->isFunctionType() && ParamType->isPointerType()) {
2632        ArgType = Context.getPointerType(Arg->getType());
2633        ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay);
2634      }
2635    }
2636
2637    if (!Context.hasSameUnqualifiedType(ArgType,
2638                                        ParamType.getNonReferenceType())) {
2639      // We can't perform this conversion.
2640      Diag(Arg->getSourceRange().getBegin(),
2641           diag::err_template_arg_not_convertible)
2642        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2643      Diag(Param->getLocation(), diag::note_template_param_here);
2644      return true;
2645    }
2646
2647    if (ParamType->isMemberPointerType())
2648      return CheckTemplateArgumentPointerToMember(Arg, Converted);
2649
2650    NamedDecl *Entity = 0;
2651    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2652      return true;
2653
2654    if (Entity)
2655      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2656    Converted = TemplateArgument(Entity);
2657    return false;
2658  }
2659
2660  if (ParamType->isPointerType()) {
2661    //   -- for a non-type template-parameter of type pointer to
2662    //      object, qualification conversions (4.4) and the
2663    //      array-to-pointer conversion (4.2) are applied.
2664    // C++0x also allows a value of std::nullptr_t.
2665    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
2666           "Only object pointers allowed here");
2667
2668    if (ArgType->isNullPtrType()) {
2669      ArgType = ParamType;
2670      ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast);
2671    } else if (ArgType->isArrayType()) {
2672      ArgType = Context.getArrayDecayedType(ArgType);
2673      ImpCastExprToType(Arg, ArgType, CastExpr::CK_ArrayToPointerDecay);
2674    }
2675
2676    if (IsQualificationConversion(ArgType, ParamType)) {
2677      ArgType = ParamType;
2678      ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp);
2679    }
2680
2681    if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2682      // We can't perform this conversion.
2683      Diag(Arg->getSourceRange().getBegin(),
2684           diag::err_template_arg_not_convertible)
2685        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2686      Diag(Param->getLocation(), diag::note_template_param_here);
2687      return true;
2688    }
2689
2690    NamedDecl *Entity = 0;
2691    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2692      return true;
2693
2694    if (Entity)
2695      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2696    Converted = TemplateArgument(Entity);
2697    return false;
2698  }
2699
2700  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2701    //   -- For a non-type template-parameter of type reference to
2702    //      object, no conversions apply. The type referred to by the
2703    //      reference may be more cv-qualified than the (otherwise
2704    //      identical) type of the template-argument. The
2705    //      template-parameter is bound directly to the
2706    //      template-argument, which must be an lvalue.
2707    assert(ParamRefType->getPointeeType()->isObjectType() &&
2708           "Only object references allowed here");
2709
2710    if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) {
2711      Diag(Arg->getSourceRange().getBegin(),
2712           diag::err_template_arg_no_ref_bind)
2713        << InstantiatedParamType << Arg->getType()
2714        << Arg->getSourceRange();
2715      Diag(Param->getLocation(), diag::note_template_param_here);
2716      return true;
2717    }
2718
2719    unsigned ParamQuals
2720      = Context.getCanonicalType(ParamType).getCVRQualifiers();
2721    unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
2722
2723    if ((ParamQuals | ArgQuals) != ParamQuals) {
2724      Diag(Arg->getSourceRange().getBegin(),
2725           diag::err_template_arg_ref_bind_ignores_quals)
2726        << InstantiatedParamType << Arg->getType()
2727        << Arg->getSourceRange();
2728      Diag(Param->getLocation(), diag::note_template_param_here);
2729      return true;
2730    }
2731
2732    NamedDecl *Entity = 0;
2733    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2734      return true;
2735
2736    Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2737    Converted = TemplateArgument(Entity);
2738    return false;
2739  }
2740
2741  //     -- For a non-type template-parameter of type pointer to data
2742  //        member, qualification conversions (4.4) are applied.
2743  // C++0x allows std::nullptr_t values.
2744  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
2745
2746  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
2747    // Types match exactly: nothing more to do here.
2748  } else if (ArgType->isNullPtrType()) {
2749    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer);
2750  } else if (IsQualificationConversion(ArgType, ParamType)) {
2751    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp);
2752  } else {
2753    // We can't perform this conversion.
2754    Diag(Arg->getSourceRange().getBegin(),
2755         diag::err_template_arg_not_convertible)
2756      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2757    Diag(Param->getLocation(), diag::note_template_param_here);
2758    return true;
2759  }
2760
2761  return CheckTemplateArgumentPointerToMember(Arg, Converted);
2762}
2763
2764/// \brief Check a template argument against its corresponding
2765/// template template parameter.
2766///
2767/// This routine implements the semantics of C++ [temp.arg.template].
2768/// It returns true if an error occurred, and false otherwise.
2769bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
2770                                 const TemplateArgumentLoc &Arg) {
2771  TemplateName Name = Arg.getArgument().getAsTemplate();
2772  TemplateDecl *Template = Name.getAsTemplateDecl();
2773  if (!Template) {
2774    // Any dependent template name is fine.
2775    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
2776    return false;
2777  }
2778
2779  // C++ [temp.arg.template]p1:
2780  //   A template-argument for a template template-parameter shall be
2781  //   the name of a class template, expressed as id-expression. Only
2782  //   primary class templates are considered when matching the
2783  //   template template argument with the corresponding parameter;
2784  //   partial specializations are not considered even if their
2785  //   parameter lists match that of the template template parameter.
2786  //
2787  // Note that we also allow template template parameters here, which
2788  // will happen when we are dealing with, e.g., class template
2789  // partial specializations.
2790  if (!isa<ClassTemplateDecl>(Template) &&
2791      !isa<TemplateTemplateParmDecl>(Template)) {
2792    assert(isa<FunctionTemplateDecl>(Template) &&
2793           "Only function templates are possible here");
2794    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
2795    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
2796      << Template;
2797  }
2798
2799  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
2800                                         Param->getTemplateParameters(),
2801                                         true,
2802                                         TPL_TemplateTemplateArgumentMatch,
2803                                         Arg.getLocation());
2804}
2805
2806/// \brief Determine whether the given template parameter lists are
2807/// equivalent.
2808///
2809/// \param New  The new template parameter list, typically written in the
2810/// source code as part of a new template declaration.
2811///
2812/// \param Old  The old template parameter list, typically found via
2813/// name lookup of the template declared with this template parameter
2814/// list.
2815///
2816/// \param Complain  If true, this routine will produce a diagnostic if
2817/// the template parameter lists are not equivalent.
2818///
2819/// \param Kind describes how we are to match the template parameter lists.
2820///
2821/// \param TemplateArgLoc If this source location is valid, then we
2822/// are actually checking the template parameter list of a template
2823/// argument (New) against the template parameter list of its
2824/// corresponding template template parameter (Old). We produce
2825/// slightly different diagnostics in this scenario.
2826///
2827/// \returns True if the template parameter lists are equal, false
2828/// otherwise.
2829bool
2830Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
2831                                     TemplateParameterList *Old,
2832                                     bool Complain,
2833                                     TemplateParameterListEqualKind Kind,
2834                                     SourceLocation TemplateArgLoc) {
2835  if (Old->size() != New->size()) {
2836    if (Complain) {
2837      unsigned NextDiag = diag::err_template_param_list_different_arity;
2838      if (TemplateArgLoc.isValid()) {
2839        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2840        NextDiag = diag::note_template_param_list_different_arity;
2841      }
2842      Diag(New->getTemplateLoc(), NextDiag)
2843          << (New->size() > Old->size())
2844          << (Kind != TPL_TemplateMatch)
2845          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
2846      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
2847        << (Kind != TPL_TemplateMatch)
2848        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
2849    }
2850
2851    return false;
2852  }
2853
2854  for (TemplateParameterList::iterator OldParm = Old->begin(),
2855         OldParmEnd = Old->end(), NewParm = New->begin();
2856       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
2857    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
2858      if (Complain) {
2859        unsigned NextDiag = diag::err_template_param_different_kind;
2860        if (TemplateArgLoc.isValid()) {
2861          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2862          NextDiag = diag::note_template_param_different_kind;
2863        }
2864        Diag((*NewParm)->getLocation(), NextDiag)
2865          << (Kind != TPL_TemplateMatch);
2866        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
2867          << (Kind != TPL_TemplateMatch);
2868      }
2869      return false;
2870    }
2871
2872    if (isa<TemplateTypeParmDecl>(*OldParm)) {
2873      // Okay; all template type parameters are equivalent (since we
2874      // know we're at the same index).
2875    } else if (NonTypeTemplateParmDecl *OldNTTP
2876                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
2877      // The types of non-type template parameters must agree.
2878      NonTypeTemplateParmDecl *NewNTTP
2879        = cast<NonTypeTemplateParmDecl>(*NewParm);
2880
2881      // If we are matching a template template argument to a template
2882      // template parameter and one of the non-type template parameter types
2883      // is dependent, then we must wait until template instantiation time
2884      // to actually compare the arguments.
2885      if (Kind == TPL_TemplateTemplateArgumentMatch &&
2886          (OldNTTP->getType()->isDependentType() ||
2887           NewNTTP->getType()->isDependentType()))
2888        continue;
2889
2890      if (Context.getCanonicalType(OldNTTP->getType()) !=
2891            Context.getCanonicalType(NewNTTP->getType())) {
2892        if (Complain) {
2893          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
2894          if (TemplateArgLoc.isValid()) {
2895            Diag(TemplateArgLoc,
2896                 diag::err_template_arg_template_params_mismatch);
2897            NextDiag = diag::note_template_nontype_parm_different_type;
2898          }
2899          Diag(NewNTTP->getLocation(), NextDiag)
2900            << NewNTTP->getType()
2901            << (Kind != TPL_TemplateMatch);
2902          Diag(OldNTTP->getLocation(),
2903               diag::note_template_nontype_parm_prev_declaration)
2904            << OldNTTP->getType();
2905        }
2906        return false;
2907      }
2908    } else {
2909      // The template parameter lists of template template
2910      // parameters must agree.
2911      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
2912             "Only template template parameters handled here");
2913      TemplateTemplateParmDecl *OldTTP
2914        = cast<TemplateTemplateParmDecl>(*OldParm);
2915      TemplateTemplateParmDecl *NewTTP
2916        = cast<TemplateTemplateParmDecl>(*NewParm);
2917      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
2918                                          OldTTP->getTemplateParameters(),
2919                                          Complain,
2920              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
2921                                          TemplateArgLoc))
2922        return false;
2923    }
2924  }
2925
2926  return true;
2927}
2928
2929/// \brief Check whether a template can be declared within this scope.
2930///
2931/// If the template declaration is valid in this scope, returns
2932/// false. Otherwise, issues a diagnostic and returns true.
2933bool
2934Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
2935  // Find the nearest enclosing declaration scope.
2936  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2937         (S->getFlags() & Scope::TemplateParamScope) != 0)
2938    S = S->getParent();
2939
2940  // C++ [temp]p2:
2941  //   A template-declaration can appear only as a namespace scope or
2942  //   class scope declaration.
2943  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
2944  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
2945      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
2946    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
2947             << TemplateParams->getSourceRange();
2948
2949  while (Ctx && isa<LinkageSpecDecl>(Ctx))
2950    Ctx = Ctx->getParent();
2951
2952  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
2953    return false;
2954
2955  return Diag(TemplateParams->getTemplateLoc(),
2956              diag::err_template_outside_namespace_or_class_scope)
2957    << TemplateParams->getSourceRange();
2958}
2959
2960/// \brief Determine what kind of template specialization the given declaration
2961/// is.
2962static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
2963  if (!D)
2964    return TSK_Undeclared;
2965
2966  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
2967    return Record->getTemplateSpecializationKind();
2968  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
2969    return Function->getTemplateSpecializationKind();
2970  if (VarDecl *Var = dyn_cast<VarDecl>(D))
2971    return Var->getTemplateSpecializationKind();
2972
2973  return TSK_Undeclared;
2974}
2975
2976/// \brief Check whether a specialization is well-formed in the current
2977/// context.
2978///
2979/// This routine determines whether a template specialization can be declared
2980/// in the current context (C++ [temp.expl.spec]p2).
2981///
2982/// \param S the semantic analysis object for which this check is being
2983/// performed.
2984///
2985/// \param Specialized the entity being specialized or instantiated, which
2986/// may be a kind of template (class template, function template, etc.) or
2987/// a member of a class template (member function, static data member,
2988/// member class).
2989///
2990/// \param PrevDecl the previous declaration of this entity, if any.
2991///
2992/// \param Loc the location of the explicit specialization or instantiation of
2993/// this entity.
2994///
2995/// \param IsPartialSpecialization whether this is a partial specialization of
2996/// a class template.
2997///
2998/// \returns true if there was an error that we cannot recover from, false
2999/// otherwise.
3000static bool CheckTemplateSpecializationScope(Sema &S,
3001                                             NamedDecl *Specialized,
3002                                             NamedDecl *PrevDecl,
3003                                             SourceLocation Loc,
3004                                             bool IsPartialSpecialization) {
3005  // Keep these "kind" numbers in sync with the %select statements in the
3006  // various diagnostics emitted by this routine.
3007  int EntityKind = 0;
3008  bool isTemplateSpecialization = false;
3009  if (isa<ClassTemplateDecl>(Specialized)) {
3010    EntityKind = IsPartialSpecialization? 1 : 0;
3011    isTemplateSpecialization = true;
3012  } else if (isa<FunctionTemplateDecl>(Specialized)) {
3013    EntityKind = 2;
3014    isTemplateSpecialization = true;
3015  } else if (isa<CXXMethodDecl>(Specialized))
3016    EntityKind = 3;
3017  else if (isa<VarDecl>(Specialized))
3018    EntityKind = 4;
3019  else if (isa<RecordDecl>(Specialized))
3020    EntityKind = 5;
3021  else {
3022    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3023    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3024    return true;
3025  }
3026
3027  // C++ [temp.expl.spec]p2:
3028  //   An explicit specialization shall be declared in the namespace
3029  //   of which the template is a member, or, for member templates, in
3030  //   the namespace of which the enclosing class or enclosing class
3031  //   template is a member. An explicit specialization of a member
3032  //   function, member class or static data member of a class
3033  //   template shall be declared in the namespace of which the class
3034  //   template is a member. Such a declaration may also be a
3035  //   definition. If the declaration is not a definition, the
3036  //   specialization may be defined later in the name- space in which
3037  //   the explicit specialization was declared, or in a namespace
3038  //   that encloses the one in which the explicit specialization was
3039  //   declared.
3040  if (S.CurContext->getLookupContext()->isFunctionOrMethod()) {
3041    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3042      << Specialized;
3043    return true;
3044  }
3045
3046  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3047    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3048      << Specialized;
3049    return true;
3050  }
3051
3052  // C++ [temp.class.spec]p6:
3053  //   A class template partial specialization may be declared or redeclared
3054  //   in any namespace scope in which its definition may be defined (14.5.1
3055  //   and 14.5.2).
3056  bool ComplainedAboutScope = false;
3057  DeclContext *SpecializedContext
3058    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3059  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3060  if ((!PrevDecl ||
3061       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3062       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3063    // There is no prior declaration of this entity, so this
3064    // specialization must be in the same context as the template
3065    // itself.
3066    if (!DC->Equals(SpecializedContext)) {
3067      if (isa<TranslationUnitDecl>(SpecializedContext))
3068        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
3069        << EntityKind << Specialized;
3070      else if (isa<NamespaceDecl>(SpecializedContext))
3071        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope)
3072        << EntityKind << Specialized
3073        << cast<NamedDecl>(SpecializedContext);
3074
3075      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3076      ComplainedAboutScope = true;
3077    }
3078  }
3079
3080  // Make sure that this redeclaration (or definition) occurs in an enclosing
3081  // namespace.
3082  // Note that HandleDeclarator() performs this check for explicit
3083  // specializations of function templates, static data members, and member
3084  // functions, so we skip the check here for those kinds of entities.
3085  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3086  // Should we refactor that check, so that it occurs later?
3087  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3088      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3089        isa<FunctionDecl>(Specialized))) {
3090    if (isa<TranslationUnitDecl>(SpecializedContext))
3091      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3092        << EntityKind << Specialized;
3093    else if (isa<NamespaceDecl>(SpecializedContext))
3094      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3095        << EntityKind << Specialized
3096        << cast<NamedDecl>(SpecializedContext);
3097
3098    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3099  }
3100
3101  // FIXME: check for specialization-after-instantiation errors and such.
3102
3103  return false;
3104}
3105
3106/// \brief Check the non-type template arguments of a class template
3107/// partial specialization according to C++ [temp.class.spec]p9.
3108///
3109/// \param TemplateParams the template parameters of the primary class
3110/// template.
3111///
3112/// \param TemplateArg the template arguments of the class template
3113/// partial specialization.
3114///
3115/// \param MirrorsPrimaryTemplate will be set true if the class
3116/// template partial specialization arguments are identical to the
3117/// implicit template arguments of the primary template. This is not
3118/// necessarily an error (C++0x), and it is left to the caller to diagnose
3119/// this condition when it is an error.
3120///
3121/// \returns true if there was an error, false otherwise.
3122bool Sema::CheckClassTemplatePartialSpecializationArgs(
3123                                        TemplateParameterList *TemplateParams,
3124                             const TemplateArgumentListBuilder &TemplateArgs,
3125                                        bool &MirrorsPrimaryTemplate) {
3126  // FIXME: the interface to this function will have to change to
3127  // accommodate variadic templates.
3128  MirrorsPrimaryTemplate = true;
3129
3130  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
3131
3132  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3133    // Determine whether the template argument list of the partial
3134    // specialization is identical to the implicit argument list of
3135    // the primary template. The caller may need to diagnostic this as
3136    // an error per C++ [temp.class.spec]p9b3.
3137    if (MirrorsPrimaryTemplate) {
3138      if (TemplateTypeParmDecl *TTP
3139            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3140        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3141              Context.getCanonicalType(ArgList[I].getAsType()))
3142          MirrorsPrimaryTemplate = false;
3143      } else if (TemplateTemplateParmDecl *TTP
3144                   = dyn_cast<TemplateTemplateParmDecl>(
3145                                                 TemplateParams->getParam(I))) {
3146        TemplateName Name = ArgList[I].getAsTemplate();
3147        TemplateTemplateParmDecl *ArgDecl
3148          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3149        if (!ArgDecl ||
3150            ArgDecl->getIndex() != TTP->getIndex() ||
3151            ArgDecl->getDepth() != TTP->getDepth())
3152          MirrorsPrimaryTemplate = false;
3153      }
3154    }
3155
3156    NonTypeTemplateParmDecl *Param
3157      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3158    if (!Param) {
3159      continue;
3160    }
3161
3162    Expr *ArgExpr = ArgList[I].getAsExpr();
3163    if (!ArgExpr) {
3164      MirrorsPrimaryTemplate = false;
3165      continue;
3166    }
3167
3168    // C++ [temp.class.spec]p8:
3169    //   A non-type argument is non-specialized if it is the name of a
3170    //   non-type parameter. All other non-type arguments are
3171    //   specialized.
3172    //
3173    // Below, we check the two conditions that only apply to
3174    // specialized non-type arguments, so skip any non-specialized
3175    // arguments.
3176    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3177      if (NonTypeTemplateParmDecl *NTTP
3178            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3179        if (MirrorsPrimaryTemplate &&
3180            (Param->getIndex() != NTTP->getIndex() ||
3181             Param->getDepth() != NTTP->getDepth()))
3182          MirrorsPrimaryTemplate = false;
3183
3184        continue;
3185      }
3186
3187    // C++ [temp.class.spec]p9:
3188    //   Within the argument list of a class template partial
3189    //   specialization, the following restrictions apply:
3190    //     -- A partially specialized non-type argument expression
3191    //        shall not involve a template parameter of the partial
3192    //        specialization except when the argument expression is a
3193    //        simple identifier.
3194    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3195      Diag(ArgExpr->getLocStart(),
3196           diag::err_dependent_non_type_arg_in_partial_spec)
3197        << ArgExpr->getSourceRange();
3198      return true;
3199    }
3200
3201    //     -- The type of a template parameter corresponding to a
3202    //        specialized non-type argument shall not be dependent on a
3203    //        parameter of the specialization.
3204    if (Param->getType()->isDependentType()) {
3205      Diag(ArgExpr->getLocStart(),
3206           diag::err_dependent_typed_non_type_arg_in_partial_spec)
3207        << Param->getType()
3208        << ArgExpr->getSourceRange();
3209      Diag(Param->getLocation(), diag::note_template_param_here);
3210      return true;
3211    }
3212
3213    MirrorsPrimaryTemplate = false;
3214  }
3215
3216  return false;
3217}
3218
3219Sema::DeclResult
3220Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
3221                                       TagUseKind TUK,
3222                                       SourceLocation KWLoc,
3223                                       const CXXScopeSpec &SS,
3224                                       TemplateTy TemplateD,
3225                                       SourceLocation TemplateNameLoc,
3226                                       SourceLocation LAngleLoc,
3227                                       ASTTemplateArgsPtr TemplateArgsIn,
3228                                       SourceLocation RAngleLoc,
3229                                       AttributeList *Attr,
3230                               MultiTemplateParamsArg TemplateParameterLists) {
3231  assert(TUK != TUK_Reference && "References are not specializations");
3232
3233  // Find the class template we're specializing
3234  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3235  ClassTemplateDecl *ClassTemplate
3236    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
3237
3238  if (!ClassTemplate) {
3239    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
3240      << (Name.getAsTemplateDecl() &&
3241          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
3242    return true;
3243  }
3244
3245  bool isExplicitSpecialization = false;
3246  bool isPartialSpecialization = false;
3247
3248  // Check the validity of the template headers that introduce this
3249  // template.
3250  // FIXME: We probably shouldn't complain about these headers for
3251  // friend declarations.
3252  TemplateParameterList *TemplateParams
3253    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
3254                        (TemplateParameterList**)TemplateParameterLists.get(),
3255                                              TemplateParameterLists.size(),
3256                                              isExplicitSpecialization);
3257  if (TemplateParams && TemplateParams->size() > 0) {
3258    isPartialSpecialization = true;
3259
3260    // C++ [temp.class.spec]p10:
3261    //   The template parameter list of a specialization shall not
3262    //   contain default template argument values.
3263    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3264      Decl *Param = TemplateParams->getParam(I);
3265      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
3266        if (TTP->hasDefaultArgument()) {
3267          Diag(TTP->getDefaultArgumentLoc(),
3268               diag::err_default_arg_in_partial_spec);
3269          TTP->removeDefaultArgument();
3270        }
3271      } else if (NonTypeTemplateParmDecl *NTTP
3272                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3273        if (Expr *DefArg = NTTP->getDefaultArgument()) {
3274          Diag(NTTP->getDefaultArgumentLoc(),
3275               diag::err_default_arg_in_partial_spec)
3276            << DefArg->getSourceRange();
3277          NTTP->setDefaultArgument(0);
3278          DefArg->Destroy(Context);
3279        }
3280      } else {
3281        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
3282        if (TTP->hasDefaultArgument()) {
3283          Diag(TTP->getDefaultArgument().getLocation(),
3284               diag::err_default_arg_in_partial_spec)
3285            << TTP->getDefaultArgument().getSourceRange();
3286          TTP->setDefaultArgument(TemplateArgumentLoc());
3287        }
3288      }
3289    }
3290  } else if (TemplateParams) {
3291    if (TUK == TUK_Friend)
3292      Diag(KWLoc, diag::err_template_spec_friend)
3293        << CodeModificationHint::CreateRemoval(
3294                                SourceRange(TemplateParams->getTemplateLoc(),
3295                                            TemplateParams->getRAngleLoc()))
3296        << SourceRange(LAngleLoc, RAngleLoc);
3297    else
3298      isExplicitSpecialization = true;
3299  } else if (TUK != TUK_Friend) {
3300    Diag(KWLoc, diag::err_template_spec_needs_header)
3301      << CodeModificationHint::CreateInsertion(KWLoc, "template<> ");
3302    isExplicitSpecialization = true;
3303  }
3304
3305  // Check that the specialization uses the same tag kind as the
3306  // original template.
3307  TagDecl::TagKind Kind;
3308  switch (TagSpec) {
3309  default: assert(0 && "Unknown tag type!");
3310  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3311  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3312  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3313  }
3314  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3315                                    Kind, KWLoc,
3316                                    *ClassTemplate->getIdentifier())) {
3317    Diag(KWLoc, diag::err_use_with_wrong_tag)
3318      << ClassTemplate
3319      << CodeModificationHint::CreateReplacement(KWLoc,
3320                            ClassTemplate->getTemplatedDecl()->getKindName());
3321    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3322         diag::note_previous_use);
3323    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3324  }
3325
3326  // Translate the parser's template argument list in our AST format.
3327  TemplateArgumentListInfo TemplateArgs;
3328  TemplateArgs.setLAngleLoc(LAngleLoc);
3329  TemplateArgs.setRAngleLoc(RAngleLoc);
3330  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3331
3332  // Check that the template argument list is well-formed for this
3333  // template.
3334  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3335                                        TemplateArgs.size());
3336  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
3337                                TemplateArgs, false, Converted))
3338    return true;
3339
3340  assert((Converted.structuredSize() ==
3341            ClassTemplate->getTemplateParameters()->size()) &&
3342         "Converted template argument list is too short!");
3343
3344  // Find the class template (partial) specialization declaration that
3345  // corresponds to these arguments.
3346  llvm::FoldingSetNodeID ID;
3347  if (isPartialSpecialization) {
3348    bool MirrorsPrimaryTemplate;
3349    if (CheckClassTemplatePartialSpecializationArgs(
3350                                         ClassTemplate->getTemplateParameters(),
3351                                         Converted, MirrorsPrimaryTemplate))
3352      return true;
3353
3354    if (MirrorsPrimaryTemplate) {
3355      // C++ [temp.class.spec]p9b3:
3356      //
3357      //   -- The argument list of the specialization shall not be identical
3358      //      to the implicit argument list of the primary template.
3359      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3360        << (TUK == TUK_Definition)
3361        << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc,
3362                                                           RAngleLoc));
3363      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
3364                                ClassTemplate->getIdentifier(),
3365                                TemplateNameLoc,
3366                                Attr,
3367                                TemplateParams,
3368                                AS_none);
3369    }
3370
3371    // FIXME: Diagnose friend partial specializations
3372
3373    // FIXME: Template parameter list matters, too
3374    ClassTemplatePartialSpecializationDecl::Profile(ID,
3375                                                   Converted.getFlatArguments(),
3376                                                   Converted.flatSize(),
3377                                                    Context);
3378  } else
3379    ClassTemplateSpecializationDecl::Profile(ID,
3380                                             Converted.getFlatArguments(),
3381                                             Converted.flatSize(),
3382                                             Context);
3383  void *InsertPos = 0;
3384  ClassTemplateSpecializationDecl *PrevDecl = 0;
3385
3386  if (isPartialSpecialization)
3387    PrevDecl
3388      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
3389                                                                    InsertPos);
3390  else
3391    PrevDecl
3392      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3393
3394  ClassTemplateSpecializationDecl *Specialization = 0;
3395
3396  // Check whether we can declare a class template specialization in
3397  // the current scope.
3398  if (TUK != TUK_Friend &&
3399      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
3400                                       TemplateNameLoc,
3401                                       isPartialSpecialization))
3402    return true;
3403
3404  // The canonical type
3405  QualType CanonType;
3406  if (PrevDecl &&
3407      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
3408       TUK == TUK_Friend)) {
3409    // Since the only prior class template specialization with these
3410    // arguments was referenced but not declared, or we're only
3411    // referencing this specialization as a friend, reuse that
3412    // declaration node as our own, updating its source location to
3413    // reflect our new declaration.
3414    Specialization = PrevDecl;
3415    Specialization->setLocation(TemplateNameLoc);
3416    PrevDecl = 0;
3417    CanonType = Context.getTypeDeclType(Specialization);
3418  } else if (isPartialSpecialization) {
3419    // Build the canonical type that describes the converted template
3420    // arguments of the class template partial specialization.
3421    CanonType = Context.getTemplateSpecializationType(
3422                                                  TemplateName(ClassTemplate),
3423                                                  Converted.getFlatArguments(),
3424                                                  Converted.flatSize());
3425
3426    // Create a new class template partial specialization declaration node.
3427    ClassTemplatePartialSpecializationDecl *PrevPartial
3428      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
3429    ClassTemplatePartialSpecializationDecl *Partial
3430      = ClassTemplatePartialSpecializationDecl::Create(Context,
3431                                             ClassTemplate->getDeclContext(),
3432                                                       TemplateNameLoc,
3433                                                       TemplateParams,
3434                                                       ClassTemplate,
3435                                                       Converted,
3436                                                       TemplateArgs,
3437                                                       PrevPartial);
3438
3439    if (PrevPartial) {
3440      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
3441      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
3442    } else {
3443      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
3444    }
3445    Specialization = Partial;
3446
3447    // If we are providing an explicit specialization of a member class
3448    // template specialization, make a note of that.
3449    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3450      PrevPartial->setMemberSpecialization();
3451
3452    // Check that all of the template parameters of the class template
3453    // partial specialization are deducible from the template
3454    // arguments. If not, this class template partial specialization
3455    // will never be used.
3456    llvm::SmallVector<bool, 8> DeducibleParams;
3457    DeducibleParams.resize(TemplateParams->size());
3458    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3459                               TemplateParams->getDepth(),
3460                               DeducibleParams);
3461    unsigned NumNonDeducible = 0;
3462    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
3463      if (!DeducibleParams[I])
3464        ++NumNonDeducible;
3465
3466    if (NumNonDeducible) {
3467      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
3468        << (NumNonDeducible > 1)
3469        << SourceRange(TemplateNameLoc, RAngleLoc);
3470      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3471        if (!DeducibleParams[I]) {
3472          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3473          if (Param->getDeclName())
3474            Diag(Param->getLocation(),
3475                 diag::note_partial_spec_unused_parameter)
3476              << Param->getDeclName();
3477          else
3478            Diag(Param->getLocation(),
3479                 diag::note_partial_spec_unused_parameter)
3480              << std::string("<anonymous>");
3481        }
3482      }
3483    }
3484  } else {
3485    // Create a new class template specialization declaration node for
3486    // this explicit specialization or friend declaration.
3487    Specialization
3488      = ClassTemplateSpecializationDecl::Create(Context,
3489                                             ClassTemplate->getDeclContext(),
3490                                                TemplateNameLoc,
3491                                                ClassTemplate,
3492                                                Converted,
3493                                                PrevDecl);
3494
3495    if (PrevDecl) {
3496      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
3497      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
3498    } else {
3499      ClassTemplate->getSpecializations().InsertNode(Specialization,
3500                                                     InsertPos);
3501    }
3502
3503    CanonType = Context.getTypeDeclType(Specialization);
3504  }
3505
3506  // C++ [temp.expl.spec]p6:
3507  //   If a template, a member template or the member of a class template is
3508  //   explicitly specialized then that specialization shall be declared
3509  //   before the first use of that specialization that would cause an implicit
3510  //   instantiation to take place, in every translation unit in which such a
3511  //   use occurs; no diagnostic is required.
3512  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3513    SourceRange Range(TemplateNameLoc, RAngleLoc);
3514    Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3515      << Context.getTypeDeclType(Specialization) << Range;
3516
3517    Diag(PrevDecl->getPointOfInstantiation(),
3518         diag::note_instantiation_required_here)
3519      << (PrevDecl->getTemplateSpecializationKind()
3520                                                != TSK_ImplicitInstantiation);
3521    return true;
3522  }
3523
3524  // If this is not a friend, note that this is an explicit specialization.
3525  if (TUK != TUK_Friend)
3526    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3527
3528  // Check that this isn't a redefinition of this specialization.
3529  if (TUK == TUK_Definition) {
3530    if (RecordDecl *Def = Specialization->getDefinition(Context)) {
3531      SourceRange Range(TemplateNameLoc, RAngleLoc);
3532      Diag(TemplateNameLoc, diag::err_redefinition)
3533        << Context.getTypeDeclType(Specialization) << Range;
3534      Diag(Def->getLocation(), diag::note_previous_definition);
3535      Specialization->setInvalidDecl();
3536      return true;
3537    }
3538  }
3539
3540  // Build the fully-sugared type for this class template
3541  // specialization as the user wrote in the specialization
3542  // itself. This means that we'll pretty-print the type retrieved
3543  // from the specialization's declaration the way that the user
3544  // actually wrote the specialization, rather than formatting the
3545  // name based on the "canonical" representation used to store the
3546  // template arguments in the specialization.
3547  QualType WrittenTy
3548    = Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
3549  if (TUK != TUK_Friend)
3550    Specialization->setTypeAsWritten(WrittenTy);
3551  TemplateArgsIn.release();
3552
3553  // C++ [temp.expl.spec]p9:
3554  //   A template explicit specialization is in the scope of the
3555  //   namespace in which the template was defined.
3556  //
3557  // We actually implement this paragraph where we set the semantic
3558  // context (in the creation of the ClassTemplateSpecializationDecl),
3559  // but we also maintain the lexical context where the actual
3560  // definition occurs.
3561  Specialization->setLexicalDeclContext(CurContext);
3562
3563  // We may be starting the definition of this specialization.
3564  if (TUK == TUK_Definition)
3565    Specialization->startDefinition();
3566
3567  if (TUK == TUK_Friend) {
3568    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
3569                                            TemplateNameLoc,
3570                                            WrittenTy.getTypePtr(),
3571                                            /*FIXME:*/KWLoc);
3572    Friend->setAccess(AS_public);
3573    CurContext->addDecl(Friend);
3574  } else {
3575    // Add the specialization into its lexical context, so that it can
3576    // be seen when iterating through the list of declarations in that
3577    // context. However, specializations are not found by name lookup.
3578    CurContext->addDecl(Specialization);
3579  }
3580  return DeclPtrTy::make(Specialization);
3581}
3582
3583Sema::DeclPtrTy
3584Sema::ActOnTemplateDeclarator(Scope *S,
3585                              MultiTemplateParamsArg TemplateParameterLists,
3586                              Declarator &D) {
3587  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
3588}
3589
3590Sema::DeclPtrTy
3591Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
3592                               MultiTemplateParamsArg TemplateParameterLists,
3593                                      Declarator &D) {
3594  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3595  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3596         "Not a function declarator!");
3597  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3598
3599  if (FTI.hasPrototype) {
3600    // FIXME: Diagnose arguments without names in C.
3601  }
3602
3603  Scope *ParentScope = FnBodyScope->getParent();
3604
3605  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3606                                  move(TemplateParameterLists),
3607                                  /*IsFunctionDefinition=*/true);
3608  if (FunctionTemplateDecl *FunctionTemplate
3609        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
3610    return ActOnStartOfFunctionDef(FnBodyScope,
3611                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
3612  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
3613    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
3614  return DeclPtrTy();
3615}
3616
3617/// \brief Diagnose cases where we have an explicit template specialization
3618/// before/after an explicit template instantiation, producing diagnostics
3619/// for those cases where they are required and determining whether the
3620/// new specialization/instantiation will have any effect.
3621///
3622/// \param NewLoc the location of the new explicit specialization or
3623/// instantiation.
3624///
3625/// \param NewTSK the kind of the new explicit specialization or instantiation.
3626///
3627/// \param PrevDecl the previous declaration of the entity.
3628///
3629/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
3630///
3631/// \param PrevPointOfInstantiation if valid, indicates where the previus
3632/// declaration was instantiated (either implicitly or explicitly).
3633///
3634/// \param SuppressNew will be set to true to indicate that the new
3635/// specialization or instantiation has no effect and should be ignored.
3636///
3637/// \returns true if there was an error that should prevent the introduction of
3638/// the new declaration into the AST, false otherwise.
3639bool
3640Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
3641                                             TemplateSpecializationKind NewTSK,
3642                                             NamedDecl *PrevDecl,
3643                                             TemplateSpecializationKind PrevTSK,
3644                                        SourceLocation PrevPointOfInstantiation,
3645                                             bool &SuppressNew) {
3646  SuppressNew = false;
3647
3648  switch (NewTSK) {
3649  case TSK_Undeclared:
3650  case TSK_ImplicitInstantiation:
3651    assert(false && "Don't check implicit instantiations here");
3652    return false;
3653
3654  case TSK_ExplicitSpecialization:
3655    switch (PrevTSK) {
3656    case TSK_Undeclared:
3657    case TSK_ExplicitSpecialization:
3658      // Okay, we're just specializing something that is either already
3659      // explicitly specialized or has merely been mentioned without any
3660      // instantiation.
3661      return false;
3662
3663    case TSK_ImplicitInstantiation:
3664      if (PrevPointOfInstantiation.isInvalid()) {
3665        // The declaration itself has not actually been instantiated, so it is
3666        // still okay to specialize it.
3667        return false;
3668      }
3669      // Fall through
3670
3671    case TSK_ExplicitInstantiationDeclaration:
3672    case TSK_ExplicitInstantiationDefinition:
3673      assert((PrevTSK == TSK_ImplicitInstantiation ||
3674              PrevPointOfInstantiation.isValid()) &&
3675             "Explicit instantiation without point of instantiation?");
3676
3677      // C++ [temp.expl.spec]p6:
3678      //   If a template, a member template or the member of a class template
3679      //   is explicitly specialized then that specialization shall be declared
3680      //   before the first use of that specialization that would cause an
3681      //   implicit instantiation to take place, in every translation unit in
3682      //   which such a use occurs; no diagnostic is required.
3683      Diag(NewLoc, diag::err_specialization_after_instantiation)
3684        << PrevDecl;
3685      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
3686        << (PrevTSK != TSK_ImplicitInstantiation);
3687
3688      return true;
3689    }
3690    break;
3691
3692  case TSK_ExplicitInstantiationDeclaration:
3693    switch (PrevTSK) {
3694    case TSK_ExplicitInstantiationDeclaration:
3695      // This explicit instantiation declaration is redundant (that's okay).
3696      SuppressNew = true;
3697      return false;
3698
3699    case TSK_Undeclared:
3700    case TSK_ImplicitInstantiation:
3701      // We're explicitly instantiating something that may have already been
3702      // implicitly instantiated; that's fine.
3703      return false;
3704
3705    case TSK_ExplicitSpecialization:
3706      // C++0x [temp.explicit]p4:
3707      //   For a given set of template parameters, if an explicit instantiation
3708      //   of a template appears after a declaration of an explicit
3709      //   specialization for that template, the explicit instantiation has no
3710      //   effect.
3711      return false;
3712
3713    case TSK_ExplicitInstantiationDefinition:
3714      // C++0x [temp.explicit]p10:
3715      //   If an entity is the subject of both an explicit instantiation
3716      //   declaration and an explicit instantiation definition in the same
3717      //   translation unit, the definition shall follow the declaration.
3718      Diag(NewLoc,
3719           diag::err_explicit_instantiation_declaration_after_definition);
3720      Diag(PrevPointOfInstantiation,
3721           diag::note_explicit_instantiation_definition_here);
3722      assert(PrevPointOfInstantiation.isValid() &&
3723             "Explicit instantiation without point of instantiation?");
3724      SuppressNew = true;
3725      return false;
3726    }
3727    break;
3728
3729  case TSK_ExplicitInstantiationDefinition:
3730    switch (PrevTSK) {
3731    case TSK_Undeclared:
3732    case TSK_ImplicitInstantiation:
3733      // We're explicitly instantiating something that may have already been
3734      // implicitly instantiated; that's fine.
3735      return false;
3736
3737    case TSK_ExplicitSpecialization:
3738      // C++ DR 259, C++0x [temp.explicit]p4:
3739      //   For a given set of template parameters, if an explicit
3740      //   instantiation of a template appears after a declaration of
3741      //   an explicit specialization for that template, the explicit
3742      //   instantiation has no effect.
3743      //
3744      // In C++98/03 mode, we only give an extension warning here, because it
3745      // is not not harmful to try to explicitly instantiate something that
3746      // has been explicitly specialized.
3747      if (!getLangOptions().CPlusPlus0x) {
3748        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
3749          << PrevDecl;
3750        Diag(PrevDecl->getLocation(),
3751             diag::note_previous_template_specialization);
3752      }
3753      SuppressNew = true;
3754      return false;
3755
3756    case TSK_ExplicitInstantiationDeclaration:
3757      // We're explicity instantiating a definition for something for which we
3758      // were previously asked to suppress instantiations. That's fine.
3759      return false;
3760
3761    case TSK_ExplicitInstantiationDefinition:
3762      // C++0x [temp.spec]p5:
3763      //   For a given template and a given set of template-arguments,
3764      //     - an explicit instantiation definition shall appear at most once
3765      //       in a program,
3766      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
3767        << PrevDecl;
3768      Diag(PrevPointOfInstantiation,
3769           diag::note_previous_explicit_instantiation);
3770      SuppressNew = true;
3771      return false;
3772    }
3773    break;
3774  }
3775
3776  assert(false && "Missing specialization/instantiation case?");
3777
3778  return false;
3779}
3780
3781/// \brief Perform semantic analysis for the given function template
3782/// specialization.
3783///
3784/// This routine performs all of the semantic analysis required for an
3785/// explicit function template specialization. On successful completion,
3786/// the function declaration \p FD will become a function template
3787/// specialization.
3788///
3789/// \param FD the function declaration, which will be updated to become a
3790/// function template specialization.
3791///
3792/// \param HasExplicitTemplateArgs whether any template arguments were
3793/// explicitly provided.
3794///
3795/// \param LAngleLoc the location of the left angle bracket ('<'), if
3796/// template arguments were explicitly provided.
3797///
3798/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
3799/// if any.
3800///
3801/// \param NumExplicitTemplateArgs the number of explicitly-provided template
3802/// arguments. This number may be zero even when HasExplicitTemplateArgs is
3803/// true as in, e.g., \c void sort<>(char*, char*);
3804///
3805/// \param RAngleLoc the location of the right angle bracket ('>'), if
3806/// template arguments were explicitly provided.
3807///
3808/// \param PrevDecl the set of declarations that
3809bool
3810Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
3811                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3812                                          LookupResult &Previous) {
3813  // The set of function template specializations that could match this
3814  // explicit function template specialization.
3815  typedef llvm::SmallVector<FunctionDecl *, 8> CandidateSet;
3816  CandidateSet Candidates;
3817
3818  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
3819  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3820         I != E; ++I) {
3821    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
3822    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
3823      // Only consider templates found within the same semantic lookup scope as
3824      // FD.
3825      if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext()))
3826        continue;
3827
3828      // C++ [temp.expl.spec]p11:
3829      //   A trailing template-argument can be left unspecified in the
3830      //   template-id naming an explicit function template specialization
3831      //   provided it can be deduced from the function argument type.
3832      // Perform template argument deduction to determine whether we may be
3833      // specializing this template.
3834      // FIXME: It is somewhat wasteful to build
3835      TemplateDeductionInfo Info(Context);
3836      FunctionDecl *Specialization = 0;
3837      if (TemplateDeductionResult TDK
3838            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
3839                                      FD->getType(),
3840                                      Specialization,
3841                                      Info)) {
3842        // FIXME: Template argument deduction failed; record why it failed, so
3843        // that we can provide nifty diagnostics.
3844        (void)TDK;
3845        continue;
3846      }
3847
3848      // Record this candidate.
3849      Candidates.push_back(Specialization);
3850    }
3851  }
3852
3853  // Find the most specialized function template.
3854  FunctionDecl *Specialization = getMostSpecialized(Candidates.data(),
3855                                                    Candidates.size(),
3856                                                    TPOC_Other,
3857                                                    FD->getLocation(),
3858                  PartialDiagnostic(diag::err_function_template_spec_no_match)
3859                    << FD->getDeclName(),
3860                  PartialDiagnostic(diag::err_function_template_spec_ambiguous)
3861                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
3862                  PartialDiagnostic(diag::note_function_template_spec_matched));
3863  if (!Specialization)
3864    return true;
3865
3866  // FIXME: Check if the prior specialization has a point of instantiation.
3867  // If so, we have run afoul of .
3868
3869  // Check the scope of this explicit specialization.
3870  if (CheckTemplateSpecializationScope(*this,
3871                                       Specialization->getPrimaryTemplate(),
3872                                       Specialization, FD->getLocation(),
3873                                       false))
3874    return true;
3875
3876  // C++ [temp.expl.spec]p6:
3877  //   If a template, a member template or the member of a class template is
3878  //   explicitly specialized then that specialization shall be declared
3879  //   before the first use of that specialization that would cause an implicit
3880  //   instantiation to take place, in every translation unit in which such a
3881  //   use occurs; no diagnostic is required.
3882  FunctionTemplateSpecializationInfo *SpecInfo
3883    = Specialization->getTemplateSpecializationInfo();
3884  assert(SpecInfo && "Function template specialization info missing?");
3885  if (SpecInfo->getPointOfInstantiation().isValid()) {
3886    Diag(FD->getLocation(), diag::err_specialization_after_instantiation)
3887      << FD;
3888    Diag(SpecInfo->getPointOfInstantiation(),
3889         diag::note_instantiation_required_here)
3890      << (Specialization->getTemplateSpecializationKind()
3891                                                != TSK_ImplicitInstantiation);
3892    return true;
3893  }
3894
3895  // Mark the prior declaration as an explicit specialization, so that later
3896  // clients know that this is an explicit specialization.
3897  SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
3898
3899  // Turn the given function declaration into a function template
3900  // specialization, with the template arguments from the previous
3901  // specialization.
3902  FD->setFunctionTemplateSpecialization(Context,
3903                                        Specialization->getPrimaryTemplate(),
3904                         new (Context) TemplateArgumentList(
3905                             *Specialization->getTemplateSpecializationArgs()),
3906                                        /*InsertPos=*/0,
3907                                        TSK_ExplicitSpecialization);
3908
3909  // The "previous declaration" for this function template specialization is
3910  // the prior function template specialization.
3911  Previous.clear();
3912  Previous.addDecl(Specialization);
3913  return false;
3914}
3915
3916/// \brief Perform semantic analysis for the given non-template member
3917/// specialization.
3918///
3919/// This routine performs all of the semantic analysis required for an
3920/// explicit member function specialization. On successful completion,
3921/// the function declaration \p FD will become a member function
3922/// specialization.
3923///
3924/// \param Member the member declaration, which will be updated to become a
3925/// specialization.
3926///
3927/// \param Previous the set of declarations, one of which may be specialized
3928/// by this function specialization;  the set will be modified to contain the
3929/// redeclared member.
3930bool
3931Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
3932  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
3933
3934  // Try to find the member we are instantiating.
3935  NamedDecl *Instantiation = 0;
3936  NamedDecl *InstantiatedFrom = 0;
3937  MemberSpecializationInfo *MSInfo = 0;
3938
3939  if (Previous.empty()) {
3940    // Nowhere to look anyway.
3941  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
3942    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3943           I != E; ++I) {
3944      NamedDecl *D = (*I)->getUnderlyingDecl();
3945      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
3946        if (Context.hasSameType(Function->getType(), Method->getType())) {
3947          Instantiation = Method;
3948          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
3949          MSInfo = Method->getMemberSpecializationInfo();
3950          break;
3951        }
3952      }
3953    }
3954  } else if (isa<VarDecl>(Member)) {
3955    VarDecl *PrevVar;
3956    if (Previous.isSingleResult() &&
3957        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
3958      if (PrevVar->isStaticDataMember()) {
3959        Instantiation = PrevVar;
3960        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
3961        MSInfo = PrevVar->getMemberSpecializationInfo();
3962      }
3963  } else if (isa<RecordDecl>(Member)) {
3964    CXXRecordDecl *PrevRecord;
3965    if (Previous.isSingleResult() &&
3966        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
3967      Instantiation = PrevRecord;
3968      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
3969      MSInfo = PrevRecord->getMemberSpecializationInfo();
3970    }
3971  }
3972
3973  if (!Instantiation) {
3974    // There is no previous declaration that matches. Since member
3975    // specializations are always out-of-line, the caller will complain about
3976    // this mismatch later.
3977    return false;
3978  }
3979
3980  // Make sure that this is a specialization of a member.
3981  if (!InstantiatedFrom) {
3982    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
3983      << Member;
3984    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
3985    return true;
3986  }
3987
3988  // C++ [temp.expl.spec]p6:
3989  //   If a template, a member template or the member of a class template is
3990  //   explicitly specialized then that spe- cialization shall be declared
3991  //   before the first use of that specialization that would cause an implicit
3992  //   instantiation to take place, in every translation unit in which such a
3993  //   use occurs; no diagnostic is required.
3994  assert(MSInfo && "Member specialization info missing?");
3995  if (MSInfo->getPointOfInstantiation().isValid()) {
3996    Diag(Member->getLocation(), diag::err_specialization_after_instantiation)
3997      << Member;
3998    Diag(MSInfo->getPointOfInstantiation(),
3999         diag::note_instantiation_required_here)
4000      << (MSInfo->getTemplateSpecializationKind() != TSK_ImplicitInstantiation);
4001    return true;
4002  }
4003
4004  // Check the scope of this explicit specialization.
4005  if (CheckTemplateSpecializationScope(*this,
4006                                       InstantiatedFrom,
4007                                       Instantiation, Member->getLocation(),
4008                                       false))
4009    return true;
4010
4011  // Note that this is an explicit instantiation of a member.
4012  // the original declaration to note that it is an explicit specialization
4013  // (if it was previously an implicit instantiation). This latter step
4014  // makes bookkeeping easier.
4015  if (isa<FunctionDecl>(Member)) {
4016    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4017    if (InstantiationFunction->getTemplateSpecializationKind() ==
4018          TSK_ImplicitInstantiation) {
4019      InstantiationFunction->setTemplateSpecializationKind(
4020                                                  TSK_ExplicitSpecialization);
4021      InstantiationFunction->setLocation(Member->getLocation());
4022    }
4023
4024    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4025                                        cast<CXXMethodDecl>(InstantiatedFrom),
4026                                                  TSK_ExplicitSpecialization);
4027  } else if (isa<VarDecl>(Member)) {
4028    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4029    if (InstantiationVar->getTemplateSpecializationKind() ==
4030          TSK_ImplicitInstantiation) {
4031      InstantiationVar->setTemplateSpecializationKind(
4032                                                  TSK_ExplicitSpecialization);
4033      InstantiationVar->setLocation(Member->getLocation());
4034    }
4035
4036    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4037                                                cast<VarDecl>(InstantiatedFrom),
4038                                                TSK_ExplicitSpecialization);
4039  } else {
4040    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4041    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4042    if (InstantiationClass->getTemplateSpecializationKind() ==
4043          TSK_ImplicitInstantiation) {
4044      InstantiationClass->setTemplateSpecializationKind(
4045                                                   TSK_ExplicitSpecialization);
4046      InstantiationClass->setLocation(Member->getLocation());
4047    }
4048
4049    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4050                                        cast<CXXRecordDecl>(InstantiatedFrom),
4051                                                   TSK_ExplicitSpecialization);
4052  }
4053
4054  // Save the caller the trouble of having to figure out which declaration
4055  // this specialization matches.
4056  Previous.clear();
4057  Previous.addDecl(Instantiation);
4058  return false;
4059}
4060
4061/// \brief Check the scope of an explicit instantiation.
4062static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4063                                            SourceLocation InstLoc,
4064                                            bool WasQualifiedName) {
4065  DeclContext *ExpectedContext
4066    = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext();
4067  DeclContext *CurContext = S.CurContext->getLookupContext();
4068
4069  // C++0x [temp.explicit]p2:
4070  //   An explicit instantiation shall appear in an enclosing namespace of its
4071  //   template.
4072  //
4073  // This is DR275, which we do not retroactively apply to C++98/03.
4074  if (S.getLangOptions().CPlusPlus0x &&
4075      !CurContext->Encloses(ExpectedContext)) {
4076    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext))
4077      S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope)
4078        << D << NS;
4079    else
4080      S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global)
4081        << D;
4082    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4083    return;
4084  }
4085
4086  // C++0x [temp.explicit]p2:
4087  //   If the name declared in the explicit instantiation is an unqualified
4088  //   name, the explicit instantiation shall appear in the namespace where
4089  //   its template is declared or, if that namespace is inline (7.3.1), any
4090  //   namespace from its enclosing namespace set.
4091  if (WasQualifiedName)
4092    return;
4093
4094  if (CurContext->Equals(ExpectedContext))
4095    return;
4096
4097  S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace)
4098    << D << ExpectedContext;
4099  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4100}
4101
4102/// \brief Determine whether the given scope specifier has a template-id in it.
4103static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
4104  if (!SS.isSet())
4105    return false;
4106
4107  // C++0x [temp.explicit]p2:
4108  //   If the explicit instantiation is for a member function, a member class
4109  //   or a static data member of a class template specialization, the name of
4110  //   the class template specialization in the qualified-id for the member
4111  //   name shall be a simple-template-id.
4112  //
4113  // C++98 has the same restriction, just worded differently.
4114  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
4115       NNS; NNS = NNS->getPrefix())
4116    if (Type *T = NNS->getAsType())
4117      if (isa<TemplateSpecializationType>(T))
4118        return true;
4119
4120  return false;
4121}
4122
4123// Explicit instantiation of a class template specialization
4124// FIXME: Implement extern template semantics
4125Sema::DeclResult
4126Sema::ActOnExplicitInstantiation(Scope *S,
4127                                 SourceLocation ExternLoc,
4128                                 SourceLocation TemplateLoc,
4129                                 unsigned TagSpec,
4130                                 SourceLocation KWLoc,
4131                                 const CXXScopeSpec &SS,
4132                                 TemplateTy TemplateD,
4133                                 SourceLocation TemplateNameLoc,
4134                                 SourceLocation LAngleLoc,
4135                                 ASTTemplateArgsPtr TemplateArgsIn,
4136                                 SourceLocation RAngleLoc,
4137                                 AttributeList *Attr) {
4138  // Find the class template we're specializing
4139  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4140  ClassTemplateDecl *ClassTemplate
4141    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
4142
4143  // Check that the specialization uses the same tag kind as the
4144  // original template.
4145  TagDecl::TagKind Kind;
4146  switch (TagSpec) {
4147  default: assert(0 && "Unknown tag type!");
4148  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
4149  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
4150  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
4151  }
4152  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4153                                    Kind, KWLoc,
4154                                    *ClassTemplate->getIdentifier())) {
4155    Diag(KWLoc, diag::err_use_with_wrong_tag)
4156      << ClassTemplate
4157      << CodeModificationHint::CreateReplacement(KWLoc,
4158                            ClassTemplate->getTemplatedDecl()->getKindName());
4159    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4160         diag::note_previous_use);
4161    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4162  }
4163
4164  // C++0x [temp.explicit]p2:
4165  //   There are two forms of explicit instantiation: an explicit instantiation
4166  //   definition and an explicit instantiation declaration. An explicit
4167  //   instantiation declaration begins with the extern keyword. [...]
4168  TemplateSpecializationKind TSK
4169    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4170                           : TSK_ExplicitInstantiationDeclaration;
4171
4172  // Translate the parser's template argument list in our AST format.
4173  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4174  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4175
4176  // Check that the template argument list is well-formed for this
4177  // template.
4178  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
4179                                        TemplateArgs.size());
4180  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4181                                TemplateArgs, false, Converted))
4182    return true;
4183
4184  assert((Converted.structuredSize() ==
4185            ClassTemplate->getTemplateParameters()->size()) &&
4186         "Converted template argument list is too short!");
4187
4188  // Find the class template specialization declaration that
4189  // corresponds to these arguments.
4190  llvm::FoldingSetNodeID ID;
4191  ClassTemplateSpecializationDecl::Profile(ID,
4192                                           Converted.getFlatArguments(),
4193                                           Converted.flatSize(),
4194                                           Context);
4195  void *InsertPos = 0;
4196  ClassTemplateSpecializationDecl *PrevDecl
4197    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4198
4199  // C++0x [temp.explicit]p2:
4200  //   [...] An explicit instantiation shall appear in an enclosing
4201  //   namespace of its template. [...]
4202  //
4203  // This is C++ DR 275.
4204  CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
4205                                  SS.isSet());
4206
4207  ClassTemplateSpecializationDecl *Specialization = 0;
4208
4209  bool ReusedDecl = false;
4210  if (PrevDecl) {
4211    bool SuppressNew = false;
4212    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
4213                                               PrevDecl,
4214                                              PrevDecl->getSpecializationKind(),
4215                                            PrevDecl->getPointOfInstantiation(),
4216                                               SuppressNew))
4217      return DeclPtrTy::make(PrevDecl);
4218
4219    if (SuppressNew)
4220      return DeclPtrTy::make(PrevDecl);
4221
4222    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation ||
4223        PrevDecl->getSpecializationKind() == TSK_Undeclared) {
4224      // Since the only prior class template specialization with these
4225      // arguments was referenced but not declared, reuse that
4226      // declaration node as our own, updating its source location to
4227      // reflect our new declaration.
4228      Specialization = PrevDecl;
4229      Specialization->setLocation(TemplateNameLoc);
4230      PrevDecl = 0;
4231      ReusedDecl = true;
4232    }
4233  }
4234
4235  if (!Specialization) {
4236    // Create a new class template specialization declaration node for
4237    // this explicit specialization.
4238    Specialization
4239      = ClassTemplateSpecializationDecl::Create(Context,
4240                                             ClassTemplate->getDeclContext(),
4241                                                TemplateNameLoc,
4242                                                ClassTemplate,
4243                                                Converted, PrevDecl);
4244
4245    if (PrevDecl) {
4246      // Remove the previous declaration from the folding set, since we want
4247      // to introduce a new declaration.
4248      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
4249      ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4250    }
4251
4252    // Insert the new specialization.
4253    ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos);
4254  }
4255
4256  // Build the fully-sugared type for this explicit instantiation as
4257  // the user wrote in the explicit instantiation itself. This means
4258  // that we'll pretty-print the type retrieved from the
4259  // specialization's declaration the way that the user actually wrote
4260  // the explicit instantiation, rather than formatting the name based
4261  // on the "canonical" representation used to store the template
4262  // arguments in the specialization.
4263  QualType WrittenTy
4264    = Context.getTemplateSpecializationType(Name, TemplateArgs,
4265                                  Context.getTypeDeclType(Specialization));
4266  Specialization->setTypeAsWritten(WrittenTy);
4267  TemplateArgsIn.release();
4268
4269  if (!ReusedDecl) {
4270    // Add the explicit instantiation into its lexical context. However,
4271    // since explicit instantiations are never found by name lookup, we
4272    // just put it into the declaration context directly.
4273    Specialization->setLexicalDeclContext(CurContext);
4274    CurContext->addDecl(Specialization);
4275  }
4276
4277  // C++ [temp.explicit]p3:
4278  //   A definition of a class template or class member template
4279  //   shall be in scope at the point of the explicit instantiation of
4280  //   the class template or class member template.
4281  //
4282  // This check comes when we actually try to perform the
4283  // instantiation.
4284  ClassTemplateSpecializationDecl *Def
4285    = cast_or_null<ClassTemplateSpecializationDecl>(
4286                                        Specialization->getDefinition(Context));
4287  if (!Def)
4288    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
4289
4290  // Instantiate the members of this class template specialization.
4291  Def = cast_or_null<ClassTemplateSpecializationDecl>(
4292                                       Specialization->getDefinition(Context));
4293  if (Def)
4294    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
4295
4296  return DeclPtrTy::make(Specialization);
4297}
4298
4299// Explicit instantiation of a member class of a class template.
4300Sema::DeclResult
4301Sema::ActOnExplicitInstantiation(Scope *S,
4302                                 SourceLocation ExternLoc,
4303                                 SourceLocation TemplateLoc,
4304                                 unsigned TagSpec,
4305                                 SourceLocation KWLoc,
4306                                 const CXXScopeSpec &SS,
4307                                 IdentifierInfo *Name,
4308                                 SourceLocation NameLoc,
4309                                 AttributeList *Attr) {
4310
4311  bool Owned = false;
4312  bool IsDependent = false;
4313  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
4314                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
4315                            MultiTemplateParamsArg(*this, 0, 0),
4316                            Owned, IsDependent);
4317  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
4318
4319  if (!TagD)
4320    return true;
4321
4322  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4323  if (Tag->isEnum()) {
4324    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
4325      << Context.getTypeDeclType(Tag);
4326    return true;
4327  }
4328
4329  if (Tag->isInvalidDecl())
4330    return true;
4331
4332  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
4333  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
4334  if (!Pattern) {
4335    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
4336      << Context.getTypeDeclType(Record);
4337    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
4338    return true;
4339  }
4340
4341  // C++0x [temp.explicit]p2:
4342  //   If the explicit instantiation is for a class or member class, the
4343  //   elaborated-type-specifier in the declaration shall include a
4344  //   simple-template-id.
4345  //
4346  // C++98 has the same restriction, just worded differently.
4347  if (!ScopeSpecifierHasTemplateId(SS))
4348    Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id)
4349      << Record << SS.getRange();
4350
4351  // C++0x [temp.explicit]p2:
4352  //   There are two forms of explicit instantiation: an explicit instantiation
4353  //   definition and an explicit instantiation declaration. An explicit
4354  //   instantiation declaration begins with the extern keyword. [...]
4355  TemplateSpecializationKind TSK
4356    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4357                           : TSK_ExplicitInstantiationDeclaration;
4358
4359  // C++0x [temp.explicit]p2:
4360  //   [...] An explicit instantiation shall appear in an enclosing
4361  //   namespace of its template. [...]
4362  //
4363  // This is C++ DR 275.
4364  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
4365
4366  // Verify that it is okay to explicitly instantiate here.
4367  CXXRecordDecl *PrevDecl
4368    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
4369  if (!PrevDecl && Record->getDefinition(Context))
4370    PrevDecl = Record;
4371  if (PrevDecl) {
4372    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
4373    bool SuppressNew = false;
4374    assert(MSInfo && "No member specialization information?");
4375    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
4376                                               PrevDecl,
4377                                        MSInfo->getTemplateSpecializationKind(),
4378                                             MSInfo->getPointOfInstantiation(),
4379                                               SuppressNew))
4380      return true;
4381    if (SuppressNew)
4382      return TagD;
4383  }
4384
4385  CXXRecordDecl *RecordDef
4386    = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context));
4387  if (!RecordDef) {
4388    // C++ [temp.explicit]p3:
4389    //   A definition of a member class of a class template shall be in scope
4390    //   at the point of an explicit instantiation of the member class.
4391    CXXRecordDecl *Def
4392      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context));
4393    if (!Def) {
4394      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
4395        << 0 << Record->getDeclName() << Record->getDeclContext();
4396      Diag(Pattern->getLocation(), diag::note_forward_declaration)
4397        << Pattern;
4398      return true;
4399    } else {
4400      if (InstantiateClass(NameLoc, Record, Def,
4401                           getTemplateInstantiationArgs(Record),
4402                           TSK))
4403        return true;
4404
4405      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context));
4406      if (!RecordDef)
4407        return true;
4408    }
4409  }
4410
4411  // Instantiate all of the members of the class.
4412  InstantiateClassMembers(NameLoc, RecordDef,
4413                          getTemplateInstantiationArgs(Record), TSK);
4414
4415  // FIXME: We don't have any representation for explicit instantiations of
4416  // member classes. Such a representation is not needed for compilation, but it
4417  // should be available for clients that want to see all of the declarations in
4418  // the source code.
4419  return TagD;
4420}
4421
4422Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
4423                                                  SourceLocation ExternLoc,
4424                                                  SourceLocation TemplateLoc,
4425                                                  Declarator &D) {
4426  // Explicit instantiations always require a name.
4427  DeclarationName Name = GetNameForDeclarator(D);
4428  if (!Name) {
4429    if (!D.isInvalidType())
4430      Diag(D.getDeclSpec().getSourceRange().getBegin(),
4431           diag::err_explicit_instantiation_requires_name)
4432        << D.getDeclSpec().getSourceRange()
4433        << D.getSourceRange();
4434
4435    return true;
4436  }
4437
4438  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4439  // we find one that is.
4440  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4441         (S->getFlags() & Scope::TemplateParamScope) != 0)
4442    S = S->getParent();
4443
4444  // Determine the type of the declaration.
4445  QualType R = GetTypeForDeclarator(D, S, 0);
4446  if (R.isNull())
4447    return true;
4448
4449  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4450    // Cannot explicitly instantiate a typedef.
4451    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
4452      << Name;
4453    return true;
4454  }
4455
4456  // C++0x [temp.explicit]p1:
4457  //   [...] An explicit instantiation of a function template shall not use the
4458  //   inline or constexpr specifiers.
4459  // Presumably, this also applies to member functions of class templates as
4460  // well.
4461  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
4462    Diag(D.getDeclSpec().getInlineSpecLoc(),
4463         diag::err_explicit_instantiation_inline)
4464      <<CodeModificationHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4465
4466  // FIXME: check for constexpr specifier.
4467
4468  // C++0x [temp.explicit]p2:
4469  //   There are two forms of explicit instantiation: an explicit instantiation
4470  //   definition and an explicit instantiation declaration. An explicit
4471  //   instantiation declaration begins with the extern keyword. [...]
4472  TemplateSpecializationKind TSK
4473    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4474                           : TSK_ExplicitInstantiationDeclaration;
4475
4476  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName);
4477  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
4478
4479  if (!R->isFunctionType()) {
4480    // C++ [temp.explicit]p1:
4481    //   A [...] static data member of a class template can be explicitly
4482    //   instantiated from the member definition associated with its class
4483    //   template.
4484    if (Previous.isAmbiguous())
4485      return true;
4486
4487    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
4488    if (!Prev || !Prev->isStaticDataMember()) {
4489      // We expect to see a data data member here.
4490      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
4491        << Name;
4492      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4493           P != PEnd; ++P)
4494        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
4495      return true;
4496    }
4497
4498    if (!Prev->getInstantiatedFromStaticDataMember()) {
4499      // FIXME: Check for explicit specialization?
4500      Diag(D.getIdentifierLoc(),
4501           diag::err_explicit_instantiation_data_member_not_instantiated)
4502        << Prev;
4503      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
4504      // FIXME: Can we provide a note showing where this was declared?
4505      return true;
4506    }
4507
4508    // C++0x [temp.explicit]p2:
4509    //   If the explicit instantiation is for a member function, a member class
4510    //   or a static data member of a class template specialization, the name of
4511    //   the class template specialization in the qualified-id for the member
4512    //   name shall be a simple-template-id.
4513    //
4514    // C++98 has the same restriction, just worded differently.
4515    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4516      Diag(D.getIdentifierLoc(),
4517           diag::err_explicit_instantiation_without_qualified_id)
4518        << Prev << D.getCXXScopeSpec().getRange();
4519
4520    // Check the scope of this explicit instantiation.
4521    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
4522
4523    // Verify that it is okay to explicitly instantiate here.
4524    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
4525    assert(MSInfo && "Missing static data member specialization info?");
4526    bool SuppressNew = false;
4527    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
4528                                        MSInfo->getTemplateSpecializationKind(),
4529                                              MSInfo->getPointOfInstantiation(),
4530                                               SuppressNew))
4531      return true;
4532    if (SuppressNew)
4533      return DeclPtrTy();
4534
4535    // Instantiate static data member.
4536    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4537    if (TSK == TSK_ExplicitInstantiationDefinition)
4538      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false,
4539                                            /*DefinitionRequired=*/true);
4540
4541    // FIXME: Create an ExplicitInstantiation node?
4542    return DeclPtrTy();
4543  }
4544
4545  // If the declarator is a template-id, translate the parser's template
4546  // argument list into our AST format.
4547  bool HasExplicitTemplateArgs = false;
4548  TemplateArgumentListInfo TemplateArgs;
4549  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4550    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4551    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4552    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4553    ASTTemplateArgsPtr TemplateArgsPtr(*this,
4554                                       TemplateId->getTemplateArgs(),
4555                                       TemplateId->NumArgs);
4556    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
4557    HasExplicitTemplateArgs = true;
4558    TemplateArgsPtr.release();
4559  }
4560
4561  // C++ [temp.explicit]p1:
4562  //   A [...] function [...] can be explicitly instantiated from its template.
4563  //   A member function [...] of a class template can be explicitly
4564  //  instantiated from the member definition associated with its class
4565  //  template.
4566  llvm::SmallVector<FunctionDecl *, 8> Matches;
4567  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4568       P != PEnd; ++P) {
4569    NamedDecl *Prev = *P;
4570    if (!HasExplicitTemplateArgs) {
4571      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
4572        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
4573          Matches.clear();
4574
4575          Matches.push_back(Method);
4576          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
4577            break;
4578        }
4579      }
4580    }
4581
4582    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
4583    if (!FunTmpl)
4584      continue;
4585
4586    TemplateDeductionInfo Info(Context);
4587    FunctionDecl *Specialization = 0;
4588    if (TemplateDeductionResult TDK
4589          = DeduceTemplateArguments(FunTmpl,
4590                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4591                                    R, Specialization, Info)) {
4592      // FIXME: Keep track of almost-matches?
4593      (void)TDK;
4594      continue;
4595    }
4596
4597    Matches.push_back(Specialization);
4598  }
4599
4600  // Find the most specialized function template specialization.
4601  FunctionDecl *Specialization
4602    = getMostSpecialized(Matches.data(), Matches.size(), TPOC_Other,
4603                         D.getIdentifierLoc(),
4604          PartialDiagnostic(diag::err_explicit_instantiation_not_known) << Name,
4605          PartialDiagnostic(diag::err_explicit_instantiation_ambiguous) << Name,
4606                PartialDiagnostic(diag::note_explicit_instantiation_candidate));
4607
4608  if (!Specialization)
4609    return true;
4610
4611  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
4612    Diag(D.getIdentifierLoc(),
4613         diag::err_explicit_instantiation_member_function_not_instantiated)
4614      << Specialization
4615      << (Specialization->getTemplateSpecializationKind() ==
4616          TSK_ExplicitSpecialization);
4617    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
4618    return true;
4619  }
4620
4621  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
4622  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
4623    PrevDecl = Specialization;
4624
4625  if (PrevDecl) {
4626    bool SuppressNew = false;
4627    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
4628                                               PrevDecl,
4629                                     PrevDecl->getTemplateSpecializationKind(),
4630                                          PrevDecl->getPointOfInstantiation(),
4631                                               SuppressNew))
4632      return true;
4633
4634    // FIXME: We may still want to build some representation of this
4635    // explicit specialization.
4636    if (SuppressNew)
4637      return DeclPtrTy();
4638  }
4639
4640  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4641
4642  if (TSK == TSK_ExplicitInstantiationDefinition)
4643    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization,
4644                                  false, /*DefinitionRequired=*/true);
4645
4646  // C++0x [temp.explicit]p2:
4647  //   If the explicit instantiation is for a member function, a member class
4648  //   or a static data member of a class template specialization, the name of
4649  //   the class template specialization in the qualified-id for the member
4650  //   name shall be a simple-template-id.
4651  //
4652  // C++98 has the same restriction, just worded differently.
4653  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
4654  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
4655      D.getCXXScopeSpec().isSet() &&
4656      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4657    Diag(D.getIdentifierLoc(),
4658         diag::err_explicit_instantiation_without_qualified_id)
4659    << Specialization << D.getCXXScopeSpec().getRange();
4660
4661  CheckExplicitInstantiationScope(*this,
4662                   FunTmpl? (NamedDecl *)FunTmpl
4663                          : Specialization->getInstantiatedFromMemberFunction(),
4664                                  D.getIdentifierLoc(),
4665                                  D.getCXXScopeSpec().isSet());
4666
4667  // FIXME: Create some kind of ExplicitInstantiationDecl here.
4668  return DeclPtrTy();
4669}
4670
4671Sema::TypeResult
4672Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4673                        const CXXScopeSpec &SS, IdentifierInfo *Name,
4674                        SourceLocation TagLoc, SourceLocation NameLoc) {
4675  // This has to hold, because SS is expected to be defined.
4676  assert(Name && "Expected a name in a dependent tag");
4677
4678  NestedNameSpecifier *NNS
4679    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4680  if (!NNS)
4681    return true;
4682
4683  QualType T = CheckTypenameType(NNS, *Name, SourceRange(TagLoc, NameLoc));
4684  if (T.isNull())
4685    return true;
4686
4687  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
4688  QualType ElabType = Context.getElaboratedType(T, TagKind);
4689
4690  return ElabType.getAsOpaquePtr();
4691}
4692
4693Sema::TypeResult
4694Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
4695                        const IdentifierInfo &II, SourceLocation IdLoc) {
4696  NestedNameSpecifier *NNS
4697    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4698  if (!NNS)
4699    return true;
4700
4701  QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
4702  if (T.isNull())
4703    return true;
4704  return T.getAsOpaquePtr();
4705}
4706
4707Sema::TypeResult
4708Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
4709                        SourceLocation TemplateLoc, TypeTy *Ty) {
4710  QualType T = GetTypeFromParser(Ty);
4711  NestedNameSpecifier *NNS
4712    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4713  const TemplateSpecializationType *TemplateId
4714    = T->getAs<TemplateSpecializationType>();
4715  assert(TemplateId && "Expected a template specialization type");
4716
4717  if (computeDeclContext(SS, false)) {
4718    // If we can compute a declaration context, then the "typename"
4719    // keyword was superfluous. Just build a QualifiedNameType to keep
4720    // track of the nested-name-specifier.
4721
4722    // FIXME: Note that the QualifiedNameType had the "typename" keyword!
4723    return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
4724  }
4725
4726  return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr();
4727}
4728
4729/// \brief Build the type that describes a C++ typename specifier,
4730/// e.g., "typename T::type".
4731QualType
4732Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
4733                        SourceRange Range) {
4734  CXXRecordDecl *CurrentInstantiation = 0;
4735  if (NNS->isDependent()) {
4736    CurrentInstantiation = getCurrentInstantiationOf(NNS);
4737
4738    // If the nested-name-specifier does not refer to the current
4739    // instantiation, then build a typename type.
4740    if (!CurrentInstantiation)
4741      return Context.getTypenameType(NNS, &II);
4742
4743    // The nested-name-specifier refers to the current instantiation, so the
4744    // "typename" keyword itself is superfluous. In C++03, the program is
4745    // actually ill-formed. However, DR 382 (in C++0x CD1) allows such
4746    // extraneous "typename" keywords, and we retroactively apply this DR to
4747    // C++03 code.
4748  }
4749
4750  DeclContext *Ctx = 0;
4751
4752  if (CurrentInstantiation)
4753    Ctx = CurrentInstantiation;
4754  else {
4755    CXXScopeSpec SS;
4756    SS.setScopeRep(NNS);
4757    SS.setRange(Range);
4758    if (RequireCompleteDeclContext(SS))
4759      return QualType();
4760
4761    Ctx = computeDeclContext(SS);
4762  }
4763  assert(Ctx && "No declaration context?");
4764
4765  DeclarationName Name(&II);
4766  LookupResult Result(*this, Name, Range.getEnd(), LookupOrdinaryName);
4767  LookupQualifiedName(Result, Ctx);
4768  unsigned DiagID = 0;
4769  Decl *Referenced = 0;
4770  switch (Result.getResultKind()) {
4771  case LookupResult::NotFound:
4772    DiagID = diag::err_typename_nested_not_found;
4773    break;
4774
4775  case LookupResult::NotFoundInCurrentInstantiation:
4776    // Okay, it's a member of an unknown instantiation.
4777    return Context.getTypenameType(NNS, &II);
4778
4779  case LookupResult::Found:
4780    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
4781      // We found a type. Build a QualifiedNameType, since the
4782      // typename-specifier was just sugar. FIXME: Tell
4783      // QualifiedNameType that it has a "typename" prefix.
4784      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
4785    }
4786
4787    DiagID = diag::err_typename_nested_not_type;
4788    Referenced = Result.getFoundDecl();
4789    break;
4790
4791  case LookupResult::FoundUnresolvedValue:
4792    llvm_unreachable("unresolved using decl in non-dependent context");
4793    return QualType();
4794
4795  case LookupResult::FoundOverloaded:
4796    DiagID = diag::err_typename_nested_not_type;
4797    Referenced = *Result.begin();
4798    break;
4799
4800  case LookupResult::Ambiguous:
4801    return QualType();
4802  }
4803
4804  // If we get here, it's because name lookup did not find a
4805  // type. Emit an appropriate diagnostic and return an error.
4806  Diag(Range.getEnd(), DiagID) << Range << Name << Ctx;
4807  if (Referenced)
4808    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
4809      << Name;
4810  return QualType();
4811}
4812
4813namespace {
4814  // See Sema::RebuildTypeInCurrentInstantiation
4815  class CurrentInstantiationRebuilder
4816    : public TreeTransform<CurrentInstantiationRebuilder> {
4817    SourceLocation Loc;
4818    DeclarationName Entity;
4819
4820  public:
4821    CurrentInstantiationRebuilder(Sema &SemaRef,
4822                                  SourceLocation Loc,
4823                                  DeclarationName Entity)
4824    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
4825      Loc(Loc), Entity(Entity) { }
4826
4827    /// \brief Determine whether the given type \p T has already been
4828    /// transformed.
4829    ///
4830    /// For the purposes of type reconstruction, a type has already been
4831    /// transformed if it is NULL or if it is not dependent.
4832    bool AlreadyTransformed(QualType T) {
4833      return T.isNull() || !T->isDependentType();
4834    }
4835
4836    /// \brief Returns the location of the entity whose type is being
4837    /// rebuilt.
4838    SourceLocation getBaseLocation() { return Loc; }
4839
4840    /// \brief Returns the name of the entity whose type is being rebuilt.
4841    DeclarationName getBaseEntity() { return Entity; }
4842
4843    /// \brief Sets the "base" location and entity when that
4844    /// information is known based on another transformation.
4845    void setBase(SourceLocation Loc, DeclarationName Entity) {
4846      this->Loc = Loc;
4847      this->Entity = Entity;
4848    }
4849
4850    /// \brief Transforms an expression by returning the expression itself
4851    /// (an identity function).
4852    ///
4853    /// FIXME: This is completely unsafe; we will need to actually clone the
4854    /// expressions.
4855    Sema::OwningExprResult TransformExpr(Expr *E) {
4856      return getSema().Owned(E);
4857    }
4858
4859    /// \brief Transforms a typename type by determining whether the type now
4860    /// refers to a member of the current instantiation, and then
4861    /// type-checking and building a QualifiedNameType (when possible).
4862    QualType TransformTypenameType(TypeLocBuilder &TLB, TypenameTypeLoc TL);
4863  };
4864}
4865
4866QualType
4867CurrentInstantiationRebuilder::TransformTypenameType(TypeLocBuilder &TLB,
4868                                                     TypenameTypeLoc TL) {
4869  TypenameType *T = TL.getTypePtr();
4870
4871  NestedNameSpecifier *NNS
4872    = TransformNestedNameSpecifier(T->getQualifier(),
4873                              /*FIXME:*/SourceRange(getBaseLocation()));
4874  if (!NNS)
4875    return QualType();
4876
4877  // If the nested-name-specifier did not change, and we cannot compute the
4878  // context corresponding to the nested-name-specifier, then this
4879  // typename type will not change; exit early.
4880  CXXScopeSpec SS;
4881  SS.setRange(SourceRange(getBaseLocation()));
4882  SS.setScopeRep(NNS);
4883
4884  QualType Result;
4885  if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0)
4886    Result = QualType(T, 0);
4887
4888  // Rebuild the typename type, which will probably turn into a
4889  // QualifiedNameType.
4890  else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) {
4891    QualType NewTemplateId
4892      = TransformType(QualType(TemplateId, 0));
4893    if (NewTemplateId.isNull())
4894      return QualType();
4895
4896    if (NNS == T->getQualifier() &&
4897        NewTemplateId == QualType(TemplateId, 0))
4898      Result = QualType(T, 0);
4899    else
4900      Result = getDerived().RebuildTypenameType(NNS, NewTemplateId);
4901  } else
4902    Result = getDerived().RebuildTypenameType(NNS, T->getIdentifier(),
4903                                              SourceRange(TL.getNameLoc()));
4904
4905  TypenameTypeLoc NewTL = TLB.push<TypenameTypeLoc>(Result);
4906  NewTL.setNameLoc(TL.getNameLoc());
4907  return Result;
4908}
4909
4910/// \brief Rebuilds a type within the context of the current instantiation.
4911///
4912/// The type \p T is part of the type of an out-of-line member definition of
4913/// a class template (or class template partial specialization) that was parsed
4914/// and constructed before we entered the scope of the class template (or
4915/// partial specialization thereof). This routine will rebuild that type now
4916/// that we have entered the declarator's scope, which may produce different
4917/// canonical types, e.g.,
4918///
4919/// \code
4920/// template<typename T>
4921/// struct X {
4922///   typedef T* pointer;
4923///   pointer data();
4924/// };
4925///
4926/// template<typename T>
4927/// typename X<T>::pointer X<T>::data() { ... }
4928/// \endcode
4929///
4930/// Here, the type "typename X<T>::pointer" will be created as a TypenameType,
4931/// since we do not know that we can look into X<T> when we parsed the type.
4932/// This function will rebuild the type, performing the lookup of "pointer"
4933/// in X<T> and returning a QualifiedNameType whose canonical type is the same
4934/// as the canonical type of T*, allowing the return types of the out-of-line
4935/// definition and the declaration to match.
4936QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc,
4937                                                 DeclarationName Name) {
4938  if (T.isNull() || !T->isDependentType())
4939    return T;
4940
4941  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
4942  return Rebuilder.TransformType(T);
4943}
4944
4945/// \brief Produces a formatted string that describes the binding of
4946/// template parameters to template arguments.
4947std::string
4948Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
4949                                      const TemplateArgumentList &Args) {
4950  // FIXME: For variadic templates, we'll need to get the structured list.
4951  return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
4952                                         Args.flat_size());
4953}
4954
4955std::string
4956Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
4957                                      const TemplateArgument *Args,
4958                                      unsigned NumArgs) {
4959  std::string Result;
4960
4961  if (!Params || Params->size() == 0 || NumArgs == 0)
4962    return Result;
4963
4964  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
4965    if (I >= NumArgs)
4966      break;
4967
4968    if (I == 0)
4969      Result += "[with ";
4970    else
4971      Result += ", ";
4972
4973    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
4974      Result += Id->getName();
4975    } else {
4976      Result += '$';
4977      Result += llvm::utostr(I);
4978    }
4979
4980    Result += " = ";
4981
4982    switch (Args[I].getKind()) {
4983      case TemplateArgument::Null:
4984        Result += "<no value>";
4985        break;
4986
4987      case TemplateArgument::Type: {
4988        std::string TypeStr;
4989        Args[I].getAsType().getAsStringInternal(TypeStr,
4990                                                Context.PrintingPolicy);
4991        Result += TypeStr;
4992        break;
4993      }
4994
4995      case TemplateArgument::Declaration: {
4996        bool Unnamed = true;
4997        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
4998          if (ND->getDeclName()) {
4999            Unnamed = false;
5000            Result += ND->getNameAsString();
5001          }
5002        }
5003
5004        if (Unnamed) {
5005          Result += "<anonymous>";
5006        }
5007        break;
5008      }
5009
5010      case TemplateArgument::Template: {
5011        std::string Str;
5012        llvm::raw_string_ostream OS(Str);
5013        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
5014        Result += OS.str();
5015        break;
5016      }
5017
5018      case TemplateArgument::Integral: {
5019        Result += Args[I].getAsIntegral()->toString(10);
5020        break;
5021      }
5022
5023      case TemplateArgument::Expression: {
5024        assert(false && "No expressions in deduced template arguments!");
5025        Result += "<expression>";
5026        break;
5027      }
5028
5029      case TemplateArgument::Pack:
5030        // FIXME: Format template argument packs
5031        Result += "<template argument pack>";
5032        break;
5033    }
5034  }
5035
5036  Result += ']';
5037  return Result;
5038}
5039