SemaTemplate.cpp revision 8735b294a257a07ca158c28094d7324f0adf889a
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "clang/Sema/SemaInternal.h" 13#include "clang/Sema/Lookup.h" 14#include "clang/Sema/Scope.h" 15#include "clang/Sema/Template.h" 16#include "clang/Sema/TemplateDeduction.h" 17#include "TreeTransform.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ExprCXX.h" 21#include "clang/AST/DeclFriend.h" 22#include "clang/AST/DeclTemplate.h" 23#include "clang/AST/RecursiveASTVisitor.h" 24#include "clang/AST/TypeVisitor.h" 25#include "clang/Sema/DeclSpec.h" 26#include "clang/Sema/ParsedTemplate.h" 27#include "clang/Basic/LangOptions.h" 28#include "clang/Basic/PartialDiagnostic.h" 29#include "llvm/ADT/StringExtras.h" 30using namespace clang; 31using namespace sema; 32 33// Exported for use by Parser. 34SourceRange 35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 36 unsigned N) { 37 if (!N) return SourceRange(); 38 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 39} 40 41/// \brief Determine whether the declaration found is acceptable as the name 42/// of a template and, if so, return that template declaration. Otherwise, 43/// returns NULL. 44static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 45 NamedDecl *Orig) { 46 NamedDecl *D = Orig->getUnderlyingDecl(); 47 48 if (isa<TemplateDecl>(D)) 49 return Orig; 50 51 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 52 // C++ [temp.local]p1: 53 // Like normal (non-template) classes, class templates have an 54 // injected-class-name (Clause 9). The injected-class-name 55 // can be used with or without a template-argument-list. When 56 // it is used without a template-argument-list, it is 57 // equivalent to the injected-class-name followed by the 58 // template-parameters of the class template enclosed in 59 // <>. When it is used with a template-argument-list, it 60 // refers to the specified class template specialization, 61 // which could be the current specialization or another 62 // specialization. 63 if (Record->isInjectedClassName()) { 64 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 65 if (Record->getDescribedClassTemplate()) 66 return Record->getDescribedClassTemplate(); 67 68 if (ClassTemplateSpecializationDecl *Spec 69 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 70 return Spec->getSpecializedTemplate(); 71 } 72 73 return 0; 74 } 75 76 return 0; 77} 78 79void Sema::FilterAcceptableTemplateNames(LookupResult &R) { 80 // The set of class templates we've already seen. 81 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 82 LookupResult::Filter filter = R.makeFilter(); 83 while (filter.hasNext()) { 84 NamedDecl *Orig = filter.next(); 85 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig); 86 if (!Repl) 87 filter.erase(); 88 else if (Repl != Orig) { 89 90 // C++ [temp.local]p3: 91 // A lookup that finds an injected-class-name (10.2) can result in an 92 // ambiguity in certain cases (for example, if it is found in more than 93 // one base class). If all of the injected-class-names that are found 94 // refer to specializations of the same class template, and if the name 95 // is used as a template-name, the reference refers to the class 96 // template itself and not a specialization thereof, and is not 97 // ambiguous. 98 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 99 if (!ClassTemplates.insert(ClassTmpl)) { 100 filter.erase(); 101 continue; 102 } 103 104 // FIXME: we promote access to public here as a workaround to 105 // the fact that LookupResult doesn't let us remember that we 106 // found this template through a particular injected class name, 107 // which means we end up doing nasty things to the invariants. 108 // Pretending that access is public is *much* safer. 109 filter.replace(Repl, AS_public); 110 } 111 } 112 filter.done(); 113} 114 115bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R) { 116 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) 117 if (isAcceptableTemplateName(Context, *I)) 118 return true; 119 120 return false; 121} 122 123TemplateNameKind Sema::isTemplateName(Scope *S, 124 CXXScopeSpec &SS, 125 bool hasTemplateKeyword, 126 UnqualifiedId &Name, 127 ParsedType ObjectTypePtr, 128 bool EnteringContext, 129 TemplateTy &TemplateResult, 130 bool &MemberOfUnknownSpecialization) { 131 assert(getLangOptions().CPlusPlus && "No template names in C!"); 132 133 DeclarationName TName; 134 MemberOfUnknownSpecialization = false; 135 136 switch (Name.getKind()) { 137 case UnqualifiedId::IK_Identifier: 138 TName = DeclarationName(Name.Identifier); 139 break; 140 141 case UnqualifiedId::IK_OperatorFunctionId: 142 TName = Context.DeclarationNames.getCXXOperatorName( 143 Name.OperatorFunctionId.Operator); 144 break; 145 146 case UnqualifiedId::IK_LiteralOperatorId: 147 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 148 break; 149 150 default: 151 return TNK_Non_template; 152 } 153 154 QualType ObjectType = ObjectTypePtr.get(); 155 156 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 157 LookupOrdinaryName); 158 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 159 MemberOfUnknownSpecialization); 160 if (R.empty()) return TNK_Non_template; 161 if (R.isAmbiguous()) { 162 // Suppress diagnostics; we'll redo this lookup later. 163 R.suppressDiagnostics(); 164 165 // FIXME: we might have ambiguous templates, in which case we 166 // should at least parse them properly! 167 return TNK_Non_template; 168 } 169 170 TemplateName Template; 171 TemplateNameKind TemplateKind; 172 173 unsigned ResultCount = R.end() - R.begin(); 174 if (ResultCount > 1) { 175 // We assume that we'll preserve the qualifier from a function 176 // template name in other ways. 177 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 178 TemplateKind = TNK_Function_template; 179 180 // We'll do this lookup again later. 181 R.suppressDiagnostics(); 182 } else { 183 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 184 185 if (SS.isSet() && !SS.isInvalid()) { 186 NestedNameSpecifier *Qualifier 187 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 188 Template = Context.getQualifiedTemplateName(Qualifier, 189 hasTemplateKeyword, TD); 190 } else { 191 Template = TemplateName(TD); 192 } 193 194 if (isa<FunctionTemplateDecl>(TD)) { 195 TemplateKind = TNK_Function_template; 196 197 // We'll do this lookup again later. 198 R.suppressDiagnostics(); 199 } else { 200 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 201 isa<TypeAliasTemplateDecl>(TD)); 202 TemplateKind = TNK_Type_template; 203 } 204 } 205 206 TemplateResult = TemplateTy::make(Template); 207 return TemplateKind; 208} 209 210bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 211 SourceLocation IILoc, 212 Scope *S, 213 const CXXScopeSpec *SS, 214 TemplateTy &SuggestedTemplate, 215 TemplateNameKind &SuggestedKind) { 216 // We can't recover unless there's a dependent scope specifier preceding the 217 // template name. 218 // FIXME: Typo correction? 219 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 220 computeDeclContext(*SS)) 221 return false; 222 223 // The code is missing a 'template' keyword prior to the dependent template 224 // name. 225 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 226 Diag(IILoc, diag::err_template_kw_missing) 227 << Qualifier << II.getName() 228 << FixItHint::CreateInsertion(IILoc, "template "); 229 SuggestedTemplate 230 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 231 SuggestedKind = TNK_Dependent_template_name; 232 return true; 233} 234 235void Sema::LookupTemplateName(LookupResult &Found, 236 Scope *S, CXXScopeSpec &SS, 237 QualType ObjectType, 238 bool EnteringContext, 239 bool &MemberOfUnknownSpecialization) { 240 // Determine where to perform name lookup 241 MemberOfUnknownSpecialization = false; 242 DeclContext *LookupCtx = 0; 243 bool isDependent = false; 244 if (!ObjectType.isNull()) { 245 // This nested-name-specifier occurs in a member access expression, e.g., 246 // x->B::f, and we are looking into the type of the object. 247 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 248 LookupCtx = computeDeclContext(ObjectType); 249 isDependent = ObjectType->isDependentType(); 250 assert((isDependent || !ObjectType->isIncompleteType()) && 251 "Caller should have completed object type"); 252 } else if (SS.isSet()) { 253 // This nested-name-specifier occurs after another nested-name-specifier, 254 // so long into the context associated with the prior nested-name-specifier. 255 LookupCtx = computeDeclContext(SS, EnteringContext); 256 isDependent = isDependentScopeSpecifier(SS); 257 258 // The declaration context must be complete. 259 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 260 return; 261 } 262 263 bool ObjectTypeSearchedInScope = false; 264 if (LookupCtx) { 265 // Perform "qualified" name lookup into the declaration context we 266 // computed, which is either the type of the base of a member access 267 // expression or the declaration context associated with a prior 268 // nested-name-specifier. 269 LookupQualifiedName(Found, LookupCtx); 270 271 if (!ObjectType.isNull() && Found.empty()) { 272 // C++ [basic.lookup.classref]p1: 273 // In a class member access expression (5.2.5), if the . or -> token is 274 // immediately followed by an identifier followed by a <, the 275 // identifier must be looked up to determine whether the < is the 276 // beginning of a template argument list (14.2) or a less-than operator. 277 // The identifier is first looked up in the class of the object 278 // expression. If the identifier is not found, it is then looked up in 279 // the context of the entire postfix-expression and shall name a class 280 // or function template. 281 if (S) LookupName(Found, S); 282 ObjectTypeSearchedInScope = true; 283 } 284 } else if (isDependent && (!S || ObjectType.isNull())) { 285 // We cannot look into a dependent object type or nested nme 286 // specifier. 287 MemberOfUnknownSpecialization = true; 288 return; 289 } else { 290 // Perform unqualified name lookup in the current scope. 291 LookupName(Found, S); 292 } 293 294 if (Found.empty() && !isDependent) { 295 // If we did not find any names, attempt to correct any typos. 296 DeclarationName Name = Found.getLookupName(); 297 if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx, 298 false, CTC_CXXCasts)) { 299 FilterAcceptableTemplateNames(Found); 300 if (!Found.empty()) { 301 if (LookupCtx) 302 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 303 << Name << LookupCtx << Found.getLookupName() << SS.getRange() 304 << FixItHint::CreateReplacement(Found.getNameLoc(), 305 Found.getLookupName().getAsString()); 306 else 307 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 308 << Name << Found.getLookupName() 309 << FixItHint::CreateReplacement(Found.getNameLoc(), 310 Found.getLookupName().getAsString()); 311 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 312 Diag(Template->getLocation(), diag::note_previous_decl) 313 << Template->getDeclName(); 314 } 315 } else { 316 Found.clear(); 317 Found.setLookupName(Name); 318 } 319 } 320 321 FilterAcceptableTemplateNames(Found); 322 if (Found.empty()) { 323 if (isDependent) 324 MemberOfUnknownSpecialization = true; 325 return; 326 } 327 328 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 329 // C++ [basic.lookup.classref]p1: 330 // [...] If the lookup in the class of the object expression finds a 331 // template, the name is also looked up in the context of the entire 332 // postfix-expression and [...] 333 // 334 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 335 LookupOrdinaryName); 336 LookupName(FoundOuter, S); 337 FilterAcceptableTemplateNames(FoundOuter); 338 339 if (FoundOuter.empty()) { 340 // - if the name is not found, the name found in the class of the 341 // object expression is used, otherwise 342 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 343 // - if the name is found in the context of the entire 344 // postfix-expression and does not name a class template, the name 345 // found in the class of the object expression is used, otherwise 346 } else if (!Found.isSuppressingDiagnostics()) { 347 // - if the name found is a class template, it must refer to the same 348 // entity as the one found in the class of the object expression, 349 // otherwise the program is ill-formed. 350 if (!Found.isSingleResult() || 351 Found.getFoundDecl()->getCanonicalDecl() 352 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 353 Diag(Found.getNameLoc(), 354 diag::ext_nested_name_member_ref_lookup_ambiguous) 355 << Found.getLookupName() 356 << ObjectType; 357 Diag(Found.getRepresentativeDecl()->getLocation(), 358 diag::note_ambig_member_ref_object_type) 359 << ObjectType; 360 Diag(FoundOuter.getFoundDecl()->getLocation(), 361 diag::note_ambig_member_ref_scope); 362 363 // Recover by taking the template that we found in the object 364 // expression's type. 365 } 366 } 367 } 368} 369 370/// ActOnDependentIdExpression - Handle a dependent id-expression that 371/// was just parsed. This is only possible with an explicit scope 372/// specifier naming a dependent type. 373ExprResult 374Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 375 const DeclarationNameInfo &NameInfo, 376 bool isAddressOfOperand, 377 const TemplateArgumentListInfo *TemplateArgs) { 378 DeclContext *DC = getFunctionLevelDeclContext(); 379 380 if (!isAddressOfOperand && 381 isa<CXXMethodDecl>(DC) && 382 cast<CXXMethodDecl>(DC)->isInstance()) { 383 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 384 385 // Since the 'this' expression is synthesized, we don't need to 386 // perform the double-lookup check. 387 NamedDecl *FirstQualifierInScope = 0; 388 389 return Owned(CXXDependentScopeMemberExpr::Create(Context, 390 /*This*/ 0, ThisType, 391 /*IsArrow*/ true, 392 /*Op*/ SourceLocation(), 393 SS.getWithLocInContext(Context), 394 FirstQualifierInScope, 395 NameInfo, 396 TemplateArgs)); 397 } 398 399 return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs); 400} 401 402ExprResult 403Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 404 const DeclarationNameInfo &NameInfo, 405 const TemplateArgumentListInfo *TemplateArgs) { 406 return Owned(DependentScopeDeclRefExpr::Create(Context, 407 SS.getWithLocInContext(Context), 408 NameInfo, 409 TemplateArgs)); 410} 411 412/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 413/// that the template parameter 'PrevDecl' is being shadowed by a new 414/// declaration at location Loc. Returns true to indicate that this is 415/// an error, and false otherwise. 416bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 417 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 418 419 // Microsoft Visual C++ permits template parameters to be shadowed. 420 if (getLangOptions().Microsoft) 421 return false; 422 423 // C++ [temp.local]p4: 424 // A template-parameter shall not be redeclared within its 425 // scope (including nested scopes). 426 Diag(Loc, diag::err_template_param_shadow) 427 << cast<NamedDecl>(PrevDecl)->getDeclName(); 428 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 429 return true; 430} 431 432/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 433/// the parameter D to reference the templated declaration and return a pointer 434/// to the template declaration. Otherwise, do nothing to D and return null. 435TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 436 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 437 D = Temp->getTemplatedDecl(); 438 return Temp; 439 } 440 return 0; 441} 442 443ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 444 SourceLocation EllipsisLoc) const { 445 assert(Kind == Template && 446 "Only template template arguments can be pack expansions here"); 447 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 448 "Template template argument pack expansion without packs"); 449 ParsedTemplateArgument Result(*this); 450 Result.EllipsisLoc = EllipsisLoc; 451 return Result; 452} 453 454static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 455 const ParsedTemplateArgument &Arg) { 456 457 switch (Arg.getKind()) { 458 case ParsedTemplateArgument::Type: { 459 TypeSourceInfo *DI; 460 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 461 if (!DI) 462 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 463 return TemplateArgumentLoc(TemplateArgument(T), DI); 464 } 465 466 case ParsedTemplateArgument::NonType: { 467 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 468 return TemplateArgumentLoc(TemplateArgument(E), E); 469 } 470 471 case ParsedTemplateArgument::Template: { 472 TemplateName Template = Arg.getAsTemplate().get(); 473 TemplateArgument TArg; 474 if (Arg.getEllipsisLoc().isValid()) 475 TArg = TemplateArgument(Template, llvm::Optional<unsigned int>()); 476 else 477 TArg = Template; 478 return TemplateArgumentLoc(TArg, 479 Arg.getScopeSpec().getWithLocInContext( 480 SemaRef.Context), 481 Arg.getLocation(), 482 Arg.getEllipsisLoc()); 483 } 484 } 485 486 llvm_unreachable("Unhandled parsed template argument"); 487 return TemplateArgumentLoc(); 488} 489 490/// \brief Translates template arguments as provided by the parser 491/// into template arguments used by semantic analysis. 492void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 493 TemplateArgumentListInfo &TemplateArgs) { 494 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 495 TemplateArgs.addArgument(translateTemplateArgument(*this, 496 TemplateArgsIn[I])); 497} 498 499/// ActOnTypeParameter - Called when a C++ template type parameter 500/// (e.g., "typename T") has been parsed. Typename specifies whether 501/// the keyword "typename" was used to declare the type parameter 502/// (otherwise, "class" was used), and KeyLoc is the location of the 503/// "class" or "typename" keyword. ParamName is the name of the 504/// parameter (NULL indicates an unnamed template parameter) and 505/// ParamNameLoc is the location of the parameter name (if any). 506/// If the type parameter has a default argument, it will be added 507/// later via ActOnTypeParameterDefault. 508Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 509 SourceLocation EllipsisLoc, 510 SourceLocation KeyLoc, 511 IdentifierInfo *ParamName, 512 SourceLocation ParamNameLoc, 513 unsigned Depth, unsigned Position, 514 SourceLocation EqualLoc, 515 ParsedType DefaultArg) { 516 assert(S->isTemplateParamScope() && 517 "Template type parameter not in template parameter scope!"); 518 bool Invalid = false; 519 520 if (ParamName) { 521 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 522 LookupOrdinaryName, 523 ForRedeclaration); 524 if (PrevDecl && PrevDecl->isTemplateParameter()) 525 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 526 PrevDecl); 527 } 528 529 SourceLocation Loc = ParamNameLoc; 530 if (!ParamName) 531 Loc = KeyLoc; 532 533 TemplateTypeParmDecl *Param 534 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 535 KeyLoc, Loc, Depth, Position, ParamName, 536 Typename, Ellipsis); 537 Param->setAccess(AS_public); 538 if (Invalid) 539 Param->setInvalidDecl(); 540 541 if (ParamName) { 542 // Add the template parameter into the current scope. 543 S->AddDecl(Param); 544 IdResolver.AddDecl(Param); 545 } 546 547 // C++0x [temp.param]p9: 548 // A default template-argument may be specified for any kind of 549 // template-parameter that is not a template parameter pack. 550 if (DefaultArg && Ellipsis) { 551 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 552 DefaultArg = ParsedType(); 553 } 554 555 // Handle the default argument, if provided. 556 if (DefaultArg) { 557 TypeSourceInfo *DefaultTInfo; 558 GetTypeFromParser(DefaultArg, &DefaultTInfo); 559 560 assert(DefaultTInfo && "expected source information for type"); 561 562 // Check for unexpanded parameter packs. 563 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, 564 UPPC_DefaultArgument)) 565 return Param; 566 567 // Check the template argument itself. 568 if (CheckTemplateArgument(Param, DefaultTInfo)) { 569 Param->setInvalidDecl(); 570 return Param; 571 } 572 573 Param->setDefaultArgument(DefaultTInfo, false); 574 } 575 576 return Param; 577} 578 579/// \brief Check that the type of a non-type template parameter is 580/// well-formed. 581/// 582/// \returns the (possibly-promoted) parameter type if valid; 583/// otherwise, produces a diagnostic and returns a NULL type. 584QualType 585Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 586 // We don't allow variably-modified types as the type of non-type template 587 // parameters. 588 if (T->isVariablyModifiedType()) { 589 Diag(Loc, diag::err_variably_modified_nontype_template_param) 590 << T; 591 return QualType(); 592 } 593 594 // C++ [temp.param]p4: 595 // 596 // A non-type template-parameter shall have one of the following 597 // (optionally cv-qualified) types: 598 // 599 // -- integral or enumeration type, 600 if (T->isIntegralOrEnumerationType() || 601 // -- pointer to object or pointer to function, 602 T->isPointerType() || 603 // -- reference to object or reference to function, 604 T->isReferenceType() || 605 // -- pointer to member, 606 T->isMemberPointerType() || 607 // -- std::nullptr_t. 608 T->isNullPtrType() || 609 // If T is a dependent type, we can't do the check now, so we 610 // assume that it is well-formed. 611 T->isDependentType()) 612 return T; 613 // C++ [temp.param]p8: 614 // 615 // A non-type template-parameter of type "array of T" or 616 // "function returning T" is adjusted to be of type "pointer to 617 // T" or "pointer to function returning T", respectively. 618 else if (T->isArrayType()) 619 // FIXME: Keep the type prior to promotion? 620 return Context.getArrayDecayedType(T); 621 else if (T->isFunctionType()) 622 // FIXME: Keep the type prior to promotion? 623 return Context.getPointerType(T); 624 625 Diag(Loc, diag::err_template_nontype_parm_bad_type) 626 << T; 627 628 return QualType(); 629} 630 631Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 632 unsigned Depth, 633 unsigned Position, 634 SourceLocation EqualLoc, 635 Expr *Default) { 636 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 637 QualType T = TInfo->getType(); 638 639 assert(S->isTemplateParamScope() && 640 "Non-type template parameter not in template parameter scope!"); 641 bool Invalid = false; 642 643 IdentifierInfo *ParamName = D.getIdentifier(); 644 if (ParamName) { 645 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 646 LookupOrdinaryName, 647 ForRedeclaration); 648 if (PrevDecl && PrevDecl->isTemplateParameter()) 649 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 650 PrevDecl); 651 } 652 653 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 654 if (T.isNull()) { 655 T = Context.IntTy; // Recover with an 'int' type. 656 Invalid = true; 657 } 658 659 bool IsParameterPack = D.hasEllipsis(); 660 NonTypeTemplateParmDecl *Param 661 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 662 D.getSourceRange().getBegin(), 663 D.getIdentifierLoc(), 664 Depth, Position, ParamName, T, 665 IsParameterPack, TInfo); 666 Param->setAccess(AS_public); 667 668 if (Invalid) 669 Param->setInvalidDecl(); 670 671 if (D.getIdentifier()) { 672 // Add the template parameter into the current scope. 673 S->AddDecl(Param); 674 IdResolver.AddDecl(Param); 675 } 676 677 // C++0x [temp.param]p9: 678 // A default template-argument may be specified for any kind of 679 // template-parameter that is not a template parameter pack. 680 if (Default && IsParameterPack) { 681 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 682 Default = 0; 683 } 684 685 // Check the well-formedness of the default template argument, if provided. 686 if (Default) { 687 // Check for unexpanded parameter packs. 688 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 689 return Param; 690 691 TemplateArgument Converted; 692 ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted); 693 if (DefaultRes.isInvalid()) { 694 Param->setInvalidDecl(); 695 return Param; 696 } 697 Default = DefaultRes.take(); 698 699 Param->setDefaultArgument(Default, false); 700 } 701 702 return Param; 703} 704 705/// ActOnTemplateTemplateParameter - Called when a C++ template template 706/// parameter (e.g. T in template <template <typename> class T> class array) 707/// has been parsed. S is the current scope. 708Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 709 SourceLocation TmpLoc, 710 TemplateParamsTy *Params, 711 SourceLocation EllipsisLoc, 712 IdentifierInfo *Name, 713 SourceLocation NameLoc, 714 unsigned Depth, 715 unsigned Position, 716 SourceLocation EqualLoc, 717 ParsedTemplateArgument Default) { 718 assert(S->isTemplateParamScope() && 719 "Template template parameter not in template parameter scope!"); 720 721 // Construct the parameter object. 722 bool IsParameterPack = EllipsisLoc.isValid(); 723 TemplateTemplateParmDecl *Param = 724 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 725 NameLoc.isInvalid()? TmpLoc : NameLoc, 726 Depth, Position, IsParameterPack, 727 Name, Params); 728 Param->setAccess(AS_public); 729 730 // If the template template parameter has a name, then link the identifier 731 // into the scope and lookup mechanisms. 732 if (Name) { 733 S->AddDecl(Param); 734 IdResolver.AddDecl(Param); 735 } 736 737 if (Params->size() == 0) { 738 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 739 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 740 Param->setInvalidDecl(); 741 } 742 743 // C++0x [temp.param]p9: 744 // A default template-argument may be specified for any kind of 745 // template-parameter that is not a template parameter pack. 746 if (IsParameterPack && !Default.isInvalid()) { 747 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 748 Default = ParsedTemplateArgument(); 749 } 750 751 if (!Default.isInvalid()) { 752 // Check only that we have a template template argument. We don't want to 753 // try to check well-formedness now, because our template template parameter 754 // might have dependent types in its template parameters, which we wouldn't 755 // be able to match now. 756 // 757 // If none of the template template parameter's template arguments mention 758 // other template parameters, we could actually perform more checking here. 759 // However, it isn't worth doing. 760 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 761 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 762 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 763 << DefaultArg.getSourceRange(); 764 return Param; 765 } 766 767 // Check for unexpanded parameter packs. 768 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 769 DefaultArg.getArgument().getAsTemplate(), 770 UPPC_DefaultArgument)) 771 return Param; 772 773 Param->setDefaultArgument(DefaultArg, false); 774 } 775 776 return Param; 777} 778 779/// ActOnTemplateParameterList - Builds a TemplateParameterList that 780/// contains the template parameters in Params/NumParams. 781Sema::TemplateParamsTy * 782Sema::ActOnTemplateParameterList(unsigned Depth, 783 SourceLocation ExportLoc, 784 SourceLocation TemplateLoc, 785 SourceLocation LAngleLoc, 786 Decl **Params, unsigned NumParams, 787 SourceLocation RAngleLoc) { 788 if (ExportLoc.isValid()) 789 Diag(ExportLoc, diag::warn_template_export_unsupported); 790 791 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 792 (NamedDecl**)Params, NumParams, 793 RAngleLoc); 794} 795 796static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 797 if (SS.isSet()) 798 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext())); 799} 800 801DeclResult 802Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 803 SourceLocation KWLoc, CXXScopeSpec &SS, 804 IdentifierInfo *Name, SourceLocation NameLoc, 805 AttributeList *Attr, 806 TemplateParameterList *TemplateParams, 807 AccessSpecifier AS, 808 unsigned NumOuterTemplateParamLists, 809 TemplateParameterList** OuterTemplateParamLists) { 810 assert(TemplateParams && TemplateParams->size() > 0 && 811 "No template parameters"); 812 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 813 bool Invalid = false; 814 815 // Check that we can declare a template here. 816 if (CheckTemplateDeclScope(S, TemplateParams)) 817 return true; 818 819 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 820 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 821 822 // There is no such thing as an unnamed class template. 823 if (!Name) { 824 Diag(KWLoc, diag::err_template_unnamed_class); 825 return true; 826 } 827 828 // Find any previous declaration with this name. 829 DeclContext *SemanticContext; 830 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 831 ForRedeclaration); 832 if (SS.isNotEmpty() && !SS.isInvalid()) { 833 SemanticContext = computeDeclContext(SS, true); 834 if (!SemanticContext) { 835 // FIXME: Produce a reasonable diagnostic here 836 return true; 837 } 838 839 if (RequireCompleteDeclContext(SS, SemanticContext)) 840 return true; 841 842 LookupQualifiedName(Previous, SemanticContext); 843 } else { 844 SemanticContext = CurContext; 845 LookupName(Previous, S); 846 } 847 848 if (Previous.isAmbiguous()) 849 return true; 850 851 NamedDecl *PrevDecl = 0; 852 if (Previous.begin() != Previous.end()) 853 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 854 855 // If there is a previous declaration with the same name, check 856 // whether this is a valid redeclaration. 857 ClassTemplateDecl *PrevClassTemplate 858 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 859 860 // We may have found the injected-class-name of a class template, 861 // class template partial specialization, or class template specialization. 862 // In these cases, grab the template that is being defined or specialized. 863 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 864 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 865 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 866 PrevClassTemplate 867 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 868 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 869 PrevClassTemplate 870 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 871 ->getSpecializedTemplate(); 872 } 873 } 874 875 if (TUK == TUK_Friend) { 876 // C++ [namespace.memdef]p3: 877 // [...] When looking for a prior declaration of a class or a function 878 // declared as a friend, and when the name of the friend class or 879 // function is neither a qualified name nor a template-id, scopes outside 880 // the innermost enclosing namespace scope are not considered. 881 if (!SS.isSet()) { 882 DeclContext *OutermostContext = CurContext; 883 while (!OutermostContext->isFileContext()) 884 OutermostContext = OutermostContext->getLookupParent(); 885 886 if (PrevDecl && 887 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 888 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 889 SemanticContext = PrevDecl->getDeclContext(); 890 } else { 891 // Declarations in outer scopes don't matter. However, the outermost 892 // context we computed is the semantic context for our new 893 // declaration. 894 PrevDecl = PrevClassTemplate = 0; 895 SemanticContext = OutermostContext; 896 } 897 } 898 899 if (CurContext->isDependentContext()) { 900 // If this is a dependent context, we don't want to link the friend 901 // class template to the template in scope, because that would perform 902 // checking of the template parameter lists that can't be performed 903 // until the outer context is instantiated. 904 PrevDecl = PrevClassTemplate = 0; 905 } 906 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 907 PrevDecl = PrevClassTemplate = 0; 908 909 if (PrevClassTemplate) { 910 // Ensure that the template parameter lists are compatible. 911 if (!TemplateParameterListsAreEqual(TemplateParams, 912 PrevClassTemplate->getTemplateParameters(), 913 /*Complain=*/true, 914 TPL_TemplateMatch)) 915 return true; 916 917 // C++ [temp.class]p4: 918 // In a redeclaration, partial specialization, explicit 919 // specialization or explicit instantiation of a class template, 920 // the class-key shall agree in kind with the original class 921 // template declaration (7.1.5.3). 922 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 923 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 924 Diag(KWLoc, diag::err_use_with_wrong_tag) 925 << Name 926 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 927 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 928 Kind = PrevRecordDecl->getTagKind(); 929 } 930 931 // Check for redefinition of this class template. 932 if (TUK == TUK_Definition) { 933 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 934 Diag(NameLoc, diag::err_redefinition) << Name; 935 Diag(Def->getLocation(), diag::note_previous_definition); 936 // FIXME: Would it make sense to try to "forget" the previous 937 // definition, as part of error recovery? 938 return true; 939 } 940 } 941 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 942 // Maybe we will complain about the shadowed template parameter. 943 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 944 // Just pretend that we didn't see the previous declaration. 945 PrevDecl = 0; 946 } else if (PrevDecl) { 947 // C++ [temp]p5: 948 // A class template shall not have the same name as any other 949 // template, class, function, object, enumeration, enumerator, 950 // namespace, or type in the same scope (3.3), except as specified 951 // in (14.5.4). 952 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 953 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 954 return true; 955 } 956 957 // Check the template parameter list of this declaration, possibly 958 // merging in the template parameter list from the previous class 959 // template declaration. 960 if (CheckTemplateParameterList(TemplateParams, 961 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 962 (SS.isSet() && SemanticContext && 963 SemanticContext->isRecord() && 964 SemanticContext->isDependentContext()) 965 ? TPC_ClassTemplateMember 966 : TPC_ClassTemplate)) 967 Invalid = true; 968 969 if (SS.isSet()) { 970 // If the name of the template was qualified, we must be defining the 971 // template out-of-line. 972 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate && 973 !(TUK == TUK_Friend && CurContext->isDependentContext())) 974 Diag(NameLoc, diag::err_member_def_does_not_match) 975 << Name << SemanticContext << SS.getRange(); 976 } 977 978 CXXRecordDecl *NewClass = 979 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 980 PrevClassTemplate? 981 PrevClassTemplate->getTemplatedDecl() : 0, 982 /*DelayTypeCreation=*/true); 983 SetNestedNameSpecifier(NewClass, SS); 984 if (NumOuterTemplateParamLists > 0) 985 NewClass->setTemplateParameterListsInfo(Context, 986 NumOuterTemplateParamLists, 987 OuterTemplateParamLists); 988 989 ClassTemplateDecl *NewTemplate 990 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 991 DeclarationName(Name), TemplateParams, 992 NewClass, PrevClassTemplate); 993 NewClass->setDescribedClassTemplate(NewTemplate); 994 995 // Build the type for the class template declaration now. 996 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 997 T = Context.getInjectedClassNameType(NewClass, T); 998 assert(T->isDependentType() && "Class template type is not dependent?"); 999 (void)T; 1000 1001 // If we are providing an explicit specialization of a member that is a 1002 // class template, make a note of that. 1003 if (PrevClassTemplate && 1004 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 1005 PrevClassTemplate->setMemberSpecialization(); 1006 1007 // Set the access specifier. 1008 if (!Invalid && TUK != TUK_Friend) 1009 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 1010 1011 // Set the lexical context of these templates 1012 NewClass->setLexicalDeclContext(CurContext); 1013 NewTemplate->setLexicalDeclContext(CurContext); 1014 1015 if (TUK == TUK_Definition) 1016 NewClass->startDefinition(); 1017 1018 if (Attr) 1019 ProcessDeclAttributeList(S, NewClass, Attr); 1020 1021 if (TUK != TUK_Friend) 1022 PushOnScopeChains(NewTemplate, S); 1023 else { 1024 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1025 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1026 NewClass->setAccess(PrevClassTemplate->getAccess()); 1027 } 1028 1029 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 1030 PrevClassTemplate != NULL); 1031 1032 // Friend templates are visible in fairly strange ways. 1033 if (!CurContext->isDependentContext()) { 1034 DeclContext *DC = SemanticContext->getRedeclContext(); 1035 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 1036 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1037 PushOnScopeChains(NewTemplate, EnclosingScope, 1038 /* AddToContext = */ false); 1039 } 1040 1041 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 1042 NewClass->getLocation(), 1043 NewTemplate, 1044 /*FIXME:*/NewClass->getLocation()); 1045 Friend->setAccess(AS_public); 1046 CurContext->addDecl(Friend); 1047 } 1048 1049 if (Invalid) { 1050 NewTemplate->setInvalidDecl(); 1051 NewClass->setInvalidDecl(); 1052 } 1053 return NewTemplate; 1054} 1055 1056/// \brief Diagnose the presence of a default template argument on a 1057/// template parameter, which is ill-formed in certain contexts. 1058/// 1059/// \returns true if the default template argument should be dropped. 1060static bool DiagnoseDefaultTemplateArgument(Sema &S, 1061 Sema::TemplateParamListContext TPC, 1062 SourceLocation ParamLoc, 1063 SourceRange DefArgRange) { 1064 switch (TPC) { 1065 case Sema::TPC_ClassTemplate: 1066 case Sema::TPC_TypeAliasTemplate: 1067 return false; 1068 1069 case Sema::TPC_FunctionTemplate: 1070 case Sema::TPC_FriendFunctionTemplateDefinition: 1071 // C++ [temp.param]p9: 1072 // A default template-argument shall not be specified in a 1073 // function template declaration or a function template 1074 // definition [...] 1075 // If a friend function template declaration specifies a default 1076 // template-argument, that declaration shall be a definition and shall be 1077 // the only declaration of the function template in the translation unit. 1078 // (C++98/03 doesn't have this wording; see DR226). 1079 if (!S.getLangOptions().CPlusPlus0x) 1080 S.Diag(ParamLoc, 1081 diag::ext_template_parameter_default_in_function_template) 1082 << DefArgRange; 1083 return false; 1084 1085 case Sema::TPC_ClassTemplateMember: 1086 // C++0x [temp.param]p9: 1087 // A default template-argument shall not be specified in the 1088 // template-parameter-lists of the definition of a member of a 1089 // class template that appears outside of the member's class. 1090 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1091 << DefArgRange; 1092 return true; 1093 1094 case Sema::TPC_FriendFunctionTemplate: 1095 // C++ [temp.param]p9: 1096 // A default template-argument shall not be specified in a 1097 // friend template declaration. 1098 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1099 << DefArgRange; 1100 return true; 1101 1102 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1103 // for friend function templates if there is only a single 1104 // declaration (and it is a definition). Strange! 1105 } 1106 1107 return false; 1108} 1109 1110/// \brief Check for unexpanded parameter packs within the template parameters 1111/// of a template template parameter, recursively. 1112static bool DiagnoseUnexpandedParameterPacks(Sema &S, 1113 TemplateTemplateParmDecl *TTP) { 1114 TemplateParameterList *Params = TTP->getTemplateParameters(); 1115 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 1116 NamedDecl *P = Params->getParam(I); 1117 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 1118 if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 1119 NTTP->getTypeSourceInfo(), 1120 Sema::UPPC_NonTypeTemplateParameterType)) 1121 return true; 1122 1123 continue; 1124 } 1125 1126 if (TemplateTemplateParmDecl *InnerTTP 1127 = dyn_cast<TemplateTemplateParmDecl>(P)) 1128 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 1129 return true; 1130 } 1131 1132 return false; 1133} 1134 1135/// \brief Checks the validity of a template parameter list, possibly 1136/// considering the template parameter list from a previous 1137/// declaration. 1138/// 1139/// If an "old" template parameter list is provided, it must be 1140/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1141/// template parameter list. 1142/// 1143/// \param NewParams Template parameter list for a new template 1144/// declaration. This template parameter list will be updated with any 1145/// default arguments that are carried through from the previous 1146/// template parameter list. 1147/// 1148/// \param OldParams If provided, template parameter list from a 1149/// previous declaration of the same template. Default template 1150/// arguments will be merged from the old template parameter list to 1151/// the new template parameter list. 1152/// 1153/// \param TPC Describes the context in which we are checking the given 1154/// template parameter list. 1155/// 1156/// \returns true if an error occurred, false otherwise. 1157bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1158 TemplateParameterList *OldParams, 1159 TemplateParamListContext TPC) { 1160 bool Invalid = false; 1161 1162 // C++ [temp.param]p10: 1163 // The set of default template-arguments available for use with a 1164 // template declaration or definition is obtained by merging the 1165 // default arguments from the definition (if in scope) and all 1166 // declarations in scope in the same way default function 1167 // arguments are (8.3.6). 1168 bool SawDefaultArgument = false; 1169 SourceLocation PreviousDefaultArgLoc; 1170 1171 bool SawParameterPack = false; 1172 SourceLocation ParameterPackLoc; 1173 1174 // Dummy initialization to avoid warnings. 1175 TemplateParameterList::iterator OldParam = NewParams->end(); 1176 if (OldParams) 1177 OldParam = OldParams->begin(); 1178 1179 bool RemoveDefaultArguments = false; 1180 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1181 NewParamEnd = NewParams->end(); 1182 NewParam != NewParamEnd; ++NewParam) { 1183 // Variables used to diagnose redundant default arguments 1184 bool RedundantDefaultArg = false; 1185 SourceLocation OldDefaultLoc; 1186 SourceLocation NewDefaultLoc; 1187 1188 // Variables used to diagnose missing default arguments 1189 bool MissingDefaultArg = false; 1190 1191 // C++0x [temp.param]p11: 1192 // If a template parameter of a primary class template or alias template 1193 // is a template parameter pack, it shall be the last template parameter. 1194 if (SawParameterPack && 1195 (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) { 1196 Diag(ParameterPackLoc, 1197 diag::err_template_param_pack_must_be_last_template_parameter); 1198 Invalid = true; 1199 } 1200 1201 if (TemplateTypeParmDecl *NewTypeParm 1202 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1203 // Check the presence of a default argument here. 1204 if (NewTypeParm->hasDefaultArgument() && 1205 DiagnoseDefaultTemplateArgument(*this, TPC, 1206 NewTypeParm->getLocation(), 1207 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1208 .getSourceRange())) 1209 NewTypeParm->removeDefaultArgument(); 1210 1211 // Merge default arguments for template type parameters. 1212 TemplateTypeParmDecl *OldTypeParm 1213 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1214 1215 if (NewTypeParm->isParameterPack()) { 1216 assert(!NewTypeParm->hasDefaultArgument() && 1217 "Parameter packs can't have a default argument!"); 1218 SawParameterPack = true; 1219 ParameterPackLoc = NewTypeParm->getLocation(); 1220 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1221 NewTypeParm->hasDefaultArgument()) { 1222 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1223 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1224 SawDefaultArgument = true; 1225 RedundantDefaultArg = true; 1226 PreviousDefaultArgLoc = NewDefaultLoc; 1227 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1228 // Merge the default argument from the old declaration to the 1229 // new declaration. 1230 SawDefaultArgument = true; 1231 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1232 true); 1233 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1234 } else if (NewTypeParm->hasDefaultArgument()) { 1235 SawDefaultArgument = true; 1236 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1237 } else if (SawDefaultArgument) 1238 MissingDefaultArg = true; 1239 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1240 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1241 // Check for unexpanded parameter packs. 1242 if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 1243 NewNonTypeParm->getTypeSourceInfo(), 1244 UPPC_NonTypeTemplateParameterType)) { 1245 Invalid = true; 1246 continue; 1247 } 1248 1249 // Check the presence of a default argument here. 1250 if (NewNonTypeParm->hasDefaultArgument() && 1251 DiagnoseDefaultTemplateArgument(*this, TPC, 1252 NewNonTypeParm->getLocation(), 1253 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1254 NewNonTypeParm->removeDefaultArgument(); 1255 } 1256 1257 // Merge default arguments for non-type template parameters 1258 NonTypeTemplateParmDecl *OldNonTypeParm 1259 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1260 if (NewNonTypeParm->isParameterPack()) { 1261 assert(!NewNonTypeParm->hasDefaultArgument() && 1262 "Parameter packs can't have a default argument!"); 1263 SawParameterPack = true; 1264 ParameterPackLoc = NewNonTypeParm->getLocation(); 1265 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1266 NewNonTypeParm->hasDefaultArgument()) { 1267 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1268 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1269 SawDefaultArgument = true; 1270 RedundantDefaultArg = true; 1271 PreviousDefaultArgLoc = NewDefaultLoc; 1272 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1273 // Merge the default argument from the old declaration to the 1274 // new declaration. 1275 SawDefaultArgument = true; 1276 // FIXME: We need to create a new kind of "default argument" 1277 // expression that points to a previous non-type template 1278 // parameter. 1279 NewNonTypeParm->setDefaultArgument( 1280 OldNonTypeParm->getDefaultArgument(), 1281 /*Inherited=*/ true); 1282 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1283 } else if (NewNonTypeParm->hasDefaultArgument()) { 1284 SawDefaultArgument = true; 1285 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1286 } else if (SawDefaultArgument) 1287 MissingDefaultArg = true; 1288 } else { 1289 // Check the presence of a default argument here. 1290 TemplateTemplateParmDecl *NewTemplateParm 1291 = cast<TemplateTemplateParmDecl>(*NewParam); 1292 1293 // Check for unexpanded parameter packs, recursively. 1294 if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 1295 Invalid = true; 1296 continue; 1297 } 1298 1299 if (NewTemplateParm->hasDefaultArgument() && 1300 DiagnoseDefaultTemplateArgument(*this, TPC, 1301 NewTemplateParm->getLocation(), 1302 NewTemplateParm->getDefaultArgument().getSourceRange())) 1303 NewTemplateParm->removeDefaultArgument(); 1304 1305 // Merge default arguments for template template parameters 1306 TemplateTemplateParmDecl *OldTemplateParm 1307 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1308 if (NewTemplateParm->isParameterPack()) { 1309 assert(!NewTemplateParm->hasDefaultArgument() && 1310 "Parameter packs can't have a default argument!"); 1311 SawParameterPack = true; 1312 ParameterPackLoc = NewTemplateParm->getLocation(); 1313 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1314 NewTemplateParm->hasDefaultArgument()) { 1315 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1316 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1317 SawDefaultArgument = true; 1318 RedundantDefaultArg = true; 1319 PreviousDefaultArgLoc = NewDefaultLoc; 1320 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1321 // Merge the default argument from the old declaration to the 1322 // new declaration. 1323 SawDefaultArgument = true; 1324 // FIXME: We need to create a new kind of "default argument" expression 1325 // that points to a previous template template parameter. 1326 NewTemplateParm->setDefaultArgument( 1327 OldTemplateParm->getDefaultArgument(), 1328 /*Inherited=*/ true); 1329 PreviousDefaultArgLoc 1330 = OldTemplateParm->getDefaultArgument().getLocation(); 1331 } else if (NewTemplateParm->hasDefaultArgument()) { 1332 SawDefaultArgument = true; 1333 PreviousDefaultArgLoc 1334 = NewTemplateParm->getDefaultArgument().getLocation(); 1335 } else if (SawDefaultArgument) 1336 MissingDefaultArg = true; 1337 } 1338 1339 if (RedundantDefaultArg) { 1340 // C++ [temp.param]p12: 1341 // A template-parameter shall not be given default arguments 1342 // by two different declarations in the same scope. 1343 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1344 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1345 Invalid = true; 1346 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 1347 // C++ [temp.param]p11: 1348 // If a template-parameter of a class template has a default 1349 // template-argument, each subsequent template-parameter shall either 1350 // have a default template-argument supplied or be a template parameter 1351 // pack. 1352 Diag((*NewParam)->getLocation(), 1353 diag::err_template_param_default_arg_missing); 1354 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1355 Invalid = true; 1356 RemoveDefaultArguments = true; 1357 } 1358 1359 // If we have an old template parameter list that we're merging 1360 // in, move on to the next parameter. 1361 if (OldParams) 1362 ++OldParam; 1363 } 1364 1365 // We were missing some default arguments at the end of the list, so remove 1366 // all of the default arguments. 1367 if (RemoveDefaultArguments) { 1368 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1369 NewParamEnd = NewParams->end(); 1370 NewParam != NewParamEnd; ++NewParam) { 1371 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 1372 TTP->removeDefaultArgument(); 1373 else if (NonTypeTemplateParmDecl *NTTP 1374 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 1375 NTTP->removeDefaultArgument(); 1376 else 1377 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 1378 } 1379 } 1380 1381 return Invalid; 1382} 1383 1384namespace { 1385 1386/// A class which looks for a use of a certain level of template 1387/// parameter. 1388struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 1389 typedef RecursiveASTVisitor<DependencyChecker> super; 1390 1391 unsigned Depth; 1392 bool Match; 1393 1394 DependencyChecker(TemplateParameterList *Params) : Match(false) { 1395 NamedDecl *ND = Params->getParam(0); 1396 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 1397 Depth = PD->getDepth(); 1398 } else if (NonTypeTemplateParmDecl *PD = 1399 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 1400 Depth = PD->getDepth(); 1401 } else { 1402 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 1403 } 1404 } 1405 1406 bool Matches(unsigned ParmDepth) { 1407 if (ParmDepth >= Depth) { 1408 Match = true; 1409 return true; 1410 } 1411 return false; 1412 } 1413 1414 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 1415 return !Matches(T->getDepth()); 1416 } 1417 1418 bool TraverseTemplateName(TemplateName N) { 1419 if (TemplateTemplateParmDecl *PD = 1420 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 1421 if (Matches(PD->getDepth())) return false; 1422 return super::TraverseTemplateName(N); 1423 } 1424 1425 bool VisitDeclRefExpr(DeclRefExpr *E) { 1426 if (NonTypeTemplateParmDecl *PD = 1427 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) { 1428 if (PD->getDepth() == Depth) { 1429 Match = true; 1430 return false; 1431 } 1432 } 1433 return super::VisitDeclRefExpr(E); 1434 } 1435 1436 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 1437 return TraverseType(T->getInjectedSpecializationType()); 1438 } 1439}; 1440} 1441 1442/// Determines whether a given type depends on the given parameter 1443/// list. 1444static bool 1445DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 1446 DependencyChecker Checker(Params); 1447 Checker.TraverseType(T); 1448 return Checker.Match; 1449} 1450 1451// Find the source range corresponding to the named type in the given 1452// nested-name-specifier, if any. 1453static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 1454 QualType T, 1455 const CXXScopeSpec &SS) { 1456 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 1457 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 1458 if (const Type *CurType = NNS->getAsType()) { 1459 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 1460 return NNSLoc.getTypeLoc().getSourceRange(); 1461 } else 1462 break; 1463 1464 NNSLoc = NNSLoc.getPrefix(); 1465 } 1466 1467 return SourceRange(); 1468} 1469 1470/// \brief Match the given template parameter lists to the given scope 1471/// specifier, returning the template parameter list that applies to the 1472/// name. 1473/// 1474/// \param DeclStartLoc the start of the declaration that has a scope 1475/// specifier or a template parameter list. 1476/// 1477/// \param DeclLoc The location of the declaration itself. 1478/// 1479/// \param SS the scope specifier that will be matched to the given template 1480/// parameter lists. This scope specifier precedes a qualified name that is 1481/// being declared. 1482/// 1483/// \param ParamLists the template parameter lists, from the outermost to the 1484/// innermost template parameter lists. 1485/// 1486/// \param NumParamLists the number of template parameter lists in ParamLists. 1487/// 1488/// \param IsFriend Whether to apply the slightly different rules for 1489/// matching template parameters to scope specifiers in friend 1490/// declarations. 1491/// 1492/// \param IsExplicitSpecialization will be set true if the entity being 1493/// declared is an explicit specialization, false otherwise. 1494/// 1495/// \returns the template parameter list, if any, that corresponds to the 1496/// name that is preceded by the scope specifier @p SS. This template 1497/// parameter list may have template parameters (if we're declaring a 1498/// template) or may have no template parameters (if we're declaring a 1499/// template specialization), or may be NULL (if what we're declaring isn't 1500/// itself a template). 1501TemplateParameterList * 1502Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1503 SourceLocation DeclLoc, 1504 const CXXScopeSpec &SS, 1505 TemplateParameterList **ParamLists, 1506 unsigned NumParamLists, 1507 bool IsFriend, 1508 bool &IsExplicitSpecialization, 1509 bool &Invalid) { 1510 IsExplicitSpecialization = false; 1511 Invalid = false; 1512 1513 // The sequence of nested types to which we will match up the template 1514 // parameter lists. We first build this list by starting with the type named 1515 // by the nested-name-specifier and walking out until we run out of types. 1516 llvm::SmallVector<QualType, 4> NestedTypes; 1517 QualType T; 1518 if (SS.getScopeRep()) { 1519 if (CXXRecordDecl *Record 1520 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 1521 T = Context.getTypeDeclType(Record); 1522 else 1523 T = QualType(SS.getScopeRep()->getAsType(), 0); 1524 } 1525 1526 // If we found an explicit specialization that prevents us from needing 1527 // 'template<>' headers, this will be set to the location of that 1528 // explicit specialization. 1529 SourceLocation ExplicitSpecLoc; 1530 1531 while (!T.isNull()) { 1532 NestedTypes.push_back(T); 1533 1534 // Retrieve the parent of a record type. 1535 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1536 // If this type is an explicit specialization, we're done. 1537 if (ClassTemplateSpecializationDecl *Spec 1538 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1539 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 1540 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 1541 ExplicitSpecLoc = Spec->getLocation(); 1542 break; 1543 } 1544 } else if (Record->getTemplateSpecializationKind() 1545 == TSK_ExplicitSpecialization) { 1546 ExplicitSpecLoc = Record->getLocation(); 1547 break; 1548 } 1549 1550 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 1551 T = Context.getTypeDeclType(Parent); 1552 else 1553 T = QualType(); 1554 continue; 1555 } 1556 1557 if (const TemplateSpecializationType *TST 1558 = T->getAs<TemplateSpecializationType>()) { 1559 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1560 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 1561 T = Context.getTypeDeclType(Parent); 1562 else 1563 T = QualType(); 1564 continue; 1565 } 1566 } 1567 1568 // Look one step prior in a dependent template specialization type. 1569 if (const DependentTemplateSpecializationType *DependentTST 1570 = T->getAs<DependentTemplateSpecializationType>()) { 1571 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 1572 T = QualType(NNS->getAsType(), 0); 1573 else 1574 T = QualType(); 1575 continue; 1576 } 1577 1578 // Look one step prior in a dependent name type. 1579 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 1580 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 1581 T = QualType(NNS->getAsType(), 0); 1582 else 1583 T = QualType(); 1584 continue; 1585 } 1586 1587 // Retrieve the parent of an enumeration type. 1588 if (const EnumType *EnumT = T->getAs<EnumType>()) { 1589 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 1590 // check here. 1591 EnumDecl *Enum = EnumT->getDecl(); 1592 1593 // Get to the parent type. 1594 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 1595 T = Context.getTypeDeclType(Parent); 1596 else 1597 T = QualType(); 1598 continue; 1599 } 1600 1601 T = QualType(); 1602 } 1603 // Reverse the nested types list, since we want to traverse from the outermost 1604 // to the innermost while checking template-parameter-lists. 1605 std::reverse(NestedTypes.begin(), NestedTypes.end()); 1606 1607 // C++0x [temp.expl.spec]p17: 1608 // A member or a member template may be nested within many 1609 // enclosing class templates. In an explicit specialization for 1610 // such a member, the member declaration shall be preceded by a 1611 // template<> for each enclosing class template that is 1612 // explicitly specialized. 1613 unsigned ParamIdx = 0; 1614 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 1615 ++TypeIdx) { 1616 T = NestedTypes[TypeIdx]; 1617 1618 // Whether we expect a 'template<>' header. 1619 bool NeedEmptyTemplateHeader = false; 1620 1621 // Whether we expect a template header with parameters. 1622 bool NeedNonemptyTemplateHeader = false; 1623 1624 // For a dependent type, the set of template parameters that we 1625 // expect to see. 1626 TemplateParameterList *ExpectedTemplateParams = 0; 1627 1628 // C++0x [temp.expl.spec]p15: 1629 // A member or a member template may be nested within many enclosing 1630 // class templates. In an explicit specialization for such a member, the 1631 // member declaration shall be preceded by a template<> for each 1632 // enclosing class template that is explicitly specialized. 1633 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1634 if (ClassTemplatePartialSpecializationDecl *Partial 1635 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 1636 ExpectedTemplateParams = Partial->getTemplateParameters(); 1637 NeedNonemptyTemplateHeader = true; 1638 } else if (Record->isDependentType()) { 1639 if (Record->getDescribedClassTemplate()) { 1640 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1641 ->getTemplateParameters(); 1642 NeedNonemptyTemplateHeader = true; 1643 } 1644 } else if (ClassTemplateSpecializationDecl *Spec 1645 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1646 // C++0x [temp.expl.spec]p4: 1647 // Members of an explicitly specialized class template are defined 1648 // in the same manner as members of normal classes, and not using 1649 // the template<> syntax. 1650 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 1651 NeedEmptyTemplateHeader = true; 1652 else 1653 continue; 1654 } else if (Record->getTemplateSpecializationKind()) { 1655 if (Record->getTemplateSpecializationKind() 1656 != TSK_ExplicitSpecialization && 1657 TypeIdx == NumTypes - 1) 1658 IsExplicitSpecialization = true; 1659 1660 continue; 1661 } 1662 } else if (const TemplateSpecializationType *TST 1663 = T->getAs<TemplateSpecializationType>()) { 1664 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1665 ExpectedTemplateParams = Template->getTemplateParameters(); 1666 NeedNonemptyTemplateHeader = true; 1667 } 1668 } else if (T->getAs<DependentTemplateSpecializationType>()) { 1669 // FIXME: We actually could/should check the template arguments here 1670 // against the corresponding template parameter list. 1671 NeedNonemptyTemplateHeader = false; 1672 } 1673 1674 if (NeedEmptyTemplateHeader) { 1675 // If we're on the last of the types, and we need a 'template<>' header 1676 // here, then it's an explicit specialization. 1677 if (TypeIdx == NumTypes - 1) 1678 IsExplicitSpecialization = true; 1679 1680 if (ParamIdx < NumParamLists) { 1681 if (ParamLists[ParamIdx]->size() > 0) { 1682 // The header has template parameters when it shouldn't. Complain. 1683 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1684 diag::err_template_param_list_matches_nontemplate) 1685 << T 1686 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 1687 ParamLists[ParamIdx]->getRAngleLoc()) 1688 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1689 Invalid = true; 1690 return 0; 1691 } 1692 1693 // Consume this template header. 1694 ++ParamIdx; 1695 continue; 1696 } 1697 1698 if (!IsFriend) { 1699 // We don't have a template header, but we should. 1700 SourceLocation ExpectedTemplateLoc; 1701 if (NumParamLists > 0) 1702 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 1703 else 1704 ExpectedTemplateLoc = DeclStartLoc; 1705 1706 Diag(DeclLoc, diag::err_template_spec_needs_header) 1707 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS) 1708 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 1709 } 1710 1711 continue; 1712 } 1713 1714 if (NeedNonemptyTemplateHeader) { 1715 // In friend declarations we can have template-ids which don't 1716 // depend on the corresponding template parameter lists. But 1717 // assume that empty parameter lists are supposed to match this 1718 // template-id. 1719 if (IsFriend && T->isDependentType()) { 1720 if (ParamIdx < NumParamLists && 1721 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 1722 ExpectedTemplateParams = 0; 1723 else 1724 continue; 1725 } 1726 1727 if (ParamIdx < NumParamLists) { 1728 // Check the template parameter list, if we can. 1729 if (ExpectedTemplateParams && 1730 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 1731 ExpectedTemplateParams, 1732 true, TPL_TemplateMatch)) 1733 Invalid = true; 1734 1735 if (!Invalid && 1736 CheckTemplateParameterList(ParamLists[ParamIdx], 0, 1737 TPC_ClassTemplateMember)) 1738 Invalid = true; 1739 1740 ++ParamIdx; 1741 continue; 1742 } 1743 1744 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 1745 << T 1746 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1747 Invalid = true; 1748 continue; 1749 } 1750 } 1751 1752 // If there were at least as many template-ids as there were template 1753 // parameter lists, then there are no template parameter lists remaining for 1754 // the declaration itself. 1755 if (ParamIdx >= NumParamLists) 1756 return 0; 1757 1758 // If there were too many template parameter lists, complain about that now. 1759 if (ParamIdx < NumParamLists - 1) { 1760 bool HasAnyExplicitSpecHeader = false; 1761 bool AllExplicitSpecHeaders = true; 1762 for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) { 1763 if (ParamLists[I]->size() == 0) 1764 HasAnyExplicitSpecHeader = true; 1765 else 1766 AllExplicitSpecHeaders = false; 1767 } 1768 1769 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1770 AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers 1771 : diag::err_template_spec_extra_headers) 1772 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 1773 ParamLists[NumParamLists - 2]->getRAngleLoc()); 1774 1775 // If there was a specialization somewhere, such that 'template<>' is 1776 // not required, and there were any 'template<>' headers, note where the 1777 // specialization occurred. 1778 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader) 1779 Diag(ExplicitSpecLoc, 1780 diag::note_explicit_template_spec_does_not_need_header) 1781 << NestedTypes.back(); 1782 1783 // We have a template parameter list with no corresponding scope, which 1784 // means that the resulting template declaration can't be instantiated 1785 // properly (we'll end up with dependent nodes when we shouldn't). 1786 if (!AllExplicitSpecHeaders) 1787 Invalid = true; 1788 } 1789 1790 // Return the last template parameter list, which corresponds to the 1791 // entity being declared. 1792 return ParamLists[NumParamLists - 1]; 1793} 1794 1795void Sema::NoteAllFoundTemplates(TemplateName Name) { 1796 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 1797 Diag(Template->getLocation(), diag::note_template_declared_here) 1798 << (isa<FunctionTemplateDecl>(Template)? 0 1799 : isa<ClassTemplateDecl>(Template)? 1 1800 : isa<TypeAliasTemplateDecl>(Template)? 2 1801 : 3) 1802 << Template->getDeclName(); 1803 return; 1804 } 1805 1806 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 1807 for (OverloadedTemplateStorage::iterator I = OST->begin(), 1808 IEnd = OST->end(); 1809 I != IEnd; ++I) 1810 Diag((*I)->getLocation(), diag::note_template_declared_here) 1811 << 0 << (*I)->getDeclName(); 1812 1813 return; 1814 } 1815} 1816 1817 1818QualType Sema::CheckTemplateIdType(TemplateName Name, 1819 SourceLocation TemplateLoc, 1820 TemplateArgumentListInfo &TemplateArgs) { 1821 DependentTemplateName *DTN = Name.getAsDependentTemplateName(); 1822 if (DTN && DTN->isIdentifier()) 1823 // When building a template-id where the template-name is dependent, 1824 // assume the template is a type template. Either our assumption is 1825 // correct, or the code is ill-formed and will be diagnosed when the 1826 // dependent name is substituted. 1827 return Context.getDependentTemplateSpecializationType(ETK_None, 1828 DTN->getQualifier(), 1829 DTN->getIdentifier(), 1830 TemplateArgs); 1831 1832 TemplateDecl *Template = Name.getAsTemplateDecl(); 1833 if (!Template || isa<FunctionTemplateDecl>(Template)) { 1834 // We might have a substituted template template parameter pack. If so, 1835 // build a template specialization type for it. 1836 if (Name.getAsSubstTemplateTemplateParmPack()) 1837 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1838 1839 Diag(TemplateLoc, diag::err_template_id_not_a_type) 1840 << Name; 1841 NoteAllFoundTemplates(Name); 1842 return QualType(); 1843 } 1844 1845 // Check that the template argument list is well-formed for this 1846 // template. 1847 llvm::SmallVector<TemplateArgument, 4> Converted; 1848 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1849 false, Converted)) 1850 return QualType(); 1851 1852 assert((Converted.size() == Template->getTemplateParameters()->size()) && 1853 "Converted template argument list is too short!"); 1854 1855 QualType CanonType; 1856 1857 if (TypeAliasTemplateDecl *AliasTemplate 1858 = dyn_cast<TypeAliasTemplateDecl>(Template)) { 1859 // Find the canonical type for this type alias template specialization. 1860 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 1861 if (Pattern->isInvalidDecl()) 1862 return QualType(); 1863 1864 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 1865 Converted.data(), Converted.size()); 1866 1867 // Only substitute for the innermost template argument list. 1868 MultiLevelTemplateArgumentList TemplateArgLists; 1869 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 1870 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth(); 1871 for (unsigned I = 0; I < Depth; ++I) 1872 TemplateArgLists.addOuterTemplateArguments(0, 0); 1873 1874 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 1875 CanonType = SubstType(Pattern->getUnderlyingType(), 1876 TemplateArgLists, AliasTemplate->getLocation(), 1877 AliasTemplate->getDeclName()); 1878 if (CanonType.isNull()) 1879 return QualType(); 1880 } else if (Name.isDependent() || 1881 TemplateSpecializationType::anyDependentTemplateArguments( 1882 TemplateArgs)) { 1883 // This class template specialization is a dependent 1884 // type. Therefore, its canonical type is another class template 1885 // specialization type that contains all of the converted 1886 // arguments in canonical form. This ensures that, e.g., A<T> and 1887 // A<T, T> have identical types when A is declared as: 1888 // 1889 // template<typename T, typename U = T> struct A; 1890 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1891 CanonType = Context.getTemplateSpecializationType(CanonName, 1892 Converted.data(), 1893 Converted.size()); 1894 1895 // FIXME: CanonType is not actually the canonical type, and unfortunately 1896 // it is a TemplateSpecializationType that we will never use again. 1897 // In the future, we need to teach getTemplateSpecializationType to only 1898 // build the canonical type and return that to us. 1899 CanonType = Context.getCanonicalType(CanonType); 1900 1901 // This might work out to be a current instantiation, in which 1902 // case the canonical type needs to be the InjectedClassNameType. 1903 // 1904 // TODO: in theory this could be a simple hashtable lookup; most 1905 // changes to CurContext don't change the set of current 1906 // instantiations. 1907 if (isa<ClassTemplateDecl>(Template)) { 1908 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 1909 // If we get out to a namespace, we're done. 1910 if (Ctx->isFileContext()) break; 1911 1912 // If this isn't a record, keep looking. 1913 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 1914 if (!Record) continue; 1915 1916 // Look for one of the two cases with InjectedClassNameTypes 1917 // and check whether it's the same template. 1918 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 1919 !Record->getDescribedClassTemplate()) 1920 continue; 1921 1922 // Fetch the injected class name type and check whether its 1923 // injected type is equal to the type we just built. 1924 QualType ICNT = Context.getTypeDeclType(Record); 1925 QualType Injected = cast<InjectedClassNameType>(ICNT) 1926 ->getInjectedSpecializationType(); 1927 1928 if (CanonType != Injected->getCanonicalTypeInternal()) 1929 continue; 1930 1931 // If so, the canonical type of this TST is the injected 1932 // class name type of the record we just found. 1933 assert(ICNT.isCanonical()); 1934 CanonType = ICNT; 1935 break; 1936 } 1937 } 1938 } else if (ClassTemplateDecl *ClassTemplate 1939 = dyn_cast<ClassTemplateDecl>(Template)) { 1940 // Find the class template specialization declaration that 1941 // corresponds to these arguments. 1942 void *InsertPos = 0; 1943 ClassTemplateSpecializationDecl *Decl 1944 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(), 1945 InsertPos); 1946 if (!Decl) { 1947 // This is the first time we have referenced this class template 1948 // specialization. Create the canonical declaration and add it to 1949 // the set of specializations. 1950 Decl = ClassTemplateSpecializationDecl::Create(Context, 1951 ClassTemplate->getTemplatedDecl()->getTagKind(), 1952 ClassTemplate->getDeclContext(), 1953 ClassTemplate->getLocation(), 1954 ClassTemplate->getLocation(), 1955 ClassTemplate, 1956 Converted.data(), 1957 Converted.size(), 0); 1958 ClassTemplate->AddSpecialization(Decl, InsertPos); 1959 Decl->setLexicalDeclContext(CurContext); 1960 } 1961 1962 CanonType = Context.getTypeDeclType(Decl); 1963 assert(isa<RecordType>(CanonType) && 1964 "type of non-dependent specialization is not a RecordType"); 1965 } 1966 1967 // Build the fully-sugared type for this class template 1968 // specialization, which refers back to the class template 1969 // specialization we created or found. 1970 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 1971} 1972 1973TypeResult 1974Sema::ActOnTemplateIdType(CXXScopeSpec &SS, 1975 TemplateTy TemplateD, SourceLocation TemplateLoc, 1976 SourceLocation LAngleLoc, 1977 ASTTemplateArgsPtr TemplateArgsIn, 1978 SourceLocation RAngleLoc) { 1979 if (SS.isInvalid()) 1980 return true; 1981 1982 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1983 1984 // Translate the parser's template argument list in our AST format. 1985 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 1986 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 1987 1988 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 1989 QualType T = Context.getDependentTemplateSpecializationType(ETK_None, 1990 DTN->getQualifier(), 1991 DTN->getIdentifier(), 1992 TemplateArgs); 1993 1994 // Build type-source information. 1995 TypeLocBuilder TLB; 1996 DependentTemplateSpecializationTypeLoc SpecTL 1997 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 1998 SpecTL.setKeywordLoc(SourceLocation()); 1999 SpecTL.setNameLoc(TemplateLoc); 2000 SpecTL.setLAngleLoc(LAngleLoc); 2001 SpecTL.setRAngleLoc(RAngleLoc); 2002 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2003 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2004 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2005 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2006 } 2007 2008 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2009 TemplateArgsIn.release(); 2010 2011 if (Result.isNull()) 2012 return true; 2013 2014 // Build type-source information. 2015 TypeLocBuilder TLB; 2016 TemplateSpecializationTypeLoc SpecTL 2017 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2018 SpecTL.setTemplateNameLoc(TemplateLoc); 2019 SpecTL.setLAngleLoc(LAngleLoc); 2020 SpecTL.setRAngleLoc(RAngleLoc); 2021 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2022 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2023 2024 if (SS.isNotEmpty()) { 2025 // Create an elaborated-type-specifier containing the nested-name-specifier. 2026 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); 2027 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2028 ElabTL.setKeywordLoc(SourceLocation()); 2029 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2030 } 2031 2032 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2033} 2034 2035TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 2036 TypeSpecifierType TagSpec, 2037 SourceLocation TagLoc, 2038 CXXScopeSpec &SS, 2039 TemplateTy TemplateD, 2040 SourceLocation TemplateLoc, 2041 SourceLocation LAngleLoc, 2042 ASTTemplateArgsPtr TemplateArgsIn, 2043 SourceLocation RAngleLoc) { 2044 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2045 2046 // Translate the parser's template argument list in our AST format. 2047 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2048 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2049 2050 // Determine the tag kind 2051 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 2052 ElaboratedTypeKeyword Keyword 2053 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 2054 2055 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2056 QualType T = Context.getDependentTemplateSpecializationType(Keyword, 2057 DTN->getQualifier(), 2058 DTN->getIdentifier(), 2059 TemplateArgs); 2060 2061 // Build type-source information. 2062 TypeLocBuilder TLB; 2063 DependentTemplateSpecializationTypeLoc SpecTL 2064 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2065 SpecTL.setKeywordLoc(TagLoc); 2066 SpecTL.setNameLoc(TemplateLoc); 2067 SpecTL.setLAngleLoc(LAngleLoc); 2068 SpecTL.setRAngleLoc(RAngleLoc); 2069 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2070 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2071 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2072 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2073 } 2074 2075 if (TypeAliasTemplateDecl *TAT = 2076 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 2077 // C++0x [dcl.type.elab]p2: 2078 // If the identifier resolves to a typedef-name or the simple-template-id 2079 // resolves to an alias template specialization, the 2080 // elaborated-type-specifier is ill-formed. 2081 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4; 2082 Diag(TAT->getLocation(), diag::note_declared_at); 2083 } 2084 2085 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2086 if (Result.isNull()) 2087 return TypeResult(); 2088 2089 // Check the tag kind 2090 if (const RecordType *RT = Result->getAs<RecordType>()) { 2091 RecordDecl *D = RT->getDecl(); 2092 2093 IdentifierInfo *Id = D->getIdentifier(); 2094 assert(Id && "templated class must have an identifier"); 2095 2096 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 2097 Diag(TagLoc, diag::err_use_with_wrong_tag) 2098 << Result 2099 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 2100 Diag(D->getLocation(), diag::note_previous_use); 2101 } 2102 } 2103 2104 // Provide source-location information for the template specialization. 2105 TypeLocBuilder TLB; 2106 TemplateSpecializationTypeLoc SpecTL 2107 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2108 SpecTL.setTemplateNameLoc(TemplateLoc); 2109 SpecTL.setLAngleLoc(LAngleLoc); 2110 SpecTL.setRAngleLoc(RAngleLoc); 2111 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2112 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2113 2114 // Construct an elaborated type containing the nested-name-specifier (if any) 2115 // and keyword. 2116 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 2117 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2118 ElabTL.setKeywordLoc(TagLoc); 2119 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2120 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2121} 2122 2123ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 2124 LookupResult &R, 2125 bool RequiresADL, 2126 const TemplateArgumentListInfo &TemplateArgs) { 2127 // FIXME: Can we do any checking at this point? I guess we could check the 2128 // template arguments that we have against the template name, if the template 2129 // name refers to a single template. That's not a terribly common case, 2130 // though. 2131 // foo<int> could identify a single function unambiguously 2132 // This approach does NOT work, since f<int>(1); 2133 // gets resolved prior to resorting to overload resolution 2134 // i.e., template<class T> void f(double); 2135 // vs template<class T, class U> void f(U); 2136 2137 // These should be filtered out by our callers. 2138 assert(!R.empty() && "empty lookup results when building templateid"); 2139 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 2140 2141 // We don't want lookup warnings at this point. 2142 R.suppressDiagnostics(); 2143 2144 UnresolvedLookupExpr *ULE 2145 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 2146 SS.getWithLocInContext(Context), 2147 R.getLookupNameInfo(), 2148 RequiresADL, TemplateArgs, 2149 R.begin(), R.end()); 2150 2151 return Owned(ULE); 2152} 2153 2154// We actually only call this from template instantiation. 2155ExprResult 2156Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 2157 const DeclarationNameInfo &NameInfo, 2158 const TemplateArgumentListInfo &TemplateArgs) { 2159 DeclContext *DC; 2160 if (!(DC = computeDeclContext(SS, false)) || 2161 DC->isDependentContext() || 2162 RequireCompleteDeclContext(SS, DC)) 2163 return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs); 2164 2165 bool MemberOfUnknownSpecialization; 2166 LookupResult R(*this, NameInfo, LookupOrdinaryName); 2167 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 2168 MemberOfUnknownSpecialization); 2169 2170 if (R.isAmbiguous()) 2171 return ExprError(); 2172 2173 if (R.empty()) { 2174 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 2175 << NameInfo.getName() << SS.getRange(); 2176 return ExprError(); 2177 } 2178 2179 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 2180 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 2181 << (NestedNameSpecifier*) SS.getScopeRep() 2182 << NameInfo.getName() << SS.getRange(); 2183 Diag(Temp->getLocation(), diag::note_referenced_class_template); 2184 return ExprError(); 2185 } 2186 2187 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 2188} 2189 2190/// \brief Form a dependent template name. 2191/// 2192/// This action forms a dependent template name given the template 2193/// name and its (presumably dependent) scope specifier. For 2194/// example, given "MetaFun::template apply", the scope specifier \p 2195/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 2196/// of the "template" keyword, and "apply" is the \p Name. 2197TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 2198 SourceLocation TemplateKWLoc, 2199 CXXScopeSpec &SS, 2200 UnqualifiedId &Name, 2201 ParsedType ObjectType, 2202 bool EnteringContext, 2203 TemplateTy &Result) { 2204 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() && 2205 !getLangOptions().CPlusPlus0x) 2206 Diag(TemplateKWLoc, diag::ext_template_outside_of_template) 2207 << FixItHint::CreateRemoval(TemplateKWLoc); 2208 2209 DeclContext *LookupCtx = 0; 2210 if (SS.isSet()) 2211 LookupCtx = computeDeclContext(SS, EnteringContext); 2212 if (!LookupCtx && ObjectType) 2213 LookupCtx = computeDeclContext(ObjectType.get()); 2214 if (LookupCtx) { 2215 // C++0x [temp.names]p5: 2216 // If a name prefixed by the keyword template is not the name of 2217 // a template, the program is ill-formed. [Note: the keyword 2218 // template may not be applied to non-template members of class 2219 // templates. -end note ] [ Note: as is the case with the 2220 // typename prefix, the template prefix is allowed in cases 2221 // where it is not strictly necessary; i.e., when the 2222 // nested-name-specifier or the expression on the left of the -> 2223 // or . is not dependent on a template-parameter, or the use 2224 // does not appear in the scope of a template. -end note] 2225 // 2226 // Note: C++03 was more strict here, because it banned the use of 2227 // the "template" keyword prior to a template-name that was not a 2228 // dependent name. C++ DR468 relaxed this requirement (the 2229 // "template" keyword is now permitted). We follow the C++0x 2230 // rules, even in C++03 mode with a warning, retroactively applying the DR. 2231 bool MemberOfUnknownSpecialization; 2232 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name, 2233 ObjectType, EnteringContext, Result, 2234 MemberOfUnknownSpecialization); 2235 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 2236 isa<CXXRecordDecl>(LookupCtx) && 2237 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() || 2238 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) { 2239 // This is a dependent template. Handle it below. 2240 } else if (TNK == TNK_Non_template) { 2241 Diag(Name.getSourceRange().getBegin(), 2242 diag::err_template_kw_refers_to_non_template) 2243 << GetNameFromUnqualifiedId(Name).getName() 2244 << Name.getSourceRange() 2245 << TemplateKWLoc; 2246 return TNK_Non_template; 2247 } else { 2248 // We found something; return it. 2249 return TNK; 2250 } 2251 } 2252 2253 NestedNameSpecifier *Qualifier 2254 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 2255 2256 switch (Name.getKind()) { 2257 case UnqualifiedId::IK_Identifier: 2258 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2259 Name.Identifier)); 2260 return TNK_Dependent_template_name; 2261 2262 case UnqualifiedId::IK_OperatorFunctionId: 2263 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2264 Name.OperatorFunctionId.Operator)); 2265 return TNK_Dependent_template_name; 2266 2267 case UnqualifiedId::IK_LiteralOperatorId: 2268 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 2269 2270 default: 2271 break; 2272 } 2273 2274 Diag(Name.getSourceRange().getBegin(), 2275 diag::err_template_kw_refers_to_non_template) 2276 << GetNameFromUnqualifiedId(Name).getName() 2277 << Name.getSourceRange() 2278 << TemplateKWLoc; 2279 return TNK_Non_template; 2280} 2281 2282bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 2283 const TemplateArgumentLoc &AL, 2284 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2285 const TemplateArgument &Arg = AL.getArgument(); 2286 2287 // Check template type parameter. 2288 switch(Arg.getKind()) { 2289 case TemplateArgument::Type: 2290 // C++ [temp.arg.type]p1: 2291 // A template-argument for a template-parameter which is a 2292 // type shall be a type-id. 2293 break; 2294 case TemplateArgument::Template: { 2295 // We have a template type parameter but the template argument 2296 // is a template without any arguments. 2297 SourceRange SR = AL.getSourceRange(); 2298 TemplateName Name = Arg.getAsTemplate(); 2299 Diag(SR.getBegin(), diag::err_template_missing_args) 2300 << Name << SR; 2301 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 2302 Diag(Decl->getLocation(), diag::note_template_decl_here); 2303 2304 return true; 2305 } 2306 default: { 2307 // We have a template type parameter but the template argument 2308 // is not a type. 2309 SourceRange SR = AL.getSourceRange(); 2310 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 2311 Diag(Param->getLocation(), diag::note_template_param_here); 2312 2313 return true; 2314 } 2315 } 2316 2317 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 2318 return true; 2319 2320 // Add the converted template type argument. 2321 Converted.push_back( 2322 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 2323 return false; 2324} 2325 2326/// \brief Substitute template arguments into the default template argument for 2327/// the given template type parameter. 2328/// 2329/// \param SemaRef the semantic analysis object for which we are performing 2330/// the substitution. 2331/// 2332/// \param Template the template that we are synthesizing template arguments 2333/// for. 2334/// 2335/// \param TemplateLoc the location of the template name that started the 2336/// template-id we are checking. 2337/// 2338/// \param RAngleLoc the location of the right angle bracket ('>') that 2339/// terminates the template-id. 2340/// 2341/// \param Param the template template parameter whose default we are 2342/// substituting into. 2343/// 2344/// \param Converted the list of template arguments provided for template 2345/// parameters that precede \p Param in the template parameter list. 2346/// \returns the substituted template argument, or NULL if an error occurred. 2347static TypeSourceInfo * 2348SubstDefaultTemplateArgument(Sema &SemaRef, 2349 TemplateDecl *Template, 2350 SourceLocation TemplateLoc, 2351 SourceLocation RAngleLoc, 2352 TemplateTypeParmDecl *Param, 2353 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2354 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 2355 2356 // If the argument type is dependent, instantiate it now based 2357 // on the previously-computed template arguments. 2358 if (ArgType->getType()->isDependentType()) { 2359 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2360 Converted.data(), Converted.size()); 2361 2362 MultiLevelTemplateArgumentList AllTemplateArgs 2363 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2364 2365 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2366 Template, Converted.data(), 2367 Converted.size(), 2368 SourceRange(TemplateLoc, RAngleLoc)); 2369 2370 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 2371 Param->getDefaultArgumentLoc(), 2372 Param->getDeclName()); 2373 } 2374 2375 return ArgType; 2376} 2377 2378/// \brief Substitute template arguments into the default template argument for 2379/// the given non-type template parameter. 2380/// 2381/// \param SemaRef the semantic analysis object for which we are performing 2382/// the substitution. 2383/// 2384/// \param Template the template that we are synthesizing template arguments 2385/// for. 2386/// 2387/// \param TemplateLoc the location of the template name that started the 2388/// template-id we are checking. 2389/// 2390/// \param RAngleLoc the location of the right angle bracket ('>') that 2391/// terminates the template-id. 2392/// 2393/// \param Param the non-type template parameter whose default we are 2394/// substituting into. 2395/// 2396/// \param Converted the list of template arguments provided for template 2397/// parameters that precede \p Param in the template parameter list. 2398/// 2399/// \returns the substituted template argument, or NULL if an error occurred. 2400static ExprResult 2401SubstDefaultTemplateArgument(Sema &SemaRef, 2402 TemplateDecl *Template, 2403 SourceLocation TemplateLoc, 2404 SourceLocation RAngleLoc, 2405 NonTypeTemplateParmDecl *Param, 2406 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2407 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2408 Converted.data(), Converted.size()); 2409 2410 MultiLevelTemplateArgumentList AllTemplateArgs 2411 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2412 2413 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2414 Template, Converted.data(), 2415 Converted.size(), 2416 SourceRange(TemplateLoc, RAngleLoc)); 2417 2418 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 2419} 2420 2421/// \brief Substitute template arguments into the default template argument for 2422/// the given template template parameter. 2423/// 2424/// \param SemaRef the semantic analysis object for which we are performing 2425/// the substitution. 2426/// 2427/// \param Template the template that we are synthesizing template arguments 2428/// for. 2429/// 2430/// \param TemplateLoc the location of the template name that started the 2431/// template-id we are checking. 2432/// 2433/// \param RAngleLoc the location of the right angle bracket ('>') that 2434/// terminates the template-id. 2435/// 2436/// \param Param the template template parameter whose default we are 2437/// substituting into. 2438/// 2439/// \param Converted the list of template arguments provided for template 2440/// parameters that precede \p Param in the template parameter list. 2441/// 2442/// \param QualifierLoc Will be set to the nested-name-specifier (with 2443/// source-location information) that precedes the template name. 2444/// 2445/// \returns the substituted template argument, or NULL if an error occurred. 2446static TemplateName 2447SubstDefaultTemplateArgument(Sema &SemaRef, 2448 TemplateDecl *Template, 2449 SourceLocation TemplateLoc, 2450 SourceLocation RAngleLoc, 2451 TemplateTemplateParmDecl *Param, 2452 llvm::SmallVectorImpl<TemplateArgument> &Converted, 2453 NestedNameSpecifierLoc &QualifierLoc) { 2454 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2455 Converted.data(), Converted.size()); 2456 2457 MultiLevelTemplateArgumentList AllTemplateArgs 2458 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2459 2460 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2461 Template, Converted.data(), 2462 Converted.size(), 2463 SourceRange(TemplateLoc, RAngleLoc)); 2464 2465 // Substitute into the nested-name-specifier first, 2466 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 2467 if (QualifierLoc) { 2468 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 2469 AllTemplateArgs); 2470 if (!QualifierLoc) 2471 return TemplateName(); 2472 } 2473 2474 return SemaRef.SubstTemplateName(QualifierLoc, 2475 Param->getDefaultArgument().getArgument().getAsTemplate(), 2476 Param->getDefaultArgument().getTemplateNameLoc(), 2477 AllTemplateArgs); 2478} 2479 2480/// \brief If the given template parameter has a default template 2481/// argument, substitute into that default template argument and 2482/// return the corresponding template argument. 2483TemplateArgumentLoc 2484Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 2485 SourceLocation TemplateLoc, 2486 SourceLocation RAngleLoc, 2487 Decl *Param, 2488 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2489 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 2490 if (!TypeParm->hasDefaultArgument()) 2491 return TemplateArgumentLoc(); 2492 2493 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 2494 TemplateLoc, 2495 RAngleLoc, 2496 TypeParm, 2497 Converted); 2498 if (DI) 2499 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 2500 2501 return TemplateArgumentLoc(); 2502 } 2503 2504 if (NonTypeTemplateParmDecl *NonTypeParm 2505 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2506 if (!NonTypeParm->hasDefaultArgument()) 2507 return TemplateArgumentLoc(); 2508 2509 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 2510 TemplateLoc, 2511 RAngleLoc, 2512 NonTypeParm, 2513 Converted); 2514 if (Arg.isInvalid()) 2515 return TemplateArgumentLoc(); 2516 2517 Expr *ArgE = Arg.takeAs<Expr>(); 2518 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 2519 } 2520 2521 TemplateTemplateParmDecl *TempTempParm 2522 = cast<TemplateTemplateParmDecl>(Param); 2523 if (!TempTempParm->hasDefaultArgument()) 2524 return TemplateArgumentLoc(); 2525 2526 2527 NestedNameSpecifierLoc QualifierLoc; 2528 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 2529 TemplateLoc, 2530 RAngleLoc, 2531 TempTempParm, 2532 Converted, 2533 QualifierLoc); 2534 if (TName.isNull()) 2535 return TemplateArgumentLoc(); 2536 2537 return TemplateArgumentLoc(TemplateArgument(TName), 2538 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 2539 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 2540} 2541 2542/// \brief Check that the given template argument corresponds to the given 2543/// template parameter. 2544/// 2545/// \param Param The template parameter against which the argument will be 2546/// checked. 2547/// 2548/// \param Arg The template argument. 2549/// 2550/// \param Template The template in which the template argument resides. 2551/// 2552/// \param TemplateLoc The location of the template name for the template 2553/// whose argument list we're matching. 2554/// 2555/// \param RAngleLoc The location of the right angle bracket ('>') that closes 2556/// the template argument list. 2557/// 2558/// \param ArgumentPackIndex The index into the argument pack where this 2559/// argument will be placed. Only valid if the parameter is a parameter pack. 2560/// 2561/// \param Converted The checked, converted argument will be added to the 2562/// end of this small vector. 2563/// 2564/// \param CTAK Describes how we arrived at this particular template argument: 2565/// explicitly written, deduced, etc. 2566/// 2567/// \returns true on error, false otherwise. 2568bool Sema::CheckTemplateArgument(NamedDecl *Param, 2569 const TemplateArgumentLoc &Arg, 2570 NamedDecl *Template, 2571 SourceLocation TemplateLoc, 2572 SourceLocation RAngleLoc, 2573 unsigned ArgumentPackIndex, 2574 llvm::SmallVectorImpl<TemplateArgument> &Converted, 2575 CheckTemplateArgumentKind CTAK) { 2576 // Check template type parameters. 2577 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2578 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2579 2580 // Check non-type template parameters. 2581 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2582 // Do substitution on the type of the non-type template parameter 2583 // with the template arguments we've seen thus far. But if the 2584 // template has a dependent context then we cannot substitute yet. 2585 QualType NTTPType = NTTP->getType(); 2586 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 2587 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 2588 2589 if (NTTPType->isDependentType() && 2590 !isa<TemplateTemplateParmDecl>(Template) && 2591 !Template->getDeclContext()->isDependentContext()) { 2592 // Do substitution on the type of the non-type template parameter. 2593 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2594 NTTP, Converted.data(), Converted.size(), 2595 SourceRange(TemplateLoc, RAngleLoc)); 2596 2597 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2598 Converted.data(), Converted.size()); 2599 NTTPType = SubstType(NTTPType, 2600 MultiLevelTemplateArgumentList(TemplateArgs), 2601 NTTP->getLocation(), 2602 NTTP->getDeclName()); 2603 // If that worked, check the non-type template parameter type 2604 // for validity. 2605 if (!NTTPType.isNull()) 2606 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2607 NTTP->getLocation()); 2608 if (NTTPType.isNull()) 2609 return true; 2610 } 2611 2612 switch (Arg.getArgument().getKind()) { 2613 case TemplateArgument::Null: 2614 assert(false && "Should never see a NULL template argument here"); 2615 return true; 2616 2617 case TemplateArgument::Expression: { 2618 TemplateArgument Result; 2619 ExprResult Res = 2620 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), 2621 Result, CTAK); 2622 if (Res.isInvalid()) 2623 return true; 2624 2625 Converted.push_back(Result); 2626 break; 2627 } 2628 2629 case TemplateArgument::Declaration: 2630 case TemplateArgument::Integral: 2631 // We've already checked this template argument, so just copy 2632 // it to the list of converted arguments. 2633 Converted.push_back(Arg.getArgument()); 2634 break; 2635 2636 case TemplateArgument::Template: 2637 case TemplateArgument::TemplateExpansion: 2638 // We were given a template template argument. It may not be ill-formed; 2639 // see below. 2640 if (DependentTemplateName *DTN 2641 = Arg.getArgument().getAsTemplateOrTemplatePattern() 2642 .getAsDependentTemplateName()) { 2643 // We have a template argument such as \c T::template X, which we 2644 // parsed as a template template argument. However, since we now 2645 // know that we need a non-type template argument, convert this 2646 // template name into an expression. 2647 2648 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 2649 Arg.getTemplateNameLoc()); 2650 2651 CXXScopeSpec SS; 2652 SS.Adopt(Arg.getTemplateQualifierLoc()); 2653 ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context, 2654 SS.getWithLocInContext(Context), 2655 NameInfo)); 2656 2657 // If we parsed the template argument as a pack expansion, create a 2658 // pack expansion expression. 2659 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 2660 E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc()); 2661 if (E.isInvalid()) 2662 return true; 2663 } 2664 2665 TemplateArgument Result; 2666 E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result); 2667 if (E.isInvalid()) 2668 return true; 2669 2670 Converted.push_back(Result); 2671 break; 2672 } 2673 2674 // We have a template argument that actually does refer to a class 2675 // template, alias template, or template template parameter, and 2676 // therefore cannot be a non-type template argument. 2677 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2678 << Arg.getSourceRange(); 2679 2680 Diag(Param->getLocation(), diag::note_template_param_here); 2681 return true; 2682 2683 case TemplateArgument::Type: { 2684 // We have a non-type template parameter but the template 2685 // argument is a type. 2686 2687 // C++ [temp.arg]p2: 2688 // In a template-argument, an ambiguity between a type-id and 2689 // an expression is resolved to a type-id, regardless of the 2690 // form of the corresponding template-parameter. 2691 // 2692 // We warn specifically about this case, since it can be rather 2693 // confusing for users. 2694 QualType T = Arg.getArgument().getAsType(); 2695 SourceRange SR = Arg.getSourceRange(); 2696 if (T->isFunctionType()) 2697 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2698 else 2699 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2700 Diag(Param->getLocation(), diag::note_template_param_here); 2701 return true; 2702 } 2703 2704 case TemplateArgument::Pack: 2705 llvm_unreachable("Caller must expand template argument packs"); 2706 break; 2707 } 2708 2709 return false; 2710 } 2711 2712 2713 // Check template template parameters. 2714 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2715 2716 // Substitute into the template parameter list of the template 2717 // template parameter, since previously-supplied template arguments 2718 // may appear within the template template parameter. 2719 { 2720 // Set up a template instantiation context. 2721 LocalInstantiationScope Scope(*this); 2722 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2723 TempParm, Converted.data(), Converted.size(), 2724 SourceRange(TemplateLoc, RAngleLoc)); 2725 2726 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2727 Converted.data(), Converted.size()); 2728 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2729 SubstDecl(TempParm, CurContext, 2730 MultiLevelTemplateArgumentList(TemplateArgs))); 2731 if (!TempParm) 2732 return true; 2733 } 2734 2735 switch (Arg.getArgument().getKind()) { 2736 case TemplateArgument::Null: 2737 assert(false && "Should never see a NULL template argument here"); 2738 return true; 2739 2740 case TemplateArgument::Template: 2741 case TemplateArgument::TemplateExpansion: 2742 if (CheckTemplateArgument(TempParm, Arg)) 2743 return true; 2744 2745 Converted.push_back(Arg.getArgument()); 2746 break; 2747 2748 case TemplateArgument::Expression: 2749 case TemplateArgument::Type: 2750 // We have a template template parameter but the template 2751 // argument does not refer to a template. 2752 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 2753 << getLangOptions().CPlusPlus0x; 2754 return true; 2755 2756 case TemplateArgument::Declaration: 2757 llvm_unreachable( 2758 "Declaration argument with template template parameter"); 2759 break; 2760 case TemplateArgument::Integral: 2761 llvm_unreachable( 2762 "Integral argument with template template parameter"); 2763 break; 2764 2765 case TemplateArgument::Pack: 2766 llvm_unreachable("Caller must expand template argument packs"); 2767 break; 2768 } 2769 2770 return false; 2771} 2772 2773/// \brief Check that the given template argument list is well-formed 2774/// for specializing the given template. 2775bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2776 SourceLocation TemplateLoc, 2777 TemplateArgumentListInfo &TemplateArgs, 2778 bool PartialTemplateArgs, 2779 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2780 TemplateParameterList *Params = Template->getTemplateParameters(); 2781 unsigned NumParams = Params->size(); 2782 unsigned NumArgs = TemplateArgs.size(); 2783 bool Invalid = false; 2784 2785 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2786 2787 bool HasParameterPack = 2788 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2789 2790 if ((NumArgs > NumParams && !HasParameterPack) || 2791 (NumArgs < Params->getMinRequiredArguments() && 2792 !PartialTemplateArgs)) { 2793 // FIXME: point at either the first arg beyond what we can handle, 2794 // or the '>', depending on whether we have too many or too few 2795 // arguments. 2796 SourceRange Range; 2797 if (NumArgs > NumParams) 2798 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2799 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2800 << (NumArgs > NumParams) 2801 << (isa<ClassTemplateDecl>(Template)? 0 : 2802 isa<FunctionTemplateDecl>(Template)? 1 : 2803 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2804 << Template << Range; 2805 Diag(Template->getLocation(), diag::note_template_decl_here) 2806 << Params->getSourceRange(); 2807 Invalid = true; 2808 } 2809 2810 // C++ [temp.arg]p1: 2811 // [...] The type and form of each template-argument specified in 2812 // a template-id shall match the type and form specified for the 2813 // corresponding parameter declared by the template in its 2814 // template-parameter-list. 2815 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 2816 llvm::SmallVector<TemplateArgument, 2> ArgumentPack; 2817 TemplateParameterList::iterator Param = Params->begin(), 2818 ParamEnd = Params->end(); 2819 unsigned ArgIdx = 0; 2820 LocalInstantiationScope InstScope(*this, true); 2821 while (Param != ParamEnd) { 2822 if (ArgIdx < NumArgs) { 2823 // If we have an expanded parameter pack, make sure we don't have too 2824 // many arguments. 2825 if (NonTypeTemplateParmDecl *NTTP 2826 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2827 if (NTTP->isExpandedParameterPack() && 2828 ArgumentPack.size() >= NTTP->getNumExpansionTypes()) { 2829 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2830 << true 2831 << (isa<ClassTemplateDecl>(Template)? 0 : 2832 isa<FunctionTemplateDecl>(Template)? 1 : 2833 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2834 << Template; 2835 Diag(Template->getLocation(), diag::note_template_decl_here) 2836 << Params->getSourceRange(); 2837 return true; 2838 } 2839 } 2840 2841 // Check the template argument we were given. 2842 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2843 TemplateLoc, RAngleLoc, 2844 ArgumentPack.size(), Converted)) 2845 return true; 2846 2847 if ((*Param)->isTemplateParameterPack()) { 2848 // The template parameter was a template parameter pack, so take the 2849 // deduced argument and place it on the argument pack. Note that we 2850 // stay on the same template parameter so that we can deduce more 2851 // arguments. 2852 ArgumentPack.push_back(Converted.back()); 2853 Converted.pop_back(); 2854 } else { 2855 // Move to the next template parameter. 2856 ++Param; 2857 } 2858 ++ArgIdx; 2859 continue; 2860 } 2861 2862 // If we're checking a partial template argument list, we're done. 2863 if (PartialTemplateArgs) { 2864 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty()) 2865 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 2866 ArgumentPack.data(), 2867 ArgumentPack.size())); 2868 2869 return Invalid; 2870 } 2871 2872 // If we have a template parameter pack with no more corresponding 2873 // arguments, just break out now and we'll fill in the argument pack below. 2874 if ((*Param)->isTemplateParameterPack()) 2875 break; 2876 2877 // If our template is a template template parameter that hasn't acquired 2878 // its proper context yet (e.g., because we're using the template template 2879 // parameter in the signature of a function template, before we've built 2880 // the function template itself), don't attempt substitution of default 2881 // template arguments at this point: we don't have enough context to 2882 // do it properly. 2883 if (isTemplateTemplateParameter && 2884 Template->getDeclContext()->isTranslationUnit()) 2885 break; 2886 2887 // We have a default template argument that we will use. 2888 TemplateArgumentLoc Arg; 2889 2890 // Retrieve the default template argument from the template 2891 // parameter. For each kind of template parameter, we substitute the 2892 // template arguments provided thus far and any "outer" template arguments 2893 // (when the template parameter was part of a nested template) into 2894 // the default argument. 2895 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2896 if (!TTP->hasDefaultArgument()) { 2897 assert(Invalid && "Missing default argument"); 2898 break; 2899 } 2900 2901 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2902 Template, 2903 TemplateLoc, 2904 RAngleLoc, 2905 TTP, 2906 Converted); 2907 if (!ArgType) 2908 return true; 2909 2910 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2911 ArgType); 2912 } else if (NonTypeTemplateParmDecl *NTTP 2913 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2914 if (!NTTP->hasDefaultArgument()) { 2915 assert(Invalid && "Missing default argument"); 2916 break; 2917 } 2918 2919 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 2920 TemplateLoc, 2921 RAngleLoc, 2922 NTTP, 2923 Converted); 2924 if (E.isInvalid()) 2925 return true; 2926 2927 Expr *Ex = E.takeAs<Expr>(); 2928 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2929 } else { 2930 TemplateTemplateParmDecl *TempParm 2931 = cast<TemplateTemplateParmDecl>(*Param); 2932 2933 if (!TempParm->hasDefaultArgument()) { 2934 assert(Invalid && "Missing default argument"); 2935 break; 2936 } 2937 2938 NestedNameSpecifierLoc QualifierLoc; 2939 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2940 TemplateLoc, 2941 RAngleLoc, 2942 TempParm, 2943 Converted, 2944 QualifierLoc); 2945 if (Name.isNull()) 2946 return true; 2947 2948 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc, 2949 TempParm->getDefaultArgument().getTemplateNameLoc()); 2950 } 2951 2952 // Introduce an instantiation record that describes where we are using 2953 // the default template argument. 2954 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 2955 Converted.data(), Converted.size(), 2956 SourceRange(TemplateLoc, RAngleLoc)); 2957 2958 // Check the default template argument. 2959 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 2960 RAngleLoc, 0, Converted)) 2961 return true; 2962 2963 // Core issue 150 (assumed resolution): if this is a template template 2964 // parameter, keep track of the default template arguments from the 2965 // template definition. 2966 if (isTemplateTemplateParameter) 2967 TemplateArgs.addArgument(Arg); 2968 2969 // Move to the next template parameter and argument. 2970 ++Param; 2971 ++ArgIdx; 2972 } 2973 2974 // Form argument packs for each of the parameter packs remaining. 2975 while (Param != ParamEnd) { 2976 // If we're checking a partial list of template arguments, don't fill 2977 // in arguments for non-template parameter packs. 2978 2979 if ((*Param)->isTemplateParameterPack()) { 2980 if (ArgumentPack.empty()) 2981 Converted.push_back(TemplateArgument(0, 0)); 2982 else { 2983 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 2984 ArgumentPack.data(), 2985 ArgumentPack.size())); 2986 ArgumentPack.clear(); 2987 } 2988 } 2989 2990 ++Param; 2991 } 2992 2993 return Invalid; 2994} 2995 2996namespace { 2997 class UnnamedLocalNoLinkageFinder 2998 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 2999 { 3000 Sema &S; 3001 SourceRange SR; 3002 3003 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 3004 3005 public: 3006 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 3007 3008 bool Visit(QualType T) { 3009 return inherited::Visit(T.getTypePtr()); 3010 } 3011 3012#define TYPE(Class, Parent) \ 3013 bool Visit##Class##Type(const Class##Type *); 3014#define ABSTRACT_TYPE(Class, Parent) \ 3015 bool Visit##Class##Type(const Class##Type *) { return false; } 3016#define NON_CANONICAL_TYPE(Class, Parent) \ 3017 bool Visit##Class##Type(const Class##Type *) { return false; } 3018#include "clang/AST/TypeNodes.def" 3019 3020 bool VisitTagDecl(const TagDecl *Tag); 3021 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 3022 }; 3023} 3024 3025bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 3026 return false; 3027} 3028 3029bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 3030 return Visit(T->getElementType()); 3031} 3032 3033bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 3034 return Visit(T->getPointeeType()); 3035} 3036 3037bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 3038 const BlockPointerType* T) { 3039 return Visit(T->getPointeeType()); 3040} 3041 3042bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 3043 const LValueReferenceType* T) { 3044 return Visit(T->getPointeeType()); 3045} 3046 3047bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 3048 const RValueReferenceType* T) { 3049 return Visit(T->getPointeeType()); 3050} 3051 3052bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 3053 const MemberPointerType* T) { 3054 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 3055} 3056 3057bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 3058 const ConstantArrayType* T) { 3059 return Visit(T->getElementType()); 3060} 3061 3062bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 3063 const IncompleteArrayType* T) { 3064 return Visit(T->getElementType()); 3065} 3066 3067bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 3068 const VariableArrayType* T) { 3069 return Visit(T->getElementType()); 3070} 3071 3072bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 3073 const DependentSizedArrayType* T) { 3074 return Visit(T->getElementType()); 3075} 3076 3077bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 3078 const DependentSizedExtVectorType* T) { 3079 return Visit(T->getElementType()); 3080} 3081 3082bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 3083 return Visit(T->getElementType()); 3084} 3085 3086bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 3087 return Visit(T->getElementType()); 3088} 3089 3090bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 3091 const FunctionProtoType* T) { 3092 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), 3093 AEnd = T->arg_type_end(); 3094 A != AEnd; ++A) { 3095 if (Visit(*A)) 3096 return true; 3097 } 3098 3099 return Visit(T->getResultType()); 3100} 3101 3102bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 3103 const FunctionNoProtoType* T) { 3104 return Visit(T->getResultType()); 3105} 3106 3107bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 3108 const UnresolvedUsingType*) { 3109 return false; 3110} 3111 3112bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 3113 return false; 3114} 3115 3116bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 3117 return Visit(T->getUnderlyingType()); 3118} 3119 3120bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 3121 return false; 3122} 3123 3124bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 3125 const UnaryTransformType*) { 3126 return false; 3127} 3128 3129bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 3130 return Visit(T->getDeducedType()); 3131} 3132 3133bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 3134 return VisitTagDecl(T->getDecl()); 3135} 3136 3137bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 3138 return VisitTagDecl(T->getDecl()); 3139} 3140 3141bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 3142 const TemplateTypeParmType*) { 3143 return false; 3144} 3145 3146bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 3147 const SubstTemplateTypeParmPackType *) { 3148 return false; 3149} 3150 3151bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 3152 const TemplateSpecializationType*) { 3153 return false; 3154} 3155 3156bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 3157 const InjectedClassNameType* T) { 3158 return VisitTagDecl(T->getDecl()); 3159} 3160 3161bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 3162 const DependentNameType* T) { 3163 return VisitNestedNameSpecifier(T->getQualifier()); 3164} 3165 3166bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 3167 const DependentTemplateSpecializationType* T) { 3168 return VisitNestedNameSpecifier(T->getQualifier()); 3169} 3170 3171bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 3172 const PackExpansionType* T) { 3173 return Visit(T->getPattern()); 3174} 3175 3176bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 3177 return false; 3178} 3179 3180bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 3181 const ObjCInterfaceType *) { 3182 return false; 3183} 3184 3185bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 3186 const ObjCObjectPointerType *) { 3187 return false; 3188} 3189 3190bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 3191 if (Tag->getDeclContext()->isFunctionOrMethod()) { 3192 S.Diag(SR.getBegin(), diag::ext_template_arg_local_type) 3193 << S.Context.getTypeDeclType(Tag) << SR; 3194 return true; 3195 } 3196 3197 if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) { 3198 S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR; 3199 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 3200 return true; 3201 } 3202 3203 return false; 3204} 3205 3206bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 3207 NestedNameSpecifier *NNS) { 3208 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 3209 return true; 3210 3211 switch (NNS->getKind()) { 3212 case NestedNameSpecifier::Identifier: 3213 case NestedNameSpecifier::Namespace: 3214 case NestedNameSpecifier::NamespaceAlias: 3215 case NestedNameSpecifier::Global: 3216 return false; 3217 3218 case NestedNameSpecifier::TypeSpec: 3219 case NestedNameSpecifier::TypeSpecWithTemplate: 3220 return Visit(QualType(NNS->getAsType(), 0)); 3221 } 3222 return false; 3223} 3224 3225 3226/// \brief Check a template argument against its corresponding 3227/// template type parameter. 3228/// 3229/// This routine implements the semantics of C++ [temp.arg.type]. It 3230/// returns true if an error occurred, and false otherwise. 3231bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 3232 TypeSourceInfo *ArgInfo) { 3233 assert(ArgInfo && "invalid TypeSourceInfo"); 3234 QualType Arg = ArgInfo->getType(); 3235 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 3236 3237 if (Arg->isVariablyModifiedType()) { 3238 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 3239 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 3240 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 3241 } 3242 3243 // C++03 [temp.arg.type]p2: 3244 // A local type, a type with no linkage, an unnamed type or a type 3245 // compounded from any of these types shall not be used as a 3246 // template-argument for a template type-parameter. 3247 // 3248 // C++0x allows these, and even in C++03 we allow them as an extension with 3249 // a warning. 3250 if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) { 3251 UnnamedLocalNoLinkageFinder Finder(*this, SR); 3252 (void)Finder.Visit(Context.getCanonicalType(Arg)); 3253 } 3254 3255 return false; 3256} 3257 3258/// \brief Checks whether the given template argument is the address 3259/// of an object or function according to C++ [temp.arg.nontype]p1. 3260static bool 3261CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 3262 NonTypeTemplateParmDecl *Param, 3263 QualType ParamType, 3264 Expr *ArgIn, 3265 TemplateArgument &Converted) { 3266 bool Invalid = false; 3267 Expr *Arg = ArgIn; 3268 QualType ArgType = Arg->getType(); 3269 3270 // See through any implicit casts we added to fix the type. 3271 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 3272 Arg = Cast->getSubExpr(); 3273 3274 // C++ [temp.arg.nontype]p1: 3275 // 3276 // A template-argument for a non-type, non-template 3277 // template-parameter shall be one of: [...] 3278 // 3279 // -- the address of an object or function with external 3280 // linkage, including function templates and function 3281 // template-ids but excluding non-static class members, 3282 // expressed as & id-expression where the & is optional if 3283 // the name refers to a function or array, or if the 3284 // corresponding template-parameter is a reference; or 3285 DeclRefExpr *DRE = 0; 3286 3287 // In C++98/03 mode, give an extension warning on any extra parentheses. 3288 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3289 bool ExtraParens = false; 3290 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3291 if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) { 3292 S.Diag(Arg->getSourceRange().getBegin(), 3293 diag::ext_template_arg_extra_parens) 3294 << Arg->getSourceRange(); 3295 ExtraParens = true; 3296 } 3297 3298 Arg = Parens->getSubExpr(); 3299 } 3300 3301 bool AddressTaken = false; 3302 SourceLocation AddrOpLoc; 3303 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3304 if (UnOp->getOpcode() == UO_AddrOf) { 3305 // Support &__uuidof(class_with_uuid) as a non-type template argument. 3306 // Very common in Microsoft COM headers. 3307 if (S.getLangOptions().Microsoft && 3308 isa<CXXUuidofExpr>(UnOp->getSubExpr())) { 3309 Converted = TemplateArgument(ArgIn); 3310 return false; 3311 } 3312 3313 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 3314 AddressTaken = true; 3315 AddrOpLoc = UnOp->getOperatorLoc(); 3316 } 3317 } else { 3318 if (S.getLangOptions().Microsoft && isa<CXXUuidofExpr>(Arg)) { 3319 Converted = TemplateArgument(ArgIn); 3320 return false; 3321 } 3322 DRE = dyn_cast<DeclRefExpr>(Arg); 3323 } 3324 if (!DRE) { 3325 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 3326 << Arg->getSourceRange(); 3327 S.Diag(Param->getLocation(), diag::note_template_param_here); 3328 return true; 3329 } 3330 3331 // Stop checking the precise nature of the argument if it is value dependent, 3332 // it should be checked when instantiated. 3333 if (Arg->isValueDependent()) { 3334 Converted = TemplateArgument(ArgIn); 3335 return false; 3336 } 3337 3338 if (!isa<ValueDecl>(DRE->getDecl())) { 3339 S.Diag(Arg->getSourceRange().getBegin(), 3340 diag::err_template_arg_not_object_or_func_form) 3341 << Arg->getSourceRange(); 3342 S.Diag(Param->getLocation(), diag::note_template_param_here); 3343 return true; 3344 } 3345 3346 NamedDecl *Entity = 0; 3347 3348 // Cannot refer to non-static data members 3349 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) { 3350 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 3351 << Field << Arg->getSourceRange(); 3352 S.Diag(Param->getLocation(), diag::note_template_param_here); 3353 return true; 3354 } 3355 3356 // Cannot refer to non-static member functions 3357 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 3358 if (!Method->isStatic()) { 3359 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method) 3360 << Method << Arg->getSourceRange(); 3361 S.Diag(Param->getLocation(), diag::note_template_param_here); 3362 return true; 3363 } 3364 3365 // Functions must have external linkage. 3366 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 3367 if (!isExternalLinkage(Func->getLinkage())) { 3368 S.Diag(Arg->getSourceRange().getBegin(), 3369 diag::err_template_arg_function_not_extern) 3370 << Func << Arg->getSourceRange(); 3371 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object) 3372 << true; 3373 return true; 3374 } 3375 3376 // Okay: we've named a function with external linkage. 3377 Entity = Func; 3378 3379 // If the template parameter has pointer type, the function decays. 3380 if (ParamType->isPointerType() && !AddressTaken) 3381 ArgType = S.Context.getPointerType(Func->getType()); 3382 else if (AddressTaken && ParamType->isReferenceType()) { 3383 // If we originally had an address-of operator, but the 3384 // parameter has reference type, complain and (if things look 3385 // like they will work) drop the address-of operator. 3386 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 3387 ParamType.getNonReferenceType())) { 3388 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3389 << ParamType; 3390 S.Diag(Param->getLocation(), diag::note_template_param_here); 3391 return true; 3392 } 3393 3394 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3395 << ParamType 3396 << FixItHint::CreateRemoval(AddrOpLoc); 3397 S.Diag(Param->getLocation(), diag::note_template_param_here); 3398 3399 ArgType = Func->getType(); 3400 } 3401 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 3402 if (!isExternalLinkage(Var->getLinkage())) { 3403 S.Diag(Arg->getSourceRange().getBegin(), 3404 diag::err_template_arg_object_not_extern) 3405 << Var << Arg->getSourceRange(); 3406 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object) 3407 << true; 3408 return true; 3409 } 3410 3411 // A value of reference type is not an object. 3412 if (Var->getType()->isReferenceType()) { 3413 S.Diag(Arg->getSourceRange().getBegin(), 3414 diag::err_template_arg_reference_var) 3415 << Var->getType() << Arg->getSourceRange(); 3416 S.Diag(Param->getLocation(), diag::note_template_param_here); 3417 return true; 3418 } 3419 3420 // Okay: we've named an object with external linkage 3421 Entity = Var; 3422 3423 // If the template parameter has pointer type, we must have taken 3424 // the address of this object. 3425 if (ParamType->isReferenceType()) { 3426 if (AddressTaken) { 3427 // If we originally had an address-of operator, but the 3428 // parameter has reference type, complain and (if things look 3429 // like they will work) drop the address-of operator. 3430 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 3431 ParamType.getNonReferenceType())) { 3432 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3433 << ParamType; 3434 S.Diag(Param->getLocation(), diag::note_template_param_here); 3435 return true; 3436 } 3437 3438 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3439 << ParamType 3440 << FixItHint::CreateRemoval(AddrOpLoc); 3441 S.Diag(Param->getLocation(), diag::note_template_param_here); 3442 3443 ArgType = Var->getType(); 3444 } 3445 } else if (!AddressTaken && ParamType->isPointerType()) { 3446 if (Var->getType()->isArrayType()) { 3447 // Array-to-pointer decay. 3448 ArgType = S.Context.getArrayDecayedType(Var->getType()); 3449 } else { 3450 // If the template parameter has pointer type but the address of 3451 // this object was not taken, complain and (possibly) recover by 3452 // taking the address of the entity. 3453 ArgType = S.Context.getPointerType(Var->getType()); 3454 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 3455 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3456 << ParamType; 3457 S.Diag(Param->getLocation(), diag::note_template_param_here); 3458 return true; 3459 } 3460 3461 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3462 << ParamType 3463 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 3464 3465 S.Diag(Param->getLocation(), diag::note_template_param_here); 3466 } 3467 } 3468 } else { 3469 // We found something else, but we don't know specifically what it is. 3470 S.Diag(Arg->getSourceRange().getBegin(), 3471 diag::err_template_arg_not_object_or_func) 3472 << Arg->getSourceRange(); 3473 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 3474 return true; 3475 } 3476 3477 if (ParamType->isPointerType() && 3478 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 3479 S.IsQualificationConversion(ArgType, ParamType, false)) { 3480 // For pointer-to-object types, qualification conversions are 3481 // permitted. 3482 } else { 3483 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 3484 if (!ParamRef->getPointeeType()->isFunctionType()) { 3485 // C++ [temp.arg.nontype]p5b3: 3486 // For a non-type template-parameter of type reference to 3487 // object, no conversions apply. The type referred to by the 3488 // reference may be more cv-qualified than the (otherwise 3489 // identical) type of the template- argument. The 3490 // template-parameter is bound directly to the 3491 // template-argument, which shall be an lvalue. 3492 3493 // FIXME: Other qualifiers? 3494 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 3495 unsigned ArgQuals = ArgType.getCVRQualifiers(); 3496 3497 if ((ParamQuals | ArgQuals) != ParamQuals) { 3498 S.Diag(Arg->getSourceRange().getBegin(), 3499 diag::err_template_arg_ref_bind_ignores_quals) 3500 << ParamType << Arg->getType() 3501 << Arg->getSourceRange(); 3502 S.Diag(Param->getLocation(), diag::note_template_param_here); 3503 return true; 3504 } 3505 } 3506 } 3507 3508 // At this point, the template argument refers to an object or 3509 // function with external linkage. We now need to check whether the 3510 // argument and parameter types are compatible. 3511 if (!S.Context.hasSameUnqualifiedType(ArgType, 3512 ParamType.getNonReferenceType())) { 3513 // We can't perform this conversion or binding. 3514 if (ParamType->isReferenceType()) 3515 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 3516 << ParamType << Arg->getType() << Arg->getSourceRange(); 3517 else 3518 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3519 << Arg->getType() << ParamType << Arg->getSourceRange(); 3520 S.Diag(Param->getLocation(), diag::note_template_param_here); 3521 return true; 3522 } 3523 } 3524 3525 // Create the template argument. 3526 Converted = TemplateArgument(Entity->getCanonicalDecl()); 3527 S.MarkDeclarationReferenced(Arg->getLocStart(), Entity); 3528 return false; 3529} 3530 3531/// \brief Checks whether the given template argument is a pointer to 3532/// member constant according to C++ [temp.arg.nontype]p1. 3533bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 3534 TemplateArgument &Converted) { 3535 bool Invalid = false; 3536 3537 // See through any implicit casts we added to fix the type. 3538 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 3539 Arg = Cast->getSubExpr(); 3540 3541 // C++ [temp.arg.nontype]p1: 3542 // 3543 // A template-argument for a non-type, non-template 3544 // template-parameter shall be one of: [...] 3545 // 3546 // -- a pointer to member expressed as described in 5.3.1. 3547 DeclRefExpr *DRE = 0; 3548 3549 // In C++98/03 mode, give an extension warning on any extra parentheses. 3550 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3551 bool ExtraParens = false; 3552 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3553 if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) { 3554 Diag(Arg->getSourceRange().getBegin(), 3555 diag::ext_template_arg_extra_parens) 3556 << Arg->getSourceRange(); 3557 ExtraParens = true; 3558 } 3559 3560 Arg = Parens->getSubExpr(); 3561 } 3562 3563 // A pointer-to-member constant written &Class::member. 3564 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3565 if (UnOp->getOpcode() == UO_AddrOf) { 3566 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 3567 if (DRE && !DRE->getQualifier()) 3568 DRE = 0; 3569 } 3570 } 3571 // A constant of pointer-to-member type. 3572 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 3573 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 3574 if (VD->getType()->isMemberPointerType()) { 3575 if (isa<NonTypeTemplateParmDecl>(VD) || 3576 (isa<VarDecl>(VD) && 3577 Context.getCanonicalType(VD->getType()).isConstQualified())) { 3578 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3579 Converted = TemplateArgument(Arg); 3580 else 3581 Converted = TemplateArgument(VD->getCanonicalDecl()); 3582 return Invalid; 3583 } 3584 } 3585 } 3586 3587 DRE = 0; 3588 } 3589 3590 if (!DRE) 3591 return Diag(Arg->getSourceRange().getBegin(), 3592 diag::err_template_arg_not_pointer_to_member_form) 3593 << Arg->getSourceRange(); 3594 3595 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 3596 assert((isa<FieldDecl>(DRE->getDecl()) || 3597 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 3598 "Only non-static member pointers can make it here"); 3599 3600 // Okay: this is the address of a non-static member, and therefore 3601 // a member pointer constant. 3602 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3603 Converted = TemplateArgument(Arg); 3604 else 3605 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 3606 return Invalid; 3607 } 3608 3609 // We found something else, but we don't know specifically what it is. 3610 Diag(Arg->getSourceRange().getBegin(), 3611 diag::err_template_arg_not_pointer_to_member_form) 3612 << Arg->getSourceRange(); 3613 Diag(DRE->getDecl()->getLocation(), 3614 diag::note_template_arg_refers_here); 3615 return true; 3616} 3617 3618/// \brief Check a template argument against its corresponding 3619/// non-type template parameter. 3620/// 3621/// This routine implements the semantics of C++ [temp.arg.nontype]. 3622/// If an error occurred, it returns ExprError(); otherwise, it 3623/// returns the converted template argument. \p 3624/// InstantiatedParamType is the type of the non-type template 3625/// parameter after it has been instantiated. 3626ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 3627 QualType InstantiatedParamType, Expr *Arg, 3628 TemplateArgument &Converted, 3629 CheckTemplateArgumentKind CTAK) { 3630 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 3631 3632 // If either the parameter has a dependent type or the argument is 3633 // type-dependent, there's nothing we can check now. 3634 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 3635 // FIXME: Produce a cloned, canonical expression? 3636 Converted = TemplateArgument(Arg); 3637 return Owned(Arg); 3638 } 3639 3640 // C++ [temp.arg.nontype]p5: 3641 // The following conversions are performed on each expression used 3642 // as a non-type template-argument. If a non-type 3643 // template-argument cannot be converted to the type of the 3644 // corresponding template-parameter then the program is 3645 // ill-formed. 3646 // 3647 // -- for a non-type template-parameter of integral or 3648 // enumeration type, integral promotions (4.5) and integral 3649 // conversions (4.7) are applied. 3650 QualType ParamType = InstantiatedParamType; 3651 QualType ArgType = Arg->getType(); 3652 if (ParamType->isIntegralOrEnumerationType()) { 3653 // C++ [temp.arg.nontype]p1: 3654 // A template-argument for a non-type, non-template 3655 // template-parameter shall be one of: 3656 // 3657 // -- an integral constant-expression of integral or enumeration 3658 // type; or 3659 // -- the name of a non-type template-parameter; or 3660 SourceLocation NonConstantLoc; 3661 llvm::APSInt Value; 3662 if (!ArgType->isIntegralOrEnumerationType()) { 3663 Diag(Arg->getSourceRange().getBegin(), 3664 diag::err_template_arg_not_integral_or_enumeral) 3665 << ArgType << Arg->getSourceRange(); 3666 Diag(Param->getLocation(), diag::note_template_param_here); 3667 return ExprError(); 3668 } else if (!Arg->isValueDependent() && 3669 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 3670 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 3671 << ArgType << Arg->getSourceRange(); 3672 return ExprError(); 3673 } 3674 3675 // From here on out, all we care about are the unqualified forms 3676 // of the parameter and argument types. 3677 ParamType = ParamType.getUnqualifiedType(); 3678 ArgType = ArgType.getUnqualifiedType(); 3679 3680 // Try to convert the argument to the parameter's type. 3681 if (Context.hasSameType(ParamType, ArgType)) { 3682 // Okay: no conversion necessary 3683 } else if (CTAK == CTAK_Deduced) { 3684 // C++ [temp.deduct.type]p17: 3685 // If, in the declaration of a function template with a non-type 3686 // template-parameter, the non-type template- parameter is used 3687 // in an expression in the function parameter-list and, if the 3688 // corresponding template-argument is deduced, the 3689 // template-argument type shall match the type of the 3690 // template-parameter exactly, except that a template-argument 3691 // deduced from an array bound may be of any integral type. 3692 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 3693 << ArgType << ParamType; 3694 Diag(Param->getLocation(), diag::note_template_param_here); 3695 return ExprError(); 3696 } else if (ParamType->isBooleanType()) { 3697 // This is an integral-to-boolean conversion. 3698 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take(); 3699 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 3700 !ParamType->isEnumeralType()) { 3701 // This is an integral promotion or conversion. 3702 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take(); 3703 } else { 3704 // We can't perform this conversion. 3705 Diag(Arg->getSourceRange().getBegin(), 3706 diag::err_template_arg_not_convertible) 3707 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3708 Diag(Param->getLocation(), diag::note_template_param_here); 3709 return ExprError(); 3710 } 3711 3712 // Add the value of this argument to the list of converted 3713 // arguments. We use the bitwidth and signedness of the template 3714 // parameter. 3715 if (Arg->isValueDependent()) { 3716 // The argument is value-dependent. Create a new 3717 // TemplateArgument with the converted expression. 3718 Converted = TemplateArgument(Arg); 3719 return Owned(Arg); 3720 } 3721 3722 QualType IntegerType = Context.getCanonicalType(ParamType); 3723 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 3724 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 3725 3726 if (ParamType->isBooleanType()) { 3727 // Value must be zero or one. 3728 Value = Value != 0; 3729 unsigned AllowedBits = Context.getTypeSize(IntegerType); 3730 if (Value.getBitWidth() != AllowedBits) 3731 Value = Value.extOrTrunc(AllowedBits); 3732 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 3733 } else { 3734 llvm::APSInt OldValue = Value; 3735 3736 // Coerce the template argument's value to the value it will have 3737 // based on the template parameter's type. 3738 unsigned AllowedBits = Context.getTypeSize(IntegerType); 3739 if (Value.getBitWidth() != AllowedBits) 3740 Value = Value.extOrTrunc(AllowedBits); 3741 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 3742 3743 // Complain if an unsigned parameter received a negative value. 3744 if (IntegerType->isUnsignedIntegerOrEnumerationType() 3745 && (OldValue.isSigned() && OldValue.isNegative())) { 3746 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative) 3747 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3748 << Arg->getSourceRange(); 3749 Diag(Param->getLocation(), diag::note_template_param_here); 3750 } 3751 3752 // Complain if we overflowed the template parameter's type. 3753 unsigned RequiredBits; 3754 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 3755 RequiredBits = OldValue.getActiveBits(); 3756 else if (OldValue.isUnsigned()) 3757 RequiredBits = OldValue.getActiveBits() + 1; 3758 else 3759 RequiredBits = OldValue.getMinSignedBits(); 3760 if (RequiredBits > AllowedBits) { 3761 Diag(Arg->getSourceRange().getBegin(), 3762 diag::warn_template_arg_too_large) 3763 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3764 << Arg->getSourceRange(); 3765 Diag(Param->getLocation(), diag::note_template_param_here); 3766 } 3767 } 3768 3769 Converted = TemplateArgument(Value, 3770 ParamType->isEnumeralType() ? ParamType 3771 : IntegerType); 3772 return Owned(Arg); 3773 } 3774 3775 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 3776 3777 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion 3778 // from a template argument of type std::nullptr_t to a non-type 3779 // template parameter of type pointer to object, pointer to 3780 // function, or pointer-to-member, respectively. 3781 if (ArgType->isNullPtrType()) { 3782 if (ParamType->isPointerType() || ParamType->isMemberPointerType()) { 3783 Converted = TemplateArgument((NamedDecl *)0); 3784 return Owned(Arg); 3785 } 3786 3787 if (ParamType->isNullPtrType()) { 3788 llvm::APSInt Zero(Context.getTypeSize(Context.NullPtrTy), true); 3789 Converted = TemplateArgument(Zero, Context.NullPtrTy); 3790 return Owned(Arg); 3791 } 3792 } 3793 3794 // Handle pointer-to-function, reference-to-function, and 3795 // pointer-to-member-function all in (roughly) the same way. 3796 if (// -- For a non-type template-parameter of type pointer to 3797 // function, only the function-to-pointer conversion (4.3) is 3798 // applied. If the template-argument represents a set of 3799 // overloaded functions (or a pointer to such), the matching 3800 // function is selected from the set (13.4). 3801 (ParamType->isPointerType() && 3802 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 3803 // -- For a non-type template-parameter of type reference to 3804 // function, no conversions apply. If the template-argument 3805 // represents a set of overloaded functions, the matching 3806 // function is selected from the set (13.4). 3807 (ParamType->isReferenceType() && 3808 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 3809 // -- For a non-type template-parameter of type pointer to 3810 // member function, no conversions apply. If the 3811 // template-argument represents a set of overloaded member 3812 // functions, the matching member function is selected from 3813 // the set (13.4). 3814 (ParamType->isMemberPointerType() && 3815 ParamType->getAs<MemberPointerType>()->getPointeeType() 3816 ->isFunctionType())) { 3817 3818 if (Arg->getType() == Context.OverloadTy) { 3819 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 3820 true, 3821 FoundResult)) { 3822 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3823 return ExprError(); 3824 3825 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3826 ArgType = Arg->getType(); 3827 } else 3828 return ExprError(); 3829 } 3830 3831 if (!ParamType->isMemberPointerType()) { 3832 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3833 ParamType, 3834 Arg, Converted)) 3835 return ExprError(); 3836 return Owned(Arg); 3837 } 3838 3839 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(), 3840 false)) { 3841 Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)).take(); 3842 } else if (!Context.hasSameUnqualifiedType(ArgType, 3843 ParamType.getNonReferenceType())) { 3844 // We can't perform this conversion. 3845 Diag(Arg->getSourceRange().getBegin(), 3846 diag::err_template_arg_not_convertible) 3847 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3848 Diag(Param->getLocation(), diag::note_template_param_here); 3849 return ExprError(); 3850 } 3851 3852 if (CheckTemplateArgumentPointerToMember(Arg, Converted)) 3853 return ExprError(); 3854 return Owned(Arg); 3855 } 3856 3857 if (ParamType->isPointerType()) { 3858 // -- for a non-type template-parameter of type pointer to 3859 // object, qualification conversions (4.4) and the 3860 // array-to-pointer conversion (4.2) are applied. 3861 // C++0x also allows a value of std::nullptr_t. 3862 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 3863 "Only object pointers allowed here"); 3864 3865 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3866 ParamType, 3867 Arg, Converted)) 3868 return ExprError(); 3869 return Owned(Arg); 3870 } 3871 3872 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 3873 // -- For a non-type template-parameter of type reference to 3874 // object, no conversions apply. The type referred to by the 3875 // reference may be more cv-qualified than the (otherwise 3876 // identical) type of the template-argument. The 3877 // template-parameter is bound directly to the 3878 // template-argument, which must be an lvalue. 3879 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 3880 "Only object references allowed here"); 3881 3882 if (Arg->getType() == Context.OverloadTy) { 3883 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 3884 ParamRefType->getPointeeType(), 3885 true, 3886 FoundResult)) { 3887 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3888 return ExprError(); 3889 3890 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3891 ArgType = Arg->getType(); 3892 } else 3893 return ExprError(); 3894 } 3895 3896 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3897 ParamType, 3898 Arg, Converted)) 3899 return ExprError(); 3900 return Owned(Arg); 3901 } 3902 3903 // -- For a non-type template-parameter of type pointer to data 3904 // member, qualification conversions (4.4) are applied. 3905 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 3906 3907 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 3908 // Types match exactly: nothing more to do here. 3909 } else if (IsQualificationConversion(ArgType, ParamType, false)) { 3910 Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)).take(); 3911 } else { 3912 // We can't perform this conversion. 3913 Diag(Arg->getSourceRange().getBegin(), 3914 diag::err_template_arg_not_convertible) 3915 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3916 Diag(Param->getLocation(), diag::note_template_param_here); 3917 return ExprError(); 3918 } 3919 3920 if (CheckTemplateArgumentPointerToMember(Arg, Converted)) 3921 return ExprError(); 3922 return Owned(Arg); 3923} 3924 3925/// \brief Check a template argument against its corresponding 3926/// template template parameter. 3927/// 3928/// This routine implements the semantics of C++ [temp.arg.template]. 3929/// It returns true if an error occurred, and false otherwise. 3930bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 3931 const TemplateArgumentLoc &Arg) { 3932 TemplateName Name = Arg.getArgument().getAsTemplate(); 3933 TemplateDecl *Template = Name.getAsTemplateDecl(); 3934 if (!Template) { 3935 // Any dependent template name is fine. 3936 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 3937 return false; 3938 } 3939 3940 // C++0x [temp.arg.template]p1: 3941 // A template-argument for a template template-parameter shall be 3942 // the name of a class template or an alias template, expressed as an 3943 // id-expression. When the template-argument names a class template, only 3944 // primary class templates are considered when matching the 3945 // template template argument with the corresponding parameter; 3946 // partial specializations are not considered even if their 3947 // parameter lists match that of the template template parameter. 3948 // 3949 // Note that we also allow template template parameters here, which 3950 // will happen when we are dealing with, e.g., class template 3951 // partial specializations. 3952 if (!isa<ClassTemplateDecl>(Template) && 3953 !isa<TemplateTemplateParmDecl>(Template) && 3954 !isa<TypeAliasTemplateDecl>(Template)) { 3955 assert(isa<FunctionTemplateDecl>(Template) && 3956 "Only function templates are possible here"); 3957 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 3958 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 3959 << Template; 3960 } 3961 3962 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 3963 Param->getTemplateParameters(), 3964 true, 3965 TPL_TemplateTemplateArgumentMatch, 3966 Arg.getLocation()); 3967} 3968 3969/// \brief Given a non-type template argument that refers to a 3970/// declaration and the type of its corresponding non-type template 3971/// parameter, produce an expression that properly refers to that 3972/// declaration. 3973ExprResult 3974Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 3975 QualType ParamType, 3976 SourceLocation Loc) { 3977 assert(Arg.getKind() == TemplateArgument::Declaration && 3978 "Only declaration template arguments permitted here"); 3979 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 3980 3981 if (VD->getDeclContext()->isRecord() && 3982 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 3983 // If the value is a class member, we might have a pointer-to-member. 3984 // Determine whether the non-type template template parameter is of 3985 // pointer-to-member type. If so, we need to build an appropriate 3986 // expression for a pointer-to-member, since a "normal" DeclRefExpr 3987 // would refer to the member itself. 3988 if (ParamType->isMemberPointerType()) { 3989 QualType ClassType 3990 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 3991 NestedNameSpecifier *Qualifier 3992 = NestedNameSpecifier::Create(Context, 0, false, 3993 ClassType.getTypePtr()); 3994 CXXScopeSpec SS; 3995 SS.MakeTrivial(Context, Qualifier, Loc); 3996 3997 // The actual value-ness of this is unimportant, but for 3998 // internal consistency's sake, references to instance methods 3999 // are r-values. 4000 ExprValueKind VK = VK_LValue; 4001 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 4002 VK = VK_RValue; 4003 4004 ExprResult RefExpr = BuildDeclRefExpr(VD, 4005 VD->getType().getNonReferenceType(), 4006 VK, 4007 Loc, 4008 &SS); 4009 if (RefExpr.isInvalid()) 4010 return ExprError(); 4011 4012 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4013 4014 // We might need to perform a trailing qualification conversion, since 4015 // the element type on the parameter could be more qualified than the 4016 // element type in the expression we constructed. 4017 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 4018 ParamType.getUnqualifiedType(), false)) 4019 RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp); 4020 4021 assert(!RefExpr.isInvalid() && 4022 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 4023 ParamType.getUnqualifiedType())); 4024 return move(RefExpr); 4025 } 4026 } 4027 4028 QualType T = VD->getType().getNonReferenceType(); 4029 if (ParamType->isPointerType()) { 4030 // When the non-type template parameter is a pointer, take the 4031 // address of the declaration. 4032 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 4033 if (RefExpr.isInvalid()) 4034 return ExprError(); 4035 4036 if (T->isFunctionType() || T->isArrayType()) { 4037 // Decay functions and arrays. 4038 RefExpr = DefaultFunctionArrayConversion(RefExpr.take()); 4039 if (RefExpr.isInvalid()) 4040 return ExprError(); 4041 4042 return move(RefExpr); 4043 } 4044 4045 // Take the address of everything else 4046 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4047 } 4048 4049 ExprValueKind VK = VK_RValue; 4050 4051 // If the non-type template parameter has reference type, qualify the 4052 // resulting declaration reference with the extra qualifiers on the 4053 // type that the reference refers to. 4054 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 4055 VK = VK_LValue; 4056 T = Context.getQualifiedType(T, 4057 TargetRef->getPointeeType().getQualifiers()); 4058 } 4059 4060 return BuildDeclRefExpr(VD, T, VK, Loc); 4061} 4062 4063/// \brief Construct a new expression that refers to the given 4064/// integral template argument with the given source-location 4065/// information. 4066/// 4067/// This routine takes care of the mapping from an integral template 4068/// argument (which may have any integral type) to the appropriate 4069/// literal value. 4070ExprResult 4071Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 4072 SourceLocation Loc) { 4073 assert(Arg.getKind() == TemplateArgument::Integral && 4074 "Operation is only valid for integral template arguments"); 4075 QualType T = Arg.getIntegralType(); 4076 if (T->isCharType() || T->isWideCharType()) 4077 return Owned(new (Context) CharacterLiteral( 4078 Arg.getAsIntegral()->getZExtValue(), 4079 T->isWideCharType(), T, Loc)); 4080 if (T->isBooleanType()) 4081 return Owned(new (Context) CXXBoolLiteralExpr( 4082 Arg.getAsIntegral()->getBoolValue(), 4083 T, Loc)); 4084 4085 if (T->isNullPtrType()) 4086 return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc)); 4087 4088 // If this is an enum type that we're instantiating, we need to use an integer 4089 // type the same size as the enumerator. We don't want to build an 4090 // IntegerLiteral with enum type. 4091 QualType BT; 4092 if (const EnumType *ET = T->getAs<EnumType>()) 4093 BT = ET->getDecl()->getIntegerType(); 4094 else 4095 BT = T; 4096 4097 Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc); 4098 if (T->isEnumeralType()) { 4099 // FIXME: This is a hack. We need a better way to handle substituted 4100 // non-type template parameters. 4101 E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0, 4102 Context.getTrivialTypeSourceInfo(T, Loc), 4103 Loc, Loc); 4104 } 4105 4106 return Owned(E); 4107} 4108 4109/// \brief Match two template parameters within template parameter lists. 4110static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 4111 bool Complain, 4112 Sema::TemplateParameterListEqualKind Kind, 4113 SourceLocation TemplateArgLoc) { 4114 // Check the actual kind (type, non-type, template). 4115 if (Old->getKind() != New->getKind()) { 4116 if (Complain) { 4117 unsigned NextDiag = diag::err_template_param_different_kind; 4118 if (TemplateArgLoc.isValid()) { 4119 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4120 NextDiag = diag::note_template_param_different_kind; 4121 } 4122 S.Diag(New->getLocation(), NextDiag) 4123 << (Kind != Sema::TPL_TemplateMatch); 4124 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 4125 << (Kind != Sema::TPL_TemplateMatch); 4126 } 4127 4128 return false; 4129 } 4130 4131 // Check that both are parameter packs are neither are parameter packs. 4132 // However, if we are matching a template template argument to a 4133 // template template parameter, the template template parameter can have 4134 // a parameter pack where the template template argument does not. 4135 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 4136 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4137 Old->isTemplateParameterPack())) { 4138 if (Complain) { 4139 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 4140 if (TemplateArgLoc.isValid()) { 4141 S.Diag(TemplateArgLoc, 4142 diag::err_template_arg_template_params_mismatch); 4143 NextDiag = diag::note_template_parameter_pack_non_pack; 4144 } 4145 4146 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 4147 : isa<NonTypeTemplateParmDecl>(New)? 1 4148 : 2; 4149 S.Diag(New->getLocation(), NextDiag) 4150 << ParamKind << New->isParameterPack(); 4151 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 4152 << ParamKind << Old->isParameterPack(); 4153 } 4154 4155 return false; 4156 } 4157 4158 // For non-type template parameters, check the type of the parameter. 4159 if (NonTypeTemplateParmDecl *OldNTTP 4160 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 4161 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 4162 4163 // If we are matching a template template argument to a template 4164 // template parameter and one of the non-type template parameter types 4165 // is dependent, then we must wait until template instantiation time 4166 // to actually compare the arguments. 4167 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4168 (OldNTTP->getType()->isDependentType() || 4169 NewNTTP->getType()->isDependentType())) 4170 return true; 4171 4172 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 4173 if (Complain) { 4174 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 4175 if (TemplateArgLoc.isValid()) { 4176 S.Diag(TemplateArgLoc, 4177 diag::err_template_arg_template_params_mismatch); 4178 NextDiag = diag::note_template_nontype_parm_different_type; 4179 } 4180 S.Diag(NewNTTP->getLocation(), NextDiag) 4181 << NewNTTP->getType() 4182 << (Kind != Sema::TPL_TemplateMatch); 4183 S.Diag(OldNTTP->getLocation(), 4184 diag::note_template_nontype_parm_prev_declaration) 4185 << OldNTTP->getType(); 4186 } 4187 4188 return false; 4189 } 4190 4191 return true; 4192 } 4193 4194 // For template template parameters, check the template parameter types. 4195 // The template parameter lists of template template 4196 // parameters must agree. 4197 if (TemplateTemplateParmDecl *OldTTP 4198 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 4199 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 4200 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 4201 OldTTP->getTemplateParameters(), 4202 Complain, 4203 (Kind == Sema::TPL_TemplateMatch 4204 ? Sema::TPL_TemplateTemplateParmMatch 4205 : Kind), 4206 TemplateArgLoc); 4207 } 4208 4209 return true; 4210} 4211 4212/// \brief Diagnose a known arity mismatch when comparing template argument 4213/// lists. 4214static 4215void DiagnoseTemplateParameterListArityMismatch(Sema &S, 4216 TemplateParameterList *New, 4217 TemplateParameterList *Old, 4218 Sema::TemplateParameterListEqualKind Kind, 4219 SourceLocation TemplateArgLoc) { 4220 unsigned NextDiag = diag::err_template_param_list_different_arity; 4221 if (TemplateArgLoc.isValid()) { 4222 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4223 NextDiag = diag::note_template_param_list_different_arity; 4224 } 4225 S.Diag(New->getTemplateLoc(), NextDiag) 4226 << (New->size() > Old->size()) 4227 << (Kind != Sema::TPL_TemplateMatch) 4228 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 4229 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 4230 << (Kind != Sema::TPL_TemplateMatch) 4231 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 4232} 4233 4234/// \brief Determine whether the given template parameter lists are 4235/// equivalent. 4236/// 4237/// \param New The new template parameter list, typically written in the 4238/// source code as part of a new template declaration. 4239/// 4240/// \param Old The old template parameter list, typically found via 4241/// name lookup of the template declared with this template parameter 4242/// list. 4243/// 4244/// \param Complain If true, this routine will produce a diagnostic if 4245/// the template parameter lists are not equivalent. 4246/// 4247/// \param Kind describes how we are to match the template parameter lists. 4248/// 4249/// \param TemplateArgLoc If this source location is valid, then we 4250/// are actually checking the template parameter list of a template 4251/// argument (New) against the template parameter list of its 4252/// corresponding template template parameter (Old). We produce 4253/// slightly different diagnostics in this scenario. 4254/// 4255/// \returns True if the template parameter lists are equal, false 4256/// otherwise. 4257bool 4258Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 4259 TemplateParameterList *Old, 4260 bool Complain, 4261 TemplateParameterListEqualKind Kind, 4262 SourceLocation TemplateArgLoc) { 4263 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 4264 if (Complain) 4265 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4266 TemplateArgLoc); 4267 4268 return false; 4269 } 4270 4271 // C++0x [temp.arg.template]p3: 4272 // A template-argument matches a template template-parameter (call it P) 4273 // when each of the template parameters in the template-parameter-list of 4274 // the template-argument's corresponding class template or alias template 4275 // (call it A) matches the corresponding template parameter in the 4276 // template-parameter-list of P. [...] 4277 TemplateParameterList::iterator NewParm = New->begin(); 4278 TemplateParameterList::iterator NewParmEnd = New->end(); 4279 for (TemplateParameterList::iterator OldParm = Old->begin(), 4280 OldParmEnd = Old->end(); 4281 OldParm != OldParmEnd; ++OldParm) { 4282 if (Kind != TPL_TemplateTemplateArgumentMatch || 4283 !(*OldParm)->isTemplateParameterPack()) { 4284 if (NewParm == NewParmEnd) { 4285 if (Complain) 4286 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4287 TemplateArgLoc); 4288 4289 return false; 4290 } 4291 4292 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4293 Kind, TemplateArgLoc)) 4294 return false; 4295 4296 ++NewParm; 4297 continue; 4298 } 4299 4300 // C++0x [temp.arg.template]p3: 4301 // [...] When P's template- parameter-list contains a template parameter 4302 // pack (14.5.3), the template parameter pack will match zero or more 4303 // template parameters or template parameter packs in the 4304 // template-parameter-list of A with the same type and form as the 4305 // template parameter pack in P (ignoring whether those template 4306 // parameters are template parameter packs). 4307 for (; NewParm != NewParmEnd; ++NewParm) { 4308 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4309 Kind, TemplateArgLoc)) 4310 return false; 4311 } 4312 } 4313 4314 // Make sure we exhausted all of the arguments. 4315 if (NewParm != NewParmEnd) { 4316 if (Complain) 4317 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4318 TemplateArgLoc); 4319 4320 return false; 4321 } 4322 4323 return true; 4324} 4325 4326/// \brief Check whether a template can be declared within this scope. 4327/// 4328/// If the template declaration is valid in this scope, returns 4329/// false. Otherwise, issues a diagnostic and returns true. 4330bool 4331Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 4332 // Find the nearest enclosing declaration scope. 4333 while ((S->getFlags() & Scope::DeclScope) == 0 || 4334 (S->getFlags() & Scope::TemplateParamScope) != 0) 4335 S = S->getParent(); 4336 4337 // C++ [temp]p2: 4338 // A template-declaration can appear only as a namespace scope or 4339 // class scope declaration. 4340 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 4341 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 4342 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 4343 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 4344 << TemplateParams->getSourceRange(); 4345 4346 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 4347 Ctx = Ctx->getParent(); 4348 4349 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 4350 return false; 4351 4352 return Diag(TemplateParams->getTemplateLoc(), 4353 diag::err_template_outside_namespace_or_class_scope) 4354 << TemplateParams->getSourceRange(); 4355} 4356 4357/// \brief Determine what kind of template specialization the given declaration 4358/// is. 4359static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 4360 if (!D) 4361 return TSK_Undeclared; 4362 4363 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 4364 return Record->getTemplateSpecializationKind(); 4365 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 4366 return Function->getTemplateSpecializationKind(); 4367 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 4368 return Var->getTemplateSpecializationKind(); 4369 4370 return TSK_Undeclared; 4371} 4372 4373/// \brief Check whether a specialization is well-formed in the current 4374/// context. 4375/// 4376/// This routine determines whether a template specialization can be declared 4377/// in the current context (C++ [temp.expl.spec]p2). 4378/// 4379/// \param S the semantic analysis object for which this check is being 4380/// performed. 4381/// 4382/// \param Specialized the entity being specialized or instantiated, which 4383/// may be a kind of template (class template, function template, etc.) or 4384/// a member of a class template (member function, static data member, 4385/// member class). 4386/// 4387/// \param PrevDecl the previous declaration of this entity, if any. 4388/// 4389/// \param Loc the location of the explicit specialization or instantiation of 4390/// this entity. 4391/// 4392/// \param IsPartialSpecialization whether this is a partial specialization of 4393/// a class template. 4394/// 4395/// \returns true if there was an error that we cannot recover from, false 4396/// otherwise. 4397static bool CheckTemplateSpecializationScope(Sema &S, 4398 NamedDecl *Specialized, 4399 NamedDecl *PrevDecl, 4400 SourceLocation Loc, 4401 bool IsPartialSpecialization) { 4402 // Keep these "kind" numbers in sync with the %select statements in the 4403 // various diagnostics emitted by this routine. 4404 int EntityKind = 0; 4405 if (isa<ClassTemplateDecl>(Specialized)) 4406 EntityKind = IsPartialSpecialization? 1 : 0; 4407 else if (isa<FunctionTemplateDecl>(Specialized)) 4408 EntityKind = 2; 4409 else if (isa<CXXMethodDecl>(Specialized)) 4410 EntityKind = 3; 4411 else if (isa<VarDecl>(Specialized)) 4412 EntityKind = 4; 4413 else if (isa<RecordDecl>(Specialized)) 4414 EntityKind = 5; 4415 else { 4416 S.Diag(Loc, diag::err_template_spec_unknown_kind); 4417 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4418 return true; 4419 } 4420 4421 // C++ [temp.expl.spec]p2: 4422 // An explicit specialization shall be declared in the namespace 4423 // of which the template is a member, or, for member templates, in 4424 // the namespace of which the enclosing class or enclosing class 4425 // template is a member. An explicit specialization of a member 4426 // function, member class or static data member of a class 4427 // template shall be declared in the namespace of which the class 4428 // template is a member. Such a declaration may also be a 4429 // definition. If the declaration is not a definition, the 4430 // specialization may be defined later in the name- space in which 4431 // the explicit specialization was declared, or in a namespace 4432 // that encloses the one in which the explicit specialization was 4433 // declared. 4434 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 4435 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 4436 << Specialized; 4437 return true; 4438 } 4439 4440 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 4441 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 4442 << Specialized; 4443 return true; 4444 } 4445 4446 // C++ [temp.class.spec]p6: 4447 // A class template partial specialization may be declared or redeclared 4448 // in any namespace scope in which its definition may be defined (14.5.1 4449 // and 14.5.2). 4450 bool ComplainedAboutScope = false; 4451 DeclContext *SpecializedContext 4452 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 4453 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 4454 if ((!PrevDecl || 4455 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 4456 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 4457 // C++ [temp.exp.spec]p2: 4458 // An explicit specialization shall be declared in the namespace of which 4459 // the template is a member, or, for member templates, in the namespace 4460 // of which the enclosing class or enclosing class template is a member. 4461 // An explicit specialization of a member function, member class or 4462 // static data member of a class template shall be declared in the 4463 // namespace of which the class template is a member. 4464 // 4465 // C++0x [temp.expl.spec]p2: 4466 // An explicit specialization shall be declared in a namespace enclosing 4467 // the specialized template. 4468 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) && 4469 !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) { 4470 bool IsCPlusPlus0xExtension 4471 = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext); 4472 if (isa<TranslationUnitDecl>(SpecializedContext)) 4473 S.Diag(Loc, IsCPlusPlus0xExtension 4474 ? diag::ext_template_spec_decl_out_of_scope_global 4475 : diag::err_template_spec_decl_out_of_scope_global) 4476 << EntityKind << Specialized; 4477 else if (isa<NamespaceDecl>(SpecializedContext)) 4478 S.Diag(Loc, IsCPlusPlus0xExtension 4479 ? diag::ext_template_spec_decl_out_of_scope 4480 : diag::err_template_spec_decl_out_of_scope) 4481 << EntityKind << Specialized 4482 << cast<NamedDecl>(SpecializedContext); 4483 4484 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4485 ComplainedAboutScope = true; 4486 } 4487 } 4488 4489 // Make sure that this redeclaration (or definition) occurs in an enclosing 4490 // namespace. 4491 // Note that HandleDeclarator() performs this check for explicit 4492 // specializations of function templates, static data members, and member 4493 // functions, so we skip the check here for those kinds of entities. 4494 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 4495 // Should we refactor that check, so that it occurs later? 4496 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 4497 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 4498 isa<FunctionDecl>(Specialized))) { 4499 if (isa<TranslationUnitDecl>(SpecializedContext)) 4500 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 4501 << EntityKind << Specialized; 4502 else if (isa<NamespaceDecl>(SpecializedContext)) 4503 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 4504 << EntityKind << Specialized 4505 << cast<NamedDecl>(SpecializedContext); 4506 4507 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4508 } 4509 4510 // FIXME: check for specialization-after-instantiation errors and such. 4511 4512 return false; 4513} 4514 4515/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs 4516/// that checks non-type template partial specialization arguments. 4517static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S, 4518 NonTypeTemplateParmDecl *Param, 4519 const TemplateArgument *Args, 4520 unsigned NumArgs) { 4521 for (unsigned I = 0; I != NumArgs; ++I) { 4522 if (Args[I].getKind() == TemplateArgument::Pack) { 4523 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4524 Args[I].pack_begin(), 4525 Args[I].pack_size())) 4526 return true; 4527 4528 continue; 4529 } 4530 4531 Expr *ArgExpr = Args[I].getAsExpr(); 4532 if (!ArgExpr) { 4533 continue; 4534 } 4535 4536 // We can have a pack expansion of any of the bullets below. 4537 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 4538 ArgExpr = Expansion->getPattern(); 4539 4540 // Strip off any implicit casts we added as part of type checking. 4541 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 4542 ArgExpr = ICE->getSubExpr(); 4543 4544 // C++ [temp.class.spec]p8: 4545 // A non-type argument is non-specialized if it is the name of a 4546 // non-type parameter. All other non-type arguments are 4547 // specialized. 4548 // 4549 // Below, we check the two conditions that only apply to 4550 // specialized non-type arguments, so skip any non-specialized 4551 // arguments. 4552 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 4553 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 4554 continue; 4555 4556 // C++ [temp.class.spec]p9: 4557 // Within the argument list of a class template partial 4558 // specialization, the following restrictions apply: 4559 // -- A partially specialized non-type argument expression 4560 // shall not involve a template parameter of the partial 4561 // specialization except when the argument expression is a 4562 // simple identifier. 4563 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 4564 S.Diag(ArgExpr->getLocStart(), 4565 diag::err_dependent_non_type_arg_in_partial_spec) 4566 << ArgExpr->getSourceRange(); 4567 return true; 4568 } 4569 4570 // -- The type of a template parameter corresponding to a 4571 // specialized non-type argument shall not be dependent on a 4572 // parameter of the specialization. 4573 if (Param->getType()->isDependentType()) { 4574 S.Diag(ArgExpr->getLocStart(), 4575 diag::err_dependent_typed_non_type_arg_in_partial_spec) 4576 << Param->getType() 4577 << ArgExpr->getSourceRange(); 4578 S.Diag(Param->getLocation(), diag::note_template_param_here); 4579 return true; 4580 } 4581 } 4582 4583 return false; 4584} 4585 4586/// \brief Check the non-type template arguments of a class template 4587/// partial specialization according to C++ [temp.class.spec]p9. 4588/// 4589/// \param TemplateParams the template parameters of the primary class 4590/// template. 4591/// 4592/// \param TemplateArg the template arguments of the class template 4593/// partial specialization. 4594/// 4595/// \returns true if there was an error, false otherwise. 4596static bool CheckClassTemplatePartialSpecializationArgs(Sema &S, 4597 TemplateParameterList *TemplateParams, 4598 llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs) { 4599 const TemplateArgument *ArgList = TemplateArgs.data(); 4600 4601 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4602 NonTypeTemplateParmDecl *Param 4603 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 4604 if (!Param) 4605 continue; 4606 4607 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4608 &ArgList[I], 1)) 4609 return true; 4610 } 4611 4612 return false; 4613} 4614 4615/// \brief Retrieve the previous declaration of the given declaration. 4616static NamedDecl *getPreviousDecl(NamedDecl *ND) { 4617 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 4618 return VD->getPreviousDeclaration(); 4619 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 4620 return FD->getPreviousDeclaration(); 4621 if (TagDecl *TD = dyn_cast<TagDecl>(ND)) 4622 return TD->getPreviousDeclaration(); 4623 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND)) 4624 return TD->getPreviousDeclaration(); 4625 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 4626 return FTD->getPreviousDeclaration(); 4627 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND)) 4628 return CTD->getPreviousDeclaration(); 4629 return 0; 4630} 4631 4632DeclResult 4633Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 4634 TagUseKind TUK, 4635 SourceLocation KWLoc, 4636 CXXScopeSpec &SS, 4637 TemplateTy TemplateD, 4638 SourceLocation TemplateNameLoc, 4639 SourceLocation LAngleLoc, 4640 ASTTemplateArgsPtr TemplateArgsIn, 4641 SourceLocation RAngleLoc, 4642 AttributeList *Attr, 4643 MultiTemplateParamsArg TemplateParameterLists) { 4644 assert(TUK != TUK_Reference && "References are not specializations"); 4645 4646 // NOTE: KWLoc is the location of the tag keyword. This will instead 4647 // store the location of the outermost template keyword in the declaration. 4648 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 4649 ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation(); 4650 4651 // Find the class template we're specializing 4652 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4653 ClassTemplateDecl *ClassTemplate 4654 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4655 4656 if (!ClassTemplate) { 4657 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 4658 << (Name.getAsTemplateDecl() && 4659 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 4660 return true; 4661 } 4662 4663 bool isExplicitSpecialization = false; 4664 bool isPartialSpecialization = false; 4665 4666 // Check the validity of the template headers that introduce this 4667 // template. 4668 // FIXME: We probably shouldn't complain about these headers for 4669 // friend declarations. 4670 bool Invalid = false; 4671 TemplateParameterList *TemplateParams 4672 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, 4673 TemplateNameLoc, 4674 SS, 4675 (TemplateParameterList**)TemplateParameterLists.get(), 4676 TemplateParameterLists.size(), 4677 TUK == TUK_Friend, 4678 isExplicitSpecialization, 4679 Invalid); 4680 if (Invalid) 4681 return true; 4682 4683 if (TemplateParams && TemplateParams->size() > 0) { 4684 isPartialSpecialization = true; 4685 4686 if (TUK == TUK_Friend) { 4687 Diag(KWLoc, diag::err_partial_specialization_friend) 4688 << SourceRange(LAngleLoc, RAngleLoc); 4689 return true; 4690 } 4691 4692 // C++ [temp.class.spec]p10: 4693 // The template parameter list of a specialization shall not 4694 // contain default template argument values. 4695 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4696 Decl *Param = TemplateParams->getParam(I); 4697 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 4698 if (TTP->hasDefaultArgument()) { 4699 Diag(TTP->getDefaultArgumentLoc(), 4700 diag::err_default_arg_in_partial_spec); 4701 TTP->removeDefaultArgument(); 4702 } 4703 } else if (NonTypeTemplateParmDecl *NTTP 4704 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 4705 if (Expr *DefArg = NTTP->getDefaultArgument()) { 4706 Diag(NTTP->getDefaultArgumentLoc(), 4707 diag::err_default_arg_in_partial_spec) 4708 << DefArg->getSourceRange(); 4709 NTTP->removeDefaultArgument(); 4710 } 4711 } else { 4712 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 4713 if (TTP->hasDefaultArgument()) { 4714 Diag(TTP->getDefaultArgument().getLocation(), 4715 diag::err_default_arg_in_partial_spec) 4716 << TTP->getDefaultArgument().getSourceRange(); 4717 TTP->removeDefaultArgument(); 4718 } 4719 } 4720 } 4721 } else if (TemplateParams) { 4722 if (TUK == TUK_Friend) 4723 Diag(KWLoc, diag::err_template_spec_friend) 4724 << FixItHint::CreateRemoval( 4725 SourceRange(TemplateParams->getTemplateLoc(), 4726 TemplateParams->getRAngleLoc())) 4727 << SourceRange(LAngleLoc, RAngleLoc); 4728 else 4729 isExplicitSpecialization = true; 4730 } else if (TUK != TUK_Friend) { 4731 Diag(KWLoc, diag::err_template_spec_needs_header) 4732 << FixItHint::CreateInsertion(KWLoc, "template<> "); 4733 isExplicitSpecialization = true; 4734 } 4735 4736 // Check that the specialization uses the same tag kind as the 4737 // original template. 4738 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4739 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 4740 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4741 Kind, KWLoc, 4742 *ClassTemplate->getIdentifier())) { 4743 Diag(KWLoc, diag::err_use_with_wrong_tag) 4744 << ClassTemplate 4745 << FixItHint::CreateReplacement(KWLoc, 4746 ClassTemplate->getTemplatedDecl()->getKindName()); 4747 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4748 diag::note_previous_use); 4749 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4750 } 4751 4752 // Translate the parser's template argument list in our AST format. 4753 TemplateArgumentListInfo TemplateArgs; 4754 TemplateArgs.setLAngleLoc(LAngleLoc); 4755 TemplateArgs.setRAngleLoc(RAngleLoc); 4756 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4757 4758 // Check for unexpanded parameter packs in any of the template arguments. 4759 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 4760 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 4761 UPPC_PartialSpecialization)) 4762 return true; 4763 4764 // Check that the template argument list is well-formed for this 4765 // template. 4766 llvm::SmallVector<TemplateArgument, 4> Converted; 4767 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4768 TemplateArgs, false, Converted)) 4769 return true; 4770 4771 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 4772 "Converted template argument list is too short!"); 4773 4774 // Find the class template (partial) specialization declaration that 4775 // corresponds to these arguments. 4776 if (isPartialSpecialization) { 4777 if (CheckClassTemplatePartialSpecializationArgs(*this, 4778 ClassTemplate->getTemplateParameters(), 4779 Converted)) 4780 return true; 4781 4782 if (!Name.isDependent() && 4783 !TemplateSpecializationType::anyDependentTemplateArguments( 4784 TemplateArgs.getArgumentArray(), 4785 TemplateArgs.size())) { 4786 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 4787 << ClassTemplate->getDeclName(); 4788 isPartialSpecialization = false; 4789 } 4790 } 4791 4792 void *InsertPos = 0; 4793 ClassTemplateSpecializationDecl *PrevDecl = 0; 4794 4795 if (isPartialSpecialization) 4796 // FIXME: Template parameter list matters, too 4797 PrevDecl 4798 = ClassTemplate->findPartialSpecialization(Converted.data(), 4799 Converted.size(), 4800 InsertPos); 4801 else 4802 PrevDecl 4803 = ClassTemplate->findSpecialization(Converted.data(), 4804 Converted.size(), InsertPos); 4805 4806 ClassTemplateSpecializationDecl *Specialization = 0; 4807 4808 // Check whether we can declare a class template specialization in 4809 // the current scope. 4810 if (TUK != TUK_Friend && 4811 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 4812 TemplateNameLoc, 4813 isPartialSpecialization)) 4814 return true; 4815 4816 // The canonical type 4817 QualType CanonType; 4818 if (PrevDecl && 4819 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 4820 TUK == TUK_Friend)) { 4821 // Since the only prior class template specialization with these 4822 // arguments was referenced but not declared, or we're only 4823 // referencing this specialization as a friend, reuse that 4824 // declaration node as our own, updating its source location and 4825 // the list of outer template parameters to reflect our new declaration. 4826 Specialization = PrevDecl; 4827 Specialization->setLocation(TemplateNameLoc); 4828 if (TemplateParameterLists.size() > 0) { 4829 Specialization->setTemplateParameterListsInfo(Context, 4830 TemplateParameterLists.size(), 4831 (TemplateParameterList**) TemplateParameterLists.release()); 4832 } 4833 PrevDecl = 0; 4834 CanonType = Context.getTypeDeclType(Specialization); 4835 } else if (isPartialSpecialization) { 4836 // Build the canonical type that describes the converted template 4837 // arguments of the class template partial specialization. 4838 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 4839 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 4840 Converted.data(), 4841 Converted.size()); 4842 4843 if (Context.hasSameType(CanonType, 4844 ClassTemplate->getInjectedClassNameSpecialization())) { 4845 // C++ [temp.class.spec]p9b3: 4846 // 4847 // -- The argument list of the specialization shall not be identical 4848 // to the implicit argument list of the primary template. 4849 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 4850 << (TUK == TUK_Definition) 4851 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 4852 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 4853 ClassTemplate->getIdentifier(), 4854 TemplateNameLoc, 4855 Attr, 4856 TemplateParams, 4857 AS_none, 4858 TemplateParameterLists.size() - 1, 4859 (TemplateParameterList**) TemplateParameterLists.release()); 4860 } 4861 4862 // Create a new class template partial specialization declaration node. 4863 ClassTemplatePartialSpecializationDecl *PrevPartial 4864 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 4865 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 4866 : ClassTemplate->getNextPartialSpecSequenceNumber(); 4867 ClassTemplatePartialSpecializationDecl *Partial 4868 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 4869 ClassTemplate->getDeclContext(), 4870 KWLoc, TemplateNameLoc, 4871 TemplateParams, 4872 ClassTemplate, 4873 Converted.data(), 4874 Converted.size(), 4875 TemplateArgs, 4876 CanonType, 4877 PrevPartial, 4878 SequenceNumber); 4879 SetNestedNameSpecifier(Partial, SS); 4880 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 4881 Partial->setTemplateParameterListsInfo(Context, 4882 TemplateParameterLists.size() - 1, 4883 (TemplateParameterList**) TemplateParameterLists.release()); 4884 } 4885 4886 if (!PrevPartial) 4887 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 4888 Specialization = Partial; 4889 4890 // If we are providing an explicit specialization of a member class 4891 // template specialization, make a note of that. 4892 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 4893 PrevPartial->setMemberSpecialization(); 4894 4895 // Check that all of the template parameters of the class template 4896 // partial specialization are deducible from the template 4897 // arguments. If not, this class template partial specialization 4898 // will never be used. 4899 llvm::SmallVector<bool, 8> DeducibleParams; 4900 DeducibleParams.resize(TemplateParams->size()); 4901 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 4902 TemplateParams->getDepth(), 4903 DeducibleParams); 4904 unsigned NumNonDeducible = 0; 4905 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 4906 if (!DeducibleParams[I]) 4907 ++NumNonDeducible; 4908 4909 if (NumNonDeducible) { 4910 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 4911 << (NumNonDeducible > 1) 4912 << SourceRange(TemplateNameLoc, RAngleLoc); 4913 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 4914 if (!DeducibleParams[I]) { 4915 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 4916 if (Param->getDeclName()) 4917 Diag(Param->getLocation(), 4918 diag::note_partial_spec_unused_parameter) 4919 << Param->getDeclName(); 4920 else 4921 Diag(Param->getLocation(), 4922 diag::note_partial_spec_unused_parameter) 4923 << "<anonymous>"; 4924 } 4925 } 4926 } 4927 } else { 4928 // Create a new class template specialization declaration node for 4929 // this explicit specialization or friend declaration. 4930 Specialization 4931 = ClassTemplateSpecializationDecl::Create(Context, Kind, 4932 ClassTemplate->getDeclContext(), 4933 KWLoc, TemplateNameLoc, 4934 ClassTemplate, 4935 Converted.data(), 4936 Converted.size(), 4937 PrevDecl); 4938 SetNestedNameSpecifier(Specialization, SS); 4939 if (TemplateParameterLists.size() > 0) { 4940 Specialization->setTemplateParameterListsInfo(Context, 4941 TemplateParameterLists.size(), 4942 (TemplateParameterList**) TemplateParameterLists.release()); 4943 } 4944 4945 if (!PrevDecl) 4946 ClassTemplate->AddSpecialization(Specialization, InsertPos); 4947 4948 CanonType = Context.getTypeDeclType(Specialization); 4949 } 4950 4951 // C++ [temp.expl.spec]p6: 4952 // If a template, a member template or the member of a class template is 4953 // explicitly specialized then that specialization shall be declared 4954 // before the first use of that specialization that would cause an implicit 4955 // instantiation to take place, in every translation unit in which such a 4956 // use occurs; no diagnostic is required. 4957 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 4958 bool Okay = false; 4959 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 4960 // Is there any previous explicit specialization declaration? 4961 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 4962 Okay = true; 4963 break; 4964 } 4965 } 4966 4967 if (!Okay) { 4968 SourceRange Range(TemplateNameLoc, RAngleLoc); 4969 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 4970 << Context.getTypeDeclType(Specialization) << Range; 4971 4972 Diag(PrevDecl->getPointOfInstantiation(), 4973 diag::note_instantiation_required_here) 4974 << (PrevDecl->getTemplateSpecializationKind() 4975 != TSK_ImplicitInstantiation); 4976 return true; 4977 } 4978 } 4979 4980 // If this is not a friend, note that this is an explicit specialization. 4981 if (TUK != TUK_Friend) 4982 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 4983 4984 // Check that this isn't a redefinition of this specialization. 4985 if (TUK == TUK_Definition) { 4986 if (RecordDecl *Def = Specialization->getDefinition()) { 4987 SourceRange Range(TemplateNameLoc, RAngleLoc); 4988 Diag(TemplateNameLoc, diag::err_redefinition) 4989 << Context.getTypeDeclType(Specialization) << Range; 4990 Diag(Def->getLocation(), diag::note_previous_definition); 4991 Specialization->setInvalidDecl(); 4992 return true; 4993 } 4994 } 4995 4996 if (Attr) 4997 ProcessDeclAttributeList(S, Specialization, Attr); 4998 4999 // Build the fully-sugared type for this class template 5000 // specialization as the user wrote in the specialization 5001 // itself. This means that we'll pretty-print the type retrieved 5002 // from the specialization's declaration the way that the user 5003 // actually wrote the specialization, rather than formatting the 5004 // name based on the "canonical" representation used to store the 5005 // template arguments in the specialization. 5006 TypeSourceInfo *WrittenTy 5007 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5008 TemplateArgs, CanonType); 5009 if (TUK != TUK_Friend) { 5010 Specialization->setTypeAsWritten(WrittenTy); 5011 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 5012 } 5013 TemplateArgsIn.release(); 5014 5015 // C++ [temp.expl.spec]p9: 5016 // A template explicit specialization is in the scope of the 5017 // namespace in which the template was defined. 5018 // 5019 // We actually implement this paragraph where we set the semantic 5020 // context (in the creation of the ClassTemplateSpecializationDecl), 5021 // but we also maintain the lexical context where the actual 5022 // definition occurs. 5023 Specialization->setLexicalDeclContext(CurContext); 5024 5025 // We may be starting the definition of this specialization. 5026 if (TUK == TUK_Definition) 5027 Specialization->startDefinition(); 5028 5029 if (TUK == TUK_Friend) { 5030 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 5031 TemplateNameLoc, 5032 WrittenTy, 5033 /*FIXME:*/KWLoc); 5034 Friend->setAccess(AS_public); 5035 CurContext->addDecl(Friend); 5036 } else { 5037 // Add the specialization into its lexical context, so that it can 5038 // be seen when iterating through the list of declarations in that 5039 // context. However, specializations are not found by name lookup. 5040 CurContext->addDecl(Specialization); 5041 } 5042 return Specialization; 5043} 5044 5045Decl *Sema::ActOnTemplateDeclarator(Scope *S, 5046 MultiTemplateParamsArg TemplateParameterLists, 5047 Declarator &D) { 5048 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 5049} 5050 5051Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 5052 MultiTemplateParamsArg TemplateParameterLists, 5053 Declarator &D) { 5054 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 5055 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 5056 5057 if (FTI.hasPrototype) { 5058 // FIXME: Diagnose arguments without names in C. 5059 } 5060 5061 Scope *ParentScope = FnBodyScope->getParent(); 5062 5063 Decl *DP = HandleDeclarator(ParentScope, D, 5064 move(TemplateParameterLists), 5065 /*IsFunctionDefinition=*/true); 5066 if (FunctionTemplateDecl *FunctionTemplate 5067 = dyn_cast_or_null<FunctionTemplateDecl>(DP)) 5068 return ActOnStartOfFunctionDef(FnBodyScope, 5069 FunctionTemplate->getTemplatedDecl()); 5070 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP)) 5071 return ActOnStartOfFunctionDef(FnBodyScope, Function); 5072 return 0; 5073} 5074 5075/// \brief Strips various properties off an implicit instantiation 5076/// that has just been explicitly specialized. 5077static void StripImplicitInstantiation(NamedDecl *D) { 5078 D->dropAttrs(); 5079 5080 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5081 FD->setInlineSpecified(false); 5082 } 5083} 5084 5085/// \brief Diagnose cases where we have an explicit template specialization 5086/// before/after an explicit template instantiation, producing diagnostics 5087/// for those cases where they are required and determining whether the 5088/// new specialization/instantiation will have any effect. 5089/// 5090/// \param NewLoc the location of the new explicit specialization or 5091/// instantiation. 5092/// 5093/// \param NewTSK the kind of the new explicit specialization or instantiation. 5094/// 5095/// \param PrevDecl the previous declaration of the entity. 5096/// 5097/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 5098/// 5099/// \param PrevPointOfInstantiation if valid, indicates where the previus 5100/// declaration was instantiated (either implicitly or explicitly). 5101/// 5102/// \param HasNoEffect will be set to true to indicate that the new 5103/// specialization or instantiation has no effect and should be ignored. 5104/// 5105/// \returns true if there was an error that should prevent the introduction of 5106/// the new declaration into the AST, false otherwise. 5107bool 5108Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 5109 TemplateSpecializationKind NewTSK, 5110 NamedDecl *PrevDecl, 5111 TemplateSpecializationKind PrevTSK, 5112 SourceLocation PrevPointOfInstantiation, 5113 bool &HasNoEffect) { 5114 HasNoEffect = false; 5115 5116 switch (NewTSK) { 5117 case TSK_Undeclared: 5118 case TSK_ImplicitInstantiation: 5119 assert(false && "Don't check implicit instantiations here"); 5120 return false; 5121 5122 case TSK_ExplicitSpecialization: 5123 switch (PrevTSK) { 5124 case TSK_Undeclared: 5125 case TSK_ExplicitSpecialization: 5126 // Okay, we're just specializing something that is either already 5127 // explicitly specialized or has merely been mentioned without any 5128 // instantiation. 5129 return false; 5130 5131 case TSK_ImplicitInstantiation: 5132 if (PrevPointOfInstantiation.isInvalid()) { 5133 // The declaration itself has not actually been instantiated, so it is 5134 // still okay to specialize it. 5135 StripImplicitInstantiation(PrevDecl); 5136 return false; 5137 } 5138 // Fall through 5139 5140 case TSK_ExplicitInstantiationDeclaration: 5141 case TSK_ExplicitInstantiationDefinition: 5142 assert((PrevTSK == TSK_ImplicitInstantiation || 5143 PrevPointOfInstantiation.isValid()) && 5144 "Explicit instantiation without point of instantiation?"); 5145 5146 // C++ [temp.expl.spec]p6: 5147 // If a template, a member template or the member of a class template 5148 // is explicitly specialized then that specialization shall be declared 5149 // before the first use of that specialization that would cause an 5150 // implicit instantiation to take place, in every translation unit in 5151 // which such a use occurs; no diagnostic is required. 5152 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 5153 // Is there any previous explicit specialization declaration? 5154 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 5155 return false; 5156 } 5157 5158 Diag(NewLoc, diag::err_specialization_after_instantiation) 5159 << PrevDecl; 5160 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 5161 << (PrevTSK != TSK_ImplicitInstantiation); 5162 5163 return true; 5164 } 5165 break; 5166 5167 case TSK_ExplicitInstantiationDeclaration: 5168 switch (PrevTSK) { 5169 case TSK_ExplicitInstantiationDeclaration: 5170 // This explicit instantiation declaration is redundant (that's okay). 5171 HasNoEffect = true; 5172 return false; 5173 5174 case TSK_Undeclared: 5175 case TSK_ImplicitInstantiation: 5176 // We're explicitly instantiating something that may have already been 5177 // implicitly instantiated; that's fine. 5178 return false; 5179 5180 case TSK_ExplicitSpecialization: 5181 // C++0x [temp.explicit]p4: 5182 // For a given set of template parameters, if an explicit instantiation 5183 // of a template appears after a declaration of an explicit 5184 // specialization for that template, the explicit instantiation has no 5185 // effect. 5186 HasNoEffect = true; 5187 return false; 5188 5189 case TSK_ExplicitInstantiationDefinition: 5190 // C++0x [temp.explicit]p10: 5191 // If an entity is the subject of both an explicit instantiation 5192 // declaration and an explicit instantiation definition in the same 5193 // translation unit, the definition shall follow the declaration. 5194 Diag(NewLoc, 5195 diag::err_explicit_instantiation_declaration_after_definition); 5196 Diag(PrevPointOfInstantiation, 5197 diag::note_explicit_instantiation_definition_here); 5198 assert(PrevPointOfInstantiation.isValid() && 5199 "Explicit instantiation without point of instantiation?"); 5200 HasNoEffect = true; 5201 return false; 5202 } 5203 break; 5204 5205 case TSK_ExplicitInstantiationDefinition: 5206 switch (PrevTSK) { 5207 case TSK_Undeclared: 5208 case TSK_ImplicitInstantiation: 5209 // We're explicitly instantiating something that may have already been 5210 // implicitly instantiated; that's fine. 5211 return false; 5212 5213 case TSK_ExplicitSpecialization: 5214 // C++ DR 259, C++0x [temp.explicit]p4: 5215 // For a given set of template parameters, if an explicit 5216 // instantiation of a template appears after a declaration of 5217 // an explicit specialization for that template, the explicit 5218 // instantiation has no effect. 5219 // 5220 // In C++98/03 mode, we only give an extension warning here, because it 5221 // is not harmful to try to explicitly instantiate something that 5222 // has been explicitly specialized. 5223 if (!getLangOptions().CPlusPlus0x) { 5224 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 5225 << PrevDecl; 5226 Diag(PrevDecl->getLocation(), 5227 diag::note_previous_template_specialization); 5228 } 5229 HasNoEffect = true; 5230 return false; 5231 5232 case TSK_ExplicitInstantiationDeclaration: 5233 // We're explicity instantiating a definition for something for which we 5234 // were previously asked to suppress instantiations. That's fine. 5235 return false; 5236 5237 case TSK_ExplicitInstantiationDefinition: 5238 // C++0x [temp.spec]p5: 5239 // For a given template and a given set of template-arguments, 5240 // - an explicit instantiation definition shall appear at most once 5241 // in a program, 5242 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 5243 << PrevDecl; 5244 Diag(PrevPointOfInstantiation, 5245 diag::note_previous_explicit_instantiation); 5246 HasNoEffect = true; 5247 return false; 5248 } 5249 break; 5250 } 5251 5252 assert(false && "Missing specialization/instantiation case?"); 5253 5254 return false; 5255} 5256 5257/// \brief Perform semantic analysis for the given dependent function 5258/// template specialization. The only possible way to get a dependent 5259/// function template specialization is with a friend declaration, 5260/// like so: 5261/// 5262/// template <class T> void foo(T); 5263/// template <class T> class A { 5264/// friend void foo<>(T); 5265/// }; 5266/// 5267/// There really isn't any useful analysis we can do here, so we 5268/// just store the information. 5269bool 5270Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 5271 const TemplateArgumentListInfo &ExplicitTemplateArgs, 5272 LookupResult &Previous) { 5273 // Remove anything from Previous that isn't a function template in 5274 // the correct context. 5275 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5276 LookupResult::Filter F = Previous.makeFilter(); 5277 while (F.hasNext()) { 5278 NamedDecl *D = F.next()->getUnderlyingDecl(); 5279 if (!isa<FunctionTemplateDecl>(D) || 5280 !FDLookupContext->InEnclosingNamespaceSetOf( 5281 D->getDeclContext()->getRedeclContext())) 5282 F.erase(); 5283 } 5284 F.done(); 5285 5286 // Should this be diagnosed here? 5287 if (Previous.empty()) return true; 5288 5289 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 5290 ExplicitTemplateArgs); 5291 return false; 5292} 5293 5294/// \brief Perform semantic analysis for the given function template 5295/// specialization. 5296/// 5297/// This routine performs all of the semantic analysis required for an 5298/// explicit function template specialization. On successful completion, 5299/// the function declaration \p FD will become a function template 5300/// specialization. 5301/// 5302/// \param FD the function declaration, which will be updated to become a 5303/// function template specialization. 5304/// 5305/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 5306/// if any. Note that this may be valid info even when 0 arguments are 5307/// explicitly provided as in, e.g., \c void sort<>(char*, char*); 5308/// as it anyway contains info on the angle brackets locations. 5309/// 5310/// \param PrevDecl the set of declarations that may be specialized by 5311/// this function specialization. 5312bool 5313Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 5314 TemplateArgumentListInfo *ExplicitTemplateArgs, 5315 LookupResult &Previous) { 5316 // The set of function template specializations that could match this 5317 // explicit function template specialization. 5318 UnresolvedSet<8> Candidates; 5319 5320 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5321 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5322 I != E; ++I) { 5323 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 5324 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 5325 // Only consider templates found within the same semantic lookup scope as 5326 // FD. 5327 if (!FDLookupContext->InEnclosingNamespaceSetOf( 5328 Ovl->getDeclContext()->getRedeclContext())) 5329 continue; 5330 5331 // C++ [temp.expl.spec]p11: 5332 // A trailing template-argument can be left unspecified in the 5333 // template-id naming an explicit function template specialization 5334 // provided it can be deduced from the function argument type. 5335 // Perform template argument deduction to determine whether we may be 5336 // specializing this template. 5337 // FIXME: It is somewhat wasteful to build 5338 TemplateDeductionInfo Info(Context, FD->getLocation()); 5339 FunctionDecl *Specialization = 0; 5340 if (TemplateDeductionResult TDK 5341 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 5342 FD->getType(), 5343 Specialization, 5344 Info)) { 5345 // FIXME: Template argument deduction failed; record why it failed, so 5346 // that we can provide nifty diagnostics. 5347 (void)TDK; 5348 continue; 5349 } 5350 5351 // Record this candidate. 5352 Candidates.addDecl(Specialization, I.getAccess()); 5353 } 5354 } 5355 5356 // Find the most specialized function template. 5357 UnresolvedSetIterator Result 5358 = getMostSpecialized(Candidates.begin(), Candidates.end(), 5359 TPOC_Other, 0, FD->getLocation(), 5360 PDiag(diag::err_function_template_spec_no_match) 5361 << FD->getDeclName(), 5362 PDiag(diag::err_function_template_spec_ambiguous) 5363 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 5364 PDiag(diag::note_function_template_spec_matched)); 5365 if (Result == Candidates.end()) 5366 return true; 5367 5368 // Ignore access information; it doesn't figure into redeclaration checking. 5369 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5370 5371 FunctionTemplateSpecializationInfo *SpecInfo 5372 = Specialization->getTemplateSpecializationInfo(); 5373 assert(SpecInfo && "Function template specialization info missing?"); 5374 { 5375 // Note: do not overwrite location info if previous template 5376 // specialization kind was explicit. 5377 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 5378 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) 5379 Specialization->setLocation(FD->getLocation()); 5380 } 5381 5382 // FIXME: Check if the prior specialization has a point of instantiation. 5383 // If so, we have run afoul of . 5384 5385 // If this is a friend declaration, then we're not really declaring 5386 // an explicit specialization. 5387 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 5388 5389 // Check the scope of this explicit specialization. 5390 if (!isFriend && 5391 CheckTemplateSpecializationScope(*this, 5392 Specialization->getPrimaryTemplate(), 5393 Specialization, FD->getLocation(), 5394 false)) 5395 return true; 5396 5397 // C++ [temp.expl.spec]p6: 5398 // If a template, a member template or the member of a class template is 5399 // explicitly specialized then that specialization shall be declared 5400 // before the first use of that specialization that would cause an implicit 5401 // instantiation to take place, in every translation unit in which such a 5402 // use occurs; no diagnostic is required. 5403 bool HasNoEffect = false; 5404 if (!isFriend && 5405 CheckSpecializationInstantiationRedecl(FD->getLocation(), 5406 TSK_ExplicitSpecialization, 5407 Specialization, 5408 SpecInfo->getTemplateSpecializationKind(), 5409 SpecInfo->getPointOfInstantiation(), 5410 HasNoEffect)) 5411 return true; 5412 5413 // Mark the prior declaration as an explicit specialization, so that later 5414 // clients know that this is an explicit specialization. 5415 if (!isFriend) { 5416 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 5417 MarkUnusedFileScopedDecl(Specialization); 5418 } 5419 5420 // Turn the given function declaration into a function template 5421 // specialization, with the template arguments from the previous 5422 // specialization. 5423 // Take copies of (semantic and syntactic) template argument lists. 5424 const TemplateArgumentList* TemplArgs = new (Context) 5425 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 5426 const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs 5427 ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0; 5428 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 5429 TemplArgs, /*InsertPos=*/0, 5430 SpecInfo->getTemplateSpecializationKind(), 5431 TemplArgsAsWritten); 5432 FD->setStorageClass(Specialization->getStorageClass()); 5433 5434 // The "previous declaration" for this function template specialization is 5435 // the prior function template specialization. 5436 Previous.clear(); 5437 Previous.addDecl(Specialization); 5438 return false; 5439} 5440 5441/// \brief Perform semantic analysis for the given non-template member 5442/// specialization. 5443/// 5444/// This routine performs all of the semantic analysis required for an 5445/// explicit member function specialization. On successful completion, 5446/// the function declaration \p FD will become a member function 5447/// specialization. 5448/// 5449/// \param Member the member declaration, which will be updated to become a 5450/// specialization. 5451/// 5452/// \param Previous the set of declarations, one of which may be specialized 5453/// by this function specialization; the set will be modified to contain the 5454/// redeclared member. 5455bool 5456Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 5457 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 5458 5459 // Try to find the member we are instantiating. 5460 NamedDecl *Instantiation = 0; 5461 NamedDecl *InstantiatedFrom = 0; 5462 MemberSpecializationInfo *MSInfo = 0; 5463 5464 if (Previous.empty()) { 5465 // Nowhere to look anyway. 5466 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 5467 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5468 I != E; ++I) { 5469 NamedDecl *D = (*I)->getUnderlyingDecl(); 5470 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 5471 if (Context.hasSameType(Function->getType(), Method->getType())) { 5472 Instantiation = Method; 5473 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 5474 MSInfo = Method->getMemberSpecializationInfo(); 5475 break; 5476 } 5477 } 5478 } 5479 } else if (isa<VarDecl>(Member)) { 5480 VarDecl *PrevVar; 5481 if (Previous.isSingleResult() && 5482 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 5483 if (PrevVar->isStaticDataMember()) { 5484 Instantiation = PrevVar; 5485 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 5486 MSInfo = PrevVar->getMemberSpecializationInfo(); 5487 } 5488 } else if (isa<RecordDecl>(Member)) { 5489 CXXRecordDecl *PrevRecord; 5490 if (Previous.isSingleResult() && 5491 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 5492 Instantiation = PrevRecord; 5493 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 5494 MSInfo = PrevRecord->getMemberSpecializationInfo(); 5495 } 5496 } 5497 5498 if (!Instantiation) { 5499 // There is no previous declaration that matches. Since member 5500 // specializations are always out-of-line, the caller will complain about 5501 // this mismatch later. 5502 return false; 5503 } 5504 5505 // If this is a friend, just bail out here before we start turning 5506 // things into explicit specializations. 5507 if (Member->getFriendObjectKind() != Decl::FOK_None) { 5508 // Preserve instantiation information. 5509 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 5510 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 5511 cast<CXXMethodDecl>(InstantiatedFrom), 5512 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 5513 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 5514 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5515 cast<CXXRecordDecl>(InstantiatedFrom), 5516 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 5517 } 5518 5519 Previous.clear(); 5520 Previous.addDecl(Instantiation); 5521 return false; 5522 } 5523 5524 // Make sure that this is a specialization of a member. 5525 if (!InstantiatedFrom) { 5526 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 5527 << Member; 5528 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 5529 return true; 5530 } 5531 5532 // C++ [temp.expl.spec]p6: 5533 // If a template, a member template or the member of a class template is 5534 // explicitly specialized then that spe- cialization shall be declared 5535 // before the first use of that specialization that would cause an implicit 5536 // instantiation to take place, in every translation unit in which such a 5537 // use occurs; no diagnostic is required. 5538 assert(MSInfo && "Member specialization info missing?"); 5539 5540 bool HasNoEffect = false; 5541 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 5542 TSK_ExplicitSpecialization, 5543 Instantiation, 5544 MSInfo->getTemplateSpecializationKind(), 5545 MSInfo->getPointOfInstantiation(), 5546 HasNoEffect)) 5547 return true; 5548 5549 // Check the scope of this explicit specialization. 5550 if (CheckTemplateSpecializationScope(*this, 5551 InstantiatedFrom, 5552 Instantiation, Member->getLocation(), 5553 false)) 5554 return true; 5555 5556 // Note that this is an explicit instantiation of a member. 5557 // the original declaration to note that it is an explicit specialization 5558 // (if it was previously an implicit instantiation). This latter step 5559 // makes bookkeeping easier. 5560 if (isa<FunctionDecl>(Member)) { 5561 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 5562 if (InstantiationFunction->getTemplateSpecializationKind() == 5563 TSK_ImplicitInstantiation) { 5564 InstantiationFunction->setTemplateSpecializationKind( 5565 TSK_ExplicitSpecialization); 5566 InstantiationFunction->setLocation(Member->getLocation()); 5567 } 5568 5569 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 5570 cast<CXXMethodDecl>(InstantiatedFrom), 5571 TSK_ExplicitSpecialization); 5572 MarkUnusedFileScopedDecl(InstantiationFunction); 5573 } else if (isa<VarDecl>(Member)) { 5574 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 5575 if (InstantiationVar->getTemplateSpecializationKind() == 5576 TSK_ImplicitInstantiation) { 5577 InstantiationVar->setTemplateSpecializationKind( 5578 TSK_ExplicitSpecialization); 5579 InstantiationVar->setLocation(Member->getLocation()); 5580 } 5581 5582 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 5583 cast<VarDecl>(InstantiatedFrom), 5584 TSK_ExplicitSpecialization); 5585 MarkUnusedFileScopedDecl(InstantiationVar); 5586 } else { 5587 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 5588 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 5589 if (InstantiationClass->getTemplateSpecializationKind() == 5590 TSK_ImplicitInstantiation) { 5591 InstantiationClass->setTemplateSpecializationKind( 5592 TSK_ExplicitSpecialization); 5593 InstantiationClass->setLocation(Member->getLocation()); 5594 } 5595 5596 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5597 cast<CXXRecordDecl>(InstantiatedFrom), 5598 TSK_ExplicitSpecialization); 5599 } 5600 5601 // Save the caller the trouble of having to figure out which declaration 5602 // this specialization matches. 5603 Previous.clear(); 5604 Previous.addDecl(Instantiation); 5605 return false; 5606} 5607 5608/// \brief Check the scope of an explicit instantiation. 5609/// 5610/// \returns true if a serious error occurs, false otherwise. 5611static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 5612 SourceLocation InstLoc, 5613 bool WasQualifiedName) { 5614 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 5615 DeclContext *CurContext = S.CurContext->getRedeclContext(); 5616 5617 if (CurContext->isRecord()) { 5618 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 5619 << D; 5620 return true; 5621 } 5622 5623 // C++0x [temp.explicit]p2: 5624 // An explicit instantiation shall appear in an enclosing namespace of its 5625 // template. 5626 // 5627 // This is DR275, which we do not retroactively apply to C++98/03. 5628 if (S.getLangOptions().CPlusPlus0x && 5629 !CurContext->Encloses(OrigContext)) { 5630 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) 5631 S.Diag(InstLoc, 5632 S.getLangOptions().CPlusPlus0x? 5633 diag::err_explicit_instantiation_out_of_scope 5634 : diag::warn_explicit_instantiation_out_of_scope_0x) 5635 << D << NS; 5636 else 5637 S.Diag(InstLoc, 5638 S.getLangOptions().CPlusPlus0x? 5639 diag::err_explicit_instantiation_must_be_global 5640 : diag::warn_explicit_instantiation_out_of_scope_0x) 5641 << D; 5642 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 5643 return false; 5644 } 5645 5646 // C++0x [temp.explicit]p2: 5647 // If the name declared in the explicit instantiation is an unqualified 5648 // name, the explicit instantiation shall appear in the namespace where 5649 // its template is declared or, if that namespace is inline (7.3.1), any 5650 // namespace from its enclosing namespace set. 5651 if (WasQualifiedName) 5652 return false; 5653 5654 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 5655 return false; 5656 5657 S.Diag(InstLoc, 5658 S.getLangOptions().CPlusPlus0x? 5659 diag::err_explicit_instantiation_unqualified_wrong_namespace 5660 : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 5661 << D << OrigContext; 5662 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 5663 return false; 5664} 5665 5666/// \brief Determine whether the given scope specifier has a template-id in it. 5667static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 5668 if (!SS.isSet()) 5669 return false; 5670 5671 // C++0x [temp.explicit]p2: 5672 // If the explicit instantiation is for a member function, a member class 5673 // or a static data member of a class template specialization, the name of 5674 // the class template specialization in the qualified-id for the member 5675 // name shall be a simple-template-id. 5676 // 5677 // C++98 has the same restriction, just worded differently. 5678 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 5679 NNS; NNS = NNS->getPrefix()) 5680 if (const Type *T = NNS->getAsType()) 5681 if (isa<TemplateSpecializationType>(T)) 5682 return true; 5683 5684 return false; 5685} 5686 5687// Explicit instantiation of a class template specialization 5688DeclResult 5689Sema::ActOnExplicitInstantiation(Scope *S, 5690 SourceLocation ExternLoc, 5691 SourceLocation TemplateLoc, 5692 unsigned TagSpec, 5693 SourceLocation KWLoc, 5694 const CXXScopeSpec &SS, 5695 TemplateTy TemplateD, 5696 SourceLocation TemplateNameLoc, 5697 SourceLocation LAngleLoc, 5698 ASTTemplateArgsPtr TemplateArgsIn, 5699 SourceLocation RAngleLoc, 5700 AttributeList *Attr) { 5701 // Find the class template we're specializing 5702 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 5703 ClassTemplateDecl *ClassTemplate 5704 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 5705 5706 // Check that the specialization uses the same tag kind as the 5707 // original template. 5708 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5709 assert(Kind != TTK_Enum && 5710 "Invalid enum tag in class template explicit instantiation!"); 5711 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 5712 Kind, KWLoc, 5713 *ClassTemplate->getIdentifier())) { 5714 Diag(KWLoc, diag::err_use_with_wrong_tag) 5715 << ClassTemplate 5716 << FixItHint::CreateReplacement(KWLoc, 5717 ClassTemplate->getTemplatedDecl()->getKindName()); 5718 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 5719 diag::note_previous_use); 5720 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 5721 } 5722 5723 // C++0x [temp.explicit]p2: 5724 // There are two forms of explicit instantiation: an explicit instantiation 5725 // definition and an explicit instantiation declaration. An explicit 5726 // instantiation declaration begins with the extern keyword. [...] 5727 TemplateSpecializationKind TSK 5728 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5729 : TSK_ExplicitInstantiationDeclaration; 5730 5731 // Translate the parser's template argument list in our AST format. 5732 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 5733 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 5734 5735 // Check that the template argument list is well-formed for this 5736 // template. 5737 llvm::SmallVector<TemplateArgument, 4> Converted; 5738 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 5739 TemplateArgs, false, Converted)) 5740 return true; 5741 5742 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 5743 "Converted template argument list is too short!"); 5744 5745 // Find the class template specialization declaration that 5746 // corresponds to these arguments. 5747 void *InsertPos = 0; 5748 ClassTemplateSpecializationDecl *PrevDecl 5749 = ClassTemplate->findSpecialization(Converted.data(), 5750 Converted.size(), InsertPos); 5751 5752 TemplateSpecializationKind PrevDecl_TSK 5753 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 5754 5755 // C++0x [temp.explicit]p2: 5756 // [...] An explicit instantiation shall appear in an enclosing 5757 // namespace of its template. [...] 5758 // 5759 // This is C++ DR 275. 5760 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 5761 SS.isSet())) 5762 return true; 5763 5764 ClassTemplateSpecializationDecl *Specialization = 0; 5765 5766 bool HasNoEffect = false; 5767 if (PrevDecl) { 5768 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 5769 PrevDecl, PrevDecl_TSK, 5770 PrevDecl->getPointOfInstantiation(), 5771 HasNoEffect)) 5772 return PrevDecl; 5773 5774 // Even though HasNoEffect == true means that this explicit instantiation 5775 // has no effect on semantics, we go on to put its syntax in the AST. 5776 5777 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 5778 PrevDecl_TSK == TSK_Undeclared) { 5779 // Since the only prior class template specialization with these 5780 // arguments was referenced but not declared, reuse that 5781 // declaration node as our own, updating the source location 5782 // for the template name to reflect our new declaration. 5783 // (Other source locations will be updated later.) 5784 Specialization = PrevDecl; 5785 Specialization->setLocation(TemplateNameLoc); 5786 PrevDecl = 0; 5787 } 5788 } 5789 5790 if (!Specialization) { 5791 // Create a new class template specialization declaration node for 5792 // this explicit specialization. 5793 Specialization 5794 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5795 ClassTemplate->getDeclContext(), 5796 KWLoc, TemplateNameLoc, 5797 ClassTemplate, 5798 Converted.data(), 5799 Converted.size(), 5800 PrevDecl); 5801 SetNestedNameSpecifier(Specialization, SS); 5802 5803 if (!HasNoEffect && !PrevDecl) { 5804 // Insert the new specialization. 5805 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5806 } 5807 } 5808 5809 // Build the fully-sugared type for this explicit instantiation as 5810 // the user wrote in the explicit instantiation itself. This means 5811 // that we'll pretty-print the type retrieved from the 5812 // specialization's declaration the way that the user actually wrote 5813 // the explicit instantiation, rather than formatting the name based 5814 // on the "canonical" representation used to store the template 5815 // arguments in the specialization. 5816 TypeSourceInfo *WrittenTy 5817 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5818 TemplateArgs, 5819 Context.getTypeDeclType(Specialization)); 5820 Specialization->setTypeAsWritten(WrittenTy); 5821 TemplateArgsIn.release(); 5822 5823 // Set source locations for keywords. 5824 Specialization->setExternLoc(ExternLoc); 5825 Specialization->setTemplateKeywordLoc(TemplateLoc); 5826 5827 // Add the explicit instantiation into its lexical context. However, 5828 // since explicit instantiations are never found by name lookup, we 5829 // just put it into the declaration context directly. 5830 Specialization->setLexicalDeclContext(CurContext); 5831 CurContext->addDecl(Specialization); 5832 5833 // Syntax is now OK, so return if it has no other effect on semantics. 5834 if (HasNoEffect) { 5835 // Set the template specialization kind. 5836 Specialization->setTemplateSpecializationKind(TSK); 5837 return Specialization; 5838 } 5839 5840 // C++ [temp.explicit]p3: 5841 // A definition of a class template or class member template 5842 // shall be in scope at the point of the explicit instantiation of 5843 // the class template or class member template. 5844 // 5845 // This check comes when we actually try to perform the 5846 // instantiation. 5847 ClassTemplateSpecializationDecl *Def 5848 = cast_or_null<ClassTemplateSpecializationDecl>( 5849 Specialization->getDefinition()); 5850 if (!Def) 5851 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 5852 else if (TSK == TSK_ExplicitInstantiationDefinition) { 5853 MarkVTableUsed(TemplateNameLoc, Specialization, true); 5854 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 5855 } 5856 5857 // Instantiate the members of this class template specialization. 5858 Def = cast_or_null<ClassTemplateSpecializationDecl>( 5859 Specialization->getDefinition()); 5860 if (Def) { 5861 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 5862 5863 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 5864 // TSK_ExplicitInstantiationDefinition 5865 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 5866 TSK == TSK_ExplicitInstantiationDefinition) 5867 Def->setTemplateSpecializationKind(TSK); 5868 5869 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 5870 } 5871 5872 // Set the template specialization kind. 5873 Specialization->setTemplateSpecializationKind(TSK); 5874 return Specialization; 5875} 5876 5877// Explicit instantiation of a member class of a class template. 5878DeclResult 5879Sema::ActOnExplicitInstantiation(Scope *S, 5880 SourceLocation ExternLoc, 5881 SourceLocation TemplateLoc, 5882 unsigned TagSpec, 5883 SourceLocation KWLoc, 5884 CXXScopeSpec &SS, 5885 IdentifierInfo *Name, 5886 SourceLocation NameLoc, 5887 AttributeList *Attr) { 5888 5889 bool Owned = false; 5890 bool IsDependent = false; 5891 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 5892 KWLoc, SS, Name, NameLoc, Attr, AS_none, 5893 MultiTemplateParamsArg(*this, 0, 0), 5894 Owned, IsDependent, false, false, 5895 TypeResult()); 5896 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 5897 5898 if (!TagD) 5899 return true; 5900 5901 TagDecl *Tag = cast<TagDecl>(TagD); 5902 if (Tag->isEnum()) { 5903 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 5904 << Context.getTypeDeclType(Tag); 5905 return true; 5906 } 5907 5908 if (Tag->isInvalidDecl()) 5909 return true; 5910 5911 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 5912 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 5913 if (!Pattern) { 5914 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 5915 << Context.getTypeDeclType(Record); 5916 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 5917 return true; 5918 } 5919 5920 // C++0x [temp.explicit]p2: 5921 // If the explicit instantiation is for a class or member class, the 5922 // elaborated-type-specifier in the declaration shall include a 5923 // simple-template-id. 5924 // 5925 // C++98 has the same restriction, just worded differently. 5926 if (!ScopeSpecifierHasTemplateId(SS)) 5927 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 5928 << Record << SS.getRange(); 5929 5930 // C++0x [temp.explicit]p2: 5931 // There are two forms of explicit instantiation: an explicit instantiation 5932 // definition and an explicit instantiation declaration. An explicit 5933 // instantiation declaration begins with the extern keyword. [...] 5934 TemplateSpecializationKind TSK 5935 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5936 : TSK_ExplicitInstantiationDeclaration; 5937 5938 // C++0x [temp.explicit]p2: 5939 // [...] An explicit instantiation shall appear in an enclosing 5940 // namespace of its template. [...] 5941 // 5942 // This is C++ DR 275. 5943 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 5944 5945 // Verify that it is okay to explicitly instantiate here. 5946 CXXRecordDecl *PrevDecl 5947 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 5948 if (!PrevDecl && Record->getDefinition()) 5949 PrevDecl = Record; 5950 if (PrevDecl) { 5951 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 5952 bool HasNoEffect = false; 5953 assert(MSInfo && "No member specialization information?"); 5954 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 5955 PrevDecl, 5956 MSInfo->getTemplateSpecializationKind(), 5957 MSInfo->getPointOfInstantiation(), 5958 HasNoEffect)) 5959 return true; 5960 if (HasNoEffect) 5961 return TagD; 5962 } 5963 5964 CXXRecordDecl *RecordDef 5965 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 5966 if (!RecordDef) { 5967 // C++ [temp.explicit]p3: 5968 // A definition of a member class of a class template shall be in scope 5969 // at the point of an explicit instantiation of the member class. 5970 CXXRecordDecl *Def 5971 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 5972 if (!Def) { 5973 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 5974 << 0 << Record->getDeclName() << Record->getDeclContext(); 5975 Diag(Pattern->getLocation(), diag::note_forward_declaration) 5976 << Pattern; 5977 return true; 5978 } else { 5979 if (InstantiateClass(NameLoc, Record, Def, 5980 getTemplateInstantiationArgs(Record), 5981 TSK)) 5982 return true; 5983 5984 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 5985 if (!RecordDef) 5986 return true; 5987 } 5988 } 5989 5990 // Instantiate all of the members of the class. 5991 InstantiateClassMembers(NameLoc, RecordDef, 5992 getTemplateInstantiationArgs(Record), TSK); 5993 5994 if (TSK == TSK_ExplicitInstantiationDefinition) 5995 MarkVTableUsed(NameLoc, RecordDef, true); 5996 5997 // FIXME: We don't have any representation for explicit instantiations of 5998 // member classes. Such a representation is not needed for compilation, but it 5999 // should be available for clients that want to see all of the declarations in 6000 // the source code. 6001 return TagD; 6002} 6003 6004DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 6005 SourceLocation ExternLoc, 6006 SourceLocation TemplateLoc, 6007 Declarator &D) { 6008 // Explicit instantiations always require a name. 6009 // TODO: check if/when DNInfo should replace Name. 6010 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 6011 DeclarationName Name = NameInfo.getName(); 6012 if (!Name) { 6013 if (!D.isInvalidType()) 6014 Diag(D.getDeclSpec().getSourceRange().getBegin(), 6015 diag::err_explicit_instantiation_requires_name) 6016 << D.getDeclSpec().getSourceRange() 6017 << D.getSourceRange(); 6018 6019 return true; 6020 } 6021 6022 // The scope passed in may not be a decl scope. Zip up the scope tree until 6023 // we find one that is. 6024 while ((S->getFlags() & Scope::DeclScope) == 0 || 6025 (S->getFlags() & Scope::TemplateParamScope) != 0) 6026 S = S->getParent(); 6027 6028 // Determine the type of the declaration. 6029 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 6030 QualType R = T->getType(); 6031 if (R.isNull()) 6032 return true; 6033 6034 // C++ [dcl.stc]p1: 6035 // A storage-class-specifier shall not be specified in [...] an explicit 6036 // instantiation (14.7.2) directive. 6037 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 6038 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 6039 << Name; 6040 return true; 6041 } else if (D.getDeclSpec().getStorageClassSpec() 6042 != DeclSpec::SCS_unspecified) { 6043 // Complain about then remove the storage class specifier. 6044 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 6045 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6046 6047 D.getMutableDeclSpec().ClearStorageClassSpecs(); 6048 } 6049 6050 // C++0x [temp.explicit]p1: 6051 // [...] An explicit instantiation of a function template shall not use the 6052 // inline or constexpr specifiers. 6053 // Presumably, this also applies to member functions of class templates as 6054 // well. 6055 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 6056 Diag(D.getDeclSpec().getInlineSpecLoc(), 6057 diag::err_explicit_instantiation_inline) 6058 <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 6059 6060 // FIXME: check for constexpr specifier. 6061 6062 // C++0x [temp.explicit]p2: 6063 // There are two forms of explicit instantiation: an explicit instantiation 6064 // definition and an explicit instantiation declaration. An explicit 6065 // instantiation declaration begins with the extern keyword. [...] 6066 TemplateSpecializationKind TSK 6067 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6068 : TSK_ExplicitInstantiationDeclaration; 6069 6070 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 6071 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 6072 6073 if (!R->isFunctionType()) { 6074 // C++ [temp.explicit]p1: 6075 // A [...] static data member of a class template can be explicitly 6076 // instantiated from the member definition associated with its class 6077 // template. 6078 if (Previous.isAmbiguous()) 6079 return true; 6080 6081 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 6082 if (!Prev || !Prev->isStaticDataMember()) { 6083 // We expect to see a data data member here. 6084 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 6085 << Name; 6086 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6087 P != PEnd; ++P) 6088 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 6089 return true; 6090 } 6091 6092 if (!Prev->getInstantiatedFromStaticDataMember()) { 6093 // FIXME: Check for explicit specialization? 6094 Diag(D.getIdentifierLoc(), 6095 diag::err_explicit_instantiation_data_member_not_instantiated) 6096 << Prev; 6097 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 6098 // FIXME: Can we provide a note showing where this was declared? 6099 return true; 6100 } 6101 6102 // C++0x [temp.explicit]p2: 6103 // If the explicit instantiation is for a member function, a member class 6104 // or a static data member of a class template specialization, the name of 6105 // the class template specialization in the qualified-id for the member 6106 // name shall be a simple-template-id. 6107 // 6108 // C++98 has the same restriction, just worded differently. 6109 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6110 Diag(D.getIdentifierLoc(), 6111 diag::ext_explicit_instantiation_without_qualified_id) 6112 << Prev << D.getCXXScopeSpec().getRange(); 6113 6114 // Check the scope of this explicit instantiation. 6115 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 6116 6117 // Verify that it is okay to explicitly instantiate here. 6118 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 6119 assert(MSInfo && "Missing static data member specialization info?"); 6120 bool HasNoEffect = false; 6121 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 6122 MSInfo->getTemplateSpecializationKind(), 6123 MSInfo->getPointOfInstantiation(), 6124 HasNoEffect)) 6125 return true; 6126 if (HasNoEffect) 6127 return (Decl*) 0; 6128 6129 // Instantiate static data member. 6130 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6131 if (TSK == TSK_ExplicitInstantiationDefinition) 6132 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev); 6133 6134 // FIXME: Create an ExplicitInstantiation node? 6135 return (Decl*) 0; 6136 } 6137 6138 // If the declarator is a template-id, translate the parser's template 6139 // argument list into our AST format. 6140 bool HasExplicitTemplateArgs = false; 6141 TemplateArgumentListInfo TemplateArgs; 6142 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 6143 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 6144 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 6145 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 6146 ASTTemplateArgsPtr TemplateArgsPtr(*this, 6147 TemplateId->getTemplateArgs(), 6148 TemplateId->NumArgs); 6149 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 6150 HasExplicitTemplateArgs = true; 6151 TemplateArgsPtr.release(); 6152 } 6153 6154 // C++ [temp.explicit]p1: 6155 // A [...] function [...] can be explicitly instantiated from its template. 6156 // A member function [...] of a class template can be explicitly 6157 // instantiated from the member definition associated with its class 6158 // template. 6159 UnresolvedSet<8> Matches; 6160 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6161 P != PEnd; ++P) { 6162 NamedDecl *Prev = *P; 6163 if (!HasExplicitTemplateArgs) { 6164 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 6165 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 6166 Matches.clear(); 6167 6168 Matches.addDecl(Method, P.getAccess()); 6169 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 6170 break; 6171 } 6172 } 6173 } 6174 6175 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 6176 if (!FunTmpl) 6177 continue; 6178 6179 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 6180 FunctionDecl *Specialization = 0; 6181 if (TemplateDeductionResult TDK 6182 = DeduceTemplateArguments(FunTmpl, 6183 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 6184 R, Specialization, Info)) { 6185 // FIXME: Keep track of almost-matches? 6186 (void)TDK; 6187 continue; 6188 } 6189 6190 Matches.addDecl(Specialization, P.getAccess()); 6191 } 6192 6193 // Find the most specialized function template specialization. 6194 UnresolvedSetIterator Result 6195 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0, 6196 D.getIdentifierLoc(), 6197 PDiag(diag::err_explicit_instantiation_not_known) << Name, 6198 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 6199 PDiag(diag::note_explicit_instantiation_candidate)); 6200 6201 if (Result == Matches.end()) 6202 return true; 6203 6204 // Ignore access control bits, we don't need them for redeclaration checking. 6205 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 6206 6207 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 6208 Diag(D.getIdentifierLoc(), 6209 diag::err_explicit_instantiation_member_function_not_instantiated) 6210 << Specialization 6211 << (Specialization->getTemplateSpecializationKind() == 6212 TSK_ExplicitSpecialization); 6213 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 6214 return true; 6215 } 6216 6217 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 6218 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 6219 PrevDecl = Specialization; 6220 6221 if (PrevDecl) { 6222 bool HasNoEffect = false; 6223 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 6224 PrevDecl, 6225 PrevDecl->getTemplateSpecializationKind(), 6226 PrevDecl->getPointOfInstantiation(), 6227 HasNoEffect)) 6228 return true; 6229 6230 // FIXME: We may still want to build some representation of this 6231 // explicit specialization. 6232 if (HasNoEffect) 6233 return (Decl*) 0; 6234 } 6235 6236 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6237 6238 if (TSK == TSK_ExplicitInstantiationDefinition) 6239 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 6240 6241 // C++0x [temp.explicit]p2: 6242 // If the explicit instantiation is for a member function, a member class 6243 // or a static data member of a class template specialization, the name of 6244 // the class template specialization in the qualified-id for the member 6245 // name shall be a simple-template-id. 6246 // 6247 // C++98 has the same restriction, just worded differently. 6248 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 6249 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 6250 D.getCXXScopeSpec().isSet() && 6251 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6252 Diag(D.getIdentifierLoc(), 6253 diag::ext_explicit_instantiation_without_qualified_id) 6254 << Specialization << D.getCXXScopeSpec().getRange(); 6255 6256 CheckExplicitInstantiationScope(*this, 6257 FunTmpl? (NamedDecl *)FunTmpl 6258 : Specialization->getInstantiatedFromMemberFunction(), 6259 D.getIdentifierLoc(), 6260 D.getCXXScopeSpec().isSet()); 6261 6262 // FIXME: Create some kind of ExplicitInstantiationDecl here. 6263 return (Decl*) 0; 6264} 6265 6266TypeResult 6267Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 6268 const CXXScopeSpec &SS, IdentifierInfo *Name, 6269 SourceLocation TagLoc, SourceLocation NameLoc) { 6270 // This has to hold, because SS is expected to be defined. 6271 assert(Name && "Expected a name in a dependent tag"); 6272 6273 NestedNameSpecifier *NNS 6274 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 6275 if (!NNS) 6276 return true; 6277 6278 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 6279 6280 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 6281 Diag(NameLoc, diag::err_dependent_tag_decl) 6282 << (TUK == TUK_Definition) << Kind << SS.getRange(); 6283 return true; 6284 } 6285 6286 // Create the resulting type. 6287 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 6288 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 6289 6290 // Create type-source location information for this type. 6291 TypeLocBuilder TLB; 6292 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 6293 TL.setKeywordLoc(TagLoc); 6294 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6295 TL.setNameLoc(NameLoc); 6296 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 6297} 6298 6299TypeResult 6300Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 6301 const CXXScopeSpec &SS, const IdentifierInfo &II, 6302 SourceLocation IdLoc) { 6303 if (SS.isInvalid()) 6304 return true; 6305 6306 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 6307 !getLangOptions().CPlusPlus0x) 6308 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 6309 << FixItHint::CreateRemoval(TypenameLoc); 6310 6311 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 6312 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, 6313 TypenameLoc, QualifierLoc, II, IdLoc); 6314 if (T.isNull()) 6315 return true; 6316 6317 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 6318 if (isa<DependentNameType>(T)) { 6319 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 6320 TL.setKeywordLoc(TypenameLoc); 6321 TL.setQualifierLoc(QualifierLoc); 6322 TL.setNameLoc(IdLoc); 6323 } else { 6324 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 6325 TL.setKeywordLoc(TypenameLoc); 6326 TL.setQualifierLoc(QualifierLoc); 6327 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc); 6328 } 6329 6330 return CreateParsedType(T, TSI); 6331} 6332 6333TypeResult 6334Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 6335 const CXXScopeSpec &SS, 6336 SourceLocation TemplateLoc, 6337 TemplateTy TemplateIn, 6338 SourceLocation TemplateNameLoc, 6339 SourceLocation LAngleLoc, 6340 ASTTemplateArgsPtr TemplateArgsIn, 6341 SourceLocation RAngleLoc) { 6342 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 6343 !getLangOptions().CPlusPlus0x) 6344 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 6345 << FixItHint::CreateRemoval(TypenameLoc); 6346 6347 // Translate the parser's template argument list in our AST format. 6348 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 6349 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 6350 6351 TemplateName Template = TemplateIn.get(); 6352 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 6353 // Construct a dependent template specialization type. 6354 assert(DTN && "dependent template has non-dependent name?"); 6355 assert(DTN->getQualifier() 6356 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 6357 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, 6358 DTN->getQualifier(), 6359 DTN->getIdentifier(), 6360 TemplateArgs); 6361 6362 // Create source-location information for this type. 6363 TypeLocBuilder Builder; 6364 DependentTemplateSpecializationTypeLoc SpecTL 6365 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 6366 SpecTL.setLAngleLoc(LAngleLoc); 6367 SpecTL.setRAngleLoc(RAngleLoc); 6368 SpecTL.setKeywordLoc(TypenameLoc); 6369 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 6370 SpecTL.setNameLoc(TemplateNameLoc); 6371 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6372 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 6373 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 6374 } 6375 6376 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs); 6377 if (T.isNull()) 6378 return true; 6379 6380 // Provide source-location information for the template specialization 6381 // type. 6382 TypeLocBuilder Builder; 6383 TemplateSpecializationTypeLoc SpecTL 6384 = Builder.push<TemplateSpecializationTypeLoc>(T); 6385 6386 // FIXME: No place to set the location of the 'template' keyword! 6387 SpecTL.setLAngleLoc(LAngleLoc); 6388 SpecTL.setRAngleLoc(RAngleLoc); 6389 SpecTL.setTemplateNameLoc(TemplateNameLoc); 6390 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6391 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 6392 6393 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); 6394 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 6395 TL.setKeywordLoc(TypenameLoc); 6396 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6397 6398 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 6399 return CreateParsedType(T, TSI); 6400} 6401 6402 6403/// \brief Build the type that describes a C++ typename specifier, 6404/// e.g., "typename T::type". 6405QualType 6406Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 6407 SourceLocation KeywordLoc, 6408 NestedNameSpecifierLoc QualifierLoc, 6409 const IdentifierInfo &II, 6410 SourceLocation IILoc) { 6411 CXXScopeSpec SS; 6412 SS.Adopt(QualifierLoc); 6413 6414 DeclContext *Ctx = computeDeclContext(SS); 6415 if (!Ctx) { 6416 // If the nested-name-specifier is dependent and couldn't be 6417 // resolved to a type, build a typename type. 6418 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 6419 return Context.getDependentNameType(Keyword, 6420 QualifierLoc.getNestedNameSpecifier(), 6421 &II); 6422 } 6423 6424 // If the nested-name-specifier refers to the current instantiation, 6425 // the "typename" keyword itself is superfluous. In C++03, the 6426 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 6427 // allows such extraneous "typename" keywords, and we retroactively 6428 // apply this DR to C++03 code with only a warning. In any case we continue. 6429 6430 if (RequireCompleteDeclContext(SS, Ctx)) 6431 return QualType(); 6432 6433 DeclarationName Name(&II); 6434 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 6435 LookupQualifiedName(Result, Ctx); 6436 unsigned DiagID = 0; 6437 Decl *Referenced = 0; 6438 switch (Result.getResultKind()) { 6439 case LookupResult::NotFound: 6440 DiagID = diag::err_typename_nested_not_found; 6441 break; 6442 6443 case LookupResult::FoundUnresolvedValue: { 6444 // We found a using declaration that is a value. Most likely, the using 6445 // declaration itself is meant to have the 'typename' keyword. 6446 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 6447 IILoc); 6448 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 6449 << Name << Ctx << FullRange; 6450 if (UnresolvedUsingValueDecl *Using 6451 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 6452 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 6453 Diag(Loc, diag::note_using_value_decl_missing_typename) 6454 << FixItHint::CreateInsertion(Loc, "typename "); 6455 } 6456 } 6457 // Fall through to create a dependent typename type, from which we can recover 6458 // better. 6459 6460 case LookupResult::NotFoundInCurrentInstantiation: 6461 // Okay, it's a member of an unknown instantiation. 6462 return Context.getDependentNameType(Keyword, 6463 QualifierLoc.getNestedNameSpecifier(), 6464 &II); 6465 6466 case LookupResult::Found: 6467 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 6468 // We found a type. Build an ElaboratedType, since the 6469 // typename-specifier was just sugar. 6470 return Context.getElaboratedType(ETK_Typename, 6471 QualifierLoc.getNestedNameSpecifier(), 6472 Context.getTypeDeclType(Type)); 6473 } 6474 6475 DiagID = diag::err_typename_nested_not_type; 6476 Referenced = Result.getFoundDecl(); 6477 break; 6478 6479 6480 llvm_unreachable("unresolved using decl in non-dependent context"); 6481 return QualType(); 6482 6483 case LookupResult::FoundOverloaded: 6484 DiagID = diag::err_typename_nested_not_type; 6485 Referenced = *Result.begin(); 6486 break; 6487 6488 case LookupResult::Ambiguous: 6489 return QualType(); 6490 } 6491 6492 // If we get here, it's because name lookup did not find a 6493 // type. Emit an appropriate diagnostic and return an error. 6494 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 6495 IILoc); 6496 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 6497 if (Referenced) 6498 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 6499 << Name; 6500 return QualType(); 6501} 6502 6503namespace { 6504 // See Sema::RebuildTypeInCurrentInstantiation 6505 class CurrentInstantiationRebuilder 6506 : public TreeTransform<CurrentInstantiationRebuilder> { 6507 SourceLocation Loc; 6508 DeclarationName Entity; 6509 6510 public: 6511 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 6512 6513 CurrentInstantiationRebuilder(Sema &SemaRef, 6514 SourceLocation Loc, 6515 DeclarationName Entity) 6516 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 6517 Loc(Loc), Entity(Entity) { } 6518 6519 /// \brief Determine whether the given type \p T has already been 6520 /// transformed. 6521 /// 6522 /// For the purposes of type reconstruction, a type has already been 6523 /// transformed if it is NULL or if it is not dependent. 6524 bool AlreadyTransformed(QualType T) { 6525 return T.isNull() || !T->isDependentType(); 6526 } 6527 6528 /// \brief Returns the location of the entity whose type is being 6529 /// rebuilt. 6530 SourceLocation getBaseLocation() { return Loc; } 6531 6532 /// \brief Returns the name of the entity whose type is being rebuilt. 6533 DeclarationName getBaseEntity() { return Entity; } 6534 6535 /// \brief Sets the "base" location and entity when that 6536 /// information is known based on another transformation. 6537 void setBase(SourceLocation Loc, DeclarationName Entity) { 6538 this->Loc = Loc; 6539 this->Entity = Entity; 6540 } 6541 }; 6542} 6543 6544/// \brief Rebuilds a type within the context of the current instantiation. 6545/// 6546/// The type \p T is part of the type of an out-of-line member definition of 6547/// a class template (or class template partial specialization) that was parsed 6548/// and constructed before we entered the scope of the class template (or 6549/// partial specialization thereof). This routine will rebuild that type now 6550/// that we have entered the declarator's scope, which may produce different 6551/// canonical types, e.g., 6552/// 6553/// \code 6554/// template<typename T> 6555/// struct X { 6556/// typedef T* pointer; 6557/// pointer data(); 6558/// }; 6559/// 6560/// template<typename T> 6561/// typename X<T>::pointer X<T>::data() { ... } 6562/// \endcode 6563/// 6564/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 6565/// since we do not know that we can look into X<T> when we parsed the type. 6566/// This function will rebuild the type, performing the lookup of "pointer" 6567/// in X<T> and returning an ElaboratedType whose canonical type is the same 6568/// as the canonical type of T*, allowing the return types of the out-of-line 6569/// definition and the declaration to match. 6570TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 6571 SourceLocation Loc, 6572 DeclarationName Name) { 6573 if (!T || !T->getType()->isDependentType()) 6574 return T; 6575 6576 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 6577 return Rebuilder.TransformType(T); 6578} 6579 6580ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 6581 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 6582 DeclarationName()); 6583 return Rebuilder.TransformExpr(E); 6584} 6585 6586bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 6587 if (SS.isInvalid()) 6588 return true; 6589 6590 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 6591 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 6592 DeclarationName()); 6593 NestedNameSpecifierLoc Rebuilt 6594 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 6595 if (!Rebuilt) 6596 return true; 6597 6598 SS.Adopt(Rebuilt); 6599 return false; 6600} 6601 6602/// \brief Produces a formatted string that describes the binding of 6603/// template parameters to template arguments. 6604std::string 6605Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6606 const TemplateArgumentList &Args) { 6607 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 6608} 6609 6610std::string 6611Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6612 const TemplateArgument *Args, 6613 unsigned NumArgs) { 6614 llvm::SmallString<128> Str; 6615 llvm::raw_svector_ostream Out(Str); 6616 6617 if (!Params || Params->size() == 0 || NumArgs == 0) 6618 return std::string(); 6619 6620 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 6621 if (I >= NumArgs) 6622 break; 6623 6624 if (I == 0) 6625 Out << "[with "; 6626 else 6627 Out << ", "; 6628 6629 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 6630 Out << Id->getName(); 6631 } else { 6632 Out << '$' << I; 6633 } 6634 6635 Out << " = "; 6636 Args[I].print(Context.PrintingPolicy, Out); 6637 } 6638 6639 Out << ']'; 6640 return Out.str(); 6641} 6642 6643void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) { 6644 if (!FD) 6645 return; 6646 FD->setLateTemplateParsed(Flag); 6647} 6648 6649bool Sema::IsInsideALocalClassWithinATemplateFunction() { 6650 DeclContext *DC = CurContext; 6651 6652 while (DC) { 6653 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 6654 const FunctionDecl *FD = RD->isLocalClass(); 6655 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 6656 } else if (DC->isTranslationUnit() || DC->isNamespace()) 6657 return false; 6658 6659 DC = DC->getParent(); 6660 } 6661 return false; 6662} 6663