SemaTemplate.cpp revision 8c14de83188640bab9cae658e92a655e6d4fd484
10d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
20d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck//
30d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck//                     The LLVM Compiler Infrastructure
40d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck//
50d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck// This file is distributed under the University of Illinois Open Source
6a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley// License. See LICENSE.TXT for details.
70d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck//===----------------------------------------------------------------------===/
8a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley//
90d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck//  This file implements semantic analysis for C++ templates.
100d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck//===----------------------------------------------------------------------===/
110d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck
12d10f39dcd08bf42b2e63789b15966ed908ff6439Rob Landley#include "clang/Sema/SemaInternal.h"
1346ddf0e34b03f7711a9c80f7a70dc8cbf732f782Isaac Dunham#include "clang/Sema/Lookup.h"
140d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck#include "clang/Sema/Scope.h"
1559bf7ce6a5114ed228cf3bf847ff96a35aa86f54Strake#include "clang/Sema/Template.h"
160d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck#include "clang/Sema/TemplateDeduction.h"
17a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley#include "TreeTransform.h"
180d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck#include "clang/AST/ASTContext.h"
19a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley#include "clang/AST/Expr.h"
20a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley#include "clang/AST/ExprCXX.h"
21a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley#include "clang/AST/DeclFriend.h"
22a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley#include "clang/AST/DeclTemplate.h"
230d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck#include "clang/AST/RecursiveASTVisitor.h"
240d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck#include "clang/AST/TypeVisitor.h"
250d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck#include "clang/Sema/DeclSpec.h"
260d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck#include "clang/Sema/ParsedTemplate.h"
270d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck#include "clang/Basic/LangOptions.h"
280d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck#include "clang/Basic/PartialDiagnostic.h"
2959bf7ce6a5114ed228cf3bf847ff96a35aa86f54Strake#include "llvm/ADT/SmallBitVector.h"
3059bf7ce6a5114ed228cf3bf847ff96a35aa86f54Strake#include "llvm/ADT/SmallString.h"
310d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck#include "llvm/ADT/StringExtras.h"
320d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyckusing namespace clang;
33a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landleyusing namespace sema;
34a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley
35a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley// Exported for use by Parser.
36a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob LandleySourceRange
3759d85e2bb065a3bdc27868acb7a65f89d872c7faRob Landleyclang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
38a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley                              unsigned N) {
39a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley  if (!N) return SourceRange();
400d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
410d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck}
42a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley
43a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley/// \brief Determine whether the declaration found is acceptable as the name
44a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley/// of a template and, if so, return that template declaration. Otherwise,
450d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck/// returns NULL.
460d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyckstatic NamedDecl *isAcceptableTemplateName(ASTContext &Context,
470d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck                                           NamedDecl *Orig,
48a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley                                           bool AllowFunctionTemplates) {
490d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck  NamedDecl *D = Orig->getUnderlyingDecl();
50a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley
510d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck  if (isa<TemplateDecl>(D)) {
520d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck    if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
53a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley      return 0;
540d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck
550d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck    return Orig;
56a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley  }
5720019be7c8667b70ff68692b24029aed2c857639Rob Landley
5820019be7c8667b70ff68692b24029aed2c857639Rob Landley  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
5920019be7c8667b70ff68692b24029aed2c857639Rob Landley    // C++ [temp.local]p1:
6020019be7c8667b70ff68692b24029aed2c857639Rob Landley    //   Like normal (non-template) classes, class templates have an
6120019be7c8667b70ff68692b24029aed2c857639Rob Landley    //   injected-class-name (Clause 9). The injected-class-name
6220019be7c8667b70ff68692b24029aed2c857639Rob Landley    //   can be used with or without a template-argument-list. When
6320019be7c8667b70ff68692b24029aed2c857639Rob Landley    //   it is used without a template-argument-list, it is
64a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley    //   equivalent to the injected-class-name followed by the
65a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley    //   template-parameters of the class template enclosed in
66afba5b8efdf1bac2c02ca787840a2be053c800f7Rob Landley    //   <>. When it is used with a template-argument-list, it
67a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley    //   refers to the specified class template specialization,
68a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley    //   which could be the current specialization or another
69a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley    //   specialization.
70a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley    if (Record->isInjectedClassName()) {
71a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley      Record = cast<CXXRecordDecl>(Record->getDeclContext());
72a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley      if (Record->getDescribedClassTemplate())
73a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley        return Record->getDescribedClassTemplate();
74a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley
75a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley      if (ClassTemplateSpecializationDecl *Spec
76a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
77be07288043fbc4bd7a1a4688d0bf17af4b6e73d7Rob Landley        return Spec->getSpecializedTemplate();
78a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley    }
79a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley
80a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley    return 0;
81a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley  }
82a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley
83a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley  return 0;
84a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley}
85a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley
86a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landleyvoid Sema::FilterAcceptableTemplateNames(LookupResult &R,
87a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley                                         bool AllowFunctionTemplates) {
880d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck  // The set of class templates we've already seen.
890d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
90a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley  LookupResult::Filter filter = R.makeFilter();
91a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley  while (filter.hasNext()) {
920d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck    NamedDecl *Orig = filter.next();
93a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley    NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
94a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley                                               AllowFunctionTemplates);
95a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley    if (!Repl)
96a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley      filter.erase();
97a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley    else if (Repl != Orig) {
98a44d9db1db09e3c64803dd3ea3868f8c1f009eaeRob Landley
990d26ded25ea945362c9752016120b3cfdedb2833M. Farkas-Dyck      // C++ [temp.local]p3:
100      //   A lookup that finds an injected-class-name (10.2) can result in an
101      //   ambiguity in certain cases (for example, if it is found in more than
102      //   one base class). If all of the injected-class-names that are found
103      //   refer to specializations of the same class template, and if the name
104      //   is used as a template-name, the reference refers to the class
105      //   template itself and not a specialization thereof, and is not
106      //   ambiguous.
107      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
108        if (!ClassTemplates.insert(ClassTmpl)) {
109          filter.erase();
110          continue;
111        }
112
113      // FIXME: we promote access to public here as a workaround to
114      // the fact that LookupResult doesn't let us remember that we
115      // found this template through a particular injected class name,
116      // which means we end up doing nasty things to the invariants.
117      // Pretending that access is public is *much* safer.
118      filter.replace(Repl, AS_public);
119    }
120  }
121  filter.done();
122}
123
124bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
125                                         bool AllowFunctionTemplates) {
126  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
127    if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
128      return true;
129
130  return false;
131}
132
133TemplateNameKind Sema::isTemplateName(Scope *S,
134                                      CXXScopeSpec &SS,
135                                      bool hasTemplateKeyword,
136                                      UnqualifiedId &Name,
137                                      ParsedType ObjectTypePtr,
138                                      bool EnteringContext,
139                                      TemplateTy &TemplateResult,
140                                      bool &MemberOfUnknownSpecialization) {
141  assert(getLangOpts().CPlusPlus && "No template names in C!");
142
143  DeclarationName TName;
144  MemberOfUnknownSpecialization = false;
145
146  switch (Name.getKind()) {
147  case UnqualifiedId::IK_Identifier:
148    TName = DeclarationName(Name.Identifier);
149    break;
150
151  case UnqualifiedId::IK_OperatorFunctionId:
152    TName = Context.DeclarationNames.getCXXOperatorName(
153                                              Name.OperatorFunctionId.Operator);
154    break;
155
156  case UnqualifiedId::IK_LiteralOperatorId:
157    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
158    break;
159
160  default:
161    return TNK_Non_template;
162  }
163
164  QualType ObjectType = ObjectTypePtr.get();
165
166  LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
167  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
168                     MemberOfUnknownSpecialization);
169  if (R.empty()) return TNK_Non_template;
170  if (R.isAmbiguous()) {
171    // Suppress diagnostics;  we'll redo this lookup later.
172    R.suppressDiagnostics();
173
174    // FIXME: we might have ambiguous templates, in which case we
175    // should at least parse them properly!
176    return TNK_Non_template;
177  }
178
179  TemplateName Template;
180  TemplateNameKind TemplateKind;
181
182  unsigned ResultCount = R.end() - R.begin();
183  if (ResultCount > 1) {
184    // We assume that we'll preserve the qualifier from a function
185    // template name in other ways.
186    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
187    TemplateKind = TNK_Function_template;
188
189    // We'll do this lookup again later.
190    R.suppressDiagnostics();
191  } else {
192    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
193
194    if (SS.isSet() && !SS.isInvalid()) {
195      NestedNameSpecifier *Qualifier
196        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
197      Template = Context.getQualifiedTemplateName(Qualifier,
198                                                  hasTemplateKeyword, TD);
199    } else {
200      Template = TemplateName(TD);
201    }
202
203    if (isa<FunctionTemplateDecl>(TD)) {
204      TemplateKind = TNK_Function_template;
205
206      // We'll do this lookup again later.
207      R.suppressDiagnostics();
208    } else {
209      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
210             isa<TypeAliasTemplateDecl>(TD));
211      TemplateKind = TNK_Type_template;
212    }
213  }
214
215  TemplateResult = TemplateTy::make(Template);
216  return TemplateKind;
217}
218
219bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
220                                       SourceLocation IILoc,
221                                       Scope *S,
222                                       const CXXScopeSpec *SS,
223                                       TemplateTy &SuggestedTemplate,
224                                       TemplateNameKind &SuggestedKind) {
225  // We can't recover unless there's a dependent scope specifier preceding the
226  // template name.
227  // FIXME: Typo correction?
228  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
229      computeDeclContext(*SS))
230    return false;
231
232  // The code is missing a 'template' keyword prior to the dependent template
233  // name.
234  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
235  Diag(IILoc, diag::err_template_kw_missing)
236    << Qualifier << II.getName()
237    << FixItHint::CreateInsertion(IILoc, "template ");
238  SuggestedTemplate
239    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
240  SuggestedKind = TNK_Dependent_template_name;
241  return true;
242}
243
244void Sema::LookupTemplateName(LookupResult &Found,
245                              Scope *S, CXXScopeSpec &SS,
246                              QualType ObjectType,
247                              bool EnteringContext,
248                              bool &MemberOfUnknownSpecialization) {
249  // Determine where to perform name lookup
250  MemberOfUnknownSpecialization = false;
251  DeclContext *LookupCtx = 0;
252  bool isDependent = false;
253  if (!ObjectType.isNull()) {
254    // This nested-name-specifier occurs in a member access expression, e.g.,
255    // x->B::f, and we are looking into the type of the object.
256    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
257    LookupCtx = computeDeclContext(ObjectType);
258    isDependent = ObjectType->isDependentType();
259    assert((isDependent || !ObjectType->isIncompleteType()) &&
260           "Caller should have completed object type");
261
262    // Template names cannot appear inside an Objective-C class or object type.
263    if (ObjectType->isObjCObjectOrInterfaceType()) {
264      Found.clear();
265      return;
266    }
267  } else if (SS.isSet()) {
268    // This nested-name-specifier occurs after another nested-name-specifier,
269    // so long into the context associated with the prior nested-name-specifier.
270    LookupCtx = computeDeclContext(SS, EnteringContext);
271    isDependent = isDependentScopeSpecifier(SS);
272
273    // The declaration context must be complete.
274    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
275      return;
276  }
277
278  bool ObjectTypeSearchedInScope = false;
279  bool AllowFunctionTemplatesInLookup = true;
280  if (LookupCtx) {
281    // Perform "qualified" name lookup into the declaration context we
282    // computed, which is either the type of the base of a member access
283    // expression or the declaration context associated with a prior
284    // nested-name-specifier.
285    LookupQualifiedName(Found, LookupCtx);
286    if (!ObjectType.isNull() && Found.empty()) {
287      // C++ [basic.lookup.classref]p1:
288      //   In a class member access expression (5.2.5), if the . or -> token is
289      //   immediately followed by an identifier followed by a <, the
290      //   identifier must be looked up to determine whether the < is the
291      //   beginning of a template argument list (14.2) or a less-than operator.
292      //   The identifier is first looked up in the class of the object
293      //   expression. If the identifier is not found, it is then looked up in
294      //   the context of the entire postfix-expression and shall name a class
295      //   or function template.
296      if (S) LookupName(Found, S);
297      ObjectTypeSearchedInScope = true;
298      AllowFunctionTemplatesInLookup = false;
299    }
300  } else if (isDependent && (!S || ObjectType.isNull())) {
301    // We cannot look into a dependent object type or nested nme
302    // specifier.
303    MemberOfUnknownSpecialization = true;
304    return;
305  } else {
306    // Perform unqualified name lookup in the current scope.
307    LookupName(Found, S);
308
309    if (!ObjectType.isNull())
310      AllowFunctionTemplatesInLookup = false;
311  }
312
313  if (Found.empty() && !isDependent) {
314    // If we did not find any names, attempt to correct any typos.
315    DeclarationName Name = Found.getLookupName();
316    Found.clear();
317    // Simple filter callback that, for keywords, only accepts the C++ *_cast
318    CorrectionCandidateCallback FilterCCC;
319    FilterCCC.WantTypeSpecifiers = false;
320    FilterCCC.WantExpressionKeywords = false;
321    FilterCCC.WantRemainingKeywords = false;
322    FilterCCC.WantCXXNamedCasts = true;
323    if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
324                                               Found.getLookupKind(), S, &SS,
325                                               FilterCCC, LookupCtx)) {
326      Found.setLookupName(Corrected.getCorrection());
327      if (Corrected.getCorrectionDecl())
328        Found.addDecl(Corrected.getCorrectionDecl());
329      FilterAcceptableTemplateNames(Found);
330      if (!Found.empty()) {
331        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
332        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
333        if (LookupCtx)
334          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
335            << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
336            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
337        else
338          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
339            << Name << CorrectedQuotedStr
340            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
341        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
342          Diag(Template->getLocation(), diag::note_previous_decl)
343            << CorrectedQuotedStr;
344      }
345    } else {
346      Found.setLookupName(Name);
347    }
348  }
349
350  FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
351  if (Found.empty()) {
352    if (isDependent)
353      MemberOfUnknownSpecialization = true;
354    return;
355  }
356
357  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
358      !(getLangOpts().CPlusPlus0x && !Found.empty())) {
359    // C++03 [basic.lookup.classref]p1:
360    //   [...] If the lookup in the class of the object expression finds a
361    //   template, the name is also looked up in the context of the entire
362    //   postfix-expression and [...]
363    //
364    // Note: C++11 does not perform this second lookup.
365    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
366                            LookupOrdinaryName);
367    LookupName(FoundOuter, S);
368    FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
369
370    if (FoundOuter.empty()) {
371      //   - if the name is not found, the name found in the class of the
372      //     object expression is used, otherwise
373    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
374               FoundOuter.isAmbiguous()) {
375      //   - if the name is found in the context of the entire
376      //     postfix-expression and does not name a class template, the name
377      //     found in the class of the object expression is used, otherwise
378      FoundOuter.clear();
379    } else if (!Found.isSuppressingDiagnostics()) {
380      //   - if the name found is a class template, it must refer to the same
381      //     entity as the one found in the class of the object expression,
382      //     otherwise the program is ill-formed.
383      if (!Found.isSingleResult() ||
384          Found.getFoundDecl()->getCanonicalDecl()
385            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
386        Diag(Found.getNameLoc(),
387             diag::ext_nested_name_member_ref_lookup_ambiguous)
388          << Found.getLookupName()
389          << ObjectType;
390        Diag(Found.getRepresentativeDecl()->getLocation(),
391             diag::note_ambig_member_ref_object_type)
392          << ObjectType;
393        Diag(FoundOuter.getFoundDecl()->getLocation(),
394             diag::note_ambig_member_ref_scope);
395
396        // Recover by taking the template that we found in the object
397        // expression's type.
398      }
399    }
400  }
401}
402
403/// ActOnDependentIdExpression - Handle a dependent id-expression that
404/// was just parsed.  This is only possible with an explicit scope
405/// specifier naming a dependent type.
406ExprResult
407Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
408                                 SourceLocation TemplateKWLoc,
409                                 const DeclarationNameInfo &NameInfo,
410                                 bool isAddressOfOperand,
411                           const TemplateArgumentListInfo *TemplateArgs) {
412  DeclContext *DC = getFunctionLevelDeclContext();
413
414  if (!isAddressOfOperand &&
415      isa<CXXMethodDecl>(DC) &&
416      cast<CXXMethodDecl>(DC)->isInstance()) {
417    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
418
419    // Since the 'this' expression is synthesized, we don't need to
420    // perform the double-lookup check.
421    NamedDecl *FirstQualifierInScope = 0;
422
423    return Owned(CXXDependentScopeMemberExpr::Create(Context,
424                                                     /*This*/ 0, ThisType,
425                                                     /*IsArrow*/ true,
426                                                     /*Op*/ SourceLocation(),
427                                               SS.getWithLocInContext(Context),
428                                                     TemplateKWLoc,
429                                                     FirstQualifierInScope,
430                                                     NameInfo,
431                                                     TemplateArgs));
432  }
433
434  return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
435}
436
437ExprResult
438Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
439                                SourceLocation TemplateKWLoc,
440                                const DeclarationNameInfo &NameInfo,
441                                const TemplateArgumentListInfo *TemplateArgs) {
442  return Owned(DependentScopeDeclRefExpr::Create(Context,
443                                               SS.getWithLocInContext(Context),
444                                                 TemplateKWLoc,
445                                                 NameInfo,
446                                                 TemplateArgs));
447}
448
449/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
450/// that the template parameter 'PrevDecl' is being shadowed by a new
451/// declaration at location Loc. Returns true to indicate that this is
452/// an error, and false otherwise.
453void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
454  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
455
456  // Microsoft Visual C++ permits template parameters to be shadowed.
457  if (getLangOpts().MicrosoftExt)
458    return;
459
460  // C++ [temp.local]p4:
461  //   A template-parameter shall not be redeclared within its
462  //   scope (including nested scopes).
463  Diag(Loc, diag::err_template_param_shadow)
464    << cast<NamedDecl>(PrevDecl)->getDeclName();
465  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
466  return;
467}
468
469/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
470/// the parameter D to reference the templated declaration and return a pointer
471/// to the template declaration. Otherwise, do nothing to D and return null.
472TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
473  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
474    D = Temp->getTemplatedDecl();
475    return Temp;
476  }
477  return 0;
478}
479
480ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
481                                             SourceLocation EllipsisLoc) const {
482  assert(Kind == Template &&
483         "Only template template arguments can be pack expansions here");
484  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
485         "Template template argument pack expansion without packs");
486  ParsedTemplateArgument Result(*this);
487  Result.EllipsisLoc = EllipsisLoc;
488  return Result;
489}
490
491static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
492                                            const ParsedTemplateArgument &Arg) {
493
494  switch (Arg.getKind()) {
495  case ParsedTemplateArgument::Type: {
496    TypeSourceInfo *DI;
497    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
498    if (!DI)
499      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
500    return TemplateArgumentLoc(TemplateArgument(T), DI);
501  }
502
503  case ParsedTemplateArgument::NonType: {
504    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
505    return TemplateArgumentLoc(TemplateArgument(E), E);
506  }
507
508  case ParsedTemplateArgument::Template: {
509    TemplateName Template = Arg.getAsTemplate().get();
510    TemplateArgument TArg;
511    if (Arg.getEllipsisLoc().isValid())
512      TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
513    else
514      TArg = Template;
515    return TemplateArgumentLoc(TArg,
516                               Arg.getScopeSpec().getWithLocInContext(
517                                                              SemaRef.Context),
518                               Arg.getLocation(),
519                               Arg.getEllipsisLoc());
520  }
521  }
522
523  llvm_unreachable("Unhandled parsed template argument");
524}
525
526/// \brief Translates template arguments as provided by the parser
527/// into template arguments used by semantic analysis.
528void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
529                                      TemplateArgumentListInfo &TemplateArgs) {
530 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
531   TemplateArgs.addArgument(translateTemplateArgument(*this,
532                                                      TemplateArgsIn[I]));
533}
534
535/// ActOnTypeParameter - Called when a C++ template type parameter
536/// (e.g., "typename T") has been parsed. Typename specifies whether
537/// the keyword "typename" was used to declare the type parameter
538/// (otherwise, "class" was used), and KeyLoc is the location of the
539/// "class" or "typename" keyword. ParamName is the name of the
540/// parameter (NULL indicates an unnamed template parameter) and
541/// ParamNameLoc is the location of the parameter name (if any).
542/// If the type parameter has a default argument, it will be added
543/// later via ActOnTypeParameterDefault.
544Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
545                               SourceLocation EllipsisLoc,
546                               SourceLocation KeyLoc,
547                               IdentifierInfo *ParamName,
548                               SourceLocation ParamNameLoc,
549                               unsigned Depth, unsigned Position,
550                               SourceLocation EqualLoc,
551                               ParsedType DefaultArg) {
552  assert(S->isTemplateParamScope() &&
553         "Template type parameter not in template parameter scope!");
554  bool Invalid = false;
555
556  if (ParamName) {
557    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
558                                           LookupOrdinaryName,
559                                           ForRedeclaration);
560    if (PrevDecl && PrevDecl->isTemplateParameter()) {
561      DiagnoseTemplateParameterShadow(ParamNameLoc, PrevDecl);
562      PrevDecl = 0;
563    }
564  }
565
566  SourceLocation Loc = ParamNameLoc;
567  if (!ParamName)
568    Loc = KeyLoc;
569
570  TemplateTypeParmDecl *Param
571    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
572                                   KeyLoc, Loc, Depth, Position, ParamName,
573                                   Typename, Ellipsis);
574  Param->setAccess(AS_public);
575  if (Invalid)
576    Param->setInvalidDecl();
577
578  if (ParamName) {
579    // Add the template parameter into the current scope.
580    S->AddDecl(Param);
581    IdResolver.AddDecl(Param);
582  }
583
584  // C++0x [temp.param]p9:
585  //   A default template-argument may be specified for any kind of
586  //   template-parameter that is not a template parameter pack.
587  if (DefaultArg && Ellipsis) {
588    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
589    DefaultArg = ParsedType();
590  }
591
592  // Handle the default argument, if provided.
593  if (DefaultArg) {
594    TypeSourceInfo *DefaultTInfo;
595    GetTypeFromParser(DefaultArg, &DefaultTInfo);
596
597    assert(DefaultTInfo && "expected source information for type");
598
599    // Check for unexpanded parameter packs.
600    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
601                                        UPPC_DefaultArgument))
602      return Param;
603
604    // Check the template argument itself.
605    if (CheckTemplateArgument(Param, DefaultTInfo)) {
606      Param->setInvalidDecl();
607      return Param;
608    }
609
610    Param->setDefaultArgument(DefaultTInfo, false);
611  }
612
613  return Param;
614}
615
616/// \brief Check that the type of a non-type template parameter is
617/// well-formed.
618///
619/// \returns the (possibly-promoted) parameter type if valid;
620/// otherwise, produces a diagnostic and returns a NULL type.
621QualType
622Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
623  // We don't allow variably-modified types as the type of non-type template
624  // parameters.
625  if (T->isVariablyModifiedType()) {
626    Diag(Loc, diag::err_variably_modified_nontype_template_param)
627      << T;
628    return QualType();
629  }
630
631  // C++ [temp.param]p4:
632  //
633  // A non-type template-parameter shall have one of the following
634  // (optionally cv-qualified) types:
635  //
636  //       -- integral or enumeration type,
637  if (T->isIntegralOrEnumerationType() ||
638      //   -- pointer to object or pointer to function,
639      T->isPointerType() ||
640      //   -- reference to object or reference to function,
641      T->isReferenceType() ||
642      //   -- pointer to member,
643      T->isMemberPointerType() ||
644      //   -- std::nullptr_t.
645      T->isNullPtrType() ||
646      // If T is a dependent type, we can't do the check now, so we
647      // assume that it is well-formed.
648      T->isDependentType()) {
649    // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
650    // are ignored when determining its type.
651    return T.getUnqualifiedType();
652  }
653
654  // C++ [temp.param]p8:
655  //
656  //   A non-type template-parameter of type "array of T" or
657  //   "function returning T" is adjusted to be of type "pointer to
658  //   T" or "pointer to function returning T", respectively.
659  else if (T->isArrayType())
660    // FIXME: Keep the type prior to promotion?
661    return Context.getArrayDecayedType(T);
662  else if (T->isFunctionType())
663    // FIXME: Keep the type prior to promotion?
664    return Context.getPointerType(T);
665
666  Diag(Loc, diag::err_template_nontype_parm_bad_type)
667    << T;
668
669  return QualType();
670}
671
672Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
673                                          unsigned Depth,
674                                          unsigned Position,
675                                          SourceLocation EqualLoc,
676                                          Expr *Default) {
677  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
678  QualType T = TInfo->getType();
679
680  assert(S->isTemplateParamScope() &&
681         "Non-type template parameter not in template parameter scope!");
682  bool Invalid = false;
683
684  IdentifierInfo *ParamName = D.getIdentifier();
685  if (ParamName) {
686    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
687                                           LookupOrdinaryName,
688                                           ForRedeclaration);
689    if (PrevDecl && PrevDecl->isTemplateParameter()) {
690      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
691      PrevDecl = 0;
692    }
693  }
694
695  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
696  if (T.isNull()) {
697    T = Context.IntTy; // Recover with an 'int' type.
698    Invalid = true;
699  }
700
701  bool IsParameterPack = D.hasEllipsis();
702  NonTypeTemplateParmDecl *Param
703    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
704                                      D.getLocStart(),
705                                      D.getIdentifierLoc(),
706                                      Depth, Position, ParamName, T,
707                                      IsParameterPack, TInfo);
708  Param->setAccess(AS_public);
709
710  if (Invalid)
711    Param->setInvalidDecl();
712
713  if (D.getIdentifier()) {
714    // Add the template parameter into the current scope.
715    S->AddDecl(Param);
716    IdResolver.AddDecl(Param);
717  }
718
719  // C++0x [temp.param]p9:
720  //   A default template-argument may be specified for any kind of
721  //   template-parameter that is not a template parameter pack.
722  if (Default && IsParameterPack) {
723    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
724    Default = 0;
725  }
726
727  // Check the well-formedness of the default template argument, if provided.
728  if (Default) {
729    // Check for unexpanded parameter packs.
730    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
731      return Param;
732
733    TemplateArgument Converted;
734    ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
735    if (DefaultRes.isInvalid()) {
736      Param->setInvalidDecl();
737      return Param;
738    }
739    Default = DefaultRes.take();
740
741    Param->setDefaultArgument(Default, false);
742  }
743
744  return Param;
745}
746
747/// ActOnTemplateTemplateParameter - Called when a C++ template template
748/// parameter (e.g. T in template <template <typename> class T> class array)
749/// has been parsed. S is the current scope.
750Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
751                                           SourceLocation TmpLoc,
752                                           TemplateParameterList *Params,
753                                           SourceLocation EllipsisLoc,
754                                           IdentifierInfo *Name,
755                                           SourceLocation NameLoc,
756                                           unsigned Depth,
757                                           unsigned Position,
758                                           SourceLocation EqualLoc,
759                                           ParsedTemplateArgument Default) {
760  assert(S->isTemplateParamScope() &&
761         "Template template parameter not in template parameter scope!");
762
763  // Construct the parameter object.
764  bool IsParameterPack = EllipsisLoc.isValid();
765  TemplateTemplateParmDecl *Param =
766    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
767                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
768                                     Depth, Position, IsParameterPack,
769                                     Name, Params);
770  Param->setAccess(AS_public);
771
772  // If the template template parameter has a name, then link the identifier
773  // into the scope and lookup mechanisms.
774  if (Name) {
775    S->AddDecl(Param);
776    IdResolver.AddDecl(Param);
777  }
778
779  if (Params->size() == 0) {
780    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
781    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
782    Param->setInvalidDecl();
783  }
784
785  // C++0x [temp.param]p9:
786  //   A default template-argument may be specified for any kind of
787  //   template-parameter that is not a template parameter pack.
788  if (IsParameterPack && !Default.isInvalid()) {
789    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
790    Default = ParsedTemplateArgument();
791  }
792
793  if (!Default.isInvalid()) {
794    // Check only that we have a template template argument. We don't want to
795    // try to check well-formedness now, because our template template parameter
796    // might have dependent types in its template parameters, which we wouldn't
797    // be able to match now.
798    //
799    // If none of the template template parameter's template arguments mention
800    // other template parameters, we could actually perform more checking here.
801    // However, it isn't worth doing.
802    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
803    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
804      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
805        << DefaultArg.getSourceRange();
806      return Param;
807    }
808
809    // Check for unexpanded parameter packs.
810    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
811                                        DefaultArg.getArgument().getAsTemplate(),
812                                        UPPC_DefaultArgument))
813      return Param;
814
815    Param->setDefaultArgument(DefaultArg, false);
816  }
817
818  return Param;
819}
820
821/// ActOnTemplateParameterList - Builds a TemplateParameterList that
822/// contains the template parameters in Params/NumParams.
823TemplateParameterList *
824Sema::ActOnTemplateParameterList(unsigned Depth,
825                                 SourceLocation ExportLoc,
826                                 SourceLocation TemplateLoc,
827                                 SourceLocation LAngleLoc,
828                                 Decl **Params, unsigned NumParams,
829                                 SourceLocation RAngleLoc) {
830  if (ExportLoc.isValid())
831    Diag(ExportLoc, diag::warn_template_export_unsupported);
832
833  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
834                                       (NamedDecl**)Params, NumParams,
835                                       RAngleLoc);
836}
837
838static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
839  if (SS.isSet())
840    T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
841}
842
843DeclResult
844Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
845                         SourceLocation KWLoc, CXXScopeSpec &SS,
846                         IdentifierInfo *Name, SourceLocation NameLoc,
847                         AttributeList *Attr,
848                         TemplateParameterList *TemplateParams,
849                         AccessSpecifier AS, SourceLocation ModulePrivateLoc,
850                         unsigned NumOuterTemplateParamLists,
851                         TemplateParameterList** OuterTemplateParamLists) {
852  assert(TemplateParams && TemplateParams->size() > 0 &&
853         "No template parameters");
854  assert(TUK != TUK_Reference && "Can only declare or define class templates");
855  bool Invalid = false;
856
857  // Check that we can declare a template here.
858  if (CheckTemplateDeclScope(S, TemplateParams))
859    return true;
860
861  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
862  assert(Kind != TTK_Enum && "can't build template of enumerated type");
863
864  // There is no such thing as an unnamed class template.
865  if (!Name) {
866    Diag(KWLoc, diag::err_template_unnamed_class);
867    return true;
868  }
869
870  // Find any previous declaration with this name. For a friend with no
871  // scope explicitly specified, we only look for tag declarations (per
872  // C++11 [basic.lookup.elab]p2).
873  DeclContext *SemanticContext;
874  LookupResult Previous(*this, Name, NameLoc,
875                        (SS.isEmpty() && TUK == TUK_Friend)
876                          ? LookupTagName : LookupOrdinaryName,
877                        ForRedeclaration);
878  if (SS.isNotEmpty() && !SS.isInvalid()) {
879    SemanticContext = computeDeclContext(SS, true);
880    if (!SemanticContext) {
881      // FIXME: Horrible, horrible hack! We can't currently represent this
882      // in the AST, and historically we have just ignored such friend
883      // class templates, so don't complain here.
884      if (TUK != TUK_Friend)
885        Diag(NameLoc, diag::err_template_qualified_declarator_no_match)
886          << SS.getScopeRep() << SS.getRange();
887      return true;
888    }
889
890    if (RequireCompleteDeclContext(SS, SemanticContext))
891      return true;
892
893    // If we're adding a template to a dependent context, we may need to
894    // rebuilding some of the types used within the template parameter list,
895    // now that we know what the current instantiation is.
896    if (SemanticContext->isDependentContext()) {
897      ContextRAII SavedContext(*this, SemanticContext);
898      if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
899        Invalid = true;
900    } else if (TUK != TUK_Friend && TUK != TUK_Reference)
901      diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
902
903    LookupQualifiedName(Previous, SemanticContext);
904  } else {
905    SemanticContext = CurContext;
906    LookupName(Previous, S);
907  }
908
909  if (Previous.isAmbiguous())
910    return true;
911
912  NamedDecl *PrevDecl = 0;
913  if (Previous.begin() != Previous.end())
914    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
915
916  // If there is a previous declaration with the same name, check
917  // whether this is a valid redeclaration.
918  ClassTemplateDecl *PrevClassTemplate
919    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
920
921  // We may have found the injected-class-name of a class template,
922  // class template partial specialization, or class template specialization.
923  // In these cases, grab the template that is being defined or specialized.
924  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
925      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
926    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
927    PrevClassTemplate
928      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
929    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
930      PrevClassTemplate
931        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
932            ->getSpecializedTemplate();
933    }
934  }
935
936  if (TUK == TUK_Friend) {
937    // C++ [namespace.memdef]p3:
938    //   [...] When looking for a prior declaration of a class or a function
939    //   declared as a friend, and when the name of the friend class or
940    //   function is neither a qualified name nor a template-id, scopes outside
941    //   the innermost enclosing namespace scope are not considered.
942    if (!SS.isSet()) {
943      DeclContext *OutermostContext = CurContext;
944      while (!OutermostContext->isFileContext())
945        OutermostContext = OutermostContext->getLookupParent();
946
947      if (PrevDecl &&
948          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
949           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
950        SemanticContext = PrevDecl->getDeclContext();
951      } else {
952        // Declarations in outer scopes don't matter. However, the outermost
953        // context we computed is the semantic context for our new
954        // declaration.
955        PrevDecl = PrevClassTemplate = 0;
956        SemanticContext = OutermostContext;
957
958        // Check that the chosen semantic context doesn't already contain a
959        // declaration of this name as a non-tag type.
960        LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
961                              ForRedeclaration);
962        DeclContext *LookupContext = SemanticContext;
963        while (LookupContext->isTransparentContext())
964          LookupContext = LookupContext->getLookupParent();
965        LookupQualifiedName(Previous, LookupContext);
966
967        if (Previous.isAmbiguous())
968          return true;
969
970        if (Previous.begin() != Previous.end())
971          PrevDecl = (*Previous.begin())->getUnderlyingDecl();
972      }
973    }
974  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
975    PrevDecl = PrevClassTemplate = 0;
976
977  if (PrevClassTemplate) {
978    // Ensure that the template parameter lists are compatible. Skip this check
979    // for a friend in a dependent context: the template parameter list itself
980    // could be dependent.
981    if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
982        !TemplateParameterListsAreEqual(TemplateParams,
983                                   PrevClassTemplate->getTemplateParameters(),
984                                        /*Complain=*/true,
985                                        TPL_TemplateMatch))
986      return true;
987
988    // C++ [temp.class]p4:
989    //   In a redeclaration, partial specialization, explicit
990    //   specialization or explicit instantiation of a class template,
991    //   the class-key shall agree in kind with the original class
992    //   template declaration (7.1.5.3).
993    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
994    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
995                                      TUK == TUK_Definition,  KWLoc, *Name)) {
996      Diag(KWLoc, diag::err_use_with_wrong_tag)
997        << Name
998        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
999      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
1000      Kind = PrevRecordDecl->getTagKind();
1001    }
1002
1003    // Check for redefinition of this class template.
1004    if (TUK == TUK_Definition) {
1005      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1006        Diag(NameLoc, diag::err_redefinition) << Name;
1007        Diag(Def->getLocation(), diag::note_previous_definition);
1008        // FIXME: Would it make sense to try to "forget" the previous
1009        // definition, as part of error recovery?
1010        return true;
1011      }
1012    }
1013  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
1014    // Maybe we will complain about the shadowed template parameter.
1015    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1016    // Just pretend that we didn't see the previous declaration.
1017    PrevDecl = 0;
1018  } else if (PrevDecl) {
1019    // C++ [temp]p5:
1020    //   A class template shall not have the same name as any other
1021    //   template, class, function, object, enumeration, enumerator,
1022    //   namespace, or type in the same scope (3.3), except as specified
1023    //   in (14.5.4).
1024    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1025    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1026    return true;
1027  }
1028
1029  // Check the template parameter list of this declaration, possibly
1030  // merging in the template parameter list from the previous class
1031  // template declaration. Skip this check for a friend in a dependent
1032  // context, because the template parameter list might be dependent.
1033  if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1034      CheckTemplateParameterList(TemplateParams,
1035            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
1036                                 (SS.isSet() && SemanticContext &&
1037                                  SemanticContext->isRecord() &&
1038                                  SemanticContext->isDependentContext())
1039                                   ? TPC_ClassTemplateMember
1040                                   : TPC_ClassTemplate))
1041    Invalid = true;
1042
1043  if (SS.isSet()) {
1044    // If the name of the template was qualified, we must be defining the
1045    // template out-of-line.
1046    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1047      Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1048                                      : diag::err_member_def_does_not_match)
1049        << Name << SemanticContext << SS.getRange();
1050      Invalid = true;
1051    }
1052  }
1053
1054  CXXRecordDecl *NewClass =
1055    CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1056                          PrevClassTemplate?
1057                            PrevClassTemplate->getTemplatedDecl() : 0,
1058                          /*DelayTypeCreation=*/true);
1059  SetNestedNameSpecifier(NewClass, SS);
1060  if (NumOuterTemplateParamLists > 0)
1061    NewClass->setTemplateParameterListsInfo(Context,
1062                                            NumOuterTemplateParamLists,
1063                                            OuterTemplateParamLists);
1064
1065  // Add alignment attributes if necessary; these attributes are checked when
1066  // the ASTContext lays out the structure.
1067  AddAlignmentAttributesForRecord(NewClass);
1068  AddMsStructLayoutForRecord(NewClass);
1069
1070  ClassTemplateDecl *NewTemplate
1071    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1072                                DeclarationName(Name), TemplateParams,
1073                                NewClass, PrevClassTemplate);
1074  NewClass->setDescribedClassTemplate(NewTemplate);
1075
1076  if (ModulePrivateLoc.isValid())
1077    NewTemplate->setModulePrivate();
1078
1079  // Build the type for the class template declaration now.
1080  QualType T = NewTemplate->getInjectedClassNameSpecialization();
1081  T = Context.getInjectedClassNameType(NewClass, T);
1082  assert(T->isDependentType() && "Class template type is not dependent?");
1083  (void)T;
1084
1085  // If we are providing an explicit specialization of a member that is a
1086  // class template, make a note of that.
1087  if (PrevClassTemplate &&
1088      PrevClassTemplate->getInstantiatedFromMemberTemplate())
1089    PrevClassTemplate->setMemberSpecialization();
1090
1091  // Set the access specifier.
1092  if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1093    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1094
1095  // Set the lexical context of these templates
1096  NewClass->setLexicalDeclContext(CurContext);
1097  NewTemplate->setLexicalDeclContext(CurContext);
1098
1099  if (TUK == TUK_Definition)
1100    NewClass->startDefinition();
1101
1102  if (Attr)
1103    ProcessDeclAttributeList(S, NewClass, Attr);
1104
1105  if (TUK != TUK_Friend)
1106    PushOnScopeChains(NewTemplate, S);
1107  else {
1108    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1109      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1110      NewClass->setAccess(PrevClassTemplate->getAccess());
1111    }
1112
1113    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1114                                       PrevClassTemplate != NULL);
1115
1116    // Friend templates are visible in fairly strange ways.
1117    if (!CurContext->isDependentContext()) {
1118      DeclContext *DC = SemanticContext->getRedeclContext();
1119      DC->makeDeclVisibleInContext(NewTemplate);
1120      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1121        PushOnScopeChains(NewTemplate, EnclosingScope,
1122                          /* AddToContext = */ false);
1123    }
1124
1125    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1126                                            NewClass->getLocation(),
1127                                            NewTemplate,
1128                                    /*FIXME:*/NewClass->getLocation());
1129    Friend->setAccess(AS_public);
1130    CurContext->addDecl(Friend);
1131  }
1132
1133  if (Invalid) {
1134    NewTemplate->setInvalidDecl();
1135    NewClass->setInvalidDecl();
1136  }
1137  return NewTemplate;
1138}
1139
1140/// \brief Diagnose the presence of a default template argument on a
1141/// template parameter, which is ill-formed in certain contexts.
1142///
1143/// \returns true if the default template argument should be dropped.
1144static bool DiagnoseDefaultTemplateArgument(Sema &S,
1145                                            Sema::TemplateParamListContext TPC,
1146                                            SourceLocation ParamLoc,
1147                                            SourceRange DefArgRange) {
1148  switch (TPC) {
1149  case Sema::TPC_ClassTemplate:
1150  case Sema::TPC_TypeAliasTemplate:
1151    return false;
1152
1153  case Sema::TPC_FunctionTemplate:
1154  case Sema::TPC_FriendFunctionTemplateDefinition:
1155    // C++ [temp.param]p9:
1156    //   A default template-argument shall not be specified in a
1157    //   function template declaration or a function template
1158    //   definition [...]
1159    //   If a friend function template declaration specifies a default
1160    //   template-argument, that declaration shall be a definition and shall be
1161    //   the only declaration of the function template in the translation unit.
1162    // (C++98/03 doesn't have this wording; see DR226).
1163    S.Diag(ParamLoc, S.getLangOpts().CPlusPlus0x ?
1164         diag::warn_cxx98_compat_template_parameter_default_in_function_template
1165           : diag::ext_template_parameter_default_in_function_template)
1166      << DefArgRange;
1167    return false;
1168
1169  case Sema::TPC_ClassTemplateMember:
1170    // C++0x [temp.param]p9:
1171    //   A default template-argument shall not be specified in the
1172    //   template-parameter-lists of the definition of a member of a
1173    //   class template that appears outside of the member's class.
1174    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1175      << DefArgRange;
1176    return true;
1177
1178  case Sema::TPC_FriendFunctionTemplate:
1179    // C++ [temp.param]p9:
1180    //   A default template-argument shall not be specified in a
1181    //   friend template declaration.
1182    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1183      << DefArgRange;
1184    return true;
1185
1186    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1187    // for friend function templates if there is only a single
1188    // declaration (and it is a definition). Strange!
1189  }
1190
1191  llvm_unreachable("Invalid TemplateParamListContext!");
1192}
1193
1194/// \brief Check for unexpanded parameter packs within the template parameters
1195/// of a template template parameter, recursively.
1196static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1197                                             TemplateTemplateParmDecl *TTP) {
1198  TemplateParameterList *Params = TTP->getTemplateParameters();
1199  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1200    NamedDecl *P = Params->getParam(I);
1201    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1202      if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1203                                            NTTP->getTypeSourceInfo(),
1204                                      Sema::UPPC_NonTypeTemplateParameterType))
1205        return true;
1206
1207      continue;
1208    }
1209
1210    if (TemplateTemplateParmDecl *InnerTTP
1211                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1212      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1213        return true;
1214  }
1215
1216  return false;
1217}
1218
1219/// \brief Checks the validity of a template parameter list, possibly
1220/// considering the template parameter list from a previous
1221/// declaration.
1222///
1223/// If an "old" template parameter list is provided, it must be
1224/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1225/// template parameter list.
1226///
1227/// \param NewParams Template parameter list for a new template
1228/// declaration. This template parameter list will be updated with any
1229/// default arguments that are carried through from the previous
1230/// template parameter list.
1231///
1232/// \param OldParams If provided, template parameter list from a
1233/// previous declaration of the same template. Default template
1234/// arguments will be merged from the old template parameter list to
1235/// the new template parameter list.
1236///
1237/// \param TPC Describes the context in which we are checking the given
1238/// template parameter list.
1239///
1240/// \returns true if an error occurred, false otherwise.
1241bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1242                                      TemplateParameterList *OldParams,
1243                                      TemplateParamListContext TPC) {
1244  bool Invalid = false;
1245
1246  // C++ [temp.param]p10:
1247  //   The set of default template-arguments available for use with a
1248  //   template declaration or definition is obtained by merging the
1249  //   default arguments from the definition (if in scope) and all
1250  //   declarations in scope in the same way default function
1251  //   arguments are (8.3.6).
1252  bool SawDefaultArgument = false;
1253  SourceLocation PreviousDefaultArgLoc;
1254
1255  // Dummy initialization to avoid warnings.
1256  TemplateParameterList::iterator OldParam = NewParams->end();
1257  if (OldParams)
1258    OldParam = OldParams->begin();
1259
1260  bool RemoveDefaultArguments = false;
1261  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1262                                    NewParamEnd = NewParams->end();
1263       NewParam != NewParamEnd; ++NewParam) {
1264    // Variables used to diagnose redundant default arguments
1265    bool RedundantDefaultArg = false;
1266    SourceLocation OldDefaultLoc;
1267    SourceLocation NewDefaultLoc;
1268
1269    // Variable used to diagnose missing default arguments
1270    bool MissingDefaultArg = false;
1271
1272    // Variable used to diagnose non-final parameter packs
1273    bool SawParameterPack = false;
1274
1275    if (TemplateTypeParmDecl *NewTypeParm
1276          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1277      // Check the presence of a default argument here.
1278      if (NewTypeParm->hasDefaultArgument() &&
1279          DiagnoseDefaultTemplateArgument(*this, TPC,
1280                                          NewTypeParm->getLocation(),
1281               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1282                                                       .getSourceRange()))
1283        NewTypeParm->removeDefaultArgument();
1284
1285      // Merge default arguments for template type parameters.
1286      TemplateTypeParmDecl *OldTypeParm
1287          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1288
1289      if (NewTypeParm->isParameterPack()) {
1290        assert(!NewTypeParm->hasDefaultArgument() &&
1291               "Parameter packs can't have a default argument!");
1292        SawParameterPack = true;
1293      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1294                 NewTypeParm->hasDefaultArgument()) {
1295        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1296        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1297        SawDefaultArgument = true;
1298        RedundantDefaultArg = true;
1299        PreviousDefaultArgLoc = NewDefaultLoc;
1300      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1301        // Merge the default argument from the old declaration to the
1302        // new declaration.
1303        SawDefaultArgument = true;
1304        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1305                                        true);
1306        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1307      } else if (NewTypeParm->hasDefaultArgument()) {
1308        SawDefaultArgument = true;
1309        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1310      } else if (SawDefaultArgument)
1311        MissingDefaultArg = true;
1312    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1313               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1314      // Check for unexpanded parameter packs.
1315      if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1316                                          NewNonTypeParm->getTypeSourceInfo(),
1317                                          UPPC_NonTypeTemplateParameterType)) {
1318        Invalid = true;
1319        continue;
1320      }
1321
1322      // Check the presence of a default argument here.
1323      if (NewNonTypeParm->hasDefaultArgument() &&
1324          DiagnoseDefaultTemplateArgument(*this, TPC,
1325                                          NewNonTypeParm->getLocation(),
1326                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1327        NewNonTypeParm->removeDefaultArgument();
1328      }
1329
1330      // Merge default arguments for non-type template parameters
1331      NonTypeTemplateParmDecl *OldNonTypeParm
1332        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1333      if (NewNonTypeParm->isParameterPack()) {
1334        assert(!NewNonTypeParm->hasDefaultArgument() &&
1335               "Parameter packs can't have a default argument!");
1336        SawParameterPack = true;
1337      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1338          NewNonTypeParm->hasDefaultArgument()) {
1339        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1340        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1341        SawDefaultArgument = true;
1342        RedundantDefaultArg = true;
1343        PreviousDefaultArgLoc = NewDefaultLoc;
1344      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1345        // Merge the default argument from the old declaration to the
1346        // new declaration.
1347        SawDefaultArgument = true;
1348        // FIXME: We need to create a new kind of "default argument"
1349        // expression that points to a previous non-type template
1350        // parameter.
1351        NewNonTypeParm->setDefaultArgument(
1352                                         OldNonTypeParm->getDefaultArgument(),
1353                                         /*Inherited=*/ true);
1354        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1355      } else if (NewNonTypeParm->hasDefaultArgument()) {
1356        SawDefaultArgument = true;
1357        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1358      } else if (SawDefaultArgument)
1359        MissingDefaultArg = true;
1360    } else {
1361      TemplateTemplateParmDecl *NewTemplateParm
1362        = cast<TemplateTemplateParmDecl>(*NewParam);
1363
1364      // Check for unexpanded parameter packs, recursively.
1365      if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1366        Invalid = true;
1367        continue;
1368      }
1369
1370      // Check the presence of a default argument here.
1371      if (NewTemplateParm->hasDefaultArgument() &&
1372          DiagnoseDefaultTemplateArgument(*this, TPC,
1373                                          NewTemplateParm->getLocation(),
1374                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1375        NewTemplateParm->removeDefaultArgument();
1376
1377      // Merge default arguments for template template parameters
1378      TemplateTemplateParmDecl *OldTemplateParm
1379        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1380      if (NewTemplateParm->isParameterPack()) {
1381        assert(!NewTemplateParm->hasDefaultArgument() &&
1382               "Parameter packs can't have a default argument!");
1383        SawParameterPack = true;
1384      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1385          NewTemplateParm->hasDefaultArgument()) {
1386        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1387        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1388        SawDefaultArgument = true;
1389        RedundantDefaultArg = true;
1390        PreviousDefaultArgLoc = NewDefaultLoc;
1391      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1392        // Merge the default argument from the old declaration to the
1393        // new declaration.
1394        SawDefaultArgument = true;
1395        // FIXME: We need to create a new kind of "default argument" expression
1396        // that points to a previous template template parameter.
1397        NewTemplateParm->setDefaultArgument(
1398                                          OldTemplateParm->getDefaultArgument(),
1399                                          /*Inherited=*/ true);
1400        PreviousDefaultArgLoc
1401          = OldTemplateParm->getDefaultArgument().getLocation();
1402      } else if (NewTemplateParm->hasDefaultArgument()) {
1403        SawDefaultArgument = true;
1404        PreviousDefaultArgLoc
1405          = NewTemplateParm->getDefaultArgument().getLocation();
1406      } else if (SawDefaultArgument)
1407        MissingDefaultArg = true;
1408    }
1409
1410    // C++0x [temp.param]p11:
1411    //   If a template parameter of a primary class template or alias template
1412    //   is a template parameter pack, it shall be the last template parameter.
1413    if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1414        (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) {
1415      Diag((*NewParam)->getLocation(),
1416           diag::err_template_param_pack_must_be_last_template_parameter);
1417      Invalid = true;
1418    }
1419
1420    if (RedundantDefaultArg) {
1421      // C++ [temp.param]p12:
1422      //   A template-parameter shall not be given default arguments
1423      //   by two different declarations in the same scope.
1424      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1425      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1426      Invalid = true;
1427    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1428      // C++ [temp.param]p11:
1429      //   If a template-parameter of a class template has a default
1430      //   template-argument, each subsequent template-parameter shall either
1431      //   have a default template-argument supplied or be a template parameter
1432      //   pack.
1433      Diag((*NewParam)->getLocation(),
1434           diag::err_template_param_default_arg_missing);
1435      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1436      Invalid = true;
1437      RemoveDefaultArguments = true;
1438    }
1439
1440    // If we have an old template parameter list that we're merging
1441    // in, move on to the next parameter.
1442    if (OldParams)
1443      ++OldParam;
1444  }
1445
1446  // We were missing some default arguments at the end of the list, so remove
1447  // all of the default arguments.
1448  if (RemoveDefaultArguments) {
1449    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1450                                      NewParamEnd = NewParams->end();
1451         NewParam != NewParamEnd; ++NewParam) {
1452      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1453        TTP->removeDefaultArgument();
1454      else if (NonTypeTemplateParmDecl *NTTP
1455                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1456        NTTP->removeDefaultArgument();
1457      else
1458        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1459    }
1460  }
1461
1462  return Invalid;
1463}
1464
1465namespace {
1466
1467/// A class which looks for a use of a certain level of template
1468/// parameter.
1469struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1470  typedef RecursiveASTVisitor<DependencyChecker> super;
1471
1472  unsigned Depth;
1473  bool Match;
1474
1475  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1476    NamedDecl *ND = Params->getParam(0);
1477    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1478      Depth = PD->getDepth();
1479    } else if (NonTypeTemplateParmDecl *PD =
1480                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1481      Depth = PD->getDepth();
1482    } else {
1483      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1484    }
1485  }
1486
1487  bool Matches(unsigned ParmDepth) {
1488    if (ParmDepth >= Depth) {
1489      Match = true;
1490      return true;
1491    }
1492    return false;
1493  }
1494
1495  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1496    return !Matches(T->getDepth());
1497  }
1498
1499  bool TraverseTemplateName(TemplateName N) {
1500    if (TemplateTemplateParmDecl *PD =
1501          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1502      if (Matches(PD->getDepth())) return false;
1503    return super::TraverseTemplateName(N);
1504  }
1505
1506  bool VisitDeclRefExpr(DeclRefExpr *E) {
1507    if (NonTypeTemplateParmDecl *PD =
1508          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1509      if (PD->getDepth() == Depth) {
1510        Match = true;
1511        return false;
1512      }
1513    }
1514    return super::VisitDeclRefExpr(E);
1515  }
1516
1517  bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1518    return TraverseType(T->getInjectedSpecializationType());
1519  }
1520};
1521}
1522
1523/// Determines whether a given type depends on the given parameter
1524/// list.
1525static bool
1526DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1527  DependencyChecker Checker(Params);
1528  Checker.TraverseType(T);
1529  return Checker.Match;
1530}
1531
1532// Find the source range corresponding to the named type in the given
1533// nested-name-specifier, if any.
1534static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1535                                                       QualType T,
1536                                                       const CXXScopeSpec &SS) {
1537  NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1538  while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1539    if (const Type *CurType = NNS->getAsType()) {
1540      if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1541        return NNSLoc.getTypeLoc().getSourceRange();
1542    } else
1543      break;
1544
1545    NNSLoc = NNSLoc.getPrefix();
1546  }
1547
1548  return SourceRange();
1549}
1550
1551/// \brief Match the given template parameter lists to the given scope
1552/// specifier, returning the template parameter list that applies to the
1553/// name.
1554///
1555/// \param DeclStartLoc the start of the declaration that has a scope
1556/// specifier or a template parameter list.
1557///
1558/// \param DeclLoc The location of the declaration itself.
1559///
1560/// \param SS the scope specifier that will be matched to the given template
1561/// parameter lists. This scope specifier precedes a qualified name that is
1562/// being declared.
1563///
1564/// \param ParamLists the template parameter lists, from the outermost to the
1565/// innermost template parameter lists.
1566///
1567/// \param NumParamLists the number of template parameter lists in ParamLists.
1568///
1569/// \param IsFriend Whether to apply the slightly different rules for
1570/// matching template parameters to scope specifiers in friend
1571/// declarations.
1572///
1573/// \param IsExplicitSpecialization will be set true if the entity being
1574/// declared is an explicit specialization, false otherwise.
1575///
1576/// \returns the template parameter list, if any, that corresponds to the
1577/// name that is preceded by the scope specifier @p SS. This template
1578/// parameter list may have template parameters (if we're declaring a
1579/// template) or may have no template parameters (if we're declaring a
1580/// template specialization), or may be NULL (if what we're declaring isn't
1581/// itself a template).
1582TemplateParameterList *
1583Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1584                                              SourceLocation DeclLoc,
1585                                              const CXXScopeSpec &SS,
1586                                          TemplateParameterList **ParamLists,
1587                                              unsigned NumParamLists,
1588                                              bool IsFriend,
1589                                              bool &IsExplicitSpecialization,
1590                                              bool &Invalid) {
1591  IsExplicitSpecialization = false;
1592  Invalid = false;
1593
1594  // The sequence of nested types to which we will match up the template
1595  // parameter lists. We first build this list by starting with the type named
1596  // by the nested-name-specifier and walking out until we run out of types.
1597  SmallVector<QualType, 4> NestedTypes;
1598  QualType T;
1599  if (SS.getScopeRep()) {
1600    if (CXXRecordDecl *Record
1601              = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1602      T = Context.getTypeDeclType(Record);
1603    else
1604      T = QualType(SS.getScopeRep()->getAsType(), 0);
1605  }
1606
1607  // If we found an explicit specialization that prevents us from needing
1608  // 'template<>' headers, this will be set to the location of that
1609  // explicit specialization.
1610  SourceLocation ExplicitSpecLoc;
1611
1612  while (!T.isNull()) {
1613    NestedTypes.push_back(T);
1614
1615    // Retrieve the parent of a record type.
1616    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1617      // If this type is an explicit specialization, we're done.
1618      if (ClassTemplateSpecializationDecl *Spec
1619          = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1620        if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1621            Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1622          ExplicitSpecLoc = Spec->getLocation();
1623          break;
1624        }
1625      } else if (Record->getTemplateSpecializationKind()
1626                                                == TSK_ExplicitSpecialization) {
1627        ExplicitSpecLoc = Record->getLocation();
1628        break;
1629      }
1630
1631      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1632        T = Context.getTypeDeclType(Parent);
1633      else
1634        T = QualType();
1635      continue;
1636    }
1637
1638    if (const TemplateSpecializationType *TST
1639                                     = T->getAs<TemplateSpecializationType>()) {
1640      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1641        if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1642          T = Context.getTypeDeclType(Parent);
1643        else
1644          T = QualType();
1645        continue;
1646      }
1647    }
1648
1649    // Look one step prior in a dependent template specialization type.
1650    if (const DependentTemplateSpecializationType *DependentTST
1651                          = T->getAs<DependentTemplateSpecializationType>()) {
1652      if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1653        T = QualType(NNS->getAsType(), 0);
1654      else
1655        T = QualType();
1656      continue;
1657    }
1658
1659    // Look one step prior in a dependent name type.
1660    if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1661      if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1662        T = QualType(NNS->getAsType(), 0);
1663      else
1664        T = QualType();
1665      continue;
1666    }
1667
1668    // Retrieve the parent of an enumeration type.
1669    if (const EnumType *EnumT = T->getAs<EnumType>()) {
1670      // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1671      // check here.
1672      EnumDecl *Enum = EnumT->getDecl();
1673
1674      // Get to the parent type.
1675      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1676        T = Context.getTypeDeclType(Parent);
1677      else
1678        T = QualType();
1679      continue;
1680    }
1681
1682    T = QualType();
1683  }
1684  // Reverse the nested types list, since we want to traverse from the outermost
1685  // to the innermost while checking template-parameter-lists.
1686  std::reverse(NestedTypes.begin(), NestedTypes.end());
1687
1688  // C++0x [temp.expl.spec]p17:
1689  //   A member or a member template may be nested within many
1690  //   enclosing class templates. In an explicit specialization for
1691  //   such a member, the member declaration shall be preceded by a
1692  //   template<> for each enclosing class template that is
1693  //   explicitly specialized.
1694  bool SawNonEmptyTemplateParameterList = false;
1695  unsigned ParamIdx = 0;
1696  for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1697       ++TypeIdx) {
1698    T = NestedTypes[TypeIdx];
1699
1700    // Whether we expect a 'template<>' header.
1701    bool NeedEmptyTemplateHeader = false;
1702
1703    // Whether we expect a template header with parameters.
1704    bool NeedNonemptyTemplateHeader = false;
1705
1706    // For a dependent type, the set of template parameters that we
1707    // expect to see.
1708    TemplateParameterList *ExpectedTemplateParams = 0;
1709
1710    // C++0x [temp.expl.spec]p15:
1711    //   A member or a member template may be nested within many enclosing
1712    //   class templates. In an explicit specialization for such a member, the
1713    //   member declaration shall be preceded by a template<> for each
1714    //   enclosing class template that is explicitly specialized.
1715    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1716      if (ClassTemplatePartialSpecializationDecl *Partial
1717            = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1718        ExpectedTemplateParams = Partial->getTemplateParameters();
1719        NeedNonemptyTemplateHeader = true;
1720      } else if (Record->isDependentType()) {
1721        if (Record->getDescribedClassTemplate()) {
1722          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1723                                                      ->getTemplateParameters();
1724          NeedNonemptyTemplateHeader = true;
1725        }
1726      } else if (ClassTemplateSpecializationDecl *Spec
1727                     = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1728        // C++0x [temp.expl.spec]p4:
1729        //   Members of an explicitly specialized class template are defined
1730        //   in the same manner as members of normal classes, and not using
1731        //   the template<> syntax.
1732        if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1733          NeedEmptyTemplateHeader = true;
1734        else
1735          continue;
1736      } else if (Record->getTemplateSpecializationKind()) {
1737        if (Record->getTemplateSpecializationKind()
1738                                                != TSK_ExplicitSpecialization &&
1739            TypeIdx == NumTypes - 1)
1740          IsExplicitSpecialization = true;
1741
1742        continue;
1743      }
1744    } else if (const TemplateSpecializationType *TST
1745                                     = T->getAs<TemplateSpecializationType>()) {
1746      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1747        ExpectedTemplateParams = Template->getTemplateParameters();
1748        NeedNonemptyTemplateHeader = true;
1749      }
1750    } else if (T->getAs<DependentTemplateSpecializationType>()) {
1751      // FIXME:  We actually could/should check the template arguments here
1752      // against the corresponding template parameter list.
1753      NeedNonemptyTemplateHeader = false;
1754    }
1755
1756    // C++ [temp.expl.spec]p16:
1757    //   In an explicit specialization declaration for a member of a class
1758    //   template or a member template that ap- pears in namespace scope, the
1759    //   member template and some of its enclosing class templates may remain
1760    //   unspecialized, except that the declaration shall not explicitly
1761    //   specialize a class member template if its en- closing class templates
1762    //   are not explicitly specialized as well.
1763    if (ParamIdx < NumParamLists) {
1764      if (ParamLists[ParamIdx]->size() == 0) {
1765        if (SawNonEmptyTemplateParameterList) {
1766          Diag(DeclLoc, diag::err_specialize_member_of_template)
1767            << ParamLists[ParamIdx]->getSourceRange();
1768          Invalid = true;
1769          IsExplicitSpecialization = false;
1770          return 0;
1771        }
1772      } else
1773        SawNonEmptyTemplateParameterList = true;
1774    }
1775
1776    if (NeedEmptyTemplateHeader) {
1777      // If we're on the last of the types, and we need a 'template<>' header
1778      // here, then it's an explicit specialization.
1779      if (TypeIdx == NumTypes - 1)
1780        IsExplicitSpecialization = true;
1781
1782      if (ParamIdx < NumParamLists) {
1783        if (ParamLists[ParamIdx]->size() > 0) {
1784          // The header has template parameters when it shouldn't. Complain.
1785          Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1786               diag::err_template_param_list_matches_nontemplate)
1787            << T
1788            << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1789                           ParamLists[ParamIdx]->getRAngleLoc())
1790            << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1791          Invalid = true;
1792          return 0;
1793        }
1794
1795        // Consume this template header.
1796        ++ParamIdx;
1797        continue;
1798      }
1799
1800      if (!IsFriend) {
1801        // We don't have a template header, but we should.
1802        SourceLocation ExpectedTemplateLoc;
1803        if (NumParamLists > 0)
1804          ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1805        else
1806          ExpectedTemplateLoc = DeclStartLoc;
1807
1808        Diag(DeclLoc, diag::err_template_spec_needs_header)
1809          << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
1810          << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1811      }
1812
1813      continue;
1814    }
1815
1816    if (NeedNonemptyTemplateHeader) {
1817      // In friend declarations we can have template-ids which don't
1818      // depend on the corresponding template parameter lists.  But
1819      // assume that empty parameter lists are supposed to match this
1820      // template-id.
1821      if (IsFriend && T->isDependentType()) {
1822        if (ParamIdx < NumParamLists &&
1823            DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1824          ExpectedTemplateParams = 0;
1825        else
1826          continue;
1827      }
1828
1829      if (ParamIdx < NumParamLists) {
1830        // Check the template parameter list, if we can.
1831        if (ExpectedTemplateParams &&
1832            !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1833                                            ExpectedTemplateParams,
1834                                            true, TPL_TemplateMatch))
1835          Invalid = true;
1836
1837        if (!Invalid &&
1838            CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1839                                       TPC_ClassTemplateMember))
1840          Invalid = true;
1841
1842        ++ParamIdx;
1843        continue;
1844      }
1845
1846      Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1847        << T
1848        << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1849      Invalid = true;
1850      continue;
1851    }
1852  }
1853
1854  // If there were at least as many template-ids as there were template
1855  // parameter lists, then there are no template parameter lists remaining for
1856  // the declaration itself.
1857  if (ParamIdx >= NumParamLists)
1858    return 0;
1859
1860  // If there were too many template parameter lists, complain about that now.
1861  if (ParamIdx < NumParamLists - 1) {
1862    bool HasAnyExplicitSpecHeader = false;
1863    bool AllExplicitSpecHeaders = true;
1864    for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) {
1865      if (ParamLists[I]->size() == 0)
1866        HasAnyExplicitSpecHeader = true;
1867      else
1868        AllExplicitSpecHeaders = false;
1869    }
1870
1871    Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1872         AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers
1873                               : diag::err_template_spec_extra_headers)
1874      << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1875                     ParamLists[NumParamLists - 2]->getRAngleLoc());
1876
1877    // If there was a specialization somewhere, such that 'template<>' is
1878    // not required, and there were any 'template<>' headers, note where the
1879    // specialization occurred.
1880    if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1881      Diag(ExplicitSpecLoc,
1882           diag::note_explicit_template_spec_does_not_need_header)
1883        << NestedTypes.back();
1884
1885    // We have a template parameter list with no corresponding scope, which
1886    // means that the resulting template declaration can't be instantiated
1887    // properly (we'll end up with dependent nodes when we shouldn't).
1888    if (!AllExplicitSpecHeaders)
1889      Invalid = true;
1890  }
1891
1892  // C++ [temp.expl.spec]p16:
1893  //   In an explicit specialization declaration for a member of a class
1894  //   template or a member template that ap- pears in namespace scope, the
1895  //   member template and some of its enclosing class templates may remain
1896  //   unspecialized, except that the declaration shall not explicitly
1897  //   specialize a class member template if its en- closing class templates
1898  //   are not explicitly specialized as well.
1899  if (ParamLists[NumParamLists - 1]->size() == 0 &&
1900      SawNonEmptyTemplateParameterList) {
1901    Diag(DeclLoc, diag::err_specialize_member_of_template)
1902      << ParamLists[ParamIdx]->getSourceRange();
1903    Invalid = true;
1904    IsExplicitSpecialization = false;
1905    return 0;
1906  }
1907
1908  // Return the last template parameter list, which corresponds to the
1909  // entity being declared.
1910  return ParamLists[NumParamLists - 1];
1911}
1912
1913void Sema::NoteAllFoundTemplates(TemplateName Name) {
1914  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1915    Diag(Template->getLocation(), diag::note_template_declared_here)
1916      << (isa<FunctionTemplateDecl>(Template)? 0
1917          : isa<ClassTemplateDecl>(Template)? 1
1918          : isa<TypeAliasTemplateDecl>(Template)? 2
1919          : 3)
1920      << Template->getDeclName();
1921    return;
1922  }
1923
1924  if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1925    for (OverloadedTemplateStorage::iterator I = OST->begin(),
1926                                          IEnd = OST->end();
1927         I != IEnd; ++I)
1928      Diag((*I)->getLocation(), diag::note_template_declared_here)
1929        << 0 << (*I)->getDeclName();
1930
1931    return;
1932  }
1933}
1934
1935QualType Sema::CheckTemplateIdType(TemplateName Name,
1936                                   SourceLocation TemplateLoc,
1937                                   TemplateArgumentListInfo &TemplateArgs) {
1938  DependentTemplateName *DTN
1939    = Name.getUnderlying().getAsDependentTemplateName();
1940  if (DTN && DTN->isIdentifier())
1941    // When building a template-id where the template-name is dependent,
1942    // assume the template is a type template. Either our assumption is
1943    // correct, or the code is ill-formed and will be diagnosed when the
1944    // dependent name is substituted.
1945    return Context.getDependentTemplateSpecializationType(ETK_None,
1946                                                          DTN->getQualifier(),
1947                                                          DTN->getIdentifier(),
1948                                                          TemplateArgs);
1949
1950  TemplateDecl *Template = Name.getAsTemplateDecl();
1951  if (!Template || isa<FunctionTemplateDecl>(Template)) {
1952    // We might have a substituted template template parameter pack. If so,
1953    // build a template specialization type for it.
1954    if (Name.getAsSubstTemplateTemplateParmPack())
1955      return Context.getTemplateSpecializationType(Name, TemplateArgs);
1956
1957    Diag(TemplateLoc, diag::err_template_id_not_a_type)
1958      << Name;
1959    NoteAllFoundTemplates(Name);
1960    return QualType();
1961  }
1962
1963  // Check that the template argument list is well-formed for this
1964  // template.
1965  SmallVector<TemplateArgument, 4> Converted;
1966  bool ExpansionIntoFixedList = false;
1967  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1968                                false, Converted, &ExpansionIntoFixedList))
1969    return QualType();
1970
1971  QualType CanonType;
1972
1973  bool InstantiationDependent = false;
1974  TypeAliasTemplateDecl *AliasTemplate = 0;
1975  if (!ExpansionIntoFixedList &&
1976      (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) {
1977    // Find the canonical type for this type alias template specialization.
1978    TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
1979    if (Pattern->isInvalidDecl())
1980      return QualType();
1981
1982    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1983                                      Converted.data(), Converted.size());
1984
1985    // Only substitute for the innermost template argument list.
1986    MultiLevelTemplateArgumentList TemplateArgLists;
1987    TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
1988    unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
1989    for (unsigned I = 0; I < Depth; ++I)
1990      TemplateArgLists.addOuterTemplateArguments(0, 0);
1991
1992    InstantiatingTemplate Inst(*this, TemplateLoc, Template);
1993    CanonType = SubstType(Pattern->getUnderlyingType(),
1994                          TemplateArgLists, AliasTemplate->getLocation(),
1995                          AliasTemplate->getDeclName());
1996    if (CanonType.isNull())
1997      return QualType();
1998  } else if (Name.isDependent() ||
1999             TemplateSpecializationType::anyDependentTemplateArguments(
2000               TemplateArgs, InstantiationDependent)) {
2001    // This class template specialization is a dependent
2002    // type. Therefore, its canonical type is another class template
2003    // specialization type that contains all of the converted
2004    // arguments in canonical form. This ensures that, e.g., A<T> and
2005    // A<T, T> have identical types when A is declared as:
2006    //
2007    //   template<typename T, typename U = T> struct A;
2008    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
2009    CanonType = Context.getTemplateSpecializationType(CanonName,
2010                                                      Converted.data(),
2011                                                      Converted.size());
2012
2013    // FIXME: CanonType is not actually the canonical type, and unfortunately
2014    // it is a TemplateSpecializationType that we will never use again.
2015    // In the future, we need to teach getTemplateSpecializationType to only
2016    // build the canonical type and return that to us.
2017    CanonType = Context.getCanonicalType(CanonType);
2018
2019    // This might work out to be a current instantiation, in which
2020    // case the canonical type needs to be the InjectedClassNameType.
2021    //
2022    // TODO: in theory this could be a simple hashtable lookup; most
2023    // changes to CurContext don't change the set of current
2024    // instantiations.
2025    if (isa<ClassTemplateDecl>(Template)) {
2026      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
2027        // If we get out to a namespace, we're done.
2028        if (Ctx->isFileContext()) break;
2029
2030        // If this isn't a record, keep looking.
2031        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
2032        if (!Record) continue;
2033
2034        // Look for one of the two cases with InjectedClassNameTypes
2035        // and check whether it's the same template.
2036        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
2037            !Record->getDescribedClassTemplate())
2038          continue;
2039
2040        // Fetch the injected class name type and check whether its
2041        // injected type is equal to the type we just built.
2042        QualType ICNT = Context.getTypeDeclType(Record);
2043        QualType Injected = cast<InjectedClassNameType>(ICNT)
2044          ->getInjectedSpecializationType();
2045
2046        if (CanonType != Injected->getCanonicalTypeInternal())
2047          continue;
2048
2049        // If so, the canonical type of this TST is the injected
2050        // class name type of the record we just found.
2051        assert(ICNT.isCanonical());
2052        CanonType = ICNT;
2053        break;
2054      }
2055    }
2056  } else if (ClassTemplateDecl *ClassTemplate
2057               = dyn_cast<ClassTemplateDecl>(Template)) {
2058    // Find the class template specialization declaration that
2059    // corresponds to these arguments.
2060    void *InsertPos = 0;
2061    ClassTemplateSpecializationDecl *Decl
2062      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
2063                                          InsertPos);
2064    if (!Decl) {
2065      // This is the first time we have referenced this class template
2066      // specialization. Create the canonical declaration and add it to
2067      // the set of specializations.
2068      Decl = ClassTemplateSpecializationDecl::Create(Context,
2069                            ClassTemplate->getTemplatedDecl()->getTagKind(),
2070                                                ClassTemplate->getDeclContext(),
2071                            ClassTemplate->getTemplatedDecl()->getLocStart(),
2072                                                ClassTemplate->getLocation(),
2073                                                     ClassTemplate,
2074                                                     Converted.data(),
2075                                                     Converted.size(), 0);
2076      ClassTemplate->AddSpecialization(Decl, InsertPos);
2077      Decl->setLexicalDeclContext(CurContext);
2078    }
2079
2080    CanonType = Context.getTypeDeclType(Decl);
2081    assert(isa<RecordType>(CanonType) &&
2082           "type of non-dependent specialization is not a RecordType");
2083  }
2084
2085  // Build the fully-sugared type for this class template
2086  // specialization, which refers back to the class template
2087  // specialization we created or found.
2088  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2089}
2090
2091TypeResult
2092Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
2093                          TemplateTy TemplateD, SourceLocation TemplateLoc,
2094                          SourceLocation LAngleLoc,
2095                          ASTTemplateArgsPtr TemplateArgsIn,
2096                          SourceLocation RAngleLoc,
2097                          bool IsCtorOrDtorName) {
2098  if (SS.isInvalid())
2099    return true;
2100
2101  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2102
2103  // Translate the parser's template argument list in our AST format.
2104  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2105  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2106
2107  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2108    QualType T
2109      = Context.getDependentTemplateSpecializationType(ETK_None,
2110                                                       DTN->getQualifier(),
2111                                                       DTN->getIdentifier(),
2112                                                       TemplateArgs);
2113    // Build type-source information.
2114    TypeLocBuilder TLB;
2115    DependentTemplateSpecializationTypeLoc SpecTL
2116      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2117    SpecTL.setElaboratedKeywordLoc(SourceLocation());
2118    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2119    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2120    SpecTL.setTemplateNameLoc(TemplateLoc);
2121    SpecTL.setLAngleLoc(LAngleLoc);
2122    SpecTL.setRAngleLoc(RAngleLoc);
2123    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2124      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2125    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2126  }
2127
2128  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2129  TemplateArgsIn.release();
2130
2131  if (Result.isNull())
2132    return true;
2133
2134  // Build type-source information.
2135  TypeLocBuilder TLB;
2136  TemplateSpecializationTypeLoc SpecTL
2137    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2138  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2139  SpecTL.setTemplateNameLoc(TemplateLoc);
2140  SpecTL.setLAngleLoc(LAngleLoc);
2141  SpecTL.setRAngleLoc(RAngleLoc);
2142  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2143    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2144
2145  // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2146  // constructor or destructor name (in such a case, the scope specifier
2147  // will be attached to the enclosing Decl or Expr node).
2148  if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2149    // Create an elaborated-type-specifier containing the nested-name-specifier.
2150    Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2151    ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2152    ElabTL.setElaboratedKeywordLoc(SourceLocation());
2153    ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2154  }
2155
2156  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2157}
2158
2159TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2160                                        TypeSpecifierType TagSpec,
2161                                        SourceLocation TagLoc,
2162                                        CXXScopeSpec &SS,
2163                                        SourceLocation TemplateKWLoc,
2164                                        TemplateTy TemplateD,
2165                                        SourceLocation TemplateLoc,
2166                                        SourceLocation LAngleLoc,
2167                                        ASTTemplateArgsPtr TemplateArgsIn,
2168                                        SourceLocation RAngleLoc) {
2169  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2170
2171  // Translate the parser's template argument list in our AST format.
2172  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2173  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2174
2175  // Determine the tag kind
2176  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2177  ElaboratedTypeKeyword Keyword
2178    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2179
2180  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2181    QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2182                                                          DTN->getQualifier(),
2183                                                          DTN->getIdentifier(),
2184                                                                TemplateArgs);
2185
2186    // Build type-source information.
2187    TypeLocBuilder TLB;
2188    DependentTemplateSpecializationTypeLoc SpecTL
2189      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2190    SpecTL.setElaboratedKeywordLoc(TagLoc);
2191    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2192    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2193    SpecTL.setTemplateNameLoc(TemplateLoc);
2194    SpecTL.setLAngleLoc(LAngleLoc);
2195    SpecTL.setRAngleLoc(RAngleLoc);
2196    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2197      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2198    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2199  }
2200
2201  if (TypeAliasTemplateDecl *TAT =
2202        dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2203    // C++0x [dcl.type.elab]p2:
2204    //   If the identifier resolves to a typedef-name or the simple-template-id
2205    //   resolves to an alias template specialization, the
2206    //   elaborated-type-specifier is ill-formed.
2207    Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2208    Diag(TAT->getLocation(), diag::note_declared_at);
2209  }
2210
2211  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2212  if (Result.isNull())
2213    return TypeResult(true);
2214
2215  // Check the tag kind
2216  if (const RecordType *RT = Result->getAs<RecordType>()) {
2217    RecordDecl *D = RT->getDecl();
2218
2219    IdentifierInfo *Id = D->getIdentifier();
2220    assert(Id && "templated class must have an identifier");
2221
2222    if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2223                                      TagLoc, *Id)) {
2224      Diag(TagLoc, diag::err_use_with_wrong_tag)
2225        << Result
2226        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2227      Diag(D->getLocation(), diag::note_previous_use);
2228    }
2229  }
2230
2231  // Provide source-location information for the template specialization.
2232  TypeLocBuilder TLB;
2233  TemplateSpecializationTypeLoc SpecTL
2234    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2235  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2236  SpecTL.setTemplateNameLoc(TemplateLoc);
2237  SpecTL.setLAngleLoc(LAngleLoc);
2238  SpecTL.setRAngleLoc(RAngleLoc);
2239  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2240    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2241
2242  // Construct an elaborated type containing the nested-name-specifier (if any)
2243  // and tag keyword.
2244  Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2245  ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2246  ElabTL.setElaboratedKeywordLoc(TagLoc);
2247  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2248  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2249}
2250
2251ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2252                                     SourceLocation TemplateKWLoc,
2253                                     LookupResult &R,
2254                                     bool RequiresADL,
2255                                 const TemplateArgumentListInfo *TemplateArgs) {
2256  // FIXME: Can we do any checking at this point? I guess we could check the
2257  // template arguments that we have against the template name, if the template
2258  // name refers to a single template. That's not a terribly common case,
2259  // though.
2260  // foo<int> could identify a single function unambiguously
2261  // This approach does NOT work, since f<int>(1);
2262  // gets resolved prior to resorting to overload resolution
2263  // i.e., template<class T> void f(double);
2264  //       vs template<class T, class U> void f(U);
2265
2266  // These should be filtered out by our callers.
2267  assert(!R.empty() && "empty lookup results when building templateid");
2268  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2269
2270  // We don't want lookup warnings at this point.
2271  R.suppressDiagnostics();
2272
2273  UnresolvedLookupExpr *ULE
2274    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2275                                   SS.getWithLocInContext(Context),
2276                                   TemplateKWLoc,
2277                                   R.getLookupNameInfo(),
2278                                   RequiresADL, TemplateArgs,
2279                                   R.begin(), R.end());
2280
2281  return Owned(ULE);
2282}
2283
2284// We actually only call this from template instantiation.
2285ExprResult
2286Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2287                                   SourceLocation TemplateKWLoc,
2288                                   const DeclarationNameInfo &NameInfo,
2289                             const TemplateArgumentListInfo *TemplateArgs) {
2290  assert(TemplateArgs || TemplateKWLoc.isValid());
2291  DeclContext *DC;
2292  if (!(DC = computeDeclContext(SS, false)) ||
2293      DC->isDependentContext() ||
2294      RequireCompleteDeclContext(SS, DC))
2295    return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
2296
2297  bool MemberOfUnknownSpecialization;
2298  LookupResult R(*this, NameInfo, LookupOrdinaryName);
2299  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
2300                     MemberOfUnknownSpecialization);
2301
2302  if (R.isAmbiguous())
2303    return ExprError();
2304
2305  if (R.empty()) {
2306    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2307      << NameInfo.getName() << SS.getRange();
2308    return ExprError();
2309  }
2310
2311  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2312    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2313      << (NestedNameSpecifier*) SS.getScopeRep()
2314      << NameInfo.getName() << SS.getRange();
2315    Diag(Temp->getLocation(), diag::note_referenced_class_template);
2316    return ExprError();
2317  }
2318
2319  return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
2320}
2321
2322/// \brief Form a dependent template name.
2323///
2324/// This action forms a dependent template name given the template
2325/// name and its (presumably dependent) scope specifier. For
2326/// example, given "MetaFun::template apply", the scope specifier \p
2327/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2328/// of the "template" keyword, and "apply" is the \p Name.
2329TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2330                                                  CXXScopeSpec &SS,
2331                                                  SourceLocation TemplateKWLoc,
2332                                                  UnqualifiedId &Name,
2333                                                  ParsedType ObjectType,
2334                                                  bool EnteringContext,
2335                                                  TemplateTy &Result) {
2336  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
2337    Diag(TemplateKWLoc,
2338         getLangOpts().CPlusPlus0x ?
2339           diag::warn_cxx98_compat_template_outside_of_template :
2340           diag::ext_template_outside_of_template)
2341      << FixItHint::CreateRemoval(TemplateKWLoc);
2342
2343  DeclContext *LookupCtx = 0;
2344  if (SS.isSet())
2345    LookupCtx = computeDeclContext(SS, EnteringContext);
2346  if (!LookupCtx && ObjectType)
2347    LookupCtx = computeDeclContext(ObjectType.get());
2348  if (LookupCtx) {
2349    // C++0x [temp.names]p5:
2350    //   If a name prefixed by the keyword template is not the name of
2351    //   a template, the program is ill-formed. [Note: the keyword
2352    //   template may not be applied to non-template members of class
2353    //   templates. -end note ] [ Note: as is the case with the
2354    //   typename prefix, the template prefix is allowed in cases
2355    //   where it is not strictly necessary; i.e., when the
2356    //   nested-name-specifier or the expression on the left of the ->
2357    //   or . is not dependent on a template-parameter, or the use
2358    //   does not appear in the scope of a template. -end note]
2359    //
2360    // Note: C++03 was more strict here, because it banned the use of
2361    // the "template" keyword prior to a template-name that was not a
2362    // dependent name. C++ DR468 relaxed this requirement (the
2363    // "template" keyword is now permitted). We follow the C++0x
2364    // rules, even in C++03 mode with a warning, retroactively applying the DR.
2365    bool MemberOfUnknownSpecialization;
2366    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
2367                                          ObjectType, EnteringContext, Result,
2368                                          MemberOfUnknownSpecialization);
2369    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2370        isa<CXXRecordDecl>(LookupCtx) &&
2371        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2372         cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2373      // This is a dependent template. Handle it below.
2374    } else if (TNK == TNK_Non_template) {
2375      Diag(Name.getLocStart(),
2376           diag::err_template_kw_refers_to_non_template)
2377        << GetNameFromUnqualifiedId(Name).getName()
2378        << Name.getSourceRange()
2379        << TemplateKWLoc;
2380      return TNK_Non_template;
2381    } else {
2382      // We found something; return it.
2383      return TNK;
2384    }
2385  }
2386
2387  NestedNameSpecifier *Qualifier
2388    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2389
2390  switch (Name.getKind()) {
2391  case UnqualifiedId::IK_Identifier:
2392    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2393                                                              Name.Identifier));
2394    return TNK_Dependent_template_name;
2395
2396  case UnqualifiedId::IK_OperatorFunctionId:
2397    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2398                                             Name.OperatorFunctionId.Operator));
2399    return TNK_Dependent_template_name;
2400
2401  case UnqualifiedId::IK_LiteralOperatorId:
2402    llvm_unreachable(
2403            "We don't support these; Parse shouldn't have allowed propagation");
2404
2405  default:
2406    break;
2407  }
2408
2409  Diag(Name.getLocStart(),
2410       diag::err_template_kw_refers_to_non_template)
2411    << GetNameFromUnqualifiedId(Name).getName()
2412    << Name.getSourceRange()
2413    << TemplateKWLoc;
2414  return TNK_Non_template;
2415}
2416
2417bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2418                                     const TemplateArgumentLoc &AL,
2419                          SmallVectorImpl<TemplateArgument> &Converted) {
2420  const TemplateArgument &Arg = AL.getArgument();
2421
2422  // Check template type parameter.
2423  switch(Arg.getKind()) {
2424  case TemplateArgument::Type:
2425    // C++ [temp.arg.type]p1:
2426    //   A template-argument for a template-parameter which is a
2427    //   type shall be a type-id.
2428    break;
2429  case TemplateArgument::Template: {
2430    // We have a template type parameter but the template argument
2431    // is a template without any arguments.
2432    SourceRange SR = AL.getSourceRange();
2433    TemplateName Name = Arg.getAsTemplate();
2434    Diag(SR.getBegin(), diag::err_template_missing_args)
2435      << Name << SR;
2436    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2437      Diag(Decl->getLocation(), diag::note_template_decl_here);
2438
2439    return true;
2440  }
2441  case TemplateArgument::Expression: {
2442    // We have a template type parameter but the template argument is an
2443    // expression; see if maybe it is missing the "typename" keyword.
2444    CXXScopeSpec SS;
2445    DeclarationNameInfo NameInfo;
2446
2447    if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
2448      SS.Adopt(ArgExpr->getQualifierLoc());
2449      NameInfo = ArgExpr->getNameInfo();
2450    } else if (DependentScopeDeclRefExpr *ArgExpr =
2451               dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
2452      SS.Adopt(ArgExpr->getQualifierLoc());
2453      NameInfo = ArgExpr->getNameInfo();
2454    } else if (CXXDependentScopeMemberExpr *ArgExpr =
2455               dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
2456      if (ArgExpr->isImplicitAccess()) {
2457        SS.Adopt(ArgExpr->getQualifierLoc());
2458        NameInfo = ArgExpr->getMemberNameInfo();
2459      }
2460    }
2461
2462    if (NameInfo.getName().isIdentifier()) {
2463      LookupResult Result(*this, NameInfo, LookupOrdinaryName);
2464      LookupParsedName(Result, CurScope, &SS);
2465
2466      if (Result.getAsSingle<TypeDecl>() ||
2467          Result.getResultKind() ==
2468            LookupResult::NotFoundInCurrentInstantiation) {
2469        // FIXME: Add a FixIt and fix up the template argument for recovery.
2470        SourceLocation Loc = AL.getSourceRange().getBegin();
2471        Diag(Loc, diag::err_template_arg_must_be_type_suggest);
2472        Diag(Param->getLocation(), diag::note_template_param_here);
2473        return true;
2474      }
2475    }
2476    // fallthrough
2477  }
2478  default: {
2479    // We have a template type parameter but the template argument
2480    // is not a type.
2481    SourceRange SR = AL.getSourceRange();
2482    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2483    Diag(Param->getLocation(), diag::note_template_param_here);
2484
2485    return true;
2486  }
2487  }
2488
2489  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2490    return true;
2491
2492  // Add the converted template type argument.
2493  QualType ArgType = Context.getCanonicalType(Arg.getAsType());
2494
2495  // Objective-C ARC:
2496  //   If an explicitly-specified template argument type is a lifetime type
2497  //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
2498  if (getLangOpts().ObjCAutoRefCount &&
2499      ArgType->isObjCLifetimeType() &&
2500      !ArgType.getObjCLifetime()) {
2501    Qualifiers Qs;
2502    Qs.setObjCLifetime(Qualifiers::OCL_Strong);
2503    ArgType = Context.getQualifiedType(ArgType, Qs);
2504  }
2505
2506  Converted.push_back(TemplateArgument(ArgType));
2507  return false;
2508}
2509
2510/// \brief Substitute template arguments into the default template argument for
2511/// the given template type parameter.
2512///
2513/// \param SemaRef the semantic analysis object for which we are performing
2514/// the substitution.
2515///
2516/// \param Template the template that we are synthesizing template arguments
2517/// for.
2518///
2519/// \param TemplateLoc the location of the template name that started the
2520/// template-id we are checking.
2521///
2522/// \param RAngleLoc the location of the right angle bracket ('>') that
2523/// terminates the template-id.
2524///
2525/// \param Param the template template parameter whose default we are
2526/// substituting into.
2527///
2528/// \param Converted the list of template arguments provided for template
2529/// parameters that precede \p Param in the template parameter list.
2530/// \returns the substituted template argument, or NULL if an error occurred.
2531static TypeSourceInfo *
2532SubstDefaultTemplateArgument(Sema &SemaRef,
2533                             TemplateDecl *Template,
2534                             SourceLocation TemplateLoc,
2535                             SourceLocation RAngleLoc,
2536                             TemplateTypeParmDecl *Param,
2537                         SmallVectorImpl<TemplateArgument> &Converted) {
2538  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2539
2540  // If the argument type is dependent, instantiate it now based
2541  // on the previously-computed template arguments.
2542  if (ArgType->getType()->isDependentType()) {
2543    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2544                                      Converted.data(), Converted.size());
2545
2546    MultiLevelTemplateArgumentList AllTemplateArgs
2547      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2548
2549    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2550                                     Template, Converted.data(),
2551                                     Converted.size(),
2552                                     SourceRange(TemplateLoc, RAngleLoc));
2553
2554    Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
2555    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2556                                Param->getDefaultArgumentLoc(),
2557                                Param->getDeclName());
2558  }
2559
2560  return ArgType;
2561}
2562
2563/// \brief Substitute template arguments into the default template argument for
2564/// the given non-type template parameter.
2565///
2566/// \param SemaRef the semantic analysis object for which we are performing
2567/// the substitution.
2568///
2569/// \param Template the template that we are synthesizing template arguments
2570/// for.
2571///
2572/// \param TemplateLoc the location of the template name that started the
2573/// template-id we are checking.
2574///
2575/// \param RAngleLoc the location of the right angle bracket ('>') that
2576/// terminates the template-id.
2577///
2578/// \param Param the non-type template parameter whose default we are
2579/// substituting into.
2580///
2581/// \param Converted the list of template arguments provided for template
2582/// parameters that precede \p Param in the template parameter list.
2583///
2584/// \returns the substituted template argument, or NULL if an error occurred.
2585static ExprResult
2586SubstDefaultTemplateArgument(Sema &SemaRef,
2587                             TemplateDecl *Template,
2588                             SourceLocation TemplateLoc,
2589                             SourceLocation RAngleLoc,
2590                             NonTypeTemplateParmDecl *Param,
2591                        SmallVectorImpl<TemplateArgument> &Converted) {
2592  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2593                                    Converted.data(), Converted.size());
2594
2595  MultiLevelTemplateArgumentList AllTemplateArgs
2596    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2597
2598  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2599                                   Template, Converted.data(),
2600                                   Converted.size(),
2601                                   SourceRange(TemplateLoc, RAngleLoc));
2602
2603  Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
2604  EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
2605  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2606}
2607
2608/// \brief Substitute template arguments into the default template argument for
2609/// the given template template parameter.
2610///
2611/// \param SemaRef the semantic analysis object for which we are performing
2612/// the substitution.
2613///
2614/// \param Template the template that we are synthesizing template arguments
2615/// for.
2616///
2617/// \param TemplateLoc the location of the template name that started the
2618/// template-id we are checking.
2619///
2620/// \param RAngleLoc the location of the right angle bracket ('>') that
2621/// terminates the template-id.
2622///
2623/// \param Param the template template parameter whose default we are
2624/// substituting into.
2625///
2626/// \param Converted the list of template arguments provided for template
2627/// parameters that precede \p Param in the template parameter list.
2628///
2629/// \param QualifierLoc Will be set to the nested-name-specifier (with
2630/// source-location information) that precedes the template name.
2631///
2632/// \returns the substituted template argument, or NULL if an error occurred.
2633static TemplateName
2634SubstDefaultTemplateArgument(Sema &SemaRef,
2635                             TemplateDecl *Template,
2636                             SourceLocation TemplateLoc,
2637                             SourceLocation RAngleLoc,
2638                             TemplateTemplateParmDecl *Param,
2639                       SmallVectorImpl<TemplateArgument> &Converted,
2640                             NestedNameSpecifierLoc &QualifierLoc) {
2641  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2642                                    Converted.data(), Converted.size());
2643
2644  MultiLevelTemplateArgumentList AllTemplateArgs
2645    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2646
2647  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2648                                   Template, Converted.data(),
2649                                   Converted.size(),
2650                                   SourceRange(TemplateLoc, RAngleLoc));
2651
2652  Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
2653  // Substitute into the nested-name-specifier first,
2654  QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
2655  if (QualifierLoc) {
2656    QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2657                                                       AllTemplateArgs);
2658    if (!QualifierLoc)
2659      return TemplateName();
2660  }
2661
2662  return SemaRef.SubstTemplateName(QualifierLoc,
2663                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2664                              Param->getDefaultArgument().getTemplateNameLoc(),
2665                                   AllTemplateArgs);
2666}
2667
2668/// \brief If the given template parameter has a default template
2669/// argument, substitute into that default template argument and
2670/// return the corresponding template argument.
2671TemplateArgumentLoc
2672Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2673                                              SourceLocation TemplateLoc,
2674                                              SourceLocation RAngleLoc,
2675                                              Decl *Param,
2676                      SmallVectorImpl<TemplateArgument> &Converted) {
2677   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2678    if (!TypeParm->hasDefaultArgument())
2679      return TemplateArgumentLoc();
2680
2681    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2682                                                      TemplateLoc,
2683                                                      RAngleLoc,
2684                                                      TypeParm,
2685                                                      Converted);
2686    if (DI)
2687      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2688
2689    return TemplateArgumentLoc();
2690  }
2691
2692  if (NonTypeTemplateParmDecl *NonTypeParm
2693        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2694    if (!NonTypeParm->hasDefaultArgument())
2695      return TemplateArgumentLoc();
2696
2697    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2698                                                  TemplateLoc,
2699                                                  RAngleLoc,
2700                                                  NonTypeParm,
2701                                                  Converted);
2702    if (Arg.isInvalid())
2703      return TemplateArgumentLoc();
2704
2705    Expr *ArgE = Arg.takeAs<Expr>();
2706    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2707  }
2708
2709  TemplateTemplateParmDecl *TempTempParm
2710    = cast<TemplateTemplateParmDecl>(Param);
2711  if (!TempTempParm->hasDefaultArgument())
2712    return TemplateArgumentLoc();
2713
2714
2715  NestedNameSpecifierLoc QualifierLoc;
2716  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2717                                                    TemplateLoc,
2718                                                    RAngleLoc,
2719                                                    TempTempParm,
2720                                                    Converted,
2721                                                    QualifierLoc);
2722  if (TName.isNull())
2723    return TemplateArgumentLoc();
2724
2725  return TemplateArgumentLoc(TemplateArgument(TName),
2726                TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
2727                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2728}
2729
2730/// \brief Check that the given template argument corresponds to the given
2731/// template parameter.
2732///
2733/// \param Param The template parameter against which the argument will be
2734/// checked.
2735///
2736/// \param Arg The template argument.
2737///
2738/// \param Template The template in which the template argument resides.
2739///
2740/// \param TemplateLoc The location of the template name for the template
2741/// whose argument list we're matching.
2742///
2743/// \param RAngleLoc The location of the right angle bracket ('>') that closes
2744/// the template argument list.
2745///
2746/// \param ArgumentPackIndex The index into the argument pack where this
2747/// argument will be placed. Only valid if the parameter is a parameter pack.
2748///
2749/// \param Converted The checked, converted argument will be added to the
2750/// end of this small vector.
2751///
2752/// \param CTAK Describes how we arrived at this particular template argument:
2753/// explicitly written, deduced, etc.
2754///
2755/// \returns true on error, false otherwise.
2756bool Sema::CheckTemplateArgument(NamedDecl *Param,
2757                                 const TemplateArgumentLoc &Arg,
2758                                 NamedDecl *Template,
2759                                 SourceLocation TemplateLoc,
2760                                 SourceLocation RAngleLoc,
2761                                 unsigned ArgumentPackIndex,
2762                            SmallVectorImpl<TemplateArgument> &Converted,
2763                                 CheckTemplateArgumentKind CTAK) {
2764  // Check template type parameters.
2765  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2766    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2767
2768  // Check non-type template parameters.
2769  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2770    // Do substitution on the type of the non-type template parameter
2771    // with the template arguments we've seen thus far.  But if the
2772    // template has a dependent context then we cannot substitute yet.
2773    QualType NTTPType = NTTP->getType();
2774    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
2775      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
2776
2777    if (NTTPType->isDependentType() &&
2778        !isa<TemplateTemplateParmDecl>(Template) &&
2779        !Template->getDeclContext()->isDependentContext()) {
2780      // Do substitution on the type of the non-type template parameter.
2781      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2782                                 NTTP, Converted.data(), Converted.size(),
2783                                 SourceRange(TemplateLoc, RAngleLoc));
2784
2785      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2786                                        Converted.data(), Converted.size());
2787      NTTPType = SubstType(NTTPType,
2788                           MultiLevelTemplateArgumentList(TemplateArgs),
2789                           NTTP->getLocation(),
2790                           NTTP->getDeclName());
2791      // If that worked, check the non-type template parameter type
2792      // for validity.
2793      if (!NTTPType.isNull())
2794        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2795                                                     NTTP->getLocation());
2796      if (NTTPType.isNull())
2797        return true;
2798    }
2799
2800    switch (Arg.getArgument().getKind()) {
2801    case TemplateArgument::Null:
2802      llvm_unreachable("Should never see a NULL template argument here");
2803
2804    case TemplateArgument::Expression: {
2805      TemplateArgument Result;
2806      ExprResult Res =
2807        CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
2808                              Result, CTAK);
2809      if (Res.isInvalid())
2810        return true;
2811
2812      Converted.push_back(Result);
2813      break;
2814    }
2815
2816    case TemplateArgument::Declaration:
2817    case TemplateArgument::Integral:
2818      // We've already checked this template argument, so just copy
2819      // it to the list of converted arguments.
2820      Converted.push_back(Arg.getArgument());
2821      break;
2822
2823    case TemplateArgument::Template:
2824    case TemplateArgument::TemplateExpansion:
2825      // We were given a template template argument. It may not be ill-formed;
2826      // see below.
2827      if (DependentTemplateName *DTN
2828            = Arg.getArgument().getAsTemplateOrTemplatePattern()
2829                                              .getAsDependentTemplateName()) {
2830        // We have a template argument such as \c T::template X, which we
2831        // parsed as a template template argument. However, since we now
2832        // know that we need a non-type template argument, convert this
2833        // template name into an expression.
2834
2835        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2836                                     Arg.getTemplateNameLoc());
2837
2838        CXXScopeSpec SS;
2839        SS.Adopt(Arg.getTemplateQualifierLoc());
2840        // FIXME: the template-template arg was a DependentTemplateName,
2841        // so it was provided with a template keyword. However, its source
2842        // location is not stored in the template argument structure.
2843        SourceLocation TemplateKWLoc;
2844        ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
2845                                                SS.getWithLocInContext(Context),
2846                                                               TemplateKWLoc,
2847                                                               NameInfo, 0));
2848
2849        // If we parsed the template argument as a pack expansion, create a
2850        // pack expansion expression.
2851        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2852          E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
2853          if (E.isInvalid())
2854            return true;
2855        }
2856
2857        TemplateArgument Result;
2858        E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
2859        if (E.isInvalid())
2860          return true;
2861
2862        Converted.push_back(Result);
2863        break;
2864      }
2865
2866      // We have a template argument that actually does refer to a class
2867      // template, alias template, or template template parameter, and
2868      // therefore cannot be a non-type template argument.
2869      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2870        << Arg.getSourceRange();
2871
2872      Diag(Param->getLocation(), diag::note_template_param_here);
2873      return true;
2874
2875    case TemplateArgument::Type: {
2876      // We have a non-type template parameter but the template
2877      // argument is a type.
2878
2879      // C++ [temp.arg]p2:
2880      //   In a template-argument, an ambiguity between a type-id and
2881      //   an expression is resolved to a type-id, regardless of the
2882      //   form of the corresponding template-parameter.
2883      //
2884      // We warn specifically about this case, since it can be rather
2885      // confusing for users.
2886      QualType T = Arg.getArgument().getAsType();
2887      SourceRange SR = Arg.getSourceRange();
2888      if (T->isFunctionType())
2889        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2890      else
2891        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2892      Diag(Param->getLocation(), diag::note_template_param_here);
2893      return true;
2894    }
2895
2896    case TemplateArgument::Pack:
2897      llvm_unreachable("Caller must expand template argument packs");
2898    }
2899
2900    return false;
2901  }
2902
2903
2904  // Check template template parameters.
2905  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2906
2907  // Substitute into the template parameter list of the template
2908  // template parameter, since previously-supplied template arguments
2909  // may appear within the template template parameter.
2910  {
2911    // Set up a template instantiation context.
2912    LocalInstantiationScope Scope(*this);
2913    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2914                               TempParm, Converted.data(), Converted.size(),
2915                               SourceRange(TemplateLoc, RAngleLoc));
2916
2917    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2918                                      Converted.data(), Converted.size());
2919    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2920                      SubstDecl(TempParm, CurContext,
2921                                MultiLevelTemplateArgumentList(TemplateArgs)));
2922    if (!TempParm)
2923      return true;
2924  }
2925
2926  switch (Arg.getArgument().getKind()) {
2927  case TemplateArgument::Null:
2928    llvm_unreachable("Should never see a NULL template argument here");
2929
2930  case TemplateArgument::Template:
2931  case TemplateArgument::TemplateExpansion:
2932    if (CheckTemplateArgument(TempParm, Arg))
2933      return true;
2934
2935    Converted.push_back(Arg.getArgument());
2936    break;
2937
2938  case TemplateArgument::Expression:
2939  case TemplateArgument::Type:
2940    // We have a template template parameter but the template
2941    // argument does not refer to a template.
2942    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
2943      << getLangOpts().CPlusPlus0x;
2944    return true;
2945
2946  case TemplateArgument::Declaration:
2947    llvm_unreachable("Declaration argument with template template parameter");
2948  case TemplateArgument::Integral:
2949    llvm_unreachable("Integral argument with template template parameter");
2950
2951  case TemplateArgument::Pack:
2952    llvm_unreachable("Caller must expand template argument packs");
2953  }
2954
2955  return false;
2956}
2957
2958/// \brief Diagnose an arity mismatch in the
2959static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
2960                                  SourceLocation TemplateLoc,
2961                                  TemplateArgumentListInfo &TemplateArgs) {
2962  TemplateParameterList *Params = Template->getTemplateParameters();
2963  unsigned NumParams = Params->size();
2964  unsigned NumArgs = TemplateArgs.size();
2965
2966  SourceRange Range;
2967  if (NumArgs > NumParams)
2968    Range = SourceRange(TemplateArgs[NumParams].getLocation(),
2969                        TemplateArgs.getRAngleLoc());
2970  S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2971    << (NumArgs > NumParams)
2972    << (isa<ClassTemplateDecl>(Template)? 0 :
2973        isa<FunctionTemplateDecl>(Template)? 1 :
2974        isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2975    << Template << Range;
2976  S.Diag(Template->getLocation(), diag::note_template_decl_here)
2977    << Params->getSourceRange();
2978  return true;
2979}
2980
2981/// \brief Check that the given template argument list is well-formed
2982/// for specializing the given template.
2983bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2984                                     SourceLocation TemplateLoc,
2985                                     TemplateArgumentListInfo &TemplateArgs,
2986                                     bool PartialTemplateArgs,
2987                          SmallVectorImpl<TemplateArgument> &Converted,
2988                                     bool *ExpansionIntoFixedList) {
2989  if (ExpansionIntoFixedList)
2990    *ExpansionIntoFixedList = false;
2991
2992  TemplateParameterList *Params = Template->getTemplateParameters();
2993  unsigned NumParams = Params->size();
2994  unsigned NumArgs = TemplateArgs.size();
2995  bool Invalid = false;
2996
2997  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2998
2999  bool HasParameterPack =
3000    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
3001
3002  // C++ [temp.arg]p1:
3003  //   [...] The type and form of each template-argument specified in
3004  //   a template-id shall match the type and form specified for the
3005  //   corresponding parameter declared by the template in its
3006  //   template-parameter-list.
3007  bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
3008  SmallVector<TemplateArgument, 2> ArgumentPack;
3009  TemplateParameterList::iterator Param = Params->begin(),
3010                               ParamEnd = Params->end();
3011  unsigned ArgIdx = 0;
3012  LocalInstantiationScope InstScope(*this, true);
3013  bool SawPackExpansion = false;
3014  while (Param != ParamEnd) {
3015    if (ArgIdx < NumArgs) {
3016      // If we have an expanded parameter pack, make sure we don't have too
3017      // many arguments.
3018      // FIXME: This really should fall out from the normal arity checking.
3019      if (NonTypeTemplateParmDecl *NTTP
3020                                = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3021        if (NTTP->isExpandedParameterPack() &&
3022            ArgumentPack.size() >= NTTP->getNumExpansionTypes()) {
3023          Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3024            << true
3025            << (isa<ClassTemplateDecl>(Template)? 0 :
3026                isa<FunctionTemplateDecl>(Template)? 1 :
3027                isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3028            << Template;
3029          Diag(Template->getLocation(), diag::note_template_decl_here)
3030            << Params->getSourceRange();
3031          return true;
3032        }
3033      }
3034
3035      // Check the template argument we were given.
3036      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
3037                                TemplateLoc, RAngleLoc,
3038                                ArgumentPack.size(), Converted))
3039        return true;
3040
3041      if ((*Param)->isTemplateParameterPack()) {
3042        // The template parameter was a template parameter pack, so take the
3043        // deduced argument and place it on the argument pack. Note that we
3044        // stay on the same template parameter so that we can deduce more
3045        // arguments.
3046        ArgumentPack.push_back(Converted.back());
3047        Converted.pop_back();
3048      } else {
3049        // Move to the next template parameter.
3050        ++Param;
3051      }
3052
3053      // If this template argument is a pack expansion, record that fact
3054      // and break out; we can't actually check any more.
3055      if (TemplateArgs[ArgIdx].getArgument().isPackExpansion()) {
3056        SawPackExpansion = true;
3057        ++ArgIdx;
3058        break;
3059      }
3060
3061      ++ArgIdx;
3062      continue;
3063    }
3064
3065    // If we're checking a partial template argument list, we're done.
3066    if (PartialTemplateArgs) {
3067      if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
3068        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3069                                                         ArgumentPack.data(),
3070                                                         ArgumentPack.size()));
3071
3072      return Invalid;
3073    }
3074
3075    // If we have a template parameter pack with no more corresponding
3076    // arguments, just break out now and we'll fill in the argument pack below.
3077    if ((*Param)->isTemplateParameterPack())
3078      break;
3079
3080    // Check whether we have a default argument.
3081    TemplateArgumentLoc Arg;
3082
3083    // Retrieve the default template argument from the template
3084    // parameter. For each kind of template parameter, we substitute the
3085    // template arguments provided thus far and any "outer" template arguments
3086    // (when the template parameter was part of a nested template) into
3087    // the default argument.
3088    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
3089      if (!TTP->hasDefaultArgument())
3090        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3091                                     TemplateArgs);
3092
3093      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
3094                                                             Template,
3095                                                             TemplateLoc,
3096                                                             RAngleLoc,
3097                                                             TTP,
3098                                                             Converted);
3099      if (!ArgType)
3100        return true;
3101
3102      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
3103                                ArgType);
3104    } else if (NonTypeTemplateParmDecl *NTTP
3105                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3106      if (!NTTP->hasDefaultArgument())
3107        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3108                                     TemplateArgs);
3109
3110      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
3111                                                              TemplateLoc,
3112                                                              RAngleLoc,
3113                                                              NTTP,
3114                                                              Converted);
3115      if (E.isInvalid())
3116        return true;
3117
3118      Expr *Ex = E.takeAs<Expr>();
3119      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
3120    } else {
3121      TemplateTemplateParmDecl *TempParm
3122        = cast<TemplateTemplateParmDecl>(*Param);
3123
3124      if (!TempParm->hasDefaultArgument())
3125        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3126                                     TemplateArgs);
3127
3128      NestedNameSpecifierLoc QualifierLoc;
3129      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3130                                                       TemplateLoc,
3131                                                       RAngleLoc,
3132                                                       TempParm,
3133                                                       Converted,
3134                                                       QualifierLoc);
3135      if (Name.isNull())
3136        return true;
3137
3138      Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3139                           TempParm->getDefaultArgument().getTemplateNameLoc());
3140    }
3141
3142    // Introduce an instantiation record that describes where we are using
3143    // the default template argument.
3144    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
3145                                        Converted.data(), Converted.size(),
3146                                        SourceRange(TemplateLoc, RAngleLoc));
3147
3148    // Check the default template argument.
3149    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3150                              RAngleLoc, 0, Converted))
3151      return true;
3152
3153    // Core issue 150 (assumed resolution): if this is a template template
3154    // parameter, keep track of the default template arguments from the
3155    // template definition.
3156    if (isTemplateTemplateParameter)
3157      TemplateArgs.addArgument(Arg);
3158
3159    // Move to the next template parameter and argument.
3160    ++Param;
3161    ++ArgIdx;
3162  }
3163
3164  // If we saw a pack expansion, then directly convert the remaining arguments,
3165  // because we don't know what parameters they'll match up with.
3166  if (SawPackExpansion) {
3167    bool AddToArgumentPack
3168      = Param != ParamEnd && (*Param)->isTemplateParameterPack();
3169    while (ArgIdx < NumArgs) {
3170      if (AddToArgumentPack)
3171        ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument());
3172      else
3173        Converted.push_back(TemplateArgs[ArgIdx].getArgument());
3174      ++ArgIdx;
3175    }
3176
3177    // Push the argument pack onto the list of converted arguments.
3178    if (AddToArgumentPack) {
3179      if (ArgumentPack.empty())
3180        Converted.push_back(TemplateArgument(0, 0));
3181      else {
3182        Converted.push_back(
3183          TemplateArgument::CreatePackCopy(Context,
3184                                           ArgumentPack.data(),
3185                                           ArgumentPack.size()));
3186        ArgumentPack.clear();
3187      }
3188    } else if (ExpansionIntoFixedList) {
3189      // We have expanded a pack into a fixed list.
3190      *ExpansionIntoFixedList = true;
3191    }
3192
3193    return Invalid;
3194  }
3195
3196  // If we have any leftover arguments, then there were too many arguments.
3197  // Complain and fail.
3198  if (ArgIdx < NumArgs)
3199    return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3200
3201  // If we have an expanded parameter pack, make sure we don't have too
3202  // many arguments.
3203  // FIXME: This really should fall out from the normal arity checking.
3204  if (Param != ParamEnd) {
3205    if (NonTypeTemplateParmDecl *NTTP
3206          = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3207      if (NTTP->isExpandedParameterPack() &&
3208          ArgumentPack.size() < NTTP->getNumExpansionTypes()) {
3209        Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3210          << false
3211          << (isa<ClassTemplateDecl>(Template)? 0 :
3212              isa<FunctionTemplateDecl>(Template)? 1 :
3213              isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3214          << Template;
3215        Diag(Template->getLocation(), diag::note_template_decl_here)
3216          << Params->getSourceRange();
3217        return true;
3218      }
3219    }
3220  }
3221
3222  // Form argument packs for each of the parameter packs remaining.
3223  while (Param != ParamEnd) {
3224    // If we're checking a partial list of template arguments, don't fill
3225    // in arguments for non-template parameter packs.
3226    if ((*Param)->isTemplateParameterPack()) {
3227      if (!HasParameterPack)
3228        return true;
3229      if (ArgumentPack.empty())
3230        Converted.push_back(TemplateArgument(0, 0));
3231      else {
3232        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3233                                                          ArgumentPack.data(),
3234                                                         ArgumentPack.size()));
3235        ArgumentPack.clear();
3236      }
3237    } else if (!PartialTemplateArgs)
3238      return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3239
3240    ++Param;
3241  }
3242
3243  return Invalid;
3244}
3245
3246namespace {
3247  class UnnamedLocalNoLinkageFinder
3248    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3249  {
3250    Sema &S;
3251    SourceRange SR;
3252
3253    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3254
3255  public:
3256    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3257
3258    bool Visit(QualType T) {
3259      return inherited::Visit(T.getTypePtr());
3260    }
3261
3262#define TYPE(Class, Parent) \
3263    bool Visit##Class##Type(const Class##Type *);
3264#define ABSTRACT_TYPE(Class, Parent) \
3265    bool Visit##Class##Type(const Class##Type *) { return false; }
3266#define NON_CANONICAL_TYPE(Class, Parent) \
3267    bool Visit##Class##Type(const Class##Type *) { return false; }
3268#include "clang/AST/TypeNodes.def"
3269
3270    bool VisitTagDecl(const TagDecl *Tag);
3271    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3272  };
3273}
3274
3275bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3276  return false;
3277}
3278
3279bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3280  return Visit(T->getElementType());
3281}
3282
3283bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3284  return Visit(T->getPointeeType());
3285}
3286
3287bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3288                                                    const BlockPointerType* T) {
3289  return Visit(T->getPointeeType());
3290}
3291
3292bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3293                                                const LValueReferenceType* T) {
3294  return Visit(T->getPointeeType());
3295}
3296
3297bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3298                                                const RValueReferenceType* T) {
3299  return Visit(T->getPointeeType());
3300}
3301
3302bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3303                                                  const MemberPointerType* T) {
3304  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3305}
3306
3307bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3308                                                  const ConstantArrayType* T) {
3309  return Visit(T->getElementType());
3310}
3311
3312bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3313                                                 const IncompleteArrayType* T) {
3314  return Visit(T->getElementType());
3315}
3316
3317bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3318                                                   const VariableArrayType* T) {
3319  return Visit(T->getElementType());
3320}
3321
3322bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3323                                            const DependentSizedArrayType* T) {
3324  return Visit(T->getElementType());
3325}
3326
3327bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3328                                         const DependentSizedExtVectorType* T) {
3329  return Visit(T->getElementType());
3330}
3331
3332bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3333  return Visit(T->getElementType());
3334}
3335
3336bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3337  return Visit(T->getElementType());
3338}
3339
3340bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3341                                                  const FunctionProtoType* T) {
3342  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
3343                                         AEnd = T->arg_type_end();
3344       A != AEnd; ++A) {
3345    if (Visit(*A))
3346      return true;
3347  }
3348
3349  return Visit(T->getResultType());
3350}
3351
3352bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3353                                               const FunctionNoProtoType* T) {
3354  return Visit(T->getResultType());
3355}
3356
3357bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
3358                                                  const UnresolvedUsingType*) {
3359  return false;
3360}
3361
3362bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
3363  return false;
3364}
3365
3366bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
3367  return Visit(T->getUnderlyingType());
3368}
3369
3370bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
3371  return false;
3372}
3373
3374bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
3375                                                    const UnaryTransformType*) {
3376  return false;
3377}
3378
3379bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
3380  return Visit(T->getDeducedType());
3381}
3382
3383bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
3384  return VisitTagDecl(T->getDecl());
3385}
3386
3387bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
3388  return VisitTagDecl(T->getDecl());
3389}
3390
3391bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
3392                                                 const TemplateTypeParmType*) {
3393  return false;
3394}
3395
3396bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
3397                                        const SubstTemplateTypeParmPackType *) {
3398  return false;
3399}
3400
3401bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
3402                                            const TemplateSpecializationType*) {
3403  return false;
3404}
3405
3406bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
3407                                              const InjectedClassNameType* T) {
3408  return VisitTagDecl(T->getDecl());
3409}
3410
3411bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
3412                                                   const DependentNameType* T) {
3413  return VisitNestedNameSpecifier(T->getQualifier());
3414}
3415
3416bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
3417                                 const DependentTemplateSpecializationType* T) {
3418  return VisitNestedNameSpecifier(T->getQualifier());
3419}
3420
3421bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
3422                                                   const PackExpansionType* T) {
3423  return Visit(T->getPattern());
3424}
3425
3426bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
3427  return false;
3428}
3429
3430bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
3431                                                   const ObjCInterfaceType *) {
3432  return false;
3433}
3434
3435bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
3436                                                const ObjCObjectPointerType *) {
3437  return false;
3438}
3439
3440bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
3441  return Visit(T->getValueType());
3442}
3443
3444bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
3445  if (Tag->getDeclContext()->isFunctionOrMethod()) {
3446    S.Diag(SR.getBegin(),
3447           S.getLangOpts().CPlusPlus0x ?
3448             diag::warn_cxx98_compat_template_arg_local_type :
3449             diag::ext_template_arg_local_type)
3450      << S.Context.getTypeDeclType(Tag) << SR;
3451    return true;
3452  }
3453
3454  if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) {
3455    S.Diag(SR.getBegin(),
3456           S.getLangOpts().CPlusPlus0x ?
3457             diag::warn_cxx98_compat_template_arg_unnamed_type :
3458             diag::ext_template_arg_unnamed_type) << SR;
3459    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
3460    return true;
3461  }
3462
3463  return false;
3464}
3465
3466bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
3467                                                    NestedNameSpecifier *NNS) {
3468  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
3469    return true;
3470
3471  switch (NNS->getKind()) {
3472  case NestedNameSpecifier::Identifier:
3473  case NestedNameSpecifier::Namespace:
3474  case NestedNameSpecifier::NamespaceAlias:
3475  case NestedNameSpecifier::Global:
3476    return false;
3477
3478  case NestedNameSpecifier::TypeSpec:
3479  case NestedNameSpecifier::TypeSpecWithTemplate:
3480    return Visit(QualType(NNS->getAsType(), 0));
3481  }
3482  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3483}
3484
3485
3486/// \brief Check a template argument against its corresponding
3487/// template type parameter.
3488///
3489/// This routine implements the semantics of C++ [temp.arg.type]. It
3490/// returns true if an error occurred, and false otherwise.
3491bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
3492                                 TypeSourceInfo *ArgInfo) {
3493  assert(ArgInfo && "invalid TypeSourceInfo");
3494  QualType Arg = ArgInfo->getType();
3495  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
3496
3497  if (Arg->isVariablyModifiedType()) {
3498    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
3499  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
3500    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
3501  }
3502
3503  // C++03 [temp.arg.type]p2:
3504  //   A local type, a type with no linkage, an unnamed type or a type
3505  //   compounded from any of these types shall not be used as a
3506  //   template-argument for a template type-parameter.
3507  //
3508  // C++11 allows these, and even in C++03 we allow them as an extension with
3509  // a warning.
3510  if (LangOpts.CPlusPlus0x ?
3511     Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type,
3512                              SR.getBegin()) != DiagnosticsEngine::Ignored ||
3513      Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type,
3514                               SR.getBegin()) != DiagnosticsEngine::Ignored :
3515      Arg->hasUnnamedOrLocalType()) {
3516    UnnamedLocalNoLinkageFinder Finder(*this, SR);
3517    (void)Finder.Visit(Context.getCanonicalType(Arg));
3518  }
3519
3520  return false;
3521}
3522
3523enum NullPointerValueKind {
3524  NPV_NotNullPointer,
3525  NPV_NullPointer,
3526  NPV_Error
3527};
3528
3529/// \brief Determine whether the given template argument is a null pointer
3530/// value of the appropriate type.
3531static NullPointerValueKind
3532isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
3533                                   QualType ParamType, Expr *Arg) {
3534  if (Arg->isValueDependent() || Arg->isTypeDependent())
3535    return NPV_NotNullPointer;
3536
3537  if (!S.getLangOpts().CPlusPlus0x)
3538    return NPV_NotNullPointer;
3539
3540  // Determine whether we have a constant expression.
3541  ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
3542  if (ArgRV.isInvalid())
3543    return NPV_Error;
3544  Arg = ArgRV.take();
3545
3546  Expr::EvalResult EvalResult;
3547  llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
3548  EvalResult.Diag = &Notes;
3549  if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
3550      EvalResult.HasSideEffects) {
3551    SourceLocation DiagLoc = Arg->getExprLoc();
3552
3553    // If our only note is the usual "invalid subexpression" note, just point
3554    // the caret at its location rather than producing an essentially
3555    // redundant note.
3556    if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
3557        diag::note_invalid_subexpr_in_const_expr) {
3558      DiagLoc = Notes[0].first;
3559      Notes.clear();
3560    }
3561
3562    S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
3563      << Arg->getType() << Arg->getSourceRange();
3564    for (unsigned I = 0, N = Notes.size(); I != N; ++I)
3565      S.Diag(Notes[I].first, Notes[I].second);
3566
3567    S.Diag(Param->getLocation(), diag::note_template_param_here);
3568    return NPV_Error;
3569  }
3570
3571  // C++11 [temp.arg.nontype]p1:
3572  //   - an address constant expression of type std::nullptr_t
3573  if (Arg->getType()->isNullPtrType())
3574    return NPV_NullPointer;
3575
3576  //   - a constant expression that evaluates to a null pointer value (4.10); or
3577  //   - a constant expression that evaluates to a null member pointer value
3578  //     (4.11); or
3579  if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
3580      (EvalResult.Val.isMemberPointer() &&
3581       !EvalResult.Val.getMemberPointerDecl())) {
3582    // If our expression has an appropriate type, we've succeeded.
3583    bool ObjCLifetimeConversion;
3584    if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
3585        S.IsQualificationConversion(Arg->getType(), ParamType, false,
3586                                     ObjCLifetimeConversion))
3587      return NPV_NullPointer;
3588
3589    // The types didn't match, but we know we got a null pointer; complain,
3590    // then recover as if the types were correct.
3591    S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
3592      << Arg->getType() << ParamType << Arg->getSourceRange();
3593    S.Diag(Param->getLocation(), diag::note_template_param_here);
3594    return NPV_NullPointer;
3595  }
3596
3597  // If we don't have a null pointer value, but we do have a NULL pointer
3598  // constant, suggest a cast to the appropriate type.
3599  if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
3600    std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
3601    S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
3602      << ParamType
3603      << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
3604      << FixItHint::CreateInsertion(S.PP.getLocForEndOfToken(Arg->getLocEnd()),
3605                                    ")");
3606    S.Diag(Param->getLocation(), diag::note_template_param_here);
3607    return NPV_NullPointer;
3608  }
3609
3610  // FIXME: If we ever want to support general, address-constant expressions
3611  // as non-type template arguments, we should return the ExprResult here to
3612  // be interpreted by the caller.
3613  return NPV_NotNullPointer;
3614}
3615
3616/// \brief Checks whether the given template argument is the address
3617/// of an object or function according to C++ [temp.arg.nontype]p1.
3618static bool
3619CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
3620                                               NonTypeTemplateParmDecl *Param,
3621                                               QualType ParamType,
3622                                               Expr *ArgIn,
3623                                               TemplateArgument &Converted) {
3624  bool Invalid = false;
3625  Expr *Arg = ArgIn;
3626  QualType ArgType = Arg->getType();
3627
3628  // If our parameter has pointer type, check for a null template value.
3629  if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
3630    switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
3631    case NPV_NullPointer:
3632      S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
3633      Converted = TemplateArgument((Decl *)0);
3634      return false;
3635
3636    case NPV_Error:
3637      return true;
3638
3639    case NPV_NotNullPointer:
3640      break;
3641    }
3642  }
3643
3644  // See through any implicit casts we added to fix the type.
3645  Arg = Arg->IgnoreImpCasts();
3646
3647  // C++ [temp.arg.nontype]p1:
3648  //
3649  //   A template-argument for a non-type, non-template
3650  //   template-parameter shall be one of: [...]
3651  //
3652  //     -- the address of an object or function with external
3653  //        linkage, including function templates and function
3654  //        template-ids but excluding non-static class members,
3655  //        expressed as & id-expression where the & is optional if
3656  //        the name refers to a function or array, or if the
3657  //        corresponding template-parameter is a reference; or
3658
3659  // In C++98/03 mode, give an extension warning on any extra parentheses.
3660  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3661  bool ExtraParens = false;
3662  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3663    if (!Invalid && !ExtraParens) {
3664      S.Diag(Arg->getLocStart(),
3665             S.getLangOpts().CPlusPlus0x ?
3666               diag::warn_cxx98_compat_template_arg_extra_parens :
3667               diag::ext_template_arg_extra_parens)
3668        << Arg->getSourceRange();
3669      ExtraParens = true;
3670    }
3671
3672    Arg = Parens->getSubExpr();
3673  }
3674
3675  while (SubstNonTypeTemplateParmExpr *subst =
3676           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3677    Arg = subst->getReplacement()->IgnoreImpCasts();
3678
3679  bool AddressTaken = false;
3680  SourceLocation AddrOpLoc;
3681  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3682    if (UnOp->getOpcode() == UO_AddrOf) {
3683      Arg = UnOp->getSubExpr();
3684      AddressTaken = true;
3685      AddrOpLoc = UnOp->getOperatorLoc();
3686    }
3687  }
3688
3689  if (S.getLangOpts().MicrosoftExt && isa<CXXUuidofExpr>(Arg)) {
3690    Converted = TemplateArgument(ArgIn);
3691    return false;
3692  }
3693
3694  while (SubstNonTypeTemplateParmExpr *subst =
3695           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3696    Arg = subst->getReplacement()->IgnoreImpCasts();
3697
3698  // Stop checking the precise nature of the argument if it is value dependent,
3699  // it should be checked when instantiated.
3700  if (Arg->isValueDependent()) {
3701    Converted = TemplateArgument(ArgIn);
3702    return false;
3703  }
3704
3705  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
3706  if (!DRE) {
3707    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
3708    << Arg->getSourceRange();
3709    S.Diag(Param->getLocation(), diag::note_template_param_here);
3710    return true;
3711  }
3712
3713  if (!isa<ValueDecl>(DRE->getDecl())) {
3714    S.Diag(Arg->getLocStart(),
3715           diag::err_template_arg_not_object_or_func_form)
3716      << Arg->getSourceRange();
3717    S.Diag(Param->getLocation(), diag::note_template_param_here);
3718    return true;
3719  }
3720
3721  NamedDecl *Entity = DRE->getDecl();
3722
3723  // Cannot refer to non-static data members
3724  if (FieldDecl *Field = dyn_cast<FieldDecl>(Entity)) {
3725    S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
3726      << Field << Arg->getSourceRange();
3727    S.Diag(Param->getLocation(), diag::note_template_param_here);
3728    return true;
3729  }
3730
3731  // Cannot refer to non-static member functions
3732  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
3733    if (!Method->isStatic()) {
3734      S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
3735        << Method << Arg->getSourceRange();
3736      S.Diag(Param->getLocation(), diag::note_template_param_here);
3737      return true;
3738    }
3739  }
3740
3741  FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
3742  VarDecl *Var = dyn_cast<VarDecl>(Entity);
3743
3744  // A non-type template argument must refer to an object or function.
3745  if (!Func && !Var) {
3746    // We found something, but we don't know specifically what it is.
3747    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
3748      << Arg->getSourceRange();
3749    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3750    return true;
3751  }
3752
3753  // Address / reference template args must have external linkage in C++98.
3754  if (Entity->getLinkage() == InternalLinkage) {
3755    S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus0x ?
3756             diag::warn_cxx98_compat_template_arg_object_internal :
3757             diag::ext_template_arg_object_internal)
3758      << !Func << Entity << Arg->getSourceRange();
3759    S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
3760      << !Func;
3761  } else if (Entity->getLinkage() == NoLinkage) {
3762    S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
3763      << !Func << Entity << Arg->getSourceRange();
3764    S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
3765      << !Func;
3766    return true;
3767  }
3768
3769  if (Func) {
3770    // If the template parameter has pointer type, the function decays.
3771    if (ParamType->isPointerType() && !AddressTaken)
3772      ArgType = S.Context.getPointerType(Func->getType());
3773    else if (AddressTaken && ParamType->isReferenceType()) {
3774      // If we originally had an address-of operator, but the
3775      // parameter has reference type, complain and (if things look
3776      // like they will work) drop the address-of operator.
3777      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
3778                                            ParamType.getNonReferenceType())) {
3779        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3780          << ParamType;
3781        S.Diag(Param->getLocation(), diag::note_template_param_here);
3782        return true;
3783      }
3784
3785      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3786        << ParamType
3787        << FixItHint::CreateRemoval(AddrOpLoc);
3788      S.Diag(Param->getLocation(), diag::note_template_param_here);
3789
3790      ArgType = Func->getType();
3791    }
3792  } else {
3793    // A value of reference type is not an object.
3794    if (Var->getType()->isReferenceType()) {
3795      S.Diag(Arg->getLocStart(),
3796             diag::err_template_arg_reference_var)
3797        << Var->getType() << Arg->getSourceRange();
3798      S.Diag(Param->getLocation(), diag::note_template_param_here);
3799      return true;
3800    }
3801
3802    // A template argument must have static storage duration.
3803    // FIXME: Ensure this works for thread_local as well as __thread.
3804    if (Var->isThreadSpecified()) {
3805      S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
3806        << Arg->getSourceRange();
3807      S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
3808      return true;
3809    }
3810
3811    // If the template parameter has pointer type, we must have taken
3812    // the address of this object.
3813    if (ParamType->isReferenceType()) {
3814      if (AddressTaken) {
3815        // If we originally had an address-of operator, but the
3816        // parameter has reference type, complain and (if things look
3817        // like they will work) drop the address-of operator.
3818        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
3819                                            ParamType.getNonReferenceType())) {
3820          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3821            << ParamType;
3822          S.Diag(Param->getLocation(), diag::note_template_param_here);
3823          return true;
3824        }
3825
3826        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3827          << ParamType
3828          << FixItHint::CreateRemoval(AddrOpLoc);
3829        S.Diag(Param->getLocation(), diag::note_template_param_here);
3830
3831        ArgType = Var->getType();
3832      }
3833    } else if (!AddressTaken && ParamType->isPointerType()) {
3834      if (Var->getType()->isArrayType()) {
3835        // Array-to-pointer decay.
3836        ArgType = S.Context.getArrayDecayedType(Var->getType());
3837      } else {
3838        // If the template parameter has pointer type but the address of
3839        // this object was not taken, complain and (possibly) recover by
3840        // taking the address of the entity.
3841        ArgType = S.Context.getPointerType(Var->getType());
3842        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3843          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3844            << ParamType;
3845          S.Diag(Param->getLocation(), diag::note_template_param_here);
3846          return true;
3847        }
3848
3849        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3850          << ParamType
3851          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3852
3853        S.Diag(Param->getLocation(), diag::note_template_param_here);
3854      }
3855    }
3856  }
3857
3858  bool ObjCLifetimeConversion;
3859  if (ParamType->isPointerType() &&
3860      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3861      S.IsQualificationConversion(ArgType, ParamType, false,
3862                                  ObjCLifetimeConversion)) {
3863    // For pointer-to-object types, qualification conversions are
3864    // permitted.
3865  } else {
3866    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3867      if (!ParamRef->getPointeeType()->isFunctionType()) {
3868        // C++ [temp.arg.nontype]p5b3:
3869        //   For a non-type template-parameter of type reference to
3870        //   object, no conversions apply. The type referred to by the
3871        //   reference may be more cv-qualified than the (otherwise
3872        //   identical) type of the template- argument. The
3873        //   template-parameter is bound directly to the
3874        //   template-argument, which shall be an lvalue.
3875
3876        // FIXME: Other qualifiers?
3877        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3878        unsigned ArgQuals = ArgType.getCVRQualifiers();
3879
3880        if ((ParamQuals | ArgQuals) != ParamQuals) {
3881          S.Diag(Arg->getLocStart(),
3882                 diag::err_template_arg_ref_bind_ignores_quals)
3883            << ParamType << Arg->getType()
3884            << Arg->getSourceRange();
3885          S.Diag(Param->getLocation(), diag::note_template_param_here);
3886          return true;
3887        }
3888      }
3889    }
3890
3891    // At this point, the template argument refers to an object or
3892    // function with external linkage. We now need to check whether the
3893    // argument and parameter types are compatible.
3894    if (!S.Context.hasSameUnqualifiedType(ArgType,
3895                                          ParamType.getNonReferenceType())) {
3896      // We can't perform this conversion or binding.
3897      if (ParamType->isReferenceType())
3898        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3899          << ParamType << ArgIn->getType() << Arg->getSourceRange();
3900      else
3901        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
3902          << ArgIn->getType() << ParamType << Arg->getSourceRange();
3903      S.Diag(Param->getLocation(), diag::note_template_param_here);
3904      return true;
3905    }
3906  }
3907
3908  // Create the template argument.
3909  Converted = TemplateArgument(Entity->getCanonicalDecl());
3910  S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity);
3911  return false;
3912}
3913
3914/// \brief Checks whether the given template argument is a pointer to
3915/// member constant according to C++ [temp.arg.nontype]p1.
3916static bool CheckTemplateArgumentPointerToMember(Sema &S,
3917                                                 NonTypeTemplateParmDecl *Param,
3918                                                 QualType ParamType,
3919                                                 Expr *&ResultArg,
3920                                                 TemplateArgument &Converted) {
3921  bool Invalid = false;
3922
3923  // Check for a null pointer value.
3924  Expr *Arg = ResultArg;
3925  switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
3926  case NPV_Error:
3927    return true;
3928  case NPV_NullPointer:
3929    S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
3930    Converted = TemplateArgument((Decl *)0);
3931    return false;
3932  case NPV_NotNullPointer:
3933    break;
3934  }
3935
3936  bool ObjCLifetimeConversion;
3937  if (S.IsQualificationConversion(Arg->getType(),
3938                                  ParamType.getNonReferenceType(),
3939                                  false, ObjCLifetimeConversion)) {
3940    Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
3941                              Arg->getValueKind()).take();
3942    ResultArg = Arg;
3943  } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
3944                ParamType.getNonReferenceType())) {
3945    // We can't perform this conversion.
3946    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
3947      << Arg->getType() << ParamType << Arg->getSourceRange();
3948    S.Diag(Param->getLocation(), diag::note_template_param_here);
3949    return true;
3950  }
3951
3952  // See through any implicit casts we added to fix the type.
3953  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3954    Arg = Cast->getSubExpr();
3955
3956  // C++ [temp.arg.nontype]p1:
3957  //
3958  //   A template-argument for a non-type, non-template
3959  //   template-parameter shall be one of: [...]
3960  //
3961  //     -- a pointer to member expressed as described in 5.3.1.
3962  DeclRefExpr *DRE = 0;
3963
3964  // In C++98/03 mode, give an extension warning on any extra parentheses.
3965  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3966  bool ExtraParens = false;
3967  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3968    if (!Invalid && !ExtraParens) {
3969      S.Diag(Arg->getLocStart(),
3970             S.getLangOpts().CPlusPlus0x ?
3971               diag::warn_cxx98_compat_template_arg_extra_parens :
3972               diag::ext_template_arg_extra_parens)
3973        << Arg->getSourceRange();
3974      ExtraParens = true;
3975    }
3976
3977    Arg = Parens->getSubExpr();
3978  }
3979
3980  while (SubstNonTypeTemplateParmExpr *subst =
3981           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3982    Arg = subst->getReplacement()->IgnoreImpCasts();
3983
3984  // A pointer-to-member constant written &Class::member.
3985  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3986    if (UnOp->getOpcode() == UO_AddrOf) {
3987      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3988      if (DRE && !DRE->getQualifier())
3989        DRE = 0;
3990    }
3991  }
3992  // A constant of pointer-to-member type.
3993  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
3994    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
3995      if (VD->getType()->isMemberPointerType()) {
3996        if (isa<NonTypeTemplateParmDecl>(VD) ||
3997            (isa<VarDecl>(VD) &&
3998             S.Context.getCanonicalType(VD->getType()).isConstQualified())) {
3999          if (Arg->isTypeDependent() || Arg->isValueDependent())
4000            Converted = TemplateArgument(Arg);
4001          else
4002            Converted = TemplateArgument(VD->getCanonicalDecl());
4003          return Invalid;
4004        }
4005      }
4006    }
4007
4008    DRE = 0;
4009  }
4010
4011  if (!DRE)
4012    return S.Diag(Arg->getLocStart(),
4013                  diag::err_template_arg_not_pointer_to_member_form)
4014      << Arg->getSourceRange();
4015
4016  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
4017    assert((isa<FieldDecl>(DRE->getDecl()) ||
4018            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
4019           "Only non-static member pointers can make it here");
4020
4021    // Okay: this is the address of a non-static member, and therefore
4022    // a member pointer constant.
4023    if (Arg->isTypeDependent() || Arg->isValueDependent())
4024      Converted = TemplateArgument(Arg);
4025    else
4026      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
4027    return Invalid;
4028  }
4029
4030  // We found something else, but we don't know specifically what it is.
4031  S.Diag(Arg->getLocStart(),
4032         diag::err_template_arg_not_pointer_to_member_form)
4033    << Arg->getSourceRange();
4034  S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4035  return true;
4036}
4037
4038/// \brief Check a template argument against its corresponding
4039/// non-type template parameter.
4040///
4041/// This routine implements the semantics of C++ [temp.arg.nontype].
4042/// If an error occurred, it returns ExprError(); otherwise, it
4043/// returns the converted template argument. \p
4044/// InstantiatedParamType is the type of the non-type template
4045/// parameter after it has been instantiated.
4046ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
4047                                       QualType InstantiatedParamType, Expr *Arg,
4048                                       TemplateArgument &Converted,
4049                                       CheckTemplateArgumentKind CTAK) {
4050  SourceLocation StartLoc = Arg->getLocStart();
4051
4052  // If either the parameter has a dependent type or the argument is
4053  // type-dependent, there's nothing we can check now.
4054  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
4055    // FIXME: Produce a cloned, canonical expression?
4056    Converted = TemplateArgument(Arg);
4057    return Owned(Arg);
4058  }
4059
4060  // C++ [temp.arg.nontype]p5:
4061  //   The following conversions are performed on each expression used
4062  //   as a non-type template-argument. If a non-type
4063  //   template-argument cannot be converted to the type of the
4064  //   corresponding template-parameter then the program is
4065  //   ill-formed.
4066  QualType ParamType = InstantiatedParamType;
4067  if (ParamType->isIntegralOrEnumerationType()) {
4068    // C++11:
4069    //   -- for a non-type template-parameter of integral or
4070    //      enumeration type, conversions permitted in a converted
4071    //      constant expression are applied.
4072    //
4073    // C++98:
4074    //   -- for a non-type template-parameter of integral or
4075    //      enumeration type, integral promotions (4.5) and integral
4076    //      conversions (4.7) are applied.
4077
4078    if (CTAK == CTAK_Deduced &&
4079        !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
4080      // C++ [temp.deduct.type]p17:
4081      //   If, in the declaration of a function template with a non-type
4082      //   template-parameter, the non-type template-parameter is used
4083      //   in an expression in the function parameter-list and, if the
4084      //   corresponding template-argument is deduced, the
4085      //   template-argument type shall match the type of the
4086      //   template-parameter exactly, except that a template-argument
4087      //   deduced from an array bound may be of any integral type.
4088      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
4089        << Arg->getType().getUnqualifiedType()
4090        << ParamType.getUnqualifiedType();
4091      Diag(Param->getLocation(), diag::note_template_param_here);
4092      return ExprError();
4093    }
4094
4095    if (getLangOpts().CPlusPlus0x) {
4096      // We can't check arbitrary value-dependent arguments.
4097      // FIXME: If there's no viable conversion to the template parameter type,
4098      // we should be able to diagnose that prior to instantiation.
4099      if (Arg->isValueDependent()) {
4100        Converted = TemplateArgument(Arg);
4101        return Owned(Arg);
4102      }
4103
4104      // C++ [temp.arg.nontype]p1:
4105      //   A template-argument for a non-type, non-template template-parameter
4106      //   shall be one of:
4107      //
4108      //     -- for a non-type template-parameter of integral or enumeration
4109      //        type, a converted constant expression of the type of the
4110      //        template-parameter; or
4111      llvm::APSInt Value;
4112      ExprResult ArgResult =
4113        CheckConvertedConstantExpression(Arg, ParamType, Value,
4114                                         CCEK_TemplateArg);
4115      if (ArgResult.isInvalid())
4116        return ExprError();
4117
4118      // Widen the argument value to sizeof(parameter type). This is almost
4119      // always a no-op, except when the parameter type is bool. In
4120      // that case, this may extend the argument from 1 bit to 8 bits.
4121      QualType IntegerType = ParamType;
4122      if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4123        IntegerType = Enum->getDecl()->getIntegerType();
4124      Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
4125
4126      Converted = TemplateArgument(Context, Value,
4127                                   Context.getCanonicalType(ParamType));
4128      return ArgResult;
4129    }
4130
4131    ExprResult ArgResult = DefaultLvalueConversion(Arg);
4132    if (ArgResult.isInvalid())
4133      return ExprError();
4134    Arg = ArgResult.take();
4135
4136    QualType ArgType = Arg->getType();
4137
4138    // C++ [temp.arg.nontype]p1:
4139    //   A template-argument for a non-type, non-template
4140    //   template-parameter shall be one of:
4141    //
4142    //     -- an integral constant-expression of integral or enumeration
4143    //        type; or
4144    //     -- the name of a non-type template-parameter; or
4145    SourceLocation NonConstantLoc;
4146    llvm::APSInt Value;
4147    if (!ArgType->isIntegralOrEnumerationType()) {
4148      Diag(Arg->getLocStart(),
4149           diag::err_template_arg_not_integral_or_enumeral)
4150        << ArgType << Arg->getSourceRange();
4151      Diag(Param->getLocation(), diag::note_template_param_here);
4152      return ExprError();
4153    } else if (!Arg->isValueDependent()) {
4154      class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
4155        QualType T;
4156
4157      public:
4158        TmplArgICEDiagnoser(QualType T) : T(T) { }
4159
4160        virtual void diagnoseNotICE(Sema &S, SourceLocation Loc,
4161                                    SourceRange SR) {
4162          S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
4163        }
4164      } Diagnoser(ArgType);
4165
4166      Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
4167                                            false).take();
4168      if (!Arg)
4169        return ExprError();
4170    }
4171
4172    // From here on out, all we care about are the unqualified forms
4173    // of the parameter and argument types.
4174    ParamType = ParamType.getUnqualifiedType();
4175    ArgType = ArgType.getUnqualifiedType();
4176
4177    // Try to convert the argument to the parameter's type.
4178    if (Context.hasSameType(ParamType, ArgType)) {
4179      // Okay: no conversion necessary
4180    } else if (ParamType->isBooleanType()) {
4181      // This is an integral-to-boolean conversion.
4182      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
4183    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
4184               !ParamType->isEnumeralType()) {
4185      // This is an integral promotion or conversion.
4186      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
4187    } else {
4188      // We can't perform this conversion.
4189      Diag(Arg->getLocStart(),
4190           diag::err_template_arg_not_convertible)
4191        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
4192      Diag(Param->getLocation(), diag::note_template_param_here);
4193      return ExprError();
4194    }
4195
4196    // Add the value of this argument to the list of converted
4197    // arguments. We use the bitwidth and signedness of the template
4198    // parameter.
4199    if (Arg->isValueDependent()) {
4200      // The argument is value-dependent. Create a new
4201      // TemplateArgument with the converted expression.
4202      Converted = TemplateArgument(Arg);
4203      return Owned(Arg);
4204    }
4205
4206    QualType IntegerType = Context.getCanonicalType(ParamType);
4207    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4208      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
4209
4210    if (ParamType->isBooleanType()) {
4211      // Value must be zero or one.
4212      Value = Value != 0;
4213      unsigned AllowedBits = Context.getTypeSize(IntegerType);
4214      if (Value.getBitWidth() != AllowedBits)
4215        Value = Value.extOrTrunc(AllowedBits);
4216      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4217    } else {
4218      llvm::APSInt OldValue = Value;
4219
4220      // Coerce the template argument's value to the value it will have
4221      // based on the template parameter's type.
4222      unsigned AllowedBits = Context.getTypeSize(IntegerType);
4223      if (Value.getBitWidth() != AllowedBits)
4224        Value = Value.extOrTrunc(AllowedBits);
4225      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4226
4227      // Complain if an unsigned parameter received a negative value.
4228      if (IntegerType->isUnsignedIntegerOrEnumerationType()
4229               && (OldValue.isSigned() && OldValue.isNegative())) {
4230        Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
4231          << OldValue.toString(10) << Value.toString(10) << Param->getType()
4232          << Arg->getSourceRange();
4233        Diag(Param->getLocation(), diag::note_template_param_here);
4234      }
4235
4236      // Complain if we overflowed the template parameter's type.
4237      unsigned RequiredBits;
4238      if (IntegerType->isUnsignedIntegerOrEnumerationType())
4239        RequiredBits = OldValue.getActiveBits();
4240      else if (OldValue.isUnsigned())
4241        RequiredBits = OldValue.getActiveBits() + 1;
4242      else
4243        RequiredBits = OldValue.getMinSignedBits();
4244      if (RequiredBits > AllowedBits) {
4245        Diag(Arg->getLocStart(),
4246             diag::warn_template_arg_too_large)
4247          << OldValue.toString(10) << Value.toString(10) << Param->getType()
4248          << Arg->getSourceRange();
4249        Diag(Param->getLocation(), diag::note_template_param_here);
4250      }
4251    }
4252
4253    Converted = TemplateArgument(Context, Value,
4254                                 ParamType->isEnumeralType()
4255                                   ? Context.getCanonicalType(ParamType)
4256                                   : IntegerType);
4257    return Owned(Arg);
4258  }
4259
4260  QualType ArgType = Arg->getType();
4261  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
4262
4263  // Handle pointer-to-function, reference-to-function, and
4264  // pointer-to-member-function all in (roughly) the same way.
4265  if (// -- For a non-type template-parameter of type pointer to
4266      //    function, only the function-to-pointer conversion (4.3) is
4267      //    applied. If the template-argument represents a set of
4268      //    overloaded functions (or a pointer to such), the matching
4269      //    function is selected from the set (13.4).
4270      (ParamType->isPointerType() &&
4271       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
4272      // -- For a non-type template-parameter of type reference to
4273      //    function, no conversions apply. If the template-argument
4274      //    represents a set of overloaded functions, the matching
4275      //    function is selected from the set (13.4).
4276      (ParamType->isReferenceType() &&
4277       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
4278      // -- For a non-type template-parameter of type pointer to
4279      //    member function, no conversions apply. If the
4280      //    template-argument represents a set of overloaded member
4281      //    functions, the matching member function is selected from
4282      //    the set (13.4).
4283      (ParamType->isMemberPointerType() &&
4284       ParamType->getAs<MemberPointerType>()->getPointeeType()
4285         ->isFunctionType())) {
4286
4287    if (Arg->getType() == Context.OverloadTy) {
4288      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
4289                                                                true,
4290                                                                FoundResult)) {
4291        if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4292          return ExprError();
4293
4294        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4295        ArgType = Arg->getType();
4296      } else
4297        return ExprError();
4298    }
4299
4300    if (!ParamType->isMemberPointerType()) {
4301      if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4302                                                         ParamType,
4303                                                         Arg, Converted))
4304        return ExprError();
4305      return Owned(Arg);
4306    }
4307
4308    if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4309                                             Converted))
4310      return ExprError();
4311    return Owned(Arg);
4312  }
4313
4314  if (ParamType->isPointerType()) {
4315    //   -- for a non-type template-parameter of type pointer to
4316    //      object, qualification conversions (4.4) and the
4317    //      array-to-pointer conversion (4.2) are applied.
4318    // C++0x also allows a value of std::nullptr_t.
4319    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
4320           "Only object pointers allowed here");
4321
4322    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4323                                                       ParamType,
4324                                                       Arg, Converted))
4325      return ExprError();
4326    return Owned(Arg);
4327  }
4328
4329  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
4330    //   -- For a non-type template-parameter of type reference to
4331    //      object, no conversions apply. The type referred to by the
4332    //      reference may be more cv-qualified than the (otherwise
4333    //      identical) type of the template-argument. The
4334    //      template-parameter is bound directly to the
4335    //      template-argument, which must be an lvalue.
4336    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
4337           "Only object references allowed here");
4338
4339    if (Arg->getType() == Context.OverloadTy) {
4340      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
4341                                                 ParamRefType->getPointeeType(),
4342                                                                true,
4343                                                                FoundResult)) {
4344        if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4345          return ExprError();
4346
4347        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4348        ArgType = Arg->getType();
4349      } else
4350        return ExprError();
4351    }
4352
4353    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4354                                                       ParamType,
4355                                                       Arg, Converted))
4356      return ExprError();
4357    return Owned(Arg);
4358  }
4359
4360  // Deal with parameters of type std::nullptr_t.
4361  if (ParamType->isNullPtrType()) {
4362    if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4363      Converted = TemplateArgument(Arg);
4364      return Owned(Arg);
4365    }
4366
4367    switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
4368    case NPV_NotNullPointer:
4369      Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
4370        << Arg->getType() << ParamType;
4371      Diag(Param->getLocation(), diag::note_template_param_here);
4372      return ExprError();
4373
4374    case NPV_Error:
4375      return ExprError();
4376
4377    case NPV_NullPointer:
4378      Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4379      Converted = TemplateArgument((Decl *)0);
4380      return Owned(Arg);;
4381    }
4382  }
4383
4384  //     -- For a non-type template-parameter of type pointer to data
4385  //        member, qualification conversions (4.4) are applied.
4386  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
4387
4388  if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4389                                           Converted))
4390    return ExprError();
4391  return Owned(Arg);
4392}
4393
4394/// \brief Check a template argument against its corresponding
4395/// template template parameter.
4396///
4397/// This routine implements the semantics of C++ [temp.arg.template].
4398/// It returns true if an error occurred, and false otherwise.
4399bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
4400                                 const TemplateArgumentLoc &Arg) {
4401  TemplateName Name = Arg.getArgument().getAsTemplate();
4402  TemplateDecl *Template = Name.getAsTemplateDecl();
4403  if (!Template) {
4404    // Any dependent template name is fine.
4405    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
4406    return false;
4407  }
4408
4409  // C++0x [temp.arg.template]p1:
4410  //   A template-argument for a template template-parameter shall be
4411  //   the name of a class template or an alias template, expressed as an
4412  //   id-expression. When the template-argument names a class template, only
4413  //   primary class templates are considered when matching the
4414  //   template template argument with the corresponding parameter;
4415  //   partial specializations are not considered even if their
4416  //   parameter lists match that of the template template parameter.
4417  //
4418  // Note that we also allow template template parameters here, which
4419  // will happen when we are dealing with, e.g., class template
4420  // partial specializations.
4421  if (!isa<ClassTemplateDecl>(Template) &&
4422      !isa<TemplateTemplateParmDecl>(Template) &&
4423      !isa<TypeAliasTemplateDecl>(Template)) {
4424    assert(isa<FunctionTemplateDecl>(Template) &&
4425           "Only function templates are possible here");
4426    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
4427    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
4428      << Template;
4429  }
4430
4431  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
4432                                         Param->getTemplateParameters(),
4433                                         true,
4434                                         TPL_TemplateTemplateArgumentMatch,
4435                                         Arg.getLocation());
4436}
4437
4438/// \brief Given a non-type template argument that refers to a
4439/// declaration and the type of its corresponding non-type template
4440/// parameter, produce an expression that properly refers to that
4441/// declaration.
4442ExprResult
4443Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
4444                                              QualType ParamType,
4445                                              SourceLocation Loc) {
4446  assert(Arg.getKind() == TemplateArgument::Declaration &&
4447         "Only declaration template arguments permitted here");
4448
4449  // For a NULL non-type template argument, return nullptr casted to the
4450  // parameter's type.
4451  if (!Arg.getAsDecl()) {
4452    return ImpCastExprToType(
4453             new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
4454                             ParamType,
4455                             ParamType->getAs<MemberPointerType>()
4456                               ? CK_NullToMemberPointer
4457                               : CK_NullToPointer);
4458  }
4459
4460  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
4461
4462  if (VD->getDeclContext()->isRecord() &&
4463      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
4464    // If the value is a class member, we might have a pointer-to-member.
4465    // Determine whether the non-type template template parameter is of
4466    // pointer-to-member type. If so, we need to build an appropriate
4467    // expression for a pointer-to-member, since a "normal" DeclRefExpr
4468    // would refer to the member itself.
4469    if (ParamType->isMemberPointerType()) {
4470      QualType ClassType
4471        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
4472      NestedNameSpecifier *Qualifier
4473        = NestedNameSpecifier::Create(Context, 0, false,
4474                                      ClassType.getTypePtr());
4475      CXXScopeSpec SS;
4476      SS.MakeTrivial(Context, Qualifier, Loc);
4477
4478      // The actual value-ness of this is unimportant, but for
4479      // internal consistency's sake, references to instance methods
4480      // are r-values.
4481      ExprValueKind VK = VK_LValue;
4482      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
4483        VK = VK_RValue;
4484
4485      ExprResult RefExpr = BuildDeclRefExpr(VD,
4486                                            VD->getType().getNonReferenceType(),
4487                                            VK,
4488                                            Loc,
4489                                            &SS);
4490      if (RefExpr.isInvalid())
4491        return ExprError();
4492
4493      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4494
4495      // We might need to perform a trailing qualification conversion, since
4496      // the element type on the parameter could be more qualified than the
4497      // element type in the expression we constructed.
4498      bool ObjCLifetimeConversion;
4499      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
4500                                    ParamType.getUnqualifiedType(), false,
4501                                    ObjCLifetimeConversion))
4502        RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
4503
4504      assert(!RefExpr.isInvalid() &&
4505             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
4506                                 ParamType.getUnqualifiedType()));
4507      return move(RefExpr);
4508    }
4509  }
4510
4511  QualType T = VD->getType().getNonReferenceType();
4512  if (ParamType->isPointerType()) {
4513    // When the non-type template parameter is a pointer, take the
4514    // address of the declaration.
4515    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
4516    if (RefExpr.isInvalid())
4517      return ExprError();
4518
4519    if (T->isFunctionType() || T->isArrayType()) {
4520      // Decay functions and arrays.
4521      RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
4522      if (RefExpr.isInvalid())
4523        return ExprError();
4524
4525      return move(RefExpr);
4526    }
4527
4528    // Take the address of everything else
4529    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4530  }
4531
4532  ExprValueKind VK = VK_RValue;
4533
4534  // If the non-type template parameter has reference type, qualify the
4535  // resulting declaration reference with the extra qualifiers on the
4536  // type that the reference refers to.
4537  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
4538    VK = VK_LValue;
4539    T = Context.getQualifiedType(T,
4540                              TargetRef->getPointeeType().getQualifiers());
4541  }
4542
4543  return BuildDeclRefExpr(VD, T, VK, Loc);
4544}
4545
4546/// \brief Construct a new expression that refers to the given
4547/// integral template argument with the given source-location
4548/// information.
4549///
4550/// This routine takes care of the mapping from an integral template
4551/// argument (which may have any integral type) to the appropriate
4552/// literal value.
4553ExprResult
4554Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
4555                                                  SourceLocation Loc) {
4556  assert(Arg.getKind() == TemplateArgument::Integral &&
4557         "Operation is only valid for integral template arguments");
4558  QualType T = Arg.getIntegralType();
4559  if (T->isAnyCharacterType()) {
4560    CharacterLiteral::CharacterKind Kind;
4561    if (T->isWideCharType())
4562      Kind = CharacterLiteral::Wide;
4563    else if (T->isChar16Type())
4564      Kind = CharacterLiteral::UTF16;
4565    else if (T->isChar32Type())
4566      Kind = CharacterLiteral::UTF32;
4567    else
4568      Kind = CharacterLiteral::Ascii;
4569
4570    return Owned(new (Context) CharacterLiteral(
4571                                            Arg.getAsIntegral().getZExtValue(),
4572                                            Kind, T, Loc));
4573  }
4574
4575  if (T->isBooleanType())
4576    return Owned(new (Context) CXXBoolLiteralExpr(
4577                                            Arg.getAsIntegral().getBoolValue(),
4578                                            T, Loc));
4579
4580  if (T->isNullPtrType())
4581    return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
4582
4583  // If this is an enum type that we're instantiating, we need to use an integer
4584  // type the same size as the enumerator.  We don't want to build an
4585  // IntegerLiteral with enum type.
4586  QualType BT;
4587  if (const EnumType *ET = T->getAs<EnumType>())
4588    BT = ET->getDecl()->getIntegerType();
4589  else
4590    BT = T;
4591
4592  Expr *E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), BT, Loc);
4593  if (T->isEnumeralType()) {
4594    // FIXME: This is a hack. We need a better way to handle substituted
4595    // non-type template parameters.
4596    E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0,
4597                               Context.getTrivialTypeSourceInfo(T, Loc),
4598                               Loc, Loc);
4599  }
4600
4601  return Owned(E);
4602}
4603
4604/// \brief Match two template parameters within template parameter lists.
4605static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
4606                                       bool Complain,
4607                                     Sema::TemplateParameterListEqualKind Kind,
4608                                       SourceLocation TemplateArgLoc) {
4609  // Check the actual kind (type, non-type, template).
4610  if (Old->getKind() != New->getKind()) {
4611    if (Complain) {
4612      unsigned NextDiag = diag::err_template_param_different_kind;
4613      if (TemplateArgLoc.isValid()) {
4614        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4615        NextDiag = diag::note_template_param_different_kind;
4616      }
4617      S.Diag(New->getLocation(), NextDiag)
4618        << (Kind != Sema::TPL_TemplateMatch);
4619      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
4620        << (Kind != Sema::TPL_TemplateMatch);
4621    }
4622
4623    return false;
4624  }
4625
4626  // Check that both are parameter packs are neither are parameter packs.
4627  // However, if we are matching a template template argument to a
4628  // template template parameter, the template template parameter can have
4629  // a parameter pack where the template template argument does not.
4630  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
4631      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4632        Old->isTemplateParameterPack())) {
4633    if (Complain) {
4634      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
4635      if (TemplateArgLoc.isValid()) {
4636        S.Diag(TemplateArgLoc,
4637             diag::err_template_arg_template_params_mismatch);
4638        NextDiag = diag::note_template_parameter_pack_non_pack;
4639      }
4640
4641      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
4642                      : isa<NonTypeTemplateParmDecl>(New)? 1
4643                      : 2;
4644      S.Diag(New->getLocation(), NextDiag)
4645        << ParamKind << New->isParameterPack();
4646      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
4647        << ParamKind << Old->isParameterPack();
4648    }
4649
4650    return false;
4651  }
4652
4653  // For non-type template parameters, check the type of the parameter.
4654  if (NonTypeTemplateParmDecl *OldNTTP
4655                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
4656    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
4657
4658    // If we are matching a template template argument to a template
4659    // template parameter and one of the non-type template parameter types
4660    // is dependent, then we must wait until template instantiation time
4661    // to actually compare the arguments.
4662    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4663        (OldNTTP->getType()->isDependentType() ||
4664         NewNTTP->getType()->isDependentType()))
4665      return true;
4666
4667    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
4668      if (Complain) {
4669        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
4670        if (TemplateArgLoc.isValid()) {
4671          S.Diag(TemplateArgLoc,
4672                 diag::err_template_arg_template_params_mismatch);
4673          NextDiag = diag::note_template_nontype_parm_different_type;
4674        }
4675        S.Diag(NewNTTP->getLocation(), NextDiag)
4676          << NewNTTP->getType()
4677          << (Kind != Sema::TPL_TemplateMatch);
4678        S.Diag(OldNTTP->getLocation(),
4679               diag::note_template_nontype_parm_prev_declaration)
4680          << OldNTTP->getType();
4681      }
4682
4683      return false;
4684    }
4685
4686    return true;
4687  }
4688
4689  // For template template parameters, check the template parameter types.
4690  // The template parameter lists of template template
4691  // parameters must agree.
4692  if (TemplateTemplateParmDecl *OldTTP
4693                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
4694    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
4695    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
4696                                            OldTTP->getTemplateParameters(),
4697                                            Complain,
4698                                        (Kind == Sema::TPL_TemplateMatch
4699                                           ? Sema::TPL_TemplateTemplateParmMatch
4700                                           : Kind),
4701                                            TemplateArgLoc);
4702  }
4703
4704  return true;
4705}
4706
4707/// \brief Diagnose a known arity mismatch when comparing template argument
4708/// lists.
4709static
4710void DiagnoseTemplateParameterListArityMismatch(Sema &S,
4711                                                TemplateParameterList *New,
4712                                                TemplateParameterList *Old,
4713                                      Sema::TemplateParameterListEqualKind Kind,
4714                                                SourceLocation TemplateArgLoc) {
4715  unsigned NextDiag = diag::err_template_param_list_different_arity;
4716  if (TemplateArgLoc.isValid()) {
4717    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4718    NextDiag = diag::note_template_param_list_different_arity;
4719  }
4720  S.Diag(New->getTemplateLoc(), NextDiag)
4721    << (New->size() > Old->size())
4722    << (Kind != Sema::TPL_TemplateMatch)
4723    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
4724  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
4725    << (Kind != Sema::TPL_TemplateMatch)
4726    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
4727}
4728
4729/// \brief Determine whether the given template parameter lists are
4730/// equivalent.
4731///
4732/// \param New  The new template parameter list, typically written in the
4733/// source code as part of a new template declaration.
4734///
4735/// \param Old  The old template parameter list, typically found via
4736/// name lookup of the template declared with this template parameter
4737/// list.
4738///
4739/// \param Complain  If true, this routine will produce a diagnostic if
4740/// the template parameter lists are not equivalent.
4741///
4742/// \param Kind describes how we are to match the template parameter lists.
4743///
4744/// \param TemplateArgLoc If this source location is valid, then we
4745/// are actually checking the template parameter list of a template
4746/// argument (New) against the template parameter list of its
4747/// corresponding template template parameter (Old). We produce
4748/// slightly different diagnostics in this scenario.
4749///
4750/// \returns True if the template parameter lists are equal, false
4751/// otherwise.
4752bool
4753Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
4754                                     TemplateParameterList *Old,
4755                                     bool Complain,
4756                                     TemplateParameterListEqualKind Kind,
4757                                     SourceLocation TemplateArgLoc) {
4758  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
4759    if (Complain)
4760      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4761                                                 TemplateArgLoc);
4762
4763    return false;
4764  }
4765
4766  // C++0x [temp.arg.template]p3:
4767  //   A template-argument matches a template template-parameter (call it P)
4768  //   when each of the template parameters in the template-parameter-list of
4769  //   the template-argument's corresponding class template or alias template
4770  //   (call it A) matches the corresponding template parameter in the
4771  //   template-parameter-list of P. [...]
4772  TemplateParameterList::iterator NewParm = New->begin();
4773  TemplateParameterList::iterator NewParmEnd = New->end();
4774  for (TemplateParameterList::iterator OldParm = Old->begin(),
4775                                    OldParmEnd = Old->end();
4776       OldParm != OldParmEnd; ++OldParm) {
4777    if (Kind != TPL_TemplateTemplateArgumentMatch ||
4778        !(*OldParm)->isTemplateParameterPack()) {
4779      if (NewParm == NewParmEnd) {
4780        if (Complain)
4781          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4782                                                     TemplateArgLoc);
4783
4784        return false;
4785      }
4786
4787      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4788                                      Kind, TemplateArgLoc))
4789        return false;
4790
4791      ++NewParm;
4792      continue;
4793    }
4794
4795    // C++0x [temp.arg.template]p3:
4796    //   [...] When P's template- parameter-list contains a template parameter
4797    //   pack (14.5.3), the template parameter pack will match zero or more
4798    //   template parameters or template parameter packs in the
4799    //   template-parameter-list of A with the same type and form as the
4800    //   template parameter pack in P (ignoring whether those template
4801    //   parameters are template parameter packs).
4802    for (; NewParm != NewParmEnd; ++NewParm) {
4803      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4804                                      Kind, TemplateArgLoc))
4805        return false;
4806    }
4807  }
4808
4809  // Make sure we exhausted all of the arguments.
4810  if (NewParm != NewParmEnd) {
4811    if (Complain)
4812      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4813                                                 TemplateArgLoc);
4814
4815    return false;
4816  }
4817
4818  return true;
4819}
4820
4821/// \brief Check whether a template can be declared within this scope.
4822///
4823/// If the template declaration is valid in this scope, returns
4824/// false. Otherwise, issues a diagnostic and returns true.
4825bool
4826Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
4827  if (!S)
4828    return false;
4829
4830  // Find the nearest enclosing declaration scope.
4831  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4832         (S->getFlags() & Scope::TemplateParamScope) != 0)
4833    S = S->getParent();
4834
4835  // C++ [temp]p2:
4836  //   A template-declaration can appear only as a namespace scope or
4837  //   class scope declaration.
4838  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
4839  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
4840      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
4841    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
4842             << TemplateParams->getSourceRange();
4843
4844  while (Ctx && isa<LinkageSpecDecl>(Ctx))
4845    Ctx = Ctx->getParent();
4846
4847  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
4848    return false;
4849
4850  return Diag(TemplateParams->getTemplateLoc(),
4851              diag::err_template_outside_namespace_or_class_scope)
4852    << TemplateParams->getSourceRange();
4853}
4854
4855/// \brief Determine what kind of template specialization the given declaration
4856/// is.
4857static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
4858  if (!D)
4859    return TSK_Undeclared;
4860
4861  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
4862    return Record->getTemplateSpecializationKind();
4863  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
4864    return Function->getTemplateSpecializationKind();
4865  if (VarDecl *Var = dyn_cast<VarDecl>(D))
4866    return Var->getTemplateSpecializationKind();
4867
4868  return TSK_Undeclared;
4869}
4870
4871/// \brief Check whether a specialization is well-formed in the current
4872/// context.
4873///
4874/// This routine determines whether a template specialization can be declared
4875/// in the current context (C++ [temp.expl.spec]p2).
4876///
4877/// \param S the semantic analysis object for which this check is being
4878/// performed.
4879///
4880/// \param Specialized the entity being specialized or instantiated, which
4881/// may be a kind of template (class template, function template, etc.) or
4882/// a member of a class template (member function, static data member,
4883/// member class).
4884///
4885/// \param PrevDecl the previous declaration of this entity, if any.
4886///
4887/// \param Loc the location of the explicit specialization or instantiation of
4888/// this entity.
4889///
4890/// \param IsPartialSpecialization whether this is a partial specialization of
4891/// a class template.
4892///
4893/// \returns true if there was an error that we cannot recover from, false
4894/// otherwise.
4895static bool CheckTemplateSpecializationScope(Sema &S,
4896                                             NamedDecl *Specialized,
4897                                             NamedDecl *PrevDecl,
4898                                             SourceLocation Loc,
4899                                             bool IsPartialSpecialization) {
4900  // Keep these "kind" numbers in sync with the %select statements in the
4901  // various diagnostics emitted by this routine.
4902  int EntityKind = 0;
4903  if (isa<ClassTemplateDecl>(Specialized))
4904    EntityKind = IsPartialSpecialization? 1 : 0;
4905  else if (isa<FunctionTemplateDecl>(Specialized))
4906    EntityKind = 2;
4907  else if (isa<CXXMethodDecl>(Specialized))
4908    EntityKind = 3;
4909  else if (isa<VarDecl>(Specialized))
4910    EntityKind = 4;
4911  else if (isa<RecordDecl>(Specialized))
4912    EntityKind = 5;
4913  else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus0x)
4914    EntityKind = 6;
4915  else {
4916    S.Diag(Loc, diag::err_template_spec_unknown_kind)
4917      << S.getLangOpts().CPlusPlus0x;
4918    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4919    return true;
4920  }
4921
4922  // C++ [temp.expl.spec]p2:
4923  //   An explicit specialization shall be declared in the namespace
4924  //   of which the template is a member, or, for member templates, in
4925  //   the namespace of which the enclosing class or enclosing class
4926  //   template is a member. An explicit specialization of a member
4927  //   function, member class or static data member of a class
4928  //   template shall be declared in the namespace of which the class
4929  //   template is a member. Such a declaration may also be a
4930  //   definition. If the declaration is not a definition, the
4931  //   specialization may be defined later in the name- space in which
4932  //   the explicit specialization was declared, or in a namespace
4933  //   that encloses the one in which the explicit specialization was
4934  //   declared.
4935  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4936    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
4937      << Specialized;
4938    return true;
4939  }
4940
4941  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
4942    if (S.getLangOpts().MicrosoftExt) {
4943      // Do not warn for class scope explicit specialization during
4944      // instantiation, warning was already emitted during pattern
4945      // semantic analysis.
4946      if (!S.ActiveTemplateInstantiations.size())
4947        S.Diag(Loc, diag::ext_function_specialization_in_class)
4948          << Specialized;
4949    } else {
4950      S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4951        << Specialized;
4952      return true;
4953    }
4954  }
4955
4956  if (S.CurContext->isRecord() &&
4957      !S.CurContext->Equals(Specialized->getDeclContext())) {
4958    // Make sure that we're specializing in the right record context.
4959    // Otherwise, things can go horribly wrong.
4960    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4961      << Specialized;
4962    return true;
4963  }
4964
4965  // C++ [temp.class.spec]p6:
4966  //   A class template partial specialization may be declared or redeclared
4967  //   in any namespace scope in which its definition may be defined (14.5.1
4968  //   and 14.5.2).
4969  bool ComplainedAboutScope = false;
4970  DeclContext *SpecializedContext
4971    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
4972  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
4973  if ((!PrevDecl ||
4974       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
4975       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
4976    // C++ [temp.exp.spec]p2:
4977    //   An explicit specialization shall be declared in the namespace of which
4978    //   the template is a member, or, for member templates, in the namespace
4979    //   of which the enclosing class or enclosing class template is a member.
4980    //   An explicit specialization of a member function, member class or
4981    //   static data member of a class template shall be declared in the
4982    //   namespace of which the class template is a member.
4983    //
4984    // C++0x [temp.expl.spec]p2:
4985    //   An explicit specialization shall be declared in a namespace enclosing
4986    //   the specialized template.
4987    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
4988      bool IsCPlusPlus0xExtension = DC->Encloses(SpecializedContext);
4989      if (isa<TranslationUnitDecl>(SpecializedContext)) {
4990        assert(!IsCPlusPlus0xExtension &&
4991               "DC encloses TU but isn't in enclosing namespace set");
4992        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
4993          << EntityKind << Specialized;
4994      } else if (isa<NamespaceDecl>(SpecializedContext)) {
4995        int Diag;
4996        if (!IsCPlusPlus0xExtension)
4997          Diag = diag::err_template_spec_decl_out_of_scope;
4998        else if (!S.getLangOpts().CPlusPlus0x)
4999          Diag = diag::ext_template_spec_decl_out_of_scope;
5000        else
5001          Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
5002        S.Diag(Loc, Diag)
5003          << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
5004      }
5005
5006      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5007      ComplainedAboutScope =
5008        !(IsCPlusPlus0xExtension && S.getLangOpts().CPlusPlus0x);
5009    }
5010  }
5011
5012  // Make sure that this redeclaration (or definition) occurs in an enclosing
5013  // namespace.
5014  // Note that HandleDeclarator() performs this check for explicit
5015  // specializations of function templates, static data members, and member
5016  // functions, so we skip the check here for those kinds of entities.
5017  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
5018  // Should we refactor that check, so that it occurs later?
5019  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
5020      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
5021        isa<FunctionDecl>(Specialized))) {
5022    if (isa<TranslationUnitDecl>(SpecializedContext))
5023      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
5024        << EntityKind << Specialized;
5025    else if (isa<NamespaceDecl>(SpecializedContext))
5026      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
5027        << EntityKind << Specialized
5028        << cast<NamedDecl>(SpecializedContext);
5029
5030    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5031  }
5032
5033  // FIXME: check for specialization-after-instantiation errors and such.
5034
5035  return false;
5036}
5037
5038/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
5039/// that checks non-type template partial specialization arguments.
5040static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
5041                                                NonTypeTemplateParmDecl *Param,
5042                                                  const TemplateArgument *Args,
5043                                                        unsigned NumArgs) {
5044  for (unsigned I = 0; I != NumArgs; ++I) {
5045    if (Args[I].getKind() == TemplateArgument::Pack) {
5046      if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
5047                                                           Args[I].pack_begin(),
5048                                                           Args[I].pack_size()))
5049        return true;
5050
5051      continue;
5052    }
5053
5054    Expr *ArgExpr = Args[I].getAsExpr();
5055    if (!ArgExpr) {
5056      continue;
5057    }
5058
5059    // We can have a pack expansion of any of the bullets below.
5060    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
5061      ArgExpr = Expansion->getPattern();
5062
5063    // Strip off any implicit casts we added as part of type checking.
5064    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
5065      ArgExpr = ICE->getSubExpr();
5066
5067    // C++ [temp.class.spec]p8:
5068    //   A non-type argument is non-specialized if it is the name of a
5069    //   non-type parameter. All other non-type arguments are
5070    //   specialized.
5071    //
5072    // Below, we check the two conditions that only apply to
5073    // specialized non-type arguments, so skip any non-specialized
5074    // arguments.
5075    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
5076      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
5077        continue;
5078
5079    // C++ [temp.class.spec]p9:
5080    //   Within the argument list of a class template partial
5081    //   specialization, the following restrictions apply:
5082    //     -- A partially specialized non-type argument expression
5083    //        shall not involve a template parameter of the partial
5084    //        specialization except when the argument expression is a
5085    //        simple identifier.
5086    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
5087      S.Diag(ArgExpr->getLocStart(),
5088           diag::err_dependent_non_type_arg_in_partial_spec)
5089        << ArgExpr->getSourceRange();
5090      return true;
5091    }
5092
5093    //     -- The type of a template parameter corresponding to a
5094    //        specialized non-type argument shall not be dependent on a
5095    //        parameter of the specialization.
5096    if (Param->getType()->isDependentType()) {
5097      S.Diag(ArgExpr->getLocStart(),
5098           diag::err_dependent_typed_non_type_arg_in_partial_spec)
5099        << Param->getType()
5100        << ArgExpr->getSourceRange();
5101      S.Diag(Param->getLocation(), diag::note_template_param_here);
5102      return true;
5103    }
5104  }
5105
5106  return false;
5107}
5108
5109/// \brief Check the non-type template arguments of a class template
5110/// partial specialization according to C++ [temp.class.spec]p9.
5111///
5112/// \param TemplateParams the template parameters of the primary class
5113/// template.
5114///
5115/// \param TemplateArg the template arguments of the class template
5116/// partial specialization.
5117///
5118/// \returns true if there was an error, false otherwise.
5119static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
5120                                        TemplateParameterList *TemplateParams,
5121                       SmallVectorImpl<TemplateArgument> &TemplateArgs) {
5122  const TemplateArgument *ArgList = TemplateArgs.data();
5123
5124  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5125    NonTypeTemplateParmDecl *Param
5126      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
5127    if (!Param)
5128      continue;
5129
5130    if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
5131                                                           &ArgList[I], 1))
5132      return true;
5133  }
5134
5135  return false;
5136}
5137
5138DeclResult
5139Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
5140                                       TagUseKind TUK,
5141                                       SourceLocation KWLoc,
5142                                       SourceLocation ModulePrivateLoc,
5143                                       CXXScopeSpec &SS,
5144                                       TemplateTy TemplateD,
5145                                       SourceLocation TemplateNameLoc,
5146                                       SourceLocation LAngleLoc,
5147                                       ASTTemplateArgsPtr TemplateArgsIn,
5148                                       SourceLocation RAngleLoc,
5149                                       AttributeList *Attr,
5150                               MultiTemplateParamsArg TemplateParameterLists) {
5151  assert(TUK != TUK_Reference && "References are not specializations");
5152
5153  // NOTE: KWLoc is the location of the tag keyword. This will instead
5154  // store the location of the outermost template keyword in the declaration.
5155  SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
5156    ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation();
5157
5158  // Find the class template we're specializing
5159  TemplateName Name = TemplateD.getAsVal<TemplateName>();
5160  ClassTemplateDecl *ClassTemplate
5161    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
5162
5163  if (!ClassTemplate) {
5164    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
5165      << (Name.getAsTemplateDecl() &&
5166          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
5167    return true;
5168  }
5169
5170  bool isExplicitSpecialization = false;
5171  bool isPartialSpecialization = false;
5172
5173  // Check the validity of the template headers that introduce this
5174  // template.
5175  // FIXME: We probably shouldn't complain about these headers for
5176  // friend declarations.
5177  bool Invalid = false;
5178  TemplateParameterList *TemplateParams
5179    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc,
5180                                              TemplateNameLoc,
5181                                              SS,
5182                        (TemplateParameterList**)TemplateParameterLists.get(),
5183                                              TemplateParameterLists.size(),
5184                                              TUK == TUK_Friend,
5185                                              isExplicitSpecialization,
5186                                              Invalid);
5187  if (Invalid)
5188    return true;
5189
5190  if (TemplateParams && TemplateParams->size() > 0) {
5191    isPartialSpecialization = true;
5192
5193    if (TUK == TUK_Friend) {
5194      Diag(KWLoc, diag::err_partial_specialization_friend)
5195        << SourceRange(LAngleLoc, RAngleLoc);
5196      return true;
5197    }
5198
5199    // C++ [temp.class.spec]p10:
5200    //   The template parameter list of a specialization shall not
5201    //   contain default template argument values.
5202    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5203      Decl *Param = TemplateParams->getParam(I);
5204      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
5205        if (TTP->hasDefaultArgument()) {
5206          Diag(TTP->getDefaultArgumentLoc(),
5207               diag::err_default_arg_in_partial_spec);
5208          TTP->removeDefaultArgument();
5209        }
5210      } else if (NonTypeTemplateParmDecl *NTTP
5211                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5212        if (Expr *DefArg = NTTP->getDefaultArgument()) {
5213          Diag(NTTP->getDefaultArgumentLoc(),
5214               diag::err_default_arg_in_partial_spec)
5215            << DefArg->getSourceRange();
5216          NTTP->removeDefaultArgument();
5217        }
5218      } else {
5219        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
5220        if (TTP->hasDefaultArgument()) {
5221          Diag(TTP->getDefaultArgument().getLocation(),
5222               diag::err_default_arg_in_partial_spec)
5223            << TTP->getDefaultArgument().getSourceRange();
5224          TTP->removeDefaultArgument();
5225        }
5226      }
5227    }
5228  } else if (TemplateParams) {
5229    if (TUK == TUK_Friend)
5230      Diag(KWLoc, diag::err_template_spec_friend)
5231        << FixItHint::CreateRemoval(
5232                                SourceRange(TemplateParams->getTemplateLoc(),
5233                                            TemplateParams->getRAngleLoc()))
5234        << SourceRange(LAngleLoc, RAngleLoc);
5235    else
5236      isExplicitSpecialization = true;
5237  } else if (TUK != TUK_Friend) {
5238    Diag(KWLoc, diag::err_template_spec_needs_header)
5239      << FixItHint::CreateInsertion(KWLoc, "template<> ");
5240    isExplicitSpecialization = true;
5241  }
5242
5243  // Check that the specialization uses the same tag kind as the
5244  // original template.
5245  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5246  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
5247  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5248                                    Kind, TUK == TUK_Definition, KWLoc,
5249                                    *ClassTemplate->getIdentifier())) {
5250    Diag(KWLoc, diag::err_use_with_wrong_tag)
5251      << ClassTemplate
5252      << FixItHint::CreateReplacement(KWLoc,
5253                            ClassTemplate->getTemplatedDecl()->getKindName());
5254    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5255         diag::note_previous_use);
5256    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5257  }
5258
5259  // Translate the parser's template argument list in our AST format.
5260  TemplateArgumentListInfo TemplateArgs;
5261  TemplateArgs.setLAngleLoc(LAngleLoc);
5262  TemplateArgs.setRAngleLoc(RAngleLoc);
5263  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5264
5265  // Check for unexpanded parameter packs in any of the template arguments.
5266  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
5267    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
5268                                        UPPC_PartialSpecialization))
5269      return true;
5270
5271  // Check that the template argument list is well-formed for this
5272  // template.
5273  SmallVector<TemplateArgument, 4> Converted;
5274  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5275                                TemplateArgs, false, Converted))
5276    return true;
5277
5278  // Find the class template (partial) specialization declaration that
5279  // corresponds to these arguments.
5280  if (isPartialSpecialization) {
5281    if (CheckClassTemplatePartialSpecializationArgs(*this,
5282                                         ClassTemplate->getTemplateParameters(),
5283                                         Converted))
5284      return true;
5285
5286    bool InstantiationDependent;
5287    if (!Name.isDependent() &&
5288        !TemplateSpecializationType::anyDependentTemplateArguments(
5289                                             TemplateArgs.getArgumentArray(),
5290                                                         TemplateArgs.size(),
5291                                                     InstantiationDependent)) {
5292      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
5293        << ClassTemplate->getDeclName();
5294      isPartialSpecialization = false;
5295    }
5296  }
5297
5298  void *InsertPos = 0;
5299  ClassTemplateSpecializationDecl *PrevDecl = 0;
5300
5301  if (isPartialSpecialization)
5302    // FIXME: Template parameter list matters, too
5303    PrevDecl
5304      = ClassTemplate->findPartialSpecialization(Converted.data(),
5305                                                 Converted.size(),
5306                                                 InsertPos);
5307  else
5308    PrevDecl
5309      = ClassTemplate->findSpecialization(Converted.data(),
5310                                          Converted.size(), InsertPos);
5311
5312  ClassTemplateSpecializationDecl *Specialization = 0;
5313
5314  // Check whether we can declare a class template specialization in
5315  // the current scope.
5316  if (TUK != TUK_Friend &&
5317      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
5318                                       TemplateNameLoc,
5319                                       isPartialSpecialization))
5320    return true;
5321
5322  // The canonical type
5323  QualType CanonType;
5324  if (PrevDecl &&
5325      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
5326               TUK == TUK_Friend)) {
5327    // Since the only prior class template specialization with these
5328    // arguments was referenced but not declared, or we're only
5329    // referencing this specialization as a friend, reuse that
5330    // declaration node as our own, updating its source location and
5331    // the list of outer template parameters to reflect our new declaration.
5332    Specialization = PrevDecl;
5333    Specialization->setLocation(TemplateNameLoc);
5334    if (TemplateParameterLists.size() > 0) {
5335      Specialization->setTemplateParameterListsInfo(Context,
5336                                              TemplateParameterLists.size(),
5337                    (TemplateParameterList**) TemplateParameterLists.release());
5338    }
5339    PrevDecl = 0;
5340    CanonType = Context.getTypeDeclType(Specialization);
5341  } else if (isPartialSpecialization) {
5342    // Build the canonical type that describes the converted template
5343    // arguments of the class template partial specialization.
5344    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
5345    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
5346                                                      Converted.data(),
5347                                                      Converted.size());
5348
5349    if (Context.hasSameType(CanonType,
5350                        ClassTemplate->getInjectedClassNameSpecialization())) {
5351      // C++ [temp.class.spec]p9b3:
5352      //
5353      //   -- The argument list of the specialization shall not be identical
5354      //      to the implicit argument list of the primary template.
5355      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
5356        << (TUK == TUK_Definition)
5357        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
5358      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
5359                                ClassTemplate->getIdentifier(),
5360                                TemplateNameLoc,
5361                                Attr,
5362                                TemplateParams,
5363                                AS_none, /*ModulePrivateLoc=*/SourceLocation(),
5364                                TemplateParameterLists.size() - 1,
5365                  (TemplateParameterList**) TemplateParameterLists.release());
5366    }
5367
5368    // Create a new class template partial specialization declaration node.
5369    ClassTemplatePartialSpecializationDecl *PrevPartial
5370      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
5371    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
5372                            : ClassTemplate->getNextPartialSpecSequenceNumber();
5373    ClassTemplatePartialSpecializationDecl *Partial
5374      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
5375                                             ClassTemplate->getDeclContext(),
5376                                                       KWLoc, TemplateNameLoc,
5377                                                       TemplateParams,
5378                                                       ClassTemplate,
5379                                                       Converted.data(),
5380                                                       Converted.size(),
5381                                                       TemplateArgs,
5382                                                       CanonType,
5383                                                       PrevPartial,
5384                                                       SequenceNumber);
5385    SetNestedNameSpecifier(Partial, SS);
5386    if (TemplateParameterLists.size() > 1 && SS.isSet()) {
5387      Partial->setTemplateParameterListsInfo(Context,
5388                                             TemplateParameterLists.size() - 1,
5389                    (TemplateParameterList**) TemplateParameterLists.release());
5390    }
5391
5392    if (!PrevPartial)
5393      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
5394    Specialization = Partial;
5395
5396    // If we are providing an explicit specialization of a member class
5397    // template specialization, make a note of that.
5398    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
5399      PrevPartial->setMemberSpecialization();
5400
5401    // Check that all of the template parameters of the class template
5402    // partial specialization are deducible from the template
5403    // arguments. If not, this class template partial specialization
5404    // will never be used.
5405    llvm::SmallBitVector DeducibleParams(TemplateParams->size());
5406    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
5407                               TemplateParams->getDepth(),
5408                               DeducibleParams);
5409
5410    if (!DeducibleParams.all()) {
5411      unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
5412      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
5413        << (NumNonDeducible > 1)
5414        << SourceRange(TemplateNameLoc, RAngleLoc);
5415      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
5416        if (!DeducibleParams[I]) {
5417          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
5418          if (Param->getDeclName())
5419            Diag(Param->getLocation(),
5420                 diag::note_partial_spec_unused_parameter)
5421              << Param->getDeclName();
5422          else
5423            Diag(Param->getLocation(),
5424                 diag::note_partial_spec_unused_parameter)
5425              << "<anonymous>";
5426        }
5427      }
5428    }
5429  } else {
5430    // Create a new class template specialization declaration node for
5431    // this explicit specialization or friend declaration.
5432    Specialization
5433      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5434                                             ClassTemplate->getDeclContext(),
5435                                                KWLoc, TemplateNameLoc,
5436                                                ClassTemplate,
5437                                                Converted.data(),
5438                                                Converted.size(),
5439                                                PrevDecl);
5440    SetNestedNameSpecifier(Specialization, SS);
5441    if (TemplateParameterLists.size() > 0) {
5442      Specialization->setTemplateParameterListsInfo(Context,
5443                                              TemplateParameterLists.size(),
5444                    (TemplateParameterList**) TemplateParameterLists.release());
5445    }
5446
5447    if (!PrevDecl)
5448      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5449
5450    CanonType = Context.getTypeDeclType(Specialization);
5451  }
5452
5453  // C++ [temp.expl.spec]p6:
5454  //   If a template, a member template or the member of a class template is
5455  //   explicitly specialized then that specialization shall be declared
5456  //   before the first use of that specialization that would cause an implicit
5457  //   instantiation to take place, in every translation unit in which such a
5458  //   use occurs; no diagnostic is required.
5459  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
5460    bool Okay = false;
5461    for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5462      // Is there any previous explicit specialization declaration?
5463      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5464        Okay = true;
5465        break;
5466      }
5467    }
5468
5469    if (!Okay) {
5470      SourceRange Range(TemplateNameLoc, RAngleLoc);
5471      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
5472        << Context.getTypeDeclType(Specialization) << Range;
5473
5474      Diag(PrevDecl->getPointOfInstantiation(),
5475           diag::note_instantiation_required_here)
5476        << (PrevDecl->getTemplateSpecializationKind()
5477                                                != TSK_ImplicitInstantiation);
5478      return true;
5479    }
5480  }
5481
5482  // If this is not a friend, note that this is an explicit specialization.
5483  if (TUK != TUK_Friend)
5484    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
5485
5486  // Check that this isn't a redefinition of this specialization.
5487  if (TUK == TUK_Definition) {
5488    if (RecordDecl *Def = Specialization->getDefinition()) {
5489      SourceRange Range(TemplateNameLoc, RAngleLoc);
5490      Diag(TemplateNameLoc, diag::err_redefinition)
5491        << Context.getTypeDeclType(Specialization) << Range;
5492      Diag(Def->getLocation(), diag::note_previous_definition);
5493      Specialization->setInvalidDecl();
5494      return true;
5495    }
5496  }
5497
5498  if (Attr)
5499    ProcessDeclAttributeList(S, Specialization, Attr);
5500
5501  if (ModulePrivateLoc.isValid())
5502    Diag(Specialization->getLocation(), diag::err_module_private_specialization)
5503      << (isPartialSpecialization? 1 : 0)
5504      << FixItHint::CreateRemoval(ModulePrivateLoc);
5505
5506  // Build the fully-sugared type for this class template
5507  // specialization as the user wrote in the specialization
5508  // itself. This means that we'll pretty-print the type retrieved
5509  // from the specialization's declaration the way that the user
5510  // actually wrote the specialization, rather than formatting the
5511  // name based on the "canonical" representation used to store the
5512  // template arguments in the specialization.
5513  TypeSourceInfo *WrittenTy
5514    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5515                                                TemplateArgs, CanonType);
5516  if (TUK != TUK_Friend) {
5517    Specialization->setTypeAsWritten(WrittenTy);
5518    Specialization->setTemplateKeywordLoc(TemplateKWLoc);
5519  }
5520  TemplateArgsIn.release();
5521
5522  // C++ [temp.expl.spec]p9:
5523  //   A template explicit specialization is in the scope of the
5524  //   namespace in which the template was defined.
5525  //
5526  // We actually implement this paragraph where we set the semantic
5527  // context (in the creation of the ClassTemplateSpecializationDecl),
5528  // but we also maintain the lexical context where the actual
5529  // definition occurs.
5530  Specialization->setLexicalDeclContext(CurContext);
5531
5532  // We may be starting the definition of this specialization.
5533  if (TUK == TUK_Definition)
5534    Specialization->startDefinition();
5535
5536  if (TUK == TUK_Friend) {
5537    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
5538                                            TemplateNameLoc,
5539                                            WrittenTy,
5540                                            /*FIXME:*/KWLoc);
5541    Friend->setAccess(AS_public);
5542    CurContext->addDecl(Friend);
5543  } else {
5544    // Add the specialization into its lexical context, so that it can
5545    // be seen when iterating through the list of declarations in that
5546    // context. However, specializations are not found by name lookup.
5547    CurContext->addDecl(Specialization);
5548  }
5549  return Specialization;
5550}
5551
5552Decl *Sema::ActOnTemplateDeclarator(Scope *S,
5553                              MultiTemplateParamsArg TemplateParameterLists,
5554                                    Declarator &D) {
5555  return HandleDeclarator(S, D, move(TemplateParameterLists));
5556}
5557
5558Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
5559                               MultiTemplateParamsArg TemplateParameterLists,
5560                                            Declarator &D) {
5561  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5562  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5563
5564  if (FTI.hasPrototype) {
5565    // FIXME: Diagnose arguments without names in C.
5566  }
5567
5568  Scope *ParentScope = FnBodyScope->getParent();
5569
5570  D.setFunctionDefinitionKind(FDK_Definition);
5571  Decl *DP = HandleDeclarator(ParentScope, D,
5572                              move(TemplateParameterLists));
5573  if (FunctionTemplateDecl *FunctionTemplate
5574        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
5575    return ActOnStartOfFunctionDef(FnBodyScope,
5576                                   FunctionTemplate->getTemplatedDecl());
5577  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
5578    return ActOnStartOfFunctionDef(FnBodyScope, Function);
5579  return 0;
5580}
5581
5582/// \brief Strips various properties off an implicit instantiation
5583/// that has just been explicitly specialized.
5584static void StripImplicitInstantiation(NamedDecl *D) {
5585  // FIXME: "make check" is clean if the call to dropAttrs() is commented out.
5586  D->dropAttrs();
5587
5588  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5589    FD->setInlineSpecified(false);
5590  }
5591}
5592
5593/// \brief Compute the diagnostic location for an explicit instantiation
5594//  declaration or definition.
5595static SourceLocation DiagLocForExplicitInstantiation(
5596    NamedDecl* D, SourceLocation PointOfInstantiation) {
5597  // Explicit instantiations following a specialization have no effect and
5598  // hence no PointOfInstantiation. In that case, walk decl backwards
5599  // until a valid name loc is found.
5600  SourceLocation PrevDiagLoc = PointOfInstantiation;
5601  for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
5602       Prev = Prev->getPreviousDecl()) {
5603    PrevDiagLoc = Prev->getLocation();
5604  }
5605  assert(PrevDiagLoc.isValid() &&
5606         "Explicit instantiation without point of instantiation?");
5607  return PrevDiagLoc;
5608}
5609
5610/// \brief Diagnose cases where we have an explicit template specialization
5611/// before/after an explicit template instantiation, producing diagnostics
5612/// for those cases where they are required and determining whether the
5613/// new specialization/instantiation will have any effect.
5614///
5615/// \param NewLoc the location of the new explicit specialization or
5616/// instantiation.
5617///
5618/// \param NewTSK the kind of the new explicit specialization or instantiation.
5619///
5620/// \param PrevDecl the previous declaration of the entity.
5621///
5622/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
5623///
5624/// \param PrevPointOfInstantiation if valid, indicates where the previus
5625/// declaration was instantiated (either implicitly or explicitly).
5626///
5627/// \param HasNoEffect will be set to true to indicate that the new
5628/// specialization or instantiation has no effect and should be ignored.
5629///
5630/// \returns true if there was an error that should prevent the introduction of
5631/// the new declaration into the AST, false otherwise.
5632bool
5633Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
5634                                             TemplateSpecializationKind NewTSK,
5635                                             NamedDecl *PrevDecl,
5636                                             TemplateSpecializationKind PrevTSK,
5637                                        SourceLocation PrevPointOfInstantiation,
5638                                             bool &HasNoEffect) {
5639  HasNoEffect = false;
5640
5641  switch (NewTSK) {
5642  case TSK_Undeclared:
5643  case TSK_ImplicitInstantiation:
5644    llvm_unreachable("Don't check implicit instantiations here");
5645
5646  case TSK_ExplicitSpecialization:
5647    switch (PrevTSK) {
5648    case TSK_Undeclared:
5649    case TSK_ExplicitSpecialization:
5650      // Okay, we're just specializing something that is either already
5651      // explicitly specialized or has merely been mentioned without any
5652      // instantiation.
5653      return false;
5654
5655    case TSK_ImplicitInstantiation:
5656      if (PrevPointOfInstantiation.isInvalid()) {
5657        // The declaration itself has not actually been instantiated, so it is
5658        // still okay to specialize it.
5659        StripImplicitInstantiation(PrevDecl);
5660        return false;
5661      }
5662      // Fall through
5663
5664    case TSK_ExplicitInstantiationDeclaration:
5665    case TSK_ExplicitInstantiationDefinition:
5666      assert((PrevTSK == TSK_ImplicitInstantiation ||
5667              PrevPointOfInstantiation.isValid()) &&
5668             "Explicit instantiation without point of instantiation?");
5669
5670      // C++ [temp.expl.spec]p6:
5671      //   If a template, a member template or the member of a class template
5672      //   is explicitly specialized then that specialization shall be declared
5673      //   before the first use of that specialization that would cause an
5674      //   implicit instantiation to take place, in every translation unit in
5675      //   which such a use occurs; no diagnostic is required.
5676      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5677        // Is there any previous explicit specialization declaration?
5678        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
5679          return false;
5680      }
5681
5682      Diag(NewLoc, diag::err_specialization_after_instantiation)
5683        << PrevDecl;
5684      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
5685        << (PrevTSK != TSK_ImplicitInstantiation);
5686
5687      return true;
5688    }
5689
5690  case TSK_ExplicitInstantiationDeclaration:
5691    switch (PrevTSK) {
5692    case TSK_ExplicitInstantiationDeclaration:
5693      // This explicit instantiation declaration is redundant (that's okay).
5694      HasNoEffect = true;
5695      return false;
5696
5697    case TSK_Undeclared:
5698    case TSK_ImplicitInstantiation:
5699      // We're explicitly instantiating something that may have already been
5700      // implicitly instantiated; that's fine.
5701      return false;
5702
5703    case TSK_ExplicitSpecialization:
5704      // C++0x [temp.explicit]p4:
5705      //   For a given set of template parameters, if an explicit instantiation
5706      //   of a template appears after a declaration of an explicit
5707      //   specialization for that template, the explicit instantiation has no
5708      //   effect.
5709      HasNoEffect = true;
5710      return false;
5711
5712    case TSK_ExplicitInstantiationDefinition:
5713      // C++0x [temp.explicit]p10:
5714      //   If an entity is the subject of both an explicit instantiation
5715      //   declaration and an explicit instantiation definition in the same
5716      //   translation unit, the definition shall follow the declaration.
5717      Diag(NewLoc,
5718           diag::err_explicit_instantiation_declaration_after_definition);
5719
5720      // Explicit instantiations following a specialization have no effect and
5721      // hence no PrevPointOfInstantiation. In that case, walk decl backwards
5722      // until a valid name loc is found.
5723      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
5724           diag::note_explicit_instantiation_definition_here);
5725      HasNoEffect = true;
5726      return false;
5727    }
5728
5729  case TSK_ExplicitInstantiationDefinition:
5730    switch (PrevTSK) {
5731    case TSK_Undeclared:
5732    case TSK_ImplicitInstantiation:
5733      // We're explicitly instantiating something that may have already been
5734      // implicitly instantiated; that's fine.
5735      return false;
5736
5737    case TSK_ExplicitSpecialization:
5738      // C++ DR 259, C++0x [temp.explicit]p4:
5739      //   For a given set of template parameters, if an explicit
5740      //   instantiation of a template appears after a declaration of
5741      //   an explicit specialization for that template, the explicit
5742      //   instantiation has no effect.
5743      //
5744      // In C++98/03 mode, we only give an extension warning here, because it
5745      // is not harmful to try to explicitly instantiate something that
5746      // has been explicitly specialized.
5747      Diag(NewLoc, getLangOpts().CPlusPlus0x ?
5748           diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
5749           diag::ext_explicit_instantiation_after_specialization)
5750        << PrevDecl;
5751      Diag(PrevDecl->getLocation(),
5752           diag::note_previous_template_specialization);
5753      HasNoEffect = true;
5754      return false;
5755
5756    case TSK_ExplicitInstantiationDeclaration:
5757      // We're explicity instantiating a definition for something for which we
5758      // were previously asked to suppress instantiations. That's fine.
5759
5760      // C++0x [temp.explicit]p4:
5761      //   For a given set of template parameters, if an explicit instantiation
5762      //   of a template appears after a declaration of an explicit
5763      //   specialization for that template, the explicit instantiation has no
5764      //   effect.
5765      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5766        // Is there any previous explicit specialization declaration?
5767        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5768          HasNoEffect = true;
5769          break;
5770        }
5771      }
5772
5773      return false;
5774
5775    case TSK_ExplicitInstantiationDefinition:
5776      // C++0x [temp.spec]p5:
5777      //   For a given template and a given set of template-arguments,
5778      //     - an explicit instantiation definition shall appear at most once
5779      //       in a program,
5780      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
5781        << PrevDecl;
5782      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
5783           diag::note_previous_explicit_instantiation);
5784      HasNoEffect = true;
5785      return false;
5786    }
5787  }
5788
5789  llvm_unreachable("Missing specialization/instantiation case?");
5790}
5791
5792/// \brief Perform semantic analysis for the given dependent function
5793/// template specialization.  The only possible way to get a dependent
5794/// function template specialization is with a friend declaration,
5795/// like so:
5796///
5797///   template <class T> void foo(T);
5798///   template <class T> class A {
5799///     friend void foo<>(T);
5800///   };
5801///
5802/// There really isn't any useful analysis we can do here, so we
5803/// just store the information.
5804bool
5805Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
5806                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
5807                                                   LookupResult &Previous) {
5808  // Remove anything from Previous that isn't a function template in
5809  // the correct context.
5810  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5811  LookupResult::Filter F = Previous.makeFilter();
5812  while (F.hasNext()) {
5813    NamedDecl *D = F.next()->getUnderlyingDecl();
5814    if (!isa<FunctionTemplateDecl>(D) ||
5815        !FDLookupContext->InEnclosingNamespaceSetOf(
5816                              D->getDeclContext()->getRedeclContext()))
5817      F.erase();
5818  }
5819  F.done();
5820
5821  // Should this be diagnosed here?
5822  if (Previous.empty()) return true;
5823
5824  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
5825                                         ExplicitTemplateArgs);
5826  return false;
5827}
5828
5829/// \brief Perform semantic analysis for the given function template
5830/// specialization.
5831///
5832/// This routine performs all of the semantic analysis required for an
5833/// explicit function template specialization. On successful completion,
5834/// the function declaration \p FD will become a function template
5835/// specialization.
5836///
5837/// \param FD the function declaration, which will be updated to become a
5838/// function template specialization.
5839///
5840/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
5841/// if any. Note that this may be valid info even when 0 arguments are
5842/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
5843/// as it anyway contains info on the angle brackets locations.
5844///
5845/// \param Previous the set of declarations that may be specialized by
5846/// this function specialization.
5847bool
5848Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
5849                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5850                                          LookupResult &Previous) {
5851  // The set of function template specializations that could match this
5852  // explicit function template specialization.
5853  UnresolvedSet<8> Candidates;
5854
5855  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5856  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5857         I != E; ++I) {
5858    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
5859    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
5860      // Only consider templates found within the same semantic lookup scope as
5861      // FD.
5862      if (!FDLookupContext->InEnclosingNamespaceSetOf(
5863                                Ovl->getDeclContext()->getRedeclContext()))
5864        continue;
5865
5866      // C++ [temp.expl.spec]p11:
5867      //   A trailing template-argument can be left unspecified in the
5868      //   template-id naming an explicit function template specialization
5869      //   provided it can be deduced from the function argument type.
5870      // Perform template argument deduction to determine whether we may be
5871      // specializing this template.
5872      // FIXME: It is somewhat wasteful to build
5873      TemplateDeductionInfo Info(Context, FD->getLocation());
5874      FunctionDecl *Specialization = 0;
5875      if (TemplateDeductionResult TDK
5876            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
5877                                      FD->getType(),
5878                                      Specialization,
5879                                      Info)) {
5880        // FIXME: Template argument deduction failed; record why it failed, so
5881        // that we can provide nifty diagnostics.
5882        (void)TDK;
5883        continue;
5884      }
5885
5886      // Record this candidate.
5887      Candidates.addDecl(Specialization, I.getAccess());
5888    }
5889  }
5890
5891  // Find the most specialized function template.
5892  UnresolvedSetIterator Result
5893    = getMostSpecialized(Candidates.begin(), Candidates.end(),
5894                         TPOC_Other, 0, FD->getLocation(),
5895                  PDiag(diag::err_function_template_spec_no_match)
5896                    << FD->getDeclName(),
5897                  PDiag(diag::err_function_template_spec_ambiguous)
5898                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
5899                  PDiag(diag::note_function_template_spec_matched));
5900  if (Result == Candidates.end())
5901    return true;
5902
5903  // Ignore access information;  it doesn't figure into redeclaration checking.
5904  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5905
5906  FunctionTemplateSpecializationInfo *SpecInfo
5907    = Specialization->getTemplateSpecializationInfo();
5908  assert(SpecInfo && "Function template specialization info missing?");
5909
5910  // Note: do not overwrite location info if previous template
5911  // specialization kind was explicit.
5912  TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
5913  if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
5914    Specialization->setLocation(FD->getLocation());
5915    // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
5916    // function can differ from the template declaration with respect to
5917    // the constexpr specifier.
5918    Specialization->setConstexpr(FD->isConstexpr());
5919  }
5920
5921  // FIXME: Check if the prior specialization has a point of instantiation.
5922  // If so, we have run afoul of .
5923
5924  // If this is a friend declaration, then we're not really declaring
5925  // an explicit specialization.
5926  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
5927
5928  // Check the scope of this explicit specialization.
5929  if (!isFriend &&
5930      CheckTemplateSpecializationScope(*this,
5931                                       Specialization->getPrimaryTemplate(),
5932                                       Specialization, FD->getLocation(),
5933                                       false))
5934    return true;
5935
5936  // C++ [temp.expl.spec]p6:
5937  //   If a template, a member template or the member of a class template is
5938  //   explicitly specialized then that specialization shall be declared
5939  //   before the first use of that specialization that would cause an implicit
5940  //   instantiation to take place, in every translation unit in which such a
5941  //   use occurs; no diagnostic is required.
5942  bool HasNoEffect = false;
5943  if (!isFriend &&
5944      CheckSpecializationInstantiationRedecl(FD->getLocation(),
5945                                             TSK_ExplicitSpecialization,
5946                                             Specialization,
5947                                   SpecInfo->getTemplateSpecializationKind(),
5948                                         SpecInfo->getPointOfInstantiation(),
5949                                             HasNoEffect))
5950    return true;
5951
5952  // Mark the prior declaration as an explicit specialization, so that later
5953  // clients know that this is an explicit specialization.
5954  if (!isFriend) {
5955    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
5956    MarkUnusedFileScopedDecl(Specialization);
5957  }
5958
5959  // Turn the given function declaration into a function template
5960  // specialization, with the template arguments from the previous
5961  // specialization.
5962  // Take copies of (semantic and syntactic) template argument lists.
5963  const TemplateArgumentList* TemplArgs = new (Context)
5964    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
5965  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
5966                                        TemplArgs, /*InsertPos=*/0,
5967                                    SpecInfo->getTemplateSpecializationKind(),
5968                                        ExplicitTemplateArgs);
5969  FD->setStorageClass(Specialization->getStorageClass());
5970
5971  // The "previous declaration" for this function template specialization is
5972  // the prior function template specialization.
5973  Previous.clear();
5974  Previous.addDecl(Specialization);
5975  return false;
5976}
5977
5978/// \brief Perform semantic analysis for the given non-template member
5979/// specialization.
5980///
5981/// This routine performs all of the semantic analysis required for an
5982/// explicit member function specialization. On successful completion,
5983/// the function declaration \p FD will become a member function
5984/// specialization.
5985///
5986/// \param Member the member declaration, which will be updated to become a
5987/// specialization.
5988///
5989/// \param Previous the set of declarations, one of which may be specialized
5990/// by this function specialization;  the set will be modified to contain the
5991/// redeclared member.
5992bool
5993Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
5994  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
5995
5996  // Try to find the member we are instantiating.
5997  NamedDecl *Instantiation = 0;
5998  NamedDecl *InstantiatedFrom = 0;
5999  MemberSpecializationInfo *MSInfo = 0;
6000
6001  if (Previous.empty()) {
6002    // Nowhere to look anyway.
6003  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
6004    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6005           I != E; ++I) {
6006      NamedDecl *D = (*I)->getUnderlyingDecl();
6007      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
6008        if (Context.hasSameType(Function->getType(), Method->getType())) {
6009          Instantiation = Method;
6010          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
6011          MSInfo = Method->getMemberSpecializationInfo();
6012          break;
6013        }
6014      }
6015    }
6016  } else if (isa<VarDecl>(Member)) {
6017    VarDecl *PrevVar;
6018    if (Previous.isSingleResult() &&
6019        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
6020      if (PrevVar->isStaticDataMember()) {
6021        Instantiation = PrevVar;
6022        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
6023        MSInfo = PrevVar->getMemberSpecializationInfo();
6024      }
6025  } else if (isa<RecordDecl>(Member)) {
6026    CXXRecordDecl *PrevRecord;
6027    if (Previous.isSingleResult() &&
6028        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
6029      Instantiation = PrevRecord;
6030      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
6031      MSInfo = PrevRecord->getMemberSpecializationInfo();
6032    }
6033  } else if (isa<EnumDecl>(Member)) {
6034    EnumDecl *PrevEnum;
6035    if (Previous.isSingleResult() &&
6036        (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
6037      Instantiation = PrevEnum;
6038      InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
6039      MSInfo = PrevEnum->getMemberSpecializationInfo();
6040    }
6041  }
6042
6043  if (!Instantiation) {
6044    // There is no previous declaration that matches. Since member
6045    // specializations are always out-of-line, the caller will complain about
6046    // this mismatch later.
6047    return false;
6048  }
6049
6050  // If this is a friend, just bail out here before we start turning
6051  // things into explicit specializations.
6052  if (Member->getFriendObjectKind() != Decl::FOK_None) {
6053    // Preserve instantiation information.
6054    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
6055      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
6056                                      cast<CXXMethodDecl>(InstantiatedFrom),
6057        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
6058    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
6059      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6060                                      cast<CXXRecordDecl>(InstantiatedFrom),
6061        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
6062    }
6063
6064    Previous.clear();
6065    Previous.addDecl(Instantiation);
6066    return false;
6067  }
6068
6069  // Make sure that this is a specialization of a member.
6070  if (!InstantiatedFrom) {
6071    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
6072      << Member;
6073    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
6074    return true;
6075  }
6076
6077  // C++ [temp.expl.spec]p6:
6078  //   If a template, a member template or the member of a class template is
6079  //   explicitly specialized then that specialization shall be declared
6080  //   before the first use of that specialization that would cause an implicit
6081  //   instantiation to take place, in every translation unit in which such a
6082  //   use occurs; no diagnostic is required.
6083  assert(MSInfo && "Member specialization info missing?");
6084
6085  bool HasNoEffect = false;
6086  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
6087                                             TSK_ExplicitSpecialization,
6088                                             Instantiation,
6089                                     MSInfo->getTemplateSpecializationKind(),
6090                                           MSInfo->getPointOfInstantiation(),
6091                                             HasNoEffect))
6092    return true;
6093
6094  // Check the scope of this explicit specialization.
6095  if (CheckTemplateSpecializationScope(*this,
6096                                       InstantiatedFrom,
6097                                       Instantiation, Member->getLocation(),
6098                                       false))
6099    return true;
6100
6101  // Note that this is an explicit instantiation of a member.
6102  // the original declaration to note that it is an explicit specialization
6103  // (if it was previously an implicit instantiation). This latter step
6104  // makes bookkeeping easier.
6105  if (isa<FunctionDecl>(Member)) {
6106    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
6107    if (InstantiationFunction->getTemplateSpecializationKind() ==
6108          TSK_ImplicitInstantiation) {
6109      InstantiationFunction->setTemplateSpecializationKind(
6110                                                  TSK_ExplicitSpecialization);
6111      InstantiationFunction->setLocation(Member->getLocation());
6112    }
6113
6114    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
6115                                        cast<CXXMethodDecl>(InstantiatedFrom),
6116                                                  TSK_ExplicitSpecialization);
6117    MarkUnusedFileScopedDecl(InstantiationFunction);
6118  } else if (isa<VarDecl>(Member)) {
6119    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
6120    if (InstantiationVar->getTemplateSpecializationKind() ==
6121          TSK_ImplicitInstantiation) {
6122      InstantiationVar->setTemplateSpecializationKind(
6123                                                  TSK_ExplicitSpecialization);
6124      InstantiationVar->setLocation(Member->getLocation());
6125    }
6126
6127    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
6128                                                cast<VarDecl>(InstantiatedFrom),
6129                                                TSK_ExplicitSpecialization);
6130    MarkUnusedFileScopedDecl(InstantiationVar);
6131  } else if (isa<CXXRecordDecl>(Member)) {
6132    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
6133    if (InstantiationClass->getTemplateSpecializationKind() ==
6134          TSK_ImplicitInstantiation) {
6135      InstantiationClass->setTemplateSpecializationKind(
6136                                                   TSK_ExplicitSpecialization);
6137      InstantiationClass->setLocation(Member->getLocation());
6138    }
6139
6140    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6141                                        cast<CXXRecordDecl>(InstantiatedFrom),
6142                                                   TSK_ExplicitSpecialization);
6143  } else {
6144    assert(isa<EnumDecl>(Member) && "Only member enums remain");
6145    EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
6146    if (InstantiationEnum->getTemplateSpecializationKind() ==
6147          TSK_ImplicitInstantiation) {
6148      InstantiationEnum->setTemplateSpecializationKind(
6149                                                   TSK_ExplicitSpecialization);
6150      InstantiationEnum->setLocation(Member->getLocation());
6151    }
6152
6153    cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
6154        cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
6155  }
6156
6157  // Save the caller the trouble of having to figure out which declaration
6158  // this specialization matches.
6159  Previous.clear();
6160  Previous.addDecl(Instantiation);
6161  return false;
6162}
6163
6164/// \brief Check the scope of an explicit instantiation.
6165///
6166/// \returns true if a serious error occurs, false otherwise.
6167static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
6168                                            SourceLocation InstLoc,
6169                                            bool WasQualifiedName) {
6170  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
6171  DeclContext *CurContext = S.CurContext->getRedeclContext();
6172
6173  if (CurContext->isRecord()) {
6174    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
6175      << D;
6176    return true;
6177  }
6178
6179  // C++11 [temp.explicit]p3:
6180  //   An explicit instantiation shall appear in an enclosing namespace of its
6181  //   template. If the name declared in the explicit instantiation is an
6182  //   unqualified name, the explicit instantiation shall appear in the
6183  //   namespace where its template is declared or, if that namespace is inline
6184  //   (7.3.1), any namespace from its enclosing namespace set.
6185  //
6186  // This is DR275, which we do not retroactively apply to C++98/03.
6187  if (WasQualifiedName) {
6188    if (CurContext->Encloses(OrigContext))
6189      return false;
6190  } else {
6191    if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
6192      return false;
6193  }
6194
6195  if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
6196    if (WasQualifiedName)
6197      S.Diag(InstLoc,
6198             S.getLangOpts().CPlusPlus0x?
6199               diag::err_explicit_instantiation_out_of_scope :
6200               diag::warn_explicit_instantiation_out_of_scope_0x)
6201        << D << NS;
6202    else
6203      S.Diag(InstLoc,
6204             S.getLangOpts().CPlusPlus0x?
6205               diag::err_explicit_instantiation_unqualified_wrong_namespace :
6206               diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
6207        << D << NS;
6208  } else
6209    S.Diag(InstLoc,
6210           S.getLangOpts().CPlusPlus0x?
6211             diag::err_explicit_instantiation_must_be_global :
6212             diag::warn_explicit_instantiation_must_be_global_0x)
6213      << D;
6214  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
6215  return false;
6216}
6217
6218/// \brief Determine whether the given scope specifier has a template-id in it.
6219static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
6220  if (!SS.isSet())
6221    return false;
6222
6223  // C++11 [temp.explicit]p3:
6224  //   If the explicit instantiation is for a member function, a member class
6225  //   or a static data member of a class template specialization, the name of
6226  //   the class template specialization in the qualified-id for the member
6227  //   name shall be a simple-template-id.
6228  //
6229  // C++98 has the same restriction, just worded differently.
6230  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
6231       NNS; NNS = NNS->getPrefix())
6232    if (const Type *T = NNS->getAsType())
6233      if (isa<TemplateSpecializationType>(T))
6234        return true;
6235
6236  return false;
6237}
6238
6239// Explicit instantiation of a class template specialization
6240DeclResult
6241Sema::ActOnExplicitInstantiation(Scope *S,
6242                                 SourceLocation ExternLoc,
6243                                 SourceLocation TemplateLoc,
6244                                 unsigned TagSpec,
6245                                 SourceLocation KWLoc,
6246                                 const CXXScopeSpec &SS,
6247                                 TemplateTy TemplateD,
6248                                 SourceLocation TemplateNameLoc,
6249                                 SourceLocation LAngleLoc,
6250                                 ASTTemplateArgsPtr TemplateArgsIn,
6251                                 SourceLocation RAngleLoc,
6252                                 AttributeList *Attr) {
6253  // Find the class template we're specializing
6254  TemplateName Name = TemplateD.getAsVal<TemplateName>();
6255  ClassTemplateDecl *ClassTemplate
6256    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
6257
6258  // Check that the specialization uses the same tag kind as the
6259  // original template.
6260  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6261  assert(Kind != TTK_Enum &&
6262         "Invalid enum tag in class template explicit instantiation!");
6263  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
6264                                    Kind, /*isDefinition*/false, KWLoc,
6265                                    *ClassTemplate->getIdentifier())) {
6266    Diag(KWLoc, diag::err_use_with_wrong_tag)
6267      << ClassTemplate
6268      << FixItHint::CreateReplacement(KWLoc,
6269                            ClassTemplate->getTemplatedDecl()->getKindName());
6270    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
6271         diag::note_previous_use);
6272    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
6273  }
6274
6275  // C++0x [temp.explicit]p2:
6276  //   There are two forms of explicit instantiation: an explicit instantiation
6277  //   definition and an explicit instantiation declaration. An explicit
6278  //   instantiation declaration begins with the extern keyword. [...]
6279  TemplateSpecializationKind TSK
6280    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6281                           : TSK_ExplicitInstantiationDeclaration;
6282
6283  // Translate the parser's template argument list in our AST format.
6284  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6285  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6286
6287  // Check that the template argument list is well-formed for this
6288  // template.
6289  SmallVector<TemplateArgument, 4> Converted;
6290  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
6291                                TemplateArgs, false, Converted))
6292    return true;
6293
6294  // Find the class template specialization declaration that
6295  // corresponds to these arguments.
6296  void *InsertPos = 0;
6297  ClassTemplateSpecializationDecl *PrevDecl
6298    = ClassTemplate->findSpecialization(Converted.data(),
6299                                        Converted.size(), InsertPos);
6300
6301  TemplateSpecializationKind PrevDecl_TSK
6302    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
6303
6304  // C++0x [temp.explicit]p2:
6305  //   [...] An explicit instantiation shall appear in an enclosing
6306  //   namespace of its template. [...]
6307  //
6308  // This is C++ DR 275.
6309  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
6310                                      SS.isSet()))
6311    return true;
6312
6313  ClassTemplateSpecializationDecl *Specialization = 0;
6314
6315  bool HasNoEffect = false;
6316  if (PrevDecl) {
6317    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
6318                                               PrevDecl, PrevDecl_TSK,
6319                                            PrevDecl->getPointOfInstantiation(),
6320                                               HasNoEffect))
6321      return PrevDecl;
6322
6323    // Even though HasNoEffect == true means that this explicit instantiation
6324    // has no effect on semantics, we go on to put its syntax in the AST.
6325
6326    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
6327        PrevDecl_TSK == TSK_Undeclared) {
6328      // Since the only prior class template specialization with these
6329      // arguments was referenced but not declared, reuse that
6330      // declaration node as our own, updating the source location
6331      // for the template name to reflect our new declaration.
6332      // (Other source locations will be updated later.)
6333      Specialization = PrevDecl;
6334      Specialization->setLocation(TemplateNameLoc);
6335      PrevDecl = 0;
6336    }
6337  }
6338
6339  if (!Specialization) {
6340    // Create a new class template specialization declaration node for
6341    // this explicit specialization.
6342    Specialization
6343      = ClassTemplateSpecializationDecl::Create(Context, Kind,
6344                                             ClassTemplate->getDeclContext(),
6345                                                KWLoc, TemplateNameLoc,
6346                                                ClassTemplate,
6347                                                Converted.data(),
6348                                                Converted.size(),
6349                                                PrevDecl);
6350    SetNestedNameSpecifier(Specialization, SS);
6351
6352    if (!HasNoEffect && !PrevDecl) {
6353      // Insert the new specialization.
6354      ClassTemplate->AddSpecialization(Specialization, InsertPos);
6355    }
6356  }
6357
6358  // Build the fully-sugared type for this explicit instantiation as
6359  // the user wrote in the explicit instantiation itself. This means
6360  // that we'll pretty-print the type retrieved from the
6361  // specialization's declaration the way that the user actually wrote
6362  // the explicit instantiation, rather than formatting the name based
6363  // on the "canonical" representation used to store the template
6364  // arguments in the specialization.
6365  TypeSourceInfo *WrittenTy
6366    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6367                                                TemplateArgs,
6368                                  Context.getTypeDeclType(Specialization));
6369  Specialization->setTypeAsWritten(WrittenTy);
6370  TemplateArgsIn.release();
6371
6372  // Set source locations for keywords.
6373  Specialization->setExternLoc(ExternLoc);
6374  Specialization->setTemplateKeywordLoc(TemplateLoc);
6375
6376  if (Attr)
6377    ProcessDeclAttributeList(S, Specialization, Attr);
6378
6379  // Add the explicit instantiation into its lexical context. However,
6380  // since explicit instantiations are never found by name lookup, we
6381  // just put it into the declaration context directly.
6382  Specialization->setLexicalDeclContext(CurContext);
6383  CurContext->addDecl(Specialization);
6384
6385  // Syntax is now OK, so return if it has no other effect on semantics.
6386  if (HasNoEffect) {
6387    // Set the template specialization kind.
6388    Specialization->setTemplateSpecializationKind(TSK);
6389    return Specialization;
6390  }
6391
6392  // C++ [temp.explicit]p3:
6393  //   A definition of a class template or class member template
6394  //   shall be in scope at the point of the explicit instantiation of
6395  //   the class template or class member template.
6396  //
6397  // This check comes when we actually try to perform the
6398  // instantiation.
6399  ClassTemplateSpecializationDecl *Def
6400    = cast_or_null<ClassTemplateSpecializationDecl>(
6401                                              Specialization->getDefinition());
6402  if (!Def)
6403    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
6404  else if (TSK == TSK_ExplicitInstantiationDefinition) {
6405    MarkVTableUsed(TemplateNameLoc, Specialization, true);
6406    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
6407  }
6408
6409  // Instantiate the members of this class template specialization.
6410  Def = cast_or_null<ClassTemplateSpecializationDecl>(
6411                                       Specialization->getDefinition());
6412  if (Def) {
6413    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
6414
6415    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
6416    // TSK_ExplicitInstantiationDefinition
6417    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
6418        TSK == TSK_ExplicitInstantiationDefinition)
6419      Def->setTemplateSpecializationKind(TSK);
6420
6421    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
6422  }
6423
6424  // Set the template specialization kind.
6425  Specialization->setTemplateSpecializationKind(TSK);
6426  return Specialization;
6427}
6428
6429// Explicit instantiation of a member class of a class template.
6430DeclResult
6431Sema::ActOnExplicitInstantiation(Scope *S,
6432                                 SourceLocation ExternLoc,
6433                                 SourceLocation TemplateLoc,
6434                                 unsigned TagSpec,
6435                                 SourceLocation KWLoc,
6436                                 CXXScopeSpec &SS,
6437                                 IdentifierInfo *Name,
6438                                 SourceLocation NameLoc,
6439                                 AttributeList *Attr) {
6440
6441  bool Owned = false;
6442  bool IsDependent = false;
6443  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
6444                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
6445                        /*ModulePrivateLoc=*/SourceLocation(),
6446                        MultiTemplateParamsArg(*this, 0, 0),
6447                        Owned, IsDependent, SourceLocation(), false,
6448                        TypeResult());
6449  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
6450
6451  if (!TagD)
6452    return true;
6453
6454  TagDecl *Tag = cast<TagDecl>(TagD);
6455  assert(!Tag->isEnum() && "shouldn't see enumerations here");
6456
6457  if (Tag->isInvalidDecl())
6458    return true;
6459
6460  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
6461  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
6462  if (!Pattern) {
6463    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
6464      << Context.getTypeDeclType(Record);
6465    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
6466    return true;
6467  }
6468
6469  // C++0x [temp.explicit]p2:
6470  //   If the explicit instantiation is for a class or member class, the
6471  //   elaborated-type-specifier in the declaration shall include a
6472  //   simple-template-id.
6473  //
6474  // C++98 has the same restriction, just worded differently.
6475  if (!ScopeSpecifierHasTemplateId(SS))
6476    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
6477      << Record << SS.getRange();
6478
6479  // C++0x [temp.explicit]p2:
6480  //   There are two forms of explicit instantiation: an explicit instantiation
6481  //   definition and an explicit instantiation declaration. An explicit
6482  //   instantiation declaration begins with the extern keyword. [...]
6483  TemplateSpecializationKind TSK
6484    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6485                           : TSK_ExplicitInstantiationDeclaration;
6486
6487  // C++0x [temp.explicit]p2:
6488  //   [...] An explicit instantiation shall appear in an enclosing
6489  //   namespace of its template. [...]
6490  //
6491  // This is C++ DR 275.
6492  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
6493
6494  // Verify that it is okay to explicitly instantiate here.
6495  CXXRecordDecl *PrevDecl
6496    = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
6497  if (!PrevDecl && Record->getDefinition())
6498    PrevDecl = Record;
6499  if (PrevDecl) {
6500    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
6501    bool HasNoEffect = false;
6502    assert(MSInfo && "No member specialization information?");
6503    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
6504                                               PrevDecl,
6505                                        MSInfo->getTemplateSpecializationKind(),
6506                                             MSInfo->getPointOfInstantiation(),
6507                                               HasNoEffect))
6508      return true;
6509    if (HasNoEffect)
6510      return TagD;
6511  }
6512
6513  CXXRecordDecl *RecordDef
6514    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6515  if (!RecordDef) {
6516    // C++ [temp.explicit]p3:
6517    //   A definition of a member class of a class template shall be in scope
6518    //   at the point of an explicit instantiation of the member class.
6519    CXXRecordDecl *Def
6520      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
6521    if (!Def) {
6522      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
6523        << 0 << Record->getDeclName() << Record->getDeclContext();
6524      Diag(Pattern->getLocation(), diag::note_forward_declaration)
6525        << Pattern;
6526      return true;
6527    } else {
6528      if (InstantiateClass(NameLoc, Record, Def,
6529                           getTemplateInstantiationArgs(Record),
6530                           TSK))
6531        return true;
6532
6533      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6534      if (!RecordDef)
6535        return true;
6536    }
6537  }
6538
6539  // Instantiate all of the members of the class.
6540  InstantiateClassMembers(NameLoc, RecordDef,
6541                          getTemplateInstantiationArgs(Record), TSK);
6542
6543  if (TSK == TSK_ExplicitInstantiationDefinition)
6544    MarkVTableUsed(NameLoc, RecordDef, true);
6545
6546  // FIXME: We don't have any representation for explicit instantiations of
6547  // member classes. Such a representation is not needed for compilation, but it
6548  // should be available for clients that want to see all of the declarations in
6549  // the source code.
6550  return TagD;
6551}
6552
6553DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
6554                                            SourceLocation ExternLoc,
6555                                            SourceLocation TemplateLoc,
6556                                            Declarator &D) {
6557  // Explicit instantiations always require a name.
6558  // TODO: check if/when DNInfo should replace Name.
6559  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6560  DeclarationName Name = NameInfo.getName();
6561  if (!Name) {
6562    if (!D.isInvalidType())
6563      Diag(D.getDeclSpec().getLocStart(),
6564           diag::err_explicit_instantiation_requires_name)
6565        << D.getDeclSpec().getSourceRange()
6566        << D.getSourceRange();
6567
6568    return true;
6569  }
6570
6571  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6572  // we find one that is.
6573  while ((S->getFlags() & Scope::DeclScope) == 0 ||
6574         (S->getFlags() & Scope::TemplateParamScope) != 0)
6575    S = S->getParent();
6576
6577  // Determine the type of the declaration.
6578  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
6579  QualType R = T->getType();
6580  if (R.isNull())
6581    return true;
6582
6583  // C++ [dcl.stc]p1:
6584  //   A storage-class-specifier shall not be specified in [...] an explicit
6585  //   instantiation (14.7.2) directive.
6586  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
6587    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
6588      << Name;
6589    return true;
6590  } else if (D.getDeclSpec().getStorageClassSpec()
6591                                                != DeclSpec::SCS_unspecified) {
6592    // Complain about then remove the storage class specifier.
6593    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
6594      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6595
6596    D.getMutableDeclSpec().ClearStorageClassSpecs();
6597  }
6598
6599  // C++0x [temp.explicit]p1:
6600  //   [...] An explicit instantiation of a function template shall not use the
6601  //   inline or constexpr specifiers.
6602  // Presumably, this also applies to member functions of class templates as
6603  // well.
6604  if (D.getDeclSpec().isInlineSpecified())
6605    Diag(D.getDeclSpec().getInlineSpecLoc(),
6606         getLangOpts().CPlusPlus0x ?
6607           diag::err_explicit_instantiation_inline :
6608           diag::warn_explicit_instantiation_inline_0x)
6609      << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6610  if (D.getDeclSpec().isConstexprSpecified())
6611    // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
6612    // not already specified.
6613    Diag(D.getDeclSpec().getConstexprSpecLoc(),
6614         diag::err_explicit_instantiation_constexpr);
6615
6616  // C++0x [temp.explicit]p2:
6617  //   There are two forms of explicit instantiation: an explicit instantiation
6618  //   definition and an explicit instantiation declaration. An explicit
6619  //   instantiation declaration begins with the extern keyword. [...]
6620  TemplateSpecializationKind TSK
6621    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6622                           : TSK_ExplicitInstantiationDeclaration;
6623
6624  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
6625  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
6626
6627  if (!R->isFunctionType()) {
6628    // C++ [temp.explicit]p1:
6629    //   A [...] static data member of a class template can be explicitly
6630    //   instantiated from the member definition associated with its class
6631    //   template.
6632    if (Previous.isAmbiguous())
6633      return true;
6634
6635    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
6636    if (!Prev || !Prev->isStaticDataMember()) {
6637      // We expect to see a data data member here.
6638      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
6639        << Name;
6640      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6641           P != PEnd; ++P)
6642        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
6643      return true;
6644    }
6645
6646    if (!Prev->getInstantiatedFromStaticDataMember()) {
6647      // FIXME: Check for explicit specialization?
6648      Diag(D.getIdentifierLoc(),
6649           diag::err_explicit_instantiation_data_member_not_instantiated)
6650        << Prev;
6651      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
6652      // FIXME: Can we provide a note showing where this was declared?
6653      return true;
6654    }
6655
6656    // C++0x [temp.explicit]p2:
6657    //   If the explicit instantiation is for a member function, a member class
6658    //   or a static data member of a class template specialization, the name of
6659    //   the class template specialization in the qualified-id for the member
6660    //   name shall be a simple-template-id.
6661    //
6662    // C++98 has the same restriction, just worded differently.
6663    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6664      Diag(D.getIdentifierLoc(),
6665           diag::ext_explicit_instantiation_without_qualified_id)
6666        << Prev << D.getCXXScopeSpec().getRange();
6667
6668    // Check the scope of this explicit instantiation.
6669    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
6670
6671    // Verify that it is okay to explicitly instantiate here.
6672    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
6673    assert(MSInfo && "Missing static data member specialization info?");
6674    bool HasNoEffect = false;
6675    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
6676                                        MSInfo->getTemplateSpecializationKind(),
6677                                              MSInfo->getPointOfInstantiation(),
6678                                               HasNoEffect))
6679      return true;
6680    if (HasNoEffect)
6681      return (Decl*) 0;
6682
6683    // Instantiate static data member.
6684    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6685    if (TSK == TSK_ExplicitInstantiationDefinition)
6686      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
6687
6688    // FIXME: Create an ExplicitInstantiation node?
6689    return (Decl*) 0;
6690  }
6691
6692  // If the declarator is a template-id, translate the parser's template
6693  // argument list into our AST format.
6694  bool HasExplicitTemplateArgs = false;
6695  TemplateArgumentListInfo TemplateArgs;
6696  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6697    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6698    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6699    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6700    ASTTemplateArgsPtr TemplateArgsPtr(*this,
6701                                       TemplateId->getTemplateArgs(),
6702                                       TemplateId->NumArgs);
6703    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
6704    HasExplicitTemplateArgs = true;
6705    TemplateArgsPtr.release();
6706  }
6707
6708  // C++ [temp.explicit]p1:
6709  //   A [...] function [...] can be explicitly instantiated from its template.
6710  //   A member function [...] of a class template can be explicitly
6711  //  instantiated from the member definition associated with its class
6712  //  template.
6713  UnresolvedSet<8> Matches;
6714  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6715       P != PEnd; ++P) {
6716    NamedDecl *Prev = *P;
6717    if (!HasExplicitTemplateArgs) {
6718      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
6719        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
6720          Matches.clear();
6721
6722          Matches.addDecl(Method, P.getAccess());
6723          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
6724            break;
6725        }
6726      }
6727    }
6728
6729    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
6730    if (!FunTmpl)
6731      continue;
6732
6733    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
6734    FunctionDecl *Specialization = 0;
6735    if (TemplateDeductionResult TDK
6736          = DeduceTemplateArguments(FunTmpl,
6737                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6738                                    R, Specialization, Info)) {
6739      // FIXME: Keep track of almost-matches?
6740      (void)TDK;
6741      continue;
6742    }
6743
6744    Matches.addDecl(Specialization, P.getAccess());
6745  }
6746
6747  // Find the most specialized function template specialization.
6748  UnresolvedSetIterator Result
6749    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
6750                         D.getIdentifierLoc(),
6751                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
6752                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
6753                         PDiag(diag::note_explicit_instantiation_candidate));
6754
6755  if (Result == Matches.end())
6756    return true;
6757
6758  // Ignore access control bits, we don't need them for redeclaration checking.
6759  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6760
6761  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
6762    Diag(D.getIdentifierLoc(),
6763         diag::err_explicit_instantiation_member_function_not_instantiated)
6764      << Specialization
6765      << (Specialization->getTemplateSpecializationKind() ==
6766          TSK_ExplicitSpecialization);
6767    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
6768    return true;
6769  }
6770
6771  FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
6772  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
6773    PrevDecl = Specialization;
6774
6775  if (PrevDecl) {
6776    bool HasNoEffect = false;
6777    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
6778                                               PrevDecl,
6779                                     PrevDecl->getTemplateSpecializationKind(),
6780                                          PrevDecl->getPointOfInstantiation(),
6781                                               HasNoEffect))
6782      return true;
6783
6784    // FIXME: We may still want to build some representation of this
6785    // explicit specialization.
6786    if (HasNoEffect)
6787      return (Decl*) 0;
6788  }
6789
6790  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6791  AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
6792  if (Attr)
6793    ProcessDeclAttributeList(S, Specialization, Attr);
6794
6795  if (TSK == TSK_ExplicitInstantiationDefinition)
6796    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
6797
6798  // C++0x [temp.explicit]p2:
6799  //   If the explicit instantiation is for a member function, a member class
6800  //   or a static data member of a class template specialization, the name of
6801  //   the class template specialization in the qualified-id for the member
6802  //   name shall be a simple-template-id.
6803  //
6804  // C++98 has the same restriction, just worded differently.
6805  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
6806  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
6807      D.getCXXScopeSpec().isSet() &&
6808      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6809    Diag(D.getIdentifierLoc(),
6810         diag::ext_explicit_instantiation_without_qualified_id)
6811    << Specialization << D.getCXXScopeSpec().getRange();
6812
6813  CheckExplicitInstantiationScope(*this,
6814                   FunTmpl? (NamedDecl *)FunTmpl
6815                          : Specialization->getInstantiatedFromMemberFunction(),
6816                                  D.getIdentifierLoc(),
6817                                  D.getCXXScopeSpec().isSet());
6818
6819  // FIXME: Create some kind of ExplicitInstantiationDecl here.
6820  return (Decl*) 0;
6821}
6822
6823TypeResult
6824Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6825                        const CXXScopeSpec &SS, IdentifierInfo *Name,
6826                        SourceLocation TagLoc, SourceLocation NameLoc) {
6827  // This has to hold, because SS is expected to be defined.
6828  assert(Name && "Expected a name in a dependent tag");
6829
6830  NestedNameSpecifier *NNS
6831    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6832  if (!NNS)
6833    return true;
6834
6835  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6836
6837  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
6838    Diag(NameLoc, diag::err_dependent_tag_decl)
6839      << (TUK == TUK_Definition) << Kind << SS.getRange();
6840    return true;
6841  }
6842
6843  // Create the resulting type.
6844  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6845  QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
6846
6847  // Create type-source location information for this type.
6848  TypeLocBuilder TLB;
6849  DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
6850  TL.setElaboratedKeywordLoc(TagLoc);
6851  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6852  TL.setNameLoc(NameLoc);
6853  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
6854}
6855
6856TypeResult
6857Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6858                        const CXXScopeSpec &SS, const IdentifierInfo &II,
6859                        SourceLocation IdLoc) {
6860  if (SS.isInvalid())
6861    return true;
6862
6863  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6864    Diag(TypenameLoc,
6865         getLangOpts().CPlusPlus0x ?
6866           diag::warn_cxx98_compat_typename_outside_of_template :
6867           diag::ext_typename_outside_of_template)
6868      << FixItHint::CreateRemoval(TypenameLoc);
6869
6870  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6871  QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
6872                                 TypenameLoc, QualifierLoc, II, IdLoc);
6873  if (T.isNull())
6874    return true;
6875
6876  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6877  if (isa<DependentNameType>(T)) {
6878    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6879    TL.setElaboratedKeywordLoc(TypenameLoc);
6880    TL.setQualifierLoc(QualifierLoc);
6881    TL.setNameLoc(IdLoc);
6882  } else {
6883    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6884    TL.setElaboratedKeywordLoc(TypenameLoc);
6885    TL.setQualifierLoc(QualifierLoc);
6886    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
6887  }
6888
6889  return CreateParsedType(T, TSI);
6890}
6891
6892TypeResult
6893Sema::ActOnTypenameType(Scope *S,
6894                        SourceLocation TypenameLoc,
6895                        const CXXScopeSpec &SS,
6896                        SourceLocation TemplateKWLoc,
6897                        TemplateTy TemplateIn,
6898                        SourceLocation TemplateNameLoc,
6899                        SourceLocation LAngleLoc,
6900                        ASTTemplateArgsPtr TemplateArgsIn,
6901                        SourceLocation RAngleLoc) {
6902  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6903    Diag(TypenameLoc,
6904         getLangOpts().CPlusPlus0x ?
6905           diag::warn_cxx98_compat_typename_outside_of_template :
6906           diag::ext_typename_outside_of_template)
6907      << FixItHint::CreateRemoval(TypenameLoc);
6908
6909  // Translate the parser's template argument list in our AST format.
6910  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6911  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6912
6913  TemplateName Template = TemplateIn.get();
6914  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
6915    // Construct a dependent template specialization type.
6916    assert(DTN && "dependent template has non-dependent name?");
6917    assert(DTN->getQualifier()
6918           == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
6919    QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
6920                                                          DTN->getQualifier(),
6921                                                          DTN->getIdentifier(),
6922                                                                TemplateArgs);
6923
6924    // Create source-location information for this type.
6925    TypeLocBuilder Builder;
6926    DependentTemplateSpecializationTypeLoc SpecTL
6927    = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
6928    SpecTL.setElaboratedKeywordLoc(TypenameLoc);
6929    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
6930    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
6931    SpecTL.setTemplateNameLoc(TemplateNameLoc);
6932    SpecTL.setLAngleLoc(LAngleLoc);
6933    SpecTL.setRAngleLoc(RAngleLoc);
6934    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6935      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6936    return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
6937  }
6938
6939  QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
6940  if (T.isNull())
6941    return true;
6942
6943  // Provide source-location information for the template specialization type.
6944  TypeLocBuilder Builder;
6945  TemplateSpecializationTypeLoc SpecTL
6946    = Builder.push<TemplateSpecializationTypeLoc>(T);
6947  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
6948  SpecTL.setTemplateNameLoc(TemplateNameLoc);
6949  SpecTL.setLAngleLoc(LAngleLoc);
6950  SpecTL.setRAngleLoc(RAngleLoc);
6951  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6952    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6953
6954  T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
6955  ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
6956  TL.setElaboratedKeywordLoc(TypenameLoc);
6957  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6958
6959  TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
6960  return CreateParsedType(T, TSI);
6961}
6962
6963
6964/// Determine whether this failed name lookup should be treated as being
6965/// disabled by a usage of std::enable_if.
6966static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
6967                       SourceRange &CondRange) {
6968  // We must be looking for a ::type...
6969  if (!II.isStr("type"))
6970    return false;
6971
6972  // ... within an explicitly-written template specialization...
6973  if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
6974    return false;
6975  TypeLoc EnableIfTy = NNS.getTypeLoc();
6976  TemplateSpecializationTypeLoc *EnableIfTSTLoc =
6977    dyn_cast<TemplateSpecializationTypeLoc>(&EnableIfTy);
6978  if (!EnableIfTSTLoc || EnableIfTSTLoc->getNumArgs() == 0)
6979    return false;
6980  const TemplateSpecializationType *EnableIfTST =
6981    cast<TemplateSpecializationType>(EnableIfTSTLoc->getTypePtr());
6982
6983  // ... which names a complete class template declaration...
6984  const TemplateDecl *EnableIfDecl =
6985    EnableIfTST->getTemplateName().getAsTemplateDecl();
6986  if (!EnableIfDecl || EnableIfTST->isIncompleteType())
6987    return false;
6988
6989  // ... called "enable_if".
6990  const IdentifierInfo *EnableIfII =
6991    EnableIfDecl->getDeclName().getAsIdentifierInfo();
6992  if (!EnableIfII || !EnableIfII->isStr("enable_if"))
6993    return false;
6994
6995  // Assume the first template argument is the condition.
6996  CondRange = EnableIfTSTLoc->getArgLoc(0).getSourceRange();
6997  return true;
6998}
6999
7000/// \brief Build the type that describes a C++ typename specifier,
7001/// e.g., "typename T::type".
7002QualType
7003Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
7004                        SourceLocation KeywordLoc,
7005                        NestedNameSpecifierLoc QualifierLoc,
7006                        const IdentifierInfo &II,
7007                        SourceLocation IILoc) {
7008  CXXScopeSpec SS;
7009  SS.Adopt(QualifierLoc);
7010
7011  DeclContext *Ctx = computeDeclContext(SS);
7012  if (!Ctx) {
7013    // If the nested-name-specifier is dependent and couldn't be
7014    // resolved to a type, build a typename type.
7015    assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
7016    return Context.getDependentNameType(Keyword,
7017                                        QualifierLoc.getNestedNameSpecifier(),
7018                                        &II);
7019  }
7020
7021  // If the nested-name-specifier refers to the current instantiation,
7022  // the "typename" keyword itself is superfluous. In C++03, the
7023  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
7024  // allows such extraneous "typename" keywords, and we retroactively
7025  // apply this DR to C++03 code with only a warning. In any case we continue.
7026
7027  if (RequireCompleteDeclContext(SS, Ctx))
7028    return QualType();
7029
7030  DeclarationName Name(&II);
7031  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
7032  LookupQualifiedName(Result, Ctx);
7033  unsigned DiagID = 0;
7034  Decl *Referenced = 0;
7035  switch (Result.getResultKind()) {
7036  case LookupResult::NotFound: {
7037    // If we're looking up 'type' within a template named 'enable_if', produce
7038    // a more specific diagnostic.
7039    SourceRange CondRange;
7040    if (isEnableIf(QualifierLoc, II, CondRange)) {
7041      Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
7042        << Ctx << CondRange;
7043      return QualType();
7044    }
7045
7046    DiagID = diag::err_typename_nested_not_found;
7047    break;
7048  }
7049
7050  case LookupResult::FoundUnresolvedValue: {
7051    // We found a using declaration that is a value. Most likely, the using
7052    // declaration itself is meant to have the 'typename' keyword.
7053    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7054                          IILoc);
7055    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
7056      << Name << Ctx << FullRange;
7057    if (UnresolvedUsingValueDecl *Using
7058          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
7059      SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
7060      Diag(Loc, diag::note_using_value_decl_missing_typename)
7061        << FixItHint::CreateInsertion(Loc, "typename ");
7062    }
7063  }
7064  // Fall through to create a dependent typename type, from which we can recover
7065  // better.
7066
7067  case LookupResult::NotFoundInCurrentInstantiation:
7068    // Okay, it's a member of an unknown instantiation.
7069    return Context.getDependentNameType(Keyword,
7070                                        QualifierLoc.getNestedNameSpecifier(),
7071                                        &II);
7072
7073  case LookupResult::Found:
7074    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
7075      // We found a type. Build an ElaboratedType, since the
7076      // typename-specifier was just sugar.
7077      return Context.getElaboratedType(ETK_Typename,
7078                                       QualifierLoc.getNestedNameSpecifier(),
7079                                       Context.getTypeDeclType(Type));
7080    }
7081
7082    DiagID = diag::err_typename_nested_not_type;
7083    Referenced = Result.getFoundDecl();
7084    break;
7085
7086  case LookupResult::FoundOverloaded:
7087    DiagID = diag::err_typename_nested_not_type;
7088    Referenced = *Result.begin();
7089    break;
7090
7091  case LookupResult::Ambiguous:
7092    return QualType();
7093  }
7094
7095  // If we get here, it's because name lookup did not find a
7096  // type. Emit an appropriate diagnostic and return an error.
7097  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7098                        IILoc);
7099  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
7100  if (Referenced)
7101    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
7102      << Name;
7103  return QualType();
7104}
7105
7106namespace {
7107  // See Sema::RebuildTypeInCurrentInstantiation
7108  class CurrentInstantiationRebuilder
7109    : public TreeTransform<CurrentInstantiationRebuilder> {
7110    SourceLocation Loc;
7111    DeclarationName Entity;
7112
7113  public:
7114    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
7115
7116    CurrentInstantiationRebuilder(Sema &SemaRef,
7117                                  SourceLocation Loc,
7118                                  DeclarationName Entity)
7119    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
7120      Loc(Loc), Entity(Entity) { }
7121
7122    /// \brief Determine whether the given type \p T has already been
7123    /// transformed.
7124    ///
7125    /// For the purposes of type reconstruction, a type has already been
7126    /// transformed if it is NULL or if it is not dependent.
7127    bool AlreadyTransformed(QualType T) {
7128      return T.isNull() || !T->isDependentType();
7129    }
7130
7131    /// \brief Returns the location of the entity whose type is being
7132    /// rebuilt.
7133    SourceLocation getBaseLocation() { return Loc; }
7134
7135    /// \brief Returns the name of the entity whose type is being rebuilt.
7136    DeclarationName getBaseEntity() { return Entity; }
7137
7138    /// \brief Sets the "base" location and entity when that
7139    /// information is known based on another transformation.
7140    void setBase(SourceLocation Loc, DeclarationName Entity) {
7141      this->Loc = Loc;
7142      this->Entity = Entity;
7143    }
7144
7145    ExprResult TransformLambdaExpr(LambdaExpr *E) {
7146      // Lambdas never need to be transformed.
7147      return E;
7148    }
7149  };
7150}
7151
7152/// \brief Rebuilds a type within the context of the current instantiation.
7153///
7154/// The type \p T is part of the type of an out-of-line member definition of
7155/// a class template (or class template partial specialization) that was parsed
7156/// and constructed before we entered the scope of the class template (or
7157/// partial specialization thereof). This routine will rebuild that type now
7158/// that we have entered the declarator's scope, which may produce different
7159/// canonical types, e.g.,
7160///
7161/// \code
7162/// template<typename T>
7163/// struct X {
7164///   typedef T* pointer;
7165///   pointer data();
7166/// };
7167///
7168/// template<typename T>
7169/// typename X<T>::pointer X<T>::data() { ... }
7170/// \endcode
7171///
7172/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
7173/// since we do not know that we can look into X<T> when we parsed the type.
7174/// This function will rebuild the type, performing the lookup of "pointer"
7175/// in X<T> and returning an ElaboratedType whose canonical type is the same
7176/// as the canonical type of T*, allowing the return types of the out-of-line
7177/// definition and the declaration to match.
7178TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
7179                                                        SourceLocation Loc,
7180                                                        DeclarationName Name) {
7181  if (!T || !T->getType()->isDependentType())
7182    return T;
7183
7184  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
7185  return Rebuilder.TransformType(T);
7186}
7187
7188ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
7189  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
7190                                          DeclarationName());
7191  return Rebuilder.TransformExpr(E);
7192}
7193
7194bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
7195  if (SS.isInvalid())
7196    return true;
7197
7198  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7199  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
7200                                          DeclarationName());
7201  NestedNameSpecifierLoc Rebuilt
7202    = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
7203  if (!Rebuilt)
7204    return true;
7205
7206  SS.Adopt(Rebuilt);
7207  return false;
7208}
7209
7210/// \brief Rebuild the template parameters now that we know we're in a current
7211/// instantiation.
7212bool Sema::RebuildTemplateParamsInCurrentInstantiation(
7213                                               TemplateParameterList *Params) {
7214  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7215    Decl *Param = Params->getParam(I);
7216
7217    // There is nothing to rebuild in a type parameter.
7218    if (isa<TemplateTypeParmDecl>(Param))
7219      continue;
7220
7221    // Rebuild the template parameter list of a template template parameter.
7222    if (TemplateTemplateParmDecl *TTP
7223        = dyn_cast<TemplateTemplateParmDecl>(Param)) {
7224      if (RebuildTemplateParamsInCurrentInstantiation(
7225            TTP->getTemplateParameters()))
7226        return true;
7227
7228      continue;
7229    }
7230
7231    // Rebuild the type of a non-type template parameter.
7232    NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
7233    TypeSourceInfo *NewTSI
7234      = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
7235                                          NTTP->getLocation(),
7236                                          NTTP->getDeclName());
7237    if (!NewTSI)
7238      return true;
7239
7240    if (NewTSI != NTTP->getTypeSourceInfo()) {
7241      NTTP->setTypeSourceInfo(NewTSI);
7242      NTTP->setType(NewTSI->getType());
7243    }
7244  }
7245
7246  return false;
7247}
7248
7249/// \brief Produces a formatted string that describes the binding of
7250/// template parameters to template arguments.
7251std::string
7252Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7253                                      const TemplateArgumentList &Args) {
7254  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
7255}
7256
7257std::string
7258Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7259                                      const TemplateArgument *Args,
7260                                      unsigned NumArgs) {
7261  SmallString<128> Str;
7262  llvm::raw_svector_ostream Out(Str);
7263
7264  if (!Params || Params->size() == 0 || NumArgs == 0)
7265    return std::string();
7266
7267  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7268    if (I >= NumArgs)
7269      break;
7270
7271    if (I == 0)
7272      Out << "[with ";
7273    else
7274      Out << ", ";
7275
7276    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
7277      Out << Id->getName();
7278    } else {
7279      Out << '$' << I;
7280    }
7281
7282    Out << " = ";
7283    Args[I].print(getPrintingPolicy(), Out);
7284  }
7285
7286  Out << ']';
7287  return Out.str();
7288}
7289
7290void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) {
7291  if (!FD)
7292    return;
7293  FD->setLateTemplateParsed(Flag);
7294}
7295
7296bool Sema::IsInsideALocalClassWithinATemplateFunction() {
7297  DeclContext *DC = CurContext;
7298
7299  while (DC) {
7300    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
7301      const FunctionDecl *FD = RD->isLocalClass();
7302      return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
7303    } else if (DC->isTranslationUnit() || DC->isNamespace())
7304      return false;
7305
7306    DC = DC->getParent();
7307  }
7308  return false;
7309}
7310