SemaTemplate.cpp revision 8e0c118cb6c22c448ce502f3e00d01630192f095
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/StringExtras.h"
30using namespace clang;
31using namespace sema;
32
33// Exported for use by Parser.
34SourceRange
35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
36                              unsigned N) {
37  if (!N) return SourceRange();
38  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
39}
40
41/// \brief Determine whether the declaration found is acceptable as the name
42/// of a template and, if so, return that template declaration. Otherwise,
43/// returns NULL.
44static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
45                                           NamedDecl *Orig) {
46  NamedDecl *D = Orig->getUnderlyingDecl();
47
48  if (isa<TemplateDecl>(D))
49    return Orig;
50
51  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
52    // C++ [temp.local]p1:
53    //   Like normal (non-template) classes, class templates have an
54    //   injected-class-name (Clause 9). The injected-class-name
55    //   can be used with or without a template-argument-list. When
56    //   it is used without a template-argument-list, it is
57    //   equivalent to the injected-class-name followed by the
58    //   template-parameters of the class template enclosed in
59    //   <>. When it is used with a template-argument-list, it
60    //   refers to the specified class template specialization,
61    //   which could be the current specialization or another
62    //   specialization.
63    if (Record->isInjectedClassName()) {
64      Record = cast<CXXRecordDecl>(Record->getDeclContext());
65      if (Record->getDescribedClassTemplate())
66        return Record->getDescribedClassTemplate();
67
68      if (ClassTemplateSpecializationDecl *Spec
69            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
70        return Spec->getSpecializedTemplate();
71    }
72
73    return 0;
74  }
75
76  return 0;
77}
78
79void Sema::FilterAcceptableTemplateNames(LookupResult &R) {
80  // The set of class templates we've already seen.
81  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
82  LookupResult::Filter filter = R.makeFilter();
83  while (filter.hasNext()) {
84    NamedDecl *Orig = filter.next();
85    NamedDecl *Repl = isAcceptableTemplateName(Context, Orig);
86    if (!Repl)
87      filter.erase();
88    else if (Repl != Orig) {
89
90      // C++ [temp.local]p3:
91      //   A lookup that finds an injected-class-name (10.2) can result in an
92      //   ambiguity in certain cases (for example, if it is found in more than
93      //   one base class). If all of the injected-class-names that are found
94      //   refer to specializations of the same class template, and if the name
95      //   is used as a template-name, the reference refers to the class
96      //   template itself and not a specialization thereof, and is not
97      //   ambiguous.
98      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
99        if (!ClassTemplates.insert(ClassTmpl)) {
100          filter.erase();
101          continue;
102        }
103
104      // FIXME: we promote access to public here as a workaround to
105      // the fact that LookupResult doesn't let us remember that we
106      // found this template through a particular injected class name,
107      // which means we end up doing nasty things to the invariants.
108      // Pretending that access is public is *much* safer.
109      filter.replace(Repl, AS_public);
110    }
111  }
112  filter.done();
113}
114
115bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R) {
116  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
117    if (isAcceptableTemplateName(Context, *I))
118      return true;
119
120  return false;
121}
122
123TemplateNameKind Sema::isTemplateName(Scope *S,
124                                      CXXScopeSpec &SS,
125                                      bool hasTemplateKeyword,
126                                      UnqualifiedId &Name,
127                                      ParsedType ObjectTypePtr,
128                                      bool EnteringContext,
129                                      TemplateTy &TemplateResult,
130                                      bool &MemberOfUnknownSpecialization) {
131  assert(getLangOptions().CPlusPlus && "No template names in C!");
132
133  DeclarationName TName;
134  MemberOfUnknownSpecialization = false;
135
136  switch (Name.getKind()) {
137  case UnqualifiedId::IK_Identifier:
138    TName = DeclarationName(Name.Identifier);
139    break;
140
141  case UnqualifiedId::IK_OperatorFunctionId:
142    TName = Context.DeclarationNames.getCXXOperatorName(
143                                              Name.OperatorFunctionId.Operator);
144    break;
145
146  case UnqualifiedId::IK_LiteralOperatorId:
147    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
148    break;
149
150  default:
151    return TNK_Non_template;
152  }
153
154  QualType ObjectType = ObjectTypePtr.get();
155
156  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
157                 LookupOrdinaryName);
158  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
159                     MemberOfUnknownSpecialization);
160  if (R.empty()) return TNK_Non_template;
161  if (R.isAmbiguous()) {
162    // Suppress diagnostics;  we'll redo this lookup later.
163    R.suppressDiagnostics();
164
165    // FIXME: we might have ambiguous templates, in which case we
166    // should at least parse them properly!
167    return TNK_Non_template;
168  }
169
170  TemplateName Template;
171  TemplateNameKind TemplateKind;
172
173  unsigned ResultCount = R.end() - R.begin();
174  if (ResultCount > 1) {
175    // We assume that we'll preserve the qualifier from a function
176    // template name in other ways.
177    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
178    TemplateKind = TNK_Function_template;
179
180    // We'll do this lookup again later.
181    R.suppressDiagnostics();
182  } else {
183    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
184
185    if (SS.isSet() && !SS.isInvalid()) {
186      NestedNameSpecifier *Qualifier
187        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
188      Template = Context.getQualifiedTemplateName(Qualifier,
189                                                  hasTemplateKeyword, TD);
190    } else {
191      Template = TemplateName(TD);
192    }
193
194    if (isa<FunctionTemplateDecl>(TD)) {
195      TemplateKind = TNK_Function_template;
196
197      // We'll do this lookup again later.
198      R.suppressDiagnostics();
199    } else {
200      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
201             isa<TypeAliasTemplateDecl>(TD));
202      TemplateKind = TNK_Type_template;
203    }
204  }
205
206  TemplateResult = TemplateTy::make(Template);
207  return TemplateKind;
208}
209
210bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
211                                       SourceLocation IILoc,
212                                       Scope *S,
213                                       const CXXScopeSpec *SS,
214                                       TemplateTy &SuggestedTemplate,
215                                       TemplateNameKind &SuggestedKind) {
216  // We can't recover unless there's a dependent scope specifier preceding the
217  // template name.
218  // FIXME: Typo correction?
219  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
220      computeDeclContext(*SS))
221    return false;
222
223  // The code is missing a 'template' keyword prior to the dependent template
224  // name.
225  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
226  Diag(IILoc, diag::err_template_kw_missing)
227    << Qualifier << II.getName()
228    << FixItHint::CreateInsertion(IILoc, "template ");
229  SuggestedTemplate
230    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
231  SuggestedKind = TNK_Dependent_template_name;
232  return true;
233}
234
235void Sema::LookupTemplateName(LookupResult &Found,
236                              Scope *S, CXXScopeSpec &SS,
237                              QualType ObjectType,
238                              bool EnteringContext,
239                              bool &MemberOfUnknownSpecialization) {
240  // Determine where to perform name lookup
241  MemberOfUnknownSpecialization = false;
242  DeclContext *LookupCtx = 0;
243  bool isDependent = false;
244  if (!ObjectType.isNull()) {
245    // This nested-name-specifier occurs in a member access expression, e.g.,
246    // x->B::f, and we are looking into the type of the object.
247    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
248    LookupCtx = computeDeclContext(ObjectType);
249    isDependent = ObjectType->isDependentType();
250    assert((isDependent || !ObjectType->isIncompleteType()) &&
251           "Caller should have completed object type");
252  } else if (SS.isSet()) {
253    // This nested-name-specifier occurs after another nested-name-specifier,
254    // so long into the context associated with the prior nested-name-specifier.
255    LookupCtx = computeDeclContext(SS, EnteringContext);
256    isDependent = isDependentScopeSpecifier(SS);
257
258    // The declaration context must be complete.
259    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
260      return;
261  }
262
263  bool ObjectTypeSearchedInScope = false;
264  if (LookupCtx) {
265    // Perform "qualified" name lookup into the declaration context we
266    // computed, which is either the type of the base of a member access
267    // expression or the declaration context associated with a prior
268    // nested-name-specifier.
269    LookupQualifiedName(Found, LookupCtx);
270
271    if (!ObjectType.isNull() && Found.empty()) {
272      // C++ [basic.lookup.classref]p1:
273      //   In a class member access expression (5.2.5), if the . or -> token is
274      //   immediately followed by an identifier followed by a <, the
275      //   identifier must be looked up to determine whether the < is the
276      //   beginning of a template argument list (14.2) or a less-than operator.
277      //   The identifier is first looked up in the class of the object
278      //   expression. If the identifier is not found, it is then looked up in
279      //   the context of the entire postfix-expression and shall name a class
280      //   or function template.
281      if (S) LookupName(Found, S);
282      ObjectTypeSearchedInScope = true;
283    }
284  } else if (isDependent && (!S || ObjectType.isNull())) {
285    // We cannot look into a dependent object type or nested nme
286    // specifier.
287    MemberOfUnknownSpecialization = true;
288    return;
289  } else {
290    // Perform unqualified name lookup in the current scope.
291    LookupName(Found, S);
292  }
293
294  if (Found.empty() && !isDependent) {
295    // If we did not find any names, attempt to correct any typos.
296    DeclarationName Name = Found.getLookupName();
297    Found.clear();
298    if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
299                                               Found.getLookupKind(), S, &SS,
300                                               LookupCtx, false,
301                                               CTC_CXXCasts)) {
302      Found.setLookupName(Corrected.getCorrection());
303      if (Corrected.getCorrectionDecl())
304        Found.addDecl(Corrected.getCorrectionDecl());
305      FilterAcceptableTemplateNames(Found);
306      if (!Found.empty()) {
307        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
308        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
309        if (LookupCtx)
310          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
311            << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
312            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
313        else
314          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
315            << Name << CorrectedQuotedStr
316            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
317        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
318          Diag(Template->getLocation(), diag::note_previous_decl)
319            << CorrectedQuotedStr;
320      }
321    } else {
322      Found.setLookupName(Name);
323    }
324  }
325
326  FilterAcceptableTemplateNames(Found);
327  if (Found.empty()) {
328    if (isDependent)
329      MemberOfUnknownSpecialization = true;
330    return;
331  }
332
333  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
334    // C++ [basic.lookup.classref]p1:
335    //   [...] If the lookup in the class of the object expression finds a
336    //   template, the name is also looked up in the context of the entire
337    //   postfix-expression and [...]
338    //
339    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
340                            LookupOrdinaryName);
341    LookupName(FoundOuter, S);
342    FilterAcceptableTemplateNames(FoundOuter);
343
344    if (FoundOuter.empty()) {
345      //   - if the name is not found, the name found in the class of the
346      //     object expression is used, otherwise
347    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
348               FoundOuter.isAmbiguous()) {
349      //   - if the name is found in the context of the entire
350      //     postfix-expression and does not name a class template, the name
351      //     found in the class of the object expression is used, otherwise
352      FoundOuter.clear();
353    } else if (!Found.isSuppressingDiagnostics()) {
354      //   - if the name found is a class template, it must refer to the same
355      //     entity as the one found in the class of the object expression,
356      //     otherwise the program is ill-formed.
357      if (!Found.isSingleResult() ||
358          Found.getFoundDecl()->getCanonicalDecl()
359            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
360        Diag(Found.getNameLoc(),
361             diag::ext_nested_name_member_ref_lookup_ambiguous)
362          << Found.getLookupName()
363          << ObjectType;
364        Diag(Found.getRepresentativeDecl()->getLocation(),
365             diag::note_ambig_member_ref_object_type)
366          << ObjectType;
367        Diag(FoundOuter.getFoundDecl()->getLocation(),
368             diag::note_ambig_member_ref_scope);
369
370        // Recover by taking the template that we found in the object
371        // expression's type.
372      }
373    }
374  }
375}
376
377/// ActOnDependentIdExpression - Handle a dependent id-expression that
378/// was just parsed.  This is only possible with an explicit scope
379/// specifier naming a dependent type.
380ExprResult
381Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
382                                 const DeclarationNameInfo &NameInfo,
383                                 bool isAddressOfOperand,
384                           const TemplateArgumentListInfo *TemplateArgs) {
385  DeclContext *DC = getFunctionLevelDeclContext();
386
387  if (!isAddressOfOperand &&
388      isa<CXXMethodDecl>(DC) &&
389      cast<CXXMethodDecl>(DC)->isInstance()) {
390    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
391
392    // Since the 'this' expression is synthesized, we don't need to
393    // perform the double-lookup check.
394    NamedDecl *FirstQualifierInScope = 0;
395
396    return Owned(CXXDependentScopeMemberExpr::Create(Context,
397                                                     /*This*/ 0, ThisType,
398                                                     /*IsArrow*/ true,
399                                                     /*Op*/ SourceLocation(),
400                                               SS.getWithLocInContext(Context),
401                                                     FirstQualifierInScope,
402                                                     NameInfo,
403                                                     TemplateArgs));
404  }
405
406  return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
407}
408
409ExprResult
410Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
411                                const DeclarationNameInfo &NameInfo,
412                                const TemplateArgumentListInfo *TemplateArgs) {
413  return Owned(DependentScopeDeclRefExpr::Create(Context,
414                                               SS.getWithLocInContext(Context),
415                                                 NameInfo,
416                                                 TemplateArgs));
417}
418
419/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
420/// that the template parameter 'PrevDecl' is being shadowed by a new
421/// declaration at location Loc. Returns true to indicate that this is
422/// an error, and false otherwise.
423bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
424  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
425
426  // Microsoft Visual C++ permits template parameters to be shadowed.
427  if (getLangOptions().MicrosoftExt)
428    return false;
429
430  // C++ [temp.local]p4:
431  //   A template-parameter shall not be redeclared within its
432  //   scope (including nested scopes).
433  Diag(Loc, diag::err_template_param_shadow)
434    << cast<NamedDecl>(PrevDecl)->getDeclName();
435  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
436  return true;
437}
438
439/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
440/// the parameter D to reference the templated declaration and return a pointer
441/// to the template declaration. Otherwise, do nothing to D and return null.
442TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
443  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
444    D = Temp->getTemplatedDecl();
445    return Temp;
446  }
447  return 0;
448}
449
450ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
451                                             SourceLocation EllipsisLoc) const {
452  assert(Kind == Template &&
453         "Only template template arguments can be pack expansions here");
454  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
455         "Template template argument pack expansion without packs");
456  ParsedTemplateArgument Result(*this);
457  Result.EllipsisLoc = EllipsisLoc;
458  return Result;
459}
460
461static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
462                                            const ParsedTemplateArgument &Arg) {
463
464  switch (Arg.getKind()) {
465  case ParsedTemplateArgument::Type: {
466    TypeSourceInfo *DI;
467    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
468    if (!DI)
469      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
470    return TemplateArgumentLoc(TemplateArgument(T), DI);
471  }
472
473  case ParsedTemplateArgument::NonType: {
474    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
475    return TemplateArgumentLoc(TemplateArgument(E), E);
476  }
477
478  case ParsedTemplateArgument::Template: {
479    TemplateName Template = Arg.getAsTemplate().get();
480    TemplateArgument TArg;
481    if (Arg.getEllipsisLoc().isValid())
482      TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
483    else
484      TArg = Template;
485    return TemplateArgumentLoc(TArg,
486                               Arg.getScopeSpec().getWithLocInContext(
487                                                              SemaRef.Context),
488                               Arg.getLocation(),
489                               Arg.getEllipsisLoc());
490  }
491  }
492
493  llvm_unreachable("Unhandled parsed template argument");
494  return TemplateArgumentLoc();
495}
496
497/// \brief Translates template arguments as provided by the parser
498/// into template arguments used by semantic analysis.
499void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
500                                      TemplateArgumentListInfo &TemplateArgs) {
501 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
502   TemplateArgs.addArgument(translateTemplateArgument(*this,
503                                                      TemplateArgsIn[I]));
504}
505
506/// ActOnTypeParameter - Called when a C++ template type parameter
507/// (e.g., "typename T") has been parsed. Typename specifies whether
508/// the keyword "typename" was used to declare the type parameter
509/// (otherwise, "class" was used), and KeyLoc is the location of the
510/// "class" or "typename" keyword. ParamName is the name of the
511/// parameter (NULL indicates an unnamed template parameter) and
512/// ParamNameLoc is the location of the parameter name (if any).
513/// If the type parameter has a default argument, it will be added
514/// later via ActOnTypeParameterDefault.
515Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
516                               SourceLocation EllipsisLoc,
517                               SourceLocation KeyLoc,
518                               IdentifierInfo *ParamName,
519                               SourceLocation ParamNameLoc,
520                               unsigned Depth, unsigned Position,
521                               SourceLocation EqualLoc,
522                               ParsedType DefaultArg) {
523  assert(S->isTemplateParamScope() &&
524         "Template type parameter not in template parameter scope!");
525  bool Invalid = false;
526
527  if (ParamName) {
528    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
529                                           LookupOrdinaryName,
530                                           ForRedeclaration);
531    if (PrevDecl && PrevDecl->isTemplateParameter())
532      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
533                                                           PrevDecl);
534  }
535
536  SourceLocation Loc = ParamNameLoc;
537  if (!ParamName)
538    Loc = KeyLoc;
539
540  TemplateTypeParmDecl *Param
541    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
542                                   KeyLoc, Loc, Depth, Position, ParamName,
543                                   Typename, Ellipsis);
544  Param->setAccess(AS_public);
545  if (Invalid)
546    Param->setInvalidDecl();
547
548  if (ParamName) {
549    // Add the template parameter into the current scope.
550    S->AddDecl(Param);
551    IdResolver.AddDecl(Param);
552  }
553
554  // C++0x [temp.param]p9:
555  //   A default template-argument may be specified for any kind of
556  //   template-parameter that is not a template parameter pack.
557  if (DefaultArg && Ellipsis) {
558    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
559    DefaultArg = ParsedType();
560  }
561
562  // Handle the default argument, if provided.
563  if (DefaultArg) {
564    TypeSourceInfo *DefaultTInfo;
565    GetTypeFromParser(DefaultArg, &DefaultTInfo);
566
567    assert(DefaultTInfo && "expected source information for type");
568
569    // Check for unexpanded parameter packs.
570    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
571                                        UPPC_DefaultArgument))
572      return Param;
573
574    // Check the template argument itself.
575    if (CheckTemplateArgument(Param, DefaultTInfo)) {
576      Param->setInvalidDecl();
577      return Param;
578    }
579
580    Param->setDefaultArgument(DefaultTInfo, false);
581  }
582
583  return Param;
584}
585
586/// \brief Check that the type of a non-type template parameter is
587/// well-formed.
588///
589/// \returns the (possibly-promoted) parameter type if valid;
590/// otherwise, produces a diagnostic and returns a NULL type.
591QualType
592Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
593  // We don't allow variably-modified types as the type of non-type template
594  // parameters.
595  if (T->isVariablyModifiedType()) {
596    Diag(Loc, diag::err_variably_modified_nontype_template_param)
597      << T;
598    return QualType();
599  }
600
601  // C++ [temp.param]p4:
602  //
603  // A non-type template-parameter shall have one of the following
604  // (optionally cv-qualified) types:
605  //
606  //       -- integral or enumeration type,
607  if (T->isIntegralOrEnumerationType() ||
608      //   -- pointer to object or pointer to function,
609      T->isPointerType() ||
610      //   -- reference to object or reference to function,
611      T->isReferenceType() ||
612      //   -- pointer to member,
613      T->isMemberPointerType() ||
614      //   -- std::nullptr_t.
615      T->isNullPtrType() ||
616      // If T is a dependent type, we can't do the check now, so we
617      // assume that it is well-formed.
618      T->isDependentType())
619    return T;
620  // C++ [temp.param]p8:
621  //
622  //   A non-type template-parameter of type "array of T" or
623  //   "function returning T" is adjusted to be of type "pointer to
624  //   T" or "pointer to function returning T", respectively.
625  else if (T->isArrayType())
626    // FIXME: Keep the type prior to promotion?
627    return Context.getArrayDecayedType(T);
628  else if (T->isFunctionType())
629    // FIXME: Keep the type prior to promotion?
630    return Context.getPointerType(T);
631
632  Diag(Loc, diag::err_template_nontype_parm_bad_type)
633    << T;
634
635  return QualType();
636}
637
638Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
639                                          unsigned Depth,
640                                          unsigned Position,
641                                          SourceLocation EqualLoc,
642                                          Expr *Default) {
643  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
644  QualType T = TInfo->getType();
645
646  assert(S->isTemplateParamScope() &&
647         "Non-type template parameter not in template parameter scope!");
648  bool Invalid = false;
649
650  IdentifierInfo *ParamName = D.getIdentifier();
651  if (ParamName) {
652    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
653                                           LookupOrdinaryName,
654                                           ForRedeclaration);
655    if (PrevDecl && PrevDecl->isTemplateParameter())
656      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
657                                                           PrevDecl);
658  }
659
660  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
661  if (T.isNull()) {
662    T = Context.IntTy; // Recover with an 'int' type.
663    Invalid = true;
664  }
665
666  bool IsParameterPack = D.hasEllipsis();
667  NonTypeTemplateParmDecl *Param
668    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
669                                      D.getSourceRange().getBegin(),
670                                      D.getIdentifierLoc(),
671                                      Depth, Position, ParamName, T,
672                                      IsParameterPack, TInfo);
673  Param->setAccess(AS_public);
674
675  if (Invalid)
676    Param->setInvalidDecl();
677
678  if (D.getIdentifier()) {
679    // Add the template parameter into the current scope.
680    S->AddDecl(Param);
681    IdResolver.AddDecl(Param);
682  }
683
684  // C++0x [temp.param]p9:
685  //   A default template-argument may be specified for any kind of
686  //   template-parameter that is not a template parameter pack.
687  if (Default && IsParameterPack) {
688    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
689    Default = 0;
690  }
691
692  // Check the well-formedness of the default template argument, if provided.
693  if (Default) {
694    // Check for unexpanded parameter packs.
695    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
696      return Param;
697
698    TemplateArgument Converted;
699    ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
700    if (DefaultRes.isInvalid()) {
701      Param->setInvalidDecl();
702      return Param;
703    }
704    Default = DefaultRes.take();
705
706    Param->setDefaultArgument(Default, false);
707  }
708
709  return Param;
710}
711
712/// ActOnTemplateTemplateParameter - Called when a C++ template template
713/// parameter (e.g. T in template <template <typename> class T> class array)
714/// has been parsed. S is the current scope.
715Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
716                                           SourceLocation TmpLoc,
717                                           TemplateParameterList *Params,
718                                           SourceLocation EllipsisLoc,
719                                           IdentifierInfo *Name,
720                                           SourceLocation NameLoc,
721                                           unsigned Depth,
722                                           unsigned Position,
723                                           SourceLocation EqualLoc,
724                                           ParsedTemplateArgument Default) {
725  assert(S->isTemplateParamScope() &&
726         "Template template parameter not in template parameter scope!");
727
728  // Construct the parameter object.
729  bool IsParameterPack = EllipsisLoc.isValid();
730  TemplateTemplateParmDecl *Param =
731    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
732                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
733                                     Depth, Position, IsParameterPack,
734                                     Name, Params);
735  Param->setAccess(AS_public);
736
737  // If the template template parameter has a name, then link the identifier
738  // into the scope and lookup mechanisms.
739  if (Name) {
740    S->AddDecl(Param);
741    IdResolver.AddDecl(Param);
742  }
743
744  if (Params->size() == 0) {
745    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
746    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
747    Param->setInvalidDecl();
748  }
749
750  // C++0x [temp.param]p9:
751  //   A default template-argument may be specified for any kind of
752  //   template-parameter that is not a template parameter pack.
753  if (IsParameterPack && !Default.isInvalid()) {
754    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
755    Default = ParsedTemplateArgument();
756  }
757
758  if (!Default.isInvalid()) {
759    // Check only that we have a template template argument. We don't want to
760    // try to check well-formedness now, because our template template parameter
761    // might have dependent types in its template parameters, which we wouldn't
762    // be able to match now.
763    //
764    // If none of the template template parameter's template arguments mention
765    // other template parameters, we could actually perform more checking here.
766    // However, it isn't worth doing.
767    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
768    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
769      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
770        << DefaultArg.getSourceRange();
771      return Param;
772    }
773
774    // Check for unexpanded parameter packs.
775    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
776                                        DefaultArg.getArgument().getAsTemplate(),
777                                        UPPC_DefaultArgument))
778      return Param;
779
780    Param->setDefaultArgument(DefaultArg, false);
781  }
782
783  return Param;
784}
785
786/// ActOnTemplateParameterList - Builds a TemplateParameterList that
787/// contains the template parameters in Params/NumParams.
788TemplateParameterList *
789Sema::ActOnTemplateParameterList(unsigned Depth,
790                                 SourceLocation ExportLoc,
791                                 SourceLocation TemplateLoc,
792                                 SourceLocation LAngleLoc,
793                                 Decl **Params, unsigned NumParams,
794                                 SourceLocation RAngleLoc) {
795  if (ExportLoc.isValid())
796    Diag(ExportLoc, diag::warn_template_export_unsupported);
797
798  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
799                                       (NamedDecl**)Params, NumParams,
800                                       RAngleLoc);
801}
802
803static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
804  if (SS.isSet())
805    T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
806}
807
808DeclResult
809Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
810                         SourceLocation KWLoc, CXXScopeSpec &SS,
811                         IdentifierInfo *Name, SourceLocation NameLoc,
812                         AttributeList *Attr,
813                         TemplateParameterList *TemplateParams,
814                         AccessSpecifier AS, SourceLocation ModulePrivateLoc,
815                         unsigned NumOuterTemplateParamLists,
816                         TemplateParameterList** OuterTemplateParamLists) {
817  assert(TemplateParams && TemplateParams->size() > 0 &&
818         "No template parameters");
819  assert(TUK != TUK_Reference && "Can only declare or define class templates");
820  bool Invalid = false;
821
822  // Check that we can declare a template here.
823  if (CheckTemplateDeclScope(S, TemplateParams))
824    return true;
825
826  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
827  assert(Kind != TTK_Enum && "can't build template of enumerated type");
828
829  // There is no such thing as an unnamed class template.
830  if (!Name) {
831    Diag(KWLoc, diag::err_template_unnamed_class);
832    return true;
833  }
834
835  // Find any previous declaration with this name.
836  DeclContext *SemanticContext;
837  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
838                        ForRedeclaration);
839  if (SS.isNotEmpty() && !SS.isInvalid()) {
840    SemanticContext = computeDeclContext(SS, true);
841    if (!SemanticContext) {
842      // FIXME: Produce a reasonable diagnostic here
843      return true;
844    }
845
846    if (RequireCompleteDeclContext(SS, SemanticContext))
847      return true;
848
849    // If we're adding a template to a dependent context, we may need to
850    // rebuilding some of the types used within the template parameter list,
851    // now that we know what the current instantiation is.
852    if (SemanticContext->isDependentContext()) {
853      ContextRAII SavedContext(*this, SemanticContext);
854      if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
855        Invalid = true;
856    }
857
858    LookupQualifiedName(Previous, SemanticContext);
859  } else {
860    SemanticContext = CurContext;
861    LookupName(Previous, S);
862  }
863
864  if (Previous.isAmbiguous())
865    return true;
866
867  NamedDecl *PrevDecl = 0;
868  if (Previous.begin() != Previous.end())
869    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
870
871  // If there is a previous declaration with the same name, check
872  // whether this is a valid redeclaration.
873  ClassTemplateDecl *PrevClassTemplate
874    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
875
876  // We may have found the injected-class-name of a class template,
877  // class template partial specialization, or class template specialization.
878  // In these cases, grab the template that is being defined or specialized.
879  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
880      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
881    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
882    PrevClassTemplate
883      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
884    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
885      PrevClassTemplate
886        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
887            ->getSpecializedTemplate();
888    }
889  }
890
891  if (TUK == TUK_Friend) {
892    // C++ [namespace.memdef]p3:
893    //   [...] When looking for a prior declaration of a class or a function
894    //   declared as a friend, and when the name of the friend class or
895    //   function is neither a qualified name nor a template-id, scopes outside
896    //   the innermost enclosing namespace scope are not considered.
897    if (!SS.isSet()) {
898      DeclContext *OutermostContext = CurContext;
899      while (!OutermostContext->isFileContext())
900        OutermostContext = OutermostContext->getLookupParent();
901
902      if (PrevDecl &&
903          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
904           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
905        SemanticContext = PrevDecl->getDeclContext();
906      } else {
907        // Declarations in outer scopes don't matter. However, the outermost
908        // context we computed is the semantic context for our new
909        // declaration.
910        PrevDecl = PrevClassTemplate = 0;
911        SemanticContext = OutermostContext;
912      }
913    }
914
915    if (CurContext->isDependentContext()) {
916      // If this is a dependent context, we don't want to link the friend
917      // class template to the template in scope, because that would perform
918      // checking of the template parameter lists that can't be performed
919      // until the outer context is instantiated.
920      PrevDecl = PrevClassTemplate = 0;
921    }
922  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
923    PrevDecl = PrevClassTemplate = 0;
924
925  if (PrevClassTemplate) {
926    // Ensure that the template parameter lists are compatible.
927    if (!TemplateParameterListsAreEqual(TemplateParams,
928                                   PrevClassTemplate->getTemplateParameters(),
929                                        /*Complain=*/true,
930                                        TPL_TemplateMatch))
931      return true;
932
933    // C++ [temp.class]p4:
934    //   In a redeclaration, partial specialization, explicit
935    //   specialization or explicit instantiation of a class template,
936    //   the class-key shall agree in kind with the original class
937    //   template declaration (7.1.5.3).
938    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
939    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
940                                      TUK == TUK_Definition,  KWLoc, *Name)) {
941      Diag(KWLoc, diag::err_use_with_wrong_tag)
942        << Name
943        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
944      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
945      Kind = PrevRecordDecl->getTagKind();
946    }
947
948    // Check for redefinition of this class template.
949    if (TUK == TUK_Definition) {
950      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
951        Diag(NameLoc, diag::err_redefinition) << Name;
952        Diag(Def->getLocation(), diag::note_previous_definition);
953        // FIXME: Would it make sense to try to "forget" the previous
954        // definition, as part of error recovery?
955        return true;
956      }
957    }
958  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
959    // Maybe we will complain about the shadowed template parameter.
960    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
961    // Just pretend that we didn't see the previous declaration.
962    PrevDecl = 0;
963  } else if (PrevDecl) {
964    // C++ [temp]p5:
965    //   A class template shall not have the same name as any other
966    //   template, class, function, object, enumeration, enumerator,
967    //   namespace, or type in the same scope (3.3), except as specified
968    //   in (14.5.4).
969    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
970    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
971    return true;
972  }
973
974  // Check the template parameter list of this declaration, possibly
975  // merging in the template parameter list from the previous class
976  // template declaration.
977  if (CheckTemplateParameterList(TemplateParams,
978            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
979                                 (SS.isSet() && SemanticContext &&
980                                  SemanticContext->isRecord() &&
981                                  SemanticContext->isDependentContext())
982                                   ? TPC_ClassTemplateMember
983                                   : TPC_ClassTemplate))
984    Invalid = true;
985
986  if (SS.isSet()) {
987    // If the name of the template was qualified, we must be defining the
988    // template out-of-line.
989    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
990        !(TUK == TUK_Friend && CurContext->isDependentContext()))
991      Diag(NameLoc, diag::err_member_def_does_not_match)
992        << Name << SemanticContext << SS.getRange();
993  }
994
995  CXXRecordDecl *NewClass =
996    CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
997                          PrevClassTemplate?
998                            PrevClassTemplate->getTemplatedDecl() : 0,
999                          /*DelayTypeCreation=*/true);
1000  SetNestedNameSpecifier(NewClass, SS);
1001  if (NumOuterTemplateParamLists > 0)
1002    NewClass->setTemplateParameterListsInfo(Context,
1003                                            NumOuterTemplateParamLists,
1004                                            OuterTemplateParamLists);
1005
1006  ClassTemplateDecl *NewTemplate
1007    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1008                                DeclarationName(Name), TemplateParams,
1009                                NewClass, PrevClassTemplate);
1010  NewClass->setDescribedClassTemplate(NewTemplate);
1011
1012  if (PrevClassTemplate && PrevClassTemplate->isModulePrivate()) {
1013    NewTemplate->setModulePrivate();
1014  } else if (ModulePrivateLoc.isValid()) {
1015    if (PrevClassTemplate && !PrevClassTemplate->isModulePrivate())
1016      diagnoseModulePrivateRedeclaration(NewTemplate, PrevClassTemplate,
1017                                         ModulePrivateLoc);
1018    else
1019      NewTemplate->setModulePrivate();
1020  }
1021
1022  // Build the type for the class template declaration now.
1023  QualType T = NewTemplate->getInjectedClassNameSpecialization();
1024  T = Context.getInjectedClassNameType(NewClass, T);
1025  assert(T->isDependentType() && "Class template type is not dependent?");
1026  (void)T;
1027
1028  // If we are providing an explicit specialization of a member that is a
1029  // class template, make a note of that.
1030  if (PrevClassTemplate &&
1031      PrevClassTemplate->getInstantiatedFromMemberTemplate())
1032    PrevClassTemplate->setMemberSpecialization();
1033
1034  // Set the access specifier.
1035  if (!Invalid && TUK != TUK_Friend)
1036    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1037
1038  // Set the lexical context of these templates
1039  NewClass->setLexicalDeclContext(CurContext);
1040  NewTemplate->setLexicalDeclContext(CurContext);
1041
1042  if (TUK == TUK_Definition)
1043    NewClass->startDefinition();
1044
1045  if (Attr)
1046    ProcessDeclAttributeList(S, NewClass, Attr);
1047
1048  if (TUK != TUK_Friend)
1049    PushOnScopeChains(NewTemplate, S);
1050  else {
1051    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1052      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1053      NewClass->setAccess(PrevClassTemplate->getAccess());
1054    }
1055
1056    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1057                                       PrevClassTemplate != NULL);
1058
1059    // Friend templates are visible in fairly strange ways.
1060    if (!CurContext->isDependentContext()) {
1061      DeclContext *DC = SemanticContext->getRedeclContext();
1062      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
1063      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1064        PushOnScopeChains(NewTemplate, EnclosingScope,
1065                          /* AddToContext = */ false);
1066    }
1067
1068    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1069                                            NewClass->getLocation(),
1070                                            NewTemplate,
1071                                    /*FIXME:*/NewClass->getLocation());
1072    Friend->setAccess(AS_public);
1073    CurContext->addDecl(Friend);
1074  }
1075
1076  if (Invalid) {
1077    NewTemplate->setInvalidDecl();
1078    NewClass->setInvalidDecl();
1079  }
1080  return NewTemplate;
1081}
1082
1083/// \brief Diagnose the presence of a default template argument on a
1084/// template parameter, which is ill-formed in certain contexts.
1085///
1086/// \returns true if the default template argument should be dropped.
1087static bool DiagnoseDefaultTemplateArgument(Sema &S,
1088                                            Sema::TemplateParamListContext TPC,
1089                                            SourceLocation ParamLoc,
1090                                            SourceRange DefArgRange) {
1091  switch (TPC) {
1092  case Sema::TPC_ClassTemplate:
1093  case Sema::TPC_TypeAliasTemplate:
1094    return false;
1095
1096  case Sema::TPC_FunctionTemplate:
1097  case Sema::TPC_FriendFunctionTemplateDefinition:
1098    // C++ [temp.param]p9:
1099    //   A default template-argument shall not be specified in a
1100    //   function template declaration or a function template
1101    //   definition [...]
1102    //   If a friend function template declaration specifies a default
1103    //   template-argument, that declaration shall be a definition and shall be
1104    //   the only declaration of the function template in the translation unit.
1105    // (C++98/03 doesn't have this wording; see DR226).
1106    S.Diag(ParamLoc, S.getLangOptions().CPlusPlus0x ?
1107         diag::warn_cxx98_compat_template_parameter_default_in_function_template
1108           : diag::ext_template_parameter_default_in_function_template)
1109      << DefArgRange;
1110    return false;
1111
1112  case Sema::TPC_ClassTemplateMember:
1113    // C++0x [temp.param]p9:
1114    //   A default template-argument shall not be specified in the
1115    //   template-parameter-lists of the definition of a member of a
1116    //   class template that appears outside of the member's class.
1117    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1118      << DefArgRange;
1119    return true;
1120
1121  case Sema::TPC_FriendFunctionTemplate:
1122    // C++ [temp.param]p9:
1123    //   A default template-argument shall not be specified in a
1124    //   friend template declaration.
1125    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1126      << DefArgRange;
1127    return true;
1128
1129    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1130    // for friend function templates if there is only a single
1131    // declaration (and it is a definition). Strange!
1132  }
1133
1134  return false;
1135}
1136
1137/// \brief Check for unexpanded parameter packs within the template parameters
1138/// of a template template parameter, recursively.
1139static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1140                                             TemplateTemplateParmDecl *TTP) {
1141  TemplateParameterList *Params = TTP->getTemplateParameters();
1142  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1143    NamedDecl *P = Params->getParam(I);
1144    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1145      if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1146                                            NTTP->getTypeSourceInfo(),
1147                                      Sema::UPPC_NonTypeTemplateParameterType))
1148        return true;
1149
1150      continue;
1151    }
1152
1153    if (TemplateTemplateParmDecl *InnerTTP
1154                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1155      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1156        return true;
1157  }
1158
1159  return false;
1160}
1161
1162/// \brief Checks the validity of a template parameter list, possibly
1163/// considering the template parameter list from a previous
1164/// declaration.
1165///
1166/// If an "old" template parameter list is provided, it must be
1167/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1168/// template parameter list.
1169///
1170/// \param NewParams Template parameter list for a new template
1171/// declaration. This template parameter list will be updated with any
1172/// default arguments that are carried through from the previous
1173/// template parameter list.
1174///
1175/// \param OldParams If provided, template parameter list from a
1176/// previous declaration of the same template. Default template
1177/// arguments will be merged from the old template parameter list to
1178/// the new template parameter list.
1179///
1180/// \param TPC Describes the context in which we are checking the given
1181/// template parameter list.
1182///
1183/// \returns true if an error occurred, false otherwise.
1184bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1185                                      TemplateParameterList *OldParams,
1186                                      TemplateParamListContext TPC) {
1187  bool Invalid = false;
1188
1189  // C++ [temp.param]p10:
1190  //   The set of default template-arguments available for use with a
1191  //   template declaration or definition is obtained by merging the
1192  //   default arguments from the definition (if in scope) and all
1193  //   declarations in scope in the same way default function
1194  //   arguments are (8.3.6).
1195  bool SawDefaultArgument = false;
1196  SourceLocation PreviousDefaultArgLoc;
1197
1198  // Dummy initialization to avoid warnings.
1199  TemplateParameterList::iterator OldParam = NewParams->end();
1200  if (OldParams)
1201    OldParam = OldParams->begin();
1202
1203  bool RemoveDefaultArguments = false;
1204  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1205                                    NewParamEnd = NewParams->end();
1206       NewParam != NewParamEnd; ++NewParam) {
1207    // Variables used to diagnose redundant default arguments
1208    bool RedundantDefaultArg = false;
1209    SourceLocation OldDefaultLoc;
1210    SourceLocation NewDefaultLoc;
1211
1212    // Variable used to diagnose missing default arguments
1213    bool MissingDefaultArg = false;
1214
1215    // Variable used to diagnose non-final parameter packs
1216    bool SawParameterPack = false;
1217
1218    if (TemplateTypeParmDecl *NewTypeParm
1219          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1220      // Check the presence of a default argument here.
1221      if (NewTypeParm->hasDefaultArgument() &&
1222          DiagnoseDefaultTemplateArgument(*this, TPC,
1223                                          NewTypeParm->getLocation(),
1224               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1225                                                       .getSourceRange()))
1226        NewTypeParm->removeDefaultArgument();
1227
1228      // Merge default arguments for template type parameters.
1229      TemplateTypeParmDecl *OldTypeParm
1230          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1231
1232      if (NewTypeParm->isParameterPack()) {
1233        assert(!NewTypeParm->hasDefaultArgument() &&
1234               "Parameter packs can't have a default argument!");
1235        SawParameterPack = true;
1236      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1237                 NewTypeParm->hasDefaultArgument()) {
1238        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1239        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1240        SawDefaultArgument = true;
1241        RedundantDefaultArg = true;
1242        PreviousDefaultArgLoc = NewDefaultLoc;
1243      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1244        // Merge the default argument from the old declaration to the
1245        // new declaration.
1246        SawDefaultArgument = true;
1247        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1248                                        true);
1249        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1250      } else if (NewTypeParm->hasDefaultArgument()) {
1251        SawDefaultArgument = true;
1252        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1253      } else if (SawDefaultArgument)
1254        MissingDefaultArg = true;
1255    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1256               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1257      // Check for unexpanded parameter packs.
1258      if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1259                                          NewNonTypeParm->getTypeSourceInfo(),
1260                                          UPPC_NonTypeTemplateParameterType)) {
1261        Invalid = true;
1262        continue;
1263      }
1264
1265      // Check the presence of a default argument here.
1266      if (NewNonTypeParm->hasDefaultArgument() &&
1267          DiagnoseDefaultTemplateArgument(*this, TPC,
1268                                          NewNonTypeParm->getLocation(),
1269                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1270        NewNonTypeParm->removeDefaultArgument();
1271      }
1272
1273      // Merge default arguments for non-type template parameters
1274      NonTypeTemplateParmDecl *OldNonTypeParm
1275        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1276      if (NewNonTypeParm->isParameterPack()) {
1277        assert(!NewNonTypeParm->hasDefaultArgument() &&
1278               "Parameter packs can't have a default argument!");
1279        SawParameterPack = true;
1280      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1281          NewNonTypeParm->hasDefaultArgument()) {
1282        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1283        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1284        SawDefaultArgument = true;
1285        RedundantDefaultArg = true;
1286        PreviousDefaultArgLoc = NewDefaultLoc;
1287      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1288        // Merge the default argument from the old declaration to the
1289        // new declaration.
1290        SawDefaultArgument = true;
1291        // FIXME: We need to create a new kind of "default argument"
1292        // expression that points to a previous non-type template
1293        // parameter.
1294        NewNonTypeParm->setDefaultArgument(
1295                                         OldNonTypeParm->getDefaultArgument(),
1296                                         /*Inherited=*/ true);
1297        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1298      } else if (NewNonTypeParm->hasDefaultArgument()) {
1299        SawDefaultArgument = true;
1300        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1301      } else if (SawDefaultArgument)
1302        MissingDefaultArg = true;
1303    } else {
1304      TemplateTemplateParmDecl *NewTemplateParm
1305        = cast<TemplateTemplateParmDecl>(*NewParam);
1306
1307      // Check for unexpanded parameter packs, recursively.
1308      if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1309        Invalid = true;
1310        continue;
1311      }
1312
1313      // Check the presence of a default argument here.
1314      if (NewTemplateParm->hasDefaultArgument() &&
1315          DiagnoseDefaultTemplateArgument(*this, TPC,
1316                                          NewTemplateParm->getLocation(),
1317                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1318        NewTemplateParm->removeDefaultArgument();
1319
1320      // Merge default arguments for template template parameters
1321      TemplateTemplateParmDecl *OldTemplateParm
1322        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1323      if (NewTemplateParm->isParameterPack()) {
1324        assert(!NewTemplateParm->hasDefaultArgument() &&
1325               "Parameter packs can't have a default argument!");
1326        SawParameterPack = true;
1327      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1328          NewTemplateParm->hasDefaultArgument()) {
1329        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1330        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1331        SawDefaultArgument = true;
1332        RedundantDefaultArg = true;
1333        PreviousDefaultArgLoc = NewDefaultLoc;
1334      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1335        // Merge the default argument from the old declaration to the
1336        // new declaration.
1337        SawDefaultArgument = true;
1338        // FIXME: We need to create a new kind of "default argument" expression
1339        // that points to a previous template template parameter.
1340        NewTemplateParm->setDefaultArgument(
1341                                          OldTemplateParm->getDefaultArgument(),
1342                                          /*Inherited=*/ true);
1343        PreviousDefaultArgLoc
1344          = OldTemplateParm->getDefaultArgument().getLocation();
1345      } else if (NewTemplateParm->hasDefaultArgument()) {
1346        SawDefaultArgument = true;
1347        PreviousDefaultArgLoc
1348          = NewTemplateParm->getDefaultArgument().getLocation();
1349      } else if (SawDefaultArgument)
1350        MissingDefaultArg = true;
1351    }
1352
1353    // C++0x [temp.param]p11:
1354    //   If a template parameter of a primary class template or alias template
1355    //   is a template parameter pack, it shall be the last template parameter.
1356    if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1357        (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) {
1358      Diag((*NewParam)->getLocation(),
1359           diag::err_template_param_pack_must_be_last_template_parameter);
1360      Invalid = true;
1361    }
1362
1363    if (RedundantDefaultArg) {
1364      // C++ [temp.param]p12:
1365      //   A template-parameter shall not be given default arguments
1366      //   by two different declarations in the same scope.
1367      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1368      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1369      Invalid = true;
1370    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1371      // C++ [temp.param]p11:
1372      //   If a template-parameter of a class template has a default
1373      //   template-argument, each subsequent template-parameter shall either
1374      //   have a default template-argument supplied or be a template parameter
1375      //   pack.
1376      Diag((*NewParam)->getLocation(),
1377           diag::err_template_param_default_arg_missing);
1378      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1379      Invalid = true;
1380      RemoveDefaultArguments = true;
1381    }
1382
1383    // If we have an old template parameter list that we're merging
1384    // in, move on to the next parameter.
1385    if (OldParams)
1386      ++OldParam;
1387  }
1388
1389  // We were missing some default arguments at the end of the list, so remove
1390  // all of the default arguments.
1391  if (RemoveDefaultArguments) {
1392    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1393                                      NewParamEnd = NewParams->end();
1394         NewParam != NewParamEnd; ++NewParam) {
1395      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1396        TTP->removeDefaultArgument();
1397      else if (NonTypeTemplateParmDecl *NTTP
1398                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1399        NTTP->removeDefaultArgument();
1400      else
1401        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1402    }
1403  }
1404
1405  return Invalid;
1406}
1407
1408namespace {
1409
1410/// A class which looks for a use of a certain level of template
1411/// parameter.
1412struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1413  typedef RecursiveASTVisitor<DependencyChecker> super;
1414
1415  unsigned Depth;
1416  bool Match;
1417
1418  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1419    NamedDecl *ND = Params->getParam(0);
1420    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1421      Depth = PD->getDepth();
1422    } else if (NonTypeTemplateParmDecl *PD =
1423                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1424      Depth = PD->getDepth();
1425    } else {
1426      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1427    }
1428  }
1429
1430  bool Matches(unsigned ParmDepth) {
1431    if (ParmDepth >= Depth) {
1432      Match = true;
1433      return true;
1434    }
1435    return false;
1436  }
1437
1438  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1439    return !Matches(T->getDepth());
1440  }
1441
1442  bool TraverseTemplateName(TemplateName N) {
1443    if (TemplateTemplateParmDecl *PD =
1444          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1445      if (Matches(PD->getDepth())) return false;
1446    return super::TraverseTemplateName(N);
1447  }
1448
1449  bool VisitDeclRefExpr(DeclRefExpr *E) {
1450    if (NonTypeTemplateParmDecl *PD =
1451          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1452      if (PD->getDepth() == Depth) {
1453        Match = true;
1454        return false;
1455      }
1456    }
1457    return super::VisitDeclRefExpr(E);
1458  }
1459
1460  bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1461    return TraverseType(T->getInjectedSpecializationType());
1462  }
1463};
1464}
1465
1466/// Determines whether a given type depends on the given parameter
1467/// list.
1468static bool
1469DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1470  DependencyChecker Checker(Params);
1471  Checker.TraverseType(T);
1472  return Checker.Match;
1473}
1474
1475// Find the source range corresponding to the named type in the given
1476// nested-name-specifier, if any.
1477static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1478                                                       QualType T,
1479                                                       const CXXScopeSpec &SS) {
1480  NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1481  while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1482    if (const Type *CurType = NNS->getAsType()) {
1483      if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1484        return NNSLoc.getTypeLoc().getSourceRange();
1485    } else
1486      break;
1487
1488    NNSLoc = NNSLoc.getPrefix();
1489  }
1490
1491  return SourceRange();
1492}
1493
1494/// \brief Match the given template parameter lists to the given scope
1495/// specifier, returning the template parameter list that applies to the
1496/// name.
1497///
1498/// \param DeclStartLoc the start of the declaration that has a scope
1499/// specifier or a template parameter list.
1500///
1501/// \param DeclLoc The location of the declaration itself.
1502///
1503/// \param SS the scope specifier that will be matched to the given template
1504/// parameter lists. This scope specifier precedes a qualified name that is
1505/// being declared.
1506///
1507/// \param ParamLists the template parameter lists, from the outermost to the
1508/// innermost template parameter lists.
1509///
1510/// \param NumParamLists the number of template parameter lists in ParamLists.
1511///
1512/// \param IsFriend Whether to apply the slightly different rules for
1513/// matching template parameters to scope specifiers in friend
1514/// declarations.
1515///
1516/// \param IsExplicitSpecialization will be set true if the entity being
1517/// declared is an explicit specialization, false otherwise.
1518///
1519/// \returns the template parameter list, if any, that corresponds to the
1520/// name that is preceded by the scope specifier @p SS. This template
1521/// parameter list may have template parameters (if we're declaring a
1522/// template) or may have no template parameters (if we're declaring a
1523/// template specialization), or may be NULL (if what we're declaring isn't
1524/// itself a template).
1525TemplateParameterList *
1526Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1527                                              SourceLocation DeclLoc,
1528                                              const CXXScopeSpec &SS,
1529                                          TemplateParameterList **ParamLists,
1530                                              unsigned NumParamLists,
1531                                              bool IsFriend,
1532                                              bool &IsExplicitSpecialization,
1533                                              bool &Invalid) {
1534  IsExplicitSpecialization = false;
1535  Invalid = false;
1536
1537  // The sequence of nested types to which we will match up the template
1538  // parameter lists. We first build this list by starting with the type named
1539  // by the nested-name-specifier and walking out until we run out of types.
1540  SmallVector<QualType, 4> NestedTypes;
1541  QualType T;
1542  if (SS.getScopeRep()) {
1543    if (CXXRecordDecl *Record
1544              = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1545      T = Context.getTypeDeclType(Record);
1546    else
1547      T = QualType(SS.getScopeRep()->getAsType(), 0);
1548  }
1549
1550  // If we found an explicit specialization that prevents us from needing
1551  // 'template<>' headers, this will be set to the location of that
1552  // explicit specialization.
1553  SourceLocation ExplicitSpecLoc;
1554
1555  while (!T.isNull()) {
1556    NestedTypes.push_back(T);
1557
1558    // Retrieve the parent of a record type.
1559    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1560      // If this type is an explicit specialization, we're done.
1561      if (ClassTemplateSpecializationDecl *Spec
1562          = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1563        if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1564            Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1565          ExplicitSpecLoc = Spec->getLocation();
1566          break;
1567        }
1568      } else if (Record->getTemplateSpecializationKind()
1569                                                == TSK_ExplicitSpecialization) {
1570        ExplicitSpecLoc = Record->getLocation();
1571        break;
1572      }
1573
1574      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1575        T = Context.getTypeDeclType(Parent);
1576      else
1577        T = QualType();
1578      continue;
1579    }
1580
1581    if (const TemplateSpecializationType *TST
1582                                     = T->getAs<TemplateSpecializationType>()) {
1583      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1584        if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1585          T = Context.getTypeDeclType(Parent);
1586        else
1587          T = QualType();
1588        continue;
1589      }
1590    }
1591
1592    // Look one step prior in a dependent template specialization type.
1593    if (const DependentTemplateSpecializationType *DependentTST
1594                          = T->getAs<DependentTemplateSpecializationType>()) {
1595      if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1596        T = QualType(NNS->getAsType(), 0);
1597      else
1598        T = QualType();
1599      continue;
1600    }
1601
1602    // Look one step prior in a dependent name type.
1603    if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1604      if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1605        T = QualType(NNS->getAsType(), 0);
1606      else
1607        T = QualType();
1608      continue;
1609    }
1610
1611    // Retrieve the parent of an enumeration type.
1612    if (const EnumType *EnumT = T->getAs<EnumType>()) {
1613      // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1614      // check here.
1615      EnumDecl *Enum = EnumT->getDecl();
1616
1617      // Get to the parent type.
1618      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1619        T = Context.getTypeDeclType(Parent);
1620      else
1621        T = QualType();
1622      continue;
1623    }
1624
1625    T = QualType();
1626  }
1627  // Reverse the nested types list, since we want to traverse from the outermost
1628  // to the innermost while checking template-parameter-lists.
1629  std::reverse(NestedTypes.begin(), NestedTypes.end());
1630
1631  // C++0x [temp.expl.spec]p17:
1632  //   A member or a member template may be nested within many
1633  //   enclosing class templates. In an explicit specialization for
1634  //   such a member, the member declaration shall be preceded by a
1635  //   template<> for each enclosing class template that is
1636  //   explicitly specialized.
1637  bool SawNonEmptyTemplateParameterList = false;
1638  unsigned ParamIdx = 0;
1639  for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1640       ++TypeIdx) {
1641    T = NestedTypes[TypeIdx];
1642
1643    // Whether we expect a 'template<>' header.
1644    bool NeedEmptyTemplateHeader = false;
1645
1646    // Whether we expect a template header with parameters.
1647    bool NeedNonemptyTemplateHeader = false;
1648
1649    // For a dependent type, the set of template parameters that we
1650    // expect to see.
1651    TemplateParameterList *ExpectedTemplateParams = 0;
1652
1653    // C++0x [temp.expl.spec]p15:
1654    //   A member or a member template may be nested within many enclosing
1655    //   class templates. In an explicit specialization for such a member, the
1656    //   member declaration shall be preceded by a template<> for each
1657    //   enclosing class template that is explicitly specialized.
1658    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1659      if (ClassTemplatePartialSpecializationDecl *Partial
1660            = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1661        ExpectedTemplateParams = Partial->getTemplateParameters();
1662        NeedNonemptyTemplateHeader = true;
1663      } else if (Record->isDependentType()) {
1664        if (Record->getDescribedClassTemplate()) {
1665          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1666                                                      ->getTemplateParameters();
1667          NeedNonemptyTemplateHeader = true;
1668        }
1669      } else if (ClassTemplateSpecializationDecl *Spec
1670                     = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1671        // C++0x [temp.expl.spec]p4:
1672        //   Members of an explicitly specialized class template are defined
1673        //   in the same manner as members of normal classes, and not using
1674        //   the template<> syntax.
1675        if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1676          NeedEmptyTemplateHeader = true;
1677        else
1678          continue;
1679      } else if (Record->getTemplateSpecializationKind()) {
1680        if (Record->getTemplateSpecializationKind()
1681                                                != TSK_ExplicitSpecialization &&
1682            TypeIdx == NumTypes - 1)
1683          IsExplicitSpecialization = true;
1684
1685        continue;
1686      }
1687    } else if (const TemplateSpecializationType *TST
1688                                     = T->getAs<TemplateSpecializationType>()) {
1689      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1690        ExpectedTemplateParams = Template->getTemplateParameters();
1691        NeedNonemptyTemplateHeader = true;
1692      }
1693    } else if (T->getAs<DependentTemplateSpecializationType>()) {
1694      // FIXME:  We actually could/should check the template arguments here
1695      // against the corresponding template parameter list.
1696      NeedNonemptyTemplateHeader = false;
1697    }
1698
1699    // C++ [temp.expl.spec]p16:
1700    //   In an explicit specialization declaration for a member of a class
1701    //   template or a member template that ap- pears in namespace scope, the
1702    //   member template and some of its enclosing class templates may remain
1703    //   unspecialized, except that the declaration shall not explicitly
1704    //   specialize a class member template if its en- closing class templates
1705    //   are not explicitly specialized as well.
1706    if (ParamIdx < NumParamLists) {
1707      if (ParamLists[ParamIdx]->size() == 0) {
1708        if (SawNonEmptyTemplateParameterList) {
1709          Diag(DeclLoc, diag::err_specialize_member_of_template)
1710            << ParamLists[ParamIdx]->getSourceRange();
1711          Invalid = true;
1712          IsExplicitSpecialization = false;
1713          return 0;
1714        }
1715      } else
1716        SawNonEmptyTemplateParameterList = true;
1717    }
1718
1719    if (NeedEmptyTemplateHeader) {
1720      // If we're on the last of the types, and we need a 'template<>' header
1721      // here, then it's an explicit specialization.
1722      if (TypeIdx == NumTypes - 1)
1723        IsExplicitSpecialization = true;
1724
1725      if (ParamIdx < NumParamLists) {
1726        if (ParamLists[ParamIdx]->size() > 0) {
1727          // The header has template parameters when it shouldn't. Complain.
1728          Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1729               diag::err_template_param_list_matches_nontemplate)
1730            << T
1731            << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1732                           ParamLists[ParamIdx]->getRAngleLoc())
1733            << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1734          Invalid = true;
1735          return 0;
1736        }
1737
1738        // Consume this template header.
1739        ++ParamIdx;
1740        continue;
1741      }
1742
1743      if (!IsFriend) {
1744        // We don't have a template header, but we should.
1745        SourceLocation ExpectedTemplateLoc;
1746        if (NumParamLists > 0)
1747          ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1748        else
1749          ExpectedTemplateLoc = DeclStartLoc;
1750
1751        Diag(DeclLoc, diag::err_template_spec_needs_header)
1752          << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
1753          << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1754      }
1755
1756      continue;
1757    }
1758
1759    if (NeedNonemptyTemplateHeader) {
1760      // In friend declarations we can have template-ids which don't
1761      // depend on the corresponding template parameter lists.  But
1762      // assume that empty parameter lists are supposed to match this
1763      // template-id.
1764      if (IsFriend && T->isDependentType()) {
1765        if (ParamIdx < NumParamLists &&
1766            DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1767          ExpectedTemplateParams = 0;
1768        else
1769          continue;
1770      }
1771
1772      if (ParamIdx < NumParamLists) {
1773        // Check the template parameter list, if we can.
1774        if (ExpectedTemplateParams &&
1775            !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1776                                            ExpectedTemplateParams,
1777                                            true, TPL_TemplateMatch))
1778          Invalid = true;
1779
1780        if (!Invalid &&
1781            CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1782                                       TPC_ClassTemplateMember))
1783          Invalid = true;
1784
1785        ++ParamIdx;
1786        continue;
1787      }
1788
1789      Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1790        << T
1791        << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1792      Invalid = true;
1793      continue;
1794    }
1795  }
1796
1797  // If there were at least as many template-ids as there were template
1798  // parameter lists, then there are no template parameter lists remaining for
1799  // the declaration itself.
1800  if (ParamIdx >= NumParamLists)
1801    return 0;
1802
1803  // If there were too many template parameter lists, complain about that now.
1804  if (ParamIdx < NumParamLists - 1) {
1805    bool HasAnyExplicitSpecHeader = false;
1806    bool AllExplicitSpecHeaders = true;
1807    for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) {
1808      if (ParamLists[I]->size() == 0)
1809        HasAnyExplicitSpecHeader = true;
1810      else
1811        AllExplicitSpecHeaders = false;
1812    }
1813
1814    Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1815         AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers
1816                               : diag::err_template_spec_extra_headers)
1817      << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1818                     ParamLists[NumParamLists - 2]->getRAngleLoc());
1819
1820    // If there was a specialization somewhere, such that 'template<>' is
1821    // not required, and there were any 'template<>' headers, note where the
1822    // specialization occurred.
1823    if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1824      Diag(ExplicitSpecLoc,
1825           diag::note_explicit_template_spec_does_not_need_header)
1826        << NestedTypes.back();
1827
1828    // We have a template parameter list with no corresponding scope, which
1829    // means that the resulting template declaration can't be instantiated
1830    // properly (we'll end up with dependent nodes when we shouldn't).
1831    if (!AllExplicitSpecHeaders)
1832      Invalid = true;
1833  }
1834
1835  // C++ [temp.expl.spec]p16:
1836  //   In an explicit specialization declaration for a member of a class
1837  //   template or a member template that ap- pears in namespace scope, the
1838  //   member template and some of its enclosing class templates may remain
1839  //   unspecialized, except that the declaration shall not explicitly
1840  //   specialize a class member template if its en- closing class templates
1841  //   are not explicitly specialized as well.
1842  if (ParamLists[NumParamLists - 1]->size() == 0 &&
1843      SawNonEmptyTemplateParameterList) {
1844    Diag(DeclLoc, diag::err_specialize_member_of_template)
1845      << ParamLists[ParamIdx]->getSourceRange();
1846    Invalid = true;
1847    IsExplicitSpecialization = false;
1848    return 0;
1849  }
1850
1851  // Return the last template parameter list, which corresponds to the
1852  // entity being declared.
1853  return ParamLists[NumParamLists - 1];
1854}
1855
1856void Sema::NoteAllFoundTemplates(TemplateName Name) {
1857  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1858    Diag(Template->getLocation(), diag::note_template_declared_here)
1859      << (isa<FunctionTemplateDecl>(Template)? 0
1860          : isa<ClassTemplateDecl>(Template)? 1
1861          : isa<TypeAliasTemplateDecl>(Template)? 2
1862          : 3)
1863      << Template->getDeclName();
1864    return;
1865  }
1866
1867  if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1868    for (OverloadedTemplateStorage::iterator I = OST->begin(),
1869                                          IEnd = OST->end();
1870         I != IEnd; ++I)
1871      Diag((*I)->getLocation(), diag::note_template_declared_here)
1872        << 0 << (*I)->getDeclName();
1873
1874    return;
1875  }
1876}
1877
1878
1879QualType Sema::CheckTemplateIdType(TemplateName Name,
1880                                   SourceLocation TemplateLoc,
1881                                   TemplateArgumentListInfo &TemplateArgs) {
1882  DependentTemplateName *DTN
1883    = Name.getUnderlying().getAsDependentTemplateName();
1884  if (DTN && DTN->isIdentifier())
1885    // When building a template-id where the template-name is dependent,
1886    // assume the template is a type template. Either our assumption is
1887    // correct, or the code is ill-formed and will be diagnosed when the
1888    // dependent name is substituted.
1889    return Context.getDependentTemplateSpecializationType(ETK_None,
1890                                                          DTN->getQualifier(),
1891                                                          DTN->getIdentifier(),
1892                                                          TemplateArgs);
1893
1894  TemplateDecl *Template = Name.getAsTemplateDecl();
1895  if (!Template || isa<FunctionTemplateDecl>(Template)) {
1896    // We might have a substituted template template parameter pack. If so,
1897    // build a template specialization type for it.
1898    if (Name.getAsSubstTemplateTemplateParmPack())
1899      return Context.getTemplateSpecializationType(Name, TemplateArgs);
1900
1901    Diag(TemplateLoc, diag::err_template_id_not_a_type)
1902      << Name;
1903    NoteAllFoundTemplates(Name);
1904    return QualType();
1905  }
1906
1907  // Check that the template argument list is well-formed for this
1908  // template.
1909  SmallVector<TemplateArgument, 4> Converted;
1910  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1911                                false, Converted))
1912    return QualType();
1913
1914  assert((Converted.size() == Template->getTemplateParameters()->size()) &&
1915         "Converted template argument list is too short!");
1916
1917  QualType CanonType;
1918
1919  bool InstantiationDependent = false;
1920  if (TypeAliasTemplateDecl *AliasTemplate
1921        = dyn_cast<TypeAliasTemplateDecl>(Template)) {
1922    // Find the canonical type for this type alias template specialization.
1923    TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
1924    if (Pattern->isInvalidDecl())
1925      return QualType();
1926
1927    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1928                                      Converted.data(), Converted.size());
1929
1930    // Only substitute for the innermost template argument list.
1931    MultiLevelTemplateArgumentList TemplateArgLists;
1932    TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
1933    unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
1934    for (unsigned I = 0; I < Depth; ++I)
1935      TemplateArgLists.addOuterTemplateArguments(0, 0);
1936
1937    InstantiatingTemplate Inst(*this, TemplateLoc, Template);
1938    CanonType = SubstType(Pattern->getUnderlyingType(),
1939                          TemplateArgLists, AliasTemplate->getLocation(),
1940                          AliasTemplate->getDeclName());
1941    if (CanonType.isNull())
1942      return QualType();
1943  } else if (Name.isDependent() ||
1944             TemplateSpecializationType::anyDependentTemplateArguments(
1945               TemplateArgs, InstantiationDependent)) {
1946    // This class template specialization is a dependent
1947    // type. Therefore, its canonical type is another class template
1948    // specialization type that contains all of the converted
1949    // arguments in canonical form. This ensures that, e.g., A<T> and
1950    // A<T, T> have identical types when A is declared as:
1951    //
1952    //   template<typename T, typename U = T> struct A;
1953    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1954    CanonType = Context.getTemplateSpecializationType(CanonName,
1955                                                      Converted.data(),
1956                                                      Converted.size());
1957
1958    // FIXME: CanonType is not actually the canonical type, and unfortunately
1959    // it is a TemplateSpecializationType that we will never use again.
1960    // In the future, we need to teach getTemplateSpecializationType to only
1961    // build the canonical type and return that to us.
1962    CanonType = Context.getCanonicalType(CanonType);
1963
1964    // This might work out to be a current instantiation, in which
1965    // case the canonical type needs to be the InjectedClassNameType.
1966    //
1967    // TODO: in theory this could be a simple hashtable lookup; most
1968    // changes to CurContext don't change the set of current
1969    // instantiations.
1970    if (isa<ClassTemplateDecl>(Template)) {
1971      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1972        // If we get out to a namespace, we're done.
1973        if (Ctx->isFileContext()) break;
1974
1975        // If this isn't a record, keep looking.
1976        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1977        if (!Record) continue;
1978
1979        // Look for one of the two cases with InjectedClassNameTypes
1980        // and check whether it's the same template.
1981        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1982            !Record->getDescribedClassTemplate())
1983          continue;
1984
1985        // Fetch the injected class name type and check whether its
1986        // injected type is equal to the type we just built.
1987        QualType ICNT = Context.getTypeDeclType(Record);
1988        QualType Injected = cast<InjectedClassNameType>(ICNT)
1989          ->getInjectedSpecializationType();
1990
1991        if (CanonType != Injected->getCanonicalTypeInternal())
1992          continue;
1993
1994        // If so, the canonical type of this TST is the injected
1995        // class name type of the record we just found.
1996        assert(ICNT.isCanonical());
1997        CanonType = ICNT;
1998        break;
1999      }
2000    }
2001  } else if (ClassTemplateDecl *ClassTemplate
2002               = dyn_cast<ClassTemplateDecl>(Template)) {
2003    // Find the class template specialization declaration that
2004    // corresponds to these arguments.
2005    void *InsertPos = 0;
2006    ClassTemplateSpecializationDecl *Decl
2007      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
2008                                          InsertPos);
2009    if (!Decl) {
2010      // This is the first time we have referenced this class template
2011      // specialization. Create the canonical declaration and add it to
2012      // the set of specializations.
2013      Decl = ClassTemplateSpecializationDecl::Create(Context,
2014                            ClassTemplate->getTemplatedDecl()->getTagKind(),
2015                                                ClassTemplate->getDeclContext(),
2016                            ClassTemplate->getTemplatedDecl()->getLocStart(),
2017                                                ClassTemplate->getLocation(),
2018                                                     ClassTemplate,
2019                                                     Converted.data(),
2020                                                     Converted.size(), 0);
2021      ClassTemplate->AddSpecialization(Decl, InsertPos);
2022      Decl->setLexicalDeclContext(CurContext);
2023    }
2024
2025    CanonType = Context.getTypeDeclType(Decl);
2026    assert(isa<RecordType>(CanonType) &&
2027           "type of non-dependent specialization is not a RecordType");
2028  }
2029
2030  // Build the fully-sugared type for this class template
2031  // specialization, which refers back to the class template
2032  // specialization we created or found.
2033  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2034}
2035
2036TypeResult
2037Sema::ActOnTemplateIdType(CXXScopeSpec &SS,
2038                          TemplateTy TemplateD, SourceLocation TemplateLoc,
2039                          SourceLocation LAngleLoc,
2040                          ASTTemplateArgsPtr TemplateArgsIn,
2041                          SourceLocation RAngleLoc) {
2042  if (SS.isInvalid())
2043    return true;
2044
2045  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2046
2047  // Translate the parser's template argument list in our AST format.
2048  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2049  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2050
2051  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2052    QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
2053                                                           DTN->getQualifier(),
2054                                                           DTN->getIdentifier(),
2055                                                                TemplateArgs);
2056
2057    // Build type-source information.
2058    TypeLocBuilder TLB;
2059    DependentTemplateSpecializationTypeLoc SpecTL
2060      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2061    SpecTL.setKeywordLoc(SourceLocation());
2062    SpecTL.setNameLoc(TemplateLoc);
2063    SpecTL.setLAngleLoc(LAngleLoc);
2064    SpecTL.setRAngleLoc(RAngleLoc);
2065    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2066    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2067      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2068    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2069  }
2070
2071  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2072  TemplateArgsIn.release();
2073
2074  if (Result.isNull())
2075    return true;
2076
2077  // Build type-source information.
2078  TypeLocBuilder TLB;
2079  TemplateSpecializationTypeLoc SpecTL
2080    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2081  SpecTL.setTemplateNameLoc(TemplateLoc);
2082  SpecTL.setLAngleLoc(LAngleLoc);
2083  SpecTL.setRAngleLoc(RAngleLoc);
2084  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2085    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2086
2087  if (SS.isNotEmpty()) {
2088    // Create an elaborated-type-specifier containing the nested-name-specifier.
2089    Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2090    ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2091    ElabTL.setKeywordLoc(SourceLocation());
2092    ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2093  }
2094
2095  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2096}
2097
2098TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2099                                        TypeSpecifierType TagSpec,
2100                                        SourceLocation TagLoc,
2101                                        CXXScopeSpec &SS,
2102                                        TemplateTy TemplateD,
2103                                        SourceLocation TemplateLoc,
2104                                        SourceLocation LAngleLoc,
2105                                        ASTTemplateArgsPtr TemplateArgsIn,
2106                                        SourceLocation RAngleLoc) {
2107  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2108
2109  // Translate the parser's template argument list in our AST format.
2110  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2111  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2112
2113  // Determine the tag kind
2114  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2115  ElaboratedTypeKeyword Keyword
2116    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2117
2118  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2119    QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2120                                                          DTN->getQualifier(),
2121                                                          DTN->getIdentifier(),
2122                                                                TemplateArgs);
2123
2124    // Build type-source information.
2125    TypeLocBuilder TLB;
2126    DependentTemplateSpecializationTypeLoc SpecTL
2127    = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2128    SpecTL.setKeywordLoc(TagLoc);
2129    SpecTL.setNameLoc(TemplateLoc);
2130    SpecTL.setLAngleLoc(LAngleLoc);
2131    SpecTL.setRAngleLoc(RAngleLoc);
2132    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2133    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2134      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2135    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2136  }
2137
2138  if (TypeAliasTemplateDecl *TAT =
2139        dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2140    // C++0x [dcl.type.elab]p2:
2141    //   If the identifier resolves to a typedef-name or the simple-template-id
2142    //   resolves to an alias template specialization, the
2143    //   elaborated-type-specifier is ill-formed.
2144    Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2145    Diag(TAT->getLocation(), diag::note_declared_at);
2146  }
2147
2148  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2149  if (Result.isNull())
2150    return TypeResult(true);
2151
2152  // Check the tag kind
2153  if (const RecordType *RT = Result->getAs<RecordType>()) {
2154    RecordDecl *D = RT->getDecl();
2155
2156    IdentifierInfo *Id = D->getIdentifier();
2157    assert(Id && "templated class must have an identifier");
2158
2159    if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2160                                      TagLoc, *Id)) {
2161      Diag(TagLoc, diag::err_use_with_wrong_tag)
2162        << Result
2163        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2164      Diag(D->getLocation(), diag::note_previous_use);
2165    }
2166  }
2167
2168  // Provide source-location information for the template specialization.
2169  TypeLocBuilder TLB;
2170  TemplateSpecializationTypeLoc SpecTL
2171    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2172  SpecTL.setTemplateNameLoc(TemplateLoc);
2173  SpecTL.setLAngleLoc(LAngleLoc);
2174  SpecTL.setRAngleLoc(RAngleLoc);
2175  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2176    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2177
2178  // Construct an elaborated type containing the nested-name-specifier (if any)
2179  // and keyword.
2180  Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2181  ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2182  ElabTL.setKeywordLoc(TagLoc);
2183  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2184  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2185}
2186
2187ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2188                                     LookupResult &R,
2189                                     bool RequiresADL,
2190                                 const TemplateArgumentListInfo &TemplateArgs) {
2191  // FIXME: Can we do any checking at this point? I guess we could check the
2192  // template arguments that we have against the template name, if the template
2193  // name refers to a single template. That's not a terribly common case,
2194  // though.
2195  // foo<int> could identify a single function unambiguously
2196  // This approach does NOT work, since f<int>(1);
2197  // gets resolved prior to resorting to overload resolution
2198  // i.e., template<class T> void f(double);
2199  //       vs template<class T, class U> void f(U);
2200
2201  // These should be filtered out by our callers.
2202  assert(!R.empty() && "empty lookup results when building templateid");
2203  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2204
2205  // We don't want lookup warnings at this point.
2206  R.suppressDiagnostics();
2207
2208  UnresolvedLookupExpr *ULE
2209    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2210                                   SS.getWithLocInContext(Context),
2211                                   R.getLookupNameInfo(),
2212                                   RequiresADL, TemplateArgs,
2213                                   R.begin(), R.end());
2214
2215  return Owned(ULE);
2216}
2217
2218// We actually only call this from template instantiation.
2219ExprResult
2220Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2221                                   const DeclarationNameInfo &NameInfo,
2222                             const TemplateArgumentListInfo &TemplateArgs) {
2223  DeclContext *DC;
2224  if (!(DC = computeDeclContext(SS, false)) ||
2225      DC->isDependentContext() ||
2226      RequireCompleteDeclContext(SS, DC))
2227    return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
2228
2229  bool MemberOfUnknownSpecialization;
2230  LookupResult R(*this, NameInfo, LookupOrdinaryName);
2231  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
2232                     MemberOfUnknownSpecialization);
2233
2234  if (R.isAmbiguous())
2235    return ExprError();
2236
2237  if (R.empty()) {
2238    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2239      << NameInfo.getName() << SS.getRange();
2240    return ExprError();
2241  }
2242
2243  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2244    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2245      << (NestedNameSpecifier*) SS.getScopeRep()
2246      << NameInfo.getName() << SS.getRange();
2247    Diag(Temp->getLocation(), diag::note_referenced_class_template);
2248    return ExprError();
2249  }
2250
2251  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
2252}
2253
2254/// \brief Form a dependent template name.
2255///
2256/// This action forms a dependent template name given the template
2257/// name and its (presumably dependent) scope specifier. For
2258/// example, given "MetaFun::template apply", the scope specifier \p
2259/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2260/// of the "template" keyword, and "apply" is the \p Name.
2261TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2262                                                  SourceLocation TemplateKWLoc,
2263                                                  CXXScopeSpec &SS,
2264                                                  UnqualifiedId &Name,
2265                                                  ParsedType ObjectType,
2266                                                  bool EnteringContext,
2267                                                  TemplateTy &Result) {
2268  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
2269    Diag(TemplateKWLoc,
2270         getLangOptions().CPlusPlus0x ?
2271           diag::warn_cxx98_compat_template_outside_of_template :
2272           diag::ext_template_outside_of_template)
2273      << FixItHint::CreateRemoval(TemplateKWLoc);
2274
2275  DeclContext *LookupCtx = 0;
2276  if (SS.isSet())
2277    LookupCtx = computeDeclContext(SS, EnteringContext);
2278  if (!LookupCtx && ObjectType)
2279    LookupCtx = computeDeclContext(ObjectType.get());
2280  if (LookupCtx) {
2281    // C++0x [temp.names]p5:
2282    //   If a name prefixed by the keyword template is not the name of
2283    //   a template, the program is ill-formed. [Note: the keyword
2284    //   template may not be applied to non-template members of class
2285    //   templates. -end note ] [ Note: as is the case with the
2286    //   typename prefix, the template prefix is allowed in cases
2287    //   where it is not strictly necessary; i.e., when the
2288    //   nested-name-specifier or the expression on the left of the ->
2289    //   or . is not dependent on a template-parameter, or the use
2290    //   does not appear in the scope of a template. -end note]
2291    //
2292    // Note: C++03 was more strict here, because it banned the use of
2293    // the "template" keyword prior to a template-name that was not a
2294    // dependent name. C++ DR468 relaxed this requirement (the
2295    // "template" keyword is now permitted). We follow the C++0x
2296    // rules, even in C++03 mode with a warning, retroactively applying the DR.
2297    bool MemberOfUnknownSpecialization;
2298    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
2299                                          ObjectType, EnteringContext, Result,
2300                                          MemberOfUnknownSpecialization);
2301    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2302        isa<CXXRecordDecl>(LookupCtx) &&
2303        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2304         cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2305      // This is a dependent template. Handle it below.
2306    } else if (TNK == TNK_Non_template) {
2307      Diag(Name.getSourceRange().getBegin(),
2308           diag::err_template_kw_refers_to_non_template)
2309        << GetNameFromUnqualifiedId(Name).getName()
2310        << Name.getSourceRange()
2311        << TemplateKWLoc;
2312      return TNK_Non_template;
2313    } else {
2314      // We found something; return it.
2315      return TNK;
2316    }
2317  }
2318
2319  NestedNameSpecifier *Qualifier
2320    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2321
2322  switch (Name.getKind()) {
2323  case UnqualifiedId::IK_Identifier:
2324    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2325                                                              Name.Identifier));
2326    return TNK_Dependent_template_name;
2327
2328  case UnqualifiedId::IK_OperatorFunctionId:
2329    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2330                                             Name.OperatorFunctionId.Operator));
2331    return TNK_Dependent_template_name;
2332
2333  case UnqualifiedId::IK_LiteralOperatorId:
2334    llvm_unreachable(
2335            "We don't support these; Parse shouldn't have allowed propagation");
2336
2337  default:
2338    break;
2339  }
2340
2341  Diag(Name.getSourceRange().getBegin(),
2342       diag::err_template_kw_refers_to_non_template)
2343    << GetNameFromUnqualifiedId(Name).getName()
2344    << Name.getSourceRange()
2345    << TemplateKWLoc;
2346  return TNK_Non_template;
2347}
2348
2349bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2350                                     const TemplateArgumentLoc &AL,
2351                          SmallVectorImpl<TemplateArgument> &Converted) {
2352  const TemplateArgument &Arg = AL.getArgument();
2353
2354  // Check template type parameter.
2355  switch(Arg.getKind()) {
2356  case TemplateArgument::Type:
2357    // C++ [temp.arg.type]p1:
2358    //   A template-argument for a template-parameter which is a
2359    //   type shall be a type-id.
2360    break;
2361  case TemplateArgument::Template: {
2362    // We have a template type parameter but the template argument
2363    // is a template without any arguments.
2364    SourceRange SR = AL.getSourceRange();
2365    TemplateName Name = Arg.getAsTemplate();
2366    Diag(SR.getBegin(), diag::err_template_missing_args)
2367      << Name << SR;
2368    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2369      Diag(Decl->getLocation(), diag::note_template_decl_here);
2370
2371    return true;
2372  }
2373  default: {
2374    // We have a template type parameter but the template argument
2375    // is not a type.
2376    SourceRange SR = AL.getSourceRange();
2377    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2378    Diag(Param->getLocation(), diag::note_template_param_here);
2379
2380    return true;
2381  }
2382  }
2383
2384  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2385    return true;
2386
2387  // Add the converted template type argument.
2388  QualType ArgType = Context.getCanonicalType(Arg.getAsType());
2389
2390  // Objective-C ARC:
2391  //   If an explicitly-specified template argument type is a lifetime type
2392  //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
2393  if (getLangOptions().ObjCAutoRefCount &&
2394      ArgType->isObjCLifetimeType() &&
2395      !ArgType.getObjCLifetime()) {
2396    Qualifiers Qs;
2397    Qs.setObjCLifetime(Qualifiers::OCL_Strong);
2398    ArgType = Context.getQualifiedType(ArgType, Qs);
2399  }
2400
2401  Converted.push_back(TemplateArgument(ArgType));
2402  return false;
2403}
2404
2405/// \brief Substitute template arguments into the default template argument for
2406/// the given template type parameter.
2407///
2408/// \param SemaRef the semantic analysis object for which we are performing
2409/// the substitution.
2410///
2411/// \param Template the template that we are synthesizing template arguments
2412/// for.
2413///
2414/// \param TemplateLoc the location of the template name that started the
2415/// template-id we are checking.
2416///
2417/// \param RAngleLoc the location of the right angle bracket ('>') that
2418/// terminates the template-id.
2419///
2420/// \param Param the template template parameter whose default we are
2421/// substituting into.
2422///
2423/// \param Converted the list of template arguments provided for template
2424/// parameters that precede \p Param in the template parameter list.
2425/// \returns the substituted template argument, or NULL if an error occurred.
2426static TypeSourceInfo *
2427SubstDefaultTemplateArgument(Sema &SemaRef,
2428                             TemplateDecl *Template,
2429                             SourceLocation TemplateLoc,
2430                             SourceLocation RAngleLoc,
2431                             TemplateTypeParmDecl *Param,
2432                         SmallVectorImpl<TemplateArgument> &Converted) {
2433  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2434
2435  // If the argument type is dependent, instantiate it now based
2436  // on the previously-computed template arguments.
2437  if (ArgType->getType()->isDependentType()) {
2438    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2439                                      Converted.data(), Converted.size());
2440
2441    MultiLevelTemplateArgumentList AllTemplateArgs
2442      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2443
2444    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2445                                     Template, Converted.data(),
2446                                     Converted.size(),
2447                                     SourceRange(TemplateLoc, RAngleLoc));
2448
2449    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2450                                Param->getDefaultArgumentLoc(),
2451                                Param->getDeclName());
2452  }
2453
2454  return ArgType;
2455}
2456
2457/// \brief Substitute template arguments into the default template argument for
2458/// the given non-type template parameter.
2459///
2460/// \param SemaRef the semantic analysis object for which we are performing
2461/// the substitution.
2462///
2463/// \param Template the template that we are synthesizing template arguments
2464/// for.
2465///
2466/// \param TemplateLoc the location of the template name that started the
2467/// template-id we are checking.
2468///
2469/// \param RAngleLoc the location of the right angle bracket ('>') that
2470/// terminates the template-id.
2471///
2472/// \param Param the non-type template parameter whose default we are
2473/// substituting into.
2474///
2475/// \param Converted the list of template arguments provided for template
2476/// parameters that precede \p Param in the template parameter list.
2477///
2478/// \returns the substituted template argument, or NULL if an error occurred.
2479static ExprResult
2480SubstDefaultTemplateArgument(Sema &SemaRef,
2481                             TemplateDecl *Template,
2482                             SourceLocation TemplateLoc,
2483                             SourceLocation RAngleLoc,
2484                             NonTypeTemplateParmDecl *Param,
2485                        SmallVectorImpl<TemplateArgument> &Converted) {
2486  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2487                                    Converted.data(), Converted.size());
2488
2489  MultiLevelTemplateArgumentList AllTemplateArgs
2490    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2491
2492  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2493                                   Template, Converted.data(),
2494                                   Converted.size(),
2495                                   SourceRange(TemplateLoc, RAngleLoc));
2496
2497  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2498}
2499
2500/// \brief Substitute template arguments into the default template argument for
2501/// the given template template parameter.
2502///
2503/// \param SemaRef the semantic analysis object for which we are performing
2504/// the substitution.
2505///
2506/// \param Template the template that we are synthesizing template arguments
2507/// for.
2508///
2509/// \param TemplateLoc the location of the template name that started the
2510/// template-id we are checking.
2511///
2512/// \param RAngleLoc the location of the right angle bracket ('>') that
2513/// terminates the template-id.
2514///
2515/// \param Param the template template parameter whose default we are
2516/// substituting into.
2517///
2518/// \param Converted the list of template arguments provided for template
2519/// parameters that precede \p Param in the template parameter list.
2520///
2521/// \param QualifierLoc Will be set to the nested-name-specifier (with
2522/// source-location information) that precedes the template name.
2523///
2524/// \returns the substituted template argument, or NULL if an error occurred.
2525static TemplateName
2526SubstDefaultTemplateArgument(Sema &SemaRef,
2527                             TemplateDecl *Template,
2528                             SourceLocation TemplateLoc,
2529                             SourceLocation RAngleLoc,
2530                             TemplateTemplateParmDecl *Param,
2531                       SmallVectorImpl<TemplateArgument> &Converted,
2532                             NestedNameSpecifierLoc &QualifierLoc) {
2533  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2534                                    Converted.data(), Converted.size());
2535
2536  MultiLevelTemplateArgumentList AllTemplateArgs
2537    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2538
2539  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2540                                   Template, Converted.data(),
2541                                   Converted.size(),
2542                                   SourceRange(TemplateLoc, RAngleLoc));
2543
2544  // Substitute into the nested-name-specifier first,
2545  QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
2546  if (QualifierLoc) {
2547    QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2548                                                       AllTemplateArgs);
2549    if (!QualifierLoc)
2550      return TemplateName();
2551  }
2552
2553  return SemaRef.SubstTemplateName(QualifierLoc,
2554                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2555                              Param->getDefaultArgument().getTemplateNameLoc(),
2556                                   AllTemplateArgs);
2557}
2558
2559/// \brief If the given template parameter has a default template
2560/// argument, substitute into that default template argument and
2561/// return the corresponding template argument.
2562TemplateArgumentLoc
2563Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2564                                              SourceLocation TemplateLoc,
2565                                              SourceLocation RAngleLoc,
2566                                              Decl *Param,
2567                      SmallVectorImpl<TemplateArgument> &Converted) {
2568   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2569    if (!TypeParm->hasDefaultArgument())
2570      return TemplateArgumentLoc();
2571
2572    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2573                                                      TemplateLoc,
2574                                                      RAngleLoc,
2575                                                      TypeParm,
2576                                                      Converted);
2577    if (DI)
2578      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2579
2580    return TemplateArgumentLoc();
2581  }
2582
2583  if (NonTypeTemplateParmDecl *NonTypeParm
2584        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2585    if (!NonTypeParm->hasDefaultArgument())
2586      return TemplateArgumentLoc();
2587
2588    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2589                                                  TemplateLoc,
2590                                                  RAngleLoc,
2591                                                  NonTypeParm,
2592                                                  Converted);
2593    if (Arg.isInvalid())
2594      return TemplateArgumentLoc();
2595
2596    Expr *ArgE = Arg.takeAs<Expr>();
2597    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2598  }
2599
2600  TemplateTemplateParmDecl *TempTempParm
2601    = cast<TemplateTemplateParmDecl>(Param);
2602  if (!TempTempParm->hasDefaultArgument())
2603    return TemplateArgumentLoc();
2604
2605
2606  NestedNameSpecifierLoc QualifierLoc;
2607  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2608                                                    TemplateLoc,
2609                                                    RAngleLoc,
2610                                                    TempTempParm,
2611                                                    Converted,
2612                                                    QualifierLoc);
2613  if (TName.isNull())
2614    return TemplateArgumentLoc();
2615
2616  return TemplateArgumentLoc(TemplateArgument(TName),
2617                TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
2618                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2619}
2620
2621/// \brief Check that the given template argument corresponds to the given
2622/// template parameter.
2623///
2624/// \param Param The template parameter against which the argument will be
2625/// checked.
2626///
2627/// \param Arg The template argument.
2628///
2629/// \param Template The template in which the template argument resides.
2630///
2631/// \param TemplateLoc The location of the template name for the template
2632/// whose argument list we're matching.
2633///
2634/// \param RAngleLoc The location of the right angle bracket ('>') that closes
2635/// the template argument list.
2636///
2637/// \param ArgumentPackIndex The index into the argument pack where this
2638/// argument will be placed. Only valid if the parameter is a parameter pack.
2639///
2640/// \param Converted The checked, converted argument will be added to the
2641/// end of this small vector.
2642///
2643/// \param CTAK Describes how we arrived at this particular template argument:
2644/// explicitly written, deduced, etc.
2645///
2646/// \returns true on error, false otherwise.
2647bool Sema::CheckTemplateArgument(NamedDecl *Param,
2648                                 const TemplateArgumentLoc &Arg,
2649                                 NamedDecl *Template,
2650                                 SourceLocation TemplateLoc,
2651                                 SourceLocation RAngleLoc,
2652                                 unsigned ArgumentPackIndex,
2653                            SmallVectorImpl<TemplateArgument> &Converted,
2654                                 CheckTemplateArgumentKind CTAK) {
2655  // Check template type parameters.
2656  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2657    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2658
2659  // Check non-type template parameters.
2660  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2661    // Do substitution on the type of the non-type template parameter
2662    // with the template arguments we've seen thus far.  But if the
2663    // template has a dependent context then we cannot substitute yet.
2664    QualType NTTPType = NTTP->getType();
2665    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
2666      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
2667
2668    if (NTTPType->isDependentType() &&
2669        !isa<TemplateTemplateParmDecl>(Template) &&
2670        !Template->getDeclContext()->isDependentContext()) {
2671      // Do substitution on the type of the non-type template parameter.
2672      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2673                                 NTTP, Converted.data(), Converted.size(),
2674                                 SourceRange(TemplateLoc, RAngleLoc));
2675
2676      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2677                                        Converted.data(), Converted.size());
2678      NTTPType = SubstType(NTTPType,
2679                           MultiLevelTemplateArgumentList(TemplateArgs),
2680                           NTTP->getLocation(),
2681                           NTTP->getDeclName());
2682      // If that worked, check the non-type template parameter type
2683      // for validity.
2684      if (!NTTPType.isNull())
2685        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2686                                                     NTTP->getLocation());
2687      if (NTTPType.isNull())
2688        return true;
2689    }
2690
2691    switch (Arg.getArgument().getKind()) {
2692    case TemplateArgument::Null:
2693      llvm_unreachable("Should never see a NULL template argument here");
2694
2695    case TemplateArgument::Expression: {
2696      TemplateArgument Result;
2697      ExprResult Res =
2698        CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
2699                              Result, CTAK);
2700      if (Res.isInvalid())
2701        return true;
2702
2703      Converted.push_back(Result);
2704      break;
2705    }
2706
2707    case TemplateArgument::Declaration:
2708    case TemplateArgument::Integral:
2709      // We've already checked this template argument, so just copy
2710      // it to the list of converted arguments.
2711      Converted.push_back(Arg.getArgument());
2712      break;
2713
2714    case TemplateArgument::Template:
2715    case TemplateArgument::TemplateExpansion:
2716      // We were given a template template argument. It may not be ill-formed;
2717      // see below.
2718      if (DependentTemplateName *DTN
2719            = Arg.getArgument().getAsTemplateOrTemplatePattern()
2720                                              .getAsDependentTemplateName()) {
2721        // We have a template argument such as \c T::template X, which we
2722        // parsed as a template template argument. However, since we now
2723        // know that we need a non-type template argument, convert this
2724        // template name into an expression.
2725
2726        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2727                                     Arg.getTemplateNameLoc());
2728
2729        CXXScopeSpec SS;
2730        SS.Adopt(Arg.getTemplateQualifierLoc());
2731        ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
2732                                                SS.getWithLocInContext(Context),
2733                                                    NameInfo));
2734
2735        // If we parsed the template argument as a pack expansion, create a
2736        // pack expansion expression.
2737        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2738          E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
2739          if (E.isInvalid())
2740            return true;
2741        }
2742
2743        TemplateArgument Result;
2744        E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
2745        if (E.isInvalid())
2746          return true;
2747
2748        Converted.push_back(Result);
2749        break;
2750      }
2751
2752      // We have a template argument that actually does refer to a class
2753      // template, alias template, or template template parameter, and
2754      // therefore cannot be a non-type template argument.
2755      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2756        << Arg.getSourceRange();
2757
2758      Diag(Param->getLocation(), diag::note_template_param_here);
2759      return true;
2760
2761    case TemplateArgument::Type: {
2762      // We have a non-type template parameter but the template
2763      // argument is a type.
2764
2765      // C++ [temp.arg]p2:
2766      //   In a template-argument, an ambiguity between a type-id and
2767      //   an expression is resolved to a type-id, regardless of the
2768      //   form of the corresponding template-parameter.
2769      //
2770      // We warn specifically about this case, since it can be rather
2771      // confusing for users.
2772      QualType T = Arg.getArgument().getAsType();
2773      SourceRange SR = Arg.getSourceRange();
2774      if (T->isFunctionType())
2775        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2776      else
2777        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2778      Diag(Param->getLocation(), diag::note_template_param_here);
2779      return true;
2780    }
2781
2782    case TemplateArgument::Pack:
2783      llvm_unreachable("Caller must expand template argument packs");
2784      break;
2785    }
2786
2787    return false;
2788  }
2789
2790
2791  // Check template template parameters.
2792  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2793
2794  // Substitute into the template parameter list of the template
2795  // template parameter, since previously-supplied template arguments
2796  // may appear within the template template parameter.
2797  {
2798    // Set up a template instantiation context.
2799    LocalInstantiationScope Scope(*this);
2800    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2801                               TempParm, Converted.data(), Converted.size(),
2802                               SourceRange(TemplateLoc, RAngleLoc));
2803
2804    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2805                                      Converted.data(), Converted.size());
2806    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2807                      SubstDecl(TempParm, CurContext,
2808                                MultiLevelTemplateArgumentList(TemplateArgs)));
2809    if (!TempParm)
2810      return true;
2811  }
2812
2813  switch (Arg.getArgument().getKind()) {
2814  case TemplateArgument::Null:
2815    llvm_unreachable("Should never see a NULL template argument here");
2816
2817  case TemplateArgument::Template:
2818  case TemplateArgument::TemplateExpansion:
2819    if (CheckTemplateArgument(TempParm, Arg))
2820      return true;
2821
2822    Converted.push_back(Arg.getArgument());
2823    break;
2824
2825  case TemplateArgument::Expression:
2826  case TemplateArgument::Type:
2827    // We have a template template parameter but the template
2828    // argument does not refer to a template.
2829    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
2830      << getLangOptions().CPlusPlus0x;
2831    return true;
2832
2833  case TemplateArgument::Declaration:
2834    llvm_unreachable(
2835                       "Declaration argument with template template parameter");
2836    break;
2837  case TemplateArgument::Integral:
2838    llvm_unreachable(
2839                          "Integral argument with template template parameter");
2840    break;
2841
2842  case TemplateArgument::Pack:
2843    llvm_unreachable("Caller must expand template argument packs");
2844    break;
2845  }
2846
2847  return false;
2848}
2849
2850/// \brief Check that the given template argument list is well-formed
2851/// for specializing the given template.
2852bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2853                                     SourceLocation TemplateLoc,
2854                                     TemplateArgumentListInfo &TemplateArgs,
2855                                     bool PartialTemplateArgs,
2856                          SmallVectorImpl<TemplateArgument> &Converted) {
2857  TemplateParameterList *Params = Template->getTemplateParameters();
2858  unsigned NumParams = Params->size();
2859  unsigned NumArgs = TemplateArgs.size();
2860  bool Invalid = false;
2861
2862  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2863
2864  bool HasParameterPack =
2865    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2866
2867  if ((NumArgs > NumParams && !HasParameterPack) ||
2868      (NumArgs < Params->getMinRequiredArguments() &&
2869       !PartialTemplateArgs)) {
2870    // FIXME: point at either the first arg beyond what we can handle,
2871    // or the '>', depending on whether we have too many or too few
2872    // arguments.
2873    SourceRange Range;
2874    if (NumArgs > NumParams)
2875      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2876    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2877      << (NumArgs > NumParams)
2878      << (isa<ClassTemplateDecl>(Template)? 0 :
2879          isa<FunctionTemplateDecl>(Template)? 1 :
2880          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2881      << Template << Range;
2882    Diag(Template->getLocation(), diag::note_template_decl_here)
2883      << Params->getSourceRange();
2884    Invalid = true;
2885  }
2886
2887  // C++ [temp.arg]p1:
2888  //   [...] The type and form of each template-argument specified in
2889  //   a template-id shall match the type and form specified for the
2890  //   corresponding parameter declared by the template in its
2891  //   template-parameter-list.
2892  bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
2893  SmallVector<TemplateArgument, 2> ArgumentPack;
2894  TemplateParameterList::iterator Param = Params->begin(),
2895                               ParamEnd = Params->end();
2896  unsigned ArgIdx = 0;
2897  LocalInstantiationScope InstScope(*this, true);
2898  while (Param != ParamEnd) {
2899    if (ArgIdx < NumArgs) {
2900      // If we have an expanded parameter pack, make sure we don't have too
2901      // many arguments.
2902      if (NonTypeTemplateParmDecl *NTTP
2903                                = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2904        if (NTTP->isExpandedParameterPack() &&
2905            ArgumentPack.size() >= NTTP->getNumExpansionTypes()) {
2906          Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2907            << true
2908            << (isa<ClassTemplateDecl>(Template)? 0 :
2909                isa<FunctionTemplateDecl>(Template)? 1 :
2910                isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2911            << Template;
2912          Diag(Template->getLocation(), diag::note_template_decl_here)
2913            << Params->getSourceRange();
2914          return true;
2915        }
2916      }
2917
2918      // Check the template argument we were given.
2919      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2920                                TemplateLoc, RAngleLoc,
2921                                ArgumentPack.size(), Converted))
2922        return true;
2923
2924      if ((*Param)->isTemplateParameterPack()) {
2925        // The template parameter was a template parameter pack, so take the
2926        // deduced argument and place it on the argument pack. Note that we
2927        // stay on the same template parameter so that we can deduce more
2928        // arguments.
2929        ArgumentPack.push_back(Converted.back());
2930        Converted.pop_back();
2931      } else {
2932        // Move to the next template parameter.
2933        ++Param;
2934      }
2935      ++ArgIdx;
2936      continue;
2937    }
2938
2939    // If we're checking a partial template argument list, we're done.
2940    if (PartialTemplateArgs) {
2941      if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
2942        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
2943                                                         ArgumentPack.data(),
2944                                                         ArgumentPack.size()));
2945
2946      return Invalid;
2947    }
2948
2949    // If we have a template parameter pack with no more corresponding
2950    // arguments, just break out now and we'll fill in the argument pack below.
2951    if ((*Param)->isTemplateParameterPack())
2952      break;
2953
2954    // We have a default template argument that we will use.
2955    TemplateArgumentLoc Arg;
2956
2957    // Retrieve the default template argument from the template
2958    // parameter. For each kind of template parameter, we substitute the
2959    // template arguments provided thus far and any "outer" template arguments
2960    // (when the template parameter was part of a nested template) into
2961    // the default argument.
2962    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2963      if (!TTP->hasDefaultArgument()) {
2964        assert(Invalid && "Missing default argument");
2965        break;
2966      }
2967
2968      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2969                                                             Template,
2970                                                             TemplateLoc,
2971                                                             RAngleLoc,
2972                                                             TTP,
2973                                                             Converted);
2974      if (!ArgType)
2975        return true;
2976
2977      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2978                                ArgType);
2979    } else if (NonTypeTemplateParmDecl *NTTP
2980                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2981      if (!NTTP->hasDefaultArgument()) {
2982        assert(Invalid && "Missing default argument");
2983        break;
2984      }
2985
2986      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2987                                                              TemplateLoc,
2988                                                              RAngleLoc,
2989                                                              NTTP,
2990                                                              Converted);
2991      if (E.isInvalid())
2992        return true;
2993
2994      Expr *Ex = E.takeAs<Expr>();
2995      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2996    } else {
2997      TemplateTemplateParmDecl *TempParm
2998        = cast<TemplateTemplateParmDecl>(*Param);
2999
3000      if (!TempParm->hasDefaultArgument()) {
3001        assert(Invalid && "Missing default argument");
3002        break;
3003      }
3004
3005      NestedNameSpecifierLoc QualifierLoc;
3006      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3007                                                       TemplateLoc,
3008                                                       RAngleLoc,
3009                                                       TempParm,
3010                                                       Converted,
3011                                                       QualifierLoc);
3012      if (Name.isNull())
3013        return true;
3014
3015      Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3016                           TempParm->getDefaultArgument().getTemplateNameLoc());
3017    }
3018
3019    // Introduce an instantiation record that describes where we are using
3020    // the default template argument.
3021    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
3022                                        Converted.data(), Converted.size(),
3023                                        SourceRange(TemplateLoc, RAngleLoc));
3024
3025    // Check the default template argument.
3026    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3027                              RAngleLoc, 0, Converted))
3028      return true;
3029
3030    // Core issue 150 (assumed resolution): if this is a template template
3031    // parameter, keep track of the default template arguments from the
3032    // template definition.
3033    if (isTemplateTemplateParameter)
3034      TemplateArgs.addArgument(Arg);
3035
3036    // Move to the next template parameter and argument.
3037    ++Param;
3038    ++ArgIdx;
3039  }
3040
3041  // Form argument packs for each of the parameter packs remaining.
3042  while (Param != ParamEnd) {
3043    // If we're checking a partial list of template arguments, don't fill
3044    // in arguments for non-template parameter packs.
3045
3046    if ((*Param)->isTemplateParameterPack()) {
3047      if (!HasParameterPack)
3048        return true;
3049      if (ArgumentPack.empty())
3050        Converted.push_back(TemplateArgument(0, 0));
3051      else {
3052        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3053                                                          ArgumentPack.data(),
3054                                                         ArgumentPack.size()));
3055        ArgumentPack.clear();
3056      }
3057    }
3058
3059    ++Param;
3060  }
3061
3062  return Invalid;
3063}
3064
3065namespace {
3066  class UnnamedLocalNoLinkageFinder
3067    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3068  {
3069    Sema &S;
3070    SourceRange SR;
3071
3072    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3073
3074  public:
3075    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3076
3077    bool Visit(QualType T) {
3078      return inherited::Visit(T.getTypePtr());
3079    }
3080
3081#define TYPE(Class, Parent) \
3082    bool Visit##Class##Type(const Class##Type *);
3083#define ABSTRACT_TYPE(Class, Parent) \
3084    bool Visit##Class##Type(const Class##Type *) { return false; }
3085#define NON_CANONICAL_TYPE(Class, Parent) \
3086    bool Visit##Class##Type(const Class##Type *) { return false; }
3087#include "clang/AST/TypeNodes.def"
3088
3089    bool VisitTagDecl(const TagDecl *Tag);
3090    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3091  };
3092}
3093
3094bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3095  return false;
3096}
3097
3098bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3099  return Visit(T->getElementType());
3100}
3101
3102bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3103  return Visit(T->getPointeeType());
3104}
3105
3106bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3107                                                    const BlockPointerType* T) {
3108  return Visit(T->getPointeeType());
3109}
3110
3111bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3112                                                const LValueReferenceType* T) {
3113  return Visit(T->getPointeeType());
3114}
3115
3116bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3117                                                const RValueReferenceType* T) {
3118  return Visit(T->getPointeeType());
3119}
3120
3121bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3122                                                  const MemberPointerType* T) {
3123  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3124}
3125
3126bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3127                                                  const ConstantArrayType* T) {
3128  return Visit(T->getElementType());
3129}
3130
3131bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3132                                                 const IncompleteArrayType* T) {
3133  return Visit(T->getElementType());
3134}
3135
3136bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3137                                                   const VariableArrayType* T) {
3138  return Visit(T->getElementType());
3139}
3140
3141bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3142                                            const DependentSizedArrayType* T) {
3143  return Visit(T->getElementType());
3144}
3145
3146bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3147                                         const DependentSizedExtVectorType* T) {
3148  return Visit(T->getElementType());
3149}
3150
3151bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3152  return Visit(T->getElementType());
3153}
3154
3155bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3156  return Visit(T->getElementType());
3157}
3158
3159bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3160                                                  const FunctionProtoType* T) {
3161  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
3162                                         AEnd = T->arg_type_end();
3163       A != AEnd; ++A) {
3164    if (Visit(*A))
3165      return true;
3166  }
3167
3168  return Visit(T->getResultType());
3169}
3170
3171bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3172                                               const FunctionNoProtoType* T) {
3173  return Visit(T->getResultType());
3174}
3175
3176bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
3177                                                  const UnresolvedUsingType*) {
3178  return false;
3179}
3180
3181bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
3182  return false;
3183}
3184
3185bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
3186  return Visit(T->getUnderlyingType());
3187}
3188
3189bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
3190  return false;
3191}
3192
3193bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
3194                                                    const UnaryTransformType*) {
3195  return false;
3196}
3197
3198bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
3199  return Visit(T->getDeducedType());
3200}
3201
3202bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
3203  return VisitTagDecl(T->getDecl());
3204}
3205
3206bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
3207  return VisitTagDecl(T->getDecl());
3208}
3209
3210bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
3211                                                 const TemplateTypeParmType*) {
3212  return false;
3213}
3214
3215bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
3216                                        const SubstTemplateTypeParmPackType *) {
3217  return false;
3218}
3219
3220bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
3221                                            const TemplateSpecializationType*) {
3222  return false;
3223}
3224
3225bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
3226                                              const InjectedClassNameType* T) {
3227  return VisitTagDecl(T->getDecl());
3228}
3229
3230bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
3231                                                   const DependentNameType* T) {
3232  return VisitNestedNameSpecifier(T->getQualifier());
3233}
3234
3235bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
3236                                 const DependentTemplateSpecializationType* T) {
3237  return VisitNestedNameSpecifier(T->getQualifier());
3238}
3239
3240bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
3241                                                   const PackExpansionType* T) {
3242  return Visit(T->getPattern());
3243}
3244
3245bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
3246  return false;
3247}
3248
3249bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
3250                                                   const ObjCInterfaceType *) {
3251  return false;
3252}
3253
3254bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
3255                                                const ObjCObjectPointerType *) {
3256  return false;
3257}
3258
3259bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
3260  return Visit(T->getValueType());
3261}
3262
3263bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
3264  if (Tag->getDeclContext()->isFunctionOrMethod()) {
3265    S.Diag(SR.getBegin(),
3266           S.getLangOptions().CPlusPlus0x ?
3267             diag::warn_cxx98_compat_template_arg_local_type :
3268             diag::ext_template_arg_local_type)
3269      << S.Context.getTypeDeclType(Tag) << SR;
3270    return true;
3271  }
3272
3273  if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) {
3274    S.Diag(SR.getBegin(),
3275           S.getLangOptions().CPlusPlus0x ?
3276             diag::warn_cxx98_compat_template_arg_unnamed_type :
3277             diag::ext_template_arg_unnamed_type) << SR;
3278    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
3279    return true;
3280  }
3281
3282  return false;
3283}
3284
3285bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
3286                                                    NestedNameSpecifier *NNS) {
3287  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
3288    return true;
3289
3290  switch (NNS->getKind()) {
3291  case NestedNameSpecifier::Identifier:
3292  case NestedNameSpecifier::Namespace:
3293  case NestedNameSpecifier::NamespaceAlias:
3294  case NestedNameSpecifier::Global:
3295    return false;
3296
3297  case NestedNameSpecifier::TypeSpec:
3298  case NestedNameSpecifier::TypeSpecWithTemplate:
3299    return Visit(QualType(NNS->getAsType(), 0));
3300  }
3301  return false;
3302}
3303
3304
3305/// \brief Check a template argument against its corresponding
3306/// template type parameter.
3307///
3308/// This routine implements the semantics of C++ [temp.arg.type]. It
3309/// returns true if an error occurred, and false otherwise.
3310bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
3311                                 TypeSourceInfo *ArgInfo) {
3312  assert(ArgInfo && "invalid TypeSourceInfo");
3313  QualType Arg = ArgInfo->getType();
3314  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
3315
3316  if (Arg->isVariablyModifiedType()) {
3317    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
3318  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
3319    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
3320  }
3321
3322  // C++03 [temp.arg.type]p2:
3323  //   A local type, a type with no linkage, an unnamed type or a type
3324  //   compounded from any of these types shall not be used as a
3325  //   template-argument for a template type-parameter.
3326  //
3327  // C++11 allows these, and even in C++03 we allow them as an extension with
3328  // a warning.
3329  if (LangOpts.CPlusPlus0x ?
3330     Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type,
3331                              SR.getBegin()) != DiagnosticsEngine::Ignored ||
3332      Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type,
3333                               SR.getBegin()) != DiagnosticsEngine::Ignored :
3334      Arg->hasUnnamedOrLocalType()) {
3335    UnnamedLocalNoLinkageFinder Finder(*this, SR);
3336    (void)Finder.Visit(Context.getCanonicalType(Arg));
3337  }
3338
3339  return false;
3340}
3341
3342/// \brief Checks whether the given template argument is the address
3343/// of an object or function according to C++ [temp.arg.nontype]p1.
3344static bool
3345CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
3346                                               NonTypeTemplateParmDecl *Param,
3347                                               QualType ParamType,
3348                                               Expr *ArgIn,
3349                                               TemplateArgument &Converted) {
3350  bool Invalid = false;
3351  Expr *Arg = ArgIn;
3352  QualType ArgType = Arg->getType();
3353
3354  // See through any implicit casts we added to fix the type.
3355  Arg = Arg->IgnoreImpCasts();
3356
3357  // C++ [temp.arg.nontype]p1:
3358  //
3359  //   A template-argument for a non-type, non-template
3360  //   template-parameter shall be one of: [...]
3361  //
3362  //     -- the address of an object or function with external
3363  //        linkage, including function templates and function
3364  //        template-ids but excluding non-static class members,
3365  //        expressed as & id-expression where the & is optional if
3366  //        the name refers to a function or array, or if the
3367  //        corresponding template-parameter is a reference; or
3368
3369  // In C++98/03 mode, give an extension warning on any extra parentheses.
3370  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3371  bool ExtraParens = false;
3372  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3373    if (!Invalid && !ExtraParens) {
3374      S.Diag(Arg->getSourceRange().getBegin(),
3375             S.getLangOptions().CPlusPlus0x ?
3376               diag::warn_cxx98_compat_template_arg_extra_parens :
3377               diag::ext_template_arg_extra_parens)
3378        << Arg->getSourceRange();
3379      ExtraParens = true;
3380    }
3381
3382    Arg = Parens->getSubExpr();
3383  }
3384
3385  while (SubstNonTypeTemplateParmExpr *subst =
3386           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3387    Arg = subst->getReplacement()->IgnoreImpCasts();
3388
3389  bool AddressTaken = false;
3390  SourceLocation AddrOpLoc;
3391  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3392    if (UnOp->getOpcode() == UO_AddrOf) {
3393      Arg = UnOp->getSubExpr();
3394      AddressTaken = true;
3395      AddrOpLoc = UnOp->getOperatorLoc();
3396    }
3397  }
3398
3399  if (S.getLangOptions().MicrosoftExt && isa<CXXUuidofExpr>(Arg)) {
3400    Converted = TemplateArgument(ArgIn);
3401    return false;
3402  }
3403
3404  while (SubstNonTypeTemplateParmExpr *subst =
3405           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3406    Arg = subst->getReplacement()->IgnoreImpCasts();
3407
3408  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
3409  if (!DRE) {
3410    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
3411      << Arg->getSourceRange();
3412    S.Diag(Param->getLocation(), diag::note_template_param_here);
3413    return true;
3414  }
3415
3416  // Stop checking the precise nature of the argument if it is value dependent,
3417  // it should be checked when instantiated.
3418  if (Arg->isValueDependent()) {
3419    Converted = TemplateArgument(ArgIn);
3420    return false;
3421  }
3422
3423  if (!isa<ValueDecl>(DRE->getDecl())) {
3424    S.Diag(Arg->getSourceRange().getBegin(),
3425           diag::err_template_arg_not_object_or_func_form)
3426      << Arg->getSourceRange();
3427    S.Diag(Param->getLocation(), diag::note_template_param_here);
3428    return true;
3429  }
3430
3431  NamedDecl *Entity = 0;
3432
3433  // Cannot refer to non-static data members
3434  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
3435    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
3436      << Field << Arg->getSourceRange();
3437    S.Diag(Param->getLocation(), diag::note_template_param_here);
3438    return true;
3439  }
3440
3441  // Cannot refer to non-static member functions
3442  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
3443    if (!Method->isStatic()) {
3444      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
3445        << Method << Arg->getSourceRange();
3446      S.Diag(Param->getLocation(), diag::note_template_param_here);
3447      return true;
3448    }
3449
3450  // Functions must have external linkage.
3451  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
3452    if (!isExternalLinkage(Func->getLinkage())) {
3453      S.Diag(Arg->getSourceRange().getBegin(),
3454             diag::err_template_arg_function_not_extern)
3455        << Func << Arg->getSourceRange();
3456      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
3457        << true;
3458      return true;
3459    }
3460
3461    // Okay: we've named a function with external linkage.
3462    Entity = Func;
3463
3464    // If the template parameter has pointer type, the function decays.
3465    if (ParamType->isPointerType() && !AddressTaken)
3466      ArgType = S.Context.getPointerType(Func->getType());
3467    else if (AddressTaken && ParamType->isReferenceType()) {
3468      // If we originally had an address-of operator, but the
3469      // parameter has reference type, complain and (if things look
3470      // like they will work) drop the address-of operator.
3471      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
3472                                            ParamType.getNonReferenceType())) {
3473        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3474          << ParamType;
3475        S.Diag(Param->getLocation(), diag::note_template_param_here);
3476        return true;
3477      }
3478
3479      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3480        << ParamType
3481        << FixItHint::CreateRemoval(AddrOpLoc);
3482      S.Diag(Param->getLocation(), diag::note_template_param_here);
3483
3484      ArgType = Func->getType();
3485    }
3486  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
3487    if (!isExternalLinkage(Var->getLinkage())) {
3488      S.Diag(Arg->getSourceRange().getBegin(),
3489             diag::err_template_arg_object_not_extern)
3490        << Var << Arg->getSourceRange();
3491      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
3492        << true;
3493      return true;
3494    }
3495
3496    // A value of reference type is not an object.
3497    if (Var->getType()->isReferenceType()) {
3498      S.Diag(Arg->getSourceRange().getBegin(),
3499             diag::err_template_arg_reference_var)
3500        << Var->getType() << Arg->getSourceRange();
3501      S.Diag(Param->getLocation(), diag::note_template_param_here);
3502      return true;
3503    }
3504
3505    // Okay: we've named an object with external linkage
3506    Entity = Var;
3507
3508    // If the template parameter has pointer type, we must have taken
3509    // the address of this object.
3510    if (ParamType->isReferenceType()) {
3511      if (AddressTaken) {
3512        // If we originally had an address-of operator, but the
3513        // parameter has reference type, complain and (if things look
3514        // like they will work) drop the address-of operator.
3515        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
3516                                            ParamType.getNonReferenceType())) {
3517          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3518            << ParamType;
3519          S.Diag(Param->getLocation(), diag::note_template_param_here);
3520          return true;
3521        }
3522
3523        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3524          << ParamType
3525          << FixItHint::CreateRemoval(AddrOpLoc);
3526        S.Diag(Param->getLocation(), diag::note_template_param_here);
3527
3528        ArgType = Var->getType();
3529      }
3530    } else if (!AddressTaken && ParamType->isPointerType()) {
3531      if (Var->getType()->isArrayType()) {
3532        // Array-to-pointer decay.
3533        ArgType = S.Context.getArrayDecayedType(Var->getType());
3534      } else {
3535        // If the template parameter has pointer type but the address of
3536        // this object was not taken, complain and (possibly) recover by
3537        // taking the address of the entity.
3538        ArgType = S.Context.getPointerType(Var->getType());
3539        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3540          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3541            << ParamType;
3542          S.Diag(Param->getLocation(), diag::note_template_param_here);
3543          return true;
3544        }
3545
3546        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3547          << ParamType
3548          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3549
3550        S.Diag(Param->getLocation(), diag::note_template_param_here);
3551      }
3552    }
3553  } else {
3554    // We found something else, but we don't know specifically what it is.
3555    S.Diag(Arg->getSourceRange().getBegin(),
3556           diag::err_template_arg_not_object_or_func)
3557      << Arg->getSourceRange();
3558    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3559    return true;
3560  }
3561
3562  bool ObjCLifetimeConversion;
3563  if (ParamType->isPointerType() &&
3564      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3565      S.IsQualificationConversion(ArgType, ParamType, false,
3566                                  ObjCLifetimeConversion)) {
3567    // For pointer-to-object types, qualification conversions are
3568    // permitted.
3569  } else {
3570    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3571      if (!ParamRef->getPointeeType()->isFunctionType()) {
3572        // C++ [temp.arg.nontype]p5b3:
3573        //   For a non-type template-parameter of type reference to
3574        //   object, no conversions apply. The type referred to by the
3575        //   reference may be more cv-qualified than the (otherwise
3576        //   identical) type of the template- argument. The
3577        //   template-parameter is bound directly to the
3578        //   template-argument, which shall be an lvalue.
3579
3580        // FIXME: Other qualifiers?
3581        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3582        unsigned ArgQuals = ArgType.getCVRQualifiers();
3583
3584        if ((ParamQuals | ArgQuals) != ParamQuals) {
3585          S.Diag(Arg->getSourceRange().getBegin(),
3586                 diag::err_template_arg_ref_bind_ignores_quals)
3587            << ParamType << Arg->getType()
3588            << Arg->getSourceRange();
3589          S.Diag(Param->getLocation(), diag::note_template_param_here);
3590          return true;
3591        }
3592      }
3593    }
3594
3595    // At this point, the template argument refers to an object or
3596    // function with external linkage. We now need to check whether the
3597    // argument and parameter types are compatible.
3598    if (!S.Context.hasSameUnqualifiedType(ArgType,
3599                                          ParamType.getNonReferenceType())) {
3600      // We can't perform this conversion or binding.
3601      if (ParamType->isReferenceType())
3602        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3603          << ParamType << ArgIn->getType() << Arg->getSourceRange();
3604      else
3605        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
3606          << ArgIn->getType() << ParamType << Arg->getSourceRange();
3607      S.Diag(Param->getLocation(), diag::note_template_param_here);
3608      return true;
3609    }
3610  }
3611
3612  // Create the template argument.
3613  Converted = TemplateArgument(Entity->getCanonicalDecl());
3614  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
3615  return false;
3616}
3617
3618/// \brief Checks whether the given template argument is a pointer to
3619/// member constant according to C++ [temp.arg.nontype]p1.
3620bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
3621                                                TemplateArgument &Converted) {
3622  bool Invalid = false;
3623
3624  // See through any implicit casts we added to fix the type.
3625  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3626    Arg = Cast->getSubExpr();
3627
3628  // C++ [temp.arg.nontype]p1:
3629  //
3630  //   A template-argument for a non-type, non-template
3631  //   template-parameter shall be one of: [...]
3632  //
3633  //     -- a pointer to member expressed as described in 5.3.1.
3634  DeclRefExpr *DRE = 0;
3635
3636  // In C++98/03 mode, give an extension warning on any extra parentheses.
3637  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3638  bool ExtraParens = false;
3639  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3640    if (!Invalid && !ExtraParens) {
3641      Diag(Arg->getSourceRange().getBegin(),
3642           getLangOptions().CPlusPlus0x ?
3643             diag::warn_cxx98_compat_template_arg_extra_parens :
3644             diag::ext_template_arg_extra_parens)
3645        << Arg->getSourceRange();
3646      ExtraParens = true;
3647    }
3648
3649    Arg = Parens->getSubExpr();
3650  }
3651
3652  while (SubstNonTypeTemplateParmExpr *subst =
3653           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3654    Arg = subst->getReplacement()->IgnoreImpCasts();
3655
3656  // A pointer-to-member constant written &Class::member.
3657  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3658    if (UnOp->getOpcode() == UO_AddrOf) {
3659      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3660      if (DRE && !DRE->getQualifier())
3661        DRE = 0;
3662    }
3663  }
3664  // A constant of pointer-to-member type.
3665  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
3666    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
3667      if (VD->getType()->isMemberPointerType()) {
3668        if (isa<NonTypeTemplateParmDecl>(VD) ||
3669            (isa<VarDecl>(VD) &&
3670             Context.getCanonicalType(VD->getType()).isConstQualified())) {
3671          if (Arg->isTypeDependent() || Arg->isValueDependent())
3672            Converted = TemplateArgument(Arg);
3673          else
3674            Converted = TemplateArgument(VD->getCanonicalDecl());
3675          return Invalid;
3676        }
3677      }
3678    }
3679
3680    DRE = 0;
3681  }
3682
3683  if (!DRE)
3684    return Diag(Arg->getSourceRange().getBegin(),
3685                diag::err_template_arg_not_pointer_to_member_form)
3686      << Arg->getSourceRange();
3687
3688  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
3689    assert((isa<FieldDecl>(DRE->getDecl()) ||
3690            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
3691           "Only non-static member pointers can make it here");
3692
3693    // Okay: this is the address of a non-static member, and therefore
3694    // a member pointer constant.
3695    if (Arg->isTypeDependent() || Arg->isValueDependent())
3696      Converted = TemplateArgument(Arg);
3697    else
3698      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3699    return Invalid;
3700  }
3701
3702  // We found something else, but we don't know specifically what it is.
3703  Diag(Arg->getSourceRange().getBegin(),
3704       diag::err_template_arg_not_pointer_to_member_form)
3705      << Arg->getSourceRange();
3706  Diag(DRE->getDecl()->getLocation(),
3707       diag::note_template_arg_refers_here);
3708  return true;
3709}
3710
3711/// \brief Check a template argument against its corresponding
3712/// non-type template parameter.
3713///
3714/// This routine implements the semantics of C++ [temp.arg.nontype].
3715/// If an error occurred, it returns ExprError(); otherwise, it
3716/// returns the converted template argument. \p
3717/// InstantiatedParamType is the type of the non-type template
3718/// parameter after it has been instantiated.
3719ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3720                                       QualType InstantiatedParamType, Expr *Arg,
3721                                       TemplateArgument &Converted,
3722                                       CheckTemplateArgumentKind CTAK) {
3723  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
3724
3725  // If either the parameter has a dependent type or the argument is
3726  // type-dependent, there's nothing we can check now.
3727  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3728    // FIXME: Produce a cloned, canonical expression?
3729    Converted = TemplateArgument(Arg);
3730    return Owned(Arg);
3731  }
3732
3733  // C++ [temp.arg.nontype]p5:
3734  //   The following conversions are performed on each expression used
3735  //   as a non-type template-argument. If a non-type
3736  //   template-argument cannot be converted to the type of the
3737  //   corresponding template-parameter then the program is
3738  //   ill-formed.
3739  //
3740  //     -- for a non-type template-parameter of integral or
3741  //        enumeration type, integral promotions (4.5) and integral
3742  //        conversions (4.7) are applied.
3743  QualType ParamType = InstantiatedParamType;
3744  QualType ArgType = Arg->getType();
3745  if (ParamType->isIntegralOrEnumerationType()) {
3746    // C++ [temp.arg.nontype]p1:
3747    //   A template-argument for a non-type, non-template
3748    //   template-parameter shall be one of:
3749    //
3750    //     -- an integral constant-expression of integral or enumeration
3751    //        type; or
3752    //     -- the name of a non-type template-parameter; or
3753    SourceLocation NonConstantLoc;
3754    llvm::APSInt Value;
3755    if (!ArgType->isIntegralOrEnumerationType()) {
3756      Diag(Arg->getSourceRange().getBegin(),
3757           diag::err_template_arg_not_integral_or_enumeral)
3758        << ArgType << Arg->getSourceRange();
3759      Diag(Param->getLocation(), diag::note_template_param_here);
3760      return ExprError();
3761    } else if (!Arg->isValueDependent() &&
3762               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
3763      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
3764        << ArgType << Arg->getSourceRange();
3765      return ExprError();
3766    }
3767
3768    // From here on out, all we care about are the unqualified forms
3769    // of the parameter and argument types.
3770    ParamType = ParamType.getUnqualifiedType();
3771    ArgType = ArgType.getUnqualifiedType();
3772
3773    // Try to convert the argument to the parameter's type.
3774    if (Context.hasSameType(ParamType, ArgType)) {
3775      // Okay: no conversion necessary
3776    } else if (CTAK == CTAK_Deduced) {
3777      // C++ [temp.deduct.type]p17:
3778      //   If, in the declaration of a function template with a non-type
3779      //   template-parameter, the non-type template- parameter is used
3780      //   in an expression in the function parameter-list and, if the
3781      //   corresponding template-argument is deduced, the
3782      //   template-argument type shall match the type of the
3783      //   template-parameter exactly, except that a template-argument
3784      //   deduced from an array bound may be of any integral type.
3785      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
3786        << ArgType << ParamType;
3787      Diag(Param->getLocation(), diag::note_template_param_here);
3788      return ExprError();
3789    } else if (ParamType->isBooleanType()) {
3790      // This is an integral-to-boolean conversion.
3791      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
3792    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
3793               !ParamType->isEnumeralType()) {
3794      // This is an integral promotion or conversion.
3795      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
3796    } else {
3797      // We can't perform this conversion.
3798      Diag(Arg->getSourceRange().getBegin(),
3799           diag::err_template_arg_not_convertible)
3800        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3801      Diag(Param->getLocation(), diag::note_template_param_here);
3802      return ExprError();
3803    }
3804
3805    // Add the value of this argument to the list of converted
3806    // arguments. We use the bitwidth and signedness of the template
3807    // parameter.
3808    if (Arg->isValueDependent()) {
3809      // The argument is value-dependent. Create a new
3810      // TemplateArgument with the converted expression.
3811      Converted = TemplateArgument(Arg);
3812      return Owned(Arg);
3813    }
3814
3815    QualType IntegerType = Context.getCanonicalType(ParamType);
3816    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3817      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
3818
3819    if (ParamType->isBooleanType()) {
3820      // Value must be zero or one.
3821      Value = Value != 0;
3822      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3823      if (Value.getBitWidth() != AllowedBits)
3824        Value = Value.extOrTrunc(AllowedBits);
3825      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
3826    } else {
3827      llvm::APSInt OldValue = Value;
3828
3829      // Coerce the template argument's value to the value it will have
3830      // based on the template parameter's type.
3831      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3832      if (Value.getBitWidth() != AllowedBits)
3833        Value = Value.extOrTrunc(AllowedBits);
3834      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
3835
3836      // Complain if an unsigned parameter received a negative value.
3837      if (IntegerType->isUnsignedIntegerOrEnumerationType()
3838               && (OldValue.isSigned() && OldValue.isNegative())) {
3839        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
3840          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3841          << Arg->getSourceRange();
3842        Diag(Param->getLocation(), diag::note_template_param_here);
3843      }
3844
3845      // Complain if we overflowed the template parameter's type.
3846      unsigned RequiredBits;
3847      if (IntegerType->isUnsignedIntegerOrEnumerationType())
3848        RequiredBits = OldValue.getActiveBits();
3849      else if (OldValue.isUnsigned())
3850        RequiredBits = OldValue.getActiveBits() + 1;
3851      else
3852        RequiredBits = OldValue.getMinSignedBits();
3853      if (RequiredBits > AllowedBits) {
3854        Diag(Arg->getSourceRange().getBegin(),
3855             diag::warn_template_arg_too_large)
3856          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3857          << Arg->getSourceRange();
3858        Diag(Param->getLocation(), diag::note_template_param_here);
3859      }
3860    }
3861
3862    Converted = TemplateArgument(Value,
3863                                 ParamType->isEnumeralType()
3864                                   ? Context.getCanonicalType(ParamType)
3865                                   : IntegerType);
3866    return Owned(Arg);
3867  }
3868
3869  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
3870
3871  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
3872  // from a template argument of type std::nullptr_t to a non-type
3873  // template parameter of type pointer to object, pointer to
3874  // function, or pointer-to-member, respectively.
3875  if (ArgType->isNullPtrType()) {
3876    if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
3877      Converted = TemplateArgument((NamedDecl *)0);
3878      return Owned(Arg);
3879    }
3880
3881    if (ParamType->isNullPtrType()) {
3882      llvm::APSInt Zero(Context.getTypeSize(Context.NullPtrTy), true);
3883      Converted = TemplateArgument(Zero, Context.NullPtrTy);
3884      return Owned(Arg);
3885    }
3886  }
3887
3888  // Handle pointer-to-function, reference-to-function, and
3889  // pointer-to-member-function all in (roughly) the same way.
3890  if (// -- For a non-type template-parameter of type pointer to
3891      //    function, only the function-to-pointer conversion (4.3) is
3892      //    applied. If the template-argument represents a set of
3893      //    overloaded functions (or a pointer to such), the matching
3894      //    function is selected from the set (13.4).
3895      (ParamType->isPointerType() &&
3896       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
3897      // -- For a non-type template-parameter of type reference to
3898      //    function, no conversions apply. If the template-argument
3899      //    represents a set of overloaded functions, the matching
3900      //    function is selected from the set (13.4).
3901      (ParamType->isReferenceType() &&
3902       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
3903      // -- For a non-type template-parameter of type pointer to
3904      //    member function, no conversions apply. If the
3905      //    template-argument represents a set of overloaded member
3906      //    functions, the matching member function is selected from
3907      //    the set (13.4).
3908      (ParamType->isMemberPointerType() &&
3909       ParamType->getAs<MemberPointerType>()->getPointeeType()
3910         ->isFunctionType())) {
3911
3912    if (Arg->getType() == Context.OverloadTy) {
3913      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
3914                                                                true,
3915                                                                FoundResult)) {
3916        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3917          return ExprError();
3918
3919        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3920        ArgType = Arg->getType();
3921      } else
3922        return ExprError();
3923    }
3924
3925    if (!ParamType->isMemberPointerType()) {
3926      if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3927                                                         ParamType,
3928                                                         Arg, Converted))
3929        return ExprError();
3930      return Owned(Arg);
3931    }
3932
3933    bool ObjCLifetimeConversion;
3934    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(),
3935                                  false, ObjCLifetimeConversion)) {
3936      Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp,
3937                              Arg->getValueKind()).take();
3938    } else if (!Context.hasSameUnqualifiedType(ArgType,
3939                                           ParamType.getNonReferenceType())) {
3940      // We can't perform this conversion.
3941      Diag(Arg->getSourceRange().getBegin(),
3942           diag::err_template_arg_not_convertible)
3943        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3944      Diag(Param->getLocation(), diag::note_template_param_here);
3945      return ExprError();
3946    }
3947
3948    if (CheckTemplateArgumentPointerToMember(Arg, Converted))
3949      return ExprError();
3950    return Owned(Arg);
3951  }
3952
3953  if (ParamType->isPointerType()) {
3954    //   -- for a non-type template-parameter of type pointer to
3955    //      object, qualification conversions (4.4) and the
3956    //      array-to-pointer conversion (4.2) are applied.
3957    // C++0x also allows a value of std::nullptr_t.
3958    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
3959           "Only object pointers allowed here");
3960
3961    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3962                                                       ParamType,
3963                                                       Arg, Converted))
3964      return ExprError();
3965    return Owned(Arg);
3966  }
3967
3968  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
3969    //   -- For a non-type template-parameter of type reference to
3970    //      object, no conversions apply. The type referred to by the
3971    //      reference may be more cv-qualified than the (otherwise
3972    //      identical) type of the template-argument. The
3973    //      template-parameter is bound directly to the
3974    //      template-argument, which must be an lvalue.
3975    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
3976           "Only object references allowed here");
3977
3978    if (Arg->getType() == Context.OverloadTy) {
3979      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
3980                                                 ParamRefType->getPointeeType(),
3981                                                                true,
3982                                                                FoundResult)) {
3983        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3984          return ExprError();
3985
3986        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3987        ArgType = Arg->getType();
3988      } else
3989        return ExprError();
3990    }
3991
3992    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3993                                                       ParamType,
3994                                                       Arg, Converted))
3995      return ExprError();
3996    return Owned(Arg);
3997  }
3998
3999  //     -- For a non-type template-parameter of type pointer to data
4000  //        member, qualification conversions (4.4) are applied.
4001  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
4002
4003  bool ObjCLifetimeConversion;
4004  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
4005    // Types match exactly: nothing more to do here.
4006  } else if (IsQualificationConversion(ArgType, ParamType, false,
4007                                       ObjCLifetimeConversion)) {
4008    Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp,
4009                            Arg->getValueKind()).take();
4010  } else {
4011    // We can't perform this conversion.
4012    Diag(Arg->getSourceRange().getBegin(),
4013         diag::err_template_arg_not_convertible)
4014      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
4015    Diag(Param->getLocation(), diag::note_template_param_here);
4016    return ExprError();
4017  }
4018
4019  if (CheckTemplateArgumentPointerToMember(Arg, Converted))
4020    return ExprError();
4021  return Owned(Arg);
4022}
4023
4024/// \brief Check a template argument against its corresponding
4025/// template template parameter.
4026///
4027/// This routine implements the semantics of C++ [temp.arg.template].
4028/// It returns true if an error occurred, and false otherwise.
4029bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
4030                                 const TemplateArgumentLoc &Arg) {
4031  TemplateName Name = Arg.getArgument().getAsTemplate();
4032  TemplateDecl *Template = Name.getAsTemplateDecl();
4033  if (!Template) {
4034    // Any dependent template name is fine.
4035    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
4036    return false;
4037  }
4038
4039  // C++0x [temp.arg.template]p1:
4040  //   A template-argument for a template template-parameter shall be
4041  //   the name of a class template or an alias template, expressed as an
4042  //   id-expression. When the template-argument names a class template, only
4043  //   primary class templates are considered when matching the
4044  //   template template argument with the corresponding parameter;
4045  //   partial specializations are not considered even if their
4046  //   parameter lists match that of the template template parameter.
4047  //
4048  // Note that we also allow template template parameters here, which
4049  // will happen when we are dealing with, e.g., class template
4050  // partial specializations.
4051  if (!isa<ClassTemplateDecl>(Template) &&
4052      !isa<TemplateTemplateParmDecl>(Template) &&
4053      !isa<TypeAliasTemplateDecl>(Template)) {
4054    assert(isa<FunctionTemplateDecl>(Template) &&
4055           "Only function templates are possible here");
4056    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
4057    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
4058      << Template;
4059  }
4060
4061  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
4062                                         Param->getTemplateParameters(),
4063                                         true,
4064                                         TPL_TemplateTemplateArgumentMatch,
4065                                         Arg.getLocation());
4066}
4067
4068/// \brief Given a non-type template argument that refers to a
4069/// declaration and the type of its corresponding non-type template
4070/// parameter, produce an expression that properly refers to that
4071/// declaration.
4072ExprResult
4073Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
4074                                              QualType ParamType,
4075                                              SourceLocation Loc) {
4076  assert(Arg.getKind() == TemplateArgument::Declaration &&
4077         "Only declaration template arguments permitted here");
4078  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
4079
4080  if (VD->getDeclContext()->isRecord() &&
4081      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
4082    // If the value is a class member, we might have a pointer-to-member.
4083    // Determine whether the non-type template template parameter is of
4084    // pointer-to-member type. If so, we need to build an appropriate
4085    // expression for a pointer-to-member, since a "normal" DeclRefExpr
4086    // would refer to the member itself.
4087    if (ParamType->isMemberPointerType()) {
4088      QualType ClassType
4089        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
4090      NestedNameSpecifier *Qualifier
4091        = NestedNameSpecifier::Create(Context, 0, false,
4092                                      ClassType.getTypePtr());
4093      CXXScopeSpec SS;
4094      SS.MakeTrivial(Context, Qualifier, Loc);
4095
4096      // The actual value-ness of this is unimportant, but for
4097      // internal consistency's sake, references to instance methods
4098      // are r-values.
4099      ExprValueKind VK = VK_LValue;
4100      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
4101        VK = VK_RValue;
4102
4103      ExprResult RefExpr = BuildDeclRefExpr(VD,
4104                                            VD->getType().getNonReferenceType(),
4105                                            VK,
4106                                            Loc,
4107                                            &SS);
4108      if (RefExpr.isInvalid())
4109        return ExprError();
4110
4111      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4112
4113      // We might need to perform a trailing qualification conversion, since
4114      // the element type on the parameter could be more qualified than the
4115      // element type in the expression we constructed.
4116      bool ObjCLifetimeConversion;
4117      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
4118                                    ParamType.getUnqualifiedType(), false,
4119                                    ObjCLifetimeConversion))
4120        RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
4121
4122      assert(!RefExpr.isInvalid() &&
4123             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
4124                                 ParamType.getUnqualifiedType()));
4125      return move(RefExpr);
4126    }
4127  }
4128
4129  QualType T = VD->getType().getNonReferenceType();
4130  if (ParamType->isPointerType()) {
4131    // When the non-type template parameter is a pointer, take the
4132    // address of the declaration.
4133    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
4134    if (RefExpr.isInvalid())
4135      return ExprError();
4136
4137    if (T->isFunctionType() || T->isArrayType()) {
4138      // Decay functions and arrays.
4139      RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
4140      if (RefExpr.isInvalid())
4141        return ExprError();
4142
4143      return move(RefExpr);
4144    }
4145
4146    // Take the address of everything else
4147    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4148  }
4149
4150  ExprValueKind VK = VK_RValue;
4151
4152  // If the non-type template parameter has reference type, qualify the
4153  // resulting declaration reference with the extra qualifiers on the
4154  // type that the reference refers to.
4155  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
4156    VK = VK_LValue;
4157    T = Context.getQualifiedType(T,
4158                              TargetRef->getPointeeType().getQualifiers());
4159  }
4160
4161  return BuildDeclRefExpr(VD, T, VK, Loc);
4162}
4163
4164/// \brief Construct a new expression that refers to the given
4165/// integral template argument with the given source-location
4166/// information.
4167///
4168/// This routine takes care of the mapping from an integral template
4169/// argument (which may have any integral type) to the appropriate
4170/// literal value.
4171ExprResult
4172Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
4173                                                  SourceLocation Loc) {
4174  assert(Arg.getKind() == TemplateArgument::Integral &&
4175         "Operation is only valid for integral template arguments");
4176  QualType T = Arg.getIntegralType();
4177  if (T->isAnyCharacterType()) {
4178    CharacterLiteral::CharacterKind Kind;
4179    if (T->isWideCharType())
4180      Kind = CharacterLiteral::Wide;
4181    else if (T->isChar16Type())
4182      Kind = CharacterLiteral::UTF16;
4183    else if (T->isChar32Type())
4184      Kind = CharacterLiteral::UTF32;
4185    else
4186      Kind = CharacterLiteral::Ascii;
4187
4188    return Owned(new (Context) CharacterLiteral(
4189                                            Arg.getAsIntegral()->getZExtValue(),
4190                                            Kind, T, Loc));
4191  }
4192
4193  if (T->isBooleanType())
4194    return Owned(new (Context) CXXBoolLiteralExpr(
4195                                            Arg.getAsIntegral()->getBoolValue(),
4196                                            T, Loc));
4197
4198  if (T->isNullPtrType())
4199    return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
4200
4201  // If this is an enum type that we're instantiating, we need to use an integer
4202  // type the same size as the enumerator.  We don't want to build an
4203  // IntegerLiteral with enum type.
4204  QualType BT;
4205  if (const EnumType *ET = T->getAs<EnumType>())
4206    BT = ET->getDecl()->getIntegerType();
4207  else
4208    BT = T;
4209
4210  Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
4211  if (T->isEnumeralType()) {
4212    // FIXME: This is a hack. We need a better way to handle substituted
4213    // non-type template parameters.
4214    E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0,
4215                               Context.getTrivialTypeSourceInfo(T, Loc),
4216                               Loc, Loc);
4217  }
4218
4219  return Owned(E);
4220}
4221
4222/// \brief Match two template parameters within template parameter lists.
4223static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
4224                                       bool Complain,
4225                                     Sema::TemplateParameterListEqualKind Kind,
4226                                       SourceLocation TemplateArgLoc) {
4227  // Check the actual kind (type, non-type, template).
4228  if (Old->getKind() != New->getKind()) {
4229    if (Complain) {
4230      unsigned NextDiag = diag::err_template_param_different_kind;
4231      if (TemplateArgLoc.isValid()) {
4232        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4233        NextDiag = diag::note_template_param_different_kind;
4234      }
4235      S.Diag(New->getLocation(), NextDiag)
4236        << (Kind != Sema::TPL_TemplateMatch);
4237      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
4238        << (Kind != Sema::TPL_TemplateMatch);
4239    }
4240
4241    return false;
4242  }
4243
4244  // Check that both are parameter packs are neither are parameter packs.
4245  // However, if we are matching a template template argument to a
4246  // template template parameter, the template template parameter can have
4247  // a parameter pack where the template template argument does not.
4248  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
4249      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4250        Old->isTemplateParameterPack())) {
4251    if (Complain) {
4252      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
4253      if (TemplateArgLoc.isValid()) {
4254        S.Diag(TemplateArgLoc,
4255             diag::err_template_arg_template_params_mismatch);
4256        NextDiag = diag::note_template_parameter_pack_non_pack;
4257      }
4258
4259      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
4260                      : isa<NonTypeTemplateParmDecl>(New)? 1
4261                      : 2;
4262      S.Diag(New->getLocation(), NextDiag)
4263        << ParamKind << New->isParameterPack();
4264      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
4265        << ParamKind << Old->isParameterPack();
4266    }
4267
4268    return false;
4269  }
4270
4271  // For non-type template parameters, check the type of the parameter.
4272  if (NonTypeTemplateParmDecl *OldNTTP
4273                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
4274    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
4275
4276    // If we are matching a template template argument to a template
4277    // template parameter and one of the non-type template parameter types
4278    // is dependent, then we must wait until template instantiation time
4279    // to actually compare the arguments.
4280    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4281        (OldNTTP->getType()->isDependentType() ||
4282         NewNTTP->getType()->isDependentType()))
4283      return true;
4284
4285    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
4286      if (Complain) {
4287        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
4288        if (TemplateArgLoc.isValid()) {
4289          S.Diag(TemplateArgLoc,
4290                 diag::err_template_arg_template_params_mismatch);
4291          NextDiag = diag::note_template_nontype_parm_different_type;
4292        }
4293        S.Diag(NewNTTP->getLocation(), NextDiag)
4294          << NewNTTP->getType()
4295          << (Kind != Sema::TPL_TemplateMatch);
4296        S.Diag(OldNTTP->getLocation(),
4297               diag::note_template_nontype_parm_prev_declaration)
4298          << OldNTTP->getType();
4299      }
4300
4301      return false;
4302    }
4303
4304    return true;
4305  }
4306
4307  // For template template parameters, check the template parameter types.
4308  // The template parameter lists of template template
4309  // parameters must agree.
4310  if (TemplateTemplateParmDecl *OldTTP
4311                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
4312    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
4313    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
4314                                            OldTTP->getTemplateParameters(),
4315                                            Complain,
4316                                        (Kind == Sema::TPL_TemplateMatch
4317                                           ? Sema::TPL_TemplateTemplateParmMatch
4318                                           : Kind),
4319                                            TemplateArgLoc);
4320  }
4321
4322  return true;
4323}
4324
4325/// \brief Diagnose a known arity mismatch when comparing template argument
4326/// lists.
4327static
4328void DiagnoseTemplateParameterListArityMismatch(Sema &S,
4329                                                TemplateParameterList *New,
4330                                                TemplateParameterList *Old,
4331                                      Sema::TemplateParameterListEqualKind Kind,
4332                                                SourceLocation TemplateArgLoc) {
4333  unsigned NextDiag = diag::err_template_param_list_different_arity;
4334  if (TemplateArgLoc.isValid()) {
4335    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4336    NextDiag = diag::note_template_param_list_different_arity;
4337  }
4338  S.Diag(New->getTemplateLoc(), NextDiag)
4339    << (New->size() > Old->size())
4340    << (Kind != Sema::TPL_TemplateMatch)
4341    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
4342  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
4343    << (Kind != Sema::TPL_TemplateMatch)
4344    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
4345}
4346
4347/// \brief Determine whether the given template parameter lists are
4348/// equivalent.
4349///
4350/// \param New  The new template parameter list, typically written in the
4351/// source code as part of a new template declaration.
4352///
4353/// \param Old  The old template parameter list, typically found via
4354/// name lookup of the template declared with this template parameter
4355/// list.
4356///
4357/// \param Complain  If true, this routine will produce a diagnostic if
4358/// the template parameter lists are not equivalent.
4359///
4360/// \param Kind describes how we are to match the template parameter lists.
4361///
4362/// \param TemplateArgLoc If this source location is valid, then we
4363/// are actually checking the template parameter list of a template
4364/// argument (New) against the template parameter list of its
4365/// corresponding template template parameter (Old). We produce
4366/// slightly different diagnostics in this scenario.
4367///
4368/// \returns True if the template parameter lists are equal, false
4369/// otherwise.
4370bool
4371Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
4372                                     TemplateParameterList *Old,
4373                                     bool Complain,
4374                                     TemplateParameterListEqualKind Kind,
4375                                     SourceLocation TemplateArgLoc) {
4376  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
4377    if (Complain)
4378      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4379                                                 TemplateArgLoc);
4380
4381    return false;
4382  }
4383
4384  // C++0x [temp.arg.template]p3:
4385  //   A template-argument matches a template template-parameter (call it P)
4386  //   when each of the template parameters in the template-parameter-list of
4387  //   the template-argument's corresponding class template or alias template
4388  //   (call it A) matches the corresponding template parameter in the
4389  //   template-parameter-list of P. [...]
4390  TemplateParameterList::iterator NewParm = New->begin();
4391  TemplateParameterList::iterator NewParmEnd = New->end();
4392  for (TemplateParameterList::iterator OldParm = Old->begin(),
4393                                    OldParmEnd = Old->end();
4394       OldParm != OldParmEnd; ++OldParm) {
4395    if (Kind != TPL_TemplateTemplateArgumentMatch ||
4396        !(*OldParm)->isTemplateParameterPack()) {
4397      if (NewParm == NewParmEnd) {
4398        if (Complain)
4399          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4400                                                     TemplateArgLoc);
4401
4402        return false;
4403      }
4404
4405      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4406                                      Kind, TemplateArgLoc))
4407        return false;
4408
4409      ++NewParm;
4410      continue;
4411    }
4412
4413    // C++0x [temp.arg.template]p3:
4414    //   [...] When P's template- parameter-list contains a template parameter
4415    //   pack (14.5.3), the template parameter pack will match zero or more
4416    //   template parameters or template parameter packs in the
4417    //   template-parameter-list of A with the same type and form as the
4418    //   template parameter pack in P (ignoring whether those template
4419    //   parameters are template parameter packs).
4420    for (; NewParm != NewParmEnd; ++NewParm) {
4421      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4422                                      Kind, TemplateArgLoc))
4423        return false;
4424    }
4425  }
4426
4427  // Make sure we exhausted all of the arguments.
4428  if (NewParm != NewParmEnd) {
4429    if (Complain)
4430      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4431                                                 TemplateArgLoc);
4432
4433    return false;
4434  }
4435
4436  return true;
4437}
4438
4439/// \brief Check whether a template can be declared within this scope.
4440///
4441/// If the template declaration is valid in this scope, returns
4442/// false. Otherwise, issues a diagnostic and returns true.
4443bool
4444Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
4445  // Find the nearest enclosing declaration scope.
4446  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4447         (S->getFlags() & Scope::TemplateParamScope) != 0)
4448    S = S->getParent();
4449
4450  // C++ [temp]p2:
4451  //   A template-declaration can appear only as a namespace scope or
4452  //   class scope declaration.
4453  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
4454  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
4455      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
4456    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
4457             << TemplateParams->getSourceRange();
4458
4459  while (Ctx && isa<LinkageSpecDecl>(Ctx))
4460    Ctx = Ctx->getParent();
4461
4462  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
4463    return false;
4464
4465  return Diag(TemplateParams->getTemplateLoc(),
4466              diag::err_template_outside_namespace_or_class_scope)
4467    << TemplateParams->getSourceRange();
4468}
4469
4470/// \brief Determine what kind of template specialization the given declaration
4471/// is.
4472static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
4473  if (!D)
4474    return TSK_Undeclared;
4475
4476  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
4477    return Record->getTemplateSpecializationKind();
4478  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
4479    return Function->getTemplateSpecializationKind();
4480  if (VarDecl *Var = dyn_cast<VarDecl>(D))
4481    return Var->getTemplateSpecializationKind();
4482
4483  return TSK_Undeclared;
4484}
4485
4486/// \brief Check whether a specialization is well-formed in the current
4487/// context.
4488///
4489/// This routine determines whether a template specialization can be declared
4490/// in the current context (C++ [temp.expl.spec]p2).
4491///
4492/// \param S the semantic analysis object for which this check is being
4493/// performed.
4494///
4495/// \param Specialized the entity being specialized or instantiated, which
4496/// may be a kind of template (class template, function template, etc.) or
4497/// a member of a class template (member function, static data member,
4498/// member class).
4499///
4500/// \param PrevDecl the previous declaration of this entity, if any.
4501///
4502/// \param Loc the location of the explicit specialization or instantiation of
4503/// this entity.
4504///
4505/// \param IsPartialSpecialization whether this is a partial specialization of
4506/// a class template.
4507///
4508/// \returns true if there was an error that we cannot recover from, false
4509/// otherwise.
4510static bool CheckTemplateSpecializationScope(Sema &S,
4511                                             NamedDecl *Specialized,
4512                                             NamedDecl *PrevDecl,
4513                                             SourceLocation Loc,
4514                                             bool IsPartialSpecialization) {
4515  // Keep these "kind" numbers in sync with the %select statements in the
4516  // various diagnostics emitted by this routine.
4517  int EntityKind = 0;
4518  if (isa<ClassTemplateDecl>(Specialized))
4519    EntityKind = IsPartialSpecialization? 1 : 0;
4520  else if (isa<FunctionTemplateDecl>(Specialized))
4521    EntityKind = 2;
4522  else if (isa<CXXMethodDecl>(Specialized))
4523    EntityKind = 3;
4524  else if (isa<VarDecl>(Specialized))
4525    EntityKind = 4;
4526  else if (isa<RecordDecl>(Specialized))
4527    EntityKind = 5;
4528  else {
4529    S.Diag(Loc, diag::err_template_spec_unknown_kind);
4530    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4531    return true;
4532  }
4533
4534  // C++ [temp.expl.spec]p2:
4535  //   An explicit specialization shall be declared in the namespace
4536  //   of which the template is a member, or, for member templates, in
4537  //   the namespace of which the enclosing class or enclosing class
4538  //   template is a member. An explicit specialization of a member
4539  //   function, member class or static data member of a class
4540  //   template shall be declared in the namespace of which the class
4541  //   template is a member. Such a declaration may also be a
4542  //   definition. If the declaration is not a definition, the
4543  //   specialization may be defined later in the name- space in which
4544  //   the explicit specialization was declared, or in a namespace
4545  //   that encloses the one in which the explicit specialization was
4546  //   declared.
4547  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4548    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
4549      << Specialized;
4550    return true;
4551  }
4552
4553  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
4554    if (S.getLangOptions().MicrosoftExt) {
4555      // Do not warn for class scope explicit specialization during
4556      // instantiation, warning was already emitted during pattern
4557      // semantic analysis.
4558      if (!S.ActiveTemplateInstantiations.size())
4559        S.Diag(Loc, diag::ext_function_specialization_in_class)
4560          << Specialized;
4561    } else {
4562      S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4563        << Specialized;
4564      return true;
4565    }
4566  }
4567
4568  if (S.CurContext->isRecord() &&
4569      !S.CurContext->Equals(Specialized->getDeclContext())) {
4570    // Make sure that we're specializing in the right record context.
4571    // Otherwise, things can go horribly wrong.
4572    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4573      << Specialized;
4574    return true;
4575  }
4576
4577  // C++ [temp.class.spec]p6:
4578  //   A class template partial specialization may be declared or redeclared
4579  //   in any namespace scope in which its definition may be defined (14.5.1
4580  //   and 14.5.2).
4581  bool ComplainedAboutScope = false;
4582  DeclContext *SpecializedContext
4583    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
4584  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
4585  if ((!PrevDecl ||
4586       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
4587       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
4588    // C++ [temp.exp.spec]p2:
4589    //   An explicit specialization shall be declared in the namespace of which
4590    //   the template is a member, or, for member templates, in the namespace
4591    //   of which the enclosing class or enclosing class template is a member.
4592    //   An explicit specialization of a member function, member class or
4593    //   static data member of a class template shall be declared in the
4594    //   namespace of which the class template is a member.
4595    //
4596    // C++0x [temp.expl.spec]p2:
4597    //   An explicit specialization shall be declared in a namespace enclosing
4598    //   the specialized template.
4599    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
4600      bool IsCPlusPlus0xExtension = DC->Encloses(SpecializedContext);
4601      if (isa<TranslationUnitDecl>(SpecializedContext)) {
4602        assert(!IsCPlusPlus0xExtension &&
4603               "DC encloses TU but isn't in enclosing namespace set");
4604        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
4605          << EntityKind << Specialized;
4606      } else if (isa<NamespaceDecl>(SpecializedContext)) {
4607        int Diag;
4608        if (!IsCPlusPlus0xExtension)
4609          Diag = diag::err_template_spec_decl_out_of_scope;
4610        else if (!S.getLangOptions().CPlusPlus0x)
4611          Diag = diag::ext_template_spec_decl_out_of_scope;
4612        else
4613          Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
4614        S.Diag(Loc, Diag)
4615          << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
4616      }
4617
4618      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4619      ComplainedAboutScope =
4620        !(IsCPlusPlus0xExtension && S.getLangOptions().CPlusPlus0x);
4621    }
4622  }
4623
4624  // Make sure that this redeclaration (or definition) occurs in an enclosing
4625  // namespace.
4626  // Note that HandleDeclarator() performs this check for explicit
4627  // specializations of function templates, static data members, and member
4628  // functions, so we skip the check here for those kinds of entities.
4629  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
4630  // Should we refactor that check, so that it occurs later?
4631  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
4632      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
4633        isa<FunctionDecl>(Specialized))) {
4634    if (isa<TranslationUnitDecl>(SpecializedContext))
4635      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
4636        << EntityKind << Specialized;
4637    else if (isa<NamespaceDecl>(SpecializedContext))
4638      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
4639        << EntityKind << Specialized
4640        << cast<NamedDecl>(SpecializedContext);
4641
4642    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4643  }
4644
4645  // FIXME: check for specialization-after-instantiation errors and such.
4646
4647  return false;
4648}
4649
4650/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
4651/// that checks non-type template partial specialization arguments.
4652static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
4653                                                NonTypeTemplateParmDecl *Param,
4654                                                  const TemplateArgument *Args,
4655                                                        unsigned NumArgs) {
4656  for (unsigned I = 0; I != NumArgs; ++I) {
4657    if (Args[I].getKind() == TemplateArgument::Pack) {
4658      if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4659                                                           Args[I].pack_begin(),
4660                                                           Args[I].pack_size()))
4661        return true;
4662
4663      continue;
4664    }
4665
4666    Expr *ArgExpr = Args[I].getAsExpr();
4667    if (!ArgExpr) {
4668      continue;
4669    }
4670
4671    // We can have a pack expansion of any of the bullets below.
4672    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
4673      ArgExpr = Expansion->getPattern();
4674
4675    // Strip off any implicit casts we added as part of type checking.
4676    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
4677      ArgExpr = ICE->getSubExpr();
4678
4679    // C++ [temp.class.spec]p8:
4680    //   A non-type argument is non-specialized if it is the name of a
4681    //   non-type parameter. All other non-type arguments are
4682    //   specialized.
4683    //
4684    // Below, we check the two conditions that only apply to
4685    // specialized non-type arguments, so skip any non-specialized
4686    // arguments.
4687    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
4688      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
4689        continue;
4690
4691    // C++ [temp.class.spec]p9:
4692    //   Within the argument list of a class template partial
4693    //   specialization, the following restrictions apply:
4694    //     -- A partially specialized non-type argument expression
4695    //        shall not involve a template parameter of the partial
4696    //        specialization except when the argument expression is a
4697    //        simple identifier.
4698    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
4699      S.Diag(ArgExpr->getLocStart(),
4700           diag::err_dependent_non_type_arg_in_partial_spec)
4701        << ArgExpr->getSourceRange();
4702      return true;
4703    }
4704
4705    //     -- The type of a template parameter corresponding to a
4706    //        specialized non-type argument shall not be dependent on a
4707    //        parameter of the specialization.
4708    if (Param->getType()->isDependentType()) {
4709      S.Diag(ArgExpr->getLocStart(),
4710           diag::err_dependent_typed_non_type_arg_in_partial_spec)
4711        << Param->getType()
4712        << ArgExpr->getSourceRange();
4713      S.Diag(Param->getLocation(), diag::note_template_param_here);
4714      return true;
4715    }
4716  }
4717
4718  return false;
4719}
4720
4721/// \brief Check the non-type template arguments of a class template
4722/// partial specialization according to C++ [temp.class.spec]p9.
4723///
4724/// \param TemplateParams the template parameters of the primary class
4725/// template.
4726///
4727/// \param TemplateArg the template arguments of the class template
4728/// partial specialization.
4729///
4730/// \returns true if there was an error, false otherwise.
4731static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
4732                                        TemplateParameterList *TemplateParams,
4733                       SmallVectorImpl<TemplateArgument> &TemplateArgs) {
4734  const TemplateArgument *ArgList = TemplateArgs.data();
4735
4736  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4737    NonTypeTemplateParmDecl *Param
4738      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
4739    if (!Param)
4740      continue;
4741
4742    if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4743                                                           &ArgList[I], 1))
4744      return true;
4745  }
4746
4747  return false;
4748}
4749
4750/// \brief Retrieve the previous declaration of the given declaration.
4751static NamedDecl *getPreviousDecl(NamedDecl *ND) {
4752  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
4753    return VD->getPreviousDeclaration();
4754  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
4755    return FD->getPreviousDeclaration();
4756  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
4757    return TD->getPreviousDeclaration();
4758  if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
4759    return TD->getPreviousDeclaration();
4760  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4761    return FTD->getPreviousDeclaration();
4762  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
4763    return CTD->getPreviousDeclaration();
4764  return 0;
4765}
4766
4767DeclResult
4768Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
4769                                       TagUseKind TUK,
4770                                       SourceLocation KWLoc,
4771                                       SourceLocation ModulePrivateLoc,
4772                                       CXXScopeSpec &SS,
4773                                       TemplateTy TemplateD,
4774                                       SourceLocation TemplateNameLoc,
4775                                       SourceLocation LAngleLoc,
4776                                       ASTTemplateArgsPtr TemplateArgsIn,
4777                                       SourceLocation RAngleLoc,
4778                                       AttributeList *Attr,
4779                               MultiTemplateParamsArg TemplateParameterLists) {
4780  assert(TUK != TUK_Reference && "References are not specializations");
4781
4782  // NOTE: KWLoc is the location of the tag keyword. This will instead
4783  // store the location of the outermost template keyword in the declaration.
4784  SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
4785    ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation();
4786
4787  // Find the class template we're specializing
4788  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4789  ClassTemplateDecl *ClassTemplate
4790    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
4791
4792  if (!ClassTemplate) {
4793    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
4794      << (Name.getAsTemplateDecl() &&
4795          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
4796    return true;
4797  }
4798
4799  bool isExplicitSpecialization = false;
4800  bool isPartialSpecialization = false;
4801
4802  // Check the validity of the template headers that introduce this
4803  // template.
4804  // FIXME: We probably shouldn't complain about these headers for
4805  // friend declarations.
4806  bool Invalid = false;
4807  TemplateParameterList *TemplateParams
4808    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc,
4809                                              TemplateNameLoc,
4810                                              SS,
4811                        (TemplateParameterList**)TemplateParameterLists.get(),
4812                                              TemplateParameterLists.size(),
4813                                              TUK == TUK_Friend,
4814                                              isExplicitSpecialization,
4815                                              Invalid);
4816  if (Invalid)
4817    return true;
4818
4819  if (TemplateParams && TemplateParams->size() > 0) {
4820    isPartialSpecialization = true;
4821
4822    if (TUK == TUK_Friend) {
4823      Diag(KWLoc, diag::err_partial_specialization_friend)
4824        << SourceRange(LAngleLoc, RAngleLoc);
4825      return true;
4826    }
4827
4828    // C++ [temp.class.spec]p10:
4829    //   The template parameter list of a specialization shall not
4830    //   contain default template argument values.
4831    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4832      Decl *Param = TemplateParams->getParam(I);
4833      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4834        if (TTP->hasDefaultArgument()) {
4835          Diag(TTP->getDefaultArgumentLoc(),
4836               diag::err_default_arg_in_partial_spec);
4837          TTP->removeDefaultArgument();
4838        }
4839      } else if (NonTypeTemplateParmDecl *NTTP
4840                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4841        if (Expr *DefArg = NTTP->getDefaultArgument()) {
4842          Diag(NTTP->getDefaultArgumentLoc(),
4843               diag::err_default_arg_in_partial_spec)
4844            << DefArg->getSourceRange();
4845          NTTP->removeDefaultArgument();
4846        }
4847      } else {
4848        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
4849        if (TTP->hasDefaultArgument()) {
4850          Diag(TTP->getDefaultArgument().getLocation(),
4851               diag::err_default_arg_in_partial_spec)
4852            << TTP->getDefaultArgument().getSourceRange();
4853          TTP->removeDefaultArgument();
4854        }
4855      }
4856    }
4857  } else if (TemplateParams) {
4858    if (TUK == TUK_Friend)
4859      Diag(KWLoc, diag::err_template_spec_friend)
4860        << FixItHint::CreateRemoval(
4861                                SourceRange(TemplateParams->getTemplateLoc(),
4862                                            TemplateParams->getRAngleLoc()))
4863        << SourceRange(LAngleLoc, RAngleLoc);
4864    else
4865      isExplicitSpecialization = true;
4866  } else if (TUK != TUK_Friend) {
4867    Diag(KWLoc, diag::err_template_spec_needs_header)
4868      << FixItHint::CreateInsertion(KWLoc, "template<> ");
4869    isExplicitSpecialization = true;
4870  }
4871
4872  // Check that the specialization uses the same tag kind as the
4873  // original template.
4874  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4875  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
4876  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4877                                    Kind, TUK == TUK_Definition, KWLoc,
4878                                    *ClassTemplate->getIdentifier())) {
4879    Diag(KWLoc, diag::err_use_with_wrong_tag)
4880      << ClassTemplate
4881      << FixItHint::CreateReplacement(KWLoc,
4882                            ClassTemplate->getTemplatedDecl()->getKindName());
4883    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4884         diag::note_previous_use);
4885    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4886  }
4887
4888  // Translate the parser's template argument list in our AST format.
4889  TemplateArgumentListInfo TemplateArgs;
4890  TemplateArgs.setLAngleLoc(LAngleLoc);
4891  TemplateArgs.setRAngleLoc(RAngleLoc);
4892  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4893
4894  // Check for unexpanded parameter packs in any of the template arguments.
4895  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4896    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4897                                        UPPC_PartialSpecialization))
4898      return true;
4899
4900  // Check that the template argument list is well-formed for this
4901  // template.
4902  SmallVector<TemplateArgument, 4> Converted;
4903  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4904                                TemplateArgs, false, Converted))
4905    return true;
4906
4907  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
4908         "Converted template argument list is too short!");
4909
4910  // Find the class template (partial) specialization declaration that
4911  // corresponds to these arguments.
4912  if (isPartialSpecialization) {
4913    if (CheckClassTemplatePartialSpecializationArgs(*this,
4914                                         ClassTemplate->getTemplateParameters(),
4915                                         Converted))
4916      return true;
4917
4918    bool InstantiationDependent;
4919    if (!Name.isDependent() &&
4920        !TemplateSpecializationType::anyDependentTemplateArguments(
4921                                             TemplateArgs.getArgumentArray(),
4922                                                         TemplateArgs.size(),
4923                                                     InstantiationDependent)) {
4924      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4925        << ClassTemplate->getDeclName();
4926      isPartialSpecialization = false;
4927    }
4928  }
4929
4930  void *InsertPos = 0;
4931  ClassTemplateSpecializationDecl *PrevDecl = 0;
4932
4933  if (isPartialSpecialization)
4934    // FIXME: Template parameter list matters, too
4935    PrevDecl
4936      = ClassTemplate->findPartialSpecialization(Converted.data(),
4937                                                 Converted.size(),
4938                                                 InsertPos);
4939  else
4940    PrevDecl
4941      = ClassTemplate->findSpecialization(Converted.data(),
4942                                          Converted.size(), InsertPos);
4943
4944  ClassTemplateSpecializationDecl *Specialization = 0;
4945
4946  // Check whether we can declare a class template specialization in
4947  // the current scope.
4948  if (TUK != TUK_Friend &&
4949      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
4950                                       TemplateNameLoc,
4951                                       isPartialSpecialization))
4952    return true;
4953
4954  // The canonical type
4955  QualType CanonType;
4956  if (PrevDecl &&
4957      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
4958               TUK == TUK_Friend)) {
4959    // Since the only prior class template specialization with these
4960    // arguments was referenced but not declared, or we're only
4961    // referencing this specialization as a friend, reuse that
4962    // declaration node as our own, updating its source location and
4963    // the list of outer template parameters to reflect our new declaration.
4964    Specialization = PrevDecl;
4965    Specialization->setLocation(TemplateNameLoc);
4966    if (TemplateParameterLists.size() > 0) {
4967      Specialization->setTemplateParameterListsInfo(Context,
4968                                              TemplateParameterLists.size(),
4969                    (TemplateParameterList**) TemplateParameterLists.release());
4970    }
4971    PrevDecl = 0;
4972    CanonType = Context.getTypeDeclType(Specialization);
4973  } else if (isPartialSpecialization) {
4974    // Build the canonical type that describes the converted template
4975    // arguments of the class template partial specialization.
4976    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4977    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
4978                                                      Converted.data(),
4979                                                      Converted.size());
4980
4981    if (Context.hasSameType(CanonType,
4982                        ClassTemplate->getInjectedClassNameSpecialization())) {
4983      // C++ [temp.class.spec]p9b3:
4984      //
4985      //   -- The argument list of the specialization shall not be identical
4986      //      to the implicit argument list of the primary template.
4987      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4988        << (TUK == TUK_Definition)
4989        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4990      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
4991                                ClassTemplate->getIdentifier(),
4992                                TemplateNameLoc,
4993                                Attr,
4994                                TemplateParams,
4995                                AS_none, /*ModulePrivateLoc=*/SourceLocation(),
4996                                TemplateParameterLists.size() - 1,
4997                  (TemplateParameterList**) TemplateParameterLists.release());
4998    }
4999
5000    // Create a new class template partial specialization declaration node.
5001    ClassTemplatePartialSpecializationDecl *PrevPartial
5002      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
5003    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
5004                            : ClassTemplate->getNextPartialSpecSequenceNumber();
5005    ClassTemplatePartialSpecializationDecl *Partial
5006      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
5007                                             ClassTemplate->getDeclContext(),
5008                                                       KWLoc, TemplateNameLoc,
5009                                                       TemplateParams,
5010                                                       ClassTemplate,
5011                                                       Converted.data(),
5012                                                       Converted.size(),
5013                                                       TemplateArgs,
5014                                                       CanonType,
5015                                                       PrevPartial,
5016                                                       SequenceNumber);
5017    SetNestedNameSpecifier(Partial, SS);
5018    if (TemplateParameterLists.size() > 1 && SS.isSet()) {
5019      Partial->setTemplateParameterListsInfo(Context,
5020                                             TemplateParameterLists.size() - 1,
5021                    (TemplateParameterList**) TemplateParameterLists.release());
5022    }
5023
5024    if (!PrevPartial)
5025      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
5026    Specialization = Partial;
5027
5028    // If we are providing an explicit specialization of a member class
5029    // template specialization, make a note of that.
5030    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
5031      PrevPartial->setMemberSpecialization();
5032
5033    // Check that all of the template parameters of the class template
5034    // partial specialization are deducible from the template
5035    // arguments. If not, this class template partial specialization
5036    // will never be used.
5037    SmallVector<bool, 8> DeducibleParams;
5038    DeducibleParams.resize(TemplateParams->size());
5039    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
5040                               TemplateParams->getDepth(),
5041                               DeducibleParams);
5042    unsigned NumNonDeducible = 0;
5043    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
5044      if (!DeducibleParams[I])
5045        ++NumNonDeducible;
5046
5047    if (NumNonDeducible) {
5048      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
5049        << (NumNonDeducible > 1)
5050        << SourceRange(TemplateNameLoc, RAngleLoc);
5051      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
5052        if (!DeducibleParams[I]) {
5053          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
5054          if (Param->getDeclName())
5055            Diag(Param->getLocation(),
5056                 diag::note_partial_spec_unused_parameter)
5057              << Param->getDeclName();
5058          else
5059            Diag(Param->getLocation(),
5060                 diag::note_partial_spec_unused_parameter)
5061              << "<anonymous>";
5062        }
5063      }
5064    }
5065  } else {
5066    // Create a new class template specialization declaration node for
5067    // this explicit specialization or friend declaration.
5068    Specialization
5069      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5070                                             ClassTemplate->getDeclContext(),
5071                                                KWLoc, TemplateNameLoc,
5072                                                ClassTemplate,
5073                                                Converted.data(),
5074                                                Converted.size(),
5075                                                PrevDecl);
5076    SetNestedNameSpecifier(Specialization, SS);
5077    if (TemplateParameterLists.size() > 0) {
5078      Specialization->setTemplateParameterListsInfo(Context,
5079                                              TemplateParameterLists.size(),
5080                    (TemplateParameterList**) TemplateParameterLists.release());
5081    }
5082
5083    if (!PrevDecl)
5084      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5085
5086    CanonType = Context.getTypeDeclType(Specialization);
5087  }
5088
5089  // C++ [temp.expl.spec]p6:
5090  //   If a template, a member template or the member of a class template is
5091  //   explicitly specialized then that specialization shall be declared
5092  //   before the first use of that specialization that would cause an implicit
5093  //   instantiation to take place, in every translation unit in which such a
5094  //   use occurs; no diagnostic is required.
5095  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
5096    bool Okay = false;
5097    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
5098      // Is there any previous explicit specialization declaration?
5099      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5100        Okay = true;
5101        break;
5102      }
5103    }
5104
5105    if (!Okay) {
5106      SourceRange Range(TemplateNameLoc, RAngleLoc);
5107      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
5108        << Context.getTypeDeclType(Specialization) << Range;
5109
5110      Diag(PrevDecl->getPointOfInstantiation(),
5111           diag::note_instantiation_required_here)
5112        << (PrevDecl->getTemplateSpecializationKind()
5113                                                != TSK_ImplicitInstantiation);
5114      return true;
5115    }
5116  }
5117
5118  // If this is not a friend, note that this is an explicit specialization.
5119  if (TUK != TUK_Friend)
5120    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
5121
5122  // Check that this isn't a redefinition of this specialization.
5123  if (TUK == TUK_Definition) {
5124    if (RecordDecl *Def = Specialization->getDefinition()) {
5125      SourceRange Range(TemplateNameLoc, RAngleLoc);
5126      Diag(TemplateNameLoc, diag::err_redefinition)
5127        << Context.getTypeDeclType(Specialization) << Range;
5128      Diag(Def->getLocation(), diag::note_previous_definition);
5129      Specialization->setInvalidDecl();
5130      return true;
5131    }
5132  }
5133
5134  if (Attr)
5135    ProcessDeclAttributeList(S, Specialization, Attr);
5136
5137  if (ModulePrivateLoc.isValid())
5138    Diag(Specialization->getLocation(), diag::err_module_private_specialization)
5139      << (isPartialSpecialization? 1 : 0)
5140      << FixItHint::CreateRemoval(ModulePrivateLoc);
5141
5142  // Build the fully-sugared type for this class template
5143  // specialization as the user wrote in the specialization
5144  // itself. This means that we'll pretty-print the type retrieved
5145  // from the specialization's declaration the way that the user
5146  // actually wrote the specialization, rather than formatting the
5147  // name based on the "canonical" representation used to store the
5148  // template arguments in the specialization.
5149  TypeSourceInfo *WrittenTy
5150    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5151                                                TemplateArgs, CanonType);
5152  if (TUK != TUK_Friend) {
5153    Specialization->setTypeAsWritten(WrittenTy);
5154    Specialization->setTemplateKeywordLoc(TemplateKWLoc);
5155  }
5156  TemplateArgsIn.release();
5157
5158  // C++ [temp.expl.spec]p9:
5159  //   A template explicit specialization is in the scope of the
5160  //   namespace in which the template was defined.
5161  //
5162  // We actually implement this paragraph where we set the semantic
5163  // context (in the creation of the ClassTemplateSpecializationDecl),
5164  // but we also maintain the lexical context where the actual
5165  // definition occurs.
5166  Specialization->setLexicalDeclContext(CurContext);
5167
5168  // We may be starting the definition of this specialization.
5169  if (TUK == TUK_Definition)
5170    Specialization->startDefinition();
5171
5172  if (TUK == TUK_Friend) {
5173    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
5174                                            TemplateNameLoc,
5175                                            WrittenTy,
5176                                            /*FIXME:*/KWLoc);
5177    Friend->setAccess(AS_public);
5178    CurContext->addDecl(Friend);
5179  } else {
5180    // Add the specialization into its lexical context, so that it can
5181    // be seen when iterating through the list of declarations in that
5182    // context. However, specializations are not found by name lookup.
5183    CurContext->addDecl(Specialization);
5184  }
5185  return Specialization;
5186}
5187
5188Decl *Sema::ActOnTemplateDeclarator(Scope *S,
5189                              MultiTemplateParamsArg TemplateParameterLists,
5190                                    Declarator &D) {
5191  return HandleDeclarator(S, D, move(TemplateParameterLists));
5192}
5193
5194Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
5195                               MultiTemplateParamsArg TemplateParameterLists,
5196                                            Declarator &D) {
5197  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5198  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5199
5200  if (FTI.hasPrototype) {
5201    // FIXME: Diagnose arguments without names in C.
5202  }
5203
5204  Scope *ParentScope = FnBodyScope->getParent();
5205
5206  D.setFunctionDefinition(true);
5207  Decl *DP = HandleDeclarator(ParentScope, D,
5208                              move(TemplateParameterLists));
5209  if (FunctionTemplateDecl *FunctionTemplate
5210        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
5211    return ActOnStartOfFunctionDef(FnBodyScope,
5212                                   FunctionTemplate->getTemplatedDecl());
5213  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
5214    return ActOnStartOfFunctionDef(FnBodyScope, Function);
5215  return 0;
5216}
5217
5218/// \brief Strips various properties off an implicit instantiation
5219/// that has just been explicitly specialized.
5220static void StripImplicitInstantiation(NamedDecl *D) {
5221  D->dropAttrs();
5222
5223  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5224    FD->setInlineSpecified(false);
5225  }
5226}
5227
5228/// \brief Diagnose cases where we have an explicit template specialization
5229/// before/after an explicit template instantiation, producing diagnostics
5230/// for those cases where they are required and determining whether the
5231/// new specialization/instantiation will have any effect.
5232///
5233/// \param NewLoc the location of the new explicit specialization or
5234/// instantiation.
5235///
5236/// \param NewTSK the kind of the new explicit specialization or instantiation.
5237///
5238/// \param PrevDecl the previous declaration of the entity.
5239///
5240/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
5241///
5242/// \param PrevPointOfInstantiation if valid, indicates where the previus
5243/// declaration was instantiated (either implicitly or explicitly).
5244///
5245/// \param HasNoEffect will be set to true to indicate that the new
5246/// specialization or instantiation has no effect and should be ignored.
5247///
5248/// \returns true if there was an error that should prevent the introduction of
5249/// the new declaration into the AST, false otherwise.
5250bool
5251Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
5252                                             TemplateSpecializationKind NewTSK,
5253                                             NamedDecl *PrevDecl,
5254                                             TemplateSpecializationKind PrevTSK,
5255                                        SourceLocation PrevPointOfInstantiation,
5256                                             bool &HasNoEffect) {
5257  HasNoEffect = false;
5258
5259  switch (NewTSK) {
5260  case TSK_Undeclared:
5261  case TSK_ImplicitInstantiation:
5262    llvm_unreachable("Don't check implicit instantiations here");
5263
5264  case TSK_ExplicitSpecialization:
5265    switch (PrevTSK) {
5266    case TSK_Undeclared:
5267    case TSK_ExplicitSpecialization:
5268      // Okay, we're just specializing something that is either already
5269      // explicitly specialized or has merely been mentioned without any
5270      // instantiation.
5271      return false;
5272
5273    case TSK_ImplicitInstantiation:
5274      if (PrevPointOfInstantiation.isInvalid()) {
5275        // The declaration itself has not actually been instantiated, so it is
5276        // still okay to specialize it.
5277        StripImplicitInstantiation(PrevDecl);
5278        return false;
5279      }
5280      // Fall through
5281
5282    case TSK_ExplicitInstantiationDeclaration:
5283    case TSK_ExplicitInstantiationDefinition:
5284      assert((PrevTSK == TSK_ImplicitInstantiation ||
5285              PrevPointOfInstantiation.isValid()) &&
5286             "Explicit instantiation without point of instantiation?");
5287
5288      // C++ [temp.expl.spec]p6:
5289      //   If a template, a member template or the member of a class template
5290      //   is explicitly specialized then that specialization shall be declared
5291      //   before the first use of that specialization that would cause an
5292      //   implicit instantiation to take place, in every translation unit in
5293      //   which such a use occurs; no diagnostic is required.
5294      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
5295        // Is there any previous explicit specialization declaration?
5296        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
5297          return false;
5298      }
5299
5300      Diag(NewLoc, diag::err_specialization_after_instantiation)
5301        << PrevDecl;
5302      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
5303        << (PrevTSK != TSK_ImplicitInstantiation);
5304
5305      return true;
5306    }
5307    break;
5308
5309  case TSK_ExplicitInstantiationDeclaration:
5310    switch (PrevTSK) {
5311    case TSK_ExplicitInstantiationDeclaration:
5312      // This explicit instantiation declaration is redundant (that's okay).
5313      HasNoEffect = true;
5314      return false;
5315
5316    case TSK_Undeclared:
5317    case TSK_ImplicitInstantiation:
5318      // We're explicitly instantiating something that may have already been
5319      // implicitly instantiated; that's fine.
5320      return false;
5321
5322    case TSK_ExplicitSpecialization:
5323      // C++0x [temp.explicit]p4:
5324      //   For a given set of template parameters, if an explicit instantiation
5325      //   of a template appears after a declaration of an explicit
5326      //   specialization for that template, the explicit instantiation has no
5327      //   effect.
5328      HasNoEffect = true;
5329      return false;
5330
5331    case TSK_ExplicitInstantiationDefinition:
5332      // C++0x [temp.explicit]p10:
5333      //   If an entity is the subject of both an explicit instantiation
5334      //   declaration and an explicit instantiation definition in the same
5335      //   translation unit, the definition shall follow the declaration.
5336      Diag(NewLoc,
5337           diag::err_explicit_instantiation_declaration_after_definition);
5338      Diag(PrevPointOfInstantiation,
5339           diag::note_explicit_instantiation_definition_here);
5340      assert(PrevPointOfInstantiation.isValid() &&
5341             "Explicit instantiation without point of instantiation?");
5342      HasNoEffect = true;
5343      return false;
5344    }
5345    break;
5346
5347  case TSK_ExplicitInstantiationDefinition:
5348    switch (PrevTSK) {
5349    case TSK_Undeclared:
5350    case TSK_ImplicitInstantiation:
5351      // We're explicitly instantiating something that may have already been
5352      // implicitly instantiated; that's fine.
5353      return false;
5354
5355    case TSK_ExplicitSpecialization:
5356      // C++ DR 259, C++0x [temp.explicit]p4:
5357      //   For a given set of template parameters, if an explicit
5358      //   instantiation of a template appears after a declaration of
5359      //   an explicit specialization for that template, the explicit
5360      //   instantiation has no effect.
5361      //
5362      // In C++98/03 mode, we only give an extension warning here, because it
5363      // is not harmful to try to explicitly instantiate something that
5364      // has been explicitly specialized.
5365      Diag(NewLoc, getLangOptions().CPlusPlus0x ?
5366           diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
5367           diag::ext_explicit_instantiation_after_specialization)
5368        << PrevDecl;
5369      Diag(PrevDecl->getLocation(),
5370           diag::note_previous_template_specialization);
5371      HasNoEffect = true;
5372      return false;
5373
5374    case TSK_ExplicitInstantiationDeclaration:
5375      // We're explicity instantiating a definition for something for which we
5376      // were previously asked to suppress instantiations. That's fine.
5377      return false;
5378
5379    case TSK_ExplicitInstantiationDefinition:
5380      // C++0x [temp.spec]p5:
5381      //   For a given template and a given set of template-arguments,
5382      //     - an explicit instantiation definition shall appear at most once
5383      //       in a program,
5384      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
5385        << PrevDecl;
5386      Diag(PrevPointOfInstantiation,
5387           diag::note_previous_explicit_instantiation);
5388      HasNoEffect = true;
5389      return false;
5390    }
5391    break;
5392  }
5393
5394  llvm_unreachable("Missing specialization/instantiation case?");
5395}
5396
5397/// \brief Perform semantic analysis for the given dependent function
5398/// template specialization.  The only possible way to get a dependent
5399/// function template specialization is with a friend declaration,
5400/// like so:
5401///
5402///   template <class T> void foo(T);
5403///   template <class T> class A {
5404///     friend void foo<>(T);
5405///   };
5406///
5407/// There really isn't any useful analysis we can do here, so we
5408/// just store the information.
5409bool
5410Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
5411                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
5412                                                   LookupResult &Previous) {
5413  // Remove anything from Previous that isn't a function template in
5414  // the correct context.
5415  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5416  LookupResult::Filter F = Previous.makeFilter();
5417  while (F.hasNext()) {
5418    NamedDecl *D = F.next()->getUnderlyingDecl();
5419    if (!isa<FunctionTemplateDecl>(D) ||
5420        !FDLookupContext->InEnclosingNamespaceSetOf(
5421                              D->getDeclContext()->getRedeclContext()))
5422      F.erase();
5423  }
5424  F.done();
5425
5426  // Should this be diagnosed here?
5427  if (Previous.empty()) return true;
5428
5429  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
5430                                         ExplicitTemplateArgs);
5431  return false;
5432}
5433
5434/// \brief Perform semantic analysis for the given function template
5435/// specialization.
5436///
5437/// This routine performs all of the semantic analysis required for an
5438/// explicit function template specialization. On successful completion,
5439/// the function declaration \p FD will become a function template
5440/// specialization.
5441///
5442/// \param FD the function declaration, which will be updated to become a
5443/// function template specialization.
5444///
5445/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
5446/// if any. Note that this may be valid info even when 0 arguments are
5447/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
5448/// as it anyway contains info on the angle brackets locations.
5449///
5450/// \param Previous the set of declarations that may be specialized by
5451/// this function specialization.
5452bool
5453Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
5454                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5455                                          LookupResult &Previous) {
5456  // The set of function template specializations that could match this
5457  // explicit function template specialization.
5458  UnresolvedSet<8> Candidates;
5459
5460  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5461  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5462         I != E; ++I) {
5463    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
5464    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
5465      // Only consider templates found within the same semantic lookup scope as
5466      // FD.
5467      if (!FDLookupContext->InEnclosingNamespaceSetOf(
5468                                Ovl->getDeclContext()->getRedeclContext()))
5469        continue;
5470
5471      // C++ [temp.expl.spec]p11:
5472      //   A trailing template-argument can be left unspecified in the
5473      //   template-id naming an explicit function template specialization
5474      //   provided it can be deduced from the function argument type.
5475      // Perform template argument deduction to determine whether we may be
5476      // specializing this template.
5477      // FIXME: It is somewhat wasteful to build
5478      TemplateDeductionInfo Info(Context, FD->getLocation());
5479      FunctionDecl *Specialization = 0;
5480      if (TemplateDeductionResult TDK
5481            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
5482                                      FD->getType(),
5483                                      Specialization,
5484                                      Info)) {
5485        // FIXME: Template argument deduction failed; record why it failed, so
5486        // that we can provide nifty diagnostics.
5487        (void)TDK;
5488        continue;
5489      }
5490
5491      // Record this candidate.
5492      Candidates.addDecl(Specialization, I.getAccess());
5493    }
5494  }
5495
5496  // Find the most specialized function template.
5497  UnresolvedSetIterator Result
5498    = getMostSpecialized(Candidates.begin(), Candidates.end(),
5499                         TPOC_Other, 0, FD->getLocation(),
5500                  PDiag(diag::err_function_template_spec_no_match)
5501                    << FD->getDeclName(),
5502                  PDiag(diag::err_function_template_spec_ambiguous)
5503                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
5504                  PDiag(diag::note_function_template_spec_matched));
5505  if (Result == Candidates.end())
5506    return true;
5507
5508  // Ignore access information;  it doesn't figure into redeclaration checking.
5509  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5510
5511  FunctionTemplateSpecializationInfo *SpecInfo
5512    = Specialization->getTemplateSpecializationInfo();
5513  assert(SpecInfo && "Function template specialization info missing?");
5514
5515  // Note: do not overwrite location info if previous template
5516  // specialization kind was explicit.
5517  TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
5518  if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation)
5519    Specialization->setLocation(FD->getLocation());
5520
5521  // FIXME: Check if the prior specialization has a point of instantiation.
5522  // If so, we have run afoul of .
5523
5524  // If this is a friend declaration, then we're not really declaring
5525  // an explicit specialization.
5526  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
5527
5528  // Check the scope of this explicit specialization.
5529  if (!isFriend &&
5530      CheckTemplateSpecializationScope(*this,
5531                                       Specialization->getPrimaryTemplate(),
5532                                       Specialization, FD->getLocation(),
5533                                       false))
5534    return true;
5535
5536  // C++ [temp.expl.spec]p6:
5537  //   If a template, a member template or the member of a class template is
5538  //   explicitly specialized then that specialization shall be declared
5539  //   before the first use of that specialization that would cause an implicit
5540  //   instantiation to take place, in every translation unit in which such a
5541  //   use occurs; no diagnostic is required.
5542  bool HasNoEffect = false;
5543  if (!isFriend &&
5544      CheckSpecializationInstantiationRedecl(FD->getLocation(),
5545                                             TSK_ExplicitSpecialization,
5546                                             Specialization,
5547                                   SpecInfo->getTemplateSpecializationKind(),
5548                                         SpecInfo->getPointOfInstantiation(),
5549                                             HasNoEffect))
5550    return true;
5551
5552  // Mark the prior declaration as an explicit specialization, so that later
5553  // clients know that this is an explicit specialization.
5554  if (!isFriend) {
5555    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
5556    MarkUnusedFileScopedDecl(Specialization);
5557  }
5558
5559  // Turn the given function declaration into a function template
5560  // specialization, with the template arguments from the previous
5561  // specialization.
5562  // Take copies of (semantic and syntactic) template argument lists.
5563  const TemplateArgumentList* TemplArgs = new (Context)
5564    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
5565  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
5566                                        TemplArgs, /*InsertPos=*/0,
5567                                    SpecInfo->getTemplateSpecializationKind(),
5568                                        ExplicitTemplateArgs);
5569  FD->setStorageClass(Specialization->getStorageClass());
5570
5571  // The "previous declaration" for this function template specialization is
5572  // the prior function template specialization.
5573  Previous.clear();
5574  Previous.addDecl(Specialization);
5575  return false;
5576}
5577
5578/// \brief Perform semantic analysis for the given non-template member
5579/// specialization.
5580///
5581/// This routine performs all of the semantic analysis required for an
5582/// explicit member function specialization. On successful completion,
5583/// the function declaration \p FD will become a member function
5584/// specialization.
5585///
5586/// \param Member the member declaration, which will be updated to become a
5587/// specialization.
5588///
5589/// \param Previous the set of declarations, one of which may be specialized
5590/// by this function specialization;  the set will be modified to contain the
5591/// redeclared member.
5592bool
5593Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
5594  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
5595
5596  // Try to find the member we are instantiating.
5597  NamedDecl *Instantiation = 0;
5598  NamedDecl *InstantiatedFrom = 0;
5599  MemberSpecializationInfo *MSInfo = 0;
5600
5601  if (Previous.empty()) {
5602    // Nowhere to look anyway.
5603  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
5604    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5605           I != E; ++I) {
5606      NamedDecl *D = (*I)->getUnderlyingDecl();
5607      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5608        if (Context.hasSameType(Function->getType(), Method->getType())) {
5609          Instantiation = Method;
5610          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
5611          MSInfo = Method->getMemberSpecializationInfo();
5612          break;
5613        }
5614      }
5615    }
5616  } else if (isa<VarDecl>(Member)) {
5617    VarDecl *PrevVar;
5618    if (Previous.isSingleResult() &&
5619        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
5620      if (PrevVar->isStaticDataMember()) {
5621        Instantiation = PrevVar;
5622        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
5623        MSInfo = PrevVar->getMemberSpecializationInfo();
5624      }
5625  } else if (isa<RecordDecl>(Member)) {
5626    CXXRecordDecl *PrevRecord;
5627    if (Previous.isSingleResult() &&
5628        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
5629      Instantiation = PrevRecord;
5630      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
5631      MSInfo = PrevRecord->getMemberSpecializationInfo();
5632    }
5633  }
5634
5635  if (!Instantiation) {
5636    // There is no previous declaration that matches. Since member
5637    // specializations are always out-of-line, the caller will complain about
5638    // this mismatch later.
5639    return false;
5640  }
5641
5642  // If this is a friend, just bail out here before we start turning
5643  // things into explicit specializations.
5644  if (Member->getFriendObjectKind() != Decl::FOK_None) {
5645    // Preserve instantiation information.
5646    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
5647      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
5648                                      cast<CXXMethodDecl>(InstantiatedFrom),
5649        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
5650    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
5651      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5652                                      cast<CXXRecordDecl>(InstantiatedFrom),
5653        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
5654    }
5655
5656    Previous.clear();
5657    Previous.addDecl(Instantiation);
5658    return false;
5659  }
5660
5661  // Make sure that this is a specialization of a member.
5662  if (!InstantiatedFrom) {
5663    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
5664      << Member;
5665    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
5666    return true;
5667  }
5668
5669  // C++ [temp.expl.spec]p6:
5670  //   If a template, a member template or the member of a class template is
5671  //   explicitly specialized then that spe- cialization shall be declared
5672  //   before the first use of that specialization that would cause an implicit
5673  //   instantiation to take place, in every translation unit in which such a
5674  //   use occurs; no diagnostic is required.
5675  assert(MSInfo && "Member specialization info missing?");
5676
5677  bool HasNoEffect = false;
5678  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
5679                                             TSK_ExplicitSpecialization,
5680                                             Instantiation,
5681                                     MSInfo->getTemplateSpecializationKind(),
5682                                           MSInfo->getPointOfInstantiation(),
5683                                             HasNoEffect))
5684    return true;
5685
5686  // Check the scope of this explicit specialization.
5687  if (CheckTemplateSpecializationScope(*this,
5688                                       InstantiatedFrom,
5689                                       Instantiation, Member->getLocation(),
5690                                       false))
5691    return true;
5692
5693  // Note that this is an explicit instantiation of a member.
5694  // the original declaration to note that it is an explicit specialization
5695  // (if it was previously an implicit instantiation). This latter step
5696  // makes bookkeeping easier.
5697  if (isa<FunctionDecl>(Member)) {
5698    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
5699    if (InstantiationFunction->getTemplateSpecializationKind() ==
5700          TSK_ImplicitInstantiation) {
5701      InstantiationFunction->setTemplateSpecializationKind(
5702                                                  TSK_ExplicitSpecialization);
5703      InstantiationFunction->setLocation(Member->getLocation());
5704    }
5705
5706    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
5707                                        cast<CXXMethodDecl>(InstantiatedFrom),
5708                                                  TSK_ExplicitSpecialization);
5709    MarkUnusedFileScopedDecl(InstantiationFunction);
5710  } else if (isa<VarDecl>(Member)) {
5711    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
5712    if (InstantiationVar->getTemplateSpecializationKind() ==
5713          TSK_ImplicitInstantiation) {
5714      InstantiationVar->setTemplateSpecializationKind(
5715                                                  TSK_ExplicitSpecialization);
5716      InstantiationVar->setLocation(Member->getLocation());
5717    }
5718
5719    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
5720                                                cast<VarDecl>(InstantiatedFrom),
5721                                                TSK_ExplicitSpecialization);
5722    MarkUnusedFileScopedDecl(InstantiationVar);
5723  } else {
5724    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
5725    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
5726    if (InstantiationClass->getTemplateSpecializationKind() ==
5727          TSK_ImplicitInstantiation) {
5728      InstantiationClass->setTemplateSpecializationKind(
5729                                                   TSK_ExplicitSpecialization);
5730      InstantiationClass->setLocation(Member->getLocation());
5731    }
5732
5733    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5734                                        cast<CXXRecordDecl>(InstantiatedFrom),
5735                                                   TSK_ExplicitSpecialization);
5736  }
5737
5738  // Save the caller the trouble of having to figure out which declaration
5739  // this specialization matches.
5740  Previous.clear();
5741  Previous.addDecl(Instantiation);
5742  return false;
5743}
5744
5745/// \brief Check the scope of an explicit instantiation.
5746///
5747/// \returns true if a serious error occurs, false otherwise.
5748static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
5749                                            SourceLocation InstLoc,
5750                                            bool WasQualifiedName) {
5751  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
5752  DeclContext *CurContext = S.CurContext->getRedeclContext();
5753
5754  if (CurContext->isRecord()) {
5755    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
5756      << D;
5757    return true;
5758  }
5759
5760  // C++11 [temp.explicit]p3:
5761  //   An explicit instantiation shall appear in an enclosing namespace of its
5762  //   template. If the name declared in the explicit instantiation is an
5763  //   unqualified name, the explicit instantiation shall appear in the
5764  //   namespace where its template is declared or, if that namespace is inline
5765  //   (7.3.1), any namespace from its enclosing namespace set.
5766  //
5767  // This is DR275, which we do not retroactively apply to C++98/03.
5768  if (WasQualifiedName) {
5769    if (CurContext->Encloses(OrigContext))
5770      return false;
5771  } else {
5772    if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
5773      return false;
5774  }
5775
5776  if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
5777    if (WasQualifiedName)
5778      S.Diag(InstLoc,
5779             S.getLangOptions().CPlusPlus0x?
5780               diag::err_explicit_instantiation_out_of_scope :
5781               diag::warn_explicit_instantiation_out_of_scope_0x)
5782        << D << NS;
5783    else
5784      S.Diag(InstLoc,
5785             S.getLangOptions().CPlusPlus0x?
5786               diag::err_explicit_instantiation_unqualified_wrong_namespace :
5787               diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
5788        << D << NS;
5789  } else
5790    S.Diag(InstLoc,
5791           S.getLangOptions().CPlusPlus0x?
5792             diag::err_explicit_instantiation_must_be_global :
5793             diag::warn_explicit_instantiation_must_be_global_0x)
5794      << D;
5795  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5796  return false;
5797}
5798
5799/// \brief Determine whether the given scope specifier has a template-id in it.
5800static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
5801  if (!SS.isSet())
5802    return false;
5803
5804  // C++11 [temp.explicit]p3:
5805  //   If the explicit instantiation is for a member function, a member class
5806  //   or a static data member of a class template specialization, the name of
5807  //   the class template specialization in the qualified-id for the member
5808  //   name shall be a simple-template-id.
5809  //
5810  // C++98 has the same restriction, just worded differently.
5811  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
5812       NNS; NNS = NNS->getPrefix())
5813    if (const Type *T = NNS->getAsType())
5814      if (isa<TemplateSpecializationType>(T))
5815        return true;
5816
5817  return false;
5818}
5819
5820// Explicit instantiation of a class template specialization
5821DeclResult
5822Sema::ActOnExplicitInstantiation(Scope *S,
5823                                 SourceLocation ExternLoc,
5824                                 SourceLocation TemplateLoc,
5825                                 unsigned TagSpec,
5826                                 SourceLocation KWLoc,
5827                                 const CXXScopeSpec &SS,
5828                                 TemplateTy TemplateD,
5829                                 SourceLocation TemplateNameLoc,
5830                                 SourceLocation LAngleLoc,
5831                                 ASTTemplateArgsPtr TemplateArgsIn,
5832                                 SourceLocation RAngleLoc,
5833                                 AttributeList *Attr) {
5834  // Find the class template we're specializing
5835  TemplateName Name = TemplateD.getAsVal<TemplateName>();
5836  ClassTemplateDecl *ClassTemplate
5837    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
5838
5839  // Check that the specialization uses the same tag kind as the
5840  // original template.
5841  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5842  assert(Kind != TTK_Enum &&
5843         "Invalid enum tag in class template explicit instantiation!");
5844  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5845                                    Kind, /*isDefinition*/false, KWLoc,
5846                                    *ClassTemplate->getIdentifier())) {
5847    Diag(KWLoc, diag::err_use_with_wrong_tag)
5848      << ClassTemplate
5849      << FixItHint::CreateReplacement(KWLoc,
5850                            ClassTemplate->getTemplatedDecl()->getKindName());
5851    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5852         diag::note_previous_use);
5853    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5854  }
5855
5856  // C++0x [temp.explicit]p2:
5857  //   There are two forms of explicit instantiation: an explicit instantiation
5858  //   definition and an explicit instantiation declaration. An explicit
5859  //   instantiation declaration begins with the extern keyword. [...]
5860  TemplateSpecializationKind TSK
5861    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5862                           : TSK_ExplicitInstantiationDeclaration;
5863
5864  // Translate the parser's template argument list in our AST format.
5865  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
5866  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5867
5868  // Check that the template argument list is well-formed for this
5869  // template.
5870  SmallVector<TemplateArgument, 4> Converted;
5871  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5872                                TemplateArgs, false, Converted))
5873    return true;
5874
5875  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
5876         "Converted template argument list is too short!");
5877
5878  // Find the class template specialization declaration that
5879  // corresponds to these arguments.
5880  void *InsertPos = 0;
5881  ClassTemplateSpecializationDecl *PrevDecl
5882    = ClassTemplate->findSpecialization(Converted.data(),
5883                                        Converted.size(), InsertPos);
5884
5885  TemplateSpecializationKind PrevDecl_TSK
5886    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
5887
5888  // C++0x [temp.explicit]p2:
5889  //   [...] An explicit instantiation shall appear in an enclosing
5890  //   namespace of its template. [...]
5891  //
5892  // This is C++ DR 275.
5893  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
5894                                      SS.isSet()))
5895    return true;
5896
5897  ClassTemplateSpecializationDecl *Specialization = 0;
5898
5899  bool HasNoEffect = false;
5900  if (PrevDecl) {
5901    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
5902                                               PrevDecl, PrevDecl_TSK,
5903                                            PrevDecl->getPointOfInstantiation(),
5904                                               HasNoEffect))
5905      return PrevDecl;
5906
5907    // Even though HasNoEffect == true means that this explicit instantiation
5908    // has no effect on semantics, we go on to put its syntax in the AST.
5909
5910    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
5911        PrevDecl_TSK == TSK_Undeclared) {
5912      // Since the only prior class template specialization with these
5913      // arguments was referenced but not declared, reuse that
5914      // declaration node as our own, updating the source location
5915      // for the template name to reflect our new declaration.
5916      // (Other source locations will be updated later.)
5917      Specialization = PrevDecl;
5918      Specialization->setLocation(TemplateNameLoc);
5919      PrevDecl = 0;
5920    }
5921  }
5922
5923  if (!Specialization) {
5924    // Create a new class template specialization declaration node for
5925    // this explicit specialization.
5926    Specialization
5927      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5928                                             ClassTemplate->getDeclContext(),
5929                                                KWLoc, TemplateNameLoc,
5930                                                ClassTemplate,
5931                                                Converted.data(),
5932                                                Converted.size(),
5933                                                PrevDecl);
5934    SetNestedNameSpecifier(Specialization, SS);
5935
5936    if (!HasNoEffect && !PrevDecl) {
5937      // Insert the new specialization.
5938      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5939    }
5940  }
5941
5942  // Build the fully-sugared type for this explicit instantiation as
5943  // the user wrote in the explicit instantiation itself. This means
5944  // that we'll pretty-print the type retrieved from the
5945  // specialization's declaration the way that the user actually wrote
5946  // the explicit instantiation, rather than formatting the name based
5947  // on the "canonical" representation used to store the template
5948  // arguments in the specialization.
5949  TypeSourceInfo *WrittenTy
5950    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5951                                                TemplateArgs,
5952                                  Context.getTypeDeclType(Specialization));
5953  Specialization->setTypeAsWritten(WrittenTy);
5954  TemplateArgsIn.release();
5955
5956  // Set source locations for keywords.
5957  Specialization->setExternLoc(ExternLoc);
5958  Specialization->setTemplateKeywordLoc(TemplateLoc);
5959
5960  // Add the explicit instantiation into its lexical context. However,
5961  // since explicit instantiations are never found by name lookup, we
5962  // just put it into the declaration context directly.
5963  Specialization->setLexicalDeclContext(CurContext);
5964  CurContext->addDecl(Specialization);
5965
5966  // Syntax is now OK, so return if it has no other effect on semantics.
5967  if (HasNoEffect) {
5968    // Set the template specialization kind.
5969    Specialization->setTemplateSpecializationKind(TSK);
5970    return Specialization;
5971  }
5972
5973  // C++ [temp.explicit]p3:
5974  //   A definition of a class template or class member template
5975  //   shall be in scope at the point of the explicit instantiation of
5976  //   the class template or class member template.
5977  //
5978  // This check comes when we actually try to perform the
5979  // instantiation.
5980  ClassTemplateSpecializationDecl *Def
5981    = cast_or_null<ClassTemplateSpecializationDecl>(
5982                                              Specialization->getDefinition());
5983  if (!Def)
5984    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
5985  else if (TSK == TSK_ExplicitInstantiationDefinition) {
5986    MarkVTableUsed(TemplateNameLoc, Specialization, true);
5987    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
5988  }
5989
5990  // Instantiate the members of this class template specialization.
5991  Def = cast_or_null<ClassTemplateSpecializationDecl>(
5992                                       Specialization->getDefinition());
5993  if (Def) {
5994    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
5995
5996    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
5997    // TSK_ExplicitInstantiationDefinition
5998    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
5999        TSK == TSK_ExplicitInstantiationDefinition)
6000      Def->setTemplateSpecializationKind(TSK);
6001
6002    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
6003  }
6004
6005  // Set the template specialization kind.
6006  Specialization->setTemplateSpecializationKind(TSK);
6007  return Specialization;
6008}
6009
6010// Explicit instantiation of a member class of a class template.
6011DeclResult
6012Sema::ActOnExplicitInstantiation(Scope *S,
6013                                 SourceLocation ExternLoc,
6014                                 SourceLocation TemplateLoc,
6015                                 unsigned TagSpec,
6016                                 SourceLocation KWLoc,
6017                                 CXXScopeSpec &SS,
6018                                 IdentifierInfo *Name,
6019                                 SourceLocation NameLoc,
6020                                 AttributeList *Attr) {
6021
6022  bool Owned = false;
6023  bool IsDependent = false;
6024  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
6025                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
6026                        /*ModulePrivateLoc=*/SourceLocation(),
6027                        MultiTemplateParamsArg(*this, 0, 0),
6028                        Owned, IsDependent, false, false,
6029                        TypeResult());
6030  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
6031
6032  if (!TagD)
6033    return true;
6034
6035  TagDecl *Tag = cast<TagDecl>(TagD);
6036  if (Tag->isEnum()) {
6037    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
6038      << Context.getTypeDeclType(Tag);
6039    return true;
6040  }
6041
6042  if (Tag->isInvalidDecl())
6043    return true;
6044
6045  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
6046  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
6047  if (!Pattern) {
6048    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
6049      << Context.getTypeDeclType(Record);
6050    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
6051    return true;
6052  }
6053
6054  // C++0x [temp.explicit]p2:
6055  //   If the explicit instantiation is for a class or member class, the
6056  //   elaborated-type-specifier in the declaration shall include a
6057  //   simple-template-id.
6058  //
6059  // C++98 has the same restriction, just worded differently.
6060  if (!ScopeSpecifierHasTemplateId(SS))
6061    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
6062      << Record << SS.getRange();
6063
6064  // C++0x [temp.explicit]p2:
6065  //   There are two forms of explicit instantiation: an explicit instantiation
6066  //   definition and an explicit instantiation declaration. An explicit
6067  //   instantiation declaration begins with the extern keyword. [...]
6068  TemplateSpecializationKind TSK
6069    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6070                           : TSK_ExplicitInstantiationDeclaration;
6071
6072  // C++0x [temp.explicit]p2:
6073  //   [...] An explicit instantiation shall appear in an enclosing
6074  //   namespace of its template. [...]
6075  //
6076  // This is C++ DR 275.
6077  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
6078
6079  // Verify that it is okay to explicitly instantiate here.
6080  CXXRecordDecl *PrevDecl
6081    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
6082  if (!PrevDecl && Record->getDefinition())
6083    PrevDecl = Record;
6084  if (PrevDecl) {
6085    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
6086    bool HasNoEffect = false;
6087    assert(MSInfo && "No member specialization information?");
6088    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
6089                                               PrevDecl,
6090                                        MSInfo->getTemplateSpecializationKind(),
6091                                             MSInfo->getPointOfInstantiation(),
6092                                               HasNoEffect))
6093      return true;
6094    if (HasNoEffect)
6095      return TagD;
6096  }
6097
6098  CXXRecordDecl *RecordDef
6099    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6100  if (!RecordDef) {
6101    // C++ [temp.explicit]p3:
6102    //   A definition of a member class of a class template shall be in scope
6103    //   at the point of an explicit instantiation of the member class.
6104    CXXRecordDecl *Def
6105      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
6106    if (!Def) {
6107      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
6108        << 0 << Record->getDeclName() << Record->getDeclContext();
6109      Diag(Pattern->getLocation(), diag::note_forward_declaration)
6110        << Pattern;
6111      return true;
6112    } else {
6113      if (InstantiateClass(NameLoc, Record, Def,
6114                           getTemplateInstantiationArgs(Record),
6115                           TSK))
6116        return true;
6117
6118      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6119      if (!RecordDef)
6120        return true;
6121    }
6122  }
6123
6124  // Instantiate all of the members of the class.
6125  InstantiateClassMembers(NameLoc, RecordDef,
6126                          getTemplateInstantiationArgs(Record), TSK);
6127
6128  if (TSK == TSK_ExplicitInstantiationDefinition)
6129    MarkVTableUsed(NameLoc, RecordDef, true);
6130
6131  // FIXME: We don't have any representation for explicit instantiations of
6132  // member classes. Such a representation is not needed for compilation, but it
6133  // should be available for clients that want to see all of the declarations in
6134  // the source code.
6135  return TagD;
6136}
6137
6138DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
6139                                            SourceLocation ExternLoc,
6140                                            SourceLocation TemplateLoc,
6141                                            Declarator &D) {
6142  // Explicit instantiations always require a name.
6143  // TODO: check if/when DNInfo should replace Name.
6144  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6145  DeclarationName Name = NameInfo.getName();
6146  if (!Name) {
6147    if (!D.isInvalidType())
6148      Diag(D.getDeclSpec().getSourceRange().getBegin(),
6149           diag::err_explicit_instantiation_requires_name)
6150        << D.getDeclSpec().getSourceRange()
6151        << D.getSourceRange();
6152
6153    return true;
6154  }
6155
6156  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6157  // we find one that is.
6158  while ((S->getFlags() & Scope::DeclScope) == 0 ||
6159         (S->getFlags() & Scope::TemplateParamScope) != 0)
6160    S = S->getParent();
6161
6162  // Determine the type of the declaration.
6163  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
6164  QualType R = T->getType();
6165  if (R.isNull())
6166    return true;
6167
6168  // C++ [dcl.stc]p1:
6169  //   A storage-class-specifier shall not be specified in [...] an explicit
6170  //   instantiation (14.7.2) directive.
6171  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
6172    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
6173      << Name;
6174    return true;
6175  } else if (D.getDeclSpec().getStorageClassSpec()
6176                                                != DeclSpec::SCS_unspecified) {
6177    // Complain about then remove the storage class specifier.
6178    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
6179      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6180
6181    D.getMutableDeclSpec().ClearStorageClassSpecs();
6182  }
6183
6184  // C++0x [temp.explicit]p1:
6185  //   [...] An explicit instantiation of a function template shall not use the
6186  //   inline or constexpr specifiers.
6187  // Presumably, this also applies to member functions of class templates as
6188  // well.
6189  if (D.getDeclSpec().isInlineSpecified())
6190    Diag(D.getDeclSpec().getInlineSpecLoc(),
6191         getLangOptions().CPlusPlus0x ?
6192           diag::err_explicit_instantiation_inline :
6193           diag::warn_explicit_instantiation_inline_0x)
6194      << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6195  if (D.getDeclSpec().isConstexprSpecified())
6196    // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
6197    // not already specified.
6198    Diag(D.getDeclSpec().getConstexprSpecLoc(),
6199         diag::err_explicit_instantiation_constexpr);
6200
6201  // C++0x [temp.explicit]p2:
6202  //   There are two forms of explicit instantiation: an explicit instantiation
6203  //   definition and an explicit instantiation declaration. An explicit
6204  //   instantiation declaration begins with the extern keyword. [...]
6205  TemplateSpecializationKind TSK
6206    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6207                           : TSK_ExplicitInstantiationDeclaration;
6208
6209  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
6210  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
6211
6212  if (!R->isFunctionType()) {
6213    // C++ [temp.explicit]p1:
6214    //   A [...] static data member of a class template can be explicitly
6215    //   instantiated from the member definition associated with its class
6216    //   template.
6217    if (Previous.isAmbiguous())
6218      return true;
6219
6220    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
6221    if (!Prev || !Prev->isStaticDataMember()) {
6222      // We expect to see a data data member here.
6223      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
6224        << Name;
6225      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6226           P != PEnd; ++P)
6227        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
6228      return true;
6229    }
6230
6231    if (!Prev->getInstantiatedFromStaticDataMember()) {
6232      // FIXME: Check for explicit specialization?
6233      Diag(D.getIdentifierLoc(),
6234           diag::err_explicit_instantiation_data_member_not_instantiated)
6235        << Prev;
6236      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
6237      // FIXME: Can we provide a note showing where this was declared?
6238      return true;
6239    }
6240
6241    // C++0x [temp.explicit]p2:
6242    //   If the explicit instantiation is for a member function, a member class
6243    //   or a static data member of a class template specialization, the name of
6244    //   the class template specialization in the qualified-id for the member
6245    //   name shall be a simple-template-id.
6246    //
6247    // C++98 has the same restriction, just worded differently.
6248    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6249      Diag(D.getIdentifierLoc(),
6250           diag::ext_explicit_instantiation_without_qualified_id)
6251        << Prev << D.getCXXScopeSpec().getRange();
6252
6253    // Check the scope of this explicit instantiation.
6254    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
6255
6256    // Verify that it is okay to explicitly instantiate here.
6257    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
6258    assert(MSInfo && "Missing static data member specialization info?");
6259    bool HasNoEffect = false;
6260    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
6261                                        MSInfo->getTemplateSpecializationKind(),
6262                                              MSInfo->getPointOfInstantiation(),
6263                                               HasNoEffect))
6264      return true;
6265    if (HasNoEffect)
6266      return (Decl*) 0;
6267
6268    // Instantiate static data member.
6269    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6270    if (TSK == TSK_ExplicitInstantiationDefinition)
6271      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
6272
6273    // FIXME: Create an ExplicitInstantiation node?
6274    return (Decl*) 0;
6275  }
6276
6277  // If the declarator is a template-id, translate the parser's template
6278  // argument list into our AST format.
6279  bool HasExplicitTemplateArgs = false;
6280  TemplateArgumentListInfo TemplateArgs;
6281  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6282    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6283    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6284    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6285    ASTTemplateArgsPtr TemplateArgsPtr(*this,
6286                                       TemplateId->getTemplateArgs(),
6287                                       TemplateId->NumArgs);
6288    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
6289    HasExplicitTemplateArgs = true;
6290    TemplateArgsPtr.release();
6291  }
6292
6293  // C++ [temp.explicit]p1:
6294  //   A [...] function [...] can be explicitly instantiated from its template.
6295  //   A member function [...] of a class template can be explicitly
6296  //  instantiated from the member definition associated with its class
6297  //  template.
6298  UnresolvedSet<8> Matches;
6299  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6300       P != PEnd; ++P) {
6301    NamedDecl *Prev = *P;
6302    if (!HasExplicitTemplateArgs) {
6303      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
6304        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
6305          Matches.clear();
6306
6307          Matches.addDecl(Method, P.getAccess());
6308          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
6309            break;
6310        }
6311      }
6312    }
6313
6314    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
6315    if (!FunTmpl)
6316      continue;
6317
6318    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
6319    FunctionDecl *Specialization = 0;
6320    if (TemplateDeductionResult TDK
6321          = DeduceTemplateArguments(FunTmpl,
6322                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6323                                    R, Specialization, Info)) {
6324      // FIXME: Keep track of almost-matches?
6325      (void)TDK;
6326      continue;
6327    }
6328
6329    Matches.addDecl(Specialization, P.getAccess());
6330  }
6331
6332  // Find the most specialized function template specialization.
6333  UnresolvedSetIterator Result
6334    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
6335                         D.getIdentifierLoc(),
6336                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
6337                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
6338                         PDiag(diag::note_explicit_instantiation_candidate));
6339
6340  if (Result == Matches.end())
6341    return true;
6342
6343  // Ignore access control bits, we don't need them for redeclaration checking.
6344  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6345
6346  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
6347    Diag(D.getIdentifierLoc(),
6348         diag::err_explicit_instantiation_member_function_not_instantiated)
6349      << Specialization
6350      << (Specialization->getTemplateSpecializationKind() ==
6351          TSK_ExplicitSpecialization);
6352    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
6353    return true;
6354  }
6355
6356  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
6357  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
6358    PrevDecl = Specialization;
6359
6360  if (PrevDecl) {
6361    bool HasNoEffect = false;
6362    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
6363                                               PrevDecl,
6364                                     PrevDecl->getTemplateSpecializationKind(),
6365                                          PrevDecl->getPointOfInstantiation(),
6366                                               HasNoEffect))
6367      return true;
6368
6369    // FIXME: We may still want to build some representation of this
6370    // explicit specialization.
6371    if (HasNoEffect)
6372      return (Decl*) 0;
6373  }
6374
6375  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6376
6377  if (TSK == TSK_ExplicitInstantiationDefinition)
6378    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
6379
6380  // C++0x [temp.explicit]p2:
6381  //   If the explicit instantiation is for a member function, a member class
6382  //   or a static data member of a class template specialization, the name of
6383  //   the class template specialization in the qualified-id for the member
6384  //   name shall be a simple-template-id.
6385  //
6386  // C++98 has the same restriction, just worded differently.
6387  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
6388  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
6389      D.getCXXScopeSpec().isSet() &&
6390      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6391    Diag(D.getIdentifierLoc(),
6392         diag::ext_explicit_instantiation_without_qualified_id)
6393    << Specialization << D.getCXXScopeSpec().getRange();
6394
6395  CheckExplicitInstantiationScope(*this,
6396                   FunTmpl? (NamedDecl *)FunTmpl
6397                          : Specialization->getInstantiatedFromMemberFunction(),
6398                                  D.getIdentifierLoc(),
6399                                  D.getCXXScopeSpec().isSet());
6400
6401  // FIXME: Create some kind of ExplicitInstantiationDecl here.
6402  return (Decl*) 0;
6403}
6404
6405TypeResult
6406Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6407                        const CXXScopeSpec &SS, IdentifierInfo *Name,
6408                        SourceLocation TagLoc, SourceLocation NameLoc) {
6409  // This has to hold, because SS is expected to be defined.
6410  assert(Name && "Expected a name in a dependent tag");
6411
6412  NestedNameSpecifier *NNS
6413    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6414  if (!NNS)
6415    return true;
6416
6417  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6418
6419  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
6420    Diag(NameLoc, diag::err_dependent_tag_decl)
6421      << (TUK == TUK_Definition) << Kind << SS.getRange();
6422    return true;
6423  }
6424
6425  // Create the resulting type.
6426  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6427  QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
6428
6429  // Create type-source location information for this type.
6430  TypeLocBuilder TLB;
6431  DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
6432  TL.setKeywordLoc(TagLoc);
6433  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6434  TL.setNameLoc(NameLoc);
6435  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
6436}
6437
6438TypeResult
6439Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6440                        const CXXScopeSpec &SS, const IdentifierInfo &II,
6441                        SourceLocation IdLoc) {
6442  if (SS.isInvalid())
6443    return true;
6444
6445  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6446    Diag(TypenameLoc,
6447         getLangOptions().CPlusPlus0x ?
6448           diag::warn_cxx98_compat_typename_outside_of_template :
6449           diag::ext_typename_outside_of_template)
6450      << FixItHint::CreateRemoval(TypenameLoc);
6451
6452  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6453  QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
6454                                 TypenameLoc, QualifierLoc, II, IdLoc);
6455  if (T.isNull())
6456    return true;
6457
6458  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6459  if (isa<DependentNameType>(T)) {
6460    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6461    TL.setKeywordLoc(TypenameLoc);
6462    TL.setQualifierLoc(QualifierLoc);
6463    TL.setNameLoc(IdLoc);
6464  } else {
6465    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6466    TL.setKeywordLoc(TypenameLoc);
6467    TL.setQualifierLoc(QualifierLoc);
6468    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
6469  }
6470
6471  return CreateParsedType(T, TSI);
6472}
6473
6474TypeResult
6475Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6476                        const CXXScopeSpec &SS,
6477                        SourceLocation TemplateLoc,
6478                        TemplateTy TemplateIn,
6479                        SourceLocation TemplateNameLoc,
6480                        SourceLocation LAngleLoc,
6481                        ASTTemplateArgsPtr TemplateArgsIn,
6482                        SourceLocation RAngleLoc) {
6483  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6484    Diag(TypenameLoc,
6485         getLangOptions().CPlusPlus0x ?
6486           diag::warn_cxx98_compat_typename_outside_of_template :
6487           diag::ext_typename_outside_of_template)
6488      << FixItHint::CreateRemoval(TypenameLoc);
6489
6490  // Translate the parser's template argument list in our AST format.
6491  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6492  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6493
6494  TemplateName Template = TemplateIn.get();
6495  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
6496    // Construct a dependent template specialization type.
6497    assert(DTN && "dependent template has non-dependent name?");
6498    assert(DTN->getQualifier()
6499           == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
6500    QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
6501                                                          DTN->getQualifier(),
6502                                                          DTN->getIdentifier(),
6503                                                                TemplateArgs);
6504
6505    // Create source-location information for this type.
6506    TypeLocBuilder Builder;
6507    DependentTemplateSpecializationTypeLoc SpecTL
6508    = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
6509    SpecTL.setLAngleLoc(LAngleLoc);
6510    SpecTL.setRAngleLoc(RAngleLoc);
6511    SpecTL.setKeywordLoc(TypenameLoc);
6512    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
6513    SpecTL.setNameLoc(TemplateNameLoc);
6514    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6515      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6516    return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
6517  }
6518
6519  QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
6520  if (T.isNull())
6521    return true;
6522
6523  // Provide source-location information for the template specialization
6524  // type.
6525  TypeLocBuilder Builder;
6526  TemplateSpecializationTypeLoc SpecTL
6527    = Builder.push<TemplateSpecializationTypeLoc>(T);
6528
6529  // FIXME: No place to set the location of the 'template' keyword!
6530  SpecTL.setLAngleLoc(LAngleLoc);
6531  SpecTL.setRAngleLoc(RAngleLoc);
6532  SpecTL.setTemplateNameLoc(TemplateNameLoc);
6533  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6534    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6535
6536  T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
6537  ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
6538  TL.setKeywordLoc(TypenameLoc);
6539  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6540
6541  TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
6542  return CreateParsedType(T, TSI);
6543}
6544
6545
6546/// \brief Build the type that describes a C++ typename specifier,
6547/// e.g., "typename T::type".
6548QualType
6549Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
6550                        SourceLocation KeywordLoc,
6551                        NestedNameSpecifierLoc QualifierLoc,
6552                        const IdentifierInfo &II,
6553                        SourceLocation IILoc) {
6554  CXXScopeSpec SS;
6555  SS.Adopt(QualifierLoc);
6556
6557  DeclContext *Ctx = computeDeclContext(SS);
6558  if (!Ctx) {
6559    // If the nested-name-specifier is dependent and couldn't be
6560    // resolved to a type, build a typename type.
6561    assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
6562    return Context.getDependentNameType(Keyword,
6563                                        QualifierLoc.getNestedNameSpecifier(),
6564                                        &II);
6565  }
6566
6567  // If the nested-name-specifier refers to the current instantiation,
6568  // the "typename" keyword itself is superfluous. In C++03, the
6569  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
6570  // allows such extraneous "typename" keywords, and we retroactively
6571  // apply this DR to C++03 code with only a warning. In any case we continue.
6572
6573  if (RequireCompleteDeclContext(SS, Ctx))
6574    return QualType();
6575
6576  DeclarationName Name(&II);
6577  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
6578  LookupQualifiedName(Result, Ctx);
6579  unsigned DiagID = 0;
6580  Decl *Referenced = 0;
6581  switch (Result.getResultKind()) {
6582  case LookupResult::NotFound:
6583    DiagID = diag::err_typename_nested_not_found;
6584    break;
6585
6586  case LookupResult::FoundUnresolvedValue: {
6587    // We found a using declaration that is a value. Most likely, the using
6588    // declaration itself is meant to have the 'typename' keyword.
6589    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6590                          IILoc);
6591    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
6592      << Name << Ctx << FullRange;
6593    if (UnresolvedUsingValueDecl *Using
6594          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
6595      SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
6596      Diag(Loc, diag::note_using_value_decl_missing_typename)
6597        << FixItHint::CreateInsertion(Loc, "typename ");
6598    }
6599  }
6600  // Fall through to create a dependent typename type, from which we can recover
6601  // better.
6602
6603  case LookupResult::NotFoundInCurrentInstantiation:
6604    // Okay, it's a member of an unknown instantiation.
6605    return Context.getDependentNameType(Keyword,
6606                                        QualifierLoc.getNestedNameSpecifier(),
6607                                        &II);
6608
6609  case LookupResult::Found:
6610    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
6611      // We found a type. Build an ElaboratedType, since the
6612      // typename-specifier was just sugar.
6613      return Context.getElaboratedType(ETK_Typename,
6614                                       QualifierLoc.getNestedNameSpecifier(),
6615                                       Context.getTypeDeclType(Type));
6616    }
6617
6618    DiagID = diag::err_typename_nested_not_type;
6619    Referenced = Result.getFoundDecl();
6620    break;
6621
6622
6623    llvm_unreachable("unresolved using decl in non-dependent context");
6624    return QualType();
6625
6626  case LookupResult::FoundOverloaded:
6627    DiagID = diag::err_typename_nested_not_type;
6628    Referenced = *Result.begin();
6629    break;
6630
6631  case LookupResult::Ambiguous:
6632    return QualType();
6633  }
6634
6635  // If we get here, it's because name lookup did not find a
6636  // type. Emit an appropriate diagnostic and return an error.
6637  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6638                        IILoc);
6639  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
6640  if (Referenced)
6641    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
6642      << Name;
6643  return QualType();
6644}
6645
6646namespace {
6647  // See Sema::RebuildTypeInCurrentInstantiation
6648  class CurrentInstantiationRebuilder
6649    : public TreeTransform<CurrentInstantiationRebuilder> {
6650    SourceLocation Loc;
6651    DeclarationName Entity;
6652
6653  public:
6654    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
6655
6656    CurrentInstantiationRebuilder(Sema &SemaRef,
6657                                  SourceLocation Loc,
6658                                  DeclarationName Entity)
6659    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
6660      Loc(Loc), Entity(Entity) { }
6661
6662    /// \brief Determine whether the given type \p T has already been
6663    /// transformed.
6664    ///
6665    /// For the purposes of type reconstruction, a type has already been
6666    /// transformed if it is NULL or if it is not dependent.
6667    bool AlreadyTransformed(QualType T) {
6668      return T.isNull() || !T->isDependentType();
6669    }
6670
6671    /// \brief Returns the location of the entity whose type is being
6672    /// rebuilt.
6673    SourceLocation getBaseLocation() { return Loc; }
6674
6675    /// \brief Returns the name of the entity whose type is being rebuilt.
6676    DeclarationName getBaseEntity() { return Entity; }
6677
6678    /// \brief Sets the "base" location and entity when that
6679    /// information is known based on another transformation.
6680    void setBase(SourceLocation Loc, DeclarationName Entity) {
6681      this->Loc = Loc;
6682      this->Entity = Entity;
6683    }
6684  };
6685}
6686
6687/// \brief Rebuilds a type within the context of the current instantiation.
6688///
6689/// The type \p T is part of the type of an out-of-line member definition of
6690/// a class template (or class template partial specialization) that was parsed
6691/// and constructed before we entered the scope of the class template (or
6692/// partial specialization thereof). This routine will rebuild that type now
6693/// that we have entered the declarator's scope, which may produce different
6694/// canonical types, e.g.,
6695///
6696/// \code
6697/// template<typename T>
6698/// struct X {
6699///   typedef T* pointer;
6700///   pointer data();
6701/// };
6702///
6703/// template<typename T>
6704/// typename X<T>::pointer X<T>::data() { ... }
6705/// \endcode
6706///
6707/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
6708/// since we do not know that we can look into X<T> when we parsed the type.
6709/// This function will rebuild the type, performing the lookup of "pointer"
6710/// in X<T> and returning an ElaboratedType whose canonical type is the same
6711/// as the canonical type of T*, allowing the return types of the out-of-line
6712/// definition and the declaration to match.
6713TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
6714                                                        SourceLocation Loc,
6715                                                        DeclarationName Name) {
6716  if (!T || !T->getType()->isDependentType())
6717    return T;
6718
6719  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
6720  return Rebuilder.TransformType(T);
6721}
6722
6723ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
6724  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
6725                                          DeclarationName());
6726  return Rebuilder.TransformExpr(E);
6727}
6728
6729bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
6730  if (SS.isInvalid())
6731    return true;
6732
6733  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6734  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
6735                                          DeclarationName());
6736  NestedNameSpecifierLoc Rebuilt
6737    = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
6738  if (!Rebuilt)
6739    return true;
6740
6741  SS.Adopt(Rebuilt);
6742  return false;
6743}
6744
6745/// \brief Rebuild the template parameters now that we know we're in a current
6746/// instantiation.
6747bool Sema::RebuildTemplateParamsInCurrentInstantiation(
6748                                               TemplateParameterList *Params) {
6749  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
6750    Decl *Param = Params->getParam(I);
6751
6752    // There is nothing to rebuild in a type parameter.
6753    if (isa<TemplateTypeParmDecl>(Param))
6754      continue;
6755
6756    // Rebuild the template parameter list of a template template parameter.
6757    if (TemplateTemplateParmDecl *TTP
6758        = dyn_cast<TemplateTemplateParmDecl>(Param)) {
6759      if (RebuildTemplateParamsInCurrentInstantiation(
6760            TTP->getTemplateParameters()))
6761        return true;
6762
6763      continue;
6764    }
6765
6766    // Rebuild the type of a non-type template parameter.
6767    NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
6768    TypeSourceInfo *NewTSI
6769      = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
6770                                          NTTP->getLocation(),
6771                                          NTTP->getDeclName());
6772    if (!NewTSI)
6773      return true;
6774
6775    if (NewTSI != NTTP->getTypeSourceInfo()) {
6776      NTTP->setTypeSourceInfo(NewTSI);
6777      NTTP->setType(NewTSI->getType());
6778    }
6779  }
6780
6781  return false;
6782}
6783
6784/// \brief Produces a formatted string that describes the binding of
6785/// template parameters to template arguments.
6786std::string
6787Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6788                                      const TemplateArgumentList &Args) {
6789  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
6790}
6791
6792std::string
6793Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6794                                      const TemplateArgument *Args,
6795                                      unsigned NumArgs) {
6796  llvm::SmallString<128> Str;
6797  llvm::raw_svector_ostream Out(Str);
6798
6799  if (!Params || Params->size() == 0 || NumArgs == 0)
6800    return std::string();
6801
6802  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
6803    if (I >= NumArgs)
6804      break;
6805
6806    if (I == 0)
6807      Out << "[with ";
6808    else
6809      Out << ", ";
6810
6811    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
6812      Out << Id->getName();
6813    } else {
6814      Out << '$' << I;
6815    }
6816
6817    Out << " = ";
6818    Args[I].print(getPrintingPolicy(), Out);
6819  }
6820
6821  Out << ']';
6822  return Out.str();
6823}
6824
6825void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) {
6826  if (!FD)
6827    return;
6828  FD->setLateTemplateParsed(Flag);
6829}
6830
6831bool Sema::IsInsideALocalClassWithinATemplateFunction() {
6832  DeclContext *DC = CurContext;
6833
6834  while (DC) {
6835    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
6836      const FunctionDecl *FD = RD->isLocalClass();
6837      return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
6838    } else if (DC->isTranslationUnit() || DC->isNamespace())
6839      return false;
6840
6841    DC = DC->getParent();
6842  }
6843  return false;
6844}
6845