SemaTemplate.cpp revision 8ef7b203332b0c8d65876a1f5e6d1db4e6f40e4b
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "clang/Sema/SemaInternal.h" 13#include "clang/Sema/Lookup.h" 14#include "clang/Sema/Scope.h" 15#include "clang/Sema/Template.h" 16#include "clang/Sema/TemplateDeduction.h" 17#include "TreeTransform.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ExprCXX.h" 21#include "clang/AST/DeclFriend.h" 22#include "clang/AST/DeclTemplate.h" 23#include "clang/AST/RecursiveASTVisitor.h" 24#include "clang/AST/TypeVisitor.h" 25#include "clang/Sema/DeclSpec.h" 26#include "clang/Sema/ParsedTemplate.h" 27#include "clang/Basic/LangOptions.h" 28#include "clang/Basic/PartialDiagnostic.h" 29#include "llvm/ADT/StringExtras.h" 30using namespace clang; 31using namespace sema; 32 33// Exported for use by Parser. 34SourceRange 35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 36 unsigned N) { 37 if (!N) return SourceRange(); 38 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 39} 40 41/// \brief Determine whether the declaration found is acceptable as the name 42/// of a template and, if so, return that template declaration. Otherwise, 43/// returns NULL. 44static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 45 NamedDecl *Orig) { 46 NamedDecl *D = Orig->getUnderlyingDecl(); 47 48 if (isa<TemplateDecl>(D)) 49 return Orig; 50 51 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 52 // C++ [temp.local]p1: 53 // Like normal (non-template) classes, class templates have an 54 // injected-class-name (Clause 9). The injected-class-name 55 // can be used with or without a template-argument-list. When 56 // it is used without a template-argument-list, it is 57 // equivalent to the injected-class-name followed by the 58 // template-parameters of the class template enclosed in 59 // <>. When it is used with a template-argument-list, it 60 // refers to the specified class template specialization, 61 // which could be the current specialization or another 62 // specialization. 63 if (Record->isInjectedClassName()) { 64 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 65 if (Record->getDescribedClassTemplate()) 66 return Record->getDescribedClassTemplate(); 67 68 if (ClassTemplateSpecializationDecl *Spec 69 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 70 return Spec->getSpecializedTemplate(); 71 } 72 73 return 0; 74 } 75 76 return 0; 77} 78 79void Sema::FilterAcceptableTemplateNames(LookupResult &R) { 80 // The set of class templates we've already seen. 81 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 82 LookupResult::Filter filter = R.makeFilter(); 83 while (filter.hasNext()) { 84 NamedDecl *Orig = filter.next(); 85 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig); 86 if (!Repl) 87 filter.erase(); 88 else if (Repl != Orig) { 89 90 // C++ [temp.local]p3: 91 // A lookup that finds an injected-class-name (10.2) can result in an 92 // ambiguity in certain cases (for example, if it is found in more than 93 // one base class). If all of the injected-class-names that are found 94 // refer to specializations of the same class template, and if the name 95 // is used as a template-name, the reference refers to the class 96 // template itself and not a specialization thereof, and is not 97 // ambiguous. 98 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 99 if (!ClassTemplates.insert(ClassTmpl)) { 100 filter.erase(); 101 continue; 102 } 103 104 // FIXME: we promote access to public here as a workaround to 105 // the fact that LookupResult doesn't let us remember that we 106 // found this template through a particular injected class name, 107 // which means we end up doing nasty things to the invariants. 108 // Pretending that access is public is *much* safer. 109 filter.replace(Repl, AS_public); 110 } 111 } 112 filter.done(); 113} 114 115bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R) { 116 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) 117 if (isAcceptableTemplateName(Context, *I)) 118 return true; 119 120 return false; 121} 122 123TemplateNameKind Sema::isTemplateName(Scope *S, 124 CXXScopeSpec &SS, 125 bool hasTemplateKeyword, 126 UnqualifiedId &Name, 127 ParsedType ObjectTypePtr, 128 bool EnteringContext, 129 TemplateTy &TemplateResult, 130 bool &MemberOfUnknownSpecialization) { 131 assert(getLangOptions().CPlusPlus && "No template names in C!"); 132 133 DeclarationName TName; 134 MemberOfUnknownSpecialization = false; 135 136 switch (Name.getKind()) { 137 case UnqualifiedId::IK_Identifier: 138 TName = DeclarationName(Name.Identifier); 139 break; 140 141 case UnqualifiedId::IK_OperatorFunctionId: 142 TName = Context.DeclarationNames.getCXXOperatorName( 143 Name.OperatorFunctionId.Operator); 144 break; 145 146 case UnqualifiedId::IK_LiteralOperatorId: 147 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 148 break; 149 150 default: 151 return TNK_Non_template; 152 } 153 154 QualType ObjectType = ObjectTypePtr.get(); 155 156 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 157 LookupOrdinaryName); 158 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 159 MemberOfUnknownSpecialization); 160 if (R.empty()) return TNK_Non_template; 161 if (R.isAmbiguous()) { 162 // Suppress diagnostics; we'll redo this lookup later. 163 R.suppressDiagnostics(); 164 165 // FIXME: we might have ambiguous templates, in which case we 166 // should at least parse them properly! 167 return TNK_Non_template; 168 } 169 170 TemplateName Template; 171 TemplateNameKind TemplateKind; 172 173 unsigned ResultCount = R.end() - R.begin(); 174 if (ResultCount > 1) { 175 // We assume that we'll preserve the qualifier from a function 176 // template name in other ways. 177 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 178 TemplateKind = TNK_Function_template; 179 180 // We'll do this lookup again later. 181 R.suppressDiagnostics(); 182 } else { 183 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 184 185 if (SS.isSet() && !SS.isInvalid()) { 186 NestedNameSpecifier *Qualifier 187 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 188 Template = Context.getQualifiedTemplateName(Qualifier, 189 hasTemplateKeyword, TD); 190 } else { 191 Template = TemplateName(TD); 192 } 193 194 if (isa<FunctionTemplateDecl>(TD)) { 195 TemplateKind = TNK_Function_template; 196 197 // We'll do this lookup again later. 198 R.suppressDiagnostics(); 199 } else { 200 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 201 isa<TypeAliasTemplateDecl>(TD)); 202 TemplateKind = TNK_Type_template; 203 } 204 } 205 206 TemplateResult = TemplateTy::make(Template); 207 return TemplateKind; 208} 209 210bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 211 SourceLocation IILoc, 212 Scope *S, 213 const CXXScopeSpec *SS, 214 TemplateTy &SuggestedTemplate, 215 TemplateNameKind &SuggestedKind) { 216 // We can't recover unless there's a dependent scope specifier preceding the 217 // template name. 218 // FIXME: Typo correction? 219 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 220 computeDeclContext(*SS)) 221 return false; 222 223 // The code is missing a 'template' keyword prior to the dependent template 224 // name. 225 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 226 Diag(IILoc, diag::err_template_kw_missing) 227 << Qualifier << II.getName() 228 << FixItHint::CreateInsertion(IILoc, "template "); 229 SuggestedTemplate 230 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 231 SuggestedKind = TNK_Dependent_template_name; 232 return true; 233} 234 235void Sema::LookupTemplateName(LookupResult &Found, 236 Scope *S, CXXScopeSpec &SS, 237 QualType ObjectType, 238 bool EnteringContext, 239 bool &MemberOfUnknownSpecialization) { 240 // Determine where to perform name lookup 241 MemberOfUnknownSpecialization = false; 242 DeclContext *LookupCtx = 0; 243 bool isDependent = false; 244 if (!ObjectType.isNull()) { 245 // This nested-name-specifier occurs in a member access expression, e.g., 246 // x->B::f, and we are looking into the type of the object. 247 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 248 LookupCtx = computeDeclContext(ObjectType); 249 isDependent = ObjectType->isDependentType(); 250 assert((isDependent || !ObjectType->isIncompleteType()) && 251 "Caller should have completed object type"); 252 253 // Template names cannot appear inside an Objective-C class or object type. 254 if (ObjectType->isObjCObjectOrInterfaceType()) { 255 Found.clear(); 256 return; 257 } 258 } else if (SS.isSet()) { 259 // This nested-name-specifier occurs after another nested-name-specifier, 260 // so long into the context associated with the prior nested-name-specifier. 261 LookupCtx = computeDeclContext(SS, EnteringContext); 262 isDependent = isDependentScopeSpecifier(SS); 263 264 // The declaration context must be complete. 265 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 266 return; 267 } 268 269 bool ObjectTypeSearchedInScope = false; 270 if (LookupCtx) { 271 // Perform "qualified" name lookup into the declaration context we 272 // computed, which is either the type of the base of a member access 273 // expression or the declaration context associated with a prior 274 // nested-name-specifier. 275 LookupQualifiedName(Found, LookupCtx); 276 277 if (!ObjectType.isNull() && Found.empty()) { 278 // C++ [basic.lookup.classref]p1: 279 // In a class member access expression (5.2.5), if the . or -> token is 280 // immediately followed by an identifier followed by a <, the 281 // identifier must be looked up to determine whether the < is the 282 // beginning of a template argument list (14.2) or a less-than operator. 283 // The identifier is first looked up in the class of the object 284 // expression. If the identifier is not found, it is then looked up in 285 // the context of the entire postfix-expression and shall name a class 286 // or function template. 287 if (S) LookupName(Found, S); 288 ObjectTypeSearchedInScope = true; 289 } 290 } else if (isDependent && (!S || ObjectType.isNull())) { 291 // We cannot look into a dependent object type or nested nme 292 // specifier. 293 MemberOfUnknownSpecialization = true; 294 return; 295 } else { 296 // Perform unqualified name lookup in the current scope. 297 LookupName(Found, S); 298 } 299 300 if (Found.empty() && !isDependent) { 301 // If we did not find any names, attempt to correct any typos. 302 DeclarationName Name = Found.getLookupName(); 303 Found.clear(); 304 // Simple filter callback that, for keywords, only accepts the C++ *_cast 305 CorrectionCandidateCallback FilterCCC; 306 FilterCCC.WantTypeSpecifiers = false; 307 FilterCCC.WantExpressionKeywords = false; 308 FilterCCC.WantRemainingKeywords = false; 309 FilterCCC.WantCXXNamedCasts = true; 310 if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(), 311 Found.getLookupKind(), S, &SS, 312 &FilterCCC, LookupCtx)) { 313 Found.setLookupName(Corrected.getCorrection()); 314 if (Corrected.getCorrectionDecl()) 315 Found.addDecl(Corrected.getCorrectionDecl()); 316 FilterAcceptableTemplateNames(Found); 317 if (!Found.empty()) { 318 std::string CorrectedStr(Corrected.getAsString(getLangOptions())); 319 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions())); 320 if (LookupCtx) 321 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 322 << Name << LookupCtx << CorrectedQuotedStr << SS.getRange() 323 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); 324 else 325 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 326 << Name << CorrectedQuotedStr 327 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); 328 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 329 Diag(Template->getLocation(), diag::note_previous_decl) 330 << CorrectedQuotedStr; 331 } 332 } else { 333 Found.setLookupName(Name); 334 } 335 } 336 337 FilterAcceptableTemplateNames(Found); 338 if (Found.empty()) { 339 if (isDependent) 340 MemberOfUnknownSpecialization = true; 341 return; 342 } 343 344 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 345 // C++ [basic.lookup.classref]p1: 346 // [...] If the lookup in the class of the object expression finds a 347 // template, the name is also looked up in the context of the entire 348 // postfix-expression and [...] 349 // 350 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 351 LookupOrdinaryName); 352 LookupName(FoundOuter, S); 353 FilterAcceptableTemplateNames(FoundOuter); 354 355 if (FoundOuter.empty()) { 356 // - if the name is not found, the name found in the class of the 357 // object expression is used, otherwise 358 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() || 359 FoundOuter.isAmbiguous()) { 360 // - if the name is found in the context of the entire 361 // postfix-expression and does not name a class template, the name 362 // found in the class of the object expression is used, otherwise 363 FoundOuter.clear(); 364 } else if (!Found.isSuppressingDiagnostics()) { 365 // - if the name found is a class template, it must refer to the same 366 // entity as the one found in the class of the object expression, 367 // otherwise the program is ill-formed. 368 if (!Found.isSingleResult() || 369 Found.getFoundDecl()->getCanonicalDecl() 370 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 371 Diag(Found.getNameLoc(), 372 diag::ext_nested_name_member_ref_lookup_ambiguous) 373 << Found.getLookupName() 374 << ObjectType; 375 Diag(Found.getRepresentativeDecl()->getLocation(), 376 diag::note_ambig_member_ref_object_type) 377 << ObjectType; 378 Diag(FoundOuter.getFoundDecl()->getLocation(), 379 diag::note_ambig_member_ref_scope); 380 381 // Recover by taking the template that we found in the object 382 // expression's type. 383 } 384 } 385 } 386} 387 388/// ActOnDependentIdExpression - Handle a dependent id-expression that 389/// was just parsed. This is only possible with an explicit scope 390/// specifier naming a dependent type. 391ExprResult 392Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 393 const DeclarationNameInfo &NameInfo, 394 bool isAddressOfOperand, 395 const TemplateArgumentListInfo *TemplateArgs) { 396 DeclContext *DC = getFunctionLevelDeclContext(); 397 398 if (!isAddressOfOperand && 399 isa<CXXMethodDecl>(DC) && 400 cast<CXXMethodDecl>(DC)->isInstance()) { 401 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 402 403 // Since the 'this' expression is synthesized, we don't need to 404 // perform the double-lookup check. 405 NamedDecl *FirstQualifierInScope = 0; 406 407 return Owned(CXXDependentScopeMemberExpr::Create(Context, 408 /*This*/ 0, ThisType, 409 /*IsArrow*/ true, 410 /*Op*/ SourceLocation(), 411 SS.getWithLocInContext(Context), 412 FirstQualifierInScope, 413 NameInfo, 414 TemplateArgs)); 415 } 416 417 return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs); 418} 419 420ExprResult 421Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 422 const DeclarationNameInfo &NameInfo, 423 const TemplateArgumentListInfo *TemplateArgs) { 424 return Owned(DependentScopeDeclRefExpr::Create(Context, 425 SS.getWithLocInContext(Context), 426 NameInfo, 427 TemplateArgs)); 428} 429 430/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 431/// that the template parameter 'PrevDecl' is being shadowed by a new 432/// declaration at location Loc. Returns true to indicate that this is 433/// an error, and false otherwise. 434void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 435 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 436 437 // Microsoft Visual C++ permits template parameters to be shadowed. 438 if (getLangOptions().MicrosoftExt) 439 return; 440 441 // C++ [temp.local]p4: 442 // A template-parameter shall not be redeclared within its 443 // scope (including nested scopes). 444 Diag(Loc, diag::err_template_param_shadow) 445 << cast<NamedDecl>(PrevDecl)->getDeclName(); 446 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 447 return; 448} 449 450/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 451/// the parameter D to reference the templated declaration and return a pointer 452/// to the template declaration. Otherwise, do nothing to D and return null. 453TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 454 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 455 D = Temp->getTemplatedDecl(); 456 return Temp; 457 } 458 return 0; 459} 460 461ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 462 SourceLocation EllipsisLoc) const { 463 assert(Kind == Template && 464 "Only template template arguments can be pack expansions here"); 465 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 466 "Template template argument pack expansion without packs"); 467 ParsedTemplateArgument Result(*this); 468 Result.EllipsisLoc = EllipsisLoc; 469 return Result; 470} 471 472static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 473 const ParsedTemplateArgument &Arg) { 474 475 switch (Arg.getKind()) { 476 case ParsedTemplateArgument::Type: { 477 TypeSourceInfo *DI; 478 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 479 if (!DI) 480 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 481 return TemplateArgumentLoc(TemplateArgument(T), DI); 482 } 483 484 case ParsedTemplateArgument::NonType: { 485 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 486 return TemplateArgumentLoc(TemplateArgument(E), E); 487 } 488 489 case ParsedTemplateArgument::Template: { 490 TemplateName Template = Arg.getAsTemplate().get(); 491 TemplateArgument TArg; 492 if (Arg.getEllipsisLoc().isValid()) 493 TArg = TemplateArgument(Template, llvm::Optional<unsigned int>()); 494 else 495 TArg = Template; 496 return TemplateArgumentLoc(TArg, 497 Arg.getScopeSpec().getWithLocInContext( 498 SemaRef.Context), 499 Arg.getLocation(), 500 Arg.getEllipsisLoc()); 501 } 502 } 503 504 llvm_unreachable("Unhandled parsed template argument"); 505} 506 507/// \brief Translates template arguments as provided by the parser 508/// into template arguments used by semantic analysis. 509void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 510 TemplateArgumentListInfo &TemplateArgs) { 511 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 512 TemplateArgs.addArgument(translateTemplateArgument(*this, 513 TemplateArgsIn[I])); 514} 515 516/// ActOnTypeParameter - Called when a C++ template type parameter 517/// (e.g., "typename T") has been parsed. Typename specifies whether 518/// the keyword "typename" was used to declare the type parameter 519/// (otherwise, "class" was used), and KeyLoc is the location of the 520/// "class" or "typename" keyword. ParamName is the name of the 521/// parameter (NULL indicates an unnamed template parameter) and 522/// ParamNameLoc is the location of the parameter name (if any). 523/// If the type parameter has a default argument, it will be added 524/// later via ActOnTypeParameterDefault. 525Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 526 SourceLocation EllipsisLoc, 527 SourceLocation KeyLoc, 528 IdentifierInfo *ParamName, 529 SourceLocation ParamNameLoc, 530 unsigned Depth, unsigned Position, 531 SourceLocation EqualLoc, 532 ParsedType DefaultArg) { 533 assert(S->isTemplateParamScope() && 534 "Template type parameter not in template parameter scope!"); 535 bool Invalid = false; 536 537 if (ParamName) { 538 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 539 LookupOrdinaryName, 540 ForRedeclaration); 541 if (PrevDecl && PrevDecl->isTemplateParameter()) { 542 DiagnoseTemplateParameterShadow(ParamNameLoc, PrevDecl); 543 PrevDecl = 0; 544 } 545 } 546 547 SourceLocation Loc = ParamNameLoc; 548 if (!ParamName) 549 Loc = KeyLoc; 550 551 TemplateTypeParmDecl *Param 552 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 553 KeyLoc, Loc, Depth, Position, ParamName, 554 Typename, Ellipsis); 555 Param->setAccess(AS_public); 556 if (Invalid) 557 Param->setInvalidDecl(); 558 559 if (ParamName) { 560 // Add the template parameter into the current scope. 561 S->AddDecl(Param); 562 IdResolver.AddDecl(Param); 563 } 564 565 // C++0x [temp.param]p9: 566 // A default template-argument may be specified for any kind of 567 // template-parameter that is not a template parameter pack. 568 if (DefaultArg && Ellipsis) { 569 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 570 DefaultArg = ParsedType(); 571 } 572 573 // Handle the default argument, if provided. 574 if (DefaultArg) { 575 TypeSourceInfo *DefaultTInfo; 576 GetTypeFromParser(DefaultArg, &DefaultTInfo); 577 578 assert(DefaultTInfo && "expected source information for type"); 579 580 // Check for unexpanded parameter packs. 581 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, 582 UPPC_DefaultArgument)) 583 return Param; 584 585 // Check the template argument itself. 586 if (CheckTemplateArgument(Param, DefaultTInfo)) { 587 Param->setInvalidDecl(); 588 return Param; 589 } 590 591 Param->setDefaultArgument(DefaultTInfo, false); 592 } 593 594 return Param; 595} 596 597/// \brief Check that the type of a non-type template parameter is 598/// well-formed. 599/// 600/// \returns the (possibly-promoted) parameter type if valid; 601/// otherwise, produces a diagnostic and returns a NULL type. 602QualType 603Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 604 // We don't allow variably-modified types as the type of non-type template 605 // parameters. 606 if (T->isVariablyModifiedType()) { 607 Diag(Loc, diag::err_variably_modified_nontype_template_param) 608 << T; 609 return QualType(); 610 } 611 612 // C++ [temp.param]p4: 613 // 614 // A non-type template-parameter shall have one of the following 615 // (optionally cv-qualified) types: 616 // 617 // -- integral or enumeration type, 618 if (T->isIntegralOrEnumerationType() || 619 // -- pointer to object or pointer to function, 620 T->isPointerType() || 621 // -- reference to object or reference to function, 622 T->isReferenceType() || 623 // -- pointer to member, 624 T->isMemberPointerType() || 625 // -- std::nullptr_t. 626 T->isNullPtrType() || 627 // If T is a dependent type, we can't do the check now, so we 628 // assume that it is well-formed. 629 T->isDependentType()) 630 return T; 631 // C++ [temp.param]p8: 632 // 633 // A non-type template-parameter of type "array of T" or 634 // "function returning T" is adjusted to be of type "pointer to 635 // T" or "pointer to function returning T", respectively. 636 else if (T->isArrayType()) 637 // FIXME: Keep the type prior to promotion? 638 return Context.getArrayDecayedType(T); 639 else if (T->isFunctionType()) 640 // FIXME: Keep the type prior to promotion? 641 return Context.getPointerType(T); 642 643 Diag(Loc, diag::err_template_nontype_parm_bad_type) 644 << T; 645 646 return QualType(); 647} 648 649Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 650 unsigned Depth, 651 unsigned Position, 652 SourceLocation EqualLoc, 653 Expr *Default) { 654 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 655 QualType T = TInfo->getType(); 656 657 assert(S->isTemplateParamScope() && 658 "Non-type template parameter not in template parameter scope!"); 659 bool Invalid = false; 660 661 IdentifierInfo *ParamName = D.getIdentifier(); 662 if (ParamName) { 663 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 664 LookupOrdinaryName, 665 ForRedeclaration); 666 if (PrevDecl && PrevDecl->isTemplateParameter()) { 667 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 668 PrevDecl = 0; 669 } 670 } 671 672 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 673 if (T.isNull()) { 674 T = Context.IntTy; // Recover with an 'int' type. 675 Invalid = true; 676 } 677 678 bool IsParameterPack = D.hasEllipsis(); 679 NonTypeTemplateParmDecl *Param 680 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 681 D.getSourceRange().getBegin(), 682 D.getIdentifierLoc(), 683 Depth, Position, ParamName, T, 684 IsParameterPack, TInfo); 685 Param->setAccess(AS_public); 686 687 if (Invalid) 688 Param->setInvalidDecl(); 689 690 if (D.getIdentifier()) { 691 // Add the template parameter into the current scope. 692 S->AddDecl(Param); 693 IdResolver.AddDecl(Param); 694 } 695 696 // C++0x [temp.param]p9: 697 // A default template-argument may be specified for any kind of 698 // template-parameter that is not a template parameter pack. 699 if (Default && IsParameterPack) { 700 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 701 Default = 0; 702 } 703 704 // Check the well-formedness of the default template argument, if provided. 705 if (Default) { 706 // Check for unexpanded parameter packs. 707 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 708 return Param; 709 710 TemplateArgument Converted; 711 ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted); 712 if (DefaultRes.isInvalid()) { 713 Param->setInvalidDecl(); 714 return Param; 715 } 716 Default = DefaultRes.take(); 717 718 Param->setDefaultArgument(Default, false); 719 } 720 721 return Param; 722} 723 724/// ActOnTemplateTemplateParameter - Called when a C++ template template 725/// parameter (e.g. T in template <template <typename> class T> class array) 726/// has been parsed. S is the current scope. 727Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 728 SourceLocation TmpLoc, 729 TemplateParameterList *Params, 730 SourceLocation EllipsisLoc, 731 IdentifierInfo *Name, 732 SourceLocation NameLoc, 733 unsigned Depth, 734 unsigned Position, 735 SourceLocation EqualLoc, 736 ParsedTemplateArgument Default) { 737 assert(S->isTemplateParamScope() && 738 "Template template parameter not in template parameter scope!"); 739 740 // Construct the parameter object. 741 bool IsParameterPack = EllipsisLoc.isValid(); 742 TemplateTemplateParmDecl *Param = 743 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 744 NameLoc.isInvalid()? TmpLoc : NameLoc, 745 Depth, Position, IsParameterPack, 746 Name, Params); 747 Param->setAccess(AS_public); 748 749 // If the template template parameter has a name, then link the identifier 750 // into the scope and lookup mechanisms. 751 if (Name) { 752 S->AddDecl(Param); 753 IdResolver.AddDecl(Param); 754 } 755 756 if (Params->size() == 0) { 757 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 758 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 759 Param->setInvalidDecl(); 760 } 761 762 // C++0x [temp.param]p9: 763 // A default template-argument may be specified for any kind of 764 // template-parameter that is not a template parameter pack. 765 if (IsParameterPack && !Default.isInvalid()) { 766 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 767 Default = ParsedTemplateArgument(); 768 } 769 770 if (!Default.isInvalid()) { 771 // Check only that we have a template template argument. We don't want to 772 // try to check well-formedness now, because our template template parameter 773 // might have dependent types in its template parameters, which we wouldn't 774 // be able to match now. 775 // 776 // If none of the template template parameter's template arguments mention 777 // other template parameters, we could actually perform more checking here. 778 // However, it isn't worth doing. 779 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 780 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 781 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 782 << DefaultArg.getSourceRange(); 783 return Param; 784 } 785 786 // Check for unexpanded parameter packs. 787 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 788 DefaultArg.getArgument().getAsTemplate(), 789 UPPC_DefaultArgument)) 790 return Param; 791 792 Param->setDefaultArgument(DefaultArg, false); 793 } 794 795 return Param; 796} 797 798/// ActOnTemplateParameterList - Builds a TemplateParameterList that 799/// contains the template parameters in Params/NumParams. 800TemplateParameterList * 801Sema::ActOnTemplateParameterList(unsigned Depth, 802 SourceLocation ExportLoc, 803 SourceLocation TemplateLoc, 804 SourceLocation LAngleLoc, 805 Decl **Params, unsigned NumParams, 806 SourceLocation RAngleLoc) { 807 if (ExportLoc.isValid()) 808 Diag(ExportLoc, diag::warn_template_export_unsupported); 809 810 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 811 (NamedDecl**)Params, NumParams, 812 RAngleLoc); 813} 814 815static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 816 if (SS.isSet()) 817 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext())); 818} 819 820DeclResult 821Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 822 SourceLocation KWLoc, CXXScopeSpec &SS, 823 IdentifierInfo *Name, SourceLocation NameLoc, 824 AttributeList *Attr, 825 TemplateParameterList *TemplateParams, 826 AccessSpecifier AS, SourceLocation ModulePrivateLoc, 827 unsigned NumOuterTemplateParamLists, 828 TemplateParameterList** OuterTemplateParamLists) { 829 assert(TemplateParams && TemplateParams->size() > 0 && 830 "No template parameters"); 831 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 832 bool Invalid = false; 833 834 // Check that we can declare a template here. 835 if (CheckTemplateDeclScope(S, TemplateParams)) 836 return true; 837 838 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 839 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 840 841 // There is no such thing as an unnamed class template. 842 if (!Name) { 843 Diag(KWLoc, diag::err_template_unnamed_class); 844 return true; 845 } 846 847 // Find any previous declaration with this name. 848 DeclContext *SemanticContext; 849 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 850 ForRedeclaration); 851 if (SS.isNotEmpty() && !SS.isInvalid()) { 852 SemanticContext = computeDeclContext(SS, true); 853 if (!SemanticContext) { 854 // FIXME: Produce a reasonable diagnostic here 855 return true; 856 } 857 858 if (RequireCompleteDeclContext(SS, SemanticContext)) 859 return true; 860 861 // If we're adding a template to a dependent context, we may need to 862 // rebuilding some of the types used within the template parameter list, 863 // now that we know what the current instantiation is. 864 if (SemanticContext->isDependentContext()) { 865 ContextRAII SavedContext(*this, SemanticContext); 866 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 867 Invalid = true; 868 } 869 870 LookupQualifiedName(Previous, SemanticContext); 871 } else { 872 SemanticContext = CurContext; 873 LookupName(Previous, S); 874 } 875 876 if (Previous.isAmbiguous()) 877 return true; 878 879 NamedDecl *PrevDecl = 0; 880 if (Previous.begin() != Previous.end()) 881 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 882 883 // If there is a previous declaration with the same name, check 884 // whether this is a valid redeclaration. 885 ClassTemplateDecl *PrevClassTemplate 886 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 887 888 // We may have found the injected-class-name of a class template, 889 // class template partial specialization, or class template specialization. 890 // In these cases, grab the template that is being defined or specialized. 891 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 892 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 893 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 894 PrevClassTemplate 895 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 896 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 897 PrevClassTemplate 898 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 899 ->getSpecializedTemplate(); 900 } 901 } 902 903 if (TUK == TUK_Friend) { 904 // C++ [namespace.memdef]p3: 905 // [...] When looking for a prior declaration of a class or a function 906 // declared as a friend, and when the name of the friend class or 907 // function is neither a qualified name nor a template-id, scopes outside 908 // the innermost enclosing namespace scope are not considered. 909 if (!SS.isSet()) { 910 DeclContext *OutermostContext = CurContext; 911 while (!OutermostContext->isFileContext()) 912 OutermostContext = OutermostContext->getLookupParent(); 913 914 if (PrevDecl && 915 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 916 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 917 SemanticContext = PrevDecl->getDeclContext(); 918 } else { 919 // Declarations in outer scopes don't matter. However, the outermost 920 // context we computed is the semantic context for our new 921 // declaration. 922 PrevDecl = PrevClassTemplate = 0; 923 SemanticContext = OutermostContext; 924 } 925 } 926 927 if (CurContext->isDependentContext()) { 928 // If this is a dependent context, we don't want to link the friend 929 // class template to the template in scope, because that would perform 930 // checking of the template parameter lists that can't be performed 931 // until the outer context is instantiated. 932 PrevDecl = PrevClassTemplate = 0; 933 } 934 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 935 PrevDecl = PrevClassTemplate = 0; 936 937 if (PrevClassTemplate) { 938 // Ensure that the template parameter lists are compatible. 939 if (!TemplateParameterListsAreEqual(TemplateParams, 940 PrevClassTemplate->getTemplateParameters(), 941 /*Complain=*/true, 942 TPL_TemplateMatch)) 943 return true; 944 945 // C++ [temp.class]p4: 946 // In a redeclaration, partial specialization, explicit 947 // specialization or explicit instantiation of a class template, 948 // the class-key shall agree in kind with the original class 949 // template declaration (7.1.5.3). 950 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 951 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, 952 TUK == TUK_Definition, KWLoc, *Name)) { 953 Diag(KWLoc, diag::err_use_with_wrong_tag) 954 << Name 955 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 956 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 957 Kind = PrevRecordDecl->getTagKind(); 958 } 959 960 // Check for redefinition of this class template. 961 if (TUK == TUK_Definition) { 962 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 963 Diag(NameLoc, diag::err_redefinition) << Name; 964 Diag(Def->getLocation(), diag::note_previous_definition); 965 // FIXME: Would it make sense to try to "forget" the previous 966 // definition, as part of error recovery? 967 return true; 968 } 969 } 970 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 971 // Maybe we will complain about the shadowed template parameter. 972 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 973 // Just pretend that we didn't see the previous declaration. 974 PrevDecl = 0; 975 } else if (PrevDecl) { 976 // C++ [temp]p5: 977 // A class template shall not have the same name as any other 978 // template, class, function, object, enumeration, enumerator, 979 // namespace, or type in the same scope (3.3), except as specified 980 // in (14.5.4). 981 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 982 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 983 return true; 984 } 985 986 // Check the template parameter list of this declaration, possibly 987 // merging in the template parameter list from the previous class 988 // template declaration. 989 if (CheckTemplateParameterList(TemplateParams, 990 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 991 (SS.isSet() && SemanticContext && 992 SemanticContext->isRecord() && 993 SemanticContext->isDependentContext()) 994 ? TPC_ClassTemplateMember 995 : TPC_ClassTemplate)) 996 Invalid = true; 997 998 if (SS.isSet()) { 999 // If the name of the template was qualified, we must be defining the 1000 // template out-of-line. 1001 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate && 1002 !(TUK == TUK_Friend && CurContext->isDependentContext())) { 1003 Diag(NameLoc, diag::err_member_def_does_not_match) 1004 << Name << SemanticContext << SS.getRange(); 1005 Invalid = true; 1006 } 1007 } 1008 1009 CXXRecordDecl *NewClass = 1010 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 1011 PrevClassTemplate? 1012 PrevClassTemplate->getTemplatedDecl() : 0, 1013 /*DelayTypeCreation=*/true); 1014 SetNestedNameSpecifier(NewClass, SS); 1015 if (NumOuterTemplateParamLists > 0) 1016 NewClass->setTemplateParameterListsInfo(Context, 1017 NumOuterTemplateParamLists, 1018 OuterTemplateParamLists); 1019 1020 ClassTemplateDecl *NewTemplate 1021 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 1022 DeclarationName(Name), TemplateParams, 1023 NewClass, PrevClassTemplate); 1024 NewClass->setDescribedClassTemplate(NewTemplate); 1025 1026 if (ModulePrivateLoc.isValid()) 1027 NewTemplate->setModulePrivate(); 1028 1029 // Build the type for the class template declaration now. 1030 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 1031 T = Context.getInjectedClassNameType(NewClass, T); 1032 assert(T->isDependentType() && "Class template type is not dependent?"); 1033 (void)T; 1034 1035 // If we are providing an explicit specialization of a member that is a 1036 // class template, make a note of that. 1037 if (PrevClassTemplate && 1038 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 1039 PrevClassTemplate->setMemberSpecialization(); 1040 1041 // Set the access specifier. 1042 if (!Invalid && TUK != TUK_Friend) 1043 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 1044 1045 // Set the lexical context of these templates 1046 NewClass->setLexicalDeclContext(CurContext); 1047 NewTemplate->setLexicalDeclContext(CurContext); 1048 1049 if (TUK == TUK_Definition) 1050 NewClass->startDefinition(); 1051 1052 if (Attr) 1053 ProcessDeclAttributeList(S, NewClass, Attr); 1054 1055 if (TUK != TUK_Friend) 1056 PushOnScopeChains(NewTemplate, S); 1057 else { 1058 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1059 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1060 NewClass->setAccess(PrevClassTemplate->getAccess()); 1061 } 1062 1063 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 1064 PrevClassTemplate != NULL); 1065 1066 // Friend templates are visible in fairly strange ways. 1067 if (!CurContext->isDependentContext()) { 1068 DeclContext *DC = SemanticContext->getRedeclContext(); 1069 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 1070 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1071 PushOnScopeChains(NewTemplate, EnclosingScope, 1072 /* AddToContext = */ false); 1073 } 1074 1075 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 1076 NewClass->getLocation(), 1077 NewTemplate, 1078 /*FIXME:*/NewClass->getLocation()); 1079 Friend->setAccess(AS_public); 1080 CurContext->addDecl(Friend); 1081 } 1082 1083 if (Invalid) { 1084 NewTemplate->setInvalidDecl(); 1085 NewClass->setInvalidDecl(); 1086 } 1087 return NewTemplate; 1088} 1089 1090/// \brief Diagnose the presence of a default template argument on a 1091/// template parameter, which is ill-formed in certain contexts. 1092/// 1093/// \returns true if the default template argument should be dropped. 1094static bool DiagnoseDefaultTemplateArgument(Sema &S, 1095 Sema::TemplateParamListContext TPC, 1096 SourceLocation ParamLoc, 1097 SourceRange DefArgRange) { 1098 switch (TPC) { 1099 case Sema::TPC_ClassTemplate: 1100 case Sema::TPC_TypeAliasTemplate: 1101 return false; 1102 1103 case Sema::TPC_FunctionTemplate: 1104 case Sema::TPC_FriendFunctionTemplateDefinition: 1105 // C++ [temp.param]p9: 1106 // A default template-argument shall not be specified in a 1107 // function template declaration or a function template 1108 // definition [...] 1109 // If a friend function template declaration specifies a default 1110 // template-argument, that declaration shall be a definition and shall be 1111 // the only declaration of the function template in the translation unit. 1112 // (C++98/03 doesn't have this wording; see DR226). 1113 S.Diag(ParamLoc, S.getLangOptions().CPlusPlus0x ? 1114 diag::warn_cxx98_compat_template_parameter_default_in_function_template 1115 : diag::ext_template_parameter_default_in_function_template) 1116 << DefArgRange; 1117 return false; 1118 1119 case Sema::TPC_ClassTemplateMember: 1120 // C++0x [temp.param]p9: 1121 // A default template-argument shall not be specified in the 1122 // template-parameter-lists of the definition of a member of a 1123 // class template that appears outside of the member's class. 1124 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1125 << DefArgRange; 1126 return true; 1127 1128 case Sema::TPC_FriendFunctionTemplate: 1129 // C++ [temp.param]p9: 1130 // A default template-argument shall not be specified in a 1131 // friend template declaration. 1132 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1133 << DefArgRange; 1134 return true; 1135 1136 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1137 // for friend function templates if there is only a single 1138 // declaration (and it is a definition). Strange! 1139 } 1140 1141 llvm_unreachable("Invalid TemplateParamListContext!"); 1142} 1143 1144/// \brief Check for unexpanded parameter packs within the template parameters 1145/// of a template template parameter, recursively. 1146static bool DiagnoseUnexpandedParameterPacks(Sema &S, 1147 TemplateTemplateParmDecl *TTP) { 1148 TemplateParameterList *Params = TTP->getTemplateParameters(); 1149 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 1150 NamedDecl *P = Params->getParam(I); 1151 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 1152 if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 1153 NTTP->getTypeSourceInfo(), 1154 Sema::UPPC_NonTypeTemplateParameterType)) 1155 return true; 1156 1157 continue; 1158 } 1159 1160 if (TemplateTemplateParmDecl *InnerTTP 1161 = dyn_cast<TemplateTemplateParmDecl>(P)) 1162 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 1163 return true; 1164 } 1165 1166 return false; 1167} 1168 1169/// \brief Checks the validity of a template parameter list, possibly 1170/// considering the template parameter list from a previous 1171/// declaration. 1172/// 1173/// If an "old" template parameter list is provided, it must be 1174/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1175/// template parameter list. 1176/// 1177/// \param NewParams Template parameter list for a new template 1178/// declaration. This template parameter list will be updated with any 1179/// default arguments that are carried through from the previous 1180/// template parameter list. 1181/// 1182/// \param OldParams If provided, template parameter list from a 1183/// previous declaration of the same template. Default template 1184/// arguments will be merged from the old template parameter list to 1185/// the new template parameter list. 1186/// 1187/// \param TPC Describes the context in which we are checking the given 1188/// template parameter list. 1189/// 1190/// \returns true if an error occurred, false otherwise. 1191bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1192 TemplateParameterList *OldParams, 1193 TemplateParamListContext TPC) { 1194 bool Invalid = false; 1195 1196 // C++ [temp.param]p10: 1197 // The set of default template-arguments available for use with a 1198 // template declaration or definition is obtained by merging the 1199 // default arguments from the definition (if in scope) and all 1200 // declarations in scope in the same way default function 1201 // arguments are (8.3.6). 1202 bool SawDefaultArgument = false; 1203 SourceLocation PreviousDefaultArgLoc; 1204 1205 // Dummy initialization to avoid warnings. 1206 TemplateParameterList::iterator OldParam = NewParams->end(); 1207 if (OldParams) 1208 OldParam = OldParams->begin(); 1209 1210 bool RemoveDefaultArguments = false; 1211 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1212 NewParamEnd = NewParams->end(); 1213 NewParam != NewParamEnd; ++NewParam) { 1214 // Variables used to diagnose redundant default arguments 1215 bool RedundantDefaultArg = false; 1216 SourceLocation OldDefaultLoc; 1217 SourceLocation NewDefaultLoc; 1218 1219 // Variable used to diagnose missing default arguments 1220 bool MissingDefaultArg = false; 1221 1222 // Variable used to diagnose non-final parameter packs 1223 bool SawParameterPack = false; 1224 1225 if (TemplateTypeParmDecl *NewTypeParm 1226 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1227 // Check the presence of a default argument here. 1228 if (NewTypeParm->hasDefaultArgument() && 1229 DiagnoseDefaultTemplateArgument(*this, TPC, 1230 NewTypeParm->getLocation(), 1231 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1232 .getSourceRange())) 1233 NewTypeParm->removeDefaultArgument(); 1234 1235 // Merge default arguments for template type parameters. 1236 TemplateTypeParmDecl *OldTypeParm 1237 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1238 1239 if (NewTypeParm->isParameterPack()) { 1240 assert(!NewTypeParm->hasDefaultArgument() && 1241 "Parameter packs can't have a default argument!"); 1242 SawParameterPack = true; 1243 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1244 NewTypeParm->hasDefaultArgument()) { 1245 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1246 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1247 SawDefaultArgument = true; 1248 RedundantDefaultArg = true; 1249 PreviousDefaultArgLoc = NewDefaultLoc; 1250 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1251 // Merge the default argument from the old declaration to the 1252 // new declaration. 1253 SawDefaultArgument = true; 1254 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1255 true); 1256 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1257 } else if (NewTypeParm->hasDefaultArgument()) { 1258 SawDefaultArgument = true; 1259 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1260 } else if (SawDefaultArgument) 1261 MissingDefaultArg = true; 1262 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1263 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1264 // Check for unexpanded parameter packs. 1265 if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 1266 NewNonTypeParm->getTypeSourceInfo(), 1267 UPPC_NonTypeTemplateParameterType)) { 1268 Invalid = true; 1269 continue; 1270 } 1271 1272 // Check the presence of a default argument here. 1273 if (NewNonTypeParm->hasDefaultArgument() && 1274 DiagnoseDefaultTemplateArgument(*this, TPC, 1275 NewNonTypeParm->getLocation(), 1276 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1277 NewNonTypeParm->removeDefaultArgument(); 1278 } 1279 1280 // Merge default arguments for non-type template parameters 1281 NonTypeTemplateParmDecl *OldNonTypeParm 1282 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1283 if (NewNonTypeParm->isParameterPack()) { 1284 assert(!NewNonTypeParm->hasDefaultArgument() && 1285 "Parameter packs can't have a default argument!"); 1286 SawParameterPack = true; 1287 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1288 NewNonTypeParm->hasDefaultArgument()) { 1289 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1290 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1291 SawDefaultArgument = true; 1292 RedundantDefaultArg = true; 1293 PreviousDefaultArgLoc = NewDefaultLoc; 1294 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1295 // Merge the default argument from the old declaration to the 1296 // new declaration. 1297 SawDefaultArgument = true; 1298 // FIXME: We need to create a new kind of "default argument" 1299 // expression that points to a previous non-type template 1300 // parameter. 1301 NewNonTypeParm->setDefaultArgument( 1302 OldNonTypeParm->getDefaultArgument(), 1303 /*Inherited=*/ true); 1304 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1305 } else if (NewNonTypeParm->hasDefaultArgument()) { 1306 SawDefaultArgument = true; 1307 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1308 } else if (SawDefaultArgument) 1309 MissingDefaultArg = true; 1310 } else { 1311 TemplateTemplateParmDecl *NewTemplateParm 1312 = cast<TemplateTemplateParmDecl>(*NewParam); 1313 1314 // Check for unexpanded parameter packs, recursively. 1315 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 1316 Invalid = true; 1317 continue; 1318 } 1319 1320 // Check the presence of a default argument here. 1321 if (NewTemplateParm->hasDefaultArgument() && 1322 DiagnoseDefaultTemplateArgument(*this, TPC, 1323 NewTemplateParm->getLocation(), 1324 NewTemplateParm->getDefaultArgument().getSourceRange())) 1325 NewTemplateParm->removeDefaultArgument(); 1326 1327 // Merge default arguments for template template parameters 1328 TemplateTemplateParmDecl *OldTemplateParm 1329 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1330 if (NewTemplateParm->isParameterPack()) { 1331 assert(!NewTemplateParm->hasDefaultArgument() && 1332 "Parameter packs can't have a default argument!"); 1333 SawParameterPack = true; 1334 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1335 NewTemplateParm->hasDefaultArgument()) { 1336 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1337 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1338 SawDefaultArgument = true; 1339 RedundantDefaultArg = true; 1340 PreviousDefaultArgLoc = NewDefaultLoc; 1341 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1342 // Merge the default argument from the old declaration to the 1343 // new declaration. 1344 SawDefaultArgument = true; 1345 // FIXME: We need to create a new kind of "default argument" expression 1346 // that points to a previous template template parameter. 1347 NewTemplateParm->setDefaultArgument( 1348 OldTemplateParm->getDefaultArgument(), 1349 /*Inherited=*/ true); 1350 PreviousDefaultArgLoc 1351 = OldTemplateParm->getDefaultArgument().getLocation(); 1352 } else if (NewTemplateParm->hasDefaultArgument()) { 1353 SawDefaultArgument = true; 1354 PreviousDefaultArgLoc 1355 = NewTemplateParm->getDefaultArgument().getLocation(); 1356 } else if (SawDefaultArgument) 1357 MissingDefaultArg = true; 1358 } 1359 1360 // C++0x [temp.param]p11: 1361 // If a template parameter of a primary class template or alias template 1362 // is a template parameter pack, it shall be the last template parameter. 1363 if (SawParameterPack && (NewParam + 1) != NewParamEnd && 1364 (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) { 1365 Diag((*NewParam)->getLocation(), 1366 diag::err_template_param_pack_must_be_last_template_parameter); 1367 Invalid = true; 1368 } 1369 1370 if (RedundantDefaultArg) { 1371 // C++ [temp.param]p12: 1372 // A template-parameter shall not be given default arguments 1373 // by two different declarations in the same scope. 1374 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1375 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1376 Invalid = true; 1377 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 1378 // C++ [temp.param]p11: 1379 // If a template-parameter of a class template has a default 1380 // template-argument, each subsequent template-parameter shall either 1381 // have a default template-argument supplied or be a template parameter 1382 // pack. 1383 Diag((*NewParam)->getLocation(), 1384 diag::err_template_param_default_arg_missing); 1385 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1386 Invalid = true; 1387 RemoveDefaultArguments = true; 1388 } 1389 1390 // If we have an old template parameter list that we're merging 1391 // in, move on to the next parameter. 1392 if (OldParams) 1393 ++OldParam; 1394 } 1395 1396 // We were missing some default arguments at the end of the list, so remove 1397 // all of the default arguments. 1398 if (RemoveDefaultArguments) { 1399 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1400 NewParamEnd = NewParams->end(); 1401 NewParam != NewParamEnd; ++NewParam) { 1402 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 1403 TTP->removeDefaultArgument(); 1404 else if (NonTypeTemplateParmDecl *NTTP 1405 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 1406 NTTP->removeDefaultArgument(); 1407 else 1408 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 1409 } 1410 } 1411 1412 return Invalid; 1413} 1414 1415namespace { 1416 1417/// A class which looks for a use of a certain level of template 1418/// parameter. 1419struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 1420 typedef RecursiveASTVisitor<DependencyChecker> super; 1421 1422 unsigned Depth; 1423 bool Match; 1424 1425 DependencyChecker(TemplateParameterList *Params) : Match(false) { 1426 NamedDecl *ND = Params->getParam(0); 1427 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 1428 Depth = PD->getDepth(); 1429 } else if (NonTypeTemplateParmDecl *PD = 1430 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 1431 Depth = PD->getDepth(); 1432 } else { 1433 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 1434 } 1435 } 1436 1437 bool Matches(unsigned ParmDepth) { 1438 if (ParmDepth >= Depth) { 1439 Match = true; 1440 return true; 1441 } 1442 return false; 1443 } 1444 1445 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 1446 return !Matches(T->getDepth()); 1447 } 1448 1449 bool TraverseTemplateName(TemplateName N) { 1450 if (TemplateTemplateParmDecl *PD = 1451 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 1452 if (Matches(PD->getDepth())) return false; 1453 return super::TraverseTemplateName(N); 1454 } 1455 1456 bool VisitDeclRefExpr(DeclRefExpr *E) { 1457 if (NonTypeTemplateParmDecl *PD = 1458 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) { 1459 if (PD->getDepth() == Depth) { 1460 Match = true; 1461 return false; 1462 } 1463 } 1464 return super::VisitDeclRefExpr(E); 1465 } 1466 1467 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 1468 return TraverseType(T->getInjectedSpecializationType()); 1469 } 1470}; 1471} 1472 1473/// Determines whether a given type depends on the given parameter 1474/// list. 1475static bool 1476DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 1477 DependencyChecker Checker(Params); 1478 Checker.TraverseType(T); 1479 return Checker.Match; 1480} 1481 1482// Find the source range corresponding to the named type in the given 1483// nested-name-specifier, if any. 1484static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 1485 QualType T, 1486 const CXXScopeSpec &SS) { 1487 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 1488 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 1489 if (const Type *CurType = NNS->getAsType()) { 1490 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 1491 return NNSLoc.getTypeLoc().getSourceRange(); 1492 } else 1493 break; 1494 1495 NNSLoc = NNSLoc.getPrefix(); 1496 } 1497 1498 return SourceRange(); 1499} 1500 1501/// \brief Match the given template parameter lists to the given scope 1502/// specifier, returning the template parameter list that applies to the 1503/// name. 1504/// 1505/// \param DeclStartLoc the start of the declaration that has a scope 1506/// specifier or a template parameter list. 1507/// 1508/// \param DeclLoc The location of the declaration itself. 1509/// 1510/// \param SS the scope specifier that will be matched to the given template 1511/// parameter lists. This scope specifier precedes a qualified name that is 1512/// being declared. 1513/// 1514/// \param ParamLists the template parameter lists, from the outermost to the 1515/// innermost template parameter lists. 1516/// 1517/// \param NumParamLists the number of template parameter lists in ParamLists. 1518/// 1519/// \param IsFriend Whether to apply the slightly different rules for 1520/// matching template parameters to scope specifiers in friend 1521/// declarations. 1522/// 1523/// \param IsExplicitSpecialization will be set true if the entity being 1524/// declared is an explicit specialization, false otherwise. 1525/// 1526/// \returns the template parameter list, if any, that corresponds to the 1527/// name that is preceded by the scope specifier @p SS. This template 1528/// parameter list may have template parameters (if we're declaring a 1529/// template) or may have no template parameters (if we're declaring a 1530/// template specialization), or may be NULL (if what we're declaring isn't 1531/// itself a template). 1532TemplateParameterList * 1533Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1534 SourceLocation DeclLoc, 1535 const CXXScopeSpec &SS, 1536 TemplateParameterList **ParamLists, 1537 unsigned NumParamLists, 1538 bool IsFriend, 1539 bool &IsExplicitSpecialization, 1540 bool &Invalid) { 1541 IsExplicitSpecialization = false; 1542 Invalid = false; 1543 1544 // The sequence of nested types to which we will match up the template 1545 // parameter lists. We first build this list by starting with the type named 1546 // by the nested-name-specifier and walking out until we run out of types. 1547 SmallVector<QualType, 4> NestedTypes; 1548 QualType T; 1549 if (SS.getScopeRep()) { 1550 if (CXXRecordDecl *Record 1551 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 1552 T = Context.getTypeDeclType(Record); 1553 else 1554 T = QualType(SS.getScopeRep()->getAsType(), 0); 1555 } 1556 1557 // If we found an explicit specialization that prevents us from needing 1558 // 'template<>' headers, this will be set to the location of that 1559 // explicit specialization. 1560 SourceLocation ExplicitSpecLoc; 1561 1562 while (!T.isNull()) { 1563 NestedTypes.push_back(T); 1564 1565 // Retrieve the parent of a record type. 1566 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1567 // If this type is an explicit specialization, we're done. 1568 if (ClassTemplateSpecializationDecl *Spec 1569 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1570 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 1571 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 1572 ExplicitSpecLoc = Spec->getLocation(); 1573 break; 1574 } 1575 } else if (Record->getTemplateSpecializationKind() 1576 == TSK_ExplicitSpecialization) { 1577 ExplicitSpecLoc = Record->getLocation(); 1578 break; 1579 } 1580 1581 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 1582 T = Context.getTypeDeclType(Parent); 1583 else 1584 T = QualType(); 1585 continue; 1586 } 1587 1588 if (const TemplateSpecializationType *TST 1589 = T->getAs<TemplateSpecializationType>()) { 1590 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1591 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 1592 T = Context.getTypeDeclType(Parent); 1593 else 1594 T = QualType(); 1595 continue; 1596 } 1597 } 1598 1599 // Look one step prior in a dependent template specialization type. 1600 if (const DependentTemplateSpecializationType *DependentTST 1601 = T->getAs<DependentTemplateSpecializationType>()) { 1602 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 1603 T = QualType(NNS->getAsType(), 0); 1604 else 1605 T = QualType(); 1606 continue; 1607 } 1608 1609 // Look one step prior in a dependent name type. 1610 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 1611 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 1612 T = QualType(NNS->getAsType(), 0); 1613 else 1614 T = QualType(); 1615 continue; 1616 } 1617 1618 // Retrieve the parent of an enumeration type. 1619 if (const EnumType *EnumT = T->getAs<EnumType>()) { 1620 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 1621 // check here. 1622 EnumDecl *Enum = EnumT->getDecl(); 1623 1624 // Get to the parent type. 1625 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 1626 T = Context.getTypeDeclType(Parent); 1627 else 1628 T = QualType(); 1629 continue; 1630 } 1631 1632 T = QualType(); 1633 } 1634 // Reverse the nested types list, since we want to traverse from the outermost 1635 // to the innermost while checking template-parameter-lists. 1636 std::reverse(NestedTypes.begin(), NestedTypes.end()); 1637 1638 // C++0x [temp.expl.spec]p17: 1639 // A member or a member template may be nested within many 1640 // enclosing class templates. In an explicit specialization for 1641 // such a member, the member declaration shall be preceded by a 1642 // template<> for each enclosing class template that is 1643 // explicitly specialized. 1644 bool SawNonEmptyTemplateParameterList = false; 1645 unsigned ParamIdx = 0; 1646 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 1647 ++TypeIdx) { 1648 T = NestedTypes[TypeIdx]; 1649 1650 // Whether we expect a 'template<>' header. 1651 bool NeedEmptyTemplateHeader = false; 1652 1653 // Whether we expect a template header with parameters. 1654 bool NeedNonemptyTemplateHeader = false; 1655 1656 // For a dependent type, the set of template parameters that we 1657 // expect to see. 1658 TemplateParameterList *ExpectedTemplateParams = 0; 1659 1660 // C++0x [temp.expl.spec]p15: 1661 // A member or a member template may be nested within many enclosing 1662 // class templates. In an explicit specialization for such a member, the 1663 // member declaration shall be preceded by a template<> for each 1664 // enclosing class template that is explicitly specialized. 1665 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1666 if (ClassTemplatePartialSpecializationDecl *Partial 1667 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 1668 ExpectedTemplateParams = Partial->getTemplateParameters(); 1669 NeedNonemptyTemplateHeader = true; 1670 } else if (Record->isDependentType()) { 1671 if (Record->getDescribedClassTemplate()) { 1672 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1673 ->getTemplateParameters(); 1674 NeedNonemptyTemplateHeader = true; 1675 } 1676 } else if (ClassTemplateSpecializationDecl *Spec 1677 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1678 // C++0x [temp.expl.spec]p4: 1679 // Members of an explicitly specialized class template are defined 1680 // in the same manner as members of normal classes, and not using 1681 // the template<> syntax. 1682 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 1683 NeedEmptyTemplateHeader = true; 1684 else 1685 continue; 1686 } else if (Record->getTemplateSpecializationKind()) { 1687 if (Record->getTemplateSpecializationKind() 1688 != TSK_ExplicitSpecialization && 1689 TypeIdx == NumTypes - 1) 1690 IsExplicitSpecialization = true; 1691 1692 continue; 1693 } 1694 } else if (const TemplateSpecializationType *TST 1695 = T->getAs<TemplateSpecializationType>()) { 1696 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1697 ExpectedTemplateParams = Template->getTemplateParameters(); 1698 NeedNonemptyTemplateHeader = true; 1699 } 1700 } else if (T->getAs<DependentTemplateSpecializationType>()) { 1701 // FIXME: We actually could/should check the template arguments here 1702 // against the corresponding template parameter list. 1703 NeedNonemptyTemplateHeader = false; 1704 } 1705 1706 // C++ [temp.expl.spec]p16: 1707 // In an explicit specialization declaration for a member of a class 1708 // template or a member template that ap- pears in namespace scope, the 1709 // member template and some of its enclosing class templates may remain 1710 // unspecialized, except that the declaration shall not explicitly 1711 // specialize a class member template if its en- closing class templates 1712 // are not explicitly specialized as well. 1713 if (ParamIdx < NumParamLists) { 1714 if (ParamLists[ParamIdx]->size() == 0) { 1715 if (SawNonEmptyTemplateParameterList) { 1716 Diag(DeclLoc, diag::err_specialize_member_of_template) 1717 << ParamLists[ParamIdx]->getSourceRange(); 1718 Invalid = true; 1719 IsExplicitSpecialization = false; 1720 return 0; 1721 } 1722 } else 1723 SawNonEmptyTemplateParameterList = true; 1724 } 1725 1726 if (NeedEmptyTemplateHeader) { 1727 // If we're on the last of the types, and we need a 'template<>' header 1728 // here, then it's an explicit specialization. 1729 if (TypeIdx == NumTypes - 1) 1730 IsExplicitSpecialization = true; 1731 1732 if (ParamIdx < NumParamLists) { 1733 if (ParamLists[ParamIdx]->size() > 0) { 1734 // The header has template parameters when it shouldn't. Complain. 1735 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1736 diag::err_template_param_list_matches_nontemplate) 1737 << T 1738 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 1739 ParamLists[ParamIdx]->getRAngleLoc()) 1740 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1741 Invalid = true; 1742 return 0; 1743 } 1744 1745 // Consume this template header. 1746 ++ParamIdx; 1747 continue; 1748 } 1749 1750 if (!IsFriend) { 1751 // We don't have a template header, but we should. 1752 SourceLocation ExpectedTemplateLoc; 1753 if (NumParamLists > 0) 1754 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 1755 else 1756 ExpectedTemplateLoc = DeclStartLoc; 1757 1758 Diag(DeclLoc, diag::err_template_spec_needs_header) 1759 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS) 1760 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 1761 } 1762 1763 continue; 1764 } 1765 1766 if (NeedNonemptyTemplateHeader) { 1767 // In friend declarations we can have template-ids which don't 1768 // depend on the corresponding template parameter lists. But 1769 // assume that empty parameter lists are supposed to match this 1770 // template-id. 1771 if (IsFriend && T->isDependentType()) { 1772 if (ParamIdx < NumParamLists && 1773 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 1774 ExpectedTemplateParams = 0; 1775 else 1776 continue; 1777 } 1778 1779 if (ParamIdx < NumParamLists) { 1780 // Check the template parameter list, if we can. 1781 if (ExpectedTemplateParams && 1782 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 1783 ExpectedTemplateParams, 1784 true, TPL_TemplateMatch)) 1785 Invalid = true; 1786 1787 if (!Invalid && 1788 CheckTemplateParameterList(ParamLists[ParamIdx], 0, 1789 TPC_ClassTemplateMember)) 1790 Invalid = true; 1791 1792 ++ParamIdx; 1793 continue; 1794 } 1795 1796 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 1797 << T 1798 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1799 Invalid = true; 1800 continue; 1801 } 1802 } 1803 1804 // If there were at least as many template-ids as there were template 1805 // parameter lists, then there are no template parameter lists remaining for 1806 // the declaration itself. 1807 if (ParamIdx >= NumParamLists) 1808 return 0; 1809 1810 // If there were too many template parameter lists, complain about that now. 1811 if (ParamIdx < NumParamLists - 1) { 1812 bool HasAnyExplicitSpecHeader = false; 1813 bool AllExplicitSpecHeaders = true; 1814 for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) { 1815 if (ParamLists[I]->size() == 0) 1816 HasAnyExplicitSpecHeader = true; 1817 else 1818 AllExplicitSpecHeaders = false; 1819 } 1820 1821 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1822 AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers 1823 : diag::err_template_spec_extra_headers) 1824 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 1825 ParamLists[NumParamLists - 2]->getRAngleLoc()); 1826 1827 // If there was a specialization somewhere, such that 'template<>' is 1828 // not required, and there were any 'template<>' headers, note where the 1829 // specialization occurred. 1830 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader) 1831 Diag(ExplicitSpecLoc, 1832 diag::note_explicit_template_spec_does_not_need_header) 1833 << NestedTypes.back(); 1834 1835 // We have a template parameter list with no corresponding scope, which 1836 // means that the resulting template declaration can't be instantiated 1837 // properly (we'll end up with dependent nodes when we shouldn't). 1838 if (!AllExplicitSpecHeaders) 1839 Invalid = true; 1840 } 1841 1842 // C++ [temp.expl.spec]p16: 1843 // In an explicit specialization declaration for a member of a class 1844 // template or a member template that ap- pears in namespace scope, the 1845 // member template and some of its enclosing class templates may remain 1846 // unspecialized, except that the declaration shall not explicitly 1847 // specialize a class member template if its en- closing class templates 1848 // are not explicitly specialized as well. 1849 if (ParamLists[NumParamLists - 1]->size() == 0 && 1850 SawNonEmptyTemplateParameterList) { 1851 Diag(DeclLoc, diag::err_specialize_member_of_template) 1852 << ParamLists[ParamIdx]->getSourceRange(); 1853 Invalid = true; 1854 IsExplicitSpecialization = false; 1855 return 0; 1856 } 1857 1858 // Return the last template parameter list, which corresponds to the 1859 // entity being declared. 1860 return ParamLists[NumParamLists - 1]; 1861} 1862 1863void Sema::NoteAllFoundTemplates(TemplateName Name) { 1864 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 1865 Diag(Template->getLocation(), diag::note_template_declared_here) 1866 << (isa<FunctionTemplateDecl>(Template)? 0 1867 : isa<ClassTemplateDecl>(Template)? 1 1868 : isa<TypeAliasTemplateDecl>(Template)? 2 1869 : 3) 1870 << Template->getDeclName(); 1871 return; 1872 } 1873 1874 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 1875 for (OverloadedTemplateStorage::iterator I = OST->begin(), 1876 IEnd = OST->end(); 1877 I != IEnd; ++I) 1878 Diag((*I)->getLocation(), diag::note_template_declared_here) 1879 << 0 << (*I)->getDeclName(); 1880 1881 return; 1882 } 1883} 1884 1885 1886QualType Sema::CheckTemplateIdType(TemplateName Name, 1887 SourceLocation TemplateLoc, 1888 TemplateArgumentListInfo &TemplateArgs) { 1889 DependentTemplateName *DTN 1890 = Name.getUnderlying().getAsDependentTemplateName(); 1891 if (DTN && DTN->isIdentifier()) 1892 // When building a template-id where the template-name is dependent, 1893 // assume the template is a type template. Either our assumption is 1894 // correct, or the code is ill-formed and will be diagnosed when the 1895 // dependent name is substituted. 1896 return Context.getDependentTemplateSpecializationType(ETK_None, 1897 DTN->getQualifier(), 1898 DTN->getIdentifier(), 1899 TemplateArgs); 1900 1901 TemplateDecl *Template = Name.getAsTemplateDecl(); 1902 if (!Template || isa<FunctionTemplateDecl>(Template)) { 1903 // We might have a substituted template template parameter pack. If so, 1904 // build a template specialization type for it. 1905 if (Name.getAsSubstTemplateTemplateParmPack()) 1906 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1907 1908 Diag(TemplateLoc, diag::err_template_id_not_a_type) 1909 << Name; 1910 NoteAllFoundTemplates(Name); 1911 return QualType(); 1912 } 1913 1914 // Check that the template argument list is well-formed for this 1915 // template. 1916 SmallVector<TemplateArgument, 4> Converted; 1917 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1918 false, Converted)) 1919 return QualType(); 1920 1921 assert((Converted.size() == Template->getTemplateParameters()->size()) && 1922 "Converted template argument list is too short!"); 1923 1924 QualType CanonType; 1925 1926 bool InstantiationDependent = false; 1927 if (TypeAliasTemplateDecl *AliasTemplate 1928 = dyn_cast<TypeAliasTemplateDecl>(Template)) { 1929 // Find the canonical type for this type alias template specialization. 1930 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 1931 if (Pattern->isInvalidDecl()) 1932 return QualType(); 1933 1934 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 1935 Converted.data(), Converted.size()); 1936 1937 // Only substitute for the innermost template argument list. 1938 MultiLevelTemplateArgumentList TemplateArgLists; 1939 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 1940 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth(); 1941 for (unsigned I = 0; I < Depth; ++I) 1942 TemplateArgLists.addOuterTemplateArguments(0, 0); 1943 1944 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 1945 CanonType = SubstType(Pattern->getUnderlyingType(), 1946 TemplateArgLists, AliasTemplate->getLocation(), 1947 AliasTemplate->getDeclName()); 1948 if (CanonType.isNull()) 1949 return QualType(); 1950 } else if (Name.isDependent() || 1951 TemplateSpecializationType::anyDependentTemplateArguments( 1952 TemplateArgs, InstantiationDependent)) { 1953 // This class template specialization is a dependent 1954 // type. Therefore, its canonical type is another class template 1955 // specialization type that contains all of the converted 1956 // arguments in canonical form. This ensures that, e.g., A<T> and 1957 // A<T, T> have identical types when A is declared as: 1958 // 1959 // template<typename T, typename U = T> struct A; 1960 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1961 CanonType = Context.getTemplateSpecializationType(CanonName, 1962 Converted.data(), 1963 Converted.size()); 1964 1965 // FIXME: CanonType is not actually the canonical type, and unfortunately 1966 // it is a TemplateSpecializationType that we will never use again. 1967 // In the future, we need to teach getTemplateSpecializationType to only 1968 // build the canonical type and return that to us. 1969 CanonType = Context.getCanonicalType(CanonType); 1970 1971 // This might work out to be a current instantiation, in which 1972 // case the canonical type needs to be the InjectedClassNameType. 1973 // 1974 // TODO: in theory this could be a simple hashtable lookup; most 1975 // changes to CurContext don't change the set of current 1976 // instantiations. 1977 if (isa<ClassTemplateDecl>(Template)) { 1978 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 1979 // If we get out to a namespace, we're done. 1980 if (Ctx->isFileContext()) break; 1981 1982 // If this isn't a record, keep looking. 1983 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 1984 if (!Record) continue; 1985 1986 // Look for one of the two cases with InjectedClassNameTypes 1987 // and check whether it's the same template. 1988 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 1989 !Record->getDescribedClassTemplate()) 1990 continue; 1991 1992 // Fetch the injected class name type and check whether its 1993 // injected type is equal to the type we just built. 1994 QualType ICNT = Context.getTypeDeclType(Record); 1995 QualType Injected = cast<InjectedClassNameType>(ICNT) 1996 ->getInjectedSpecializationType(); 1997 1998 if (CanonType != Injected->getCanonicalTypeInternal()) 1999 continue; 2000 2001 // If so, the canonical type of this TST is the injected 2002 // class name type of the record we just found. 2003 assert(ICNT.isCanonical()); 2004 CanonType = ICNT; 2005 break; 2006 } 2007 } 2008 } else if (ClassTemplateDecl *ClassTemplate 2009 = dyn_cast<ClassTemplateDecl>(Template)) { 2010 // Find the class template specialization declaration that 2011 // corresponds to these arguments. 2012 void *InsertPos = 0; 2013 ClassTemplateSpecializationDecl *Decl 2014 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(), 2015 InsertPos); 2016 if (!Decl) { 2017 // This is the first time we have referenced this class template 2018 // specialization. Create the canonical declaration and add it to 2019 // the set of specializations. 2020 Decl = ClassTemplateSpecializationDecl::Create(Context, 2021 ClassTemplate->getTemplatedDecl()->getTagKind(), 2022 ClassTemplate->getDeclContext(), 2023 ClassTemplate->getTemplatedDecl()->getLocStart(), 2024 ClassTemplate->getLocation(), 2025 ClassTemplate, 2026 Converted.data(), 2027 Converted.size(), 0); 2028 ClassTemplate->AddSpecialization(Decl, InsertPos); 2029 Decl->setLexicalDeclContext(CurContext); 2030 } 2031 2032 CanonType = Context.getTypeDeclType(Decl); 2033 assert(isa<RecordType>(CanonType) && 2034 "type of non-dependent specialization is not a RecordType"); 2035 } 2036 2037 // Build the fully-sugared type for this class template 2038 // specialization, which refers back to the class template 2039 // specialization we created or found. 2040 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 2041} 2042 2043TypeResult 2044Sema::ActOnTemplateIdType(CXXScopeSpec &SS, 2045 TemplateTy TemplateD, SourceLocation TemplateLoc, 2046 SourceLocation LAngleLoc, 2047 ASTTemplateArgsPtr TemplateArgsIn, 2048 SourceLocation RAngleLoc) { 2049 if (SS.isInvalid()) 2050 return true; 2051 2052 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2053 2054 // Translate the parser's template argument list in our AST format. 2055 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2056 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2057 2058 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2059 QualType T = Context.getDependentTemplateSpecializationType(ETK_None, 2060 DTN->getQualifier(), 2061 DTN->getIdentifier(), 2062 TemplateArgs); 2063 2064 // Build type-source information. 2065 TypeLocBuilder TLB; 2066 DependentTemplateSpecializationTypeLoc SpecTL 2067 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2068 SpecTL.setKeywordLoc(SourceLocation()); 2069 SpecTL.setNameLoc(TemplateLoc); 2070 SpecTL.setLAngleLoc(LAngleLoc); 2071 SpecTL.setRAngleLoc(RAngleLoc); 2072 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2073 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2074 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2075 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2076 } 2077 2078 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2079 TemplateArgsIn.release(); 2080 2081 if (Result.isNull()) 2082 return true; 2083 2084 // Build type-source information. 2085 TypeLocBuilder TLB; 2086 TemplateSpecializationTypeLoc SpecTL 2087 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2088 SpecTL.setTemplateNameLoc(TemplateLoc); 2089 SpecTL.setLAngleLoc(LAngleLoc); 2090 SpecTL.setRAngleLoc(RAngleLoc); 2091 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2092 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2093 2094 if (SS.isNotEmpty()) { 2095 // Create an elaborated-type-specifier containing the nested-name-specifier. 2096 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); 2097 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2098 ElabTL.setKeywordLoc(SourceLocation()); 2099 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2100 } 2101 2102 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2103} 2104 2105TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 2106 TypeSpecifierType TagSpec, 2107 SourceLocation TagLoc, 2108 CXXScopeSpec &SS, 2109 TemplateTy TemplateD, 2110 SourceLocation TemplateLoc, 2111 SourceLocation LAngleLoc, 2112 ASTTemplateArgsPtr TemplateArgsIn, 2113 SourceLocation RAngleLoc) { 2114 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2115 2116 // Translate the parser's template argument list in our AST format. 2117 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2118 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2119 2120 // Determine the tag kind 2121 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 2122 ElaboratedTypeKeyword Keyword 2123 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 2124 2125 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2126 QualType T = Context.getDependentTemplateSpecializationType(Keyword, 2127 DTN->getQualifier(), 2128 DTN->getIdentifier(), 2129 TemplateArgs); 2130 2131 // Build type-source information. 2132 TypeLocBuilder TLB; 2133 DependentTemplateSpecializationTypeLoc SpecTL 2134 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2135 SpecTL.setKeywordLoc(TagLoc); 2136 SpecTL.setNameLoc(TemplateLoc); 2137 SpecTL.setLAngleLoc(LAngleLoc); 2138 SpecTL.setRAngleLoc(RAngleLoc); 2139 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2140 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2141 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2142 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2143 } 2144 2145 if (TypeAliasTemplateDecl *TAT = 2146 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 2147 // C++0x [dcl.type.elab]p2: 2148 // If the identifier resolves to a typedef-name or the simple-template-id 2149 // resolves to an alias template specialization, the 2150 // elaborated-type-specifier is ill-formed. 2151 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4; 2152 Diag(TAT->getLocation(), diag::note_declared_at); 2153 } 2154 2155 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2156 if (Result.isNull()) 2157 return TypeResult(true); 2158 2159 // Check the tag kind 2160 if (const RecordType *RT = Result->getAs<RecordType>()) { 2161 RecordDecl *D = RT->getDecl(); 2162 2163 IdentifierInfo *Id = D->getIdentifier(); 2164 assert(Id && "templated class must have an identifier"); 2165 2166 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, 2167 TagLoc, *Id)) { 2168 Diag(TagLoc, diag::err_use_with_wrong_tag) 2169 << Result 2170 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 2171 Diag(D->getLocation(), diag::note_previous_use); 2172 } 2173 } 2174 2175 // Provide source-location information for the template specialization. 2176 TypeLocBuilder TLB; 2177 TemplateSpecializationTypeLoc SpecTL 2178 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2179 SpecTL.setTemplateNameLoc(TemplateLoc); 2180 SpecTL.setLAngleLoc(LAngleLoc); 2181 SpecTL.setRAngleLoc(RAngleLoc); 2182 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2183 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2184 2185 // Construct an elaborated type containing the nested-name-specifier (if any) 2186 // and keyword. 2187 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 2188 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2189 ElabTL.setKeywordLoc(TagLoc); 2190 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2191 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2192} 2193 2194ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 2195 LookupResult &R, 2196 bool RequiresADL, 2197 const TemplateArgumentListInfo &TemplateArgs) { 2198 // FIXME: Can we do any checking at this point? I guess we could check the 2199 // template arguments that we have against the template name, if the template 2200 // name refers to a single template. That's not a terribly common case, 2201 // though. 2202 // foo<int> could identify a single function unambiguously 2203 // This approach does NOT work, since f<int>(1); 2204 // gets resolved prior to resorting to overload resolution 2205 // i.e., template<class T> void f(double); 2206 // vs template<class T, class U> void f(U); 2207 2208 // These should be filtered out by our callers. 2209 assert(!R.empty() && "empty lookup results when building templateid"); 2210 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 2211 2212 // We don't want lookup warnings at this point. 2213 R.suppressDiagnostics(); 2214 2215 UnresolvedLookupExpr *ULE 2216 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 2217 SS.getWithLocInContext(Context), 2218 R.getLookupNameInfo(), 2219 RequiresADL, TemplateArgs, 2220 R.begin(), R.end()); 2221 2222 return Owned(ULE); 2223} 2224 2225// We actually only call this from template instantiation. 2226ExprResult 2227Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 2228 const DeclarationNameInfo &NameInfo, 2229 const TemplateArgumentListInfo &TemplateArgs) { 2230 DeclContext *DC; 2231 if (!(DC = computeDeclContext(SS, false)) || 2232 DC->isDependentContext() || 2233 RequireCompleteDeclContext(SS, DC)) 2234 return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs); 2235 2236 bool MemberOfUnknownSpecialization; 2237 LookupResult R(*this, NameInfo, LookupOrdinaryName); 2238 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 2239 MemberOfUnknownSpecialization); 2240 2241 if (R.isAmbiguous()) 2242 return ExprError(); 2243 2244 if (R.empty()) { 2245 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 2246 << NameInfo.getName() << SS.getRange(); 2247 return ExprError(); 2248 } 2249 2250 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 2251 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 2252 << (NestedNameSpecifier*) SS.getScopeRep() 2253 << NameInfo.getName() << SS.getRange(); 2254 Diag(Temp->getLocation(), diag::note_referenced_class_template); 2255 return ExprError(); 2256 } 2257 2258 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 2259} 2260 2261/// \brief Form a dependent template name. 2262/// 2263/// This action forms a dependent template name given the template 2264/// name and its (presumably dependent) scope specifier. For 2265/// example, given "MetaFun::template apply", the scope specifier \p 2266/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 2267/// of the "template" keyword, and "apply" is the \p Name. 2268TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 2269 SourceLocation TemplateKWLoc, 2270 CXXScopeSpec &SS, 2271 UnqualifiedId &Name, 2272 ParsedType ObjectType, 2273 bool EnteringContext, 2274 TemplateTy &Result) { 2275 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) 2276 Diag(TemplateKWLoc, 2277 getLangOptions().CPlusPlus0x ? 2278 diag::warn_cxx98_compat_template_outside_of_template : 2279 diag::ext_template_outside_of_template) 2280 << FixItHint::CreateRemoval(TemplateKWLoc); 2281 2282 DeclContext *LookupCtx = 0; 2283 if (SS.isSet()) 2284 LookupCtx = computeDeclContext(SS, EnteringContext); 2285 if (!LookupCtx && ObjectType) 2286 LookupCtx = computeDeclContext(ObjectType.get()); 2287 if (LookupCtx) { 2288 // C++0x [temp.names]p5: 2289 // If a name prefixed by the keyword template is not the name of 2290 // a template, the program is ill-formed. [Note: the keyword 2291 // template may not be applied to non-template members of class 2292 // templates. -end note ] [ Note: as is the case with the 2293 // typename prefix, the template prefix is allowed in cases 2294 // where it is not strictly necessary; i.e., when the 2295 // nested-name-specifier or the expression on the left of the -> 2296 // or . is not dependent on a template-parameter, or the use 2297 // does not appear in the scope of a template. -end note] 2298 // 2299 // Note: C++03 was more strict here, because it banned the use of 2300 // the "template" keyword prior to a template-name that was not a 2301 // dependent name. C++ DR468 relaxed this requirement (the 2302 // "template" keyword is now permitted). We follow the C++0x 2303 // rules, even in C++03 mode with a warning, retroactively applying the DR. 2304 bool MemberOfUnknownSpecialization; 2305 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name, 2306 ObjectType, EnteringContext, Result, 2307 MemberOfUnknownSpecialization); 2308 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 2309 isa<CXXRecordDecl>(LookupCtx) && 2310 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() || 2311 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) { 2312 // This is a dependent template. Handle it below. 2313 } else if (TNK == TNK_Non_template) { 2314 Diag(Name.getSourceRange().getBegin(), 2315 diag::err_template_kw_refers_to_non_template) 2316 << GetNameFromUnqualifiedId(Name).getName() 2317 << Name.getSourceRange() 2318 << TemplateKWLoc; 2319 return TNK_Non_template; 2320 } else { 2321 // We found something; return it. 2322 return TNK; 2323 } 2324 } 2325 2326 NestedNameSpecifier *Qualifier 2327 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 2328 2329 switch (Name.getKind()) { 2330 case UnqualifiedId::IK_Identifier: 2331 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2332 Name.Identifier)); 2333 return TNK_Dependent_template_name; 2334 2335 case UnqualifiedId::IK_OperatorFunctionId: 2336 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2337 Name.OperatorFunctionId.Operator)); 2338 return TNK_Dependent_template_name; 2339 2340 case UnqualifiedId::IK_LiteralOperatorId: 2341 llvm_unreachable( 2342 "We don't support these; Parse shouldn't have allowed propagation"); 2343 2344 default: 2345 break; 2346 } 2347 2348 Diag(Name.getSourceRange().getBegin(), 2349 diag::err_template_kw_refers_to_non_template) 2350 << GetNameFromUnqualifiedId(Name).getName() 2351 << Name.getSourceRange() 2352 << TemplateKWLoc; 2353 return TNK_Non_template; 2354} 2355 2356bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 2357 const TemplateArgumentLoc &AL, 2358 SmallVectorImpl<TemplateArgument> &Converted) { 2359 const TemplateArgument &Arg = AL.getArgument(); 2360 2361 // Check template type parameter. 2362 switch(Arg.getKind()) { 2363 case TemplateArgument::Type: 2364 // C++ [temp.arg.type]p1: 2365 // A template-argument for a template-parameter which is a 2366 // type shall be a type-id. 2367 break; 2368 case TemplateArgument::Template: { 2369 // We have a template type parameter but the template argument 2370 // is a template without any arguments. 2371 SourceRange SR = AL.getSourceRange(); 2372 TemplateName Name = Arg.getAsTemplate(); 2373 Diag(SR.getBegin(), diag::err_template_missing_args) 2374 << Name << SR; 2375 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 2376 Diag(Decl->getLocation(), diag::note_template_decl_here); 2377 2378 return true; 2379 } 2380 default: { 2381 // We have a template type parameter but the template argument 2382 // is not a type. 2383 SourceRange SR = AL.getSourceRange(); 2384 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 2385 Diag(Param->getLocation(), diag::note_template_param_here); 2386 2387 return true; 2388 } 2389 } 2390 2391 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 2392 return true; 2393 2394 // Add the converted template type argument. 2395 QualType ArgType = Context.getCanonicalType(Arg.getAsType()); 2396 2397 // Objective-C ARC: 2398 // If an explicitly-specified template argument type is a lifetime type 2399 // with no lifetime qualifier, the __strong lifetime qualifier is inferred. 2400 if (getLangOptions().ObjCAutoRefCount && 2401 ArgType->isObjCLifetimeType() && 2402 !ArgType.getObjCLifetime()) { 2403 Qualifiers Qs; 2404 Qs.setObjCLifetime(Qualifiers::OCL_Strong); 2405 ArgType = Context.getQualifiedType(ArgType, Qs); 2406 } 2407 2408 Converted.push_back(TemplateArgument(ArgType)); 2409 return false; 2410} 2411 2412/// \brief Substitute template arguments into the default template argument for 2413/// the given template type parameter. 2414/// 2415/// \param SemaRef the semantic analysis object for which we are performing 2416/// the substitution. 2417/// 2418/// \param Template the template that we are synthesizing template arguments 2419/// for. 2420/// 2421/// \param TemplateLoc the location of the template name that started the 2422/// template-id we are checking. 2423/// 2424/// \param RAngleLoc the location of the right angle bracket ('>') that 2425/// terminates the template-id. 2426/// 2427/// \param Param the template template parameter whose default we are 2428/// substituting into. 2429/// 2430/// \param Converted the list of template arguments provided for template 2431/// parameters that precede \p Param in the template parameter list. 2432/// \returns the substituted template argument, or NULL if an error occurred. 2433static TypeSourceInfo * 2434SubstDefaultTemplateArgument(Sema &SemaRef, 2435 TemplateDecl *Template, 2436 SourceLocation TemplateLoc, 2437 SourceLocation RAngleLoc, 2438 TemplateTypeParmDecl *Param, 2439 SmallVectorImpl<TemplateArgument> &Converted) { 2440 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 2441 2442 // If the argument type is dependent, instantiate it now based 2443 // on the previously-computed template arguments. 2444 if (ArgType->getType()->isDependentType()) { 2445 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2446 Converted.data(), Converted.size()); 2447 2448 MultiLevelTemplateArgumentList AllTemplateArgs 2449 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2450 2451 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2452 Template, Converted.data(), 2453 Converted.size(), 2454 SourceRange(TemplateLoc, RAngleLoc)); 2455 2456 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 2457 Param->getDefaultArgumentLoc(), 2458 Param->getDeclName()); 2459 } 2460 2461 return ArgType; 2462} 2463 2464/// \brief Substitute template arguments into the default template argument for 2465/// the given non-type template parameter. 2466/// 2467/// \param SemaRef the semantic analysis object for which we are performing 2468/// the substitution. 2469/// 2470/// \param Template the template that we are synthesizing template arguments 2471/// for. 2472/// 2473/// \param TemplateLoc the location of the template name that started the 2474/// template-id we are checking. 2475/// 2476/// \param RAngleLoc the location of the right angle bracket ('>') that 2477/// terminates the template-id. 2478/// 2479/// \param Param the non-type template parameter whose default we are 2480/// substituting into. 2481/// 2482/// \param Converted the list of template arguments provided for template 2483/// parameters that precede \p Param in the template parameter list. 2484/// 2485/// \returns the substituted template argument, or NULL if an error occurred. 2486static ExprResult 2487SubstDefaultTemplateArgument(Sema &SemaRef, 2488 TemplateDecl *Template, 2489 SourceLocation TemplateLoc, 2490 SourceLocation RAngleLoc, 2491 NonTypeTemplateParmDecl *Param, 2492 SmallVectorImpl<TemplateArgument> &Converted) { 2493 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2494 Converted.data(), Converted.size()); 2495 2496 MultiLevelTemplateArgumentList AllTemplateArgs 2497 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2498 2499 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2500 Template, Converted.data(), 2501 Converted.size(), 2502 SourceRange(TemplateLoc, RAngleLoc)); 2503 2504 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 2505} 2506 2507/// \brief Substitute template arguments into the default template argument for 2508/// the given template template parameter. 2509/// 2510/// \param SemaRef the semantic analysis object for which we are performing 2511/// the substitution. 2512/// 2513/// \param Template the template that we are synthesizing template arguments 2514/// for. 2515/// 2516/// \param TemplateLoc the location of the template name that started the 2517/// template-id we are checking. 2518/// 2519/// \param RAngleLoc the location of the right angle bracket ('>') that 2520/// terminates the template-id. 2521/// 2522/// \param Param the template template parameter whose default we are 2523/// substituting into. 2524/// 2525/// \param Converted the list of template arguments provided for template 2526/// parameters that precede \p Param in the template parameter list. 2527/// 2528/// \param QualifierLoc Will be set to the nested-name-specifier (with 2529/// source-location information) that precedes the template name. 2530/// 2531/// \returns the substituted template argument, or NULL if an error occurred. 2532static TemplateName 2533SubstDefaultTemplateArgument(Sema &SemaRef, 2534 TemplateDecl *Template, 2535 SourceLocation TemplateLoc, 2536 SourceLocation RAngleLoc, 2537 TemplateTemplateParmDecl *Param, 2538 SmallVectorImpl<TemplateArgument> &Converted, 2539 NestedNameSpecifierLoc &QualifierLoc) { 2540 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2541 Converted.data(), Converted.size()); 2542 2543 MultiLevelTemplateArgumentList AllTemplateArgs 2544 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2545 2546 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2547 Template, Converted.data(), 2548 Converted.size(), 2549 SourceRange(TemplateLoc, RAngleLoc)); 2550 2551 // Substitute into the nested-name-specifier first, 2552 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 2553 if (QualifierLoc) { 2554 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 2555 AllTemplateArgs); 2556 if (!QualifierLoc) 2557 return TemplateName(); 2558 } 2559 2560 return SemaRef.SubstTemplateName(QualifierLoc, 2561 Param->getDefaultArgument().getArgument().getAsTemplate(), 2562 Param->getDefaultArgument().getTemplateNameLoc(), 2563 AllTemplateArgs); 2564} 2565 2566/// \brief If the given template parameter has a default template 2567/// argument, substitute into that default template argument and 2568/// return the corresponding template argument. 2569TemplateArgumentLoc 2570Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 2571 SourceLocation TemplateLoc, 2572 SourceLocation RAngleLoc, 2573 Decl *Param, 2574 SmallVectorImpl<TemplateArgument> &Converted) { 2575 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 2576 if (!TypeParm->hasDefaultArgument()) 2577 return TemplateArgumentLoc(); 2578 2579 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 2580 TemplateLoc, 2581 RAngleLoc, 2582 TypeParm, 2583 Converted); 2584 if (DI) 2585 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 2586 2587 return TemplateArgumentLoc(); 2588 } 2589 2590 if (NonTypeTemplateParmDecl *NonTypeParm 2591 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2592 if (!NonTypeParm->hasDefaultArgument()) 2593 return TemplateArgumentLoc(); 2594 2595 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 2596 TemplateLoc, 2597 RAngleLoc, 2598 NonTypeParm, 2599 Converted); 2600 if (Arg.isInvalid()) 2601 return TemplateArgumentLoc(); 2602 2603 Expr *ArgE = Arg.takeAs<Expr>(); 2604 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 2605 } 2606 2607 TemplateTemplateParmDecl *TempTempParm 2608 = cast<TemplateTemplateParmDecl>(Param); 2609 if (!TempTempParm->hasDefaultArgument()) 2610 return TemplateArgumentLoc(); 2611 2612 2613 NestedNameSpecifierLoc QualifierLoc; 2614 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 2615 TemplateLoc, 2616 RAngleLoc, 2617 TempTempParm, 2618 Converted, 2619 QualifierLoc); 2620 if (TName.isNull()) 2621 return TemplateArgumentLoc(); 2622 2623 return TemplateArgumentLoc(TemplateArgument(TName), 2624 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 2625 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 2626} 2627 2628/// \brief Check that the given template argument corresponds to the given 2629/// template parameter. 2630/// 2631/// \param Param The template parameter against which the argument will be 2632/// checked. 2633/// 2634/// \param Arg The template argument. 2635/// 2636/// \param Template The template in which the template argument resides. 2637/// 2638/// \param TemplateLoc The location of the template name for the template 2639/// whose argument list we're matching. 2640/// 2641/// \param RAngleLoc The location of the right angle bracket ('>') that closes 2642/// the template argument list. 2643/// 2644/// \param ArgumentPackIndex The index into the argument pack where this 2645/// argument will be placed. Only valid if the parameter is a parameter pack. 2646/// 2647/// \param Converted The checked, converted argument will be added to the 2648/// end of this small vector. 2649/// 2650/// \param CTAK Describes how we arrived at this particular template argument: 2651/// explicitly written, deduced, etc. 2652/// 2653/// \returns true on error, false otherwise. 2654bool Sema::CheckTemplateArgument(NamedDecl *Param, 2655 const TemplateArgumentLoc &Arg, 2656 NamedDecl *Template, 2657 SourceLocation TemplateLoc, 2658 SourceLocation RAngleLoc, 2659 unsigned ArgumentPackIndex, 2660 SmallVectorImpl<TemplateArgument> &Converted, 2661 CheckTemplateArgumentKind CTAK) { 2662 // Check template type parameters. 2663 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2664 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2665 2666 // Check non-type template parameters. 2667 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2668 // Do substitution on the type of the non-type template parameter 2669 // with the template arguments we've seen thus far. But if the 2670 // template has a dependent context then we cannot substitute yet. 2671 QualType NTTPType = NTTP->getType(); 2672 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 2673 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 2674 2675 if (NTTPType->isDependentType() && 2676 !isa<TemplateTemplateParmDecl>(Template) && 2677 !Template->getDeclContext()->isDependentContext()) { 2678 // Do substitution on the type of the non-type template parameter. 2679 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2680 NTTP, Converted.data(), Converted.size(), 2681 SourceRange(TemplateLoc, RAngleLoc)); 2682 2683 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2684 Converted.data(), Converted.size()); 2685 NTTPType = SubstType(NTTPType, 2686 MultiLevelTemplateArgumentList(TemplateArgs), 2687 NTTP->getLocation(), 2688 NTTP->getDeclName()); 2689 // If that worked, check the non-type template parameter type 2690 // for validity. 2691 if (!NTTPType.isNull()) 2692 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2693 NTTP->getLocation()); 2694 if (NTTPType.isNull()) 2695 return true; 2696 } 2697 2698 switch (Arg.getArgument().getKind()) { 2699 case TemplateArgument::Null: 2700 llvm_unreachable("Should never see a NULL template argument here"); 2701 2702 case TemplateArgument::Expression: { 2703 TemplateArgument Result; 2704 ExprResult Res = 2705 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), 2706 Result, CTAK); 2707 if (Res.isInvalid()) 2708 return true; 2709 2710 Converted.push_back(Result); 2711 break; 2712 } 2713 2714 case TemplateArgument::Declaration: 2715 case TemplateArgument::Integral: 2716 // We've already checked this template argument, so just copy 2717 // it to the list of converted arguments. 2718 Converted.push_back(Arg.getArgument()); 2719 break; 2720 2721 case TemplateArgument::Template: 2722 case TemplateArgument::TemplateExpansion: 2723 // We were given a template template argument. It may not be ill-formed; 2724 // see below. 2725 if (DependentTemplateName *DTN 2726 = Arg.getArgument().getAsTemplateOrTemplatePattern() 2727 .getAsDependentTemplateName()) { 2728 // We have a template argument such as \c T::template X, which we 2729 // parsed as a template template argument. However, since we now 2730 // know that we need a non-type template argument, convert this 2731 // template name into an expression. 2732 2733 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 2734 Arg.getTemplateNameLoc()); 2735 2736 CXXScopeSpec SS; 2737 SS.Adopt(Arg.getTemplateQualifierLoc()); 2738 ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context, 2739 SS.getWithLocInContext(Context), 2740 NameInfo)); 2741 2742 // If we parsed the template argument as a pack expansion, create a 2743 // pack expansion expression. 2744 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 2745 E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc()); 2746 if (E.isInvalid()) 2747 return true; 2748 } 2749 2750 TemplateArgument Result; 2751 E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result); 2752 if (E.isInvalid()) 2753 return true; 2754 2755 Converted.push_back(Result); 2756 break; 2757 } 2758 2759 // We have a template argument that actually does refer to a class 2760 // template, alias template, or template template parameter, and 2761 // therefore cannot be a non-type template argument. 2762 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2763 << Arg.getSourceRange(); 2764 2765 Diag(Param->getLocation(), diag::note_template_param_here); 2766 return true; 2767 2768 case TemplateArgument::Type: { 2769 // We have a non-type template parameter but the template 2770 // argument is a type. 2771 2772 // C++ [temp.arg]p2: 2773 // In a template-argument, an ambiguity between a type-id and 2774 // an expression is resolved to a type-id, regardless of the 2775 // form of the corresponding template-parameter. 2776 // 2777 // We warn specifically about this case, since it can be rather 2778 // confusing for users. 2779 QualType T = Arg.getArgument().getAsType(); 2780 SourceRange SR = Arg.getSourceRange(); 2781 if (T->isFunctionType()) 2782 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2783 else 2784 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2785 Diag(Param->getLocation(), diag::note_template_param_here); 2786 return true; 2787 } 2788 2789 case TemplateArgument::Pack: 2790 llvm_unreachable("Caller must expand template argument packs"); 2791 } 2792 2793 return false; 2794 } 2795 2796 2797 // Check template template parameters. 2798 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2799 2800 // Substitute into the template parameter list of the template 2801 // template parameter, since previously-supplied template arguments 2802 // may appear within the template template parameter. 2803 { 2804 // Set up a template instantiation context. 2805 LocalInstantiationScope Scope(*this); 2806 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2807 TempParm, Converted.data(), Converted.size(), 2808 SourceRange(TemplateLoc, RAngleLoc)); 2809 2810 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2811 Converted.data(), Converted.size()); 2812 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2813 SubstDecl(TempParm, CurContext, 2814 MultiLevelTemplateArgumentList(TemplateArgs))); 2815 if (!TempParm) 2816 return true; 2817 } 2818 2819 switch (Arg.getArgument().getKind()) { 2820 case TemplateArgument::Null: 2821 llvm_unreachable("Should never see a NULL template argument here"); 2822 2823 case TemplateArgument::Template: 2824 case TemplateArgument::TemplateExpansion: 2825 if (CheckTemplateArgument(TempParm, Arg)) 2826 return true; 2827 2828 Converted.push_back(Arg.getArgument()); 2829 break; 2830 2831 case TemplateArgument::Expression: 2832 case TemplateArgument::Type: 2833 // We have a template template parameter but the template 2834 // argument does not refer to a template. 2835 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 2836 << getLangOptions().CPlusPlus0x; 2837 return true; 2838 2839 case TemplateArgument::Declaration: 2840 llvm_unreachable("Declaration argument with template template parameter"); 2841 case TemplateArgument::Integral: 2842 llvm_unreachable("Integral argument with template template parameter"); 2843 2844 case TemplateArgument::Pack: 2845 llvm_unreachable("Caller must expand template argument packs"); 2846 } 2847 2848 return false; 2849} 2850 2851/// \brief Check that the given template argument list is well-formed 2852/// for specializing the given template. 2853bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2854 SourceLocation TemplateLoc, 2855 TemplateArgumentListInfo &TemplateArgs, 2856 bool PartialTemplateArgs, 2857 SmallVectorImpl<TemplateArgument> &Converted) { 2858 TemplateParameterList *Params = Template->getTemplateParameters(); 2859 unsigned NumParams = Params->size(); 2860 unsigned NumArgs = TemplateArgs.size(); 2861 bool Invalid = false; 2862 2863 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2864 2865 bool HasParameterPack = 2866 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2867 2868 if ((NumArgs > NumParams && !HasParameterPack) || 2869 (NumArgs < Params->getMinRequiredArguments() && 2870 !PartialTemplateArgs)) { 2871 // FIXME: point at either the first arg beyond what we can handle, 2872 // or the '>', depending on whether we have too many or too few 2873 // arguments. 2874 SourceRange Range; 2875 if (NumArgs > NumParams) 2876 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2877 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2878 << (NumArgs > NumParams) 2879 << (isa<ClassTemplateDecl>(Template)? 0 : 2880 isa<FunctionTemplateDecl>(Template)? 1 : 2881 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2882 << Template << Range; 2883 Diag(Template->getLocation(), diag::note_template_decl_here) 2884 << Params->getSourceRange(); 2885 Invalid = true; 2886 } 2887 2888 // C++ [temp.arg]p1: 2889 // [...] The type and form of each template-argument specified in 2890 // a template-id shall match the type and form specified for the 2891 // corresponding parameter declared by the template in its 2892 // template-parameter-list. 2893 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 2894 SmallVector<TemplateArgument, 2> ArgumentPack; 2895 TemplateParameterList::iterator Param = Params->begin(), 2896 ParamEnd = Params->end(); 2897 unsigned ArgIdx = 0; 2898 LocalInstantiationScope InstScope(*this, true); 2899 while (Param != ParamEnd) { 2900 if (ArgIdx < NumArgs) { 2901 // If we have an expanded parameter pack, make sure we don't have too 2902 // many arguments. 2903 if (NonTypeTemplateParmDecl *NTTP 2904 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2905 if (NTTP->isExpandedParameterPack() && 2906 ArgumentPack.size() >= NTTP->getNumExpansionTypes()) { 2907 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2908 << true 2909 << (isa<ClassTemplateDecl>(Template)? 0 : 2910 isa<FunctionTemplateDecl>(Template)? 1 : 2911 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2912 << Template; 2913 Diag(Template->getLocation(), diag::note_template_decl_here) 2914 << Params->getSourceRange(); 2915 return true; 2916 } 2917 } 2918 2919 // Check the template argument we were given. 2920 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2921 TemplateLoc, RAngleLoc, 2922 ArgumentPack.size(), Converted)) 2923 return true; 2924 2925 if ((*Param)->isTemplateParameterPack()) { 2926 // The template parameter was a template parameter pack, so take the 2927 // deduced argument and place it on the argument pack. Note that we 2928 // stay on the same template parameter so that we can deduce more 2929 // arguments. 2930 ArgumentPack.push_back(Converted.back()); 2931 Converted.pop_back(); 2932 } else { 2933 // Move to the next template parameter. 2934 ++Param; 2935 } 2936 ++ArgIdx; 2937 continue; 2938 } 2939 2940 // If we're checking a partial template argument list, we're done. 2941 if (PartialTemplateArgs) { 2942 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty()) 2943 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 2944 ArgumentPack.data(), 2945 ArgumentPack.size())); 2946 2947 return Invalid; 2948 } 2949 2950 // If we have a template parameter pack with no more corresponding 2951 // arguments, just break out now and we'll fill in the argument pack below. 2952 if ((*Param)->isTemplateParameterPack()) 2953 break; 2954 2955 // We have a default template argument that we will use. 2956 TemplateArgumentLoc Arg; 2957 2958 // Retrieve the default template argument from the template 2959 // parameter. For each kind of template parameter, we substitute the 2960 // template arguments provided thus far and any "outer" template arguments 2961 // (when the template parameter was part of a nested template) into 2962 // the default argument. 2963 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2964 if (!TTP->hasDefaultArgument()) { 2965 assert(Invalid && "Missing default argument"); 2966 break; 2967 } 2968 2969 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2970 Template, 2971 TemplateLoc, 2972 RAngleLoc, 2973 TTP, 2974 Converted); 2975 if (!ArgType) 2976 return true; 2977 2978 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2979 ArgType); 2980 } else if (NonTypeTemplateParmDecl *NTTP 2981 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2982 if (!NTTP->hasDefaultArgument()) { 2983 assert(Invalid && "Missing default argument"); 2984 break; 2985 } 2986 2987 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 2988 TemplateLoc, 2989 RAngleLoc, 2990 NTTP, 2991 Converted); 2992 if (E.isInvalid()) 2993 return true; 2994 2995 Expr *Ex = E.takeAs<Expr>(); 2996 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2997 } else { 2998 TemplateTemplateParmDecl *TempParm 2999 = cast<TemplateTemplateParmDecl>(*Param); 3000 3001 if (!TempParm->hasDefaultArgument()) { 3002 assert(Invalid && "Missing default argument"); 3003 break; 3004 } 3005 3006 NestedNameSpecifierLoc QualifierLoc; 3007 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 3008 TemplateLoc, 3009 RAngleLoc, 3010 TempParm, 3011 Converted, 3012 QualifierLoc); 3013 if (Name.isNull()) 3014 return true; 3015 3016 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc, 3017 TempParm->getDefaultArgument().getTemplateNameLoc()); 3018 } 3019 3020 // Introduce an instantiation record that describes where we are using 3021 // the default template argument. 3022 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 3023 Converted.data(), Converted.size(), 3024 SourceRange(TemplateLoc, RAngleLoc)); 3025 3026 // Check the default template argument. 3027 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 3028 RAngleLoc, 0, Converted)) 3029 return true; 3030 3031 // Core issue 150 (assumed resolution): if this is a template template 3032 // parameter, keep track of the default template arguments from the 3033 // template definition. 3034 if (isTemplateTemplateParameter) 3035 TemplateArgs.addArgument(Arg); 3036 3037 // Move to the next template parameter and argument. 3038 ++Param; 3039 ++ArgIdx; 3040 } 3041 3042 // Form argument packs for each of the parameter packs remaining. 3043 while (Param != ParamEnd) { 3044 // If we're checking a partial list of template arguments, don't fill 3045 // in arguments for non-template parameter packs. 3046 3047 if ((*Param)->isTemplateParameterPack()) { 3048 if (!HasParameterPack) 3049 return true; 3050 if (ArgumentPack.empty()) 3051 Converted.push_back(TemplateArgument(0, 0)); 3052 else { 3053 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 3054 ArgumentPack.data(), 3055 ArgumentPack.size())); 3056 ArgumentPack.clear(); 3057 } 3058 } 3059 3060 ++Param; 3061 } 3062 3063 return Invalid; 3064} 3065 3066namespace { 3067 class UnnamedLocalNoLinkageFinder 3068 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 3069 { 3070 Sema &S; 3071 SourceRange SR; 3072 3073 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 3074 3075 public: 3076 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 3077 3078 bool Visit(QualType T) { 3079 return inherited::Visit(T.getTypePtr()); 3080 } 3081 3082#define TYPE(Class, Parent) \ 3083 bool Visit##Class##Type(const Class##Type *); 3084#define ABSTRACT_TYPE(Class, Parent) \ 3085 bool Visit##Class##Type(const Class##Type *) { return false; } 3086#define NON_CANONICAL_TYPE(Class, Parent) \ 3087 bool Visit##Class##Type(const Class##Type *) { return false; } 3088#include "clang/AST/TypeNodes.def" 3089 3090 bool VisitTagDecl(const TagDecl *Tag); 3091 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 3092 }; 3093} 3094 3095bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 3096 return false; 3097} 3098 3099bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 3100 return Visit(T->getElementType()); 3101} 3102 3103bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 3104 return Visit(T->getPointeeType()); 3105} 3106 3107bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 3108 const BlockPointerType* T) { 3109 return Visit(T->getPointeeType()); 3110} 3111 3112bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 3113 const LValueReferenceType* T) { 3114 return Visit(T->getPointeeType()); 3115} 3116 3117bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 3118 const RValueReferenceType* T) { 3119 return Visit(T->getPointeeType()); 3120} 3121 3122bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 3123 const MemberPointerType* T) { 3124 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 3125} 3126 3127bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 3128 const ConstantArrayType* T) { 3129 return Visit(T->getElementType()); 3130} 3131 3132bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 3133 const IncompleteArrayType* T) { 3134 return Visit(T->getElementType()); 3135} 3136 3137bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 3138 const VariableArrayType* T) { 3139 return Visit(T->getElementType()); 3140} 3141 3142bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 3143 const DependentSizedArrayType* T) { 3144 return Visit(T->getElementType()); 3145} 3146 3147bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 3148 const DependentSizedExtVectorType* T) { 3149 return Visit(T->getElementType()); 3150} 3151 3152bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 3153 return Visit(T->getElementType()); 3154} 3155 3156bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 3157 return Visit(T->getElementType()); 3158} 3159 3160bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 3161 const FunctionProtoType* T) { 3162 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), 3163 AEnd = T->arg_type_end(); 3164 A != AEnd; ++A) { 3165 if (Visit(*A)) 3166 return true; 3167 } 3168 3169 return Visit(T->getResultType()); 3170} 3171 3172bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 3173 const FunctionNoProtoType* T) { 3174 return Visit(T->getResultType()); 3175} 3176 3177bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 3178 const UnresolvedUsingType*) { 3179 return false; 3180} 3181 3182bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 3183 return false; 3184} 3185 3186bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 3187 return Visit(T->getUnderlyingType()); 3188} 3189 3190bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 3191 return false; 3192} 3193 3194bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 3195 const UnaryTransformType*) { 3196 return false; 3197} 3198 3199bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 3200 return Visit(T->getDeducedType()); 3201} 3202 3203bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 3204 return VisitTagDecl(T->getDecl()); 3205} 3206 3207bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 3208 return VisitTagDecl(T->getDecl()); 3209} 3210 3211bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 3212 const TemplateTypeParmType*) { 3213 return false; 3214} 3215 3216bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 3217 const SubstTemplateTypeParmPackType *) { 3218 return false; 3219} 3220 3221bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 3222 const TemplateSpecializationType*) { 3223 return false; 3224} 3225 3226bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 3227 const InjectedClassNameType* T) { 3228 return VisitTagDecl(T->getDecl()); 3229} 3230 3231bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 3232 const DependentNameType* T) { 3233 return VisitNestedNameSpecifier(T->getQualifier()); 3234} 3235 3236bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 3237 const DependentTemplateSpecializationType* T) { 3238 return VisitNestedNameSpecifier(T->getQualifier()); 3239} 3240 3241bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 3242 const PackExpansionType* T) { 3243 return Visit(T->getPattern()); 3244} 3245 3246bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 3247 return false; 3248} 3249 3250bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 3251 const ObjCInterfaceType *) { 3252 return false; 3253} 3254 3255bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 3256 const ObjCObjectPointerType *) { 3257 return false; 3258} 3259 3260bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { 3261 return Visit(T->getValueType()); 3262} 3263 3264bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 3265 if (Tag->getDeclContext()->isFunctionOrMethod()) { 3266 S.Diag(SR.getBegin(), 3267 S.getLangOptions().CPlusPlus0x ? 3268 diag::warn_cxx98_compat_template_arg_local_type : 3269 diag::ext_template_arg_local_type) 3270 << S.Context.getTypeDeclType(Tag) << SR; 3271 return true; 3272 } 3273 3274 if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) { 3275 S.Diag(SR.getBegin(), 3276 S.getLangOptions().CPlusPlus0x ? 3277 diag::warn_cxx98_compat_template_arg_unnamed_type : 3278 diag::ext_template_arg_unnamed_type) << SR; 3279 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 3280 return true; 3281 } 3282 3283 return false; 3284} 3285 3286bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 3287 NestedNameSpecifier *NNS) { 3288 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 3289 return true; 3290 3291 switch (NNS->getKind()) { 3292 case NestedNameSpecifier::Identifier: 3293 case NestedNameSpecifier::Namespace: 3294 case NestedNameSpecifier::NamespaceAlias: 3295 case NestedNameSpecifier::Global: 3296 return false; 3297 3298 case NestedNameSpecifier::TypeSpec: 3299 case NestedNameSpecifier::TypeSpecWithTemplate: 3300 return Visit(QualType(NNS->getAsType(), 0)); 3301 } 3302 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 3303} 3304 3305 3306/// \brief Check a template argument against its corresponding 3307/// template type parameter. 3308/// 3309/// This routine implements the semantics of C++ [temp.arg.type]. It 3310/// returns true if an error occurred, and false otherwise. 3311bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 3312 TypeSourceInfo *ArgInfo) { 3313 assert(ArgInfo && "invalid TypeSourceInfo"); 3314 QualType Arg = ArgInfo->getType(); 3315 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 3316 3317 if (Arg->isVariablyModifiedType()) { 3318 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 3319 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 3320 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 3321 } 3322 3323 // C++03 [temp.arg.type]p2: 3324 // A local type, a type with no linkage, an unnamed type or a type 3325 // compounded from any of these types shall not be used as a 3326 // template-argument for a template type-parameter. 3327 // 3328 // C++11 allows these, and even in C++03 we allow them as an extension with 3329 // a warning. 3330 if (LangOpts.CPlusPlus0x ? 3331 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type, 3332 SR.getBegin()) != DiagnosticsEngine::Ignored || 3333 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type, 3334 SR.getBegin()) != DiagnosticsEngine::Ignored : 3335 Arg->hasUnnamedOrLocalType()) { 3336 UnnamedLocalNoLinkageFinder Finder(*this, SR); 3337 (void)Finder.Visit(Context.getCanonicalType(Arg)); 3338 } 3339 3340 return false; 3341} 3342 3343/// \brief Checks whether the given template argument is the address 3344/// of an object or function according to C++ [temp.arg.nontype]p1. 3345static bool 3346CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 3347 NonTypeTemplateParmDecl *Param, 3348 QualType ParamType, 3349 Expr *ArgIn, 3350 TemplateArgument &Converted) { 3351 bool Invalid = false; 3352 Expr *Arg = ArgIn; 3353 QualType ArgType = Arg->getType(); 3354 3355 // See through any implicit casts we added to fix the type. 3356 Arg = Arg->IgnoreImpCasts(); 3357 3358 // C++ [temp.arg.nontype]p1: 3359 // 3360 // A template-argument for a non-type, non-template 3361 // template-parameter shall be one of: [...] 3362 // 3363 // -- the address of an object or function with external 3364 // linkage, including function templates and function 3365 // template-ids but excluding non-static class members, 3366 // expressed as & id-expression where the & is optional if 3367 // the name refers to a function or array, or if the 3368 // corresponding template-parameter is a reference; or 3369 3370 // In C++98/03 mode, give an extension warning on any extra parentheses. 3371 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3372 bool ExtraParens = false; 3373 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3374 if (!Invalid && !ExtraParens) { 3375 S.Diag(Arg->getSourceRange().getBegin(), 3376 S.getLangOptions().CPlusPlus0x ? 3377 diag::warn_cxx98_compat_template_arg_extra_parens : 3378 diag::ext_template_arg_extra_parens) 3379 << Arg->getSourceRange(); 3380 ExtraParens = true; 3381 } 3382 3383 Arg = Parens->getSubExpr(); 3384 } 3385 3386 while (SubstNonTypeTemplateParmExpr *subst = 3387 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3388 Arg = subst->getReplacement()->IgnoreImpCasts(); 3389 3390 bool AddressTaken = false; 3391 SourceLocation AddrOpLoc; 3392 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3393 if (UnOp->getOpcode() == UO_AddrOf) { 3394 Arg = UnOp->getSubExpr(); 3395 AddressTaken = true; 3396 AddrOpLoc = UnOp->getOperatorLoc(); 3397 } 3398 } 3399 3400 if (S.getLangOptions().MicrosoftExt && isa<CXXUuidofExpr>(Arg)) { 3401 Converted = TemplateArgument(ArgIn); 3402 return false; 3403 } 3404 3405 while (SubstNonTypeTemplateParmExpr *subst = 3406 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3407 Arg = subst->getReplacement()->IgnoreImpCasts(); 3408 3409 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg); 3410 if (!DRE) { 3411 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 3412 << Arg->getSourceRange(); 3413 S.Diag(Param->getLocation(), diag::note_template_param_here); 3414 return true; 3415 } 3416 3417 // Stop checking the precise nature of the argument if it is value dependent, 3418 // it should be checked when instantiated. 3419 if (Arg->isValueDependent()) { 3420 Converted = TemplateArgument(ArgIn); 3421 return false; 3422 } 3423 3424 if (!isa<ValueDecl>(DRE->getDecl())) { 3425 S.Diag(Arg->getSourceRange().getBegin(), 3426 diag::err_template_arg_not_object_or_func_form) 3427 << Arg->getSourceRange(); 3428 S.Diag(Param->getLocation(), diag::note_template_param_here); 3429 return true; 3430 } 3431 3432 NamedDecl *Entity = 0; 3433 3434 // Cannot refer to non-static data members 3435 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) { 3436 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 3437 << Field << Arg->getSourceRange(); 3438 S.Diag(Param->getLocation(), diag::note_template_param_here); 3439 return true; 3440 } 3441 3442 // Cannot refer to non-static member functions 3443 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 3444 if (!Method->isStatic()) { 3445 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method) 3446 << Method << Arg->getSourceRange(); 3447 S.Diag(Param->getLocation(), diag::note_template_param_here); 3448 return true; 3449 } 3450 3451 // Functions must have external linkage. 3452 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 3453 if (!isExternalLinkage(Func->getLinkage())) { 3454 S.Diag(Arg->getSourceRange().getBegin(), 3455 diag::err_template_arg_function_not_extern) 3456 << Func << Arg->getSourceRange(); 3457 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object) 3458 << true; 3459 return true; 3460 } 3461 3462 // Okay: we've named a function with external linkage. 3463 Entity = Func; 3464 3465 // If the template parameter has pointer type, the function decays. 3466 if (ParamType->isPointerType() && !AddressTaken) 3467 ArgType = S.Context.getPointerType(Func->getType()); 3468 else if (AddressTaken && ParamType->isReferenceType()) { 3469 // If we originally had an address-of operator, but the 3470 // parameter has reference type, complain and (if things look 3471 // like they will work) drop the address-of operator. 3472 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 3473 ParamType.getNonReferenceType())) { 3474 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3475 << ParamType; 3476 S.Diag(Param->getLocation(), diag::note_template_param_here); 3477 return true; 3478 } 3479 3480 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3481 << ParamType 3482 << FixItHint::CreateRemoval(AddrOpLoc); 3483 S.Diag(Param->getLocation(), diag::note_template_param_here); 3484 3485 ArgType = Func->getType(); 3486 } 3487 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 3488 if (!isExternalLinkage(Var->getLinkage())) { 3489 S.Diag(Arg->getSourceRange().getBegin(), 3490 diag::err_template_arg_object_not_extern) 3491 << Var << Arg->getSourceRange(); 3492 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object) 3493 << true; 3494 return true; 3495 } 3496 3497 // A value of reference type is not an object. 3498 if (Var->getType()->isReferenceType()) { 3499 S.Diag(Arg->getSourceRange().getBegin(), 3500 diag::err_template_arg_reference_var) 3501 << Var->getType() << Arg->getSourceRange(); 3502 S.Diag(Param->getLocation(), diag::note_template_param_here); 3503 return true; 3504 } 3505 3506 // Okay: we've named an object with external linkage 3507 Entity = Var; 3508 3509 // If the template parameter has pointer type, we must have taken 3510 // the address of this object. 3511 if (ParamType->isReferenceType()) { 3512 if (AddressTaken) { 3513 // If we originally had an address-of operator, but the 3514 // parameter has reference type, complain and (if things look 3515 // like they will work) drop the address-of operator. 3516 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 3517 ParamType.getNonReferenceType())) { 3518 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3519 << ParamType; 3520 S.Diag(Param->getLocation(), diag::note_template_param_here); 3521 return true; 3522 } 3523 3524 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3525 << ParamType 3526 << FixItHint::CreateRemoval(AddrOpLoc); 3527 S.Diag(Param->getLocation(), diag::note_template_param_here); 3528 3529 ArgType = Var->getType(); 3530 } 3531 } else if (!AddressTaken && ParamType->isPointerType()) { 3532 if (Var->getType()->isArrayType()) { 3533 // Array-to-pointer decay. 3534 ArgType = S.Context.getArrayDecayedType(Var->getType()); 3535 } else { 3536 // If the template parameter has pointer type but the address of 3537 // this object was not taken, complain and (possibly) recover by 3538 // taking the address of the entity. 3539 ArgType = S.Context.getPointerType(Var->getType()); 3540 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 3541 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3542 << ParamType; 3543 S.Diag(Param->getLocation(), diag::note_template_param_here); 3544 return true; 3545 } 3546 3547 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3548 << ParamType 3549 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 3550 3551 S.Diag(Param->getLocation(), diag::note_template_param_here); 3552 } 3553 } 3554 } else { 3555 // We found something else, but we don't know specifically what it is. 3556 S.Diag(Arg->getSourceRange().getBegin(), 3557 diag::err_template_arg_not_object_or_func) 3558 << Arg->getSourceRange(); 3559 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 3560 return true; 3561 } 3562 3563 bool ObjCLifetimeConversion; 3564 if (ParamType->isPointerType() && 3565 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 3566 S.IsQualificationConversion(ArgType, ParamType, false, 3567 ObjCLifetimeConversion)) { 3568 // For pointer-to-object types, qualification conversions are 3569 // permitted. 3570 } else { 3571 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 3572 if (!ParamRef->getPointeeType()->isFunctionType()) { 3573 // C++ [temp.arg.nontype]p5b3: 3574 // For a non-type template-parameter of type reference to 3575 // object, no conversions apply. The type referred to by the 3576 // reference may be more cv-qualified than the (otherwise 3577 // identical) type of the template- argument. The 3578 // template-parameter is bound directly to the 3579 // template-argument, which shall be an lvalue. 3580 3581 // FIXME: Other qualifiers? 3582 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 3583 unsigned ArgQuals = ArgType.getCVRQualifiers(); 3584 3585 if ((ParamQuals | ArgQuals) != ParamQuals) { 3586 S.Diag(Arg->getSourceRange().getBegin(), 3587 diag::err_template_arg_ref_bind_ignores_quals) 3588 << ParamType << Arg->getType() 3589 << Arg->getSourceRange(); 3590 S.Diag(Param->getLocation(), diag::note_template_param_here); 3591 return true; 3592 } 3593 } 3594 } 3595 3596 // At this point, the template argument refers to an object or 3597 // function with external linkage. We now need to check whether the 3598 // argument and parameter types are compatible. 3599 if (!S.Context.hasSameUnqualifiedType(ArgType, 3600 ParamType.getNonReferenceType())) { 3601 // We can't perform this conversion or binding. 3602 if (ParamType->isReferenceType()) 3603 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 3604 << ParamType << ArgIn->getType() << Arg->getSourceRange(); 3605 else 3606 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3607 << ArgIn->getType() << ParamType << Arg->getSourceRange(); 3608 S.Diag(Param->getLocation(), diag::note_template_param_here); 3609 return true; 3610 } 3611 } 3612 3613 // Create the template argument. 3614 Converted = TemplateArgument(Entity->getCanonicalDecl()); 3615 S.MarkDeclarationReferenced(Arg->getLocStart(), Entity); 3616 return false; 3617} 3618 3619/// \brief Checks whether the given template argument is a pointer to 3620/// member constant according to C++ [temp.arg.nontype]p1. 3621bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 3622 TemplateArgument &Converted) { 3623 bool Invalid = false; 3624 3625 // See through any implicit casts we added to fix the type. 3626 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 3627 Arg = Cast->getSubExpr(); 3628 3629 // C++ [temp.arg.nontype]p1: 3630 // 3631 // A template-argument for a non-type, non-template 3632 // template-parameter shall be one of: [...] 3633 // 3634 // -- a pointer to member expressed as described in 5.3.1. 3635 DeclRefExpr *DRE = 0; 3636 3637 // In C++98/03 mode, give an extension warning on any extra parentheses. 3638 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3639 bool ExtraParens = false; 3640 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3641 if (!Invalid && !ExtraParens) { 3642 Diag(Arg->getSourceRange().getBegin(), 3643 getLangOptions().CPlusPlus0x ? 3644 diag::warn_cxx98_compat_template_arg_extra_parens : 3645 diag::ext_template_arg_extra_parens) 3646 << Arg->getSourceRange(); 3647 ExtraParens = true; 3648 } 3649 3650 Arg = Parens->getSubExpr(); 3651 } 3652 3653 while (SubstNonTypeTemplateParmExpr *subst = 3654 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3655 Arg = subst->getReplacement()->IgnoreImpCasts(); 3656 3657 // A pointer-to-member constant written &Class::member. 3658 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3659 if (UnOp->getOpcode() == UO_AddrOf) { 3660 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 3661 if (DRE && !DRE->getQualifier()) 3662 DRE = 0; 3663 } 3664 } 3665 // A constant of pointer-to-member type. 3666 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 3667 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 3668 if (VD->getType()->isMemberPointerType()) { 3669 if (isa<NonTypeTemplateParmDecl>(VD) || 3670 (isa<VarDecl>(VD) && 3671 Context.getCanonicalType(VD->getType()).isConstQualified())) { 3672 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3673 Converted = TemplateArgument(Arg); 3674 else 3675 Converted = TemplateArgument(VD->getCanonicalDecl()); 3676 return Invalid; 3677 } 3678 } 3679 } 3680 3681 DRE = 0; 3682 } 3683 3684 if (!DRE) 3685 return Diag(Arg->getSourceRange().getBegin(), 3686 diag::err_template_arg_not_pointer_to_member_form) 3687 << Arg->getSourceRange(); 3688 3689 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 3690 assert((isa<FieldDecl>(DRE->getDecl()) || 3691 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 3692 "Only non-static member pointers can make it here"); 3693 3694 // Okay: this is the address of a non-static member, and therefore 3695 // a member pointer constant. 3696 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3697 Converted = TemplateArgument(Arg); 3698 else 3699 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 3700 return Invalid; 3701 } 3702 3703 // We found something else, but we don't know specifically what it is. 3704 Diag(Arg->getSourceRange().getBegin(), 3705 diag::err_template_arg_not_pointer_to_member_form) 3706 << Arg->getSourceRange(); 3707 Diag(DRE->getDecl()->getLocation(), 3708 diag::note_template_arg_refers_here); 3709 return true; 3710} 3711 3712/// \brief Check a template argument against its corresponding 3713/// non-type template parameter. 3714/// 3715/// This routine implements the semantics of C++ [temp.arg.nontype]. 3716/// If an error occurred, it returns ExprError(); otherwise, it 3717/// returns the converted template argument. \p 3718/// InstantiatedParamType is the type of the non-type template 3719/// parameter after it has been instantiated. 3720ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 3721 QualType InstantiatedParamType, Expr *Arg, 3722 TemplateArgument &Converted, 3723 CheckTemplateArgumentKind CTAK) { 3724 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 3725 3726 // If either the parameter has a dependent type or the argument is 3727 // type-dependent, there's nothing we can check now. 3728 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 3729 // FIXME: Produce a cloned, canonical expression? 3730 Converted = TemplateArgument(Arg); 3731 return Owned(Arg); 3732 } 3733 3734 // C++ [temp.arg.nontype]p5: 3735 // The following conversions are performed on each expression used 3736 // as a non-type template-argument. If a non-type 3737 // template-argument cannot be converted to the type of the 3738 // corresponding template-parameter then the program is 3739 // ill-formed. 3740 QualType ParamType = InstantiatedParamType; 3741 if (ParamType->isIntegralOrEnumerationType()) { 3742 // C++11: 3743 // -- for a non-type template-parameter of integral or 3744 // enumeration type, conversions permitted in a converted 3745 // constant expression are applied. 3746 // 3747 // C++98: 3748 // -- for a non-type template-parameter of integral or 3749 // enumeration type, integral promotions (4.5) and integral 3750 // conversions (4.7) are applied. 3751 3752 if (CTAK == CTAK_Deduced && 3753 !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) { 3754 // C++ [temp.deduct.type]p17: 3755 // If, in the declaration of a function template with a non-type 3756 // template-parameter, the non-type template-parameter is used 3757 // in an expression in the function parameter-list and, if the 3758 // corresponding template-argument is deduced, the 3759 // template-argument type shall match the type of the 3760 // template-parameter exactly, except that a template-argument 3761 // deduced from an array bound may be of any integral type. 3762 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 3763 << Arg->getType().getUnqualifiedType() 3764 << ParamType.getUnqualifiedType(); 3765 Diag(Param->getLocation(), diag::note_template_param_here); 3766 return ExprError(); 3767 } 3768 3769 if (getLangOptions().CPlusPlus0x) { 3770 // We can't check arbitrary value-dependent arguments. 3771 // FIXME: If there's no viable conversion to the template parameter type, 3772 // we should be able to diagnose that prior to instantiation. 3773 if (Arg->isValueDependent()) { 3774 Converted = TemplateArgument(Arg); 3775 return Owned(Arg); 3776 } 3777 3778 // C++ [temp.arg.nontype]p1: 3779 // A template-argument for a non-type, non-template template-parameter 3780 // shall be one of: 3781 // 3782 // -- for a non-type template-parameter of integral or enumeration 3783 // type, a converted constant expression of the type of the 3784 // template-parameter; or 3785 llvm::APSInt Value; 3786 ExprResult ArgResult = 3787 CheckConvertedConstantExpression(Arg, ParamType, Value, 3788 CCEK_TemplateArg); 3789 if (ArgResult.isInvalid()) 3790 return ExprError(); 3791 3792 // Widen the argument value to sizeof(parameter type). This is almost 3793 // always a no-op, except when the parameter type is bool. In 3794 // that case, this may extend the argument from 1 bit to 8 bits. 3795 QualType IntegerType = ParamType; 3796 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 3797 IntegerType = Enum->getDecl()->getIntegerType(); 3798 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType)); 3799 3800 Converted = TemplateArgument(Value, Context.getCanonicalType(ParamType)); 3801 return ArgResult; 3802 } 3803 3804 ExprResult ArgResult = DefaultLvalueConversion(Arg); 3805 if (ArgResult.isInvalid()) 3806 return ExprError(); 3807 Arg = ArgResult.take(); 3808 3809 QualType ArgType = Arg->getType(); 3810 3811 // C++ [temp.arg.nontype]p1: 3812 // A template-argument for a non-type, non-template 3813 // template-parameter shall be one of: 3814 // 3815 // -- an integral constant-expression of integral or enumeration 3816 // type; or 3817 // -- the name of a non-type template-parameter; or 3818 SourceLocation NonConstantLoc; 3819 llvm::APSInt Value; 3820 if (!ArgType->isIntegralOrEnumerationType()) { 3821 Diag(Arg->getSourceRange().getBegin(), 3822 diag::err_template_arg_not_integral_or_enumeral) 3823 << ArgType << Arg->getSourceRange(); 3824 Diag(Param->getLocation(), diag::note_template_param_here); 3825 return ExprError(); 3826 } else if (!Arg->isValueDependent() && 3827 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 3828 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 3829 << ArgType << Arg->getSourceRange(); 3830 return ExprError(); 3831 } 3832 3833 // From here on out, all we care about are the unqualified forms 3834 // of the parameter and argument types. 3835 ParamType = ParamType.getUnqualifiedType(); 3836 ArgType = ArgType.getUnqualifiedType(); 3837 3838 // Try to convert the argument to the parameter's type. 3839 if (Context.hasSameType(ParamType, ArgType)) { 3840 // Okay: no conversion necessary 3841 } else if (ParamType->isBooleanType()) { 3842 // This is an integral-to-boolean conversion. 3843 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take(); 3844 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 3845 !ParamType->isEnumeralType()) { 3846 // This is an integral promotion or conversion. 3847 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take(); 3848 } else { 3849 // We can't perform this conversion. 3850 Diag(Arg->getSourceRange().getBegin(), 3851 diag::err_template_arg_not_convertible) 3852 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3853 Diag(Param->getLocation(), diag::note_template_param_here); 3854 return ExprError(); 3855 } 3856 3857 // Add the value of this argument to the list of converted 3858 // arguments. We use the bitwidth and signedness of the template 3859 // parameter. 3860 if (Arg->isValueDependent()) { 3861 // The argument is value-dependent. Create a new 3862 // TemplateArgument with the converted expression. 3863 Converted = TemplateArgument(Arg); 3864 return Owned(Arg); 3865 } 3866 3867 QualType IntegerType = Context.getCanonicalType(ParamType); 3868 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 3869 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 3870 3871 if (ParamType->isBooleanType()) { 3872 // Value must be zero or one. 3873 Value = Value != 0; 3874 unsigned AllowedBits = Context.getTypeSize(IntegerType); 3875 if (Value.getBitWidth() != AllowedBits) 3876 Value = Value.extOrTrunc(AllowedBits); 3877 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 3878 } else { 3879 llvm::APSInt OldValue = Value; 3880 3881 // Coerce the template argument's value to the value it will have 3882 // based on the template parameter's type. 3883 unsigned AllowedBits = Context.getTypeSize(IntegerType); 3884 if (Value.getBitWidth() != AllowedBits) 3885 Value = Value.extOrTrunc(AllowedBits); 3886 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 3887 3888 // Complain if an unsigned parameter received a negative value. 3889 if (IntegerType->isUnsignedIntegerOrEnumerationType() 3890 && (OldValue.isSigned() && OldValue.isNegative())) { 3891 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative) 3892 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3893 << Arg->getSourceRange(); 3894 Diag(Param->getLocation(), diag::note_template_param_here); 3895 } 3896 3897 // Complain if we overflowed the template parameter's type. 3898 unsigned RequiredBits; 3899 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 3900 RequiredBits = OldValue.getActiveBits(); 3901 else if (OldValue.isUnsigned()) 3902 RequiredBits = OldValue.getActiveBits() + 1; 3903 else 3904 RequiredBits = OldValue.getMinSignedBits(); 3905 if (RequiredBits > AllowedBits) { 3906 Diag(Arg->getSourceRange().getBegin(), 3907 diag::warn_template_arg_too_large) 3908 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3909 << Arg->getSourceRange(); 3910 Diag(Param->getLocation(), diag::note_template_param_here); 3911 } 3912 } 3913 3914 Converted = TemplateArgument(Value, 3915 ParamType->isEnumeralType() 3916 ? Context.getCanonicalType(ParamType) 3917 : IntegerType); 3918 return Owned(Arg); 3919 } 3920 3921 QualType ArgType = Arg->getType(); 3922 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 3923 3924 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion 3925 // from a template argument of type std::nullptr_t to a non-type 3926 // template parameter of type pointer to object, pointer to 3927 // function, or pointer-to-member, respectively. 3928 if (ArgType->isNullPtrType()) { 3929 if (ParamType->isPointerType() || ParamType->isMemberPointerType()) { 3930 Converted = TemplateArgument((NamedDecl *)0); 3931 return Owned(Arg); 3932 } 3933 3934 if (ParamType->isNullPtrType()) { 3935 llvm::APSInt Zero(Context.getTypeSize(Context.NullPtrTy), true); 3936 Converted = TemplateArgument(Zero, Context.NullPtrTy); 3937 return Owned(Arg); 3938 } 3939 } 3940 3941 // Handle pointer-to-function, reference-to-function, and 3942 // pointer-to-member-function all in (roughly) the same way. 3943 if (// -- For a non-type template-parameter of type pointer to 3944 // function, only the function-to-pointer conversion (4.3) is 3945 // applied. If the template-argument represents a set of 3946 // overloaded functions (or a pointer to such), the matching 3947 // function is selected from the set (13.4). 3948 (ParamType->isPointerType() && 3949 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 3950 // -- For a non-type template-parameter of type reference to 3951 // function, no conversions apply. If the template-argument 3952 // represents a set of overloaded functions, the matching 3953 // function is selected from the set (13.4). 3954 (ParamType->isReferenceType() && 3955 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 3956 // -- For a non-type template-parameter of type pointer to 3957 // member function, no conversions apply. If the 3958 // template-argument represents a set of overloaded member 3959 // functions, the matching member function is selected from 3960 // the set (13.4). 3961 (ParamType->isMemberPointerType() && 3962 ParamType->getAs<MemberPointerType>()->getPointeeType() 3963 ->isFunctionType())) { 3964 3965 if (Arg->getType() == Context.OverloadTy) { 3966 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 3967 true, 3968 FoundResult)) { 3969 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3970 return ExprError(); 3971 3972 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3973 ArgType = Arg->getType(); 3974 } else 3975 return ExprError(); 3976 } 3977 3978 if (!ParamType->isMemberPointerType()) { 3979 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3980 ParamType, 3981 Arg, Converted)) 3982 return ExprError(); 3983 return Owned(Arg); 3984 } 3985 3986 bool ObjCLifetimeConversion; 3987 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(), 3988 false, ObjCLifetimeConversion)) { 3989 Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, 3990 Arg->getValueKind()).take(); 3991 } else if (!Context.hasSameUnqualifiedType(ArgType, 3992 ParamType.getNonReferenceType())) { 3993 // We can't perform this conversion. 3994 Diag(Arg->getSourceRange().getBegin(), 3995 diag::err_template_arg_not_convertible) 3996 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3997 Diag(Param->getLocation(), diag::note_template_param_here); 3998 return ExprError(); 3999 } 4000 4001 if (CheckTemplateArgumentPointerToMember(Arg, Converted)) 4002 return ExprError(); 4003 return Owned(Arg); 4004 } 4005 4006 if (ParamType->isPointerType()) { 4007 // -- for a non-type template-parameter of type pointer to 4008 // object, qualification conversions (4.4) and the 4009 // array-to-pointer conversion (4.2) are applied. 4010 // C++0x also allows a value of std::nullptr_t. 4011 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 4012 "Only object pointers allowed here"); 4013 4014 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4015 ParamType, 4016 Arg, Converted)) 4017 return ExprError(); 4018 return Owned(Arg); 4019 } 4020 4021 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 4022 // -- For a non-type template-parameter of type reference to 4023 // object, no conversions apply. The type referred to by the 4024 // reference may be more cv-qualified than the (otherwise 4025 // identical) type of the template-argument. The 4026 // template-parameter is bound directly to the 4027 // template-argument, which must be an lvalue. 4028 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 4029 "Only object references allowed here"); 4030 4031 if (Arg->getType() == Context.OverloadTy) { 4032 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 4033 ParamRefType->getPointeeType(), 4034 true, 4035 FoundResult)) { 4036 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 4037 return ExprError(); 4038 4039 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 4040 ArgType = Arg->getType(); 4041 } else 4042 return ExprError(); 4043 } 4044 4045 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4046 ParamType, 4047 Arg, Converted)) 4048 return ExprError(); 4049 return Owned(Arg); 4050 } 4051 4052 // -- For a non-type template-parameter of type pointer to data 4053 // member, qualification conversions (4.4) are applied. 4054 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 4055 4056 bool ObjCLifetimeConversion; 4057 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 4058 // Types match exactly: nothing more to do here. 4059 } else if (IsQualificationConversion(ArgType, ParamType, false, 4060 ObjCLifetimeConversion)) { 4061 Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, 4062 Arg->getValueKind()).take(); 4063 } else { 4064 // We can't perform this conversion. 4065 Diag(Arg->getSourceRange().getBegin(), 4066 diag::err_template_arg_not_convertible) 4067 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 4068 Diag(Param->getLocation(), diag::note_template_param_here); 4069 return ExprError(); 4070 } 4071 4072 if (CheckTemplateArgumentPointerToMember(Arg, Converted)) 4073 return ExprError(); 4074 return Owned(Arg); 4075} 4076 4077/// \brief Check a template argument against its corresponding 4078/// template template parameter. 4079/// 4080/// This routine implements the semantics of C++ [temp.arg.template]. 4081/// It returns true if an error occurred, and false otherwise. 4082bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 4083 const TemplateArgumentLoc &Arg) { 4084 TemplateName Name = Arg.getArgument().getAsTemplate(); 4085 TemplateDecl *Template = Name.getAsTemplateDecl(); 4086 if (!Template) { 4087 // Any dependent template name is fine. 4088 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 4089 return false; 4090 } 4091 4092 // C++0x [temp.arg.template]p1: 4093 // A template-argument for a template template-parameter shall be 4094 // the name of a class template or an alias template, expressed as an 4095 // id-expression. When the template-argument names a class template, only 4096 // primary class templates are considered when matching the 4097 // template template argument with the corresponding parameter; 4098 // partial specializations are not considered even if their 4099 // parameter lists match that of the template template parameter. 4100 // 4101 // Note that we also allow template template parameters here, which 4102 // will happen when we are dealing with, e.g., class template 4103 // partial specializations. 4104 if (!isa<ClassTemplateDecl>(Template) && 4105 !isa<TemplateTemplateParmDecl>(Template) && 4106 !isa<TypeAliasTemplateDecl>(Template)) { 4107 assert(isa<FunctionTemplateDecl>(Template) && 4108 "Only function templates are possible here"); 4109 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 4110 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 4111 << Template; 4112 } 4113 4114 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 4115 Param->getTemplateParameters(), 4116 true, 4117 TPL_TemplateTemplateArgumentMatch, 4118 Arg.getLocation()); 4119} 4120 4121/// \brief Given a non-type template argument that refers to a 4122/// declaration and the type of its corresponding non-type template 4123/// parameter, produce an expression that properly refers to that 4124/// declaration. 4125ExprResult 4126Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 4127 QualType ParamType, 4128 SourceLocation Loc) { 4129 assert(Arg.getKind() == TemplateArgument::Declaration && 4130 "Only declaration template arguments permitted here"); 4131 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 4132 4133 if (VD->getDeclContext()->isRecord() && 4134 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 4135 // If the value is a class member, we might have a pointer-to-member. 4136 // Determine whether the non-type template template parameter is of 4137 // pointer-to-member type. If so, we need to build an appropriate 4138 // expression for a pointer-to-member, since a "normal" DeclRefExpr 4139 // would refer to the member itself. 4140 if (ParamType->isMemberPointerType()) { 4141 QualType ClassType 4142 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 4143 NestedNameSpecifier *Qualifier 4144 = NestedNameSpecifier::Create(Context, 0, false, 4145 ClassType.getTypePtr()); 4146 CXXScopeSpec SS; 4147 SS.MakeTrivial(Context, Qualifier, Loc); 4148 4149 // The actual value-ness of this is unimportant, but for 4150 // internal consistency's sake, references to instance methods 4151 // are r-values. 4152 ExprValueKind VK = VK_LValue; 4153 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 4154 VK = VK_RValue; 4155 4156 ExprResult RefExpr = BuildDeclRefExpr(VD, 4157 VD->getType().getNonReferenceType(), 4158 VK, 4159 Loc, 4160 &SS); 4161 if (RefExpr.isInvalid()) 4162 return ExprError(); 4163 4164 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4165 4166 // We might need to perform a trailing qualification conversion, since 4167 // the element type on the parameter could be more qualified than the 4168 // element type in the expression we constructed. 4169 bool ObjCLifetimeConversion; 4170 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 4171 ParamType.getUnqualifiedType(), false, 4172 ObjCLifetimeConversion)) 4173 RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp); 4174 4175 assert(!RefExpr.isInvalid() && 4176 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 4177 ParamType.getUnqualifiedType())); 4178 return move(RefExpr); 4179 } 4180 } 4181 4182 QualType T = VD->getType().getNonReferenceType(); 4183 if (ParamType->isPointerType()) { 4184 // When the non-type template parameter is a pointer, take the 4185 // address of the declaration. 4186 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 4187 if (RefExpr.isInvalid()) 4188 return ExprError(); 4189 4190 if (T->isFunctionType() || T->isArrayType()) { 4191 // Decay functions and arrays. 4192 RefExpr = DefaultFunctionArrayConversion(RefExpr.take()); 4193 if (RefExpr.isInvalid()) 4194 return ExprError(); 4195 4196 return move(RefExpr); 4197 } 4198 4199 // Take the address of everything else 4200 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4201 } 4202 4203 ExprValueKind VK = VK_RValue; 4204 4205 // If the non-type template parameter has reference type, qualify the 4206 // resulting declaration reference with the extra qualifiers on the 4207 // type that the reference refers to. 4208 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 4209 VK = VK_LValue; 4210 T = Context.getQualifiedType(T, 4211 TargetRef->getPointeeType().getQualifiers()); 4212 } 4213 4214 return BuildDeclRefExpr(VD, T, VK, Loc); 4215} 4216 4217/// \brief Construct a new expression that refers to the given 4218/// integral template argument with the given source-location 4219/// information. 4220/// 4221/// This routine takes care of the mapping from an integral template 4222/// argument (which may have any integral type) to the appropriate 4223/// literal value. 4224ExprResult 4225Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 4226 SourceLocation Loc) { 4227 assert(Arg.getKind() == TemplateArgument::Integral && 4228 "Operation is only valid for integral template arguments"); 4229 QualType T = Arg.getIntegralType(); 4230 if (T->isAnyCharacterType()) { 4231 CharacterLiteral::CharacterKind Kind; 4232 if (T->isWideCharType()) 4233 Kind = CharacterLiteral::Wide; 4234 else if (T->isChar16Type()) 4235 Kind = CharacterLiteral::UTF16; 4236 else if (T->isChar32Type()) 4237 Kind = CharacterLiteral::UTF32; 4238 else 4239 Kind = CharacterLiteral::Ascii; 4240 4241 return Owned(new (Context) CharacterLiteral( 4242 Arg.getAsIntegral()->getZExtValue(), 4243 Kind, T, Loc)); 4244 } 4245 4246 if (T->isBooleanType()) 4247 return Owned(new (Context) CXXBoolLiteralExpr( 4248 Arg.getAsIntegral()->getBoolValue(), 4249 T, Loc)); 4250 4251 if (T->isNullPtrType()) 4252 return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc)); 4253 4254 // If this is an enum type that we're instantiating, we need to use an integer 4255 // type the same size as the enumerator. We don't want to build an 4256 // IntegerLiteral with enum type. 4257 QualType BT; 4258 if (const EnumType *ET = T->getAs<EnumType>()) 4259 BT = ET->getDecl()->getIntegerType(); 4260 else 4261 BT = T; 4262 4263 Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc); 4264 if (T->isEnumeralType()) { 4265 // FIXME: This is a hack. We need a better way to handle substituted 4266 // non-type template parameters. 4267 E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0, 4268 Context.getTrivialTypeSourceInfo(T, Loc), 4269 Loc, Loc); 4270 } 4271 4272 return Owned(E); 4273} 4274 4275/// \brief Match two template parameters within template parameter lists. 4276static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 4277 bool Complain, 4278 Sema::TemplateParameterListEqualKind Kind, 4279 SourceLocation TemplateArgLoc) { 4280 // Check the actual kind (type, non-type, template). 4281 if (Old->getKind() != New->getKind()) { 4282 if (Complain) { 4283 unsigned NextDiag = diag::err_template_param_different_kind; 4284 if (TemplateArgLoc.isValid()) { 4285 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4286 NextDiag = diag::note_template_param_different_kind; 4287 } 4288 S.Diag(New->getLocation(), NextDiag) 4289 << (Kind != Sema::TPL_TemplateMatch); 4290 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 4291 << (Kind != Sema::TPL_TemplateMatch); 4292 } 4293 4294 return false; 4295 } 4296 4297 // Check that both are parameter packs are neither are parameter packs. 4298 // However, if we are matching a template template argument to a 4299 // template template parameter, the template template parameter can have 4300 // a parameter pack where the template template argument does not. 4301 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 4302 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4303 Old->isTemplateParameterPack())) { 4304 if (Complain) { 4305 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 4306 if (TemplateArgLoc.isValid()) { 4307 S.Diag(TemplateArgLoc, 4308 diag::err_template_arg_template_params_mismatch); 4309 NextDiag = diag::note_template_parameter_pack_non_pack; 4310 } 4311 4312 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 4313 : isa<NonTypeTemplateParmDecl>(New)? 1 4314 : 2; 4315 S.Diag(New->getLocation(), NextDiag) 4316 << ParamKind << New->isParameterPack(); 4317 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 4318 << ParamKind << Old->isParameterPack(); 4319 } 4320 4321 return false; 4322 } 4323 4324 // For non-type template parameters, check the type of the parameter. 4325 if (NonTypeTemplateParmDecl *OldNTTP 4326 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 4327 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 4328 4329 // If we are matching a template template argument to a template 4330 // template parameter and one of the non-type template parameter types 4331 // is dependent, then we must wait until template instantiation time 4332 // to actually compare the arguments. 4333 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4334 (OldNTTP->getType()->isDependentType() || 4335 NewNTTP->getType()->isDependentType())) 4336 return true; 4337 4338 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 4339 if (Complain) { 4340 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 4341 if (TemplateArgLoc.isValid()) { 4342 S.Diag(TemplateArgLoc, 4343 diag::err_template_arg_template_params_mismatch); 4344 NextDiag = diag::note_template_nontype_parm_different_type; 4345 } 4346 S.Diag(NewNTTP->getLocation(), NextDiag) 4347 << NewNTTP->getType() 4348 << (Kind != Sema::TPL_TemplateMatch); 4349 S.Diag(OldNTTP->getLocation(), 4350 diag::note_template_nontype_parm_prev_declaration) 4351 << OldNTTP->getType(); 4352 } 4353 4354 return false; 4355 } 4356 4357 return true; 4358 } 4359 4360 // For template template parameters, check the template parameter types. 4361 // The template parameter lists of template template 4362 // parameters must agree. 4363 if (TemplateTemplateParmDecl *OldTTP 4364 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 4365 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 4366 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 4367 OldTTP->getTemplateParameters(), 4368 Complain, 4369 (Kind == Sema::TPL_TemplateMatch 4370 ? Sema::TPL_TemplateTemplateParmMatch 4371 : Kind), 4372 TemplateArgLoc); 4373 } 4374 4375 return true; 4376} 4377 4378/// \brief Diagnose a known arity mismatch when comparing template argument 4379/// lists. 4380static 4381void DiagnoseTemplateParameterListArityMismatch(Sema &S, 4382 TemplateParameterList *New, 4383 TemplateParameterList *Old, 4384 Sema::TemplateParameterListEqualKind Kind, 4385 SourceLocation TemplateArgLoc) { 4386 unsigned NextDiag = diag::err_template_param_list_different_arity; 4387 if (TemplateArgLoc.isValid()) { 4388 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4389 NextDiag = diag::note_template_param_list_different_arity; 4390 } 4391 S.Diag(New->getTemplateLoc(), NextDiag) 4392 << (New->size() > Old->size()) 4393 << (Kind != Sema::TPL_TemplateMatch) 4394 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 4395 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 4396 << (Kind != Sema::TPL_TemplateMatch) 4397 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 4398} 4399 4400/// \brief Determine whether the given template parameter lists are 4401/// equivalent. 4402/// 4403/// \param New The new template parameter list, typically written in the 4404/// source code as part of a new template declaration. 4405/// 4406/// \param Old The old template parameter list, typically found via 4407/// name lookup of the template declared with this template parameter 4408/// list. 4409/// 4410/// \param Complain If true, this routine will produce a diagnostic if 4411/// the template parameter lists are not equivalent. 4412/// 4413/// \param Kind describes how we are to match the template parameter lists. 4414/// 4415/// \param TemplateArgLoc If this source location is valid, then we 4416/// are actually checking the template parameter list of a template 4417/// argument (New) against the template parameter list of its 4418/// corresponding template template parameter (Old). We produce 4419/// slightly different diagnostics in this scenario. 4420/// 4421/// \returns True if the template parameter lists are equal, false 4422/// otherwise. 4423bool 4424Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 4425 TemplateParameterList *Old, 4426 bool Complain, 4427 TemplateParameterListEqualKind Kind, 4428 SourceLocation TemplateArgLoc) { 4429 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 4430 if (Complain) 4431 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4432 TemplateArgLoc); 4433 4434 return false; 4435 } 4436 4437 // C++0x [temp.arg.template]p3: 4438 // A template-argument matches a template template-parameter (call it P) 4439 // when each of the template parameters in the template-parameter-list of 4440 // the template-argument's corresponding class template or alias template 4441 // (call it A) matches the corresponding template parameter in the 4442 // template-parameter-list of P. [...] 4443 TemplateParameterList::iterator NewParm = New->begin(); 4444 TemplateParameterList::iterator NewParmEnd = New->end(); 4445 for (TemplateParameterList::iterator OldParm = Old->begin(), 4446 OldParmEnd = Old->end(); 4447 OldParm != OldParmEnd; ++OldParm) { 4448 if (Kind != TPL_TemplateTemplateArgumentMatch || 4449 !(*OldParm)->isTemplateParameterPack()) { 4450 if (NewParm == NewParmEnd) { 4451 if (Complain) 4452 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4453 TemplateArgLoc); 4454 4455 return false; 4456 } 4457 4458 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4459 Kind, TemplateArgLoc)) 4460 return false; 4461 4462 ++NewParm; 4463 continue; 4464 } 4465 4466 // C++0x [temp.arg.template]p3: 4467 // [...] When P's template- parameter-list contains a template parameter 4468 // pack (14.5.3), the template parameter pack will match zero or more 4469 // template parameters or template parameter packs in the 4470 // template-parameter-list of A with the same type and form as the 4471 // template parameter pack in P (ignoring whether those template 4472 // parameters are template parameter packs). 4473 for (; NewParm != NewParmEnd; ++NewParm) { 4474 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4475 Kind, TemplateArgLoc)) 4476 return false; 4477 } 4478 } 4479 4480 // Make sure we exhausted all of the arguments. 4481 if (NewParm != NewParmEnd) { 4482 if (Complain) 4483 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4484 TemplateArgLoc); 4485 4486 return false; 4487 } 4488 4489 return true; 4490} 4491 4492/// \brief Check whether a template can be declared within this scope. 4493/// 4494/// If the template declaration is valid in this scope, returns 4495/// false. Otherwise, issues a diagnostic and returns true. 4496bool 4497Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 4498 if (!S) 4499 return false; 4500 4501 // Find the nearest enclosing declaration scope. 4502 while ((S->getFlags() & Scope::DeclScope) == 0 || 4503 (S->getFlags() & Scope::TemplateParamScope) != 0) 4504 S = S->getParent(); 4505 4506 // C++ [temp]p2: 4507 // A template-declaration can appear only as a namespace scope or 4508 // class scope declaration. 4509 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 4510 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 4511 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 4512 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 4513 << TemplateParams->getSourceRange(); 4514 4515 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 4516 Ctx = Ctx->getParent(); 4517 4518 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 4519 return false; 4520 4521 return Diag(TemplateParams->getTemplateLoc(), 4522 diag::err_template_outside_namespace_or_class_scope) 4523 << TemplateParams->getSourceRange(); 4524} 4525 4526/// \brief Determine what kind of template specialization the given declaration 4527/// is. 4528static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { 4529 if (!D) 4530 return TSK_Undeclared; 4531 4532 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 4533 return Record->getTemplateSpecializationKind(); 4534 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 4535 return Function->getTemplateSpecializationKind(); 4536 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 4537 return Var->getTemplateSpecializationKind(); 4538 4539 return TSK_Undeclared; 4540} 4541 4542/// \brief Check whether a specialization is well-formed in the current 4543/// context. 4544/// 4545/// This routine determines whether a template specialization can be declared 4546/// in the current context (C++ [temp.expl.spec]p2). 4547/// 4548/// \param S the semantic analysis object for which this check is being 4549/// performed. 4550/// 4551/// \param Specialized the entity being specialized or instantiated, which 4552/// may be a kind of template (class template, function template, etc.) or 4553/// a member of a class template (member function, static data member, 4554/// member class). 4555/// 4556/// \param PrevDecl the previous declaration of this entity, if any. 4557/// 4558/// \param Loc the location of the explicit specialization or instantiation of 4559/// this entity. 4560/// 4561/// \param IsPartialSpecialization whether this is a partial specialization of 4562/// a class template. 4563/// 4564/// \returns true if there was an error that we cannot recover from, false 4565/// otherwise. 4566static bool CheckTemplateSpecializationScope(Sema &S, 4567 NamedDecl *Specialized, 4568 NamedDecl *PrevDecl, 4569 SourceLocation Loc, 4570 bool IsPartialSpecialization) { 4571 // Keep these "kind" numbers in sync with the %select statements in the 4572 // various diagnostics emitted by this routine. 4573 int EntityKind = 0; 4574 if (isa<ClassTemplateDecl>(Specialized)) 4575 EntityKind = IsPartialSpecialization? 1 : 0; 4576 else if (isa<FunctionTemplateDecl>(Specialized)) 4577 EntityKind = 2; 4578 else if (isa<CXXMethodDecl>(Specialized)) 4579 EntityKind = 3; 4580 else if (isa<VarDecl>(Specialized)) 4581 EntityKind = 4; 4582 else if (isa<RecordDecl>(Specialized)) 4583 EntityKind = 5; 4584 else { 4585 S.Diag(Loc, diag::err_template_spec_unknown_kind); 4586 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4587 return true; 4588 } 4589 4590 // C++ [temp.expl.spec]p2: 4591 // An explicit specialization shall be declared in the namespace 4592 // of which the template is a member, or, for member templates, in 4593 // the namespace of which the enclosing class or enclosing class 4594 // template is a member. An explicit specialization of a member 4595 // function, member class or static data member of a class 4596 // template shall be declared in the namespace of which the class 4597 // template is a member. Such a declaration may also be a 4598 // definition. If the declaration is not a definition, the 4599 // specialization may be defined later in the name- space in which 4600 // the explicit specialization was declared, or in a namespace 4601 // that encloses the one in which the explicit specialization was 4602 // declared. 4603 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 4604 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 4605 << Specialized; 4606 return true; 4607 } 4608 4609 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 4610 if (S.getLangOptions().MicrosoftExt) { 4611 // Do not warn for class scope explicit specialization during 4612 // instantiation, warning was already emitted during pattern 4613 // semantic analysis. 4614 if (!S.ActiveTemplateInstantiations.size()) 4615 S.Diag(Loc, diag::ext_function_specialization_in_class) 4616 << Specialized; 4617 } else { 4618 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 4619 << Specialized; 4620 return true; 4621 } 4622 } 4623 4624 if (S.CurContext->isRecord() && 4625 !S.CurContext->Equals(Specialized->getDeclContext())) { 4626 // Make sure that we're specializing in the right record context. 4627 // Otherwise, things can go horribly wrong. 4628 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 4629 << Specialized; 4630 return true; 4631 } 4632 4633 // C++ [temp.class.spec]p6: 4634 // A class template partial specialization may be declared or redeclared 4635 // in any namespace scope in which its definition may be defined (14.5.1 4636 // and 14.5.2). 4637 bool ComplainedAboutScope = false; 4638 DeclContext *SpecializedContext 4639 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 4640 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 4641 if ((!PrevDecl || 4642 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 4643 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 4644 // C++ [temp.exp.spec]p2: 4645 // An explicit specialization shall be declared in the namespace of which 4646 // the template is a member, or, for member templates, in the namespace 4647 // of which the enclosing class or enclosing class template is a member. 4648 // An explicit specialization of a member function, member class or 4649 // static data member of a class template shall be declared in the 4650 // namespace of which the class template is a member. 4651 // 4652 // C++0x [temp.expl.spec]p2: 4653 // An explicit specialization shall be declared in a namespace enclosing 4654 // the specialized template. 4655 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) { 4656 bool IsCPlusPlus0xExtension = DC->Encloses(SpecializedContext); 4657 if (isa<TranslationUnitDecl>(SpecializedContext)) { 4658 assert(!IsCPlusPlus0xExtension && 4659 "DC encloses TU but isn't in enclosing namespace set"); 4660 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 4661 << EntityKind << Specialized; 4662 } else if (isa<NamespaceDecl>(SpecializedContext)) { 4663 int Diag; 4664 if (!IsCPlusPlus0xExtension) 4665 Diag = diag::err_template_spec_decl_out_of_scope; 4666 else if (!S.getLangOptions().CPlusPlus0x) 4667 Diag = diag::ext_template_spec_decl_out_of_scope; 4668 else 4669 Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope; 4670 S.Diag(Loc, Diag) 4671 << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext); 4672 } 4673 4674 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4675 ComplainedAboutScope = 4676 !(IsCPlusPlus0xExtension && S.getLangOptions().CPlusPlus0x); 4677 } 4678 } 4679 4680 // Make sure that this redeclaration (or definition) occurs in an enclosing 4681 // namespace. 4682 // Note that HandleDeclarator() performs this check for explicit 4683 // specializations of function templates, static data members, and member 4684 // functions, so we skip the check here for those kinds of entities. 4685 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 4686 // Should we refactor that check, so that it occurs later? 4687 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 4688 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 4689 isa<FunctionDecl>(Specialized))) { 4690 if (isa<TranslationUnitDecl>(SpecializedContext)) 4691 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 4692 << EntityKind << Specialized; 4693 else if (isa<NamespaceDecl>(SpecializedContext)) 4694 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 4695 << EntityKind << Specialized 4696 << cast<NamedDecl>(SpecializedContext); 4697 4698 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4699 } 4700 4701 // FIXME: check for specialization-after-instantiation errors and such. 4702 4703 return false; 4704} 4705 4706/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs 4707/// that checks non-type template partial specialization arguments. 4708static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S, 4709 NonTypeTemplateParmDecl *Param, 4710 const TemplateArgument *Args, 4711 unsigned NumArgs) { 4712 for (unsigned I = 0; I != NumArgs; ++I) { 4713 if (Args[I].getKind() == TemplateArgument::Pack) { 4714 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4715 Args[I].pack_begin(), 4716 Args[I].pack_size())) 4717 return true; 4718 4719 continue; 4720 } 4721 4722 Expr *ArgExpr = Args[I].getAsExpr(); 4723 if (!ArgExpr) { 4724 continue; 4725 } 4726 4727 // We can have a pack expansion of any of the bullets below. 4728 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 4729 ArgExpr = Expansion->getPattern(); 4730 4731 // Strip off any implicit casts we added as part of type checking. 4732 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 4733 ArgExpr = ICE->getSubExpr(); 4734 4735 // C++ [temp.class.spec]p8: 4736 // A non-type argument is non-specialized if it is the name of a 4737 // non-type parameter. All other non-type arguments are 4738 // specialized. 4739 // 4740 // Below, we check the two conditions that only apply to 4741 // specialized non-type arguments, so skip any non-specialized 4742 // arguments. 4743 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 4744 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 4745 continue; 4746 4747 // C++ [temp.class.spec]p9: 4748 // Within the argument list of a class template partial 4749 // specialization, the following restrictions apply: 4750 // -- A partially specialized non-type argument expression 4751 // shall not involve a template parameter of the partial 4752 // specialization except when the argument expression is a 4753 // simple identifier. 4754 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 4755 S.Diag(ArgExpr->getLocStart(), 4756 diag::err_dependent_non_type_arg_in_partial_spec) 4757 << ArgExpr->getSourceRange(); 4758 return true; 4759 } 4760 4761 // -- The type of a template parameter corresponding to a 4762 // specialized non-type argument shall not be dependent on a 4763 // parameter of the specialization. 4764 if (Param->getType()->isDependentType()) { 4765 S.Diag(ArgExpr->getLocStart(), 4766 diag::err_dependent_typed_non_type_arg_in_partial_spec) 4767 << Param->getType() 4768 << ArgExpr->getSourceRange(); 4769 S.Diag(Param->getLocation(), diag::note_template_param_here); 4770 return true; 4771 } 4772 } 4773 4774 return false; 4775} 4776 4777/// \brief Check the non-type template arguments of a class template 4778/// partial specialization according to C++ [temp.class.spec]p9. 4779/// 4780/// \param TemplateParams the template parameters of the primary class 4781/// template. 4782/// 4783/// \param TemplateArg the template arguments of the class template 4784/// partial specialization. 4785/// 4786/// \returns true if there was an error, false otherwise. 4787static bool CheckClassTemplatePartialSpecializationArgs(Sema &S, 4788 TemplateParameterList *TemplateParams, 4789 SmallVectorImpl<TemplateArgument> &TemplateArgs) { 4790 const TemplateArgument *ArgList = TemplateArgs.data(); 4791 4792 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4793 NonTypeTemplateParmDecl *Param 4794 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 4795 if (!Param) 4796 continue; 4797 4798 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4799 &ArgList[I], 1)) 4800 return true; 4801 } 4802 4803 return false; 4804} 4805 4806DeclResult 4807Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 4808 TagUseKind TUK, 4809 SourceLocation KWLoc, 4810 SourceLocation ModulePrivateLoc, 4811 CXXScopeSpec &SS, 4812 TemplateTy TemplateD, 4813 SourceLocation TemplateNameLoc, 4814 SourceLocation LAngleLoc, 4815 ASTTemplateArgsPtr TemplateArgsIn, 4816 SourceLocation RAngleLoc, 4817 AttributeList *Attr, 4818 MultiTemplateParamsArg TemplateParameterLists) { 4819 assert(TUK != TUK_Reference && "References are not specializations"); 4820 4821 // NOTE: KWLoc is the location of the tag keyword. This will instead 4822 // store the location of the outermost template keyword in the declaration. 4823 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 4824 ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation(); 4825 4826 // Find the class template we're specializing 4827 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4828 ClassTemplateDecl *ClassTemplate 4829 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4830 4831 if (!ClassTemplate) { 4832 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 4833 << (Name.getAsTemplateDecl() && 4834 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 4835 return true; 4836 } 4837 4838 bool isExplicitSpecialization = false; 4839 bool isPartialSpecialization = false; 4840 4841 // Check the validity of the template headers that introduce this 4842 // template. 4843 // FIXME: We probably shouldn't complain about these headers for 4844 // friend declarations. 4845 bool Invalid = false; 4846 TemplateParameterList *TemplateParams 4847 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, 4848 TemplateNameLoc, 4849 SS, 4850 (TemplateParameterList**)TemplateParameterLists.get(), 4851 TemplateParameterLists.size(), 4852 TUK == TUK_Friend, 4853 isExplicitSpecialization, 4854 Invalid); 4855 if (Invalid) 4856 return true; 4857 4858 if (TemplateParams && TemplateParams->size() > 0) { 4859 isPartialSpecialization = true; 4860 4861 if (TUK == TUK_Friend) { 4862 Diag(KWLoc, diag::err_partial_specialization_friend) 4863 << SourceRange(LAngleLoc, RAngleLoc); 4864 return true; 4865 } 4866 4867 // C++ [temp.class.spec]p10: 4868 // The template parameter list of a specialization shall not 4869 // contain default template argument values. 4870 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4871 Decl *Param = TemplateParams->getParam(I); 4872 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 4873 if (TTP->hasDefaultArgument()) { 4874 Diag(TTP->getDefaultArgumentLoc(), 4875 diag::err_default_arg_in_partial_spec); 4876 TTP->removeDefaultArgument(); 4877 } 4878 } else if (NonTypeTemplateParmDecl *NTTP 4879 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 4880 if (Expr *DefArg = NTTP->getDefaultArgument()) { 4881 Diag(NTTP->getDefaultArgumentLoc(), 4882 diag::err_default_arg_in_partial_spec) 4883 << DefArg->getSourceRange(); 4884 NTTP->removeDefaultArgument(); 4885 } 4886 } else { 4887 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 4888 if (TTP->hasDefaultArgument()) { 4889 Diag(TTP->getDefaultArgument().getLocation(), 4890 diag::err_default_arg_in_partial_spec) 4891 << TTP->getDefaultArgument().getSourceRange(); 4892 TTP->removeDefaultArgument(); 4893 } 4894 } 4895 } 4896 } else if (TemplateParams) { 4897 if (TUK == TUK_Friend) 4898 Diag(KWLoc, diag::err_template_spec_friend) 4899 << FixItHint::CreateRemoval( 4900 SourceRange(TemplateParams->getTemplateLoc(), 4901 TemplateParams->getRAngleLoc())) 4902 << SourceRange(LAngleLoc, RAngleLoc); 4903 else 4904 isExplicitSpecialization = true; 4905 } else if (TUK != TUK_Friend) { 4906 Diag(KWLoc, diag::err_template_spec_needs_header) 4907 << FixItHint::CreateInsertion(KWLoc, "template<> "); 4908 isExplicitSpecialization = true; 4909 } 4910 4911 // Check that the specialization uses the same tag kind as the 4912 // original template. 4913 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4914 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 4915 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4916 Kind, TUK == TUK_Definition, KWLoc, 4917 *ClassTemplate->getIdentifier())) { 4918 Diag(KWLoc, diag::err_use_with_wrong_tag) 4919 << ClassTemplate 4920 << FixItHint::CreateReplacement(KWLoc, 4921 ClassTemplate->getTemplatedDecl()->getKindName()); 4922 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4923 diag::note_previous_use); 4924 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4925 } 4926 4927 // Translate the parser's template argument list in our AST format. 4928 TemplateArgumentListInfo TemplateArgs; 4929 TemplateArgs.setLAngleLoc(LAngleLoc); 4930 TemplateArgs.setRAngleLoc(RAngleLoc); 4931 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4932 4933 // Check for unexpanded parameter packs in any of the template arguments. 4934 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 4935 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 4936 UPPC_PartialSpecialization)) 4937 return true; 4938 4939 // Check that the template argument list is well-formed for this 4940 // template. 4941 SmallVector<TemplateArgument, 4> Converted; 4942 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4943 TemplateArgs, false, Converted)) 4944 return true; 4945 4946 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 4947 "Converted template argument list is too short!"); 4948 4949 // Find the class template (partial) specialization declaration that 4950 // corresponds to these arguments. 4951 if (isPartialSpecialization) { 4952 if (CheckClassTemplatePartialSpecializationArgs(*this, 4953 ClassTemplate->getTemplateParameters(), 4954 Converted)) 4955 return true; 4956 4957 bool InstantiationDependent; 4958 if (!Name.isDependent() && 4959 !TemplateSpecializationType::anyDependentTemplateArguments( 4960 TemplateArgs.getArgumentArray(), 4961 TemplateArgs.size(), 4962 InstantiationDependent)) { 4963 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 4964 << ClassTemplate->getDeclName(); 4965 isPartialSpecialization = false; 4966 } 4967 } 4968 4969 void *InsertPos = 0; 4970 ClassTemplateSpecializationDecl *PrevDecl = 0; 4971 4972 if (isPartialSpecialization) 4973 // FIXME: Template parameter list matters, too 4974 PrevDecl 4975 = ClassTemplate->findPartialSpecialization(Converted.data(), 4976 Converted.size(), 4977 InsertPos); 4978 else 4979 PrevDecl 4980 = ClassTemplate->findSpecialization(Converted.data(), 4981 Converted.size(), InsertPos); 4982 4983 ClassTemplateSpecializationDecl *Specialization = 0; 4984 4985 // Check whether we can declare a class template specialization in 4986 // the current scope. 4987 if (TUK != TUK_Friend && 4988 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 4989 TemplateNameLoc, 4990 isPartialSpecialization)) 4991 return true; 4992 4993 // The canonical type 4994 QualType CanonType; 4995 if (PrevDecl && 4996 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 4997 TUK == TUK_Friend)) { 4998 // Since the only prior class template specialization with these 4999 // arguments was referenced but not declared, or we're only 5000 // referencing this specialization as a friend, reuse that 5001 // declaration node as our own, updating its source location and 5002 // the list of outer template parameters to reflect our new declaration. 5003 Specialization = PrevDecl; 5004 Specialization->setLocation(TemplateNameLoc); 5005 if (TemplateParameterLists.size() > 0) { 5006 Specialization->setTemplateParameterListsInfo(Context, 5007 TemplateParameterLists.size(), 5008 (TemplateParameterList**) TemplateParameterLists.release()); 5009 } 5010 PrevDecl = 0; 5011 CanonType = Context.getTypeDeclType(Specialization); 5012 } else if (isPartialSpecialization) { 5013 // Build the canonical type that describes the converted template 5014 // arguments of the class template partial specialization. 5015 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 5016 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 5017 Converted.data(), 5018 Converted.size()); 5019 5020 if (Context.hasSameType(CanonType, 5021 ClassTemplate->getInjectedClassNameSpecialization())) { 5022 // C++ [temp.class.spec]p9b3: 5023 // 5024 // -- The argument list of the specialization shall not be identical 5025 // to the implicit argument list of the primary template. 5026 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 5027 << (TUK == TUK_Definition) 5028 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 5029 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 5030 ClassTemplate->getIdentifier(), 5031 TemplateNameLoc, 5032 Attr, 5033 TemplateParams, 5034 AS_none, /*ModulePrivateLoc=*/SourceLocation(), 5035 TemplateParameterLists.size() - 1, 5036 (TemplateParameterList**) TemplateParameterLists.release()); 5037 } 5038 5039 // Create a new class template partial specialization declaration node. 5040 ClassTemplatePartialSpecializationDecl *PrevPartial 5041 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 5042 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 5043 : ClassTemplate->getNextPartialSpecSequenceNumber(); 5044 ClassTemplatePartialSpecializationDecl *Partial 5045 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 5046 ClassTemplate->getDeclContext(), 5047 KWLoc, TemplateNameLoc, 5048 TemplateParams, 5049 ClassTemplate, 5050 Converted.data(), 5051 Converted.size(), 5052 TemplateArgs, 5053 CanonType, 5054 PrevPartial, 5055 SequenceNumber); 5056 SetNestedNameSpecifier(Partial, SS); 5057 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 5058 Partial->setTemplateParameterListsInfo(Context, 5059 TemplateParameterLists.size() - 1, 5060 (TemplateParameterList**) TemplateParameterLists.release()); 5061 } 5062 5063 if (!PrevPartial) 5064 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 5065 Specialization = Partial; 5066 5067 // If we are providing an explicit specialization of a member class 5068 // template specialization, make a note of that. 5069 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 5070 PrevPartial->setMemberSpecialization(); 5071 5072 // Check that all of the template parameters of the class template 5073 // partial specialization are deducible from the template 5074 // arguments. If not, this class template partial specialization 5075 // will never be used. 5076 SmallVector<bool, 8> DeducibleParams; 5077 DeducibleParams.resize(TemplateParams->size()); 5078 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 5079 TemplateParams->getDepth(), 5080 DeducibleParams); 5081 unsigned NumNonDeducible = 0; 5082 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 5083 if (!DeducibleParams[I]) 5084 ++NumNonDeducible; 5085 5086 if (NumNonDeducible) { 5087 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 5088 << (NumNonDeducible > 1) 5089 << SourceRange(TemplateNameLoc, RAngleLoc); 5090 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 5091 if (!DeducibleParams[I]) { 5092 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 5093 if (Param->getDeclName()) 5094 Diag(Param->getLocation(), 5095 diag::note_partial_spec_unused_parameter) 5096 << Param->getDeclName(); 5097 else 5098 Diag(Param->getLocation(), 5099 diag::note_partial_spec_unused_parameter) 5100 << "<anonymous>"; 5101 } 5102 } 5103 } 5104 } else { 5105 // Create a new class template specialization declaration node for 5106 // this explicit specialization or friend declaration. 5107 Specialization 5108 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5109 ClassTemplate->getDeclContext(), 5110 KWLoc, TemplateNameLoc, 5111 ClassTemplate, 5112 Converted.data(), 5113 Converted.size(), 5114 PrevDecl); 5115 SetNestedNameSpecifier(Specialization, SS); 5116 if (TemplateParameterLists.size() > 0) { 5117 Specialization->setTemplateParameterListsInfo(Context, 5118 TemplateParameterLists.size(), 5119 (TemplateParameterList**) TemplateParameterLists.release()); 5120 } 5121 5122 if (!PrevDecl) 5123 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5124 5125 CanonType = Context.getTypeDeclType(Specialization); 5126 } 5127 5128 // C++ [temp.expl.spec]p6: 5129 // If a template, a member template or the member of a class template is 5130 // explicitly specialized then that specialization shall be declared 5131 // before the first use of that specialization that would cause an implicit 5132 // instantiation to take place, in every translation unit in which such a 5133 // use occurs; no diagnostic is required. 5134 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 5135 bool Okay = false; 5136 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5137 // Is there any previous explicit specialization declaration? 5138 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 5139 Okay = true; 5140 break; 5141 } 5142 } 5143 5144 if (!Okay) { 5145 SourceRange Range(TemplateNameLoc, RAngleLoc); 5146 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 5147 << Context.getTypeDeclType(Specialization) << Range; 5148 5149 Diag(PrevDecl->getPointOfInstantiation(), 5150 diag::note_instantiation_required_here) 5151 << (PrevDecl->getTemplateSpecializationKind() 5152 != TSK_ImplicitInstantiation); 5153 return true; 5154 } 5155 } 5156 5157 // If this is not a friend, note that this is an explicit specialization. 5158 if (TUK != TUK_Friend) 5159 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 5160 5161 // Check that this isn't a redefinition of this specialization. 5162 if (TUK == TUK_Definition) { 5163 if (RecordDecl *Def = Specialization->getDefinition()) { 5164 SourceRange Range(TemplateNameLoc, RAngleLoc); 5165 Diag(TemplateNameLoc, diag::err_redefinition) 5166 << Context.getTypeDeclType(Specialization) << Range; 5167 Diag(Def->getLocation(), diag::note_previous_definition); 5168 Specialization->setInvalidDecl(); 5169 return true; 5170 } 5171 } 5172 5173 if (Attr) 5174 ProcessDeclAttributeList(S, Specialization, Attr); 5175 5176 if (ModulePrivateLoc.isValid()) 5177 Diag(Specialization->getLocation(), diag::err_module_private_specialization) 5178 << (isPartialSpecialization? 1 : 0) 5179 << FixItHint::CreateRemoval(ModulePrivateLoc); 5180 5181 // Build the fully-sugared type for this class template 5182 // specialization as the user wrote in the specialization 5183 // itself. This means that we'll pretty-print the type retrieved 5184 // from the specialization's declaration the way that the user 5185 // actually wrote the specialization, rather than formatting the 5186 // name based on the "canonical" representation used to store the 5187 // template arguments in the specialization. 5188 TypeSourceInfo *WrittenTy 5189 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5190 TemplateArgs, CanonType); 5191 if (TUK != TUK_Friend) { 5192 Specialization->setTypeAsWritten(WrittenTy); 5193 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 5194 } 5195 TemplateArgsIn.release(); 5196 5197 // C++ [temp.expl.spec]p9: 5198 // A template explicit specialization is in the scope of the 5199 // namespace in which the template was defined. 5200 // 5201 // We actually implement this paragraph where we set the semantic 5202 // context (in the creation of the ClassTemplateSpecializationDecl), 5203 // but we also maintain the lexical context where the actual 5204 // definition occurs. 5205 Specialization->setLexicalDeclContext(CurContext); 5206 5207 // We may be starting the definition of this specialization. 5208 if (TUK == TUK_Definition) 5209 Specialization->startDefinition(); 5210 5211 if (TUK == TUK_Friend) { 5212 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 5213 TemplateNameLoc, 5214 WrittenTy, 5215 /*FIXME:*/KWLoc); 5216 Friend->setAccess(AS_public); 5217 CurContext->addDecl(Friend); 5218 } else { 5219 // Add the specialization into its lexical context, so that it can 5220 // be seen when iterating through the list of declarations in that 5221 // context. However, specializations are not found by name lookup. 5222 CurContext->addDecl(Specialization); 5223 } 5224 return Specialization; 5225} 5226 5227Decl *Sema::ActOnTemplateDeclarator(Scope *S, 5228 MultiTemplateParamsArg TemplateParameterLists, 5229 Declarator &D) { 5230 return HandleDeclarator(S, D, move(TemplateParameterLists)); 5231} 5232 5233Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 5234 MultiTemplateParamsArg TemplateParameterLists, 5235 Declarator &D) { 5236 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 5237 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 5238 5239 if (FTI.hasPrototype) { 5240 // FIXME: Diagnose arguments without names in C. 5241 } 5242 5243 Scope *ParentScope = FnBodyScope->getParent(); 5244 5245 D.setFunctionDefinitionKind(FDK_Definition); 5246 Decl *DP = HandleDeclarator(ParentScope, D, 5247 move(TemplateParameterLists)); 5248 if (FunctionTemplateDecl *FunctionTemplate 5249 = dyn_cast_or_null<FunctionTemplateDecl>(DP)) 5250 return ActOnStartOfFunctionDef(FnBodyScope, 5251 FunctionTemplate->getTemplatedDecl()); 5252 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP)) 5253 return ActOnStartOfFunctionDef(FnBodyScope, Function); 5254 return 0; 5255} 5256 5257/// \brief Strips various properties off an implicit instantiation 5258/// that has just been explicitly specialized. 5259static void StripImplicitInstantiation(NamedDecl *D) { 5260 D->dropAttrs(); 5261 5262 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5263 FD->setInlineSpecified(false); 5264 } 5265} 5266 5267/// \brief Compute the diagnostic location for an explicit instantiation 5268// declaration or definition. 5269static SourceLocation DiagLocForExplicitInstantiation( 5270 NamedDecl* D, SourceLocation PointOfInstantiation) { 5271 // Explicit instantiations following a specialization have no effect and 5272 // hence no PointOfInstantiation. In that case, walk decl backwards 5273 // until a valid name loc is found. 5274 SourceLocation PrevDiagLoc = PointOfInstantiation; 5275 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); 5276 Prev = Prev->getPreviousDecl()) { 5277 PrevDiagLoc = Prev->getLocation(); 5278 } 5279 assert(PrevDiagLoc.isValid() && 5280 "Explicit instantiation without point of instantiation?"); 5281 return PrevDiagLoc; 5282} 5283 5284/// \brief Diagnose cases where we have an explicit template specialization 5285/// before/after an explicit template instantiation, producing diagnostics 5286/// for those cases where they are required and determining whether the 5287/// new specialization/instantiation will have any effect. 5288/// 5289/// \param NewLoc the location of the new explicit specialization or 5290/// instantiation. 5291/// 5292/// \param NewTSK the kind of the new explicit specialization or instantiation. 5293/// 5294/// \param PrevDecl the previous declaration of the entity. 5295/// 5296/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 5297/// 5298/// \param PrevPointOfInstantiation if valid, indicates where the previus 5299/// declaration was instantiated (either implicitly or explicitly). 5300/// 5301/// \param HasNoEffect will be set to true to indicate that the new 5302/// specialization or instantiation has no effect and should be ignored. 5303/// 5304/// \returns true if there was an error that should prevent the introduction of 5305/// the new declaration into the AST, false otherwise. 5306bool 5307Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 5308 TemplateSpecializationKind NewTSK, 5309 NamedDecl *PrevDecl, 5310 TemplateSpecializationKind PrevTSK, 5311 SourceLocation PrevPointOfInstantiation, 5312 bool &HasNoEffect) { 5313 HasNoEffect = false; 5314 5315 switch (NewTSK) { 5316 case TSK_Undeclared: 5317 case TSK_ImplicitInstantiation: 5318 llvm_unreachable("Don't check implicit instantiations here"); 5319 5320 case TSK_ExplicitSpecialization: 5321 switch (PrevTSK) { 5322 case TSK_Undeclared: 5323 case TSK_ExplicitSpecialization: 5324 // Okay, we're just specializing something that is either already 5325 // explicitly specialized or has merely been mentioned without any 5326 // instantiation. 5327 return false; 5328 5329 case TSK_ImplicitInstantiation: 5330 if (PrevPointOfInstantiation.isInvalid()) { 5331 // The declaration itself has not actually been instantiated, so it is 5332 // still okay to specialize it. 5333 StripImplicitInstantiation(PrevDecl); 5334 return false; 5335 } 5336 // Fall through 5337 5338 case TSK_ExplicitInstantiationDeclaration: 5339 case TSK_ExplicitInstantiationDefinition: 5340 assert((PrevTSK == TSK_ImplicitInstantiation || 5341 PrevPointOfInstantiation.isValid()) && 5342 "Explicit instantiation without point of instantiation?"); 5343 5344 // C++ [temp.expl.spec]p6: 5345 // If a template, a member template or the member of a class template 5346 // is explicitly specialized then that specialization shall be declared 5347 // before the first use of that specialization that would cause an 5348 // implicit instantiation to take place, in every translation unit in 5349 // which such a use occurs; no diagnostic is required. 5350 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5351 // Is there any previous explicit specialization declaration? 5352 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 5353 return false; 5354 } 5355 5356 Diag(NewLoc, diag::err_specialization_after_instantiation) 5357 << PrevDecl; 5358 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 5359 << (PrevTSK != TSK_ImplicitInstantiation); 5360 5361 return true; 5362 } 5363 5364 case TSK_ExplicitInstantiationDeclaration: 5365 switch (PrevTSK) { 5366 case TSK_ExplicitInstantiationDeclaration: 5367 // This explicit instantiation declaration is redundant (that's okay). 5368 HasNoEffect = true; 5369 return false; 5370 5371 case TSK_Undeclared: 5372 case TSK_ImplicitInstantiation: 5373 // We're explicitly instantiating something that may have already been 5374 // implicitly instantiated; that's fine. 5375 return false; 5376 5377 case TSK_ExplicitSpecialization: 5378 // C++0x [temp.explicit]p4: 5379 // For a given set of template parameters, if an explicit instantiation 5380 // of a template appears after a declaration of an explicit 5381 // specialization for that template, the explicit instantiation has no 5382 // effect. 5383 HasNoEffect = true; 5384 return false; 5385 5386 case TSK_ExplicitInstantiationDefinition: 5387 // C++0x [temp.explicit]p10: 5388 // If an entity is the subject of both an explicit instantiation 5389 // declaration and an explicit instantiation definition in the same 5390 // translation unit, the definition shall follow the declaration. 5391 Diag(NewLoc, 5392 diag::err_explicit_instantiation_declaration_after_definition); 5393 5394 // Explicit instantiations following a specialization have no effect and 5395 // hence no PrevPointOfInstantiation. In that case, walk decl backwards 5396 // until a valid name loc is found. 5397 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 5398 diag::note_explicit_instantiation_definition_here); 5399 HasNoEffect = true; 5400 return false; 5401 } 5402 5403 case TSK_ExplicitInstantiationDefinition: 5404 switch (PrevTSK) { 5405 case TSK_Undeclared: 5406 case TSK_ImplicitInstantiation: 5407 // We're explicitly instantiating something that may have already been 5408 // implicitly instantiated; that's fine. 5409 return false; 5410 5411 case TSK_ExplicitSpecialization: 5412 // C++ DR 259, C++0x [temp.explicit]p4: 5413 // For a given set of template parameters, if an explicit 5414 // instantiation of a template appears after a declaration of 5415 // an explicit specialization for that template, the explicit 5416 // instantiation has no effect. 5417 // 5418 // In C++98/03 mode, we only give an extension warning here, because it 5419 // is not harmful to try to explicitly instantiate something that 5420 // has been explicitly specialized. 5421 Diag(NewLoc, getLangOptions().CPlusPlus0x ? 5422 diag::warn_cxx98_compat_explicit_instantiation_after_specialization : 5423 diag::ext_explicit_instantiation_after_specialization) 5424 << PrevDecl; 5425 Diag(PrevDecl->getLocation(), 5426 diag::note_previous_template_specialization); 5427 HasNoEffect = true; 5428 return false; 5429 5430 case TSK_ExplicitInstantiationDeclaration: 5431 // We're explicity instantiating a definition for something for which we 5432 // were previously asked to suppress instantiations. That's fine. 5433 5434 // C++0x [temp.explicit]p4: 5435 // For a given set of template parameters, if an explicit instantiation 5436 // of a template appears after a declaration of an explicit 5437 // specialization for that template, the explicit instantiation has no 5438 // effect. 5439 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5440 // Is there any previous explicit specialization declaration? 5441 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 5442 HasNoEffect = true; 5443 break; 5444 } 5445 } 5446 5447 return false; 5448 5449 case TSK_ExplicitInstantiationDefinition: 5450 // C++0x [temp.spec]p5: 5451 // For a given template and a given set of template-arguments, 5452 // - an explicit instantiation definition shall appear at most once 5453 // in a program, 5454 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 5455 << PrevDecl; 5456 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 5457 diag::note_previous_explicit_instantiation); 5458 HasNoEffect = true; 5459 return false; 5460 } 5461 } 5462 5463 llvm_unreachable("Missing specialization/instantiation case?"); 5464} 5465 5466/// \brief Perform semantic analysis for the given dependent function 5467/// template specialization. The only possible way to get a dependent 5468/// function template specialization is with a friend declaration, 5469/// like so: 5470/// 5471/// template <class T> void foo(T); 5472/// template <class T> class A { 5473/// friend void foo<>(T); 5474/// }; 5475/// 5476/// There really isn't any useful analysis we can do here, so we 5477/// just store the information. 5478bool 5479Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 5480 const TemplateArgumentListInfo &ExplicitTemplateArgs, 5481 LookupResult &Previous) { 5482 // Remove anything from Previous that isn't a function template in 5483 // the correct context. 5484 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5485 LookupResult::Filter F = Previous.makeFilter(); 5486 while (F.hasNext()) { 5487 NamedDecl *D = F.next()->getUnderlyingDecl(); 5488 if (!isa<FunctionTemplateDecl>(D) || 5489 !FDLookupContext->InEnclosingNamespaceSetOf( 5490 D->getDeclContext()->getRedeclContext())) 5491 F.erase(); 5492 } 5493 F.done(); 5494 5495 // Should this be diagnosed here? 5496 if (Previous.empty()) return true; 5497 5498 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 5499 ExplicitTemplateArgs); 5500 return false; 5501} 5502 5503/// \brief Perform semantic analysis for the given function template 5504/// specialization. 5505/// 5506/// This routine performs all of the semantic analysis required for an 5507/// explicit function template specialization. On successful completion, 5508/// the function declaration \p FD will become a function template 5509/// specialization. 5510/// 5511/// \param FD the function declaration, which will be updated to become a 5512/// function template specialization. 5513/// 5514/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 5515/// if any. Note that this may be valid info even when 0 arguments are 5516/// explicitly provided as in, e.g., \c void sort<>(char*, char*); 5517/// as it anyway contains info on the angle brackets locations. 5518/// 5519/// \param Previous the set of declarations that may be specialized by 5520/// this function specialization. 5521bool 5522Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 5523 TemplateArgumentListInfo *ExplicitTemplateArgs, 5524 LookupResult &Previous) { 5525 // The set of function template specializations that could match this 5526 // explicit function template specialization. 5527 UnresolvedSet<8> Candidates; 5528 5529 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5530 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5531 I != E; ++I) { 5532 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 5533 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 5534 // Only consider templates found within the same semantic lookup scope as 5535 // FD. 5536 if (!FDLookupContext->InEnclosingNamespaceSetOf( 5537 Ovl->getDeclContext()->getRedeclContext())) 5538 continue; 5539 5540 // C++ [temp.expl.spec]p11: 5541 // A trailing template-argument can be left unspecified in the 5542 // template-id naming an explicit function template specialization 5543 // provided it can be deduced from the function argument type. 5544 // Perform template argument deduction to determine whether we may be 5545 // specializing this template. 5546 // FIXME: It is somewhat wasteful to build 5547 TemplateDeductionInfo Info(Context, FD->getLocation()); 5548 FunctionDecl *Specialization = 0; 5549 if (TemplateDeductionResult TDK 5550 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 5551 FD->getType(), 5552 Specialization, 5553 Info)) { 5554 // FIXME: Template argument deduction failed; record why it failed, so 5555 // that we can provide nifty diagnostics. 5556 (void)TDK; 5557 continue; 5558 } 5559 5560 // Record this candidate. 5561 Candidates.addDecl(Specialization, I.getAccess()); 5562 } 5563 } 5564 5565 // Find the most specialized function template. 5566 UnresolvedSetIterator Result 5567 = getMostSpecialized(Candidates.begin(), Candidates.end(), 5568 TPOC_Other, 0, FD->getLocation(), 5569 PDiag(diag::err_function_template_spec_no_match) 5570 << FD->getDeclName(), 5571 PDiag(diag::err_function_template_spec_ambiguous) 5572 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 5573 PDiag(diag::note_function_template_spec_matched)); 5574 if (Result == Candidates.end()) 5575 return true; 5576 5577 // Ignore access information; it doesn't figure into redeclaration checking. 5578 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5579 5580 FunctionTemplateSpecializationInfo *SpecInfo 5581 = Specialization->getTemplateSpecializationInfo(); 5582 assert(SpecInfo && "Function template specialization info missing?"); 5583 5584 // Note: do not overwrite location info if previous template 5585 // specialization kind was explicit. 5586 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 5587 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) 5588 Specialization->setLocation(FD->getLocation()); 5589 5590 // FIXME: Check if the prior specialization has a point of instantiation. 5591 // If so, we have run afoul of . 5592 5593 // If this is a friend declaration, then we're not really declaring 5594 // an explicit specialization. 5595 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 5596 5597 // Check the scope of this explicit specialization. 5598 if (!isFriend && 5599 CheckTemplateSpecializationScope(*this, 5600 Specialization->getPrimaryTemplate(), 5601 Specialization, FD->getLocation(), 5602 false)) 5603 return true; 5604 5605 // C++ [temp.expl.spec]p6: 5606 // If a template, a member template or the member of a class template is 5607 // explicitly specialized then that specialization shall be declared 5608 // before the first use of that specialization that would cause an implicit 5609 // instantiation to take place, in every translation unit in which such a 5610 // use occurs; no diagnostic is required. 5611 bool HasNoEffect = false; 5612 if (!isFriend && 5613 CheckSpecializationInstantiationRedecl(FD->getLocation(), 5614 TSK_ExplicitSpecialization, 5615 Specialization, 5616 SpecInfo->getTemplateSpecializationKind(), 5617 SpecInfo->getPointOfInstantiation(), 5618 HasNoEffect)) 5619 return true; 5620 5621 // Mark the prior declaration as an explicit specialization, so that later 5622 // clients know that this is an explicit specialization. 5623 if (!isFriend) { 5624 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 5625 MarkUnusedFileScopedDecl(Specialization); 5626 } 5627 5628 // Turn the given function declaration into a function template 5629 // specialization, with the template arguments from the previous 5630 // specialization. 5631 // Take copies of (semantic and syntactic) template argument lists. 5632 const TemplateArgumentList* TemplArgs = new (Context) 5633 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 5634 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 5635 TemplArgs, /*InsertPos=*/0, 5636 SpecInfo->getTemplateSpecializationKind(), 5637 ExplicitTemplateArgs); 5638 FD->setStorageClass(Specialization->getStorageClass()); 5639 5640 // The "previous declaration" for this function template specialization is 5641 // the prior function template specialization. 5642 Previous.clear(); 5643 Previous.addDecl(Specialization); 5644 return false; 5645} 5646 5647/// \brief Perform semantic analysis for the given non-template member 5648/// specialization. 5649/// 5650/// This routine performs all of the semantic analysis required for an 5651/// explicit member function specialization. On successful completion, 5652/// the function declaration \p FD will become a member function 5653/// specialization. 5654/// 5655/// \param Member the member declaration, which will be updated to become a 5656/// specialization. 5657/// 5658/// \param Previous the set of declarations, one of which may be specialized 5659/// by this function specialization; the set will be modified to contain the 5660/// redeclared member. 5661bool 5662Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 5663 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 5664 5665 // Try to find the member we are instantiating. 5666 NamedDecl *Instantiation = 0; 5667 NamedDecl *InstantiatedFrom = 0; 5668 MemberSpecializationInfo *MSInfo = 0; 5669 5670 if (Previous.empty()) { 5671 // Nowhere to look anyway. 5672 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 5673 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5674 I != E; ++I) { 5675 NamedDecl *D = (*I)->getUnderlyingDecl(); 5676 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 5677 if (Context.hasSameType(Function->getType(), Method->getType())) { 5678 Instantiation = Method; 5679 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 5680 MSInfo = Method->getMemberSpecializationInfo(); 5681 break; 5682 } 5683 } 5684 } 5685 } else if (isa<VarDecl>(Member)) { 5686 VarDecl *PrevVar; 5687 if (Previous.isSingleResult() && 5688 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 5689 if (PrevVar->isStaticDataMember()) { 5690 Instantiation = PrevVar; 5691 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 5692 MSInfo = PrevVar->getMemberSpecializationInfo(); 5693 } 5694 } else if (isa<RecordDecl>(Member)) { 5695 CXXRecordDecl *PrevRecord; 5696 if (Previous.isSingleResult() && 5697 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 5698 Instantiation = PrevRecord; 5699 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 5700 MSInfo = PrevRecord->getMemberSpecializationInfo(); 5701 } 5702 } 5703 5704 if (!Instantiation) { 5705 // There is no previous declaration that matches. Since member 5706 // specializations are always out-of-line, the caller will complain about 5707 // this mismatch later. 5708 return false; 5709 } 5710 5711 // If this is a friend, just bail out here before we start turning 5712 // things into explicit specializations. 5713 if (Member->getFriendObjectKind() != Decl::FOK_None) { 5714 // Preserve instantiation information. 5715 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 5716 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 5717 cast<CXXMethodDecl>(InstantiatedFrom), 5718 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 5719 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 5720 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5721 cast<CXXRecordDecl>(InstantiatedFrom), 5722 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 5723 } 5724 5725 Previous.clear(); 5726 Previous.addDecl(Instantiation); 5727 return false; 5728 } 5729 5730 // Make sure that this is a specialization of a member. 5731 if (!InstantiatedFrom) { 5732 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 5733 << Member; 5734 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 5735 return true; 5736 } 5737 5738 // C++ [temp.expl.spec]p6: 5739 // If a template, a member template or the member of a class template is 5740 // explicitly specialized then that specialization shall be declared 5741 // before the first use of that specialization that would cause an implicit 5742 // instantiation to take place, in every translation unit in which such a 5743 // use occurs; no diagnostic is required. 5744 assert(MSInfo && "Member specialization info missing?"); 5745 5746 bool HasNoEffect = false; 5747 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 5748 TSK_ExplicitSpecialization, 5749 Instantiation, 5750 MSInfo->getTemplateSpecializationKind(), 5751 MSInfo->getPointOfInstantiation(), 5752 HasNoEffect)) 5753 return true; 5754 5755 // Check the scope of this explicit specialization. 5756 if (CheckTemplateSpecializationScope(*this, 5757 InstantiatedFrom, 5758 Instantiation, Member->getLocation(), 5759 false)) 5760 return true; 5761 5762 // Note that this is an explicit instantiation of a member. 5763 // the original declaration to note that it is an explicit specialization 5764 // (if it was previously an implicit instantiation). This latter step 5765 // makes bookkeeping easier. 5766 if (isa<FunctionDecl>(Member)) { 5767 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 5768 if (InstantiationFunction->getTemplateSpecializationKind() == 5769 TSK_ImplicitInstantiation) { 5770 InstantiationFunction->setTemplateSpecializationKind( 5771 TSK_ExplicitSpecialization); 5772 InstantiationFunction->setLocation(Member->getLocation()); 5773 } 5774 5775 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 5776 cast<CXXMethodDecl>(InstantiatedFrom), 5777 TSK_ExplicitSpecialization); 5778 MarkUnusedFileScopedDecl(InstantiationFunction); 5779 } else if (isa<VarDecl>(Member)) { 5780 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 5781 if (InstantiationVar->getTemplateSpecializationKind() == 5782 TSK_ImplicitInstantiation) { 5783 InstantiationVar->setTemplateSpecializationKind( 5784 TSK_ExplicitSpecialization); 5785 InstantiationVar->setLocation(Member->getLocation()); 5786 } 5787 5788 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 5789 cast<VarDecl>(InstantiatedFrom), 5790 TSK_ExplicitSpecialization); 5791 MarkUnusedFileScopedDecl(InstantiationVar); 5792 } else { 5793 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 5794 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 5795 if (InstantiationClass->getTemplateSpecializationKind() == 5796 TSK_ImplicitInstantiation) { 5797 InstantiationClass->setTemplateSpecializationKind( 5798 TSK_ExplicitSpecialization); 5799 InstantiationClass->setLocation(Member->getLocation()); 5800 } 5801 5802 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5803 cast<CXXRecordDecl>(InstantiatedFrom), 5804 TSK_ExplicitSpecialization); 5805 } 5806 5807 // Save the caller the trouble of having to figure out which declaration 5808 // this specialization matches. 5809 Previous.clear(); 5810 Previous.addDecl(Instantiation); 5811 return false; 5812} 5813 5814/// \brief Check the scope of an explicit instantiation. 5815/// 5816/// \returns true if a serious error occurs, false otherwise. 5817static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 5818 SourceLocation InstLoc, 5819 bool WasQualifiedName) { 5820 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 5821 DeclContext *CurContext = S.CurContext->getRedeclContext(); 5822 5823 if (CurContext->isRecord()) { 5824 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 5825 << D; 5826 return true; 5827 } 5828 5829 // C++11 [temp.explicit]p3: 5830 // An explicit instantiation shall appear in an enclosing namespace of its 5831 // template. If the name declared in the explicit instantiation is an 5832 // unqualified name, the explicit instantiation shall appear in the 5833 // namespace where its template is declared or, if that namespace is inline 5834 // (7.3.1), any namespace from its enclosing namespace set. 5835 // 5836 // This is DR275, which we do not retroactively apply to C++98/03. 5837 if (WasQualifiedName) { 5838 if (CurContext->Encloses(OrigContext)) 5839 return false; 5840 } else { 5841 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 5842 return false; 5843 } 5844 5845 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) { 5846 if (WasQualifiedName) 5847 S.Diag(InstLoc, 5848 S.getLangOptions().CPlusPlus0x? 5849 diag::err_explicit_instantiation_out_of_scope : 5850 diag::warn_explicit_instantiation_out_of_scope_0x) 5851 << D << NS; 5852 else 5853 S.Diag(InstLoc, 5854 S.getLangOptions().CPlusPlus0x? 5855 diag::err_explicit_instantiation_unqualified_wrong_namespace : 5856 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 5857 << D << NS; 5858 } else 5859 S.Diag(InstLoc, 5860 S.getLangOptions().CPlusPlus0x? 5861 diag::err_explicit_instantiation_must_be_global : 5862 diag::warn_explicit_instantiation_must_be_global_0x) 5863 << D; 5864 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 5865 return false; 5866} 5867 5868/// \brief Determine whether the given scope specifier has a template-id in it. 5869static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 5870 if (!SS.isSet()) 5871 return false; 5872 5873 // C++11 [temp.explicit]p3: 5874 // If the explicit instantiation is for a member function, a member class 5875 // or a static data member of a class template specialization, the name of 5876 // the class template specialization in the qualified-id for the member 5877 // name shall be a simple-template-id. 5878 // 5879 // C++98 has the same restriction, just worded differently. 5880 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 5881 NNS; NNS = NNS->getPrefix()) 5882 if (const Type *T = NNS->getAsType()) 5883 if (isa<TemplateSpecializationType>(T)) 5884 return true; 5885 5886 return false; 5887} 5888 5889// Explicit instantiation of a class template specialization 5890DeclResult 5891Sema::ActOnExplicitInstantiation(Scope *S, 5892 SourceLocation ExternLoc, 5893 SourceLocation TemplateLoc, 5894 unsigned TagSpec, 5895 SourceLocation KWLoc, 5896 const CXXScopeSpec &SS, 5897 TemplateTy TemplateD, 5898 SourceLocation TemplateNameLoc, 5899 SourceLocation LAngleLoc, 5900 ASTTemplateArgsPtr TemplateArgsIn, 5901 SourceLocation RAngleLoc, 5902 AttributeList *Attr) { 5903 // Find the class template we're specializing 5904 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 5905 ClassTemplateDecl *ClassTemplate 5906 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 5907 5908 // Check that the specialization uses the same tag kind as the 5909 // original template. 5910 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5911 assert(Kind != TTK_Enum && 5912 "Invalid enum tag in class template explicit instantiation!"); 5913 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 5914 Kind, /*isDefinition*/false, KWLoc, 5915 *ClassTemplate->getIdentifier())) { 5916 Diag(KWLoc, diag::err_use_with_wrong_tag) 5917 << ClassTemplate 5918 << FixItHint::CreateReplacement(KWLoc, 5919 ClassTemplate->getTemplatedDecl()->getKindName()); 5920 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 5921 diag::note_previous_use); 5922 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 5923 } 5924 5925 // C++0x [temp.explicit]p2: 5926 // There are two forms of explicit instantiation: an explicit instantiation 5927 // definition and an explicit instantiation declaration. An explicit 5928 // instantiation declaration begins with the extern keyword. [...] 5929 TemplateSpecializationKind TSK 5930 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5931 : TSK_ExplicitInstantiationDeclaration; 5932 5933 // Translate the parser's template argument list in our AST format. 5934 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 5935 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 5936 5937 // Check that the template argument list is well-formed for this 5938 // template. 5939 SmallVector<TemplateArgument, 4> Converted; 5940 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 5941 TemplateArgs, false, Converted)) 5942 return true; 5943 5944 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 5945 "Converted template argument list is too short!"); 5946 5947 // Find the class template specialization declaration that 5948 // corresponds to these arguments. 5949 void *InsertPos = 0; 5950 ClassTemplateSpecializationDecl *PrevDecl 5951 = ClassTemplate->findSpecialization(Converted.data(), 5952 Converted.size(), InsertPos); 5953 5954 TemplateSpecializationKind PrevDecl_TSK 5955 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 5956 5957 // C++0x [temp.explicit]p2: 5958 // [...] An explicit instantiation shall appear in an enclosing 5959 // namespace of its template. [...] 5960 // 5961 // This is C++ DR 275. 5962 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 5963 SS.isSet())) 5964 return true; 5965 5966 ClassTemplateSpecializationDecl *Specialization = 0; 5967 5968 bool HasNoEffect = false; 5969 if (PrevDecl) { 5970 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 5971 PrevDecl, PrevDecl_TSK, 5972 PrevDecl->getPointOfInstantiation(), 5973 HasNoEffect)) 5974 return PrevDecl; 5975 5976 // Even though HasNoEffect == true means that this explicit instantiation 5977 // has no effect on semantics, we go on to put its syntax in the AST. 5978 5979 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 5980 PrevDecl_TSK == TSK_Undeclared) { 5981 // Since the only prior class template specialization with these 5982 // arguments was referenced but not declared, reuse that 5983 // declaration node as our own, updating the source location 5984 // for the template name to reflect our new declaration. 5985 // (Other source locations will be updated later.) 5986 Specialization = PrevDecl; 5987 Specialization->setLocation(TemplateNameLoc); 5988 PrevDecl = 0; 5989 } 5990 } 5991 5992 if (!Specialization) { 5993 // Create a new class template specialization declaration node for 5994 // this explicit specialization. 5995 Specialization 5996 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5997 ClassTemplate->getDeclContext(), 5998 KWLoc, TemplateNameLoc, 5999 ClassTemplate, 6000 Converted.data(), 6001 Converted.size(), 6002 PrevDecl); 6003 SetNestedNameSpecifier(Specialization, SS); 6004 6005 if (!HasNoEffect && !PrevDecl) { 6006 // Insert the new specialization. 6007 ClassTemplate->AddSpecialization(Specialization, InsertPos); 6008 } 6009 } 6010 6011 // Build the fully-sugared type for this explicit instantiation as 6012 // the user wrote in the explicit instantiation itself. This means 6013 // that we'll pretty-print the type retrieved from the 6014 // specialization's declaration the way that the user actually wrote 6015 // the explicit instantiation, rather than formatting the name based 6016 // on the "canonical" representation used to store the template 6017 // arguments in the specialization. 6018 TypeSourceInfo *WrittenTy 6019 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 6020 TemplateArgs, 6021 Context.getTypeDeclType(Specialization)); 6022 Specialization->setTypeAsWritten(WrittenTy); 6023 TemplateArgsIn.release(); 6024 6025 // Set source locations for keywords. 6026 Specialization->setExternLoc(ExternLoc); 6027 Specialization->setTemplateKeywordLoc(TemplateLoc); 6028 6029 if (Attr) 6030 ProcessDeclAttributeList(S, Specialization, Attr); 6031 6032 // Add the explicit instantiation into its lexical context. However, 6033 // since explicit instantiations are never found by name lookup, we 6034 // just put it into the declaration context directly. 6035 Specialization->setLexicalDeclContext(CurContext); 6036 CurContext->addDecl(Specialization); 6037 6038 // Syntax is now OK, so return if it has no other effect on semantics. 6039 if (HasNoEffect) { 6040 // Set the template specialization kind. 6041 Specialization->setTemplateSpecializationKind(TSK); 6042 return Specialization; 6043 } 6044 6045 // C++ [temp.explicit]p3: 6046 // A definition of a class template or class member template 6047 // shall be in scope at the point of the explicit instantiation of 6048 // the class template or class member template. 6049 // 6050 // This check comes when we actually try to perform the 6051 // instantiation. 6052 ClassTemplateSpecializationDecl *Def 6053 = cast_or_null<ClassTemplateSpecializationDecl>( 6054 Specialization->getDefinition()); 6055 if (!Def) 6056 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 6057 else if (TSK == TSK_ExplicitInstantiationDefinition) { 6058 MarkVTableUsed(TemplateNameLoc, Specialization, true); 6059 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 6060 } 6061 6062 // Instantiate the members of this class template specialization. 6063 Def = cast_or_null<ClassTemplateSpecializationDecl>( 6064 Specialization->getDefinition()); 6065 if (Def) { 6066 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 6067 6068 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 6069 // TSK_ExplicitInstantiationDefinition 6070 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 6071 TSK == TSK_ExplicitInstantiationDefinition) 6072 Def->setTemplateSpecializationKind(TSK); 6073 6074 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 6075 } 6076 6077 // Set the template specialization kind. 6078 Specialization->setTemplateSpecializationKind(TSK); 6079 return Specialization; 6080} 6081 6082// Explicit instantiation of a member class of a class template. 6083DeclResult 6084Sema::ActOnExplicitInstantiation(Scope *S, 6085 SourceLocation ExternLoc, 6086 SourceLocation TemplateLoc, 6087 unsigned TagSpec, 6088 SourceLocation KWLoc, 6089 CXXScopeSpec &SS, 6090 IdentifierInfo *Name, 6091 SourceLocation NameLoc, 6092 AttributeList *Attr) { 6093 6094 bool Owned = false; 6095 bool IsDependent = false; 6096 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 6097 KWLoc, SS, Name, NameLoc, Attr, AS_none, 6098 /*ModulePrivateLoc=*/SourceLocation(), 6099 MultiTemplateParamsArg(*this, 0, 0), 6100 Owned, IsDependent, SourceLocation(), false, 6101 TypeResult()); 6102 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 6103 6104 if (!TagD) 6105 return true; 6106 6107 TagDecl *Tag = cast<TagDecl>(TagD); 6108 if (Tag->isEnum()) { 6109 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 6110 << Context.getTypeDeclType(Tag); 6111 return true; 6112 } 6113 6114 if (Tag->isInvalidDecl()) 6115 return true; 6116 6117 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 6118 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 6119 if (!Pattern) { 6120 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 6121 << Context.getTypeDeclType(Record); 6122 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 6123 return true; 6124 } 6125 6126 // C++0x [temp.explicit]p2: 6127 // If the explicit instantiation is for a class or member class, the 6128 // elaborated-type-specifier in the declaration shall include a 6129 // simple-template-id. 6130 // 6131 // C++98 has the same restriction, just worded differently. 6132 if (!ScopeSpecifierHasTemplateId(SS)) 6133 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 6134 << Record << SS.getRange(); 6135 6136 // C++0x [temp.explicit]p2: 6137 // There are two forms of explicit instantiation: an explicit instantiation 6138 // definition and an explicit instantiation declaration. An explicit 6139 // instantiation declaration begins with the extern keyword. [...] 6140 TemplateSpecializationKind TSK 6141 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6142 : TSK_ExplicitInstantiationDeclaration; 6143 6144 // C++0x [temp.explicit]p2: 6145 // [...] An explicit instantiation shall appear in an enclosing 6146 // namespace of its template. [...] 6147 // 6148 // This is C++ DR 275. 6149 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 6150 6151 // Verify that it is okay to explicitly instantiate here. 6152 CXXRecordDecl *PrevDecl 6153 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl()); 6154 if (!PrevDecl && Record->getDefinition()) 6155 PrevDecl = Record; 6156 if (PrevDecl) { 6157 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 6158 bool HasNoEffect = false; 6159 assert(MSInfo && "No member specialization information?"); 6160 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 6161 PrevDecl, 6162 MSInfo->getTemplateSpecializationKind(), 6163 MSInfo->getPointOfInstantiation(), 6164 HasNoEffect)) 6165 return true; 6166 if (HasNoEffect) 6167 return TagD; 6168 } 6169 6170 CXXRecordDecl *RecordDef 6171 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 6172 if (!RecordDef) { 6173 // C++ [temp.explicit]p3: 6174 // A definition of a member class of a class template shall be in scope 6175 // at the point of an explicit instantiation of the member class. 6176 CXXRecordDecl *Def 6177 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 6178 if (!Def) { 6179 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 6180 << 0 << Record->getDeclName() << Record->getDeclContext(); 6181 Diag(Pattern->getLocation(), diag::note_forward_declaration) 6182 << Pattern; 6183 return true; 6184 } else { 6185 if (InstantiateClass(NameLoc, Record, Def, 6186 getTemplateInstantiationArgs(Record), 6187 TSK)) 6188 return true; 6189 6190 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 6191 if (!RecordDef) 6192 return true; 6193 } 6194 } 6195 6196 // Instantiate all of the members of the class. 6197 InstantiateClassMembers(NameLoc, RecordDef, 6198 getTemplateInstantiationArgs(Record), TSK); 6199 6200 if (TSK == TSK_ExplicitInstantiationDefinition) 6201 MarkVTableUsed(NameLoc, RecordDef, true); 6202 6203 // FIXME: We don't have any representation for explicit instantiations of 6204 // member classes. Such a representation is not needed for compilation, but it 6205 // should be available for clients that want to see all of the declarations in 6206 // the source code. 6207 return TagD; 6208} 6209 6210DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 6211 SourceLocation ExternLoc, 6212 SourceLocation TemplateLoc, 6213 Declarator &D) { 6214 // Explicit instantiations always require a name. 6215 // TODO: check if/when DNInfo should replace Name. 6216 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 6217 DeclarationName Name = NameInfo.getName(); 6218 if (!Name) { 6219 if (!D.isInvalidType()) 6220 Diag(D.getDeclSpec().getSourceRange().getBegin(), 6221 diag::err_explicit_instantiation_requires_name) 6222 << D.getDeclSpec().getSourceRange() 6223 << D.getSourceRange(); 6224 6225 return true; 6226 } 6227 6228 // The scope passed in may not be a decl scope. Zip up the scope tree until 6229 // we find one that is. 6230 while ((S->getFlags() & Scope::DeclScope) == 0 || 6231 (S->getFlags() & Scope::TemplateParamScope) != 0) 6232 S = S->getParent(); 6233 6234 // Determine the type of the declaration. 6235 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 6236 QualType R = T->getType(); 6237 if (R.isNull()) 6238 return true; 6239 6240 // C++ [dcl.stc]p1: 6241 // A storage-class-specifier shall not be specified in [...] an explicit 6242 // instantiation (14.7.2) directive. 6243 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 6244 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 6245 << Name; 6246 return true; 6247 } else if (D.getDeclSpec().getStorageClassSpec() 6248 != DeclSpec::SCS_unspecified) { 6249 // Complain about then remove the storage class specifier. 6250 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 6251 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6252 6253 D.getMutableDeclSpec().ClearStorageClassSpecs(); 6254 } 6255 6256 // C++0x [temp.explicit]p1: 6257 // [...] An explicit instantiation of a function template shall not use the 6258 // inline or constexpr specifiers. 6259 // Presumably, this also applies to member functions of class templates as 6260 // well. 6261 if (D.getDeclSpec().isInlineSpecified()) 6262 Diag(D.getDeclSpec().getInlineSpecLoc(), 6263 getLangOptions().CPlusPlus0x ? 6264 diag::err_explicit_instantiation_inline : 6265 diag::warn_explicit_instantiation_inline_0x) 6266 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 6267 if (D.getDeclSpec().isConstexprSpecified()) 6268 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is 6269 // not already specified. 6270 Diag(D.getDeclSpec().getConstexprSpecLoc(), 6271 diag::err_explicit_instantiation_constexpr); 6272 6273 // C++0x [temp.explicit]p2: 6274 // There are two forms of explicit instantiation: an explicit instantiation 6275 // definition and an explicit instantiation declaration. An explicit 6276 // instantiation declaration begins with the extern keyword. [...] 6277 TemplateSpecializationKind TSK 6278 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6279 : TSK_ExplicitInstantiationDeclaration; 6280 6281 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 6282 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 6283 6284 if (!R->isFunctionType()) { 6285 // C++ [temp.explicit]p1: 6286 // A [...] static data member of a class template can be explicitly 6287 // instantiated from the member definition associated with its class 6288 // template. 6289 if (Previous.isAmbiguous()) 6290 return true; 6291 6292 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 6293 if (!Prev || !Prev->isStaticDataMember()) { 6294 // We expect to see a data data member here. 6295 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 6296 << Name; 6297 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6298 P != PEnd; ++P) 6299 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 6300 return true; 6301 } 6302 6303 if (!Prev->getInstantiatedFromStaticDataMember()) { 6304 // FIXME: Check for explicit specialization? 6305 Diag(D.getIdentifierLoc(), 6306 diag::err_explicit_instantiation_data_member_not_instantiated) 6307 << Prev; 6308 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 6309 // FIXME: Can we provide a note showing where this was declared? 6310 return true; 6311 } 6312 6313 // C++0x [temp.explicit]p2: 6314 // If the explicit instantiation is for a member function, a member class 6315 // or a static data member of a class template specialization, the name of 6316 // the class template specialization in the qualified-id for the member 6317 // name shall be a simple-template-id. 6318 // 6319 // C++98 has the same restriction, just worded differently. 6320 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6321 Diag(D.getIdentifierLoc(), 6322 diag::ext_explicit_instantiation_without_qualified_id) 6323 << Prev << D.getCXXScopeSpec().getRange(); 6324 6325 // Check the scope of this explicit instantiation. 6326 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 6327 6328 // Verify that it is okay to explicitly instantiate here. 6329 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 6330 assert(MSInfo && "Missing static data member specialization info?"); 6331 bool HasNoEffect = false; 6332 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 6333 MSInfo->getTemplateSpecializationKind(), 6334 MSInfo->getPointOfInstantiation(), 6335 HasNoEffect)) 6336 return true; 6337 if (HasNoEffect) 6338 return (Decl*) 0; 6339 6340 // Instantiate static data member. 6341 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6342 if (TSK == TSK_ExplicitInstantiationDefinition) 6343 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev); 6344 6345 // FIXME: Create an ExplicitInstantiation node? 6346 return (Decl*) 0; 6347 } 6348 6349 // If the declarator is a template-id, translate the parser's template 6350 // argument list into our AST format. 6351 bool HasExplicitTemplateArgs = false; 6352 TemplateArgumentListInfo TemplateArgs; 6353 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 6354 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 6355 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 6356 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 6357 ASTTemplateArgsPtr TemplateArgsPtr(*this, 6358 TemplateId->getTemplateArgs(), 6359 TemplateId->NumArgs); 6360 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 6361 HasExplicitTemplateArgs = true; 6362 TemplateArgsPtr.release(); 6363 } 6364 6365 // C++ [temp.explicit]p1: 6366 // A [...] function [...] can be explicitly instantiated from its template. 6367 // A member function [...] of a class template can be explicitly 6368 // instantiated from the member definition associated with its class 6369 // template. 6370 UnresolvedSet<8> Matches; 6371 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6372 P != PEnd; ++P) { 6373 NamedDecl *Prev = *P; 6374 if (!HasExplicitTemplateArgs) { 6375 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 6376 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 6377 Matches.clear(); 6378 6379 Matches.addDecl(Method, P.getAccess()); 6380 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 6381 break; 6382 } 6383 } 6384 } 6385 6386 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 6387 if (!FunTmpl) 6388 continue; 6389 6390 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 6391 FunctionDecl *Specialization = 0; 6392 if (TemplateDeductionResult TDK 6393 = DeduceTemplateArguments(FunTmpl, 6394 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 6395 R, Specialization, Info)) { 6396 // FIXME: Keep track of almost-matches? 6397 (void)TDK; 6398 continue; 6399 } 6400 6401 Matches.addDecl(Specialization, P.getAccess()); 6402 } 6403 6404 // Find the most specialized function template specialization. 6405 UnresolvedSetIterator Result 6406 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0, 6407 D.getIdentifierLoc(), 6408 PDiag(diag::err_explicit_instantiation_not_known) << Name, 6409 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 6410 PDiag(diag::note_explicit_instantiation_candidate)); 6411 6412 if (Result == Matches.end()) 6413 return true; 6414 6415 // Ignore access control bits, we don't need them for redeclaration checking. 6416 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 6417 6418 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 6419 Diag(D.getIdentifierLoc(), 6420 diag::err_explicit_instantiation_member_function_not_instantiated) 6421 << Specialization 6422 << (Specialization->getTemplateSpecializationKind() == 6423 TSK_ExplicitSpecialization); 6424 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 6425 return true; 6426 } 6427 6428 FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); 6429 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 6430 PrevDecl = Specialization; 6431 6432 if (PrevDecl) { 6433 bool HasNoEffect = false; 6434 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 6435 PrevDecl, 6436 PrevDecl->getTemplateSpecializationKind(), 6437 PrevDecl->getPointOfInstantiation(), 6438 HasNoEffect)) 6439 return true; 6440 6441 // FIXME: We may still want to build some representation of this 6442 // explicit specialization. 6443 if (HasNoEffect) 6444 return (Decl*) 0; 6445 } 6446 6447 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6448 AttributeList *Attr = D.getDeclSpec().getAttributes().getList(); 6449 if (Attr) 6450 ProcessDeclAttributeList(S, Specialization, Attr); 6451 6452 if (TSK == TSK_ExplicitInstantiationDefinition) 6453 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 6454 6455 // C++0x [temp.explicit]p2: 6456 // If the explicit instantiation is for a member function, a member class 6457 // or a static data member of a class template specialization, the name of 6458 // the class template specialization in the qualified-id for the member 6459 // name shall be a simple-template-id. 6460 // 6461 // C++98 has the same restriction, just worded differently. 6462 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 6463 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 6464 D.getCXXScopeSpec().isSet() && 6465 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6466 Diag(D.getIdentifierLoc(), 6467 diag::ext_explicit_instantiation_without_qualified_id) 6468 << Specialization << D.getCXXScopeSpec().getRange(); 6469 6470 CheckExplicitInstantiationScope(*this, 6471 FunTmpl? (NamedDecl *)FunTmpl 6472 : Specialization->getInstantiatedFromMemberFunction(), 6473 D.getIdentifierLoc(), 6474 D.getCXXScopeSpec().isSet()); 6475 6476 // FIXME: Create some kind of ExplicitInstantiationDecl here. 6477 return (Decl*) 0; 6478} 6479 6480TypeResult 6481Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 6482 const CXXScopeSpec &SS, IdentifierInfo *Name, 6483 SourceLocation TagLoc, SourceLocation NameLoc) { 6484 // This has to hold, because SS is expected to be defined. 6485 assert(Name && "Expected a name in a dependent tag"); 6486 6487 NestedNameSpecifier *NNS 6488 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 6489 if (!NNS) 6490 return true; 6491 6492 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 6493 6494 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 6495 Diag(NameLoc, diag::err_dependent_tag_decl) 6496 << (TUK == TUK_Definition) << Kind << SS.getRange(); 6497 return true; 6498 } 6499 6500 // Create the resulting type. 6501 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 6502 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 6503 6504 // Create type-source location information for this type. 6505 TypeLocBuilder TLB; 6506 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 6507 TL.setKeywordLoc(TagLoc); 6508 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6509 TL.setNameLoc(NameLoc); 6510 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 6511} 6512 6513TypeResult 6514Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 6515 const CXXScopeSpec &SS, const IdentifierInfo &II, 6516 SourceLocation IdLoc) { 6517 if (SS.isInvalid()) 6518 return true; 6519 6520 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 6521 Diag(TypenameLoc, 6522 getLangOptions().CPlusPlus0x ? 6523 diag::warn_cxx98_compat_typename_outside_of_template : 6524 diag::ext_typename_outside_of_template) 6525 << FixItHint::CreateRemoval(TypenameLoc); 6526 6527 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 6528 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, 6529 TypenameLoc, QualifierLoc, II, IdLoc); 6530 if (T.isNull()) 6531 return true; 6532 6533 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 6534 if (isa<DependentNameType>(T)) { 6535 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 6536 TL.setKeywordLoc(TypenameLoc); 6537 TL.setQualifierLoc(QualifierLoc); 6538 TL.setNameLoc(IdLoc); 6539 } else { 6540 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 6541 TL.setKeywordLoc(TypenameLoc); 6542 TL.setQualifierLoc(QualifierLoc); 6543 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc); 6544 } 6545 6546 return CreateParsedType(T, TSI); 6547} 6548 6549TypeResult 6550Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 6551 const CXXScopeSpec &SS, 6552 SourceLocation TemplateLoc, 6553 TemplateTy TemplateIn, 6554 SourceLocation TemplateNameLoc, 6555 SourceLocation LAngleLoc, 6556 ASTTemplateArgsPtr TemplateArgsIn, 6557 SourceLocation RAngleLoc) { 6558 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 6559 Diag(TypenameLoc, 6560 getLangOptions().CPlusPlus0x ? 6561 diag::warn_cxx98_compat_typename_outside_of_template : 6562 diag::ext_typename_outside_of_template) 6563 << FixItHint::CreateRemoval(TypenameLoc); 6564 6565 // Translate the parser's template argument list in our AST format. 6566 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 6567 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 6568 6569 TemplateName Template = TemplateIn.get(); 6570 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 6571 // Construct a dependent template specialization type. 6572 assert(DTN && "dependent template has non-dependent name?"); 6573 assert(DTN->getQualifier() 6574 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 6575 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, 6576 DTN->getQualifier(), 6577 DTN->getIdentifier(), 6578 TemplateArgs); 6579 6580 // Create source-location information for this type. 6581 TypeLocBuilder Builder; 6582 DependentTemplateSpecializationTypeLoc SpecTL 6583 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 6584 SpecTL.setLAngleLoc(LAngleLoc); 6585 SpecTL.setRAngleLoc(RAngleLoc); 6586 SpecTL.setKeywordLoc(TypenameLoc); 6587 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 6588 SpecTL.setNameLoc(TemplateNameLoc); 6589 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6590 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 6591 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 6592 } 6593 6594 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs); 6595 if (T.isNull()) 6596 return true; 6597 6598 // Provide source-location information for the template specialization 6599 // type. 6600 TypeLocBuilder Builder; 6601 TemplateSpecializationTypeLoc SpecTL 6602 = Builder.push<TemplateSpecializationTypeLoc>(T); 6603 6604 // FIXME: No place to set the location of the 'template' keyword! 6605 SpecTL.setLAngleLoc(LAngleLoc); 6606 SpecTL.setRAngleLoc(RAngleLoc); 6607 SpecTL.setTemplateNameLoc(TemplateNameLoc); 6608 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6609 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 6610 6611 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); 6612 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 6613 TL.setKeywordLoc(TypenameLoc); 6614 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6615 6616 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 6617 return CreateParsedType(T, TSI); 6618} 6619 6620 6621/// \brief Build the type that describes a C++ typename specifier, 6622/// e.g., "typename T::type". 6623QualType 6624Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 6625 SourceLocation KeywordLoc, 6626 NestedNameSpecifierLoc QualifierLoc, 6627 const IdentifierInfo &II, 6628 SourceLocation IILoc) { 6629 CXXScopeSpec SS; 6630 SS.Adopt(QualifierLoc); 6631 6632 DeclContext *Ctx = computeDeclContext(SS); 6633 if (!Ctx) { 6634 // If the nested-name-specifier is dependent and couldn't be 6635 // resolved to a type, build a typename type. 6636 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 6637 return Context.getDependentNameType(Keyword, 6638 QualifierLoc.getNestedNameSpecifier(), 6639 &II); 6640 } 6641 6642 // If the nested-name-specifier refers to the current instantiation, 6643 // the "typename" keyword itself is superfluous. In C++03, the 6644 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 6645 // allows such extraneous "typename" keywords, and we retroactively 6646 // apply this DR to C++03 code with only a warning. In any case we continue. 6647 6648 if (RequireCompleteDeclContext(SS, Ctx)) 6649 return QualType(); 6650 6651 DeclarationName Name(&II); 6652 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 6653 LookupQualifiedName(Result, Ctx); 6654 unsigned DiagID = 0; 6655 Decl *Referenced = 0; 6656 switch (Result.getResultKind()) { 6657 case LookupResult::NotFound: 6658 DiagID = diag::err_typename_nested_not_found; 6659 break; 6660 6661 case LookupResult::FoundUnresolvedValue: { 6662 // We found a using declaration that is a value. Most likely, the using 6663 // declaration itself is meant to have the 'typename' keyword. 6664 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 6665 IILoc); 6666 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 6667 << Name << Ctx << FullRange; 6668 if (UnresolvedUsingValueDecl *Using 6669 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 6670 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 6671 Diag(Loc, diag::note_using_value_decl_missing_typename) 6672 << FixItHint::CreateInsertion(Loc, "typename "); 6673 } 6674 } 6675 // Fall through to create a dependent typename type, from which we can recover 6676 // better. 6677 6678 case LookupResult::NotFoundInCurrentInstantiation: 6679 // Okay, it's a member of an unknown instantiation. 6680 return Context.getDependentNameType(Keyword, 6681 QualifierLoc.getNestedNameSpecifier(), 6682 &II); 6683 6684 case LookupResult::Found: 6685 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 6686 // We found a type. Build an ElaboratedType, since the 6687 // typename-specifier was just sugar. 6688 return Context.getElaboratedType(ETK_Typename, 6689 QualifierLoc.getNestedNameSpecifier(), 6690 Context.getTypeDeclType(Type)); 6691 } 6692 6693 DiagID = diag::err_typename_nested_not_type; 6694 Referenced = Result.getFoundDecl(); 6695 break; 6696 6697 case LookupResult::FoundOverloaded: 6698 DiagID = diag::err_typename_nested_not_type; 6699 Referenced = *Result.begin(); 6700 break; 6701 6702 case LookupResult::Ambiguous: 6703 return QualType(); 6704 } 6705 6706 // If we get here, it's because name lookup did not find a 6707 // type. Emit an appropriate diagnostic and return an error. 6708 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 6709 IILoc); 6710 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 6711 if (Referenced) 6712 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 6713 << Name; 6714 return QualType(); 6715} 6716 6717namespace { 6718 // See Sema::RebuildTypeInCurrentInstantiation 6719 class CurrentInstantiationRebuilder 6720 : public TreeTransform<CurrentInstantiationRebuilder> { 6721 SourceLocation Loc; 6722 DeclarationName Entity; 6723 6724 public: 6725 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 6726 6727 CurrentInstantiationRebuilder(Sema &SemaRef, 6728 SourceLocation Loc, 6729 DeclarationName Entity) 6730 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 6731 Loc(Loc), Entity(Entity) { } 6732 6733 /// \brief Determine whether the given type \p T has already been 6734 /// transformed. 6735 /// 6736 /// For the purposes of type reconstruction, a type has already been 6737 /// transformed if it is NULL or if it is not dependent. 6738 bool AlreadyTransformed(QualType T) { 6739 return T.isNull() || !T->isDependentType(); 6740 } 6741 6742 /// \brief Returns the location of the entity whose type is being 6743 /// rebuilt. 6744 SourceLocation getBaseLocation() { return Loc; } 6745 6746 /// \brief Returns the name of the entity whose type is being rebuilt. 6747 DeclarationName getBaseEntity() { return Entity; } 6748 6749 /// \brief Sets the "base" location and entity when that 6750 /// information is known based on another transformation. 6751 void setBase(SourceLocation Loc, DeclarationName Entity) { 6752 this->Loc = Loc; 6753 this->Entity = Entity; 6754 } 6755 }; 6756} 6757 6758/// \brief Rebuilds a type within the context of the current instantiation. 6759/// 6760/// The type \p T is part of the type of an out-of-line member definition of 6761/// a class template (or class template partial specialization) that was parsed 6762/// and constructed before we entered the scope of the class template (or 6763/// partial specialization thereof). This routine will rebuild that type now 6764/// that we have entered the declarator's scope, which may produce different 6765/// canonical types, e.g., 6766/// 6767/// \code 6768/// template<typename T> 6769/// struct X { 6770/// typedef T* pointer; 6771/// pointer data(); 6772/// }; 6773/// 6774/// template<typename T> 6775/// typename X<T>::pointer X<T>::data() { ... } 6776/// \endcode 6777/// 6778/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 6779/// since we do not know that we can look into X<T> when we parsed the type. 6780/// This function will rebuild the type, performing the lookup of "pointer" 6781/// in X<T> and returning an ElaboratedType whose canonical type is the same 6782/// as the canonical type of T*, allowing the return types of the out-of-line 6783/// definition and the declaration to match. 6784TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 6785 SourceLocation Loc, 6786 DeclarationName Name) { 6787 if (!T || !T->getType()->isDependentType()) 6788 return T; 6789 6790 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 6791 return Rebuilder.TransformType(T); 6792} 6793 6794ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 6795 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 6796 DeclarationName()); 6797 return Rebuilder.TransformExpr(E); 6798} 6799 6800bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 6801 if (SS.isInvalid()) 6802 return true; 6803 6804 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 6805 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 6806 DeclarationName()); 6807 NestedNameSpecifierLoc Rebuilt 6808 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 6809 if (!Rebuilt) 6810 return true; 6811 6812 SS.Adopt(Rebuilt); 6813 return false; 6814} 6815 6816/// \brief Rebuild the template parameters now that we know we're in a current 6817/// instantiation. 6818bool Sema::RebuildTemplateParamsInCurrentInstantiation( 6819 TemplateParameterList *Params) { 6820 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 6821 Decl *Param = Params->getParam(I); 6822 6823 // There is nothing to rebuild in a type parameter. 6824 if (isa<TemplateTypeParmDecl>(Param)) 6825 continue; 6826 6827 // Rebuild the template parameter list of a template template parameter. 6828 if (TemplateTemplateParmDecl *TTP 6829 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 6830 if (RebuildTemplateParamsInCurrentInstantiation( 6831 TTP->getTemplateParameters())) 6832 return true; 6833 6834 continue; 6835 } 6836 6837 // Rebuild the type of a non-type template parameter. 6838 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param); 6839 TypeSourceInfo *NewTSI 6840 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(), 6841 NTTP->getLocation(), 6842 NTTP->getDeclName()); 6843 if (!NewTSI) 6844 return true; 6845 6846 if (NewTSI != NTTP->getTypeSourceInfo()) { 6847 NTTP->setTypeSourceInfo(NewTSI); 6848 NTTP->setType(NewTSI->getType()); 6849 } 6850 } 6851 6852 return false; 6853} 6854 6855/// \brief Produces a formatted string that describes the binding of 6856/// template parameters to template arguments. 6857std::string 6858Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6859 const TemplateArgumentList &Args) { 6860 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 6861} 6862 6863std::string 6864Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6865 const TemplateArgument *Args, 6866 unsigned NumArgs) { 6867 llvm::SmallString<128> Str; 6868 llvm::raw_svector_ostream Out(Str); 6869 6870 if (!Params || Params->size() == 0 || NumArgs == 0) 6871 return std::string(); 6872 6873 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 6874 if (I >= NumArgs) 6875 break; 6876 6877 if (I == 0) 6878 Out << "[with "; 6879 else 6880 Out << ", "; 6881 6882 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 6883 Out << Id->getName(); 6884 } else { 6885 Out << '$' << I; 6886 } 6887 6888 Out << " = "; 6889 Args[I].print(getPrintingPolicy(), Out); 6890 } 6891 6892 Out << ']'; 6893 return Out.str(); 6894} 6895 6896void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) { 6897 if (!FD) 6898 return; 6899 FD->setLateTemplateParsed(Flag); 6900} 6901 6902bool Sema::IsInsideALocalClassWithinATemplateFunction() { 6903 DeclContext *DC = CurContext; 6904 6905 while (DC) { 6906 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 6907 const FunctionDecl *FD = RD->isLocalClass(); 6908 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 6909 } else if (DC->isTranslationUnit() || DC->isNamespace()) 6910 return false; 6911 6912 DC = DC->getParent(); 6913 } 6914 return false; 6915} 6916