SemaTemplate.cpp revision 8f5667d06a785719691c1139b961411d7f0aedf5
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/StringExtras.h"
30using namespace clang;
31using namespace sema;
32
33// Exported for use by Parser.
34SourceRange
35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
36                              unsigned N) {
37  if (!N) return SourceRange();
38  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
39}
40
41/// \brief Determine whether the declaration found is acceptable as the name
42/// of a template and, if so, return that template declaration. Otherwise,
43/// returns NULL.
44static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
45                                           NamedDecl *Orig) {
46  NamedDecl *D = Orig->getUnderlyingDecl();
47
48  if (isa<TemplateDecl>(D))
49    return Orig;
50
51  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
52    // C++ [temp.local]p1:
53    //   Like normal (non-template) classes, class templates have an
54    //   injected-class-name (Clause 9). The injected-class-name
55    //   can be used with or without a template-argument-list. When
56    //   it is used without a template-argument-list, it is
57    //   equivalent to the injected-class-name followed by the
58    //   template-parameters of the class template enclosed in
59    //   <>. When it is used with a template-argument-list, it
60    //   refers to the specified class template specialization,
61    //   which could be the current specialization or another
62    //   specialization.
63    if (Record->isInjectedClassName()) {
64      Record = cast<CXXRecordDecl>(Record->getDeclContext());
65      if (Record->getDescribedClassTemplate())
66        return Record->getDescribedClassTemplate();
67
68      if (ClassTemplateSpecializationDecl *Spec
69            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
70        return Spec->getSpecializedTemplate();
71    }
72
73    return 0;
74  }
75
76  return 0;
77}
78
79static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
80  // The set of class templates we've already seen.
81  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
82  LookupResult::Filter filter = R.makeFilter();
83  while (filter.hasNext()) {
84    NamedDecl *Orig = filter.next();
85    NamedDecl *Repl = isAcceptableTemplateName(C, Orig);
86    if (!Repl)
87      filter.erase();
88    else if (Repl != Orig) {
89
90      // C++ [temp.local]p3:
91      //   A lookup that finds an injected-class-name (10.2) can result in an
92      //   ambiguity in certain cases (for example, if it is found in more than
93      //   one base class). If all of the injected-class-names that are found
94      //   refer to specializations of the same class template, and if the name
95      //   is followed by a template-argument-list, the reference refers to the
96      //   class template itself and not a specialization thereof, and is not
97      //   ambiguous.
98      //
99      // FIXME: Will we eventually have to do the same for alias templates?
100      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
101        if (!ClassTemplates.insert(ClassTmpl)) {
102          filter.erase();
103          continue;
104        }
105
106      // FIXME: we promote access to public here as a workaround to
107      // the fact that LookupResult doesn't let us remember that we
108      // found this template through a particular injected class name,
109      // which means we end up doing nasty things to the invariants.
110      // Pretending that access is public is *much* safer.
111      filter.replace(Repl, AS_public);
112    }
113  }
114  filter.done();
115}
116
117TemplateNameKind Sema::isTemplateName(Scope *S,
118                                      CXXScopeSpec &SS,
119                                      bool hasTemplateKeyword,
120                                      UnqualifiedId &Name,
121                                      ParsedType ObjectTypePtr,
122                                      bool EnteringContext,
123                                      TemplateTy &TemplateResult,
124                                      bool &MemberOfUnknownSpecialization) {
125  assert(getLangOptions().CPlusPlus && "No template names in C!");
126
127  DeclarationName TName;
128  MemberOfUnknownSpecialization = false;
129
130  switch (Name.getKind()) {
131  case UnqualifiedId::IK_Identifier:
132    TName = DeclarationName(Name.Identifier);
133    break;
134
135  case UnqualifiedId::IK_OperatorFunctionId:
136    TName = Context.DeclarationNames.getCXXOperatorName(
137                                              Name.OperatorFunctionId.Operator);
138    break;
139
140  case UnqualifiedId::IK_LiteralOperatorId:
141    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
142    break;
143
144  default:
145    return TNK_Non_template;
146  }
147
148  QualType ObjectType = ObjectTypePtr.get();
149
150  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
151                 LookupOrdinaryName);
152  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
153                     MemberOfUnknownSpecialization);
154  if (R.empty()) return TNK_Non_template;
155  if (R.isAmbiguous()) {
156    // Suppress diagnostics;  we'll redo this lookup later.
157    R.suppressDiagnostics();
158
159    // FIXME: we might have ambiguous templates, in which case we
160    // should at least parse them properly!
161    return TNK_Non_template;
162  }
163
164  TemplateName Template;
165  TemplateNameKind TemplateKind;
166
167  unsigned ResultCount = R.end() - R.begin();
168  if (ResultCount > 1) {
169    // We assume that we'll preserve the qualifier from a function
170    // template name in other ways.
171    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
172    TemplateKind = TNK_Function_template;
173
174    // We'll do this lookup again later.
175    R.suppressDiagnostics();
176  } else {
177    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
178
179    if (SS.isSet() && !SS.isInvalid()) {
180      NestedNameSpecifier *Qualifier
181        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
182      Template = Context.getQualifiedTemplateName(Qualifier,
183                                                  hasTemplateKeyword, TD);
184    } else {
185      Template = TemplateName(TD);
186    }
187
188    if (isa<FunctionTemplateDecl>(TD)) {
189      TemplateKind = TNK_Function_template;
190
191      // We'll do this lookup again later.
192      R.suppressDiagnostics();
193    } else {
194      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
195      TemplateKind = TNK_Type_template;
196    }
197  }
198
199  TemplateResult = TemplateTy::make(Template);
200  return TemplateKind;
201}
202
203bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
204                                       SourceLocation IILoc,
205                                       Scope *S,
206                                       const CXXScopeSpec *SS,
207                                       TemplateTy &SuggestedTemplate,
208                                       TemplateNameKind &SuggestedKind) {
209  // We can't recover unless there's a dependent scope specifier preceding the
210  // template name.
211  // FIXME: Typo correction?
212  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
213      computeDeclContext(*SS))
214    return false;
215
216  // The code is missing a 'template' keyword prior to the dependent template
217  // name.
218  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
219  Diag(IILoc, diag::err_template_kw_missing)
220    << Qualifier << II.getName()
221    << FixItHint::CreateInsertion(IILoc, "template ");
222  SuggestedTemplate
223    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
224  SuggestedKind = TNK_Dependent_template_name;
225  return true;
226}
227
228void Sema::LookupTemplateName(LookupResult &Found,
229                              Scope *S, CXXScopeSpec &SS,
230                              QualType ObjectType,
231                              bool EnteringContext,
232                              bool &MemberOfUnknownSpecialization) {
233  // Determine where to perform name lookup
234  MemberOfUnknownSpecialization = false;
235  DeclContext *LookupCtx = 0;
236  bool isDependent = false;
237  if (!ObjectType.isNull()) {
238    // This nested-name-specifier occurs in a member access expression, e.g.,
239    // x->B::f, and we are looking into the type of the object.
240    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
241    LookupCtx = computeDeclContext(ObjectType);
242    isDependent = ObjectType->isDependentType();
243    assert((isDependent || !ObjectType->isIncompleteType()) &&
244           "Caller should have completed object type");
245  } else if (SS.isSet()) {
246    // This nested-name-specifier occurs after another nested-name-specifier,
247    // so long into the context associated with the prior nested-name-specifier.
248    LookupCtx = computeDeclContext(SS, EnteringContext);
249    isDependent = isDependentScopeSpecifier(SS);
250
251    // The declaration context must be complete.
252    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
253      return;
254  }
255
256  bool ObjectTypeSearchedInScope = false;
257  if (LookupCtx) {
258    // Perform "qualified" name lookup into the declaration context we
259    // computed, which is either the type of the base of a member access
260    // expression or the declaration context associated with a prior
261    // nested-name-specifier.
262    LookupQualifiedName(Found, LookupCtx);
263
264    if (!ObjectType.isNull() && Found.empty()) {
265      // C++ [basic.lookup.classref]p1:
266      //   In a class member access expression (5.2.5), if the . or -> token is
267      //   immediately followed by an identifier followed by a <, the
268      //   identifier must be looked up to determine whether the < is the
269      //   beginning of a template argument list (14.2) or a less-than operator.
270      //   The identifier is first looked up in the class of the object
271      //   expression. If the identifier is not found, it is then looked up in
272      //   the context of the entire postfix-expression and shall name a class
273      //   or function template.
274      if (S) LookupName(Found, S);
275      ObjectTypeSearchedInScope = true;
276    }
277  } else if (isDependent && (!S || ObjectType.isNull())) {
278    // We cannot look into a dependent object type or nested nme
279    // specifier.
280    MemberOfUnknownSpecialization = true;
281    return;
282  } else {
283    // Perform unqualified name lookup in the current scope.
284    LookupName(Found, S);
285  }
286
287  if (Found.empty() && !isDependent) {
288    // If we did not find any names, attempt to correct any typos.
289    DeclarationName Name = Found.getLookupName();
290    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
291                                                false, CTC_CXXCasts)) {
292      FilterAcceptableTemplateNames(Context, Found);
293      if (!Found.empty()) {
294        if (LookupCtx)
295          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
296            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
297            << FixItHint::CreateReplacement(Found.getNameLoc(),
298                                          Found.getLookupName().getAsString());
299        else
300          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
301            << Name << Found.getLookupName()
302            << FixItHint::CreateReplacement(Found.getNameLoc(),
303                                          Found.getLookupName().getAsString());
304        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
305          Diag(Template->getLocation(), diag::note_previous_decl)
306            << Template->getDeclName();
307      }
308    } else {
309      Found.clear();
310      Found.setLookupName(Name);
311    }
312  }
313
314  FilterAcceptableTemplateNames(Context, Found);
315  if (Found.empty()) {
316    if (isDependent)
317      MemberOfUnknownSpecialization = true;
318    return;
319  }
320
321  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
322    // C++ [basic.lookup.classref]p1:
323    //   [...] If the lookup in the class of the object expression finds a
324    //   template, the name is also looked up in the context of the entire
325    //   postfix-expression and [...]
326    //
327    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
328                            LookupOrdinaryName);
329    LookupName(FoundOuter, S);
330    FilterAcceptableTemplateNames(Context, FoundOuter);
331
332    if (FoundOuter.empty()) {
333      //   - if the name is not found, the name found in the class of the
334      //     object expression is used, otherwise
335    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
336      //   - if the name is found in the context of the entire
337      //     postfix-expression and does not name a class template, the name
338      //     found in the class of the object expression is used, otherwise
339    } else if (!Found.isSuppressingDiagnostics()) {
340      //   - if the name found is a class template, it must refer to the same
341      //     entity as the one found in the class of the object expression,
342      //     otherwise the program is ill-formed.
343      if (!Found.isSingleResult() ||
344          Found.getFoundDecl()->getCanonicalDecl()
345            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
346        Diag(Found.getNameLoc(),
347             diag::ext_nested_name_member_ref_lookup_ambiguous)
348          << Found.getLookupName()
349          << ObjectType;
350        Diag(Found.getRepresentativeDecl()->getLocation(),
351             diag::note_ambig_member_ref_object_type)
352          << ObjectType;
353        Diag(FoundOuter.getFoundDecl()->getLocation(),
354             diag::note_ambig_member_ref_scope);
355
356        // Recover by taking the template that we found in the object
357        // expression's type.
358      }
359    }
360  }
361}
362
363/// ActOnDependentIdExpression - Handle a dependent id-expression that
364/// was just parsed.  This is only possible with an explicit scope
365/// specifier naming a dependent type.
366ExprResult
367Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
368                                 const DeclarationNameInfo &NameInfo,
369                                 bool isAddressOfOperand,
370                           const TemplateArgumentListInfo *TemplateArgs) {
371  NestedNameSpecifier *Qualifier
372    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
373
374  DeclContext *DC = getFunctionLevelDeclContext();
375
376  if (!isAddressOfOperand &&
377      isa<CXXMethodDecl>(DC) &&
378      cast<CXXMethodDecl>(DC)->isInstance()) {
379    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
380
381    // Since the 'this' expression is synthesized, we don't need to
382    // perform the double-lookup check.
383    NamedDecl *FirstQualifierInScope = 0;
384
385    return Owned(CXXDependentScopeMemberExpr::Create(Context,
386                                                     /*This*/ 0, ThisType,
387                                                     /*IsArrow*/ true,
388                                                     /*Op*/ SourceLocation(),
389                                                     Qualifier, SS.getRange(),
390                                                     FirstQualifierInScope,
391                                                     NameInfo,
392                                                     TemplateArgs));
393  }
394
395  return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
396}
397
398ExprResult
399Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
400                                const DeclarationNameInfo &NameInfo,
401                                const TemplateArgumentListInfo *TemplateArgs) {
402  return Owned(DependentScopeDeclRefExpr::Create(Context,
403               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
404                                                 SS.getRange(),
405                                                 NameInfo,
406                                                 TemplateArgs));
407}
408
409/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
410/// that the template parameter 'PrevDecl' is being shadowed by a new
411/// declaration at location Loc. Returns true to indicate that this is
412/// an error, and false otherwise.
413bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
414  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
415
416  // Microsoft Visual C++ permits template parameters to be shadowed.
417  if (getLangOptions().Microsoft)
418    return false;
419
420  // C++ [temp.local]p4:
421  //   A template-parameter shall not be redeclared within its
422  //   scope (including nested scopes).
423  Diag(Loc, diag::err_template_param_shadow)
424    << cast<NamedDecl>(PrevDecl)->getDeclName();
425  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
426  return true;
427}
428
429/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
430/// the parameter D to reference the templated declaration and return a pointer
431/// to the template declaration. Otherwise, do nothing to D and return null.
432TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
433  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
434    D = Temp->getTemplatedDecl();
435    return Temp;
436  }
437  return 0;
438}
439
440ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
441                                             SourceLocation EllipsisLoc) const {
442  assert(Kind == Template &&
443         "Only template template arguments can be pack expansions here");
444  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
445         "Template template argument pack expansion without packs");
446  ParsedTemplateArgument Result(*this);
447  Result.EllipsisLoc = EllipsisLoc;
448  return Result;
449}
450
451static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
452                                            const ParsedTemplateArgument &Arg) {
453
454  switch (Arg.getKind()) {
455  case ParsedTemplateArgument::Type: {
456    TypeSourceInfo *DI;
457    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
458    if (!DI)
459      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
460    return TemplateArgumentLoc(TemplateArgument(T), DI);
461  }
462
463  case ParsedTemplateArgument::NonType: {
464    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
465    return TemplateArgumentLoc(TemplateArgument(E), E);
466  }
467
468  case ParsedTemplateArgument::Template: {
469    TemplateName Template = Arg.getAsTemplate().get();
470    TemplateArgument TArg;
471    if (Arg.getEllipsisLoc().isValid())
472      TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
473    else
474      TArg = Template;
475    return TemplateArgumentLoc(TArg,
476                               Arg.getScopeSpec().getRange(),
477                               Arg.getLocation(),
478                               Arg.getEllipsisLoc());
479  }
480  }
481
482  llvm_unreachable("Unhandled parsed template argument");
483  return TemplateArgumentLoc();
484}
485
486/// \brief Translates template arguments as provided by the parser
487/// into template arguments used by semantic analysis.
488void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
489                                      TemplateArgumentListInfo &TemplateArgs) {
490 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
491   TemplateArgs.addArgument(translateTemplateArgument(*this,
492                                                      TemplateArgsIn[I]));
493}
494
495/// ActOnTypeParameter - Called when a C++ template type parameter
496/// (e.g., "typename T") has been parsed. Typename specifies whether
497/// the keyword "typename" was used to declare the type parameter
498/// (otherwise, "class" was used), and KeyLoc is the location of the
499/// "class" or "typename" keyword. ParamName is the name of the
500/// parameter (NULL indicates an unnamed template parameter) and
501/// ParamName is the location of the parameter name (if any).
502/// If the type parameter has a default argument, it will be added
503/// later via ActOnTypeParameterDefault.
504Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
505                               SourceLocation EllipsisLoc,
506                               SourceLocation KeyLoc,
507                               IdentifierInfo *ParamName,
508                               SourceLocation ParamNameLoc,
509                               unsigned Depth, unsigned Position,
510                               SourceLocation EqualLoc,
511                               ParsedType DefaultArg) {
512  assert(S->isTemplateParamScope() &&
513         "Template type parameter not in template parameter scope!");
514  bool Invalid = false;
515
516  if (ParamName) {
517    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
518                                           LookupOrdinaryName,
519                                           ForRedeclaration);
520    if (PrevDecl && PrevDecl->isTemplateParameter())
521      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
522                                                           PrevDecl);
523  }
524
525  SourceLocation Loc = ParamNameLoc;
526  if (!ParamName)
527    Loc = KeyLoc;
528
529  TemplateTypeParmDecl *Param
530    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
531                                   Loc, Depth, Position, ParamName, Typename,
532                                   Ellipsis);
533  if (Invalid)
534    Param->setInvalidDecl();
535
536  if (ParamName) {
537    // Add the template parameter into the current scope.
538    S->AddDecl(Param);
539    IdResolver.AddDecl(Param);
540  }
541
542  // C++0x [temp.param]p9:
543  //   A default template-argument may be specified for any kind of
544  //   template-parameter that is not a template parameter pack.
545  if (DefaultArg && Ellipsis) {
546    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
547    DefaultArg = ParsedType();
548  }
549
550  // Handle the default argument, if provided.
551  if (DefaultArg) {
552    TypeSourceInfo *DefaultTInfo;
553    GetTypeFromParser(DefaultArg, &DefaultTInfo);
554
555    assert(DefaultTInfo && "expected source information for type");
556
557    // Check for unexpanded parameter packs.
558    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
559                                        UPPC_DefaultArgument))
560      return Param;
561
562    // Check the template argument itself.
563    if (CheckTemplateArgument(Param, DefaultTInfo)) {
564      Param->setInvalidDecl();
565      return Param;
566    }
567
568    Param->setDefaultArgument(DefaultTInfo, false);
569  }
570
571  return Param;
572}
573
574/// \brief Check that the type of a non-type template parameter is
575/// well-formed.
576///
577/// \returns the (possibly-promoted) parameter type if valid;
578/// otherwise, produces a diagnostic and returns a NULL type.
579QualType
580Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
581  // We don't allow variably-modified types as the type of non-type template
582  // parameters.
583  if (T->isVariablyModifiedType()) {
584    Diag(Loc, diag::err_variably_modified_nontype_template_param)
585      << T;
586    return QualType();
587  }
588
589  // C++ [temp.param]p4:
590  //
591  // A non-type template-parameter shall have one of the following
592  // (optionally cv-qualified) types:
593  //
594  //       -- integral or enumeration type,
595  if (T->isIntegralOrEnumerationType() ||
596      //   -- pointer to object or pointer to function,
597      T->isPointerType() ||
598      //   -- reference to object or reference to function,
599      T->isReferenceType() ||
600      //   -- pointer to member.
601      T->isMemberPointerType() ||
602      // If T is a dependent type, we can't do the check now, so we
603      // assume that it is well-formed.
604      T->isDependentType())
605    return T;
606  // C++ [temp.param]p8:
607  //
608  //   A non-type template-parameter of type "array of T" or
609  //   "function returning T" is adjusted to be of type "pointer to
610  //   T" or "pointer to function returning T", respectively.
611  else if (T->isArrayType())
612    // FIXME: Keep the type prior to promotion?
613    return Context.getArrayDecayedType(T);
614  else if (T->isFunctionType())
615    // FIXME: Keep the type prior to promotion?
616    return Context.getPointerType(T);
617
618  Diag(Loc, diag::err_template_nontype_parm_bad_type)
619    << T;
620
621  return QualType();
622}
623
624Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
625                                          unsigned Depth,
626                                          unsigned Position,
627                                          SourceLocation EqualLoc,
628                                          Expr *Default) {
629  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
630  QualType T = TInfo->getType();
631
632  assert(S->isTemplateParamScope() &&
633         "Non-type template parameter not in template parameter scope!");
634  bool Invalid = false;
635
636  IdentifierInfo *ParamName = D.getIdentifier();
637  if (ParamName) {
638    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
639                                           LookupOrdinaryName,
640                                           ForRedeclaration);
641    if (PrevDecl && PrevDecl->isTemplateParameter())
642      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
643                                                           PrevDecl);
644  }
645
646  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
647  if (T.isNull()) {
648    T = Context.IntTy; // Recover with an 'int' type.
649    Invalid = true;
650  }
651
652  bool IsParameterPack = D.hasEllipsis();
653  NonTypeTemplateParmDecl *Param
654    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
655                                      D.getIdentifierLoc(),
656                                      Depth, Position, ParamName, T,
657                                      IsParameterPack, TInfo);
658  if (Invalid)
659    Param->setInvalidDecl();
660
661  if (D.getIdentifier()) {
662    // Add the template parameter into the current scope.
663    S->AddDecl(Param);
664    IdResolver.AddDecl(Param);
665  }
666
667  // C++0x [temp.param]p9:
668  //   A default template-argument may be specified for any kind of
669  //   template-parameter that is not a template parameter pack.
670  if (Default && IsParameterPack) {
671    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
672    Default = 0;
673  }
674
675  // Check the well-formedness of the default template argument, if provided.
676  if (Default) {
677    // Check for unexpanded parameter packs.
678    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
679      return Param;
680
681    TemplateArgument Converted;
682    if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) {
683      Param->setInvalidDecl();
684      return Param;
685    }
686
687    Param->setDefaultArgument(Default, false);
688  }
689
690  return Param;
691}
692
693/// ActOnTemplateTemplateParameter - Called when a C++ template template
694/// parameter (e.g. T in template <template <typename> class T> class array)
695/// has been parsed. S is the current scope.
696Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
697                                           SourceLocation TmpLoc,
698                                           TemplateParamsTy *Params,
699                                           SourceLocation EllipsisLoc,
700                                           IdentifierInfo *Name,
701                                           SourceLocation NameLoc,
702                                           unsigned Depth,
703                                           unsigned Position,
704                                           SourceLocation EqualLoc,
705                                           ParsedTemplateArgument Default) {
706  assert(S->isTemplateParamScope() &&
707         "Template template parameter not in template parameter scope!");
708
709  // Construct the parameter object.
710  bool IsParameterPack = EllipsisLoc.isValid();
711  // FIXME: Pack-ness is dropped
712  TemplateTemplateParmDecl *Param =
713    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
714                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
715                                     Depth, Position, IsParameterPack,
716                                     Name, Params);
717
718  // If the template template parameter has a name, then link the identifier
719  // into the scope and lookup mechanisms.
720  if (Name) {
721    S->AddDecl(Param);
722    IdResolver.AddDecl(Param);
723  }
724
725  if (Params->size() == 0) {
726    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
727    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
728    Param->setInvalidDecl();
729  }
730
731  // C++0x [temp.param]p9:
732  //   A default template-argument may be specified for any kind of
733  //   template-parameter that is not a template parameter pack.
734  if (IsParameterPack && !Default.isInvalid()) {
735    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
736    Default = ParsedTemplateArgument();
737  }
738
739  if (!Default.isInvalid()) {
740    // Check only that we have a template template argument. We don't want to
741    // try to check well-formedness now, because our template template parameter
742    // might have dependent types in its template parameters, which we wouldn't
743    // be able to match now.
744    //
745    // If none of the template template parameter's template arguments mention
746    // other template parameters, we could actually perform more checking here.
747    // However, it isn't worth doing.
748    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
749    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
750      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
751        << DefaultArg.getSourceRange();
752      return Param;
753    }
754
755    // Check for unexpanded parameter packs.
756    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
757                                        DefaultArg.getArgument().getAsTemplate(),
758                                        UPPC_DefaultArgument))
759      return Param;
760
761    Param->setDefaultArgument(DefaultArg, false);
762  }
763
764  return Param;
765}
766
767/// ActOnTemplateParameterList - Builds a TemplateParameterList that
768/// contains the template parameters in Params/NumParams.
769Sema::TemplateParamsTy *
770Sema::ActOnTemplateParameterList(unsigned Depth,
771                                 SourceLocation ExportLoc,
772                                 SourceLocation TemplateLoc,
773                                 SourceLocation LAngleLoc,
774                                 Decl **Params, unsigned NumParams,
775                                 SourceLocation RAngleLoc) {
776  if (ExportLoc.isValid())
777    Diag(ExportLoc, diag::warn_template_export_unsupported);
778
779  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
780                                       (NamedDecl**)Params, NumParams,
781                                       RAngleLoc);
782}
783
784static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
785  if (SS.isSet())
786    T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
787                        SS.getRange());
788}
789
790DeclResult
791Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
792                         SourceLocation KWLoc, CXXScopeSpec &SS,
793                         IdentifierInfo *Name, SourceLocation NameLoc,
794                         AttributeList *Attr,
795                         TemplateParameterList *TemplateParams,
796                         AccessSpecifier AS) {
797  assert(TemplateParams && TemplateParams->size() > 0 &&
798         "No template parameters");
799  assert(TUK != TUK_Reference && "Can only declare or define class templates");
800  bool Invalid = false;
801
802  // Check that we can declare a template here.
803  if (CheckTemplateDeclScope(S, TemplateParams))
804    return true;
805
806  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
807  assert(Kind != TTK_Enum && "can't build template of enumerated type");
808
809  // There is no such thing as an unnamed class template.
810  if (!Name) {
811    Diag(KWLoc, diag::err_template_unnamed_class);
812    return true;
813  }
814
815  // Find any previous declaration with this name.
816  DeclContext *SemanticContext;
817  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
818                        ForRedeclaration);
819  if (SS.isNotEmpty() && !SS.isInvalid()) {
820    SemanticContext = computeDeclContext(SS, true);
821    if (!SemanticContext) {
822      // FIXME: Produce a reasonable diagnostic here
823      return true;
824    }
825
826    if (RequireCompleteDeclContext(SS, SemanticContext))
827      return true;
828
829    LookupQualifiedName(Previous, SemanticContext);
830  } else {
831    SemanticContext = CurContext;
832    LookupName(Previous, S);
833  }
834
835  if (Previous.isAmbiguous())
836    return true;
837
838  NamedDecl *PrevDecl = 0;
839  if (Previous.begin() != Previous.end())
840    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
841
842  // If there is a previous declaration with the same name, check
843  // whether this is a valid redeclaration.
844  ClassTemplateDecl *PrevClassTemplate
845    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
846
847  // We may have found the injected-class-name of a class template,
848  // class template partial specialization, or class template specialization.
849  // In these cases, grab the template that is being defined or specialized.
850  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
851      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
852    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
853    PrevClassTemplate
854      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
855    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
856      PrevClassTemplate
857        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
858            ->getSpecializedTemplate();
859    }
860  }
861
862  if (TUK == TUK_Friend) {
863    // C++ [namespace.memdef]p3:
864    //   [...] When looking for a prior declaration of a class or a function
865    //   declared as a friend, and when the name of the friend class or
866    //   function is neither a qualified name nor a template-id, scopes outside
867    //   the innermost enclosing namespace scope are not considered.
868    if (!SS.isSet()) {
869      DeclContext *OutermostContext = CurContext;
870      while (!OutermostContext->isFileContext())
871        OutermostContext = OutermostContext->getLookupParent();
872
873      if (PrevDecl &&
874          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
875           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
876        SemanticContext = PrevDecl->getDeclContext();
877      } else {
878        // Declarations in outer scopes don't matter. However, the outermost
879        // context we computed is the semantic context for our new
880        // declaration.
881        PrevDecl = PrevClassTemplate = 0;
882        SemanticContext = OutermostContext;
883      }
884    }
885
886    if (CurContext->isDependentContext()) {
887      // If this is a dependent context, we don't want to link the friend
888      // class template to the template in scope, because that would perform
889      // checking of the template parameter lists that can't be performed
890      // until the outer context is instantiated.
891      PrevDecl = PrevClassTemplate = 0;
892    }
893  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
894    PrevDecl = PrevClassTemplate = 0;
895
896  if (PrevClassTemplate) {
897    // Ensure that the template parameter lists are compatible.
898    if (!TemplateParameterListsAreEqual(TemplateParams,
899                                   PrevClassTemplate->getTemplateParameters(),
900                                        /*Complain=*/true,
901                                        TPL_TemplateMatch))
902      return true;
903
904    // C++ [temp.class]p4:
905    //   In a redeclaration, partial specialization, explicit
906    //   specialization or explicit instantiation of a class template,
907    //   the class-key shall agree in kind with the original class
908    //   template declaration (7.1.5.3).
909    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
910    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
911      Diag(KWLoc, diag::err_use_with_wrong_tag)
912        << Name
913        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
914      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
915      Kind = PrevRecordDecl->getTagKind();
916    }
917
918    // Check for redefinition of this class template.
919    if (TUK == TUK_Definition) {
920      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
921        Diag(NameLoc, diag::err_redefinition) << Name;
922        Diag(Def->getLocation(), diag::note_previous_definition);
923        // FIXME: Would it make sense to try to "forget" the previous
924        // definition, as part of error recovery?
925        return true;
926      }
927    }
928  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
929    // Maybe we will complain about the shadowed template parameter.
930    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
931    // Just pretend that we didn't see the previous declaration.
932    PrevDecl = 0;
933  } else if (PrevDecl) {
934    // C++ [temp]p5:
935    //   A class template shall not have the same name as any other
936    //   template, class, function, object, enumeration, enumerator,
937    //   namespace, or type in the same scope (3.3), except as specified
938    //   in (14.5.4).
939    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
940    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
941    return true;
942  }
943
944  // Check the template parameter list of this declaration, possibly
945  // merging in the template parameter list from the previous class
946  // template declaration.
947  if (CheckTemplateParameterList(TemplateParams,
948            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
949                                 (SS.isSet() && SemanticContext &&
950                                  SemanticContext->isRecord() &&
951                                  SemanticContext->isDependentContext())
952                                   ? TPC_ClassTemplateMember
953                                   : TPC_ClassTemplate))
954    Invalid = true;
955
956  if (SS.isSet()) {
957    // If the name of the template was qualified, we must be defining the
958    // template out-of-line.
959    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
960        !(TUK == TUK_Friend && CurContext->isDependentContext()))
961      Diag(NameLoc, diag::err_member_def_does_not_match)
962        << Name << SemanticContext << SS.getRange();
963  }
964
965  CXXRecordDecl *NewClass =
966    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
967                          PrevClassTemplate?
968                            PrevClassTemplate->getTemplatedDecl() : 0,
969                          /*DelayTypeCreation=*/true);
970  SetNestedNameSpecifier(NewClass, SS);
971
972  ClassTemplateDecl *NewTemplate
973    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
974                                DeclarationName(Name), TemplateParams,
975                                NewClass, PrevClassTemplate);
976  NewClass->setDescribedClassTemplate(NewTemplate);
977
978  // Build the type for the class template declaration now.
979  QualType T = NewTemplate->getInjectedClassNameSpecialization();
980  T = Context.getInjectedClassNameType(NewClass, T);
981  assert(T->isDependentType() && "Class template type is not dependent?");
982  (void)T;
983
984  // If we are providing an explicit specialization of a member that is a
985  // class template, make a note of that.
986  if (PrevClassTemplate &&
987      PrevClassTemplate->getInstantiatedFromMemberTemplate())
988    PrevClassTemplate->setMemberSpecialization();
989
990  // Set the access specifier.
991  if (!Invalid && TUK != TUK_Friend)
992    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
993
994  // Set the lexical context of these templates
995  NewClass->setLexicalDeclContext(CurContext);
996  NewTemplate->setLexicalDeclContext(CurContext);
997
998  if (TUK == TUK_Definition)
999    NewClass->startDefinition();
1000
1001  if (Attr)
1002    ProcessDeclAttributeList(S, NewClass, Attr);
1003
1004  if (TUK != TUK_Friend)
1005    PushOnScopeChains(NewTemplate, S);
1006  else {
1007    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1008      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1009      NewClass->setAccess(PrevClassTemplate->getAccess());
1010    }
1011
1012    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1013                                       PrevClassTemplate != NULL);
1014
1015    // Friend templates are visible in fairly strange ways.
1016    if (!CurContext->isDependentContext()) {
1017      DeclContext *DC = SemanticContext->getRedeclContext();
1018      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
1019      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1020        PushOnScopeChains(NewTemplate, EnclosingScope,
1021                          /* AddToContext = */ false);
1022    }
1023
1024    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1025                                            NewClass->getLocation(),
1026                                            NewTemplate,
1027                                    /*FIXME:*/NewClass->getLocation());
1028    Friend->setAccess(AS_public);
1029    CurContext->addDecl(Friend);
1030  }
1031
1032  if (Invalid) {
1033    NewTemplate->setInvalidDecl();
1034    NewClass->setInvalidDecl();
1035  }
1036  return NewTemplate;
1037}
1038
1039/// \brief Diagnose the presence of a default template argument on a
1040/// template parameter, which is ill-formed in certain contexts.
1041///
1042/// \returns true if the default template argument should be dropped.
1043static bool DiagnoseDefaultTemplateArgument(Sema &S,
1044                                            Sema::TemplateParamListContext TPC,
1045                                            SourceLocation ParamLoc,
1046                                            SourceRange DefArgRange) {
1047  switch (TPC) {
1048  case Sema::TPC_ClassTemplate:
1049    return false;
1050
1051  case Sema::TPC_FunctionTemplate:
1052  case Sema::TPC_FriendFunctionTemplateDefinition:
1053    // C++ [temp.param]p9:
1054    //   A default template-argument shall not be specified in a
1055    //   function template declaration or a function template
1056    //   definition [...]
1057    //   If a friend function template declaration specifies a default
1058    //   template-argument, that declaration shall be a definition and shall be
1059    //   the only declaration of the function template in the translation unit.
1060    // (C++98/03 doesn't have this wording; see DR226).
1061    if (!S.getLangOptions().CPlusPlus0x)
1062      S.Diag(ParamLoc,
1063             diag::ext_template_parameter_default_in_function_template)
1064        << DefArgRange;
1065    return false;
1066
1067  case Sema::TPC_ClassTemplateMember:
1068    // C++0x [temp.param]p9:
1069    //   A default template-argument shall not be specified in the
1070    //   template-parameter-lists of the definition of a member of a
1071    //   class template that appears outside of the member's class.
1072    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1073      << DefArgRange;
1074    return true;
1075
1076  case Sema::TPC_FriendFunctionTemplate:
1077    // C++ [temp.param]p9:
1078    //   A default template-argument shall not be specified in a
1079    //   friend template declaration.
1080    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1081      << DefArgRange;
1082    return true;
1083
1084    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1085    // for friend function templates if there is only a single
1086    // declaration (and it is a definition). Strange!
1087  }
1088
1089  return false;
1090}
1091
1092/// \brief Check for unexpanded parameter packs within the template parameters
1093/// of a template template parameter, recursively.
1094bool DiagnoseUnexpandedParameterPacks(Sema &S, TemplateTemplateParmDecl *TTP){
1095  TemplateParameterList *Params = TTP->getTemplateParameters();
1096  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1097    NamedDecl *P = Params->getParam(I);
1098    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1099      if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1100                                            NTTP->getTypeSourceInfo(),
1101                                      Sema::UPPC_NonTypeTemplateParameterType))
1102        return true;
1103
1104      continue;
1105    }
1106
1107    if (TemplateTemplateParmDecl *InnerTTP
1108                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1109      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1110        return true;
1111  }
1112
1113  return false;
1114}
1115
1116/// \brief Checks the validity of a template parameter list, possibly
1117/// considering the template parameter list from a previous
1118/// declaration.
1119///
1120/// If an "old" template parameter list is provided, it must be
1121/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1122/// template parameter list.
1123///
1124/// \param NewParams Template parameter list for a new template
1125/// declaration. This template parameter list will be updated with any
1126/// default arguments that are carried through from the previous
1127/// template parameter list.
1128///
1129/// \param OldParams If provided, template parameter list from a
1130/// previous declaration of the same template. Default template
1131/// arguments will be merged from the old template parameter list to
1132/// the new template parameter list.
1133///
1134/// \param TPC Describes the context in which we are checking the given
1135/// template parameter list.
1136///
1137/// \returns true if an error occurred, false otherwise.
1138bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1139                                      TemplateParameterList *OldParams,
1140                                      TemplateParamListContext TPC) {
1141  bool Invalid = false;
1142
1143  // C++ [temp.param]p10:
1144  //   The set of default template-arguments available for use with a
1145  //   template declaration or definition is obtained by merging the
1146  //   default arguments from the definition (if in scope) and all
1147  //   declarations in scope in the same way default function
1148  //   arguments are (8.3.6).
1149  bool SawDefaultArgument = false;
1150  SourceLocation PreviousDefaultArgLoc;
1151
1152  bool SawParameterPack = false;
1153  SourceLocation ParameterPackLoc;
1154
1155  // Dummy initialization to avoid warnings.
1156  TemplateParameterList::iterator OldParam = NewParams->end();
1157  if (OldParams)
1158    OldParam = OldParams->begin();
1159
1160  bool RemoveDefaultArguments = false;
1161  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1162                                    NewParamEnd = NewParams->end();
1163       NewParam != NewParamEnd; ++NewParam) {
1164    // Variables used to diagnose redundant default arguments
1165    bool RedundantDefaultArg = false;
1166    SourceLocation OldDefaultLoc;
1167    SourceLocation NewDefaultLoc;
1168
1169    // Variables used to diagnose missing default arguments
1170    bool MissingDefaultArg = false;
1171
1172    // C++0x [temp.param]p11:
1173    //   If a template parameter of a primary class template is a template
1174    //   parameter pack, it shall be the last template parameter.
1175    if (SawParameterPack && TPC == TPC_ClassTemplate) {
1176      Diag(ParameterPackLoc,
1177           diag::err_template_param_pack_must_be_last_template_parameter);
1178      Invalid = true;
1179    }
1180
1181    if (TemplateTypeParmDecl *NewTypeParm
1182          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1183      // Check the presence of a default argument here.
1184      if (NewTypeParm->hasDefaultArgument() &&
1185          DiagnoseDefaultTemplateArgument(*this, TPC,
1186                                          NewTypeParm->getLocation(),
1187               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1188                                                       .getSourceRange()))
1189        NewTypeParm->removeDefaultArgument();
1190
1191      // Merge default arguments for template type parameters.
1192      TemplateTypeParmDecl *OldTypeParm
1193          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1194
1195      if (NewTypeParm->isParameterPack()) {
1196        assert(!NewTypeParm->hasDefaultArgument() &&
1197               "Parameter packs can't have a default argument!");
1198        SawParameterPack = true;
1199        ParameterPackLoc = NewTypeParm->getLocation();
1200      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1201                 NewTypeParm->hasDefaultArgument()) {
1202        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1203        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1204        SawDefaultArgument = true;
1205        RedundantDefaultArg = true;
1206        PreviousDefaultArgLoc = NewDefaultLoc;
1207      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1208        // Merge the default argument from the old declaration to the
1209        // new declaration.
1210        SawDefaultArgument = true;
1211        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1212                                        true);
1213        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1214      } else if (NewTypeParm->hasDefaultArgument()) {
1215        SawDefaultArgument = true;
1216        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1217      } else if (SawDefaultArgument)
1218        MissingDefaultArg = true;
1219    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1220               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1221      // Check for unexpanded parameter packs.
1222      if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1223                                          NewNonTypeParm->getTypeSourceInfo(),
1224                                          UPPC_NonTypeTemplateParameterType)) {
1225        Invalid = true;
1226        continue;
1227      }
1228
1229      // Check the presence of a default argument here.
1230      if (NewNonTypeParm->hasDefaultArgument() &&
1231          DiagnoseDefaultTemplateArgument(*this, TPC,
1232                                          NewNonTypeParm->getLocation(),
1233                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1234        NewNonTypeParm->removeDefaultArgument();
1235      }
1236
1237      // Merge default arguments for non-type template parameters
1238      NonTypeTemplateParmDecl *OldNonTypeParm
1239        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1240      if (NewNonTypeParm->isParameterPack()) {
1241        assert(!NewNonTypeParm->hasDefaultArgument() &&
1242               "Parameter packs can't have a default argument!");
1243        SawParameterPack = true;
1244        ParameterPackLoc = NewNonTypeParm->getLocation();
1245      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1246          NewNonTypeParm->hasDefaultArgument()) {
1247        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1248        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1249        SawDefaultArgument = true;
1250        RedundantDefaultArg = true;
1251        PreviousDefaultArgLoc = NewDefaultLoc;
1252      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1253        // Merge the default argument from the old declaration to the
1254        // new declaration.
1255        SawDefaultArgument = true;
1256        // FIXME: We need to create a new kind of "default argument"
1257        // expression that points to a previous non-type template
1258        // parameter.
1259        NewNonTypeParm->setDefaultArgument(
1260                                         OldNonTypeParm->getDefaultArgument(),
1261                                         /*Inherited=*/ true);
1262        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1263      } else if (NewNonTypeParm->hasDefaultArgument()) {
1264        SawDefaultArgument = true;
1265        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1266      } else if (SawDefaultArgument)
1267        MissingDefaultArg = true;
1268    } else {
1269      // Check the presence of a default argument here.
1270      TemplateTemplateParmDecl *NewTemplateParm
1271        = cast<TemplateTemplateParmDecl>(*NewParam);
1272
1273      // Check for unexpanded parameter packs, recursively.
1274      if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1275        Invalid = true;
1276        continue;
1277      }
1278
1279      if (NewTemplateParm->hasDefaultArgument() &&
1280          DiagnoseDefaultTemplateArgument(*this, TPC,
1281                                          NewTemplateParm->getLocation(),
1282                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1283        NewTemplateParm->removeDefaultArgument();
1284
1285      // Merge default arguments for template template parameters
1286      TemplateTemplateParmDecl *OldTemplateParm
1287        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1288      if (NewTemplateParm->isParameterPack()) {
1289        assert(!NewTemplateParm->hasDefaultArgument() &&
1290               "Parameter packs can't have a default argument!");
1291        SawParameterPack = true;
1292        ParameterPackLoc = NewTemplateParm->getLocation();
1293      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1294          NewTemplateParm->hasDefaultArgument()) {
1295        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1296        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1297        SawDefaultArgument = true;
1298        RedundantDefaultArg = true;
1299        PreviousDefaultArgLoc = NewDefaultLoc;
1300      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1301        // Merge the default argument from the old declaration to the
1302        // new declaration.
1303        SawDefaultArgument = true;
1304        // FIXME: We need to create a new kind of "default argument" expression
1305        // that points to a previous template template parameter.
1306        NewTemplateParm->setDefaultArgument(
1307                                          OldTemplateParm->getDefaultArgument(),
1308                                          /*Inherited=*/ true);
1309        PreviousDefaultArgLoc
1310          = OldTemplateParm->getDefaultArgument().getLocation();
1311      } else if (NewTemplateParm->hasDefaultArgument()) {
1312        SawDefaultArgument = true;
1313        PreviousDefaultArgLoc
1314          = NewTemplateParm->getDefaultArgument().getLocation();
1315      } else if (SawDefaultArgument)
1316        MissingDefaultArg = true;
1317    }
1318
1319    if (RedundantDefaultArg) {
1320      // C++ [temp.param]p12:
1321      //   A template-parameter shall not be given default arguments
1322      //   by two different declarations in the same scope.
1323      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1324      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1325      Invalid = true;
1326    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1327      // C++ [temp.param]p11:
1328      //   If a template-parameter of a class template has a default
1329      //   template-argument, each subsequent template-parameter shall either
1330      //   have a default template-argument supplied or be a template parameter
1331      //   pack.
1332      Diag((*NewParam)->getLocation(),
1333           diag::err_template_param_default_arg_missing);
1334      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1335      Invalid = true;
1336      RemoveDefaultArguments = true;
1337    }
1338
1339    // If we have an old template parameter list that we're merging
1340    // in, move on to the next parameter.
1341    if (OldParams)
1342      ++OldParam;
1343  }
1344
1345  // We were missing some default arguments at the end of the list, so remove
1346  // all of the default arguments.
1347  if (RemoveDefaultArguments) {
1348    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1349                                      NewParamEnd = NewParams->end();
1350         NewParam != NewParamEnd; ++NewParam) {
1351      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1352        TTP->removeDefaultArgument();
1353      else if (NonTypeTemplateParmDecl *NTTP
1354                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1355        NTTP->removeDefaultArgument();
1356      else
1357        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1358    }
1359  }
1360
1361  return Invalid;
1362}
1363
1364namespace {
1365
1366/// A class which looks for a use of a certain level of template
1367/// parameter.
1368struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1369  typedef RecursiveASTVisitor<DependencyChecker> super;
1370
1371  unsigned Depth;
1372  bool Match;
1373
1374  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1375    NamedDecl *ND = Params->getParam(0);
1376    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1377      Depth = PD->getDepth();
1378    } else if (NonTypeTemplateParmDecl *PD =
1379                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1380      Depth = PD->getDepth();
1381    } else {
1382      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1383    }
1384  }
1385
1386  bool Matches(unsigned ParmDepth) {
1387    if (ParmDepth >= Depth) {
1388      Match = true;
1389      return true;
1390    }
1391    return false;
1392  }
1393
1394  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1395    return !Matches(T->getDepth());
1396  }
1397
1398  bool TraverseTemplateName(TemplateName N) {
1399    if (TemplateTemplateParmDecl *PD =
1400          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1401      if (Matches(PD->getDepth())) return false;
1402    return super::TraverseTemplateName(N);
1403  }
1404
1405  bool VisitDeclRefExpr(DeclRefExpr *E) {
1406    if (NonTypeTemplateParmDecl *PD =
1407          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1408      if (PD->getDepth() == Depth) {
1409        Match = true;
1410        return false;
1411      }
1412    }
1413    return super::VisitDeclRefExpr(E);
1414  }
1415};
1416}
1417
1418/// Determines whether a template-id depends on the given parameter
1419/// list.
1420static bool
1421DependsOnTemplateParameters(const TemplateSpecializationType *TemplateId,
1422                            TemplateParameterList *Params) {
1423  DependencyChecker Checker(Params);
1424  Checker.TraverseType(QualType(TemplateId, 0));
1425  return Checker.Match;
1426}
1427
1428/// \brief Match the given template parameter lists to the given scope
1429/// specifier, returning the template parameter list that applies to the
1430/// name.
1431///
1432/// \param DeclStartLoc the start of the declaration that has a scope
1433/// specifier or a template parameter list.
1434///
1435/// \param SS the scope specifier that will be matched to the given template
1436/// parameter lists. This scope specifier precedes a qualified name that is
1437/// being declared.
1438///
1439/// \param ParamLists the template parameter lists, from the outermost to the
1440/// innermost template parameter lists.
1441///
1442/// \param NumParamLists the number of template parameter lists in ParamLists.
1443///
1444/// \param IsFriend Whether to apply the slightly different rules for
1445/// matching template parameters to scope specifiers in friend
1446/// declarations.
1447///
1448/// \param IsExplicitSpecialization will be set true if the entity being
1449/// declared is an explicit specialization, false otherwise.
1450///
1451/// \returns the template parameter list, if any, that corresponds to the
1452/// name that is preceded by the scope specifier @p SS. This template
1453/// parameter list may be have template parameters (if we're declaring a
1454/// template) or may have no template parameters (if we're declaring a
1455/// template specialization), or may be NULL (if we were's declaring isn't
1456/// itself a template).
1457TemplateParameterList *
1458Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1459                                              const CXXScopeSpec &SS,
1460                                          TemplateParameterList **ParamLists,
1461                                              unsigned NumParamLists,
1462                                              bool IsFriend,
1463                                              bool &IsExplicitSpecialization,
1464                                              bool &Invalid) {
1465  IsExplicitSpecialization = false;
1466
1467  // Find the template-ids that occur within the nested-name-specifier. These
1468  // template-ids will match up with the template parameter lists.
1469  llvm::SmallVector<const TemplateSpecializationType *, 4>
1470    TemplateIdsInSpecifier;
1471  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1472    ExplicitSpecializationsInSpecifier;
1473  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1474       NNS; NNS = NNS->getPrefix()) {
1475    const Type *T = NNS->getAsType();
1476    if (!T) break;
1477
1478    // C++0x [temp.expl.spec]p17:
1479    //   A member or a member template may be nested within many
1480    //   enclosing class templates. In an explicit specialization for
1481    //   such a member, the member declaration shall be preceded by a
1482    //   template<> for each enclosing class template that is
1483    //   explicitly specialized.
1484    //
1485    // Following the existing practice of GNU and EDG, we allow a typedef of a
1486    // template specialization type.
1487    while (const TypedefType *TT = dyn_cast<TypedefType>(T))
1488      T = TT->getDecl()->getUnderlyingType().getTypePtr();
1489
1490    if (const TemplateSpecializationType *SpecType
1491                                  = dyn_cast<TemplateSpecializationType>(T)) {
1492      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1493      if (!Template)
1494        continue; // FIXME: should this be an error? probably...
1495
1496      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1497        ClassTemplateSpecializationDecl *SpecDecl
1498          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1499        // If the nested name specifier refers to an explicit specialization,
1500        // we don't need a template<> header.
1501        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1502          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1503          continue;
1504        }
1505      }
1506
1507      TemplateIdsInSpecifier.push_back(SpecType);
1508    }
1509  }
1510
1511  // Reverse the list of template-ids in the scope specifier, so that we can
1512  // more easily match up the template-ids and the template parameter lists.
1513  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1514
1515  SourceLocation FirstTemplateLoc = DeclStartLoc;
1516  if (NumParamLists)
1517    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1518
1519  // Match the template-ids found in the specifier to the template parameter
1520  // lists.
1521  unsigned ParamIdx = 0, TemplateIdx = 0;
1522  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1523       TemplateIdx != NumTemplateIds; ++TemplateIdx) {
1524    const TemplateSpecializationType *TemplateId
1525      = TemplateIdsInSpecifier[TemplateIdx];
1526    bool DependentTemplateId = TemplateId->isDependentType();
1527
1528    // In friend declarations we can have template-ids which don't
1529    // depend on the corresponding template parameter lists.  But
1530    // assume that empty parameter lists are supposed to match this
1531    // template-id.
1532    if (IsFriend && ParamIdx < NumParamLists && ParamLists[ParamIdx]->size()) {
1533      if (!DependentTemplateId ||
1534          !DependsOnTemplateParameters(TemplateId, ParamLists[ParamIdx]))
1535        continue;
1536    }
1537
1538    if (ParamIdx >= NumParamLists) {
1539      // We have a template-id without a corresponding template parameter
1540      // list.
1541
1542      // ...which is fine if this is a friend declaration.
1543      if (IsFriend) {
1544        IsExplicitSpecialization = true;
1545        break;
1546      }
1547
1548      if (DependentTemplateId) {
1549        // FIXME: the location information here isn't great.
1550        Diag(SS.getRange().getBegin(),
1551             diag::err_template_spec_needs_template_parameters)
1552          << QualType(TemplateId, 0)
1553          << SS.getRange();
1554        Invalid = true;
1555      } else {
1556        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1557          << SS.getRange()
1558          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1559        IsExplicitSpecialization = true;
1560      }
1561      return 0;
1562    }
1563
1564    // Check the template parameter list against its corresponding template-id.
1565    if (DependentTemplateId) {
1566      TemplateParameterList *ExpectedTemplateParams = 0;
1567
1568      // Are there cases in (e.g.) friends where this won't match?
1569      if (const InjectedClassNameType *Injected
1570            = TemplateId->getAs<InjectedClassNameType>()) {
1571        CXXRecordDecl *Record = Injected->getDecl();
1572        if (ClassTemplatePartialSpecializationDecl *Partial =
1573              dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1574          ExpectedTemplateParams = Partial->getTemplateParameters();
1575        else
1576          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1577            ->getTemplateParameters();
1578      }
1579
1580      if (ExpectedTemplateParams)
1581        TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1582                                       ExpectedTemplateParams,
1583                                       true, TPL_TemplateMatch);
1584
1585      CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1586                                 TPC_ClassTemplateMember);
1587    } else if (ParamLists[ParamIdx]->size() > 0)
1588      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1589           diag::err_template_param_list_matches_nontemplate)
1590        << TemplateId
1591        << ParamLists[ParamIdx]->getSourceRange();
1592    else
1593      IsExplicitSpecialization = true;
1594
1595    ++ParamIdx;
1596  }
1597
1598  // If there were at least as many template-ids as there were template
1599  // parameter lists, then there are no template parameter lists remaining for
1600  // the declaration itself.
1601  if (ParamIdx >= NumParamLists)
1602    return 0;
1603
1604  // If there were too many template parameter lists, complain about that now.
1605  if (ParamIdx != NumParamLists - 1) {
1606    while (ParamIdx < NumParamLists - 1) {
1607      bool isExplicitSpecHeader = ParamLists[ParamIdx]->size() == 0;
1608      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1609           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1610                               : diag::err_template_spec_extra_headers)
1611        << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1612                       ParamLists[ParamIdx]->getRAngleLoc());
1613
1614      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1615        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1616             diag::note_explicit_template_spec_does_not_need_header)
1617          << ExplicitSpecializationsInSpecifier.back();
1618        ExplicitSpecializationsInSpecifier.pop_back();
1619      }
1620
1621      // We have a template parameter list with no corresponding scope, which
1622      // means that the resulting template declaration can't be instantiated
1623      // properly (we'll end up with dependent nodes when we shouldn't).
1624      if (!isExplicitSpecHeader)
1625        Invalid = true;
1626
1627      ++ParamIdx;
1628    }
1629  }
1630
1631  // Return the last template parameter list, which corresponds to the
1632  // entity being declared.
1633  return ParamLists[NumParamLists - 1];
1634}
1635
1636QualType Sema::CheckTemplateIdType(TemplateName Name,
1637                                   SourceLocation TemplateLoc,
1638                              const TemplateArgumentListInfo &TemplateArgs) {
1639  TemplateDecl *Template = Name.getAsTemplateDecl();
1640  if (!Template) {
1641    // The template name does not resolve to a template, so we just
1642    // build a dependent template-id type.
1643    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1644  }
1645
1646  // Check that the template argument list is well-formed for this
1647  // template.
1648  llvm::SmallVector<TemplateArgument, 4> Converted;
1649  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1650                                false, Converted))
1651    return QualType();
1652
1653  assert((Converted.size() == Template->getTemplateParameters()->size()) &&
1654         "Converted template argument list is too short!");
1655
1656  QualType CanonType;
1657
1658  if (Name.isDependent() ||
1659      TemplateSpecializationType::anyDependentTemplateArguments(
1660                                                      TemplateArgs)) {
1661    // This class template specialization is a dependent
1662    // type. Therefore, its canonical type is another class template
1663    // specialization type that contains all of the converted
1664    // arguments in canonical form. This ensures that, e.g., A<T> and
1665    // A<T, T> have identical types when A is declared as:
1666    //
1667    //   template<typename T, typename U = T> struct A;
1668    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1669    CanonType = Context.getTemplateSpecializationType(CanonName,
1670                                                      Converted.data(),
1671                                                      Converted.size());
1672
1673    // FIXME: CanonType is not actually the canonical type, and unfortunately
1674    // it is a TemplateSpecializationType that we will never use again.
1675    // In the future, we need to teach getTemplateSpecializationType to only
1676    // build the canonical type and return that to us.
1677    CanonType = Context.getCanonicalType(CanonType);
1678
1679    // This might work out to be a current instantiation, in which
1680    // case the canonical type needs to be the InjectedClassNameType.
1681    //
1682    // TODO: in theory this could be a simple hashtable lookup; most
1683    // changes to CurContext don't change the set of current
1684    // instantiations.
1685    if (isa<ClassTemplateDecl>(Template)) {
1686      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1687        // If we get out to a namespace, we're done.
1688        if (Ctx->isFileContext()) break;
1689
1690        // If this isn't a record, keep looking.
1691        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1692        if (!Record) continue;
1693
1694        // Look for one of the two cases with InjectedClassNameTypes
1695        // and check whether it's the same template.
1696        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1697            !Record->getDescribedClassTemplate())
1698          continue;
1699
1700        // Fetch the injected class name type and check whether its
1701        // injected type is equal to the type we just built.
1702        QualType ICNT = Context.getTypeDeclType(Record);
1703        QualType Injected = cast<InjectedClassNameType>(ICNT)
1704          ->getInjectedSpecializationType();
1705
1706        if (CanonType != Injected->getCanonicalTypeInternal())
1707          continue;
1708
1709        // If so, the canonical type of this TST is the injected
1710        // class name type of the record we just found.
1711        assert(ICNT.isCanonical());
1712        CanonType = ICNT;
1713        break;
1714      }
1715    }
1716  } else if (ClassTemplateDecl *ClassTemplate
1717               = dyn_cast<ClassTemplateDecl>(Template)) {
1718    // Find the class template specialization declaration that
1719    // corresponds to these arguments.
1720    void *InsertPos = 0;
1721    ClassTemplateSpecializationDecl *Decl
1722      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
1723                                          InsertPos);
1724    if (!Decl) {
1725      // This is the first time we have referenced this class template
1726      // specialization. Create the canonical declaration and add it to
1727      // the set of specializations.
1728      Decl = ClassTemplateSpecializationDecl::Create(Context,
1729                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1730                                                ClassTemplate->getDeclContext(),
1731                                                ClassTemplate->getLocation(),
1732                                                     ClassTemplate,
1733                                                     Converted.data(),
1734                                                     Converted.size(), 0);
1735      ClassTemplate->AddSpecialization(Decl, InsertPos);
1736      Decl->setLexicalDeclContext(CurContext);
1737    }
1738
1739    CanonType = Context.getTypeDeclType(Decl);
1740    assert(isa<RecordType>(CanonType) &&
1741           "type of non-dependent specialization is not a RecordType");
1742  }
1743
1744  // Build the fully-sugared type for this class template
1745  // specialization, which refers back to the class template
1746  // specialization we created or found.
1747  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1748}
1749
1750TypeResult
1751Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1752                          SourceLocation LAngleLoc,
1753                          ASTTemplateArgsPtr TemplateArgsIn,
1754                          SourceLocation RAngleLoc) {
1755  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1756
1757  // Translate the parser's template argument list in our AST format.
1758  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1759  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1760
1761  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1762  TemplateArgsIn.release();
1763
1764  if (Result.isNull())
1765    return true;
1766
1767  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1768  TemplateSpecializationTypeLoc TL
1769    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1770  TL.setTemplateNameLoc(TemplateLoc);
1771  TL.setLAngleLoc(LAngleLoc);
1772  TL.setRAngleLoc(RAngleLoc);
1773  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1774    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1775
1776  return CreateParsedType(Result, DI);
1777}
1778
1779TypeResult Sema::ActOnTagTemplateIdType(CXXScopeSpec &SS,
1780                                        TypeResult TypeResult,
1781                                        TagUseKind TUK,
1782                                        TypeSpecifierType TagSpec,
1783                                        SourceLocation TagLoc) {
1784  if (TypeResult.isInvalid())
1785    return ::TypeResult();
1786
1787  TypeSourceInfo *DI;
1788  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1789
1790  // Verify the tag specifier.
1791  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1792
1793  if (const RecordType *RT = Type->getAs<RecordType>()) {
1794    RecordDecl *D = RT->getDecl();
1795
1796    IdentifierInfo *Id = D->getIdentifier();
1797    assert(Id && "templated class must have an identifier");
1798
1799    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1800      Diag(TagLoc, diag::err_use_with_wrong_tag)
1801        << Type
1802        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1803      Diag(D->getLocation(), diag::note_previous_use);
1804    }
1805  }
1806
1807  ElaboratedTypeKeyword Keyword
1808    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
1809  QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type);
1810
1811  TypeSourceInfo *ElabDI = Context.CreateTypeSourceInfo(ElabType);
1812  ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(ElabDI->getTypeLoc());
1813  TL.setKeywordLoc(TagLoc);
1814  TL.setQualifierRange(SS.getRange());
1815  TL.getNamedTypeLoc().initializeFullCopy(DI->getTypeLoc());
1816  return CreateParsedType(ElabType, ElabDI);
1817}
1818
1819ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1820                                                 LookupResult &R,
1821                                                 bool RequiresADL,
1822                                 const TemplateArgumentListInfo &TemplateArgs) {
1823  // FIXME: Can we do any checking at this point? I guess we could check the
1824  // template arguments that we have against the template name, if the template
1825  // name refers to a single template. That's not a terribly common case,
1826  // though.
1827
1828  // These should be filtered out by our callers.
1829  assert(!R.empty() && "empty lookup results when building templateid");
1830  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1831
1832  NestedNameSpecifier *Qualifier = 0;
1833  SourceRange QualifierRange;
1834  if (SS.isSet()) {
1835    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1836    QualifierRange = SS.getRange();
1837  }
1838
1839  // We don't want lookup warnings at this point.
1840  R.suppressDiagnostics();
1841
1842  UnresolvedLookupExpr *ULE
1843    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
1844                                   Qualifier, QualifierRange,
1845                                   R.getLookupNameInfo(),
1846                                   RequiresADL, TemplateArgs,
1847                                   R.begin(), R.end());
1848
1849  return Owned(ULE);
1850}
1851
1852// We actually only call this from template instantiation.
1853ExprResult
1854Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1855                                   const DeclarationNameInfo &NameInfo,
1856                             const TemplateArgumentListInfo &TemplateArgs) {
1857  DeclContext *DC;
1858  if (!(DC = computeDeclContext(SS, false)) ||
1859      DC->isDependentContext() ||
1860      RequireCompleteDeclContext(SS, DC))
1861    return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
1862
1863  bool MemberOfUnknownSpecialization;
1864  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1865  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
1866                     MemberOfUnknownSpecialization);
1867
1868  if (R.isAmbiguous())
1869    return ExprError();
1870
1871  if (R.empty()) {
1872    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
1873      << NameInfo.getName() << SS.getRange();
1874    return ExprError();
1875  }
1876
1877  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1878    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
1879      << (NestedNameSpecifier*) SS.getScopeRep()
1880      << NameInfo.getName() << SS.getRange();
1881    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1882    return ExprError();
1883  }
1884
1885  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1886}
1887
1888/// \brief Form a dependent template name.
1889///
1890/// This action forms a dependent template name given the template
1891/// name and its (presumably dependent) scope specifier. For
1892/// example, given "MetaFun::template apply", the scope specifier \p
1893/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1894/// of the "template" keyword, and "apply" is the \p Name.
1895TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
1896                                                  SourceLocation TemplateKWLoc,
1897                                                  CXXScopeSpec &SS,
1898                                                  UnqualifiedId &Name,
1899                                                  ParsedType ObjectType,
1900                                                  bool EnteringContext,
1901                                                  TemplateTy &Result) {
1902  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
1903      !getLangOptions().CPlusPlus0x)
1904    Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
1905      << FixItHint::CreateRemoval(TemplateKWLoc);
1906
1907  DeclContext *LookupCtx = 0;
1908  if (SS.isSet())
1909    LookupCtx = computeDeclContext(SS, EnteringContext);
1910  if (!LookupCtx && ObjectType)
1911    LookupCtx = computeDeclContext(ObjectType.get());
1912  if (LookupCtx) {
1913    // C++0x [temp.names]p5:
1914    //   If a name prefixed by the keyword template is not the name of
1915    //   a template, the program is ill-formed. [Note: the keyword
1916    //   template may not be applied to non-template members of class
1917    //   templates. -end note ] [ Note: as is the case with the
1918    //   typename prefix, the template prefix is allowed in cases
1919    //   where it is not strictly necessary; i.e., when the
1920    //   nested-name-specifier or the expression on the left of the ->
1921    //   or . is not dependent on a template-parameter, or the use
1922    //   does not appear in the scope of a template. -end note]
1923    //
1924    // Note: C++03 was more strict here, because it banned the use of
1925    // the "template" keyword prior to a template-name that was not a
1926    // dependent name. C++ DR468 relaxed this requirement (the
1927    // "template" keyword is now permitted). We follow the C++0x
1928    // rules, even in C++03 mode with a warning, retroactively applying the DR.
1929    bool MemberOfUnknownSpecialization;
1930    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
1931                                          ObjectType, EnteringContext, Result,
1932                                          MemberOfUnknownSpecialization);
1933    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1934        isa<CXXRecordDecl>(LookupCtx) &&
1935        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1936      // This is a dependent template. Handle it below.
1937    } else if (TNK == TNK_Non_template) {
1938      Diag(Name.getSourceRange().getBegin(),
1939           diag::err_template_kw_refers_to_non_template)
1940        << GetNameFromUnqualifiedId(Name).getName()
1941        << Name.getSourceRange()
1942        << TemplateKWLoc;
1943      return TNK_Non_template;
1944    } else {
1945      // We found something; return it.
1946      return TNK;
1947    }
1948  }
1949
1950  NestedNameSpecifier *Qualifier
1951    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1952
1953  switch (Name.getKind()) {
1954  case UnqualifiedId::IK_Identifier:
1955    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1956                                                              Name.Identifier));
1957    return TNK_Dependent_template_name;
1958
1959  case UnqualifiedId::IK_OperatorFunctionId:
1960    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1961                                             Name.OperatorFunctionId.Operator));
1962    return TNK_Dependent_template_name;
1963
1964  case UnqualifiedId::IK_LiteralOperatorId:
1965    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1966
1967  default:
1968    break;
1969  }
1970
1971  Diag(Name.getSourceRange().getBegin(),
1972       diag::err_template_kw_refers_to_non_template)
1973    << GetNameFromUnqualifiedId(Name).getName()
1974    << Name.getSourceRange()
1975    << TemplateKWLoc;
1976  return TNK_Non_template;
1977}
1978
1979bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1980                                     const TemplateArgumentLoc &AL,
1981                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
1982  const TemplateArgument &Arg = AL.getArgument();
1983
1984  // Check template type parameter.
1985  switch(Arg.getKind()) {
1986  case TemplateArgument::Type:
1987    // C++ [temp.arg.type]p1:
1988    //   A template-argument for a template-parameter which is a
1989    //   type shall be a type-id.
1990    break;
1991  case TemplateArgument::Template: {
1992    // We have a template type parameter but the template argument
1993    // is a template without any arguments.
1994    SourceRange SR = AL.getSourceRange();
1995    TemplateName Name = Arg.getAsTemplate();
1996    Diag(SR.getBegin(), diag::err_template_missing_args)
1997      << Name << SR;
1998    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
1999      Diag(Decl->getLocation(), diag::note_template_decl_here);
2000
2001    return true;
2002  }
2003  default: {
2004    // We have a template type parameter but the template argument
2005    // is not a type.
2006    SourceRange SR = AL.getSourceRange();
2007    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2008    Diag(Param->getLocation(), diag::note_template_param_here);
2009
2010    return true;
2011  }
2012  }
2013
2014  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2015    return true;
2016
2017  // Add the converted template type argument.
2018  Converted.push_back(
2019                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
2020  return false;
2021}
2022
2023/// \brief Substitute template arguments into the default template argument for
2024/// the given template type parameter.
2025///
2026/// \param SemaRef the semantic analysis object for which we are performing
2027/// the substitution.
2028///
2029/// \param Template the template that we are synthesizing template arguments
2030/// for.
2031///
2032/// \param TemplateLoc the location of the template name that started the
2033/// template-id we are checking.
2034///
2035/// \param RAngleLoc the location of the right angle bracket ('>') that
2036/// terminates the template-id.
2037///
2038/// \param Param the template template parameter whose default we are
2039/// substituting into.
2040///
2041/// \param Converted the list of template arguments provided for template
2042/// parameters that precede \p Param in the template parameter list.
2043///
2044/// \returns the substituted template argument, or NULL if an error occurred.
2045static TypeSourceInfo *
2046SubstDefaultTemplateArgument(Sema &SemaRef,
2047                             TemplateDecl *Template,
2048                             SourceLocation TemplateLoc,
2049                             SourceLocation RAngleLoc,
2050                             TemplateTypeParmDecl *Param,
2051                         llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2052  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2053
2054  // If the argument type is dependent, instantiate it now based
2055  // on the previously-computed template arguments.
2056  if (ArgType->getType()->isDependentType()) {
2057    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2058                                      Converted.data(), Converted.size());
2059
2060    MultiLevelTemplateArgumentList AllTemplateArgs
2061      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2062
2063    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2064                                     Template, Converted.data(),
2065                                     Converted.size(),
2066                                     SourceRange(TemplateLoc, RAngleLoc));
2067
2068    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2069                                Param->getDefaultArgumentLoc(),
2070                                Param->getDeclName());
2071  }
2072
2073  return ArgType;
2074}
2075
2076/// \brief Substitute template arguments into the default template argument for
2077/// the given non-type template parameter.
2078///
2079/// \param SemaRef the semantic analysis object for which we are performing
2080/// the substitution.
2081///
2082/// \param Template the template that we are synthesizing template arguments
2083/// for.
2084///
2085/// \param TemplateLoc the location of the template name that started the
2086/// template-id we are checking.
2087///
2088/// \param RAngleLoc the location of the right angle bracket ('>') that
2089/// terminates the template-id.
2090///
2091/// \param Param the non-type template parameter whose default we are
2092/// substituting into.
2093///
2094/// \param Converted the list of template arguments provided for template
2095/// parameters that precede \p Param in the template parameter list.
2096///
2097/// \returns the substituted template argument, or NULL if an error occurred.
2098static ExprResult
2099SubstDefaultTemplateArgument(Sema &SemaRef,
2100                             TemplateDecl *Template,
2101                             SourceLocation TemplateLoc,
2102                             SourceLocation RAngleLoc,
2103                             NonTypeTemplateParmDecl *Param,
2104                        llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2105  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2106                                    Converted.data(), Converted.size());
2107
2108  MultiLevelTemplateArgumentList AllTemplateArgs
2109    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2110
2111  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2112                                   Template, Converted.data(),
2113                                   Converted.size(),
2114                                   SourceRange(TemplateLoc, RAngleLoc));
2115
2116  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2117}
2118
2119/// \brief Substitute template arguments into the default template argument for
2120/// the given template template parameter.
2121///
2122/// \param SemaRef the semantic analysis object for which we are performing
2123/// the substitution.
2124///
2125/// \param Template the template that we are synthesizing template arguments
2126/// for.
2127///
2128/// \param TemplateLoc the location of the template name that started the
2129/// template-id we are checking.
2130///
2131/// \param RAngleLoc the location of the right angle bracket ('>') that
2132/// terminates the template-id.
2133///
2134/// \param Param the template template parameter whose default we are
2135/// substituting into.
2136///
2137/// \param Converted the list of template arguments provided for template
2138/// parameters that precede \p Param in the template parameter list.
2139///
2140/// \returns the substituted template argument, or NULL if an error occurred.
2141static TemplateName
2142SubstDefaultTemplateArgument(Sema &SemaRef,
2143                             TemplateDecl *Template,
2144                             SourceLocation TemplateLoc,
2145                             SourceLocation RAngleLoc,
2146                             TemplateTemplateParmDecl *Param,
2147                       llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2148  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2149                                    Converted.data(), Converted.size());
2150
2151  MultiLevelTemplateArgumentList AllTemplateArgs
2152    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2153
2154  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2155                                   Template, Converted.data(),
2156                                   Converted.size(),
2157                                   SourceRange(TemplateLoc, RAngleLoc));
2158
2159  return SemaRef.SubstTemplateName(
2160                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2161                              Param->getDefaultArgument().getTemplateNameLoc(),
2162                                   AllTemplateArgs);
2163}
2164
2165/// \brief If the given template parameter has a default template
2166/// argument, substitute into that default template argument and
2167/// return the corresponding template argument.
2168TemplateArgumentLoc
2169Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2170                                              SourceLocation TemplateLoc,
2171                                              SourceLocation RAngleLoc,
2172                                              Decl *Param,
2173                      llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2174   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2175    if (!TypeParm->hasDefaultArgument())
2176      return TemplateArgumentLoc();
2177
2178    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2179                                                      TemplateLoc,
2180                                                      RAngleLoc,
2181                                                      TypeParm,
2182                                                      Converted);
2183    if (DI)
2184      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2185
2186    return TemplateArgumentLoc();
2187  }
2188
2189  if (NonTypeTemplateParmDecl *NonTypeParm
2190        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2191    if (!NonTypeParm->hasDefaultArgument())
2192      return TemplateArgumentLoc();
2193
2194    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2195                                                        TemplateLoc,
2196                                                        RAngleLoc,
2197                                                        NonTypeParm,
2198                                                        Converted);
2199    if (Arg.isInvalid())
2200      return TemplateArgumentLoc();
2201
2202    Expr *ArgE = Arg.takeAs<Expr>();
2203    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2204  }
2205
2206  TemplateTemplateParmDecl *TempTempParm
2207    = cast<TemplateTemplateParmDecl>(Param);
2208  if (!TempTempParm->hasDefaultArgument())
2209    return TemplateArgumentLoc();
2210
2211  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2212                                                    TemplateLoc,
2213                                                    RAngleLoc,
2214                                                    TempTempParm,
2215                                                    Converted);
2216  if (TName.isNull())
2217    return TemplateArgumentLoc();
2218
2219  return TemplateArgumentLoc(TemplateArgument(TName),
2220                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
2221                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2222}
2223
2224/// \brief Check that the given template argument corresponds to the given
2225/// template parameter.
2226///
2227/// \param Param The template parameter against which the argument will be
2228/// checked.
2229///
2230/// \param Arg The template argument.
2231///
2232/// \param Template The template in which the template argument resides.
2233///
2234/// \param TemplateLoc The location of the template name for the template
2235/// whose argument list we're matching.
2236///
2237/// \param RAngleLoc The location of the right angle bracket ('>') that closes
2238/// the template argument list.
2239///
2240/// \param ArgumentPackIndex The index into the argument pack where this
2241/// argument will be placed. Only valid if the parameter is a parameter pack.
2242///
2243/// \param Converted The checked, converted argument will be added to the
2244/// end of this small vector.
2245///
2246/// \param CTAK Describes how we arrived at this particular template argument:
2247/// explicitly written, deduced, etc.
2248///
2249/// \returns true on error, false otherwise.
2250bool Sema::CheckTemplateArgument(NamedDecl *Param,
2251                                 const TemplateArgumentLoc &Arg,
2252                                 NamedDecl *Template,
2253                                 SourceLocation TemplateLoc,
2254                                 SourceLocation RAngleLoc,
2255                                 unsigned ArgumentPackIndex,
2256                            llvm::SmallVectorImpl<TemplateArgument> &Converted,
2257                                 CheckTemplateArgumentKind CTAK) {
2258  // Check template type parameters.
2259  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2260    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2261
2262  // Check non-type template parameters.
2263  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2264    // Do substitution on the type of the non-type template parameter
2265    // with the template arguments we've seen thus far.  But if the
2266    // template has a dependent context then we cannot substitute yet.
2267    QualType NTTPType = NTTP->getType();
2268    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
2269      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
2270
2271    if (NTTPType->isDependentType() &&
2272        !isa<TemplateTemplateParmDecl>(Template) &&
2273        !Template->getDeclContext()->isDependentContext()) {
2274      // Do substitution on the type of the non-type template parameter.
2275      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2276                                 NTTP, Converted.data(), Converted.size(),
2277                                 SourceRange(TemplateLoc, RAngleLoc));
2278
2279      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2280                                        Converted.data(), Converted.size());
2281      NTTPType = SubstType(NTTPType,
2282                           MultiLevelTemplateArgumentList(TemplateArgs),
2283                           NTTP->getLocation(),
2284                           NTTP->getDeclName());
2285      // If that worked, check the non-type template parameter type
2286      // for validity.
2287      if (!NTTPType.isNull())
2288        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2289                                                     NTTP->getLocation());
2290      if (NTTPType.isNull())
2291        return true;
2292    }
2293
2294    switch (Arg.getArgument().getKind()) {
2295    case TemplateArgument::Null:
2296      assert(false && "Should never see a NULL template argument here");
2297      return true;
2298
2299    case TemplateArgument::Expression: {
2300      Expr *E = Arg.getArgument().getAsExpr();
2301      TemplateArgument Result;
2302      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
2303        return true;
2304
2305      Converted.push_back(Result);
2306      break;
2307    }
2308
2309    case TemplateArgument::Declaration:
2310    case TemplateArgument::Integral:
2311      // We've already checked this template argument, so just copy
2312      // it to the list of converted arguments.
2313      Converted.push_back(Arg.getArgument());
2314      break;
2315
2316    case TemplateArgument::Template:
2317    case TemplateArgument::TemplateExpansion:
2318      // We were given a template template argument. It may not be ill-formed;
2319      // see below.
2320      if (DependentTemplateName *DTN
2321            = Arg.getArgument().getAsTemplateOrTemplatePattern()
2322                                              .getAsDependentTemplateName()) {
2323        // We have a template argument such as \c T::template X, which we
2324        // parsed as a template template argument. However, since we now
2325        // know that we need a non-type template argument, convert this
2326        // template name into an expression.
2327
2328        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2329                                     Arg.getTemplateNameLoc());
2330
2331        Expr *E = DependentScopeDeclRefExpr::Create(Context,
2332                                                    DTN->getQualifier(),
2333                                               Arg.getTemplateQualifierRange(),
2334                                                    NameInfo);
2335
2336        // If we parsed the template argument as a pack expansion, create a
2337        // pack expansion expression.
2338        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2339          ExprResult Expansion = ActOnPackExpansion(E,
2340                                                  Arg.getTemplateEllipsisLoc());
2341          if (Expansion.isInvalid())
2342            return true;
2343
2344          E = Expansion.get();
2345        }
2346
2347        TemplateArgument Result;
2348        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2349          return true;
2350
2351        Converted.push_back(Result);
2352        break;
2353      }
2354
2355      // We have a template argument that actually does refer to a class
2356      // template, template alias, or template template parameter, and
2357      // therefore cannot be a non-type template argument.
2358      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2359        << Arg.getSourceRange();
2360
2361      Diag(Param->getLocation(), diag::note_template_param_here);
2362      return true;
2363
2364    case TemplateArgument::Type: {
2365      // We have a non-type template parameter but the template
2366      // argument is a type.
2367
2368      // C++ [temp.arg]p2:
2369      //   In a template-argument, an ambiguity between a type-id and
2370      //   an expression is resolved to a type-id, regardless of the
2371      //   form of the corresponding template-parameter.
2372      //
2373      // We warn specifically about this case, since it can be rather
2374      // confusing for users.
2375      QualType T = Arg.getArgument().getAsType();
2376      SourceRange SR = Arg.getSourceRange();
2377      if (T->isFunctionType())
2378        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2379      else
2380        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2381      Diag(Param->getLocation(), diag::note_template_param_here);
2382      return true;
2383    }
2384
2385    case TemplateArgument::Pack:
2386      llvm_unreachable("Caller must expand template argument packs");
2387      break;
2388    }
2389
2390    return false;
2391  }
2392
2393
2394  // Check template template parameters.
2395  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2396
2397  // Substitute into the template parameter list of the template
2398  // template parameter, since previously-supplied template arguments
2399  // may appear within the template template parameter.
2400  {
2401    // Set up a template instantiation context.
2402    LocalInstantiationScope Scope(*this);
2403    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2404                               TempParm, Converted.data(), Converted.size(),
2405                               SourceRange(TemplateLoc, RAngleLoc));
2406
2407    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2408                                      Converted.data(), Converted.size());
2409    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2410                      SubstDecl(TempParm, CurContext,
2411                                MultiLevelTemplateArgumentList(TemplateArgs)));
2412    if (!TempParm)
2413      return true;
2414  }
2415
2416  switch (Arg.getArgument().getKind()) {
2417  case TemplateArgument::Null:
2418    assert(false && "Should never see a NULL template argument here");
2419    return true;
2420
2421  case TemplateArgument::Template:
2422  case TemplateArgument::TemplateExpansion:
2423    if (CheckTemplateArgument(TempParm, Arg))
2424      return true;
2425
2426    Converted.push_back(Arg.getArgument());
2427    break;
2428
2429  case TemplateArgument::Expression:
2430  case TemplateArgument::Type:
2431    // We have a template template parameter but the template
2432    // argument does not refer to a template.
2433    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2434    return true;
2435
2436  case TemplateArgument::Declaration:
2437    llvm_unreachable(
2438                       "Declaration argument with template template parameter");
2439    break;
2440  case TemplateArgument::Integral:
2441    llvm_unreachable(
2442                          "Integral argument with template template parameter");
2443    break;
2444
2445  case TemplateArgument::Pack:
2446    llvm_unreachable("Caller must expand template argument packs");
2447    break;
2448  }
2449
2450  return false;
2451}
2452
2453/// \brief Check that the given template argument list is well-formed
2454/// for specializing the given template.
2455bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2456                                     SourceLocation TemplateLoc,
2457                                const TemplateArgumentListInfo &TemplateArgs,
2458                                     bool PartialTemplateArgs,
2459                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2460  TemplateParameterList *Params = Template->getTemplateParameters();
2461  unsigned NumParams = Params->size();
2462  unsigned NumArgs = TemplateArgs.size();
2463  bool Invalid = false;
2464
2465  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2466
2467  bool HasParameterPack =
2468    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2469
2470  if ((NumArgs > NumParams && !HasParameterPack) ||
2471      (NumArgs < Params->getMinRequiredArguments() &&
2472       !PartialTemplateArgs)) {
2473    // FIXME: point at either the first arg beyond what we can handle,
2474    // or the '>', depending on whether we have too many or too few
2475    // arguments.
2476    SourceRange Range;
2477    if (NumArgs > NumParams)
2478      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2479    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2480      << (NumArgs > NumParams)
2481      << (isa<ClassTemplateDecl>(Template)? 0 :
2482          isa<FunctionTemplateDecl>(Template)? 1 :
2483          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2484      << Template << Range;
2485    Diag(Template->getLocation(), diag::note_template_decl_here)
2486      << Params->getSourceRange();
2487    Invalid = true;
2488  }
2489
2490  // C++ [temp.arg]p1:
2491  //   [...] The type and form of each template-argument specified in
2492  //   a template-id shall match the type and form specified for the
2493  //   corresponding parameter declared by the template in its
2494  //   template-parameter-list.
2495  llvm::SmallVector<TemplateArgument, 2> ArgumentPack;
2496  TemplateParameterList::iterator Param = Params->begin(),
2497                               ParamEnd = Params->end();
2498  unsigned ArgIdx = 0;
2499  LocalInstantiationScope InstScope(*this, true);
2500  while (Param != ParamEnd) {
2501    if (ArgIdx > NumArgs && PartialTemplateArgs)
2502      break;
2503
2504    if (ArgIdx < NumArgs) {
2505      // If we have an expanded parameter pack, make sure we don't have too
2506      // many arguments.
2507      if (NonTypeTemplateParmDecl *NTTP
2508                                = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2509        if (NTTP->isExpandedParameterPack() &&
2510            ArgumentPack.size() >= NTTP->getNumExpansionTypes()) {
2511          Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2512            << true
2513            << (isa<ClassTemplateDecl>(Template)? 0 :
2514                isa<FunctionTemplateDecl>(Template)? 1 :
2515                isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2516            << Template;
2517          Diag(Template->getLocation(), diag::note_template_decl_here)
2518            << Params->getSourceRange();
2519          return true;
2520        }
2521      }
2522
2523      // Check the template argument we were given.
2524      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2525                                TemplateLoc, RAngleLoc,
2526                                ArgumentPack.size(), Converted))
2527        return true;
2528
2529      if ((*Param)->isTemplateParameterPack()) {
2530        // The template parameter was a template parameter pack, so take the
2531        // deduced argument and place it on the argument pack. Note that we
2532        // stay on the same template parameter so that we can deduce more
2533        // arguments.
2534        ArgumentPack.push_back(Converted.back());
2535        Converted.pop_back();
2536      } else {
2537        // Move to the next template parameter.
2538        ++Param;
2539      }
2540      ++ArgIdx;
2541      continue;
2542    }
2543
2544    // If we have a template parameter pack with no more corresponding
2545    // arguments, just break out now and we'll fill in the argument pack below.
2546    if ((*Param)->isTemplateParameterPack())
2547      break;
2548
2549    // We have a default template argument that we will use.
2550    TemplateArgumentLoc Arg;
2551
2552    // Retrieve the default template argument from the template
2553    // parameter. For each kind of template parameter, we substitute the
2554    // template arguments provided thus far and any "outer" template arguments
2555    // (when the template parameter was part of a nested template) into
2556    // the default argument.
2557    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2558      if (!TTP->hasDefaultArgument()) {
2559        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2560        break;
2561      }
2562
2563      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2564                                                             Template,
2565                                                             TemplateLoc,
2566                                                             RAngleLoc,
2567                                                             TTP,
2568                                                             Converted);
2569      if (!ArgType)
2570        return true;
2571
2572      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2573                                ArgType);
2574    } else if (NonTypeTemplateParmDecl *NTTP
2575                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2576      if (!NTTP->hasDefaultArgument()) {
2577        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2578        break;
2579      }
2580
2581      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2582                                                              TemplateLoc,
2583                                                              RAngleLoc,
2584                                                              NTTP,
2585                                                              Converted);
2586      if (E.isInvalid())
2587        return true;
2588
2589      Expr *Ex = E.takeAs<Expr>();
2590      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2591    } else {
2592      TemplateTemplateParmDecl *TempParm
2593        = cast<TemplateTemplateParmDecl>(*Param);
2594
2595      if (!TempParm->hasDefaultArgument()) {
2596        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2597        break;
2598      }
2599
2600      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2601                                                       TemplateLoc,
2602                                                       RAngleLoc,
2603                                                       TempParm,
2604                                                       Converted);
2605      if (Name.isNull())
2606        return true;
2607
2608      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2609                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2610                  TempParm->getDefaultArgument().getTemplateNameLoc());
2611    }
2612
2613    // Introduce an instantiation record that describes where we are using
2614    // the default template argument.
2615    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2616                                        Converted.data(), Converted.size(),
2617                                        SourceRange(TemplateLoc, RAngleLoc));
2618
2619    // Check the default template argument.
2620    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2621                              RAngleLoc, 0, Converted))
2622      return true;
2623
2624    // Move to the next template parameter and argument.
2625    ++Param;
2626    ++ArgIdx;
2627  }
2628
2629  // Form argument packs for each of the parameter packs remaining.
2630  while (Param != ParamEnd) {
2631    // If we're checking a partial list of template arguments, don't fill
2632    // in arguments for non-template parameter packs.
2633
2634    if ((*Param)->isTemplateParameterPack()) {
2635      if (PartialTemplateArgs && ArgumentPack.empty()) {
2636        Converted.push_back(TemplateArgument());
2637      } else if (ArgumentPack.empty())
2638        Converted.push_back(TemplateArgument(0, 0));
2639      else {
2640        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
2641                                                          ArgumentPack.data(),
2642                                                         ArgumentPack.size()));
2643        ArgumentPack.clear();
2644      }
2645    }
2646
2647    ++Param;
2648  }
2649
2650  return Invalid;
2651}
2652
2653namespace {
2654  class UnnamedLocalNoLinkageFinder
2655    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
2656  {
2657    Sema &S;
2658    SourceRange SR;
2659
2660    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
2661
2662  public:
2663    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
2664
2665    bool Visit(QualType T) {
2666      return inherited::Visit(T.getTypePtr());
2667    }
2668
2669#define TYPE(Class, Parent) \
2670    bool Visit##Class##Type(const Class##Type *);
2671#define ABSTRACT_TYPE(Class, Parent) \
2672    bool Visit##Class##Type(const Class##Type *) { return false; }
2673#define NON_CANONICAL_TYPE(Class, Parent) \
2674    bool Visit##Class##Type(const Class##Type *) { return false; }
2675#include "clang/AST/TypeNodes.def"
2676
2677    bool VisitTagDecl(const TagDecl *Tag);
2678    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
2679  };
2680}
2681
2682bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
2683  return false;
2684}
2685
2686bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
2687  return Visit(T->getElementType());
2688}
2689
2690bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
2691  return Visit(T->getPointeeType());
2692}
2693
2694bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
2695                                                    const BlockPointerType* T) {
2696  return Visit(T->getPointeeType());
2697}
2698
2699bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
2700                                                const LValueReferenceType* T) {
2701  return Visit(T->getPointeeType());
2702}
2703
2704bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
2705                                                const RValueReferenceType* T) {
2706  return Visit(T->getPointeeType());
2707}
2708
2709bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
2710                                                  const MemberPointerType* T) {
2711  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
2712}
2713
2714bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
2715                                                  const ConstantArrayType* T) {
2716  return Visit(T->getElementType());
2717}
2718
2719bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
2720                                                 const IncompleteArrayType* T) {
2721  return Visit(T->getElementType());
2722}
2723
2724bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
2725                                                   const VariableArrayType* T) {
2726  return Visit(T->getElementType());
2727}
2728
2729bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
2730                                            const DependentSizedArrayType* T) {
2731  return Visit(T->getElementType());
2732}
2733
2734bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
2735                                         const DependentSizedExtVectorType* T) {
2736  return Visit(T->getElementType());
2737}
2738
2739bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
2740  return Visit(T->getElementType());
2741}
2742
2743bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
2744  return Visit(T->getElementType());
2745}
2746
2747bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
2748                                                  const FunctionProtoType* T) {
2749  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
2750                                         AEnd = T->arg_type_end();
2751       A != AEnd; ++A) {
2752    if (Visit(*A))
2753      return true;
2754  }
2755
2756  return Visit(T->getResultType());
2757}
2758
2759bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
2760                                               const FunctionNoProtoType* T) {
2761  return Visit(T->getResultType());
2762}
2763
2764bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
2765                                                  const UnresolvedUsingType*) {
2766  return false;
2767}
2768
2769bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
2770  return false;
2771}
2772
2773bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
2774  return Visit(T->getUnderlyingType());
2775}
2776
2777bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
2778  return false;
2779}
2780
2781bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
2782  return VisitTagDecl(T->getDecl());
2783}
2784
2785bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
2786  return VisitTagDecl(T->getDecl());
2787}
2788
2789bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
2790                                                 const TemplateTypeParmType*) {
2791  return false;
2792}
2793
2794bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
2795                                        const SubstTemplateTypeParmPackType *) {
2796  return false;
2797}
2798
2799bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
2800                                            const TemplateSpecializationType*) {
2801  return false;
2802}
2803
2804bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
2805                                              const InjectedClassNameType* T) {
2806  return VisitTagDecl(T->getDecl());
2807}
2808
2809bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
2810                                                   const DependentNameType* T) {
2811  return VisitNestedNameSpecifier(T->getQualifier());
2812}
2813
2814bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
2815                                 const DependentTemplateSpecializationType* T) {
2816  return VisitNestedNameSpecifier(T->getQualifier());
2817}
2818
2819bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
2820                                                   const PackExpansionType* T) {
2821  return Visit(T->getPattern());
2822}
2823
2824bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
2825  return false;
2826}
2827
2828bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
2829                                                   const ObjCInterfaceType *) {
2830  return false;
2831}
2832
2833bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
2834                                                const ObjCObjectPointerType *) {
2835  return false;
2836}
2837
2838bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
2839  if (Tag->getDeclContext()->isFunctionOrMethod()) {
2840    S.Diag(SR.getBegin(), diag::ext_template_arg_local_type)
2841      << S.Context.getTypeDeclType(Tag) << SR;
2842    return true;
2843  }
2844
2845  if (!Tag->getDeclName() && !Tag->getTypedefForAnonDecl()) {
2846    S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR;
2847    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
2848    return true;
2849  }
2850
2851  return false;
2852}
2853
2854bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
2855                                                    NestedNameSpecifier *NNS) {
2856  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
2857    return true;
2858
2859  switch (NNS->getKind()) {
2860  case NestedNameSpecifier::Identifier:
2861  case NestedNameSpecifier::Namespace:
2862  case NestedNameSpecifier::Global:
2863    return false;
2864
2865  case NestedNameSpecifier::TypeSpec:
2866  case NestedNameSpecifier::TypeSpecWithTemplate:
2867    return Visit(QualType(NNS->getAsType(), 0));
2868  }
2869  return false;
2870}
2871
2872
2873/// \brief Check a template argument against its corresponding
2874/// template type parameter.
2875///
2876/// This routine implements the semantics of C++ [temp.arg.type]. It
2877/// returns true if an error occurred, and false otherwise.
2878bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2879                                 TypeSourceInfo *ArgInfo) {
2880  assert(ArgInfo && "invalid TypeSourceInfo");
2881  QualType Arg = ArgInfo->getType();
2882  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2883
2884  if (Arg->isVariablyModifiedType()) {
2885    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
2886  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2887    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2888  }
2889
2890  // C++03 [temp.arg.type]p2:
2891  //   A local type, a type with no linkage, an unnamed type or a type
2892  //   compounded from any of these types shall not be used as a
2893  //   template-argument for a template type-parameter.
2894  //
2895  // C++0x allows these, and even in C++03 we allow them as an extension with
2896  // a warning.
2897  if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) {
2898    UnnamedLocalNoLinkageFinder Finder(*this, SR);
2899    (void)Finder.Visit(Context.getCanonicalType(Arg));
2900  }
2901
2902  return false;
2903}
2904
2905/// \brief Checks whether the given template argument is the address
2906/// of an object or function according to C++ [temp.arg.nontype]p1.
2907static bool
2908CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2909                                               NonTypeTemplateParmDecl *Param,
2910                                               QualType ParamType,
2911                                               Expr *ArgIn,
2912                                               TemplateArgument &Converted) {
2913  bool Invalid = false;
2914  Expr *Arg = ArgIn;
2915  QualType ArgType = Arg->getType();
2916
2917  // See through any implicit casts we added to fix the type.
2918  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2919    Arg = Cast->getSubExpr();
2920
2921  // C++ [temp.arg.nontype]p1:
2922  //
2923  //   A template-argument for a non-type, non-template
2924  //   template-parameter shall be one of: [...]
2925  //
2926  //     -- the address of an object or function with external
2927  //        linkage, including function templates and function
2928  //        template-ids but excluding non-static class members,
2929  //        expressed as & id-expression where the & is optional if
2930  //        the name refers to a function or array, or if the
2931  //        corresponding template-parameter is a reference; or
2932  DeclRefExpr *DRE = 0;
2933
2934  // In C++98/03 mode, give an extension warning on any extra parentheses.
2935  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
2936  bool ExtraParens = false;
2937  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2938    if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) {
2939      S.Diag(Arg->getSourceRange().getBegin(),
2940             diag::ext_template_arg_extra_parens)
2941        << Arg->getSourceRange();
2942      ExtraParens = true;
2943    }
2944
2945    Arg = Parens->getSubExpr();
2946  }
2947
2948  bool AddressTaken = false;
2949  SourceLocation AddrOpLoc;
2950  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2951    if (UnOp->getOpcode() == UO_AddrOf) {
2952      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2953      AddressTaken = true;
2954      AddrOpLoc = UnOp->getOperatorLoc();
2955    }
2956  } else
2957    DRE = dyn_cast<DeclRefExpr>(Arg);
2958
2959  if (!DRE) {
2960    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2961      << Arg->getSourceRange();
2962    S.Diag(Param->getLocation(), diag::note_template_param_here);
2963    return true;
2964  }
2965
2966  // Stop checking the precise nature of the argument if it is value dependent,
2967  // it should be checked when instantiated.
2968  if (Arg->isValueDependent()) {
2969    Converted = TemplateArgument(ArgIn);
2970    return false;
2971  }
2972
2973  if (!isa<ValueDecl>(DRE->getDecl())) {
2974    S.Diag(Arg->getSourceRange().getBegin(),
2975           diag::err_template_arg_not_object_or_func_form)
2976      << Arg->getSourceRange();
2977    S.Diag(Param->getLocation(), diag::note_template_param_here);
2978    return true;
2979  }
2980
2981  NamedDecl *Entity = 0;
2982
2983  // Cannot refer to non-static data members
2984  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
2985    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2986      << Field << Arg->getSourceRange();
2987    S.Diag(Param->getLocation(), diag::note_template_param_here);
2988    return true;
2989  }
2990
2991  // Cannot refer to non-static member functions
2992  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2993    if (!Method->isStatic()) {
2994      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
2995        << Method << Arg->getSourceRange();
2996      S.Diag(Param->getLocation(), diag::note_template_param_here);
2997      return true;
2998    }
2999
3000  // Functions must have external linkage.
3001  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
3002    if (!isExternalLinkage(Func->getLinkage())) {
3003      S.Diag(Arg->getSourceRange().getBegin(),
3004             diag::err_template_arg_function_not_extern)
3005        << Func << Arg->getSourceRange();
3006      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
3007        << true;
3008      return true;
3009    }
3010
3011    // Okay: we've named a function with external linkage.
3012    Entity = Func;
3013
3014    // If the template parameter has pointer type, the function decays.
3015    if (ParamType->isPointerType() && !AddressTaken)
3016      ArgType = S.Context.getPointerType(Func->getType());
3017    else if (AddressTaken && ParamType->isReferenceType()) {
3018      // If we originally had an address-of operator, but the
3019      // parameter has reference type, complain and (if things look
3020      // like they will work) drop the address-of operator.
3021      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
3022                                            ParamType.getNonReferenceType())) {
3023        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3024          << ParamType;
3025        S.Diag(Param->getLocation(), diag::note_template_param_here);
3026        return true;
3027      }
3028
3029      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3030        << ParamType
3031        << FixItHint::CreateRemoval(AddrOpLoc);
3032      S.Diag(Param->getLocation(), diag::note_template_param_here);
3033
3034      ArgType = Func->getType();
3035    }
3036  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
3037    if (!isExternalLinkage(Var->getLinkage())) {
3038      S.Diag(Arg->getSourceRange().getBegin(),
3039             diag::err_template_arg_object_not_extern)
3040        << Var << Arg->getSourceRange();
3041      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
3042        << true;
3043      return true;
3044    }
3045
3046    // A value of reference type is not an object.
3047    if (Var->getType()->isReferenceType()) {
3048      S.Diag(Arg->getSourceRange().getBegin(),
3049             diag::err_template_arg_reference_var)
3050        << Var->getType() << Arg->getSourceRange();
3051      S.Diag(Param->getLocation(), diag::note_template_param_here);
3052      return true;
3053    }
3054
3055    // Okay: we've named an object with external linkage
3056    Entity = Var;
3057
3058    // If the template parameter has pointer type, we must have taken
3059    // the address of this object.
3060    if (ParamType->isReferenceType()) {
3061      if (AddressTaken) {
3062        // If we originally had an address-of operator, but the
3063        // parameter has reference type, complain and (if things look
3064        // like they will work) drop the address-of operator.
3065        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
3066                                            ParamType.getNonReferenceType())) {
3067          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3068            << ParamType;
3069          S.Diag(Param->getLocation(), diag::note_template_param_here);
3070          return true;
3071        }
3072
3073        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3074          << ParamType
3075          << FixItHint::CreateRemoval(AddrOpLoc);
3076        S.Diag(Param->getLocation(), diag::note_template_param_here);
3077
3078        ArgType = Var->getType();
3079      }
3080    } else if (!AddressTaken && ParamType->isPointerType()) {
3081      if (Var->getType()->isArrayType()) {
3082        // Array-to-pointer decay.
3083        ArgType = S.Context.getArrayDecayedType(Var->getType());
3084      } else {
3085        // If the template parameter has pointer type but the address of
3086        // this object was not taken, complain and (possibly) recover by
3087        // taking the address of the entity.
3088        ArgType = S.Context.getPointerType(Var->getType());
3089        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3090          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3091            << ParamType;
3092          S.Diag(Param->getLocation(), diag::note_template_param_here);
3093          return true;
3094        }
3095
3096        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3097          << ParamType
3098          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3099
3100        S.Diag(Param->getLocation(), diag::note_template_param_here);
3101      }
3102    }
3103  } else {
3104    // We found something else, but we don't know specifically what it is.
3105    S.Diag(Arg->getSourceRange().getBegin(),
3106           diag::err_template_arg_not_object_or_func)
3107      << Arg->getSourceRange();
3108    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3109    return true;
3110  }
3111
3112  if (ParamType->isPointerType() &&
3113      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3114      S.IsQualificationConversion(ArgType, ParamType, false)) {
3115    // For pointer-to-object types, qualification conversions are
3116    // permitted.
3117  } else {
3118    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3119      if (!ParamRef->getPointeeType()->isFunctionType()) {
3120        // C++ [temp.arg.nontype]p5b3:
3121        //   For a non-type template-parameter of type reference to
3122        //   object, no conversions apply. The type referred to by the
3123        //   reference may be more cv-qualified than the (otherwise
3124        //   identical) type of the template- argument. The
3125        //   template-parameter is bound directly to the
3126        //   template-argument, which shall be an lvalue.
3127
3128        // FIXME: Other qualifiers?
3129        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3130        unsigned ArgQuals = ArgType.getCVRQualifiers();
3131
3132        if ((ParamQuals | ArgQuals) != ParamQuals) {
3133          S.Diag(Arg->getSourceRange().getBegin(),
3134                 diag::err_template_arg_ref_bind_ignores_quals)
3135            << ParamType << Arg->getType()
3136            << Arg->getSourceRange();
3137          S.Diag(Param->getLocation(), diag::note_template_param_here);
3138          return true;
3139        }
3140      }
3141    }
3142
3143    // At this point, the template argument refers to an object or
3144    // function with external linkage. We now need to check whether the
3145    // argument and parameter types are compatible.
3146    if (!S.Context.hasSameUnqualifiedType(ArgType,
3147                                          ParamType.getNonReferenceType())) {
3148      // We can't perform this conversion or binding.
3149      if (ParamType->isReferenceType())
3150        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3151          << ParamType << Arg->getType() << Arg->getSourceRange();
3152      else
3153        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
3154          << Arg->getType() << ParamType << Arg->getSourceRange();
3155      S.Diag(Param->getLocation(), diag::note_template_param_here);
3156      return true;
3157    }
3158  }
3159
3160  // Create the template argument.
3161  Converted = TemplateArgument(Entity->getCanonicalDecl());
3162  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
3163  return false;
3164}
3165
3166/// \brief Checks whether the given template argument is a pointer to
3167/// member constant according to C++ [temp.arg.nontype]p1.
3168bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
3169                                                TemplateArgument &Converted) {
3170  bool Invalid = false;
3171
3172  // See through any implicit casts we added to fix the type.
3173  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3174    Arg = Cast->getSubExpr();
3175
3176  // C++ [temp.arg.nontype]p1:
3177  //
3178  //   A template-argument for a non-type, non-template
3179  //   template-parameter shall be one of: [...]
3180  //
3181  //     -- a pointer to member expressed as described in 5.3.1.
3182  DeclRefExpr *DRE = 0;
3183
3184  // In C++98/03 mode, give an extension warning on any extra parentheses.
3185  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3186  bool ExtraParens = false;
3187  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3188    if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) {
3189      Diag(Arg->getSourceRange().getBegin(),
3190           diag::ext_template_arg_extra_parens)
3191        << Arg->getSourceRange();
3192      ExtraParens = true;
3193    }
3194
3195    Arg = Parens->getSubExpr();
3196  }
3197
3198  // A pointer-to-member constant written &Class::member.
3199  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3200    if (UnOp->getOpcode() == UO_AddrOf) {
3201      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3202      if (DRE && !DRE->getQualifier())
3203        DRE = 0;
3204    }
3205  }
3206  // A constant of pointer-to-member type.
3207  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
3208    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
3209      if (VD->getType()->isMemberPointerType()) {
3210        if (isa<NonTypeTemplateParmDecl>(VD) ||
3211            (isa<VarDecl>(VD) &&
3212             Context.getCanonicalType(VD->getType()).isConstQualified())) {
3213          if (Arg->isTypeDependent() || Arg->isValueDependent())
3214            Converted = TemplateArgument(Arg);
3215          else
3216            Converted = TemplateArgument(VD->getCanonicalDecl());
3217          return Invalid;
3218        }
3219      }
3220    }
3221
3222    DRE = 0;
3223  }
3224
3225  if (!DRE)
3226    return Diag(Arg->getSourceRange().getBegin(),
3227                diag::err_template_arg_not_pointer_to_member_form)
3228      << Arg->getSourceRange();
3229
3230  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
3231    assert((isa<FieldDecl>(DRE->getDecl()) ||
3232            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
3233           "Only non-static member pointers can make it here");
3234
3235    // Okay: this is the address of a non-static member, and therefore
3236    // a member pointer constant.
3237    if (Arg->isTypeDependent() || Arg->isValueDependent())
3238      Converted = TemplateArgument(Arg);
3239    else
3240      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3241    return Invalid;
3242  }
3243
3244  // We found something else, but we don't know specifically what it is.
3245  Diag(Arg->getSourceRange().getBegin(),
3246       diag::err_template_arg_not_pointer_to_member_form)
3247      << Arg->getSourceRange();
3248  Diag(DRE->getDecl()->getLocation(),
3249       diag::note_template_arg_refers_here);
3250  return true;
3251}
3252
3253/// \brief Check a template argument against its corresponding
3254/// non-type template parameter.
3255///
3256/// This routine implements the semantics of C++ [temp.arg.nontype].
3257/// It returns true if an error occurred, and false otherwise. \p
3258/// InstantiatedParamType is the type of the non-type template
3259/// parameter after it has been instantiated.
3260///
3261/// If no error was detected, Converted receives the converted template argument.
3262bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3263                                 QualType InstantiatedParamType, Expr *&Arg,
3264                                 TemplateArgument &Converted,
3265                                 CheckTemplateArgumentKind CTAK) {
3266  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
3267
3268  // If either the parameter has a dependent type or the argument is
3269  // type-dependent, there's nothing we can check now.
3270  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3271    // FIXME: Produce a cloned, canonical expression?
3272    Converted = TemplateArgument(Arg);
3273    return false;
3274  }
3275
3276  // C++ [temp.arg.nontype]p5:
3277  //   The following conversions are performed on each expression used
3278  //   as a non-type template-argument. If a non-type
3279  //   template-argument cannot be converted to the type of the
3280  //   corresponding template-parameter then the program is
3281  //   ill-formed.
3282  //
3283  //     -- for a non-type template-parameter of integral or
3284  //        enumeration type, integral promotions (4.5) and integral
3285  //        conversions (4.7) are applied.
3286  QualType ParamType = InstantiatedParamType;
3287  QualType ArgType = Arg->getType();
3288  if (ParamType->isIntegralOrEnumerationType()) {
3289    // C++ [temp.arg.nontype]p1:
3290    //   A template-argument for a non-type, non-template
3291    //   template-parameter shall be one of:
3292    //
3293    //     -- an integral constant-expression of integral or enumeration
3294    //        type; or
3295    //     -- the name of a non-type template-parameter; or
3296    SourceLocation NonConstantLoc;
3297    llvm::APSInt Value;
3298    if (!ArgType->isIntegralOrEnumerationType()) {
3299      Diag(Arg->getSourceRange().getBegin(),
3300           diag::err_template_arg_not_integral_or_enumeral)
3301        << ArgType << Arg->getSourceRange();
3302      Diag(Param->getLocation(), diag::note_template_param_here);
3303      return true;
3304    } else if (!Arg->isValueDependent() &&
3305               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
3306      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
3307        << ArgType << Arg->getSourceRange();
3308      return true;
3309    }
3310
3311    // From here on out, all we care about are the unqualified forms
3312    // of the parameter and argument types.
3313    ParamType = ParamType.getUnqualifiedType();
3314    ArgType = ArgType.getUnqualifiedType();
3315
3316    // Try to convert the argument to the parameter's type.
3317    if (Context.hasSameType(ParamType, ArgType)) {
3318      // Okay: no conversion necessary
3319    } else if (CTAK == CTAK_Deduced) {
3320      // C++ [temp.deduct.type]p17:
3321      //   If, in the declaration of a function template with a non-type
3322      //   template-parameter, the non-type template- parameter is used
3323      //   in an expression in the function parameter-list and, if the
3324      //   corresponding template-argument is deduced, the
3325      //   template-argument type shall match the type of the
3326      //   template-parameter exactly, except that a template-argument
3327      //   deduced from an array bound may be of any integral type.
3328      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
3329        << ArgType << ParamType;
3330      Diag(Param->getLocation(), diag::note_template_param_here);
3331      return true;
3332    } else if (ParamType->isBooleanType()) {
3333      // This is an integral-to-boolean conversion.
3334      ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean);
3335    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
3336               !ParamType->isEnumeralType()) {
3337      // This is an integral promotion or conversion.
3338      ImpCastExprToType(Arg, ParamType, CK_IntegralCast);
3339    } else {
3340      // We can't perform this conversion.
3341      Diag(Arg->getSourceRange().getBegin(),
3342           diag::err_template_arg_not_convertible)
3343        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3344      Diag(Param->getLocation(), diag::note_template_param_here);
3345      return true;
3346    }
3347
3348    QualType IntegerType = Context.getCanonicalType(ParamType);
3349    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3350      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
3351
3352    if (!Arg->isValueDependent()) {
3353      llvm::APSInt OldValue = Value;
3354
3355      // Coerce the template argument's value to the value it will have
3356      // based on the template parameter's type.
3357      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3358      if (Value.getBitWidth() != AllowedBits)
3359        Value = Value.extOrTrunc(AllowedBits);
3360      Value.setIsSigned(IntegerType->isSignedIntegerType());
3361
3362      // Complain if an unsigned parameter received a negative value.
3363      if (IntegerType->isUnsignedIntegerType()
3364          && (OldValue.isSigned() && OldValue.isNegative())) {
3365        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
3366          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3367          << Arg->getSourceRange();
3368        Diag(Param->getLocation(), diag::note_template_param_here);
3369      }
3370
3371      // Complain if we overflowed the template parameter's type.
3372      unsigned RequiredBits;
3373      if (IntegerType->isUnsignedIntegerType())
3374        RequiredBits = OldValue.getActiveBits();
3375      else if (OldValue.isUnsigned())
3376        RequiredBits = OldValue.getActiveBits() + 1;
3377      else
3378        RequiredBits = OldValue.getMinSignedBits();
3379      if (RequiredBits > AllowedBits) {
3380        Diag(Arg->getSourceRange().getBegin(),
3381             diag::warn_template_arg_too_large)
3382          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3383          << Arg->getSourceRange();
3384        Diag(Param->getLocation(), diag::note_template_param_here);
3385      }
3386    }
3387
3388    // Add the value of this argument to the list of converted
3389    // arguments. We use the bitwidth and signedness of the template
3390    // parameter.
3391    if (Arg->isValueDependent()) {
3392      // The argument is value-dependent. Create a new
3393      // TemplateArgument with the converted expression.
3394      Converted = TemplateArgument(Arg);
3395      return false;
3396    }
3397
3398    Converted = TemplateArgument(Value,
3399                                 ParamType->isEnumeralType() ? ParamType
3400                                                             : IntegerType);
3401    return false;
3402  }
3403
3404  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
3405
3406  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
3407  // from a template argument of type std::nullptr_t to a non-type
3408  // template parameter of type pointer to object, pointer to
3409  // function, or pointer-to-member, respectively.
3410  if (ArgType->isNullPtrType() &&
3411      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
3412    Converted = TemplateArgument((NamedDecl *)0);
3413    return false;
3414  }
3415
3416  // Handle pointer-to-function, reference-to-function, and
3417  // pointer-to-member-function all in (roughly) the same way.
3418  if (// -- For a non-type template-parameter of type pointer to
3419      //    function, only the function-to-pointer conversion (4.3) is
3420      //    applied. If the template-argument represents a set of
3421      //    overloaded functions (or a pointer to such), the matching
3422      //    function is selected from the set (13.4).
3423      (ParamType->isPointerType() &&
3424       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
3425      // -- For a non-type template-parameter of type reference to
3426      //    function, no conversions apply. If the template-argument
3427      //    represents a set of overloaded functions, the matching
3428      //    function is selected from the set (13.4).
3429      (ParamType->isReferenceType() &&
3430       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
3431      // -- For a non-type template-parameter of type pointer to
3432      //    member function, no conversions apply. If the
3433      //    template-argument represents a set of overloaded member
3434      //    functions, the matching member function is selected from
3435      //    the set (13.4).
3436      (ParamType->isMemberPointerType() &&
3437       ParamType->getAs<MemberPointerType>()->getPointeeType()
3438         ->isFunctionType())) {
3439
3440    if (Arg->getType() == Context.OverloadTy) {
3441      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
3442                                                                true,
3443                                                                FoundResult)) {
3444        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3445          return true;
3446
3447        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3448        ArgType = Arg->getType();
3449      } else
3450        return true;
3451    }
3452
3453    if (!ParamType->isMemberPointerType())
3454      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3455                                                            ParamType,
3456                                                            Arg, Converted);
3457
3458    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(),
3459                                  false)) {
3460      ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3461    } else if (!Context.hasSameUnqualifiedType(ArgType,
3462                                           ParamType.getNonReferenceType())) {
3463      // We can't perform this conversion.
3464      Diag(Arg->getSourceRange().getBegin(),
3465           diag::err_template_arg_not_convertible)
3466        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3467      Diag(Param->getLocation(), diag::note_template_param_here);
3468      return true;
3469    }
3470
3471    return CheckTemplateArgumentPointerToMember(Arg, Converted);
3472  }
3473
3474  if (ParamType->isPointerType()) {
3475    //   -- for a non-type template-parameter of type pointer to
3476    //      object, qualification conversions (4.4) and the
3477    //      array-to-pointer conversion (4.2) are applied.
3478    // C++0x also allows a value of std::nullptr_t.
3479    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
3480           "Only object pointers allowed here");
3481
3482    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3483                                                          ParamType,
3484                                                          Arg, Converted);
3485  }
3486
3487  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
3488    //   -- For a non-type template-parameter of type reference to
3489    //      object, no conversions apply. The type referred to by the
3490    //      reference may be more cv-qualified than the (otherwise
3491    //      identical) type of the template-argument. The
3492    //      template-parameter is bound directly to the
3493    //      template-argument, which must be an lvalue.
3494    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
3495           "Only object references allowed here");
3496
3497    if (Arg->getType() == Context.OverloadTy) {
3498      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
3499                                                 ParamRefType->getPointeeType(),
3500                                                                true,
3501                                                                FoundResult)) {
3502        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3503          return true;
3504
3505        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3506        ArgType = Arg->getType();
3507      } else
3508        return true;
3509    }
3510
3511    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3512                                                          ParamType,
3513                                                          Arg, Converted);
3514  }
3515
3516  //     -- For a non-type template-parameter of type pointer to data
3517  //        member, qualification conversions (4.4) are applied.
3518  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
3519
3520  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
3521    // Types match exactly: nothing more to do here.
3522  } else if (IsQualificationConversion(ArgType, ParamType, false)) {
3523    ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3524  } else {
3525    // We can't perform this conversion.
3526    Diag(Arg->getSourceRange().getBegin(),
3527         diag::err_template_arg_not_convertible)
3528      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3529    Diag(Param->getLocation(), diag::note_template_param_here);
3530    return true;
3531  }
3532
3533  return CheckTemplateArgumentPointerToMember(Arg, Converted);
3534}
3535
3536/// \brief Check a template argument against its corresponding
3537/// template template parameter.
3538///
3539/// This routine implements the semantics of C++ [temp.arg.template].
3540/// It returns true if an error occurred, and false otherwise.
3541bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3542                                 const TemplateArgumentLoc &Arg) {
3543  TemplateName Name = Arg.getArgument().getAsTemplate();
3544  TemplateDecl *Template = Name.getAsTemplateDecl();
3545  if (!Template) {
3546    // Any dependent template name is fine.
3547    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3548    return false;
3549  }
3550
3551  // C++ [temp.arg.template]p1:
3552  //   A template-argument for a template template-parameter shall be
3553  //   the name of a class template, expressed as id-expression. Only
3554  //   primary class templates are considered when matching the
3555  //   template template argument with the corresponding parameter;
3556  //   partial specializations are not considered even if their
3557  //   parameter lists match that of the template template parameter.
3558  //
3559  // Note that we also allow template template parameters here, which
3560  // will happen when we are dealing with, e.g., class template
3561  // partial specializations.
3562  if (!isa<ClassTemplateDecl>(Template) &&
3563      !isa<TemplateTemplateParmDecl>(Template)) {
3564    assert(isa<FunctionTemplateDecl>(Template) &&
3565           "Only function templates are possible here");
3566    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3567    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3568      << Template;
3569  }
3570
3571  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3572                                         Param->getTemplateParameters(),
3573                                         true,
3574                                         TPL_TemplateTemplateArgumentMatch,
3575                                         Arg.getLocation());
3576}
3577
3578/// \brief Given a non-type template argument that refers to a
3579/// declaration and the type of its corresponding non-type template
3580/// parameter, produce an expression that properly refers to that
3581/// declaration.
3582ExprResult
3583Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3584                                              QualType ParamType,
3585                                              SourceLocation Loc) {
3586  assert(Arg.getKind() == TemplateArgument::Declaration &&
3587         "Only declaration template arguments permitted here");
3588  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3589
3590  if (VD->getDeclContext()->isRecord() &&
3591      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3592    // If the value is a class member, we might have a pointer-to-member.
3593    // Determine whether the non-type template template parameter is of
3594    // pointer-to-member type. If so, we need to build an appropriate
3595    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3596    // would refer to the member itself.
3597    if (ParamType->isMemberPointerType()) {
3598      QualType ClassType
3599        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3600      NestedNameSpecifier *Qualifier
3601        = NestedNameSpecifier::Create(Context, 0, false,
3602                                      ClassType.getTypePtr());
3603      CXXScopeSpec SS;
3604      SS.setScopeRep(Qualifier);
3605
3606      // The actual value-ness of this is unimportant, but for
3607      // internal consistency's sake, references to instance methods
3608      // are r-values.
3609      ExprValueKind VK = VK_LValue;
3610      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
3611        VK = VK_RValue;
3612
3613      ExprResult RefExpr = BuildDeclRefExpr(VD,
3614                                            VD->getType().getNonReferenceType(),
3615                                            VK,
3616                                            Loc,
3617                                            &SS);
3618      if (RefExpr.isInvalid())
3619        return ExprError();
3620
3621      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3622
3623      // We might need to perform a trailing qualification conversion, since
3624      // the element type on the parameter could be more qualified than the
3625      // element type in the expression we constructed.
3626      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
3627                                    ParamType.getUnqualifiedType(), false)) {
3628        Expr *RefE = RefExpr.takeAs<Expr>();
3629        ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp);
3630        RefExpr = Owned(RefE);
3631      }
3632
3633      assert(!RefExpr.isInvalid() &&
3634             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3635                                 ParamType.getUnqualifiedType()));
3636      return move(RefExpr);
3637    }
3638  }
3639
3640  QualType T = VD->getType().getNonReferenceType();
3641  if (ParamType->isPointerType()) {
3642    // When the non-type template parameter is a pointer, take the
3643    // address of the declaration.
3644    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
3645    if (RefExpr.isInvalid())
3646      return ExprError();
3647
3648    if (T->isFunctionType() || T->isArrayType()) {
3649      // Decay functions and arrays.
3650      Expr *RefE = (Expr *)RefExpr.get();
3651      DefaultFunctionArrayConversion(RefE);
3652      if (RefE != RefExpr.get()) {
3653        RefExpr.release();
3654        RefExpr = Owned(RefE);
3655      }
3656
3657      return move(RefExpr);
3658    }
3659
3660    // Take the address of everything else
3661    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3662  }
3663
3664  ExprValueKind VK = VK_RValue;
3665
3666  // If the non-type template parameter has reference type, qualify the
3667  // resulting declaration reference with the extra qualifiers on the
3668  // type that the reference refers to.
3669  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
3670    VK = VK_LValue;
3671    T = Context.getQualifiedType(T,
3672                              TargetRef->getPointeeType().getQualifiers());
3673  }
3674
3675  return BuildDeclRefExpr(VD, T, VK, Loc);
3676}
3677
3678/// \brief Construct a new expression that refers to the given
3679/// integral template argument with the given source-location
3680/// information.
3681///
3682/// This routine takes care of the mapping from an integral template
3683/// argument (which may have any integral type) to the appropriate
3684/// literal value.
3685ExprResult
3686Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3687                                                  SourceLocation Loc) {
3688  assert(Arg.getKind() == TemplateArgument::Integral &&
3689         "Operation is only valid for integral template arguments");
3690  QualType T = Arg.getIntegralType();
3691  if (T->isCharType() || T->isWideCharType())
3692    return Owned(new (Context) CharacterLiteral(
3693                                             Arg.getAsIntegral()->getZExtValue(),
3694                                             T->isWideCharType(),
3695                                             T,
3696                                             Loc));
3697  if (T->isBooleanType())
3698    return Owned(new (Context) CXXBoolLiteralExpr(
3699                                            Arg.getAsIntegral()->getBoolValue(),
3700                                            T,
3701                                            Loc));
3702
3703  QualType BT;
3704  if (const EnumType *ET = T->getAs<EnumType>())
3705    BT = ET->getDecl()->getPromotionType();
3706  else
3707    BT = T;
3708
3709  Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
3710  if (T->isEnumeralType()) {
3711    // FIXME: This is a hack. We need a better way to handle substituted
3712    // non-type template parameters.
3713    E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast,
3714                                      E, 0,
3715                                      Context.getTrivialTypeSourceInfo(T, Loc),
3716                                      Loc, Loc);
3717  }
3718
3719  return Owned(E);
3720}
3721
3722/// \brief Match two template parameters within template parameter lists.
3723static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
3724                                       bool Complain,
3725                                     Sema::TemplateParameterListEqualKind Kind,
3726                                       SourceLocation TemplateArgLoc) {
3727  // Check the actual kind (type, non-type, template).
3728  if (Old->getKind() != New->getKind()) {
3729    if (Complain) {
3730      unsigned NextDiag = diag::err_template_param_different_kind;
3731      if (TemplateArgLoc.isValid()) {
3732        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3733        NextDiag = diag::note_template_param_different_kind;
3734      }
3735      S.Diag(New->getLocation(), NextDiag)
3736        << (Kind != Sema::TPL_TemplateMatch);
3737      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
3738        << (Kind != Sema::TPL_TemplateMatch);
3739    }
3740
3741    return false;
3742  }
3743
3744  // Check that both are parameter packs are neither are parameter packs.
3745  // However, if we are matching a template template argument to a
3746  // template template parameter, the template template parameter can have
3747  // a parameter pack where the template template argument does not.
3748  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
3749      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
3750        Old->isTemplateParameterPack())) {
3751    if (Complain) {
3752      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3753      if (TemplateArgLoc.isValid()) {
3754        S.Diag(TemplateArgLoc,
3755             diag::err_template_arg_template_params_mismatch);
3756        NextDiag = diag::note_template_parameter_pack_non_pack;
3757      }
3758
3759      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
3760                      : isa<NonTypeTemplateParmDecl>(New)? 1
3761                      : 2;
3762      S.Diag(New->getLocation(), NextDiag)
3763        << ParamKind << New->isParameterPack();
3764      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
3765        << ParamKind << Old->isParameterPack();
3766    }
3767
3768    return false;
3769  }
3770
3771  // For non-type template parameters, check the type of the parameter.
3772  if (NonTypeTemplateParmDecl *OldNTTP
3773                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
3774    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
3775
3776    // If we are matching a template template argument to a template
3777    // template parameter and one of the non-type template parameter types
3778    // is dependent, then we must wait until template instantiation time
3779    // to actually compare the arguments.
3780    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
3781        (OldNTTP->getType()->isDependentType() ||
3782         NewNTTP->getType()->isDependentType()))
3783      return true;
3784
3785    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
3786      if (Complain) {
3787        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3788        if (TemplateArgLoc.isValid()) {
3789          S.Diag(TemplateArgLoc,
3790                 diag::err_template_arg_template_params_mismatch);
3791          NextDiag = diag::note_template_nontype_parm_different_type;
3792        }
3793        S.Diag(NewNTTP->getLocation(), NextDiag)
3794          << NewNTTP->getType()
3795          << (Kind != Sema::TPL_TemplateMatch);
3796        S.Diag(OldNTTP->getLocation(),
3797               diag::note_template_nontype_parm_prev_declaration)
3798          << OldNTTP->getType();
3799      }
3800
3801      return false;
3802    }
3803
3804    return true;
3805  }
3806
3807  // For template template parameters, check the template parameter types.
3808  // The template parameter lists of template template
3809  // parameters must agree.
3810  if (TemplateTemplateParmDecl *OldTTP
3811                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
3812    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
3813    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3814                                            OldTTP->getTemplateParameters(),
3815                                            Complain,
3816                                        (Kind == Sema::TPL_TemplateMatch
3817                                           ? Sema::TPL_TemplateTemplateParmMatch
3818                                           : Kind),
3819                                            TemplateArgLoc);
3820  }
3821
3822  return true;
3823}
3824
3825/// \brief Diagnose a known arity mismatch when comparing template argument
3826/// lists.
3827static
3828void DiagnoseTemplateParameterListArityMismatch(Sema &S,
3829                                                TemplateParameterList *New,
3830                                                TemplateParameterList *Old,
3831                                      Sema::TemplateParameterListEqualKind Kind,
3832                                                SourceLocation TemplateArgLoc) {
3833  unsigned NextDiag = diag::err_template_param_list_different_arity;
3834  if (TemplateArgLoc.isValid()) {
3835    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3836    NextDiag = diag::note_template_param_list_different_arity;
3837  }
3838  S.Diag(New->getTemplateLoc(), NextDiag)
3839    << (New->size() > Old->size())
3840    << (Kind != Sema::TPL_TemplateMatch)
3841    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3842  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3843    << (Kind != Sema::TPL_TemplateMatch)
3844    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3845}
3846
3847/// \brief Determine whether the given template parameter lists are
3848/// equivalent.
3849///
3850/// \param New  The new template parameter list, typically written in the
3851/// source code as part of a new template declaration.
3852///
3853/// \param Old  The old template parameter list, typically found via
3854/// name lookup of the template declared with this template parameter
3855/// list.
3856///
3857/// \param Complain  If true, this routine will produce a diagnostic if
3858/// the template parameter lists are not equivalent.
3859///
3860/// \param Kind describes how we are to match the template parameter lists.
3861///
3862/// \param TemplateArgLoc If this source location is valid, then we
3863/// are actually checking the template parameter list of a template
3864/// argument (New) against the template parameter list of its
3865/// corresponding template template parameter (Old). We produce
3866/// slightly different diagnostics in this scenario.
3867///
3868/// \returns True if the template parameter lists are equal, false
3869/// otherwise.
3870bool
3871Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3872                                     TemplateParameterList *Old,
3873                                     bool Complain,
3874                                     TemplateParameterListEqualKind Kind,
3875                                     SourceLocation TemplateArgLoc) {
3876  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
3877    if (Complain)
3878      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
3879                                                 TemplateArgLoc);
3880
3881    return false;
3882  }
3883
3884  // C++0x [temp.arg.template]p3:
3885  //   A template-argument matches a template template-parameter (call it P)
3886  //   when each of the template parameters in the template-parameter-list of
3887  //   the template-argument's corresponding class template or template alias
3888  //   (call it A) matches the corresponding template parameter in the
3889  //   template-parameter-list of P. [...]
3890  TemplateParameterList::iterator NewParm = New->begin();
3891  TemplateParameterList::iterator NewParmEnd = New->end();
3892  for (TemplateParameterList::iterator OldParm = Old->begin(),
3893                                    OldParmEnd = Old->end();
3894       OldParm != OldParmEnd; ++OldParm) {
3895    if (Kind != TPL_TemplateTemplateArgumentMatch ||
3896        !(*OldParm)->isTemplateParameterPack()) {
3897      if (NewParm == NewParmEnd) {
3898        if (Complain)
3899          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
3900                                                     TemplateArgLoc);
3901
3902        return false;
3903      }
3904
3905      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
3906                                      Kind, TemplateArgLoc))
3907        return false;
3908
3909      ++NewParm;
3910      continue;
3911    }
3912
3913    // C++0x [temp.arg.template]p3:
3914    //   [...] When P's template- parameter-list contains a template parameter
3915    //   pack (14.5.3), the template parameter pack will match zero or more
3916    //   template parameters or template parameter packs in the
3917    //   template-parameter-list of A with the same type and form as the
3918    //   template parameter pack in P (ignoring whether those template
3919    //   parameters are template parameter packs).
3920    for (; NewParm != NewParmEnd; ++NewParm) {
3921      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
3922                                      Kind, TemplateArgLoc))
3923        return false;
3924    }
3925  }
3926
3927  // Make sure we exhausted all of the arguments.
3928  if (NewParm != NewParmEnd) {
3929    if (Complain)
3930      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
3931                                                 TemplateArgLoc);
3932
3933    return false;
3934  }
3935
3936  return true;
3937}
3938
3939/// \brief Check whether a template can be declared within this scope.
3940///
3941/// If the template declaration is valid in this scope, returns
3942/// false. Otherwise, issues a diagnostic and returns true.
3943bool
3944Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3945  // Find the nearest enclosing declaration scope.
3946  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3947         (S->getFlags() & Scope::TemplateParamScope) != 0)
3948    S = S->getParent();
3949
3950  // C++ [temp]p2:
3951  //   A template-declaration can appear only as a namespace scope or
3952  //   class scope declaration.
3953  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3954  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3955      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3956    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3957             << TemplateParams->getSourceRange();
3958
3959  while (Ctx && isa<LinkageSpecDecl>(Ctx))
3960    Ctx = Ctx->getParent();
3961
3962  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3963    return false;
3964
3965  return Diag(TemplateParams->getTemplateLoc(),
3966              diag::err_template_outside_namespace_or_class_scope)
3967    << TemplateParams->getSourceRange();
3968}
3969
3970/// \brief Determine what kind of template specialization the given declaration
3971/// is.
3972static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3973  if (!D)
3974    return TSK_Undeclared;
3975
3976  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3977    return Record->getTemplateSpecializationKind();
3978  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3979    return Function->getTemplateSpecializationKind();
3980  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3981    return Var->getTemplateSpecializationKind();
3982
3983  return TSK_Undeclared;
3984}
3985
3986/// \brief Check whether a specialization is well-formed in the current
3987/// context.
3988///
3989/// This routine determines whether a template specialization can be declared
3990/// in the current context (C++ [temp.expl.spec]p2).
3991///
3992/// \param S the semantic analysis object for which this check is being
3993/// performed.
3994///
3995/// \param Specialized the entity being specialized or instantiated, which
3996/// may be a kind of template (class template, function template, etc.) or
3997/// a member of a class template (member function, static data member,
3998/// member class).
3999///
4000/// \param PrevDecl the previous declaration of this entity, if any.
4001///
4002/// \param Loc the location of the explicit specialization or instantiation of
4003/// this entity.
4004///
4005/// \param IsPartialSpecialization whether this is a partial specialization of
4006/// a class template.
4007///
4008/// \returns true if there was an error that we cannot recover from, false
4009/// otherwise.
4010static bool CheckTemplateSpecializationScope(Sema &S,
4011                                             NamedDecl *Specialized,
4012                                             NamedDecl *PrevDecl,
4013                                             SourceLocation Loc,
4014                                             bool IsPartialSpecialization) {
4015  // Keep these "kind" numbers in sync with the %select statements in the
4016  // various diagnostics emitted by this routine.
4017  int EntityKind = 0;
4018  if (isa<ClassTemplateDecl>(Specialized))
4019    EntityKind = IsPartialSpecialization? 1 : 0;
4020  else if (isa<FunctionTemplateDecl>(Specialized))
4021    EntityKind = 2;
4022  else if (isa<CXXMethodDecl>(Specialized))
4023    EntityKind = 3;
4024  else if (isa<VarDecl>(Specialized))
4025    EntityKind = 4;
4026  else if (isa<RecordDecl>(Specialized))
4027    EntityKind = 5;
4028  else {
4029    S.Diag(Loc, diag::err_template_spec_unknown_kind);
4030    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4031    return true;
4032  }
4033
4034  // C++ [temp.expl.spec]p2:
4035  //   An explicit specialization shall be declared in the namespace
4036  //   of which the template is a member, or, for member templates, in
4037  //   the namespace of which the enclosing class or enclosing class
4038  //   template is a member. An explicit specialization of a member
4039  //   function, member class or static data member of a class
4040  //   template shall be declared in the namespace of which the class
4041  //   template is a member. Such a declaration may also be a
4042  //   definition. If the declaration is not a definition, the
4043  //   specialization may be defined later in the name- space in which
4044  //   the explicit specialization was declared, or in a namespace
4045  //   that encloses the one in which the explicit specialization was
4046  //   declared.
4047  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4048    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
4049      << Specialized;
4050    return true;
4051  }
4052
4053  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
4054    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4055      << Specialized;
4056    return true;
4057  }
4058
4059  // C++ [temp.class.spec]p6:
4060  //   A class template partial specialization may be declared or redeclared
4061  //   in any namespace scope in which its definition may be defined (14.5.1
4062  //   and 14.5.2).
4063  bool ComplainedAboutScope = false;
4064  DeclContext *SpecializedContext
4065    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
4066  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
4067  if ((!PrevDecl ||
4068       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
4069       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
4070    // C++ [temp.exp.spec]p2:
4071    //   An explicit specialization shall be declared in the namespace of which
4072    //   the template is a member, or, for member templates, in the namespace
4073    //   of which the enclosing class or enclosing class template is a member.
4074    //   An explicit specialization of a member function, member class or
4075    //   static data member of a class template shall be declared in the
4076    //   namespace of which the class template is a member.
4077    //
4078    // C++0x [temp.expl.spec]p2:
4079    //   An explicit specialization shall be declared in a namespace enclosing
4080    //   the specialized template.
4081    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) &&
4082        !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) {
4083      bool IsCPlusPlus0xExtension
4084        = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext);
4085      if (isa<TranslationUnitDecl>(SpecializedContext))
4086        S.Diag(Loc, IsCPlusPlus0xExtension
4087                      ? diag::ext_template_spec_decl_out_of_scope_global
4088                      : diag::err_template_spec_decl_out_of_scope_global)
4089          << EntityKind << Specialized;
4090      else if (isa<NamespaceDecl>(SpecializedContext))
4091        S.Diag(Loc, IsCPlusPlus0xExtension
4092                      ? diag::ext_template_spec_decl_out_of_scope
4093                      : diag::err_template_spec_decl_out_of_scope)
4094          << EntityKind << Specialized
4095          << cast<NamedDecl>(SpecializedContext);
4096
4097      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4098      ComplainedAboutScope = true;
4099    }
4100  }
4101
4102  // Make sure that this redeclaration (or definition) occurs in an enclosing
4103  // namespace.
4104  // Note that HandleDeclarator() performs this check for explicit
4105  // specializations of function templates, static data members, and member
4106  // functions, so we skip the check here for those kinds of entities.
4107  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
4108  // Should we refactor that check, so that it occurs later?
4109  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
4110      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
4111        isa<FunctionDecl>(Specialized))) {
4112    if (isa<TranslationUnitDecl>(SpecializedContext))
4113      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
4114        << EntityKind << Specialized;
4115    else if (isa<NamespaceDecl>(SpecializedContext))
4116      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
4117        << EntityKind << Specialized
4118        << cast<NamedDecl>(SpecializedContext);
4119
4120    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4121  }
4122
4123  // FIXME: check for specialization-after-instantiation errors and such.
4124
4125  return false;
4126}
4127
4128/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
4129/// that checks non-type template partial specialization arguments.
4130static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
4131                                                NonTypeTemplateParmDecl *Param,
4132                                                  const TemplateArgument *Args,
4133                                                        unsigned NumArgs) {
4134  for (unsigned I = 0; I != NumArgs; ++I) {
4135    if (Args[I].getKind() == TemplateArgument::Pack) {
4136      if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4137                                                           Args[I].pack_begin(),
4138                                                           Args[I].pack_size()))
4139        return true;
4140
4141      continue;
4142    }
4143
4144    Expr *ArgExpr = Args[I].getAsExpr();
4145    if (!ArgExpr) {
4146      continue;
4147    }
4148
4149    // We can have a pack expansion of any of the bullets below.
4150    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
4151      ArgExpr = Expansion->getPattern();
4152
4153    // Strip off any implicit casts we added as part of type checking.
4154    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
4155      ArgExpr = ICE->getSubExpr();
4156
4157    // C++ [temp.class.spec]p8:
4158    //   A non-type argument is non-specialized if it is the name of a
4159    //   non-type parameter. All other non-type arguments are
4160    //   specialized.
4161    //
4162    // Below, we check the two conditions that only apply to
4163    // specialized non-type arguments, so skip any non-specialized
4164    // arguments.
4165    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
4166      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
4167        continue;
4168
4169    // C++ [temp.class.spec]p9:
4170    //   Within the argument list of a class template partial
4171    //   specialization, the following restrictions apply:
4172    //     -- A partially specialized non-type argument expression
4173    //        shall not involve a template parameter of the partial
4174    //        specialization except when the argument expression is a
4175    //        simple identifier.
4176    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
4177      S.Diag(ArgExpr->getLocStart(),
4178           diag::err_dependent_non_type_arg_in_partial_spec)
4179        << ArgExpr->getSourceRange();
4180      return true;
4181    }
4182
4183    //     -- The type of a template parameter corresponding to a
4184    //        specialized non-type argument shall not be dependent on a
4185    //        parameter of the specialization.
4186    if (Param->getType()->isDependentType()) {
4187      S.Diag(ArgExpr->getLocStart(),
4188           diag::err_dependent_typed_non_type_arg_in_partial_spec)
4189        << Param->getType()
4190        << ArgExpr->getSourceRange();
4191      S.Diag(Param->getLocation(), diag::note_template_param_here);
4192      return true;
4193    }
4194  }
4195
4196  return false;
4197}
4198
4199/// \brief Check the non-type template arguments of a class template
4200/// partial specialization according to C++ [temp.class.spec]p9.
4201///
4202/// \param TemplateParams the template parameters of the primary class
4203/// template.
4204///
4205/// \param TemplateArg the template arguments of the class template
4206/// partial specialization.
4207///
4208/// \returns true if there was an error, false otherwise.
4209static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
4210                                        TemplateParameterList *TemplateParams,
4211                       llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs) {
4212  const TemplateArgument *ArgList = TemplateArgs.data();
4213
4214  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4215    NonTypeTemplateParmDecl *Param
4216      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
4217    if (!Param)
4218      continue;
4219
4220    if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4221                                                           &ArgList[I], 1))
4222      return true;
4223  }
4224
4225  return false;
4226}
4227
4228/// \brief Retrieve the previous declaration of the given declaration.
4229static NamedDecl *getPreviousDecl(NamedDecl *ND) {
4230  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
4231    return VD->getPreviousDeclaration();
4232  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
4233    return FD->getPreviousDeclaration();
4234  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
4235    return TD->getPreviousDeclaration();
4236  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
4237    return TD->getPreviousDeclaration();
4238  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4239    return FTD->getPreviousDeclaration();
4240  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
4241    return CTD->getPreviousDeclaration();
4242  return 0;
4243}
4244
4245DeclResult
4246Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
4247                                       TagUseKind TUK,
4248                                       SourceLocation KWLoc,
4249                                       CXXScopeSpec &SS,
4250                                       TemplateTy TemplateD,
4251                                       SourceLocation TemplateNameLoc,
4252                                       SourceLocation LAngleLoc,
4253                                       ASTTemplateArgsPtr TemplateArgsIn,
4254                                       SourceLocation RAngleLoc,
4255                                       AttributeList *Attr,
4256                               MultiTemplateParamsArg TemplateParameterLists) {
4257  assert(TUK != TUK_Reference && "References are not specializations");
4258
4259  // Find the class template we're specializing
4260  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4261  ClassTemplateDecl *ClassTemplate
4262    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
4263
4264  if (!ClassTemplate) {
4265    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
4266      << (Name.getAsTemplateDecl() &&
4267          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
4268    return true;
4269  }
4270
4271  bool isExplicitSpecialization = false;
4272  bool isPartialSpecialization = false;
4273
4274  // Check the validity of the template headers that introduce this
4275  // template.
4276  // FIXME: We probably shouldn't complain about these headers for
4277  // friend declarations.
4278  bool Invalid = false;
4279  TemplateParameterList *TemplateParams
4280    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
4281                        (TemplateParameterList**)TemplateParameterLists.get(),
4282                                              TemplateParameterLists.size(),
4283                                              TUK == TUK_Friend,
4284                                              isExplicitSpecialization,
4285                                              Invalid);
4286  if (Invalid)
4287    return true;
4288
4289  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
4290  if (TemplateParams)
4291    --NumMatchedTemplateParamLists;
4292
4293  if (TemplateParams && TemplateParams->size() > 0) {
4294    isPartialSpecialization = true;
4295
4296    if (TUK == TUK_Friend) {
4297      Diag(KWLoc, diag::err_partial_specialization_friend)
4298        << SourceRange(LAngleLoc, RAngleLoc);
4299      return true;
4300    }
4301
4302    // C++ [temp.class.spec]p10:
4303    //   The template parameter list of a specialization shall not
4304    //   contain default template argument values.
4305    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4306      Decl *Param = TemplateParams->getParam(I);
4307      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4308        if (TTP->hasDefaultArgument()) {
4309          Diag(TTP->getDefaultArgumentLoc(),
4310               diag::err_default_arg_in_partial_spec);
4311          TTP->removeDefaultArgument();
4312        }
4313      } else if (NonTypeTemplateParmDecl *NTTP
4314                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4315        if (Expr *DefArg = NTTP->getDefaultArgument()) {
4316          Diag(NTTP->getDefaultArgumentLoc(),
4317               diag::err_default_arg_in_partial_spec)
4318            << DefArg->getSourceRange();
4319          NTTP->removeDefaultArgument();
4320        }
4321      } else {
4322        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
4323        if (TTP->hasDefaultArgument()) {
4324          Diag(TTP->getDefaultArgument().getLocation(),
4325               diag::err_default_arg_in_partial_spec)
4326            << TTP->getDefaultArgument().getSourceRange();
4327          TTP->removeDefaultArgument();
4328        }
4329      }
4330    }
4331  } else if (TemplateParams) {
4332    if (TUK == TUK_Friend)
4333      Diag(KWLoc, diag::err_template_spec_friend)
4334        << FixItHint::CreateRemoval(
4335                                SourceRange(TemplateParams->getTemplateLoc(),
4336                                            TemplateParams->getRAngleLoc()))
4337        << SourceRange(LAngleLoc, RAngleLoc);
4338    else
4339      isExplicitSpecialization = true;
4340  } else if (TUK != TUK_Friend) {
4341    Diag(KWLoc, diag::err_template_spec_needs_header)
4342      << FixItHint::CreateInsertion(KWLoc, "template<> ");
4343    isExplicitSpecialization = true;
4344  }
4345
4346  // Check that the specialization uses the same tag kind as the
4347  // original template.
4348  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4349  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
4350  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4351                                    Kind, KWLoc,
4352                                    *ClassTemplate->getIdentifier())) {
4353    Diag(KWLoc, diag::err_use_with_wrong_tag)
4354      << ClassTemplate
4355      << FixItHint::CreateReplacement(KWLoc,
4356                            ClassTemplate->getTemplatedDecl()->getKindName());
4357    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4358         diag::note_previous_use);
4359    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4360  }
4361
4362  // Translate the parser's template argument list in our AST format.
4363  TemplateArgumentListInfo TemplateArgs;
4364  TemplateArgs.setLAngleLoc(LAngleLoc);
4365  TemplateArgs.setRAngleLoc(RAngleLoc);
4366  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4367
4368  // Check for unexpanded parameter packs in any of the template arguments.
4369  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4370    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4371                                        UPPC_PartialSpecialization))
4372      return true;
4373
4374  // Check that the template argument list is well-formed for this
4375  // template.
4376  llvm::SmallVector<TemplateArgument, 4> Converted;
4377  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4378                                TemplateArgs, false, Converted))
4379    return true;
4380
4381  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
4382         "Converted template argument list is too short!");
4383
4384  // Find the class template (partial) specialization declaration that
4385  // corresponds to these arguments.
4386  if (isPartialSpecialization) {
4387    if (CheckClassTemplatePartialSpecializationArgs(*this,
4388                                         ClassTemplate->getTemplateParameters(),
4389                                         Converted))
4390      return true;
4391
4392    if (!Name.isDependent() &&
4393        !TemplateSpecializationType::anyDependentTemplateArguments(
4394                                             TemplateArgs.getArgumentArray(),
4395                                                         TemplateArgs.size())) {
4396      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4397        << ClassTemplate->getDeclName();
4398      isPartialSpecialization = false;
4399    }
4400  }
4401
4402  void *InsertPos = 0;
4403  ClassTemplateSpecializationDecl *PrevDecl = 0;
4404
4405  if (isPartialSpecialization)
4406    // FIXME: Template parameter list matters, too
4407    PrevDecl
4408      = ClassTemplate->findPartialSpecialization(Converted.data(),
4409                                                 Converted.size(),
4410                                                 InsertPos);
4411  else
4412    PrevDecl
4413      = ClassTemplate->findSpecialization(Converted.data(),
4414                                          Converted.size(), InsertPos);
4415
4416  ClassTemplateSpecializationDecl *Specialization = 0;
4417
4418  // Check whether we can declare a class template specialization in
4419  // the current scope.
4420  if (TUK != TUK_Friend &&
4421      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
4422                                       TemplateNameLoc,
4423                                       isPartialSpecialization))
4424    return true;
4425
4426  // The canonical type
4427  QualType CanonType;
4428  if (PrevDecl &&
4429      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
4430               TUK == TUK_Friend)) {
4431    // Since the only prior class template specialization with these
4432    // arguments was referenced but not declared, or we're only
4433    // referencing this specialization as a friend, reuse that
4434    // declaration node as our own, updating its source location to
4435    // reflect our new declaration.
4436    Specialization = PrevDecl;
4437    Specialization->setLocation(TemplateNameLoc);
4438    PrevDecl = 0;
4439    CanonType = Context.getTypeDeclType(Specialization);
4440  } else if (isPartialSpecialization) {
4441    // Build the canonical type that describes the converted template
4442    // arguments of the class template partial specialization.
4443    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4444    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
4445                                                      Converted.data(),
4446                                                      Converted.size());
4447
4448    if (Context.hasSameType(CanonType,
4449                        ClassTemplate->getInjectedClassNameSpecialization())) {
4450      // C++ [temp.class.spec]p9b3:
4451      //
4452      //   -- The argument list of the specialization shall not be identical
4453      //      to the implicit argument list of the primary template.
4454      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4455      << (TUK == TUK_Definition)
4456      << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4457      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
4458                                ClassTemplate->getIdentifier(),
4459                                TemplateNameLoc,
4460                                Attr,
4461                                TemplateParams,
4462                                AS_none);
4463    }
4464
4465    // Create a new class template partial specialization declaration node.
4466    ClassTemplatePartialSpecializationDecl *PrevPartial
4467      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
4468    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
4469                            : ClassTemplate->getNextPartialSpecSequenceNumber();
4470    ClassTemplatePartialSpecializationDecl *Partial
4471      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
4472                                             ClassTemplate->getDeclContext(),
4473                                                       TemplateNameLoc,
4474                                                       TemplateParams,
4475                                                       ClassTemplate,
4476                                                       Converted.data(),
4477                                                       Converted.size(),
4478                                                       TemplateArgs,
4479                                                       CanonType,
4480                                                       PrevPartial,
4481                                                       SequenceNumber);
4482    SetNestedNameSpecifier(Partial, SS);
4483    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4484      Partial->setTemplateParameterListsInfo(Context,
4485                                             NumMatchedTemplateParamLists,
4486                    (TemplateParameterList**) TemplateParameterLists.release());
4487    }
4488
4489    if (!PrevPartial)
4490      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
4491    Specialization = Partial;
4492
4493    // If we are providing an explicit specialization of a member class
4494    // template specialization, make a note of that.
4495    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4496      PrevPartial->setMemberSpecialization();
4497
4498    // Check that all of the template parameters of the class template
4499    // partial specialization are deducible from the template
4500    // arguments. If not, this class template partial specialization
4501    // will never be used.
4502    llvm::SmallVector<bool, 8> DeducibleParams;
4503    DeducibleParams.resize(TemplateParams->size());
4504    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4505                               TemplateParams->getDepth(),
4506                               DeducibleParams);
4507    unsigned NumNonDeducible = 0;
4508    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
4509      if (!DeducibleParams[I])
4510        ++NumNonDeducible;
4511
4512    if (NumNonDeducible) {
4513      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
4514        << (NumNonDeducible > 1)
4515        << SourceRange(TemplateNameLoc, RAngleLoc);
4516      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4517        if (!DeducibleParams[I]) {
4518          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
4519          if (Param->getDeclName())
4520            Diag(Param->getLocation(),
4521                 diag::note_partial_spec_unused_parameter)
4522              << Param->getDeclName();
4523          else
4524            Diag(Param->getLocation(),
4525                 diag::note_partial_spec_unused_parameter)
4526              << "<anonymous>";
4527        }
4528      }
4529    }
4530  } else {
4531    // Create a new class template specialization declaration node for
4532    // this explicit specialization or friend declaration.
4533    Specialization
4534      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4535                                             ClassTemplate->getDeclContext(),
4536                                                TemplateNameLoc,
4537                                                ClassTemplate,
4538                                                Converted.data(),
4539                                                Converted.size(),
4540                                                PrevDecl);
4541    SetNestedNameSpecifier(Specialization, SS);
4542    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4543      Specialization->setTemplateParameterListsInfo(Context,
4544                                                  NumMatchedTemplateParamLists,
4545                    (TemplateParameterList**) TemplateParameterLists.release());
4546    }
4547
4548    if (!PrevDecl)
4549      ClassTemplate->AddSpecialization(Specialization, InsertPos);
4550
4551    CanonType = Context.getTypeDeclType(Specialization);
4552  }
4553
4554  // C++ [temp.expl.spec]p6:
4555  //   If a template, a member template or the member of a class template is
4556  //   explicitly specialized then that specialization shall be declared
4557  //   before the first use of that specialization that would cause an implicit
4558  //   instantiation to take place, in every translation unit in which such a
4559  //   use occurs; no diagnostic is required.
4560  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4561    bool Okay = false;
4562    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4563      // Is there any previous explicit specialization declaration?
4564      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4565        Okay = true;
4566        break;
4567      }
4568    }
4569
4570    if (!Okay) {
4571      SourceRange Range(TemplateNameLoc, RAngleLoc);
4572      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4573        << Context.getTypeDeclType(Specialization) << Range;
4574
4575      Diag(PrevDecl->getPointOfInstantiation(),
4576           diag::note_instantiation_required_here)
4577        << (PrevDecl->getTemplateSpecializationKind()
4578                                                != TSK_ImplicitInstantiation);
4579      return true;
4580    }
4581  }
4582
4583  // If this is not a friend, note that this is an explicit specialization.
4584  if (TUK != TUK_Friend)
4585    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4586
4587  // Check that this isn't a redefinition of this specialization.
4588  if (TUK == TUK_Definition) {
4589    if (RecordDecl *Def = Specialization->getDefinition()) {
4590      SourceRange Range(TemplateNameLoc, RAngleLoc);
4591      Diag(TemplateNameLoc, diag::err_redefinition)
4592        << Context.getTypeDeclType(Specialization) << Range;
4593      Diag(Def->getLocation(), diag::note_previous_definition);
4594      Specialization->setInvalidDecl();
4595      return true;
4596    }
4597  }
4598
4599  if (Attr)
4600    ProcessDeclAttributeList(S, Specialization, Attr);
4601
4602  // Build the fully-sugared type for this class template
4603  // specialization as the user wrote in the specialization
4604  // itself. This means that we'll pretty-print the type retrieved
4605  // from the specialization's declaration the way that the user
4606  // actually wrote the specialization, rather than formatting the
4607  // name based on the "canonical" representation used to store the
4608  // template arguments in the specialization.
4609  TypeSourceInfo *WrittenTy
4610    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4611                                                TemplateArgs, CanonType);
4612  if (TUK != TUK_Friend) {
4613    Specialization->setTypeAsWritten(WrittenTy);
4614    if (TemplateParams)
4615      Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc());
4616  }
4617  TemplateArgsIn.release();
4618
4619  // C++ [temp.expl.spec]p9:
4620  //   A template explicit specialization is in the scope of the
4621  //   namespace in which the template was defined.
4622  //
4623  // We actually implement this paragraph where we set the semantic
4624  // context (in the creation of the ClassTemplateSpecializationDecl),
4625  // but we also maintain the lexical context where the actual
4626  // definition occurs.
4627  Specialization->setLexicalDeclContext(CurContext);
4628
4629  // We may be starting the definition of this specialization.
4630  if (TUK == TUK_Definition)
4631    Specialization->startDefinition();
4632
4633  if (TUK == TUK_Friend) {
4634    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
4635                                            TemplateNameLoc,
4636                                            WrittenTy,
4637                                            /*FIXME:*/KWLoc);
4638    Friend->setAccess(AS_public);
4639    CurContext->addDecl(Friend);
4640  } else {
4641    // Add the specialization into its lexical context, so that it can
4642    // be seen when iterating through the list of declarations in that
4643    // context. However, specializations are not found by name lookup.
4644    CurContext->addDecl(Specialization);
4645  }
4646  return Specialization;
4647}
4648
4649Decl *Sema::ActOnTemplateDeclarator(Scope *S,
4650                              MultiTemplateParamsArg TemplateParameterLists,
4651                                    Declarator &D) {
4652  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
4653}
4654
4655Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
4656                               MultiTemplateParamsArg TemplateParameterLists,
4657                                            Declarator &D) {
4658  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4659  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4660
4661  if (FTI.hasPrototype) {
4662    // FIXME: Diagnose arguments without names in C.
4663  }
4664
4665  Scope *ParentScope = FnBodyScope->getParent();
4666
4667  Decl *DP = HandleDeclarator(ParentScope, D,
4668                              move(TemplateParameterLists),
4669                              /*IsFunctionDefinition=*/true);
4670  if (FunctionTemplateDecl *FunctionTemplate
4671        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
4672    return ActOnStartOfFunctionDef(FnBodyScope,
4673                                   FunctionTemplate->getTemplatedDecl());
4674  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
4675    return ActOnStartOfFunctionDef(FnBodyScope, Function);
4676  return 0;
4677}
4678
4679/// \brief Strips various properties off an implicit instantiation
4680/// that has just been explicitly specialized.
4681static void StripImplicitInstantiation(NamedDecl *D) {
4682  D->dropAttrs();
4683
4684  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4685    FD->setInlineSpecified(false);
4686  }
4687}
4688
4689/// \brief Diagnose cases where we have an explicit template specialization
4690/// before/after an explicit template instantiation, producing diagnostics
4691/// for those cases where they are required and determining whether the
4692/// new specialization/instantiation will have any effect.
4693///
4694/// \param NewLoc the location of the new explicit specialization or
4695/// instantiation.
4696///
4697/// \param NewTSK the kind of the new explicit specialization or instantiation.
4698///
4699/// \param PrevDecl the previous declaration of the entity.
4700///
4701/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4702///
4703/// \param PrevPointOfInstantiation if valid, indicates where the previus
4704/// declaration was instantiated (either implicitly or explicitly).
4705///
4706/// \param HasNoEffect will be set to true to indicate that the new
4707/// specialization or instantiation has no effect and should be ignored.
4708///
4709/// \returns true if there was an error that should prevent the introduction of
4710/// the new declaration into the AST, false otherwise.
4711bool
4712Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4713                                             TemplateSpecializationKind NewTSK,
4714                                             NamedDecl *PrevDecl,
4715                                             TemplateSpecializationKind PrevTSK,
4716                                        SourceLocation PrevPointOfInstantiation,
4717                                             bool &HasNoEffect) {
4718  HasNoEffect = false;
4719
4720  switch (NewTSK) {
4721  case TSK_Undeclared:
4722  case TSK_ImplicitInstantiation:
4723    assert(false && "Don't check implicit instantiations here");
4724    return false;
4725
4726  case TSK_ExplicitSpecialization:
4727    switch (PrevTSK) {
4728    case TSK_Undeclared:
4729    case TSK_ExplicitSpecialization:
4730      // Okay, we're just specializing something that is either already
4731      // explicitly specialized or has merely been mentioned without any
4732      // instantiation.
4733      return false;
4734
4735    case TSK_ImplicitInstantiation:
4736      if (PrevPointOfInstantiation.isInvalid()) {
4737        // The declaration itself has not actually been instantiated, so it is
4738        // still okay to specialize it.
4739        StripImplicitInstantiation(PrevDecl);
4740        return false;
4741      }
4742      // Fall through
4743
4744    case TSK_ExplicitInstantiationDeclaration:
4745    case TSK_ExplicitInstantiationDefinition:
4746      assert((PrevTSK == TSK_ImplicitInstantiation ||
4747              PrevPointOfInstantiation.isValid()) &&
4748             "Explicit instantiation without point of instantiation?");
4749
4750      // C++ [temp.expl.spec]p6:
4751      //   If a template, a member template or the member of a class template
4752      //   is explicitly specialized then that specialization shall be declared
4753      //   before the first use of that specialization that would cause an
4754      //   implicit instantiation to take place, in every translation unit in
4755      //   which such a use occurs; no diagnostic is required.
4756      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4757        // Is there any previous explicit specialization declaration?
4758        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4759          return false;
4760      }
4761
4762      Diag(NewLoc, diag::err_specialization_after_instantiation)
4763        << PrevDecl;
4764      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4765        << (PrevTSK != TSK_ImplicitInstantiation);
4766
4767      return true;
4768    }
4769    break;
4770
4771  case TSK_ExplicitInstantiationDeclaration:
4772    switch (PrevTSK) {
4773    case TSK_ExplicitInstantiationDeclaration:
4774      // This explicit instantiation declaration is redundant (that's okay).
4775      HasNoEffect = true;
4776      return false;
4777
4778    case TSK_Undeclared:
4779    case TSK_ImplicitInstantiation:
4780      // We're explicitly instantiating something that may have already been
4781      // implicitly instantiated; that's fine.
4782      return false;
4783
4784    case TSK_ExplicitSpecialization:
4785      // C++0x [temp.explicit]p4:
4786      //   For a given set of template parameters, if an explicit instantiation
4787      //   of a template appears after a declaration of an explicit
4788      //   specialization for that template, the explicit instantiation has no
4789      //   effect.
4790      HasNoEffect = true;
4791      return false;
4792
4793    case TSK_ExplicitInstantiationDefinition:
4794      // C++0x [temp.explicit]p10:
4795      //   If an entity is the subject of both an explicit instantiation
4796      //   declaration and an explicit instantiation definition in the same
4797      //   translation unit, the definition shall follow the declaration.
4798      Diag(NewLoc,
4799           diag::err_explicit_instantiation_declaration_after_definition);
4800      Diag(PrevPointOfInstantiation,
4801           diag::note_explicit_instantiation_definition_here);
4802      assert(PrevPointOfInstantiation.isValid() &&
4803             "Explicit instantiation without point of instantiation?");
4804      HasNoEffect = true;
4805      return false;
4806    }
4807    break;
4808
4809  case TSK_ExplicitInstantiationDefinition:
4810    switch (PrevTSK) {
4811    case TSK_Undeclared:
4812    case TSK_ImplicitInstantiation:
4813      // We're explicitly instantiating something that may have already been
4814      // implicitly instantiated; that's fine.
4815      return false;
4816
4817    case TSK_ExplicitSpecialization:
4818      // C++ DR 259, C++0x [temp.explicit]p4:
4819      //   For a given set of template parameters, if an explicit
4820      //   instantiation of a template appears after a declaration of
4821      //   an explicit specialization for that template, the explicit
4822      //   instantiation has no effect.
4823      //
4824      // In C++98/03 mode, we only give an extension warning here, because it
4825      // is not harmful to try to explicitly instantiate something that
4826      // has been explicitly specialized.
4827      if (!getLangOptions().CPlusPlus0x) {
4828        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4829          << PrevDecl;
4830        Diag(PrevDecl->getLocation(),
4831             diag::note_previous_template_specialization);
4832      }
4833      HasNoEffect = true;
4834      return false;
4835
4836    case TSK_ExplicitInstantiationDeclaration:
4837      // We're explicity instantiating a definition for something for which we
4838      // were previously asked to suppress instantiations. That's fine.
4839      return false;
4840
4841    case TSK_ExplicitInstantiationDefinition:
4842      // C++0x [temp.spec]p5:
4843      //   For a given template and a given set of template-arguments,
4844      //     - an explicit instantiation definition shall appear at most once
4845      //       in a program,
4846      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4847        << PrevDecl;
4848      Diag(PrevPointOfInstantiation,
4849           diag::note_previous_explicit_instantiation);
4850      HasNoEffect = true;
4851      return false;
4852    }
4853    break;
4854  }
4855
4856  assert(false && "Missing specialization/instantiation case?");
4857
4858  return false;
4859}
4860
4861/// \brief Perform semantic analysis for the given dependent function
4862/// template specialization.  The only possible way to get a dependent
4863/// function template specialization is with a friend declaration,
4864/// like so:
4865///
4866///   template <class T> void foo(T);
4867///   template <class T> class A {
4868///     friend void foo<>(T);
4869///   };
4870///
4871/// There really isn't any useful analysis we can do here, so we
4872/// just store the information.
4873bool
4874Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
4875                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
4876                                                   LookupResult &Previous) {
4877  // Remove anything from Previous that isn't a function template in
4878  // the correct context.
4879  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4880  LookupResult::Filter F = Previous.makeFilter();
4881  while (F.hasNext()) {
4882    NamedDecl *D = F.next()->getUnderlyingDecl();
4883    if (!isa<FunctionTemplateDecl>(D) ||
4884        !FDLookupContext->InEnclosingNamespaceSetOf(
4885                              D->getDeclContext()->getRedeclContext()))
4886      F.erase();
4887  }
4888  F.done();
4889
4890  // Should this be diagnosed here?
4891  if (Previous.empty()) return true;
4892
4893  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
4894                                         ExplicitTemplateArgs);
4895  return false;
4896}
4897
4898/// \brief Perform semantic analysis for the given function template
4899/// specialization.
4900///
4901/// This routine performs all of the semantic analysis required for an
4902/// explicit function template specialization. On successful completion,
4903/// the function declaration \p FD will become a function template
4904/// specialization.
4905///
4906/// \param FD the function declaration, which will be updated to become a
4907/// function template specialization.
4908///
4909/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4910/// if any. Note that this may be valid info even when 0 arguments are
4911/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
4912/// as it anyway contains info on the angle brackets locations.
4913///
4914/// \param PrevDecl the set of declarations that may be specialized by
4915/// this function specialization.
4916bool
4917Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4918                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
4919                                          LookupResult &Previous) {
4920  // The set of function template specializations that could match this
4921  // explicit function template specialization.
4922  UnresolvedSet<8> Candidates;
4923
4924  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4925  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4926         I != E; ++I) {
4927    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4928    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4929      // Only consider templates found within the same semantic lookup scope as
4930      // FD.
4931      if (!FDLookupContext->InEnclosingNamespaceSetOf(
4932                                Ovl->getDeclContext()->getRedeclContext()))
4933        continue;
4934
4935      // C++ [temp.expl.spec]p11:
4936      //   A trailing template-argument can be left unspecified in the
4937      //   template-id naming an explicit function template specialization
4938      //   provided it can be deduced from the function argument type.
4939      // Perform template argument deduction to determine whether we may be
4940      // specializing this template.
4941      // FIXME: It is somewhat wasteful to build
4942      TemplateDeductionInfo Info(Context, FD->getLocation());
4943      FunctionDecl *Specialization = 0;
4944      if (TemplateDeductionResult TDK
4945            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4946                                      FD->getType(),
4947                                      Specialization,
4948                                      Info)) {
4949        // FIXME: Template argument deduction failed; record why it failed, so
4950        // that we can provide nifty diagnostics.
4951        (void)TDK;
4952        continue;
4953      }
4954
4955      // Record this candidate.
4956      Candidates.addDecl(Specialization, I.getAccess());
4957    }
4958  }
4959
4960  // Find the most specialized function template.
4961  UnresolvedSetIterator Result
4962    = getMostSpecialized(Candidates.begin(), Candidates.end(),
4963                         TPOC_Other, 0, FD->getLocation(),
4964                  PDiag(diag::err_function_template_spec_no_match)
4965                    << FD->getDeclName(),
4966                  PDiag(diag::err_function_template_spec_ambiguous)
4967                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4968                  PDiag(diag::note_function_template_spec_matched));
4969  if (Result == Candidates.end())
4970    return true;
4971
4972  // Ignore access information;  it doesn't figure into redeclaration checking.
4973  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4974  Specialization->setLocation(FD->getLocation());
4975
4976  // FIXME: Check if the prior specialization has a point of instantiation.
4977  // If so, we have run afoul of .
4978
4979  // If this is a friend declaration, then we're not really declaring
4980  // an explicit specialization.
4981  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4982
4983  // Check the scope of this explicit specialization.
4984  if (!isFriend &&
4985      CheckTemplateSpecializationScope(*this,
4986                                       Specialization->getPrimaryTemplate(),
4987                                       Specialization, FD->getLocation(),
4988                                       false))
4989    return true;
4990
4991  // C++ [temp.expl.spec]p6:
4992  //   If a template, a member template or the member of a class template is
4993  //   explicitly specialized then that specialization shall be declared
4994  //   before the first use of that specialization that would cause an implicit
4995  //   instantiation to take place, in every translation unit in which such a
4996  //   use occurs; no diagnostic is required.
4997  FunctionTemplateSpecializationInfo *SpecInfo
4998    = Specialization->getTemplateSpecializationInfo();
4999  assert(SpecInfo && "Function template specialization info missing?");
5000
5001  bool HasNoEffect = false;
5002  if (!isFriend &&
5003      CheckSpecializationInstantiationRedecl(FD->getLocation(),
5004                                             TSK_ExplicitSpecialization,
5005                                             Specialization,
5006                                   SpecInfo->getTemplateSpecializationKind(),
5007                                         SpecInfo->getPointOfInstantiation(),
5008                                             HasNoEffect))
5009    return true;
5010
5011  // Mark the prior declaration as an explicit specialization, so that later
5012  // clients know that this is an explicit specialization.
5013  if (!isFriend) {
5014    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
5015    MarkUnusedFileScopedDecl(Specialization);
5016  }
5017
5018  // Turn the given function declaration into a function template
5019  // specialization, with the template arguments from the previous
5020  // specialization.
5021  // Take copies of (semantic and syntactic) template argument lists.
5022  const TemplateArgumentList* TemplArgs = new (Context)
5023    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
5024  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
5025    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
5026  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
5027                                        TemplArgs, /*InsertPos=*/0,
5028                                    SpecInfo->getTemplateSpecializationKind(),
5029                                        TemplArgsAsWritten);
5030
5031  // The "previous declaration" for this function template specialization is
5032  // the prior function template specialization.
5033  Previous.clear();
5034  Previous.addDecl(Specialization);
5035  return false;
5036}
5037
5038/// \brief Perform semantic analysis for the given non-template member
5039/// specialization.
5040///
5041/// This routine performs all of the semantic analysis required for an
5042/// explicit member function specialization. On successful completion,
5043/// the function declaration \p FD will become a member function
5044/// specialization.
5045///
5046/// \param Member the member declaration, which will be updated to become a
5047/// specialization.
5048///
5049/// \param Previous the set of declarations, one of which may be specialized
5050/// by this function specialization;  the set will be modified to contain the
5051/// redeclared member.
5052bool
5053Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
5054  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
5055
5056  // Try to find the member we are instantiating.
5057  NamedDecl *Instantiation = 0;
5058  NamedDecl *InstantiatedFrom = 0;
5059  MemberSpecializationInfo *MSInfo = 0;
5060
5061  if (Previous.empty()) {
5062    // Nowhere to look anyway.
5063  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
5064    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5065           I != E; ++I) {
5066      NamedDecl *D = (*I)->getUnderlyingDecl();
5067      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5068        if (Context.hasSameType(Function->getType(), Method->getType())) {
5069          Instantiation = Method;
5070          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
5071          MSInfo = Method->getMemberSpecializationInfo();
5072          break;
5073        }
5074      }
5075    }
5076  } else if (isa<VarDecl>(Member)) {
5077    VarDecl *PrevVar;
5078    if (Previous.isSingleResult() &&
5079        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
5080      if (PrevVar->isStaticDataMember()) {
5081        Instantiation = PrevVar;
5082        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
5083        MSInfo = PrevVar->getMemberSpecializationInfo();
5084      }
5085  } else if (isa<RecordDecl>(Member)) {
5086    CXXRecordDecl *PrevRecord;
5087    if (Previous.isSingleResult() &&
5088        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
5089      Instantiation = PrevRecord;
5090      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
5091      MSInfo = PrevRecord->getMemberSpecializationInfo();
5092    }
5093  }
5094
5095  if (!Instantiation) {
5096    // There is no previous declaration that matches. Since member
5097    // specializations are always out-of-line, the caller will complain about
5098    // this mismatch later.
5099    return false;
5100  }
5101
5102  // If this is a friend, just bail out here before we start turning
5103  // things into explicit specializations.
5104  if (Member->getFriendObjectKind() != Decl::FOK_None) {
5105    // Preserve instantiation information.
5106    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
5107      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
5108                                      cast<CXXMethodDecl>(InstantiatedFrom),
5109        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
5110    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
5111      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5112                                      cast<CXXRecordDecl>(InstantiatedFrom),
5113        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
5114    }
5115
5116    Previous.clear();
5117    Previous.addDecl(Instantiation);
5118    return false;
5119  }
5120
5121  // Make sure that this is a specialization of a member.
5122  if (!InstantiatedFrom) {
5123    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
5124      << Member;
5125    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
5126    return true;
5127  }
5128
5129  // C++ [temp.expl.spec]p6:
5130  //   If a template, a member template or the member of a class template is
5131  //   explicitly specialized then that spe- cialization shall be declared
5132  //   before the first use of that specialization that would cause an implicit
5133  //   instantiation to take place, in every translation unit in which such a
5134  //   use occurs; no diagnostic is required.
5135  assert(MSInfo && "Member specialization info missing?");
5136
5137  bool HasNoEffect = false;
5138  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
5139                                             TSK_ExplicitSpecialization,
5140                                             Instantiation,
5141                                     MSInfo->getTemplateSpecializationKind(),
5142                                           MSInfo->getPointOfInstantiation(),
5143                                             HasNoEffect))
5144    return true;
5145
5146  // Check the scope of this explicit specialization.
5147  if (CheckTemplateSpecializationScope(*this,
5148                                       InstantiatedFrom,
5149                                       Instantiation, Member->getLocation(),
5150                                       false))
5151    return true;
5152
5153  // Note that this is an explicit instantiation of a member.
5154  // the original declaration to note that it is an explicit specialization
5155  // (if it was previously an implicit instantiation). This latter step
5156  // makes bookkeeping easier.
5157  if (isa<FunctionDecl>(Member)) {
5158    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
5159    if (InstantiationFunction->getTemplateSpecializationKind() ==
5160          TSK_ImplicitInstantiation) {
5161      InstantiationFunction->setTemplateSpecializationKind(
5162                                                  TSK_ExplicitSpecialization);
5163      InstantiationFunction->setLocation(Member->getLocation());
5164    }
5165
5166    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
5167                                        cast<CXXMethodDecl>(InstantiatedFrom),
5168                                                  TSK_ExplicitSpecialization);
5169    MarkUnusedFileScopedDecl(InstantiationFunction);
5170  } else if (isa<VarDecl>(Member)) {
5171    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
5172    if (InstantiationVar->getTemplateSpecializationKind() ==
5173          TSK_ImplicitInstantiation) {
5174      InstantiationVar->setTemplateSpecializationKind(
5175                                                  TSK_ExplicitSpecialization);
5176      InstantiationVar->setLocation(Member->getLocation());
5177    }
5178
5179    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
5180                                                cast<VarDecl>(InstantiatedFrom),
5181                                                TSK_ExplicitSpecialization);
5182    MarkUnusedFileScopedDecl(InstantiationVar);
5183  } else {
5184    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
5185    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
5186    if (InstantiationClass->getTemplateSpecializationKind() ==
5187          TSK_ImplicitInstantiation) {
5188      InstantiationClass->setTemplateSpecializationKind(
5189                                                   TSK_ExplicitSpecialization);
5190      InstantiationClass->setLocation(Member->getLocation());
5191    }
5192
5193    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5194                                        cast<CXXRecordDecl>(InstantiatedFrom),
5195                                                   TSK_ExplicitSpecialization);
5196  }
5197
5198  // Save the caller the trouble of having to figure out which declaration
5199  // this specialization matches.
5200  Previous.clear();
5201  Previous.addDecl(Instantiation);
5202  return false;
5203}
5204
5205/// \brief Check the scope of an explicit instantiation.
5206///
5207/// \returns true if a serious error occurs, false otherwise.
5208static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
5209                                            SourceLocation InstLoc,
5210                                            bool WasQualifiedName) {
5211  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
5212  DeclContext *CurContext = S.CurContext->getRedeclContext();
5213
5214  if (CurContext->isRecord()) {
5215    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
5216      << D;
5217    return true;
5218  }
5219
5220  // C++0x [temp.explicit]p2:
5221  //   An explicit instantiation shall appear in an enclosing namespace of its
5222  //   template.
5223  //
5224  // This is DR275, which we do not retroactively apply to C++98/03.
5225  if (S.getLangOptions().CPlusPlus0x &&
5226      !CurContext->Encloses(OrigContext)) {
5227    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext))
5228      S.Diag(InstLoc,
5229             S.getLangOptions().CPlusPlus0x?
5230                 diag::err_explicit_instantiation_out_of_scope
5231               : diag::warn_explicit_instantiation_out_of_scope_0x)
5232        << D << NS;
5233    else
5234      S.Diag(InstLoc,
5235             S.getLangOptions().CPlusPlus0x?
5236                 diag::err_explicit_instantiation_must_be_global
5237               : diag::warn_explicit_instantiation_out_of_scope_0x)
5238        << D;
5239    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5240    return false;
5241  }
5242
5243  // C++0x [temp.explicit]p2:
5244  //   If the name declared in the explicit instantiation is an unqualified
5245  //   name, the explicit instantiation shall appear in the namespace where
5246  //   its template is declared or, if that namespace is inline (7.3.1), any
5247  //   namespace from its enclosing namespace set.
5248  if (WasQualifiedName)
5249    return false;
5250
5251  if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
5252    return false;
5253
5254  S.Diag(InstLoc,
5255         S.getLangOptions().CPlusPlus0x?
5256             diag::err_explicit_instantiation_unqualified_wrong_namespace
5257           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
5258    << D << OrigContext;
5259  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5260  return false;
5261}
5262
5263/// \brief Determine whether the given scope specifier has a template-id in it.
5264static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
5265  if (!SS.isSet())
5266    return false;
5267
5268  // C++0x [temp.explicit]p2:
5269  //   If the explicit instantiation is for a member function, a member class
5270  //   or a static data member of a class template specialization, the name of
5271  //   the class template specialization in the qualified-id for the member
5272  //   name shall be a simple-template-id.
5273  //
5274  // C++98 has the same restriction, just worded differently.
5275  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
5276       NNS; NNS = NNS->getPrefix())
5277    if (const Type *T = NNS->getAsType())
5278      if (isa<TemplateSpecializationType>(T))
5279        return true;
5280
5281  return false;
5282}
5283
5284// Explicit instantiation of a class template specialization
5285DeclResult
5286Sema::ActOnExplicitInstantiation(Scope *S,
5287                                 SourceLocation ExternLoc,
5288                                 SourceLocation TemplateLoc,
5289                                 unsigned TagSpec,
5290                                 SourceLocation KWLoc,
5291                                 const CXXScopeSpec &SS,
5292                                 TemplateTy TemplateD,
5293                                 SourceLocation TemplateNameLoc,
5294                                 SourceLocation LAngleLoc,
5295                                 ASTTemplateArgsPtr TemplateArgsIn,
5296                                 SourceLocation RAngleLoc,
5297                                 AttributeList *Attr) {
5298  // Find the class template we're specializing
5299  TemplateName Name = TemplateD.getAsVal<TemplateName>();
5300  ClassTemplateDecl *ClassTemplate
5301    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
5302
5303  // Check that the specialization uses the same tag kind as the
5304  // original template.
5305  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5306  assert(Kind != TTK_Enum &&
5307         "Invalid enum tag in class template explicit instantiation!");
5308  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5309                                    Kind, KWLoc,
5310                                    *ClassTemplate->getIdentifier())) {
5311    Diag(KWLoc, diag::err_use_with_wrong_tag)
5312      << ClassTemplate
5313      << FixItHint::CreateReplacement(KWLoc,
5314                            ClassTemplate->getTemplatedDecl()->getKindName());
5315    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5316         diag::note_previous_use);
5317    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5318  }
5319
5320  // C++0x [temp.explicit]p2:
5321  //   There are two forms of explicit instantiation: an explicit instantiation
5322  //   definition and an explicit instantiation declaration. An explicit
5323  //   instantiation declaration begins with the extern keyword. [...]
5324  TemplateSpecializationKind TSK
5325    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5326                           : TSK_ExplicitInstantiationDeclaration;
5327
5328  // Translate the parser's template argument list in our AST format.
5329  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
5330  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5331
5332  // Check that the template argument list is well-formed for this
5333  // template.
5334  llvm::SmallVector<TemplateArgument, 4> Converted;
5335  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5336                                TemplateArgs, false, Converted))
5337    return true;
5338
5339  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
5340         "Converted template argument list is too short!");
5341
5342  // Find the class template specialization declaration that
5343  // corresponds to these arguments.
5344  void *InsertPos = 0;
5345  ClassTemplateSpecializationDecl *PrevDecl
5346    = ClassTemplate->findSpecialization(Converted.data(),
5347                                        Converted.size(), InsertPos);
5348
5349  TemplateSpecializationKind PrevDecl_TSK
5350    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
5351
5352  // C++0x [temp.explicit]p2:
5353  //   [...] An explicit instantiation shall appear in an enclosing
5354  //   namespace of its template. [...]
5355  //
5356  // This is C++ DR 275.
5357  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
5358                                      SS.isSet()))
5359    return true;
5360
5361  ClassTemplateSpecializationDecl *Specialization = 0;
5362
5363  bool HasNoEffect = false;
5364  if (PrevDecl) {
5365    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
5366                                               PrevDecl, PrevDecl_TSK,
5367                                            PrevDecl->getPointOfInstantiation(),
5368                                               HasNoEffect))
5369      return PrevDecl;
5370
5371    // Even though HasNoEffect == true means that this explicit instantiation
5372    // has no effect on semantics, we go on to put its syntax in the AST.
5373
5374    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
5375        PrevDecl_TSK == TSK_Undeclared) {
5376      // Since the only prior class template specialization with these
5377      // arguments was referenced but not declared, reuse that
5378      // declaration node as our own, updating the source location
5379      // for the template name to reflect our new declaration.
5380      // (Other source locations will be updated later.)
5381      Specialization = PrevDecl;
5382      Specialization->setLocation(TemplateNameLoc);
5383      PrevDecl = 0;
5384    }
5385  }
5386
5387  if (!Specialization) {
5388    // Create a new class template specialization declaration node for
5389    // this explicit specialization.
5390    Specialization
5391      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5392                                             ClassTemplate->getDeclContext(),
5393                                                TemplateNameLoc,
5394                                                ClassTemplate,
5395                                                Converted.data(),
5396                                                Converted.size(),
5397                                                PrevDecl);
5398    SetNestedNameSpecifier(Specialization, SS);
5399
5400    if (!HasNoEffect && !PrevDecl) {
5401      // Insert the new specialization.
5402      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5403    }
5404  }
5405
5406  // Build the fully-sugared type for this explicit instantiation as
5407  // the user wrote in the explicit instantiation itself. This means
5408  // that we'll pretty-print the type retrieved from the
5409  // specialization's declaration the way that the user actually wrote
5410  // the explicit instantiation, rather than formatting the name based
5411  // on the "canonical" representation used to store the template
5412  // arguments in the specialization.
5413  TypeSourceInfo *WrittenTy
5414    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5415                                                TemplateArgs,
5416                                  Context.getTypeDeclType(Specialization));
5417  Specialization->setTypeAsWritten(WrittenTy);
5418  TemplateArgsIn.release();
5419
5420  // Set source locations for keywords.
5421  Specialization->setExternLoc(ExternLoc);
5422  Specialization->setTemplateKeywordLoc(TemplateLoc);
5423
5424  // Add the explicit instantiation into its lexical context. However,
5425  // since explicit instantiations are never found by name lookup, we
5426  // just put it into the declaration context directly.
5427  Specialization->setLexicalDeclContext(CurContext);
5428  CurContext->addDecl(Specialization);
5429
5430  // Syntax is now OK, so return if it has no other effect on semantics.
5431  if (HasNoEffect) {
5432    // Set the template specialization kind.
5433    Specialization->setTemplateSpecializationKind(TSK);
5434    return Specialization;
5435  }
5436
5437  // C++ [temp.explicit]p3:
5438  //   A definition of a class template or class member template
5439  //   shall be in scope at the point of the explicit instantiation of
5440  //   the class template or class member template.
5441  //
5442  // This check comes when we actually try to perform the
5443  // instantiation.
5444  ClassTemplateSpecializationDecl *Def
5445    = cast_or_null<ClassTemplateSpecializationDecl>(
5446                                              Specialization->getDefinition());
5447  if (!Def)
5448    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
5449  else if (TSK == TSK_ExplicitInstantiationDefinition) {
5450    MarkVTableUsed(TemplateNameLoc, Specialization, true);
5451    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
5452  }
5453
5454  // Instantiate the members of this class template specialization.
5455  Def = cast_or_null<ClassTemplateSpecializationDecl>(
5456                                       Specialization->getDefinition());
5457  if (Def) {
5458    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
5459
5460    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
5461    // TSK_ExplicitInstantiationDefinition
5462    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
5463        TSK == TSK_ExplicitInstantiationDefinition)
5464      Def->setTemplateSpecializationKind(TSK);
5465
5466    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
5467  }
5468
5469  // Set the template specialization kind.
5470  Specialization->setTemplateSpecializationKind(TSK);
5471  return Specialization;
5472}
5473
5474// Explicit instantiation of a member class of a class template.
5475DeclResult
5476Sema::ActOnExplicitInstantiation(Scope *S,
5477                                 SourceLocation ExternLoc,
5478                                 SourceLocation TemplateLoc,
5479                                 unsigned TagSpec,
5480                                 SourceLocation KWLoc,
5481                                 CXXScopeSpec &SS,
5482                                 IdentifierInfo *Name,
5483                                 SourceLocation NameLoc,
5484                                 AttributeList *Attr) {
5485
5486  bool Owned = false;
5487  bool IsDependent = false;
5488  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
5489                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
5490                        MultiTemplateParamsArg(*this, 0, 0),
5491                        Owned, IsDependent, false, false,
5492                        TypeResult());
5493  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
5494
5495  if (!TagD)
5496    return true;
5497
5498  TagDecl *Tag = cast<TagDecl>(TagD);
5499  if (Tag->isEnum()) {
5500    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
5501      << Context.getTypeDeclType(Tag);
5502    return true;
5503  }
5504
5505  if (Tag->isInvalidDecl())
5506    return true;
5507
5508  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
5509  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
5510  if (!Pattern) {
5511    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
5512      << Context.getTypeDeclType(Record);
5513    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
5514    return true;
5515  }
5516
5517  // C++0x [temp.explicit]p2:
5518  //   If the explicit instantiation is for a class or member class, the
5519  //   elaborated-type-specifier in the declaration shall include a
5520  //   simple-template-id.
5521  //
5522  // C++98 has the same restriction, just worded differently.
5523  if (!ScopeSpecifierHasTemplateId(SS))
5524    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
5525      << Record << SS.getRange();
5526
5527  // C++0x [temp.explicit]p2:
5528  //   There are two forms of explicit instantiation: an explicit instantiation
5529  //   definition and an explicit instantiation declaration. An explicit
5530  //   instantiation declaration begins with the extern keyword. [...]
5531  TemplateSpecializationKind TSK
5532    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5533                           : TSK_ExplicitInstantiationDeclaration;
5534
5535  // C++0x [temp.explicit]p2:
5536  //   [...] An explicit instantiation shall appear in an enclosing
5537  //   namespace of its template. [...]
5538  //
5539  // This is C++ DR 275.
5540  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
5541
5542  // Verify that it is okay to explicitly instantiate here.
5543  CXXRecordDecl *PrevDecl
5544    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
5545  if (!PrevDecl && Record->getDefinition())
5546    PrevDecl = Record;
5547  if (PrevDecl) {
5548    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
5549    bool HasNoEffect = false;
5550    assert(MSInfo && "No member specialization information?");
5551    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
5552                                               PrevDecl,
5553                                        MSInfo->getTemplateSpecializationKind(),
5554                                             MSInfo->getPointOfInstantiation(),
5555                                               HasNoEffect))
5556      return true;
5557    if (HasNoEffect)
5558      return TagD;
5559  }
5560
5561  CXXRecordDecl *RecordDef
5562    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5563  if (!RecordDef) {
5564    // C++ [temp.explicit]p3:
5565    //   A definition of a member class of a class template shall be in scope
5566    //   at the point of an explicit instantiation of the member class.
5567    CXXRecordDecl *Def
5568      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
5569    if (!Def) {
5570      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
5571        << 0 << Record->getDeclName() << Record->getDeclContext();
5572      Diag(Pattern->getLocation(), diag::note_forward_declaration)
5573        << Pattern;
5574      return true;
5575    } else {
5576      if (InstantiateClass(NameLoc, Record, Def,
5577                           getTemplateInstantiationArgs(Record),
5578                           TSK))
5579        return true;
5580
5581      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5582      if (!RecordDef)
5583        return true;
5584    }
5585  }
5586
5587  // Instantiate all of the members of the class.
5588  InstantiateClassMembers(NameLoc, RecordDef,
5589                          getTemplateInstantiationArgs(Record), TSK);
5590
5591  if (TSK == TSK_ExplicitInstantiationDefinition)
5592    MarkVTableUsed(NameLoc, RecordDef, true);
5593
5594  // FIXME: We don't have any representation for explicit instantiations of
5595  // member classes. Such a representation is not needed for compilation, but it
5596  // should be available for clients that want to see all of the declarations in
5597  // the source code.
5598  return TagD;
5599}
5600
5601DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
5602                                            SourceLocation ExternLoc,
5603                                            SourceLocation TemplateLoc,
5604                                            Declarator &D) {
5605  // Explicit instantiations always require a name.
5606  // TODO: check if/when DNInfo should replace Name.
5607  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5608  DeclarationName Name = NameInfo.getName();
5609  if (!Name) {
5610    if (!D.isInvalidType())
5611      Diag(D.getDeclSpec().getSourceRange().getBegin(),
5612           diag::err_explicit_instantiation_requires_name)
5613        << D.getDeclSpec().getSourceRange()
5614        << D.getSourceRange();
5615
5616    return true;
5617  }
5618
5619  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5620  // we find one that is.
5621  while ((S->getFlags() & Scope::DeclScope) == 0 ||
5622         (S->getFlags() & Scope::TemplateParamScope) != 0)
5623    S = S->getParent();
5624
5625  // Determine the type of the declaration.
5626  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
5627  QualType R = T->getType();
5628  if (R.isNull())
5629    return true;
5630
5631  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5632    // Cannot explicitly instantiate a typedef.
5633    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
5634      << Name;
5635    return true;
5636  }
5637
5638  // C++0x [temp.explicit]p1:
5639  //   [...] An explicit instantiation of a function template shall not use the
5640  //   inline or constexpr specifiers.
5641  // Presumably, this also applies to member functions of class templates as
5642  // well.
5643  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
5644    Diag(D.getDeclSpec().getInlineSpecLoc(),
5645         diag::err_explicit_instantiation_inline)
5646      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5647
5648  // FIXME: check for constexpr specifier.
5649
5650  // C++0x [temp.explicit]p2:
5651  //   There are two forms of explicit instantiation: an explicit instantiation
5652  //   definition and an explicit instantiation declaration. An explicit
5653  //   instantiation declaration begins with the extern keyword. [...]
5654  TemplateSpecializationKind TSK
5655    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5656                           : TSK_ExplicitInstantiationDeclaration;
5657
5658  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
5659  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
5660
5661  if (!R->isFunctionType()) {
5662    // C++ [temp.explicit]p1:
5663    //   A [...] static data member of a class template can be explicitly
5664    //   instantiated from the member definition associated with its class
5665    //   template.
5666    if (Previous.isAmbiguous())
5667      return true;
5668
5669    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
5670    if (!Prev || !Prev->isStaticDataMember()) {
5671      // We expect to see a data data member here.
5672      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
5673        << Name;
5674      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5675           P != PEnd; ++P)
5676        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
5677      return true;
5678    }
5679
5680    if (!Prev->getInstantiatedFromStaticDataMember()) {
5681      // FIXME: Check for explicit specialization?
5682      Diag(D.getIdentifierLoc(),
5683           diag::err_explicit_instantiation_data_member_not_instantiated)
5684        << Prev;
5685      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
5686      // FIXME: Can we provide a note showing where this was declared?
5687      return true;
5688    }
5689
5690    // C++0x [temp.explicit]p2:
5691    //   If the explicit instantiation is for a member function, a member class
5692    //   or a static data member of a class template specialization, the name of
5693    //   the class template specialization in the qualified-id for the member
5694    //   name shall be a simple-template-id.
5695    //
5696    // C++98 has the same restriction, just worded differently.
5697    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5698      Diag(D.getIdentifierLoc(),
5699           diag::ext_explicit_instantiation_without_qualified_id)
5700        << Prev << D.getCXXScopeSpec().getRange();
5701
5702    // Check the scope of this explicit instantiation.
5703    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
5704
5705    // Verify that it is okay to explicitly instantiate here.
5706    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
5707    assert(MSInfo && "Missing static data member specialization info?");
5708    bool HasNoEffect = false;
5709    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
5710                                        MSInfo->getTemplateSpecializationKind(),
5711                                              MSInfo->getPointOfInstantiation(),
5712                                               HasNoEffect))
5713      return true;
5714    if (HasNoEffect)
5715      return (Decl*) 0;
5716
5717    // Instantiate static data member.
5718    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5719    if (TSK == TSK_ExplicitInstantiationDefinition)
5720      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
5721
5722    // FIXME: Create an ExplicitInstantiation node?
5723    return (Decl*) 0;
5724  }
5725
5726  // If the declarator is a template-id, translate the parser's template
5727  // argument list into our AST format.
5728  bool HasExplicitTemplateArgs = false;
5729  TemplateArgumentListInfo TemplateArgs;
5730  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5731    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5732    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5733    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5734    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5735                                       TemplateId->getTemplateArgs(),
5736                                       TemplateId->NumArgs);
5737    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5738    HasExplicitTemplateArgs = true;
5739    TemplateArgsPtr.release();
5740  }
5741
5742  // C++ [temp.explicit]p1:
5743  //   A [...] function [...] can be explicitly instantiated from its template.
5744  //   A member function [...] of a class template can be explicitly
5745  //  instantiated from the member definition associated with its class
5746  //  template.
5747  UnresolvedSet<8> Matches;
5748  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5749       P != PEnd; ++P) {
5750    NamedDecl *Prev = *P;
5751    if (!HasExplicitTemplateArgs) {
5752      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5753        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5754          Matches.clear();
5755
5756          Matches.addDecl(Method, P.getAccess());
5757          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5758            break;
5759        }
5760      }
5761    }
5762
5763    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5764    if (!FunTmpl)
5765      continue;
5766
5767    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5768    FunctionDecl *Specialization = 0;
5769    if (TemplateDeductionResult TDK
5770          = DeduceTemplateArguments(FunTmpl,
5771                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5772                                    R, Specialization, Info)) {
5773      // FIXME: Keep track of almost-matches?
5774      (void)TDK;
5775      continue;
5776    }
5777
5778    Matches.addDecl(Specialization, P.getAccess());
5779  }
5780
5781  // Find the most specialized function template specialization.
5782  UnresolvedSetIterator Result
5783    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
5784                         D.getIdentifierLoc(),
5785                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
5786                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5787                         PDiag(diag::note_explicit_instantiation_candidate));
5788
5789  if (Result == Matches.end())
5790    return true;
5791
5792  // Ignore access control bits, we don't need them for redeclaration checking.
5793  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5794
5795  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5796    Diag(D.getIdentifierLoc(),
5797         diag::err_explicit_instantiation_member_function_not_instantiated)
5798      << Specialization
5799      << (Specialization->getTemplateSpecializationKind() ==
5800          TSK_ExplicitSpecialization);
5801    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5802    return true;
5803  }
5804
5805  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5806  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5807    PrevDecl = Specialization;
5808
5809  if (PrevDecl) {
5810    bool HasNoEffect = false;
5811    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5812                                               PrevDecl,
5813                                     PrevDecl->getTemplateSpecializationKind(),
5814                                          PrevDecl->getPointOfInstantiation(),
5815                                               HasNoEffect))
5816      return true;
5817
5818    // FIXME: We may still want to build some representation of this
5819    // explicit specialization.
5820    if (HasNoEffect)
5821      return (Decl*) 0;
5822  }
5823
5824  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5825
5826  if (TSK == TSK_ExplicitInstantiationDefinition)
5827    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
5828
5829  // C++0x [temp.explicit]p2:
5830  //   If the explicit instantiation is for a member function, a member class
5831  //   or a static data member of a class template specialization, the name of
5832  //   the class template specialization in the qualified-id for the member
5833  //   name shall be a simple-template-id.
5834  //
5835  // C++98 has the same restriction, just worded differently.
5836  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5837  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5838      D.getCXXScopeSpec().isSet() &&
5839      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5840    Diag(D.getIdentifierLoc(),
5841         diag::ext_explicit_instantiation_without_qualified_id)
5842    << Specialization << D.getCXXScopeSpec().getRange();
5843
5844  CheckExplicitInstantiationScope(*this,
5845                   FunTmpl? (NamedDecl *)FunTmpl
5846                          : Specialization->getInstantiatedFromMemberFunction(),
5847                                  D.getIdentifierLoc(),
5848                                  D.getCXXScopeSpec().isSet());
5849
5850  // FIXME: Create some kind of ExplicitInstantiationDecl here.
5851  return (Decl*) 0;
5852}
5853
5854TypeResult
5855Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5856                        const CXXScopeSpec &SS, IdentifierInfo *Name,
5857                        SourceLocation TagLoc, SourceLocation NameLoc) {
5858  // This has to hold, because SS is expected to be defined.
5859  assert(Name && "Expected a name in a dependent tag");
5860
5861  NestedNameSpecifier *NNS
5862    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5863  if (!NNS)
5864    return true;
5865
5866  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5867
5868  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
5869    Diag(NameLoc, diag::err_dependent_tag_decl)
5870      << (TUK == TUK_Definition) << Kind << SS.getRange();
5871    return true;
5872  }
5873
5874  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
5875  return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name));
5876}
5877
5878TypeResult
5879Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5880                        const CXXScopeSpec &SS, const IdentifierInfo &II,
5881                        SourceLocation IdLoc) {
5882  NestedNameSpecifier *NNS
5883    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5884  if (!NNS)
5885    return true;
5886
5887  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5888      !getLangOptions().CPlusPlus0x)
5889    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5890      << FixItHint::CreateRemoval(TypenameLoc);
5891
5892  QualType T = CheckTypenameType(ETK_Typename, NNS, II,
5893                                 TypenameLoc, SS.getRange(), IdLoc);
5894  if (T.isNull())
5895    return true;
5896
5897  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5898  if (isa<DependentNameType>(T)) {
5899    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5900    TL.setKeywordLoc(TypenameLoc);
5901    TL.setQualifierRange(SS.getRange());
5902    TL.setNameLoc(IdLoc);
5903  } else {
5904    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
5905    TL.setKeywordLoc(TypenameLoc);
5906    TL.setQualifierRange(SS.getRange());
5907    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
5908  }
5909
5910  return CreateParsedType(T, TSI);
5911}
5912
5913TypeResult
5914Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5915                        const CXXScopeSpec &SS, SourceLocation TemplateLoc,
5916                        ParsedType Ty) {
5917  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5918      !getLangOptions().CPlusPlus0x)
5919    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5920      << FixItHint::CreateRemoval(TypenameLoc);
5921
5922  TypeSourceInfo *InnerTSI = 0;
5923  QualType T = GetTypeFromParser(Ty, &InnerTSI);
5924
5925  assert(isa<TemplateSpecializationType>(T) &&
5926         "Expected a template specialization type");
5927
5928  if (computeDeclContext(SS, false)) {
5929    // If we can compute a declaration context, then the "typename"
5930    // keyword was superfluous. Just build an ElaboratedType to keep
5931    // track of the nested-name-specifier.
5932
5933    // Push the inner type, preserving its source locations if possible.
5934    TypeLocBuilder Builder;
5935    if (InnerTSI)
5936      Builder.pushFullCopy(InnerTSI->getTypeLoc());
5937    else
5938      Builder.push<TemplateSpecializationTypeLoc>(T).initialize(Context,
5939                                                                TemplateLoc);
5940
5941    /* Note: NNS already embedded in template specialization type T. */
5942    T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T);
5943    ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
5944    TL.setKeywordLoc(TypenameLoc);
5945    TL.setQualifierRange(SS.getRange());
5946
5947    TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
5948    return CreateParsedType(T, TSI);
5949  }
5950
5951  // TODO: it's really silly that we make a template specialization
5952  // type earlier only to drop it again here.
5953  const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
5954  DependentTemplateName *DTN =
5955    TST->getTemplateName().getAsDependentTemplateName();
5956  assert(DTN && "dependent template has non-dependent name?");
5957  assert(DTN->getQualifier()
5958         == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
5959  T = Context.getDependentTemplateSpecializationType(ETK_Typename,
5960                                                     DTN->getQualifier(),
5961                                                     DTN->getIdentifier(),
5962                                                     TST->getNumArgs(),
5963                                                     TST->getArgs());
5964  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5965  DependentTemplateSpecializationTypeLoc TL =
5966    cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc());
5967  if (InnerTSI) {
5968    TemplateSpecializationTypeLoc TSTL =
5969      cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc());
5970    TL.setLAngleLoc(TSTL.getLAngleLoc());
5971    TL.setRAngleLoc(TSTL.getRAngleLoc());
5972    for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I)
5973      TL.setArgLocInfo(I, TSTL.getArgLocInfo(I));
5974  } else {
5975    // FIXME: Poor source-location information here.
5976    TL.initializeLocal(Context, TemplateLoc);
5977  }
5978  TL.setKeywordLoc(TypenameLoc);
5979  TL.setQualifierRange(SS.getRange());
5980  return CreateParsedType(T, TSI);
5981}
5982
5983/// \brief Build the type that describes a C++ typename specifier,
5984/// e.g., "typename T::type".
5985QualType
5986Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
5987                        NestedNameSpecifier *NNS, const IdentifierInfo &II,
5988                        SourceLocation KeywordLoc, SourceRange NNSRange,
5989                        SourceLocation IILoc) {
5990  CXXScopeSpec SS;
5991  SS.setScopeRep(NNS);
5992  SS.setRange(NNSRange);
5993
5994  DeclContext *Ctx = computeDeclContext(SS);
5995  if (!Ctx) {
5996    // If the nested-name-specifier is dependent and couldn't be
5997    // resolved to a type, build a typename type.
5998    assert(NNS->isDependent());
5999    return Context.getDependentNameType(Keyword, NNS, &II);
6000  }
6001
6002  // If the nested-name-specifier refers to the current instantiation,
6003  // the "typename" keyword itself is superfluous. In C++03, the
6004  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
6005  // allows such extraneous "typename" keywords, and we retroactively
6006  // apply this DR to C++03 code with only a warning. In any case we continue.
6007
6008  if (RequireCompleteDeclContext(SS, Ctx))
6009    return QualType();
6010
6011  DeclarationName Name(&II);
6012  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
6013  LookupQualifiedName(Result, Ctx);
6014  unsigned DiagID = 0;
6015  Decl *Referenced = 0;
6016  switch (Result.getResultKind()) {
6017  case LookupResult::NotFound:
6018    DiagID = diag::err_typename_nested_not_found;
6019    break;
6020
6021  case LookupResult::FoundUnresolvedValue: {
6022    // We found a using declaration that is a value. Most likely, the using
6023    // declaration itself is meant to have the 'typename' keyword.
6024    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
6025                          IILoc);
6026    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
6027      << Name << Ctx << FullRange;
6028    if (UnresolvedUsingValueDecl *Using
6029          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
6030      SourceLocation Loc = Using->getTargetNestedNameRange().getBegin();
6031      Diag(Loc, diag::note_using_value_decl_missing_typename)
6032        << FixItHint::CreateInsertion(Loc, "typename ");
6033    }
6034  }
6035  // Fall through to create a dependent typename type, from which we can recover
6036  // better.
6037
6038  case LookupResult::NotFoundInCurrentInstantiation:
6039    // Okay, it's a member of an unknown instantiation.
6040    return Context.getDependentNameType(Keyword, NNS, &II);
6041
6042  case LookupResult::Found:
6043    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
6044      // We found a type. Build an ElaboratedType, since the
6045      // typename-specifier was just sugar.
6046      return Context.getElaboratedType(ETK_Typename, NNS,
6047                                       Context.getTypeDeclType(Type));
6048    }
6049
6050    DiagID = diag::err_typename_nested_not_type;
6051    Referenced = Result.getFoundDecl();
6052    break;
6053
6054
6055    llvm_unreachable("unresolved using decl in non-dependent context");
6056    return QualType();
6057
6058  case LookupResult::FoundOverloaded:
6059    DiagID = diag::err_typename_nested_not_type;
6060    Referenced = *Result.begin();
6061    break;
6062
6063  case LookupResult::Ambiguous:
6064    return QualType();
6065  }
6066
6067  // If we get here, it's because name lookup did not find a
6068  // type. Emit an appropriate diagnostic and return an error.
6069  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
6070                        IILoc);
6071  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
6072  if (Referenced)
6073    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
6074      << Name;
6075  return QualType();
6076}
6077
6078namespace {
6079  // See Sema::RebuildTypeInCurrentInstantiation
6080  class CurrentInstantiationRebuilder
6081    : public TreeTransform<CurrentInstantiationRebuilder> {
6082    SourceLocation Loc;
6083    DeclarationName Entity;
6084
6085  public:
6086    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
6087
6088    CurrentInstantiationRebuilder(Sema &SemaRef,
6089                                  SourceLocation Loc,
6090                                  DeclarationName Entity)
6091    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
6092      Loc(Loc), Entity(Entity) { }
6093
6094    /// \brief Determine whether the given type \p T has already been
6095    /// transformed.
6096    ///
6097    /// For the purposes of type reconstruction, a type has already been
6098    /// transformed if it is NULL or if it is not dependent.
6099    bool AlreadyTransformed(QualType T) {
6100      return T.isNull() || !T->isDependentType();
6101    }
6102
6103    /// \brief Returns the location of the entity whose type is being
6104    /// rebuilt.
6105    SourceLocation getBaseLocation() { return Loc; }
6106
6107    /// \brief Returns the name of the entity whose type is being rebuilt.
6108    DeclarationName getBaseEntity() { return Entity; }
6109
6110    /// \brief Sets the "base" location and entity when that
6111    /// information is known based on another transformation.
6112    void setBase(SourceLocation Loc, DeclarationName Entity) {
6113      this->Loc = Loc;
6114      this->Entity = Entity;
6115    }
6116  };
6117}
6118
6119/// \brief Rebuilds a type within the context of the current instantiation.
6120///
6121/// The type \p T is part of the type of an out-of-line member definition of
6122/// a class template (or class template partial specialization) that was parsed
6123/// and constructed before we entered the scope of the class template (or
6124/// partial specialization thereof). This routine will rebuild that type now
6125/// that we have entered the declarator's scope, which may produce different
6126/// canonical types, e.g.,
6127///
6128/// \code
6129/// template<typename T>
6130/// struct X {
6131///   typedef T* pointer;
6132///   pointer data();
6133/// };
6134///
6135/// template<typename T>
6136/// typename X<T>::pointer X<T>::data() { ... }
6137/// \endcode
6138///
6139/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
6140/// since we do not know that we can look into X<T> when we parsed the type.
6141/// This function will rebuild the type, performing the lookup of "pointer"
6142/// in X<T> and returning an ElaboratedType whose canonical type is the same
6143/// as the canonical type of T*, allowing the return types of the out-of-line
6144/// definition and the declaration to match.
6145TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
6146                                                        SourceLocation Loc,
6147                                                        DeclarationName Name) {
6148  if (!T || !T->getType()->isDependentType())
6149    return T;
6150
6151  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
6152  return Rebuilder.TransformType(T);
6153}
6154
6155ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
6156  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
6157                                          DeclarationName());
6158  return Rebuilder.TransformExpr(E);
6159}
6160
6161bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
6162  if (SS.isInvalid()) return true;
6163
6164  NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6165  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
6166                                          DeclarationName());
6167  NestedNameSpecifier *Rebuilt =
6168    Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange());
6169  if (!Rebuilt) return true;
6170
6171  SS.setScopeRep(Rebuilt);
6172  return false;
6173}
6174
6175/// \brief Produces a formatted string that describes the binding of
6176/// template parameters to template arguments.
6177std::string
6178Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6179                                      const TemplateArgumentList &Args) {
6180  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
6181}
6182
6183std::string
6184Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6185                                      const TemplateArgument *Args,
6186                                      unsigned NumArgs) {
6187  llvm::SmallString<128> Str;
6188  llvm::raw_svector_ostream Out(Str);
6189
6190  if (!Params || Params->size() == 0 || NumArgs == 0)
6191    return std::string();
6192
6193  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
6194    if (I >= NumArgs)
6195      break;
6196
6197    if (I == 0)
6198      Out << "[with ";
6199    else
6200      Out << ", ";
6201
6202    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
6203      Out << Id->getName();
6204    } else {
6205      Out << '$' << I;
6206    }
6207
6208    Out << " = ";
6209    Args[I].print(Context.PrintingPolicy, Out);
6210  }
6211
6212  Out << ']';
6213  return Out.str();
6214}
6215