SemaTemplate.cpp revision 8f5667d06a785719691c1139b961411d7f0aedf5
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "clang/Sema/SemaInternal.h" 13#include "clang/Sema/Lookup.h" 14#include "clang/Sema/Scope.h" 15#include "clang/Sema/Template.h" 16#include "clang/Sema/TemplateDeduction.h" 17#include "TreeTransform.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ExprCXX.h" 21#include "clang/AST/DeclFriend.h" 22#include "clang/AST/DeclTemplate.h" 23#include "clang/AST/RecursiveASTVisitor.h" 24#include "clang/AST/TypeVisitor.h" 25#include "clang/Sema/DeclSpec.h" 26#include "clang/Sema/ParsedTemplate.h" 27#include "clang/Basic/LangOptions.h" 28#include "clang/Basic/PartialDiagnostic.h" 29#include "llvm/ADT/StringExtras.h" 30using namespace clang; 31using namespace sema; 32 33// Exported for use by Parser. 34SourceRange 35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 36 unsigned N) { 37 if (!N) return SourceRange(); 38 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 39} 40 41/// \brief Determine whether the declaration found is acceptable as the name 42/// of a template and, if so, return that template declaration. Otherwise, 43/// returns NULL. 44static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 45 NamedDecl *Orig) { 46 NamedDecl *D = Orig->getUnderlyingDecl(); 47 48 if (isa<TemplateDecl>(D)) 49 return Orig; 50 51 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 52 // C++ [temp.local]p1: 53 // Like normal (non-template) classes, class templates have an 54 // injected-class-name (Clause 9). The injected-class-name 55 // can be used with or without a template-argument-list. When 56 // it is used without a template-argument-list, it is 57 // equivalent to the injected-class-name followed by the 58 // template-parameters of the class template enclosed in 59 // <>. When it is used with a template-argument-list, it 60 // refers to the specified class template specialization, 61 // which could be the current specialization or another 62 // specialization. 63 if (Record->isInjectedClassName()) { 64 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 65 if (Record->getDescribedClassTemplate()) 66 return Record->getDescribedClassTemplate(); 67 68 if (ClassTemplateSpecializationDecl *Spec 69 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 70 return Spec->getSpecializedTemplate(); 71 } 72 73 return 0; 74 } 75 76 return 0; 77} 78 79static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) { 80 // The set of class templates we've already seen. 81 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 82 LookupResult::Filter filter = R.makeFilter(); 83 while (filter.hasNext()) { 84 NamedDecl *Orig = filter.next(); 85 NamedDecl *Repl = isAcceptableTemplateName(C, Orig); 86 if (!Repl) 87 filter.erase(); 88 else if (Repl != Orig) { 89 90 // C++ [temp.local]p3: 91 // A lookup that finds an injected-class-name (10.2) can result in an 92 // ambiguity in certain cases (for example, if it is found in more than 93 // one base class). If all of the injected-class-names that are found 94 // refer to specializations of the same class template, and if the name 95 // is followed by a template-argument-list, the reference refers to the 96 // class template itself and not a specialization thereof, and is not 97 // ambiguous. 98 // 99 // FIXME: Will we eventually have to do the same for alias templates? 100 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 101 if (!ClassTemplates.insert(ClassTmpl)) { 102 filter.erase(); 103 continue; 104 } 105 106 // FIXME: we promote access to public here as a workaround to 107 // the fact that LookupResult doesn't let us remember that we 108 // found this template through a particular injected class name, 109 // which means we end up doing nasty things to the invariants. 110 // Pretending that access is public is *much* safer. 111 filter.replace(Repl, AS_public); 112 } 113 } 114 filter.done(); 115} 116 117TemplateNameKind Sema::isTemplateName(Scope *S, 118 CXXScopeSpec &SS, 119 bool hasTemplateKeyword, 120 UnqualifiedId &Name, 121 ParsedType ObjectTypePtr, 122 bool EnteringContext, 123 TemplateTy &TemplateResult, 124 bool &MemberOfUnknownSpecialization) { 125 assert(getLangOptions().CPlusPlus && "No template names in C!"); 126 127 DeclarationName TName; 128 MemberOfUnknownSpecialization = false; 129 130 switch (Name.getKind()) { 131 case UnqualifiedId::IK_Identifier: 132 TName = DeclarationName(Name.Identifier); 133 break; 134 135 case UnqualifiedId::IK_OperatorFunctionId: 136 TName = Context.DeclarationNames.getCXXOperatorName( 137 Name.OperatorFunctionId.Operator); 138 break; 139 140 case UnqualifiedId::IK_LiteralOperatorId: 141 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 142 break; 143 144 default: 145 return TNK_Non_template; 146 } 147 148 QualType ObjectType = ObjectTypePtr.get(); 149 150 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 151 LookupOrdinaryName); 152 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 153 MemberOfUnknownSpecialization); 154 if (R.empty()) return TNK_Non_template; 155 if (R.isAmbiguous()) { 156 // Suppress diagnostics; we'll redo this lookup later. 157 R.suppressDiagnostics(); 158 159 // FIXME: we might have ambiguous templates, in which case we 160 // should at least parse them properly! 161 return TNK_Non_template; 162 } 163 164 TemplateName Template; 165 TemplateNameKind TemplateKind; 166 167 unsigned ResultCount = R.end() - R.begin(); 168 if (ResultCount > 1) { 169 // We assume that we'll preserve the qualifier from a function 170 // template name in other ways. 171 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 172 TemplateKind = TNK_Function_template; 173 174 // We'll do this lookup again later. 175 R.suppressDiagnostics(); 176 } else { 177 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 178 179 if (SS.isSet() && !SS.isInvalid()) { 180 NestedNameSpecifier *Qualifier 181 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 182 Template = Context.getQualifiedTemplateName(Qualifier, 183 hasTemplateKeyword, TD); 184 } else { 185 Template = TemplateName(TD); 186 } 187 188 if (isa<FunctionTemplateDecl>(TD)) { 189 TemplateKind = TNK_Function_template; 190 191 // We'll do this lookup again later. 192 R.suppressDiagnostics(); 193 } else { 194 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD)); 195 TemplateKind = TNK_Type_template; 196 } 197 } 198 199 TemplateResult = TemplateTy::make(Template); 200 return TemplateKind; 201} 202 203bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 204 SourceLocation IILoc, 205 Scope *S, 206 const CXXScopeSpec *SS, 207 TemplateTy &SuggestedTemplate, 208 TemplateNameKind &SuggestedKind) { 209 // We can't recover unless there's a dependent scope specifier preceding the 210 // template name. 211 // FIXME: Typo correction? 212 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 213 computeDeclContext(*SS)) 214 return false; 215 216 // The code is missing a 'template' keyword prior to the dependent template 217 // name. 218 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 219 Diag(IILoc, diag::err_template_kw_missing) 220 << Qualifier << II.getName() 221 << FixItHint::CreateInsertion(IILoc, "template "); 222 SuggestedTemplate 223 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 224 SuggestedKind = TNK_Dependent_template_name; 225 return true; 226} 227 228void Sema::LookupTemplateName(LookupResult &Found, 229 Scope *S, CXXScopeSpec &SS, 230 QualType ObjectType, 231 bool EnteringContext, 232 bool &MemberOfUnknownSpecialization) { 233 // Determine where to perform name lookup 234 MemberOfUnknownSpecialization = false; 235 DeclContext *LookupCtx = 0; 236 bool isDependent = false; 237 if (!ObjectType.isNull()) { 238 // This nested-name-specifier occurs in a member access expression, e.g., 239 // x->B::f, and we are looking into the type of the object. 240 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 241 LookupCtx = computeDeclContext(ObjectType); 242 isDependent = ObjectType->isDependentType(); 243 assert((isDependent || !ObjectType->isIncompleteType()) && 244 "Caller should have completed object type"); 245 } else if (SS.isSet()) { 246 // This nested-name-specifier occurs after another nested-name-specifier, 247 // so long into the context associated with the prior nested-name-specifier. 248 LookupCtx = computeDeclContext(SS, EnteringContext); 249 isDependent = isDependentScopeSpecifier(SS); 250 251 // The declaration context must be complete. 252 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 253 return; 254 } 255 256 bool ObjectTypeSearchedInScope = false; 257 if (LookupCtx) { 258 // Perform "qualified" name lookup into the declaration context we 259 // computed, which is either the type of the base of a member access 260 // expression or the declaration context associated with a prior 261 // nested-name-specifier. 262 LookupQualifiedName(Found, LookupCtx); 263 264 if (!ObjectType.isNull() && Found.empty()) { 265 // C++ [basic.lookup.classref]p1: 266 // In a class member access expression (5.2.5), if the . or -> token is 267 // immediately followed by an identifier followed by a <, the 268 // identifier must be looked up to determine whether the < is the 269 // beginning of a template argument list (14.2) or a less-than operator. 270 // The identifier is first looked up in the class of the object 271 // expression. If the identifier is not found, it is then looked up in 272 // the context of the entire postfix-expression and shall name a class 273 // or function template. 274 if (S) LookupName(Found, S); 275 ObjectTypeSearchedInScope = true; 276 } 277 } else if (isDependent && (!S || ObjectType.isNull())) { 278 // We cannot look into a dependent object type or nested nme 279 // specifier. 280 MemberOfUnknownSpecialization = true; 281 return; 282 } else { 283 // Perform unqualified name lookup in the current scope. 284 LookupName(Found, S); 285 } 286 287 if (Found.empty() && !isDependent) { 288 // If we did not find any names, attempt to correct any typos. 289 DeclarationName Name = Found.getLookupName(); 290 if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx, 291 false, CTC_CXXCasts)) { 292 FilterAcceptableTemplateNames(Context, Found); 293 if (!Found.empty()) { 294 if (LookupCtx) 295 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 296 << Name << LookupCtx << Found.getLookupName() << SS.getRange() 297 << FixItHint::CreateReplacement(Found.getNameLoc(), 298 Found.getLookupName().getAsString()); 299 else 300 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 301 << Name << Found.getLookupName() 302 << FixItHint::CreateReplacement(Found.getNameLoc(), 303 Found.getLookupName().getAsString()); 304 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 305 Diag(Template->getLocation(), diag::note_previous_decl) 306 << Template->getDeclName(); 307 } 308 } else { 309 Found.clear(); 310 Found.setLookupName(Name); 311 } 312 } 313 314 FilterAcceptableTemplateNames(Context, Found); 315 if (Found.empty()) { 316 if (isDependent) 317 MemberOfUnknownSpecialization = true; 318 return; 319 } 320 321 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 322 // C++ [basic.lookup.classref]p1: 323 // [...] If the lookup in the class of the object expression finds a 324 // template, the name is also looked up in the context of the entire 325 // postfix-expression and [...] 326 // 327 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 328 LookupOrdinaryName); 329 LookupName(FoundOuter, S); 330 FilterAcceptableTemplateNames(Context, FoundOuter); 331 332 if (FoundOuter.empty()) { 333 // - if the name is not found, the name found in the class of the 334 // object expression is used, otherwise 335 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 336 // - if the name is found in the context of the entire 337 // postfix-expression and does not name a class template, the name 338 // found in the class of the object expression is used, otherwise 339 } else if (!Found.isSuppressingDiagnostics()) { 340 // - if the name found is a class template, it must refer to the same 341 // entity as the one found in the class of the object expression, 342 // otherwise the program is ill-formed. 343 if (!Found.isSingleResult() || 344 Found.getFoundDecl()->getCanonicalDecl() 345 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 346 Diag(Found.getNameLoc(), 347 diag::ext_nested_name_member_ref_lookup_ambiguous) 348 << Found.getLookupName() 349 << ObjectType; 350 Diag(Found.getRepresentativeDecl()->getLocation(), 351 diag::note_ambig_member_ref_object_type) 352 << ObjectType; 353 Diag(FoundOuter.getFoundDecl()->getLocation(), 354 diag::note_ambig_member_ref_scope); 355 356 // Recover by taking the template that we found in the object 357 // expression's type. 358 } 359 } 360 } 361} 362 363/// ActOnDependentIdExpression - Handle a dependent id-expression that 364/// was just parsed. This is only possible with an explicit scope 365/// specifier naming a dependent type. 366ExprResult 367Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 368 const DeclarationNameInfo &NameInfo, 369 bool isAddressOfOperand, 370 const TemplateArgumentListInfo *TemplateArgs) { 371 NestedNameSpecifier *Qualifier 372 = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 373 374 DeclContext *DC = getFunctionLevelDeclContext(); 375 376 if (!isAddressOfOperand && 377 isa<CXXMethodDecl>(DC) && 378 cast<CXXMethodDecl>(DC)->isInstance()) { 379 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 380 381 // Since the 'this' expression is synthesized, we don't need to 382 // perform the double-lookup check. 383 NamedDecl *FirstQualifierInScope = 0; 384 385 return Owned(CXXDependentScopeMemberExpr::Create(Context, 386 /*This*/ 0, ThisType, 387 /*IsArrow*/ true, 388 /*Op*/ SourceLocation(), 389 Qualifier, SS.getRange(), 390 FirstQualifierInScope, 391 NameInfo, 392 TemplateArgs)); 393 } 394 395 return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs); 396} 397 398ExprResult 399Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 400 const DeclarationNameInfo &NameInfo, 401 const TemplateArgumentListInfo *TemplateArgs) { 402 return Owned(DependentScopeDeclRefExpr::Create(Context, 403 static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 404 SS.getRange(), 405 NameInfo, 406 TemplateArgs)); 407} 408 409/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 410/// that the template parameter 'PrevDecl' is being shadowed by a new 411/// declaration at location Loc. Returns true to indicate that this is 412/// an error, and false otherwise. 413bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 414 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 415 416 // Microsoft Visual C++ permits template parameters to be shadowed. 417 if (getLangOptions().Microsoft) 418 return false; 419 420 // C++ [temp.local]p4: 421 // A template-parameter shall not be redeclared within its 422 // scope (including nested scopes). 423 Diag(Loc, diag::err_template_param_shadow) 424 << cast<NamedDecl>(PrevDecl)->getDeclName(); 425 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 426 return true; 427} 428 429/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 430/// the parameter D to reference the templated declaration and return a pointer 431/// to the template declaration. Otherwise, do nothing to D and return null. 432TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 433 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 434 D = Temp->getTemplatedDecl(); 435 return Temp; 436 } 437 return 0; 438} 439 440ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 441 SourceLocation EllipsisLoc) const { 442 assert(Kind == Template && 443 "Only template template arguments can be pack expansions here"); 444 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 445 "Template template argument pack expansion without packs"); 446 ParsedTemplateArgument Result(*this); 447 Result.EllipsisLoc = EllipsisLoc; 448 return Result; 449} 450 451static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 452 const ParsedTemplateArgument &Arg) { 453 454 switch (Arg.getKind()) { 455 case ParsedTemplateArgument::Type: { 456 TypeSourceInfo *DI; 457 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 458 if (!DI) 459 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 460 return TemplateArgumentLoc(TemplateArgument(T), DI); 461 } 462 463 case ParsedTemplateArgument::NonType: { 464 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 465 return TemplateArgumentLoc(TemplateArgument(E), E); 466 } 467 468 case ParsedTemplateArgument::Template: { 469 TemplateName Template = Arg.getAsTemplate().get(); 470 TemplateArgument TArg; 471 if (Arg.getEllipsisLoc().isValid()) 472 TArg = TemplateArgument(Template, llvm::Optional<unsigned int>()); 473 else 474 TArg = Template; 475 return TemplateArgumentLoc(TArg, 476 Arg.getScopeSpec().getRange(), 477 Arg.getLocation(), 478 Arg.getEllipsisLoc()); 479 } 480 } 481 482 llvm_unreachable("Unhandled parsed template argument"); 483 return TemplateArgumentLoc(); 484} 485 486/// \brief Translates template arguments as provided by the parser 487/// into template arguments used by semantic analysis. 488void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 489 TemplateArgumentListInfo &TemplateArgs) { 490 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 491 TemplateArgs.addArgument(translateTemplateArgument(*this, 492 TemplateArgsIn[I])); 493} 494 495/// ActOnTypeParameter - Called when a C++ template type parameter 496/// (e.g., "typename T") has been parsed. Typename specifies whether 497/// the keyword "typename" was used to declare the type parameter 498/// (otherwise, "class" was used), and KeyLoc is the location of the 499/// "class" or "typename" keyword. ParamName is the name of the 500/// parameter (NULL indicates an unnamed template parameter) and 501/// ParamName is the location of the parameter name (if any). 502/// If the type parameter has a default argument, it will be added 503/// later via ActOnTypeParameterDefault. 504Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 505 SourceLocation EllipsisLoc, 506 SourceLocation KeyLoc, 507 IdentifierInfo *ParamName, 508 SourceLocation ParamNameLoc, 509 unsigned Depth, unsigned Position, 510 SourceLocation EqualLoc, 511 ParsedType DefaultArg) { 512 assert(S->isTemplateParamScope() && 513 "Template type parameter not in template parameter scope!"); 514 bool Invalid = false; 515 516 if (ParamName) { 517 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 518 LookupOrdinaryName, 519 ForRedeclaration); 520 if (PrevDecl && PrevDecl->isTemplateParameter()) 521 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 522 PrevDecl); 523 } 524 525 SourceLocation Loc = ParamNameLoc; 526 if (!ParamName) 527 Loc = KeyLoc; 528 529 TemplateTypeParmDecl *Param 530 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 531 Loc, Depth, Position, ParamName, Typename, 532 Ellipsis); 533 if (Invalid) 534 Param->setInvalidDecl(); 535 536 if (ParamName) { 537 // Add the template parameter into the current scope. 538 S->AddDecl(Param); 539 IdResolver.AddDecl(Param); 540 } 541 542 // C++0x [temp.param]p9: 543 // A default template-argument may be specified for any kind of 544 // template-parameter that is not a template parameter pack. 545 if (DefaultArg && Ellipsis) { 546 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 547 DefaultArg = ParsedType(); 548 } 549 550 // Handle the default argument, if provided. 551 if (DefaultArg) { 552 TypeSourceInfo *DefaultTInfo; 553 GetTypeFromParser(DefaultArg, &DefaultTInfo); 554 555 assert(DefaultTInfo && "expected source information for type"); 556 557 // Check for unexpanded parameter packs. 558 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, 559 UPPC_DefaultArgument)) 560 return Param; 561 562 // Check the template argument itself. 563 if (CheckTemplateArgument(Param, DefaultTInfo)) { 564 Param->setInvalidDecl(); 565 return Param; 566 } 567 568 Param->setDefaultArgument(DefaultTInfo, false); 569 } 570 571 return Param; 572} 573 574/// \brief Check that the type of a non-type template parameter is 575/// well-formed. 576/// 577/// \returns the (possibly-promoted) parameter type if valid; 578/// otherwise, produces a diagnostic and returns a NULL type. 579QualType 580Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 581 // We don't allow variably-modified types as the type of non-type template 582 // parameters. 583 if (T->isVariablyModifiedType()) { 584 Diag(Loc, diag::err_variably_modified_nontype_template_param) 585 << T; 586 return QualType(); 587 } 588 589 // C++ [temp.param]p4: 590 // 591 // A non-type template-parameter shall have one of the following 592 // (optionally cv-qualified) types: 593 // 594 // -- integral or enumeration type, 595 if (T->isIntegralOrEnumerationType() || 596 // -- pointer to object or pointer to function, 597 T->isPointerType() || 598 // -- reference to object or reference to function, 599 T->isReferenceType() || 600 // -- pointer to member. 601 T->isMemberPointerType() || 602 // If T is a dependent type, we can't do the check now, so we 603 // assume that it is well-formed. 604 T->isDependentType()) 605 return T; 606 // C++ [temp.param]p8: 607 // 608 // A non-type template-parameter of type "array of T" or 609 // "function returning T" is adjusted to be of type "pointer to 610 // T" or "pointer to function returning T", respectively. 611 else if (T->isArrayType()) 612 // FIXME: Keep the type prior to promotion? 613 return Context.getArrayDecayedType(T); 614 else if (T->isFunctionType()) 615 // FIXME: Keep the type prior to promotion? 616 return Context.getPointerType(T); 617 618 Diag(Loc, diag::err_template_nontype_parm_bad_type) 619 << T; 620 621 return QualType(); 622} 623 624Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 625 unsigned Depth, 626 unsigned Position, 627 SourceLocation EqualLoc, 628 Expr *Default) { 629 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 630 QualType T = TInfo->getType(); 631 632 assert(S->isTemplateParamScope() && 633 "Non-type template parameter not in template parameter scope!"); 634 bool Invalid = false; 635 636 IdentifierInfo *ParamName = D.getIdentifier(); 637 if (ParamName) { 638 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 639 LookupOrdinaryName, 640 ForRedeclaration); 641 if (PrevDecl && PrevDecl->isTemplateParameter()) 642 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 643 PrevDecl); 644 } 645 646 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 647 if (T.isNull()) { 648 T = Context.IntTy; // Recover with an 'int' type. 649 Invalid = true; 650 } 651 652 bool IsParameterPack = D.hasEllipsis(); 653 NonTypeTemplateParmDecl *Param 654 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 655 D.getIdentifierLoc(), 656 Depth, Position, ParamName, T, 657 IsParameterPack, TInfo); 658 if (Invalid) 659 Param->setInvalidDecl(); 660 661 if (D.getIdentifier()) { 662 // Add the template parameter into the current scope. 663 S->AddDecl(Param); 664 IdResolver.AddDecl(Param); 665 } 666 667 // C++0x [temp.param]p9: 668 // A default template-argument may be specified for any kind of 669 // template-parameter that is not a template parameter pack. 670 if (Default && IsParameterPack) { 671 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 672 Default = 0; 673 } 674 675 // Check the well-formedness of the default template argument, if provided. 676 if (Default) { 677 // Check for unexpanded parameter packs. 678 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 679 return Param; 680 681 TemplateArgument Converted; 682 if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) { 683 Param->setInvalidDecl(); 684 return Param; 685 } 686 687 Param->setDefaultArgument(Default, false); 688 } 689 690 return Param; 691} 692 693/// ActOnTemplateTemplateParameter - Called when a C++ template template 694/// parameter (e.g. T in template <template <typename> class T> class array) 695/// has been parsed. S is the current scope. 696Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 697 SourceLocation TmpLoc, 698 TemplateParamsTy *Params, 699 SourceLocation EllipsisLoc, 700 IdentifierInfo *Name, 701 SourceLocation NameLoc, 702 unsigned Depth, 703 unsigned Position, 704 SourceLocation EqualLoc, 705 ParsedTemplateArgument Default) { 706 assert(S->isTemplateParamScope() && 707 "Template template parameter not in template parameter scope!"); 708 709 // Construct the parameter object. 710 bool IsParameterPack = EllipsisLoc.isValid(); 711 // FIXME: Pack-ness is dropped 712 TemplateTemplateParmDecl *Param = 713 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 714 NameLoc.isInvalid()? TmpLoc : NameLoc, 715 Depth, Position, IsParameterPack, 716 Name, Params); 717 718 // If the template template parameter has a name, then link the identifier 719 // into the scope and lookup mechanisms. 720 if (Name) { 721 S->AddDecl(Param); 722 IdResolver.AddDecl(Param); 723 } 724 725 if (Params->size() == 0) { 726 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 727 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 728 Param->setInvalidDecl(); 729 } 730 731 // C++0x [temp.param]p9: 732 // A default template-argument may be specified for any kind of 733 // template-parameter that is not a template parameter pack. 734 if (IsParameterPack && !Default.isInvalid()) { 735 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 736 Default = ParsedTemplateArgument(); 737 } 738 739 if (!Default.isInvalid()) { 740 // Check only that we have a template template argument. We don't want to 741 // try to check well-formedness now, because our template template parameter 742 // might have dependent types in its template parameters, which we wouldn't 743 // be able to match now. 744 // 745 // If none of the template template parameter's template arguments mention 746 // other template parameters, we could actually perform more checking here. 747 // However, it isn't worth doing. 748 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 749 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 750 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 751 << DefaultArg.getSourceRange(); 752 return Param; 753 } 754 755 // Check for unexpanded parameter packs. 756 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 757 DefaultArg.getArgument().getAsTemplate(), 758 UPPC_DefaultArgument)) 759 return Param; 760 761 Param->setDefaultArgument(DefaultArg, false); 762 } 763 764 return Param; 765} 766 767/// ActOnTemplateParameterList - Builds a TemplateParameterList that 768/// contains the template parameters in Params/NumParams. 769Sema::TemplateParamsTy * 770Sema::ActOnTemplateParameterList(unsigned Depth, 771 SourceLocation ExportLoc, 772 SourceLocation TemplateLoc, 773 SourceLocation LAngleLoc, 774 Decl **Params, unsigned NumParams, 775 SourceLocation RAngleLoc) { 776 if (ExportLoc.isValid()) 777 Diag(ExportLoc, diag::warn_template_export_unsupported); 778 779 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 780 (NamedDecl**)Params, NumParams, 781 RAngleLoc); 782} 783 784static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 785 if (SS.isSet()) 786 T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 787 SS.getRange()); 788} 789 790DeclResult 791Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 792 SourceLocation KWLoc, CXXScopeSpec &SS, 793 IdentifierInfo *Name, SourceLocation NameLoc, 794 AttributeList *Attr, 795 TemplateParameterList *TemplateParams, 796 AccessSpecifier AS) { 797 assert(TemplateParams && TemplateParams->size() > 0 && 798 "No template parameters"); 799 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 800 bool Invalid = false; 801 802 // Check that we can declare a template here. 803 if (CheckTemplateDeclScope(S, TemplateParams)) 804 return true; 805 806 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 807 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 808 809 // There is no such thing as an unnamed class template. 810 if (!Name) { 811 Diag(KWLoc, diag::err_template_unnamed_class); 812 return true; 813 } 814 815 // Find any previous declaration with this name. 816 DeclContext *SemanticContext; 817 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 818 ForRedeclaration); 819 if (SS.isNotEmpty() && !SS.isInvalid()) { 820 SemanticContext = computeDeclContext(SS, true); 821 if (!SemanticContext) { 822 // FIXME: Produce a reasonable diagnostic here 823 return true; 824 } 825 826 if (RequireCompleteDeclContext(SS, SemanticContext)) 827 return true; 828 829 LookupQualifiedName(Previous, SemanticContext); 830 } else { 831 SemanticContext = CurContext; 832 LookupName(Previous, S); 833 } 834 835 if (Previous.isAmbiguous()) 836 return true; 837 838 NamedDecl *PrevDecl = 0; 839 if (Previous.begin() != Previous.end()) 840 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 841 842 // If there is a previous declaration with the same name, check 843 // whether this is a valid redeclaration. 844 ClassTemplateDecl *PrevClassTemplate 845 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 846 847 // We may have found the injected-class-name of a class template, 848 // class template partial specialization, or class template specialization. 849 // In these cases, grab the template that is being defined or specialized. 850 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 851 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 852 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 853 PrevClassTemplate 854 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 855 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 856 PrevClassTemplate 857 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 858 ->getSpecializedTemplate(); 859 } 860 } 861 862 if (TUK == TUK_Friend) { 863 // C++ [namespace.memdef]p3: 864 // [...] When looking for a prior declaration of a class or a function 865 // declared as a friend, and when the name of the friend class or 866 // function is neither a qualified name nor a template-id, scopes outside 867 // the innermost enclosing namespace scope are not considered. 868 if (!SS.isSet()) { 869 DeclContext *OutermostContext = CurContext; 870 while (!OutermostContext->isFileContext()) 871 OutermostContext = OutermostContext->getLookupParent(); 872 873 if (PrevDecl && 874 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 875 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 876 SemanticContext = PrevDecl->getDeclContext(); 877 } else { 878 // Declarations in outer scopes don't matter. However, the outermost 879 // context we computed is the semantic context for our new 880 // declaration. 881 PrevDecl = PrevClassTemplate = 0; 882 SemanticContext = OutermostContext; 883 } 884 } 885 886 if (CurContext->isDependentContext()) { 887 // If this is a dependent context, we don't want to link the friend 888 // class template to the template in scope, because that would perform 889 // checking of the template parameter lists that can't be performed 890 // until the outer context is instantiated. 891 PrevDecl = PrevClassTemplate = 0; 892 } 893 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 894 PrevDecl = PrevClassTemplate = 0; 895 896 if (PrevClassTemplate) { 897 // Ensure that the template parameter lists are compatible. 898 if (!TemplateParameterListsAreEqual(TemplateParams, 899 PrevClassTemplate->getTemplateParameters(), 900 /*Complain=*/true, 901 TPL_TemplateMatch)) 902 return true; 903 904 // C++ [temp.class]p4: 905 // In a redeclaration, partial specialization, explicit 906 // specialization or explicit instantiation of a class template, 907 // the class-key shall agree in kind with the original class 908 // template declaration (7.1.5.3). 909 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 910 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 911 Diag(KWLoc, diag::err_use_with_wrong_tag) 912 << Name 913 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 914 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 915 Kind = PrevRecordDecl->getTagKind(); 916 } 917 918 // Check for redefinition of this class template. 919 if (TUK == TUK_Definition) { 920 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 921 Diag(NameLoc, diag::err_redefinition) << Name; 922 Diag(Def->getLocation(), diag::note_previous_definition); 923 // FIXME: Would it make sense to try to "forget" the previous 924 // definition, as part of error recovery? 925 return true; 926 } 927 } 928 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 929 // Maybe we will complain about the shadowed template parameter. 930 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 931 // Just pretend that we didn't see the previous declaration. 932 PrevDecl = 0; 933 } else if (PrevDecl) { 934 // C++ [temp]p5: 935 // A class template shall not have the same name as any other 936 // template, class, function, object, enumeration, enumerator, 937 // namespace, or type in the same scope (3.3), except as specified 938 // in (14.5.4). 939 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 940 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 941 return true; 942 } 943 944 // Check the template parameter list of this declaration, possibly 945 // merging in the template parameter list from the previous class 946 // template declaration. 947 if (CheckTemplateParameterList(TemplateParams, 948 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 949 (SS.isSet() && SemanticContext && 950 SemanticContext->isRecord() && 951 SemanticContext->isDependentContext()) 952 ? TPC_ClassTemplateMember 953 : TPC_ClassTemplate)) 954 Invalid = true; 955 956 if (SS.isSet()) { 957 // If the name of the template was qualified, we must be defining the 958 // template out-of-line. 959 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate && 960 !(TUK == TUK_Friend && CurContext->isDependentContext())) 961 Diag(NameLoc, diag::err_member_def_does_not_match) 962 << Name << SemanticContext << SS.getRange(); 963 } 964 965 CXXRecordDecl *NewClass = 966 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 967 PrevClassTemplate? 968 PrevClassTemplate->getTemplatedDecl() : 0, 969 /*DelayTypeCreation=*/true); 970 SetNestedNameSpecifier(NewClass, SS); 971 972 ClassTemplateDecl *NewTemplate 973 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 974 DeclarationName(Name), TemplateParams, 975 NewClass, PrevClassTemplate); 976 NewClass->setDescribedClassTemplate(NewTemplate); 977 978 // Build the type for the class template declaration now. 979 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 980 T = Context.getInjectedClassNameType(NewClass, T); 981 assert(T->isDependentType() && "Class template type is not dependent?"); 982 (void)T; 983 984 // If we are providing an explicit specialization of a member that is a 985 // class template, make a note of that. 986 if (PrevClassTemplate && 987 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 988 PrevClassTemplate->setMemberSpecialization(); 989 990 // Set the access specifier. 991 if (!Invalid && TUK != TUK_Friend) 992 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 993 994 // Set the lexical context of these templates 995 NewClass->setLexicalDeclContext(CurContext); 996 NewTemplate->setLexicalDeclContext(CurContext); 997 998 if (TUK == TUK_Definition) 999 NewClass->startDefinition(); 1000 1001 if (Attr) 1002 ProcessDeclAttributeList(S, NewClass, Attr); 1003 1004 if (TUK != TUK_Friend) 1005 PushOnScopeChains(NewTemplate, S); 1006 else { 1007 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1008 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1009 NewClass->setAccess(PrevClassTemplate->getAccess()); 1010 } 1011 1012 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 1013 PrevClassTemplate != NULL); 1014 1015 // Friend templates are visible in fairly strange ways. 1016 if (!CurContext->isDependentContext()) { 1017 DeclContext *DC = SemanticContext->getRedeclContext(); 1018 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 1019 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1020 PushOnScopeChains(NewTemplate, EnclosingScope, 1021 /* AddToContext = */ false); 1022 } 1023 1024 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 1025 NewClass->getLocation(), 1026 NewTemplate, 1027 /*FIXME:*/NewClass->getLocation()); 1028 Friend->setAccess(AS_public); 1029 CurContext->addDecl(Friend); 1030 } 1031 1032 if (Invalid) { 1033 NewTemplate->setInvalidDecl(); 1034 NewClass->setInvalidDecl(); 1035 } 1036 return NewTemplate; 1037} 1038 1039/// \brief Diagnose the presence of a default template argument on a 1040/// template parameter, which is ill-formed in certain contexts. 1041/// 1042/// \returns true if the default template argument should be dropped. 1043static bool DiagnoseDefaultTemplateArgument(Sema &S, 1044 Sema::TemplateParamListContext TPC, 1045 SourceLocation ParamLoc, 1046 SourceRange DefArgRange) { 1047 switch (TPC) { 1048 case Sema::TPC_ClassTemplate: 1049 return false; 1050 1051 case Sema::TPC_FunctionTemplate: 1052 case Sema::TPC_FriendFunctionTemplateDefinition: 1053 // C++ [temp.param]p9: 1054 // A default template-argument shall not be specified in a 1055 // function template declaration or a function template 1056 // definition [...] 1057 // If a friend function template declaration specifies a default 1058 // template-argument, that declaration shall be a definition and shall be 1059 // the only declaration of the function template in the translation unit. 1060 // (C++98/03 doesn't have this wording; see DR226). 1061 if (!S.getLangOptions().CPlusPlus0x) 1062 S.Diag(ParamLoc, 1063 diag::ext_template_parameter_default_in_function_template) 1064 << DefArgRange; 1065 return false; 1066 1067 case Sema::TPC_ClassTemplateMember: 1068 // C++0x [temp.param]p9: 1069 // A default template-argument shall not be specified in the 1070 // template-parameter-lists of the definition of a member of a 1071 // class template that appears outside of the member's class. 1072 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1073 << DefArgRange; 1074 return true; 1075 1076 case Sema::TPC_FriendFunctionTemplate: 1077 // C++ [temp.param]p9: 1078 // A default template-argument shall not be specified in a 1079 // friend template declaration. 1080 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1081 << DefArgRange; 1082 return true; 1083 1084 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1085 // for friend function templates if there is only a single 1086 // declaration (and it is a definition). Strange! 1087 } 1088 1089 return false; 1090} 1091 1092/// \brief Check for unexpanded parameter packs within the template parameters 1093/// of a template template parameter, recursively. 1094bool DiagnoseUnexpandedParameterPacks(Sema &S, TemplateTemplateParmDecl *TTP){ 1095 TemplateParameterList *Params = TTP->getTemplateParameters(); 1096 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 1097 NamedDecl *P = Params->getParam(I); 1098 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 1099 if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 1100 NTTP->getTypeSourceInfo(), 1101 Sema::UPPC_NonTypeTemplateParameterType)) 1102 return true; 1103 1104 continue; 1105 } 1106 1107 if (TemplateTemplateParmDecl *InnerTTP 1108 = dyn_cast<TemplateTemplateParmDecl>(P)) 1109 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 1110 return true; 1111 } 1112 1113 return false; 1114} 1115 1116/// \brief Checks the validity of a template parameter list, possibly 1117/// considering the template parameter list from a previous 1118/// declaration. 1119/// 1120/// If an "old" template parameter list is provided, it must be 1121/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1122/// template parameter list. 1123/// 1124/// \param NewParams Template parameter list for a new template 1125/// declaration. This template parameter list will be updated with any 1126/// default arguments that are carried through from the previous 1127/// template parameter list. 1128/// 1129/// \param OldParams If provided, template parameter list from a 1130/// previous declaration of the same template. Default template 1131/// arguments will be merged from the old template parameter list to 1132/// the new template parameter list. 1133/// 1134/// \param TPC Describes the context in which we are checking the given 1135/// template parameter list. 1136/// 1137/// \returns true if an error occurred, false otherwise. 1138bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1139 TemplateParameterList *OldParams, 1140 TemplateParamListContext TPC) { 1141 bool Invalid = false; 1142 1143 // C++ [temp.param]p10: 1144 // The set of default template-arguments available for use with a 1145 // template declaration or definition is obtained by merging the 1146 // default arguments from the definition (if in scope) and all 1147 // declarations in scope in the same way default function 1148 // arguments are (8.3.6). 1149 bool SawDefaultArgument = false; 1150 SourceLocation PreviousDefaultArgLoc; 1151 1152 bool SawParameterPack = false; 1153 SourceLocation ParameterPackLoc; 1154 1155 // Dummy initialization to avoid warnings. 1156 TemplateParameterList::iterator OldParam = NewParams->end(); 1157 if (OldParams) 1158 OldParam = OldParams->begin(); 1159 1160 bool RemoveDefaultArguments = false; 1161 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1162 NewParamEnd = NewParams->end(); 1163 NewParam != NewParamEnd; ++NewParam) { 1164 // Variables used to diagnose redundant default arguments 1165 bool RedundantDefaultArg = false; 1166 SourceLocation OldDefaultLoc; 1167 SourceLocation NewDefaultLoc; 1168 1169 // Variables used to diagnose missing default arguments 1170 bool MissingDefaultArg = false; 1171 1172 // C++0x [temp.param]p11: 1173 // If a template parameter of a primary class template is a template 1174 // parameter pack, it shall be the last template parameter. 1175 if (SawParameterPack && TPC == TPC_ClassTemplate) { 1176 Diag(ParameterPackLoc, 1177 diag::err_template_param_pack_must_be_last_template_parameter); 1178 Invalid = true; 1179 } 1180 1181 if (TemplateTypeParmDecl *NewTypeParm 1182 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1183 // Check the presence of a default argument here. 1184 if (NewTypeParm->hasDefaultArgument() && 1185 DiagnoseDefaultTemplateArgument(*this, TPC, 1186 NewTypeParm->getLocation(), 1187 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1188 .getSourceRange())) 1189 NewTypeParm->removeDefaultArgument(); 1190 1191 // Merge default arguments for template type parameters. 1192 TemplateTypeParmDecl *OldTypeParm 1193 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1194 1195 if (NewTypeParm->isParameterPack()) { 1196 assert(!NewTypeParm->hasDefaultArgument() && 1197 "Parameter packs can't have a default argument!"); 1198 SawParameterPack = true; 1199 ParameterPackLoc = NewTypeParm->getLocation(); 1200 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1201 NewTypeParm->hasDefaultArgument()) { 1202 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1203 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1204 SawDefaultArgument = true; 1205 RedundantDefaultArg = true; 1206 PreviousDefaultArgLoc = NewDefaultLoc; 1207 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1208 // Merge the default argument from the old declaration to the 1209 // new declaration. 1210 SawDefaultArgument = true; 1211 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1212 true); 1213 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1214 } else if (NewTypeParm->hasDefaultArgument()) { 1215 SawDefaultArgument = true; 1216 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1217 } else if (SawDefaultArgument) 1218 MissingDefaultArg = true; 1219 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1220 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1221 // Check for unexpanded parameter packs. 1222 if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 1223 NewNonTypeParm->getTypeSourceInfo(), 1224 UPPC_NonTypeTemplateParameterType)) { 1225 Invalid = true; 1226 continue; 1227 } 1228 1229 // Check the presence of a default argument here. 1230 if (NewNonTypeParm->hasDefaultArgument() && 1231 DiagnoseDefaultTemplateArgument(*this, TPC, 1232 NewNonTypeParm->getLocation(), 1233 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1234 NewNonTypeParm->removeDefaultArgument(); 1235 } 1236 1237 // Merge default arguments for non-type template parameters 1238 NonTypeTemplateParmDecl *OldNonTypeParm 1239 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1240 if (NewNonTypeParm->isParameterPack()) { 1241 assert(!NewNonTypeParm->hasDefaultArgument() && 1242 "Parameter packs can't have a default argument!"); 1243 SawParameterPack = true; 1244 ParameterPackLoc = NewNonTypeParm->getLocation(); 1245 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1246 NewNonTypeParm->hasDefaultArgument()) { 1247 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1248 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1249 SawDefaultArgument = true; 1250 RedundantDefaultArg = true; 1251 PreviousDefaultArgLoc = NewDefaultLoc; 1252 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1253 // Merge the default argument from the old declaration to the 1254 // new declaration. 1255 SawDefaultArgument = true; 1256 // FIXME: We need to create a new kind of "default argument" 1257 // expression that points to a previous non-type template 1258 // parameter. 1259 NewNonTypeParm->setDefaultArgument( 1260 OldNonTypeParm->getDefaultArgument(), 1261 /*Inherited=*/ true); 1262 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1263 } else if (NewNonTypeParm->hasDefaultArgument()) { 1264 SawDefaultArgument = true; 1265 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1266 } else if (SawDefaultArgument) 1267 MissingDefaultArg = true; 1268 } else { 1269 // Check the presence of a default argument here. 1270 TemplateTemplateParmDecl *NewTemplateParm 1271 = cast<TemplateTemplateParmDecl>(*NewParam); 1272 1273 // Check for unexpanded parameter packs, recursively. 1274 if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 1275 Invalid = true; 1276 continue; 1277 } 1278 1279 if (NewTemplateParm->hasDefaultArgument() && 1280 DiagnoseDefaultTemplateArgument(*this, TPC, 1281 NewTemplateParm->getLocation(), 1282 NewTemplateParm->getDefaultArgument().getSourceRange())) 1283 NewTemplateParm->removeDefaultArgument(); 1284 1285 // Merge default arguments for template template parameters 1286 TemplateTemplateParmDecl *OldTemplateParm 1287 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1288 if (NewTemplateParm->isParameterPack()) { 1289 assert(!NewTemplateParm->hasDefaultArgument() && 1290 "Parameter packs can't have a default argument!"); 1291 SawParameterPack = true; 1292 ParameterPackLoc = NewTemplateParm->getLocation(); 1293 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1294 NewTemplateParm->hasDefaultArgument()) { 1295 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1296 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1297 SawDefaultArgument = true; 1298 RedundantDefaultArg = true; 1299 PreviousDefaultArgLoc = NewDefaultLoc; 1300 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1301 // Merge the default argument from the old declaration to the 1302 // new declaration. 1303 SawDefaultArgument = true; 1304 // FIXME: We need to create a new kind of "default argument" expression 1305 // that points to a previous template template parameter. 1306 NewTemplateParm->setDefaultArgument( 1307 OldTemplateParm->getDefaultArgument(), 1308 /*Inherited=*/ true); 1309 PreviousDefaultArgLoc 1310 = OldTemplateParm->getDefaultArgument().getLocation(); 1311 } else if (NewTemplateParm->hasDefaultArgument()) { 1312 SawDefaultArgument = true; 1313 PreviousDefaultArgLoc 1314 = NewTemplateParm->getDefaultArgument().getLocation(); 1315 } else if (SawDefaultArgument) 1316 MissingDefaultArg = true; 1317 } 1318 1319 if (RedundantDefaultArg) { 1320 // C++ [temp.param]p12: 1321 // A template-parameter shall not be given default arguments 1322 // by two different declarations in the same scope. 1323 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1324 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1325 Invalid = true; 1326 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 1327 // C++ [temp.param]p11: 1328 // If a template-parameter of a class template has a default 1329 // template-argument, each subsequent template-parameter shall either 1330 // have a default template-argument supplied or be a template parameter 1331 // pack. 1332 Diag((*NewParam)->getLocation(), 1333 diag::err_template_param_default_arg_missing); 1334 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1335 Invalid = true; 1336 RemoveDefaultArguments = true; 1337 } 1338 1339 // If we have an old template parameter list that we're merging 1340 // in, move on to the next parameter. 1341 if (OldParams) 1342 ++OldParam; 1343 } 1344 1345 // We were missing some default arguments at the end of the list, so remove 1346 // all of the default arguments. 1347 if (RemoveDefaultArguments) { 1348 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1349 NewParamEnd = NewParams->end(); 1350 NewParam != NewParamEnd; ++NewParam) { 1351 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 1352 TTP->removeDefaultArgument(); 1353 else if (NonTypeTemplateParmDecl *NTTP 1354 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 1355 NTTP->removeDefaultArgument(); 1356 else 1357 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 1358 } 1359 } 1360 1361 return Invalid; 1362} 1363 1364namespace { 1365 1366/// A class which looks for a use of a certain level of template 1367/// parameter. 1368struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 1369 typedef RecursiveASTVisitor<DependencyChecker> super; 1370 1371 unsigned Depth; 1372 bool Match; 1373 1374 DependencyChecker(TemplateParameterList *Params) : Match(false) { 1375 NamedDecl *ND = Params->getParam(0); 1376 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 1377 Depth = PD->getDepth(); 1378 } else if (NonTypeTemplateParmDecl *PD = 1379 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 1380 Depth = PD->getDepth(); 1381 } else { 1382 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 1383 } 1384 } 1385 1386 bool Matches(unsigned ParmDepth) { 1387 if (ParmDepth >= Depth) { 1388 Match = true; 1389 return true; 1390 } 1391 return false; 1392 } 1393 1394 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 1395 return !Matches(T->getDepth()); 1396 } 1397 1398 bool TraverseTemplateName(TemplateName N) { 1399 if (TemplateTemplateParmDecl *PD = 1400 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 1401 if (Matches(PD->getDepth())) return false; 1402 return super::TraverseTemplateName(N); 1403 } 1404 1405 bool VisitDeclRefExpr(DeclRefExpr *E) { 1406 if (NonTypeTemplateParmDecl *PD = 1407 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) { 1408 if (PD->getDepth() == Depth) { 1409 Match = true; 1410 return false; 1411 } 1412 } 1413 return super::VisitDeclRefExpr(E); 1414 } 1415}; 1416} 1417 1418/// Determines whether a template-id depends on the given parameter 1419/// list. 1420static bool 1421DependsOnTemplateParameters(const TemplateSpecializationType *TemplateId, 1422 TemplateParameterList *Params) { 1423 DependencyChecker Checker(Params); 1424 Checker.TraverseType(QualType(TemplateId, 0)); 1425 return Checker.Match; 1426} 1427 1428/// \brief Match the given template parameter lists to the given scope 1429/// specifier, returning the template parameter list that applies to the 1430/// name. 1431/// 1432/// \param DeclStartLoc the start of the declaration that has a scope 1433/// specifier or a template parameter list. 1434/// 1435/// \param SS the scope specifier that will be matched to the given template 1436/// parameter lists. This scope specifier precedes a qualified name that is 1437/// being declared. 1438/// 1439/// \param ParamLists the template parameter lists, from the outermost to the 1440/// innermost template parameter lists. 1441/// 1442/// \param NumParamLists the number of template parameter lists in ParamLists. 1443/// 1444/// \param IsFriend Whether to apply the slightly different rules for 1445/// matching template parameters to scope specifiers in friend 1446/// declarations. 1447/// 1448/// \param IsExplicitSpecialization will be set true if the entity being 1449/// declared is an explicit specialization, false otherwise. 1450/// 1451/// \returns the template parameter list, if any, that corresponds to the 1452/// name that is preceded by the scope specifier @p SS. This template 1453/// parameter list may be have template parameters (if we're declaring a 1454/// template) or may have no template parameters (if we're declaring a 1455/// template specialization), or may be NULL (if we were's declaring isn't 1456/// itself a template). 1457TemplateParameterList * 1458Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1459 const CXXScopeSpec &SS, 1460 TemplateParameterList **ParamLists, 1461 unsigned NumParamLists, 1462 bool IsFriend, 1463 bool &IsExplicitSpecialization, 1464 bool &Invalid) { 1465 IsExplicitSpecialization = false; 1466 1467 // Find the template-ids that occur within the nested-name-specifier. These 1468 // template-ids will match up with the template parameter lists. 1469 llvm::SmallVector<const TemplateSpecializationType *, 4> 1470 TemplateIdsInSpecifier; 1471 llvm::SmallVector<ClassTemplateSpecializationDecl *, 4> 1472 ExplicitSpecializationsInSpecifier; 1473 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 1474 NNS; NNS = NNS->getPrefix()) { 1475 const Type *T = NNS->getAsType(); 1476 if (!T) break; 1477 1478 // C++0x [temp.expl.spec]p17: 1479 // A member or a member template may be nested within many 1480 // enclosing class templates. In an explicit specialization for 1481 // such a member, the member declaration shall be preceded by a 1482 // template<> for each enclosing class template that is 1483 // explicitly specialized. 1484 // 1485 // Following the existing practice of GNU and EDG, we allow a typedef of a 1486 // template specialization type. 1487 while (const TypedefType *TT = dyn_cast<TypedefType>(T)) 1488 T = TT->getDecl()->getUnderlyingType().getTypePtr(); 1489 1490 if (const TemplateSpecializationType *SpecType 1491 = dyn_cast<TemplateSpecializationType>(T)) { 1492 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 1493 if (!Template) 1494 continue; // FIXME: should this be an error? probably... 1495 1496 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 1497 ClassTemplateSpecializationDecl *SpecDecl 1498 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 1499 // If the nested name specifier refers to an explicit specialization, 1500 // we don't need a template<> header. 1501 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) { 1502 ExplicitSpecializationsInSpecifier.push_back(SpecDecl); 1503 continue; 1504 } 1505 } 1506 1507 TemplateIdsInSpecifier.push_back(SpecType); 1508 } 1509 } 1510 1511 // Reverse the list of template-ids in the scope specifier, so that we can 1512 // more easily match up the template-ids and the template parameter lists. 1513 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 1514 1515 SourceLocation FirstTemplateLoc = DeclStartLoc; 1516 if (NumParamLists) 1517 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 1518 1519 // Match the template-ids found in the specifier to the template parameter 1520 // lists. 1521 unsigned ParamIdx = 0, TemplateIdx = 0; 1522 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 1523 TemplateIdx != NumTemplateIds; ++TemplateIdx) { 1524 const TemplateSpecializationType *TemplateId 1525 = TemplateIdsInSpecifier[TemplateIdx]; 1526 bool DependentTemplateId = TemplateId->isDependentType(); 1527 1528 // In friend declarations we can have template-ids which don't 1529 // depend on the corresponding template parameter lists. But 1530 // assume that empty parameter lists are supposed to match this 1531 // template-id. 1532 if (IsFriend && ParamIdx < NumParamLists && ParamLists[ParamIdx]->size()) { 1533 if (!DependentTemplateId || 1534 !DependsOnTemplateParameters(TemplateId, ParamLists[ParamIdx])) 1535 continue; 1536 } 1537 1538 if (ParamIdx >= NumParamLists) { 1539 // We have a template-id without a corresponding template parameter 1540 // list. 1541 1542 // ...which is fine if this is a friend declaration. 1543 if (IsFriend) { 1544 IsExplicitSpecialization = true; 1545 break; 1546 } 1547 1548 if (DependentTemplateId) { 1549 // FIXME: the location information here isn't great. 1550 Diag(SS.getRange().getBegin(), 1551 diag::err_template_spec_needs_template_parameters) 1552 << QualType(TemplateId, 0) 1553 << SS.getRange(); 1554 Invalid = true; 1555 } else { 1556 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 1557 << SS.getRange() 1558 << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> "); 1559 IsExplicitSpecialization = true; 1560 } 1561 return 0; 1562 } 1563 1564 // Check the template parameter list against its corresponding template-id. 1565 if (DependentTemplateId) { 1566 TemplateParameterList *ExpectedTemplateParams = 0; 1567 1568 // Are there cases in (e.g.) friends where this won't match? 1569 if (const InjectedClassNameType *Injected 1570 = TemplateId->getAs<InjectedClassNameType>()) { 1571 CXXRecordDecl *Record = Injected->getDecl(); 1572 if (ClassTemplatePartialSpecializationDecl *Partial = 1573 dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) 1574 ExpectedTemplateParams = Partial->getTemplateParameters(); 1575 else 1576 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1577 ->getTemplateParameters(); 1578 } 1579 1580 if (ExpectedTemplateParams) 1581 TemplateParameterListsAreEqual(ParamLists[ParamIdx], 1582 ExpectedTemplateParams, 1583 true, TPL_TemplateMatch); 1584 1585 CheckTemplateParameterList(ParamLists[ParamIdx], 0, 1586 TPC_ClassTemplateMember); 1587 } else if (ParamLists[ParamIdx]->size() > 0) 1588 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1589 diag::err_template_param_list_matches_nontemplate) 1590 << TemplateId 1591 << ParamLists[ParamIdx]->getSourceRange(); 1592 else 1593 IsExplicitSpecialization = true; 1594 1595 ++ParamIdx; 1596 } 1597 1598 // If there were at least as many template-ids as there were template 1599 // parameter lists, then there are no template parameter lists remaining for 1600 // the declaration itself. 1601 if (ParamIdx >= NumParamLists) 1602 return 0; 1603 1604 // If there were too many template parameter lists, complain about that now. 1605 if (ParamIdx != NumParamLists - 1) { 1606 while (ParamIdx < NumParamLists - 1) { 1607 bool isExplicitSpecHeader = ParamLists[ParamIdx]->size() == 0; 1608 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1609 isExplicitSpecHeader? diag::warn_template_spec_extra_headers 1610 : diag::err_template_spec_extra_headers) 1611 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 1612 ParamLists[ParamIdx]->getRAngleLoc()); 1613 1614 if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) { 1615 Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(), 1616 diag::note_explicit_template_spec_does_not_need_header) 1617 << ExplicitSpecializationsInSpecifier.back(); 1618 ExplicitSpecializationsInSpecifier.pop_back(); 1619 } 1620 1621 // We have a template parameter list with no corresponding scope, which 1622 // means that the resulting template declaration can't be instantiated 1623 // properly (we'll end up with dependent nodes when we shouldn't). 1624 if (!isExplicitSpecHeader) 1625 Invalid = true; 1626 1627 ++ParamIdx; 1628 } 1629 } 1630 1631 // Return the last template parameter list, which corresponds to the 1632 // entity being declared. 1633 return ParamLists[NumParamLists - 1]; 1634} 1635 1636QualType Sema::CheckTemplateIdType(TemplateName Name, 1637 SourceLocation TemplateLoc, 1638 const TemplateArgumentListInfo &TemplateArgs) { 1639 TemplateDecl *Template = Name.getAsTemplateDecl(); 1640 if (!Template) { 1641 // The template name does not resolve to a template, so we just 1642 // build a dependent template-id type. 1643 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1644 } 1645 1646 // Check that the template argument list is well-formed for this 1647 // template. 1648 llvm::SmallVector<TemplateArgument, 4> Converted; 1649 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1650 false, Converted)) 1651 return QualType(); 1652 1653 assert((Converted.size() == Template->getTemplateParameters()->size()) && 1654 "Converted template argument list is too short!"); 1655 1656 QualType CanonType; 1657 1658 if (Name.isDependent() || 1659 TemplateSpecializationType::anyDependentTemplateArguments( 1660 TemplateArgs)) { 1661 // This class template specialization is a dependent 1662 // type. Therefore, its canonical type is another class template 1663 // specialization type that contains all of the converted 1664 // arguments in canonical form. This ensures that, e.g., A<T> and 1665 // A<T, T> have identical types when A is declared as: 1666 // 1667 // template<typename T, typename U = T> struct A; 1668 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1669 CanonType = Context.getTemplateSpecializationType(CanonName, 1670 Converted.data(), 1671 Converted.size()); 1672 1673 // FIXME: CanonType is not actually the canonical type, and unfortunately 1674 // it is a TemplateSpecializationType that we will never use again. 1675 // In the future, we need to teach getTemplateSpecializationType to only 1676 // build the canonical type and return that to us. 1677 CanonType = Context.getCanonicalType(CanonType); 1678 1679 // This might work out to be a current instantiation, in which 1680 // case the canonical type needs to be the InjectedClassNameType. 1681 // 1682 // TODO: in theory this could be a simple hashtable lookup; most 1683 // changes to CurContext don't change the set of current 1684 // instantiations. 1685 if (isa<ClassTemplateDecl>(Template)) { 1686 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 1687 // If we get out to a namespace, we're done. 1688 if (Ctx->isFileContext()) break; 1689 1690 // If this isn't a record, keep looking. 1691 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 1692 if (!Record) continue; 1693 1694 // Look for one of the two cases with InjectedClassNameTypes 1695 // and check whether it's the same template. 1696 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 1697 !Record->getDescribedClassTemplate()) 1698 continue; 1699 1700 // Fetch the injected class name type and check whether its 1701 // injected type is equal to the type we just built. 1702 QualType ICNT = Context.getTypeDeclType(Record); 1703 QualType Injected = cast<InjectedClassNameType>(ICNT) 1704 ->getInjectedSpecializationType(); 1705 1706 if (CanonType != Injected->getCanonicalTypeInternal()) 1707 continue; 1708 1709 // If so, the canonical type of this TST is the injected 1710 // class name type of the record we just found. 1711 assert(ICNT.isCanonical()); 1712 CanonType = ICNT; 1713 break; 1714 } 1715 } 1716 } else if (ClassTemplateDecl *ClassTemplate 1717 = dyn_cast<ClassTemplateDecl>(Template)) { 1718 // Find the class template specialization declaration that 1719 // corresponds to these arguments. 1720 void *InsertPos = 0; 1721 ClassTemplateSpecializationDecl *Decl 1722 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(), 1723 InsertPos); 1724 if (!Decl) { 1725 // This is the first time we have referenced this class template 1726 // specialization. Create the canonical declaration and add it to 1727 // the set of specializations. 1728 Decl = ClassTemplateSpecializationDecl::Create(Context, 1729 ClassTemplate->getTemplatedDecl()->getTagKind(), 1730 ClassTemplate->getDeclContext(), 1731 ClassTemplate->getLocation(), 1732 ClassTemplate, 1733 Converted.data(), 1734 Converted.size(), 0); 1735 ClassTemplate->AddSpecialization(Decl, InsertPos); 1736 Decl->setLexicalDeclContext(CurContext); 1737 } 1738 1739 CanonType = Context.getTypeDeclType(Decl); 1740 assert(isa<RecordType>(CanonType) && 1741 "type of non-dependent specialization is not a RecordType"); 1742 } 1743 1744 // Build the fully-sugared type for this class template 1745 // specialization, which refers back to the class template 1746 // specialization we created or found. 1747 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 1748} 1749 1750TypeResult 1751Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1752 SourceLocation LAngleLoc, 1753 ASTTemplateArgsPtr TemplateArgsIn, 1754 SourceLocation RAngleLoc) { 1755 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1756 1757 // Translate the parser's template argument list in our AST format. 1758 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 1759 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 1760 1761 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 1762 TemplateArgsIn.release(); 1763 1764 if (Result.isNull()) 1765 return true; 1766 1767 TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result); 1768 TemplateSpecializationTypeLoc TL 1769 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc()); 1770 TL.setTemplateNameLoc(TemplateLoc); 1771 TL.setLAngleLoc(LAngleLoc); 1772 TL.setRAngleLoc(RAngleLoc); 1773 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 1774 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 1775 1776 return CreateParsedType(Result, DI); 1777} 1778 1779TypeResult Sema::ActOnTagTemplateIdType(CXXScopeSpec &SS, 1780 TypeResult TypeResult, 1781 TagUseKind TUK, 1782 TypeSpecifierType TagSpec, 1783 SourceLocation TagLoc) { 1784 if (TypeResult.isInvalid()) 1785 return ::TypeResult(); 1786 1787 TypeSourceInfo *DI; 1788 QualType Type = GetTypeFromParser(TypeResult.get(), &DI); 1789 1790 // Verify the tag specifier. 1791 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 1792 1793 if (const RecordType *RT = Type->getAs<RecordType>()) { 1794 RecordDecl *D = RT->getDecl(); 1795 1796 IdentifierInfo *Id = D->getIdentifier(); 1797 assert(Id && "templated class must have an identifier"); 1798 1799 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 1800 Diag(TagLoc, diag::err_use_with_wrong_tag) 1801 << Type 1802 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 1803 Diag(D->getLocation(), diag::note_previous_use); 1804 } 1805 } 1806 1807 ElaboratedTypeKeyword Keyword 1808 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 1809 QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type); 1810 1811 TypeSourceInfo *ElabDI = Context.CreateTypeSourceInfo(ElabType); 1812 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(ElabDI->getTypeLoc()); 1813 TL.setKeywordLoc(TagLoc); 1814 TL.setQualifierRange(SS.getRange()); 1815 TL.getNamedTypeLoc().initializeFullCopy(DI->getTypeLoc()); 1816 return CreateParsedType(ElabType, ElabDI); 1817} 1818 1819ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 1820 LookupResult &R, 1821 bool RequiresADL, 1822 const TemplateArgumentListInfo &TemplateArgs) { 1823 // FIXME: Can we do any checking at this point? I guess we could check the 1824 // template arguments that we have against the template name, if the template 1825 // name refers to a single template. That's not a terribly common case, 1826 // though. 1827 1828 // These should be filtered out by our callers. 1829 assert(!R.empty() && "empty lookup results when building templateid"); 1830 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 1831 1832 NestedNameSpecifier *Qualifier = 0; 1833 SourceRange QualifierRange; 1834 if (SS.isSet()) { 1835 Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 1836 QualifierRange = SS.getRange(); 1837 } 1838 1839 // We don't want lookup warnings at this point. 1840 R.suppressDiagnostics(); 1841 1842 UnresolvedLookupExpr *ULE 1843 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 1844 Qualifier, QualifierRange, 1845 R.getLookupNameInfo(), 1846 RequiresADL, TemplateArgs, 1847 R.begin(), R.end()); 1848 1849 return Owned(ULE); 1850} 1851 1852// We actually only call this from template instantiation. 1853ExprResult 1854Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 1855 const DeclarationNameInfo &NameInfo, 1856 const TemplateArgumentListInfo &TemplateArgs) { 1857 DeclContext *DC; 1858 if (!(DC = computeDeclContext(SS, false)) || 1859 DC->isDependentContext() || 1860 RequireCompleteDeclContext(SS, DC)) 1861 return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs); 1862 1863 bool MemberOfUnknownSpecialization; 1864 LookupResult R(*this, NameInfo, LookupOrdinaryName); 1865 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 1866 MemberOfUnknownSpecialization); 1867 1868 if (R.isAmbiguous()) 1869 return ExprError(); 1870 1871 if (R.empty()) { 1872 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 1873 << NameInfo.getName() << SS.getRange(); 1874 return ExprError(); 1875 } 1876 1877 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 1878 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 1879 << (NestedNameSpecifier*) SS.getScopeRep() 1880 << NameInfo.getName() << SS.getRange(); 1881 Diag(Temp->getLocation(), diag::note_referenced_class_template); 1882 return ExprError(); 1883 } 1884 1885 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 1886} 1887 1888/// \brief Form a dependent template name. 1889/// 1890/// This action forms a dependent template name given the template 1891/// name and its (presumably dependent) scope specifier. For 1892/// example, given "MetaFun::template apply", the scope specifier \p 1893/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1894/// of the "template" keyword, and "apply" is the \p Name. 1895TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 1896 SourceLocation TemplateKWLoc, 1897 CXXScopeSpec &SS, 1898 UnqualifiedId &Name, 1899 ParsedType ObjectType, 1900 bool EnteringContext, 1901 TemplateTy &Result) { 1902 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() && 1903 !getLangOptions().CPlusPlus0x) 1904 Diag(TemplateKWLoc, diag::ext_template_outside_of_template) 1905 << FixItHint::CreateRemoval(TemplateKWLoc); 1906 1907 DeclContext *LookupCtx = 0; 1908 if (SS.isSet()) 1909 LookupCtx = computeDeclContext(SS, EnteringContext); 1910 if (!LookupCtx && ObjectType) 1911 LookupCtx = computeDeclContext(ObjectType.get()); 1912 if (LookupCtx) { 1913 // C++0x [temp.names]p5: 1914 // If a name prefixed by the keyword template is not the name of 1915 // a template, the program is ill-formed. [Note: the keyword 1916 // template may not be applied to non-template members of class 1917 // templates. -end note ] [ Note: as is the case with the 1918 // typename prefix, the template prefix is allowed in cases 1919 // where it is not strictly necessary; i.e., when the 1920 // nested-name-specifier or the expression on the left of the -> 1921 // or . is not dependent on a template-parameter, or the use 1922 // does not appear in the scope of a template. -end note] 1923 // 1924 // Note: C++03 was more strict here, because it banned the use of 1925 // the "template" keyword prior to a template-name that was not a 1926 // dependent name. C++ DR468 relaxed this requirement (the 1927 // "template" keyword is now permitted). We follow the C++0x 1928 // rules, even in C++03 mode with a warning, retroactively applying the DR. 1929 bool MemberOfUnknownSpecialization; 1930 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name, 1931 ObjectType, EnteringContext, Result, 1932 MemberOfUnknownSpecialization); 1933 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 1934 isa<CXXRecordDecl>(LookupCtx) && 1935 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) { 1936 // This is a dependent template. Handle it below. 1937 } else if (TNK == TNK_Non_template) { 1938 Diag(Name.getSourceRange().getBegin(), 1939 diag::err_template_kw_refers_to_non_template) 1940 << GetNameFromUnqualifiedId(Name).getName() 1941 << Name.getSourceRange() 1942 << TemplateKWLoc; 1943 return TNK_Non_template; 1944 } else { 1945 // We found something; return it. 1946 return TNK; 1947 } 1948 } 1949 1950 NestedNameSpecifier *Qualifier 1951 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1952 1953 switch (Name.getKind()) { 1954 case UnqualifiedId::IK_Identifier: 1955 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1956 Name.Identifier)); 1957 return TNK_Dependent_template_name; 1958 1959 case UnqualifiedId::IK_OperatorFunctionId: 1960 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1961 Name.OperatorFunctionId.Operator)); 1962 return TNK_Dependent_template_name; 1963 1964 case UnqualifiedId::IK_LiteralOperatorId: 1965 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 1966 1967 default: 1968 break; 1969 } 1970 1971 Diag(Name.getSourceRange().getBegin(), 1972 diag::err_template_kw_refers_to_non_template) 1973 << GetNameFromUnqualifiedId(Name).getName() 1974 << Name.getSourceRange() 1975 << TemplateKWLoc; 1976 return TNK_Non_template; 1977} 1978 1979bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1980 const TemplateArgumentLoc &AL, 1981 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 1982 const TemplateArgument &Arg = AL.getArgument(); 1983 1984 // Check template type parameter. 1985 switch(Arg.getKind()) { 1986 case TemplateArgument::Type: 1987 // C++ [temp.arg.type]p1: 1988 // A template-argument for a template-parameter which is a 1989 // type shall be a type-id. 1990 break; 1991 case TemplateArgument::Template: { 1992 // We have a template type parameter but the template argument 1993 // is a template without any arguments. 1994 SourceRange SR = AL.getSourceRange(); 1995 TemplateName Name = Arg.getAsTemplate(); 1996 Diag(SR.getBegin(), diag::err_template_missing_args) 1997 << Name << SR; 1998 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 1999 Diag(Decl->getLocation(), diag::note_template_decl_here); 2000 2001 return true; 2002 } 2003 default: { 2004 // We have a template type parameter but the template argument 2005 // is not a type. 2006 SourceRange SR = AL.getSourceRange(); 2007 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 2008 Diag(Param->getLocation(), diag::note_template_param_here); 2009 2010 return true; 2011 } 2012 } 2013 2014 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 2015 return true; 2016 2017 // Add the converted template type argument. 2018 Converted.push_back( 2019 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 2020 return false; 2021} 2022 2023/// \brief Substitute template arguments into the default template argument for 2024/// the given template type parameter. 2025/// 2026/// \param SemaRef the semantic analysis object for which we are performing 2027/// the substitution. 2028/// 2029/// \param Template the template that we are synthesizing template arguments 2030/// for. 2031/// 2032/// \param TemplateLoc the location of the template name that started the 2033/// template-id we are checking. 2034/// 2035/// \param RAngleLoc the location of the right angle bracket ('>') that 2036/// terminates the template-id. 2037/// 2038/// \param Param the template template parameter whose default we are 2039/// substituting into. 2040/// 2041/// \param Converted the list of template arguments provided for template 2042/// parameters that precede \p Param in the template parameter list. 2043/// 2044/// \returns the substituted template argument, or NULL if an error occurred. 2045static TypeSourceInfo * 2046SubstDefaultTemplateArgument(Sema &SemaRef, 2047 TemplateDecl *Template, 2048 SourceLocation TemplateLoc, 2049 SourceLocation RAngleLoc, 2050 TemplateTypeParmDecl *Param, 2051 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2052 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 2053 2054 // If the argument type is dependent, instantiate it now based 2055 // on the previously-computed template arguments. 2056 if (ArgType->getType()->isDependentType()) { 2057 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2058 Converted.data(), Converted.size()); 2059 2060 MultiLevelTemplateArgumentList AllTemplateArgs 2061 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2062 2063 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2064 Template, Converted.data(), 2065 Converted.size(), 2066 SourceRange(TemplateLoc, RAngleLoc)); 2067 2068 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 2069 Param->getDefaultArgumentLoc(), 2070 Param->getDeclName()); 2071 } 2072 2073 return ArgType; 2074} 2075 2076/// \brief Substitute template arguments into the default template argument for 2077/// the given non-type template parameter. 2078/// 2079/// \param SemaRef the semantic analysis object for which we are performing 2080/// the substitution. 2081/// 2082/// \param Template the template that we are synthesizing template arguments 2083/// for. 2084/// 2085/// \param TemplateLoc the location of the template name that started the 2086/// template-id we are checking. 2087/// 2088/// \param RAngleLoc the location of the right angle bracket ('>') that 2089/// terminates the template-id. 2090/// 2091/// \param Param the non-type template parameter whose default we are 2092/// substituting into. 2093/// 2094/// \param Converted the list of template arguments provided for template 2095/// parameters that precede \p Param in the template parameter list. 2096/// 2097/// \returns the substituted template argument, or NULL if an error occurred. 2098static ExprResult 2099SubstDefaultTemplateArgument(Sema &SemaRef, 2100 TemplateDecl *Template, 2101 SourceLocation TemplateLoc, 2102 SourceLocation RAngleLoc, 2103 NonTypeTemplateParmDecl *Param, 2104 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2105 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2106 Converted.data(), Converted.size()); 2107 2108 MultiLevelTemplateArgumentList AllTemplateArgs 2109 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2110 2111 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2112 Template, Converted.data(), 2113 Converted.size(), 2114 SourceRange(TemplateLoc, RAngleLoc)); 2115 2116 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 2117} 2118 2119/// \brief Substitute template arguments into the default template argument for 2120/// the given template template parameter. 2121/// 2122/// \param SemaRef the semantic analysis object for which we are performing 2123/// the substitution. 2124/// 2125/// \param Template the template that we are synthesizing template arguments 2126/// for. 2127/// 2128/// \param TemplateLoc the location of the template name that started the 2129/// template-id we are checking. 2130/// 2131/// \param RAngleLoc the location of the right angle bracket ('>') that 2132/// terminates the template-id. 2133/// 2134/// \param Param the template template parameter whose default we are 2135/// substituting into. 2136/// 2137/// \param Converted the list of template arguments provided for template 2138/// parameters that precede \p Param in the template parameter list. 2139/// 2140/// \returns the substituted template argument, or NULL if an error occurred. 2141static TemplateName 2142SubstDefaultTemplateArgument(Sema &SemaRef, 2143 TemplateDecl *Template, 2144 SourceLocation TemplateLoc, 2145 SourceLocation RAngleLoc, 2146 TemplateTemplateParmDecl *Param, 2147 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2148 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2149 Converted.data(), Converted.size()); 2150 2151 MultiLevelTemplateArgumentList AllTemplateArgs 2152 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2153 2154 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2155 Template, Converted.data(), 2156 Converted.size(), 2157 SourceRange(TemplateLoc, RAngleLoc)); 2158 2159 return SemaRef.SubstTemplateName( 2160 Param->getDefaultArgument().getArgument().getAsTemplate(), 2161 Param->getDefaultArgument().getTemplateNameLoc(), 2162 AllTemplateArgs); 2163} 2164 2165/// \brief If the given template parameter has a default template 2166/// argument, substitute into that default template argument and 2167/// return the corresponding template argument. 2168TemplateArgumentLoc 2169Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 2170 SourceLocation TemplateLoc, 2171 SourceLocation RAngleLoc, 2172 Decl *Param, 2173 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2174 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 2175 if (!TypeParm->hasDefaultArgument()) 2176 return TemplateArgumentLoc(); 2177 2178 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 2179 TemplateLoc, 2180 RAngleLoc, 2181 TypeParm, 2182 Converted); 2183 if (DI) 2184 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 2185 2186 return TemplateArgumentLoc(); 2187 } 2188 2189 if (NonTypeTemplateParmDecl *NonTypeParm 2190 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2191 if (!NonTypeParm->hasDefaultArgument()) 2192 return TemplateArgumentLoc(); 2193 2194 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 2195 TemplateLoc, 2196 RAngleLoc, 2197 NonTypeParm, 2198 Converted); 2199 if (Arg.isInvalid()) 2200 return TemplateArgumentLoc(); 2201 2202 Expr *ArgE = Arg.takeAs<Expr>(); 2203 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 2204 } 2205 2206 TemplateTemplateParmDecl *TempTempParm 2207 = cast<TemplateTemplateParmDecl>(Param); 2208 if (!TempTempParm->hasDefaultArgument()) 2209 return TemplateArgumentLoc(); 2210 2211 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 2212 TemplateLoc, 2213 RAngleLoc, 2214 TempTempParm, 2215 Converted); 2216 if (TName.isNull()) 2217 return TemplateArgumentLoc(); 2218 2219 return TemplateArgumentLoc(TemplateArgument(TName), 2220 TempTempParm->getDefaultArgument().getTemplateQualifierRange(), 2221 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 2222} 2223 2224/// \brief Check that the given template argument corresponds to the given 2225/// template parameter. 2226/// 2227/// \param Param The template parameter against which the argument will be 2228/// checked. 2229/// 2230/// \param Arg The template argument. 2231/// 2232/// \param Template The template in which the template argument resides. 2233/// 2234/// \param TemplateLoc The location of the template name for the template 2235/// whose argument list we're matching. 2236/// 2237/// \param RAngleLoc The location of the right angle bracket ('>') that closes 2238/// the template argument list. 2239/// 2240/// \param ArgumentPackIndex The index into the argument pack where this 2241/// argument will be placed. Only valid if the parameter is a parameter pack. 2242/// 2243/// \param Converted The checked, converted argument will be added to the 2244/// end of this small vector. 2245/// 2246/// \param CTAK Describes how we arrived at this particular template argument: 2247/// explicitly written, deduced, etc. 2248/// 2249/// \returns true on error, false otherwise. 2250bool Sema::CheckTemplateArgument(NamedDecl *Param, 2251 const TemplateArgumentLoc &Arg, 2252 NamedDecl *Template, 2253 SourceLocation TemplateLoc, 2254 SourceLocation RAngleLoc, 2255 unsigned ArgumentPackIndex, 2256 llvm::SmallVectorImpl<TemplateArgument> &Converted, 2257 CheckTemplateArgumentKind CTAK) { 2258 // Check template type parameters. 2259 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2260 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2261 2262 // Check non-type template parameters. 2263 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2264 // Do substitution on the type of the non-type template parameter 2265 // with the template arguments we've seen thus far. But if the 2266 // template has a dependent context then we cannot substitute yet. 2267 QualType NTTPType = NTTP->getType(); 2268 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 2269 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 2270 2271 if (NTTPType->isDependentType() && 2272 !isa<TemplateTemplateParmDecl>(Template) && 2273 !Template->getDeclContext()->isDependentContext()) { 2274 // Do substitution on the type of the non-type template parameter. 2275 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2276 NTTP, Converted.data(), Converted.size(), 2277 SourceRange(TemplateLoc, RAngleLoc)); 2278 2279 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2280 Converted.data(), Converted.size()); 2281 NTTPType = SubstType(NTTPType, 2282 MultiLevelTemplateArgumentList(TemplateArgs), 2283 NTTP->getLocation(), 2284 NTTP->getDeclName()); 2285 // If that worked, check the non-type template parameter type 2286 // for validity. 2287 if (!NTTPType.isNull()) 2288 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2289 NTTP->getLocation()); 2290 if (NTTPType.isNull()) 2291 return true; 2292 } 2293 2294 switch (Arg.getArgument().getKind()) { 2295 case TemplateArgument::Null: 2296 assert(false && "Should never see a NULL template argument here"); 2297 return true; 2298 2299 case TemplateArgument::Expression: { 2300 Expr *E = Arg.getArgument().getAsExpr(); 2301 TemplateArgument Result; 2302 if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK)) 2303 return true; 2304 2305 Converted.push_back(Result); 2306 break; 2307 } 2308 2309 case TemplateArgument::Declaration: 2310 case TemplateArgument::Integral: 2311 // We've already checked this template argument, so just copy 2312 // it to the list of converted arguments. 2313 Converted.push_back(Arg.getArgument()); 2314 break; 2315 2316 case TemplateArgument::Template: 2317 case TemplateArgument::TemplateExpansion: 2318 // We were given a template template argument. It may not be ill-formed; 2319 // see below. 2320 if (DependentTemplateName *DTN 2321 = Arg.getArgument().getAsTemplateOrTemplatePattern() 2322 .getAsDependentTemplateName()) { 2323 // We have a template argument such as \c T::template X, which we 2324 // parsed as a template template argument. However, since we now 2325 // know that we need a non-type template argument, convert this 2326 // template name into an expression. 2327 2328 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 2329 Arg.getTemplateNameLoc()); 2330 2331 Expr *E = DependentScopeDeclRefExpr::Create(Context, 2332 DTN->getQualifier(), 2333 Arg.getTemplateQualifierRange(), 2334 NameInfo); 2335 2336 // If we parsed the template argument as a pack expansion, create a 2337 // pack expansion expression. 2338 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 2339 ExprResult Expansion = ActOnPackExpansion(E, 2340 Arg.getTemplateEllipsisLoc()); 2341 if (Expansion.isInvalid()) 2342 return true; 2343 2344 E = Expansion.get(); 2345 } 2346 2347 TemplateArgument Result; 2348 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 2349 return true; 2350 2351 Converted.push_back(Result); 2352 break; 2353 } 2354 2355 // We have a template argument that actually does refer to a class 2356 // template, template alias, or template template parameter, and 2357 // therefore cannot be a non-type template argument. 2358 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2359 << Arg.getSourceRange(); 2360 2361 Diag(Param->getLocation(), diag::note_template_param_here); 2362 return true; 2363 2364 case TemplateArgument::Type: { 2365 // We have a non-type template parameter but the template 2366 // argument is a type. 2367 2368 // C++ [temp.arg]p2: 2369 // In a template-argument, an ambiguity between a type-id and 2370 // an expression is resolved to a type-id, regardless of the 2371 // form of the corresponding template-parameter. 2372 // 2373 // We warn specifically about this case, since it can be rather 2374 // confusing for users. 2375 QualType T = Arg.getArgument().getAsType(); 2376 SourceRange SR = Arg.getSourceRange(); 2377 if (T->isFunctionType()) 2378 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2379 else 2380 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2381 Diag(Param->getLocation(), diag::note_template_param_here); 2382 return true; 2383 } 2384 2385 case TemplateArgument::Pack: 2386 llvm_unreachable("Caller must expand template argument packs"); 2387 break; 2388 } 2389 2390 return false; 2391 } 2392 2393 2394 // Check template template parameters. 2395 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2396 2397 // Substitute into the template parameter list of the template 2398 // template parameter, since previously-supplied template arguments 2399 // may appear within the template template parameter. 2400 { 2401 // Set up a template instantiation context. 2402 LocalInstantiationScope Scope(*this); 2403 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2404 TempParm, Converted.data(), Converted.size(), 2405 SourceRange(TemplateLoc, RAngleLoc)); 2406 2407 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2408 Converted.data(), Converted.size()); 2409 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2410 SubstDecl(TempParm, CurContext, 2411 MultiLevelTemplateArgumentList(TemplateArgs))); 2412 if (!TempParm) 2413 return true; 2414 } 2415 2416 switch (Arg.getArgument().getKind()) { 2417 case TemplateArgument::Null: 2418 assert(false && "Should never see a NULL template argument here"); 2419 return true; 2420 2421 case TemplateArgument::Template: 2422 case TemplateArgument::TemplateExpansion: 2423 if (CheckTemplateArgument(TempParm, Arg)) 2424 return true; 2425 2426 Converted.push_back(Arg.getArgument()); 2427 break; 2428 2429 case TemplateArgument::Expression: 2430 case TemplateArgument::Type: 2431 // We have a template template parameter but the template 2432 // argument does not refer to a template. 2433 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 2434 return true; 2435 2436 case TemplateArgument::Declaration: 2437 llvm_unreachable( 2438 "Declaration argument with template template parameter"); 2439 break; 2440 case TemplateArgument::Integral: 2441 llvm_unreachable( 2442 "Integral argument with template template parameter"); 2443 break; 2444 2445 case TemplateArgument::Pack: 2446 llvm_unreachable("Caller must expand template argument packs"); 2447 break; 2448 } 2449 2450 return false; 2451} 2452 2453/// \brief Check that the given template argument list is well-formed 2454/// for specializing the given template. 2455bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2456 SourceLocation TemplateLoc, 2457 const TemplateArgumentListInfo &TemplateArgs, 2458 bool PartialTemplateArgs, 2459 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2460 TemplateParameterList *Params = Template->getTemplateParameters(); 2461 unsigned NumParams = Params->size(); 2462 unsigned NumArgs = TemplateArgs.size(); 2463 bool Invalid = false; 2464 2465 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2466 2467 bool HasParameterPack = 2468 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2469 2470 if ((NumArgs > NumParams && !HasParameterPack) || 2471 (NumArgs < Params->getMinRequiredArguments() && 2472 !PartialTemplateArgs)) { 2473 // FIXME: point at either the first arg beyond what we can handle, 2474 // or the '>', depending on whether we have too many or too few 2475 // arguments. 2476 SourceRange Range; 2477 if (NumArgs > NumParams) 2478 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2479 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2480 << (NumArgs > NumParams) 2481 << (isa<ClassTemplateDecl>(Template)? 0 : 2482 isa<FunctionTemplateDecl>(Template)? 1 : 2483 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2484 << Template << Range; 2485 Diag(Template->getLocation(), diag::note_template_decl_here) 2486 << Params->getSourceRange(); 2487 Invalid = true; 2488 } 2489 2490 // C++ [temp.arg]p1: 2491 // [...] The type and form of each template-argument specified in 2492 // a template-id shall match the type and form specified for the 2493 // corresponding parameter declared by the template in its 2494 // template-parameter-list. 2495 llvm::SmallVector<TemplateArgument, 2> ArgumentPack; 2496 TemplateParameterList::iterator Param = Params->begin(), 2497 ParamEnd = Params->end(); 2498 unsigned ArgIdx = 0; 2499 LocalInstantiationScope InstScope(*this, true); 2500 while (Param != ParamEnd) { 2501 if (ArgIdx > NumArgs && PartialTemplateArgs) 2502 break; 2503 2504 if (ArgIdx < NumArgs) { 2505 // If we have an expanded parameter pack, make sure we don't have too 2506 // many arguments. 2507 if (NonTypeTemplateParmDecl *NTTP 2508 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2509 if (NTTP->isExpandedParameterPack() && 2510 ArgumentPack.size() >= NTTP->getNumExpansionTypes()) { 2511 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2512 << true 2513 << (isa<ClassTemplateDecl>(Template)? 0 : 2514 isa<FunctionTemplateDecl>(Template)? 1 : 2515 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2516 << Template; 2517 Diag(Template->getLocation(), diag::note_template_decl_here) 2518 << Params->getSourceRange(); 2519 return true; 2520 } 2521 } 2522 2523 // Check the template argument we were given. 2524 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2525 TemplateLoc, RAngleLoc, 2526 ArgumentPack.size(), Converted)) 2527 return true; 2528 2529 if ((*Param)->isTemplateParameterPack()) { 2530 // The template parameter was a template parameter pack, so take the 2531 // deduced argument and place it on the argument pack. Note that we 2532 // stay on the same template parameter so that we can deduce more 2533 // arguments. 2534 ArgumentPack.push_back(Converted.back()); 2535 Converted.pop_back(); 2536 } else { 2537 // Move to the next template parameter. 2538 ++Param; 2539 } 2540 ++ArgIdx; 2541 continue; 2542 } 2543 2544 // If we have a template parameter pack with no more corresponding 2545 // arguments, just break out now and we'll fill in the argument pack below. 2546 if ((*Param)->isTemplateParameterPack()) 2547 break; 2548 2549 // We have a default template argument that we will use. 2550 TemplateArgumentLoc Arg; 2551 2552 // Retrieve the default template argument from the template 2553 // parameter. For each kind of template parameter, we substitute the 2554 // template arguments provided thus far and any "outer" template arguments 2555 // (when the template parameter was part of a nested template) into 2556 // the default argument. 2557 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2558 if (!TTP->hasDefaultArgument()) { 2559 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2560 break; 2561 } 2562 2563 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2564 Template, 2565 TemplateLoc, 2566 RAngleLoc, 2567 TTP, 2568 Converted); 2569 if (!ArgType) 2570 return true; 2571 2572 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2573 ArgType); 2574 } else if (NonTypeTemplateParmDecl *NTTP 2575 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2576 if (!NTTP->hasDefaultArgument()) { 2577 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2578 break; 2579 } 2580 2581 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 2582 TemplateLoc, 2583 RAngleLoc, 2584 NTTP, 2585 Converted); 2586 if (E.isInvalid()) 2587 return true; 2588 2589 Expr *Ex = E.takeAs<Expr>(); 2590 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2591 } else { 2592 TemplateTemplateParmDecl *TempParm 2593 = cast<TemplateTemplateParmDecl>(*Param); 2594 2595 if (!TempParm->hasDefaultArgument()) { 2596 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2597 break; 2598 } 2599 2600 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2601 TemplateLoc, 2602 RAngleLoc, 2603 TempParm, 2604 Converted); 2605 if (Name.isNull()) 2606 return true; 2607 2608 Arg = TemplateArgumentLoc(TemplateArgument(Name), 2609 TempParm->getDefaultArgument().getTemplateQualifierRange(), 2610 TempParm->getDefaultArgument().getTemplateNameLoc()); 2611 } 2612 2613 // Introduce an instantiation record that describes where we are using 2614 // the default template argument. 2615 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 2616 Converted.data(), Converted.size(), 2617 SourceRange(TemplateLoc, RAngleLoc)); 2618 2619 // Check the default template argument. 2620 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 2621 RAngleLoc, 0, Converted)) 2622 return true; 2623 2624 // Move to the next template parameter and argument. 2625 ++Param; 2626 ++ArgIdx; 2627 } 2628 2629 // Form argument packs for each of the parameter packs remaining. 2630 while (Param != ParamEnd) { 2631 // If we're checking a partial list of template arguments, don't fill 2632 // in arguments for non-template parameter packs. 2633 2634 if ((*Param)->isTemplateParameterPack()) { 2635 if (PartialTemplateArgs && ArgumentPack.empty()) { 2636 Converted.push_back(TemplateArgument()); 2637 } else if (ArgumentPack.empty()) 2638 Converted.push_back(TemplateArgument(0, 0)); 2639 else { 2640 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 2641 ArgumentPack.data(), 2642 ArgumentPack.size())); 2643 ArgumentPack.clear(); 2644 } 2645 } 2646 2647 ++Param; 2648 } 2649 2650 return Invalid; 2651} 2652 2653namespace { 2654 class UnnamedLocalNoLinkageFinder 2655 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 2656 { 2657 Sema &S; 2658 SourceRange SR; 2659 2660 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 2661 2662 public: 2663 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 2664 2665 bool Visit(QualType T) { 2666 return inherited::Visit(T.getTypePtr()); 2667 } 2668 2669#define TYPE(Class, Parent) \ 2670 bool Visit##Class##Type(const Class##Type *); 2671#define ABSTRACT_TYPE(Class, Parent) \ 2672 bool Visit##Class##Type(const Class##Type *) { return false; } 2673#define NON_CANONICAL_TYPE(Class, Parent) \ 2674 bool Visit##Class##Type(const Class##Type *) { return false; } 2675#include "clang/AST/TypeNodes.def" 2676 2677 bool VisitTagDecl(const TagDecl *Tag); 2678 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 2679 }; 2680} 2681 2682bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 2683 return false; 2684} 2685 2686bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 2687 return Visit(T->getElementType()); 2688} 2689 2690bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 2691 return Visit(T->getPointeeType()); 2692} 2693 2694bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 2695 const BlockPointerType* T) { 2696 return Visit(T->getPointeeType()); 2697} 2698 2699bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 2700 const LValueReferenceType* T) { 2701 return Visit(T->getPointeeType()); 2702} 2703 2704bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 2705 const RValueReferenceType* T) { 2706 return Visit(T->getPointeeType()); 2707} 2708 2709bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 2710 const MemberPointerType* T) { 2711 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 2712} 2713 2714bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 2715 const ConstantArrayType* T) { 2716 return Visit(T->getElementType()); 2717} 2718 2719bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 2720 const IncompleteArrayType* T) { 2721 return Visit(T->getElementType()); 2722} 2723 2724bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 2725 const VariableArrayType* T) { 2726 return Visit(T->getElementType()); 2727} 2728 2729bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 2730 const DependentSizedArrayType* T) { 2731 return Visit(T->getElementType()); 2732} 2733 2734bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 2735 const DependentSizedExtVectorType* T) { 2736 return Visit(T->getElementType()); 2737} 2738 2739bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 2740 return Visit(T->getElementType()); 2741} 2742 2743bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 2744 return Visit(T->getElementType()); 2745} 2746 2747bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 2748 const FunctionProtoType* T) { 2749 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), 2750 AEnd = T->arg_type_end(); 2751 A != AEnd; ++A) { 2752 if (Visit(*A)) 2753 return true; 2754 } 2755 2756 return Visit(T->getResultType()); 2757} 2758 2759bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 2760 const FunctionNoProtoType* T) { 2761 return Visit(T->getResultType()); 2762} 2763 2764bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 2765 const UnresolvedUsingType*) { 2766 return false; 2767} 2768 2769bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 2770 return false; 2771} 2772 2773bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 2774 return Visit(T->getUnderlyingType()); 2775} 2776 2777bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 2778 return false; 2779} 2780 2781bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 2782 return VisitTagDecl(T->getDecl()); 2783} 2784 2785bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 2786 return VisitTagDecl(T->getDecl()); 2787} 2788 2789bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 2790 const TemplateTypeParmType*) { 2791 return false; 2792} 2793 2794bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 2795 const SubstTemplateTypeParmPackType *) { 2796 return false; 2797} 2798 2799bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 2800 const TemplateSpecializationType*) { 2801 return false; 2802} 2803 2804bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 2805 const InjectedClassNameType* T) { 2806 return VisitTagDecl(T->getDecl()); 2807} 2808 2809bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 2810 const DependentNameType* T) { 2811 return VisitNestedNameSpecifier(T->getQualifier()); 2812} 2813 2814bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 2815 const DependentTemplateSpecializationType* T) { 2816 return VisitNestedNameSpecifier(T->getQualifier()); 2817} 2818 2819bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 2820 const PackExpansionType* T) { 2821 return Visit(T->getPattern()); 2822} 2823 2824bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 2825 return false; 2826} 2827 2828bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 2829 const ObjCInterfaceType *) { 2830 return false; 2831} 2832 2833bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 2834 const ObjCObjectPointerType *) { 2835 return false; 2836} 2837 2838bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 2839 if (Tag->getDeclContext()->isFunctionOrMethod()) { 2840 S.Diag(SR.getBegin(), diag::ext_template_arg_local_type) 2841 << S.Context.getTypeDeclType(Tag) << SR; 2842 return true; 2843 } 2844 2845 if (!Tag->getDeclName() && !Tag->getTypedefForAnonDecl()) { 2846 S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR; 2847 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 2848 return true; 2849 } 2850 2851 return false; 2852} 2853 2854bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 2855 NestedNameSpecifier *NNS) { 2856 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 2857 return true; 2858 2859 switch (NNS->getKind()) { 2860 case NestedNameSpecifier::Identifier: 2861 case NestedNameSpecifier::Namespace: 2862 case NestedNameSpecifier::Global: 2863 return false; 2864 2865 case NestedNameSpecifier::TypeSpec: 2866 case NestedNameSpecifier::TypeSpecWithTemplate: 2867 return Visit(QualType(NNS->getAsType(), 0)); 2868 } 2869 return false; 2870} 2871 2872 2873/// \brief Check a template argument against its corresponding 2874/// template type parameter. 2875/// 2876/// This routine implements the semantics of C++ [temp.arg.type]. It 2877/// returns true if an error occurred, and false otherwise. 2878bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 2879 TypeSourceInfo *ArgInfo) { 2880 assert(ArgInfo && "invalid TypeSourceInfo"); 2881 QualType Arg = ArgInfo->getType(); 2882 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 2883 2884 if (Arg->isVariablyModifiedType()) { 2885 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 2886 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 2887 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 2888 } 2889 2890 // C++03 [temp.arg.type]p2: 2891 // A local type, a type with no linkage, an unnamed type or a type 2892 // compounded from any of these types shall not be used as a 2893 // template-argument for a template type-parameter. 2894 // 2895 // C++0x allows these, and even in C++03 we allow them as an extension with 2896 // a warning. 2897 if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) { 2898 UnnamedLocalNoLinkageFinder Finder(*this, SR); 2899 (void)Finder.Visit(Context.getCanonicalType(Arg)); 2900 } 2901 2902 return false; 2903} 2904 2905/// \brief Checks whether the given template argument is the address 2906/// of an object or function according to C++ [temp.arg.nontype]p1. 2907static bool 2908CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 2909 NonTypeTemplateParmDecl *Param, 2910 QualType ParamType, 2911 Expr *ArgIn, 2912 TemplateArgument &Converted) { 2913 bool Invalid = false; 2914 Expr *Arg = ArgIn; 2915 QualType ArgType = Arg->getType(); 2916 2917 // See through any implicit casts we added to fix the type. 2918 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2919 Arg = Cast->getSubExpr(); 2920 2921 // C++ [temp.arg.nontype]p1: 2922 // 2923 // A template-argument for a non-type, non-template 2924 // template-parameter shall be one of: [...] 2925 // 2926 // -- the address of an object or function with external 2927 // linkage, including function templates and function 2928 // template-ids but excluding non-static class members, 2929 // expressed as & id-expression where the & is optional if 2930 // the name refers to a function or array, or if the 2931 // corresponding template-parameter is a reference; or 2932 DeclRefExpr *DRE = 0; 2933 2934 // In C++98/03 mode, give an extension warning on any extra parentheses. 2935 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 2936 bool ExtraParens = false; 2937 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2938 if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) { 2939 S.Diag(Arg->getSourceRange().getBegin(), 2940 diag::ext_template_arg_extra_parens) 2941 << Arg->getSourceRange(); 2942 ExtraParens = true; 2943 } 2944 2945 Arg = Parens->getSubExpr(); 2946 } 2947 2948 bool AddressTaken = false; 2949 SourceLocation AddrOpLoc; 2950 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2951 if (UnOp->getOpcode() == UO_AddrOf) { 2952 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2953 AddressTaken = true; 2954 AddrOpLoc = UnOp->getOperatorLoc(); 2955 } 2956 } else 2957 DRE = dyn_cast<DeclRefExpr>(Arg); 2958 2959 if (!DRE) { 2960 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 2961 << Arg->getSourceRange(); 2962 S.Diag(Param->getLocation(), diag::note_template_param_here); 2963 return true; 2964 } 2965 2966 // Stop checking the precise nature of the argument if it is value dependent, 2967 // it should be checked when instantiated. 2968 if (Arg->isValueDependent()) { 2969 Converted = TemplateArgument(ArgIn); 2970 return false; 2971 } 2972 2973 if (!isa<ValueDecl>(DRE->getDecl())) { 2974 S.Diag(Arg->getSourceRange().getBegin(), 2975 diag::err_template_arg_not_object_or_func_form) 2976 << Arg->getSourceRange(); 2977 S.Diag(Param->getLocation(), diag::note_template_param_here); 2978 return true; 2979 } 2980 2981 NamedDecl *Entity = 0; 2982 2983 // Cannot refer to non-static data members 2984 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) { 2985 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 2986 << Field << Arg->getSourceRange(); 2987 S.Diag(Param->getLocation(), diag::note_template_param_here); 2988 return true; 2989 } 2990 2991 // Cannot refer to non-static member functions 2992 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 2993 if (!Method->isStatic()) { 2994 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method) 2995 << Method << Arg->getSourceRange(); 2996 S.Diag(Param->getLocation(), diag::note_template_param_here); 2997 return true; 2998 } 2999 3000 // Functions must have external linkage. 3001 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 3002 if (!isExternalLinkage(Func->getLinkage())) { 3003 S.Diag(Arg->getSourceRange().getBegin(), 3004 diag::err_template_arg_function_not_extern) 3005 << Func << Arg->getSourceRange(); 3006 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object) 3007 << true; 3008 return true; 3009 } 3010 3011 // Okay: we've named a function with external linkage. 3012 Entity = Func; 3013 3014 // If the template parameter has pointer type, the function decays. 3015 if (ParamType->isPointerType() && !AddressTaken) 3016 ArgType = S.Context.getPointerType(Func->getType()); 3017 else if (AddressTaken && ParamType->isReferenceType()) { 3018 // If we originally had an address-of operator, but the 3019 // parameter has reference type, complain and (if things look 3020 // like they will work) drop the address-of operator. 3021 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 3022 ParamType.getNonReferenceType())) { 3023 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3024 << ParamType; 3025 S.Diag(Param->getLocation(), diag::note_template_param_here); 3026 return true; 3027 } 3028 3029 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3030 << ParamType 3031 << FixItHint::CreateRemoval(AddrOpLoc); 3032 S.Diag(Param->getLocation(), diag::note_template_param_here); 3033 3034 ArgType = Func->getType(); 3035 } 3036 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 3037 if (!isExternalLinkage(Var->getLinkage())) { 3038 S.Diag(Arg->getSourceRange().getBegin(), 3039 diag::err_template_arg_object_not_extern) 3040 << Var << Arg->getSourceRange(); 3041 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object) 3042 << true; 3043 return true; 3044 } 3045 3046 // A value of reference type is not an object. 3047 if (Var->getType()->isReferenceType()) { 3048 S.Diag(Arg->getSourceRange().getBegin(), 3049 diag::err_template_arg_reference_var) 3050 << Var->getType() << Arg->getSourceRange(); 3051 S.Diag(Param->getLocation(), diag::note_template_param_here); 3052 return true; 3053 } 3054 3055 // Okay: we've named an object with external linkage 3056 Entity = Var; 3057 3058 // If the template parameter has pointer type, we must have taken 3059 // the address of this object. 3060 if (ParamType->isReferenceType()) { 3061 if (AddressTaken) { 3062 // If we originally had an address-of operator, but the 3063 // parameter has reference type, complain and (if things look 3064 // like they will work) drop the address-of operator. 3065 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 3066 ParamType.getNonReferenceType())) { 3067 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3068 << ParamType; 3069 S.Diag(Param->getLocation(), diag::note_template_param_here); 3070 return true; 3071 } 3072 3073 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3074 << ParamType 3075 << FixItHint::CreateRemoval(AddrOpLoc); 3076 S.Diag(Param->getLocation(), diag::note_template_param_here); 3077 3078 ArgType = Var->getType(); 3079 } 3080 } else if (!AddressTaken && ParamType->isPointerType()) { 3081 if (Var->getType()->isArrayType()) { 3082 // Array-to-pointer decay. 3083 ArgType = S.Context.getArrayDecayedType(Var->getType()); 3084 } else { 3085 // If the template parameter has pointer type but the address of 3086 // this object was not taken, complain and (possibly) recover by 3087 // taking the address of the entity. 3088 ArgType = S.Context.getPointerType(Var->getType()); 3089 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 3090 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3091 << ParamType; 3092 S.Diag(Param->getLocation(), diag::note_template_param_here); 3093 return true; 3094 } 3095 3096 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3097 << ParamType 3098 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 3099 3100 S.Diag(Param->getLocation(), diag::note_template_param_here); 3101 } 3102 } 3103 } else { 3104 // We found something else, but we don't know specifically what it is. 3105 S.Diag(Arg->getSourceRange().getBegin(), 3106 diag::err_template_arg_not_object_or_func) 3107 << Arg->getSourceRange(); 3108 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 3109 return true; 3110 } 3111 3112 if (ParamType->isPointerType() && 3113 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 3114 S.IsQualificationConversion(ArgType, ParamType, false)) { 3115 // For pointer-to-object types, qualification conversions are 3116 // permitted. 3117 } else { 3118 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 3119 if (!ParamRef->getPointeeType()->isFunctionType()) { 3120 // C++ [temp.arg.nontype]p5b3: 3121 // For a non-type template-parameter of type reference to 3122 // object, no conversions apply. The type referred to by the 3123 // reference may be more cv-qualified than the (otherwise 3124 // identical) type of the template- argument. The 3125 // template-parameter is bound directly to the 3126 // template-argument, which shall be an lvalue. 3127 3128 // FIXME: Other qualifiers? 3129 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 3130 unsigned ArgQuals = ArgType.getCVRQualifiers(); 3131 3132 if ((ParamQuals | ArgQuals) != ParamQuals) { 3133 S.Diag(Arg->getSourceRange().getBegin(), 3134 diag::err_template_arg_ref_bind_ignores_quals) 3135 << ParamType << Arg->getType() 3136 << Arg->getSourceRange(); 3137 S.Diag(Param->getLocation(), diag::note_template_param_here); 3138 return true; 3139 } 3140 } 3141 } 3142 3143 // At this point, the template argument refers to an object or 3144 // function with external linkage. We now need to check whether the 3145 // argument and parameter types are compatible. 3146 if (!S.Context.hasSameUnqualifiedType(ArgType, 3147 ParamType.getNonReferenceType())) { 3148 // We can't perform this conversion or binding. 3149 if (ParamType->isReferenceType()) 3150 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 3151 << ParamType << Arg->getType() << Arg->getSourceRange(); 3152 else 3153 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3154 << Arg->getType() << ParamType << Arg->getSourceRange(); 3155 S.Diag(Param->getLocation(), diag::note_template_param_here); 3156 return true; 3157 } 3158 } 3159 3160 // Create the template argument. 3161 Converted = TemplateArgument(Entity->getCanonicalDecl()); 3162 S.MarkDeclarationReferenced(Arg->getLocStart(), Entity); 3163 return false; 3164} 3165 3166/// \brief Checks whether the given template argument is a pointer to 3167/// member constant according to C++ [temp.arg.nontype]p1. 3168bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 3169 TemplateArgument &Converted) { 3170 bool Invalid = false; 3171 3172 // See through any implicit casts we added to fix the type. 3173 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 3174 Arg = Cast->getSubExpr(); 3175 3176 // C++ [temp.arg.nontype]p1: 3177 // 3178 // A template-argument for a non-type, non-template 3179 // template-parameter shall be one of: [...] 3180 // 3181 // -- a pointer to member expressed as described in 5.3.1. 3182 DeclRefExpr *DRE = 0; 3183 3184 // In C++98/03 mode, give an extension warning on any extra parentheses. 3185 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3186 bool ExtraParens = false; 3187 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3188 if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) { 3189 Diag(Arg->getSourceRange().getBegin(), 3190 diag::ext_template_arg_extra_parens) 3191 << Arg->getSourceRange(); 3192 ExtraParens = true; 3193 } 3194 3195 Arg = Parens->getSubExpr(); 3196 } 3197 3198 // A pointer-to-member constant written &Class::member. 3199 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3200 if (UnOp->getOpcode() == UO_AddrOf) { 3201 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 3202 if (DRE && !DRE->getQualifier()) 3203 DRE = 0; 3204 } 3205 } 3206 // A constant of pointer-to-member type. 3207 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 3208 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 3209 if (VD->getType()->isMemberPointerType()) { 3210 if (isa<NonTypeTemplateParmDecl>(VD) || 3211 (isa<VarDecl>(VD) && 3212 Context.getCanonicalType(VD->getType()).isConstQualified())) { 3213 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3214 Converted = TemplateArgument(Arg); 3215 else 3216 Converted = TemplateArgument(VD->getCanonicalDecl()); 3217 return Invalid; 3218 } 3219 } 3220 } 3221 3222 DRE = 0; 3223 } 3224 3225 if (!DRE) 3226 return Diag(Arg->getSourceRange().getBegin(), 3227 diag::err_template_arg_not_pointer_to_member_form) 3228 << Arg->getSourceRange(); 3229 3230 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 3231 assert((isa<FieldDecl>(DRE->getDecl()) || 3232 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 3233 "Only non-static member pointers can make it here"); 3234 3235 // Okay: this is the address of a non-static member, and therefore 3236 // a member pointer constant. 3237 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3238 Converted = TemplateArgument(Arg); 3239 else 3240 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 3241 return Invalid; 3242 } 3243 3244 // We found something else, but we don't know specifically what it is. 3245 Diag(Arg->getSourceRange().getBegin(), 3246 diag::err_template_arg_not_pointer_to_member_form) 3247 << Arg->getSourceRange(); 3248 Diag(DRE->getDecl()->getLocation(), 3249 diag::note_template_arg_refers_here); 3250 return true; 3251} 3252 3253/// \brief Check a template argument against its corresponding 3254/// non-type template parameter. 3255/// 3256/// This routine implements the semantics of C++ [temp.arg.nontype]. 3257/// It returns true if an error occurred, and false otherwise. \p 3258/// InstantiatedParamType is the type of the non-type template 3259/// parameter after it has been instantiated. 3260/// 3261/// If no error was detected, Converted receives the converted template argument. 3262bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 3263 QualType InstantiatedParamType, Expr *&Arg, 3264 TemplateArgument &Converted, 3265 CheckTemplateArgumentKind CTAK) { 3266 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 3267 3268 // If either the parameter has a dependent type or the argument is 3269 // type-dependent, there's nothing we can check now. 3270 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 3271 // FIXME: Produce a cloned, canonical expression? 3272 Converted = TemplateArgument(Arg); 3273 return false; 3274 } 3275 3276 // C++ [temp.arg.nontype]p5: 3277 // The following conversions are performed on each expression used 3278 // as a non-type template-argument. If a non-type 3279 // template-argument cannot be converted to the type of the 3280 // corresponding template-parameter then the program is 3281 // ill-formed. 3282 // 3283 // -- for a non-type template-parameter of integral or 3284 // enumeration type, integral promotions (4.5) and integral 3285 // conversions (4.7) are applied. 3286 QualType ParamType = InstantiatedParamType; 3287 QualType ArgType = Arg->getType(); 3288 if (ParamType->isIntegralOrEnumerationType()) { 3289 // C++ [temp.arg.nontype]p1: 3290 // A template-argument for a non-type, non-template 3291 // template-parameter shall be one of: 3292 // 3293 // -- an integral constant-expression of integral or enumeration 3294 // type; or 3295 // -- the name of a non-type template-parameter; or 3296 SourceLocation NonConstantLoc; 3297 llvm::APSInt Value; 3298 if (!ArgType->isIntegralOrEnumerationType()) { 3299 Diag(Arg->getSourceRange().getBegin(), 3300 diag::err_template_arg_not_integral_or_enumeral) 3301 << ArgType << Arg->getSourceRange(); 3302 Diag(Param->getLocation(), diag::note_template_param_here); 3303 return true; 3304 } else if (!Arg->isValueDependent() && 3305 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 3306 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 3307 << ArgType << Arg->getSourceRange(); 3308 return true; 3309 } 3310 3311 // From here on out, all we care about are the unqualified forms 3312 // of the parameter and argument types. 3313 ParamType = ParamType.getUnqualifiedType(); 3314 ArgType = ArgType.getUnqualifiedType(); 3315 3316 // Try to convert the argument to the parameter's type. 3317 if (Context.hasSameType(ParamType, ArgType)) { 3318 // Okay: no conversion necessary 3319 } else if (CTAK == CTAK_Deduced) { 3320 // C++ [temp.deduct.type]p17: 3321 // If, in the declaration of a function template with a non-type 3322 // template-parameter, the non-type template- parameter is used 3323 // in an expression in the function parameter-list and, if the 3324 // corresponding template-argument is deduced, the 3325 // template-argument type shall match the type of the 3326 // template-parameter exactly, except that a template-argument 3327 // deduced from an array bound may be of any integral type. 3328 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 3329 << ArgType << ParamType; 3330 Diag(Param->getLocation(), diag::note_template_param_here); 3331 return true; 3332 } else if (ParamType->isBooleanType()) { 3333 // This is an integral-to-boolean conversion. 3334 ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean); 3335 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 3336 !ParamType->isEnumeralType()) { 3337 // This is an integral promotion or conversion. 3338 ImpCastExprToType(Arg, ParamType, CK_IntegralCast); 3339 } else { 3340 // We can't perform this conversion. 3341 Diag(Arg->getSourceRange().getBegin(), 3342 diag::err_template_arg_not_convertible) 3343 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3344 Diag(Param->getLocation(), diag::note_template_param_here); 3345 return true; 3346 } 3347 3348 QualType IntegerType = Context.getCanonicalType(ParamType); 3349 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 3350 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 3351 3352 if (!Arg->isValueDependent()) { 3353 llvm::APSInt OldValue = Value; 3354 3355 // Coerce the template argument's value to the value it will have 3356 // based on the template parameter's type. 3357 unsigned AllowedBits = Context.getTypeSize(IntegerType); 3358 if (Value.getBitWidth() != AllowedBits) 3359 Value = Value.extOrTrunc(AllowedBits); 3360 Value.setIsSigned(IntegerType->isSignedIntegerType()); 3361 3362 // Complain if an unsigned parameter received a negative value. 3363 if (IntegerType->isUnsignedIntegerType() 3364 && (OldValue.isSigned() && OldValue.isNegative())) { 3365 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative) 3366 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3367 << Arg->getSourceRange(); 3368 Diag(Param->getLocation(), diag::note_template_param_here); 3369 } 3370 3371 // Complain if we overflowed the template parameter's type. 3372 unsigned RequiredBits; 3373 if (IntegerType->isUnsignedIntegerType()) 3374 RequiredBits = OldValue.getActiveBits(); 3375 else if (OldValue.isUnsigned()) 3376 RequiredBits = OldValue.getActiveBits() + 1; 3377 else 3378 RequiredBits = OldValue.getMinSignedBits(); 3379 if (RequiredBits > AllowedBits) { 3380 Diag(Arg->getSourceRange().getBegin(), 3381 diag::warn_template_arg_too_large) 3382 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3383 << Arg->getSourceRange(); 3384 Diag(Param->getLocation(), diag::note_template_param_here); 3385 } 3386 } 3387 3388 // Add the value of this argument to the list of converted 3389 // arguments. We use the bitwidth and signedness of the template 3390 // parameter. 3391 if (Arg->isValueDependent()) { 3392 // The argument is value-dependent. Create a new 3393 // TemplateArgument with the converted expression. 3394 Converted = TemplateArgument(Arg); 3395 return false; 3396 } 3397 3398 Converted = TemplateArgument(Value, 3399 ParamType->isEnumeralType() ? ParamType 3400 : IntegerType); 3401 return false; 3402 } 3403 3404 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 3405 3406 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion 3407 // from a template argument of type std::nullptr_t to a non-type 3408 // template parameter of type pointer to object, pointer to 3409 // function, or pointer-to-member, respectively. 3410 if (ArgType->isNullPtrType() && 3411 (ParamType->isPointerType() || ParamType->isMemberPointerType())) { 3412 Converted = TemplateArgument((NamedDecl *)0); 3413 return false; 3414 } 3415 3416 // Handle pointer-to-function, reference-to-function, and 3417 // pointer-to-member-function all in (roughly) the same way. 3418 if (// -- For a non-type template-parameter of type pointer to 3419 // function, only the function-to-pointer conversion (4.3) is 3420 // applied. If the template-argument represents a set of 3421 // overloaded functions (or a pointer to such), the matching 3422 // function is selected from the set (13.4). 3423 (ParamType->isPointerType() && 3424 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 3425 // -- For a non-type template-parameter of type reference to 3426 // function, no conversions apply. If the template-argument 3427 // represents a set of overloaded functions, the matching 3428 // function is selected from the set (13.4). 3429 (ParamType->isReferenceType() && 3430 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 3431 // -- For a non-type template-parameter of type pointer to 3432 // member function, no conversions apply. If the 3433 // template-argument represents a set of overloaded member 3434 // functions, the matching member function is selected from 3435 // the set (13.4). 3436 (ParamType->isMemberPointerType() && 3437 ParamType->getAs<MemberPointerType>()->getPointeeType() 3438 ->isFunctionType())) { 3439 3440 if (Arg->getType() == Context.OverloadTy) { 3441 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 3442 true, 3443 FoundResult)) { 3444 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3445 return true; 3446 3447 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3448 ArgType = Arg->getType(); 3449 } else 3450 return true; 3451 } 3452 3453 if (!ParamType->isMemberPointerType()) 3454 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3455 ParamType, 3456 Arg, Converted); 3457 3458 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(), 3459 false)) { 3460 ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)); 3461 } else if (!Context.hasSameUnqualifiedType(ArgType, 3462 ParamType.getNonReferenceType())) { 3463 // We can't perform this conversion. 3464 Diag(Arg->getSourceRange().getBegin(), 3465 diag::err_template_arg_not_convertible) 3466 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3467 Diag(Param->getLocation(), diag::note_template_param_here); 3468 return true; 3469 } 3470 3471 return CheckTemplateArgumentPointerToMember(Arg, Converted); 3472 } 3473 3474 if (ParamType->isPointerType()) { 3475 // -- for a non-type template-parameter of type pointer to 3476 // object, qualification conversions (4.4) and the 3477 // array-to-pointer conversion (4.2) are applied. 3478 // C++0x also allows a value of std::nullptr_t. 3479 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 3480 "Only object pointers allowed here"); 3481 3482 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3483 ParamType, 3484 Arg, Converted); 3485 } 3486 3487 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 3488 // -- For a non-type template-parameter of type reference to 3489 // object, no conversions apply. The type referred to by the 3490 // reference may be more cv-qualified than the (otherwise 3491 // identical) type of the template-argument. The 3492 // template-parameter is bound directly to the 3493 // template-argument, which must be an lvalue. 3494 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 3495 "Only object references allowed here"); 3496 3497 if (Arg->getType() == Context.OverloadTy) { 3498 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 3499 ParamRefType->getPointeeType(), 3500 true, 3501 FoundResult)) { 3502 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3503 return true; 3504 3505 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3506 ArgType = Arg->getType(); 3507 } else 3508 return true; 3509 } 3510 3511 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3512 ParamType, 3513 Arg, Converted); 3514 } 3515 3516 // -- For a non-type template-parameter of type pointer to data 3517 // member, qualification conversions (4.4) are applied. 3518 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 3519 3520 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 3521 // Types match exactly: nothing more to do here. 3522 } else if (IsQualificationConversion(ArgType, ParamType, false)) { 3523 ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)); 3524 } else { 3525 // We can't perform this conversion. 3526 Diag(Arg->getSourceRange().getBegin(), 3527 diag::err_template_arg_not_convertible) 3528 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3529 Diag(Param->getLocation(), diag::note_template_param_here); 3530 return true; 3531 } 3532 3533 return CheckTemplateArgumentPointerToMember(Arg, Converted); 3534} 3535 3536/// \brief Check a template argument against its corresponding 3537/// template template parameter. 3538/// 3539/// This routine implements the semantics of C++ [temp.arg.template]. 3540/// It returns true if an error occurred, and false otherwise. 3541bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 3542 const TemplateArgumentLoc &Arg) { 3543 TemplateName Name = Arg.getArgument().getAsTemplate(); 3544 TemplateDecl *Template = Name.getAsTemplateDecl(); 3545 if (!Template) { 3546 // Any dependent template name is fine. 3547 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 3548 return false; 3549 } 3550 3551 // C++ [temp.arg.template]p1: 3552 // A template-argument for a template template-parameter shall be 3553 // the name of a class template, expressed as id-expression. Only 3554 // primary class templates are considered when matching the 3555 // template template argument with the corresponding parameter; 3556 // partial specializations are not considered even if their 3557 // parameter lists match that of the template template parameter. 3558 // 3559 // Note that we also allow template template parameters here, which 3560 // will happen when we are dealing with, e.g., class template 3561 // partial specializations. 3562 if (!isa<ClassTemplateDecl>(Template) && 3563 !isa<TemplateTemplateParmDecl>(Template)) { 3564 assert(isa<FunctionTemplateDecl>(Template) && 3565 "Only function templates are possible here"); 3566 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 3567 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 3568 << Template; 3569 } 3570 3571 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 3572 Param->getTemplateParameters(), 3573 true, 3574 TPL_TemplateTemplateArgumentMatch, 3575 Arg.getLocation()); 3576} 3577 3578/// \brief Given a non-type template argument that refers to a 3579/// declaration and the type of its corresponding non-type template 3580/// parameter, produce an expression that properly refers to that 3581/// declaration. 3582ExprResult 3583Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 3584 QualType ParamType, 3585 SourceLocation Loc) { 3586 assert(Arg.getKind() == TemplateArgument::Declaration && 3587 "Only declaration template arguments permitted here"); 3588 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 3589 3590 if (VD->getDeclContext()->isRecord() && 3591 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 3592 // If the value is a class member, we might have a pointer-to-member. 3593 // Determine whether the non-type template template parameter is of 3594 // pointer-to-member type. If so, we need to build an appropriate 3595 // expression for a pointer-to-member, since a "normal" DeclRefExpr 3596 // would refer to the member itself. 3597 if (ParamType->isMemberPointerType()) { 3598 QualType ClassType 3599 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 3600 NestedNameSpecifier *Qualifier 3601 = NestedNameSpecifier::Create(Context, 0, false, 3602 ClassType.getTypePtr()); 3603 CXXScopeSpec SS; 3604 SS.setScopeRep(Qualifier); 3605 3606 // The actual value-ness of this is unimportant, but for 3607 // internal consistency's sake, references to instance methods 3608 // are r-values. 3609 ExprValueKind VK = VK_LValue; 3610 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 3611 VK = VK_RValue; 3612 3613 ExprResult RefExpr = BuildDeclRefExpr(VD, 3614 VD->getType().getNonReferenceType(), 3615 VK, 3616 Loc, 3617 &SS); 3618 if (RefExpr.isInvalid()) 3619 return ExprError(); 3620 3621 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 3622 3623 // We might need to perform a trailing qualification conversion, since 3624 // the element type on the parameter could be more qualified than the 3625 // element type in the expression we constructed. 3626 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 3627 ParamType.getUnqualifiedType(), false)) { 3628 Expr *RefE = RefExpr.takeAs<Expr>(); 3629 ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp); 3630 RefExpr = Owned(RefE); 3631 } 3632 3633 assert(!RefExpr.isInvalid() && 3634 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 3635 ParamType.getUnqualifiedType())); 3636 return move(RefExpr); 3637 } 3638 } 3639 3640 QualType T = VD->getType().getNonReferenceType(); 3641 if (ParamType->isPointerType()) { 3642 // When the non-type template parameter is a pointer, take the 3643 // address of the declaration. 3644 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 3645 if (RefExpr.isInvalid()) 3646 return ExprError(); 3647 3648 if (T->isFunctionType() || T->isArrayType()) { 3649 // Decay functions and arrays. 3650 Expr *RefE = (Expr *)RefExpr.get(); 3651 DefaultFunctionArrayConversion(RefE); 3652 if (RefE != RefExpr.get()) { 3653 RefExpr.release(); 3654 RefExpr = Owned(RefE); 3655 } 3656 3657 return move(RefExpr); 3658 } 3659 3660 // Take the address of everything else 3661 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 3662 } 3663 3664 ExprValueKind VK = VK_RValue; 3665 3666 // If the non-type template parameter has reference type, qualify the 3667 // resulting declaration reference with the extra qualifiers on the 3668 // type that the reference refers to. 3669 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 3670 VK = VK_LValue; 3671 T = Context.getQualifiedType(T, 3672 TargetRef->getPointeeType().getQualifiers()); 3673 } 3674 3675 return BuildDeclRefExpr(VD, T, VK, Loc); 3676} 3677 3678/// \brief Construct a new expression that refers to the given 3679/// integral template argument with the given source-location 3680/// information. 3681/// 3682/// This routine takes care of the mapping from an integral template 3683/// argument (which may have any integral type) to the appropriate 3684/// literal value. 3685ExprResult 3686Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 3687 SourceLocation Loc) { 3688 assert(Arg.getKind() == TemplateArgument::Integral && 3689 "Operation is only valid for integral template arguments"); 3690 QualType T = Arg.getIntegralType(); 3691 if (T->isCharType() || T->isWideCharType()) 3692 return Owned(new (Context) CharacterLiteral( 3693 Arg.getAsIntegral()->getZExtValue(), 3694 T->isWideCharType(), 3695 T, 3696 Loc)); 3697 if (T->isBooleanType()) 3698 return Owned(new (Context) CXXBoolLiteralExpr( 3699 Arg.getAsIntegral()->getBoolValue(), 3700 T, 3701 Loc)); 3702 3703 QualType BT; 3704 if (const EnumType *ET = T->getAs<EnumType>()) 3705 BT = ET->getDecl()->getPromotionType(); 3706 else 3707 BT = T; 3708 3709 Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc); 3710 if (T->isEnumeralType()) { 3711 // FIXME: This is a hack. We need a better way to handle substituted 3712 // non-type template parameters. 3713 E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, 3714 E, 0, 3715 Context.getTrivialTypeSourceInfo(T, Loc), 3716 Loc, Loc); 3717 } 3718 3719 return Owned(E); 3720} 3721 3722/// \brief Match two template parameters within template parameter lists. 3723static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 3724 bool Complain, 3725 Sema::TemplateParameterListEqualKind Kind, 3726 SourceLocation TemplateArgLoc) { 3727 // Check the actual kind (type, non-type, template). 3728 if (Old->getKind() != New->getKind()) { 3729 if (Complain) { 3730 unsigned NextDiag = diag::err_template_param_different_kind; 3731 if (TemplateArgLoc.isValid()) { 3732 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3733 NextDiag = diag::note_template_param_different_kind; 3734 } 3735 S.Diag(New->getLocation(), NextDiag) 3736 << (Kind != Sema::TPL_TemplateMatch); 3737 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 3738 << (Kind != Sema::TPL_TemplateMatch); 3739 } 3740 3741 return false; 3742 } 3743 3744 // Check that both are parameter packs are neither are parameter packs. 3745 // However, if we are matching a template template argument to a 3746 // template template parameter, the template template parameter can have 3747 // a parameter pack where the template template argument does not. 3748 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 3749 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 3750 Old->isTemplateParameterPack())) { 3751 if (Complain) { 3752 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 3753 if (TemplateArgLoc.isValid()) { 3754 S.Diag(TemplateArgLoc, 3755 diag::err_template_arg_template_params_mismatch); 3756 NextDiag = diag::note_template_parameter_pack_non_pack; 3757 } 3758 3759 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 3760 : isa<NonTypeTemplateParmDecl>(New)? 1 3761 : 2; 3762 S.Diag(New->getLocation(), NextDiag) 3763 << ParamKind << New->isParameterPack(); 3764 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 3765 << ParamKind << Old->isParameterPack(); 3766 } 3767 3768 return false; 3769 } 3770 3771 // For non-type template parameters, check the type of the parameter. 3772 if (NonTypeTemplateParmDecl *OldNTTP 3773 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 3774 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 3775 3776 // If we are matching a template template argument to a template 3777 // template parameter and one of the non-type template parameter types 3778 // is dependent, then we must wait until template instantiation time 3779 // to actually compare the arguments. 3780 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && 3781 (OldNTTP->getType()->isDependentType() || 3782 NewNTTP->getType()->isDependentType())) 3783 return true; 3784 3785 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 3786 if (Complain) { 3787 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 3788 if (TemplateArgLoc.isValid()) { 3789 S.Diag(TemplateArgLoc, 3790 diag::err_template_arg_template_params_mismatch); 3791 NextDiag = diag::note_template_nontype_parm_different_type; 3792 } 3793 S.Diag(NewNTTP->getLocation(), NextDiag) 3794 << NewNTTP->getType() 3795 << (Kind != Sema::TPL_TemplateMatch); 3796 S.Diag(OldNTTP->getLocation(), 3797 diag::note_template_nontype_parm_prev_declaration) 3798 << OldNTTP->getType(); 3799 } 3800 3801 return false; 3802 } 3803 3804 return true; 3805 } 3806 3807 // For template template parameters, check the template parameter types. 3808 // The template parameter lists of template template 3809 // parameters must agree. 3810 if (TemplateTemplateParmDecl *OldTTP 3811 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 3812 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 3813 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 3814 OldTTP->getTemplateParameters(), 3815 Complain, 3816 (Kind == Sema::TPL_TemplateMatch 3817 ? Sema::TPL_TemplateTemplateParmMatch 3818 : Kind), 3819 TemplateArgLoc); 3820 } 3821 3822 return true; 3823} 3824 3825/// \brief Diagnose a known arity mismatch when comparing template argument 3826/// lists. 3827static 3828void DiagnoseTemplateParameterListArityMismatch(Sema &S, 3829 TemplateParameterList *New, 3830 TemplateParameterList *Old, 3831 Sema::TemplateParameterListEqualKind Kind, 3832 SourceLocation TemplateArgLoc) { 3833 unsigned NextDiag = diag::err_template_param_list_different_arity; 3834 if (TemplateArgLoc.isValid()) { 3835 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3836 NextDiag = diag::note_template_param_list_different_arity; 3837 } 3838 S.Diag(New->getTemplateLoc(), NextDiag) 3839 << (New->size() > Old->size()) 3840 << (Kind != Sema::TPL_TemplateMatch) 3841 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 3842 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 3843 << (Kind != Sema::TPL_TemplateMatch) 3844 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 3845} 3846 3847/// \brief Determine whether the given template parameter lists are 3848/// equivalent. 3849/// 3850/// \param New The new template parameter list, typically written in the 3851/// source code as part of a new template declaration. 3852/// 3853/// \param Old The old template parameter list, typically found via 3854/// name lookup of the template declared with this template parameter 3855/// list. 3856/// 3857/// \param Complain If true, this routine will produce a diagnostic if 3858/// the template parameter lists are not equivalent. 3859/// 3860/// \param Kind describes how we are to match the template parameter lists. 3861/// 3862/// \param TemplateArgLoc If this source location is valid, then we 3863/// are actually checking the template parameter list of a template 3864/// argument (New) against the template parameter list of its 3865/// corresponding template template parameter (Old). We produce 3866/// slightly different diagnostics in this scenario. 3867/// 3868/// \returns True if the template parameter lists are equal, false 3869/// otherwise. 3870bool 3871Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 3872 TemplateParameterList *Old, 3873 bool Complain, 3874 TemplateParameterListEqualKind Kind, 3875 SourceLocation TemplateArgLoc) { 3876 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 3877 if (Complain) 3878 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 3879 TemplateArgLoc); 3880 3881 return false; 3882 } 3883 3884 // C++0x [temp.arg.template]p3: 3885 // A template-argument matches a template template-parameter (call it P) 3886 // when each of the template parameters in the template-parameter-list of 3887 // the template-argument's corresponding class template or template alias 3888 // (call it A) matches the corresponding template parameter in the 3889 // template-parameter-list of P. [...] 3890 TemplateParameterList::iterator NewParm = New->begin(); 3891 TemplateParameterList::iterator NewParmEnd = New->end(); 3892 for (TemplateParameterList::iterator OldParm = Old->begin(), 3893 OldParmEnd = Old->end(); 3894 OldParm != OldParmEnd; ++OldParm) { 3895 if (Kind != TPL_TemplateTemplateArgumentMatch || 3896 !(*OldParm)->isTemplateParameterPack()) { 3897 if (NewParm == NewParmEnd) { 3898 if (Complain) 3899 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 3900 TemplateArgLoc); 3901 3902 return false; 3903 } 3904 3905 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 3906 Kind, TemplateArgLoc)) 3907 return false; 3908 3909 ++NewParm; 3910 continue; 3911 } 3912 3913 // C++0x [temp.arg.template]p3: 3914 // [...] When P's template- parameter-list contains a template parameter 3915 // pack (14.5.3), the template parameter pack will match zero or more 3916 // template parameters or template parameter packs in the 3917 // template-parameter-list of A with the same type and form as the 3918 // template parameter pack in P (ignoring whether those template 3919 // parameters are template parameter packs). 3920 for (; NewParm != NewParmEnd; ++NewParm) { 3921 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 3922 Kind, TemplateArgLoc)) 3923 return false; 3924 } 3925 } 3926 3927 // Make sure we exhausted all of the arguments. 3928 if (NewParm != NewParmEnd) { 3929 if (Complain) 3930 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 3931 TemplateArgLoc); 3932 3933 return false; 3934 } 3935 3936 return true; 3937} 3938 3939/// \brief Check whether a template can be declared within this scope. 3940/// 3941/// If the template declaration is valid in this scope, returns 3942/// false. Otherwise, issues a diagnostic and returns true. 3943bool 3944Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 3945 // Find the nearest enclosing declaration scope. 3946 while ((S->getFlags() & Scope::DeclScope) == 0 || 3947 (S->getFlags() & Scope::TemplateParamScope) != 0) 3948 S = S->getParent(); 3949 3950 // C++ [temp]p2: 3951 // A template-declaration can appear only as a namespace scope or 3952 // class scope declaration. 3953 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 3954 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 3955 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 3956 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 3957 << TemplateParams->getSourceRange(); 3958 3959 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 3960 Ctx = Ctx->getParent(); 3961 3962 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 3963 return false; 3964 3965 return Diag(TemplateParams->getTemplateLoc(), 3966 diag::err_template_outside_namespace_or_class_scope) 3967 << TemplateParams->getSourceRange(); 3968} 3969 3970/// \brief Determine what kind of template specialization the given declaration 3971/// is. 3972static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 3973 if (!D) 3974 return TSK_Undeclared; 3975 3976 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 3977 return Record->getTemplateSpecializationKind(); 3978 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 3979 return Function->getTemplateSpecializationKind(); 3980 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 3981 return Var->getTemplateSpecializationKind(); 3982 3983 return TSK_Undeclared; 3984} 3985 3986/// \brief Check whether a specialization is well-formed in the current 3987/// context. 3988/// 3989/// This routine determines whether a template specialization can be declared 3990/// in the current context (C++ [temp.expl.spec]p2). 3991/// 3992/// \param S the semantic analysis object for which this check is being 3993/// performed. 3994/// 3995/// \param Specialized the entity being specialized or instantiated, which 3996/// may be a kind of template (class template, function template, etc.) or 3997/// a member of a class template (member function, static data member, 3998/// member class). 3999/// 4000/// \param PrevDecl the previous declaration of this entity, if any. 4001/// 4002/// \param Loc the location of the explicit specialization or instantiation of 4003/// this entity. 4004/// 4005/// \param IsPartialSpecialization whether this is a partial specialization of 4006/// a class template. 4007/// 4008/// \returns true if there was an error that we cannot recover from, false 4009/// otherwise. 4010static bool CheckTemplateSpecializationScope(Sema &S, 4011 NamedDecl *Specialized, 4012 NamedDecl *PrevDecl, 4013 SourceLocation Loc, 4014 bool IsPartialSpecialization) { 4015 // Keep these "kind" numbers in sync with the %select statements in the 4016 // various diagnostics emitted by this routine. 4017 int EntityKind = 0; 4018 if (isa<ClassTemplateDecl>(Specialized)) 4019 EntityKind = IsPartialSpecialization? 1 : 0; 4020 else if (isa<FunctionTemplateDecl>(Specialized)) 4021 EntityKind = 2; 4022 else if (isa<CXXMethodDecl>(Specialized)) 4023 EntityKind = 3; 4024 else if (isa<VarDecl>(Specialized)) 4025 EntityKind = 4; 4026 else if (isa<RecordDecl>(Specialized)) 4027 EntityKind = 5; 4028 else { 4029 S.Diag(Loc, diag::err_template_spec_unknown_kind); 4030 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4031 return true; 4032 } 4033 4034 // C++ [temp.expl.spec]p2: 4035 // An explicit specialization shall be declared in the namespace 4036 // of which the template is a member, or, for member templates, in 4037 // the namespace of which the enclosing class or enclosing class 4038 // template is a member. An explicit specialization of a member 4039 // function, member class or static data member of a class 4040 // template shall be declared in the namespace of which the class 4041 // template is a member. Such a declaration may also be a 4042 // definition. If the declaration is not a definition, the 4043 // specialization may be defined later in the name- space in which 4044 // the explicit specialization was declared, or in a namespace 4045 // that encloses the one in which the explicit specialization was 4046 // declared. 4047 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 4048 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 4049 << Specialized; 4050 return true; 4051 } 4052 4053 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 4054 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 4055 << Specialized; 4056 return true; 4057 } 4058 4059 // C++ [temp.class.spec]p6: 4060 // A class template partial specialization may be declared or redeclared 4061 // in any namespace scope in which its definition may be defined (14.5.1 4062 // and 14.5.2). 4063 bool ComplainedAboutScope = false; 4064 DeclContext *SpecializedContext 4065 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 4066 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 4067 if ((!PrevDecl || 4068 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 4069 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 4070 // C++ [temp.exp.spec]p2: 4071 // An explicit specialization shall be declared in the namespace of which 4072 // the template is a member, or, for member templates, in the namespace 4073 // of which the enclosing class or enclosing class template is a member. 4074 // An explicit specialization of a member function, member class or 4075 // static data member of a class template shall be declared in the 4076 // namespace of which the class template is a member. 4077 // 4078 // C++0x [temp.expl.spec]p2: 4079 // An explicit specialization shall be declared in a namespace enclosing 4080 // the specialized template. 4081 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) && 4082 !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) { 4083 bool IsCPlusPlus0xExtension 4084 = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext); 4085 if (isa<TranslationUnitDecl>(SpecializedContext)) 4086 S.Diag(Loc, IsCPlusPlus0xExtension 4087 ? diag::ext_template_spec_decl_out_of_scope_global 4088 : diag::err_template_spec_decl_out_of_scope_global) 4089 << EntityKind << Specialized; 4090 else if (isa<NamespaceDecl>(SpecializedContext)) 4091 S.Diag(Loc, IsCPlusPlus0xExtension 4092 ? diag::ext_template_spec_decl_out_of_scope 4093 : diag::err_template_spec_decl_out_of_scope) 4094 << EntityKind << Specialized 4095 << cast<NamedDecl>(SpecializedContext); 4096 4097 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4098 ComplainedAboutScope = true; 4099 } 4100 } 4101 4102 // Make sure that this redeclaration (or definition) occurs in an enclosing 4103 // namespace. 4104 // Note that HandleDeclarator() performs this check for explicit 4105 // specializations of function templates, static data members, and member 4106 // functions, so we skip the check here for those kinds of entities. 4107 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 4108 // Should we refactor that check, so that it occurs later? 4109 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 4110 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 4111 isa<FunctionDecl>(Specialized))) { 4112 if (isa<TranslationUnitDecl>(SpecializedContext)) 4113 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 4114 << EntityKind << Specialized; 4115 else if (isa<NamespaceDecl>(SpecializedContext)) 4116 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 4117 << EntityKind << Specialized 4118 << cast<NamedDecl>(SpecializedContext); 4119 4120 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4121 } 4122 4123 // FIXME: check for specialization-after-instantiation errors and such. 4124 4125 return false; 4126} 4127 4128/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs 4129/// that checks non-type template partial specialization arguments. 4130static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S, 4131 NonTypeTemplateParmDecl *Param, 4132 const TemplateArgument *Args, 4133 unsigned NumArgs) { 4134 for (unsigned I = 0; I != NumArgs; ++I) { 4135 if (Args[I].getKind() == TemplateArgument::Pack) { 4136 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4137 Args[I].pack_begin(), 4138 Args[I].pack_size())) 4139 return true; 4140 4141 continue; 4142 } 4143 4144 Expr *ArgExpr = Args[I].getAsExpr(); 4145 if (!ArgExpr) { 4146 continue; 4147 } 4148 4149 // We can have a pack expansion of any of the bullets below. 4150 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 4151 ArgExpr = Expansion->getPattern(); 4152 4153 // Strip off any implicit casts we added as part of type checking. 4154 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 4155 ArgExpr = ICE->getSubExpr(); 4156 4157 // C++ [temp.class.spec]p8: 4158 // A non-type argument is non-specialized if it is the name of a 4159 // non-type parameter. All other non-type arguments are 4160 // specialized. 4161 // 4162 // Below, we check the two conditions that only apply to 4163 // specialized non-type arguments, so skip any non-specialized 4164 // arguments. 4165 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 4166 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 4167 continue; 4168 4169 // C++ [temp.class.spec]p9: 4170 // Within the argument list of a class template partial 4171 // specialization, the following restrictions apply: 4172 // -- A partially specialized non-type argument expression 4173 // shall not involve a template parameter of the partial 4174 // specialization except when the argument expression is a 4175 // simple identifier. 4176 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 4177 S.Diag(ArgExpr->getLocStart(), 4178 diag::err_dependent_non_type_arg_in_partial_spec) 4179 << ArgExpr->getSourceRange(); 4180 return true; 4181 } 4182 4183 // -- The type of a template parameter corresponding to a 4184 // specialized non-type argument shall not be dependent on a 4185 // parameter of the specialization. 4186 if (Param->getType()->isDependentType()) { 4187 S.Diag(ArgExpr->getLocStart(), 4188 diag::err_dependent_typed_non_type_arg_in_partial_spec) 4189 << Param->getType() 4190 << ArgExpr->getSourceRange(); 4191 S.Diag(Param->getLocation(), diag::note_template_param_here); 4192 return true; 4193 } 4194 } 4195 4196 return false; 4197} 4198 4199/// \brief Check the non-type template arguments of a class template 4200/// partial specialization according to C++ [temp.class.spec]p9. 4201/// 4202/// \param TemplateParams the template parameters of the primary class 4203/// template. 4204/// 4205/// \param TemplateArg the template arguments of the class template 4206/// partial specialization. 4207/// 4208/// \returns true if there was an error, false otherwise. 4209static bool CheckClassTemplatePartialSpecializationArgs(Sema &S, 4210 TemplateParameterList *TemplateParams, 4211 llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs) { 4212 const TemplateArgument *ArgList = TemplateArgs.data(); 4213 4214 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4215 NonTypeTemplateParmDecl *Param 4216 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 4217 if (!Param) 4218 continue; 4219 4220 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4221 &ArgList[I], 1)) 4222 return true; 4223 } 4224 4225 return false; 4226} 4227 4228/// \brief Retrieve the previous declaration of the given declaration. 4229static NamedDecl *getPreviousDecl(NamedDecl *ND) { 4230 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 4231 return VD->getPreviousDeclaration(); 4232 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 4233 return FD->getPreviousDeclaration(); 4234 if (TagDecl *TD = dyn_cast<TagDecl>(ND)) 4235 return TD->getPreviousDeclaration(); 4236 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND)) 4237 return TD->getPreviousDeclaration(); 4238 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 4239 return FTD->getPreviousDeclaration(); 4240 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND)) 4241 return CTD->getPreviousDeclaration(); 4242 return 0; 4243} 4244 4245DeclResult 4246Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 4247 TagUseKind TUK, 4248 SourceLocation KWLoc, 4249 CXXScopeSpec &SS, 4250 TemplateTy TemplateD, 4251 SourceLocation TemplateNameLoc, 4252 SourceLocation LAngleLoc, 4253 ASTTemplateArgsPtr TemplateArgsIn, 4254 SourceLocation RAngleLoc, 4255 AttributeList *Attr, 4256 MultiTemplateParamsArg TemplateParameterLists) { 4257 assert(TUK != TUK_Reference && "References are not specializations"); 4258 4259 // Find the class template we're specializing 4260 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4261 ClassTemplateDecl *ClassTemplate 4262 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4263 4264 if (!ClassTemplate) { 4265 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 4266 << (Name.getAsTemplateDecl() && 4267 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 4268 return true; 4269 } 4270 4271 bool isExplicitSpecialization = false; 4272 bool isPartialSpecialization = false; 4273 4274 // Check the validity of the template headers that introduce this 4275 // template. 4276 // FIXME: We probably shouldn't complain about these headers for 4277 // friend declarations. 4278 bool Invalid = false; 4279 TemplateParameterList *TemplateParams 4280 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 4281 (TemplateParameterList**)TemplateParameterLists.get(), 4282 TemplateParameterLists.size(), 4283 TUK == TUK_Friend, 4284 isExplicitSpecialization, 4285 Invalid); 4286 if (Invalid) 4287 return true; 4288 4289 unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size(); 4290 if (TemplateParams) 4291 --NumMatchedTemplateParamLists; 4292 4293 if (TemplateParams && TemplateParams->size() > 0) { 4294 isPartialSpecialization = true; 4295 4296 if (TUK == TUK_Friend) { 4297 Diag(KWLoc, diag::err_partial_specialization_friend) 4298 << SourceRange(LAngleLoc, RAngleLoc); 4299 return true; 4300 } 4301 4302 // C++ [temp.class.spec]p10: 4303 // The template parameter list of a specialization shall not 4304 // contain default template argument values. 4305 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4306 Decl *Param = TemplateParams->getParam(I); 4307 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 4308 if (TTP->hasDefaultArgument()) { 4309 Diag(TTP->getDefaultArgumentLoc(), 4310 diag::err_default_arg_in_partial_spec); 4311 TTP->removeDefaultArgument(); 4312 } 4313 } else if (NonTypeTemplateParmDecl *NTTP 4314 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 4315 if (Expr *DefArg = NTTP->getDefaultArgument()) { 4316 Diag(NTTP->getDefaultArgumentLoc(), 4317 diag::err_default_arg_in_partial_spec) 4318 << DefArg->getSourceRange(); 4319 NTTP->removeDefaultArgument(); 4320 } 4321 } else { 4322 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 4323 if (TTP->hasDefaultArgument()) { 4324 Diag(TTP->getDefaultArgument().getLocation(), 4325 diag::err_default_arg_in_partial_spec) 4326 << TTP->getDefaultArgument().getSourceRange(); 4327 TTP->removeDefaultArgument(); 4328 } 4329 } 4330 } 4331 } else if (TemplateParams) { 4332 if (TUK == TUK_Friend) 4333 Diag(KWLoc, diag::err_template_spec_friend) 4334 << FixItHint::CreateRemoval( 4335 SourceRange(TemplateParams->getTemplateLoc(), 4336 TemplateParams->getRAngleLoc())) 4337 << SourceRange(LAngleLoc, RAngleLoc); 4338 else 4339 isExplicitSpecialization = true; 4340 } else if (TUK != TUK_Friend) { 4341 Diag(KWLoc, diag::err_template_spec_needs_header) 4342 << FixItHint::CreateInsertion(KWLoc, "template<> "); 4343 isExplicitSpecialization = true; 4344 } 4345 4346 // Check that the specialization uses the same tag kind as the 4347 // original template. 4348 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4349 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 4350 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4351 Kind, KWLoc, 4352 *ClassTemplate->getIdentifier())) { 4353 Diag(KWLoc, diag::err_use_with_wrong_tag) 4354 << ClassTemplate 4355 << FixItHint::CreateReplacement(KWLoc, 4356 ClassTemplate->getTemplatedDecl()->getKindName()); 4357 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4358 diag::note_previous_use); 4359 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4360 } 4361 4362 // Translate the parser's template argument list in our AST format. 4363 TemplateArgumentListInfo TemplateArgs; 4364 TemplateArgs.setLAngleLoc(LAngleLoc); 4365 TemplateArgs.setRAngleLoc(RAngleLoc); 4366 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4367 4368 // Check for unexpanded parameter packs in any of the template arguments. 4369 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 4370 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 4371 UPPC_PartialSpecialization)) 4372 return true; 4373 4374 // Check that the template argument list is well-formed for this 4375 // template. 4376 llvm::SmallVector<TemplateArgument, 4> Converted; 4377 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4378 TemplateArgs, false, Converted)) 4379 return true; 4380 4381 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 4382 "Converted template argument list is too short!"); 4383 4384 // Find the class template (partial) specialization declaration that 4385 // corresponds to these arguments. 4386 if (isPartialSpecialization) { 4387 if (CheckClassTemplatePartialSpecializationArgs(*this, 4388 ClassTemplate->getTemplateParameters(), 4389 Converted)) 4390 return true; 4391 4392 if (!Name.isDependent() && 4393 !TemplateSpecializationType::anyDependentTemplateArguments( 4394 TemplateArgs.getArgumentArray(), 4395 TemplateArgs.size())) { 4396 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 4397 << ClassTemplate->getDeclName(); 4398 isPartialSpecialization = false; 4399 } 4400 } 4401 4402 void *InsertPos = 0; 4403 ClassTemplateSpecializationDecl *PrevDecl = 0; 4404 4405 if (isPartialSpecialization) 4406 // FIXME: Template parameter list matters, too 4407 PrevDecl 4408 = ClassTemplate->findPartialSpecialization(Converted.data(), 4409 Converted.size(), 4410 InsertPos); 4411 else 4412 PrevDecl 4413 = ClassTemplate->findSpecialization(Converted.data(), 4414 Converted.size(), InsertPos); 4415 4416 ClassTemplateSpecializationDecl *Specialization = 0; 4417 4418 // Check whether we can declare a class template specialization in 4419 // the current scope. 4420 if (TUK != TUK_Friend && 4421 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 4422 TemplateNameLoc, 4423 isPartialSpecialization)) 4424 return true; 4425 4426 // The canonical type 4427 QualType CanonType; 4428 if (PrevDecl && 4429 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 4430 TUK == TUK_Friend)) { 4431 // Since the only prior class template specialization with these 4432 // arguments was referenced but not declared, or we're only 4433 // referencing this specialization as a friend, reuse that 4434 // declaration node as our own, updating its source location to 4435 // reflect our new declaration. 4436 Specialization = PrevDecl; 4437 Specialization->setLocation(TemplateNameLoc); 4438 PrevDecl = 0; 4439 CanonType = Context.getTypeDeclType(Specialization); 4440 } else if (isPartialSpecialization) { 4441 // Build the canonical type that describes the converted template 4442 // arguments of the class template partial specialization. 4443 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 4444 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 4445 Converted.data(), 4446 Converted.size()); 4447 4448 if (Context.hasSameType(CanonType, 4449 ClassTemplate->getInjectedClassNameSpecialization())) { 4450 // C++ [temp.class.spec]p9b3: 4451 // 4452 // -- The argument list of the specialization shall not be identical 4453 // to the implicit argument list of the primary template. 4454 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 4455 << (TUK == TUK_Definition) 4456 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 4457 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 4458 ClassTemplate->getIdentifier(), 4459 TemplateNameLoc, 4460 Attr, 4461 TemplateParams, 4462 AS_none); 4463 } 4464 4465 // Create a new class template partial specialization declaration node. 4466 ClassTemplatePartialSpecializationDecl *PrevPartial 4467 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 4468 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 4469 : ClassTemplate->getNextPartialSpecSequenceNumber(); 4470 ClassTemplatePartialSpecializationDecl *Partial 4471 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 4472 ClassTemplate->getDeclContext(), 4473 TemplateNameLoc, 4474 TemplateParams, 4475 ClassTemplate, 4476 Converted.data(), 4477 Converted.size(), 4478 TemplateArgs, 4479 CanonType, 4480 PrevPartial, 4481 SequenceNumber); 4482 SetNestedNameSpecifier(Partial, SS); 4483 if (NumMatchedTemplateParamLists > 0 && SS.isSet()) { 4484 Partial->setTemplateParameterListsInfo(Context, 4485 NumMatchedTemplateParamLists, 4486 (TemplateParameterList**) TemplateParameterLists.release()); 4487 } 4488 4489 if (!PrevPartial) 4490 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 4491 Specialization = Partial; 4492 4493 // If we are providing an explicit specialization of a member class 4494 // template specialization, make a note of that. 4495 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 4496 PrevPartial->setMemberSpecialization(); 4497 4498 // Check that all of the template parameters of the class template 4499 // partial specialization are deducible from the template 4500 // arguments. If not, this class template partial specialization 4501 // will never be used. 4502 llvm::SmallVector<bool, 8> DeducibleParams; 4503 DeducibleParams.resize(TemplateParams->size()); 4504 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 4505 TemplateParams->getDepth(), 4506 DeducibleParams); 4507 unsigned NumNonDeducible = 0; 4508 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 4509 if (!DeducibleParams[I]) 4510 ++NumNonDeducible; 4511 4512 if (NumNonDeducible) { 4513 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 4514 << (NumNonDeducible > 1) 4515 << SourceRange(TemplateNameLoc, RAngleLoc); 4516 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 4517 if (!DeducibleParams[I]) { 4518 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 4519 if (Param->getDeclName()) 4520 Diag(Param->getLocation(), 4521 diag::note_partial_spec_unused_parameter) 4522 << Param->getDeclName(); 4523 else 4524 Diag(Param->getLocation(), 4525 diag::note_partial_spec_unused_parameter) 4526 << "<anonymous>"; 4527 } 4528 } 4529 } 4530 } else { 4531 // Create a new class template specialization declaration node for 4532 // this explicit specialization or friend declaration. 4533 Specialization 4534 = ClassTemplateSpecializationDecl::Create(Context, Kind, 4535 ClassTemplate->getDeclContext(), 4536 TemplateNameLoc, 4537 ClassTemplate, 4538 Converted.data(), 4539 Converted.size(), 4540 PrevDecl); 4541 SetNestedNameSpecifier(Specialization, SS); 4542 if (NumMatchedTemplateParamLists > 0 && SS.isSet()) { 4543 Specialization->setTemplateParameterListsInfo(Context, 4544 NumMatchedTemplateParamLists, 4545 (TemplateParameterList**) TemplateParameterLists.release()); 4546 } 4547 4548 if (!PrevDecl) 4549 ClassTemplate->AddSpecialization(Specialization, InsertPos); 4550 4551 CanonType = Context.getTypeDeclType(Specialization); 4552 } 4553 4554 // C++ [temp.expl.spec]p6: 4555 // If a template, a member template or the member of a class template is 4556 // explicitly specialized then that specialization shall be declared 4557 // before the first use of that specialization that would cause an implicit 4558 // instantiation to take place, in every translation unit in which such a 4559 // use occurs; no diagnostic is required. 4560 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 4561 bool Okay = false; 4562 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 4563 // Is there any previous explicit specialization declaration? 4564 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 4565 Okay = true; 4566 break; 4567 } 4568 } 4569 4570 if (!Okay) { 4571 SourceRange Range(TemplateNameLoc, RAngleLoc); 4572 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 4573 << Context.getTypeDeclType(Specialization) << Range; 4574 4575 Diag(PrevDecl->getPointOfInstantiation(), 4576 diag::note_instantiation_required_here) 4577 << (PrevDecl->getTemplateSpecializationKind() 4578 != TSK_ImplicitInstantiation); 4579 return true; 4580 } 4581 } 4582 4583 // If this is not a friend, note that this is an explicit specialization. 4584 if (TUK != TUK_Friend) 4585 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 4586 4587 // Check that this isn't a redefinition of this specialization. 4588 if (TUK == TUK_Definition) { 4589 if (RecordDecl *Def = Specialization->getDefinition()) { 4590 SourceRange Range(TemplateNameLoc, RAngleLoc); 4591 Diag(TemplateNameLoc, diag::err_redefinition) 4592 << Context.getTypeDeclType(Specialization) << Range; 4593 Diag(Def->getLocation(), diag::note_previous_definition); 4594 Specialization->setInvalidDecl(); 4595 return true; 4596 } 4597 } 4598 4599 if (Attr) 4600 ProcessDeclAttributeList(S, Specialization, Attr); 4601 4602 // Build the fully-sugared type for this class template 4603 // specialization as the user wrote in the specialization 4604 // itself. This means that we'll pretty-print the type retrieved 4605 // from the specialization's declaration the way that the user 4606 // actually wrote the specialization, rather than formatting the 4607 // name based on the "canonical" representation used to store the 4608 // template arguments in the specialization. 4609 TypeSourceInfo *WrittenTy 4610 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 4611 TemplateArgs, CanonType); 4612 if (TUK != TUK_Friend) { 4613 Specialization->setTypeAsWritten(WrittenTy); 4614 if (TemplateParams) 4615 Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc()); 4616 } 4617 TemplateArgsIn.release(); 4618 4619 // C++ [temp.expl.spec]p9: 4620 // A template explicit specialization is in the scope of the 4621 // namespace in which the template was defined. 4622 // 4623 // We actually implement this paragraph where we set the semantic 4624 // context (in the creation of the ClassTemplateSpecializationDecl), 4625 // but we also maintain the lexical context where the actual 4626 // definition occurs. 4627 Specialization->setLexicalDeclContext(CurContext); 4628 4629 // We may be starting the definition of this specialization. 4630 if (TUK == TUK_Definition) 4631 Specialization->startDefinition(); 4632 4633 if (TUK == TUK_Friend) { 4634 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 4635 TemplateNameLoc, 4636 WrittenTy, 4637 /*FIXME:*/KWLoc); 4638 Friend->setAccess(AS_public); 4639 CurContext->addDecl(Friend); 4640 } else { 4641 // Add the specialization into its lexical context, so that it can 4642 // be seen when iterating through the list of declarations in that 4643 // context. However, specializations are not found by name lookup. 4644 CurContext->addDecl(Specialization); 4645 } 4646 return Specialization; 4647} 4648 4649Decl *Sema::ActOnTemplateDeclarator(Scope *S, 4650 MultiTemplateParamsArg TemplateParameterLists, 4651 Declarator &D) { 4652 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 4653} 4654 4655Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 4656 MultiTemplateParamsArg TemplateParameterLists, 4657 Declarator &D) { 4658 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 4659 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 4660 4661 if (FTI.hasPrototype) { 4662 // FIXME: Diagnose arguments without names in C. 4663 } 4664 4665 Scope *ParentScope = FnBodyScope->getParent(); 4666 4667 Decl *DP = HandleDeclarator(ParentScope, D, 4668 move(TemplateParameterLists), 4669 /*IsFunctionDefinition=*/true); 4670 if (FunctionTemplateDecl *FunctionTemplate 4671 = dyn_cast_or_null<FunctionTemplateDecl>(DP)) 4672 return ActOnStartOfFunctionDef(FnBodyScope, 4673 FunctionTemplate->getTemplatedDecl()); 4674 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP)) 4675 return ActOnStartOfFunctionDef(FnBodyScope, Function); 4676 return 0; 4677} 4678 4679/// \brief Strips various properties off an implicit instantiation 4680/// that has just been explicitly specialized. 4681static void StripImplicitInstantiation(NamedDecl *D) { 4682 D->dropAttrs(); 4683 4684 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 4685 FD->setInlineSpecified(false); 4686 } 4687} 4688 4689/// \brief Diagnose cases where we have an explicit template specialization 4690/// before/after an explicit template instantiation, producing diagnostics 4691/// for those cases where they are required and determining whether the 4692/// new specialization/instantiation will have any effect. 4693/// 4694/// \param NewLoc the location of the new explicit specialization or 4695/// instantiation. 4696/// 4697/// \param NewTSK the kind of the new explicit specialization or instantiation. 4698/// 4699/// \param PrevDecl the previous declaration of the entity. 4700/// 4701/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 4702/// 4703/// \param PrevPointOfInstantiation if valid, indicates where the previus 4704/// declaration was instantiated (either implicitly or explicitly). 4705/// 4706/// \param HasNoEffect will be set to true to indicate that the new 4707/// specialization or instantiation has no effect and should be ignored. 4708/// 4709/// \returns true if there was an error that should prevent the introduction of 4710/// the new declaration into the AST, false otherwise. 4711bool 4712Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 4713 TemplateSpecializationKind NewTSK, 4714 NamedDecl *PrevDecl, 4715 TemplateSpecializationKind PrevTSK, 4716 SourceLocation PrevPointOfInstantiation, 4717 bool &HasNoEffect) { 4718 HasNoEffect = false; 4719 4720 switch (NewTSK) { 4721 case TSK_Undeclared: 4722 case TSK_ImplicitInstantiation: 4723 assert(false && "Don't check implicit instantiations here"); 4724 return false; 4725 4726 case TSK_ExplicitSpecialization: 4727 switch (PrevTSK) { 4728 case TSK_Undeclared: 4729 case TSK_ExplicitSpecialization: 4730 // Okay, we're just specializing something that is either already 4731 // explicitly specialized or has merely been mentioned without any 4732 // instantiation. 4733 return false; 4734 4735 case TSK_ImplicitInstantiation: 4736 if (PrevPointOfInstantiation.isInvalid()) { 4737 // The declaration itself has not actually been instantiated, so it is 4738 // still okay to specialize it. 4739 StripImplicitInstantiation(PrevDecl); 4740 return false; 4741 } 4742 // Fall through 4743 4744 case TSK_ExplicitInstantiationDeclaration: 4745 case TSK_ExplicitInstantiationDefinition: 4746 assert((PrevTSK == TSK_ImplicitInstantiation || 4747 PrevPointOfInstantiation.isValid()) && 4748 "Explicit instantiation without point of instantiation?"); 4749 4750 // C++ [temp.expl.spec]p6: 4751 // If a template, a member template or the member of a class template 4752 // is explicitly specialized then that specialization shall be declared 4753 // before the first use of that specialization that would cause an 4754 // implicit instantiation to take place, in every translation unit in 4755 // which such a use occurs; no diagnostic is required. 4756 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 4757 // Is there any previous explicit specialization declaration? 4758 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 4759 return false; 4760 } 4761 4762 Diag(NewLoc, diag::err_specialization_after_instantiation) 4763 << PrevDecl; 4764 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 4765 << (PrevTSK != TSK_ImplicitInstantiation); 4766 4767 return true; 4768 } 4769 break; 4770 4771 case TSK_ExplicitInstantiationDeclaration: 4772 switch (PrevTSK) { 4773 case TSK_ExplicitInstantiationDeclaration: 4774 // This explicit instantiation declaration is redundant (that's okay). 4775 HasNoEffect = true; 4776 return false; 4777 4778 case TSK_Undeclared: 4779 case TSK_ImplicitInstantiation: 4780 // We're explicitly instantiating something that may have already been 4781 // implicitly instantiated; that's fine. 4782 return false; 4783 4784 case TSK_ExplicitSpecialization: 4785 // C++0x [temp.explicit]p4: 4786 // For a given set of template parameters, if an explicit instantiation 4787 // of a template appears after a declaration of an explicit 4788 // specialization for that template, the explicit instantiation has no 4789 // effect. 4790 HasNoEffect = true; 4791 return false; 4792 4793 case TSK_ExplicitInstantiationDefinition: 4794 // C++0x [temp.explicit]p10: 4795 // If an entity is the subject of both an explicit instantiation 4796 // declaration and an explicit instantiation definition in the same 4797 // translation unit, the definition shall follow the declaration. 4798 Diag(NewLoc, 4799 diag::err_explicit_instantiation_declaration_after_definition); 4800 Diag(PrevPointOfInstantiation, 4801 diag::note_explicit_instantiation_definition_here); 4802 assert(PrevPointOfInstantiation.isValid() && 4803 "Explicit instantiation without point of instantiation?"); 4804 HasNoEffect = true; 4805 return false; 4806 } 4807 break; 4808 4809 case TSK_ExplicitInstantiationDefinition: 4810 switch (PrevTSK) { 4811 case TSK_Undeclared: 4812 case TSK_ImplicitInstantiation: 4813 // We're explicitly instantiating something that may have already been 4814 // implicitly instantiated; that's fine. 4815 return false; 4816 4817 case TSK_ExplicitSpecialization: 4818 // C++ DR 259, C++0x [temp.explicit]p4: 4819 // For a given set of template parameters, if an explicit 4820 // instantiation of a template appears after a declaration of 4821 // an explicit specialization for that template, the explicit 4822 // instantiation has no effect. 4823 // 4824 // In C++98/03 mode, we only give an extension warning here, because it 4825 // is not harmful to try to explicitly instantiate something that 4826 // has been explicitly specialized. 4827 if (!getLangOptions().CPlusPlus0x) { 4828 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 4829 << PrevDecl; 4830 Diag(PrevDecl->getLocation(), 4831 diag::note_previous_template_specialization); 4832 } 4833 HasNoEffect = true; 4834 return false; 4835 4836 case TSK_ExplicitInstantiationDeclaration: 4837 // We're explicity instantiating a definition for something for which we 4838 // were previously asked to suppress instantiations. That's fine. 4839 return false; 4840 4841 case TSK_ExplicitInstantiationDefinition: 4842 // C++0x [temp.spec]p5: 4843 // For a given template and a given set of template-arguments, 4844 // - an explicit instantiation definition shall appear at most once 4845 // in a program, 4846 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 4847 << PrevDecl; 4848 Diag(PrevPointOfInstantiation, 4849 diag::note_previous_explicit_instantiation); 4850 HasNoEffect = true; 4851 return false; 4852 } 4853 break; 4854 } 4855 4856 assert(false && "Missing specialization/instantiation case?"); 4857 4858 return false; 4859} 4860 4861/// \brief Perform semantic analysis for the given dependent function 4862/// template specialization. The only possible way to get a dependent 4863/// function template specialization is with a friend declaration, 4864/// like so: 4865/// 4866/// template <class T> void foo(T); 4867/// template <class T> class A { 4868/// friend void foo<>(T); 4869/// }; 4870/// 4871/// There really isn't any useful analysis we can do here, so we 4872/// just store the information. 4873bool 4874Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 4875 const TemplateArgumentListInfo &ExplicitTemplateArgs, 4876 LookupResult &Previous) { 4877 // Remove anything from Previous that isn't a function template in 4878 // the correct context. 4879 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 4880 LookupResult::Filter F = Previous.makeFilter(); 4881 while (F.hasNext()) { 4882 NamedDecl *D = F.next()->getUnderlyingDecl(); 4883 if (!isa<FunctionTemplateDecl>(D) || 4884 !FDLookupContext->InEnclosingNamespaceSetOf( 4885 D->getDeclContext()->getRedeclContext())) 4886 F.erase(); 4887 } 4888 F.done(); 4889 4890 // Should this be diagnosed here? 4891 if (Previous.empty()) return true; 4892 4893 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 4894 ExplicitTemplateArgs); 4895 return false; 4896} 4897 4898/// \brief Perform semantic analysis for the given function template 4899/// specialization. 4900/// 4901/// This routine performs all of the semantic analysis required for an 4902/// explicit function template specialization. On successful completion, 4903/// the function declaration \p FD will become a function template 4904/// specialization. 4905/// 4906/// \param FD the function declaration, which will be updated to become a 4907/// function template specialization. 4908/// 4909/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 4910/// if any. Note that this may be valid info even when 0 arguments are 4911/// explicitly provided as in, e.g., \c void sort<>(char*, char*); 4912/// as it anyway contains info on the angle brackets locations. 4913/// 4914/// \param PrevDecl the set of declarations that may be specialized by 4915/// this function specialization. 4916bool 4917Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 4918 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4919 LookupResult &Previous) { 4920 // The set of function template specializations that could match this 4921 // explicit function template specialization. 4922 UnresolvedSet<8> Candidates; 4923 4924 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 4925 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4926 I != E; ++I) { 4927 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 4928 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 4929 // Only consider templates found within the same semantic lookup scope as 4930 // FD. 4931 if (!FDLookupContext->InEnclosingNamespaceSetOf( 4932 Ovl->getDeclContext()->getRedeclContext())) 4933 continue; 4934 4935 // C++ [temp.expl.spec]p11: 4936 // A trailing template-argument can be left unspecified in the 4937 // template-id naming an explicit function template specialization 4938 // provided it can be deduced from the function argument type. 4939 // Perform template argument deduction to determine whether we may be 4940 // specializing this template. 4941 // FIXME: It is somewhat wasteful to build 4942 TemplateDeductionInfo Info(Context, FD->getLocation()); 4943 FunctionDecl *Specialization = 0; 4944 if (TemplateDeductionResult TDK 4945 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 4946 FD->getType(), 4947 Specialization, 4948 Info)) { 4949 // FIXME: Template argument deduction failed; record why it failed, so 4950 // that we can provide nifty diagnostics. 4951 (void)TDK; 4952 continue; 4953 } 4954 4955 // Record this candidate. 4956 Candidates.addDecl(Specialization, I.getAccess()); 4957 } 4958 } 4959 4960 // Find the most specialized function template. 4961 UnresolvedSetIterator Result 4962 = getMostSpecialized(Candidates.begin(), Candidates.end(), 4963 TPOC_Other, 0, FD->getLocation(), 4964 PDiag(diag::err_function_template_spec_no_match) 4965 << FD->getDeclName(), 4966 PDiag(diag::err_function_template_spec_ambiguous) 4967 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 4968 PDiag(diag::note_function_template_spec_matched)); 4969 if (Result == Candidates.end()) 4970 return true; 4971 4972 // Ignore access information; it doesn't figure into redeclaration checking. 4973 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 4974 Specialization->setLocation(FD->getLocation()); 4975 4976 // FIXME: Check if the prior specialization has a point of instantiation. 4977 // If so, we have run afoul of . 4978 4979 // If this is a friend declaration, then we're not really declaring 4980 // an explicit specialization. 4981 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 4982 4983 // Check the scope of this explicit specialization. 4984 if (!isFriend && 4985 CheckTemplateSpecializationScope(*this, 4986 Specialization->getPrimaryTemplate(), 4987 Specialization, FD->getLocation(), 4988 false)) 4989 return true; 4990 4991 // C++ [temp.expl.spec]p6: 4992 // If a template, a member template or the member of a class template is 4993 // explicitly specialized then that specialization shall be declared 4994 // before the first use of that specialization that would cause an implicit 4995 // instantiation to take place, in every translation unit in which such a 4996 // use occurs; no diagnostic is required. 4997 FunctionTemplateSpecializationInfo *SpecInfo 4998 = Specialization->getTemplateSpecializationInfo(); 4999 assert(SpecInfo && "Function template specialization info missing?"); 5000 5001 bool HasNoEffect = false; 5002 if (!isFriend && 5003 CheckSpecializationInstantiationRedecl(FD->getLocation(), 5004 TSK_ExplicitSpecialization, 5005 Specialization, 5006 SpecInfo->getTemplateSpecializationKind(), 5007 SpecInfo->getPointOfInstantiation(), 5008 HasNoEffect)) 5009 return true; 5010 5011 // Mark the prior declaration as an explicit specialization, so that later 5012 // clients know that this is an explicit specialization. 5013 if (!isFriend) { 5014 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 5015 MarkUnusedFileScopedDecl(Specialization); 5016 } 5017 5018 // Turn the given function declaration into a function template 5019 // specialization, with the template arguments from the previous 5020 // specialization. 5021 // Take copies of (semantic and syntactic) template argument lists. 5022 const TemplateArgumentList* TemplArgs = new (Context) 5023 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 5024 const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs 5025 ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0; 5026 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 5027 TemplArgs, /*InsertPos=*/0, 5028 SpecInfo->getTemplateSpecializationKind(), 5029 TemplArgsAsWritten); 5030 5031 // The "previous declaration" for this function template specialization is 5032 // the prior function template specialization. 5033 Previous.clear(); 5034 Previous.addDecl(Specialization); 5035 return false; 5036} 5037 5038/// \brief Perform semantic analysis for the given non-template member 5039/// specialization. 5040/// 5041/// This routine performs all of the semantic analysis required for an 5042/// explicit member function specialization. On successful completion, 5043/// the function declaration \p FD will become a member function 5044/// specialization. 5045/// 5046/// \param Member the member declaration, which will be updated to become a 5047/// specialization. 5048/// 5049/// \param Previous the set of declarations, one of which may be specialized 5050/// by this function specialization; the set will be modified to contain the 5051/// redeclared member. 5052bool 5053Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 5054 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 5055 5056 // Try to find the member we are instantiating. 5057 NamedDecl *Instantiation = 0; 5058 NamedDecl *InstantiatedFrom = 0; 5059 MemberSpecializationInfo *MSInfo = 0; 5060 5061 if (Previous.empty()) { 5062 // Nowhere to look anyway. 5063 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 5064 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5065 I != E; ++I) { 5066 NamedDecl *D = (*I)->getUnderlyingDecl(); 5067 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 5068 if (Context.hasSameType(Function->getType(), Method->getType())) { 5069 Instantiation = Method; 5070 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 5071 MSInfo = Method->getMemberSpecializationInfo(); 5072 break; 5073 } 5074 } 5075 } 5076 } else if (isa<VarDecl>(Member)) { 5077 VarDecl *PrevVar; 5078 if (Previous.isSingleResult() && 5079 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 5080 if (PrevVar->isStaticDataMember()) { 5081 Instantiation = PrevVar; 5082 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 5083 MSInfo = PrevVar->getMemberSpecializationInfo(); 5084 } 5085 } else if (isa<RecordDecl>(Member)) { 5086 CXXRecordDecl *PrevRecord; 5087 if (Previous.isSingleResult() && 5088 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 5089 Instantiation = PrevRecord; 5090 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 5091 MSInfo = PrevRecord->getMemberSpecializationInfo(); 5092 } 5093 } 5094 5095 if (!Instantiation) { 5096 // There is no previous declaration that matches. Since member 5097 // specializations are always out-of-line, the caller will complain about 5098 // this mismatch later. 5099 return false; 5100 } 5101 5102 // If this is a friend, just bail out here before we start turning 5103 // things into explicit specializations. 5104 if (Member->getFriendObjectKind() != Decl::FOK_None) { 5105 // Preserve instantiation information. 5106 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 5107 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 5108 cast<CXXMethodDecl>(InstantiatedFrom), 5109 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 5110 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 5111 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5112 cast<CXXRecordDecl>(InstantiatedFrom), 5113 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 5114 } 5115 5116 Previous.clear(); 5117 Previous.addDecl(Instantiation); 5118 return false; 5119 } 5120 5121 // Make sure that this is a specialization of a member. 5122 if (!InstantiatedFrom) { 5123 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 5124 << Member; 5125 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 5126 return true; 5127 } 5128 5129 // C++ [temp.expl.spec]p6: 5130 // If a template, a member template or the member of a class template is 5131 // explicitly specialized then that spe- cialization shall be declared 5132 // before the first use of that specialization that would cause an implicit 5133 // instantiation to take place, in every translation unit in which such a 5134 // use occurs; no diagnostic is required. 5135 assert(MSInfo && "Member specialization info missing?"); 5136 5137 bool HasNoEffect = false; 5138 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 5139 TSK_ExplicitSpecialization, 5140 Instantiation, 5141 MSInfo->getTemplateSpecializationKind(), 5142 MSInfo->getPointOfInstantiation(), 5143 HasNoEffect)) 5144 return true; 5145 5146 // Check the scope of this explicit specialization. 5147 if (CheckTemplateSpecializationScope(*this, 5148 InstantiatedFrom, 5149 Instantiation, Member->getLocation(), 5150 false)) 5151 return true; 5152 5153 // Note that this is an explicit instantiation of a member. 5154 // the original declaration to note that it is an explicit specialization 5155 // (if it was previously an implicit instantiation). This latter step 5156 // makes bookkeeping easier. 5157 if (isa<FunctionDecl>(Member)) { 5158 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 5159 if (InstantiationFunction->getTemplateSpecializationKind() == 5160 TSK_ImplicitInstantiation) { 5161 InstantiationFunction->setTemplateSpecializationKind( 5162 TSK_ExplicitSpecialization); 5163 InstantiationFunction->setLocation(Member->getLocation()); 5164 } 5165 5166 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 5167 cast<CXXMethodDecl>(InstantiatedFrom), 5168 TSK_ExplicitSpecialization); 5169 MarkUnusedFileScopedDecl(InstantiationFunction); 5170 } else if (isa<VarDecl>(Member)) { 5171 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 5172 if (InstantiationVar->getTemplateSpecializationKind() == 5173 TSK_ImplicitInstantiation) { 5174 InstantiationVar->setTemplateSpecializationKind( 5175 TSK_ExplicitSpecialization); 5176 InstantiationVar->setLocation(Member->getLocation()); 5177 } 5178 5179 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 5180 cast<VarDecl>(InstantiatedFrom), 5181 TSK_ExplicitSpecialization); 5182 MarkUnusedFileScopedDecl(InstantiationVar); 5183 } else { 5184 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 5185 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 5186 if (InstantiationClass->getTemplateSpecializationKind() == 5187 TSK_ImplicitInstantiation) { 5188 InstantiationClass->setTemplateSpecializationKind( 5189 TSK_ExplicitSpecialization); 5190 InstantiationClass->setLocation(Member->getLocation()); 5191 } 5192 5193 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5194 cast<CXXRecordDecl>(InstantiatedFrom), 5195 TSK_ExplicitSpecialization); 5196 } 5197 5198 // Save the caller the trouble of having to figure out which declaration 5199 // this specialization matches. 5200 Previous.clear(); 5201 Previous.addDecl(Instantiation); 5202 return false; 5203} 5204 5205/// \brief Check the scope of an explicit instantiation. 5206/// 5207/// \returns true if a serious error occurs, false otherwise. 5208static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 5209 SourceLocation InstLoc, 5210 bool WasQualifiedName) { 5211 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 5212 DeclContext *CurContext = S.CurContext->getRedeclContext(); 5213 5214 if (CurContext->isRecord()) { 5215 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 5216 << D; 5217 return true; 5218 } 5219 5220 // C++0x [temp.explicit]p2: 5221 // An explicit instantiation shall appear in an enclosing namespace of its 5222 // template. 5223 // 5224 // This is DR275, which we do not retroactively apply to C++98/03. 5225 if (S.getLangOptions().CPlusPlus0x && 5226 !CurContext->Encloses(OrigContext)) { 5227 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) 5228 S.Diag(InstLoc, 5229 S.getLangOptions().CPlusPlus0x? 5230 diag::err_explicit_instantiation_out_of_scope 5231 : diag::warn_explicit_instantiation_out_of_scope_0x) 5232 << D << NS; 5233 else 5234 S.Diag(InstLoc, 5235 S.getLangOptions().CPlusPlus0x? 5236 diag::err_explicit_instantiation_must_be_global 5237 : diag::warn_explicit_instantiation_out_of_scope_0x) 5238 << D; 5239 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 5240 return false; 5241 } 5242 5243 // C++0x [temp.explicit]p2: 5244 // If the name declared in the explicit instantiation is an unqualified 5245 // name, the explicit instantiation shall appear in the namespace where 5246 // its template is declared or, if that namespace is inline (7.3.1), any 5247 // namespace from its enclosing namespace set. 5248 if (WasQualifiedName) 5249 return false; 5250 5251 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 5252 return false; 5253 5254 S.Diag(InstLoc, 5255 S.getLangOptions().CPlusPlus0x? 5256 diag::err_explicit_instantiation_unqualified_wrong_namespace 5257 : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 5258 << D << OrigContext; 5259 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 5260 return false; 5261} 5262 5263/// \brief Determine whether the given scope specifier has a template-id in it. 5264static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 5265 if (!SS.isSet()) 5266 return false; 5267 5268 // C++0x [temp.explicit]p2: 5269 // If the explicit instantiation is for a member function, a member class 5270 // or a static data member of a class template specialization, the name of 5271 // the class template specialization in the qualified-id for the member 5272 // name shall be a simple-template-id. 5273 // 5274 // C++98 has the same restriction, just worded differently. 5275 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 5276 NNS; NNS = NNS->getPrefix()) 5277 if (const Type *T = NNS->getAsType()) 5278 if (isa<TemplateSpecializationType>(T)) 5279 return true; 5280 5281 return false; 5282} 5283 5284// Explicit instantiation of a class template specialization 5285DeclResult 5286Sema::ActOnExplicitInstantiation(Scope *S, 5287 SourceLocation ExternLoc, 5288 SourceLocation TemplateLoc, 5289 unsigned TagSpec, 5290 SourceLocation KWLoc, 5291 const CXXScopeSpec &SS, 5292 TemplateTy TemplateD, 5293 SourceLocation TemplateNameLoc, 5294 SourceLocation LAngleLoc, 5295 ASTTemplateArgsPtr TemplateArgsIn, 5296 SourceLocation RAngleLoc, 5297 AttributeList *Attr) { 5298 // Find the class template we're specializing 5299 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 5300 ClassTemplateDecl *ClassTemplate 5301 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 5302 5303 // Check that the specialization uses the same tag kind as the 5304 // original template. 5305 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5306 assert(Kind != TTK_Enum && 5307 "Invalid enum tag in class template explicit instantiation!"); 5308 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 5309 Kind, KWLoc, 5310 *ClassTemplate->getIdentifier())) { 5311 Diag(KWLoc, diag::err_use_with_wrong_tag) 5312 << ClassTemplate 5313 << FixItHint::CreateReplacement(KWLoc, 5314 ClassTemplate->getTemplatedDecl()->getKindName()); 5315 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 5316 diag::note_previous_use); 5317 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 5318 } 5319 5320 // C++0x [temp.explicit]p2: 5321 // There are two forms of explicit instantiation: an explicit instantiation 5322 // definition and an explicit instantiation declaration. An explicit 5323 // instantiation declaration begins with the extern keyword. [...] 5324 TemplateSpecializationKind TSK 5325 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5326 : TSK_ExplicitInstantiationDeclaration; 5327 5328 // Translate the parser's template argument list in our AST format. 5329 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 5330 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 5331 5332 // Check that the template argument list is well-formed for this 5333 // template. 5334 llvm::SmallVector<TemplateArgument, 4> Converted; 5335 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 5336 TemplateArgs, false, Converted)) 5337 return true; 5338 5339 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 5340 "Converted template argument list is too short!"); 5341 5342 // Find the class template specialization declaration that 5343 // corresponds to these arguments. 5344 void *InsertPos = 0; 5345 ClassTemplateSpecializationDecl *PrevDecl 5346 = ClassTemplate->findSpecialization(Converted.data(), 5347 Converted.size(), InsertPos); 5348 5349 TemplateSpecializationKind PrevDecl_TSK 5350 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 5351 5352 // C++0x [temp.explicit]p2: 5353 // [...] An explicit instantiation shall appear in an enclosing 5354 // namespace of its template. [...] 5355 // 5356 // This is C++ DR 275. 5357 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 5358 SS.isSet())) 5359 return true; 5360 5361 ClassTemplateSpecializationDecl *Specialization = 0; 5362 5363 bool HasNoEffect = false; 5364 if (PrevDecl) { 5365 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 5366 PrevDecl, PrevDecl_TSK, 5367 PrevDecl->getPointOfInstantiation(), 5368 HasNoEffect)) 5369 return PrevDecl; 5370 5371 // Even though HasNoEffect == true means that this explicit instantiation 5372 // has no effect on semantics, we go on to put its syntax in the AST. 5373 5374 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 5375 PrevDecl_TSK == TSK_Undeclared) { 5376 // Since the only prior class template specialization with these 5377 // arguments was referenced but not declared, reuse that 5378 // declaration node as our own, updating the source location 5379 // for the template name to reflect our new declaration. 5380 // (Other source locations will be updated later.) 5381 Specialization = PrevDecl; 5382 Specialization->setLocation(TemplateNameLoc); 5383 PrevDecl = 0; 5384 } 5385 } 5386 5387 if (!Specialization) { 5388 // Create a new class template specialization declaration node for 5389 // this explicit specialization. 5390 Specialization 5391 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5392 ClassTemplate->getDeclContext(), 5393 TemplateNameLoc, 5394 ClassTemplate, 5395 Converted.data(), 5396 Converted.size(), 5397 PrevDecl); 5398 SetNestedNameSpecifier(Specialization, SS); 5399 5400 if (!HasNoEffect && !PrevDecl) { 5401 // Insert the new specialization. 5402 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5403 } 5404 } 5405 5406 // Build the fully-sugared type for this explicit instantiation as 5407 // the user wrote in the explicit instantiation itself. This means 5408 // that we'll pretty-print the type retrieved from the 5409 // specialization's declaration the way that the user actually wrote 5410 // the explicit instantiation, rather than formatting the name based 5411 // on the "canonical" representation used to store the template 5412 // arguments in the specialization. 5413 TypeSourceInfo *WrittenTy 5414 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5415 TemplateArgs, 5416 Context.getTypeDeclType(Specialization)); 5417 Specialization->setTypeAsWritten(WrittenTy); 5418 TemplateArgsIn.release(); 5419 5420 // Set source locations for keywords. 5421 Specialization->setExternLoc(ExternLoc); 5422 Specialization->setTemplateKeywordLoc(TemplateLoc); 5423 5424 // Add the explicit instantiation into its lexical context. However, 5425 // since explicit instantiations are never found by name lookup, we 5426 // just put it into the declaration context directly. 5427 Specialization->setLexicalDeclContext(CurContext); 5428 CurContext->addDecl(Specialization); 5429 5430 // Syntax is now OK, so return if it has no other effect on semantics. 5431 if (HasNoEffect) { 5432 // Set the template specialization kind. 5433 Specialization->setTemplateSpecializationKind(TSK); 5434 return Specialization; 5435 } 5436 5437 // C++ [temp.explicit]p3: 5438 // A definition of a class template or class member template 5439 // shall be in scope at the point of the explicit instantiation of 5440 // the class template or class member template. 5441 // 5442 // This check comes when we actually try to perform the 5443 // instantiation. 5444 ClassTemplateSpecializationDecl *Def 5445 = cast_or_null<ClassTemplateSpecializationDecl>( 5446 Specialization->getDefinition()); 5447 if (!Def) 5448 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 5449 else if (TSK == TSK_ExplicitInstantiationDefinition) { 5450 MarkVTableUsed(TemplateNameLoc, Specialization, true); 5451 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 5452 } 5453 5454 // Instantiate the members of this class template specialization. 5455 Def = cast_or_null<ClassTemplateSpecializationDecl>( 5456 Specialization->getDefinition()); 5457 if (Def) { 5458 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 5459 5460 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 5461 // TSK_ExplicitInstantiationDefinition 5462 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 5463 TSK == TSK_ExplicitInstantiationDefinition) 5464 Def->setTemplateSpecializationKind(TSK); 5465 5466 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 5467 } 5468 5469 // Set the template specialization kind. 5470 Specialization->setTemplateSpecializationKind(TSK); 5471 return Specialization; 5472} 5473 5474// Explicit instantiation of a member class of a class template. 5475DeclResult 5476Sema::ActOnExplicitInstantiation(Scope *S, 5477 SourceLocation ExternLoc, 5478 SourceLocation TemplateLoc, 5479 unsigned TagSpec, 5480 SourceLocation KWLoc, 5481 CXXScopeSpec &SS, 5482 IdentifierInfo *Name, 5483 SourceLocation NameLoc, 5484 AttributeList *Attr) { 5485 5486 bool Owned = false; 5487 bool IsDependent = false; 5488 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 5489 KWLoc, SS, Name, NameLoc, Attr, AS_none, 5490 MultiTemplateParamsArg(*this, 0, 0), 5491 Owned, IsDependent, false, false, 5492 TypeResult()); 5493 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 5494 5495 if (!TagD) 5496 return true; 5497 5498 TagDecl *Tag = cast<TagDecl>(TagD); 5499 if (Tag->isEnum()) { 5500 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 5501 << Context.getTypeDeclType(Tag); 5502 return true; 5503 } 5504 5505 if (Tag->isInvalidDecl()) 5506 return true; 5507 5508 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 5509 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 5510 if (!Pattern) { 5511 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 5512 << Context.getTypeDeclType(Record); 5513 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 5514 return true; 5515 } 5516 5517 // C++0x [temp.explicit]p2: 5518 // If the explicit instantiation is for a class or member class, the 5519 // elaborated-type-specifier in the declaration shall include a 5520 // simple-template-id. 5521 // 5522 // C++98 has the same restriction, just worded differently. 5523 if (!ScopeSpecifierHasTemplateId(SS)) 5524 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 5525 << Record << SS.getRange(); 5526 5527 // C++0x [temp.explicit]p2: 5528 // There are two forms of explicit instantiation: an explicit instantiation 5529 // definition and an explicit instantiation declaration. An explicit 5530 // instantiation declaration begins with the extern keyword. [...] 5531 TemplateSpecializationKind TSK 5532 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5533 : TSK_ExplicitInstantiationDeclaration; 5534 5535 // C++0x [temp.explicit]p2: 5536 // [...] An explicit instantiation shall appear in an enclosing 5537 // namespace of its template. [...] 5538 // 5539 // This is C++ DR 275. 5540 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 5541 5542 // Verify that it is okay to explicitly instantiate here. 5543 CXXRecordDecl *PrevDecl 5544 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 5545 if (!PrevDecl && Record->getDefinition()) 5546 PrevDecl = Record; 5547 if (PrevDecl) { 5548 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 5549 bool HasNoEffect = false; 5550 assert(MSInfo && "No member specialization information?"); 5551 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 5552 PrevDecl, 5553 MSInfo->getTemplateSpecializationKind(), 5554 MSInfo->getPointOfInstantiation(), 5555 HasNoEffect)) 5556 return true; 5557 if (HasNoEffect) 5558 return TagD; 5559 } 5560 5561 CXXRecordDecl *RecordDef 5562 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 5563 if (!RecordDef) { 5564 // C++ [temp.explicit]p3: 5565 // A definition of a member class of a class template shall be in scope 5566 // at the point of an explicit instantiation of the member class. 5567 CXXRecordDecl *Def 5568 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 5569 if (!Def) { 5570 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 5571 << 0 << Record->getDeclName() << Record->getDeclContext(); 5572 Diag(Pattern->getLocation(), diag::note_forward_declaration) 5573 << Pattern; 5574 return true; 5575 } else { 5576 if (InstantiateClass(NameLoc, Record, Def, 5577 getTemplateInstantiationArgs(Record), 5578 TSK)) 5579 return true; 5580 5581 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 5582 if (!RecordDef) 5583 return true; 5584 } 5585 } 5586 5587 // Instantiate all of the members of the class. 5588 InstantiateClassMembers(NameLoc, RecordDef, 5589 getTemplateInstantiationArgs(Record), TSK); 5590 5591 if (TSK == TSK_ExplicitInstantiationDefinition) 5592 MarkVTableUsed(NameLoc, RecordDef, true); 5593 5594 // FIXME: We don't have any representation for explicit instantiations of 5595 // member classes. Such a representation is not needed for compilation, but it 5596 // should be available for clients that want to see all of the declarations in 5597 // the source code. 5598 return TagD; 5599} 5600 5601DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 5602 SourceLocation ExternLoc, 5603 SourceLocation TemplateLoc, 5604 Declarator &D) { 5605 // Explicit instantiations always require a name. 5606 // TODO: check if/when DNInfo should replace Name. 5607 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 5608 DeclarationName Name = NameInfo.getName(); 5609 if (!Name) { 5610 if (!D.isInvalidType()) 5611 Diag(D.getDeclSpec().getSourceRange().getBegin(), 5612 diag::err_explicit_instantiation_requires_name) 5613 << D.getDeclSpec().getSourceRange() 5614 << D.getSourceRange(); 5615 5616 return true; 5617 } 5618 5619 // The scope passed in may not be a decl scope. Zip up the scope tree until 5620 // we find one that is. 5621 while ((S->getFlags() & Scope::DeclScope) == 0 || 5622 (S->getFlags() & Scope::TemplateParamScope) != 0) 5623 S = S->getParent(); 5624 5625 // Determine the type of the declaration. 5626 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 5627 QualType R = T->getType(); 5628 if (R.isNull()) 5629 return true; 5630 5631 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 5632 // Cannot explicitly instantiate a typedef. 5633 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 5634 << Name; 5635 return true; 5636 } 5637 5638 // C++0x [temp.explicit]p1: 5639 // [...] An explicit instantiation of a function template shall not use the 5640 // inline or constexpr specifiers. 5641 // Presumably, this also applies to member functions of class templates as 5642 // well. 5643 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 5644 Diag(D.getDeclSpec().getInlineSpecLoc(), 5645 diag::err_explicit_instantiation_inline) 5646 <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 5647 5648 // FIXME: check for constexpr specifier. 5649 5650 // C++0x [temp.explicit]p2: 5651 // There are two forms of explicit instantiation: an explicit instantiation 5652 // definition and an explicit instantiation declaration. An explicit 5653 // instantiation declaration begins with the extern keyword. [...] 5654 TemplateSpecializationKind TSK 5655 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5656 : TSK_ExplicitInstantiationDeclaration; 5657 5658 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 5659 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 5660 5661 if (!R->isFunctionType()) { 5662 // C++ [temp.explicit]p1: 5663 // A [...] static data member of a class template can be explicitly 5664 // instantiated from the member definition associated with its class 5665 // template. 5666 if (Previous.isAmbiguous()) 5667 return true; 5668 5669 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 5670 if (!Prev || !Prev->isStaticDataMember()) { 5671 // We expect to see a data data member here. 5672 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 5673 << Name; 5674 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 5675 P != PEnd; ++P) 5676 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 5677 return true; 5678 } 5679 5680 if (!Prev->getInstantiatedFromStaticDataMember()) { 5681 // FIXME: Check for explicit specialization? 5682 Diag(D.getIdentifierLoc(), 5683 diag::err_explicit_instantiation_data_member_not_instantiated) 5684 << Prev; 5685 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 5686 // FIXME: Can we provide a note showing where this was declared? 5687 return true; 5688 } 5689 5690 // C++0x [temp.explicit]p2: 5691 // If the explicit instantiation is for a member function, a member class 5692 // or a static data member of a class template specialization, the name of 5693 // the class template specialization in the qualified-id for the member 5694 // name shall be a simple-template-id. 5695 // 5696 // C++98 has the same restriction, just worded differently. 5697 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5698 Diag(D.getIdentifierLoc(), 5699 diag::ext_explicit_instantiation_without_qualified_id) 5700 << Prev << D.getCXXScopeSpec().getRange(); 5701 5702 // Check the scope of this explicit instantiation. 5703 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 5704 5705 // Verify that it is okay to explicitly instantiate here. 5706 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 5707 assert(MSInfo && "Missing static data member specialization info?"); 5708 bool HasNoEffect = false; 5709 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 5710 MSInfo->getTemplateSpecializationKind(), 5711 MSInfo->getPointOfInstantiation(), 5712 HasNoEffect)) 5713 return true; 5714 if (HasNoEffect) 5715 return (Decl*) 0; 5716 5717 // Instantiate static data member. 5718 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5719 if (TSK == TSK_ExplicitInstantiationDefinition) 5720 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev); 5721 5722 // FIXME: Create an ExplicitInstantiation node? 5723 return (Decl*) 0; 5724 } 5725 5726 // If the declarator is a template-id, translate the parser's template 5727 // argument list into our AST format. 5728 bool HasExplicitTemplateArgs = false; 5729 TemplateArgumentListInfo TemplateArgs; 5730 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 5731 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 5732 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 5733 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 5734 ASTTemplateArgsPtr TemplateArgsPtr(*this, 5735 TemplateId->getTemplateArgs(), 5736 TemplateId->NumArgs); 5737 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 5738 HasExplicitTemplateArgs = true; 5739 TemplateArgsPtr.release(); 5740 } 5741 5742 // C++ [temp.explicit]p1: 5743 // A [...] function [...] can be explicitly instantiated from its template. 5744 // A member function [...] of a class template can be explicitly 5745 // instantiated from the member definition associated with its class 5746 // template. 5747 UnresolvedSet<8> Matches; 5748 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 5749 P != PEnd; ++P) { 5750 NamedDecl *Prev = *P; 5751 if (!HasExplicitTemplateArgs) { 5752 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 5753 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 5754 Matches.clear(); 5755 5756 Matches.addDecl(Method, P.getAccess()); 5757 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 5758 break; 5759 } 5760 } 5761 } 5762 5763 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 5764 if (!FunTmpl) 5765 continue; 5766 5767 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 5768 FunctionDecl *Specialization = 0; 5769 if (TemplateDeductionResult TDK 5770 = DeduceTemplateArguments(FunTmpl, 5771 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 5772 R, Specialization, Info)) { 5773 // FIXME: Keep track of almost-matches? 5774 (void)TDK; 5775 continue; 5776 } 5777 5778 Matches.addDecl(Specialization, P.getAccess()); 5779 } 5780 5781 // Find the most specialized function template specialization. 5782 UnresolvedSetIterator Result 5783 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0, 5784 D.getIdentifierLoc(), 5785 PDiag(diag::err_explicit_instantiation_not_known) << Name, 5786 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 5787 PDiag(diag::note_explicit_instantiation_candidate)); 5788 5789 if (Result == Matches.end()) 5790 return true; 5791 5792 // Ignore access control bits, we don't need them for redeclaration checking. 5793 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5794 5795 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 5796 Diag(D.getIdentifierLoc(), 5797 diag::err_explicit_instantiation_member_function_not_instantiated) 5798 << Specialization 5799 << (Specialization->getTemplateSpecializationKind() == 5800 TSK_ExplicitSpecialization); 5801 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 5802 return true; 5803 } 5804 5805 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 5806 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 5807 PrevDecl = Specialization; 5808 5809 if (PrevDecl) { 5810 bool HasNoEffect = false; 5811 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 5812 PrevDecl, 5813 PrevDecl->getTemplateSpecializationKind(), 5814 PrevDecl->getPointOfInstantiation(), 5815 HasNoEffect)) 5816 return true; 5817 5818 // FIXME: We may still want to build some representation of this 5819 // explicit specialization. 5820 if (HasNoEffect) 5821 return (Decl*) 0; 5822 } 5823 5824 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5825 5826 if (TSK == TSK_ExplicitInstantiationDefinition) 5827 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 5828 5829 // C++0x [temp.explicit]p2: 5830 // If the explicit instantiation is for a member function, a member class 5831 // or a static data member of a class template specialization, the name of 5832 // the class template specialization in the qualified-id for the member 5833 // name shall be a simple-template-id. 5834 // 5835 // C++98 has the same restriction, just worded differently. 5836 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 5837 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 5838 D.getCXXScopeSpec().isSet() && 5839 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5840 Diag(D.getIdentifierLoc(), 5841 diag::ext_explicit_instantiation_without_qualified_id) 5842 << Specialization << D.getCXXScopeSpec().getRange(); 5843 5844 CheckExplicitInstantiationScope(*this, 5845 FunTmpl? (NamedDecl *)FunTmpl 5846 : Specialization->getInstantiatedFromMemberFunction(), 5847 D.getIdentifierLoc(), 5848 D.getCXXScopeSpec().isSet()); 5849 5850 // FIXME: Create some kind of ExplicitInstantiationDecl here. 5851 return (Decl*) 0; 5852} 5853 5854TypeResult 5855Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 5856 const CXXScopeSpec &SS, IdentifierInfo *Name, 5857 SourceLocation TagLoc, SourceLocation NameLoc) { 5858 // This has to hold, because SS is expected to be defined. 5859 assert(Name && "Expected a name in a dependent tag"); 5860 5861 NestedNameSpecifier *NNS 5862 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5863 if (!NNS) 5864 return true; 5865 5866 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5867 5868 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 5869 Diag(NameLoc, diag::err_dependent_tag_decl) 5870 << (TUK == TUK_Definition) << Kind << SS.getRange(); 5871 return true; 5872 } 5873 5874 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 5875 return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name)); 5876} 5877 5878TypeResult 5879Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 5880 const CXXScopeSpec &SS, const IdentifierInfo &II, 5881 SourceLocation IdLoc) { 5882 NestedNameSpecifier *NNS 5883 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5884 if (!NNS) 5885 return true; 5886 5887 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 5888 !getLangOptions().CPlusPlus0x) 5889 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 5890 << FixItHint::CreateRemoval(TypenameLoc); 5891 5892 QualType T = CheckTypenameType(ETK_Typename, NNS, II, 5893 TypenameLoc, SS.getRange(), IdLoc); 5894 if (T.isNull()) 5895 return true; 5896 5897 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5898 if (isa<DependentNameType>(T)) { 5899 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 5900 TL.setKeywordLoc(TypenameLoc); 5901 TL.setQualifierRange(SS.getRange()); 5902 TL.setNameLoc(IdLoc); 5903 } else { 5904 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 5905 TL.setKeywordLoc(TypenameLoc); 5906 TL.setQualifierRange(SS.getRange()); 5907 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc); 5908 } 5909 5910 return CreateParsedType(T, TSI); 5911} 5912 5913TypeResult 5914Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 5915 const CXXScopeSpec &SS, SourceLocation TemplateLoc, 5916 ParsedType Ty) { 5917 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 5918 !getLangOptions().CPlusPlus0x) 5919 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 5920 << FixItHint::CreateRemoval(TypenameLoc); 5921 5922 TypeSourceInfo *InnerTSI = 0; 5923 QualType T = GetTypeFromParser(Ty, &InnerTSI); 5924 5925 assert(isa<TemplateSpecializationType>(T) && 5926 "Expected a template specialization type"); 5927 5928 if (computeDeclContext(SS, false)) { 5929 // If we can compute a declaration context, then the "typename" 5930 // keyword was superfluous. Just build an ElaboratedType to keep 5931 // track of the nested-name-specifier. 5932 5933 // Push the inner type, preserving its source locations if possible. 5934 TypeLocBuilder Builder; 5935 if (InnerTSI) 5936 Builder.pushFullCopy(InnerTSI->getTypeLoc()); 5937 else 5938 Builder.push<TemplateSpecializationTypeLoc>(T).initialize(Context, 5939 TemplateLoc); 5940 5941 /* Note: NNS already embedded in template specialization type T. */ 5942 T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T); 5943 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 5944 TL.setKeywordLoc(TypenameLoc); 5945 TL.setQualifierRange(SS.getRange()); 5946 5947 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 5948 return CreateParsedType(T, TSI); 5949 } 5950 5951 // TODO: it's really silly that we make a template specialization 5952 // type earlier only to drop it again here. 5953 const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T); 5954 DependentTemplateName *DTN = 5955 TST->getTemplateName().getAsDependentTemplateName(); 5956 assert(DTN && "dependent template has non-dependent name?"); 5957 assert(DTN->getQualifier() 5958 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 5959 T = Context.getDependentTemplateSpecializationType(ETK_Typename, 5960 DTN->getQualifier(), 5961 DTN->getIdentifier(), 5962 TST->getNumArgs(), 5963 TST->getArgs()); 5964 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5965 DependentTemplateSpecializationTypeLoc TL = 5966 cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc()); 5967 if (InnerTSI) { 5968 TemplateSpecializationTypeLoc TSTL = 5969 cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc()); 5970 TL.setLAngleLoc(TSTL.getLAngleLoc()); 5971 TL.setRAngleLoc(TSTL.getRAngleLoc()); 5972 for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I) 5973 TL.setArgLocInfo(I, TSTL.getArgLocInfo(I)); 5974 } else { 5975 // FIXME: Poor source-location information here. 5976 TL.initializeLocal(Context, TemplateLoc); 5977 } 5978 TL.setKeywordLoc(TypenameLoc); 5979 TL.setQualifierRange(SS.getRange()); 5980 return CreateParsedType(T, TSI); 5981} 5982 5983/// \brief Build the type that describes a C++ typename specifier, 5984/// e.g., "typename T::type". 5985QualType 5986Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 5987 NestedNameSpecifier *NNS, const IdentifierInfo &II, 5988 SourceLocation KeywordLoc, SourceRange NNSRange, 5989 SourceLocation IILoc) { 5990 CXXScopeSpec SS; 5991 SS.setScopeRep(NNS); 5992 SS.setRange(NNSRange); 5993 5994 DeclContext *Ctx = computeDeclContext(SS); 5995 if (!Ctx) { 5996 // If the nested-name-specifier is dependent and couldn't be 5997 // resolved to a type, build a typename type. 5998 assert(NNS->isDependent()); 5999 return Context.getDependentNameType(Keyword, NNS, &II); 6000 } 6001 6002 // If the nested-name-specifier refers to the current instantiation, 6003 // the "typename" keyword itself is superfluous. In C++03, the 6004 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 6005 // allows such extraneous "typename" keywords, and we retroactively 6006 // apply this DR to C++03 code with only a warning. In any case we continue. 6007 6008 if (RequireCompleteDeclContext(SS, Ctx)) 6009 return QualType(); 6010 6011 DeclarationName Name(&II); 6012 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 6013 LookupQualifiedName(Result, Ctx); 6014 unsigned DiagID = 0; 6015 Decl *Referenced = 0; 6016 switch (Result.getResultKind()) { 6017 case LookupResult::NotFound: 6018 DiagID = diag::err_typename_nested_not_found; 6019 break; 6020 6021 case LookupResult::FoundUnresolvedValue: { 6022 // We found a using declaration that is a value. Most likely, the using 6023 // declaration itself is meant to have the 'typename' keyword. 6024 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(), 6025 IILoc); 6026 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 6027 << Name << Ctx << FullRange; 6028 if (UnresolvedUsingValueDecl *Using 6029 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 6030 SourceLocation Loc = Using->getTargetNestedNameRange().getBegin(); 6031 Diag(Loc, diag::note_using_value_decl_missing_typename) 6032 << FixItHint::CreateInsertion(Loc, "typename "); 6033 } 6034 } 6035 // Fall through to create a dependent typename type, from which we can recover 6036 // better. 6037 6038 case LookupResult::NotFoundInCurrentInstantiation: 6039 // Okay, it's a member of an unknown instantiation. 6040 return Context.getDependentNameType(Keyword, NNS, &II); 6041 6042 case LookupResult::Found: 6043 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 6044 // We found a type. Build an ElaboratedType, since the 6045 // typename-specifier was just sugar. 6046 return Context.getElaboratedType(ETK_Typename, NNS, 6047 Context.getTypeDeclType(Type)); 6048 } 6049 6050 DiagID = diag::err_typename_nested_not_type; 6051 Referenced = Result.getFoundDecl(); 6052 break; 6053 6054 6055 llvm_unreachable("unresolved using decl in non-dependent context"); 6056 return QualType(); 6057 6058 case LookupResult::FoundOverloaded: 6059 DiagID = diag::err_typename_nested_not_type; 6060 Referenced = *Result.begin(); 6061 break; 6062 6063 case LookupResult::Ambiguous: 6064 return QualType(); 6065 } 6066 6067 // If we get here, it's because name lookup did not find a 6068 // type. Emit an appropriate diagnostic and return an error. 6069 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(), 6070 IILoc); 6071 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 6072 if (Referenced) 6073 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 6074 << Name; 6075 return QualType(); 6076} 6077 6078namespace { 6079 // See Sema::RebuildTypeInCurrentInstantiation 6080 class CurrentInstantiationRebuilder 6081 : public TreeTransform<CurrentInstantiationRebuilder> { 6082 SourceLocation Loc; 6083 DeclarationName Entity; 6084 6085 public: 6086 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 6087 6088 CurrentInstantiationRebuilder(Sema &SemaRef, 6089 SourceLocation Loc, 6090 DeclarationName Entity) 6091 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 6092 Loc(Loc), Entity(Entity) { } 6093 6094 /// \brief Determine whether the given type \p T has already been 6095 /// transformed. 6096 /// 6097 /// For the purposes of type reconstruction, a type has already been 6098 /// transformed if it is NULL or if it is not dependent. 6099 bool AlreadyTransformed(QualType T) { 6100 return T.isNull() || !T->isDependentType(); 6101 } 6102 6103 /// \brief Returns the location of the entity whose type is being 6104 /// rebuilt. 6105 SourceLocation getBaseLocation() { return Loc; } 6106 6107 /// \brief Returns the name of the entity whose type is being rebuilt. 6108 DeclarationName getBaseEntity() { return Entity; } 6109 6110 /// \brief Sets the "base" location and entity when that 6111 /// information is known based on another transformation. 6112 void setBase(SourceLocation Loc, DeclarationName Entity) { 6113 this->Loc = Loc; 6114 this->Entity = Entity; 6115 } 6116 }; 6117} 6118 6119/// \brief Rebuilds a type within the context of the current instantiation. 6120/// 6121/// The type \p T is part of the type of an out-of-line member definition of 6122/// a class template (or class template partial specialization) that was parsed 6123/// and constructed before we entered the scope of the class template (or 6124/// partial specialization thereof). This routine will rebuild that type now 6125/// that we have entered the declarator's scope, which may produce different 6126/// canonical types, e.g., 6127/// 6128/// \code 6129/// template<typename T> 6130/// struct X { 6131/// typedef T* pointer; 6132/// pointer data(); 6133/// }; 6134/// 6135/// template<typename T> 6136/// typename X<T>::pointer X<T>::data() { ... } 6137/// \endcode 6138/// 6139/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 6140/// since we do not know that we can look into X<T> when we parsed the type. 6141/// This function will rebuild the type, performing the lookup of "pointer" 6142/// in X<T> and returning an ElaboratedType whose canonical type is the same 6143/// as the canonical type of T*, allowing the return types of the out-of-line 6144/// definition and the declaration to match. 6145TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 6146 SourceLocation Loc, 6147 DeclarationName Name) { 6148 if (!T || !T->getType()->isDependentType()) 6149 return T; 6150 6151 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 6152 return Rebuilder.TransformType(T); 6153} 6154 6155ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 6156 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 6157 DeclarationName()); 6158 return Rebuilder.TransformExpr(E); 6159} 6160 6161bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 6162 if (SS.isInvalid()) return true; 6163 6164 NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 6165 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 6166 DeclarationName()); 6167 NestedNameSpecifier *Rebuilt = 6168 Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange()); 6169 if (!Rebuilt) return true; 6170 6171 SS.setScopeRep(Rebuilt); 6172 return false; 6173} 6174 6175/// \brief Produces a formatted string that describes the binding of 6176/// template parameters to template arguments. 6177std::string 6178Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6179 const TemplateArgumentList &Args) { 6180 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 6181} 6182 6183std::string 6184Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6185 const TemplateArgument *Args, 6186 unsigned NumArgs) { 6187 llvm::SmallString<128> Str; 6188 llvm::raw_svector_ostream Out(Str); 6189 6190 if (!Params || Params->size() == 0 || NumArgs == 0) 6191 return std::string(); 6192 6193 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 6194 if (I >= NumArgs) 6195 break; 6196 6197 if (I == 0) 6198 Out << "[with "; 6199 else 6200 Out << ", "; 6201 6202 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 6203 Out << Id->getName(); 6204 } else { 6205 Out << '$' << I; 6206 } 6207 6208 Out << " = "; 6209 Args[I].print(Context.PrintingPolicy, Out); 6210 } 6211 6212 Out << ']'; 6213 return Out.str(); 6214} 6215