SemaTemplate.cpp revision 8fbbae532e3cb5f45e9e862c60d48c78b0997325
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/SmallBitVector.h"
30#include "llvm/ADT/StringExtras.h"
31using namespace clang;
32using namespace sema;
33
34// Exported for use by Parser.
35SourceRange
36clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
37                              unsigned N) {
38  if (!N) return SourceRange();
39  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
40}
41
42/// \brief Determine whether the declaration found is acceptable as the name
43/// of a template and, if so, return that template declaration. Otherwise,
44/// returns NULL.
45static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
46                                           NamedDecl *Orig) {
47  NamedDecl *D = Orig->getUnderlyingDecl();
48
49  if (isa<TemplateDecl>(D))
50    return Orig;
51
52  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
53    // C++ [temp.local]p1:
54    //   Like normal (non-template) classes, class templates have an
55    //   injected-class-name (Clause 9). The injected-class-name
56    //   can be used with or without a template-argument-list. When
57    //   it is used without a template-argument-list, it is
58    //   equivalent to the injected-class-name followed by the
59    //   template-parameters of the class template enclosed in
60    //   <>. When it is used with a template-argument-list, it
61    //   refers to the specified class template specialization,
62    //   which could be the current specialization or another
63    //   specialization.
64    if (Record->isInjectedClassName()) {
65      Record = cast<CXXRecordDecl>(Record->getDeclContext());
66      if (Record->getDescribedClassTemplate())
67        return Record->getDescribedClassTemplate();
68
69      if (ClassTemplateSpecializationDecl *Spec
70            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
71        return Spec->getSpecializedTemplate();
72    }
73
74    return 0;
75  }
76
77  return 0;
78}
79
80void Sema::FilterAcceptableTemplateNames(LookupResult &R) {
81  // The set of class templates we've already seen.
82  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
83  LookupResult::Filter filter = R.makeFilter();
84  while (filter.hasNext()) {
85    NamedDecl *Orig = filter.next();
86    NamedDecl *Repl = isAcceptableTemplateName(Context, Orig);
87    if (!Repl)
88      filter.erase();
89    else if (Repl != Orig) {
90
91      // C++ [temp.local]p3:
92      //   A lookup that finds an injected-class-name (10.2) can result in an
93      //   ambiguity in certain cases (for example, if it is found in more than
94      //   one base class). If all of the injected-class-names that are found
95      //   refer to specializations of the same class template, and if the name
96      //   is used as a template-name, the reference refers to the class
97      //   template itself and not a specialization thereof, and is not
98      //   ambiguous.
99      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
100        if (!ClassTemplates.insert(ClassTmpl)) {
101          filter.erase();
102          continue;
103        }
104
105      // FIXME: we promote access to public here as a workaround to
106      // the fact that LookupResult doesn't let us remember that we
107      // found this template through a particular injected class name,
108      // which means we end up doing nasty things to the invariants.
109      // Pretending that access is public is *much* safer.
110      filter.replace(Repl, AS_public);
111    }
112  }
113  filter.done();
114}
115
116bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R) {
117  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
118    if (isAcceptableTemplateName(Context, *I))
119      return true;
120
121  return false;
122}
123
124TemplateNameKind Sema::isTemplateName(Scope *S,
125                                      CXXScopeSpec &SS,
126                                      bool hasTemplateKeyword,
127                                      UnqualifiedId &Name,
128                                      ParsedType ObjectTypePtr,
129                                      bool EnteringContext,
130                                      TemplateTy &TemplateResult,
131                                      bool &MemberOfUnknownSpecialization) {
132  assert(getLangOptions().CPlusPlus && "No template names in C!");
133
134  DeclarationName TName;
135  MemberOfUnknownSpecialization = false;
136
137  switch (Name.getKind()) {
138  case UnqualifiedId::IK_Identifier:
139    TName = DeclarationName(Name.Identifier);
140    break;
141
142  case UnqualifiedId::IK_OperatorFunctionId:
143    TName = Context.DeclarationNames.getCXXOperatorName(
144                                              Name.OperatorFunctionId.Operator);
145    break;
146
147  case UnqualifiedId::IK_LiteralOperatorId:
148    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
149    break;
150
151  default:
152    return TNK_Non_template;
153  }
154
155  QualType ObjectType = ObjectTypePtr.get();
156
157  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
158                 LookupOrdinaryName);
159  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
160                     MemberOfUnknownSpecialization);
161  if (R.empty()) return TNK_Non_template;
162  if (R.isAmbiguous()) {
163    // Suppress diagnostics;  we'll redo this lookup later.
164    R.suppressDiagnostics();
165
166    // FIXME: we might have ambiguous templates, in which case we
167    // should at least parse them properly!
168    return TNK_Non_template;
169  }
170
171  TemplateName Template;
172  TemplateNameKind TemplateKind;
173
174  unsigned ResultCount = R.end() - R.begin();
175  if (ResultCount > 1) {
176    // We assume that we'll preserve the qualifier from a function
177    // template name in other ways.
178    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
179    TemplateKind = TNK_Function_template;
180
181    // We'll do this lookup again later.
182    R.suppressDiagnostics();
183  } else {
184    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
185
186    if (SS.isSet() && !SS.isInvalid()) {
187      NestedNameSpecifier *Qualifier
188        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
189      Template = Context.getQualifiedTemplateName(Qualifier,
190                                                  hasTemplateKeyword, TD);
191    } else {
192      Template = TemplateName(TD);
193    }
194
195    if (isa<FunctionTemplateDecl>(TD)) {
196      TemplateKind = TNK_Function_template;
197
198      // We'll do this lookup again later.
199      R.suppressDiagnostics();
200    } else {
201      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
202             isa<TypeAliasTemplateDecl>(TD));
203      TemplateKind = TNK_Type_template;
204    }
205  }
206
207  TemplateResult = TemplateTy::make(Template);
208  return TemplateKind;
209}
210
211bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
212                                       SourceLocation IILoc,
213                                       Scope *S,
214                                       const CXXScopeSpec *SS,
215                                       TemplateTy &SuggestedTemplate,
216                                       TemplateNameKind &SuggestedKind) {
217  // We can't recover unless there's a dependent scope specifier preceding the
218  // template name.
219  // FIXME: Typo correction?
220  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
221      computeDeclContext(*SS))
222    return false;
223
224  // The code is missing a 'template' keyword prior to the dependent template
225  // name.
226  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
227  Diag(IILoc, diag::err_template_kw_missing)
228    << Qualifier << II.getName()
229    << FixItHint::CreateInsertion(IILoc, "template ");
230  SuggestedTemplate
231    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
232  SuggestedKind = TNK_Dependent_template_name;
233  return true;
234}
235
236void Sema::LookupTemplateName(LookupResult &Found,
237                              Scope *S, CXXScopeSpec &SS,
238                              QualType ObjectType,
239                              bool EnteringContext,
240                              bool &MemberOfUnknownSpecialization) {
241  // Determine where to perform name lookup
242  MemberOfUnknownSpecialization = false;
243  DeclContext *LookupCtx = 0;
244  bool isDependent = false;
245  if (!ObjectType.isNull()) {
246    // This nested-name-specifier occurs in a member access expression, e.g.,
247    // x->B::f, and we are looking into the type of the object.
248    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
249    LookupCtx = computeDeclContext(ObjectType);
250    isDependent = ObjectType->isDependentType();
251    assert((isDependent || !ObjectType->isIncompleteType()) &&
252           "Caller should have completed object type");
253
254    // Template names cannot appear inside an Objective-C class or object type.
255    if (ObjectType->isObjCObjectOrInterfaceType()) {
256      Found.clear();
257      return;
258    }
259  } else if (SS.isSet()) {
260    // This nested-name-specifier occurs after another nested-name-specifier,
261    // so long into the context associated with the prior nested-name-specifier.
262    LookupCtx = computeDeclContext(SS, EnteringContext);
263    isDependent = isDependentScopeSpecifier(SS);
264
265    // The declaration context must be complete.
266    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
267      return;
268  }
269
270  bool ObjectTypeSearchedInScope = false;
271  if (LookupCtx) {
272    // Perform "qualified" name lookup into the declaration context we
273    // computed, which is either the type of the base of a member access
274    // expression or the declaration context associated with a prior
275    // nested-name-specifier.
276    LookupQualifiedName(Found, LookupCtx);
277
278    if (!ObjectType.isNull() && Found.empty()) {
279      // C++ [basic.lookup.classref]p1:
280      //   In a class member access expression (5.2.5), if the . or -> token is
281      //   immediately followed by an identifier followed by a <, the
282      //   identifier must be looked up to determine whether the < is the
283      //   beginning of a template argument list (14.2) or a less-than operator.
284      //   The identifier is first looked up in the class of the object
285      //   expression. If the identifier is not found, it is then looked up in
286      //   the context of the entire postfix-expression and shall name a class
287      //   or function template.
288      if (S) LookupName(Found, S);
289      ObjectTypeSearchedInScope = true;
290    }
291  } else if (isDependent && (!S || ObjectType.isNull())) {
292    // We cannot look into a dependent object type or nested nme
293    // specifier.
294    MemberOfUnknownSpecialization = true;
295    return;
296  } else {
297    // Perform unqualified name lookup in the current scope.
298    LookupName(Found, S);
299  }
300
301  if (Found.empty() && !isDependent) {
302    // If we did not find any names, attempt to correct any typos.
303    DeclarationName Name = Found.getLookupName();
304    Found.clear();
305    // Simple filter callback that, for keywords, only accepts the C++ *_cast
306    CorrectionCandidateCallback FilterCCC;
307    FilterCCC.WantTypeSpecifiers = false;
308    FilterCCC.WantExpressionKeywords = false;
309    FilterCCC.WantRemainingKeywords = false;
310    FilterCCC.WantCXXNamedCasts = true;
311    if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
312                                               Found.getLookupKind(), S, &SS,
313                                               FilterCCC, LookupCtx)) {
314      Found.setLookupName(Corrected.getCorrection());
315      if (Corrected.getCorrectionDecl())
316        Found.addDecl(Corrected.getCorrectionDecl());
317      FilterAcceptableTemplateNames(Found);
318      if (!Found.empty()) {
319        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
320        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
321        if (LookupCtx)
322          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
323            << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
324            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
325        else
326          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
327            << Name << CorrectedQuotedStr
328            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
329        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
330          Diag(Template->getLocation(), diag::note_previous_decl)
331            << CorrectedQuotedStr;
332      }
333    } else {
334      Found.setLookupName(Name);
335    }
336  }
337
338  FilterAcceptableTemplateNames(Found);
339  if (Found.empty()) {
340    if (isDependent)
341      MemberOfUnknownSpecialization = true;
342    return;
343  }
344
345  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
346    // C++ [basic.lookup.classref]p1:
347    //   [...] If the lookup in the class of the object expression finds a
348    //   template, the name is also looked up in the context of the entire
349    //   postfix-expression and [...]
350    //
351    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
352                            LookupOrdinaryName);
353    LookupName(FoundOuter, S);
354    FilterAcceptableTemplateNames(FoundOuter);
355
356    if (FoundOuter.empty()) {
357      //   - if the name is not found, the name found in the class of the
358      //     object expression is used, otherwise
359    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
360               FoundOuter.isAmbiguous()) {
361      //   - if the name is found in the context of the entire
362      //     postfix-expression and does not name a class template, the name
363      //     found in the class of the object expression is used, otherwise
364      FoundOuter.clear();
365    } else if (!Found.isSuppressingDiagnostics()) {
366      //   - if the name found is a class template, it must refer to the same
367      //     entity as the one found in the class of the object expression,
368      //     otherwise the program is ill-formed.
369      if (!Found.isSingleResult() ||
370          Found.getFoundDecl()->getCanonicalDecl()
371            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
372        Diag(Found.getNameLoc(),
373             diag::ext_nested_name_member_ref_lookup_ambiguous)
374          << Found.getLookupName()
375          << ObjectType;
376        Diag(Found.getRepresentativeDecl()->getLocation(),
377             diag::note_ambig_member_ref_object_type)
378          << ObjectType;
379        Diag(FoundOuter.getFoundDecl()->getLocation(),
380             diag::note_ambig_member_ref_scope);
381
382        // Recover by taking the template that we found in the object
383        // expression's type.
384      }
385    }
386  }
387}
388
389/// ActOnDependentIdExpression - Handle a dependent id-expression that
390/// was just parsed.  This is only possible with an explicit scope
391/// specifier naming a dependent type.
392ExprResult
393Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
394                                 SourceLocation TemplateKWLoc,
395                                 const DeclarationNameInfo &NameInfo,
396                                 bool isAddressOfOperand,
397                           const TemplateArgumentListInfo *TemplateArgs) {
398  DeclContext *DC = getFunctionLevelDeclContext();
399
400  if (!isAddressOfOperand &&
401      isa<CXXMethodDecl>(DC) &&
402      cast<CXXMethodDecl>(DC)->isInstance()) {
403    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
404
405    // Since the 'this' expression is synthesized, we don't need to
406    // perform the double-lookup check.
407    NamedDecl *FirstQualifierInScope = 0;
408
409    return Owned(CXXDependentScopeMemberExpr::Create(Context,
410                                                     /*This*/ 0, ThisType,
411                                                     /*IsArrow*/ true,
412                                                     /*Op*/ SourceLocation(),
413                                               SS.getWithLocInContext(Context),
414                                                     TemplateKWLoc,
415                                                     FirstQualifierInScope,
416                                                     NameInfo,
417                                                     TemplateArgs));
418  }
419
420  return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
421}
422
423ExprResult
424Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
425                                SourceLocation TemplateKWLoc,
426                                const DeclarationNameInfo &NameInfo,
427                                const TemplateArgumentListInfo *TemplateArgs) {
428  return Owned(DependentScopeDeclRefExpr::Create(Context,
429                                               SS.getWithLocInContext(Context),
430                                                 TemplateKWLoc,
431                                                 NameInfo,
432                                                 TemplateArgs));
433}
434
435/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
436/// that the template parameter 'PrevDecl' is being shadowed by a new
437/// declaration at location Loc. Returns true to indicate that this is
438/// an error, and false otherwise.
439void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
440  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
441
442  // Microsoft Visual C++ permits template parameters to be shadowed.
443  if (getLangOptions().MicrosoftExt)
444    return;
445
446  // C++ [temp.local]p4:
447  //   A template-parameter shall not be redeclared within its
448  //   scope (including nested scopes).
449  Diag(Loc, diag::err_template_param_shadow)
450    << cast<NamedDecl>(PrevDecl)->getDeclName();
451  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
452  return;
453}
454
455/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
456/// the parameter D to reference the templated declaration and return a pointer
457/// to the template declaration. Otherwise, do nothing to D and return null.
458TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
459  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
460    D = Temp->getTemplatedDecl();
461    return Temp;
462  }
463  return 0;
464}
465
466ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
467                                             SourceLocation EllipsisLoc) const {
468  assert(Kind == Template &&
469         "Only template template arguments can be pack expansions here");
470  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
471         "Template template argument pack expansion without packs");
472  ParsedTemplateArgument Result(*this);
473  Result.EllipsisLoc = EllipsisLoc;
474  return Result;
475}
476
477static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
478                                            const ParsedTemplateArgument &Arg) {
479
480  switch (Arg.getKind()) {
481  case ParsedTemplateArgument::Type: {
482    TypeSourceInfo *DI;
483    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
484    if (!DI)
485      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
486    return TemplateArgumentLoc(TemplateArgument(T), DI);
487  }
488
489  case ParsedTemplateArgument::NonType: {
490    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
491    return TemplateArgumentLoc(TemplateArgument(E), E);
492  }
493
494  case ParsedTemplateArgument::Template: {
495    TemplateName Template = Arg.getAsTemplate().get();
496    TemplateArgument TArg;
497    if (Arg.getEllipsisLoc().isValid())
498      TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
499    else
500      TArg = Template;
501    return TemplateArgumentLoc(TArg,
502                               Arg.getScopeSpec().getWithLocInContext(
503                                                              SemaRef.Context),
504                               Arg.getLocation(),
505                               Arg.getEllipsisLoc());
506  }
507  }
508
509  llvm_unreachable("Unhandled parsed template argument");
510}
511
512/// \brief Translates template arguments as provided by the parser
513/// into template arguments used by semantic analysis.
514void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
515                                      TemplateArgumentListInfo &TemplateArgs) {
516 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
517   TemplateArgs.addArgument(translateTemplateArgument(*this,
518                                                      TemplateArgsIn[I]));
519}
520
521/// ActOnTypeParameter - Called when a C++ template type parameter
522/// (e.g., "typename T") has been parsed. Typename specifies whether
523/// the keyword "typename" was used to declare the type parameter
524/// (otherwise, "class" was used), and KeyLoc is the location of the
525/// "class" or "typename" keyword. ParamName is the name of the
526/// parameter (NULL indicates an unnamed template parameter) and
527/// ParamNameLoc is the location of the parameter name (if any).
528/// If the type parameter has a default argument, it will be added
529/// later via ActOnTypeParameterDefault.
530Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
531                               SourceLocation EllipsisLoc,
532                               SourceLocation KeyLoc,
533                               IdentifierInfo *ParamName,
534                               SourceLocation ParamNameLoc,
535                               unsigned Depth, unsigned Position,
536                               SourceLocation EqualLoc,
537                               ParsedType DefaultArg) {
538  assert(S->isTemplateParamScope() &&
539         "Template type parameter not in template parameter scope!");
540  bool Invalid = false;
541
542  if (ParamName) {
543    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
544                                           LookupOrdinaryName,
545                                           ForRedeclaration);
546    if (PrevDecl && PrevDecl->isTemplateParameter()) {
547      DiagnoseTemplateParameterShadow(ParamNameLoc, PrevDecl);
548      PrevDecl = 0;
549    }
550  }
551
552  SourceLocation Loc = ParamNameLoc;
553  if (!ParamName)
554    Loc = KeyLoc;
555
556  TemplateTypeParmDecl *Param
557    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
558                                   KeyLoc, Loc, Depth, Position, ParamName,
559                                   Typename, Ellipsis);
560  Param->setAccess(AS_public);
561  if (Invalid)
562    Param->setInvalidDecl();
563
564  if (ParamName) {
565    // Add the template parameter into the current scope.
566    S->AddDecl(Param);
567    IdResolver.AddDecl(Param);
568  }
569
570  // C++0x [temp.param]p9:
571  //   A default template-argument may be specified for any kind of
572  //   template-parameter that is not a template parameter pack.
573  if (DefaultArg && Ellipsis) {
574    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
575    DefaultArg = ParsedType();
576  }
577
578  // Handle the default argument, if provided.
579  if (DefaultArg) {
580    TypeSourceInfo *DefaultTInfo;
581    GetTypeFromParser(DefaultArg, &DefaultTInfo);
582
583    assert(DefaultTInfo && "expected source information for type");
584
585    // Check for unexpanded parameter packs.
586    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
587                                        UPPC_DefaultArgument))
588      return Param;
589
590    // Check the template argument itself.
591    if (CheckTemplateArgument(Param, DefaultTInfo)) {
592      Param->setInvalidDecl();
593      return Param;
594    }
595
596    Param->setDefaultArgument(DefaultTInfo, false);
597  }
598
599  return Param;
600}
601
602/// \brief Check that the type of a non-type template parameter is
603/// well-formed.
604///
605/// \returns the (possibly-promoted) parameter type if valid;
606/// otherwise, produces a diagnostic and returns a NULL type.
607QualType
608Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
609  // We don't allow variably-modified types as the type of non-type template
610  // parameters.
611  if (T->isVariablyModifiedType()) {
612    Diag(Loc, diag::err_variably_modified_nontype_template_param)
613      << T;
614    return QualType();
615  }
616
617  // C++ [temp.param]p4:
618  //
619  // A non-type template-parameter shall have one of the following
620  // (optionally cv-qualified) types:
621  //
622  //       -- integral or enumeration type,
623  if (T->isIntegralOrEnumerationType() ||
624      //   -- pointer to object or pointer to function,
625      T->isPointerType() ||
626      //   -- reference to object or reference to function,
627      T->isReferenceType() ||
628      //   -- pointer to member,
629      T->isMemberPointerType() ||
630      //   -- std::nullptr_t.
631      T->isNullPtrType() ||
632      // If T is a dependent type, we can't do the check now, so we
633      // assume that it is well-formed.
634      T->isDependentType())
635    return T;
636  // C++ [temp.param]p8:
637  //
638  //   A non-type template-parameter of type "array of T" or
639  //   "function returning T" is adjusted to be of type "pointer to
640  //   T" or "pointer to function returning T", respectively.
641  else if (T->isArrayType())
642    // FIXME: Keep the type prior to promotion?
643    return Context.getArrayDecayedType(T);
644  else if (T->isFunctionType())
645    // FIXME: Keep the type prior to promotion?
646    return Context.getPointerType(T);
647
648  Diag(Loc, diag::err_template_nontype_parm_bad_type)
649    << T;
650
651  return QualType();
652}
653
654Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
655                                          unsigned Depth,
656                                          unsigned Position,
657                                          SourceLocation EqualLoc,
658                                          Expr *Default) {
659  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
660  QualType T = TInfo->getType();
661
662  assert(S->isTemplateParamScope() &&
663         "Non-type template parameter not in template parameter scope!");
664  bool Invalid = false;
665
666  IdentifierInfo *ParamName = D.getIdentifier();
667  if (ParamName) {
668    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
669                                           LookupOrdinaryName,
670                                           ForRedeclaration);
671    if (PrevDecl && PrevDecl->isTemplateParameter()) {
672      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
673      PrevDecl = 0;
674    }
675  }
676
677  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
678  if (T.isNull()) {
679    T = Context.IntTy; // Recover with an 'int' type.
680    Invalid = true;
681  }
682
683  bool IsParameterPack = D.hasEllipsis();
684  NonTypeTemplateParmDecl *Param
685    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
686                                      D.getSourceRange().getBegin(),
687                                      D.getIdentifierLoc(),
688                                      Depth, Position, ParamName, T,
689                                      IsParameterPack, TInfo);
690  Param->setAccess(AS_public);
691
692  if (Invalid)
693    Param->setInvalidDecl();
694
695  if (D.getIdentifier()) {
696    // Add the template parameter into the current scope.
697    S->AddDecl(Param);
698    IdResolver.AddDecl(Param);
699  }
700
701  // C++0x [temp.param]p9:
702  //   A default template-argument may be specified for any kind of
703  //   template-parameter that is not a template parameter pack.
704  if (Default && IsParameterPack) {
705    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
706    Default = 0;
707  }
708
709  // Check the well-formedness of the default template argument, if provided.
710  if (Default) {
711    // Check for unexpanded parameter packs.
712    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
713      return Param;
714
715    TemplateArgument Converted;
716    ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
717    if (DefaultRes.isInvalid()) {
718      Param->setInvalidDecl();
719      return Param;
720    }
721    Default = DefaultRes.take();
722
723    Param->setDefaultArgument(Default, false);
724  }
725
726  return Param;
727}
728
729/// ActOnTemplateTemplateParameter - Called when a C++ template template
730/// parameter (e.g. T in template <template <typename> class T> class array)
731/// has been parsed. S is the current scope.
732Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
733                                           SourceLocation TmpLoc,
734                                           TemplateParameterList *Params,
735                                           SourceLocation EllipsisLoc,
736                                           IdentifierInfo *Name,
737                                           SourceLocation NameLoc,
738                                           unsigned Depth,
739                                           unsigned Position,
740                                           SourceLocation EqualLoc,
741                                           ParsedTemplateArgument Default) {
742  assert(S->isTemplateParamScope() &&
743         "Template template parameter not in template parameter scope!");
744
745  // Construct the parameter object.
746  bool IsParameterPack = EllipsisLoc.isValid();
747  TemplateTemplateParmDecl *Param =
748    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
749                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
750                                     Depth, Position, IsParameterPack,
751                                     Name, Params);
752  Param->setAccess(AS_public);
753
754  // If the template template parameter has a name, then link the identifier
755  // into the scope and lookup mechanisms.
756  if (Name) {
757    S->AddDecl(Param);
758    IdResolver.AddDecl(Param);
759  }
760
761  if (Params->size() == 0) {
762    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
763    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
764    Param->setInvalidDecl();
765  }
766
767  // C++0x [temp.param]p9:
768  //   A default template-argument may be specified for any kind of
769  //   template-parameter that is not a template parameter pack.
770  if (IsParameterPack && !Default.isInvalid()) {
771    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
772    Default = ParsedTemplateArgument();
773  }
774
775  if (!Default.isInvalid()) {
776    // Check only that we have a template template argument. We don't want to
777    // try to check well-formedness now, because our template template parameter
778    // might have dependent types in its template parameters, which we wouldn't
779    // be able to match now.
780    //
781    // If none of the template template parameter's template arguments mention
782    // other template parameters, we could actually perform more checking here.
783    // However, it isn't worth doing.
784    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
785    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
786      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
787        << DefaultArg.getSourceRange();
788      return Param;
789    }
790
791    // Check for unexpanded parameter packs.
792    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
793                                        DefaultArg.getArgument().getAsTemplate(),
794                                        UPPC_DefaultArgument))
795      return Param;
796
797    Param->setDefaultArgument(DefaultArg, false);
798  }
799
800  return Param;
801}
802
803/// ActOnTemplateParameterList - Builds a TemplateParameterList that
804/// contains the template parameters in Params/NumParams.
805TemplateParameterList *
806Sema::ActOnTemplateParameterList(unsigned Depth,
807                                 SourceLocation ExportLoc,
808                                 SourceLocation TemplateLoc,
809                                 SourceLocation LAngleLoc,
810                                 Decl **Params, unsigned NumParams,
811                                 SourceLocation RAngleLoc) {
812  if (ExportLoc.isValid())
813    Diag(ExportLoc, diag::warn_template_export_unsupported);
814
815  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
816                                       (NamedDecl**)Params, NumParams,
817                                       RAngleLoc);
818}
819
820static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
821  if (SS.isSet())
822    T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
823}
824
825DeclResult
826Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
827                         SourceLocation KWLoc, CXXScopeSpec &SS,
828                         IdentifierInfo *Name, SourceLocation NameLoc,
829                         AttributeList *Attr,
830                         TemplateParameterList *TemplateParams,
831                         AccessSpecifier AS, SourceLocation ModulePrivateLoc,
832                         unsigned NumOuterTemplateParamLists,
833                         TemplateParameterList** OuterTemplateParamLists) {
834  assert(TemplateParams && TemplateParams->size() > 0 &&
835         "No template parameters");
836  assert(TUK != TUK_Reference && "Can only declare or define class templates");
837  bool Invalid = false;
838
839  // Check that we can declare a template here.
840  if (CheckTemplateDeclScope(S, TemplateParams))
841    return true;
842
843  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
844  assert(Kind != TTK_Enum && "can't build template of enumerated type");
845
846  // There is no such thing as an unnamed class template.
847  if (!Name) {
848    Diag(KWLoc, diag::err_template_unnamed_class);
849    return true;
850  }
851
852  // Find any previous declaration with this name.
853  DeclContext *SemanticContext;
854  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
855                        ForRedeclaration);
856  if (SS.isNotEmpty() && !SS.isInvalid()) {
857    SemanticContext = computeDeclContext(SS, true);
858    if (!SemanticContext) {
859      // FIXME: Produce a reasonable diagnostic here
860      return true;
861    }
862
863    if (RequireCompleteDeclContext(SS, SemanticContext))
864      return true;
865
866    // If we're adding a template to a dependent context, we may need to
867    // rebuilding some of the types used within the template parameter list,
868    // now that we know what the current instantiation is.
869    if (SemanticContext->isDependentContext()) {
870      ContextRAII SavedContext(*this, SemanticContext);
871      if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
872        Invalid = true;
873    }
874
875    LookupQualifiedName(Previous, SemanticContext);
876  } else {
877    SemanticContext = CurContext;
878    LookupName(Previous, S);
879  }
880
881  if (Previous.isAmbiguous())
882    return true;
883
884  NamedDecl *PrevDecl = 0;
885  if (Previous.begin() != Previous.end())
886    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
887
888  // If there is a previous declaration with the same name, check
889  // whether this is a valid redeclaration.
890  ClassTemplateDecl *PrevClassTemplate
891    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
892
893  // We may have found the injected-class-name of a class template,
894  // class template partial specialization, or class template specialization.
895  // In these cases, grab the template that is being defined or specialized.
896  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
897      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
898    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
899    PrevClassTemplate
900      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
901    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
902      PrevClassTemplate
903        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
904            ->getSpecializedTemplate();
905    }
906  }
907
908  if (TUK == TUK_Friend) {
909    // C++ [namespace.memdef]p3:
910    //   [...] When looking for a prior declaration of a class or a function
911    //   declared as a friend, and when the name of the friend class or
912    //   function is neither a qualified name nor a template-id, scopes outside
913    //   the innermost enclosing namespace scope are not considered.
914    if (!SS.isSet()) {
915      DeclContext *OutermostContext = CurContext;
916      while (!OutermostContext->isFileContext())
917        OutermostContext = OutermostContext->getLookupParent();
918
919      if (PrevDecl &&
920          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
921           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
922        SemanticContext = PrevDecl->getDeclContext();
923      } else {
924        // Declarations in outer scopes don't matter. However, the outermost
925        // context we computed is the semantic context for our new
926        // declaration.
927        PrevDecl = PrevClassTemplate = 0;
928        SemanticContext = OutermostContext;
929      }
930    }
931
932    if (CurContext->isDependentContext()) {
933      // If this is a dependent context, we don't want to link the friend
934      // class template to the template in scope, because that would perform
935      // checking of the template parameter lists that can't be performed
936      // until the outer context is instantiated.
937      PrevDecl = PrevClassTemplate = 0;
938    }
939  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
940    PrevDecl = PrevClassTemplate = 0;
941
942  if (PrevClassTemplate) {
943    // Ensure that the template parameter lists are compatible.
944    if (!TemplateParameterListsAreEqual(TemplateParams,
945                                   PrevClassTemplate->getTemplateParameters(),
946                                        /*Complain=*/true,
947                                        TPL_TemplateMatch))
948      return true;
949
950    // C++ [temp.class]p4:
951    //   In a redeclaration, partial specialization, explicit
952    //   specialization or explicit instantiation of a class template,
953    //   the class-key shall agree in kind with the original class
954    //   template declaration (7.1.5.3).
955    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
956    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
957                                      TUK == TUK_Definition,  KWLoc, *Name)) {
958      Diag(KWLoc, diag::err_use_with_wrong_tag)
959        << Name
960        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
961      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
962      Kind = PrevRecordDecl->getTagKind();
963    }
964
965    // Check for redefinition of this class template.
966    if (TUK == TUK_Definition) {
967      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
968        Diag(NameLoc, diag::err_redefinition) << Name;
969        Diag(Def->getLocation(), diag::note_previous_definition);
970        // FIXME: Would it make sense to try to "forget" the previous
971        // definition, as part of error recovery?
972        return true;
973      }
974    }
975  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
976    // Maybe we will complain about the shadowed template parameter.
977    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
978    // Just pretend that we didn't see the previous declaration.
979    PrevDecl = 0;
980  } else if (PrevDecl) {
981    // C++ [temp]p5:
982    //   A class template shall not have the same name as any other
983    //   template, class, function, object, enumeration, enumerator,
984    //   namespace, or type in the same scope (3.3), except as specified
985    //   in (14.5.4).
986    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
987    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
988    return true;
989  }
990
991  // Check the template parameter list of this declaration, possibly
992  // merging in the template parameter list from the previous class
993  // template declaration.
994  if (CheckTemplateParameterList(TemplateParams,
995            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
996                                 (SS.isSet() && SemanticContext &&
997                                  SemanticContext->isRecord() &&
998                                  SemanticContext->isDependentContext())
999                                   ? TPC_ClassTemplateMember
1000                                   : TPC_ClassTemplate))
1001    Invalid = true;
1002
1003  if (SS.isSet()) {
1004    // If the name of the template was qualified, we must be defining the
1005    // template out-of-line.
1006    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
1007        !(TUK == TUK_Friend && CurContext->isDependentContext())) {
1008      Diag(NameLoc, diag::err_member_def_does_not_match)
1009        << Name << SemanticContext << SS.getRange();
1010      Invalid = true;
1011    }
1012  }
1013
1014  CXXRecordDecl *NewClass =
1015    CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1016                          PrevClassTemplate?
1017                            PrevClassTemplate->getTemplatedDecl() : 0,
1018                          /*DelayTypeCreation=*/true);
1019  SetNestedNameSpecifier(NewClass, SS);
1020  if (NumOuterTemplateParamLists > 0)
1021    NewClass->setTemplateParameterListsInfo(Context,
1022                                            NumOuterTemplateParamLists,
1023                                            OuterTemplateParamLists);
1024
1025  ClassTemplateDecl *NewTemplate
1026    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1027                                DeclarationName(Name), TemplateParams,
1028                                NewClass, PrevClassTemplate);
1029  NewClass->setDescribedClassTemplate(NewTemplate);
1030
1031  if (ModulePrivateLoc.isValid())
1032    NewTemplate->setModulePrivate();
1033
1034  // Build the type for the class template declaration now.
1035  QualType T = NewTemplate->getInjectedClassNameSpecialization();
1036  T = Context.getInjectedClassNameType(NewClass, T);
1037  assert(T->isDependentType() && "Class template type is not dependent?");
1038  (void)T;
1039
1040  // If we are providing an explicit specialization of a member that is a
1041  // class template, make a note of that.
1042  if (PrevClassTemplate &&
1043      PrevClassTemplate->getInstantiatedFromMemberTemplate())
1044    PrevClassTemplate->setMemberSpecialization();
1045
1046  // Set the access specifier.
1047  if (!Invalid && TUK != TUK_Friend)
1048    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1049
1050  // Set the lexical context of these templates
1051  NewClass->setLexicalDeclContext(CurContext);
1052  NewTemplate->setLexicalDeclContext(CurContext);
1053
1054  if (TUK == TUK_Definition)
1055    NewClass->startDefinition();
1056
1057  if (Attr)
1058    ProcessDeclAttributeList(S, NewClass, Attr);
1059
1060  if (TUK != TUK_Friend)
1061    PushOnScopeChains(NewTemplate, S);
1062  else {
1063    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1064      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1065      NewClass->setAccess(PrevClassTemplate->getAccess());
1066    }
1067
1068    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1069                                       PrevClassTemplate != NULL);
1070
1071    // Friend templates are visible in fairly strange ways.
1072    if (!CurContext->isDependentContext()) {
1073      DeclContext *DC = SemanticContext->getRedeclContext();
1074      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
1075      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1076        PushOnScopeChains(NewTemplate, EnclosingScope,
1077                          /* AddToContext = */ false);
1078    }
1079
1080    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1081                                            NewClass->getLocation(),
1082                                            NewTemplate,
1083                                    /*FIXME:*/NewClass->getLocation());
1084    Friend->setAccess(AS_public);
1085    CurContext->addDecl(Friend);
1086  }
1087
1088  if (Invalid) {
1089    NewTemplate->setInvalidDecl();
1090    NewClass->setInvalidDecl();
1091  }
1092  return NewTemplate;
1093}
1094
1095/// \brief Diagnose the presence of a default template argument on a
1096/// template parameter, which is ill-formed in certain contexts.
1097///
1098/// \returns true if the default template argument should be dropped.
1099static bool DiagnoseDefaultTemplateArgument(Sema &S,
1100                                            Sema::TemplateParamListContext TPC,
1101                                            SourceLocation ParamLoc,
1102                                            SourceRange DefArgRange) {
1103  switch (TPC) {
1104  case Sema::TPC_ClassTemplate:
1105  case Sema::TPC_TypeAliasTemplate:
1106    return false;
1107
1108  case Sema::TPC_FunctionTemplate:
1109  case Sema::TPC_FriendFunctionTemplateDefinition:
1110    // C++ [temp.param]p9:
1111    //   A default template-argument shall not be specified in a
1112    //   function template declaration or a function template
1113    //   definition [...]
1114    //   If a friend function template declaration specifies a default
1115    //   template-argument, that declaration shall be a definition and shall be
1116    //   the only declaration of the function template in the translation unit.
1117    // (C++98/03 doesn't have this wording; see DR226).
1118    S.Diag(ParamLoc, S.getLangOptions().CPlusPlus0x ?
1119         diag::warn_cxx98_compat_template_parameter_default_in_function_template
1120           : diag::ext_template_parameter_default_in_function_template)
1121      << DefArgRange;
1122    return false;
1123
1124  case Sema::TPC_ClassTemplateMember:
1125    // C++0x [temp.param]p9:
1126    //   A default template-argument shall not be specified in the
1127    //   template-parameter-lists of the definition of a member of a
1128    //   class template that appears outside of the member's class.
1129    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1130      << DefArgRange;
1131    return true;
1132
1133  case Sema::TPC_FriendFunctionTemplate:
1134    // C++ [temp.param]p9:
1135    //   A default template-argument shall not be specified in a
1136    //   friend template declaration.
1137    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1138      << DefArgRange;
1139    return true;
1140
1141    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1142    // for friend function templates if there is only a single
1143    // declaration (and it is a definition). Strange!
1144  }
1145
1146  llvm_unreachable("Invalid TemplateParamListContext!");
1147}
1148
1149/// \brief Check for unexpanded parameter packs within the template parameters
1150/// of a template template parameter, recursively.
1151static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1152                                             TemplateTemplateParmDecl *TTP) {
1153  TemplateParameterList *Params = TTP->getTemplateParameters();
1154  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1155    NamedDecl *P = Params->getParam(I);
1156    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1157      if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1158                                            NTTP->getTypeSourceInfo(),
1159                                      Sema::UPPC_NonTypeTemplateParameterType))
1160        return true;
1161
1162      continue;
1163    }
1164
1165    if (TemplateTemplateParmDecl *InnerTTP
1166                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1167      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1168        return true;
1169  }
1170
1171  return false;
1172}
1173
1174/// \brief Checks the validity of a template parameter list, possibly
1175/// considering the template parameter list from a previous
1176/// declaration.
1177///
1178/// If an "old" template parameter list is provided, it must be
1179/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1180/// template parameter list.
1181///
1182/// \param NewParams Template parameter list for a new template
1183/// declaration. This template parameter list will be updated with any
1184/// default arguments that are carried through from the previous
1185/// template parameter list.
1186///
1187/// \param OldParams If provided, template parameter list from a
1188/// previous declaration of the same template. Default template
1189/// arguments will be merged from the old template parameter list to
1190/// the new template parameter list.
1191///
1192/// \param TPC Describes the context in which we are checking the given
1193/// template parameter list.
1194///
1195/// \returns true if an error occurred, false otherwise.
1196bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1197                                      TemplateParameterList *OldParams,
1198                                      TemplateParamListContext TPC) {
1199  bool Invalid = false;
1200
1201  // C++ [temp.param]p10:
1202  //   The set of default template-arguments available for use with a
1203  //   template declaration or definition is obtained by merging the
1204  //   default arguments from the definition (if in scope) and all
1205  //   declarations in scope in the same way default function
1206  //   arguments are (8.3.6).
1207  bool SawDefaultArgument = false;
1208  SourceLocation PreviousDefaultArgLoc;
1209
1210  // Dummy initialization to avoid warnings.
1211  TemplateParameterList::iterator OldParam = NewParams->end();
1212  if (OldParams)
1213    OldParam = OldParams->begin();
1214
1215  bool RemoveDefaultArguments = false;
1216  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1217                                    NewParamEnd = NewParams->end();
1218       NewParam != NewParamEnd; ++NewParam) {
1219    // Variables used to diagnose redundant default arguments
1220    bool RedundantDefaultArg = false;
1221    SourceLocation OldDefaultLoc;
1222    SourceLocation NewDefaultLoc;
1223
1224    // Variable used to diagnose missing default arguments
1225    bool MissingDefaultArg = false;
1226
1227    // Variable used to diagnose non-final parameter packs
1228    bool SawParameterPack = false;
1229
1230    if (TemplateTypeParmDecl *NewTypeParm
1231          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1232      // Check the presence of a default argument here.
1233      if (NewTypeParm->hasDefaultArgument() &&
1234          DiagnoseDefaultTemplateArgument(*this, TPC,
1235                                          NewTypeParm->getLocation(),
1236               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1237                                                       .getSourceRange()))
1238        NewTypeParm->removeDefaultArgument();
1239
1240      // Merge default arguments for template type parameters.
1241      TemplateTypeParmDecl *OldTypeParm
1242          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1243
1244      if (NewTypeParm->isParameterPack()) {
1245        assert(!NewTypeParm->hasDefaultArgument() &&
1246               "Parameter packs can't have a default argument!");
1247        SawParameterPack = true;
1248      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1249                 NewTypeParm->hasDefaultArgument()) {
1250        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1251        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1252        SawDefaultArgument = true;
1253        RedundantDefaultArg = true;
1254        PreviousDefaultArgLoc = NewDefaultLoc;
1255      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1256        // Merge the default argument from the old declaration to the
1257        // new declaration.
1258        SawDefaultArgument = true;
1259        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1260                                        true);
1261        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1262      } else if (NewTypeParm->hasDefaultArgument()) {
1263        SawDefaultArgument = true;
1264        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1265      } else if (SawDefaultArgument)
1266        MissingDefaultArg = true;
1267    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1268               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1269      // Check for unexpanded parameter packs.
1270      if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1271                                          NewNonTypeParm->getTypeSourceInfo(),
1272                                          UPPC_NonTypeTemplateParameterType)) {
1273        Invalid = true;
1274        continue;
1275      }
1276
1277      // Check the presence of a default argument here.
1278      if (NewNonTypeParm->hasDefaultArgument() &&
1279          DiagnoseDefaultTemplateArgument(*this, TPC,
1280                                          NewNonTypeParm->getLocation(),
1281                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1282        NewNonTypeParm->removeDefaultArgument();
1283      }
1284
1285      // Merge default arguments for non-type template parameters
1286      NonTypeTemplateParmDecl *OldNonTypeParm
1287        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1288      if (NewNonTypeParm->isParameterPack()) {
1289        assert(!NewNonTypeParm->hasDefaultArgument() &&
1290               "Parameter packs can't have a default argument!");
1291        SawParameterPack = true;
1292      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1293          NewNonTypeParm->hasDefaultArgument()) {
1294        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1295        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1296        SawDefaultArgument = true;
1297        RedundantDefaultArg = true;
1298        PreviousDefaultArgLoc = NewDefaultLoc;
1299      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1300        // Merge the default argument from the old declaration to the
1301        // new declaration.
1302        SawDefaultArgument = true;
1303        // FIXME: We need to create a new kind of "default argument"
1304        // expression that points to a previous non-type template
1305        // parameter.
1306        NewNonTypeParm->setDefaultArgument(
1307                                         OldNonTypeParm->getDefaultArgument(),
1308                                         /*Inherited=*/ true);
1309        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1310      } else if (NewNonTypeParm->hasDefaultArgument()) {
1311        SawDefaultArgument = true;
1312        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1313      } else if (SawDefaultArgument)
1314        MissingDefaultArg = true;
1315    } else {
1316      TemplateTemplateParmDecl *NewTemplateParm
1317        = cast<TemplateTemplateParmDecl>(*NewParam);
1318
1319      // Check for unexpanded parameter packs, recursively.
1320      if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1321        Invalid = true;
1322        continue;
1323      }
1324
1325      // Check the presence of a default argument here.
1326      if (NewTemplateParm->hasDefaultArgument() &&
1327          DiagnoseDefaultTemplateArgument(*this, TPC,
1328                                          NewTemplateParm->getLocation(),
1329                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1330        NewTemplateParm->removeDefaultArgument();
1331
1332      // Merge default arguments for template template parameters
1333      TemplateTemplateParmDecl *OldTemplateParm
1334        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1335      if (NewTemplateParm->isParameterPack()) {
1336        assert(!NewTemplateParm->hasDefaultArgument() &&
1337               "Parameter packs can't have a default argument!");
1338        SawParameterPack = true;
1339      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1340          NewTemplateParm->hasDefaultArgument()) {
1341        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1342        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1343        SawDefaultArgument = true;
1344        RedundantDefaultArg = true;
1345        PreviousDefaultArgLoc = NewDefaultLoc;
1346      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1347        // Merge the default argument from the old declaration to the
1348        // new declaration.
1349        SawDefaultArgument = true;
1350        // FIXME: We need to create a new kind of "default argument" expression
1351        // that points to a previous template template parameter.
1352        NewTemplateParm->setDefaultArgument(
1353                                          OldTemplateParm->getDefaultArgument(),
1354                                          /*Inherited=*/ true);
1355        PreviousDefaultArgLoc
1356          = OldTemplateParm->getDefaultArgument().getLocation();
1357      } else if (NewTemplateParm->hasDefaultArgument()) {
1358        SawDefaultArgument = true;
1359        PreviousDefaultArgLoc
1360          = NewTemplateParm->getDefaultArgument().getLocation();
1361      } else if (SawDefaultArgument)
1362        MissingDefaultArg = true;
1363    }
1364
1365    // C++0x [temp.param]p11:
1366    //   If a template parameter of a primary class template or alias template
1367    //   is a template parameter pack, it shall be the last template parameter.
1368    if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1369        (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) {
1370      Diag((*NewParam)->getLocation(),
1371           diag::err_template_param_pack_must_be_last_template_parameter);
1372      Invalid = true;
1373    }
1374
1375    if (RedundantDefaultArg) {
1376      // C++ [temp.param]p12:
1377      //   A template-parameter shall not be given default arguments
1378      //   by two different declarations in the same scope.
1379      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1380      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1381      Invalid = true;
1382    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1383      // C++ [temp.param]p11:
1384      //   If a template-parameter of a class template has a default
1385      //   template-argument, each subsequent template-parameter shall either
1386      //   have a default template-argument supplied or be a template parameter
1387      //   pack.
1388      Diag((*NewParam)->getLocation(),
1389           diag::err_template_param_default_arg_missing);
1390      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1391      Invalid = true;
1392      RemoveDefaultArguments = true;
1393    }
1394
1395    // If we have an old template parameter list that we're merging
1396    // in, move on to the next parameter.
1397    if (OldParams)
1398      ++OldParam;
1399  }
1400
1401  // We were missing some default arguments at the end of the list, so remove
1402  // all of the default arguments.
1403  if (RemoveDefaultArguments) {
1404    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1405                                      NewParamEnd = NewParams->end();
1406         NewParam != NewParamEnd; ++NewParam) {
1407      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1408        TTP->removeDefaultArgument();
1409      else if (NonTypeTemplateParmDecl *NTTP
1410                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1411        NTTP->removeDefaultArgument();
1412      else
1413        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1414    }
1415  }
1416
1417  return Invalid;
1418}
1419
1420namespace {
1421
1422/// A class which looks for a use of a certain level of template
1423/// parameter.
1424struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1425  typedef RecursiveASTVisitor<DependencyChecker> super;
1426
1427  unsigned Depth;
1428  bool Match;
1429
1430  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1431    NamedDecl *ND = Params->getParam(0);
1432    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1433      Depth = PD->getDepth();
1434    } else if (NonTypeTemplateParmDecl *PD =
1435                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1436      Depth = PD->getDepth();
1437    } else {
1438      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1439    }
1440  }
1441
1442  bool Matches(unsigned ParmDepth) {
1443    if (ParmDepth >= Depth) {
1444      Match = true;
1445      return true;
1446    }
1447    return false;
1448  }
1449
1450  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1451    return !Matches(T->getDepth());
1452  }
1453
1454  bool TraverseTemplateName(TemplateName N) {
1455    if (TemplateTemplateParmDecl *PD =
1456          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1457      if (Matches(PD->getDepth())) return false;
1458    return super::TraverseTemplateName(N);
1459  }
1460
1461  bool VisitDeclRefExpr(DeclRefExpr *E) {
1462    if (NonTypeTemplateParmDecl *PD =
1463          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1464      if (PD->getDepth() == Depth) {
1465        Match = true;
1466        return false;
1467      }
1468    }
1469    return super::VisitDeclRefExpr(E);
1470  }
1471
1472  bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1473    return TraverseType(T->getInjectedSpecializationType());
1474  }
1475};
1476}
1477
1478/// Determines whether a given type depends on the given parameter
1479/// list.
1480static bool
1481DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1482  DependencyChecker Checker(Params);
1483  Checker.TraverseType(T);
1484  return Checker.Match;
1485}
1486
1487// Find the source range corresponding to the named type in the given
1488// nested-name-specifier, if any.
1489static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1490                                                       QualType T,
1491                                                       const CXXScopeSpec &SS) {
1492  NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1493  while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1494    if (const Type *CurType = NNS->getAsType()) {
1495      if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1496        return NNSLoc.getTypeLoc().getSourceRange();
1497    } else
1498      break;
1499
1500    NNSLoc = NNSLoc.getPrefix();
1501  }
1502
1503  return SourceRange();
1504}
1505
1506/// \brief Match the given template parameter lists to the given scope
1507/// specifier, returning the template parameter list that applies to the
1508/// name.
1509///
1510/// \param DeclStartLoc the start of the declaration that has a scope
1511/// specifier or a template parameter list.
1512///
1513/// \param DeclLoc The location of the declaration itself.
1514///
1515/// \param SS the scope specifier that will be matched to the given template
1516/// parameter lists. This scope specifier precedes a qualified name that is
1517/// being declared.
1518///
1519/// \param ParamLists the template parameter lists, from the outermost to the
1520/// innermost template parameter lists.
1521///
1522/// \param NumParamLists the number of template parameter lists in ParamLists.
1523///
1524/// \param IsFriend Whether to apply the slightly different rules for
1525/// matching template parameters to scope specifiers in friend
1526/// declarations.
1527///
1528/// \param IsExplicitSpecialization will be set true if the entity being
1529/// declared is an explicit specialization, false otherwise.
1530///
1531/// \returns the template parameter list, if any, that corresponds to the
1532/// name that is preceded by the scope specifier @p SS. This template
1533/// parameter list may have template parameters (if we're declaring a
1534/// template) or may have no template parameters (if we're declaring a
1535/// template specialization), or may be NULL (if what we're declaring isn't
1536/// itself a template).
1537TemplateParameterList *
1538Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1539                                              SourceLocation DeclLoc,
1540                                              const CXXScopeSpec &SS,
1541                                          TemplateParameterList **ParamLists,
1542                                              unsigned NumParamLists,
1543                                              bool IsFriend,
1544                                              bool &IsExplicitSpecialization,
1545                                              bool &Invalid) {
1546  IsExplicitSpecialization = false;
1547  Invalid = false;
1548
1549  // The sequence of nested types to which we will match up the template
1550  // parameter lists. We first build this list by starting with the type named
1551  // by the nested-name-specifier and walking out until we run out of types.
1552  SmallVector<QualType, 4> NestedTypes;
1553  QualType T;
1554  if (SS.getScopeRep()) {
1555    if (CXXRecordDecl *Record
1556              = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1557      T = Context.getTypeDeclType(Record);
1558    else
1559      T = QualType(SS.getScopeRep()->getAsType(), 0);
1560  }
1561
1562  // If we found an explicit specialization that prevents us from needing
1563  // 'template<>' headers, this will be set to the location of that
1564  // explicit specialization.
1565  SourceLocation ExplicitSpecLoc;
1566
1567  while (!T.isNull()) {
1568    NestedTypes.push_back(T);
1569
1570    // Retrieve the parent of a record type.
1571    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1572      // If this type is an explicit specialization, we're done.
1573      if (ClassTemplateSpecializationDecl *Spec
1574          = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1575        if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1576            Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1577          ExplicitSpecLoc = Spec->getLocation();
1578          break;
1579        }
1580      } else if (Record->getTemplateSpecializationKind()
1581                                                == TSK_ExplicitSpecialization) {
1582        ExplicitSpecLoc = Record->getLocation();
1583        break;
1584      }
1585
1586      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1587        T = Context.getTypeDeclType(Parent);
1588      else
1589        T = QualType();
1590      continue;
1591    }
1592
1593    if (const TemplateSpecializationType *TST
1594                                     = T->getAs<TemplateSpecializationType>()) {
1595      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1596        if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1597          T = Context.getTypeDeclType(Parent);
1598        else
1599          T = QualType();
1600        continue;
1601      }
1602    }
1603
1604    // Look one step prior in a dependent template specialization type.
1605    if (const DependentTemplateSpecializationType *DependentTST
1606                          = T->getAs<DependentTemplateSpecializationType>()) {
1607      if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1608        T = QualType(NNS->getAsType(), 0);
1609      else
1610        T = QualType();
1611      continue;
1612    }
1613
1614    // Look one step prior in a dependent name type.
1615    if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1616      if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1617        T = QualType(NNS->getAsType(), 0);
1618      else
1619        T = QualType();
1620      continue;
1621    }
1622
1623    // Retrieve the parent of an enumeration type.
1624    if (const EnumType *EnumT = T->getAs<EnumType>()) {
1625      // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1626      // check here.
1627      EnumDecl *Enum = EnumT->getDecl();
1628
1629      // Get to the parent type.
1630      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1631        T = Context.getTypeDeclType(Parent);
1632      else
1633        T = QualType();
1634      continue;
1635    }
1636
1637    T = QualType();
1638  }
1639  // Reverse the nested types list, since we want to traverse from the outermost
1640  // to the innermost while checking template-parameter-lists.
1641  std::reverse(NestedTypes.begin(), NestedTypes.end());
1642
1643  // C++0x [temp.expl.spec]p17:
1644  //   A member or a member template may be nested within many
1645  //   enclosing class templates. In an explicit specialization for
1646  //   such a member, the member declaration shall be preceded by a
1647  //   template<> for each enclosing class template that is
1648  //   explicitly specialized.
1649  bool SawNonEmptyTemplateParameterList = false;
1650  unsigned ParamIdx = 0;
1651  for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1652       ++TypeIdx) {
1653    T = NestedTypes[TypeIdx];
1654
1655    // Whether we expect a 'template<>' header.
1656    bool NeedEmptyTemplateHeader = false;
1657
1658    // Whether we expect a template header with parameters.
1659    bool NeedNonemptyTemplateHeader = false;
1660
1661    // For a dependent type, the set of template parameters that we
1662    // expect to see.
1663    TemplateParameterList *ExpectedTemplateParams = 0;
1664
1665    // C++0x [temp.expl.spec]p15:
1666    //   A member or a member template may be nested within many enclosing
1667    //   class templates. In an explicit specialization for such a member, the
1668    //   member declaration shall be preceded by a template<> for each
1669    //   enclosing class template that is explicitly specialized.
1670    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1671      if (ClassTemplatePartialSpecializationDecl *Partial
1672            = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1673        ExpectedTemplateParams = Partial->getTemplateParameters();
1674        NeedNonemptyTemplateHeader = true;
1675      } else if (Record->isDependentType()) {
1676        if (Record->getDescribedClassTemplate()) {
1677          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1678                                                      ->getTemplateParameters();
1679          NeedNonemptyTemplateHeader = true;
1680        }
1681      } else if (ClassTemplateSpecializationDecl *Spec
1682                     = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1683        // C++0x [temp.expl.spec]p4:
1684        //   Members of an explicitly specialized class template are defined
1685        //   in the same manner as members of normal classes, and not using
1686        //   the template<> syntax.
1687        if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1688          NeedEmptyTemplateHeader = true;
1689        else
1690          continue;
1691      } else if (Record->getTemplateSpecializationKind()) {
1692        if (Record->getTemplateSpecializationKind()
1693                                                != TSK_ExplicitSpecialization &&
1694            TypeIdx == NumTypes - 1)
1695          IsExplicitSpecialization = true;
1696
1697        continue;
1698      }
1699    } else if (const TemplateSpecializationType *TST
1700                                     = T->getAs<TemplateSpecializationType>()) {
1701      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1702        ExpectedTemplateParams = Template->getTemplateParameters();
1703        NeedNonemptyTemplateHeader = true;
1704      }
1705    } else if (T->getAs<DependentTemplateSpecializationType>()) {
1706      // FIXME:  We actually could/should check the template arguments here
1707      // against the corresponding template parameter list.
1708      NeedNonemptyTemplateHeader = false;
1709    }
1710
1711    // C++ [temp.expl.spec]p16:
1712    //   In an explicit specialization declaration for a member of a class
1713    //   template or a member template that ap- pears in namespace scope, the
1714    //   member template and some of its enclosing class templates may remain
1715    //   unspecialized, except that the declaration shall not explicitly
1716    //   specialize a class member template if its en- closing class templates
1717    //   are not explicitly specialized as well.
1718    if (ParamIdx < NumParamLists) {
1719      if (ParamLists[ParamIdx]->size() == 0) {
1720        if (SawNonEmptyTemplateParameterList) {
1721          Diag(DeclLoc, diag::err_specialize_member_of_template)
1722            << ParamLists[ParamIdx]->getSourceRange();
1723          Invalid = true;
1724          IsExplicitSpecialization = false;
1725          return 0;
1726        }
1727      } else
1728        SawNonEmptyTemplateParameterList = true;
1729    }
1730
1731    if (NeedEmptyTemplateHeader) {
1732      // If we're on the last of the types, and we need a 'template<>' header
1733      // here, then it's an explicit specialization.
1734      if (TypeIdx == NumTypes - 1)
1735        IsExplicitSpecialization = true;
1736
1737      if (ParamIdx < NumParamLists) {
1738        if (ParamLists[ParamIdx]->size() > 0) {
1739          // The header has template parameters when it shouldn't. Complain.
1740          Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1741               diag::err_template_param_list_matches_nontemplate)
1742            << T
1743            << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1744                           ParamLists[ParamIdx]->getRAngleLoc())
1745            << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1746          Invalid = true;
1747          return 0;
1748        }
1749
1750        // Consume this template header.
1751        ++ParamIdx;
1752        continue;
1753      }
1754
1755      if (!IsFriend) {
1756        // We don't have a template header, but we should.
1757        SourceLocation ExpectedTemplateLoc;
1758        if (NumParamLists > 0)
1759          ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1760        else
1761          ExpectedTemplateLoc = DeclStartLoc;
1762
1763        Diag(DeclLoc, diag::err_template_spec_needs_header)
1764          << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
1765          << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1766      }
1767
1768      continue;
1769    }
1770
1771    if (NeedNonemptyTemplateHeader) {
1772      // In friend declarations we can have template-ids which don't
1773      // depend on the corresponding template parameter lists.  But
1774      // assume that empty parameter lists are supposed to match this
1775      // template-id.
1776      if (IsFriend && T->isDependentType()) {
1777        if (ParamIdx < NumParamLists &&
1778            DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1779          ExpectedTemplateParams = 0;
1780        else
1781          continue;
1782      }
1783
1784      if (ParamIdx < NumParamLists) {
1785        // Check the template parameter list, if we can.
1786        if (ExpectedTemplateParams &&
1787            !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1788                                            ExpectedTemplateParams,
1789                                            true, TPL_TemplateMatch))
1790          Invalid = true;
1791
1792        if (!Invalid &&
1793            CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1794                                       TPC_ClassTemplateMember))
1795          Invalid = true;
1796
1797        ++ParamIdx;
1798        continue;
1799      }
1800
1801      Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1802        << T
1803        << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1804      Invalid = true;
1805      continue;
1806    }
1807  }
1808
1809  // If there were at least as many template-ids as there were template
1810  // parameter lists, then there are no template parameter lists remaining for
1811  // the declaration itself.
1812  if (ParamIdx >= NumParamLists)
1813    return 0;
1814
1815  // If there were too many template parameter lists, complain about that now.
1816  if (ParamIdx < NumParamLists - 1) {
1817    bool HasAnyExplicitSpecHeader = false;
1818    bool AllExplicitSpecHeaders = true;
1819    for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) {
1820      if (ParamLists[I]->size() == 0)
1821        HasAnyExplicitSpecHeader = true;
1822      else
1823        AllExplicitSpecHeaders = false;
1824    }
1825
1826    Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1827         AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers
1828                               : diag::err_template_spec_extra_headers)
1829      << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1830                     ParamLists[NumParamLists - 2]->getRAngleLoc());
1831
1832    // If there was a specialization somewhere, such that 'template<>' is
1833    // not required, and there were any 'template<>' headers, note where the
1834    // specialization occurred.
1835    if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1836      Diag(ExplicitSpecLoc,
1837           diag::note_explicit_template_spec_does_not_need_header)
1838        << NestedTypes.back();
1839
1840    // We have a template parameter list with no corresponding scope, which
1841    // means that the resulting template declaration can't be instantiated
1842    // properly (we'll end up with dependent nodes when we shouldn't).
1843    if (!AllExplicitSpecHeaders)
1844      Invalid = true;
1845  }
1846
1847  // C++ [temp.expl.spec]p16:
1848  //   In an explicit specialization declaration for a member of a class
1849  //   template or a member template that ap- pears in namespace scope, the
1850  //   member template and some of its enclosing class templates may remain
1851  //   unspecialized, except that the declaration shall not explicitly
1852  //   specialize a class member template if its en- closing class templates
1853  //   are not explicitly specialized as well.
1854  if (ParamLists[NumParamLists - 1]->size() == 0 &&
1855      SawNonEmptyTemplateParameterList) {
1856    Diag(DeclLoc, diag::err_specialize_member_of_template)
1857      << ParamLists[ParamIdx]->getSourceRange();
1858    Invalid = true;
1859    IsExplicitSpecialization = false;
1860    return 0;
1861  }
1862
1863  // Return the last template parameter list, which corresponds to the
1864  // entity being declared.
1865  return ParamLists[NumParamLists - 1];
1866}
1867
1868void Sema::NoteAllFoundTemplates(TemplateName Name) {
1869  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1870    Diag(Template->getLocation(), diag::note_template_declared_here)
1871      << (isa<FunctionTemplateDecl>(Template)? 0
1872          : isa<ClassTemplateDecl>(Template)? 1
1873          : isa<TypeAliasTemplateDecl>(Template)? 2
1874          : 3)
1875      << Template->getDeclName();
1876    return;
1877  }
1878
1879  if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1880    for (OverloadedTemplateStorage::iterator I = OST->begin(),
1881                                          IEnd = OST->end();
1882         I != IEnd; ++I)
1883      Diag((*I)->getLocation(), diag::note_template_declared_here)
1884        << 0 << (*I)->getDeclName();
1885
1886    return;
1887  }
1888}
1889
1890QualType Sema::CheckTemplateIdType(TemplateName Name,
1891                                   SourceLocation TemplateLoc,
1892                                   TemplateArgumentListInfo &TemplateArgs) {
1893  DependentTemplateName *DTN
1894    = Name.getUnderlying().getAsDependentTemplateName();
1895  if (DTN && DTN->isIdentifier())
1896    // When building a template-id where the template-name is dependent,
1897    // assume the template is a type template. Either our assumption is
1898    // correct, or the code is ill-formed and will be diagnosed when the
1899    // dependent name is substituted.
1900    return Context.getDependentTemplateSpecializationType(ETK_None,
1901                                                          DTN->getQualifier(),
1902                                                          DTN->getIdentifier(),
1903                                                          TemplateArgs);
1904
1905  TemplateDecl *Template = Name.getAsTemplateDecl();
1906  if (!Template || isa<FunctionTemplateDecl>(Template)) {
1907    // We might have a substituted template template parameter pack. If so,
1908    // build a template specialization type for it.
1909    if (Name.getAsSubstTemplateTemplateParmPack())
1910      return Context.getTemplateSpecializationType(Name, TemplateArgs);
1911
1912    Diag(TemplateLoc, diag::err_template_id_not_a_type)
1913      << Name;
1914    NoteAllFoundTemplates(Name);
1915    return QualType();
1916  }
1917
1918  // Check that the template argument list is well-formed for this
1919  // template.
1920  SmallVector<TemplateArgument, 4> Converted;
1921  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1922                                false, Converted))
1923    return QualType();
1924
1925  QualType CanonType;
1926
1927  bool InstantiationDependent = false;
1928  if (TypeAliasTemplateDecl *AliasTemplate
1929        = dyn_cast<TypeAliasTemplateDecl>(Template)) {
1930    // Find the canonical type for this type alias template specialization.
1931    TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
1932    if (Pattern->isInvalidDecl())
1933      return QualType();
1934
1935    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1936                                      Converted.data(), Converted.size());
1937
1938    // Only substitute for the innermost template argument list.
1939    MultiLevelTemplateArgumentList TemplateArgLists;
1940    TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
1941    unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
1942    for (unsigned I = 0; I < Depth; ++I)
1943      TemplateArgLists.addOuterTemplateArguments(0, 0);
1944
1945    InstantiatingTemplate Inst(*this, TemplateLoc, Template);
1946    CanonType = SubstType(Pattern->getUnderlyingType(),
1947                          TemplateArgLists, AliasTemplate->getLocation(),
1948                          AliasTemplate->getDeclName());
1949    if (CanonType.isNull())
1950      return QualType();
1951  } else if (Name.isDependent() ||
1952             TemplateSpecializationType::anyDependentTemplateArguments(
1953               TemplateArgs, InstantiationDependent)) {
1954    // This class template specialization is a dependent
1955    // type. Therefore, its canonical type is another class template
1956    // specialization type that contains all of the converted
1957    // arguments in canonical form. This ensures that, e.g., A<T> and
1958    // A<T, T> have identical types when A is declared as:
1959    //
1960    //   template<typename T, typename U = T> struct A;
1961    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1962    CanonType = Context.getTemplateSpecializationType(CanonName,
1963                                                      Converted.data(),
1964                                                      Converted.size());
1965
1966    // FIXME: CanonType is not actually the canonical type, and unfortunately
1967    // it is a TemplateSpecializationType that we will never use again.
1968    // In the future, we need to teach getTemplateSpecializationType to only
1969    // build the canonical type and return that to us.
1970    CanonType = Context.getCanonicalType(CanonType);
1971
1972    // This might work out to be a current instantiation, in which
1973    // case the canonical type needs to be the InjectedClassNameType.
1974    //
1975    // TODO: in theory this could be a simple hashtable lookup; most
1976    // changes to CurContext don't change the set of current
1977    // instantiations.
1978    if (isa<ClassTemplateDecl>(Template)) {
1979      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1980        // If we get out to a namespace, we're done.
1981        if (Ctx->isFileContext()) break;
1982
1983        // If this isn't a record, keep looking.
1984        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1985        if (!Record) continue;
1986
1987        // Look for one of the two cases with InjectedClassNameTypes
1988        // and check whether it's the same template.
1989        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1990            !Record->getDescribedClassTemplate())
1991          continue;
1992
1993        // Fetch the injected class name type and check whether its
1994        // injected type is equal to the type we just built.
1995        QualType ICNT = Context.getTypeDeclType(Record);
1996        QualType Injected = cast<InjectedClassNameType>(ICNT)
1997          ->getInjectedSpecializationType();
1998
1999        if (CanonType != Injected->getCanonicalTypeInternal())
2000          continue;
2001
2002        // If so, the canonical type of this TST is the injected
2003        // class name type of the record we just found.
2004        assert(ICNT.isCanonical());
2005        CanonType = ICNT;
2006        break;
2007      }
2008    }
2009  } else if (ClassTemplateDecl *ClassTemplate
2010               = dyn_cast<ClassTemplateDecl>(Template)) {
2011    // Find the class template specialization declaration that
2012    // corresponds to these arguments.
2013    void *InsertPos = 0;
2014    ClassTemplateSpecializationDecl *Decl
2015      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
2016                                          InsertPos);
2017    if (!Decl) {
2018      // This is the first time we have referenced this class template
2019      // specialization. Create the canonical declaration and add it to
2020      // the set of specializations.
2021      Decl = ClassTemplateSpecializationDecl::Create(Context,
2022                            ClassTemplate->getTemplatedDecl()->getTagKind(),
2023                                                ClassTemplate->getDeclContext(),
2024                            ClassTemplate->getTemplatedDecl()->getLocStart(),
2025                                                ClassTemplate->getLocation(),
2026                                                     ClassTemplate,
2027                                                     Converted.data(),
2028                                                     Converted.size(), 0);
2029      ClassTemplate->AddSpecialization(Decl, InsertPos);
2030      Decl->setLexicalDeclContext(CurContext);
2031    }
2032
2033    CanonType = Context.getTypeDeclType(Decl);
2034    assert(isa<RecordType>(CanonType) &&
2035           "type of non-dependent specialization is not a RecordType");
2036  }
2037
2038  // Build the fully-sugared type for this class template
2039  // specialization, which refers back to the class template
2040  // specialization we created or found.
2041  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2042}
2043
2044TypeResult
2045Sema::ActOnTemplateIdType(CXXScopeSpec &SS,
2046                          TemplateTy TemplateD, SourceLocation TemplateLoc,
2047                          SourceLocation LAngleLoc,
2048                          ASTTemplateArgsPtr TemplateArgsIn,
2049                          SourceLocation RAngleLoc,
2050                          bool IsCtorOrDtorName) {
2051  if (SS.isInvalid())
2052    return true;
2053
2054  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2055
2056  // Translate the parser's template argument list in our AST format.
2057  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2058  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2059
2060  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2061    QualType T
2062      = Context.getDependentTemplateSpecializationType(ETK_None,
2063                                                       DTN->getQualifier(),
2064                                                       DTN->getIdentifier(),
2065                                                       TemplateArgs);
2066    // Build type-source information.
2067    TypeLocBuilder TLB;
2068    DependentTemplateSpecializationTypeLoc SpecTL
2069      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2070    SpecTL.setKeywordLoc(SourceLocation());
2071    SpecTL.setNameLoc(TemplateLoc);
2072    SpecTL.setLAngleLoc(LAngleLoc);
2073    SpecTL.setRAngleLoc(RAngleLoc);
2074    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2075    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2076      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2077    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2078  }
2079
2080  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2081  TemplateArgsIn.release();
2082
2083  if (Result.isNull())
2084    return true;
2085
2086  // Build type-source information.
2087  TypeLocBuilder TLB;
2088  TemplateSpecializationTypeLoc SpecTL
2089    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2090  SpecTL.setTemplateNameLoc(TemplateLoc);
2091  SpecTL.setLAngleLoc(LAngleLoc);
2092  SpecTL.setRAngleLoc(RAngleLoc);
2093  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2094    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2095
2096  // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2097  // constructor or destructor name (in such a case, the scope specifier
2098  // will be attached to the enclosing Decl or Expr node).
2099  if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2100    // Create an elaborated-type-specifier containing the nested-name-specifier.
2101    Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2102    ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2103    ElabTL.setKeywordLoc(SourceLocation());
2104    ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2105  }
2106
2107  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2108}
2109
2110TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2111                                        TypeSpecifierType TagSpec,
2112                                        SourceLocation TagLoc,
2113                                        CXXScopeSpec &SS,
2114                                        TemplateTy TemplateD,
2115                                        SourceLocation TemplateLoc,
2116                                        SourceLocation LAngleLoc,
2117                                        ASTTemplateArgsPtr TemplateArgsIn,
2118                                        SourceLocation RAngleLoc) {
2119  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2120
2121  // Translate the parser's template argument list in our AST format.
2122  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2123  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2124
2125  // Determine the tag kind
2126  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2127  ElaboratedTypeKeyword Keyword
2128    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2129
2130  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2131    QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2132                                                          DTN->getQualifier(),
2133                                                          DTN->getIdentifier(),
2134                                                                TemplateArgs);
2135
2136    // Build type-source information.
2137    TypeLocBuilder TLB;
2138    DependentTemplateSpecializationTypeLoc SpecTL
2139    = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2140    SpecTL.setKeywordLoc(TagLoc);
2141    SpecTL.setNameLoc(TemplateLoc);
2142    SpecTL.setLAngleLoc(LAngleLoc);
2143    SpecTL.setRAngleLoc(RAngleLoc);
2144    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2145    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2146      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2147    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2148  }
2149
2150  if (TypeAliasTemplateDecl *TAT =
2151        dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2152    // C++0x [dcl.type.elab]p2:
2153    //   If the identifier resolves to a typedef-name or the simple-template-id
2154    //   resolves to an alias template specialization, the
2155    //   elaborated-type-specifier is ill-formed.
2156    Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2157    Diag(TAT->getLocation(), diag::note_declared_at);
2158  }
2159
2160  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2161  if (Result.isNull())
2162    return TypeResult(true);
2163
2164  // Check the tag kind
2165  if (const RecordType *RT = Result->getAs<RecordType>()) {
2166    RecordDecl *D = RT->getDecl();
2167
2168    IdentifierInfo *Id = D->getIdentifier();
2169    assert(Id && "templated class must have an identifier");
2170
2171    if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2172                                      TagLoc, *Id)) {
2173      Diag(TagLoc, diag::err_use_with_wrong_tag)
2174        << Result
2175        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2176      Diag(D->getLocation(), diag::note_previous_use);
2177    }
2178  }
2179
2180  // Provide source-location information for the template specialization.
2181  TypeLocBuilder TLB;
2182  TemplateSpecializationTypeLoc SpecTL
2183    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2184  SpecTL.setTemplateNameLoc(TemplateLoc);
2185  SpecTL.setLAngleLoc(LAngleLoc);
2186  SpecTL.setRAngleLoc(RAngleLoc);
2187  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2188    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2189
2190  // Construct an elaborated type containing the nested-name-specifier (if any)
2191  // and keyword.
2192  Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2193  ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2194  ElabTL.setKeywordLoc(TagLoc);
2195  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2196  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2197}
2198
2199ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2200                                     SourceLocation TemplateKWLoc,
2201                                     LookupResult &R,
2202                                     bool RequiresADL,
2203                                 const TemplateArgumentListInfo &TemplateArgs) {
2204  // FIXME: Can we do any checking at this point? I guess we could check the
2205  // template arguments that we have against the template name, if the template
2206  // name refers to a single template. That's not a terribly common case,
2207  // though.
2208  // foo<int> could identify a single function unambiguously
2209  // This approach does NOT work, since f<int>(1);
2210  // gets resolved prior to resorting to overload resolution
2211  // i.e., template<class T> void f(double);
2212  //       vs template<class T, class U> void f(U);
2213
2214  // These should be filtered out by our callers.
2215  assert(!R.empty() && "empty lookup results when building templateid");
2216  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2217
2218  // We don't want lookup warnings at this point.
2219  R.suppressDiagnostics();
2220
2221  UnresolvedLookupExpr *ULE
2222    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2223                                   SS.getWithLocInContext(Context),
2224                                   TemplateKWLoc,
2225                                   R.getLookupNameInfo(),
2226                                   RequiresADL, TemplateArgs,
2227                                   R.begin(), R.end());
2228
2229  return Owned(ULE);
2230}
2231
2232// We actually only call this from template instantiation.
2233ExprResult
2234Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2235                                   SourceLocation TemplateKWLoc,
2236                                   const DeclarationNameInfo &NameInfo,
2237                             const TemplateArgumentListInfo &TemplateArgs) {
2238  DeclContext *DC;
2239  if (!(DC = computeDeclContext(SS, false)) ||
2240      DC->isDependentContext() ||
2241      RequireCompleteDeclContext(SS, DC))
2242    return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo,
2243                                     &TemplateArgs);
2244
2245  bool MemberOfUnknownSpecialization;
2246  LookupResult R(*this, NameInfo, LookupOrdinaryName);
2247  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
2248                     MemberOfUnknownSpecialization);
2249
2250  if (R.isAmbiguous())
2251    return ExprError();
2252
2253  if (R.empty()) {
2254    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2255      << NameInfo.getName() << SS.getRange();
2256    return ExprError();
2257  }
2258
2259  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2260    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2261      << (NestedNameSpecifier*) SS.getScopeRep()
2262      << NameInfo.getName() << SS.getRange();
2263    Diag(Temp->getLocation(), diag::note_referenced_class_template);
2264    return ExprError();
2265  }
2266
2267  return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
2268}
2269
2270/// \brief Form a dependent template name.
2271///
2272/// This action forms a dependent template name given the template
2273/// name and its (presumably dependent) scope specifier. For
2274/// example, given "MetaFun::template apply", the scope specifier \p
2275/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2276/// of the "template" keyword, and "apply" is the \p Name.
2277TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2278                                                  CXXScopeSpec &SS,
2279                                                  SourceLocation TemplateKWLoc,
2280                                                  UnqualifiedId &Name,
2281                                                  ParsedType ObjectType,
2282                                                  bool EnteringContext,
2283                                                  TemplateTy &Result) {
2284  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
2285    Diag(TemplateKWLoc,
2286         getLangOptions().CPlusPlus0x ?
2287           diag::warn_cxx98_compat_template_outside_of_template :
2288           diag::ext_template_outside_of_template)
2289      << FixItHint::CreateRemoval(TemplateKWLoc);
2290
2291  DeclContext *LookupCtx = 0;
2292  if (SS.isSet())
2293    LookupCtx = computeDeclContext(SS, EnteringContext);
2294  if (!LookupCtx && ObjectType)
2295    LookupCtx = computeDeclContext(ObjectType.get());
2296  if (LookupCtx) {
2297    // C++0x [temp.names]p5:
2298    //   If a name prefixed by the keyword template is not the name of
2299    //   a template, the program is ill-formed. [Note: the keyword
2300    //   template may not be applied to non-template members of class
2301    //   templates. -end note ] [ Note: as is the case with the
2302    //   typename prefix, the template prefix is allowed in cases
2303    //   where it is not strictly necessary; i.e., when the
2304    //   nested-name-specifier or the expression on the left of the ->
2305    //   or . is not dependent on a template-parameter, or the use
2306    //   does not appear in the scope of a template. -end note]
2307    //
2308    // Note: C++03 was more strict here, because it banned the use of
2309    // the "template" keyword prior to a template-name that was not a
2310    // dependent name. C++ DR468 relaxed this requirement (the
2311    // "template" keyword is now permitted). We follow the C++0x
2312    // rules, even in C++03 mode with a warning, retroactively applying the DR.
2313    bool MemberOfUnknownSpecialization;
2314    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
2315                                          ObjectType, EnteringContext, Result,
2316                                          MemberOfUnknownSpecialization);
2317    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2318        isa<CXXRecordDecl>(LookupCtx) &&
2319        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2320         cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2321      // This is a dependent template. Handle it below.
2322    } else if (TNK == TNK_Non_template) {
2323      Diag(Name.getSourceRange().getBegin(),
2324           diag::err_template_kw_refers_to_non_template)
2325        << GetNameFromUnqualifiedId(Name).getName()
2326        << Name.getSourceRange()
2327        << TemplateKWLoc;
2328      return TNK_Non_template;
2329    } else {
2330      // We found something; return it.
2331      return TNK;
2332    }
2333  }
2334
2335  NestedNameSpecifier *Qualifier
2336    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2337
2338  switch (Name.getKind()) {
2339  case UnqualifiedId::IK_Identifier:
2340    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2341                                                              Name.Identifier));
2342    return TNK_Dependent_template_name;
2343
2344  case UnqualifiedId::IK_OperatorFunctionId:
2345    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2346                                             Name.OperatorFunctionId.Operator));
2347    return TNK_Dependent_template_name;
2348
2349  case UnqualifiedId::IK_LiteralOperatorId:
2350    llvm_unreachable(
2351            "We don't support these; Parse shouldn't have allowed propagation");
2352
2353  default:
2354    break;
2355  }
2356
2357  Diag(Name.getSourceRange().getBegin(),
2358       diag::err_template_kw_refers_to_non_template)
2359    << GetNameFromUnqualifiedId(Name).getName()
2360    << Name.getSourceRange()
2361    << TemplateKWLoc;
2362  return TNK_Non_template;
2363}
2364
2365bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2366                                     const TemplateArgumentLoc &AL,
2367                          SmallVectorImpl<TemplateArgument> &Converted) {
2368  const TemplateArgument &Arg = AL.getArgument();
2369
2370  // Check template type parameter.
2371  switch(Arg.getKind()) {
2372  case TemplateArgument::Type:
2373    // C++ [temp.arg.type]p1:
2374    //   A template-argument for a template-parameter which is a
2375    //   type shall be a type-id.
2376    break;
2377  case TemplateArgument::Template: {
2378    // We have a template type parameter but the template argument
2379    // is a template without any arguments.
2380    SourceRange SR = AL.getSourceRange();
2381    TemplateName Name = Arg.getAsTemplate();
2382    Diag(SR.getBegin(), diag::err_template_missing_args)
2383      << Name << SR;
2384    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2385      Diag(Decl->getLocation(), diag::note_template_decl_here);
2386
2387    return true;
2388  }
2389  default: {
2390    // We have a template type parameter but the template argument
2391    // is not a type.
2392    SourceRange SR = AL.getSourceRange();
2393    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2394    Diag(Param->getLocation(), diag::note_template_param_here);
2395
2396    return true;
2397  }
2398  }
2399
2400  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2401    return true;
2402
2403  // Add the converted template type argument.
2404  QualType ArgType = Context.getCanonicalType(Arg.getAsType());
2405
2406  // Objective-C ARC:
2407  //   If an explicitly-specified template argument type is a lifetime type
2408  //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
2409  if (getLangOptions().ObjCAutoRefCount &&
2410      ArgType->isObjCLifetimeType() &&
2411      !ArgType.getObjCLifetime()) {
2412    Qualifiers Qs;
2413    Qs.setObjCLifetime(Qualifiers::OCL_Strong);
2414    ArgType = Context.getQualifiedType(ArgType, Qs);
2415  }
2416
2417  Converted.push_back(TemplateArgument(ArgType));
2418  return false;
2419}
2420
2421/// \brief Substitute template arguments into the default template argument for
2422/// the given template type parameter.
2423///
2424/// \param SemaRef the semantic analysis object for which we are performing
2425/// the substitution.
2426///
2427/// \param Template the template that we are synthesizing template arguments
2428/// for.
2429///
2430/// \param TemplateLoc the location of the template name that started the
2431/// template-id we are checking.
2432///
2433/// \param RAngleLoc the location of the right angle bracket ('>') that
2434/// terminates the template-id.
2435///
2436/// \param Param the template template parameter whose default we are
2437/// substituting into.
2438///
2439/// \param Converted the list of template arguments provided for template
2440/// parameters that precede \p Param in the template parameter list.
2441/// \returns the substituted template argument, or NULL if an error occurred.
2442static TypeSourceInfo *
2443SubstDefaultTemplateArgument(Sema &SemaRef,
2444                             TemplateDecl *Template,
2445                             SourceLocation TemplateLoc,
2446                             SourceLocation RAngleLoc,
2447                             TemplateTypeParmDecl *Param,
2448                         SmallVectorImpl<TemplateArgument> &Converted) {
2449  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2450
2451  // If the argument type is dependent, instantiate it now based
2452  // on the previously-computed template arguments.
2453  if (ArgType->getType()->isDependentType()) {
2454    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2455                                      Converted.data(), Converted.size());
2456
2457    MultiLevelTemplateArgumentList AllTemplateArgs
2458      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2459
2460    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2461                                     Template, Converted.data(),
2462                                     Converted.size(),
2463                                     SourceRange(TemplateLoc, RAngleLoc));
2464
2465    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2466                                Param->getDefaultArgumentLoc(),
2467                                Param->getDeclName());
2468  }
2469
2470  return ArgType;
2471}
2472
2473/// \brief Substitute template arguments into the default template argument for
2474/// the given non-type template parameter.
2475///
2476/// \param SemaRef the semantic analysis object for which we are performing
2477/// the substitution.
2478///
2479/// \param Template the template that we are synthesizing template arguments
2480/// for.
2481///
2482/// \param TemplateLoc the location of the template name that started the
2483/// template-id we are checking.
2484///
2485/// \param RAngleLoc the location of the right angle bracket ('>') that
2486/// terminates the template-id.
2487///
2488/// \param Param the non-type template parameter whose default we are
2489/// substituting into.
2490///
2491/// \param Converted the list of template arguments provided for template
2492/// parameters that precede \p Param in the template parameter list.
2493///
2494/// \returns the substituted template argument, or NULL if an error occurred.
2495static ExprResult
2496SubstDefaultTemplateArgument(Sema &SemaRef,
2497                             TemplateDecl *Template,
2498                             SourceLocation TemplateLoc,
2499                             SourceLocation RAngleLoc,
2500                             NonTypeTemplateParmDecl *Param,
2501                        SmallVectorImpl<TemplateArgument> &Converted) {
2502  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2503                                    Converted.data(), Converted.size());
2504
2505  MultiLevelTemplateArgumentList AllTemplateArgs
2506    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2507
2508  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2509                                   Template, Converted.data(),
2510                                   Converted.size(),
2511                                   SourceRange(TemplateLoc, RAngleLoc));
2512
2513  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2514}
2515
2516/// \brief Substitute template arguments into the default template argument for
2517/// the given template template parameter.
2518///
2519/// \param SemaRef the semantic analysis object for which we are performing
2520/// the substitution.
2521///
2522/// \param Template the template that we are synthesizing template arguments
2523/// for.
2524///
2525/// \param TemplateLoc the location of the template name that started the
2526/// template-id we are checking.
2527///
2528/// \param RAngleLoc the location of the right angle bracket ('>') that
2529/// terminates the template-id.
2530///
2531/// \param Param the template template parameter whose default we are
2532/// substituting into.
2533///
2534/// \param Converted the list of template arguments provided for template
2535/// parameters that precede \p Param in the template parameter list.
2536///
2537/// \param QualifierLoc Will be set to the nested-name-specifier (with
2538/// source-location information) that precedes the template name.
2539///
2540/// \returns the substituted template argument, or NULL if an error occurred.
2541static TemplateName
2542SubstDefaultTemplateArgument(Sema &SemaRef,
2543                             TemplateDecl *Template,
2544                             SourceLocation TemplateLoc,
2545                             SourceLocation RAngleLoc,
2546                             TemplateTemplateParmDecl *Param,
2547                       SmallVectorImpl<TemplateArgument> &Converted,
2548                             NestedNameSpecifierLoc &QualifierLoc) {
2549  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2550                                    Converted.data(), Converted.size());
2551
2552  MultiLevelTemplateArgumentList AllTemplateArgs
2553    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2554
2555  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2556                                   Template, Converted.data(),
2557                                   Converted.size(),
2558                                   SourceRange(TemplateLoc, RAngleLoc));
2559
2560  // Substitute into the nested-name-specifier first,
2561  QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
2562  if (QualifierLoc) {
2563    QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2564                                                       AllTemplateArgs);
2565    if (!QualifierLoc)
2566      return TemplateName();
2567  }
2568
2569  return SemaRef.SubstTemplateName(QualifierLoc,
2570                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2571                              Param->getDefaultArgument().getTemplateNameLoc(),
2572                                   AllTemplateArgs);
2573}
2574
2575/// \brief If the given template parameter has a default template
2576/// argument, substitute into that default template argument and
2577/// return the corresponding template argument.
2578TemplateArgumentLoc
2579Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2580                                              SourceLocation TemplateLoc,
2581                                              SourceLocation RAngleLoc,
2582                                              Decl *Param,
2583                      SmallVectorImpl<TemplateArgument> &Converted) {
2584   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2585    if (!TypeParm->hasDefaultArgument())
2586      return TemplateArgumentLoc();
2587
2588    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2589                                                      TemplateLoc,
2590                                                      RAngleLoc,
2591                                                      TypeParm,
2592                                                      Converted);
2593    if (DI)
2594      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2595
2596    return TemplateArgumentLoc();
2597  }
2598
2599  if (NonTypeTemplateParmDecl *NonTypeParm
2600        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2601    if (!NonTypeParm->hasDefaultArgument())
2602      return TemplateArgumentLoc();
2603
2604    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2605                                                  TemplateLoc,
2606                                                  RAngleLoc,
2607                                                  NonTypeParm,
2608                                                  Converted);
2609    if (Arg.isInvalid())
2610      return TemplateArgumentLoc();
2611
2612    Expr *ArgE = Arg.takeAs<Expr>();
2613    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2614  }
2615
2616  TemplateTemplateParmDecl *TempTempParm
2617    = cast<TemplateTemplateParmDecl>(Param);
2618  if (!TempTempParm->hasDefaultArgument())
2619    return TemplateArgumentLoc();
2620
2621
2622  NestedNameSpecifierLoc QualifierLoc;
2623  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2624                                                    TemplateLoc,
2625                                                    RAngleLoc,
2626                                                    TempTempParm,
2627                                                    Converted,
2628                                                    QualifierLoc);
2629  if (TName.isNull())
2630    return TemplateArgumentLoc();
2631
2632  return TemplateArgumentLoc(TemplateArgument(TName),
2633                TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
2634                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2635}
2636
2637/// \brief Check that the given template argument corresponds to the given
2638/// template parameter.
2639///
2640/// \param Param The template parameter against which the argument will be
2641/// checked.
2642///
2643/// \param Arg The template argument.
2644///
2645/// \param Template The template in which the template argument resides.
2646///
2647/// \param TemplateLoc The location of the template name for the template
2648/// whose argument list we're matching.
2649///
2650/// \param RAngleLoc The location of the right angle bracket ('>') that closes
2651/// the template argument list.
2652///
2653/// \param ArgumentPackIndex The index into the argument pack where this
2654/// argument will be placed. Only valid if the parameter is a parameter pack.
2655///
2656/// \param Converted The checked, converted argument will be added to the
2657/// end of this small vector.
2658///
2659/// \param CTAK Describes how we arrived at this particular template argument:
2660/// explicitly written, deduced, etc.
2661///
2662/// \returns true on error, false otherwise.
2663bool Sema::CheckTemplateArgument(NamedDecl *Param,
2664                                 const TemplateArgumentLoc &Arg,
2665                                 NamedDecl *Template,
2666                                 SourceLocation TemplateLoc,
2667                                 SourceLocation RAngleLoc,
2668                                 unsigned ArgumentPackIndex,
2669                            SmallVectorImpl<TemplateArgument> &Converted,
2670                                 CheckTemplateArgumentKind CTAK) {
2671  // Check template type parameters.
2672  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2673    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2674
2675  // Check non-type template parameters.
2676  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2677    // Do substitution on the type of the non-type template parameter
2678    // with the template arguments we've seen thus far.  But if the
2679    // template has a dependent context then we cannot substitute yet.
2680    QualType NTTPType = NTTP->getType();
2681    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
2682      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
2683
2684    if (NTTPType->isDependentType() &&
2685        !isa<TemplateTemplateParmDecl>(Template) &&
2686        !Template->getDeclContext()->isDependentContext()) {
2687      // Do substitution on the type of the non-type template parameter.
2688      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2689                                 NTTP, Converted.data(), Converted.size(),
2690                                 SourceRange(TemplateLoc, RAngleLoc));
2691
2692      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2693                                        Converted.data(), Converted.size());
2694      NTTPType = SubstType(NTTPType,
2695                           MultiLevelTemplateArgumentList(TemplateArgs),
2696                           NTTP->getLocation(),
2697                           NTTP->getDeclName());
2698      // If that worked, check the non-type template parameter type
2699      // for validity.
2700      if (!NTTPType.isNull())
2701        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2702                                                     NTTP->getLocation());
2703      if (NTTPType.isNull())
2704        return true;
2705    }
2706
2707    switch (Arg.getArgument().getKind()) {
2708    case TemplateArgument::Null:
2709      llvm_unreachable("Should never see a NULL template argument here");
2710
2711    case TemplateArgument::Expression: {
2712      TemplateArgument Result;
2713      ExprResult Res =
2714        CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
2715                              Result, CTAK);
2716      if (Res.isInvalid())
2717        return true;
2718
2719      Converted.push_back(Result);
2720      break;
2721    }
2722
2723    case TemplateArgument::Declaration:
2724    case TemplateArgument::Integral:
2725      // We've already checked this template argument, so just copy
2726      // it to the list of converted arguments.
2727      Converted.push_back(Arg.getArgument());
2728      break;
2729
2730    case TemplateArgument::Template:
2731    case TemplateArgument::TemplateExpansion:
2732      // We were given a template template argument. It may not be ill-formed;
2733      // see below.
2734      if (DependentTemplateName *DTN
2735            = Arg.getArgument().getAsTemplateOrTemplatePattern()
2736                                              .getAsDependentTemplateName()) {
2737        // We have a template argument such as \c T::template X, which we
2738        // parsed as a template template argument. However, since we now
2739        // know that we need a non-type template argument, convert this
2740        // template name into an expression.
2741
2742        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2743                                     Arg.getTemplateNameLoc());
2744
2745        CXXScopeSpec SS;
2746        SS.Adopt(Arg.getTemplateQualifierLoc());
2747        // FIXME: the template-template arg was a DependentTemplateName,
2748        // so it was provided with a template keyword. However, its source
2749        // location is not stored in the template argument structure.
2750        SourceLocation TemplateKWLoc;
2751        ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
2752                                                SS.getWithLocInContext(Context),
2753                                                               TemplateKWLoc,
2754                                                               NameInfo, 0));
2755
2756        // If we parsed the template argument as a pack expansion, create a
2757        // pack expansion expression.
2758        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2759          E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
2760          if (E.isInvalid())
2761            return true;
2762        }
2763
2764        TemplateArgument Result;
2765        E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
2766        if (E.isInvalid())
2767          return true;
2768
2769        Converted.push_back(Result);
2770        break;
2771      }
2772
2773      // We have a template argument that actually does refer to a class
2774      // template, alias template, or template template parameter, and
2775      // therefore cannot be a non-type template argument.
2776      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2777        << Arg.getSourceRange();
2778
2779      Diag(Param->getLocation(), diag::note_template_param_here);
2780      return true;
2781
2782    case TemplateArgument::Type: {
2783      // We have a non-type template parameter but the template
2784      // argument is a type.
2785
2786      // C++ [temp.arg]p2:
2787      //   In a template-argument, an ambiguity between a type-id and
2788      //   an expression is resolved to a type-id, regardless of the
2789      //   form of the corresponding template-parameter.
2790      //
2791      // We warn specifically about this case, since it can be rather
2792      // confusing for users.
2793      QualType T = Arg.getArgument().getAsType();
2794      SourceRange SR = Arg.getSourceRange();
2795      if (T->isFunctionType())
2796        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2797      else
2798        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2799      Diag(Param->getLocation(), diag::note_template_param_here);
2800      return true;
2801    }
2802
2803    case TemplateArgument::Pack:
2804      llvm_unreachable("Caller must expand template argument packs");
2805    }
2806
2807    return false;
2808  }
2809
2810
2811  // Check template template parameters.
2812  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2813
2814  // Substitute into the template parameter list of the template
2815  // template parameter, since previously-supplied template arguments
2816  // may appear within the template template parameter.
2817  {
2818    // Set up a template instantiation context.
2819    LocalInstantiationScope Scope(*this);
2820    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2821                               TempParm, Converted.data(), Converted.size(),
2822                               SourceRange(TemplateLoc, RAngleLoc));
2823
2824    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2825                                      Converted.data(), Converted.size());
2826    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2827                      SubstDecl(TempParm, CurContext,
2828                                MultiLevelTemplateArgumentList(TemplateArgs)));
2829    if (!TempParm)
2830      return true;
2831  }
2832
2833  switch (Arg.getArgument().getKind()) {
2834  case TemplateArgument::Null:
2835    llvm_unreachable("Should never see a NULL template argument here");
2836
2837  case TemplateArgument::Template:
2838  case TemplateArgument::TemplateExpansion:
2839    if (CheckTemplateArgument(TempParm, Arg))
2840      return true;
2841
2842    Converted.push_back(Arg.getArgument());
2843    break;
2844
2845  case TemplateArgument::Expression:
2846  case TemplateArgument::Type:
2847    // We have a template template parameter but the template
2848    // argument does not refer to a template.
2849    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
2850      << getLangOptions().CPlusPlus0x;
2851    return true;
2852
2853  case TemplateArgument::Declaration:
2854    llvm_unreachable("Declaration argument with template template parameter");
2855  case TemplateArgument::Integral:
2856    llvm_unreachable("Integral argument with template template parameter");
2857
2858  case TemplateArgument::Pack:
2859    llvm_unreachable("Caller must expand template argument packs");
2860  }
2861
2862  return false;
2863}
2864
2865/// \brief Diagnose an arity mismatch in the
2866static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
2867                                  SourceLocation TemplateLoc,
2868                                  TemplateArgumentListInfo &TemplateArgs) {
2869  TemplateParameterList *Params = Template->getTemplateParameters();
2870  unsigned NumParams = Params->size();
2871  unsigned NumArgs = TemplateArgs.size();
2872
2873  SourceRange Range;
2874  if (NumArgs > NumParams)
2875    Range = SourceRange(TemplateArgs[NumParams].getLocation(),
2876                        TemplateArgs.getRAngleLoc());
2877  S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2878    << (NumArgs > NumParams)
2879    << (isa<ClassTemplateDecl>(Template)? 0 :
2880        isa<FunctionTemplateDecl>(Template)? 1 :
2881        isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2882    << Template << Range;
2883  S.Diag(Template->getLocation(), diag::note_template_decl_here)
2884    << Params->getSourceRange();
2885  return true;
2886}
2887
2888/// \brief Check that the given template argument list is well-formed
2889/// for specializing the given template.
2890bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2891                                     SourceLocation TemplateLoc,
2892                                     TemplateArgumentListInfo &TemplateArgs,
2893                                     bool PartialTemplateArgs,
2894                          SmallVectorImpl<TemplateArgument> &Converted) {
2895  TemplateParameterList *Params = Template->getTemplateParameters();
2896  unsigned NumParams = Params->size();
2897  unsigned NumArgs = TemplateArgs.size();
2898  bool Invalid = false;
2899
2900  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2901
2902  bool HasParameterPack =
2903    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2904
2905  // C++ [temp.arg]p1:
2906  //   [...] The type and form of each template-argument specified in
2907  //   a template-id shall match the type and form specified for the
2908  //   corresponding parameter declared by the template in its
2909  //   template-parameter-list.
2910  bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
2911  SmallVector<TemplateArgument, 2> ArgumentPack;
2912  TemplateParameterList::iterator Param = Params->begin(),
2913                               ParamEnd = Params->end();
2914  unsigned ArgIdx = 0;
2915  LocalInstantiationScope InstScope(*this, true);
2916  bool SawPackExpansion = false;
2917  while (Param != ParamEnd) {
2918    if (ArgIdx < NumArgs) {
2919      // If we have an expanded parameter pack, make sure we don't have too
2920      // many arguments.
2921      // FIXME: This really should fall out from the normal arity checking.
2922      if (NonTypeTemplateParmDecl *NTTP
2923                                = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2924        if (NTTP->isExpandedParameterPack() &&
2925            ArgumentPack.size() >= NTTP->getNumExpansionTypes()) {
2926          Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2927            << true
2928            << (isa<ClassTemplateDecl>(Template)? 0 :
2929                isa<FunctionTemplateDecl>(Template)? 1 :
2930                isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2931            << Template;
2932          Diag(Template->getLocation(), diag::note_template_decl_here)
2933            << Params->getSourceRange();
2934          return true;
2935        }
2936      }
2937
2938      // Check the template argument we were given.
2939      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2940                                TemplateLoc, RAngleLoc,
2941                                ArgumentPack.size(), Converted))
2942        return true;
2943
2944      if ((*Param)->isTemplateParameterPack()) {
2945        // The template parameter was a template parameter pack, so take the
2946        // deduced argument and place it on the argument pack. Note that we
2947        // stay on the same template parameter so that we can deduce more
2948        // arguments.
2949        ArgumentPack.push_back(Converted.back());
2950        Converted.pop_back();
2951      } else {
2952        // Move to the next template parameter.
2953        ++Param;
2954      }
2955
2956      // If this template argument is a pack expansion, record that fact
2957      // and break out; we can't actually check any more.
2958      if (TemplateArgs[ArgIdx].getArgument().isPackExpansion()) {
2959        SawPackExpansion = true;
2960        ++ArgIdx;
2961        break;
2962      }
2963
2964      ++ArgIdx;
2965      continue;
2966    }
2967
2968    // If we're checking a partial template argument list, we're done.
2969    if (PartialTemplateArgs) {
2970      if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
2971        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
2972                                                         ArgumentPack.data(),
2973                                                         ArgumentPack.size()));
2974
2975      return Invalid;
2976    }
2977
2978    // If we have a template parameter pack with no more corresponding
2979    // arguments, just break out now and we'll fill in the argument pack below.
2980    if ((*Param)->isTemplateParameterPack())
2981      break;
2982
2983    // Check whether we have a default argument.
2984    TemplateArgumentLoc Arg;
2985
2986    // Retrieve the default template argument from the template
2987    // parameter. For each kind of template parameter, we substitute the
2988    // template arguments provided thus far and any "outer" template arguments
2989    // (when the template parameter was part of a nested template) into
2990    // the default argument.
2991    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2992      if (!TTP->hasDefaultArgument())
2993        return diagnoseArityMismatch(*this, Template, TemplateLoc,
2994                                     TemplateArgs);
2995
2996      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2997                                                             Template,
2998                                                             TemplateLoc,
2999                                                             RAngleLoc,
3000                                                             TTP,
3001                                                             Converted);
3002      if (!ArgType)
3003        return true;
3004
3005      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
3006                                ArgType);
3007    } else if (NonTypeTemplateParmDecl *NTTP
3008                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3009      if (!NTTP->hasDefaultArgument())
3010        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3011                                     TemplateArgs);
3012
3013      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
3014                                                              TemplateLoc,
3015                                                              RAngleLoc,
3016                                                              NTTP,
3017                                                              Converted);
3018      if (E.isInvalid())
3019        return true;
3020
3021      Expr *Ex = E.takeAs<Expr>();
3022      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
3023    } else {
3024      TemplateTemplateParmDecl *TempParm
3025        = cast<TemplateTemplateParmDecl>(*Param);
3026
3027      if (!TempParm->hasDefaultArgument())
3028        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3029                                     TemplateArgs);
3030
3031      NestedNameSpecifierLoc QualifierLoc;
3032      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3033                                                       TemplateLoc,
3034                                                       RAngleLoc,
3035                                                       TempParm,
3036                                                       Converted,
3037                                                       QualifierLoc);
3038      if (Name.isNull())
3039        return true;
3040
3041      Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3042                           TempParm->getDefaultArgument().getTemplateNameLoc());
3043    }
3044
3045    // Introduce an instantiation record that describes where we are using
3046    // the default template argument.
3047    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
3048                                        Converted.data(), Converted.size(),
3049                                        SourceRange(TemplateLoc, RAngleLoc));
3050
3051    // Check the default template argument.
3052    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3053                              RAngleLoc, 0, Converted))
3054      return true;
3055
3056    // Core issue 150 (assumed resolution): if this is a template template
3057    // parameter, keep track of the default template arguments from the
3058    // template definition.
3059    if (isTemplateTemplateParameter)
3060      TemplateArgs.addArgument(Arg);
3061
3062    // Move to the next template parameter and argument.
3063    ++Param;
3064    ++ArgIdx;
3065  }
3066
3067  // If we saw a pack expansion, then directly convert the remaining arguments,
3068  // because we don't know what parameters they'll match up with.
3069  if (SawPackExpansion) {
3070    bool AddToArgumentPack
3071      = Param != ParamEnd && (*Param)->isTemplateParameterPack();
3072    while (ArgIdx < NumArgs) {
3073      if (AddToArgumentPack)
3074        ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument());
3075      else
3076        Converted.push_back(TemplateArgs[ArgIdx].getArgument());
3077      ++ArgIdx;
3078    }
3079
3080    // Push the argument pack onto the list of converted arguments.
3081    if (AddToArgumentPack) {
3082      if (ArgumentPack.empty())
3083        Converted.push_back(TemplateArgument(0, 0));
3084      else {
3085        Converted.push_back(
3086          TemplateArgument::CreatePackCopy(Context,
3087                                           ArgumentPack.data(),
3088                                           ArgumentPack.size()));
3089        ArgumentPack.clear();
3090      }
3091    }
3092
3093    return Invalid;
3094  }
3095
3096  // If we have any leftover arguments, then there were too many arguments.
3097  // Complain and fail.
3098  if (ArgIdx < NumArgs)
3099    return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3100
3101  // If we have an expanded parameter pack, make sure we don't have too
3102  // many arguments.
3103  // FIXME: This really should fall out from the normal arity checking.
3104  if (Param != ParamEnd) {
3105    if (NonTypeTemplateParmDecl *NTTP
3106          = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3107      if (NTTP->isExpandedParameterPack() &&
3108          ArgumentPack.size() < NTTP->getNumExpansionTypes()) {
3109        Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3110          << false
3111          << (isa<ClassTemplateDecl>(Template)? 0 :
3112              isa<FunctionTemplateDecl>(Template)? 1 :
3113              isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3114          << Template;
3115        Diag(Template->getLocation(), diag::note_template_decl_here)
3116          << Params->getSourceRange();
3117        return true;
3118      }
3119    }
3120  }
3121
3122  // Form argument packs for each of the parameter packs remaining.
3123  while (Param != ParamEnd) {
3124    // If we're checking a partial list of template arguments, don't fill
3125    // in arguments for non-template parameter packs.
3126    if ((*Param)->isTemplateParameterPack()) {
3127      if (!HasParameterPack)
3128        return true;
3129      if (ArgumentPack.empty())
3130        Converted.push_back(TemplateArgument(0, 0));
3131      else {
3132        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3133                                                          ArgumentPack.data(),
3134                                                         ArgumentPack.size()));
3135        ArgumentPack.clear();
3136      }
3137    } else if (!PartialTemplateArgs)
3138      return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3139
3140    ++Param;
3141  }
3142
3143  return Invalid;
3144}
3145
3146namespace {
3147  class UnnamedLocalNoLinkageFinder
3148    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3149  {
3150    Sema &S;
3151    SourceRange SR;
3152
3153    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3154
3155  public:
3156    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3157
3158    bool Visit(QualType T) {
3159      return inherited::Visit(T.getTypePtr());
3160    }
3161
3162#define TYPE(Class, Parent) \
3163    bool Visit##Class##Type(const Class##Type *);
3164#define ABSTRACT_TYPE(Class, Parent) \
3165    bool Visit##Class##Type(const Class##Type *) { return false; }
3166#define NON_CANONICAL_TYPE(Class, Parent) \
3167    bool Visit##Class##Type(const Class##Type *) { return false; }
3168#include "clang/AST/TypeNodes.def"
3169
3170    bool VisitTagDecl(const TagDecl *Tag);
3171    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3172  };
3173}
3174
3175bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3176  return false;
3177}
3178
3179bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3180  return Visit(T->getElementType());
3181}
3182
3183bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3184  return Visit(T->getPointeeType());
3185}
3186
3187bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3188                                                    const BlockPointerType* T) {
3189  return Visit(T->getPointeeType());
3190}
3191
3192bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3193                                                const LValueReferenceType* T) {
3194  return Visit(T->getPointeeType());
3195}
3196
3197bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3198                                                const RValueReferenceType* T) {
3199  return Visit(T->getPointeeType());
3200}
3201
3202bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3203                                                  const MemberPointerType* T) {
3204  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3205}
3206
3207bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3208                                                  const ConstantArrayType* T) {
3209  return Visit(T->getElementType());
3210}
3211
3212bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3213                                                 const IncompleteArrayType* T) {
3214  return Visit(T->getElementType());
3215}
3216
3217bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3218                                                   const VariableArrayType* T) {
3219  return Visit(T->getElementType());
3220}
3221
3222bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3223                                            const DependentSizedArrayType* T) {
3224  return Visit(T->getElementType());
3225}
3226
3227bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3228                                         const DependentSizedExtVectorType* T) {
3229  return Visit(T->getElementType());
3230}
3231
3232bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3233  return Visit(T->getElementType());
3234}
3235
3236bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3237  return Visit(T->getElementType());
3238}
3239
3240bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3241                                                  const FunctionProtoType* T) {
3242  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
3243                                         AEnd = T->arg_type_end();
3244       A != AEnd; ++A) {
3245    if (Visit(*A))
3246      return true;
3247  }
3248
3249  return Visit(T->getResultType());
3250}
3251
3252bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3253                                               const FunctionNoProtoType* T) {
3254  return Visit(T->getResultType());
3255}
3256
3257bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
3258                                                  const UnresolvedUsingType*) {
3259  return false;
3260}
3261
3262bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
3263  return false;
3264}
3265
3266bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
3267  return Visit(T->getUnderlyingType());
3268}
3269
3270bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
3271  return false;
3272}
3273
3274bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
3275                                                    const UnaryTransformType*) {
3276  return false;
3277}
3278
3279bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
3280  return Visit(T->getDeducedType());
3281}
3282
3283bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
3284  return VisitTagDecl(T->getDecl());
3285}
3286
3287bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
3288  return VisitTagDecl(T->getDecl());
3289}
3290
3291bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
3292                                                 const TemplateTypeParmType*) {
3293  return false;
3294}
3295
3296bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
3297                                        const SubstTemplateTypeParmPackType *) {
3298  return false;
3299}
3300
3301bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
3302                                            const TemplateSpecializationType*) {
3303  return false;
3304}
3305
3306bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
3307                                              const InjectedClassNameType* T) {
3308  return VisitTagDecl(T->getDecl());
3309}
3310
3311bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
3312                                                   const DependentNameType* T) {
3313  return VisitNestedNameSpecifier(T->getQualifier());
3314}
3315
3316bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
3317                                 const DependentTemplateSpecializationType* T) {
3318  return VisitNestedNameSpecifier(T->getQualifier());
3319}
3320
3321bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
3322                                                   const PackExpansionType* T) {
3323  return Visit(T->getPattern());
3324}
3325
3326bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
3327  return false;
3328}
3329
3330bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
3331                                                   const ObjCInterfaceType *) {
3332  return false;
3333}
3334
3335bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
3336                                                const ObjCObjectPointerType *) {
3337  return false;
3338}
3339
3340bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
3341  return Visit(T->getValueType());
3342}
3343
3344bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
3345  if (Tag->getDeclContext()->isFunctionOrMethod()) {
3346    S.Diag(SR.getBegin(),
3347           S.getLangOptions().CPlusPlus0x ?
3348             diag::warn_cxx98_compat_template_arg_local_type :
3349             diag::ext_template_arg_local_type)
3350      << S.Context.getTypeDeclType(Tag) << SR;
3351    return true;
3352  }
3353
3354  if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) {
3355    S.Diag(SR.getBegin(),
3356           S.getLangOptions().CPlusPlus0x ?
3357             diag::warn_cxx98_compat_template_arg_unnamed_type :
3358             diag::ext_template_arg_unnamed_type) << SR;
3359    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
3360    return true;
3361  }
3362
3363  return false;
3364}
3365
3366bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
3367                                                    NestedNameSpecifier *NNS) {
3368  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
3369    return true;
3370
3371  switch (NNS->getKind()) {
3372  case NestedNameSpecifier::Identifier:
3373  case NestedNameSpecifier::Namespace:
3374  case NestedNameSpecifier::NamespaceAlias:
3375  case NestedNameSpecifier::Global:
3376    return false;
3377
3378  case NestedNameSpecifier::TypeSpec:
3379  case NestedNameSpecifier::TypeSpecWithTemplate:
3380    return Visit(QualType(NNS->getAsType(), 0));
3381  }
3382  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3383}
3384
3385
3386/// \brief Check a template argument against its corresponding
3387/// template type parameter.
3388///
3389/// This routine implements the semantics of C++ [temp.arg.type]. It
3390/// returns true if an error occurred, and false otherwise.
3391bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
3392                                 TypeSourceInfo *ArgInfo) {
3393  assert(ArgInfo && "invalid TypeSourceInfo");
3394  QualType Arg = ArgInfo->getType();
3395  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
3396
3397  if (Arg->isVariablyModifiedType()) {
3398    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
3399  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
3400    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
3401  }
3402
3403  // C++03 [temp.arg.type]p2:
3404  //   A local type, a type with no linkage, an unnamed type or a type
3405  //   compounded from any of these types shall not be used as a
3406  //   template-argument for a template type-parameter.
3407  //
3408  // C++11 allows these, and even in C++03 we allow them as an extension with
3409  // a warning.
3410  if (LangOpts.CPlusPlus0x ?
3411     Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type,
3412                              SR.getBegin()) != DiagnosticsEngine::Ignored ||
3413      Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type,
3414                               SR.getBegin()) != DiagnosticsEngine::Ignored :
3415      Arg->hasUnnamedOrLocalType()) {
3416    UnnamedLocalNoLinkageFinder Finder(*this, SR);
3417    (void)Finder.Visit(Context.getCanonicalType(Arg));
3418  }
3419
3420  return false;
3421}
3422
3423/// \brief Checks whether the given template argument is the address
3424/// of an object or function according to C++ [temp.arg.nontype]p1.
3425static bool
3426CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
3427                                               NonTypeTemplateParmDecl *Param,
3428                                               QualType ParamType,
3429                                               Expr *ArgIn,
3430                                               TemplateArgument &Converted) {
3431  bool Invalid = false;
3432  Expr *Arg = ArgIn;
3433  QualType ArgType = Arg->getType();
3434
3435  // See through any implicit casts we added to fix the type.
3436  Arg = Arg->IgnoreImpCasts();
3437
3438  // C++ [temp.arg.nontype]p1:
3439  //
3440  //   A template-argument for a non-type, non-template
3441  //   template-parameter shall be one of: [...]
3442  //
3443  //     -- the address of an object or function with external
3444  //        linkage, including function templates and function
3445  //        template-ids but excluding non-static class members,
3446  //        expressed as & id-expression where the & is optional if
3447  //        the name refers to a function or array, or if the
3448  //        corresponding template-parameter is a reference; or
3449
3450  // In C++98/03 mode, give an extension warning on any extra parentheses.
3451  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3452  bool ExtraParens = false;
3453  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3454    if (!Invalid && !ExtraParens) {
3455      S.Diag(Arg->getSourceRange().getBegin(),
3456             S.getLangOptions().CPlusPlus0x ?
3457               diag::warn_cxx98_compat_template_arg_extra_parens :
3458               diag::ext_template_arg_extra_parens)
3459        << Arg->getSourceRange();
3460      ExtraParens = true;
3461    }
3462
3463    Arg = Parens->getSubExpr();
3464  }
3465
3466  while (SubstNonTypeTemplateParmExpr *subst =
3467           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3468    Arg = subst->getReplacement()->IgnoreImpCasts();
3469
3470  bool AddressTaken = false;
3471  SourceLocation AddrOpLoc;
3472  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3473    if (UnOp->getOpcode() == UO_AddrOf) {
3474      Arg = UnOp->getSubExpr();
3475      AddressTaken = true;
3476      AddrOpLoc = UnOp->getOperatorLoc();
3477    }
3478  }
3479
3480  if (S.getLangOptions().MicrosoftExt && isa<CXXUuidofExpr>(Arg)) {
3481    Converted = TemplateArgument(ArgIn);
3482    return false;
3483  }
3484
3485  while (SubstNonTypeTemplateParmExpr *subst =
3486           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3487    Arg = subst->getReplacement()->IgnoreImpCasts();
3488
3489  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
3490  if (!DRE) {
3491    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
3492      << Arg->getSourceRange();
3493    S.Diag(Param->getLocation(), diag::note_template_param_here);
3494    return true;
3495  }
3496
3497  // Stop checking the precise nature of the argument if it is value dependent,
3498  // it should be checked when instantiated.
3499  if (Arg->isValueDependent()) {
3500    Converted = TemplateArgument(ArgIn);
3501    return false;
3502  }
3503
3504  if (!isa<ValueDecl>(DRE->getDecl())) {
3505    S.Diag(Arg->getSourceRange().getBegin(),
3506           diag::err_template_arg_not_object_or_func_form)
3507      << Arg->getSourceRange();
3508    S.Diag(Param->getLocation(), diag::note_template_param_here);
3509    return true;
3510  }
3511
3512  NamedDecl *Entity = 0;
3513
3514  // Cannot refer to non-static data members
3515  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
3516    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
3517      << Field << Arg->getSourceRange();
3518    S.Diag(Param->getLocation(), diag::note_template_param_here);
3519    return true;
3520  }
3521
3522  // Cannot refer to non-static member functions
3523  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
3524    if (!Method->isStatic()) {
3525      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
3526        << Method << Arg->getSourceRange();
3527      S.Diag(Param->getLocation(), diag::note_template_param_here);
3528      return true;
3529    }
3530
3531  // Functions must have external linkage.
3532  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
3533    if (!isExternalLinkage(Func->getLinkage())) {
3534      S.Diag(Arg->getSourceRange().getBegin(),
3535             diag::err_template_arg_function_not_extern)
3536        << Func << Arg->getSourceRange();
3537      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
3538        << true;
3539      return true;
3540    }
3541
3542    // Okay: we've named a function with external linkage.
3543    Entity = Func;
3544
3545    // If the template parameter has pointer type, the function decays.
3546    if (ParamType->isPointerType() && !AddressTaken)
3547      ArgType = S.Context.getPointerType(Func->getType());
3548    else if (AddressTaken && ParamType->isReferenceType()) {
3549      // If we originally had an address-of operator, but the
3550      // parameter has reference type, complain and (if things look
3551      // like they will work) drop the address-of operator.
3552      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
3553                                            ParamType.getNonReferenceType())) {
3554        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3555          << ParamType;
3556        S.Diag(Param->getLocation(), diag::note_template_param_here);
3557        return true;
3558      }
3559
3560      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3561        << ParamType
3562        << FixItHint::CreateRemoval(AddrOpLoc);
3563      S.Diag(Param->getLocation(), diag::note_template_param_here);
3564
3565      ArgType = Func->getType();
3566    }
3567  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
3568    if (!isExternalLinkage(Var->getLinkage())) {
3569      S.Diag(Arg->getSourceRange().getBegin(),
3570             diag::err_template_arg_object_not_extern)
3571        << Var << Arg->getSourceRange();
3572      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
3573        << true;
3574      return true;
3575    }
3576
3577    // A value of reference type is not an object.
3578    if (Var->getType()->isReferenceType()) {
3579      S.Diag(Arg->getSourceRange().getBegin(),
3580             diag::err_template_arg_reference_var)
3581        << Var->getType() << Arg->getSourceRange();
3582      S.Diag(Param->getLocation(), diag::note_template_param_here);
3583      return true;
3584    }
3585
3586    // Okay: we've named an object with external linkage
3587    Entity = Var;
3588
3589    // If the template parameter has pointer type, we must have taken
3590    // the address of this object.
3591    if (ParamType->isReferenceType()) {
3592      if (AddressTaken) {
3593        // If we originally had an address-of operator, but the
3594        // parameter has reference type, complain and (if things look
3595        // like they will work) drop the address-of operator.
3596        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
3597                                            ParamType.getNonReferenceType())) {
3598          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3599            << ParamType;
3600          S.Diag(Param->getLocation(), diag::note_template_param_here);
3601          return true;
3602        }
3603
3604        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3605          << ParamType
3606          << FixItHint::CreateRemoval(AddrOpLoc);
3607        S.Diag(Param->getLocation(), diag::note_template_param_here);
3608
3609        ArgType = Var->getType();
3610      }
3611    } else if (!AddressTaken && ParamType->isPointerType()) {
3612      if (Var->getType()->isArrayType()) {
3613        // Array-to-pointer decay.
3614        ArgType = S.Context.getArrayDecayedType(Var->getType());
3615      } else {
3616        // If the template parameter has pointer type but the address of
3617        // this object was not taken, complain and (possibly) recover by
3618        // taking the address of the entity.
3619        ArgType = S.Context.getPointerType(Var->getType());
3620        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3621          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3622            << ParamType;
3623          S.Diag(Param->getLocation(), diag::note_template_param_here);
3624          return true;
3625        }
3626
3627        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3628          << ParamType
3629          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3630
3631        S.Diag(Param->getLocation(), diag::note_template_param_here);
3632      }
3633    }
3634  } else {
3635    // We found something else, but we don't know specifically what it is.
3636    S.Diag(Arg->getSourceRange().getBegin(),
3637           diag::err_template_arg_not_object_or_func)
3638      << Arg->getSourceRange();
3639    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3640    return true;
3641  }
3642
3643  bool ObjCLifetimeConversion;
3644  if (ParamType->isPointerType() &&
3645      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3646      S.IsQualificationConversion(ArgType, ParamType, false,
3647                                  ObjCLifetimeConversion)) {
3648    // For pointer-to-object types, qualification conversions are
3649    // permitted.
3650  } else {
3651    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3652      if (!ParamRef->getPointeeType()->isFunctionType()) {
3653        // C++ [temp.arg.nontype]p5b3:
3654        //   For a non-type template-parameter of type reference to
3655        //   object, no conversions apply. The type referred to by the
3656        //   reference may be more cv-qualified than the (otherwise
3657        //   identical) type of the template- argument. The
3658        //   template-parameter is bound directly to the
3659        //   template-argument, which shall be an lvalue.
3660
3661        // FIXME: Other qualifiers?
3662        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3663        unsigned ArgQuals = ArgType.getCVRQualifiers();
3664
3665        if ((ParamQuals | ArgQuals) != ParamQuals) {
3666          S.Diag(Arg->getSourceRange().getBegin(),
3667                 diag::err_template_arg_ref_bind_ignores_quals)
3668            << ParamType << Arg->getType()
3669            << Arg->getSourceRange();
3670          S.Diag(Param->getLocation(), diag::note_template_param_here);
3671          return true;
3672        }
3673      }
3674    }
3675
3676    // At this point, the template argument refers to an object or
3677    // function with external linkage. We now need to check whether the
3678    // argument and parameter types are compatible.
3679    if (!S.Context.hasSameUnqualifiedType(ArgType,
3680                                          ParamType.getNonReferenceType())) {
3681      // We can't perform this conversion or binding.
3682      if (ParamType->isReferenceType())
3683        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3684          << ParamType << ArgIn->getType() << Arg->getSourceRange();
3685      else
3686        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
3687          << ArgIn->getType() << ParamType << Arg->getSourceRange();
3688      S.Diag(Param->getLocation(), diag::note_template_param_here);
3689      return true;
3690    }
3691  }
3692
3693  // Create the template argument.
3694  Converted = TemplateArgument(Entity->getCanonicalDecl());
3695  S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity);
3696  return false;
3697}
3698
3699/// \brief Checks whether the given template argument is a pointer to
3700/// member constant according to C++ [temp.arg.nontype]p1.
3701bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
3702                                                TemplateArgument &Converted) {
3703  bool Invalid = false;
3704
3705  // See through any implicit casts we added to fix the type.
3706  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3707    Arg = Cast->getSubExpr();
3708
3709  // C++ [temp.arg.nontype]p1:
3710  //
3711  //   A template-argument for a non-type, non-template
3712  //   template-parameter shall be one of: [...]
3713  //
3714  //     -- a pointer to member expressed as described in 5.3.1.
3715  DeclRefExpr *DRE = 0;
3716
3717  // In C++98/03 mode, give an extension warning on any extra parentheses.
3718  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3719  bool ExtraParens = false;
3720  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3721    if (!Invalid && !ExtraParens) {
3722      Diag(Arg->getSourceRange().getBegin(),
3723           getLangOptions().CPlusPlus0x ?
3724             diag::warn_cxx98_compat_template_arg_extra_parens :
3725             diag::ext_template_arg_extra_parens)
3726        << Arg->getSourceRange();
3727      ExtraParens = true;
3728    }
3729
3730    Arg = Parens->getSubExpr();
3731  }
3732
3733  while (SubstNonTypeTemplateParmExpr *subst =
3734           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3735    Arg = subst->getReplacement()->IgnoreImpCasts();
3736
3737  // A pointer-to-member constant written &Class::member.
3738  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3739    if (UnOp->getOpcode() == UO_AddrOf) {
3740      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3741      if (DRE && !DRE->getQualifier())
3742        DRE = 0;
3743    }
3744  }
3745  // A constant of pointer-to-member type.
3746  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
3747    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
3748      if (VD->getType()->isMemberPointerType()) {
3749        if (isa<NonTypeTemplateParmDecl>(VD) ||
3750            (isa<VarDecl>(VD) &&
3751             Context.getCanonicalType(VD->getType()).isConstQualified())) {
3752          if (Arg->isTypeDependent() || Arg->isValueDependent())
3753            Converted = TemplateArgument(Arg);
3754          else
3755            Converted = TemplateArgument(VD->getCanonicalDecl());
3756          return Invalid;
3757        }
3758      }
3759    }
3760
3761    DRE = 0;
3762  }
3763
3764  if (!DRE)
3765    return Diag(Arg->getSourceRange().getBegin(),
3766                diag::err_template_arg_not_pointer_to_member_form)
3767      << Arg->getSourceRange();
3768
3769  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
3770    assert((isa<FieldDecl>(DRE->getDecl()) ||
3771            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
3772           "Only non-static member pointers can make it here");
3773
3774    // Okay: this is the address of a non-static member, and therefore
3775    // a member pointer constant.
3776    if (Arg->isTypeDependent() || Arg->isValueDependent())
3777      Converted = TemplateArgument(Arg);
3778    else
3779      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3780    return Invalid;
3781  }
3782
3783  // We found something else, but we don't know specifically what it is.
3784  Diag(Arg->getSourceRange().getBegin(),
3785       diag::err_template_arg_not_pointer_to_member_form)
3786      << Arg->getSourceRange();
3787  Diag(DRE->getDecl()->getLocation(),
3788       diag::note_template_arg_refers_here);
3789  return true;
3790}
3791
3792/// \brief Check a template argument against its corresponding
3793/// non-type template parameter.
3794///
3795/// This routine implements the semantics of C++ [temp.arg.nontype].
3796/// If an error occurred, it returns ExprError(); otherwise, it
3797/// returns the converted template argument. \p
3798/// InstantiatedParamType is the type of the non-type template
3799/// parameter after it has been instantiated.
3800ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3801                                       QualType InstantiatedParamType, Expr *Arg,
3802                                       TemplateArgument &Converted,
3803                                       CheckTemplateArgumentKind CTAK) {
3804  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
3805
3806  // If either the parameter has a dependent type or the argument is
3807  // type-dependent, there's nothing we can check now.
3808  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3809    // FIXME: Produce a cloned, canonical expression?
3810    Converted = TemplateArgument(Arg);
3811    return Owned(Arg);
3812  }
3813
3814  // C++ [temp.arg.nontype]p5:
3815  //   The following conversions are performed on each expression used
3816  //   as a non-type template-argument. If a non-type
3817  //   template-argument cannot be converted to the type of the
3818  //   corresponding template-parameter then the program is
3819  //   ill-formed.
3820  QualType ParamType = InstantiatedParamType;
3821  if (ParamType->isIntegralOrEnumerationType()) {
3822    // C++11:
3823    //   -- for a non-type template-parameter of integral or
3824    //      enumeration type, conversions permitted in a converted
3825    //      constant expression are applied.
3826    //
3827    // C++98:
3828    //   -- for a non-type template-parameter of integral or
3829    //      enumeration type, integral promotions (4.5) and integral
3830    //      conversions (4.7) are applied.
3831
3832    if (CTAK == CTAK_Deduced &&
3833        !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
3834      // C++ [temp.deduct.type]p17:
3835      //   If, in the declaration of a function template with a non-type
3836      //   template-parameter, the non-type template-parameter is used
3837      //   in an expression in the function parameter-list and, if the
3838      //   corresponding template-argument is deduced, the
3839      //   template-argument type shall match the type of the
3840      //   template-parameter exactly, except that a template-argument
3841      //   deduced from an array bound may be of any integral type.
3842      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
3843        << Arg->getType().getUnqualifiedType()
3844        << ParamType.getUnqualifiedType();
3845      Diag(Param->getLocation(), diag::note_template_param_here);
3846      return ExprError();
3847    }
3848
3849    if (getLangOptions().CPlusPlus0x) {
3850      // We can't check arbitrary value-dependent arguments.
3851      // FIXME: If there's no viable conversion to the template parameter type,
3852      // we should be able to diagnose that prior to instantiation.
3853      if (Arg->isValueDependent()) {
3854        Converted = TemplateArgument(Arg);
3855        return Owned(Arg);
3856      }
3857
3858      // C++ [temp.arg.nontype]p1:
3859      //   A template-argument for a non-type, non-template template-parameter
3860      //   shall be one of:
3861      //
3862      //     -- for a non-type template-parameter of integral or enumeration
3863      //        type, a converted constant expression of the type of the
3864      //        template-parameter; or
3865      llvm::APSInt Value;
3866      ExprResult ArgResult =
3867        CheckConvertedConstantExpression(Arg, ParamType, Value,
3868                                         CCEK_TemplateArg);
3869      if (ArgResult.isInvalid())
3870        return ExprError();
3871
3872      // Widen the argument value to sizeof(parameter type). This is almost
3873      // always a no-op, except when the parameter type is bool. In
3874      // that case, this may extend the argument from 1 bit to 8 bits.
3875      QualType IntegerType = ParamType;
3876      if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3877        IntegerType = Enum->getDecl()->getIntegerType();
3878      Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
3879
3880      Converted = TemplateArgument(Value, Context.getCanonicalType(ParamType));
3881      return ArgResult;
3882    }
3883
3884    ExprResult ArgResult = DefaultLvalueConversion(Arg);
3885    if (ArgResult.isInvalid())
3886      return ExprError();
3887    Arg = ArgResult.take();
3888
3889    QualType ArgType = Arg->getType();
3890
3891    // C++ [temp.arg.nontype]p1:
3892    //   A template-argument for a non-type, non-template
3893    //   template-parameter shall be one of:
3894    //
3895    //     -- an integral constant-expression of integral or enumeration
3896    //        type; or
3897    //     -- the name of a non-type template-parameter; or
3898    SourceLocation NonConstantLoc;
3899    llvm::APSInt Value;
3900    if (!ArgType->isIntegralOrEnumerationType()) {
3901      Diag(Arg->getSourceRange().getBegin(),
3902           diag::err_template_arg_not_integral_or_enumeral)
3903        << ArgType << Arg->getSourceRange();
3904      Diag(Param->getLocation(), diag::note_template_param_here);
3905      return ExprError();
3906    } else if (!Arg->isValueDependent() &&
3907               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
3908      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
3909        << ArgType << Arg->getSourceRange();
3910      return ExprError();
3911    }
3912
3913    // From here on out, all we care about are the unqualified forms
3914    // of the parameter and argument types.
3915    ParamType = ParamType.getUnqualifiedType();
3916    ArgType = ArgType.getUnqualifiedType();
3917
3918    // Try to convert the argument to the parameter's type.
3919    if (Context.hasSameType(ParamType, ArgType)) {
3920      // Okay: no conversion necessary
3921    } else if (ParamType->isBooleanType()) {
3922      // This is an integral-to-boolean conversion.
3923      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
3924    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
3925               !ParamType->isEnumeralType()) {
3926      // This is an integral promotion or conversion.
3927      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
3928    } else {
3929      // We can't perform this conversion.
3930      Diag(Arg->getSourceRange().getBegin(),
3931           diag::err_template_arg_not_convertible)
3932        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3933      Diag(Param->getLocation(), diag::note_template_param_here);
3934      return ExprError();
3935    }
3936
3937    // Add the value of this argument to the list of converted
3938    // arguments. We use the bitwidth and signedness of the template
3939    // parameter.
3940    if (Arg->isValueDependent()) {
3941      // The argument is value-dependent. Create a new
3942      // TemplateArgument with the converted expression.
3943      Converted = TemplateArgument(Arg);
3944      return Owned(Arg);
3945    }
3946
3947    QualType IntegerType = Context.getCanonicalType(ParamType);
3948    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3949      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
3950
3951    if (ParamType->isBooleanType()) {
3952      // Value must be zero or one.
3953      Value = Value != 0;
3954      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3955      if (Value.getBitWidth() != AllowedBits)
3956        Value = Value.extOrTrunc(AllowedBits);
3957      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
3958    } else {
3959      llvm::APSInt OldValue = Value;
3960
3961      // Coerce the template argument's value to the value it will have
3962      // based on the template parameter's type.
3963      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3964      if (Value.getBitWidth() != AllowedBits)
3965        Value = Value.extOrTrunc(AllowedBits);
3966      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
3967
3968      // Complain if an unsigned parameter received a negative value.
3969      if (IntegerType->isUnsignedIntegerOrEnumerationType()
3970               && (OldValue.isSigned() && OldValue.isNegative())) {
3971        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
3972          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3973          << Arg->getSourceRange();
3974        Diag(Param->getLocation(), diag::note_template_param_here);
3975      }
3976
3977      // Complain if we overflowed the template parameter's type.
3978      unsigned RequiredBits;
3979      if (IntegerType->isUnsignedIntegerOrEnumerationType())
3980        RequiredBits = OldValue.getActiveBits();
3981      else if (OldValue.isUnsigned())
3982        RequiredBits = OldValue.getActiveBits() + 1;
3983      else
3984        RequiredBits = OldValue.getMinSignedBits();
3985      if (RequiredBits > AllowedBits) {
3986        Diag(Arg->getSourceRange().getBegin(),
3987             diag::warn_template_arg_too_large)
3988          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3989          << Arg->getSourceRange();
3990        Diag(Param->getLocation(), diag::note_template_param_here);
3991      }
3992    }
3993
3994    Converted = TemplateArgument(Value,
3995                                 ParamType->isEnumeralType()
3996                                   ? Context.getCanonicalType(ParamType)
3997                                   : IntegerType);
3998    return Owned(Arg);
3999  }
4000
4001  QualType ArgType = Arg->getType();
4002  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
4003
4004  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
4005  // from a template argument of type std::nullptr_t to a non-type
4006  // template parameter of type pointer to object, pointer to
4007  // function, or pointer-to-member, respectively.
4008  if (ArgType->isNullPtrType()) {
4009    if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
4010      Converted = TemplateArgument((NamedDecl *)0);
4011      return Owned(Arg);
4012    }
4013
4014    if (ParamType->isNullPtrType()) {
4015      llvm::APSInt Zero(Context.getTypeSize(Context.NullPtrTy), true);
4016      Converted = TemplateArgument(Zero, Context.NullPtrTy);
4017      return Owned(Arg);
4018    }
4019  }
4020
4021  // Handle pointer-to-function, reference-to-function, and
4022  // pointer-to-member-function all in (roughly) the same way.
4023  if (// -- For a non-type template-parameter of type pointer to
4024      //    function, only the function-to-pointer conversion (4.3) is
4025      //    applied. If the template-argument represents a set of
4026      //    overloaded functions (or a pointer to such), the matching
4027      //    function is selected from the set (13.4).
4028      (ParamType->isPointerType() &&
4029       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
4030      // -- For a non-type template-parameter of type reference to
4031      //    function, no conversions apply. If the template-argument
4032      //    represents a set of overloaded functions, the matching
4033      //    function is selected from the set (13.4).
4034      (ParamType->isReferenceType() &&
4035       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
4036      // -- For a non-type template-parameter of type pointer to
4037      //    member function, no conversions apply. If the
4038      //    template-argument represents a set of overloaded member
4039      //    functions, the matching member function is selected from
4040      //    the set (13.4).
4041      (ParamType->isMemberPointerType() &&
4042       ParamType->getAs<MemberPointerType>()->getPointeeType()
4043         ->isFunctionType())) {
4044
4045    if (Arg->getType() == Context.OverloadTy) {
4046      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
4047                                                                true,
4048                                                                FoundResult)) {
4049        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
4050          return ExprError();
4051
4052        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4053        ArgType = Arg->getType();
4054      } else
4055        return ExprError();
4056    }
4057
4058    if (!ParamType->isMemberPointerType()) {
4059      if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4060                                                         ParamType,
4061                                                         Arg, Converted))
4062        return ExprError();
4063      return Owned(Arg);
4064    }
4065
4066    bool ObjCLifetimeConversion;
4067    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(),
4068                                  false, ObjCLifetimeConversion)) {
4069      Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp,
4070                              Arg->getValueKind()).take();
4071    } else if (!Context.hasSameUnqualifiedType(ArgType,
4072                                           ParamType.getNonReferenceType())) {
4073      // We can't perform this conversion.
4074      Diag(Arg->getSourceRange().getBegin(),
4075           diag::err_template_arg_not_convertible)
4076        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
4077      Diag(Param->getLocation(), diag::note_template_param_here);
4078      return ExprError();
4079    }
4080
4081    if (CheckTemplateArgumentPointerToMember(Arg, Converted))
4082      return ExprError();
4083    return Owned(Arg);
4084  }
4085
4086  if (ParamType->isPointerType()) {
4087    //   -- for a non-type template-parameter of type pointer to
4088    //      object, qualification conversions (4.4) and the
4089    //      array-to-pointer conversion (4.2) are applied.
4090    // C++0x also allows a value of std::nullptr_t.
4091    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
4092           "Only object pointers allowed here");
4093
4094    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4095                                                       ParamType,
4096                                                       Arg, Converted))
4097      return ExprError();
4098    return Owned(Arg);
4099  }
4100
4101  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
4102    //   -- For a non-type template-parameter of type reference to
4103    //      object, no conversions apply. The type referred to by the
4104    //      reference may be more cv-qualified than the (otherwise
4105    //      identical) type of the template-argument. The
4106    //      template-parameter is bound directly to the
4107    //      template-argument, which must be an lvalue.
4108    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
4109           "Only object references allowed here");
4110
4111    if (Arg->getType() == Context.OverloadTy) {
4112      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
4113                                                 ParamRefType->getPointeeType(),
4114                                                                true,
4115                                                                FoundResult)) {
4116        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
4117          return ExprError();
4118
4119        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4120        ArgType = Arg->getType();
4121      } else
4122        return ExprError();
4123    }
4124
4125    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4126                                                       ParamType,
4127                                                       Arg, Converted))
4128      return ExprError();
4129    return Owned(Arg);
4130  }
4131
4132  //     -- For a non-type template-parameter of type pointer to data
4133  //        member, qualification conversions (4.4) are applied.
4134  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
4135
4136  bool ObjCLifetimeConversion;
4137  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
4138    // Types match exactly: nothing more to do here.
4139  } else if (IsQualificationConversion(ArgType, ParamType, false,
4140                                       ObjCLifetimeConversion)) {
4141    Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp,
4142                            Arg->getValueKind()).take();
4143  } else {
4144    // We can't perform this conversion.
4145    Diag(Arg->getSourceRange().getBegin(),
4146         diag::err_template_arg_not_convertible)
4147      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
4148    Diag(Param->getLocation(), diag::note_template_param_here);
4149    return ExprError();
4150  }
4151
4152  if (CheckTemplateArgumentPointerToMember(Arg, Converted))
4153    return ExprError();
4154  return Owned(Arg);
4155}
4156
4157/// \brief Check a template argument against its corresponding
4158/// template template parameter.
4159///
4160/// This routine implements the semantics of C++ [temp.arg.template].
4161/// It returns true if an error occurred, and false otherwise.
4162bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
4163                                 const TemplateArgumentLoc &Arg) {
4164  TemplateName Name = Arg.getArgument().getAsTemplate();
4165  TemplateDecl *Template = Name.getAsTemplateDecl();
4166  if (!Template) {
4167    // Any dependent template name is fine.
4168    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
4169    return false;
4170  }
4171
4172  // C++0x [temp.arg.template]p1:
4173  //   A template-argument for a template template-parameter shall be
4174  //   the name of a class template or an alias template, expressed as an
4175  //   id-expression. When the template-argument names a class template, only
4176  //   primary class templates are considered when matching the
4177  //   template template argument with the corresponding parameter;
4178  //   partial specializations are not considered even if their
4179  //   parameter lists match that of the template template parameter.
4180  //
4181  // Note that we also allow template template parameters here, which
4182  // will happen when we are dealing with, e.g., class template
4183  // partial specializations.
4184  if (!isa<ClassTemplateDecl>(Template) &&
4185      !isa<TemplateTemplateParmDecl>(Template) &&
4186      !isa<TypeAliasTemplateDecl>(Template)) {
4187    assert(isa<FunctionTemplateDecl>(Template) &&
4188           "Only function templates are possible here");
4189    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
4190    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
4191      << Template;
4192  }
4193
4194  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
4195                                         Param->getTemplateParameters(),
4196                                         true,
4197                                         TPL_TemplateTemplateArgumentMatch,
4198                                         Arg.getLocation());
4199}
4200
4201/// \brief Given a non-type template argument that refers to a
4202/// declaration and the type of its corresponding non-type template
4203/// parameter, produce an expression that properly refers to that
4204/// declaration.
4205ExprResult
4206Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
4207                                              QualType ParamType,
4208                                              SourceLocation Loc) {
4209  assert(Arg.getKind() == TemplateArgument::Declaration &&
4210         "Only declaration template arguments permitted here");
4211  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
4212
4213  if (VD->getDeclContext()->isRecord() &&
4214      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
4215    // If the value is a class member, we might have a pointer-to-member.
4216    // Determine whether the non-type template template parameter is of
4217    // pointer-to-member type. If so, we need to build an appropriate
4218    // expression for a pointer-to-member, since a "normal" DeclRefExpr
4219    // would refer to the member itself.
4220    if (ParamType->isMemberPointerType()) {
4221      QualType ClassType
4222        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
4223      NestedNameSpecifier *Qualifier
4224        = NestedNameSpecifier::Create(Context, 0, false,
4225                                      ClassType.getTypePtr());
4226      CXXScopeSpec SS;
4227      SS.MakeTrivial(Context, Qualifier, Loc);
4228
4229      // The actual value-ness of this is unimportant, but for
4230      // internal consistency's sake, references to instance methods
4231      // are r-values.
4232      ExprValueKind VK = VK_LValue;
4233      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
4234        VK = VK_RValue;
4235
4236      ExprResult RefExpr = BuildDeclRefExpr(VD,
4237                                            VD->getType().getNonReferenceType(),
4238                                            VK,
4239                                            Loc,
4240                                            &SS);
4241      if (RefExpr.isInvalid())
4242        return ExprError();
4243
4244      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4245
4246      // We might need to perform a trailing qualification conversion, since
4247      // the element type on the parameter could be more qualified than the
4248      // element type in the expression we constructed.
4249      bool ObjCLifetimeConversion;
4250      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
4251                                    ParamType.getUnqualifiedType(), false,
4252                                    ObjCLifetimeConversion))
4253        RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
4254
4255      assert(!RefExpr.isInvalid() &&
4256             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
4257                                 ParamType.getUnqualifiedType()));
4258      return move(RefExpr);
4259    }
4260  }
4261
4262  QualType T = VD->getType().getNonReferenceType();
4263  if (ParamType->isPointerType()) {
4264    // When the non-type template parameter is a pointer, take the
4265    // address of the declaration.
4266    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
4267    if (RefExpr.isInvalid())
4268      return ExprError();
4269
4270    if (T->isFunctionType() || T->isArrayType()) {
4271      // Decay functions and arrays.
4272      RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
4273      if (RefExpr.isInvalid())
4274        return ExprError();
4275
4276      return move(RefExpr);
4277    }
4278
4279    // Take the address of everything else
4280    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4281  }
4282
4283  ExprValueKind VK = VK_RValue;
4284
4285  // If the non-type template parameter has reference type, qualify the
4286  // resulting declaration reference with the extra qualifiers on the
4287  // type that the reference refers to.
4288  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
4289    VK = VK_LValue;
4290    T = Context.getQualifiedType(T,
4291                              TargetRef->getPointeeType().getQualifiers());
4292  }
4293
4294  return BuildDeclRefExpr(VD, T, VK, Loc);
4295}
4296
4297/// \brief Construct a new expression that refers to the given
4298/// integral template argument with the given source-location
4299/// information.
4300///
4301/// This routine takes care of the mapping from an integral template
4302/// argument (which may have any integral type) to the appropriate
4303/// literal value.
4304ExprResult
4305Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
4306                                                  SourceLocation Loc) {
4307  assert(Arg.getKind() == TemplateArgument::Integral &&
4308         "Operation is only valid for integral template arguments");
4309  QualType T = Arg.getIntegralType();
4310  if (T->isAnyCharacterType()) {
4311    CharacterLiteral::CharacterKind Kind;
4312    if (T->isWideCharType())
4313      Kind = CharacterLiteral::Wide;
4314    else if (T->isChar16Type())
4315      Kind = CharacterLiteral::UTF16;
4316    else if (T->isChar32Type())
4317      Kind = CharacterLiteral::UTF32;
4318    else
4319      Kind = CharacterLiteral::Ascii;
4320
4321    return Owned(new (Context) CharacterLiteral(
4322                                            Arg.getAsIntegral()->getZExtValue(),
4323                                            Kind, T, Loc));
4324  }
4325
4326  if (T->isBooleanType())
4327    return Owned(new (Context) CXXBoolLiteralExpr(
4328                                            Arg.getAsIntegral()->getBoolValue(),
4329                                            T, Loc));
4330
4331  if (T->isNullPtrType())
4332    return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
4333
4334  // If this is an enum type that we're instantiating, we need to use an integer
4335  // type the same size as the enumerator.  We don't want to build an
4336  // IntegerLiteral with enum type.
4337  QualType BT;
4338  if (const EnumType *ET = T->getAs<EnumType>())
4339    BT = ET->getDecl()->getIntegerType();
4340  else
4341    BT = T;
4342
4343  Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
4344  if (T->isEnumeralType()) {
4345    // FIXME: This is a hack. We need a better way to handle substituted
4346    // non-type template parameters.
4347    E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0,
4348                               Context.getTrivialTypeSourceInfo(T, Loc),
4349                               Loc, Loc);
4350  }
4351
4352  return Owned(E);
4353}
4354
4355/// \brief Match two template parameters within template parameter lists.
4356static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
4357                                       bool Complain,
4358                                     Sema::TemplateParameterListEqualKind Kind,
4359                                       SourceLocation TemplateArgLoc) {
4360  // Check the actual kind (type, non-type, template).
4361  if (Old->getKind() != New->getKind()) {
4362    if (Complain) {
4363      unsigned NextDiag = diag::err_template_param_different_kind;
4364      if (TemplateArgLoc.isValid()) {
4365        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4366        NextDiag = diag::note_template_param_different_kind;
4367      }
4368      S.Diag(New->getLocation(), NextDiag)
4369        << (Kind != Sema::TPL_TemplateMatch);
4370      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
4371        << (Kind != Sema::TPL_TemplateMatch);
4372    }
4373
4374    return false;
4375  }
4376
4377  // Check that both are parameter packs are neither are parameter packs.
4378  // However, if we are matching a template template argument to a
4379  // template template parameter, the template template parameter can have
4380  // a parameter pack where the template template argument does not.
4381  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
4382      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4383        Old->isTemplateParameterPack())) {
4384    if (Complain) {
4385      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
4386      if (TemplateArgLoc.isValid()) {
4387        S.Diag(TemplateArgLoc,
4388             diag::err_template_arg_template_params_mismatch);
4389        NextDiag = diag::note_template_parameter_pack_non_pack;
4390      }
4391
4392      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
4393                      : isa<NonTypeTemplateParmDecl>(New)? 1
4394                      : 2;
4395      S.Diag(New->getLocation(), NextDiag)
4396        << ParamKind << New->isParameterPack();
4397      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
4398        << ParamKind << Old->isParameterPack();
4399    }
4400
4401    return false;
4402  }
4403
4404  // For non-type template parameters, check the type of the parameter.
4405  if (NonTypeTemplateParmDecl *OldNTTP
4406                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
4407    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
4408
4409    // If we are matching a template template argument to a template
4410    // template parameter and one of the non-type template parameter types
4411    // is dependent, then we must wait until template instantiation time
4412    // to actually compare the arguments.
4413    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4414        (OldNTTP->getType()->isDependentType() ||
4415         NewNTTP->getType()->isDependentType()))
4416      return true;
4417
4418    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
4419      if (Complain) {
4420        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
4421        if (TemplateArgLoc.isValid()) {
4422          S.Diag(TemplateArgLoc,
4423                 diag::err_template_arg_template_params_mismatch);
4424          NextDiag = diag::note_template_nontype_parm_different_type;
4425        }
4426        S.Diag(NewNTTP->getLocation(), NextDiag)
4427          << NewNTTP->getType()
4428          << (Kind != Sema::TPL_TemplateMatch);
4429        S.Diag(OldNTTP->getLocation(),
4430               diag::note_template_nontype_parm_prev_declaration)
4431          << OldNTTP->getType();
4432      }
4433
4434      return false;
4435    }
4436
4437    return true;
4438  }
4439
4440  // For template template parameters, check the template parameter types.
4441  // The template parameter lists of template template
4442  // parameters must agree.
4443  if (TemplateTemplateParmDecl *OldTTP
4444                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
4445    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
4446    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
4447                                            OldTTP->getTemplateParameters(),
4448                                            Complain,
4449                                        (Kind == Sema::TPL_TemplateMatch
4450                                           ? Sema::TPL_TemplateTemplateParmMatch
4451                                           : Kind),
4452                                            TemplateArgLoc);
4453  }
4454
4455  return true;
4456}
4457
4458/// \brief Diagnose a known arity mismatch when comparing template argument
4459/// lists.
4460static
4461void DiagnoseTemplateParameterListArityMismatch(Sema &S,
4462                                                TemplateParameterList *New,
4463                                                TemplateParameterList *Old,
4464                                      Sema::TemplateParameterListEqualKind Kind,
4465                                                SourceLocation TemplateArgLoc) {
4466  unsigned NextDiag = diag::err_template_param_list_different_arity;
4467  if (TemplateArgLoc.isValid()) {
4468    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4469    NextDiag = diag::note_template_param_list_different_arity;
4470  }
4471  S.Diag(New->getTemplateLoc(), NextDiag)
4472    << (New->size() > Old->size())
4473    << (Kind != Sema::TPL_TemplateMatch)
4474    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
4475  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
4476    << (Kind != Sema::TPL_TemplateMatch)
4477    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
4478}
4479
4480/// \brief Determine whether the given template parameter lists are
4481/// equivalent.
4482///
4483/// \param New  The new template parameter list, typically written in the
4484/// source code as part of a new template declaration.
4485///
4486/// \param Old  The old template parameter list, typically found via
4487/// name lookup of the template declared with this template parameter
4488/// list.
4489///
4490/// \param Complain  If true, this routine will produce a diagnostic if
4491/// the template parameter lists are not equivalent.
4492///
4493/// \param Kind describes how we are to match the template parameter lists.
4494///
4495/// \param TemplateArgLoc If this source location is valid, then we
4496/// are actually checking the template parameter list of a template
4497/// argument (New) against the template parameter list of its
4498/// corresponding template template parameter (Old). We produce
4499/// slightly different diagnostics in this scenario.
4500///
4501/// \returns True if the template parameter lists are equal, false
4502/// otherwise.
4503bool
4504Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
4505                                     TemplateParameterList *Old,
4506                                     bool Complain,
4507                                     TemplateParameterListEqualKind Kind,
4508                                     SourceLocation TemplateArgLoc) {
4509  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
4510    if (Complain)
4511      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4512                                                 TemplateArgLoc);
4513
4514    return false;
4515  }
4516
4517  // C++0x [temp.arg.template]p3:
4518  //   A template-argument matches a template template-parameter (call it P)
4519  //   when each of the template parameters in the template-parameter-list of
4520  //   the template-argument's corresponding class template or alias template
4521  //   (call it A) matches the corresponding template parameter in the
4522  //   template-parameter-list of P. [...]
4523  TemplateParameterList::iterator NewParm = New->begin();
4524  TemplateParameterList::iterator NewParmEnd = New->end();
4525  for (TemplateParameterList::iterator OldParm = Old->begin(),
4526                                    OldParmEnd = Old->end();
4527       OldParm != OldParmEnd; ++OldParm) {
4528    if (Kind != TPL_TemplateTemplateArgumentMatch ||
4529        !(*OldParm)->isTemplateParameterPack()) {
4530      if (NewParm == NewParmEnd) {
4531        if (Complain)
4532          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4533                                                     TemplateArgLoc);
4534
4535        return false;
4536      }
4537
4538      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4539                                      Kind, TemplateArgLoc))
4540        return false;
4541
4542      ++NewParm;
4543      continue;
4544    }
4545
4546    // C++0x [temp.arg.template]p3:
4547    //   [...] When P's template- parameter-list contains a template parameter
4548    //   pack (14.5.3), the template parameter pack will match zero or more
4549    //   template parameters or template parameter packs in the
4550    //   template-parameter-list of A with the same type and form as the
4551    //   template parameter pack in P (ignoring whether those template
4552    //   parameters are template parameter packs).
4553    for (; NewParm != NewParmEnd; ++NewParm) {
4554      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4555                                      Kind, TemplateArgLoc))
4556        return false;
4557    }
4558  }
4559
4560  // Make sure we exhausted all of the arguments.
4561  if (NewParm != NewParmEnd) {
4562    if (Complain)
4563      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4564                                                 TemplateArgLoc);
4565
4566    return false;
4567  }
4568
4569  return true;
4570}
4571
4572/// \brief Check whether a template can be declared within this scope.
4573///
4574/// If the template declaration is valid in this scope, returns
4575/// false. Otherwise, issues a diagnostic and returns true.
4576bool
4577Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
4578  if (!S)
4579    return false;
4580
4581  // Find the nearest enclosing declaration scope.
4582  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4583         (S->getFlags() & Scope::TemplateParamScope) != 0)
4584    S = S->getParent();
4585
4586  // C++ [temp]p2:
4587  //   A template-declaration can appear only as a namespace scope or
4588  //   class scope declaration.
4589  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
4590  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
4591      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
4592    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
4593             << TemplateParams->getSourceRange();
4594
4595  while (Ctx && isa<LinkageSpecDecl>(Ctx))
4596    Ctx = Ctx->getParent();
4597
4598  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
4599    return false;
4600
4601  return Diag(TemplateParams->getTemplateLoc(),
4602              diag::err_template_outside_namespace_or_class_scope)
4603    << TemplateParams->getSourceRange();
4604}
4605
4606/// \brief Determine what kind of template specialization the given declaration
4607/// is.
4608static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
4609  if (!D)
4610    return TSK_Undeclared;
4611
4612  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
4613    return Record->getTemplateSpecializationKind();
4614  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
4615    return Function->getTemplateSpecializationKind();
4616  if (VarDecl *Var = dyn_cast<VarDecl>(D))
4617    return Var->getTemplateSpecializationKind();
4618
4619  return TSK_Undeclared;
4620}
4621
4622/// \brief Check whether a specialization is well-formed in the current
4623/// context.
4624///
4625/// This routine determines whether a template specialization can be declared
4626/// in the current context (C++ [temp.expl.spec]p2).
4627///
4628/// \param S the semantic analysis object for which this check is being
4629/// performed.
4630///
4631/// \param Specialized the entity being specialized or instantiated, which
4632/// may be a kind of template (class template, function template, etc.) or
4633/// a member of a class template (member function, static data member,
4634/// member class).
4635///
4636/// \param PrevDecl the previous declaration of this entity, if any.
4637///
4638/// \param Loc the location of the explicit specialization or instantiation of
4639/// this entity.
4640///
4641/// \param IsPartialSpecialization whether this is a partial specialization of
4642/// a class template.
4643///
4644/// \returns true if there was an error that we cannot recover from, false
4645/// otherwise.
4646static bool CheckTemplateSpecializationScope(Sema &S,
4647                                             NamedDecl *Specialized,
4648                                             NamedDecl *PrevDecl,
4649                                             SourceLocation Loc,
4650                                             bool IsPartialSpecialization) {
4651  // Keep these "kind" numbers in sync with the %select statements in the
4652  // various diagnostics emitted by this routine.
4653  int EntityKind = 0;
4654  if (isa<ClassTemplateDecl>(Specialized))
4655    EntityKind = IsPartialSpecialization? 1 : 0;
4656  else if (isa<FunctionTemplateDecl>(Specialized))
4657    EntityKind = 2;
4658  else if (isa<CXXMethodDecl>(Specialized))
4659    EntityKind = 3;
4660  else if (isa<VarDecl>(Specialized))
4661    EntityKind = 4;
4662  else if (isa<RecordDecl>(Specialized))
4663    EntityKind = 5;
4664  else {
4665    S.Diag(Loc, diag::err_template_spec_unknown_kind);
4666    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4667    return true;
4668  }
4669
4670  // C++ [temp.expl.spec]p2:
4671  //   An explicit specialization shall be declared in the namespace
4672  //   of which the template is a member, or, for member templates, in
4673  //   the namespace of which the enclosing class or enclosing class
4674  //   template is a member. An explicit specialization of a member
4675  //   function, member class or static data member of a class
4676  //   template shall be declared in the namespace of which the class
4677  //   template is a member. Such a declaration may also be a
4678  //   definition. If the declaration is not a definition, the
4679  //   specialization may be defined later in the name- space in which
4680  //   the explicit specialization was declared, or in a namespace
4681  //   that encloses the one in which the explicit specialization was
4682  //   declared.
4683  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4684    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
4685      << Specialized;
4686    return true;
4687  }
4688
4689  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
4690    if (S.getLangOptions().MicrosoftExt) {
4691      // Do not warn for class scope explicit specialization during
4692      // instantiation, warning was already emitted during pattern
4693      // semantic analysis.
4694      if (!S.ActiveTemplateInstantiations.size())
4695        S.Diag(Loc, diag::ext_function_specialization_in_class)
4696          << Specialized;
4697    } else {
4698      S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4699        << Specialized;
4700      return true;
4701    }
4702  }
4703
4704  if (S.CurContext->isRecord() &&
4705      !S.CurContext->Equals(Specialized->getDeclContext())) {
4706    // Make sure that we're specializing in the right record context.
4707    // Otherwise, things can go horribly wrong.
4708    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4709      << Specialized;
4710    return true;
4711  }
4712
4713  // C++ [temp.class.spec]p6:
4714  //   A class template partial specialization may be declared or redeclared
4715  //   in any namespace scope in which its definition may be defined (14.5.1
4716  //   and 14.5.2).
4717  bool ComplainedAboutScope = false;
4718  DeclContext *SpecializedContext
4719    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
4720  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
4721  if ((!PrevDecl ||
4722       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
4723       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
4724    // C++ [temp.exp.spec]p2:
4725    //   An explicit specialization shall be declared in the namespace of which
4726    //   the template is a member, or, for member templates, in the namespace
4727    //   of which the enclosing class or enclosing class template is a member.
4728    //   An explicit specialization of a member function, member class or
4729    //   static data member of a class template shall be declared in the
4730    //   namespace of which the class template is a member.
4731    //
4732    // C++0x [temp.expl.spec]p2:
4733    //   An explicit specialization shall be declared in a namespace enclosing
4734    //   the specialized template.
4735    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
4736      bool IsCPlusPlus0xExtension = DC->Encloses(SpecializedContext);
4737      if (isa<TranslationUnitDecl>(SpecializedContext)) {
4738        assert(!IsCPlusPlus0xExtension &&
4739               "DC encloses TU but isn't in enclosing namespace set");
4740        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
4741          << EntityKind << Specialized;
4742      } else if (isa<NamespaceDecl>(SpecializedContext)) {
4743        int Diag;
4744        if (!IsCPlusPlus0xExtension)
4745          Diag = diag::err_template_spec_decl_out_of_scope;
4746        else if (!S.getLangOptions().CPlusPlus0x)
4747          Diag = diag::ext_template_spec_decl_out_of_scope;
4748        else
4749          Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
4750        S.Diag(Loc, Diag)
4751          << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
4752      }
4753
4754      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4755      ComplainedAboutScope =
4756        !(IsCPlusPlus0xExtension && S.getLangOptions().CPlusPlus0x);
4757    }
4758  }
4759
4760  // Make sure that this redeclaration (or definition) occurs in an enclosing
4761  // namespace.
4762  // Note that HandleDeclarator() performs this check for explicit
4763  // specializations of function templates, static data members, and member
4764  // functions, so we skip the check here for those kinds of entities.
4765  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
4766  // Should we refactor that check, so that it occurs later?
4767  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
4768      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
4769        isa<FunctionDecl>(Specialized))) {
4770    if (isa<TranslationUnitDecl>(SpecializedContext))
4771      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
4772        << EntityKind << Specialized;
4773    else if (isa<NamespaceDecl>(SpecializedContext))
4774      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
4775        << EntityKind << Specialized
4776        << cast<NamedDecl>(SpecializedContext);
4777
4778    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4779  }
4780
4781  // FIXME: check for specialization-after-instantiation errors and such.
4782
4783  return false;
4784}
4785
4786/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
4787/// that checks non-type template partial specialization arguments.
4788static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
4789                                                NonTypeTemplateParmDecl *Param,
4790                                                  const TemplateArgument *Args,
4791                                                        unsigned NumArgs) {
4792  for (unsigned I = 0; I != NumArgs; ++I) {
4793    if (Args[I].getKind() == TemplateArgument::Pack) {
4794      if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4795                                                           Args[I].pack_begin(),
4796                                                           Args[I].pack_size()))
4797        return true;
4798
4799      continue;
4800    }
4801
4802    Expr *ArgExpr = Args[I].getAsExpr();
4803    if (!ArgExpr) {
4804      continue;
4805    }
4806
4807    // We can have a pack expansion of any of the bullets below.
4808    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
4809      ArgExpr = Expansion->getPattern();
4810
4811    // Strip off any implicit casts we added as part of type checking.
4812    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
4813      ArgExpr = ICE->getSubExpr();
4814
4815    // C++ [temp.class.spec]p8:
4816    //   A non-type argument is non-specialized if it is the name of a
4817    //   non-type parameter. All other non-type arguments are
4818    //   specialized.
4819    //
4820    // Below, we check the two conditions that only apply to
4821    // specialized non-type arguments, so skip any non-specialized
4822    // arguments.
4823    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
4824      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
4825        continue;
4826
4827    // C++ [temp.class.spec]p9:
4828    //   Within the argument list of a class template partial
4829    //   specialization, the following restrictions apply:
4830    //     -- A partially specialized non-type argument expression
4831    //        shall not involve a template parameter of the partial
4832    //        specialization except when the argument expression is a
4833    //        simple identifier.
4834    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
4835      S.Diag(ArgExpr->getLocStart(),
4836           diag::err_dependent_non_type_arg_in_partial_spec)
4837        << ArgExpr->getSourceRange();
4838      return true;
4839    }
4840
4841    //     -- The type of a template parameter corresponding to a
4842    //        specialized non-type argument shall not be dependent on a
4843    //        parameter of the specialization.
4844    if (Param->getType()->isDependentType()) {
4845      S.Diag(ArgExpr->getLocStart(),
4846           diag::err_dependent_typed_non_type_arg_in_partial_spec)
4847        << Param->getType()
4848        << ArgExpr->getSourceRange();
4849      S.Diag(Param->getLocation(), diag::note_template_param_here);
4850      return true;
4851    }
4852  }
4853
4854  return false;
4855}
4856
4857/// \brief Check the non-type template arguments of a class template
4858/// partial specialization according to C++ [temp.class.spec]p9.
4859///
4860/// \param TemplateParams the template parameters of the primary class
4861/// template.
4862///
4863/// \param TemplateArg the template arguments of the class template
4864/// partial specialization.
4865///
4866/// \returns true if there was an error, false otherwise.
4867static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
4868                                        TemplateParameterList *TemplateParams,
4869                       SmallVectorImpl<TemplateArgument> &TemplateArgs) {
4870  const TemplateArgument *ArgList = TemplateArgs.data();
4871
4872  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4873    NonTypeTemplateParmDecl *Param
4874      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
4875    if (!Param)
4876      continue;
4877
4878    if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4879                                                           &ArgList[I], 1))
4880      return true;
4881  }
4882
4883  return false;
4884}
4885
4886DeclResult
4887Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
4888                                       TagUseKind TUK,
4889                                       SourceLocation KWLoc,
4890                                       SourceLocation ModulePrivateLoc,
4891                                       CXXScopeSpec &SS,
4892                                       TemplateTy TemplateD,
4893                                       SourceLocation TemplateNameLoc,
4894                                       SourceLocation LAngleLoc,
4895                                       ASTTemplateArgsPtr TemplateArgsIn,
4896                                       SourceLocation RAngleLoc,
4897                                       AttributeList *Attr,
4898                               MultiTemplateParamsArg TemplateParameterLists) {
4899  assert(TUK != TUK_Reference && "References are not specializations");
4900
4901  // NOTE: KWLoc is the location of the tag keyword. This will instead
4902  // store the location of the outermost template keyword in the declaration.
4903  SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
4904    ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation();
4905
4906  // Find the class template we're specializing
4907  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4908  ClassTemplateDecl *ClassTemplate
4909    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
4910
4911  if (!ClassTemplate) {
4912    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
4913      << (Name.getAsTemplateDecl() &&
4914          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
4915    return true;
4916  }
4917
4918  bool isExplicitSpecialization = false;
4919  bool isPartialSpecialization = false;
4920
4921  // Check the validity of the template headers that introduce this
4922  // template.
4923  // FIXME: We probably shouldn't complain about these headers for
4924  // friend declarations.
4925  bool Invalid = false;
4926  TemplateParameterList *TemplateParams
4927    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc,
4928                                              TemplateNameLoc,
4929                                              SS,
4930                        (TemplateParameterList**)TemplateParameterLists.get(),
4931                                              TemplateParameterLists.size(),
4932                                              TUK == TUK_Friend,
4933                                              isExplicitSpecialization,
4934                                              Invalid);
4935  if (Invalid)
4936    return true;
4937
4938  if (TemplateParams && TemplateParams->size() > 0) {
4939    isPartialSpecialization = true;
4940
4941    if (TUK == TUK_Friend) {
4942      Diag(KWLoc, diag::err_partial_specialization_friend)
4943        << SourceRange(LAngleLoc, RAngleLoc);
4944      return true;
4945    }
4946
4947    // C++ [temp.class.spec]p10:
4948    //   The template parameter list of a specialization shall not
4949    //   contain default template argument values.
4950    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4951      Decl *Param = TemplateParams->getParam(I);
4952      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4953        if (TTP->hasDefaultArgument()) {
4954          Diag(TTP->getDefaultArgumentLoc(),
4955               diag::err_default_arg_in_partial_spec);
4956          TTP->removeDefaultArgument();
4957        }
4958      } else if (NonTypeTemplateParmDecl *NTTP
4959                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4960        if (Expr *DefArg = NTTP->getDefaultArgument()) {
4961          Diag(NTTP->getDefaultArgumentLoc(),
4962               diag::err_default_arg_in_partial_spec)
4963            << DefArg->getSourceRange();
4964          NTTP->removeDefaultArgument();
4965        }
4966      } else {
4967        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
4968        if (TTP->hasDefaultArgument()) {
4969          Diag(TTP->getDefaultArgument().getLocation(),
4970               diag::err_default_arg_in_partial_spec)
4971            << TTP->getDefaultArgument().getSourceRange();
4972          TTP->removeDefaultArgument();
4973        }
4974      }
4975    }
4976  } else if (TemplateParams) {
4977    if (TUK == TUK_Friend)
4978      Diag(KWLoc, diag::err_template_spec_friend)
4979        << FixItHint::CreateRemoval(
4980                                SourceRange(TemplateParams->getTemplateLoc(),
4981                                            TemplateParams->getRAngleLoc()))
4982        << SourceRange(LAngleLoc, RAngleLoc);
4983    else
4984      isExplicitSpecialization = true;
4985  } else if (TUK != TUK_Friend) {
4986    Diag(KWLoc, diag::err_template_spec_needs_header)
4987      << FixItHint::CreateInsertion(KWLoc, "template<> ");
4988    isExplicitSpecialization = true;
4989  }
4990
4991  // Check that the specialization uses the same tag kind as the
4992  // original template.
4993  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4994  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
4995  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4996                                    Kind, TUK == TUK_Definition, KWLoc,
4997                                    *ClassTemplate->getIdentifier())) {
4998    Diag(KWLoc, diag::err_use_with_wrong_tag)
4999      << ClassTemplate
5000      << FixItHint::CreateReplacement(KWLoc,
5001                            ClassTemplate->getTemplatedDecl()->getKindName());
5002    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5003         diag::note_previous_use);
5004    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5005  }
5006
5007  // Translate the parser's template argument list in our AST format.
5008  TemplateArgumentListInfo TemplateArgs;
5009  TemplateArgs.setLAngleLoc(LAngleLoc);
5010  TemplateArgs.setRAngleLoc(RAngleLoc);
5011  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5012
5013  // Check for unexpanded parameter packs in any of the template arguments.
5014  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
5015    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
5016                                        UPPC_PartialSpecialization))
5017      return true;
5018
5019  // Check that the template argument list is well-formed for this
5020  // template.
5021  SmallVector<TemplateArgument, 4> Converted;
5022  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5023                                TemplateArgs, false, Converted))
5024    return true;
5025
5026  // Find the class template (partial) specialization declaration that
5027  // corresponds to these arguments.
5028  if (isPartialSpecialization) {
5029    if (CheckClassTemplatePartialSpecializationArgs(*this,
5030                                         ClassTemplate->getTemplateParameters(),
5031                                         Converted))
5032      return true;
5033
5034    bool InstantiationDependent;
5035    if (!Name.isDependent() &&
5036        !TemplateSpecializationType::anyDependentTemplateArguments(
5037                                             TemplateArgs.getArgumentArray(),
5038                                                         TemplateArgs.size(),
5039                                                     InstantiationDependent)) {
5040      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
5041        << ClassTemplate->getDeclName();
5042      isPartialSpecialization = false;
5043    }
5044  }
5045
5046  void *InsertPos = 0;
5047  ClassTemplateSpecializationDecl *PrevDecl = 0;
5048
5049  if (isPartialSpecialization)
5050    // FIXME: Template parameter list matters, too
5051    PrevDecl
5052      = ClassTemplate->findPartialSpecialization(Converted.data(),
5053                                                 Converted.size(),
5054                                                 InsertPos);
5055  else
5056    PrevDecl
5057      = ClassTemplate->findSpecialization(Converted.data(),
5058                                          Converted.size(), InsertPos);
5059
5060  ClassTemplateSpecializationDecl *Specialization = 0;
5061
5062  // Check whether we can declare a class template specialization in
5063  // the current scope.
5064  if (TUK != TUK_Friend &&
5065      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
5066                                       TemplateNameLoc,
5067                                       isPartialSpecialization))
5068    return true;
5069
5070  // The canonical type
5071  QualType CanonType;
5072  if (PrevDecl &&
5073      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
5074               TUK == TUK_Friend)) {
5075    // Since the only prior class template specialization with these
5076    // arguments was referenced but not declared, or we're only
5077    // referencing this specialization as a friend, reuse that
5078    // declaration node as our own, updating its source location and
5079    // the list of outer template parameters to reflect our new declaration.
5080    Specialization = PrevDecl;
5081    Specialization->setLocation(TemplateNameLoc);
5082    if (TemplateParameterLists.size() > 0) {
5083      Specialization->setTemplateParameterListsInfo(Context,
5084                                              TemplateParameterLists.size(),
5085                    (TemplateParameterList**) TemplateParameterLists.release());
5086    }
5087    PrevDecl = 0;
5088    CanonType = Context.getTypeDeclType(Specialization);
5089  } else if (isPartialSpecialization) {
5090    // Build the canonical type that describes the converted template
5091    // arguments of the class template partial specialization.
5092    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
5093    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
5094                                                      Converted.data(),
5095                                                      Converted.size());
5096
5097    if (Context.hasSameType(CanonType,
5098                        ClassTemplate->getInjectedClassNameSpecialization())) {
5099      // C++ [temp.class.spec]p9b3:
5100      //
5101      //   -- The argument list of the specialization shall not be identical
5102      //      to the implicit argument list of the primary template.
5103      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
5104        << (TUK == TUK_Definition)
5105        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
5106      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
5107                                ClassTemplate->getIdentifier(),
5108                                TemplateNameLoc,
5109                                Attr,
5110                                TemplateParams,
5111                                AS_none, /*ModulePrivateLoc=*/SourceLocation(),
5112                                TemplateParameterLists.size() - 1,
5113                  (TemplateParameterList**) TemplateParameterLists.release());
5114    }
5115
5116    // Create a new class template partial specialization declaration node.
5117    ClassTemplatePartialSpecializationDecl *PrevPartial
5118      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
5119    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
5120                            : ClassTemplate->getNextPartialSpecSequenceNumber();
5121    ClassTemplatePartialSpecializationDecl *Partial
5122      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
5123                                             ClassTemplate->getDeclContext(),
5124                                                       KWLoc, TemplateNameLoc,
5125                                                       TemplateParams,
5126                                                       ClassTemplate,
5127                                                       Converted.data(),
5128                                                       Converted.size(),
5129                                                       TemplateArgs,
5130                                                       CanonType,
5131                                                       PrevPartial,
5132                                                       SequenceNumber);
5133    SetNestedNameSpecifier(Partial, SS);
5134    if (TemplateParameterLists.size() > 1 && SS.isSet()) {
5135      Partial->setTemplateParameterListsInfo(Context,
5136                                             TemplateParameterLists.size() - 1,
5137                    (TemplateParameterList**) TemplateParameterLists.release());
5138    }
5139
5140    if (!PrevPartial)
5141      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
5142    Specialization = Partial;
5143
5144    // If we are providing an explicit specialization of a member class
5145    // template specialization, make a note of that.
5146    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
5147      PrevPartial->setMemberSpecialization();
5148
5149    // Check that all of the template parameters of the class template
5150    // partial specialization are deducible from the template
5151    // arguments. If not, this class template partial specialization
5152    // will never be used.
5153    llvm::SmallBitVector DeducibleParams(TemplateParams->size());
5154    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
5155                               TemplateParams->getDepth(),
5156                               DeducibleParams);
5157
5158    if (!DeducibleParams.all()) {
5159      unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
5160      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
5161        << (NumNonDeducible > 1)
5162        << SourceRange(TemplateNameLoc, RAngleLoc);
5163      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
5164        if (!DeducibleParams[I]) {
5165          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
5166          if (Param->getDeclName())
5167            Diag(Param->getLocation(),
5168                 diag::note_partial_spec_unused_parameter)
5169              << Param->getDeclName();
5170          else
5171            Diag(Param->getLocation(),
5172                 diag::note_partial_spec_unused_parameter)
5173              << "<anonymous>";
5174        }
5175      }
5176    }
5177  } else {
5178    // Create a new class template specialization declaration node for
5179    // this explicit specialization or friend declaration.
5180    Specialization
5181      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5182                                             ClassTemplate->getDeclContext(),
5183                                                KWLoc, TemplateNameLoc,
5184                                                ClassTemplate,
5185                                                Converted.data(),
5186                                                Converted.size(),
5187                                                PrevDecl);
5188    SetNestedNameSpecifier(Specialization, SS);
5189    if (TemplateParameterLists.size() > 0) {
5190      Specialization->setTemplateParameterListsInfo(Context,
5191                                              TemplateParameterLists.size(),
5192                    (TemplateParameterList**) TemplateParameterLists.release());
5193    }
5194
5195    if (!PrevDecl)
5196      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5197
5198    CanonType = Context.getTypeDeclType(Specialization);
5199  }
5200
5201  // C++ [temp.expl.spec]p6:
5202  //   If a template, a member template or the member of a class template is
5203  //   explicitly specialized then that specialization shall be declared
5204  //   before the first use of that specialization that would cause an implicit
5205  //   instantiation to take place, in every translation unit in which such a
5206  //   use occurs; no diagnostic is required.
5207  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
5208    bool Okay = false;
5209    for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5210      // Is there any previous explicit specialization declaration?
5211      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5212        Okay = true;
5213        break;
5214      }
5215    }
5216
5217    if (!Okay) {
5218      SourceRange Range(TemplateNameLoc, RAngleLoc);
5219      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
5220        << Context.getTypeDeclType(Specialization) << Range;
5221
5222      Diag(PrevDecl->getPointOfInstantiation(),
5223           diag::note_instantiation_required_here)
5224        << (PrevDecl->getTemplateSpecializationKind()
5225                                                != TSK_ImplicitInstantiation);
5226      return true;
5227    }
5228  }
5229
5230  // If this is not a friend, note that this is an explicit specialization.
5231  if (TUK != TUK_Friend)
5232    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
5233
5234  // Check that this isn't a redefinition of this specialization.
5235  if (TUK == TUK_Definition) {
5236    if (RecordDecl *Def = Specialization->getDefinition()) {
5237      SourceRange Range(TemplateNameLoc, RAngleLoc);
5238      Diag(TemplateNameLoc, diag::err_redefinition)
5239        << Context.getTypeDeclType(Specialization) << Range;
5240      Diag(Def->getLocation(), diag::note_previous_definition);
5241      Specialization->setInvalidDecl();
5242      return true;
5243    }
5244  }
5245
5246  if (Attr)
5247    ProcessDeclAttributeList(S, Specialization, Attr);
5248
5249  if (ModulePrivateLoc.isValid())
5250    Diag(Specialization->getLocation(), diag::err_module_private_specialization)
5251      << (isPartialSpecialization? 1 : 0)
5252      << FixItHint::CreateRemoval(ModulePrivateLoc);
5253
5254  // Build the fully-sugared type for this class template
5255  // specialization as the user wrote in the specialization
5256  // itself. This means that we'll pretty-print the type retrieved
5257  // from the specialization's declaration the way that the user
5258  // actually wrote the specialization, rather than formatting the
5259  // name based on the "canonical" representation used to store the
5260  // template arguments in the specialization.
5261  TypeSourceInfo *WrittenTy
5262    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5263                                                TemplateArgs, CanonType);
5264  if (TUK != TUK_Friend) {
5265    Specialization->setTypeAsWritten(WrittenTy);
5266    Specialization->setTemplateKeywordLoc(TemplateKWLoc);
5267  }
5268  TemplateArgsIn.release();
5269
5270  // C++ [temp.expl.spec]p9:
5271  //   A template explicit specialization is in the scope of the
5272  //   namespace in which the template was defined.
5273  //
5274  // We actually implement this paragraph where we set the semantic
5275  // context (in the creation of the ClassTemplateSpecializationDecl),
5276  // but we also maintain the lexical context where the actual
5277  // definition occurs.
5278  Specialization->setLexicalDeclContext(CurContext);
5279
5280  // We may be starting the definition of this specialization.
5281  if (TUK == TUK_Definition)
5282    Specialization->startDefinition();
5283
5284  if (TUK == TUK_Friend) {
5285    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
5286                                            TemplateNameLoc,
5287                                            WrittenTy,
5288                                            /*FIXME:*/KWLoc);
5289    Friend->setAccess(AS_public);
5290    CurContext->addDecl(Friend);
5291  } else {
5292    // Add the specialization into its lexical context, so that it can
5293    // be seen when iterating through the list of declarations in that
5294    // context. However, specializations are not found by name lookup.
5295    CurContext->addDecl(Specialization);
5296  }
5297  return Specialization;
5298}
5299
5300Decl *Sema::ActOnTemplateDeclarator(Scope *S,
5301                              MultiTemplateParamsArg TemplateParameterLists,
5302                                    Declarator &D) {
5303  return HandleDeclarator(S, D, move(TemplateParameterLists));
5304}
5305
5306Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
5307                               MultiTemplateParamsArg TemplateParameterLists,
5308                                            Declarator &D) {
5309  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5310  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5311
5312  if (FTI.hasPrototype) {
5313    // FIXME: Diagnose arguments without names in C.
5314  }
5315
5316  Scope *ParentScope = FnBodyScope->getParent();
5317
5318  D.setFunctionDefinitionKind(FDK_Definition);
5319  Decl *DP = HandleDeclarator(ParentScope, D,
5320                              move(TemplateParameterLists));
5321  if (FunctionTemplateDecl *FunctionTemplate
5322        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
5323    return ActOnStartOfFunctionDef(FnBodyScope,
5324                                   FunctionTemplate->getTemplatedDecl());
5325  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
5326    return ActOnStartOfFunctionDef(FnBodyScope, Function);
5327  return 0;
5328}
5329
5330/// \brief Strips various properties off an implicit instantiation
5331/// that has just been explicitly specialized.
5332static void StripImplicitInstantiation(NamedDecl *D) {
5333  D->dropAttrs();
5334
5335  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5336    FD->setInlineSpecified(false);
5337  }
5338}
5339
5340/// \brief Compute the diagnostic location for an explicit instantiation
5341//  declaration or definition.
5342static SourceLocation DiagLocForExplicitInstantiation(
5343    NamedDecl* D, SourceLocation PointOfInstantiation) {
5344  // Explicit instantiations following a specialization have no effect and
5345  // hence no PointOfInstantiation. In that case, walk decl backwards
5346  // until a valid name loc is found.
5347  SourceLocation PrevDiagLoc = PointOfInstantiation;
5348  for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
5349       Prev = Prev->getPreviousDecl()) {
5350    PrevDiagLoc = Prev->getLocation();
5351  }
5352  assert(PrevDiagLoc.isValid() &&
5353         "Explicit instantiation without point of instantiation?");
5354  return PrevDiagLoc;
5355}
5356
5357/// \brief Diagnose cases where we have an explicit template specialization
5358/// before/after an explicit template instantiation, producing diagnostics
5359/// for those cases where they are required and determining whether the
5360/// new specialization/instantiation will have any effect.
5361///
5362/// \param NewLoc the location of the new explicit specialization or
5363/// instantiation.
5364///
5365/// \param NewTSK the kind of the new explicit specialization or instantiation.
5366///
5367/// \param PrevDecl the previous declaration of the entity.
5368///
5369/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
5370///
5371/// \param PrevPointOfInstantiation if valid, indicates where the previus
5372/// declaration was instantiated (either implicitly or explicitly).
5373///
5374/// \param HasNoEffect will be set to true to indicate that the new
5375/// specialization or instantiation has no effect and should be ignored.
5376///
5377/// \returns true if there was an error that should prevent the introduction of
5378/// the new declaration into the AST, false otherwise.
5379bool
5380Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
5381                                             TemplateSpecializationKind NewTSK,
5382                                             NamedDecl *PrevDecl,
5383                                             TemplateSpecializationKind PrevTSK,
5384                                        SourceLocation PrevPointOfInstantiation,
5385                                             bool &HasNoEffect) {
5386  HasNoEffect = false;
5387
5388  switch (NewTSK) {
5389  case TSK_Undeclared:
5390  case TSK_ImplicitInstantiation:
5391    llvm_unreachable("Don't check implicit instantiations here");
5392
5393  case TSK_ExplicitSpecialization:
5394    switch (PrevTSK) {
5395    case TSK_Undeclared:
5396    case TSK_ExplicitSpecialization:
5397      // Okay, we're just specializing something that is either already
5398      // explicitly specialized or has merely been mentioned without any
5399      // instantiation.
5400      return false;
5401
5402    case TSK_ImplicitInstantiation:
5403      if (PrevPointOfInstantiation.isInvalid()) {
5404        // The declaration itself has not actually been instantiated, so it is
5405        // still okay to specialize it.
5406        StripImplicitInstantiation(PrevDecl);
5407        return false;
5408      }
5409      // Fall through
5410
5411    case TSK_ExplicitInstantiationDeclaration:
5412    case TSK_ExplicitInstantiationDefinition:
5413      assert((PrevTSK == TSK_ImplicitInstantiation ||
5414              PrevPointOfInstantiation.isValid()) &&
5415             "Explicit instantiation without point of instantiation?");
5416
5417      // C++ [temp.expl.spec]p6:
5418      //   If a template, a member template or the member of a class template
5419      //   is explicitly specialized then that specialization shall be declared
5420      //   before the first use of that specialization that would cause an
5421      //   implicit instantiation to take place, in every translation unit in
5422      //   which such a use occurs; no diagnostic is required.
5423      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5424        // Is there any previous explicit specialization declaration?
5425        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
5426          return false;
5427      }
5428
5429      Diag(NewLoc, diag::err_specialization_after_instantiation)
5430        << PrevDecl;
5431      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
5432        << (PrevTSK != TSK_ImplicitInstantiation);
5433
5434      return true;
5435    }
5436
5437  case TSK_ExplicitInstantiationDeclaration:
5438    switch (PrevTSK) {
5439    case TSK_ExplicitInstantiationDeclaration:
5440      // This explicit instantiation declaration is redundant (that's okay).
5441      HasNoEffect = true;
5442      return false;
5443
5444    case TSK_Undeclared:
5445    case TSK_ImplicitInstantiation:
5446      // We're explicitly instantiating something that may have already been
5447      // implicitly instantiated; that's fine.
5448      return false;
5449
5450    case TSK_ExplicitSpecialization:
5451      // C++0x [temp.explicit]p4:
5452      //   For a given set of template parameters, if an explicit instantiation
5453      //   of a template appears after a declaration of an explicit
5454      //   specialization for that template, the explicit instantiation has no
5455      //   effect.
5456      HasNoEffect = true;
5457      return false;
5458
5459    case TSK_ExplicitInstantiationDefinition:
5460      // C++0x [temp.explicit]p10:
5461      //   If an entity is the subject of both an explicit instantiation
5462      //   declaration and an explicit instantiation definition in the same
5463      //   translation unit, the definition shall follow the declaration.
5464      Diag(NewLoc,
5465           diag::err_explicit_instantiation_declaration_after_definition);
5466
5467      // Explicit instantiations following a specialization have no effect and
5468      // hence no PrevPointOfInstantiation. In that case, walk decl backwards
5469      // until a valid name loc is found.
5470      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
5471           diag::note_explicit_instantiation_definition_here);
5472      HasNoEffect = true;
5473      return false;
5474    }
5475
5476  case TSK_ExplicitInstantiationDefinition:
5477    switch (PrevTSK) {
5478    case TSK_Undeclared:
5479    case TSK_ImplicitInstantiation:
5480      // We're explicitly instantiating something that may have already been
5481      // implicitly instantiated; that's fine.
5482      return false;
5483
5484    case TSK_ExplicitSpecialization:
5485      // C++ DR 259, C++0x [temp.explicit]p4:
5486      //   For a given set of template parameters, if an explicit
5487      //   instantiation of a template appears after a declaration of
5488      //   an explicit specialization for that template, the explicit
5489      //   instantiation has no effect.
5490      //
5491      // In C++98/03 mode, we only give an extension warning here, because it
5492      // is not harmful to try to explicitly instantiate something that
5493      // has been explicitly specialized.
5494      Diag(NewLoc, getLangOptions().CPlusPlus0x ?
5495           diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
5496           diag::ext_explicit_instantiation_after_specialization)
5497        << PrevDecl;
5498      Diag(PrevDecl->getLocation(),
5499           diag::note_previous_template_specialization);
5500      HasNoEffect = true;
5501      return false;
5502
5503    case TSK_ExplicitInstantiationDeclaration:
5504      // We're explicity instantiating a definition for something for which we
5505      // were previously asked to suppress instantiations. That's fine.
5506
5507      // C++0x [temp.explicit]p4:
5508      //   For a given set of template parameters, if an explicit instantiation
5509      //   of a template appears after a declaration of an explicit
5510      //   specialization for that template, the explicit instantiation has no
5511      //   effect.
5512      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5513        // Is there any previous explicit specialization declaration?
5514        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5515          HasNoEffect = true;
5516          break;
5517        }
5518      }
5519
5520      return false;
5521
5522    case TSK_ExplicitInstantiationDefinition:
5523      // C++0x [temp.spec]p5:
5524      //   For a given template and a given set of template-arguments,
5525      //     - an explicit instantiation definition shall appear at most once
5526      //       in a program,
5527      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
5528        << PrevDecl;
5529      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
5530           diag::note_previous_explicit_instantiation);
5531      HasNoEffect = true;
5532      return false;
5533    }
5534  }
5535
5536  llvm_unreachable("Missing specialization/instantiation case?");
5537}
5538
5539/// \brief Perform semantic analysis for the given dependent function
5540/// template specialization.  The only possible way to get a dependent
5541/// function template specialization is with a friend declaration,
5542/// like so:
5543///
5544///   template <class T> void foo(T);
5545///   template <class T> class A {
5546///     friend void foo<>(T);
5547///   };
5548///
5549/// There really isn't any useful analysis we can do here, so we
5550/// just store the information.
5551bool
5552Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
5553                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
5554                                                   LookupResult &Previous) {
5555  // Remove anything from Previous that isn't a function template in
5556  // the correct context.
5557  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5558  LookupResult::Filter F = Previous.makeFilter();
5559  while (F.hasNext()) {
5560    NamedDecl *D = F.next()->getUnderlyingDecl();
5561    if (!isa<FunctionTemplateDecl>(D) ||
5562        !FDLookupContext->InEnclosingNamespaceSetOf(
5563                              D->getDeclContext()->getRedeclContext()))
5564      F.erase();
5565  }
5566  F.done();
5567
5568  // Should this be diagnosed here?
5569  if (Previous.empty()) return true;
5570
5571  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
5572                                         ExplicitTemplateArgs);
5573  return false;
5574}
5575
5576/// \brief Perform semantic analysis for the given function template
5577/// specialization.
5578///
5579/// This routine performs all of the semantic analysis required for an
5580/// explicit function template specialization. On successful completion,
5581/// the function declaration \p FD will become a function template
5582/// specialization.
5583///
5584/// \param FD the function declaration, which will be updated to become a
5585/// function template specialization.
5586///
5587/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
5588/// if any. Note that this may be valid info even when 0 arguments are
5589/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
5590/// as it anyway contains info on the angle brackets locations.
5591///
5592/// \param Previous the set of declarations that may be specialized by
5593/// this function specialization.
5594bool
5595Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
5596                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5597                                          LookupResult &Previous) {
5598  // The set of function template specializations that could match this
5599  // explicit function template specialization.
5600  UnresolvedSet<8> Candidates;
5601
5602  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5603  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5604         I != E; ++I) {
5605    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
5606    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
5607      // Only consider templates found within the same semantic lookup scope as
5608      // FD.
5609      if (!FDLookupContext->InEnclosingNamespaceSetOf(
5610                                Ovl->getDeclContext()->getRedeclContext()))
5611        continue;
5612
5613      // C++ [temp.expl.spec]p11:
5614      //   A trailing template-argument can be left unspecified in the
5615      //   template-id naming an explicit function template specialization
5616      //   provided it can be deduced from the function argument type.
5617      // Perform template argument deduction to determine whether we may be
5618      // specializing this template.
5619      // FIXME: It is somewhat wasteful to build
5620      TemplateDeductionInfo Info(Context, FD->getLocation());
5621      FunctionDecl *Specialization = 0;
5622      if (TemplateDeductionResult TDK
5623            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
5624                                      FD->getType(),
5625                                      Specialization,
5626                                      Info)) {
5627        // FIXME: Template argument deduction failed; record why it failed, so
5628        // that we can provide nifty diagnostics.
5629        (void)TDK;
5630        continue;
5631      }
5632
5633      // Record this candidate.
5634      Candidates.addDecl(Specialization, I.getAccess());
5635    }
5636  }
5637
5638  // Find the most specialized function template.
5639  UnresolvedSetIterator Result
5640    = getMostSpecialized(Candidates.begin(), Candidates.end(),
5641                         TPOC_Other, 0, FD->getLocation(),
5642                  PDiag(diag::err_function_template_spec_no_match)
5643                    << FD->getDeclName(),
5644                  PDiag(diag::err_function_template_spec_ambiguous)
5645                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
5646                  PDiag(diag::note_function_template_spec_matched));
5647  if (Result == Candidates.end())
5648    return true;
5649
5650  // Ignore access information;  it doesn't figure into redeclaration checking.
5651  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5652
5653  FunctionTemplateSpecializationInfo *SpecInfo
5654    = Specialization->getTemplateSpecializationInfo();
5655  assert(SpecInfo && "Function template specialization info missing?");
5656
5657  // Note: do not overwrite location info if previous template
5658  // specialization kind was explicit.
5659  TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
5660  if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation)
5661    Specialization->setLocation(FD->getLocation());
5662
5663  // FIXME: Check if the prior specialization has a point of instantiation.
5664  // If so, we have run afoul of .
5665
5666  // If this is a friend declaration, then we're not really declaring
5667  // an explicit specialization.
5668  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
5669
5670  // Check the scope of this explicit specialization.
5671  if (!isFriend &&
5672      CheckTemplateSpecializationScope(*this,
5673                                       Specialization->getPrimaryTemplate(),
5674                                       Specialization, FD->getLocation(),
5675                                       false))
5676    return true;
5677
5678  // C++ [temp.expl.spec]p6:
5679  //   If a template, a member template or the member of a class template is
5680  //   explicitly specialized then that specialization shall be declared
5681  //   before the first use of that specialization that would cause an implicit
5682  //   instantiation to take place, in every translation unit in which such a
5683  //   use occurs; no diagnostic is required.
5684  bool HasNoEffect = false;
5685  if (!isFriend &&
5686      CheckSpecializationInstantiationRedecl(FD->getLocation(),
5687                                             TSK_ExplicitSpecialization,
5688                                             Specialization,
5689                                   SpecInfo->getTemplateSpecializationKind(),
5690                                         SpecInfo->getPointOfInstantiation(),
5691                                             HasNoEffect))
5692    return true;
5693
5694  // Mark the prior declaration as an explicit specialization, so that later
5695  // clients know that this is an explicit specialization.
5696  if (!isFriend) {
5697    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
5698    MarkUnusedFileScopedDecl(Specialization);
5699  }
5700
5701  // Turn the given function declaration into a function template
5702  // specialization, with the template arguments from the previous
5703  // specialization.
5704  // Take copies of (semantic and syntactic) template argument lists.
5705  const TemplateArgumentList* TemplArgs = new (Context)
5706    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
5707  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
5708                                        TemplArgs, /*InsertPos=*/0,
5709                                    SpecInfo->getTemplateSpecializationKind(),
5710                                        ExplicitTemplateArgs);
5711  FD->setStorageClass(Specialization->getStorageClass());
5712
5713  // The "previous declaration" for this function template specialization is
5714  // the prior function template specialization.
5715  Previous.clear();
5716  Previous.addDecl(Specialization);
5717  return false;
5718}
5719
5720/// \brief Perform semantic analysis for the given non-template member
5721/// specialization.
5722///
5723/// This routine performs all of the semantic analysis required for an
5724/// explicit member function specialization. On successful completion,
5725/// the function declaration \p FD will become a member function
5726/// specialization.
5727///
5728/// \param Member the member declaration, which will be updated to become a
5729/// specialization.
5730///
5731/// \param Previous the set of declarations, one of which may be specialized
5732/// by this function specialization;  the set will be modified to contain the
5733/// redeclared member.
5734bool
5735Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
5736  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
5737
5738  // Try to find the member we are instantiating.
5739  NamedDecl *Instantiation = 0;
5740  NamedDecl *InstantiatedFrom = 0;
5741  MemberSpecializationInfo *MSInfo = 0;
5742
5743  if (Previous.empty()) {
5744    // Nowhere to look anyway.
5745  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
5746    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5747           I != E; ++I) {
5748      NamedDecl *D = (*I)->getUnderlyingDecl();
5749      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5750        if (Context.hasSameType(Function->getType(), Method->getType())) {
5751          Instantiation = Method;
5752          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
5753          MSInfo = Method->getMemberSpecializationInfo();
5754          break;
5755        }
5756      }
5757    }
5758  } else if (isa<VarDecl>(Member)) {
5759    VarDecl *PrevVar;
5760    if (Previous.isSingleResult() &&
5761        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
5762      if (PrevVar->isStaticDataMember()) {
5763        Instantiation = PrevVar;
5764        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
5765        MSInfo = PrevVar->getMemberSpecializationInfo();
5766      }
5767  } else if (isa<RecordDecl>(Member)) {
5768    CXXRecordDecl *PrevRecord;
5769    if (Previous.isSingleResult() &&
5770        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
5771      Instantiation = PrevRecord;
5772      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
5773      MSInfo = PrevRecord->getMemberSpecializationInfo();
5774    }
5775  }
5776
5777  if (!Instantiation) {
5778    // There is no previous declaration that matches. Since member
5779    // specializations are always out-of-line, the caller will complain about
5780    // this mismatch later.
5781    return false;
5782  }
5783
5784  // If this is a friend, just bail out here before we start turning
5785  // things into explicit specializations.
5786  if (Member->getFriendObjectKind() != Decl::FOK_None) {
5787    // Preserve instantiation information.
5788    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
5789      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
5790                                      cast<CXXMethodDecl>(InstantiatedFrom),
5791        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
5792    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
5793      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5794                                      cast<CXXRecordDecl>(InstantiatedFrom),
5795        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
5796    }
5797
5798    Previous.clear();
5799    Previous.addDecl(Instantiation);
5800    return false;
5801  }
5802
5803  // Make sure that this is a specialization of a member.
5804  if (!InstantiatedFrom) {
5805    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
5806      << Member;
5807    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
5808    return true;
5809  }
5810
5811  // C++ [temp.expl.spec]p6:
5812  //   If a template, a member template or the member of a class template is
5813  //   explicitly specialized then that specialization shall be declared
5814  //   before the first use of that specialization that would cause an implicit
5815  //   instantiation to take place, in every translation unit in which such a
5816  //   use occurs; no diagnostic is required.
5817  assert(MSInfo && "Member specialization info missing?");
5818
5819  bool HasNoEffect = false;
5820  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
5821                                             TSK_ExplicitSpecialization,
5822                                             Instantiation,
5823                                     MSInfo->getTemplateSpecializationKind(),
5824                                           MSInfo->getPointOfInstantiation(),
5825                                             HasNoEffect))
5826    return true;
5827
5828  // Check the scope of this explicit specialization.
5829  if (CheckTemplateSpecializationScope(*this,
5830                                       InstantiatedFrom,
5831                                       Instantiation, Member->getLocation(),
5832                                       false))
5833    return true;
5834
5835  // Note that this is an explicit instantiation of a member.
5836  // the original declaration to note that it is an explicit specialization
5837  // (if it was previously an implicit instantiation). This latter step
5838  // makes bookkeeping easier.
5839  if (isa<FunctionDecl>(Member)) {
5840    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
5841    if (InstantiationFunction->getTemplateSpecializationKind() ==
5842          TSK_ImplicitInstantiation) {
5843      InstantiationFunction->setTemplateSpecializationKind(
5844                                                  TSK_ExplicitSpecialization);
5845      InstantiationFunction->setLocation(Member->getLocation());
5846    }
5847
5848    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
5849                                        cast<CXXMethodDecl>(InstantiatedFrom),
5850                                                  TSK_ExplicitSpecialization);
5851    MarkUnusedFileScopedDecl(InstantiationFunction);
5852  } else if (isa<VarDecl>(Member)) {
5853    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
5854    if (InstantiationVar->getTemplateSpecializationKind() ==
5855          TSK_ImplicitInstantiation) {
5856      InstantiationVar->setTemplateSpecializationKind(
5857                                                  TSK_ExplicitSpecialization);
5858      InstantiationVar->setLocation(Member->getLocation());
5859    }
5860
5861    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
5862                                                cast<VarDecl>(InstantiatedFrom),
5863                                                TSK_ExplicitSpecialization);
5864    MarkUnusedFileScopedDecl(InstantiationVar);
5865  } else {
5866    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
5867    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
5868    if (InstantiationClass->getTemplateSpecializationKind() ==
5869          TSK_ImplicitInstantiation) {
5870      InstantiationClass->setTemplateSpecializationKind(
5871                                                   TSK_ExplicitSpecialization);
5872      InstantiationClass->setLocation(Member->getLocation());
5873    }
5874
5875    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5876                                        cast<CXXRecordDecl>(InstantiatedFrom),
5877                                                   TSK_ExplicitSpecialization);
5878  }
5879
5880  // Save the caller the trouble of having to figure out which declaration
5881  // this specialization matches.
5882  Previous.clear();
5883  Previous.addDecl(Instantiation);
5884  return false;
5885}
5886
5887/// \brief Check the scope of an explicit instantiation.
5888///
5889/// \returns true if a serious error occurs, false otherwise.
5890static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
5891                                            SourceLocation InstLoc,
5892                                            bool WasQualifiedName) {
5893  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
5894  DeclContext *CurContext = S.CurContext->getRedeclContext();
5895
5896  if (CurContext->isRecord()) {
5897    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
5898      << D;
5899    return true;
5900  }
5901
5902  // C++11 [temp.explicit]p3:
5903  //   An explicit instantiation shall appear in an enclosing namespace of its
5904  //   template. If the name declared in the explicit instantiation is an
5905  //   unqualified name, the explicit instantiation shall appear in the
5906  //   namespace where its template is declared or, if that namespace is inline
5907  //   (7.3.1), any namespace from its enclosing namespace set.
5908  //
5909  // This is DR275, which we do not retroactively apply to C++98/03.
5910  if (WasQualifiedName) {
5911    if (CurContext->Encloses(OrigContext))
5912      return false;
5913  } else {
5914    if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
5915      return false;
5916  }
5917
5918  if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
5919    if (WasQualifiedName)
5920      S.Diag(InstLoc,
5921             S.getLangOptions().CPlusPlus0x?
5922               diag::err_explicit_instantiation_out_of_scope :
5923               diag::warn_explicit_instantiation_out_of_scope_0x)
5924        << D << NS;
5925    else
5926      S.Diag(InstLoc,
5927             S.getLangOptions().CPlusPlus0x?
5928               diag::err_explicit_instantiation_unqualified_wrong_namespace :
5929               diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
5930        << D << NS;
5931  } else
5932    S.Diag(InstLoc,
5933           S.getLangOptions().CPlusPlus0x?
5934             diag::err_explicit_instantiation_must_be_global :
5935             diag::warn_explicit_instantiation_must_be_global_0x)
5936      << D;
5937  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5938  return false;
5939}
5940
5941/// \brief Determine whether the given scope specifier has a template-id in it.
5942static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
5943  if (!SS.isSet())
5944    return false;
5945
5946  // C++11 [temp.explicit]p3:
5947  //   If the explicit instantiation is for a member function, a member class
5948  //   or a static data member of a class template specialization, the name of
5949  //   the class template specialization in the qualified-id for the member
5950  //   name shall be a simple-template-id.
5951  //
5952  // C++98 has the same restriction, just worded differently.
5953  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
5954       NNS; NNS = NNS->getPrefix())
5955    if (const Type *T = NNS->getAsType())
5956      if (isa<TemplateSpecializationType>(T))
5957        return true;
5958
5959  return false;
5960}
5961
5962// Explicit instantiation of a class template specialization
5963DeclResult
5964Sema::ActOnExplicitInstantiation(Scope *S,
5965                                 SourceLocation ExternLoc,
5966                                 SourceLocation TemplateLoc,
5967                                 unsigned TagSpec,
5968                                 SourceLocation KWLoc,
5969                                 const CXXScopeSpec &SS,
5970                                 TemplateTy TemplateD,
5971                                 SourceLocation TemplateNameLoc,
5972                                 SourceLocation LAngleLoc,
5973                                 ASTTemplateArgsPtr TemplateArgsIn,
5974                                 SourceLocation RAngleLoc,
5975                                 AttributeList *Attr) {
5976  // Find the class template we're specializing
5977  TemplateName Name = TemplateD.getAsVal<TemplateName>();
5978  ClassTemplateDecl *ClassTemplate
5979    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
5980
5981  // Check that the specialization uses the same tag kind as the
5982  // original template.
5983  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5984  assert(Kind != TTK_Enum &&
5985         "Invalid enum tag in class template explicit instantiation!");
5986  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5987                                    Kind, /*isDefinition*/false, KWLoc,
5988                                    *ClassTemplate->getIdentifier())) {
5989    Diag(KWLoc, diag::err_use_with_wrong_tag)
5990      << ClassTemplate
5991      << FixItHint::CreateReplacement(KWLoc,
5992                            ClassTemplate->getTemplatedDecl()->getKindName());
5993    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5994         diag::note_previous_use);
5995    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5996  }
5997
5998  // C++0x [temp.explicit]p2:
5999  //   There are two forms of explicit instantiation: an explicit instantiation
6000  //   definition and an explicit instantiation declaration. An explicit
6001  //   instantiation declaration begins with the extern keyword. [...]
6002  TemplateSpecializationKind TSK
6003    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6004                           : TSK_ExplicitInstantiationDeclaration;
6005
6006  // Translate the parser's template argument list in our AST format.
6007  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6008  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6009
6010  // Check that the template argument list is well-formed for this
6011  // template.
6012  SmallVector<TemplateArgument, 4> Converted;
6013  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
6014                                TemplateArgs, false, Converted))
6015    return true;
6016
6017  // Find the class template specialization declaration that
6018  // corresponds to these arguments.
6019  void *InsertPos = 0;
6020  ClassTemplateSpecializationDecl *PrevDecl
6021    = ClassTemplate->findSpecialization(Converted.data(),
6022                                        Converted.size(), InsertPos);
6023
6024  TemplateSpecializationKind PrevDecl_TSK
6025    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
6026
6027  // C++0x [temp.explicit]p2:
6028  //   [...] An explicit instantiation shall appear in an enclosing
6029  //   namespace of its template. [...]
6030  //
6031  // This is C++ DR 275.
6032  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
6033                                      SS.isSet()))
6034    return true;
6035
6036  ClassTemplateSpecializationDecl *Specialization = 0;
6037
6038  bool HasNoEffect = false;
6039  if (PrevDecl) {
6040    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
6041                                               PrevDecl, PrevDecl_TSK,
6042                                            PrevDecl->getPointOfInstantiation(),
6043                                               HasNoEffect))
6044      return PrevDecl;
6045
6046    // Even though HasNoEffect == true means that this explicit instantiation
6047    // has no effect on semantics, we go on to put its syntax in the AST.
6048
6049    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
6050        PrevDecl_TSK == TSK_Undeclared) {
6051      // Since the only prior class template specialization with these
6052      // arguments was referenced but not declared, reuse that
6053      // declaration node as our own, updating the source location
6054      // for the template name to reflect our new declaration.
6055      // (Other source locations will be updated later.)
6056      Specialization = PrevDecl;
6057      Specialization->setLocation(TemplateNameLoc);
6058      PrevDecl = 0;
6059    }
6060  }
6061
6062  if (!Specialization) {
6063    // Create a new class template specialization declaration node for
6064    // this explicit specialization.
6065    Specialization
6066      = ClassTemplateSpecializationDecl::Create(Context, Kind,
6067                                             ClassTemplate->getDeclContext(),
6068                                                KWLoc, TemplateNameLoc,
6069                                                ClassTemplate,
6070                                                Converted.data(),
6071                                                Converted.size(),
6072                                                PrevDecl);
6073    SetNestedNameSpecifier(Specialization, SS);
6074
6075    if (!HasNoEffect && !PrevDecl) {
6076      // Insert the new specialization.
6077      ClassTemplate->AddSpecialization(Specialization, InsertPos);
6078    }
6079  }
6080
6081  // Build the fully-sugared type for this explicit instantiation as
6082  // the user wrote in the explicit instantiation itself. This means
6083  // that we'll pretty-print the type retrieved from the
6084  // specialization's declaration the way that the user actually wrote
6085  // the explicit instantiation, rather than formatting the name based
6086  // on the "canonical" representation used to store the template
6087  // arguments in the specialization.
6088  TypeSourceInfo *WrittenTy
6089    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6090                                                TemplateArgs,
6091                                  Context.getTypeDeclType(Specialization));
6092  Specialization->setTypeAsWritten(WrittenTy);
6093  TemplateArgsIn.release();
6094
6095  // Set source locations for keywords.
6096  Specialization->setExternLoc(ExternLoc);
6097  Specialization->setTemplateKeywordLoc(TemplateLoc);
6098
6099  if (Attr)
6100    ProcessDeclAttributeList(S, Specialization, Attr);
6101
6102  // Add the explicit instantiation into its lexical context. However,
6103  // since explicit instantiations are never found by name lookup, we
6104  // just put it into the declaration context directly.
6105  Specialization->setLexicalDeclContext(CurContext);
6106  CurContext->addDecl(Specialization);
6107
6108  // Syntax is now OK, so return if it has no other effect on semantics.
6109  if (HasNoEffect) {
6110    // Set the template specialization kind.
6111    Specialization->setTemplateSpecializationKind(TSK);
6112    return Specialization;
6113  }
6114
6115  // C++ [temp.explicit]p3:
6116  //   A definition of a class template or class member template
6117  //   shall be in scope at the point of the explicit instantiation of
6118  //   the class template or class member template.
6119  //
6120  // This check comes when we actually try to perform the
6121  // instantiation.
6122  ClassTemplateSpecializationDecl *Def
6123    = cast_or_null<ClassTemplateSpecializationDecl>(
6124                                              Specialization->getDefinition());
6125  if (!Def)
6126    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
6127  else if (TSK == TSK_ExplicitInstantiationDefinition) {
6128    MarkVTableUsed(TemplateNameLoc, Specialization, true);
6129    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
6130  }
6131
6132  // Instantiate the members of this class template specialization.
6133  Def = cast_or_null<ClassTemplateSpecializationDecl>(
6134                                       Specialization->getDefinition());
6135  if (Def) {
6136    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
6137
6138    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
6139    // TSK_ExplicitInstantiationDefinition
6140    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
6141        TSK == TSK_ExplicitInstantiationDefinition)
6142      Def->setTemplateSpecializationKind(TSK);
6143
6144    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
6145  }
6146
6147  // Set the template specialization kind.
6148  Specialization->setTemplateSpecializationKind(TSK);
6149  return Specialization;
6150}
6151
6152// Explicit instantiation of a member class of a class template.
6153DeclResult
6154Sema::ActOnExplicitInstantiation(Scope *S,
6155                                 SourceLocation ExternLoc,
6156                                 SourceLocation TemplateLoc,
6157                                 unsigned TagSpec,
6158                                 SourceLocation KWLoc,
6159                                 CXXScopeSpec &SS,
6160                                 IdentifierInfo *Name,
6161                                 SourceLocation NameLoc,
6162                                 AttributeList *Attr) {
6163
6164  bool Owned = false;
6165  bool IsDependent = false;
6166  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
6167                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
6168                        /*ModulePrivateLoc=*/SourceLocation(),
6169                        MultiTemplateParamsArg(*this, 0, 0),
6170                        Owned, IsDependent, SourceLocation(), false,
6171                        TypeResult());
6172  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
6173
6174  if (!TagD)
6175    return true;
6176
6177  TagDecl *Tag = cast<TagDecl>(TagD);
6178  if (Tag->isEnum()) {
6179    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
6180      << Context.getTypeDeclType(Tag);
6181    return true;
6182  }
6183
6184  if (Tag->isInvalidDecl())
6185    return true;
6186
6187  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
6188  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
6189  if (!Pattern) {
6190    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
6191      << Context.getTypeDeclType(Record);
6192    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
6193    return true;
6194  }
6195
6196  // C++0x [temp.explicit]p2:
6197  //   If the explicit instantiation is for a class or member class, the
6198  //   elaborated-type-specifier in the declaration shall include a
6199  //   simple-template-id.
6200  //
6201  // C++98 has the same restriction, just worded differently.
6202  if (!ScopeSpecifierHasTemplateId(SS))
6203    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
6204      << Record << SS.getRange();
6205
6206  // C++0x [temp.explicit]p2:
6207  //   There are two forms of explicit instantiation: an explicit instantiation
6208  //   definition and an explicit instantiation declaration. An explicit
6209  //   instantiation declaration begins with the extern keyword. [...]
6210  TemplateSpecializationKind TSK
6211    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6212                           : TSK_ExplicitInstantiationDeclaration;
6213
6214  // C++0x [temp.explicit]p2:
6215  //   [...] An explicit instantiation shall appear in an enclosing
6216  //   namespace of its template. [...]
6217  //
6218  // This is C++ DR 275.
6219  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
6220
6221  // Verify that it is okay to explicitly instantiate here.
6222  CXXRecordDecl *PrevDecl
6223    = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
6224  if (!PrevDecl && Record->getDefinition())
6225    PrevDecl = Record;
6226  if (PrevDecl) {
6227    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
6228    bool HasNoEffect = false;
6229    assert(MSInfo && "No member specialization information?");
6230    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
6231                                               PrevDecl,
6232                                        MSInfo->getTemplateSpecializationKind(),
6233                                             MSInfo->getPointOfInstantiation(),
6234                                               HasNoEffect))
6235      return true;
6236    if (HasNoEffect)
6237      return TagD;
6238  }
6239
6240  CXXRecordDecl *RecordDef
6241    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6242  if (!RecordDef) {
6243    // C++ [temp.explicit]p3:
6244    //   A definition of a member class of a class template shall be in scope
6245    //   at the point of an explicit instantiation of the member class.
6246    CXXRecordDecl *Def
6247      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
6248    if (!Def) {
6249      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
6250        << 0 << Record->getDeclName() << Record->getDeclContext();
6251      Diag(Pattern->getLocation(), diag::note_forward_declaration)
6252        << Pattern;
6253      return true;
6254    } else {
6255      if (InstantiateClass(NameLoc, Record, Def,
6256                           getTemplateInstantiationArgs(Record),
6257                           TSK))
6258        return true;
6259
6260      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6261      if (!RecordDef)
6262        return true;
6263    }
6264  }
6265
6266  // Instantiate all of the members of the class.
6267  InstantiateClassMembers(NameLoc, RecordDef,
6268                          getTemplateInstantiationArgs(Record), TSK);
6269
6270  if (TSK == TSK_ExplicitInstantiationDefinition)
6271    MarkVTableUsed(NameLoc, RecordDef, true);
6272
6273  // FIXME: We don't have any representation for explicit instantiations of
6274  // member classes. Such a representation is not needed for compilation, but it
6275  // should be available for clients that want to see all of the declarations in
6276  // the source code.
6277  return TagD;
6278}
6279
6280DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
6281                                            SourceLocation ExternLoc,
6282                                            SourceLocation TemplateLoc,
6283                                            Declarator &D) {
6284  // Explicit instantiations always require a name.
6285  // TODO: check if/when DNInfo should replace Name.
6286  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6287  DeclarationName Name = NameInfo.getName();
6288  if (!Name) {
6289    if (!D.isInvalidType())
6290      Diag(D.getDeclSpec().getSourceRange().getBegin(),
6291           diag::err_explicit_instantiation_requires_name)
6292        << D.getDeclSpec().getSourceRange()
6293        << D.getSourceRange();
6294
6295    return true;
6296  }
6297
6298  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6299  // we find one that is.
6300  while ((S->getFlags() & Scope::DeclScope) == 0 ||
6301         (S->getFlags() & Scope::TemplateParamScope) != 0)
6302    S = S->getParent();
6303
6304  // Determine the type of the declaration.
6305  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
6306  QualType R = T->getType();
6307  if (R.isNull())
6308    return true;
6309
6310  // C++ [dcl.stc]p1:
6311  //   A storage-class-specifier shall not be specified in [...] an explicit
6312  //   instantiation (14.7.2) directive.
6313  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
6314    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
6315      << Name;
6316    return true;
6317  } else if (D.getDeclSpec().getStorageClassSpec()
6318                                                != DeclSpec::SCS_unspecified) {
6319    // Complain about then remove the storage class specifier.
6320    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
6321      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6322
6323    D.getMutableDeclSpec().ClearStorageClassSpecs();
6324  }
6325
6326  // C++0x [temp.explicit]p1:
6327  //   [...] An explicit instantiation of a function template shall not use the
6328  //   inline or constexpr specifiers.
6329  // Presumably, this also applies to member functions of class templates as
6330  // well.
6331  if (D.getDeclSpec().isInlineSpecified())
6332    Diag(D.getDeclSpec().getInlineSpecLoc(),
6333         getLangOptions().CPlusPlus0x ?
6334           diag::err_explicit_instantiation_inline :
6335           diag::warn_explicit_instantiation_inline_0x)
6336      << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6337  if (D.getDeclSpec().isConstexprSpecified())
6338    // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
6339    // not already specified.
6340    Diag(D.getDeclSpec().getConstexprSpecLoc(),
6341         diag::err_explicit_instantiation_constexpr);
6342
6343  // C++0x [temp.explicit]p2:
6344  //   There are two forms of explicit instantiation: an explicit instantiation
6345  //   definition and an explicit instantiation declaration. An explicit
6346  //   instantiation declaration begins with the extern keyword. [...]
6347  TemplateSpecializationKind TSK
6348    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6349                           : TSK_ExplicitInstantiationDeclaration;
6350
6351  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
6352  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
6353
6354  if (!R->isFunctionType()) {
6355    // C++ [temp.explicit]p1:
6356    //   A [...] static data member of a class template can be explicitly
6357    //   instantiated from the member definition associated with its class
6358    //   template.
6359    if (Previous.isAmbiguous())
6360      return true;
6361
6362    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
6363    if (!Prev || !Prev->isStaticDataMember()) {
6364      // We expect to see a data data member here.
6365      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
6366        << Name;
6367      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6368           P != PEnd; ++P)
6369        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
6370      return true;
6371    }
6372
6373    if (!Prev->getInstantiatedFromStaticDataMember()) {
6374      // FIXME: Check for explicit specialization?
6375      Diag(D.getIdentifierLoc(),
6376           diag::err_explicit_instantiation_data_member_not_instantiated)
6377        << Prev;
6378      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
6379      // FIXME: Can we provide a note showing where this was declared?
6380      return true;
6381    }
6382
6383    // C++0x [temp.explicit]p2:
6384    //   If the explicit instantiation is for a member function, a member class
6385    //   or a static data member of a class template specialization, the name of
6386    //   the class template specialization in the qualified-id for the member
6387    //   name shall be a simple-template-id.
6388    //
6389    // C++98 has the same restriction, just worded differently.
6390    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6391      Diag(D.getIdentifierLoc(),
6392           diag::ext_explicit_instantiation_without_qualified_id)
6393        << Prev << D.getCXXScopeSpec().getRange();
6394
6395    // Check the scope of this explicit instantiation.
6396    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
6397
6398    // Verify that it is okay to explicitly instantiate here.
6399    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
6400    assert(MSInfo && "Missing static data member specialization info?");
6401    bool HasNoEffect = false;
6402    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
6403                                        MSInfo->getTemplateSpecializationKind(),
6404                                              MSInfo->getPointOfInstantiation(),
6405                                               HasNoEffect))
6406      return true;
6407    if (HasNoEffect)
6408      return (Decl*) 0;
6409
6410    // Instantiate static data member.
6411    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6412    if (TSK == TSK_ExplicitInstantiationDefinition)
6413      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
6414
6415    // FIXME: Create an ExplicitInstantiation node?
6416    return (Decl*) 0;
6417  }
6418
6419  // If the declarator is a template-id, translate the parser's template
6420  // argument list into our AST format.
6421  bool HasExplicitTemplateArgs = false;
6422  TemplateArgumentListInfo TemplateArgs;
6423  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6424    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6425    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6426    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6427    ASTTemplateArgsPtr TemplateArgsPtr(*this,
6428                                       TemplateId->getTemplateArgs(),
6429                                       TemplateId->NumArgs);
6430    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
6431    HasExplicitTemplateArgs = true;
6432    TemplateArgsPtr.release();
6433  }
6434
6435  // C++ [temp.explicit]p1:
6436  //   A [...] function [...] can be explicitly instantiated from its template.
6437  //   A member function [...] of a class template can be explicitly
6438  //  instantiated from the member definition associated with its class
6439  //  template.
6440  UnresolvedSet<8> Matches;
6441  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6442       P != PEnd; ++P) {
6443    NamedDecl *Prev = *P;
6444    if (!HasExplicitTemplateArgs) {
6445      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
6446        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
6447          Matches.clear();
6448
6449          Matches.addDecl(Method, P.getAccess());
6450          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
6451            break;
6452        }
6453      }
6454    }
6455
6456    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
6457    if (!FunTmpl)
6458      continue;
6459
6460    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
6461    FunctionDecl *Specialization = 0;
6462    if (TemplateDeductionResult TDK
6463          = DeduceTemplateArguments(FunTmpl,
6464                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6465                                    R, Specialization, Info)) {
6466      // FIXME: Keep track of almost-matches?
6467      (void)TDK;
6468      continue;
6469    }
6470
6471    Matches.addDecl(Specialization, P.getAccess());
6472  }
6473
6474  // Find the most specialized function template specialization.
6475  UnresolvedSetIterator Result
6476    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
6477                         D.getIdentifierLoc(),
6478                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
6479                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
6480                         PDiag(diag::note_explicit_instantiation_candidate));
6481
6482  if (Result == Matches.end())
6483    return true;
6484
6485  // Ignore access control bits, we don't need them for redeclaration checking.
6486  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6487
6488  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
6489    Diag(D.getIdentifierLoc(),
6490         diag::err_explicit_instantiation_member_function_not_instantiated)
6491      << Specialization
6492      << (Specialization->getTemplateSpecializationKind() ==
6493          TSK_ExplicitSpecialization);
6494    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
6495    return true;
6496  }
6497
6498  FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
6499  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
6500    PrevDecl = Specialization;
6501
6502  if (PrevDecl) {
6503    bool HasNoEffect = false;
6504    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
6505                                               PrevDecl,
6506                                     PrevDecl->getTemplateSpecializationKind(),
6507                                          PrevDecl->getPointOfInstantiation(),
6508                                               HasNoEffect))
6509      return true;
6510
6511    // FIXME: We may still want to build some representation of this
6512    // explicit specialization.
6513    if (HasNoEffect)
6514      return (Decl*) 0;
6515  }
6516
6517  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6518  AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
6519  if (Attr)
6520    ProcessDeclAttributeList(S, Specialization, Attr);
6521
6522  if (TSK == TSK_ExplicitInstantiationDefinition)
6523    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
6524
6525  // C++0x [temp.explicit]p2:
6526  //   If the explicit instantiation is for a member function, a member class
6527  //   or a static data member of a class template specialization, the name of
6528  //   the class template specialization in the qualified-id for the member
6529  //   name shall be a simple-template-id.
6530  //
6531  // C++98 has the same restriction, just worded differently.
6532  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
6533  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
6534      D.getCXXScopeSpec().isSet() &&
6535      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6536    Diag(D.getIdentifierLoc(),
6537         diag::ext_explicit_instantiation_without_qualified_id)
6538    << Specialization << D.getCXXScopeSpec().getRange();
6539
6540  CheckExplicitInstantiationScope(*this,
6541                   FunTmpl? (NamedDecl *)FunTmpl
6542                          : Specialization->getInstantiatedFromMemberFunction(),
6543                                  D.getIdentifierLoc(),
6544                                  D.getCXXScopeSpec().isSet());
6545
6546  // FIXME: Create some kind of ExplicitInstantiationDecl here.
6547  return (Decl*) 0;
6548}
6549
6550TypeResult
6551Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6552                        const CXXScopeSpec &SS, IdentifierInfo *Name,
6553                        SourceLocation TagLoc, SourceLocation NameLoc) {
6554  // This has to hold, because SS is expected to be defined.
6555  assert(Name && "Expected a name in a dependent tag");
6556
6557  NestedNameSpecifier *NNS
6558    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6559  if (!NNS)
6560    return true;
6561
6562  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6563
6564  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
6565    Diag(NameLoc, diag::err_dependent_tag_decl)
6566      << (TUK == TUK_Definition) << Kind << SS.getRange();
6567    return true;
6568  }
6569
6570  // Create the resulting type.
6571  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6572  QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
6573
6574  // Create type-source location information for this type.
6575  TypeLocBuilder TLB;
6576  DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
6577  TL.setKeywordLoc(TagLoc);
6578  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6579  TL.setNameLoc(NameLoc);
6580  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
6581}
6582
6583TypeResult
6584Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6585                        const CXXScopeSpec &SS, const IdentifierInfo &II,
6586                        SourceLocation IdLoc) {
6587  if (SS.isInvalid())
6588    return true;
6589
6590  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6591    Diag(TypenameLoc,
6592         getLangOptions().CPlusPlus0x ?
6593           diag::warn_cxx98_compat_typename_outside_of_template :
6594           diag::ext_typename_outside_of_template)
6595      << FixItHint::CreateRemoval(TypenameLoc);
6596
6597  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6598  QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
6599                                 TypenameLoc, QualifierLoc, II, IdLoc);
6600  if (T.isNull())
6601    return true;
6602
6603  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6604  if (isa<DependentNameType>(T)) {
6605    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6606    TL.setKeywordLoc(TypenameLoc);
6607    TL.setQualifierLoc(QualifierLoc);
6608    TL.setNameLoc(IdLoc);
6609  } else {
6610    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6611    TL.setKeywordLoc(TypenameLoc);
6612    TL.setQualifierLoc(QualifierLoc);
6613    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
6614  }
6615
6616  return CreateParsedType(T, TSI);
6617}
6618
6619TypeResult
6620Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6621                        const CXXScopeSpec &SS,
6622                        SourceLocation TemplateLoc,
6623                        TemplateTy TemplateIn,
6624                        SourceLocation TemplateNameLoc,
6625                        SourceLocation LAngleLoc,
6626                        ASTTemplateArgsPtr TemplateArgsIn,
6627                        SourceLocation RAngleLoc) {
6628  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6629    Diag(TypenameLoc,
6630         getLangOptions().CPlusPlus0x ?
6631           diag::warn_cxx98_compat_typename_outside_of_template :
6632           diag::ext_typename_outside_of_template)
6633      << FixItHint::CreateRemoval(TypenameLoc);
6634
6635  // Translate the parser's template argument list in our AST format.
6636  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6637  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6638
6639  TemplateName Template = TemplateIn.get();
6640  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
6641    // Construct a dependent template specialization type.
6642    assert(DTN && "dependent template has non-dependent name?");
6643    assert(DTN->getQualifier()
6644           == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
6645    QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
6646                                                          DTN->getQualifier(),
6647                                                          DTN->getIdentifier(),
6648                                                                TemplateArgs);
6649
6650    // Create source-location information for this type.
6651    TypeLocBuilder Builder;
6652    DependentTemplateSpecializationTypeLoc SpecTL
6653    = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
6654    SpecTL.setLAngleLoc(LAngleLoc);
6655    SpecTL.setRAngleLoc(RAngleLoc);
6656    SpecTL.setKeywordLoc(TypenameLoc);
6657    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
6658    SpecTL.setNameLoc(TemplateNameLoc);
6659    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6660      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6661    return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
6662  }
6663
6664  QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
6665  if (T.isNull())
6666    return true;
6667
6668  // Provide source-location information for the template specialization
6669  // type.
6670  TypeLocBuilder Builder;
6671  TemplateSpecializationTypeLoc SpecTL
6672    = Builder.push<TemplateSpecializationTypeLoc>(T);
6673
6674  // FIXME: No place to set the location of the 'template' keyword!
6675  SpecTL.setLAngleLoc(LAngleLoc);
6676  SpecTL.setRAngleLoc(RAngleLoc);
6677  SpecTL.setTemplateNameLoc(TemplateNameLoc);
6678  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6679    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6680
6681  T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
6682  ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
6683  TL.setKeywordLoc(TypenameLoc);
6684  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6685
6686  TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
6687  return CreateParsedType(T, TSI);
6688}
6689
6690
6691/// \brief Build the type that describes a C++ typename specifier,
6692/// e.g., "typename T::type".
6693QualType
6694Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
6695                        SourceLocation KeywordLoc,
6696                        NestedNameSpecifierLoc QualifierLoc,
6697                        const IdentifierInfo &II,
6698                        SourceLocation IILoc) {
6699  CXXScopeSpec SS;
6700  SS.Adopt(QualifierLoc);
6701
6702  DeclContext *Ctx = computeDeclContext(SS);
6703  if (!Ctx) {
6704    // If the nested-name-specifier is dependent and couldn't be
6705    // resolved to a type, build a typename type.
6706    assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
6707    return Context.getDependentNameType(Keyword,
6708                                        QualifierLoc.getNestedNameSpecifier(),
6709                                        &II);
6710  }
6711
6712  // If the nested-name-specifier refers to the current instantiation,
6713  // the "typename" keyword itself is superfluous. In C++03, the
6714  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
6715  // allows such extraneous "typename" keywords, and we retroactively
6716  // apply this DR to C++03 code with only a warning. In any case we continue.
6717
6718  if (RequireCompleteDeclContext(SS, Ctx))
6719    return QualType();
6720
6721  DeclarationName Name(&II);
6722  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
6723  LookupQualifiedName(Result, Ctx);
6724  unsigned DiagID = 0;
6725  Decl *Referenced = 0;
6726  switch (Result.getResultKind()) {
6727  case LookupResult::NotFound:
6728    DiagID = diag::err_typename_nested_not_found;
6729    break;
6730
6731  case LookupResult::FoundUnresolvedValue: {
6732    // We found a using declaration that is a value. Most likely, the using
6733    // declaration itself is meant to have the 'typename' keyword.
6734    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6735                          IILoc);
6736    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
6737      << Name << Ctx << FullRange;
6738    if (UnresolvedUsingValueDecl *Using
6739          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
6740      SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
6741      Diag(Loc, diag::note_using_value_decl_missing_typename)
6742        << FixItHint::CreateInsertion(Loc, "typename ");
6743    }
6744  }
6745  // Fall through to create a dependent typename type, from which we can recover
6746  // better.
6747
6748  case LookupResult::NotFoundInCurrentInstantiation:
6749    // Okay, it's a member of an unknown instantiation.
6750    return Context.getDependentNameType(Keyword,
6751                                        QualifierLoc.getNestedNameSpecifier(),
6752                                        &II);
6753
6754  case LookupResult::Found:
6755    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
6756      // We found a type. Build an ElaboratedType, since the
6757      // typename-specifier was just sugar.
6758      return Context.getElaboratedType(ETK_Typename,
6759                                       QualifierLoc.getNestedNameSpecifier(),
6760                                       Context.getTypeDeclType(Type));
6761    }
6762
6763    DiagID = diag::err_typename_nested_not_type;
6764    Referenced = Result.getFoundDecl();
6765    break;
6766
6767  case LookupResult::FoundOverloaded:
6768    DiagID = diag::err_typename_nested_not_type;
6769    Referenced = *Result.begin();
6770    break;
6771
6772  case LookupResult::Ambiguous:
6773    return QualType();
6774  }
6775
6776  // If we get here, it's because name lookup did not find a
6777  // type. Emit an appropriate diagnostic and return an error.
6778  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6779                        IILoc);
6780  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
6781  if (Referenced)
6782    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
6783      << Name;
6784  return QualType();
6785}
6786
6787namespace {
6788  // See Sema::RebuildTypeInCurrentInstantiation
6789  class CurrentInstantiationRebuilder
6790    : public TreeTransform<CurrentInstantiationRebuilder> {
6791    SourceLocation Loc;
6792    DeclarationName Entity;
6793
6794  public:
6795    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
6796
6797    CurrentInstantiationRebuilder(Sema &SemaRef,
6798                                  SourceLocation Loc,
6799                                  DeclarationName Entity)
6800    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
6801      Loc(Loc), Entity(Entity) { }
6802
6803    /// \brief Determine whether the given type \p T has already been
6804    /// transformed.
6805    ///
6806    /// For the purposes of type reconstruction, a type has already been
6807    /// transformed if it is NULL or if it is not dependent.
6808    bool AlreadyTransformed(QualType T) {
6809      return T.isNull() || !T->isDependentType();
6810    }
6811
6812    /// \brief Returns the location of the entity whose type is being
6813    /// rebuilt.
6814    SourceLocation getBaseLocation() { return Loc; }
6815
6816    /// \brief Returns the name of the entity whose type is being rebuilt.
6817    DeclarationName getBaseEntity() { return Entity; }
6818
6819    /// \brief Sets the "base" location and entity when that
6820    /// information is known based on another transformation.
6821    void setBase(SourceLocation Loc, DeclarationName Entity) {
6822      this->Loc = Loc;
6823      this->Entity = Entity;
6824    }
6825  };
6826}
6827
6828/// \brief Rebuilds a type within the context of the current instantiation.
6829///
6830/// The type \p T is part of the type of an out-of-line member definition of
6831/// a class template (or class template partial specialization) that was parsed
6832/// and constructed before we entered the scope of the class template (or
6833/// partial specialization thereof). This routine will rebuild that type now
6834/// that we have entered the declarator's scope, which may produce different
6835/// canonical types, e.g.,
6836///
6837/// \code
6838/// template<typename T>
6839/// struct X {
6840///   typedef T* pointer;
6841///   pointer data();
6842/// };
6843///
6844/// template<typename T>
6845/// typename X<T>::pointer X<T>::data() { ... }
6846/// \endcode
6847///
6848/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
6849/// since we do not know that we can look into X<T> when we parsed the type.
6850/// This function will rebuild the type, performing the lookup of "pointer"
6851/// in X<T> and returning an ElaboratedType whose canonical type is the same
6852/// as the canonical type of T*, allowing the return types of the out-of-line
6853/// definition and the declaration to match.
6854TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
6855                                                        SourceLocation Loc,
6856                                                        DeclarationName Name) {
6857  if (!T || !T->getType()->isDependentType())
6858    return T;
6859
6860  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
6861  return Rebuilder.TransformType(T);
6862}
6863
6864ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
6865  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
6866                                          DeclarationName());
6867  return Rebuilder.TransformExpr(E);
6868}
6869
6870bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
6871  if (SS.isInvalid())
6872    return true;
6873
6874  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6875  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
6876                                          DeclarationName());
6877  NestedNameSpecifierLoc Rebuilt
6878    = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
6879  if (!Rebuilt)
6880    return true;
6881
6882  SS.Adopt(Rebuilt);
6883  return false;
6884}
6885
6886/// \brief Rebuild the template parameters now that we know we're in a current
6887/// instantiation.
6888bool Sema::RebuildTemplateParamsInCurrentInstantiation(
6889                                               TemplateParameterList *Params) {
6890  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
6891    Decl *Param = Params->getParam(I);
6892
6893    // There is nothing to rebuild in a type parameter.
6894    if (isa<TemplateTypeParmDecl>(Param))
6895      continue;
6896
6897    // Rebuild the template parameter list of a template template parameter.
6898    if (TemplateTemplateParmDecl *TTP
6899        = dyn_cast<TemplateTemplateParmDecl>(Param)) {
6900      if (RebuildTemplateParamsInCurrentInstantiation(
6901            TTP->getTemplateParameters()))
6902        return true;
6903
6904      continue;
6905    }
6906
6907    // Rebuild the type of a non-type template parameter.
6908    NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
6909    TypeSourceInfo *NewTSI
6910      = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
6911                                          NTTP->getLocation(),
6912                                          NTTP->getDeclName());
6913    if (!NewTSI)
6914      return true;
6915
6916    if (NewTSI != NTTP->getTypeSourceInfo()) {
6917      NTTP->setTypeSourceInfo(NewTSI);
6918      NTTP->setType(NewTSI->getType());
6919    }
6920  }
6921
6922  return false;
6923}
6924
6925/// \brief Produces a formatted string that describes the binding of
6926/// template parameters to template arguments.
6927std::string
6928Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6929                                      const TemplateArgumentList &Args) {
6930  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
6931}
6932
6933std::string
6934Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6935                                      const TemplateArgument *Args,
6936                                      unsigned NumArgs) {
6937  llvm::SmallString<128> Str;
6938  llvm::raw_svector_ostream Out(Str);
6939
6940  if (!Params || Params->size() == 0 || NumArgs == 0)
6941    return std::string();
6942
6943  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
6944    if (I >= NumArgs)
6945      break;
6946
6947    if (I == 0)
6948      Out << "[with ";
6949    else
6950      Out << ", ";
6951
6952    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
6953      Out << Id->getName();
6954    } else {
6955      Out << '$' << I;
6956    }
6957
6958    Out << " = ";
6959    Args[I].print(getPrintingPolicy(), Out);
6960  }
6961
6962  Out << ']';
6963  return Out.str();
6964}
6965
6966void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) {
6967  if (!FD)
6968    return;
6969  FD->setLateTemplateParsed(Flag);
6970}
6971
6972bool Sema::IsInsideALocalClassWithinATemplateFunction() {
6973  DeclContext *DC = CurContext;
6974
6975  while (DC) {
6976    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
6977      const FunctionDecl *FD = RD->isLocalClass();
6978      return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
6979    } else if (DC->isTranslationUnit() || DC->isNamespace())
6980      return false;
6981
6982    DC = DC->getParent();
6983  }
6984  return false;
6985}
6986