SemaTemplate.cpp revision 91a5755ad73c5dc1dfb167e448fdd74e75a6df56
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "clang/Sema/SemaInternal.h" 13#include "clang/Sema/Lookup.h" 14#include "clang/Sema/Scope.h" 15#include "clang/Sema/Template.h" 16#include "clang/Sema/TemplateDeduction.h" 17#include "TreeTransform.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ExprCXX.h" 21#include "clang/AST/DeclFriend.h" 22#include "clang/AST/DeclTemplate.h" 23#include "clang/AST/RecursiveASTVisitor.h" 24#include "clang/AST/TypeVisitor.h" 25#include "clang/Sema/DeclSpec.h" 26#include "clang/Sema/ParsedTemplate.h" 27#include "clang/Basic/LangOptions.h" 28#include "clang/Basic/PartialDiagnostic.h" 29#include "llvm/ADT/StringExtras.h" 30using namespace clang; 31using namespace sema; 32 33// Exported for use by Parser. 34SourceRange 35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 36 unsigned N) { 37 if (!N) return SourceRange(); 38 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 39} 40 41/// \brief Determine whether the declaration found is acceptable as the name 42/// of a template and, if so, return that template declaration. Otherwise, 43/// returns NULL. 44static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 45 NamedDecl *Orig) { 46 NamedDecl *D = Orig->getUnderlyingDecl(); 47 48 if (isa<TemplateDecl>(D)) 49 return Orig; 50 51 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 52 // C++ [temp.local]p1: 53 // Like normal (non-template) classes, class templates have an 54 // injected-class-name (Clause 9). The injected-class-name 55 // can be used with or without a template-argument-list. When 56 // it is used without a template-argument-list, it is 57 // equivalent to the injected-class-name followed by the 58 // template-parameters of the class template enclosed in 59 // <>. When it is used with a template-argument-list, it 60 // refers to the specified class template specialization, 61 // which could be the current specialization or another 62 // specialization. 63 if (Record->isInjectedClassName()) { 64 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 65 if (Record->getDescribedClassTemplate()) 66 return Record->getDescribedClassTemplate(); 67 68 if (ClassTemplateSpecializationDecl *Spec 69 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 70 return Spec->getSpecializedTemplate(); 71 } 72 73 return 0; 74 } 75 76 return 0; 77} 78 79void Sema::FilterAcceptableTemplateNames(LookupResult &R) { 80 // The set of class templates we've already seen. 81 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 82 LookupResult::Filter filter = R.makeFilter(); 83 while (filter.hasNext()) { 84 NamedDecl *Orig = filter.next(); 85 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig); 86 if (!Repl) 87 filter.erase(); 88 else if (Repl != Orig) { 89 90 // C++ [temp.local]p3: 91 // A lookup that finds an injected-class-name (10.2) can result in an 92 // ambiguity in certain cases (for example, if it is found in more than 93 // one base class). If all of the injected-class-names that are found 94 // refer to specializations of the same class template, and if the name 95 // is used as a template-name, the reference refers to the class 96 // template itself and not a specialization thereof, and is not 97 // ambiguous. 98 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 99 if (!ClassTemplates.insert(ClassTmpl)) { 100 filter.erase(); 101 continue; 102 } 103 104 // FIXME: we promote access to public here as a workaround to 105 // the fact that LookupResult doesn't let us remember that we 106 // found this template through a particular injected class name, 107 // which means we end up doing nasty things to the invariants. 108 // Pretending that access is public is *much* safer. 109 filter.replace(Repl, AS_public); 110 } 111 } 112 filter.done(); 113} 114 115bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R) { 116 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) 117 if (isAcceptableTemplateName(Context, *I)) 118 return true; 119 120 return false; 121} 122 123TemplateNameKind Sema::isTemplateName(Scope *S, 124 CXXScopeSpec &SS, 125 bool hasTemplateKeyword, 126 UnqualifiedId &Name, 127 ParsedType ObjectTypePtr, 128 bool EnteringContext, 129 TemplateTy &TemplateResult, 130 bool &MemberOfUnknownSpecialization) { 131 assert(getLangOptions().CPlusPlus && "No template names in C!"); 132 133 DeclarationName TName; 134 MemberOfUnknownSpecialization = false; 135 136 switch (Name.getKind()) { 137 case UnqualifiedId::IK_Identifier: 138 TName = DeclarationName(Name.Identifier); 139 break; 140 141 case UnqualifiedId::IK_OperatorFunctionId: 142 TName = Context.DeclarationNames.getCXXOperatorName( 143 Name.OperatorFunctionId.Operator); 144 break; 145 146 case UnqualifiedId::IK_LiteralOperatorId: 147 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 148 break; 149 150 default: 151 return TNK_Non_template; 152 } 153 154 QualType ObjectType = ObjectTypePtr.get(); 155 156 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 157 LookupOrdinaryName); 158 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 159 MemberOfUnknownSpecialization); 160 if (R.empty()) return TNK_Non_template; 161 if (R.isAmbiguous()) { 162 // Suppress diagnostics; we'll redo this lookup later. 163 R.suppressDiagnostics(); 164 165 // FIXME: we might have ambiguous templates, in which case we 166 // should at least parse them properly! 167 return TNK_Non_template; 168 } 169 170 TemplateName Template; 171 TemplateNameKind TemplateKind; 172 173 unsigned ResultCount = R.end() - R.begin(); 174 if (ResultCount > 1) { 175 // We assume that we'll preserve the qualifier from a function 176 // template name in other ways. 177 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 178 TemplateKind = TNK_Function_template; 179 180 // We'll do this lookup again later. 181 R.suppressDiagnostics(); 182 } else { 183 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 184 185 if (SS.isSet() && !SS.isInvalid()) { 186 NestedNameSpecifier *Qualifier 187 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 188 Template = Context.getQualifiedTemplateName(Qualifier, 189 hasTemplateKeyword, TD); 190 } else { 191 Template = TemplateName(TD); 192 } 193 194 if (isa<FunctionTemplateDecl>(TD)) { 195 TemplateKind = TNK_Function_template; 196 197 // We'll do this lookup again later. 198 R.suppressDiagnostics(); 199 } else { 200 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 201 isa<TypeAliasTemplateDecl>(TD)); 202 TemplateKind = TNK_Type_template; 203 } 204 } 205 206 TemplateResult = TemplateTy::make(Template); 207 return TemplateKind; 208} 209 210bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 211 SourceLocation IILoc, 212 Scope *S, 213 const CXXScopeSpec *SS, 214 TemplateTy &SuggestedTemplate, 215 TemplateNameKind &SuggestedKind) { 216 // We can't recover unless there's a dependent scope specifier preceding the 217 // template name. 218 // FIXME: Typo correction? 219 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 220 computeDeclContext(*SS)) 221 return false; 222 223 // The code is missing a 'template' keyword prior to the dependent template 224 // name. 225 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 226 Diag(IILoc, diag::err_template_kw_missing) 227 << Qualifier << II.getName() 228 << FixItHint::CreateInsertion(IILoc, "template "); 229 SuggestedTemplate 230 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 231 SuggestedKind = TNK_Dependent_template_name; 232 return true; 233} 234 235void Sema::LookupTemplateName(LookupResult &Found, 236 Scope *S, CXXScopeSpec &SS, 237 QualType ObjectType, 238 bool EnteringContext, 239 bool &MemberOfUnknownSpecialization) { 240 // Determine where to perform name lookup 241 MemberOfUnknownSpecialization = false; 242 DeclContext *LookupCtx = 0; 243 bool isDependent = false; 244 if (!ObjectType.isNull()) { 245 // This nested-name-specifier occurs in a member access expression, e.g., 246 // x->B::f, and we are looking into the type of the object. 247 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 248 LookupCtx = computeDeclContext(ObjectType); 249 isDependent = ObjectType->isDependentType(); 250 assert((isDependent || !ObjectType->isIncompleteType()) && 251 "Caller should have completed object type"); 252 } else if (SS.isSet()) { 253 // This nested-name-specifier occurs after another nested-name-specifier, 254 // so long into the context associated with the prior nested-name-specifier. 255 LookupCtx = computeDeclContext(SS, EnteringContext); 256 isDependent = isDependentScopeSpecifier(SS); 257 258 // The declaration context must be complete. 259 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 260 return; 261 } 262 263 bool ObjectTypeSearchedInScope = false; 264 if (LookupCtx) { 265 // Perform "qualified" name lookup into the declaration context we 266 // computed, which is either the type of the base of a member access 267 // expression or the declaration context associated with a prior 268 // nested-name-specifier. 269 LookupQualifiedName(Found, LookupCtx); 270 271 if (!ObjectType.isNull() && Found.empty()) { 272 // C++ [basic.lookup.classref]p1: 273 // In a class member access expression (5.2.5), if the . or -> token is 274 // immediately followed by an identifier followed by a <, the 275 // identifier must be looked up to determine whether the < is the 276 // beginning of a template argument list (14.2) or a less-than operator. 277 // The identifier is first looked up in the class of the object 278 // expression. If the identifier is not found, it is then looked up in 279 // the context of the entire postfix-expression and shall name a class 280 // or function template. 281 if (S) LookupName(Found, S); 282 ObjectTypeSearchedInScope = true; 283 } 284 } else if (isDependent && (!S || ObjectType.isNull())) { 285 // We cannot look into a dependent object type or nested nme 286 // specifier. 287 MemberOfUnknownSpecialization = true; 288 return; 289 } else { 290 // Perform unqualified name lookup in the current scope. 291 LookupName(Found, S); 292 } 293 294 if (Found.empty() && !isDependent) { 295 // If we did not find any names, attempt to correct any typos. 296 DeclarationName Name = Found.getLookupName(); 297 Found.clear(); 298 if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(), 299 Found.getLookupKind(), S, &SS, 300 LookupCtx, false, 301 CTC_CXXCasts)) { 302 Found.setLookupName(Corrected.getCorrection()); 303 if (Corrected.getCorrectionDecl()) 304 Found.addDecl(Corrected.getCorrectionDecl()); 305 FilterAcceptableTemplateNames(Found); 306 if (!Found.empty()) { 307 std::string CorrectedStr(Corrected.getAsString(getLangOptions())); 308 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions())); 309 if (LookupCtx) 310 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 311 << Name << LookupCtx << CorrectedQuotedStr << SS.getRange() 312 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); 313 else 314 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 315 << Name << CorrectedQuotedStr 316 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); 317 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 318 Diag(Template->getLocation(), diag::note_previous_decl) 319 << CorrectedQuotedStr; 320 } 321 } else { 322 Found.setLookupName(Name); 323 } 324 } 325 326 FilterAcceptableTemplateNames(Found); 327 if (Found.empty()) { 328 if (isDependent) 329 MemberOfUnknownSpecialization = true; 330 return; 331 } 332 333 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 334 // C++ [basic.lookup.classref]p1: 335 // [...] If the lookup in the class of the object expression finds a 336 // template, the name is also looked up in the context of the entire 337 // postfix-expression and [...] 338 // 339 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 340 LookupOrdinaryName); 341 LookupName(FoundOuter, S); 342 FilterAcceptableTemplateNames(FoundOuter); 343 344 if (FoundOuter.empty()) { 345 // - if the name is not found, the name found in the class of the 346 // object expression is used, otherwise 347 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 348 // - if the name is found in the context of the entire 349 // postfix-expression and does not name a class template, the name 350 // found in the class of the object expression is used, otherwise 351 } else if (!Found.isSuppressingDiagnostics()) { 352 // - if the name found is a class template, it must refer to the same 353 // entity as the one found in the class of the object expression, 354 // otherwise the program is ill-formed. 355 if (!Found.isSingleResult() || 356 Found.getFoundDecl()->getCanonicalDecl() 357 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 358 Diag(Found.getNameLoc(), 359 diag::ext_nested_name_member_ref_lookup_ambiguous) 360 << Found.getLookupName() 361 << ObjectType; 362 Diag(Found.getRepresentativeDecl()->getLocation(), 363 diag::note_ambig_member_ref_object_type) 364 << ObjectType; 365 Diag(FoundOuter.getFoundDecl()->getLocation(), 366 diag::note_ambig_member_ref_scope); 367 368 // Recover by taking the template that we found in the object 369 // expression's type. 370 } 371 } 372 } 373} 374 375/// ActOnDependentIdExpression - Handle a dependent id-expression that 376/// was just parsed. This is only possible with an explicit scope 377/// specifier naming a dependent type. 378ExprResult 379Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 380 const DeclarationNameInfo &NameInfo, 381 bool isAddressOfOperand, 382 const TemplateArgumentListInfo *TemplateArgs) { 383 DeclContext *DC = getFunctionLevelDeclContext(); 384 385 if (!isAddressOfOperand && 386 isa<CXXMethodDecl>(DC) && 387 cast<CXXMethodDecl>(DC)->isInstance()) { 388 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 389 390 // Since the 'this' expression is synthesized, we don't need to 391 // perform the double-lookup check. 392 NamedDecl *FirstQualifierInScope = 0; 393 394 return Owned(CXXDependentScopeMemberExpr::Create(Context, 395 /*This*/ 0, ThisType, 396 /*IsArrow*/ true, 397 /*Op*/ SourceLocation(), 398 SS.getWithLocInContext(Context), 399 FirstQualifierInScope, 400 NameInfo, 401 TemplateArgs)); 402 } 403 404 return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs); 405} 406 407ExprResult 408Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 409 const DeclarationNameInfo &NameInfo, 410 const TemplateArgumentListInfo *TemplateArgs) { 411 return Owned(DependentScopeDeclRefExpr::Create(Context, 412 SS.getWithLocInContext(Context), 413 NameInfo, 414 TemplateArgs)); 415} 416 417/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 418/// that the template parameter 'PrevDecl' is being shadowed by a new 419/// declaration at location Loc. Returns true to indicate that this is 420/// an error, and false otherwise. 421bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 422 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 423 424 // Microsoft Visual C++ permits template parameters to be shadowed. 425 if (getLangOptions().Microsoft) 426 return false; 427 428 // C++ [temp.local]p4: 429 // A template-parameter shall not be redeclared within its 430 // scope (including nested scopes). 431 Diag(Loc, diag::err_template_param_shadow) 432 << cast<NamedDecl>(PrevDecl)->getDeclName(); 433 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 434 return true; 435} 436 437/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 438/// the parameter D to reference the templated declaration and return a pointer 439/// to the template declaration. Otherwise, do nothing to D and return null. 440TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 441 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 442 D = Temp->getTemplatedDecl(); 443 return Temp; 444 } 445 return 0; 446} 447 448ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 449 SourceLocation EllipsisLoc) const { 450 assert(Kind == Template && 451 "Only template template arguments can be pack expansions here"); 452 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 453 "Template template argument pack expansion without packs"); 454 ParsedTemplateArgument Result(*this); 455 Result.EllipsisLoc = EllipsisLoc; 456 return Result; 457} 458 459static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 460 const ParsedTemplateArgument &Arg) { 461 462 switch (Arg.getKind()) { 463 case ParsedTemplateArgument::Type: { 464 TypeSourceInfo *DI; 465 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 466 if (!DI) 467 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 468 return TemplateArgumentLoc(TemplateArgument(T), DI); 469 } 470 471 case ParsedTemplateArgument::NonType: { 472 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 473 return TemplateArgumentLoc(TemplateArgument(E), E); 474 } 475 476 case ParsedTemplateArgument::Template: { 477 TemplateName Template = Arg.getAsTemplate().get(); 478 TemplateArgument TArg; 479 if (Arg.getEllipsisLoc().isValid()) 480 TArg = TemplateArgument(Template, llvm::Optional<unsigned int>()); 481 else 482 TArg = Template; 483 return TemplateArgumentLoc(TArg, 484 Arg.getScopeSpec().getWithLocInContext( 485 SemaRef.Context), 486 Arg.getLocation(), 487 Arg.getEllipsisLoc()); 488 } 489 } 490 491 llvm_unreachable("Unhandled parsed template argument"); 492 return TemplateArgumentLoc(); 493} 494 495/// \brief Translates template arguments as provided by the parser 496/// into template arguments used by semantic analysis. 497void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 498 TemplateArgumentListInfo &TemplateArgs) { 499 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 500 TemplateArgs.addArgument(translateTemplateArgument(*this, 501 TemplateArgsIn[I])); 502} 503 504/// ActOnTypeParameter - Called when a C++ template type parameter 505/// (e.g., "typename T") has been parsed. Typename specifies whether 506/// the keyword "typename" was used to declare the type parameter 507/// (otherwise, "class" was used), and KeyLoc is the location of the 508/// "class" or "typename" keyword. ParamName is the name of the 509/// parameter (NULL indicates an unnamed template parameter) and 510/// ParamNameLoc is the location of the parameter name (if any). 511/// If the type parameter has a default argument, it will be added 512/// later via ActOnTypeParameterDefault. 513Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 514 SourceLocation EllipsisLoc, 515 SourceLocation KeyLoc, 516 IdentifierInfo *ParamName, 517 SourceLocation ParamNameLoc, 518 unsigned Depth, unsigned Position, 519 SourceLocation EqualLoc, 520 ParsedType DefaultArg) { 521 assert(S->isTemplateParamScope() && 522 "Template type parameter not in template parameter scope!"); 523 bool Invalid = false; 524 525 if (ParamName) { 526 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 527 LookupOrdinaryName, 528 ForRedeclaration); 529 if (PrevDecl && PrevDecl->isTemplateParameter()) 530 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 531 PrevDecl); 532 } 533 534 SourceLocation Loc = ParamNameLoc; 535 if (!ParamName) 536 Loc = KeyLoc; 537 538 TemplateTypeParmDecl *Param 539 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 540 KeyLoc, Loc, Depth, Position, ParamName, 541 Typename, Ellipsis); 542 Param->setAccess(AS_public); 543 if (Invalid) 544 Param->setInvalidDecl(); 545 546 if (ParamName) { 547 // Add the template parameter into the current scope. 548 S->AddDecl(Param); 549 IdResolver.AddDecl(Param); 550 } 551 552 // C++0x [temp.param]p9: 553 // A default template-argument may be specified for any kind of 554 // template-parameter that is not a template parameter pack. 555 if (DefaultArg && Ellipsis) { 556 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 557 DefaultArg = ParsedType(); 558 } 559 560 // Handle the default argument, if provided. 561 if (DefaultArg) { 562 TypeSourceInfo *DefaultTInfo; 563 GetTypeFromParser(DefaultArg, &DefaultTInfo); 564 565 assert(DefaultTInfo && "expected source information for type"); 566 567 // Check for unexpanded parameter packs. 568 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, 569 UPPC_DefaultArgument)) 570 return Param; 571 572 // Check the template argument itself. 573 if (CheckTemplateArgument(Param, DefaultTInfo)) { 574 Param->setInvalidDecl(); 575 return Param; 576 } 577 578 Param->setDefaultArgument(DefaultTInfo, false); 579 } 580 581 return Param; 582} 583 584/// \brief Check that the type of a non-type template parameter is 585/// well-formed. 586/// 587/// \returns the (possibly-promoted) parameter type if valid; 588/// otherwise, produces a diagnostic and returns a NULL type. 589QualType 590Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 591 // We don't allow variably-modified types as the type of non-type template 592 // parameters. 593 if (T->isVariablyModifiedType()) { 594 Diag(Loc, diag::err_variably_modified_nontype_template_param) 595 << T; 596 return QualType(); 597 } 598 599 // C++ [temp.param]p4: 600 // 601 // A non-type template-parameter shall have one of the following 602 // (optionally cv-qualified) types: 603 // 604 // -- integral or enumeration type, 605 if (T->isIntegralOrEnumerationType() || 606 // -- pointer to object or pointer to function, 607 T->isPointerType() || 608 // -- reference to object or reference to function, 609 T->isReferenceType() || 610 // -- pointer to member, 611 T->isMemberPointerType() || 612 // -- std::nullptr_t. 613 T->isNullPtrType() || 614 // If T is a dependent type, we can't do the check now, so we 615 // assume that it is well-formed. 616 T->isDependentType()) 617 return T; 618 // C++ [temp.param]p8: 619 // 620 // A non-type template-parameter of type "array of T" or 621 // "function returning T" is adjusted to be of type "pointer to 622 // T" or "pointer to function returning T", respectively. 623 else if (T->isArrayType()) 624 // FIXME: Keep the type prior to promotion? 625 return Context.getArrayDecayedType(T); 626 else if (T->isFunctionType()) 627 // FIXME: Keep the type prior to promotion? 628 return Context.getPointerType(T); 629 630 Diag(Loc, diag::err_template_nontype_parm_bad_type) 631 << T; 632 633 return QualType(); 634} 635 636Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 637 unsigned Depth, 638 unsigned Position, 639 SourceLocation EqualLoc, 640 Expr *Default) { 641 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 642 QualType T = TInfo->getType(); 643 644 assert(S->isTemplateParamScope() && 645 "Non-type template parameter not in template parameter scope!"); 646 bool Invalid = false; 647 648 IdentifierInfo *ParamName = D.getIdentifier(); 649 if (ParamName) { 650 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 651 LookupOrdinaryName, 652 ForRedeclaration); 653 if (PrevDecl && PrevDecl->isTemplateParameter()) 654 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 655 PrevDecl); 656 } 657 658 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 659 if (T.isNull()) { 660 T = Context.IntTy; // Recover with an 'int' type. 661 Invalid = true; 662 } 663 664 bool IsParameterPack = D.hasEllipsis(); 665 NonTypeTemplateParmDecl *Param 666 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 667 D.getSourceRange().getBegin(), 668 D.getIdentifierLoc(), 669 Depth, Position, ParamName, T, 670 IsParameterPack, TInfo); 671 Param->setAccess(AS_public); 672 673 if (Invalid) 674 Param->setInvalidDecl(); 675 676 if (D.getIdentifier()) { 677 // Add the template parameter into the current scope. 678 S->AddDecl(Param); 679 IdResolver.AddDecl(Param); 680 } 681 682 // C++0x [temp.param]p9: 683 // A default template-argument may be specified for any kind of 684 // template-parameter that is not a template parameter pack. 685 if (Default && IsParameterPack) { 686 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 687 Default = 0; 688 } 689 690 // Check the well-formedness of the default template argument, if provided. 691 if (Default) { 692 // Check for unexpanded parameter packs. 693 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 694 return Param; 695 696 TemplateArgument Converted; 697 ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted); 698 if (DefaultRes.isInvalid()) { 699 Param->setInvalidDecl(); 700 return Param; 701 } 702 Default = DefaultRes.take(); 703 704 Param->setDefaultArgument(Default, false); 705 } 706 707 return Param; 708} 709 710/// ActOnTemplateTemplateParameter - Called when a C++ template template 711/// parameter (e.g. T in template <template <typename> class T> class array) 712/// has been parsed. S is the current scope. 713Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 714 SourceLocation TmpLoc, 715 TemplateParamsTy *Params, 716 SourceLocation EllipsisLoc, 717 IdentifierInfo *Name, 718 SourceLocation NameLoc, 719 unsigned Depth, 720 unsigned Position, 721 SourceLocation EqualLoc, 722 ParsedTemplateArgument Default) { 723 assert(S->isTemplateParamScope() && 724 "Template template parameter not in template parameter scope!"); 725 726 // Construct the parameter object. 727 bool IsParameterPack = EllipsisLoc.isValid(); 728 TemplateTemplateParmDecl *Param = 729 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 730 NameLoc.isInvalid()? TmpLoc : NameLoc, 731 Depth, Position, IsParameterPack, 732 Name, Params); 733 Param->setAccess(AS_public); 734 735 // If the template template parameter has a name, then link the identifier 736 // into the scope and lookup mechanisms. 737 if (Name) { 738 S->AddDecl(Param); 739 IdResolver.AddDecl(Param); 740 } 741 742 if (Params->size() == 0) { 743 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 744 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 745 Param->setInvalidDecl(); 746 } 747 748 // C++0x [temp.param]p9: 749 // A default template-argument may be specified for any kind of 750 // template-parameter that is not a template parameter pack. 751 if (IsParameterPack && !Default.isInvalid()) { 752 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 753 Default = ParsedTemplateArgument(); 754 } 755 756 if (!Default.isInvalid()) { 757 // Check only that we have a template template argument. We don't want to 758 // try to check well-formedness now, because our template template parameter 759 // might have dependent types in its template parameters, which we wouldn't 760 // be able to match now. 761 // 762 // If none of the template template parameter's template arguments mention 763 // other template parameters, we could actually perform more checking here. 764 // However, it isn't worth doing. 765 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 766 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 767 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 768 << DefaultArg.getSourceRange(); 769 return Param; 770 } 771 772 // Check for unexpanded parameter packs. 773 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 774 DefaultArg.getArgument().getAsTemplate(), 775 UPPC_DefaultArgument)) 776 return Param; 777 778 Param->setDefaultArgument(DefaultArg, false); 779 } 780 781 return Param; 782} 783 784/// ActOnTemplateParameterList - Builds a TemplateParameterList that 785/// contains the template parameters in Params/NumParams. 786Sema::TemplateParamsTy * 787Sema::ActOnTemplateParameterList(unsigned Depth, 788 SourceLocation ExportLoc, 789 SourceLocation TemplateLoc, 790 SourceLocation LAngleLoc, 791 Decl **Params, unsigned NumParams, 792 SourceLocation RAngleLoc) { 793 if (ExportLoc.isValid()) 794 Diag(ExportLoc, diag::warn_template_export_unsupported); 795 796 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 797 (NamedDecl**)Params, NumParams, 798 RAngleLoc); 799} 800 801static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 802 if (SS.isSet()) 803 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext())); 804} 805 806DeclResult 807Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 808 SourceLocation KWLoc, CXXScopeSpec &SS, 809 IdentifierInfo *Name, SourceLocation NameLoc, 810 AttributeList *Attr, 811 TemplateParameterList *TemplateParams, 812 AccessSpecifier AS, 813 unsigned NumOuterTemplateParamLists, 814 TemplateParameterList** OuterTemplateParamLists) { 815 assert(TemplateParams && TemplateParams->size() > 0 && 816 "No template parameters"); 817 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 818 bool Invalid = false; 819 820 // Check that we can declare a template here. 821 if (CheckTemplateDeclScope(S, TemplateParams)) 822 return true; 823 824 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 825 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 826 827 // There is no such thing as an unnamed class template. 828 if (!Name) { 829 Diag(KWLoc, diag::err_template_unnamed_class); 830 return true; 831 } 832 833 // Find any previous declaration with this name. 834 DeclContext *SemanticContext; 835 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 836 ForRedeclaration); 837 if (SS.isNotEmpty() && !SS.isInvalid()) { 838 SemanticContext = computeDeclContext(SS, true); 839 if (!SemanticContext) { 840 // FIXME: Produce a reasonable diagnostic here 841 return true; 842 } 843 844 if (RequireCompleteDeclContext(SS, SemanticContext)) 845 return true; 846 847 LookupQualifiedName(Previous, SemanticContext); 848 } else { 849 SemanticContext = CurContext; 850 LookupName(Previous, S); 851 } 852 853 if (Previous.isAmbiguous()) 854 return true; 855 856 NamedDecl *PrevDecl = 0; 857 if (Previous.begin() != Previous.end()) 858 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 859 860 // If there is a previous declaration with the same name, check 861 // whether this is a valid redeclaration. 862 ClassTemplateDecl *PrevClassTemplate 863 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 864 865 // We may have found the injected-class-name of a class template, 866 // class template partial specialization, or class template specialization. 867 // In these cases, grab the template that is being defined or specialized. 868 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 869 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 870 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 871 PrevClassTemplate 872 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 873 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 874 PrevClassTemplate 875 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 876 ->getSpecializedTemplate(); 877 } 878 } 879 880 if (TUK == TUK_Friend) { 881 // C++ [namespace.memdef]p3: 882 // [...] When looking for a prior declaration of a class or a function 883 // declared as a friend, and when the name of the friend class or 884 // function is neither a qualified name nor a template-id, scopes outside 885 // the innermost enclosing namespace scope are not considered. 886 if (!SS.isSet()) { 887 DeclContext *OutermostContext = CurContext; 888 while (!OutermostContext->isFileContext()) 889 OutermostContext = OutermostContext->getLookupParent(); 890 891 if (PrevDecl && 892 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 893 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 894 SemanticContext = PrevDecl->getDeclContext(); 895 } else { 896 // Declarations in outer scopes don't matter. However, the outermost 897 // context we computed is the semantic context for our new 898 // declaration. 899 PrevDecl = PrevClassTemplate = 0; 900 SemanticContext = OutermostContext; 901 } 902 } 903 904 if (CurContext->isDependentContext()) { 905 // If this is a dependent context, we don't want to link the friend 906 // class template to the template in scope, because that would perform 907 // checking of the template parameter lists that can't be performed 908 // until the outer context is instantiated. 909 PrevDecl = PrevClassTemplate = 0; 910 } 911 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 912 PrevDecl = PrevClassTemplate = 0; 913 914 if (PrevClassTemplate) { 915 // Ensure that the template parameter lists are compatible. 916 if (!TemplateParameterListsAreEqual(TemplateParams, 917 PrevClassTemplate->getTemplateParameters(), 918 /*Complain=*/true, 919 TPL_TemplateMatch)) 920 return true; 921 922 // C++ [temp.class]p4: 923 // In a redeclaration, partial specialization, explicit 924 // specialization or explicit instantiation of a class template, 925 // the class-key shall agree in kind with the original class 926 // template declaration (7.1.5.3). 927 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 928 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, 929 TUK == TUK_Definition, KWLoc, *Name)) { 930 Diag(KWLoc, diag::err_use_with_wrong_tag) 931 << Name 932 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 933 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 934 Kind = PrevRecordDecl->getTagKind(); 935 } 936 937 // Check for redefinition of this class template. 938 if (TUK == TUK_Definition) { 939 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 940 Diag(NameLoc, diag::err_redefinition) << Name; 941 Diag(Def->getLocation(), diag::note_previous_definition); 942 // FIXME: Would it make sense to try to "forget" the previous 943 // definition, as part of error recovery? 944 return true; 945 } 946 } 947 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 948 // Maybe we will complain about the shadowed template parameter. 949 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 950 // Just pretend that we didn't see the previous declaration. 951 PrevDecl = 0; 952 } else if (PrevDecl) { 953 // C++ [temp]p5: 954 // A class template shall not have the same name as any other 955 // template, class, function, object, enumeration, enumerator, 956 // namespace, or type in the same scope (3.3), except as specified 957 // in (14.5.4). 958 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 959 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 960 return true; 961 } 962 963 // Check the template parameter list of this declaration, possibly 964 // merging in the template parameter list from the previous class 965 // template declaration. 966 if (CheckTemplateParameterList(TemplateParams, 967 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 968 (SS.isSet() && SemanticContext && 969 SemanticContext->isRecord() && 970 SemanticContext->isDependentContext()) 971 ? TPC_ClassTemplateMember 972 : TPC_ClassTemplate)) 973 Invalid = true; 974 975 if (SS.isSet()) { 976 // If the name of the template was qualified, we must be defining the 977 // template out-of-line. 978 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate && 979 !(TUK == TUK_Friend && CurContext->isDependentContext())) 980 Diag(NameLoc, diag::err_member_def_does_not_match) 981 << Name << SemanticContext << SS.getRange(); 982 } 983 984 CXXRecordDecl *NewClass = 985 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 986 PrevClassTemplate? 987 PrevClassTemplate->getTemplatedDecl() : 0, 988 /*DelayTypeCreation=*/true); 989 SetNestedNameSpecifier(NewClass, SS); 990 if (NumOuterTemplateParamLists > 0) 991 NewClass->setTemplateParameterListsInfo(Context, 992 NumOuterTemplateParamLists, 993 OuterTemplateParamLists); 994 995 ClassTemplateDecl *NewTemplate 996 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 997 DeclarationName(Name), TemplateParams, 998 NewClass, PrevClassTemplate); 999 NewClass->setDescribedClassTemplate(NewTemplate); 1000 1001 // Build the type for the class template declaration now. 1002 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 1003 T = Context.getInjectedClassNameType(NewClass, T); 1004 assert(T->isDependentType() && "Class template type is not dependent?"); 1005 (void)T; 1006 1007 // If we are providing an explicit specialization of a member that is a 1008 // class template, make a note of that. 1009 if (PrevClassTemplate && 1010 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 1011 PrevClassTemplate->setMemberSpecialization(); 1012 1013 // Set the access specifier. 1014 if (!Invalid && TUK != TUK_Friend) 1015 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 1016 1017 // Set the lexical context of these templates 1018 NewClass->setLexicalDeclContext(CurContext); 1019 NewTemplate->setLexicalDeclContext(CurContext); 1020 1021 if (TUK == TUK_Definition) 1022 NewClass->startDefinition(); 1023 1024 if (Attr) 1025 ProcessDeclAttributeList(S, NewClass, Attr); 1026 1027 if (TUK != TUK_Friend) 1028 PushOnScopeChains(NewTemplate, S); 1029 else { 1030 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1031 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1032 NewClass->setAccess(PrevClassTemplate->getAccess()); 1033 } 1034 1035 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 1036 PrevClassTemplate != NULL); 1037 1038 // Friend templates are visible in fairly strange ways. 1039 if (!CurContext->isDependentContext()) { 1040 DeclContext *DC = SemanticContext->getRedeclContext(); 1041 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 1042 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1043 PushOnScopeChains(NewTemplate, EnclosingScope, 1044 /* AddToContext = */ false); 1045 } 1046 1047 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 1048 NewClass->getLocation(), 1049 NewTemplate, 1050 /*FIXME:*/NewClass->getLocation()); 1051 Friend->setAccess(AS_public); 1052 CurContext->addDecl(Friend); 1053 } 1054 1055 if (Invalid) { 1056 NewTemplate->setInvalidDecl(); 1057 NewClass->setInvalidDecl(); 1058 } 1059 return NewTemplate; 1060} 1061 1062/// \brief Diagnose the presence of a default template argument on a 1063/// template parameter, which is ill-formed in certain contexts. 1064/// 1065/// \returns true if the default template argument should be dropped. 1066static bool DiagnoseDefaultTemplateArgument(Sema &S, 1067 Sema::TemplateParamListContext TPC, 1068 SourceLocation ParamLoc, 1069 SourceRange DefArgRange) { 1070 switch (TPC) { 1071 case Sema::TPC_ClassTemplate: 1072 case Sema::TPC_TypeAliasTemplate: 1073 return false; 1074 1075 case Sema::TPC_FunctionTemplate: 1076 case Sema::TPC_FriendFunctionTemplateDefinition: 1077 // C++ [temp.param]p9: 1078 // A default template-argument shall not be specified in a 1079 // function template declaration or a function template 1080 // definition [...] 1081 // If a friend function template declaration specifies a default 1082 // template-argument, that declaration shall be a definition and shall be 1083 // the only declaration of the function template in the translation unit. 1084 // (C++98/03 doesn't have this wording; see DR226). 1085 if (!S.getLangOptions().CPlusPlus0x) 1086 S.Diag(ParamLoc, 1087 diag::ext_template_parameter_default_in_function_template) 1088 << DefArgRange; 1089 return false; 1090 1091 case Sema::TPC_ClassTemplateMember: 1092 // C++0x [temp.param]p9: 1093 // A default template-argument shall not be specified in the 1094 // template-parameter-lists of the definition of a member of a 1095 // class template that appears outside of the member's class. 1096 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1097 << DefArgRange; 1098 return true; 1099 1100 case Sema::TPC_FriendFunctionTemplate: 1101 // C++ [temp.param]p9: 1102 // A default template-argument shall not be specified in a 1103 // friend template declaration. 1104 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1105 << DefArgRange; 1106 return true; 1107 1108 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1109 // for friend function templates if there is only a single 1110 // declaration (and it is a definition). Strange! 1111 } 1112 1113 return false; 1114} 1115 1116/// \brief Check for unexpanded parameter packs within the template parameters 1117/// of a template template parameter, recursively. 1118static bool DiagnoseUnexpandedParameterPacks(Sema &S, 1119 TemplateTemplateParmDecl *TTP) { 1120 TemplateParameterList *Params = TTP->getTemplateParameters(); 1121 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 1122 NamedDecl *P = Params->getParam(I); 1123 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 1124 if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 1125 NTTP->getTypeSourceInfo(), 1126 Sema::UPPC_NonTypeTemplateParameterType)) 1127 return true; 1128 1129 continue; 1130 } 1131 1132 if (TemplateTemplateParmDecl *InnerTTP 1133 = dyn_cast<TemplateTemplateParmDecl>(P)) 1134 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 1135 return true; 1136 } 1137 1138 return false; 1139} 1140 1141/// \brief Checks the validity of a template parameter list, possibly 1142/// considering the template parameter list from a previous 1143/// declaration. 1144/// 1145/// If an "old" template parameter list is provided, it must be 1146/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1147/// template parameter list. 1148/// 1149/// \param NewParams Template parameter list for a new template 1150/// declaration. This template parameter list will be updated with any 1151/// default arguments that are carried through from the previous 1152/// template parameter list. 1153/// 1154/// \param OldParams If provided, template parameter list from a 1155/// previous declaration of the same template. Default template 1156/// arguments will be merged from the old template parameter list to 1157/// the new template parameter list. 1158/// 1159/// \param TPC Describes the context in which we are checking the given 1160/// template parameter list. 1161/// 1162/// \returns true if an error occurred, false otherwise. 1163bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1164 TemplateParameterList *OldParams, 1165 TemplateParamListContext TPC) { 1166 bool Invalid = false; 1167 1168 // C++ [temp.param]p10: 1169 // The set of default template-arguments available for use with a 1170 // template declaration or definition is obtained by merging the 1171 // default arguments from the definition (if in scope) and all 1172 // declarations in scope in the same way default function 1173 // arguments are (8.3.6). 1174 bool SawDefaultArgument = false; 1175 SourceLocation PreviousDefaultArgLoc; 1176 1177 bool SawParameterPack = false; 1178 SourceLocation ParameterPackLoc; 1179 1180 // Dummy initialization to avoid warnings. 1181 TemplateParameterList::iterator OldParam = NewParams->end(); 1182 if (OldParams) 1183 OldParam = OldParams->begin(); 1184 1185 bool RemoveDefaultArguments = false; 1186 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1187 NewParamEnd = NewParams->end(); 1188 NewParam != NewParamEnd; ++NewParam) { 1189 // Variables used to diagnose redundant default arguments 1190 bool RedundantDefaultArg = false; 1191 SourceLocation OldDefaultLoc; 1192 SourceLocation NewDefaultLoc; 1193 1194 // Variables used to diagnose missing default arguments 1195 bool MissingDefaultArg = false; 1196 1197 // C++0x [temp.param]p11: 1198 // If a template parameter of a primary class template or alias template 1199 // is a template parameter pack, it shall be the last template parameter. 1200 if (SawParameterPack && 1201 (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) { 1202 Diag(ParameterPackLoc, 1203 diag::err_template_param_pack_must_be_last_template_parameter); 1204 Invalid = true; 1205 } 1206 1207 if (TemplateTypeParmDecl *NewTypeParm 1208 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1209 // Check the presence of a default argument here. 1210 if (NewTypeParm->hasDefaultArgument() && 1211 DiagnoseDefaultTemplateArgument(*this, TPC, 1212 NewTypeParm->getLocation(), 1213 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1214 .getSourceRange())) 1215 NewTypeParm->removeDefaultArgument(); 1216 1217 // Merge default arguments for template type parameters. 1218 TemplateTypeParmDecl *OldTypeParm 1219 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1220 1221 if (NewTypeParm->isParameterPack()) { 1222 assert(!NewTypeParm->hasDefaultArgument() && 1223 "Parameter packs can't have a default argument!"); 1224 SawParameterPack = true; 1225 ParameterPackLoc = NewTypeParm->getLocation(); 1226 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1227 NewTypeParm->hasDefaultArgument()) { 1228 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1229 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1230 SawDefaultArgument = true; 1231 RedundantDefaultArg = true; 1232 PreviousDefaultArgLoc = NewDefaultLoc; 1233 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1234 // Merge the default argument from the old declaration to the 1235 // new declaration. 1236 SawDefaultArgument = true; 1237 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1238 true); 1239 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1240 } else if (NewTypeParm->hasDefaultArgument()) { 1241 SawDefaultArgument = true; 1242 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1243 } else if (SawDefaultArgument) 1244 MissingDefaultArg = true; 1245 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1246 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1247 // Check for unexpanded parameter packs. 1248 if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 1249 NewNonTypeParm->getTypeSourceInfo(), 1250 UPPC_NonTypeTemplateParameterType)) { 1251 Invalid = true; 1252 continue; 1253 } 1254 1255 // Check the presence of a default argument here. 1256 if (NewNonTypeParm->hasDefaultArgument() && 1257 DiagnoseDefaultTemplateArgument(*this, TPC, 1258 NewNonTypeParm->getLocation(), 1259 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1260 NewNonTypeParm->removeDefaultArgument(); 1261 } 1262 1263 // Merge default arguments for non-type template parameters 1264 NonTypeTemplateParmDecl *OldNonTypeParm 1265 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1266 if (NewNonTypeParm->isParameterPack()) { 1267 assert(!NewNonTypeParm->hasDefaultArgument() && 1268 "Parameter packs can't have a default argument!"); 1269 SawParameterPack = true; 1270 ParameterPackLoc = NewNonTypeParm->getLocation(); 1271 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1272 NewNonTypeParm->hasDefaultArgument()) { 1273 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1274 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1275 SawDefaultArgument = true; 1276 RedundantDefaultArg = true; 1277 PreviousDefaultArgLoc = NewDefaultLoc; 1278 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1279 // Merge the default argument from the old declaration to the 1280 // new declaration. 1281 SawDefaultArgument = true; 1282 // FIXME: We need to create a new kind of "default argument" 1283 // expression that points to a previous non-type template 1284 // parameter. 1285 NewNonTypeParm->setDefaultArgument( 1286 OldNonTypeParm->getDefaultArgument(), 1287 /*Inherited=*/ true); 1288 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1289 } else if (NewNonTypeParm->hasDefaultArgument()) { 1290 SawDefaultArgument = true; 1291 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1292 } else if (SawDefaultArgument) 1293 MissingDefaultArg = true; 1294 } else { 1295 // Check the presence of a default argument here. 1296 TemplateTemplateParmDecl *NewTemplateParm 1297 = cast<TemplateTemplateParmDecl>(*NewParam); 1298 1299 // Check for unexpanded parameter packs, recursively. 1300 if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 1301 Invalid = true; 1302 continue; 1303 } 1304 1305 if (NewTemplateParm->hasDefaultArgument() && 1306 DiagnoseDefaultTemplateArgument(*this, TPC, 1307 NewTemplateParm->getLocation(), 1308 NewTemplateParm->getDefaultArgument().getSourceRange())) 1309 NewTemplateParm->removeDefaultArgument(); 1310 1311 // Merge default arguments for template template parameters 1312 TemplateTemplateParmDecl *OldTemplateParm 1313 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1314 if (NewTemplateParm->isParameterPack()) { 1315 assert(!NewTemplateParm->hasDefaultArgument() && 1316 "Parameter packs can't have a default argument!"); 1317 SawParameterPack = true; 1318 ParameterPackLoc = NewTemplateParm->getLocation(); 1319 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1320 NewTemplateParm->hasDefaultArgument()) { 1321 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1322 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1323 SawDefaultArgument = true; 1324 RedundantDefaultArg = true; 1325 PreviousDefaultArgLoc = NewDefaultLoc; 1326 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1327 // Merge the default argument from the old declaration to the 1328 // new declaration. 1329 SawDefaultArgument = true; 1330 // FIXME: We need to create a new kind of "default argument" expression 1331 // that points to a previous template template parameter. 1332 NewTemplateParm->setDefaultArgument( 1333 OldTemplateParm->getDefaultArgument(), 1334 /*Inherited=*/ true); 1335 PreviousDefaultArgLoc 1336 = OldTemplateParm->getDefaultArgument().getLocation(); 1337 } else if (NewTemplateParm->hasDefaultArgument()) { 1338 SawDefaultArgument = true; 1339 PreviousDefaultArgLoc 1340 = NewTemplateParm->getDefaultArgument().getLocation(); 1341 } else if (SawDefaultArgument) 1342 MissingDefaultArg = true; 1343 } 1344 1345 if (RedundantDefaultArg) { 1346 // C++ [temp.param]p12: 1347 // A template-parameter shall not be given default arguments 1348 // by two different declarations in the same scope. 1349 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1350 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1351 Invalid = true; 1352 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 1353 // C++ [temp.param]p11: 1354 // If a template-parameter of a class template has a default 1355 // template-argument, each subsequent template-parameter shall either 1356 // have a default template-argument supplied or be a template parameter 1357 // pack. 1358 Diag((*NewParam)->getLocation(), 1359 diag::err_template_param_default_arg_missing); 1360 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1361 Invalid = true; 1362 RemoveDefaultArguments = true; 1363 } 1364 1365 // If we have an old template parameter list that we're merging 1366 // in, move on to the next parameter. 1367 if (OldParams) 1368 ++OldParam; 1369 } 1370 1371 // We were missing some default arguments at the end of the list, so remove 1372 // all of the default arguments. 1373 if (RemoveDefaultArguments) { 1374 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1375 NewParamEnd = NewParams->end(); 1376 NewParam != NewParamEnd; ++NewParam) { 1377 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 1378 TTP->removeDefaultArgument(); 1379 else if (NonTypeTemplateParmDecl *NTTP 1380 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 1381 NTTP->removeDefaultArgument(); 1382 else 1383 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 1384 } 1385 } 1386 1387 return Invalid; 1388} 1389 1390namespace { 1391 1392/// A class which looks for a use of a certain level of template 1393/// parameter. 1394struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 1395 typedef RecursiveASTVisitor<DependencyChecker> super; 1396 1397 unsigned Depth; 1398 bool Match; 1399 1400 DependencyChecker(TemplateParameterList *Params) : Match(false) { 1401 NamedDecl *ND = Params->getParam(0); 1402 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 1403 Depth = PD->getDepth(); 1404 } else if (NonTypeTemplateParmDecl *PD = 1405 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 1406 Depth = PD->getDepth(); 1407 } else { 1408 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 1409 } 1410 } 1411 1412 bool Matches(unsigned ParmDepth) { 1413 if (ParmDepth >= Depth) { 1414 Match = true; 1415 return true; 1416 } 1417 return false; 1418 } 1419 1420 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 1421 return !Matches(T->getDepth()); 1422 } 1423 1424 bool TraverseTemplateName(TemplateName N) { 1425 if (TemplateTemplateParmDecl *PD = 1426 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 1427 if (Matches(PD->getDepth())) return false; 1428 return super::TraverseTemplateName(N); 1429 } 1430 1431 bool VisitDeclRefExpr(DeclRefExpr *E) { 1432 if (NonTypeTemplateParmDecl *PD = 1433 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) { 1434 if (PD->getDepth() == Depth) { 1435 Match = true; 1436 return false; 1437 } 1438 } 1439 return super::VisitDeclRefExpr(E); 1440 } 1441 1442 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 1443 return TraverseType(T->getInjectedSpecializationType()); 1444 } 1445}; 1446} 1447 1448/// Determines whether a given type depends on the given parameter 1449/// list. 1450static bool 1451DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 1452 DependencyChecker Checker(Params); 1453 Checker.TraverseType(T); 1454 return Checker.Match; 1455} 1456 1457// Find the source range corresponding to the named type in the given 1458// nested-name-specifier, if any. 1459static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 1460 QualType T, 1461 const CXXScopeSpec &SS) { 1462 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 1463 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 1464 if (const Type *CurType = NNS->getAsType()) { 1465 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 1466 return NNSLoc.getTypeLoc().getSourceRange(); 1467 } else 1468 break; 1469 1470 NNSLoc = NNSLoc.getPrefix(); 1471 } 1472 1473 return SourceRange(); 1474} 1475 1476/// \brief Match the given template parameter lists to the given scope 1477/// specifier, returning the template parameter list that applies to the 1478/// name. 1479/// 1480/// \param DeclStartLoc the start of the declaration that has a scope 1481/// specifier or a template parameter list. 1482/// 1483/// \param DeclLoc The location of the declaration itself. 1484/// 1485/// \param SS the scope specifier that will be matched to the given template 1486/// parameter lists. This scope specifier precedes a qualified name that is 1487/// being declared. 1488/// 1489/// \param ParamLists the template parameter lists, from the outermost to the 1490/// innermost template parameter lists. 1491/// 1492/// \param NumParamLists the number of template parameter lists in ParamLists. 1493/// 1494/// \param IsFriend Whether to apply the slightly different rules for 1495/// matching template parameters to scope specifiers in friend 1496/// declarations. 1497/// 1498/// \param IsExplicitSpecialization will be set true if the entity being 1499/// declared is an explicit specialization, false otherwise. 1500/// 1501/// \returns the template parameter list, if any, that corresponds to the 1502/// name that is preceded by the scope specifier @p SS. This template 1503/// parameter list may have template parameters (if we're declaring a 1504/// template) or may have no template parameters (if we're declaring a 1505/// template specialization), or may be NULL (if what we're declaring isn't 1506/// itself a template). 1507TemplateParameterList * 1508Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1509 SourceLocation DeclLoc, 1510 const CXXScopeSpec &SS, 1511 TemplateParameterList **ParamLists, 1512 unsigned NumParamLists, 1513 bool IsFriend, 1514 bool &IsExplicitSpecialization, 1515 bool &Invalid) { 1516 IsExplicitSpecialization = false; 1517 Invalid = false; 1518 1519 // The sequence of nested types to which we will match up the template 1520 // parameter lists. We first build this list by starting with the type named 1521 // by the nested-name-specifier and walking out until we run out of types. 1522 llvm::SmallVector<QualType, 4> NestedTypes; 1523 QualType T; 1524 if (SS.getScopeRep()) { 1525 if (CXXRecordDecl *Record 1526 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 1527 T = Context.getTypeDeclType(Record); 1528 else 1529 T = QualType(SS.getScopeRep()->getAsType(), 0); 1530 } 1531 1532 // If we found an explicit specialization that prevents us from needing 1533 // 'template<>' headers, this will be set to the location of that 1534 // explicit specialization. 1535 SourceLocation ExplicitSpecLoc; 1536 1537 while (!T.isNull()) { 1538 NestedTypes.push_back(T); 1539 1540 // Retrieve the parent of a record type. 1541 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1542 // If this type is an explicit specialization, we're done. 1543 if (ClassTemplateSpecializationDecl *Spec 1544 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1545 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 1546 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 1547 ExplicitSpecLoc = Spec->getLocation(); 1548 break; 1549 } 1550 } else if (Record->getTemplateSpecializationKind() 1551 == TSK_ExplicitSpecialization) { 1552 ExplicitSpecLoc = Record->getLocation(); 1553 break; 1554 } 1555 1556 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 1557 T = Context.getTypeDeclType(Parent); 1558 else 1559 T = QualType(); 1560 continue; 1561 } 1562 1563 if (const TemplateSpecializationType *TST 1564 = T->getAs<TemplateSpecializationType>()) { 1565 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1566 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 1567 T = Context.getTypeDeclType(Parent); 1568 else 1569 T = QualType(); 1570 continue; 1571 } 1572 } 1573 1574 // Look one step prior in a dependent template specialization type. 1575 if (const DependentTemplateSpecializationType *DependentTST 1576 = T->getAs<DependentTemplateSpecializationType>()) { 1577 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 1578 T = QualType(NNS->getAsType(), 0); 1579 else 1580 T = QualType(); 1581 continue; 1582 } 1583 1584 // Look one step prior in a dependent name type. 1585 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 1586 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 1587 T = QualType(NNS->getAsType(), 0); 1588 else 1589 T = QualType(); 1590 continue; 1591 } 1592 1593 // Retrieve the parent of an enumeration type. 1594 if (const EnumType *EnumT = T->getAs<EnumType>()) { 1595 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 1596 // check here. 1597 EnumDecl *Enum = EnumT->getDecl(); 1598 1599 // Get to the parent type. 1600 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 1601 T = Context.getTypeDeclType(Parent); 1602 else 1603 T = QualType(); 1604 continue; 1605 } 1606 1607 T = QualType(); 1608 } 1609 // Reverse the nested types list, since we want to traverse from the outermost 1610 // to the innermost while checking template-parameter-lists. 1611 std::reverse(NestedTypes.begin(), NestedTypes.end()); 1612 1613 // C++0x [temp.expl.spec]p17: 1614 // A member or a member template may be nested within many 1615 // enclosing class templates. In an explicit specialization for 1616 // such a member, the member declaration shall be preceded by a 1617 // template<> for each enclosing class template that is 1618 // explicitly specialized. 1619 bool SawNonEmptyTemplateParameterList = false; 1620 unsigned ParamIdx = 0; 1621 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 1622 ++TypeIdx) { 1623 T = NestedTypes[TypeIdx]; 1624 1625 // Whether we expect a 'template<>' header. 1626 bool NeedEmptyTemplateHeader = false; 1627 1628 // Whether we expect a template header with parameters. 1629 bool NeedNonemptyTemplateHeader = false; 1630 1631 // For a dependent type, the set of template parameters that we 1632 // expect to see. 1633 TemplateParameterList *ExpectedTemplateParams = 0; 1634 1635 // C++0x [temp.expl.spec]p15: 1636 // A member or a member template may be nested within many enclosing 1637 // class templates. In an explicit specialization for such a member, the 1638 // member declaration shall be preceded by a template<> for each 1639 // enclosing class template that is explicitly specialized. 1640 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1641 if (ClassTemplatePartialSpecializationDecl *Partial 1642 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 1643 ExpectedTemplateParams = Partial->getTemplateParameters(); 1644 NeedNonemptyTemplateHeader = true; 1645 } else if (Record->isDependentType()) { 1646 if (Record->getDescribedClassTemplate()) { 1647 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1648 ->getTemplateParameters(); 1649 NeedNonemptyTemplateHeader = true; 1650 } 1651 } else if (ClassTemplateSpecializationDecl *Spec 1652 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1653 // C++0x [temp.expl.spec]p4: 1654 // Members of an explicitly specialized class template are defined 1655 // in the same manner as members of normal classes, and not using 1656 // the template<> syntax. 1657 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 1658 NeedEmptyTemplateHeader = true; 1659 else 1660 continue; 1661 } else if (Record->getTemplateSpecializationKind()) { 1662 if (Record->getTemplateSpecializationKind() 1663 != TSK_ExplicitSpecialization && 1664 TypeIdx == NumTypes - 1) 1665 IsExplicitSpecialization = true; 1666 1667 continue; 1668 } 1669 } else if (const TemplateSpecializationType *TST 1670 = T->getAs<TemplateSpecializationType>()) { 1671 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1672 ExpectedTemplateParams = Template->getTemplateParameters(); 1673 NeedNonemptyTemplateHeader = true; 1674 } 1675 } else if (T->getAs<DependentTemplateSpecializationType>()) { 1676 // FIXME: We actually could/should check the template arguments here 1677 // against the corresponding template parameter list. 1678 NeedNonemptyTemplateHeader = false; 1679 } 1680 1681 // C++ [temp.expl.spec]p16: 1682 // In an explicit specialization declaration for a member of a class 1683 // template or a member template that ap- pears in namespace scope, the 1684 // member template and some of its enclosing class templates may remain 1685 // unspecialized, except that the declaration shall not explicitly 1686 // specialize a class member template if its en- closing class templates 1687 // are not explicitly specialized as well. 1688 if (ParamIdx < NumParamLists) { 1689 if (ParamLists[ParamIdx]->size() == 0) { 1690 if (SawNonEmptyTemplateParameterList) { 1691 Diag(DeclLoc, diag::err_specialize_member_of_template) 1692 << ParamLists[ParamIdx]->getSourceRange(); 1693 Invalid = true; 1694 IsExplicitSpecialization = false; 1695 return 0; 1696 } 1697 } else 1698 SawNonEmptyTemplateParameterList = true; 1699 } 1700 1701 if (NeedEmptyTemplateHeader) { 1702 // If we're on the last of the types, and we need a 'template<>' header 1703 // here, then it's an explicit specialization. 1704 if (TypeIdx == NumTypes - 1) 1705 IsExplicitSpecialization = true; 1706 1707 if (ParamIdx < NumParamLists) { 1708 if (ParamLists[ParamIdx]->size() > 0) { 1709 // The header has template parameters when it shouldn't. Complain. 1710 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1711 diag::err_template_param_list_matches_nontemplate) 1712 << T 1713 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 1714 ParamLists[ParamIdx]->getRAngleLoc()) 1715 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1716 Invalid = true; 1717 return 0; 1718 } 1719 1720 // Consume this template header. 1721 ++ParamIdx; 1722 continue; 1723 } 1724 1725 if (!IsFriend) { 1726 // We don't have a template header, but we should. 1727 SourceLocation ExpectedTemplateLoc; 1728 if (NumParamLists > 0) 1729 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 1730 else 1731 ExpectedTemplateLoc = DeclStartLoc; 1732 1733 Diag(DeclLoc, diag::err_template_spec_needs_header) 1734 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS) 1735 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 1736 } 1737 1738 continue; 1739 } 1740 1741 if (NeedNonemptyTemplateHeader) { 1742 // In friend declarations we can have template-ids which don't 1743 // depend on the corresponding template parameter lists. But 1744 // assume that empty parameter lists are supposed to match this 1745 // template-id. 1746 if (IsFriend && T->isDependentType()) { 1747 if (ParamIdx < NumParamLists && 1748 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 1749 ExpectedTemplateParams = 0; 1750 else 1751 continue; 1752 } 1753 1754 if (ParamIdx < NumParamLists) { 1755 // Check the template parameter list, if we can. 1756 if (ExpectedTemplateParams && 1757 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 1758 ExpectedTemplateParams, 1759 true, TPL_TemplateMatch)) 1760 Invalid = true; 1761 1762 if (!Invalid && 1763 CheckTemplateParameterList(ParamLists[ParamIdx], 0, 1764 TPC_ClassTemplateMember)) 1765 Invalid = true; 1766 1767 ++ParamIdx; 1768 continue; 1769 } 1770 1771 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 1772 << T 1773 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1774 Invalid = true; 1775 continue; 1776 } 1777 } 1778 1779 // If there were at least as many template-ids as there were template 1780 // parameter lists, then there are no template parameter lists remaining for 1781 // the declaration itself. 1782 if (ParamIdx >= NumParamLists) 1783 return 0; 1784 1785 // If there were too many template parameter lists, complain about that now. 1786 if (ParamIdx < NumParamLists - 1) { 1787 bool HasAnyExplicitSpecHeader = false; 1788 bool AllExplicitSpecHeaders = true; 1789 for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) { 1790 if (ParamLists[I]->size() == 0) 1791 HasAnyExplicitSpecHeader = true; 1792 else 1793 AllExplicitSpecHeaders = false; 1794 } 1795 1796 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1797 AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers 1798 : diag::err_template_spec_extra_headers) 1799 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 1800 ParamLists[NumParamLists - 2]->getRAngleLoc()); 1801 1802 // If there was a specialization somewhere, such that 'template<>' is 1803 // not required, and there were any 'template<>' headers, note where the 1804 // specialization occurred. 1805 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader) 1806 Diag(ExplicitSpecLoc, 1807 diag::note_explicit_template_spec_does_not_need_header) 1808 << NestedTypes.back(); 1809 1810 // We have a template parameter list with no corresponding scope, which 1811 // means that the resulting template declaration can't be instantiated 1812 // properly (we'll end up with dependent nodes when we shouldn't). 1813 if (!AllExplicitSpecHeaders) 1814 Invalid = true; 1815 } 1816 1817 // C++ [temp.expl.spec]p16: 1818 // In an explicit specialization declaration for a member of a class 1819 // template or a member template that ap- pears in namespace scope, the 1820 // member template and some of its enclosing class templates may remain 1821 // unspecialized, except that the declaration shall not explicitly 1822 // specialize a class member template if its en- closing class templates 1823 // are not explicitly specialized as well. 1824 if (ParamLists[NumParamLists - 1]->size() == 0 && 1825 SawNonEmptyTemplateParameterList) { 1826 Diag(DeclLoc, diag::err_specialize_member_of_template) 1827 << ParamLists[ParamIdx]->getSourceRange(); 1828 Invalid = true; 1829 IsExplicitSpecialization = false; 1830 return 0; 1831 } 1832 1833 // Return the last template parameter list, which corresponds to the 1834 // entity being declared. 1835 return ParamLists[NumParamLists - 1]; 1836} 1837 1838void Sema::NoteAllFoundTemplates(TemplateName Name) { 1839 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 1840 Diag(Template->getLocation(), diag::note_template_declared_here) 1841 << (isa<FunctionTemplateDecl>(Template)? 0 1842 : isa<ClassTemplateDecl>(Template)? 1 1843 : isa<TypeAliasTemplateDecl>(Template)? 2 1844 : 3) 1845 << Template->getDeclName(); 1846 return; 1847 } 1848 1849 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 1850 for (OverloadedTemplateStorage::iterator I = OST->begin(), 1851 IEnd = OST->end(); 1852 I != IEnd; ++I) 1853 Diag((*I)->getLocation(), diag::note_template_declared_here) 1854 << 0 << (*I)->getDeclName(); 1855 1856 return; 1857 } 1858} 1859 1860 1861QualType Sema::CheckTemplateIdType(TemplateName Name, 1862 SourceLocation TemplateLoc, 1863 TemplateArgumentListInfo &TemplateArgs) { 1864 DependentTemplateName *DTN 1865 = Name.getUnderlying().getAsDependentTemplateName(); 1866 if (DTN && DTN->isIdentifier()) 1867 // When building a template-id where the template-name is dependent, 1868 // assume the template is a type template. Either our assumption is 1869 // correct, or the code is ill-formed and will be diagnosed when the 1870 // dependent name is substituted. 1871 return Context.getDependentTemplateSpecializationType(ETK_None, 1872 DTN->getQualifier(), 1873 DTN->getIdentifier(), 1874 TemplateArgs); 1875 1876 TemplateDecl *Template = Name.getAsTemplateDecl(); 1877 if (!Template || isa<FunctionTemplateDecl>(Template)) { 1878 // We might have a substituted template template parameter pack. If so, 1879 // build a template specialization type for it. 1880 if (Name.getAsSubstTemplateTemplateParmPack()) 1881 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1882 1883 Diag(TemplateLoc, diag::err_template_id_not_a_type) 1884 << Name; 1885 NoteAllFoundTemplates(Name); 1886 return QualType(); 1887 } 1888 1889 // Check that the template argument list is well-formed for this 1890 // template. 1891 llvm::SmallVector<TemplateArgument, 4> Converted; 1892 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1893 false, Converted)) 1894 return QualType(); 1895 1896 assert((Converted.size() == Template->getTemplateParameters()->size()) && 1897 "Converted template argument list is too short!"); 1898 1899 QualType CanonType; 1900 1901 bool InstantiationDependent = false; 1902 if (TypeAliasTemplateDecl *AliasTemplate 1903 = dyn_cast<TypeAliasTemplateDecl>(Template)) { 1904 // Find the canonical type for this type alias template specialization. 1905 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 1906 if (Pattern->isInvalidDecl()) 1907 return QualType(); 1908 1909 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 1910 Converted.data(), Converted.size()); 1911 1912 // Only substitute for the innermost template argument list. 1913 MultiLevelTemplateArgumentList TemplateArgLists; 1914 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 1915 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth(); 1916 for (unsigned I = 0; I < Depth; ++I) 1917 TemplateArgLists.addOuterTemplateArguments(0, 0); 1918 1919 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 1920 CanonType = SubstType(Pattern->getUnderlyingType(), 1921 TemplateArgLists, AliasTemplate->getLocation(), 1922 AliasTemplate->getDeclName()); 1923 if (CanonType.isNull()) 1924 return QualType(); 1925 } else if (Name.isDependent() || 1926 TemplateSpecializationType::anyDependentTemplateArguments( 1927 TemplateArgs, InstantiationDependent)) { 1928 // This class template specialization is a dependent 1929 // type. Therefore, its canonical type is another class template 1930 // specialization type that contains all of the converted 1931 // arguments in canonical form. This ensures that, e.g., A<T> and 1932 // A<T, T> have identical types when A is declared as: 1933 // 1934 // template<typename T, typename U = T> struct A; 1935 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1936 CanonType = Context.getTemplateSpecializationType(CanonName, 1937 Converted.data(), 1938 Converted.size()); 1939 1940 // FIXME: CanonType is not actually the canonical type, and unfortunately 1941 // it is a TemplateSpecializationType that we will never use again. 1942 // In the future, we need to teach getTemplateSpecializationType to only 1943 // build the canonical type and return that to us. 1944 CanonType = Context.getCanonicalType(CanonType); 1945 1946 // This might work out to be a current instantiation, in which 1947 // case the canonical type needs to be the InjectedClassNameType. 1948 // 1949 // TODO: in theory this could be a simple hashtable lookup; most 1950 // changes to CurContext don't change the set of current 1951 // instantiations. 1952 if (isa<ClassTemplateDecl>(Template)) { 1953 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 1954 // If we get out to a namespace, we're done. 1955 if (Ctx->isFileContext()) break; 1956 1957 // If this isn't a record, keep looking. 1958 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 1959 if (!Record) continue; 1960 1961 // Look for one of the two cases with InjectedClassNameTypes 1962 // and check whether it's the same template. 1963 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 1964 !Record->getDescribedClassTemplate()) 1965 continue; 1966 1967 // Fetch the injected class name type and check whether its 1968 // injected type is equal to the type we just built. 1969 QualType ICNT = Context.getTypeDeclType(Record); 1970 QualType Injected = cast<InjectedClassNameType>(ICNT) 1971 ->getInjectedSpecializationType(); 1972 1973 if (CanonType != Injected->getCanonicalTypeInternal()) 1974 continue; 1975 1976 // If so, the canonical type of this TST is the injected 1977 // class name type of the record we just found. 1978 assert(ICNT.isCanonical()); 1979 CanonType = ICNT; 1980 break; 1981 } 1982 } 1983 } else if (ClassTemplateDecl *ClassTemplate 1984 = dyn_cast<ClassTemplateDecl>(Template)) { 1985 // Find the class template specialization declaration that 1986 // corresponds to these arguments. 1987 void *InsertPos = 0; 1988 ClassTemplateSpecializationDecl *Decl 1989 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(), 1990 InsertPos); 1991 if (!Decl) { 1992 // This is the first time we have referenced this class template 1993 // specialization. Create the canonical declaration and add it to 1994 // the set of specializations. 1995 Decl = ClassTemplateSpecializationDecl::Create(Context, 1996 ClassTemplate->getTemplatedDecl()->getTagKind(), 1997 ClassTemplate->getDeclContext(), 1998 ClassTemplate->getLocation(), 1999 ClassTemplate->getLocation(), 2000 ClassTemplate, 2001 Converted.data(), 2002 Converted.size(), 0); 2003 ClassTemplate->AddSpecialization(Decl, InsertPos); 2004 Decl->setLexicalDeclContext(CurContext); 2005 } 2006 2007 CanonType = Context.getTypeDeclType(Decl); 2008 assert(isa<RecordType>(CanonType) && 2009 "type of non-dependent specialization is not a RecordType"); 2010 } 2011 2012 // Build the fully-sugared type for this class template 2013 // specialization, which refers back to the class template 2014 // specialization we created or found. 2015 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 2016} 2017 2018TypeResult 2019Sema::ActOnTemplateIdType(CXXScopeSpec &SS, 2020 TemplateTy TemplateD, SourceLocation TemplateLoc, 2021 SourceLocation LAngleLoc, 2022 ASTTemplateArgsPtr TemplateArgsIn, 2023 SourceLocation RAngleLoc) { 2024 if (SS.isInvalid()) 2025 return true; 2026 2027 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2028 2029 // Translate the parser's template argument list in our AST format. 2030 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2031 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2032 2033 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2034 QualType T = Context.getDependentTemplateSpecializationType(ETK_None, 2035 DTN->getQualifier(), 2036 DTN->getIdentifier(), 2037 TemplateArgs); 2038 2039 // Build type-source information. 2040 TypeLocBuilder TLB; 2041 DependentTemplateSpecializationTypeLoc SpecTL 2042 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2043 SpecTL.setKeywordLoc(SourceLocation()); 2044 SpecTL.setNameLoc(TemplateLoc); 2045 SpecTL.setLAngleLoc(LAngleLoc); 2046 SpecTL.setRAngleLoc(RAngleLoc); 2047 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2048 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2049 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2050 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2051 } 2052 2053 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2054 TemplateArgsIn.release(); 2055 2056 if (Result.isNull()) 2057 return true; 2058 2059 // Build type-source information. 2060 TypeLocBuilder TLB; 2061 TemplateSpecializationTypeLoc SpecTL 2062 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2063 SpecTL.setTemplateNameLoc(TemplateLoc); 2064 SpecTL.setLAngleLoc(LAngleLoc); 2065 SpecTL.setRAngleLoc(RAngleLoc); 2066 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2067 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2068 2069 if (SS.isNotEmpty()) { 2070 // Create an elaborated-type-specifier containing the nested-name-specifier. 2071 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); 2072 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2073 ElabTL.setKeywordLoc(SourceLocation()); 2074 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2075 } 2076 2077 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2078} 2079 2080TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 2081 TypeSpecifierType TagSpec, 2082 SourceLocation TagLoc, 2083 CXXScopeSpec &SS, 2084 TemplateTy TemplateD, 2085 SourceLocation TemplateLoc, 2086 SourceLocation LAngleLoc, 2087 ASTTemplateArgsPtr TemplateArgsIn, 2088 SourceLocation RAngleLoc) { 2089 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2090 2091 // Translate the parser's template argument list in our AST format. 2092 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2093 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2094 2095 // Determine the tag kind 2096 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 2097 ElaboratedTypeKeyword Keyword 2098 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 2099 2100 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2101 QualType T = Context.getDependentTemplateSpecializationType(Keyword, 2102 DTN->getQualifier(), 2103 DTN->getIdentifier(), 2104 TemplateArgs); 2105 2106 // Build type-source information. 2107 TypeLocBuilder TLB; 2108 DependentTemplateSpecializationTypeLoc SpecTL 2109 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2110 SpecTL.setKeywordLoc(TagLoc); 2111 SpecTL.setNameLoc(TemplateLoc); 2112 SpecTL.setLAngleLoc(LAngleLoc); 2113 SpecTL.setRAngleLoc(RAngleLoc); 2114 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2115 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2116 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2117 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2118 } 2119 2120 if (TypeAliasTemplateDecl *TAT = 2121 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 2122 // C++0x [dcl.type.elab]p2: 2123 // If the identifier resolves to a typedef-name or the simple-template-id 2124 // resolves to an alias template specialization, the 2125 // elaborated-type-specifier is ill-formed. 2126 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4; 2127 Diag(TAT->getLocation(), diag::note_declared_at); 2128 } 2129 2130 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2131 if (Result.isNull()) 2132 return TypeResult(); 2133 2134 // Check the tag kind 2135 if (const RecordType *RT = Result->getAs<RecordType>()) { 2136 RecordDecl *D = RT->getDecl(); 2137 2138 IdentifierInfo *Id = D->getIdentifier(); 2139 assert(Id && "templated class must have an identifier"); 2140 2141 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, 2142 TagLoc, *Id)) { 2143 Diag(TagLoc, diag::err_use_with_wrong_tag) 2144 << Result 2145 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 2146 Diag(D->getLocation(), diag::note_previous_use); 2147 } 2148 } 2149 2150 // Provide source-location information for the template specialization. 2151 TypeLocBuilder TLB; 2152 TemplateSpecializationTypeLoc SpecTL 2153 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2154 SpecTL.setTemplateNameLoc(TemplateLoc); 2155 SpecTL.setLAngleLoc(LAngleLoc); 2156 SpecTL.setRAngleLoc(RAngleLoc); 2157 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2158 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2159 2160 // Construct an elaborated type containing the nested-name-specifier (if any) 2161 // and keyword. 2162 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 2163 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2164 ElabTL.setKeywordLoc(TagLoc); 2165 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2166 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2167} 2168 2169ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 2170 LookupResult &R, 2171 bool RequiresADL, 2172 const TemplateArgumentListInfo &TemplateArgs) { 2173 // FIXME: Can we do any checking at this point? I guess we could check the 2174 // template arguments that we have against the template name, if the template 2175 // name refers to a single template. That's not a terribly common case, 2176 // though. 2177 // foo<int> could identify a single function unambiguously 2178 // This approach does NOT work, since f<int>(1); 2179 // gets resolved prior to resorting to overload resolution 2180 // i.e., template<class T> void f(double); 2181 // vs template<class T, class U> void f(U); 2182 2183 // These should be filtered out by our callers. 2184 assert(!R.empty() && "empty lookup results when building templateid"); 2185 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 2186 2187 // We don't want lookup warnings at this point. 2188 R.suppressDiagnostics(); 2189 2190 UnresolvedLookupExpr *ULE 2191 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 2192 SS.getWithLocInContext(Context), 2193 R.getLookupNameInfo(), 2194 RequiresADL, TemplateArgs, 2195 R.begin(), R.end()); 2196 2197 return Owned(ULE); 2198} 2199 2200// We actually only call this from template instantiation. 2201ExprResult 2202Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 2203 const DeclarationNameInfo &NameInfo, 2204 const TemplateArgumentListInfo &TemplateArgs) { 2205 DeclContext *DC; 2206 if (!(DC = computeDeclContext(SS, false)) || 2207 DC->isDependentContext() || 2208 RequireCompleteDeclContext(SS, DC)) 2209 return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs); 2210 2211 bool MemberOfUnknownSpecialization; 2212 LookupResult R(*this, NameInfo, LookupOrdinaryName); 2213 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 2214 MemberOfUnknownSpecialization); 2215 2216 if (R.isAmbiguous()) 2217 return ExprError(); 2218 2219 if (R.empty()) { 2220 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 2221 << NameInfo.getName() << SS.getRange(); 2222 return ExprError(); 2223 } 2224 2225 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 2226 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 2227 << (NestedNameSpecifier*) SS.getScopeRep() 2228 << NameInfo.getName() << SS.getRange(); 2229 Diag(Temp->getLocation(), diag::note_referenced_class_template); 2230 return ExprError(); 2231 } 2232 2233 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 2234} 2235 2236/// \brief Form a dependent template name. 2237/// 2238/// This action forms a dependent template name given the template 2239/// name and its (presumably dependent) scope specifier. For 2240/// example, given "MetaFun::template apply", the scope specifier \p 2241/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 2242/// of the "template" keyword, and "apply" is the \p Name. 2243TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 2244 SourceLocation TemplateKWLoc, 2245 CXXScopeSpec &SS, 2246 UnqualifiedId &Name, 2247 ParsedType ObjectType, 2248 bool EnteringContext, 2249 TemplateTy &Result) { 2250 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() && 2251 !getLangOptions().CPlusPlus0x) 2252 Diag(TemplateKWLoc, diag::ext_template_outside_of_template) 2253 << FixItHint::CreateRemoval(TemplateKWLoc); 2254 2255 DeclContext *LookupCtx = 0; 2256 if (SS.isSet()) 2257 LookupCtx = computeDeclContext(SS, EnteringContext); 2258 if (!LookupCtx && ObjectType) 2259 LookupCtx = computeDeclContext(ObjectType.get()); 2260 if (LookupCtx) { 2261 // C++0x [temp.names]p5: 2262 // If a name prefixed by the keyword template is not the name of 2263 // a template, the program is ill-formed. [Note: the keyword 2264 // template may not be applied to non-template members of class 2265 // templates. -end note ] [ Note: as is the case with the 2266 // typename prefix, the template prefix is allowed in cases 2267 // where it is not strictly necessary; i.e., when the 2268 // nested-name-specifier or the expression on the left of the -> 2269 // or . is not dependent on a template-parameter, or the use 2270 // does not appear in the scope of a template. -end note] 2271 // 2272 // Note: C++03 was more strict here, because it banned the use of 2273 // the "template" keyword prior to a template-name that was not a 2274 // dependent name. C++ DR468 relaxed this requirement (the 2275 // "template" keyword is now permitted). We follow the C++0x 2276 // rules, even in C++03 mode with a warning, retroactively applying the DR. 2277 bool MemberOfUnknownSpecialization; 2278 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name, 2279 ObjectType, EnteringContext, Result, 2280 MemberOfUnknownSpecialization); 2281 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 2282 isa<CXXRecordDecl>(LookupCtx) && 2283 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() || 2284 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) { 2285 // This is a dependent template. Handle it below. 2286 } else if (TNK == TNK_Non_template) { 2287 Diag(Name.getSourceRange().getBegin(), 2288 diag::err_template_kw_refers_to_non_template) 2289 << GetNameFromUnqualifiedId(Name).getName() 2290 << Name.getSourceRange() 2291 << TemplateKWLoc; 2292 return TNK_Non_template; 2293 } else { 2294 // We found something; return it. 2295 return TNK; 2296 } 2297 } 2298 2299 NestedNameSpecifier *Qualifier 2300 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 2301 2302 switch (Name.getKind()) { 2303 case UnqualifiedId::IK_Identifier: 2304 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2305 Name.Identifier)); 2306 return TNK_Dependent_template_name; 2307 2308 case UnqualifiedId::IK_OperatorFunctionId: 2309 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2310 Name.OperatorFunctionId.Operator)); 2311 return TNK_Dependent_template_name; 2312 2313 case UnqualifiedId::IK_LiteralOperatorId: 2314 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 2315 2316 default: 2317 break; 2318 } 2319 2320 Diag(Name.getSourceRange().getBegin(), 2321 diag::err_template_kw_refers_to_non_template) 2322 << GetNameFromUnqualifiedId(Name).getName() 2323 << Name.getSourceRange() 2324 << TemplateKWLoc; 2325 return TNK_Non_template; 2326} 2327 2328bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 2329 const TemplateArgumentLoc &AL, 2330 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2331 const TemplateArgument &Arg = AL.getArgument(); 2332 2333 // Check template type parameter. 2334 switch(Arg.getKind()) { 2335 case TemplateArgument::Type: 2336 // C++ [temp.arg.type]p1: 2337 // A template-argument for a template-parameter which is a 2338 // type shall be a type-id. 2339 break; 2340 case TemplateArgument::Template: { 2341 // We have a template type parameter but the template argument 2342 // is a template without any arguments. 2343 SourceRange SR = AL.getSourceRange(); 2344 TemplateName Name = Arg.getAsTemplate(); 2345 Diag(SR.getBegin(), diag::err_template_missing_args) 2346 << Name << SR; 2347 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 2348 Diag(Decl->getLocation(), diag::note_template_decl_here); 2349 2350 return true; 2351 } 2352 default: { 2353 // We have a template type parameter but the template argument 2354 // is not a type. 2355 SourceRange SR = AL.getSourceRange(); 2356 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 2357 Diag(Param->getLocation(), diag::note_template_param_here); 2358 2359 return true; 2360 } 2361 } 2362 2363 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 2364 return true; 2365 2366 // Add the converted template type argument. 2367 QualType ArgType = Context.getCanonicalType(Arg.getAsType()); 2368 2369 // Objective-C ARC: 2370 // If an explicitly-specified template argument type is a lifetime type 2371 // with no lifetime qualifier, the __strong lifetime qualifier is inferred. 2372 if (getLangOptions().ObjCAutoRefCount && 2373 ArgType->isObjCLifetimeType() && 2374 !ArgType.getObjCLifetime()) { 2375 Qualifiers Qs; 2376 Qs.setObjCLifetime(Qualifiers::OCL_Strong); 2377 ArgType = Context.getQualifiedType(ArgType, Qs); 2378 } 2379 2380 Converted.push_back(TemplateArgument(ArgType)); 2381 return false; 2382} 2383 2384/// \brief Substitute template arguments into the default template argument for 2385/// the given template type parameter. 2386/// 2387/// \param SemaRef the semantic analysis object for which we are performing 2388/// the substitution. 2389/// 2390/// \param Template the template that we are synthesizing template arguments 2391/// for. 2392/// 2393/// \param TemplateLoc the location of the template name that started the 2394/// template-id we are checking. 2395/// 2396/// \param RAngleLoc the location of the right angle bracket ('>') that 2397/// terminates the template-id. 2398/// 2399/// \param Param the template template parameter whose default we are 2400/// substituting into. 2401/// 2402/// \param Converted the list of template arguments provided for template 2403/// parameters that precede \p Param in the template parameter list. 2404/// \returns the substituted template argument, or NULL if an error occurred. 2405static TypeSourceInfo * 2406SubstDefaultTemplateArgument(Sema &SemaRef, 2407 TemplateDecl *Template, 2408 SourceLocation TemplateLoc, 2409 SourceLocation RAngleLoc, 2410 TemplateTypeParmDecl *Param, 2411 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2412 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 2413 2414 // If the argument type is dependent, instantiate it now based 2415 // on the previously-computed template arguments. 2416 if (ArgType->getType()->isDependentType()) { 2417 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2418 Converted.data(), Converted.size()); 2419 2420 MultiLevelTemplateArgumentList AllTemplateArgs 2421 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2422 2423 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2424 Template, Converted.data(), 2425 Converted.size(), 2426 SourceRange(TemplateLoc, RAngleLoc)); 2427 2428 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 2429 Param->getDefaultArgumentLoc(), 2430 Param->getDeclName()); 2431 } 2432 2433 return ArgType; 2434} 2435 2436/// \brief Substitute template arguments into the default template argument for 2437/// the given non-type template parameter. 2438/// 2439/// \param SemaRef the semantic analysis object for which we are performing 2440/// the substitution. 2441/// 2442/// \param Template the template that we are synthesizing template arguments 2443/// for. 2444/// 2445/// \param TemplateLoc the location of the template name that started the 2446/// template-id we are checking. 2447/// 2448/// \param RAngleLoc the location of the right angle bracket ('>') that 2449/// terminates the template-id. 2450/// 2451/// \param Param the non-type template parameter whose default we are 2452/// substituting into. 2453/// 2454/// \param Converted the list of template arguments provided for template 2455/// parameters that precede \p Param in the template parameter list. 2456/// 2457/// \returns the substituted template argument, or NULL if an error occurred. 2458static ExprResult 2459SubstDefaultTemplateArgument(Sema &SemaRef, 2460 TemplateDecl *Template, 2461 SourceLocation TemplateLoc, 2462 SourceLocation RAngleLoc, 2463 NonTypeTemplateParmDecl *Param, 2464 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2465 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2466 Converted.data(), Converted.size()); 2467 2468 MultiLevelTemplateArgumentList AllTemplateArgs 2469 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2470 2471 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2472 Template, Converted.data(), 2473 Converted.size(), 2474 SourceRange(TemplateLoc, RAngleLoc)); 2475 2476 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 2477} 2478 2479/// \brief Substitute template arguments into the default template argument for 2480/// the given template template parameter. 2481/// 2482/// \param SemaRef the semantic analysis object for which we are performing 2483/// the substitution. 2484/// 2485/// \param Template the template that we are synthesizing template arguments 2486/// for. 2487/// 2488/// \param TemplateLoc the location of the template name that started the 2489/// template-id we are checking. 2490/// 2491/// \param RAngleLoc the location of the right angle bracket ('>') that 2492/// terminates the template-id. 2493/// 2494/// \param Param the template template parameter whose default we are 2495/// substituting into. 2496/// 2497/// \param Converted the list of template arguments provided for template 2498/// parameters that precede \p Param in the template parameter list. 2499/// 2500/// \param QualifierLoc Will be set to the nested-name-specifier (with 2501/// source-location information) that precedes the template name. 2502/// 2503/// \returns the substituted template argument, or NULL if an error occurred. 2504static TemplateName 2505SubstDefaultTemplateArgument(Sema &SemaRef, 2506 TemplateDecl *Template, 2507 SourceLocation TemplateLoc, 2508 SourceLocation RAngleLoc, 2509 TemplateTemplateParmDecl *Param, 2510 llvm::SmallVectorImpl<TemplateArgument> &Converted, 2511 NestedNameSpecifierLoc &QualifierLoc) { 2512 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2513 Converted.data(), Converted.size()); 2514 2515 MultiLevelTemplateArgumentList AllTemplateArgs 2516 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2517 2518 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2519 Template, Converted.data(), 2520 Converted.size(), 2521 SourceRange(TemplateLoc, RAngleLoc)); 2522 2523 // Substitute into the nested-name-specifier first, 2524 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 2525 if (QualifierLoc) { 2526 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 2527 AllTemplateArgs); 2528 if (!QualifierLoc) 2529 return TemplateName(); 2530 } 2531 2532 return SemaRef.SubstTemplateName(QualifierLoc, 2533 Param->getDefaultArgument().getArgument().getAsTemplate(), 2534 Param->getDefaultArgument().getTemplateNameLoc(), 2535 AllTemplateArgs); 2536} 2537 2538/// \brief If the given template parameter has a default template 2539/// argument, substitute into that default template argument and 2540/// return the corresponding template argument. 2541TemplateArgumentLoc 2542Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 2543 SourceLocation TemplateLoc, 2544 SourceLocation RAngleLoc, 2545 Decl *Param, 2546 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2547 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 2548 if (!TypeParm->hasDefaultArgument()) 2549 return TemplateArgumentLoc(); 2550 2551 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 2552 TemplateLoc, 2553 RAngleLoc, 2554 TypeParm, 2555 Converted); 2556 if (DI) 2557 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 2558 2559 return TemplateArgumentLoc(); 2560 } 2561 2562 if (NonTypeTemplateParmDecl *NonTypeParm 2563 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2564 if (!NonTypeParm->hasDefaultArgument()) 2565 return TemplateArgumentLoc(); 2566 2567 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 2568 TemplateLoc, 2569 RAngleLoc, 2570 NonTypeParm, 2571 Converted); 2572 if (Arg.isInvalid()) 2573 return TemplateArgumentLoc(); 2574 2575 Expr *ArgE = Arg.takeAs<Expr>(); 2576 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 2577 } 2578 2579 TemplateTemplateParmDecl *TempTempParm 2580 = cast<TemplateTemplateParmDecl>(Param); 2581 if (!TempTempParm->hasDefaultArgument()) 2582 return TemplateArgumentLoc(); 2583 2584 2585 NestedNameSpecifierLoc QualifierLoc; 2586 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 2587 TemplateLoc, 2588 RAngleLoc, 2589 TempTempParm, 2590 Converted, 2591 QualifierLoc); 2592 if (TName.isNull()) 2593 return TemplateArgumentLoc(); 2594 2595 return TemplateArgumentLoc(TemplateArgument(TName), 2596 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 2597 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 2598} 2599 2600/// \brief Check that the given template argument corresponds to the given 2601/// template parameter. 2602/// 2603/// \param Param The template parameter against which the argument will be 2604/// checked. 2605/// 2606/// \param Arg The template argument. 2607/// 2608/// \param Template The template in which the template argument resides. 2609/// 2610/// \param TemplateLoc The location of the template name for the template 2611/// whose argument list we're matching. 2612/// 2613/// \param RAngleLoc The location of the right angle bracket ('>') that closes 2614/// the template argument list. 2615/// 2616/// \param ArgumentPackIndex The index into the argument pack where this 2617/// argument will be placed. Only valid if the parameter is a parameter pack. 2618/// 2619/// \param Converted The checked, converted argument will be added to the 2620/// end of this small vector. 2621/// 2622/// \param CTAK Describes how we arrived at this particular template argument: 2623/// explicitly written, deduced, etc. 2624/// 2625/// \returns true on error, false otherwise. 2626bool Sema::CheckTemplateArgument(NamedDecl *Param, 2627 const TemplateArgumentLoc &Arg, 2628 NamedDecl *Template, 2629 SourceLocation TemplateLoc, 2630 SourceLocation RAngleLoc, 2631 unsigned ArgumentPackIndex, 2632 llvm::SmallVectorImpl<TemplateArgument> &Converted, 2633 CheckTemplateArgumentKind CTAK) { 2634 // Check template type parameters. 2635 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2636 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2637 2638 // Check non-type template parameters. 2639 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2640 // Do substitution on the type of the non-type template parameter 2641 // with the template arguments we've seen thus far. But if the 2642 // template has a dependent context then we cannot substitute yet. 2643 QualType NTTPType = NTTP->getType(); 2644 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 2645 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 2646 2647 if (NTTPType->isDependentType() && 2648 !isa<TemplateTemplateParmDecl>(Template) && 2649 !Template->getDeclContext()->isDependentContext()) { 2650 // Do substitution on the type of the non-type template parameter. 2651 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2652 NTTP, Converted.data(), Converted.size(), 2653 SourceRange(TemplateLoc, RAngleLoc)); 2654 2655 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2656 Converted.data(), Converted.size()); 2657 NTTPType = SubstType(NTTPType, 2658 MultiLevelTemplateArgumentList(TemplateArgs), 2659 NTTP->getLocation(), 2660 NTTP->getDeclName()); 2661 // If that worked, check the non-type template parameter type 2662 // for validity. 2663 if (!NTTPType.isNull()) 2664 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2665 NTTP->getLocation()); 2666 if (NTTPType.isNull()) 2667 return true; 2668 } 2669 2670 switch (Arg.getArgument().getKind()) { 2671 case TemplateArgument::Null: 2672 assert(false && "Should never see a NULL template argument here"); 2673 return true; 2674 2675 case TemplateArgument::Expression: { 2676 TemplateArgument Result; 2677 ExprResult Res = 2678 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), 2679 Result, CTAK); 2680 if (Res.isInvalid()) 2681 return true; 2682 2683 Converted.push_back(Result); 2684 break; 2685 } 2686 2687 case TemplateArgument::Declaration: 2688 case TemplateArgument::Integral: 2689 // We've already checked this template argument, so just copy 2690 // it to the list of converted arguments. 2691 Converted.push_back(Arg.getArgument()); 2692 break; 2693 2694 case TemplateArgument::Template: 2695 case TemplateArgument::TemplateExpansion: 2696 // We were given a template template argument. It may not be ill-formed; 2697 // see below. 2698 if (DependentTemplateName *DTN 2699 = Arg.getArgument().getAsTemplateOrTemplatePattern() 2700 .getAsDependentTemplateName()) { 2701 // We have a template argument such as \c T::template X, which we 2702 // parsed as a template template argument. However, since we now 2703 // know that we need a non-type template argument, convert this 2704 // template name into an expression. 2705 2706 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 2707 Arg.getTemplateNameLoc()); 2708 2709 CXXScopeSpec SS; 2710 SS.Adopt(Arg.getTemplateQualifierLoc()); 2711 ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context, 2712 SS.getWithLocInContext(Context), 2713 NameInfo)); 2714 2715 // If we parsed the template argument as a pack expansion, create a 2716 // pack expansion expression. 2717 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 2718 E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc()); 2719 if (E.isInvalid()) 2720 return true; 2721 } 2722 2723 TemplateArgument Result; 2724 E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result); 2725 if (E.isInvalid()) 2726 return true; 2727 2728 Converted.push_back(Result); 2729 break; 2730 } 2731 2732 // We have a template argument that actually does refer to a class 2733 // template, alias template, or template template parameter, and 2734 // therefore cannot be a non-type template argument. 2735 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2736 << Arg.getSourceRange(); 2737 2738 Diag(Param->getLocation(), diag::note_template_param_here); 2739 return true; 2740 2741 case TemplateArgument::Type: { 2742 // We have a non-type template parameter but the template 2743 // argument is a type. 2744 2745 // C++ [temp.arg]p2: 2746 // In a template-argument, an ambiguity between a type-id and 2747 // an expression is resolved to a type-id, regardless of the 2748 // form of the corresponding template-parameter. 2749 // 2750 // We warn specifically about this case, since it can be rather 2751 // confusing for users. 2752 QualType T = Arg.getArgument().getAsType(); 2753 SourceRange SR = Arg.getSourceRange(); 2754 if (T->isFunctionType()) 2755 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2756 else 2757 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2758 Diag(Param->getLocation(), diag::note_template_param_here); 2759 return true; 2760 } 2761 2762 case TemplateArgument::Pack: 2763 llvm_unreachable("Caller must expand template argument packs"); 2764 break; 2765 } 2766 2767 return false; 2768 } 2769 2770 2771 // Check template template parameters. 2772 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2773 2774 // Substitute into the template parameter list of the template 2775 // template parameter, since previously-supplied template arguments 2776 // may appear within the template template parameter. 2777 { 2778 // Set up a template instantiation context. 2779 LocalInstantiationScope Scope(*this); 2780 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2781 TempParm, Converted.data(), Converted.size(), 2782 SourceRange(TemplateLoc, RAngleLoc)); 2783 2784 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2785 Converted.data(), Converted.size()); 2786 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2787 SubstDecl(TempParm, CurContext, 2788 MultiLevelTemplateArgumentList(TemplateArgs))); 2789 if (!TempParm) 2790 return true; 2791 } 2792 2793 switch (Arg.getArgument().getKind()) { 2794 case TemplateArgument::Null: 2795 assert(false && "Should never see a NULL template argument here"); 2796 return true; 2797 2798 case TemplateArgument::Template: 2799 case TemplateArgument::TemplateExpansion: 2800 if (CheckTemplateArgument(TempParm, Arg)) 2801 return true; 2802 2803 Converted.push_back(Arg.getArgument()); 2804 break; 2805 2806 case TemplateArgument::Expression: 2807 case TemplateArgument::Type: 2808 // We have a template template parameter but the template 2809 // argument does not refer to a template. 2810 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 2811 << getLangOptions().CPlusPlus0x; 2812 return true; 2813 2814 case TemplateArgument::Declaration: 2815 llvm_unreachable( 2816 "Declaration argument with template template parameter"); 2817 break; 2818 case TemplateArgument::Integral: 2819 llvm_unreachable( 2820 "Integral argument with template template parameter"); 2821 break; 2822 2823 case TemplateArgument::Pack: 2824 llvm_unreachable("Caller must expand template argument packs"); 2825 break; 2826 } 2827 2828 return false; 2829} 2830 2831/// \brief Check that the given template argument list is well-formed 2832/// for specializing the given template. 2833bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2834 SourceLocation TemplateLoc, 2835 TemplateArgumentListInfo &TemplateArgs, 2836 bool PartialTemplateArgs, 2837 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2838 TemplateParameterList *Params = Template->getTemplateParameters(); 2839 unsigned NumParams = Params->size(); 2840 unsigned NumArgs = TemplateArgs.size(); 2841 bool Invalid = false; 2842 2843 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2844 2845 bool HasParameterPack = 2846 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2847 2848 if ((NumArgs > NumParams && !HasParameterPack) || 2849 (NumArgs < Params->getMinRequiredArguments() && 2850 !PartialTemplateArgs)) { 2851 // FIXME: point at either the first arg beyond what we can handle, 2852 // or the '>', depending on whether we have too many or too few 2853 // arguments. 2854 SourceRange Range; 2855 if (NumArgs > NumParams) 2856 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2857 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2858 << (NumArgs > NumParams) 2859 << (isa<ClassTemplateDecl>(Template)? 0 : 2860 isa<FunctionTemplateDecl>(Template)? 1 : 2861 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2862 << Template << Range; 2863 Diag(Template->getLocation(), diag::note_template_decl_here) 2864 << Params->getSourceRange(); 2865 Invalid = true; 2866 } 2867 2868 // C++ [temp.arg]p1: 2869 // [...] The type and form of each template-argument specified in 2870 // a template-id shall match the type and form specified for the 2871 // corresponding parameter declared by the template in its 2872 // template-parameter-list. 2873 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 2874 llvm::SmallVector<TemplateArgument, 2> ArgumentPack; 2875 TemplateParameterList::iterator Param = Params->begin(), 2876 ParamEnd = Params->end(); 2877 unsigned ArgIdx = 0; 2878 LocalInstantiationScope InstScope(*this, true); 2879 while (Param != ParamEnd) { 2880 if (ArgIdx < NumArgs) { 2881 // If we have an expanded parameter pack, make sure we don't have too 2882 // many arguments. 2883 if (NonTypeTemplateParmDecl *NTTP 2884 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2885 if (NTTP->isExpandedParameterPack() && 2886 ArgumentPack.size() >= NTTP->getNumExpansionTypes()) { 2887 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2888 << true 2889 << (isa<ClassTemplateDecl>(Template)? 0 : 2890 isa<FunctionTemplateDecl>(Template)? 1 : 2891 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2892 << Template; 2893 Diag(Template->getLocation(), diag::note_template_decl_here) 2894 << Params->getSourceRange(); 2895 return true; 2896 } 2897 } 2898 2899 // Check the template argument we were given. 2900 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2901 TemplateLoc, RAngleLoc, 2902 ArgumentPack.size(), Converted)) 2903 return true; 2904 2905 if ((*Param)->isTemplateParameterPack()) { 2906 // The template parameter was a template parameter pack, so take the 2907 // deduced argument and place it on the argument pack. Note that we 2908 // stay on the same template parameter so that we can deduce more 2909 // arguments. 2910 ArgumentPack.push_back(Converted.back()); 2911 Converted.pop_back(); 2912 } else { 2913 // Move to the next template parameter. 2914 ++Param; 2915 } 2916 ++ArgIdx; 2917 continue; 2918 } 2919 2920 // If we're checking a partial template argument list, we're done. 2921 if (PartialTemplateArgs) { 2922 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty()) 2923 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 2924 ArgumentPack.data(), 2925 ArgumentPack.size())); 2926 2927 return Invalid; 2928 } 2929 2930 // If we have a template parameter pack with no more corresponding 2931 // arguments, just break out now and we'll fill in the argument pack below. 2932 if ((*Param)->isTemplateParameterPack()) 2933 break; 2934 2935 // We have a default template argument that we will use. 2936 TemplateArgumentLoc Arg; 2937 2938 // Retrieve the default template argument from the template 2939 // parameter. For each kind of template parameter, we substitute the 2940 // template arguments provided thus far and any "outer" template arguments 2941 // (when the template parameter was part of a nested template) into 2942 // the default argument. 2943 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2944 if (!TTP->hasDefaultArgument()) { 2945 assert(Invalid && "Missing default argument"); 2946 break; 2947 } 2948 2949 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2950 Template, 2951 TemplateLoc, 2952 RAngleLoc, 2953 TTP, 2954 Converted); 2955 if (!ArgType) 2956 return true; 2957 2958 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2959 ArgType); 2960 } else if (NonTypeTemplateParmDecl *NTTP 2961 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2962 if (!NTTP->hasDefaultArgument()) { 2963 assert(Invalid && "Missing default argument"); 2964 break; 2965 } 2966 2967 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 2968 TemplateLoc, 2969 RAngleLoc, 2970 NTTP, 2971 Converted); 2972 if (E.isInvalid()) 2973 return true; 2974 2975 Expr *Ex = E.takeAs<Expr>(); 2976 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2977 } else { 2978 TemplateTemplateParmDecl *TempParm 2979 = cast<TemplateTemplateParmDecl>(*Param); 2980 2981 if (!TempParm->hasDefaultArgument()) { 2982 assert(Invalid && "Missing default argument"); 2983 break; 2984 } 2985 2986 NestedNameSpecifierLoc QualifierLoc; 2987 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2988 TemplateLoc, 2989 RAngleLoc, 2990 TempParm, 2991 Converted, 2992 QualifierLoc); 2993 if (Name.isNull()) 2994 return true; 2995 2996 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc, 2997 TempParm->getDefaultArgument().getTemplateNameLoc()); 2998 } 2999 3000 // Introduce an instantiation record that describes where we are using 3001 // the default template argument. 3002 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 3003 Converted.data(), Converted.size(), 3004 SourceRange(TemplateLoc, RAngleLoc)); 3005 3006 // Check the default template argument. 3007 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 3008 RAngleLoc, 0, Converted)) 3009 return true; 3010 3011 // Core issue 150 (assumed resolution): if this is a template template 3012 // parameter, keep track of the default template arguments from the 3013 // template definition. 3014 if (isTemplateTemplateParameter) 3015 TemplateArgs.addArgument(Arg); 3016 3017 // Move to the next template parameter and argument. 3018 ++Param; 3019 ++ArgIdx; 3020 } 3021 3022 // Form argument packs for each of the parameter packs remaining. 3023 while (Param != ParamEnd) { 3024 // If we're checking a partial list of template arguments, don't fill 3025 // in arguments for non-template parameter packs. 3026 3027 if ((*Param)->isTemplateParameterPack()) { 3028 if (ArgumentPack.empty()) 3029 Converted.push_back(TemplateArgument(0, 0)); 3030 else { 3031 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 3032 ArgumentPack.data(), 3033 ArgumentPack.size())); 3034 ArgumentPack.clear(); 3035 } 3036 } 3037 3038 ++Param; 3039 } 3040 3041 return Invalid; 3042} 3043 3044namespace { 3045 class UnnamedLocalNoLinkageFinder 3046 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 3047 { 3048 Sema &S; 3049 SourceRange SR; 3050 3051 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 3052 3053 public: 3054 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 3055 3056 bool Visit(QualType T) { 3057 return inherited::Visit(T.getTypePtr()); 3058 } 3059 3060#define TYPE(Class, Parent) \ 3061 bool Visit##Class##Type(const Class##Type *); 3062#define ABSTRACT_TYPE(Class, Parent) \ 3063 bool Visit##Class##Type(const Class##Type *) { return false; } 3064#define NON_CANONICAL_TYPE(Class, Parent) \ 3065 bool Visit##Class##Type(const Class##Type *) { return false; } 3066#include "clang/AST/TypeNodes.def" 3067 3068 bool VisitTagDecl(const TagDecl *Tag); 3069 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 3070 }; 3071} 3072 3073bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 3074 return false; 3075} 3076 3077bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 3078 return Visit(T->getElementType()); 3079} 3080 3081bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 3082 return Visit(T->getPointeeType()); 3083} 3084 3085bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 3086 const BlockPointerType* T) { 3087 return Visit(T->getPointeeType()); 3088} 3089 3090bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 3091 const LValueReferenceType* T) { 3092 return Visit(T->getPointeeType()); 3093} 3094 3095bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 3096 const RValueReferenceType* T) { 3097 return Visit(T->getPointeeType()); 3098} 3099 3100bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 3101 const MemberPointerType* T) { 3102 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 3103} 3104 3105bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 3106 const ConstantArrayType* T) { 3107 return Visit(T->getElementType()); 3108} 3109 3110bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 3111 const IncompleteArrayType* T) { 3112 return Visit(T->getElementType()); 3113} 3114 3115bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 3116 const VariableArrayType* T) { 3117 return Visit(T->getElementType()); 3118} 3119 3120bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 3121 const DependentSizedArrayType* T) { 3122 return Visit(T->getElementType()); 3123} 3124 3125bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 3126 const DependentSizedExtVectorType* T) { 3127 return Visit(T->getElementType()); 3128} 3129 3130bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 3131 return Visit(T->getElementType()); 3132} 3133 3134bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 3135 return Visit(T->getElementType()); 3136} 3137 3138bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 3139 const FunctionProtoType* T) { 3140 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), 3141 AEnd = T->arg_type_end(); 3142 A != AEnd; ++A) { 3143 if (Visit(*A)) 3144 return true; 3145 } 3146 3147 return Visit(T->getResultType()); 3148} 3149 3150bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 3151 const FunctionNoProtoType* T) { 3152 return Visit(T->getResultType()); 3153} 3154 3155bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 3156 const UnresolvedUsingType*) { 3157 return false; 3158} 3159 3160bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 3161 return false; 3162} 3163 3164bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 3165 return Visit(T->getUnderlyingType()); 3166} 3167 3168bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 3169 return false; 3170} 3171 3172bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 3173 const UnaryTransformType*) { 3174 return false; 3175} 3176 3177bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 3178 return Visit(T->getDeducedType()); 3179} 3180 3181bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 3182 return VisitTagDecl(T->getDecl()); 3183} 3184 3185bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 3186 return VisitTagDecl(T->getDecl()); 3187} 3188 3189bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 3190 const TemplateTypeParmType*) { 3191 return false; 3192} 3193 3194bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 3195 const SubstTemplateTypeParmPackType *) { 3196 return false; 3197} 3198 3199bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 3200 const TemplateSpecializationType*) { 3201 return false; 3202} 3203 3204bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 3205 const InjectedClassNameType* T) { 3206 return VisitTagDecl(T->getDecl()); 3207} 3208 3209bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 3210 const DependentNameType* T) { 3211 return VisitNestedNameSpecifier(T->getQualifier()); 3212} 3213 3214bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 3215 const DependentTemplateSpecializationType* T) { 3216 return VisitNestedNameSpecifier(T->getQualifier()); 3217} 3218 3219bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 3220 const PackExpansionType* T) { 3221 return Visit(T->getPattern()); 3222} 3223 3224bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 3225 return false; 3226} 3227 3228bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 3229 const ObjCInterfaceType *) { 3230 return false; 3231} 3232 3233bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 3234 const ObjCObjectPointerType *) { 3235 return false; 3236} 3237 3238bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 3239 if (Tag->getDeclContext()->isFunctionOrMethod()) { 3240 S.Diag(SR.getBegin(), diag::ext_template_arg_local_type) 3241 << S.Context.getTypeDeclType(Tag) << SR; 3242 return true; 3243 } 3244 3245 if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) { 3246 S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR; 3247 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 3248 return true; 3249 } 3250 3251 return false; 3252} 3253 3254bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 3255 NestedNameSpecifier *NNS) { 3256 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 3257 return true; 3258 3259 switch (NNS->getKind()) { 3260 case NestedNameSpecifier::Identifier: 3261 case NestedNameSpecifier::Namespace: 3262 case NestedNameSpecifier::NamespaceAlias: 3263 case NestedNameSpecifier::Global: 3264 return false; 3265 3266 case NestedNameSpecifier::TypeSpec: 3267 case NestedNameSpecifier::TypeSpecWithTemplate: 3268 return Visit(QualType(NNS->getAsType(), 0)); 3269 } 3270 return false; 3271} 3272 3273 3274/// \brief Check a template argument against its corresponding 3275/// template type parameter. 3276/// 3277/// This routine implements the semantics of C++ [temp.arg.type]. It 3278/// returns true if an error occurred, and false otherwise. 3279bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 3280 TypeSourceInfo *ArgInfo) { 3281 assert(ArgInfo && "invalid TypeSourceInfo"); 3282 QualType Arg = ArgInfo->getType(); 3283 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 3284 3285 if (Arg->isVariablyModifiedType()) { 3286 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 3287 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 3288 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 3289 } 3290 3291 // C++03 [temp.arg.type]p2: 3292 // A local type, a type with no linkage, an unnamed type or a type 3293 // compounded from any of these types shall not be used as a 3294 // template-argument for a template type-parameter. 3295 // 3296 // C++0x allows these, and even in C++03 we allow them as an extension with 3297 // a warning. 3298 if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) { 3299 UnnamedLocalNoLinkageFinder Finder(*this, SR); 3300 (void)Finder.Visit(Context.getCanonicalType(Arg)); 3301 } 3302 3303 return false; 3304} 3305 3306/// \brief Checks whether the given template argument is the address 3307/// of an object or function according to C++ [temp.arg.nontype]p1. 3308static bool 3309CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 3310 NonTypeTemplateParmDecl *Param, 3311 QualType ParamType, 3312 Expr *ArgIn, 3313 TemplateArgument &Converted) { 3314 bool Invalid = false; 3315 Expr *Arg = ArgIn; 3316 QualType ArgType = Arg->getType(); 3317 3318 // See through any implicit casts we added to fix the type. 3319 Arg = Arg->IgnoreImpCasts(); 3320 3321 // C++ [temp.arg.nontype]p1: 3322 // 3323 // A template-argument for a non-type, non-template 3324 // template-parameter shall be one of: [...] 3325 // 3326 // -- the address of an object or function with external 3327 // linkage, including function templates and function 3328 // template-ids but excluding non-static class members, 3329 // expressed as & id-expression where the & is optional if 3330 // the name refers to a function or array, or if the 3331 // corresponding template-parameter is a reference; or 3332 3333 // In C++98/03 mode, give an extension warning on any extra parentheses. 3334 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3335 bool ExtraParens = false; 3336 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3337 if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) { 3338 S.Diag(Arg->getSourceRange().getBegin(), 3339 diag::ext_template_arg_extra_parens) 3340 << Arg->getSourceRange(); 3341 ExtraParens = true; 3342 } 3343 3344 Arg = Parens->getSubExpr(); 3345 } 3346 3347 while (SubstNonTypeTemplateParmExpr *subst = 3348 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3349 Arg = subst->getReplacement()->IgnoreImpCasts(); 3350 3351 bool AddressTaken = false; 3352 SourceLocation AddrOpLoc; 3353 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3354 if (UnOp->getOpcode() == UO_AddrOf) { 3355 Arg = UnOp->getSubExpr(); 3356 AddressTaken = true; 3357 AddrOpLoc = UnOp->getOperatorLoc(); 3358 } 3359 } 3360 3361 if (S.getLangOptions().Microsoft && isa<CXXUuidofExpr>(Arg)) { 3362 Converted = TemplateArgument(ArgIn); 3363 return false; 3364 } 3365 3366 while (SubstNonTypeTemplateParmExpr *subst = 3367 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3368 Arg = subst->getReplacement()->IgnoreImpCasts(); 3369 3370 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg); 3371 if (!DRE) { 3372 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 3373 << Arg->getSourceRange(); 3374 S.Diag(Param->getLocation(), diag::note_template_param_here); 3375 return true; 3376 } 3377 3378 // Stop checking the precise nature of the argument if it is value dependent, 3379 // it should be checked when instantiated. 3380 if (Arg->isValueDependent()) { 3381 Converted = TemplateArgument(ArgIn); 3382 return false; 3383 } 3384 3385 if (!isa<ValueDecl>(DRE->getDecl())) { 3386 S.Diag(Arg->getSourceRange().getBegin(), 3387 diag::err_template_arg_not_object_or_func_form) 3388 << Arg->getSourceRange(); 3389 S.Diag(Param->getLocation(), diag::note_template_param_here); 3390 return true; 3391 } 3392 3393 NamedDecl *Entity = 0; 3394 3395 // Cannot refer to non-static data members 3396 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) { 3397 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 3398 << Field << Arg->getSourceRange(); 3399 S.Diag(Param->getLocation(), diag::note_template_param_here); 3400 return true; 3401 } 3402 3403 // Cannot refer to non-static member functions 3404 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 3405 if (!Method->isStatic()) { 3406 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method) 3407 << Method << Arg->getSourceRange(); 3408 S.Diag(Param->getLocation(), diag::note_template_param_here); 3409 return true; 3410 } 3411 3412 // Functions must have external linkage. 3413 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 3414 if (!isExternalLinkage(Func->getLinkage())) { 3415 S.Diag(Arg->getSourceRange().getBegin(), 3416 diag::err_template_arg_function_not_extern) 3417 << Func << Arg->getSourceRange(); 3418 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object) 3419 << true; 3420 return true; 3421 } 3422 3423 // Okay: we've named a function with external linkage. 3424 Entity = Func; 3425 3426 // If the template parameter has pointer type, the function decays. 3427 if (ParamType->isPointerType() && !AddressTaken) 3428 ArgType = S.Context.getPointerType(Func->getType()); 3429 else if (AddressTaken && ParamType->isReferenceType()) { 3430 // If we originally had an address-of operator, but the 3431 // parameter has reference type, complain and (if things look 3432 // like they will work) drop the address-of operator. 3433 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 3434 ParamType.getNonReferenceType())) { 3435 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3436 << ParamType; 3437 S.Diag(Param->getLocation(), diag::note_template_param_here); 3438 return true; 3439 } 3440 3441 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3442 << ParamType 3443 << FixItHint::CreateRemoval(AddrOpLoc); 3444 S.Diag(Param->getLocation(), diag::note_template_param_here); 3445 3446 ArgType = Func->getType(); 3447 } 3448 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 3449 if (!isExternalLinkage(Var->getLinkage())) { 3450 S.Diag(Arg->getSourceRange().getBegin(), 3451 diag::err_template_arg_object_not_extern) 3452 << Var << Arg->getSourceRange(); 3453 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object) 3454 << true; 3455 return true; 3456 } 3457 3458 // A value of reference type is not an object. 3459 if (Var->getType()->isReferenceType()) { 3460 S.Diag(Arg->getSourceRange().getBegin(), 3461 diag::err_template_arg_reference_var) 3462 << Var->getType() << Arg->getSourceRange(); 3463 S.Diag(Param->getLocation(), diag::note_template_param_here); 3464 return true; 3465 } 3466 3467 // Okay: we've named an object with external linkage 3468 Entity = Var; 3469 3470 // If the template parameter has pointer type, we must have taken 3471 // the address of this object. 3472 if (ParamType->isReferenceType()) { 3473 if (AddressTaken) { 3474 // If we originally had an address-of operator, but the 3475 // parameter has reference type, complain and (if things look 3476 // like they will work) drop the address-of operator. 3477 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 3478 ParamType.getNonReferenceType())) { 3479 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3480 << ParamType; 3481 S.Diag(Param->getLocation(), diag::note_template_param_here); 3482 return true; 3483 } 3484 3485 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3486 << ParamType 3487 << FixItHint::CreateRemoval(AddrOpLoc); 3488 S.Diag(Param->getLocation(), diag::note_template_param_here); 3489 3490 ArgType = Var->getType(); 3491 } 3492 } else if (!AddressTaken && ParamType->isPointerType()) { 3493 if (Var->getType()->isArrayType()) { 3494 // Array-to-pointer decay. 3495 ArgType = S.Context.getArrayDecayedType(Var->getType()); 3496 } else { 3497 // If the template parameter has pointer type but the address of 3498 // this object was not taken, complain and (possibly) recover by 3499 // taking the address of the entity. 3500 ArgType = S.Context.getPointerType(Var->getType()); 3501 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 3502 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3503 << ParamType; 3504 S.Diag(Param->getLocation(), diag::note_template_param_here); 3505 return true; 3506 } 3507 3508 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3509 << ParamType 3510 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 3511 3512 S.Diag(Param->getLocation(), diag::note_template_param_here); 3513 } 3514 } 3515 } else { 3516 // We found something else, but we don't know specifically what it is. 3517 S.Diag(Arg->getSourceRange().getBegin(), 3518 diag::err_template_arg_not_object_or_func) 3519 << Arg->getSourceRange(); 3520 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 3521 return true; 3522 } 3523 3524 bool ObjCLifetimeConversion; 3525 if (ParamType->isPointerType() && 3526 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 3527 S.IsQualificationConversion(ArgType, ParamType, false, 3528 ObjCLifetimeConversion)) { 3529 // For pointer-to-object types, qualification conversions are 3530 // permitted. 3531 } else { 3532 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 3533 if (!ParamRef->getPointeeType()->isFunctionType()) { 3534 // C++ [temp.arg.nontype]p5b3: 3535 // For a non-type template-parameter of type reference to 3536 // object, no conversions apply. The type referred to by the 3537 // reference may be more cv-qualified than the (otherwise 3538 // identical) type of the template- argument. The 3539 // template-parameter is bound directly to the 3540 // template-argument, which shall be an lvalue. 3541 3542 // FIXME: Other qualifiers? 3543 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 3544 unsigned ArgQuals = ArgType.getCVRQualifiers(); 3545 3546 if ((ParamQuals | ArgQuals) != ParamQuals) { 3547 S.Diag(Arg->getSourceRange().getBegin(), 3548 diag::err_template_arg_ref_bind_ignores_quals) 3549 << ParamType << Arg->getType() 3550 << Arg->getSourceRange(); 3551 S.Diag(Param->getLocation(), diag::note_template_param_here); 3552 return true; 3553 } 3554 } 3555 } 3556 3557 // At this point, the template argument refers to an object or 3558 // function with external linkage. We now need to check whether the 3559 // argument and parameter types are compatible. 3560 if (!S.Context.hasSameUnqualifiedType(ArgType, 3561 ParamType.getNonReferenceType())) { 3562 // We can't perform this conversion or binding. 3563 if (ParamType->isReferenceType()) 3564 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 3565 << ParamType << ArgIn->getType() << Arg->getSourceRange(); 3566 else 3567 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3568 << ArgIn->getType() << ParamType << Arg->getSourceRange(); 3569 S.Diag(Param->getLocation(), diag::note_template_param_here); 3570 return true; 3571 } 3572 } 3573 3574 // Create the template argument. 3575 Converted = TemplateArgument(Entity->getCanonicalDecl()); 3576 S.MarkDeclarationReferenced(Arg->getLocStart(), Entity); 3577 return false; 3578} 3579 3580/// \brief Checks whether the given template argument is a pointer to 3581/// member constant according to C++ [temp.arg.nontype]p1. 3582bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 3583 TemplateArgument &Converted) { 3584 bool Invalid = false; 3585 3586 // See through any implicit casts we added to fix the type. 3587 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 3588 Arg = Cast->getSubExpr(); 3589 3590 // C++ [temp.arg.nontype]p1: 3591 // 3592 // A template-argument for a non-type, non-template 3593 // template-parameter shall be one of: [...] 3594 // 3595 // -- a pointer to member expressed as described in 5.3.1. 3596 DeclRefExpr *DRE = 0; 3597 3598 // In C++98/03 mode, give an extension warning on any extra parentheses. 3599 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3600 bool ExtraParens = false; 3601 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3602 if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) { 3603 Diag(Arg->getSourceRange().getBegin(), 3604 diag::ext_template_arg_extra_parens) 3605 << Arg->getSourceRange(); 3606 ExtraParens = true; 3607 } 3608 3609 Arg = Parens->getSubExpr(); 3610 } 3611 3612 while (SubstNonTypeTemplateParmExpr *subst = 3613 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3614 Arg = subst->getReplacement()->IgnoreImpCasts(); 3615 3616 // A pointer-to-member constant written &Class::member. 3617 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3618 if (UnOp->getOpcode() == UO_AddrOf) { 3619 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 3620 if (DRE && !DRE->getQualifier()) 3621 DRE = 0; 3622 } 3623 } 3624 // A constant of pointer-to-member type. 3625 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 3626 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 3627 if (VD->getType()->isMemberPointerType()) { 3628 if (isa<NonTypeTemplateParmDecl>(VD) || 3629 (isa<VarDecl>(VD) && 3630 Context.getCanonicalType(VD->getType()).isConstQualified())) { 3631 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3632 Converted = TemplateArgument(Arg); 3633 else 3634 Converted = TemplateArgument(VD->getCanonicalDecl()); 3635 return Invalid; 3636 } 3637 } 3638 } 3639 3640 DRE = 0; 3641 } 3642 3643 if (!DRE) 3644 return Diag(Arg->getSourceRange().getBegin(), 3645 diag::err_template_arg_not_pointer_to_member_form) 3646 << Arg->getSourceRange(); 3647 3648 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 3649 assert((isa<FieldDecl>(DRE->getDecl()) || 3650 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 3651 "Only non-static member pointers can make it here"); 3652 3653 // Okay: this is the address of a non-static member, and therefore 3654 // a member pointer constant. 3655 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3656 Converted = TemplateArgument(Arg); 3657 else 3658 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 3659 return Invalid; 3660 } 3661 3662 // We found something else, but we don't know specifically what it is. 3663 Diag(Arg->getSourceRange().getBegin(), 3664 diag::err_template_arg_not_pointer_to_member_form) 3665 << Arg->getSourceRange(); 3666 Diag(DRE->getDecl()->getLocation(), 3667 diag::note_template_arg_refers_here); 3668 return true; 3669} 3670 3671/// \brief Check a template argument against its corresponding 3672/// non-type template parameter. 3673/// 3674/// This routine implements the semantics of C++ [temp.arg.nontype]. 3675/// If an error occurred, it returns ExprError(); otherwise, it 3676/// returns the converted template argument. \p 3677/// InstantiatedParamType is the type of the non-type template 3678/// parameter after it has been instantiated. 3679ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 3680 QualType InstantiatedParamType, Expr *Arg, 3681 TemplateArgument &Converted, 3682 CheckTemplateArgumentKind CTAK) { 3683 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 3684 3685 // If either the parameter has a dependent type or the argument is 3686 // type-dependent, there's nothing we can check now. 3687 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 3688 // FIXME: Produce a cloned, canonical expression? 3689 Converted = TemplateArgument(Arg); 3690 return Owned(Arg); 3691 } 3692 3693 // C++ [temp.arg.nontype]p5: 3694 // The following conversions are performed on each expression used 3695 // as a non-type template-argument. If a non-type 3696 // template-argument cannot be converted to the type of the 3697 // corresponding template-parameter then the program is 3698 // ill-formed. 3699 // 3700 // -- for a non-type template-parameter of integral or 3701 // enumeration type, integral promotions (4.5) and integral 3702 // conversions (4.7) are applied. 3703 QualType ParamType = InstantiatedParamType; 3704 QualType ArgType = Arg->getType(); 3705 if (ParamType->isIntegralOrEnumerationType()) { 3706 // C++ [temp.arg.nontype]p1: 3707 // A template-argument for a non-type, non-template 3708 // template-parameter shall be one of: 3709 // 3710 // -- an integral constant-expression of integral or enumeration 3711 // type; or 3712 // -- the name of a non-type template-parameter; or 3713 SourceLocation NonConstantLoc; 3714 llvm::APSInt Value; 3715 if (!ArgType->isIntegralOrEnumerationType()) { 3716 Diag(Arg->getSourceRange().getBegin(), 3717 diag::err_template_arg_not_integral_or_enumeral) 3718 << ArgType << Arg->getSourceRange(); 3719 Diag(Param->getLocation(), diag::note_template_param_here); 3720 return ExprError(); 3721 } else if (!Arg->isValueDependent() && 3722 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 3723 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 3724 << ArgType << Arg->getSourceRange(); 3725 return ExprError(); 3726 } 3727 3728 // From here on out, all we care about are the unqualified forms 3729 // of the parameter and argument types. 3730 ParamType = ParamType.getUnqualifiedType(); 3731 ArgType = ArgType.getUnqualifiedType(); 3732 3733 // Try to convert the argument to the parameter's type. 3734 if (Context.hasSameType(ParamType, ArgType)) { 3735 // Okay: no conversion necessary 3736 } else if (CTAK == CTAK_Deduced) { 3737 // C++ [temp.deduct.type]p17: 3738 // If, in the declaration of a function template with a non-type 3739 // template-parameter, the non-type template- parameter is used 3740 // in an expression in the function parameter-list and, if the 3741 // corresponding template-argument is deduced, the 3742 // template-argument type shall match the type of the 3743 // template-parameter exactly, except that a template-argument 3744 // deduced from an array bound may be of any integral type. 3745 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 3746 << ArgType << ParamType; 3747 Diag(Param->getLocation(), diag::note_template_param_here); 3748 return ExprError(); 3749 } else if (ParamType->isBooleanType()) { 3750 // This is an integral-to-boolean conversion. 3751 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take(); 3752 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 3753 !ParamType->isEnumeralType()) { 3754 // This is an integral promotion or conversion. 3755 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take(); 3756 } else { 3757 // We can't perform this conversion. 3758 Diag(Arg->getSourceRange().getBegin(), 3759 diag::err_template_arg_not_convertible) 3760 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3761 Diag(Param->getLocation(), diag::note_template_param_here); 3762 return ExprError(); 3763 } 3764 3765 // Add the value of this argument to the list of converted 3766 // arguments. We use the bitwidth and signedness of the template 3767 // parameter. 3768 if (Arg->isValueDependent()) { 3769 // The argument is value-dependent. Create a new 3770 // TemplateArgument with the converted expression. 3771 Converted = TemplateArgument(Arg); 3772 return Owned(Arg); 3773 } 3774 3775 QualType IntegerType = Context.getCanonicalType(ParamType); 3776 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 3777 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 3778 3779 if (ParamType->isBooleanType()) { 3780 // Value must be zero or one. 3781 Value = Value != 0; 3782 unsigned AllowedBits = Context.getTypeSize(IntegerType); 3783 if (Value.getBitWidth() != AllowedBits) 3784 Value = Value.extOrTrunc(AllowedBits); 3785 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 3786 } else { 3787 llvm::APSInt OldValue = Value; 3788 3789 // Coerce the template argument's value to the value it will have 3790 // based on the template parameter's type. 3791 unsigned AllowedBits = Context.getTypeSize(IntegerType); 3792 if (Value.getBitWidth() != AllowedBits) 3793 Value = Value.extOrTrunc(AllowedBits); 3794 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 3795 3796 // Complain if an unsigned parameter received a negative value. 3797 if (IntegerType->isUnsignedIntegerOrEnumerationType() 3798 && (OldValue.isSigned() && OldValue.isNegative())) { 3799 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative) 3800 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3801 << Arg->getSourceRange(); 3802 Diag(Param->getLocation(), diag::note_template_param_here); 3803 } 3804 3805 // Complain if we overflowed the template parameter's type. 3806 unsigned RequiredBits; 3807 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 3808 RequiredBits = OldValue.getActiveBits(); 3809 else if (OldValue.isUnsigned()) 3810 RequiredBits = OldValue.getActiveBits() + 1; 3811 else 3812 RequiredBits = OldValue.getMinSignedBits(); 3813 if (RequiredBits > AllowedBits) { 3814 Diag(Arg->getSourceRange().getBegin(), 3815 diag::warn_template_arg_too_large) 3816 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3817 << Arg->getSourceRange(); 3818 Diag(Param->getLocation(), diag::note_template_param_here); 3819 } 3820 } 3821 3822 Converted = TemplateArgument(Value, 3823 ParamType->isEnumeralType() ? ParamType 3824 : IntegerType); 3825 return Owned(Arg); 3826 } 3827 3828 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 3829 3830 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion 3831 // from a template argument of type std::nullptr_t to a non-type 3832 // template parameter of type pointer to object, pointer to 3833 // function, or pointer-to-member, respectively. 3834 if (ArgType->isNullPtrType()) { 3835 if (ParamType->isPointerType() || ParamType->isMemberPointerType()) { 3836 Converted = TemplateArgument((NamedDecl *)0); 3837 return Owned(Arg); 3838 } 3839 3840 if (ParamType->isNullPtrType()) { 3841 llvm::APSInt Zero(Context.getTypeSize(Context.NullPtrTy), true); 3842 Converted = TemplateArgument(Zero, Context.NullPtrTy); 3843 return Owned(Arg); 3844 } 3845 } 3846 3847 // Handle pointer-to-function, reference-to-function, and 3848 // pointer-to-member-function all in (roughly) the same way. 3849 if (// -- For a non-type template-parameter of type pointer to 3850 // function, only the function-to-pointer conversion (4.3) is 3851 // applied. If the template-argument represents a set of 3852 // overloaded functions (or a pointer to such), the matching 3853 // function is selected from the set (13.4). 3854 (ParamType->isPointerType() && 3855 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 3856 // -- For a non-type template-parameter of type reference to 3857 // function, no conversions apply. If the template-argument 3858 // represents a set of overloaded functions, the matching 3859 // function is selected from the set (13.4). 3860 (ParamType->isReferenceType() && 3861 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 3862 // -- For a non-type template-parameter of type pointer to 3863 // member function, no conversions apply. If the 3864 // template-argument represents a set of overloaded member 3865 // functions, the matching member function is selected from 3866 // the set (13.4). 3867 (ParamType->isMemberPointerType() && 3868 ParamType->getAs<MemberPointerType>()->getPointeeType() 3869 ->isFunctionType())) { 3870 3871 if (Arg->getType() == Context.OverloadTy) { 3872 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 3873 true, 3874 FoundResult)) { 3875 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3876 return ExprError(); 3877 3878 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3879 ArgType = Arg->getType(); 3880 } else 3881 return ExprError(); 3882 } 3883 3884 if (!ParamType->isMemberPointerType()) { 3885 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3886 ParamType, 3887 Arg, Converted)) 3888 return ExprError(); 3889 return Owned(Arg); 3890 } 3891 3892 bool ObjCLifetimeConversion; 3893 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(), 3894 false, ObjCLifetimeConversion)) { 3895 Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)).take(); 3896 } else if (!Context.hasSameUnqualifiedType(ArgType, 3897 ParamType.getNonReferenceType())) { 3898 // We can't perform this conversion. 3899 Diag(Arg->getSourceRange().getBegin(), 3900 diag::err_template_arg_not_convertible) 3901 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3902 Diag(Param->getLocation(), diag::note_template_param_here); 3903 return ExprError(); 3904 } 3905 3906 if (CheckTemplateArgumentPointerToMember(Arg, Converted)) 3907 return ExprError(); 3908 return Owned(Arg); 3909 } 3910 3911 if (ParamType->isPointerType()) { 3912 // -- for a non-type template-parameter of type pointer to 3913 // object, qualification conversions (4.4) and the 3914 // array-to-pointer conversion (4.2) are applied. 3915 // C++0x also allows a value of std::nullptr_t. 3916 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 3917 "Only object pointers allowed here"); 3918 3919 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3920 ParamType, 3921 Arg, Converted)) 3922 return ExprError(); 3923 return Owned(Arg); 3924 } 3925 3926 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 3927 // -- For a non-type template-parameter of type reference to 3928 // object, no conversions apply. The type referred to by the 3929 // reference may be more cv-qualified than the (otherwise 3930 // identical) type of the template-argument. The 3931 // template-parameter is bound directly to the 3932 // template-argument, which must be an lvalue. 3933 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 3934 "Only object references allowed here"); 3935 3936 if (Arg->getType() == Context.OverloadTy) { 3937 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 3938 ParamRefType->getPointeeType(), 3939 true, 3940 FoundResult)) { 3941 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3942 return ExprError(); 3943 3944 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3945 ArgType = Arg->getType(); 3946 } else 3947 return ExprError(); 3948 } 3949 3950 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3951 ParamType, 3952 Arg, Converted)) 3953 return ExprError(); 3954 return Owned(Arg); 3955 } 3956 3957 // -- For a non-type template-parameter of type pointer to data 3958 // member, qualification conversions (4.4) are applied. 3959 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 3960 3961 bool ObjCLifetimeConversion; 3962 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 3963 // Types match exactly: nothing more to do here. 3964 } else if (IsQualificationConversion(ArgType, ParamType, false, 3965 ObjCLifetimeConversion)) { 3966 Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)).take(); 3967 } else { 3968 // We can't perform this conversion. 3969 Diag(Arg->getSourceRange().getBegin(), 3970 diag::err_template_arg_not_convertible) 3971 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3972 Diag(Param->getLocation(), diag::note_template_param_here); 3973 return ExprError(); 3974 } 3975 3976 if (CheckTemplateArgumentPointerToMember(Arg, Converted)) 3977 return ExprError(); 3978 return Owned(Arg); 3979} 3980 3981/// \brief Check a template argument against its corresponding 3982/// template template parameter. 3983/// 3984/// This routine implements the semantics of C++ [temp.arg.template]. 3985/// It returns true if an error occurred, and false otherwise. 3986bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 3987 const TemplateArgumentLoc &Arg) { 3988 TemplateName Name = Arg.getArgument().getAsTemplate(); 3989 TemplateDecl *Template = Name.getAsTemplateDecl(); 3990 if (!Template) { 3991 // Any dependent template name is fine. 3992 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 3993 return false; 3994 } 3995 3996 // C++0x [temp.arg.template]p1: 3997 // A template-argument for a template template-parameter shall be 3998 // the name of a class template or an alias template, expressed as an 3999 // id-expression. When the template-argument names a class template, only 4000 // primary class templates are considered when matching the 4001 // template template argument with the corresponding parameter; 4002 // partial specializations are not considered even if their 4003 // parameter lists match that of the template template parameter. 4004 // 4005 // Note that we also allow template template parameters here, which 4006 // will happen when we are dealing with, e.g., class template 4007 // partial specializations. 4008 if (!isa<ClassTemplateDecl>(Template) && 4009 !isa<TemplateTemplateParmDecl>(Template) && 4010 !isa<TypeAliasTemplateDecl>(Template)) { 4011 assert(isa<FunctionTemplateDecl>(Template) && 4012 "Only function templates are possible here"); 4013 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 4014 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 4015 << Template; 4016 } 4017 4018 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 4019 Param->getTemplateParameters(), 4020 true, 4021 TPL_TemplateTemplateArgumentMatch, 4022 Arg.getLocation()); 4023} 4024 4025/// \brief Given a non-type template argument that refers to a 4026/// declaration and the type of its corresponding non-type template 4027/// parameter, produce an expression that properly refers to that 4028/// declaration. 4029ExprResult 4030Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 4031 QualType ParamType, 4032 SourceLocation Loc) { 4033 assert(Arg.getKind() == TemplateArgument::Declaration && 4034 "Only declaration template arguments permitted here"); 4035 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 4036 4037 if (VD->getDeclContext()->isRecord() && 4038 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 4039 // If the value is a class member, we might have a pointer-to-member. 4040 // Determine whether the non-type template template parameter is of 4041 // pointer-to-member type. If so, we need to build an appropriate 4042 // expression for a pointer-to-member, since a "normal" DeclRefExpr 4043 // would refer to the member itself. 4044 if (ParamType->isMemberPointerType()) { 4045 QualType ClassType 4046 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 4047 NestedNameSpecifier *Qualifier 4048 = NestedNameSpecifier::Create(Context, 0, false, 4049 ClassType.getTypePtr()); 4050 CXXScopeSpec SS; 4051 SS.MakeTrivial(Context, Qualifier, Loc); 4052 4053 // The actual value-ness of this is unimportant, but for 4054 // internal consistency's sake, references to instance methods 4055 // are r-values. 4056 ExprValueKind VK = VK_LValue; 4057 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 4058 VK = VK_RValue; 4059 4060 ExprResult RefExpr = BuildDeclRefExpr(VD, 4061 VD->getType().getNonReferenceType(), 4062 VK, 4063 Loc, 4064 &SS); 4065 if (RefExpr.isInvalid()) 4066 return ExprError(); 4067 4068 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4069 4070 // We might need to perform a trailing qualification conversion, since 4071 // the element type on the parameter could be more qualified than the 4072 // element type in the expression we constructed. 4073 bool ObjCLifetimeConversion; 4074 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 4075 ParamType.getUnqualifiedType(), false, 4076 ObjCLifetimeConversion)) 4077 RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp); 4078 4079 assert(!RefExpr.isInvalid() && 4080 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 4081 ParamType.getUnqualifiedType())); 4082 return move(RefExpr); 4083 } 4084 } 4085 4086 QualType T = VD->getType().getNonReferenceType(); 4087 if (ParamType->isPointerType()) { 4088 // When the non-type template parameter is a pointer, take the 4089 // address of the declaration. 4090 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 4091 if (RefExpr.isInvalid()) 4092 return ExprError(); 4093 4094 if (T->isFunctionType() || T->isArrayType()) { 4095 // Decay functions and arrays. 4096 RefExpr = DefaultFunctionArrayConversion(RefExpr.take()); 4097 if (RefExpr.isInvalid()) 4098 return ExprError(); 4099 4100 return move(RefExpr); 4101 } 4102 4103 // Take the address of everything else 4104 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4105 } 4106 4107 ExprValueKind VK = VK_RValue; 4108 4109 // If the non-type template parameter has reference type, qualify the 4110 // resulting declaration reference with the extra qualifiers on the 4111 // type that the reference refers to. 4112 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 4113 VK = VK_LValue; 4114 T = Context.getQualifiedType(T, 4115 TargetRef->getPointeeType().getQualifiers()); 4116 } 4117 4118 return BuildDeclRefExpr(VD, T, VK, Loc); 4119} 4120 4121/// \brief Construct a new expression that refers to the given 4122/// integral template argument with the given source-location 4123/// information. 4124/// 4125/// This routine takes care of the mapping from an integral template 4126/// argument (which may have any integral type) to the appropriate 4127/// literal value. 4128ExprResult 4129Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 4130 SourceLocation Loc) { 4131 assert(Arg.getKind() == TemplateArgument::Integral && 4132 "Operation is only valid for integral template arguments"); 4133 QualType T = Arg.getIntegralType(); 4134 if (T->isCharType() || T->isWideCharType()) 4135 return Owned(new (Context) CharacterLiteral( 4136 Arg.getAsIntegral()->getZExtValue(), 4137 T->isWideCharType(), T, Loc)); 4138 if (T->isBooleanType()) 4139 return Owned(new (Context) CXXBoolLiteralExpr( 4140 Arg.getAsIntegral()->getBoolValue(), 4141 T, Loc)); 4142 4143 if (T->isNullPtrType()) 4144 return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc)); 4145 4146 // If this is an enum type that we're instantiating, we need to use an integer 4147 // type the same size as the enumerator. We don't want to build an 4148 // IntegerLiteral with enum type. 4149 QualType BT; 4150 if (const EnumType *ET = T->getAs<EnumType>()) 4151 BT = ET->getDecl()->getIntegerType(); 4152 else 4153 BT = T; 4154 4155 return Owned(IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc)); 4156} 4157 4158/// \brief Match two template parameters within template parameter lists. 4159static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 4160 bool Complain, 4161 Sema::TemplateParameterListEqualKind Kind, 4162 SourceLocation TemplateArgLoc) { 4163 // Check the actual kind (type, non-type, template). 4164 if (Old->getKind() != New->getKind()) { 4165 if (Complain) { 4166 unsigned NextDiag = diag::err_template_param_different_kind; 4167 if (TemplateArgLoc.isValid()) { 4168 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4169 NextDiag = diag::note_template_param_different_kind; 4170 } 4171 S.Diag(New->getLocation(), NextDiag) 4172 << (Kind != Sema::TPL_TemplateMatch); 4173 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 4174 << (Kind != Sema::TPL_TemplateMatch); 4175 } 4176 4177 return false; 4178 } 4179 4180 // Check that both are parameter packs are neither are parameter packs. 4181 // However, if we are matching a template template argument to a 4182 // template template parameter, the template template parameter can have 4183 // a parameter pack where the template template argument does not. 4184 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 4185 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4186 Old->isTemplateParameterPack())) { 4187 if (Complain) { 4188 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 4189 if (TemplateArgLoc.isValid()) { 4190 S.Diag(TemplateArgLoc, 4191 diag::err_template_arg_template_params_mismatch); 4192 NextDiag = diag::note_template_parameter_pack_non_pack; 4193 } 4194 4195 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 4196 : isa<NonTypeTemplateParmDecl>(New)? 1 4197 : 2; 4198 S.Diag(New->getLocation(), NextDiag) 4199 << ParamKind << New->isParameterPack(); 4200 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 4201 << ParamKind << Old->isParameterPack(); 4202 } 4203 4204 return false; 4205 } 4206 4207 // For non-type template parameters, check the type of the parameter. 4208 if (NonTypeTemplateParmDecl *OldNTTP 4209 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 4210 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 4211 4212 // If we are matching a template template argument to a template 4213 // template parameter and one of the non-type template parameter types 4214 // is dependent, then we must wait until template instantiation time 4215 // to actually compare the arguments. 4216 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4217 (OldNTTP->getType()->isDependentType() || 4218 NewNTTP->getType()->isDependentType())) 4219 return true; 4220 4221 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 4222 if (Complain) { 4223 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 4224 if (TemplateArgLoc.isValid()) { 4225 S.Diag(TemplateArgLoc, 4226 diag::err_template_arg_template_params_mismatch); 4227 NextDiag = diag::note_template_nontype_parm_different_type; 4228 } 4229 S.Diag(NewNTTP->getLocation(), NextDiag) 4230 << NewNTTP->getType() 4231 << (Kind != Sema::TPL_TemplateMatch); 4232 S.Diag(OldNTTP->getLocation(), 4233 diag::note_template_nontype_parm_prev_declaration) 4234 << OldNTTP->getType(); 4235 } 4236 4237 return false; 4238 } 4239 4240 return true; 4241 } 4242 4243 // For template template parameters, check the template parameter types. 4244 // The template parameter lists of template template 4245 // parameters must agree. 4246 if (TemplateTemplateParmDecl *OldTTP 4247 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 4248 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 4249 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 4250 OldTTP->getTemplateParameters(), 4251 Complain, 4252 (Kind == Sema::TPL_TemplateMatch 4253 ? Sema::TPL_TemplateTemplateParmMatch 4254 : Kind), 4255 TemplateArgLoc); 4256 } 4257 4258 return true; 4259} 4260 4261/// \brief Diagnose a known arity mismatch when comparing template argument 4262/// lists. 4263static 4264void DiagnoseTemplateParameterListArityMismatch(Sema &S, 4265 TemplateParameterList *New, 4266 TemplateParameterList *Old, 4267 Sema::TemplateParameterListEqualKind Kind, 4268 SourceLocation TemplateArgLoc) { 4269 unsigned NextDiag = diag::err_template_param_list_different_arity; 4270 if (TemplateArgLoc.isValid()) { 4271 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4272 NextDiag = diag::note_template_param_list_different_arity; 4273 } 4274 S.Diag(New->getTemplateLoc(), NextDiag) 4275 << (New->size() > Old->size()) 4276 << (Kind != Sema::TPL_TemplateMatch) 4277 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 4278 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 4279 << (Kind != Sema::TPL_TemplateMatch) 4280 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 4281} 4282 4283/// \brief Determine whether the given template parameter lists are 4284/// equivalent. 4285/// 4286/// \param New The new template parameter list, typically written in the 4287/// source code as part of a new template declaration. 4288/// 4289/// \param Old The old template parameter list, typically found via 4290/// name lookup of the template declared with this template parameter 4291/// list. 4292/// 4293/// \param Complain If true, this routine will produce a diagnostic if 4294/// the template parameter lists are not equivalent. 4295/// 4296/// \param Kind describes how we are to match the template parameter lists. 4297/// 4298/// \param TemplateArgLoc If this source location is valid, then we 4299/// are actually checking the template parameter list of a template 4300/// argument (New) against the template parameter list of its 4301/// corresponding template template parameter (Old). We produce 4302/// slightly different diagnostics in this scenario. 4303/// 4304/// \returns True if the template parameter lists are equal, false 4305/// otherwise. 4306bool 4307Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 4308 TemplateParameterList *Old, 4309 bool Complain, 4310 TemplateParameterListEqualKind Kind, 4311 SourceLocation TemplateArgLoc) { 4312 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 4313 if (Complain) 4314 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4315 TemplateArgLoc); 4316 4317 return false; 4318 } 4319 4320 // C++0x [temp.arg.template]p3: 4321 // A template-argument matches a template template-parameter (call it P) 4322 // when each of the template parameters in the template-parameter-list of 4323 // the template-argument's corresponding class template or alias template 4324 // (call it A) matches the corresponding template parameter in the 4325 // template-parameter-list of P. [...] 4326 TemplateParameterList::iterator NewParm = New->begin(); 4327 TemplateParameterList::iterator NewParmEnd = New->end(); 4328 for (TemplateParameterList::iterator OldParm = Old->begin(), 4329 OldParmEnd = Old->end(); 4330 OldParm != OldParmEnd; ++OldParm) { 4331 if (Kind != TPL_TemplateTemplateArgumentMatch || 4332 !(*OldParm)->isTemplateParameterPack()) { 4333 if (NewParm == NewParmEnd) { 4334 if (Complain) 4335 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4336 TemplateArgLoc); 4337 4338 return false; 4339 } 4340 4341 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4342 Kind, TemplateArgLoc)) 4343 return false; 4344 4345 ++NewParm; 4346 continue; 4347 } 4348 4349 // C++0x [temp.arg.template]p3: 4350 // [...] When P's template- parameter-list contains a template parameter 4351 // pack (14.5.3), the template parameter pack will match zero or more 4352 // template parameters or template parameter packs in the 4353 // template-parameter-list of A with the same type and form as the 4354 // template parameter pack in P (ignoring whether those template 4355 // parameters are template parameter packs). 4356 for (; NewParm != NewParmEnd; ++NewParm) { 4357 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4358 Kind, TemplateArgLoc)) 4359 return false; 4360 } 4361 } 4362 4363 // Make sure we exhausted all of the arguments. 4364 if (NewParm != NewParmEnd) { 4365 if (Complain) 4366 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4367 TemplateArgLoc); 4368 4369 return false; 4370 } 4371 4372 return true; 4373} 4374 4375/// \brief Check whether a template can be declared within this scope. 4376/// 4377/// If the template declaration is valid in this scope, returns 4378/// false. Otherwise, issues a diagnostic and returns true. 4379bool 4380Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 4381 // Find the nearest enclosing declaration scope. 4382 while ((S->getFlags() & Scope::DeclScope) == 0 || 4383 (S->getFlags() & Scope::TemplateParamScope) != 0) 4384 S = S->getParent(); 4385 4386 // C++ [temp]p2: 4387 // A template-declaration can appear only as a namespace scope or 4388 // class scope declaration. 4389 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 4390 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 4391 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 4392 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 4393 << TemplateParams->getSourceRange(); 4394 4395 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 4396 Ctx = Ctx->getParent(); 4397 4398 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 4399 return false; 4400 4401 return Diag(TemplateParams->getTemplateLoc(), 4402 diag::err_template_outside_namespace_or_class_scope) 4403 << TemplateParams->getSourceRange(); 4404} 4405 4406/// \brief Determine what kind of template specialization the given declaration 4407/// is. 4408static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 4409 if (!D) 4410 return TSK_Undeclared; 4411 4412 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 4413 return Record->getTemplateSpecializationKind(); 4414 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 4415 return Function->getTemplateSpecializationKind(); 4416 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 4417 return Var->getTemplateSpecializationKind(); 4418 4419 return TSK_Undeclared; 4420} 4421 4422/// \brief Check whether a specialization is well-formed in the current 4423/// context. 4424/// 4425/// This routine determines whether a template specialization can be declared 4426/// in the current context (C++ [temp.expl.spec]p2). 4427/// 4428/// \param S the semantic analysis object for which this check is being 4429/// performed. 4430/// 4431/// \param Specialized the entity being specialized or instantiated, which 4432/// may be a kind of template (class template, function template, etc.) or 4433/// a member of a class template (member function, static data member, 4434/// member class). 4435/// 4436/// \param PrevDecl the previous declaration of this entity, if any. 4437/// 4438/// \param Loc the location of the explicit specialization or instantiation of 4439/// this entity. 4440/// 4441/// \param IsPartialSpecialization whether this is a partial specialization of 4442/// a class template. 4443/// 4444/// \returns true if there was an error that we cannot recover from, false 4445/// otherwise. 4446static bool CheckTemplateSpecializationScope(Sema &S, 4447 NamedDecl *Specialized, 4448 NamedDecl *PrevDecl, 4449 SourceLocation Loc, 4450 bool IsPartialSpecialization) { 4451 // Keep these "kind" numbers in sync with the %select statements in the 4452 // various diagnostics emitted by this routine. 4453 int EntityKind = 0; 4454 if (isa<ClassTemplateDecl>(Specialized)) 4455 EntityKind = IsPartialSpecialization? 1 : 0; 4456 else if (isa<FunctionTemplateDecl>(Specialized)) 4457 EntityKind = 2; 4458 else if (isa<CXXMethodDecl>(Specialized)) 4459 EntityKind = 3; 4460 else if (isa<VarDecl>(Specialized)) 4461 EntityKind = 4; 4462 else if (isa<RecordDecl>(Specialized)) 4463 EntityKind = 5; 4464 else { 4465 S.Diag(Loc, diag::err_template_spec_unknown_kind); 4466 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4467 return true; 4468 } 4469 4470 // C++ [temp.expl.spec]p2: 4471 // An explicit specialization shall be declared in the namespace 4472 // of which the template is a member, or, for member templates, in 4473 // the namespace of which the enclosing class or enclosing class 4474 // template is a member. An explicit specialization of a member 4475 // function, member class or static data member of a class 4476 // template shall be declared in the namespace of which the class 4477 // template is a member. Such a declaration may also be a 4478 // definition. If the declaration is not a definition, the 4479 // specialization may be defined later in the name- space in which 4480 // the explicit specialization was declared, or in a namespace 4481 // that encloses the one in which the explicit specialization was 4482 // declared. 4483 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 4484 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 4485 << Specialized; 4486 return true; 4487 } 4488 4489 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 4490 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 4491 << Specialized; 4492 return true; 4493 } 4494 4495 // C++ [temp.class.spec]p6: 4496 // A class template partial specialization may be declared or redeclared 4497 // in any namespace scope in which its definition may be defined (14.5.1 4498 // and 14.5.2). 4499 bool ComplainedAboutScope = false; 4500 DeclContext *SpecializedContext 4501 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 4502 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 4503 if ((!PrevDecl || 4504 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 4505 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 4506 // C++ [temp.exp.spec]p2: 4507 // An explicit specialization shall be declared in the namespace of which 4508 // the template is a member, or, for member templates, in the namespace 4509 // of which the enclosing class or enclosing class template is a member. 4510 // An explicit specialization of a member function, member class or 4511 // static data member of a class template shall be declared in the 4512 // namespace of which the class template is a member. 4513 // 4514 // C++0x [temp.expl.spec]p2: 4515 // An explicit specialization shall be declared in a namespace enclosing 4516 // the specialized template. 4517 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) && 4518 !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) { 4519 bool IsCPlusPlus0xExtension 4520 = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext); 4521 if (isa<TranslationUnitDecl>(SpecializedContext)) 4522 S.Diag(Loc, IsCPlusPlus0xExtension 4523 ? diag::ext_template_spec_decl_out_of_scope_global 4524 : diag::err_template_spec_decl_out_of_scope_global) 4525 << EntityKind << Specialized; 4526 else if (isa<NamespaceDecl>(SpecializedContext)) 4527 S.Diag(Loc, IsCPlusPlus0xExtension 4528 ? diag::ext_template_spec_decl_out_of_scope 4529 : diag::err_template_spec_decl_out_of_scope) 4530 << EntityKind << Specialized 4531 << cast<NamedDecl>(SpecializedContext); 4532 4533 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4534 ComplainedAboutScope = true; 4535 } 4536 } 4537 4538 // Make sure that this redeclaration (or definition) occurs in an enclosing 4539 // namespace. 4540 // Note that HandleDeclarator() performs this check for explicit 4541 // specializations of function templates, static data members, and member 4542 // functions, so we skip the check here for those kinds of entities. 4543 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 4544 // Should we refactor that check, so that it occurs later? 4545 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 4546 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 4547 isa<FunctionDecl>(Specialized))) { 4548 if (isa<TranslationUnitDecl>(SpecializedContext)) 4549 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 4550 << EntityKind << Specialized; 4551 else if (isa<NamespaceDecl>(SpecializedContext)) 4552 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 4553 << EntityKind << Specialized 4554 << cast<NamedDecl>(SpecializedContext); 4555 4556 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4557 } 4558 4559 // FIXME: check for specialization-after-instantiation errors and such. 4560 4561 return false; 4562} 4563 4564/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs 4565/// that checks non-type template partial specialization arguments. 4566static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S, 4567 NonTypeTemplateParmDecl *Param, 4568 const TemplateArgument *Args, 4569 unsigned NumArgs) { 4570 for (unsigned I = 0; I != NumArgs; ++I) { 4571 if (Args[I].getKind() == TemplateArgument::Pack) { 4572 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4573 Args[I].pack_begin(), 4574 Args[I].pack_size())) 4575 return true; 4576 4577 continue; 4578 } 4579 4580 Expr *ArgExpr = Args[I].getAsExpr(); 4581 if (!ArgExpr) { 4582 continue; 4583 } 4584 4585 // We can have a pack expansion of any of the bullets below. 4586 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 4587 ArgExpr = Expansion->getPattern(); 4588 4589 // Strip off any implicit casts we added as part of type checking. 4590 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 4591 ArgExpr = ICE->getSubExpr(); 4592 4593 // C++ [temp.class.spec]p8: 4594 // A non-type argument is non-specialized if it is the name of a 4595 // non-type parameter. All other non-type arguments are 4596 // specialized. 4597 // 4598 // Below, we check the two conditions that only apply to 4599 // specialized non-type arguments, so skip any non-specialized 4600 // arguments. 4601 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 4602 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 4603 continue; 4604 4605 // C++ [temp.class.spec]p9: 4606 // Within the argument list of a class template partial 4607 // specialization, the following restrictions apply: 4608 // -- A partially specialized non-type argument expression 4609 // shall not involve a template parameter of the partial 4610 // specialization except when the argument expression is a 4611 // simple identifier. 4612 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 4613 S.Diag(ArgExpr->getLocStart(), 4614 diag::err_dependent_non_type_arg_in_partial_spec) 4615 << ArgExpr->getSourceRange(); 4616 return true; 4617 } 4618 4619 // -- The type of a template parameter corresponding to a 4620 // specialized non-type argument shall not be dependent on a 4621 // parameter of the specialization. 4622 if (Param->getType()->isDependentType()) { 4623 S.Diag(ArgExpr->getLocStart(), 4624 diag::err_dependent_typed_non_type_arg_in_partial_spec) 4625 << Param->getType() 4626 << ArgExpr->getSourceRange(); 4627 S.Diag(Param->getLocation(), diag::note_template_param_here); 4628 return true; 4629 } 4630 } 4631 4632 return false; 4633} 4634 4635/// \brief Check the non-type template arguments of a class template 4636/// partial specialization according to C++ [temp.class.spec]p9. 4637/// 4638/// \param TemplateParams the template parameters of the primary class 4639/// template. 4640/// 4641/// \param TemplateArg the template arguments of the class template 4642/// partial specialization. 4643/// 4644/// \returns true if there was an error, false otherwise. 4645static bool CheckClassTemplatePartialSpecializationArgs(Sema &S, 4646 TemplateParameterList *TemplateParams, 4647 llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs) { 4648 const TemplateArgument *ArgList = TemplateArgs.data(); 4649 4650 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4651 NonTypeTemplateParmDecl *Param 4652 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 4653 if (!Param) 4654 continue; 4655 4656 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4657 &ArgList[I], 1)) 4658 return true; 4659 } 4660 4661 return false; 4662} 4663 4664/// \brief Retrieve the previous declaration of the given declaration. 4665static NamedDecl *getPreviousDecl(NamedDecl *ND) { 4666 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 4667 return VD->getPreviousDeclaration(); 4668 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 4669 return FD->getPreviousDeclaration(); 4670 if (TagDecl *TD = dyn_cast<TagDecl>(ND)) 4671 return TD->getPreviousDeclaration(); 4672 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND)) 4673 return TD->getPreviousDeclaration(); 4674 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 4675 return FTD->getPreviousDeclaration(); 4676 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND)) 4677 return CTD->getPreviousDeclaration(); 4678 return 0; 4679} 4680 4681DeclResult 4682Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 4683 TagUseKind TUK, 4684 SourceLocation KWLoc, 4685 CXXScopeSpec &SS, 4686 TemplateTy TemplateD, 4687 SourceLocation TemplateNameLoc, 4688 SourceLocation LAngleLoc, 4689 ASTTemplateArgsPtr TemplateArgsIn, 4690 SourceLocation RAngleLoc, 4691 AttributeList *Attr, 4692 MultiTemplateParamsArg TemplateParameterLists) { 4693 assert(TUK != TUK_Reference && "References are not specializations"); 4694 4695 // NOTE: KWLoc is the location of the tag keyword. This will instead 4696 // store the location of the outermost template keyword in the declaration. 4697 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 4698 ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation(); 4699 4700 // Find the class template we're specializing 4701 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4702 ClassTemplateDecl *ClassTemplate 4703 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4704 4705 if (!ClassTemplate) { 4706 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 4707 << (Name.getAsTemplateDecl() && 4708 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 4709 return true; 4710 } 4711 4712 bool isExplicitSpecialization = false; 4713 bool isPartialSpecialization = false; 4714 4715 // Check the validity of the template headers that introduce this 4716 // template. 4717 // FIXME: We probably shouldn't complain about these headers for 4718 // friend declarations. 4719 bool Invalid = false; 4720 TemplateParameterList *TemplateParams 4721 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, 4722 TemplateNameLoc, 4723 SS, 4724 (TemplateParameterList**)TemplateParameterLists.get(), 4725 TemplateParameterLists.size(), 4726 TUK == TUK_Friend, 4727 isExplicitSpecialization, 4728 Invalid); 4729 if (Invalid) 4730 return true; 4731 4732 if (TemplateParams && TemplateParams->size() > 0) { 4733 isPartialSpecialization = true; 4734 4735 if (TUK == TUK_Friend) { 4736 Diag(KWLoc, diag::err_partial_specialization_friend) 4737 << SourceRange(LAngleLoc, RAngleLoc); 4738 return true; 4739 } 4740 4741 // C++ [temp.class.spec]p10: 4742 // The template parameter list of a specialization shall not 4743 // contain default template argument values. 4744 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4745 Decl *Param = TemplateParams->getParam(I); 4746 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 4747 if (TTP->hasDefaultArgument()) { 4748 Diag(TTP->getDefaultArgumentLoc(), 4749 diag::err_default_arg_in_partial_spec); 4750 TTP->removeDefaultArgument(); 4751 } 4752 } else if (NonTypeTemplateParmDecl *NTTP 4753 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 4754 if (Expr *DefArg = NTTP->getDefaultArgument()) { 4755 Diag(NTTP->getDefaultArgumentLoc(), 4756 diag::err_default_arg_in_partial_spec) 4757 << DefArg->getSourceRange(); 4758 NTTP->removeDefaultArgument(); 4759 } 4760 } else { 4761 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 4762 if (TTP->hasDefaultArgument()) { 4763 Diag(TTP->getDefaultArgument().getLocation(), 4764 diag::err_default_arg_in_partial_spec) 4765 << TTP->getDefaultArgument().getSourceRange(); 4766 TTP->removeDefaultArgument(); 4767 } 4768 } 4769 } 4770 } else if (TemplateParams) { 4771 if (TUK == TUK_Friend) 4772 Diag(KWLoc, diag::err_template_spec_friend) 4773 << FixItHint::CreateRemoval( 4774 SourceRange(TemplateParams->getTemplateLoc(), 4775 TemplateParams->getRAngleLoc())) 4776 << SourceRange(LAngleLoc, RAngleLoc); 4777 else 4778 isExplicitSpecialization = true; 4779 } else if (TUK != TUK_Friend) { 4780 Diag(KWLoc, diag::err_template_spec_needs_header) 4781 << FixItHint::CreateInsertion(KWLoc, "template<> "); 4782 isExplicitSpecialization = true; 4783 } 4784 4785 // Check that the specialization uses the same tag kind as the 4786 // original template. 4787 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4788 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 4789 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4790 Kind, TUK == TUK_Definition, KWLoc, 4791 *ClassTemplate->getIdentifier())) { 4792 Diag(KWLoc, diag::err_use_with_wrong_tag) 4793 << ClassTemplate 4794 << FixItHint::CreateReplacement(KWLoc, 4795 ClassTemplate->getTemplatedDecl()->getKindName()); 4796 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4797 diag::note_previous_use); 4798 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4799 } 4800 4801 // Translate the parser's template argument list in our AST format. 4802 TemplateArgumentListInfo TemplateArgs; 4803 TemplateArgs.setLAngleLoc(LAngleLoc); 4804 TemplateArgs.setRAngleLoc(RAngleLoc); 4805 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4806 4807 // Check for unexpanded parameter packs in any of the template arguments. 4808 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 4809 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 4810 UPPC_PartialSpecialization)) 4811 return true; 4812 4813 // Check that the template argument list is well-formed for this 4814 // template. 4815 llvm::SmallVector<TemplateArgument, 4> Converted; 4816 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4817 TemplateArgs, false, Converted)) 4818 return true; 4819 4820 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 4821 "Converted template argument list is too short!"); 4822 4823 // Find the class template (partial) specialization declaration that 4824 // corresponds to these arguments. 4825 if (isPartialSpecialization) { 4826 if (CheckClassTemplatePartialSpecializationArgs(*this, 4827 ClassTemplate->getTemplateParameters(), 4828 Converted)) 4829 return true; 4830 4831 bool InstantiationDependent; 4832 if (!Name.isDependent() && 4833 !TemplateSpecializationType::anyDependentTemplateArguments( 4834 TemplateArgs.getArgumentArray(), 4835 TemplateArgs.size(), 4836 InstantiationDependent)) { 4837 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 4838 << ClassTemplate->getDeclName(); 4839 isPartialSpecialization = false; 4840 } 4841 } 4842 4843 void *InsertPos = 0; 4844 ClassTemplateSpecializationDecl *PrevDecl = 0; 4845 4846 if (isPartialSpecialization) 4847 // FIXME: Template parameter list matters, too 4848 PrevDecl 4849 = ClassTemplate->findPartialSpecialization(Converted.data(), 4850 Converted.size(), 4851 InsertPos); 4852 else 4853 PrevDecl 4854 = ClassTemplate->findSpecialization(Converted.data(), 4855 Converted.size(), InsertPos); 4856 4857 ClassTemplateSpecializationDecl *Specialization = 0; 4858 4859 // Check whether we can declare a class template specialization in 4860 // the current scope. 4861 if (TUK != TUK_Friend && 4862 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 4863 TemplateNameLoc, 4864 isPartialSpecialization)) 4865 return true; 4866 4867 // The canonical type 4868 QualType CanonType; 4869 if (PrevDecl && 4870 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 4871 TUK == TUK_Friend)) { 4872 // Since the only prior class template specialization with these 4873 // arguments was referenced but not declared, or we're only 4874 // referencing this specialization as a friend, reuse that 4875 // declaration node as our own, updating its source location and 4876 // the list of outer template parameters to reflect our new declaration. 4877 Specialization = PrevDecl; 4878 Specialization->setLocation(TemplateNameLoc); 4879 if (TemplateParameterLists.size() > 0) { 4880 Specialization->setTemplateParameterListsInfo(Context, 4881 TemplateParameterLists.size(), 4882 (TemplateParameterList**) TemplateParameterLists.release()); 4883 } 4884 PrevDecl = 0; 4885 CanonType = Context.getTypeDeclType(Specialization); 4886 } else if (isPartialSpecialization) { 4887 // Build the canonical type that describes the converted template 4888 // arguments of the class template partial specialization. 4889 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 4890 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 4891 Converted.data(), 4892 Converted.size()); 4893 4894 if (Context.hasSameType(CanonType, 4895 ClassTemplate->getInjectedClassNameSpecialization())) { 4896 // C++ [temp.class.spec]p9b3: 4897 // 4898 // -- The argument list of the specialization shall not be identical 4899 // to the implicit argument list of the primary template. 4900 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 4901 << (TUK == TUK_Definition) 4902 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 4903 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 4904 ClassTemplate->getIdentifier(), 4905 TemplateNameLoc, 4906 Attr, 4907 TemplateParams, 4908 AS_none, 4909 TemplateParameterLists.size() - 1, 4910 (TemplateParameterList**) TemplateParameterLists.release()); 4911 } 4912 4913 // Create a new class template partial specialization declaration node. 4914 ClassTemplatePartialSpecializationDecl *PrevPartial 4915 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 4916 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 4917 : ClassTemplate->getNextPartialSpecSequenceNumber(); 4918 ClassTemplatePartialSpecializationDecl *Partial 4919 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 4920 ClassTemplate->getDeclContext(), 4921 KWLoc, TemplateNameLoc, 4922 TemplateParams, 4923 ClassTemplate, 4924 Converted.data(), 4925 Converted.size(), 4926 TemplateArgs, 4927 CanonType, 4928 PrevPartial, 4929 SequenceNumber); 4930 SetNestedNameSpecifier(Partial, SS); 4931 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 4932 Partial->setTemplateParameterListsInfo(Context, 4933 TemplateParameterLists.size() - 1, 4934 (TemplateParameterList**) TemplateParameterLists.release()); 4935 } 4936 4937 if (!PrevPartial) 4938 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 4939 Specialization = Partial; 4940 4941 // If we are providing an explicit specialization of a member class 4942 // template specialization, make a note of that. 4943 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 4944 PrevPartial->setMemberSpecialization(); 4945 4946 // Check that all of the template parameters of the class template 4947 // partial specialization are deducible from the template 4948 // arguments. If not, this class template partial specialization 4949 // will never be used. 4950 llvm::SmallVector<bool, 8> DeducibleParams; 4951 DeducibleParams.resize(TemplateParams->size()); 4952 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 4953 TemplateParams->getDepth(), 4954 DeducibleParams); 4955 unsigned NumNonDeducible = 0; 4956 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 4957 if (!DeducibleParams[I]) 4958 ++NumNonDeducible; 4959 4960 if (NumNonDeducible) { 4961 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 4962 << (NumNonDeducible > 1) 4963 << SourceRange(TemplateNameLoc, RAngleLoc); 4964 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 4965 if (!DeducibleParams[I]) { 4966 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 4967 if (Param->getDeclName()) 4968 Diag(Param->getLocation(), 4969 diag::note_partial_spec_unused_parameter) 4970 << Param->getDeclName(); 4971 else 4972 Diag(Param->getLocation(), 4973 diag::note_partial_spec_unused_parameter) 4974 << "<anonymous>"; 4975 } 4976 } 4977 } 4978 } else { 4979 // Create a new class template specialization declaration node for 4980 // this explicit specialization or friend declaration. 4981 Specialization 4982 = ClassTemplateSpecializationDecl::Create(Context, Kind, 4983 ClassTemplate->getDeclContext(), 4984 KWLoc, TemplateNameLoc, 4985 ClassTemplate, 4986 Converted.data(), 4987 Converted.size(), 4988 PrevDecl); 4989 SetNestedNameSpecifier(Specialization, SS); 4990 if (TemplateParameterLists.size() > 0) { 4991 Specialization->setTemplateParameterListsInfo(Context, 4992 TemplateParameterLists.size(), 4993 (TemplateParameterList**) TemplateParameterLists.release()); 4994 } 4995 4996 if (!PrevDecl) 4997 ClassTemplate->AddSpecialization(Specialization, InsertPos); 4998 4999 CanonType = Context.getTypeDeclType(Specialization); 5000 } 5001 5002 // C++ [temp.expl.spec]p6: 5003 // If a template, a member template or the member of a class template is 5004 // explicitly specialized then that specialization shall be declared 5005 // before the first use of that specialization that would cause an implicit 5006 // instantiation to take place, in every translation unit in which such a 5007 // use occurs; no diagnostic is required. 5008 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 5009 bool Okay = false; 5010 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 5011 // Is there any previous explicit specialization declaration? 5012 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 5013 Okay = true; 5014 break; 5015 } 5016 } 5017 5018 if (!Okay) { 5019 SourceRange Range(TemplateNameLoc, RAngleLoc); 5020 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 5021 << Context.getTypeDeclType(Specialization) << Range; 5022 5023 Diag(PrevDecl->getPointOfInstantiation(), 5024 diag::note_instantiation_required_here) 5025 << (PrevDecl->getTemplateSpecializationKind() 5026 != TSK_ImplicitInstantiation); 5027 return true; 5028 } 5029 } 5030 5031 // If this is not a friend, note that this is an explicit specialization. 5032 if (TUK != TUK_Friend) 5033 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 5034 5035 // Check that this isn't a redefinition of this specialization. 5036 if (TUK == TUK_Definition) { 5037 if (RecordDecl *Def = Specialization->getDefinition()) { 5038 SourceRange Range(TemplateNameLoc, RAngleLoc); 5039 Diag(TemplateNameLoc, diag::err_redefinition) 5040 << Context.getTypeDeclType(Specialization) << Range; 5041 Diag(Def->getLocation(), diag::note_previous_definition); 5042 Specialization->setInvalidDecl(); 5043 return true; 5044 } 5045 } 5046 5047 if (Attr) 5048 ProcessDeclAttributeList(S, Specialization, Attr); 5049 5050 // Build the fully-sugared type for this class template 5051 // specialization as the user wrote in the specialization 5052 // itself. This means that we'll pretty-print the type retrieved 5053 // from the specialization's declaration the way that the user 5054 // actually wrote the specialization, rather than formatting the 5055 // name based on the "canonical" representation used to store the 5056 // template arguments in the specialization. 5057 TypeSourceInfo *WrittenTy 5058 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5059 TemplateArgs, CanonType); 5060 if (TUK != TUK_Friend) { 5061 Specialization->setTypeAsWritten(WrittenTy); 5062 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 5063 } 5064 TemplateArgsIn.release(); 5065 5066 // C++ [temp.expl.spec]p9: 5067 // A template explicit specialization is in the scope of the 5068 // namespace in which the template was defined. 5069 // 5070 // We actually implement this paragraph where we set the semantic 5071 // context (in the creation of the ClassTemplateSpecializationDecl), 5072 // but we also maintain the lexical context where the actual 5073 // definition occurs. 5074 Specialization->setLexicalDeclContext(CurContext); 5075 5076 // We may be starting the definition of this specialization. 5077 if (TUK == TUK_Definition) 5078 Specialization->startDefinition(); 5079 5080 if (TUK == TUK_Friend) { 5081 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 5082 TemplateNameLoc, 5083 WrittenTy, 5084 /*FIXME:*/KWLoc); 5085 Friend->setAccess(AS_public); 5086 CurContext->addDecl(Friend); 5087 } else { 5088 // Add the specialization into its lexical context, so that it can 5089 // be seen when iterating through the list of declarations in that 5090 // context. However, specializations are not found by name lookup. 5091 CurContext->addDecl(Specialization); 5092 } 5093 return Specialization; 5094} 5095 5096Decl *Sema::ActOnTemplateDeclarator(Scope *S, 5097 MultiTemplateParamsArg TemplateParameterLists, 5098 Declarator &D) { 5099 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 5100} 5101 5102Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 5103 MultiTemplateParamsArg TemplateParameterLists, 5104 Declarator &D) { 5105 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 5106 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 5107 5108 if (FTI.hasPrototype) { 5109 // FIXME: Diagnose arguments without names in C. 5110 } 5111 5112 Scope *ParentScope = FnBodyScope->getParent(); 5113 5114 Decl *DP = HandleDeclarator(ParentScope, D, 5115 move(TemplateParameterLists), 5116 /*IsFunctionDefinition=*/true); 5117 if (FunctionTemplateDecl *FunctionTemplate 5118 = dyn_cast_or_null<FunctionTemplateDecl>(DP)) 5119 return ActOnStartOfFunctionDef(FnBodyScope, 5120 FunctionTemplate->getTemplatedDecl()); 5121 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP)) 5122 return ActOnStartOfFunctionDef(FnBodyScope, Function); 5123 return 0; 5124} 5125 5126/// \brief Strips various properties off an implicit instantiation 5127/// that has just been explicitly specialized. 5128static void StripImplicitInstantiation(NamedDecl *D) { 5129 D->dropAttrs(); 5130 5131 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5132 FD->setInlineSpecified(false); 5133 } 5134} 5135 5136/// \brief Diagnose cases where we have an explicit template specialization 5137/// before/after an explicit template instantiation, producing diagnostics 5138/// for those cases where they are required and determining whether the 5139/// new specialization/instantiation will have any effect. 5140/// 5141/// \param NewLoc the location of the new explicit specialization or 5142/// instantiation. 5143/// 5144/// \param NewTSK the kind of the new explicit specialization or instantiation. 5145/// 5146/// \param PrevDecl the previous declaration of the entity. 5147/// 5148/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 5149/// 5150/// \param PrevPointOfInstantiation if valid, indicates where the previus 5151/// declaration was instantiated (either implicitly or explicitly). 5152/// 5153/// \param HasNoEffect will be set to true to indicate that the new 5154/// specialization or instantiation has no effect and should be ignored. 5155/// 5156/// \returns true if there was an error that should prevent the introduction of 5157/// the new declaration into the AST, false otherwise. 5158bool 5159Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 5160 TemplateSpecializationKind NewTSK, 5161 NamedDecl *PrevDecl, 5162 TemplateSpecializationKind PrevTSK, 5163 SourceLocation PrevPointOfInstantiation, 5164 bool &HasNoEffect) { 5165 HasNoEffect = false; 5166 5167 switch (NewTSK) { 5168 case TSK_Undeclared: 5169 case TSK_ImplicitInstantiation: 5170 assert(false && "Don't check implicit instantiations here"); 5171 return false; 5172 5173 case TSK_ExplicitSpecialization: 5174 switch (PrevTSK) { 5175 case TSK_Undeclared: 5176 case TSK_ExplicitSpecialization: 5177 // Okay, we're just specializing something that is either already 5178 // explicitly specialized or has merely been mentioned without any 5179 // instantiation. 5180 return false; 5181 5182 case TSK_ImplicitInstantiation: 5183 if (PrevPointOfInstantiation.isInvalid()) { 5184 // The declaration itself has not actually been instantiated, so it is 5185 // still okay to specialize it. 5186 StripImplicitInstantiation(PrevDecl); 5187 return false; 5188 } 5189 // Fall through 5190 5191 case TSK_ExplicitInstantiationDeclaration: 5192 case TSK_ExplicitInstantiationDefinition: 5193 assert((PrevTSK == TSK_ImplicitInstantiation || 5194 PrevPointOfInstantiation.isValid()) && 5195 "Explicit instantiation without point of instantiation?"); 5196 5197 // C++ [temp.expl.spec]p6: 5198 // If a template, a member template or the member of a class template 5199 // is explicitly specialized then that specialization shall be declared 5200 // before the first use of that specialization that would cause an 5201 // implicit instantiation to take place, in every translation unit in 5202 // which such a use occurs; no diagnostic is required. 5203 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 5204 // Is there any previous explicit specialization declaration? 5205 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 5206 return false; 5207 } 5208 5209 Diag(NewLoc, diag::err_specialization_after_instantiation) 5210 << PrevDecl; 5211 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 5212 << (PrevTSK != TSK_ImplicitInstantiation); 5213 5214 return true; 5215 } 5216 break; 5217 5218 case TSK_ExplicitInstantiationDeclaration: 5219 switch (PrevTSK) { 5220 case TSK_ExplicitInstantiationDeclaration: 5221 // This explicit instantiation declaration is redundant (that's okay). 5222 HasNoEffect = true; 5223 return false; 5224 5225 case TSK_Undeclared: 5226 case TSK_ImplicitInstantiation: 5227 // We're explicitly instantiating something that may have already been 5228 // implicitly instantiated; that's fine. 5229 return false; 5230 5231 case TSK_ExplicitSpecialization: 5232 // C++0x [temp.explicit]p4: 5233 // For a given set of template parameters, if an explicit instantiation 5234 // of a template appears after a declaration of an explicit 5235 // specialization for that template, the explicit instantiation has no 5236 // effect. 5237 HasNoEffect = true; 5238 return false; 5239 5240 case TSK_ExplicitInstantiationDefinition: 5241 // C++0x [temp.explicit]p10: 5242 // If an entity is the subject of both an explicit instantiation 5243 // declaration and an explicit instantiation definition in the same 5244 // translation unit, the definition shall follow the declaration. 5245 Diag(NewLoc, 5246 diag::err_explicit_instantiation_declaration_after_definition); 5247 Diag(PrevPointOfInstantiation, 5248 diag::note_explicit_instantiation_definition_here); 5249 assert(PrevPointOfInstantiation.isValid() && 5250 "Explicit instantiation without point of instantiation?"); 5251 HasNoEffect = true; 5252 return false; 5253 } 5254 break; 5255 5256 case TSK_ExplicitInstantiationDefinition: 5257 switch (PrevTSK) { 5258 case TSK_Undeclared: 5259 case TSK_ImplicitInstantiation: 5260 // We're explicitly instantiating something that may have already been 5261 // implicitly instantiated; that's fine. 5262 return false; 5263 5264 case TSK_ExplicitSpecialization: 5265 // C++ DR 259, C++0x [temp.explicit]p4: 5266 // For a given set of template parameters, if an explicit 5267 // instantiation of a template appears after a declaration of 5268 // an explicit specialization for that template, the explicit 5269 // instantiation has no effect. 5270 // 5271 // In C++98/03 mode, we only give an extension warning here, because it 5272 // is not harmful to try to explicitly instantiate something that 5273 // has been explicitly specialized. 5274 if (!getLangOptions().CPlusPlus0x) { 5275 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 5276 << PrevDecl; 5277 Diag(PrevDecl->getLocation(), 5278 diag::note_previous_template_specialization); 5279 } 5280 HasNoEffect = true; 5281 return false; 5282 5283 case TSK_ExplicitInstantiationDeclaration: 5284 // We're explicity instantiating a definition for something for which we 5285 // were previously asked to suppress instantiations. That's fine. 5286 return false; 5287 5288 case TSK_ExplicitInstantiationDefinition: 5289 // C++0x [temp.spec]p5: 5290 // For a given template and a given set of template-arguments, 5291 // - an explicit instantiation definition shall appear at most once 5292 // in a program, 5293 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 5294 << PrevDecl; 5295 Diag(PrevPointOfInstantiation, 5296 diag::note_previous_explicit_instantiation); 5297 HasNoEffect = true; 5298 return false; 5299 } 5300 break; 5301 } 5302 5303 assert(false && "Missing specialization/instantiation case?"); 5304 5305 return false; 5306} 5307 5308/// \brief Perform semantic analysis for the given dependent function 5309/// template specialization. The only possible way to get a dependent 5310/// function template specialization is with a friend declaration, 5311/// like so: 5312/// 5313/// template <class T> void foo(T); 5314/// template <class T> class A { 5315/// friend void foo<>(T); 5316/// }; 5317/// 5318/// There really isn't any useful analysis we can do here, so we 5319/// just store the information. 5320bool 5321Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 5322 const TemplateArgumentListInfo &ExplicitTemplateArgs, 5323 LookupResult &Previous) { 5324 // Remove anything from Previous that isn't a function template in 5325 // the correct context. 5326 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5327 LookupResult::Filter F = Previous.makeFilter(); 5328 while (F.hasNext()) { 5329 NamedDecl *D = F.next()->getUnderlyingDecl(); 5330 if (!isa<FunctionTemplateDecl>(D) || 5331 !FDLookupContext->InEnclosingNamespaceSetOf( 5332 D->getDeclContext()->getRedeclContext())) 5333 F.erase(); 5334 } 5335 F.done(); 5336 5337 // Should this be diagnosed here? 5338 if (Previous.empty()) return true; 5339 5340 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 5341 ExplicitTemplateArgs); 5342 return false; 5343} 5344 5345/// \brief Perform semantic analysis for the given function template 5346/// specialization. 5347/// 5348/// This routine performs all of the semantic analysis required for an 5349/// explicit function template specialization. On successful completion, 5350/// the function declaration \p FD will become a function template 5351/// specialization. 5352/// 5353/// \param FD the function declaration, which will be updated to become a 5354/// function template specialization. 5355/// 5356/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 5357/// if any. Note that this may be valid info even when 0 arguments are 5358/// explicitly provided as in, e.g., \c void sort<>(char*, char*); 5359/// as it anyway contains info on the angle brackets locations. 5360/// 5361/// \param Previous the set of declarations that may be specialized by 5362/// this function specialization. 5363bool 5364Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 5365 TemplateArgumentListInfo *ExplicitTemplateArgs, 5366 LookupResult &Previous) { 5367 // The set of function template specializations that could match this 5368 // explicit function template specialization. 5369 UnresolvedSet<8> Candidates; 5370 5371 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5372 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5373 I != E; ++I) { 5374 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 5375 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 5376 // Only consider templates found within the same semantic lookup scope as 5377 // FD. 5378 if (!FDLookupContext->InEnclosingNamespaceSetOf( 5379 Ovl->getDeclContext()->getRedeclContext())) 5380 continue; 5381 5382 // C++ [temp.expl.spec]p11: 5383 // A trailing template-argument can be left unspecified in the 5384 // template-id naming an explicit function template specialization 5385 // provided it can be deduced from the function argument type. 5386 // Perform template argument deduction to determine whether we may be 5387 // specializing this template. 5388 // FIXME: It is somewhat wasteful to build 5389 TemplateDeductionInfo Info(Context, FD->getLocation()); 5390 FunctionDecl *Specialization = 0; 5391 if (TemplateDeductionResult TDK 5392 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 5393 FD->getType(), 5394 Specialization, 5395 Info)) { 5396 // FIXME: Template argument deduction failed; record why it failed, so 5397 // that we can provide nifty diagnostics. 5398 (void)TDK; 5399 continue; 5400 } 5401 5402 // Record this candidate. 5403 Candidates.addDecl(Specialization, I.getAccess()); 5404 } 5405 } 5406 5407 // Find the most specialized function template. 5408 UnresolvedSetIterator Result 5409 = getMostSpecialized(Candidates.begin(), Candidates.end(), 5410 TPOC_Other, 0, FD->getLocation(), 5411 PDiag(diag::err_function_template_spec_no_match) 5412 << FD->getDeclName(), 5413 PDiag(diag::err_function_template_spec_ambiguous) 5414 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 5415 PDiag(diag::note_function_template_spec_matched)); 5416 if (Result == Candidates.end()) 5417 return true; 5418 5419 // Ignore access information; it doesn't figure into redeclaration checking. 5420 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5421 5422 FunctionTemplateSpecializationInfo *SpecInfo 5423 = Specialization->getTemplateSpecializationInfo(); 5424 assert(SpecInfo && "Function template specialization info missing?"); 5425 5426 // Note: do not overwrite location info if previous template 5427 // specialization kind was explicit. 5428 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 5429 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) 5430 Specialization->setLocation(FD->getLocation()); 5431 5432 // FIXME: Check if the prior specialization has a point of instantiation. 5433 // If so, we have run afoul of . 5434 5435 // If this is a friend declaration, then we're not really declaring 5436 // an explicit specialization. 5437 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 5438 5439 // Check the scope of this explicit specialization. 5440 if (!isFriend && 5441 CheckTemplateSpecializationScope(*this, 5442 Specialization->getPrimaryTemplate(), 5443 Specialization, FD->getLocation(), 5444 false)) 5445 return true; 5446 5447 // C++ [temp.expl.spec]p6: 5448 // If a template, a member template or the member of a class template is 5449 // explicitly specialized then that specialization shall be declared 5450 // before the first use of that specialization that would cause an implicit 5451 // instantiation to take place, in every translation unit in which such a 5452 // use occurs; no diagnostic is required. 5453 bool HasNoEffect = false; 5454 if (!isFriend && 5455 CheckSpecializationInstantiationRedecl(FD->getLocation(), 5456 TSK_ExplicitSpecialization, 5457 Specialization, 5458 SpecInfo->getTemplateSpecializationKind(), 5459 SpecInfo->getPointOfInstantiation(), 5460 HasNoEffect)) 5461 return true; 5462 5463 // Mark the prior declaration as an explicit specialization, so that later 5464 // clients know that this is an explicit specialization. 5465 if (!isFriend) { 5466 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 5467 MarkUnusedFileScopedDecl(Specialization); 5468 } 5469 5470 // Turn the given function declaration into a function template 5471 // specialization, with the template arguments from the previous 5472 // specialization. 5473 // Take copies of (semantic and syntactic) template argument lists. 5474 const TemplateArgumentList* TemplArgs = new (Context) 5475 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 5476 const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs 5477 ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0; 5478 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 5479 TemplArgs, /*InsertPos=*/0, 5480 SpecInfo->getTemplateSpecializationKind(), 5481 TemplArgsAsWritten); 5482 FD->setStorageClass(Specialization->getStorageClass()); 5483 5484 // The "previous declaration" for this function template specialization is 5485 // the prior function template specialization. 5486 Previous.clear(); 5487 Previous.addDecl(Specialization); 5488 return false; 5489} 5490 5491/// \brief Perform semantic analysis for the given non-template member 5492/// specialization. 5493/// 5494/// This routine performs all of the semantic analysis required for an 5495/// explicit member function specialization. On successful completion, 5496/// the function declaration \p FD will become a member function 5497/// specialization. 5498/// 5499/// \param Member the member declaration, which will be updated to become a 5500/// specialization. 5501/// 5502/// \param Previous the set of declarations, one of which may be specialized 5503/// by this function specialization; the set will be modified to contain the 5504/// redeclared member. 5505bool 5506Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 5507 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 5508 5509 // Try to find the member we are instantiating. 5510 NamedDecl *Instantiation = 0; 5511 NamedDecl *InstantiatedFrom = 0; 5512 MemberSpecializationInfo *MSInfo = 0; 5513 5514 if (Previous.empty()) { 5515 // Nowhere to look anyway. 5516 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 5517 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5518 I != E; ++I) { 5519 NamedDecl *D = (*I)->getUnderlyingDecl(); 5520 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 5521 if (Context.hasSameType(Function->getType(), Method->getType())) { 5522 Instantiation = Method; 5523 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 5524 MSInfo = Method->getMemberSpecializationInfo(); 5525 break; 5526 } 5527 } 5528 } 5529 } else if (isa<VarDecl>(Member)) { 5530 VarDecl *PrevVar; 5531 if (Previous.isSingleResult() && 5532 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 5533 if (PrevVar->isStaticDataMember()) { 5534 Instantiation = PrevVar; 5535 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 5536 MSInfo = PrevVar->getMemberSpecializationInfo(); 5537 } 5538 } else if (isa<RecordDecl>(Member)) { 5539 CXXRecordDecl *PrevRecord; 5540 if (Previous.isSingleResult() && 5541 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 5542 Instantiation = PrevRecord; 5543 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 5544 MSInfo = PrevRecord->getMemberSpecializationInfo(); 5545 } 5546 } 5547 5548 if (!Instantiation) { 5549 // There is no previous declaration that matches. Since member 5550 // specializations are always out-of-line, the caller will complain about 5551 // this mismatch later. 5552 return false; 5553 } 5554 5555 // If this is a friend, just bail out here before we start turning 5556 // things into explicit specializations. 5557 if (Member->getFriendObjectKind() != Decl::FOK_None) { 5558 // Preserve instantiation information. 5559 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 5560 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 5561 cast<CXXMethodDecl>(InstantiatedFrom), 5562 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 5563 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 5564 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5565 cast<CXXRecordDecl>(InstantiatedFrom), 5566 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 5567 } 5568 5569 Previous.clear(); 5570 Previous.addDecl(Instantiation); 5571 return false; 5572 } 5573 5574 // Make sure that this is a specialization of a member. 5575 if (!InstantiatedFrom) { 5576 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 5577 << Member; 5578 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 5579 return true; 5580 } 5581 5582 // C++ [temp.expl.spec]p6: 5583 // If a template, a member template or the member of a class template is 5584 // explicitly specialized then that spe- cialization shall be declared 5585 // before the first use of that specialization that would cause an implicit 5586 // instantiation to take place, in every translation unit in which such a 5587 // use occurs; no diagnostic is required. 5588 assert(MSInfo && "Member specialization info missing?"); 5589 5590 bool HasNoEffect = false; 5591 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 5592 TSK_ExplicitSpecialization, 5593 Instantiation, 5594 MSInfo->getTemplateSpecializationKind(), 5595 MSInfo->getPointOfInstantiation(), 5596 HasNoEffect)) 5597 return true; 5598 5599 // Check the scope of this explicit specialization. 5600 if (CheckTemplateSpecializationScope(*this, 5601 InstantiatedFrom, 5602 Instantiation, Member->getLocation(), 5603 false)) 5604 return true; 5605 5606 // Note that this is an explicit instantiation of a member. 5607 // the original declaration to note that it is an explicit specialization 5608 // (if it was previously an implicit instantiation). This latter step 5609 // makes bookkeeping easier. 5610 if (isa<FunctionDecl>(Member)) { 5611 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 5612 if (InstantiationFunction->getTemplateSpecializationKind() == 5613 TSK_ImplicitInstantiation) { 5614 InstantiationFunction->setTemplateSpecializationKind( 5615 TSK_ExplicitSpecialization); 5616 InstantiationFunction->setLocation(Member->getLocation()); 5617 } 5618 5619 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 5620 cast<CXXMethodDecl>(InstantiatedFrom), 5621 TSK_ExplicitSpecialization); 5622 MarkUnusedFileScopedDecl(InstantiationFunction); 5623 } else if (isa<VarDecl>(Member)) { 5624 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 5625 if (InstantiationVar->getTemplateSpecializationKind() == 5626 TSK_ImplicitInstantiation) { 5627 InstantiationVar->setTemplateSpecializationKind( 5628 TSK_ExplicitSpecialization); 5629 InstantiationVar->setLocation(Member->getLocation()); 5630 } 5631 5632 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 5633 cast<VarDecl>(InstantiatedFrom), 5634 TSK_ExplicitSpecialization); 5635 MarkUnusedFileScopedDecl(InstantiationVar); 5636 } else { 5637 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 5638 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 5639 if (InstantiationClass->getTemplateSpecializationKind() == 5640 TSK_ImplicitInstantiation) { 5641 InstantiationClass->setTemplateSpecializationKind( 5642 TSK_ExplicitSpecialization); 5643 InstantiationClass->setLocation(Member->getLocation()); 5644 } 5645 5646 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5647 cast<CXXRecordDecl>(InstantiatedFrom), 5648 TSK_ExplicitSpecialization); 5649 } 5650 5651 // Save the caller the trouble of having to figure out which declaration 5652 // this specialization matches. 5653 Previous.clear(); 5654 Previous.addDecl(Instantiation); 5655 return false; 5656} 5657 5658/// \brief Check the scope of an explicit instantiation. 5659/// 5660/// \returns true if a serious error occurs, false otherwise. 5661static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 5662 SourceLocation InstLoc, 5663 bool WasQualifiedName) { 5664 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 5665 DeclContext *CurContext = S.CurContext->getRedeclContext(); 5666 5667 if (CurContext->isRecord()) { 5668 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 5669 << D; 5670 return true; 5671 } 5672 5673 // C++0x [temp.explicit]p2: 5674 // An explicit instantiation shall appear in an enclosing namespace of its 5675 // template. 5676 // 5677 // This is DR275, which we do not retroactively apply to C++98/03. 5678 if (S.getLangOptions().CPlusPlus0x && 5679 !CurContext->Encloses(OrigContext)) { 5680 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) 5681 S.Diag(InstLoc, 5682 S.getLangOptions().CPlusPlus0x? 5683 diag::err_explicit_instantiation_out_of_scope 5684 : diag::warn_explicit_instantiation_out_of_scope_0x) 5685 << D << NS; 5686 else 5687 S.Diag(InstLoc, 5688 S.getLangOptions().CPlusPlus0x? 5689 diag::err_explicit_instantiation_must_be_global 5690 : diag::warn_explicit_instantiation_out_of_scope_0x) 5691 << D; 5692 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 5693 return false; 5694 } 5695 5696 // C++0x [temp.explicit]p2: 5697 // If the name declared in the explicit instantiation is an unqualified 5698 // name, the explicit instantiation shall appear in the namespace where 5699 // its template is declared or, if that namespace is inline (7.3.1), any 5700 // namespace from its enclosing namespace set. 5701 if (WasQualifiedName) 5702 return false; 5703 5704 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 5705 return false; 5706 5707 S.Diag(InstLoc, 5708 S.getLangOptions().CPlusPlus0x? 5709 diag::err_explicit_instantiation_unqualified_wrong_namespace 5710 : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 5711 << D << OrigContext; 5712 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 5713 return false; 5714} 5715 5716/// \brief Determine whether the given scope specifier has a template-id in it. 5717static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 5718 if (!SS.isSet()) 5719 return false; 5720 5721 // C++0x [temp.explicit]p2: 5722 // If the explicit instantiation is for a member function, a member class 5723 // or a static data member of a class template specialization, the name of 5724 // the class template specialization in the qualified-id for the member 5725 // name shall be a simple-template-id. 5726 // 5727 // C++98 has the same restriction, just worded differently. 5728 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 5729 NNS; NNS = NNS->getPrefix()) 5730 if (const Type *T = NNS->getAsType()) 5731 if (isa<TemplateSpecializationType>(T)) 5732 return true; 5733 5734 return false; 5735} 5736 5737// Explicit instantiation of a class template specialization 5738DeclResult 5739Sema::ActOnExplicitInstantiation(Scope *S, 5740 SourceLocation ExternLoc, 5741 SourceLocation TemplateLoc, 5742 unsigned TagSpec, 5743 SourceLocation KWLoc, 5744 const CXXScopeSpec &SS, 5745 TemplateTy TemplateD, 5746 SourceLocation TemplateNameLoc, 5747 SourceLocation LAngleLoc, 5748 ASTTemplateArgsPtr TemplateArgsIn, 5749 SourceLocation RAngleLoc, 5750 AttributeList *Attr) { 5751 // Find the class template we're specializing 5752 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 5753 ClassTemplateDecl *ClassTemplate 5754 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 5755 5756 // Check that the specialization uses the same tag kind as the 5757 // original template. 5758 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5759 assert(Kind != TTK_Enum && 5760 "Invalid enum tag in class template explicit instantiation!"); 5761 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 5762 Kind, /*isDefinition*/false, KWLoc, 5763 *ClassTemplate->getIdentifier())) { 5764 Diag(KWLoc, diag::err_use_with_wrong_tag) 5765 << ClassTemplate 5766 << FixItHint::CreateReplacement(KWLoc, 5767 ClassTemplate->getTemplatedDecl()->getKindName()); 5768 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 5769 diag::note_previous_use); 5770 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 5771 } 5772 5773 // C++0x [temp.explicit]p2: 5774 // There are two forms of explicit instantiation: an explicit instantiation 5775 // definition and an explicit instantiation declaration. An explicit 5776 // instantiation declaration begins with the extern keyword. [...] 5777 TemplateSpecializationKind TSK 5778 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5779 : TSK_ExplicitInstantiationDeclaration; 5780 5781 // Translate the parser's template argument list in our AST format. 5782 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 5783 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 5784 5785 // Check that the template argument list is well-formed for this 5786 // template. 5787 llvm::SmallVector<TemplateArgument, 4> Converted; 5788 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 5789 TemplateArgs, false, Converted)) 5790 return true; 5791 5792 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 5793 "Converted template argument list is too short!"); 5794 5795 // Find the class template specialization declaration that 5796 // corresponds to these arguments. 5797 void *InsertPos = 0; 5798 ClassTemplateSpecializationDecl *PrevDecl 5799 = ClassTemplate->findSpecialization(Converted.data(), 5800 Converted.size(), InsertPos); 5801 5802 TemplateSpecializationKind PrevDecl_TSK 5803 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 5804 5805 // C++0x [temp.explicit]p2: 5806 // [...] An explicit instantiation shall appear in an enclosing 5807 // namespace of its template. [...] 5808 // 5809 // This is C++ DR 275. 5810 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 5811 SS.isSet())) 5812 return true; 5813 5814 ClassTemplateSpecializationDecl *Specialization = 0; 5815 5816 bool HasNoEffect = false; 5817 if (PrevDecl) { 5818 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 5819 PrevDecl, PrevDecl_TSK, 5820 PrevDecl->getPointOfInstantiation(), 5821 HasNoEffect)) 5822 return PrevDecl; 5823 5824 // Even though HasNoEffect == true means that this explicit instantiation 5825 // has no effect on semantics, we go on to put its syntax in the AST. 5826 5827 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 5828 PrevDecl_TSK == TSK_Undeclared) { 5829 // Since the only prior class template specialization with these 5830 // arguments was referenced but not declared, reuse that 5831 // declaration node as our own, updating the source location 5832 // for the template name to reflect our new declaration. 5833 // (Other source locations will be updated later.) 5834 Specialization = PrevDecl; 5835 Specialization->setLocation(TemplateNameLoc); 5836 PrevDecl = 0; 5837 } 5838 } 5839 5840 if (!Specialization) { 5841 // Create a new class template specialization declaration node for 5842 // this explicit specialization. 5843 Specialization 5844 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5845 ClassTemplate->getDeclContext(), 5846 KWLoc, TemplateNameLoc, 5847 ClassTemplate, 5848 Converted.data(), 5849 Converted.size(), 5850 PrevDecl); 5851 SetNestedNameSpecifier(Specialization, SS); 5852 5853 if (!HasNoEffect && !PrevDecl) { 5854 // Insert the new specialization. 5855 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5856 } 5857 } 5858 5859 // Build the fully-sugared type for this explicit instantiation as 5860 // the user wrote in the explicit instantiation itself. This means 5861 // that we'll pretty-print the type retrieved from the 5862 // specialization's declaration the way that the user actually wrote 5863 // the explicit instantiation, rather than formatting the name based 5864 // on the "canonical" representation used to store the template 5865 // arguments in the specialization. 5866 TypeSourceInfo *WrittenTy 5867 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5868 TemplateArgs, 5869 Context.getTypeDeclType(Specialization)); 5870 Specialization->setTypeAsWritten(WrittenTy); 5871 TemplateArgsIn.release(); 5872 5873 // Set source locations for keywords. 5874 Specialization->setExternLoc(ExternLoc); 5875 Specialization->setTemplateKeywordLoc(TemplateLoc); 5876 5877 // Add the explicit instantiation into its lexical context. However, 5878 // since explicit instantiations are never found by name lookup, we 5879 // just put it into the declaration context directly. 5880 Specialization->setLexicalDeclContext(CurContext); 5881 CurContext->addDecl(Specialization); 5882 5883 // Syntax is now OK, so return if it has no other effect on semantics. 5884 if (HasNoEffect) { 5885 // Set the template specialization kind. 5886 Specialization->setTemplateSpecializationKind(TSK); 5887 return Specialization; 5888 } 5889 5890 // C++ [temp.explicit]p3: 5891 // A definition of a class template or class member template 5892 // shall be in scope at the point of the explicit instantiation of 5893 // the class template or class member template. 5894 // 5895 // This check comes when we actually try to perform the 5896 // instantiation. 5897 ClassTemplateSpecializationDecl *Def 5898 = cast_or_null<ClassTemplateSpecializationDecl>( 5899 Specialization->getDefinition()); 5900 if (!Def) 5901 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 5902 else if (TSK == TSK_ExplicitInstantiationDefinition) { 5903 MarkVTableUsed(TemplateNameLoc, Specialization, true); 5904 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 5905 } 5906 5907 // Instantiate the members of this class template specialization. 5908 Def = cast_or_null<ClassTemplateSpecializationDecl>( 5909 Specialization->getDefinition()); 5910 if (Def) { 5911 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 5912 5913 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 5914 // TSK_ExplicitInstantiationDefinition 5915 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 5916 TSK == TSK_ExplicitInstantiationDefinition) 5917 Def->setTemplateSpecializationKind(TSK); 5918 5919 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 5920 } 5921 5922 // Set the template specialization kind. 5923 Specialization->setTemplateSpecializationKind(TSK); 5924 return Specialization; 5925} 5926 5927// Explicit instantiation of a member class of a class template. 5928DeclResult 5929Sema::ActOnExplicitInstantiation(Scope *S, 5930 SourceLocation ExternLoc, 5931 SourceLocation TemplateLoc, 5932 unsigned TagSpec, 5933 SourceLocation KWLoc, 5934 CXXScopeSpec &SS, 5935 IdentifierInfo *Name, 5936 SourceLocation NameLoc, 5937 AttributeList *Attr) { 5938 5939 bool Owned = false; 5940 bool IsDependent = false; 5941 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 5942 KWLoc, SS, Name, NameLoc, Attr, AS_none, 5943 MultiTemplateParamsArg(*this, 0, 0), 5944 Owned, IsDependent, false, false, 5945 TypeResult()); 5946 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 5947 5948 if (!TagD) 5949 return true; 5950 5951 TagDecl *Tag = cast<TagDecl>(TagD); 5952 if (Tag->isEnum()) { 5953 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 5954 << Context.getTypeDeclType(Tag); 5955 return true; 5956 } 5957 5958 if (Tag->isInvalidDecl()) 5959 return true; 5960 5961 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 5962 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 5963 if (!Pattern) { 5964 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 5965 << Context.getTypeDeclType(Record); 5966 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 5967 return true; 5968 } 5969 5970 // C++0x [temp.explicit]p2: 5971 // If the explicit instantiation is for a class or member class, the 5972 // elaborated-type-specifier in the declaration shall include a 5973 // simple-template-id. 5974 // 5975 // C++98 has the same restriction, just worded differently. 5976 if (!ScopeSpecifierHasTemplateId(SS)) 5977 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 5978 << Record << SS.getRange(); 5979 5980 // C++0x [temp.explicit]p2: 5981 // There are two forms of explicit instantiation: an explicit instantiation 5982 // definition and an explicit instantiation declaration. An explicit 5983 // instantiation declaration begins with the extern keyword. [...] 5984 TemplateSpecializationKind TSK 5985 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5986 : TSK_ExplicitInstantiationDeclaration; 5987 5988 // C++0x [temp.explicit]p2: 5989 // [...] An explicit instantiation shall appear in an enclosing 5990 // namespace of its template. [...] 5991 // 5992 // This is C++ DR 275. 5993 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 5994 5995 // Verify that it is okay to explicitly instantiate here. 5996 CXXRecordDecl *PrevDecl 5997 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 5998 if (!PrevDecl && Record->getDefinition()) 5999 PrevDecl = Record; 6000 if (PrevDecl) { 6001 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 6002 bool HasNoEffect = false; 6003 assert(MSInfo && "No member specialization information?"); 6004 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 6005 PrevDecl, 6006 MSInfo->getTemplateSpecializationKind(), 6007 MSInfo->getPointOfInstantiation(), 6008 HasNoEffect)) 6009 return true; 6010 if (HasNoEffect) 6011 return TagD; 6012 } 6013 6014 CXXRecordDecl *RecordDef 6015 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 6016 if (!RecordDef) { 6017 // C++ [temp.explicit]p3: 6018 // A definition of a member class of a class template shall be in scope 6019 // at the point of an explicit instantiation of the member class. 6020 CXXRecordDecl *Def 6021 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 6022 if (!Def) { 6023 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 6024 << 0 << Record->getDeclName() << Record->getDeclContext(); 6025 Diag(Pattern->getLocation(), diag::note_forward_declaration) 6026 << Pattern; 6027 return true; 6028 } else { 6029 if (InstantiateClass(NameLoc, Record, Def, 6030 getTemplateInstantiationArgs(Record), 6031 TSK)) 6032 return true; 6033 6034 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 6035 if (!RecordDef) 6036 return true; 6037 } 6038 } 6039 6040 // Instantiate all of the members of the class. 6041 InstantiateClassMembers(NameLoc, RecordDef, 6042 getTemplateInstantiationArgs(Record), TSK); 6043 6044 if (TSK == TSK_ExplicitInstantiationDefinition) 6045 MarkVTableUsed(NameLoc, RecordDef, true); 6046 6047 // FIXME: We don't have any representation for explicit instantiations of 6048 // member classes. Such a representation is not needed for compilation, but it 6049 // should be available for clients that want to see all of the declarations in 6050 // the source code. 6051 return TagD; 6052} 6053 6054DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 6055 SourceLocation ExternLoc, 6056 SourceLocation TemplateLoc, 6057 Declarator &D) { 6058 // Explicit instantiations always require a name. 6059 // TODO: check if/when DNInfo should replace Name. 6060 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 6061 DeclarationName Name = NameInfo.getName(); 6062 if (!Name) { 6063 if (!D.isInvalidType()) 6064 Diag(D.getDeclSpec().getSourceRange().getBegin(), 6065 diag::err_explicit_instantiation_requires_name) 6066 << D.getDeclSpec().getSourceRange() 6067 << D.getSourceRange(); 6068 6069 return true; 6070 } 6071 6072 // The scope passed in may not be a decl scope. Zip up the scope tree until 6073 // we find one that is. 6074 while ((S->getFlags() & Scope::DeclScope) == 0 || 6075 (S->getFlags() & Scope::TemplateParamScope) != 0) 6076 S = S->getParent(); 6077 6078 // Determine the type of the declaration. 6079 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 6080 QualType R = T->getType(); 6081 if (R.isNull()) 6082 return true; 6083 6084 // C++ [dcl.stc]p1: 6085 // A storage-class-specifier shall not be specified in [...] an explicit 6086 // instantiation (14.7.2) directive. 6087 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 6088 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 6089 << Name; 6090 return true; 6091 } else if (D.getDeclSpec().getStorageClassSpec() 6092 != DeclSpec::SCS_unspecified) { 6093 // Complain about then remove the storage class specifier. 6094 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 6095 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6096 6097 D.getMutableDeclSpec().ClearStorageClassSpecs(); 6098 } 6099 6100 // C++0x [temp.explicit]p1: 6101 // [...] An explicit instantiation of a function template shall not use the 6102 // inline or constexpr specifiers. 6103 // Presumably, this also applies to member functions of class templates as 6104 // well. 6105 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 6106 Diag(D.getDeclSpec().getInlineSpecLoc(), 6107 diag::err_explicit_instantiation_inline) 6108 <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 6109 6110 // FIXME: check for constexpr specifier. 6111 6112 // C++0x [temp.explicit]p2: 6113 // There are two forms of explicit instantiation: an explicit instantiation 6114 // definition and an explicit instantiation declaration. An explicit 6115 // instantiation declaration begins with the extern keyword. [...] 6116 TemplateSpecializationKind TSK 6117 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6118 : TSK_ExplicitInstantiationDeclaration; 6119 6120 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 6121 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 6122 6123 if (!R->isFunctionType()) { 6124 // C++ [temp.explicit]p1: 6125 // A [...] static data member of a class template can be explicitly 6126 // instantiated from the member definition associated with its class 6127 // template. 6128 if (Previous.isAmbiguous()) 6129 return true; 6130 6131 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 6132 if (!Prev || !Prev->isStaticDataMember()) { 6133 // We expect to see a data data member here. 6134 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 6135 << Name; 6136 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6137 P != PEnd; ++P) 6138 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 6139 return true; 6140 } 6141 6142 if (!Prev->getInstantiatedFromStaticDataMember()) { 6143 // FIXME: Check for explicit specialization? 6144 Diag(D.getIdentifierLoc(), 6145 diag::err_explicit_instantiation_data_member_not_instantiated) 6146 << Prev; 6147 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 6148 // FIXME: Can we provide a note showing where this was declared? 6149 return true; 6150 } 6151 6152 // C++0x [temp.explicit]p2: 6153 // If the explicit instantiation is for a member function, a member class 6154 // or a static data member of a class template specialization, the name of 6155 // the class template specialization in the qualified-id for the member 6156 // name shall be a simple-template-id. 6157 // 6158 // C++98 has the same restriction, just worded differently. 6159 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6160 Diag(D.getIdentifierLoc(), 6161 diag::ext_explicit_instantiation_without_qualified_id) 6162 << Prev << D.getCXXScopeSpec().getRange(); 6163 6164 // Check the scope of this explicit instantiation. 6165 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 6166 6167 // Verify that it is okay to explicitly instantiate here. 6168 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 6169 assert(MSInfo && "Missing static data member specialization info?"); 6170 bool HasNoEffect = false; 6171 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 6172 MSInfo->getTemplateSpecializationKind(), 6173 MSInfo->getPointOfInstantiation(), 6174 HasNoEffect)) 6175 return true; 6176 if (HasNoEffect) 6177 return (Decl*) 0; 6178 6179 // Instantiate static data member. 6180 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6181 if (TSK == TSK_ExplicitInstantiationDefinition) 6182 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev); 6183 6184 // FIXME: Create an ExplicitInstantiation node? 6185 return (Decl*) 0; 6186 } 6187 6188 // If the declarator is a template-id, translate the parser's template 6189 // argument list into our AST format. 6190 bool HasExplicitTemplateArgs = false; 6191 TemplateArgumentListInfo TemplateArgs; 6192 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 6193 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 6194 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 6195 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 6196 ASTTemplateArgsPtr TemplateArgsPtr(*this, 6197 TemplateId->getTemplateArgs(), 6198 TemplateId->NumArgs); 6199 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 6200 HasExplicitTemplateArgs = true; 6201 TemplateArgsPtr.release(); 6202 } 6203 6204 // C++ [temp.explicit]p1: 6205 // A [...] function [...] can be explicitly instantiated from its template. 6206 // A member function [...] of a class template can be explicitly 6207 // instantiated from the member definition associated with its class 6208 // template. 6209 UnresolvedSet<8> Matches; 6210 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6211 P != PEnd; ++P) { 6212 NamedDecl *Prev = *P; 6213 if (!HasExplicitTemplateArgs) { 6214 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 6215 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 6216 Matches.clear(); 6217 6218 Matches.addDecl(Method, P.getAccess()); 6219 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 6220 break; 6221 } 6222 } 6223 } 6224 6225 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 6226 if (!FunTmpl) 6227 continue; 6228 6229 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 6230 FunctionDecl *Specialization = 0; 6231 if (TemplateDeductionResult TDK 6232 = DeduceTemplateArguments(FunTmpl, 6233 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 6234 R, Specialization, Info)) { 6235 // FIXME: Keep track of almost-matches? 6236 (void)TDK; 6237 continue; 6238 } 6239 6240 Matches.addDecl(Specialization, P.getAccess()); 6241 } 6242 6243 // Find the most specialized function template specialization. 6244 UnresolvedSetIterator Result 6245 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0, 6246 D.getIdentifierLoc(), 6247 PDiag(diag::err_explicit_instantiation_not_known) << Name, 6248 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 6249 PDiag(diag::note_explicit_instantiation_candidate)); 6250 6251 if (Result == Matches.end()) 6252 return true; 6253 6254 // Ignore access control bits, we don't need them for redeclaration checking. 6255 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 6256 6257 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 6258 Diag(D.getIdentifierLoc(), 6259 diag::err_explicit_instantiation_member_function_not_instantiated) 6260 << Specialization 6261 << (Specialization->getTemplateSpecializationKind() == 6262 TSK_ExplicitSpecialization); 6263 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 6264 return true; 6265 } 6266 6267 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 6268 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 6269 PrevDecl = Specialization; 6270 6271 if (PrevDecl) { 6272 bool HasNoEffect = false; 6273 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 6274 PrevDecl, 6275 PrevDecl->getTemplateSpecializationKind(), 6276 PrevDecl->getPointOfInstantiation(), 6277 HasNoEffect)) 6278 return true; 6279 6280 // FIXME: We may still want to build some representation of this 6281 // explicit specialization. 6282 if (HasNoEffect) 6283 return (Decl*) 0; 6284 } 6285 6286 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6287 6288 if (TSK == TSK_ExplicitInstantiationDefinition) 6289 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 6290 6291 // C++0x [temp.explicit]p2: 6292 // If the explicit instantiation is for a member function, a member class 6293 // or a static data member of a class template specialization, the name of 6294 // the class template specialization in the qualified-id for the member 6295 // name shall be a simple-template-id. 6296 // 6297 // C++98 has the same restriction, just worded differently. 6298 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 6299 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 6300 D.getCXXScopeSpec().isSet() && 6301 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6302 Diag(D.getIdentifierLoc(), 6303 diag::ext_explicit_instantiation_without_qualified_id) 6304 << Specialization << D.getCXXScopeSpec().getRange(); 6305 6306 CheckExplicitInstantiationScope(*this, 6307 FunTmpl? (NamedDecl *)FunTmpl 6308 : Specialization->getInstantiatedFromMemberFunction(), 6309 D.getIdentifierLoc(), 6310 D.getCXXScopeSpec().isSet()); 6311 6312 // FIXME: Create some kind of ExplicitInstantiationDecl here. 6313 return (Decl*) 0; 6314} 6315 6316TypeResult 6317Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 6318 const CXXScopeSpec &SS, IdentifierInfo *Name, 6319 SourceLocation TagLoc, SourceLocation NameLoc) { 6320 // This has to hold, because SS is expected to be defined. 6321 assert(Name && "Expected a name in a dependent tag"); 6322 6323 NestedNameSpecifier *NNS 6324 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 6325 if (!NNS) 6326 return true; 6327 6328 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 6329 6330 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 6331 Diag(NameLoc, diag::err_dependent_tag_decl) 6332 << (TUK == TUK_Definition) << Kind << SS.getRange(); 6333 return true; 6334 } 6335 6336 // Create the resulting type. 6337 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 6338 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 6339 6340 // Create type-source location information for this type. 6341 TypeLocBuilder TLB; 6342 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 6343 TL.setKeywordLoc(TagLoc); 6344 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6345 TL.setNameLoc(NameLoc); 6346 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 6347} 6348 6349TypeResult 6350Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 6351 const CXXScopeSpec &SS, const IdentifierInfo &II, 6352 SourceLocation IdLoc) { 6353 if (SS.isInvalid()) 6354 return true; 6355 6356 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 6357 !getLangOptions().CPlusPlus0x) 6358 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 6359 << FixItHint::CreateRemoval(TypenameLoc); 6360 6361 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 6362 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, 6363 TypenameLoc, QualifierLoc, II, IdLoc); 6364 if (T.isNull()) 6365 return true; 6366 6367 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 6368 if (isa<DependentNameType>(T)) { 6369 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 6370 TL.setKeywordLoc(TypenameLoc); 6371 TL.setQualifierLoc(QualifierLoc); 6372 TL.setNameLoc(IdLoc); 6373 } else { 6374 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 6375 TL.setKeywordLoc(TypenameLoc); 6376 TL.setQualifierLoc(QualifierLoc); 6377 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc); 6378 } 6379 6380 return CreateParsedType(T, TSI); 6381} 6382 6383TypeResult 6384Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 6385 const CXXScopeSpec &SS, 6386 SourceLocation TemplateLoc, 6387 TemplateTy TemplateIn, 6388 SourceLocation TemplateNameLoc, 6389 SourceLocation LAngleLoc, 6390 ASTTemplateArgsPtr TemplateArgsIn, 6391 SourceLocation RAngleLoc) { 6392 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 6393 !getLangOptions().CPlusPlus0x) 6394 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 6395 << FixItHint::CreateRemoval(TypenameLoc); 6396 6397 // Translate the parser's template argument list in our AST format. 6398 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 6399 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 6400 6401 TemplateName Template = TemplateIn.get(); 6402 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 6403 // Construct a dependent template specialization type. 6404 assert(DTN && "dependent template has non-dependent name?"); 6405 assert(DTN->getQualifier() 6406 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 6407 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, 6408 DTN->getQualifier(), 6409 DTN->getIdentifier(), 6410 TemplateArgs); 6411 6412 // Create source-location information for this type. 6413 TypeLocBuilder Builder; 6414 DependentTemplateSpecializationTypeLoc SpecTL 6415 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 6416 SpecTL.setLAngleLoc(LAngleLoc); 6417 SpecTL.setRAngleLoc(RAngleLoc); 6418 SpecTL.setKeywordLoc(TypenameLoc); 6419 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 6420 SpecTL.setNameLoc(TemplateNameLoc); 6421 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6422 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 6423 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 6424 } 6425 6426 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs); 6427 if (T.isNull()) 6428 return true; 6429 6430 // Provide source-location information for the template specialization 6431 // type. 6432 TypeLocBuilder Builder; 6433 TemplateSpecializationTypeLoc SpecTL 6434 = Builder.push<TemplateSpecializationTypeLoc>(T); 6435 6436 // FIXME: No place to set the location of the 'template' keyword! 6437 SpecTL.setLAngleLoc(LAngleLoc); 6438 SpecTL.setRAngleLoc(RAngleLoc); 6439 SpecTL.setTemplateNameLoc(TemplateNameLoc); 6440 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6441 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 6442 6443 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); 6444 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 6445 TL.setKeywordLoc(TypenameLoc); 6446 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6447 6448 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 6449 return CreateParsedType(T, TSI); 6450} 6451 6452 6453/// \brief Build the type that describes a C++ typename specifier, 6454/// e.g., "typename T::type". 6455QualType 6456Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 6457 SourceLocation KeywordLoc, 6458 NestedNameSpecifierLoc QualifierLoc, 6459 const IdentifierInfo &II, 6460 SourceLocation IILoc) { 6461 CXXScopeSpec SS; 6462 SS.Adopt(QualifierLoc); 6463 6464 DeclContext *Ctx = computeDeclContext(SS); 6465 if (!Ctx) { 6466 // If the nested-name-specifier is dependent and couldn't be 6467 // resolved to a type, build a typename type. 6468 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 6469 return Context.getDependentNameType(Keyword, 6470 QualifierLoc.getNestedNameSpecifier(), 6471 &II); 6472 } 6473 6474 // If the nested-name-specifier refers to the current instantiation, 6475 // the "typename" keyword itself is superfluous. In C++03, the 6476 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 6477 // allows such extraneous "typename" keywords, and we retroactively 6478 // apply this DR to C++03 code with only a warning. In any case we continue. 6479 6480 if (RequireCompleteDeclContext(SS, Ctx)) 6481 return QualType(); 6482 6483 DeclarationName Name(&II); 6484 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 6485 LookupQualifiedName(Result, Ctx); 6486 unsigned DiagID = 0; 6487 Decl *Referenced = 0; 6488 switch (Result.getResultKind()) { 6489 case LookupResult::NotFound: 6490 DiagID = diag::err_typename_nested_not_found; 6491 break; 6492 6493 case LookupResult::FoundUnresolvedValue: { 6494 // We found a using declaration that is a value. Most likely, the using 6495 // declaration itself is meant to have the 'typename' keyword. 6496 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 6497 IILoc); 6498 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 6499 << Name << Ctx << FullRange; 6500 if (UnresolvedUsingValueDecl *Using 6501 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 6502 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 6503 Diag(Loc, diag::note_using_value_decl_missing_typename) 6504 << FixItHint::CreateInsertion(Loc, "typename "); 6505 } 6506 } 6507 // Fall through to create a dependent typename type, from which we can recover 6508 // better. 6509 6510 case LookupResult::NotFoundInCurrentInstantiation: 6511 // Okay, it's a member of an unknown instantiation. 6512 return Context.getDependentNameType(Keyword, 6513 QualifierLoc.getNestedNameSpecifier(), 6514 &II); 6515 6516 case LookupResult::Found: 6517 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 6518 // We found a type. Build an ElaboratedType, since the 6519 // typename-specifier was just sugar. 6520 return Context.getElaboratedType(ETK_Typename, 6521 QualifierLoc.getNestedNameSpecifier(), 6522 Context.getTypeDeclType(Type)); 6523 } 6524 6525 DiagID = diag::err_typename_nested_not_type; 6526 Referenced = Result.getFoundDecl(); 6527 break; 6528 6529 6530 llvm_unreachable("unresolved using decl in non-dependent context"); 6531 return QualType(); 6532 6533 case LookupResult::FoundOverloaded: 6534 DiagID = diag::err_typename_nested_not_type; 6535 Referenced = *Result.begin(); 6536 break; 6537 6538 case LookupResult::Ambiguous: 6539 return QualType(); 6540 } 6541 6542 // If we get here, it's because name lookup did not find a 6543 // type. Emit an appropriate diagnostic and return an error. 6544 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 6545 IILoc); 6546 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 6547 if (Referenced) 6548 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 6549 << Name; 6550 return QualType(); 6551} 6552 6553namespace { 6554 // See Sema::RebuildTypeInCurrentInstantiation 6555 class CurrentInstantiationRebuilder 6556 : public TreeTransform<CurrentInstantiationRebuilder> { 6557 SourceLocation Loc; 6558 DeclarationName Entity; 6559 6560 public: 6561 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 6562 6563 CurrentInstantiationRebuilder(Sema &SemaRef, 6564 SourceLocation Loc, 6565 DeclarationName Entity) 6566 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 6567 Loc(Loc), Entity(Entity) { } 6568 6569 /// \brief Determine whether the given type \p T has already been 6570 /// transformed. 6571 /// 6572 /// For the purposes of type reconstruction, a type has already been 6573 /// transformed if it is NULL or if it is not dependent. 6574 bool AlreadyTransformed(QualType T) { 6575 return T.isNull() || !T->isDependentType(); 6576 } 6577 6578 /// \brief Returns the location of the entity whose type is being 6579 /// rebuilt. 6580 SourceLocation getBaseLocation() { return Loc; } 6581 6582 /// \brief Returns the name of the entity whose type is being rebuilt. 6583 DeclarationName getBaseEntity() { return Entity; } 6584 6585 /// \brief Sets the "base" location and entity when that 6586 /// information is known based on another transformation. 6587 void setBase(SourceLocation Loc, DeclarationName Entity) { 6588 this->Loc = Loc; 6589 this->Entity = Entity; 6590 } 6591 }; 6592} 6593 6594/// \brief Rebuilds a type within the context of the current instantiation. 6595/// 6596/// The type \p T is part of the type of an out-of-line member definition of 6597/// a class template (or class template partial specialization) that was parsed 6598/// and constructed before we entered the scope of the class template (or 6599/// partial specialization thereof). This routine will rebuild that type now 6600/// that we have entered the declarator's scope, which may produce different 6601/// canonical types, e.g., 6602/// 6603/// \code 6604/// template<typename T> 6605/// struct X { 6606/// typedef T* pointer; 6607/// pointer data(); 6608/// }; 6609/// 6610/// template<typename T> 6611/// typename X<T>::pointer X<T>::data() { ... } 6612/// \endcode 6613/// 6614/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 6615/// since we do not know that we can look into X<T> when we parsed the type. 6616/// This function will rebuild the type, performing the lookup of "pointer" 6617/// in X<T> and returning an ElaboratedType whose canonical type is the same 6618/// as the canonical type of T*, allowing the return types of the out-of-line 6619/// definition and the declaration to match. 6620TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 6621 SourceLocation Loc, 6622 DeclarationName Name) { 6623 if (!T || !T->getType()->isDependentType()) 6624 return T; 6625 6626 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 6627 return Rebuilder.TransformType(T); 6628} 6629 6630ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 6631 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 6632 DeclarationName()); 6633 return Rebuilder.TransformExpr(E); 6634} 6635 6636bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 6637 if (SS.isInvalid()) 6638 return true; 6639 6640 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 6641 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 6642 DeclarationName()); 6643 NestedNameSpecifierLoc Rebuilt 6644 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 6645 if (!Rebuilt) 6646 return true; 6647 6648 SS.Adopt(Rebuilt); 6649 return false; 6650} 6651 6652/// \brief Produces a formatted string that describes the binding of 6653/// template parameters to template arguments. 6654std::string 6655Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6656 const TemplateArgumentList &Args) { 6657 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 6658} 6659 6660std::string 6661Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6662 const TemplateArgument *Args, 6663 unsigned NumArgs) { 6664 llvm::SmallString<128> Str; 6665 llvm::raw_svector_ostream Out(Str); 6666 6667 if (!Params || Params->size() == 0 || NumArgs == 0) 6668 return std::string(); 6669 6670 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 6671 if (I >= NumArgs) 6672 break; 6673 6674 if (I == 0) 6675 Out << "[with "; 6676 else 6677 Out << ", "; 6678 6679 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 6680 Out << Id->getName(); 6681 } else { 6682 Out << '$' << I; 6683 } 6684 6685 Out << " = "; 6686 Args[I].print(Context.PrintingPolicy, Out); 6687 } 6688 6689 Out << ']'; 6690 return Out.str(); 6691} 6692 6693void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) { 6694 if (!FD) 6695 return; 6696 FD->setLateTemplateParsed(Flag); 6697} 6698 6699bool Sema::IsInsideALocalClassWithinATemplateFunction() { 6700 DeclContext *DC = CurContext; 6701 6702 while (DC) { 6703 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 6704 const FunctionDecl *FD = RD->isLocalClass(); 6705 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 6706 } else if (DC->isTranslationUnit() || DC->isNamespace()) 6707 return false; 6708 6709 DC = DC->getParent(); 6710 } 6711 return false; 6712} 6713