SemaTemplate.cpp revision b0ee93cf945744569b82b8a07361061f2963264a
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/StringExtras.h"
30using namespace clang;
31using namespace sema;
32
33// Exported for use by Parser.
34SourceRange
35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
36                              unsigned N) {
37  if (!N) return SourceRange();
38  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
39}
40
41/// \brief Determine whether the declaration found is acceptable as the name
42/// of a template and, if so, return that template declaration. Otherwise,
43/// returns NULL.
44static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
45                                           NamedDecl *Orig) {
46  NamedDecl *D = Orig->getUnderlyingDecl();
47
48  if (isa<TemplateDecl>(D))
49    return Orig;
50
51  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
52    // C++ [temp.local]p1:
53    //   Like normal (non-template) classes, class templates have an
54    //   injected-class-name (Clause 9). The injected-class-name
55    //   can be used with or without a template-argument-list. When
56    //   it is used without a template-argument-list, it is
57    //   equivalent to the injected-class-name followed by the
58    //   template-parameters of the class template enclosed in
59    //   <>. When it is used with a template-argument-list, it
60    //   refers to the specified class template specialization,
61    //   which could be the current specialization or another
62    //   specialization.
63    if (Record->isInjectedClassName()) {
64      Record = cast<CXXRecordDecl>(Record->getDeclContext());
65      if (Record->getDescribedClassTemplate())
66        return Record->getDescribedClassTemplate();
67
68      if (ClassTemplateSpecializationDecl *Spec
69            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
70        return Spec->getSpecializedTemplate();
71    }
72
73    return 0;
74  }
75
76  return 0;
77}
78
79static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
80  // The set of class templates we've already seen.
81  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
82  LookupResult::Filter filter = R.makeFilter();
83  while (filter.hasNext()) {
84    NamedDecl *Orig = filter.next();
85    NamedDecl *Repl = isAcceptableTemplateName(C, Orig);
86    if (!Repl)
87      filter.erase();
88    else if (Repl != Orig) {
89
90      // C++ [temp.local]p3:
91      //   A lookup that finds an injected-class-name (10.2) can result in an
92      //   ambiguity in certain cases (for example, if it is found in more than
93      //   one base class). If all of the injected-class-names that are found
94      //   refer to specializations of the same class template, and if the name
95      //   is followed by a template-argument-list, the reference refers to the
96      //   class template itself and not a specialization thereof, and is not
97      //   ambiguous.
98      //
99      // FIXME: Will we eventually have to do the same for alias templates?
100      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
101        if (!ClassTemplates.insert(ClassTmpl)) {
102          filter.erase();
103          continue;
104        }
105
106      // FIXME: we promote access to public here as a workaround to
107      // the fact that LookupResult doesn't let us remember that we
108      // found this template through a particular injected class name,
109      // which means we end up doing nasty things to the invariants.
110      // Pretending that access is public is *much* safer.
111      filter.replace(Repl, AS_public);
112    }
113  }
114  filter.done();
115}
116
117TemplateNameKind Sema::isTemplateName(Scope *S,
118                                      CXXScopeSpec &SS,
119                                      bool hasTemplateKeyword,
120                                      UnqualifiedId &Name,
121                                      ParsedType ObjectTypePtr,
122                                      bool EnteringContext,
123                                      TemplateTy &TemplateResult,
124                                      bool &MemberOfUnknownSpecialization) {
125  assert(getLangOptions().CPlusPlus && "No template names in C!");
126
127  DeclarationName TName;
128  MemberOfUnknownSpecialization = false;
129
130  switch (Name.getKind()) {
131  case UnqualifiedId::IK_Identifier:
132    TName = DeclarationName(Name.Identifier);
133    break;
134
135  case UnqualifiedId::IK_OperatorFunctionId:
136    TName = Context.DeclarationNames.getCXXOperatorName(
137                                              Name.OperatorFunctionId.Operator);
138    break;
139
140  case UnqualifiedId::IK_LiteralOperatorId:
141    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
142    break;
143
144  default:
145    return TNK_Non_template;
146  }
147
148  QualType ObjectType = ObjectTypePtr.get();
149
150  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
151                 LookupOrdinaryName);
152  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
153                     MemberOfUnknownSpecialization);
154  if (R.empty()) return TNK_Non_template;
155  if (R.isAmbiguous()) {
156    // Suppress diagnostics;  we'll redo this lookup later.
157    R.suppressDiagnostics();
158
159    // FIXME: we might have ambiguous templates, in which case we
160    // should at least parse them properly!
161    return TNK_Non_template;
162  }
163
164  TemplateName Template;
165  TemplateNameKind TemplateKind;
166
167  unsigned ResultCount = R.end() - R.begin();
168  if (ResultCount > 1) {
169    // We assume that we'll preserve the qualifier from a function
170    // template name in other ways.
171    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
172    TemplateKind = TNK_Function_template;
173
174    // We'll do this lookup again later.
175    R.suppressDiagnostics();
176  } else {
177    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
178
179    if (SS.isSet() && !SS.isInvalid()) {
180      NestedNameSpecifier *Qualifier
181        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
182      Template = Context.getQualifiedTemplateName(Qualifier,
183                                                  hasTemplateKeyword, TD);
184    } else {
185      Template = TemplateName(TD);
186    }
187
188    if (isa<FunctionTemplateDecl>(TD)) {
189      TemplateKind = TNK_Function_template;
190
191      // We'll do this lookup again later.
192      R.suppressDiagnostics();
193    } else {
194      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
195      TemplateKind = TNK_Type_template;
196    }
197  }
198
199  TemplateResult = TemplateTy::make(Template);
200  return TemplateKind;
201}
202
203bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
204                                       SourceLocation IILoc,
205                                       Scope *S,
206                                       const CXXScopeSpec *SS,
207                                       TemplateTy &SuggestedTemplate,
208                                       TemplateNameKind &SuggestedKind) {
209  // We can't recover unless there's a dependent scope specifier preceding the
210  // template name.
211  // FIXME: Typo correction?
212  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
213      computeDeclContext(*SS))
214    return false;
215
216  // The code is missing a 'template' keyword prior to the dependent template
217  // name.
218  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
219  Diag(IILoc, diag::err_template_kw_missing)
220    << Qualifier << II.getName()
221    << FixItHint::CreateInsertion(IILoc, "template ");
222  SuggestedTemplate
223    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
224  SuggestedKind = TNK_Dependent_template_name;
225  return true;
226}
227
228void Sema::LookupTemplateName(LookupResult &Found,
229                              Scope *S, CXXScopeSpec &SS,
230                              QualType ObjectType,
231                              bool EnteringContext,
232                              bool &MemberOfUnknownSpecialization) {
233  // Determine where to perform name lookup
234  MemberOfUnknownSpecialization = false;
235  DeclContext *LookupCtx = 0;
236  bool isDependent = false;
237  if (!ObjectType.isNull()) {
238    // This nested-name-specifier occurs in a member access expression, e.g.,
239    // x->B::f, and we are looking into the type of the object.
240    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
241    LookupCtx = computeDeclContext(ObjectType);
242    isDependent = ObjectType->isDependentType();
243    assert((isDependent || !ObjectType->isIncompleteType()) &&
244           "Caller should have completed object type");
245  } else if (SS.isSet()) {
246    // This nested-name-specifier occurs after another nested-name-specifier,
247    // so long into the context associated with the prior nested-name-specifier.
248    LookupCtx = computeDeclContext(SS, EnteringContext);
249    isDependent = isDependentScopeSpecifier(SS);
250
251    // The declaration context must be complete.
252    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
253      return;
254  }
255
256  bool ObjectTypeSearchedInScope = false;
257  if (LookupCtx) {
258    // Perform "qualified" name lookup into the declaration context we
259    // computed, which is either the type of the base of a member access
260    // expression or the declaration context associated with a prior
261    // nested-name-specifier.
262    LookupQualifiedName(Found, LookupCtx);
263
264    if (!ObjectType.isNull() && Found.empty()) {
265      // C++ [basic.lookup.classref]p1:
266      //   In a class member access expression (5.2.5), if the . or -> token is
267      //   immediately followed by an identifier followed by a <, the
268      //   identifier must be looked up to determine whether the < is the
269      //   beginning of a template argument list (14.2) or a less-than operator.
270      //   The identifier is first looked up in the class of the object
271      //   expression. If the identifier is not found, it is then looked up in
272      //   the context of the entire postfix-expression and shall name a class
273      //   or function template.
274      if (S) LookupName(Found, S);
275      ObjectTypeSearchedInScope = true;
276    }
277  } else if (isDependent && (!S || ObjectType.isNull())) {
278    // We cannot look into a dependent object type or nested nme
279    // specifier.
280    MemberOfUnknownSpecialization = true;
281    return;
282  } else {
283    // Perform unqualified name lookup in the current scope.
284    LookupName(Found, S);
285  }
286
287  if (Found.empty() && !isDependent) {
288    // If we did not find any names, attempt to correct any typos.
289    DeclarationName Name = Found.getLookupName();
290    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
291                                                false, CTC_CXXCasts)) {
292      FilterAcceptableTemplateNames(Context, Found);
293      if (!Found.empty()) {
294        if (LookupCtx)
295          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
296            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
297            << FixItHint::CreateReplacement(Found.getNameLoc(),
298                                          Found.getLookupName().getAsString());
299        else
300          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
301            << Name << Found.getLookupName()
302            << FixItHint::CreateReplacement(Found.getNameLoc(),
303                                          Found.getLookupName().getAsString());
304        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
305          Diag(Template->getLocation(), diag::note_previous_decl)
306            << Template->getDeclName();
307      }
308    } else {
309      Found.clear();
310      Found.setLookupName(Name);
311    }
312  }
313
314  FilterAcceptableTemplateNames(Context, Found);
315  if (Found.empty()) {
316    if (isDependent)
317      MemberOfUnknownSpecialization = true;
318    return;
319  }
320
321  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
322    // C++ [basic.lookup.classref]p1:
323    //   [...] If the lookup in the class of the object expression finds a
324    //   template, the name is also looked up in the context of the entire
325    //   postfix-expression and [...]
326    //
327    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
328                            LookupOrdinaryName);
329    LookupName(FoundOuter, S);
330    FilterAcceptableTemplateNames(Context, FoundOuter);
331
332    if (FoundOuter.empty()) {
333      //   - if the name is not found, the name found in the class of the
334      //     object expression is used, otherwise
335    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
336      //   - if the name is found in the context of the entire
337      //     postfix-expression and does not name a class template, the name
338      //     found in the class of the object expression is used, otherwise
339    } else if (!Found.isSuppressingDiagnostics()) {
340      //   - if the name found is a class template, it must refer to the same
341      //     entity as the one found in the class of the object expression,
342      //     otherwise the program is ill-formed.
343      if (!Found.isSingleResult() ||
344          Found.getFoundDecl()->getCanonicalDecl()
345            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
346        Diag(Found.getNameLoc(),
347             diag::ext_nested_name_member_ref_lookup_ambiguous)
348          << Found.getLookupName()
349          << ObjectType;
350        Diag(Found.getRepresentativeDecl()->getLocation(),
351             diag::note_ambig_member_ref_object_type)
352          << ObjectType;
353        Diag(FoundOuter.getFoundDecl()->getLocation(),
354             diag::note_ambig_member_ref_scope);
355
356        // Recover by taking the template that we found in the object
357        // expression's type.
358      }
359    }
360  }
361}
362
363/// ActOnDependentIdExpression - Handle a dependent id-expression that
364/// was just parsed.  This is only possible with an explicit scope
365/// specifier naming a dependent type.
366ExprResult
367Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
368                                 const DeclarationNameInfo &NameInfo,
369                                 bool isAddressOfOperand,
370                           const TemplateArgumentListInfo *TemplateArgs) {
371  NestedNameSpecifier *Qualifier
372    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
373
374  DeclContext *DC = getFunctionLevelDeclContext();
375
376  if (!isAddressOfOperand &&
377      isa<CXXMethodDecl>(DC) &&
378      cast<CXXMethodDecl>(DC)->isInstance()) {
379    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
380
381    // Since the 'this' expression is synthesized, we don't need to
382    // perform the double-lookup check.
383    NamedDecl *FirstQualifierInScope = 0;
384
385    return Owned(CXXDependentScopeMemberExpr::Create(Context,
386                                                     /*This*/ 0, ThisType,
387                                                     /*IsArrow*/ true,
388                                                     /*Op*/ SourceLocation(),
389                                                     Qualifier, SS.getRange(),
390                                                     FirstQualifierInScope,
391                                                     NameInfo,
392                                                     TemplateArgs));
393  }
394
395  return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
396}
397
398ExprResult
399Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
400                                const DeclarationNameInfo &NameInfo,
401                                const TemplateArgumentListInfo *TemplateArgs) {
402  return Owned(DependentScopeDeclRefExpr::Create(Context,
403               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
404                                                 SS.getRange(),
405                                                 NameInfo,
406                                                 TemplateArgs));
407}
408
409/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
410/// that the template parameter 'PrevDecl' is being shadowed by a new
411/// declaration at location Loc. Returns true to indicate that this is
412/// an error, and false otherwise.
413bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
414  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
415
416  // Microsoft Visual C++ permits template parameters to be shadowed.
417  if (getLangOptions().Microsoft)
418    return false;
419
420  // C++ [temp.local]p4:
421  //   A template-parameter shall not be redeclared within its
422  //   scope (including nested scopes).
423  Diag(Loc, diag::err_template_param_shadow)
424    << cast<NamedDecl>(PrevDecl)->getDeclName();
425  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
426  return true;
427}
428
429/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
430/// the parameter D to reference the templated declaration and return a pointer
431/// to the template declaration. Otherwise, do nothing to D and return null.
432TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
433  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
434    D = Temp->getTemplatedDecl();
435    return Temp;
436  }
437  return 0;
438}
439
440static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
441                                            const ParsedTemplateArgument &Arg) {
442
443  switch (Arg.getKind()) {
444  case ParsedTemplateArgument::Type: {
445    TypeSourceInfo *DI;
446    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
447    if (!DI)
448      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
449    return TemplateArgumentLoc(TemplateArgument(T), DI);
450  }
451
452  case ParsedTemplateArgument::NonType: {
453    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
454    return TemplateArgumentLoc(TemplateArgument(E), E);
455  }
456
457  case ParsedTemplateArgument::Template: {
458    TemplateName Template = Arg.getAsTemplate().get();
459    return TemplateArgumentLoc(TemplateArgument(Template),
460                               Arg.getScopeSpec().getRange(),
461                               Arg.getLocation());
462  }
463  }
464
465  llvm_unreachable("Unhandled parsed template argument");
466  return TemplateArgumentLoc();
467}
468
469/// \brief Translates template arguments as provided by the parser
470/// into template arguments used by semantic analysis.
471void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
472                                      TemplateArgumentListInfo &TemplateArgs) {
473 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
474   TemplateArgs.addArgument(translateTemplateArgument(*this,
475                                                      TemplateArgsIn[I]));
476}
477
478/// ActOnTypeParameter - Called when a C++ template type parameter
479/// (e.g., "typename T") has been parsed. Typename specifies whether
480/// the keyword "typename" was used to declare the type parameter
481/// (otherwise, "class" was used), and KeyLoc is the location of the
482/// "class" or "typename" keyword. ParamName is the name of the
483/// parameter (NULL indicates an unnamed template parameter) and
484/// ParamName is the location of the parameter name (if any).
485/// If the type parameter has a default argument, it will be added
486/// later via ActOnTypeParameterDefault.
487Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
488                               SourceLocation EllipsisLoc,
489                               SourceLocation KeyLoc,
490                               IdentifierInfo *ParamName,
491                               SourceLocation ParamNameLoc,
492                               unsigned Depth, unsigned Position,
493                               SourceLocation EqualLoc,
494                               ParsedType DefaultArg) {
495  assert(S->isTemplateParamScope() &&
496         "Template type parameter not in template parameter scope!");
497  bool Invalid = false;
498
499  if (ParamName) {
500    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
501                                           LookupOrdinaryName,
502                                           ForRedeclaration);
503    if (PrevDecl && PrevDecl->isTemplateParameter())
504      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
505                                                           PrevDecl);
506  }
507
508  SourceLocation Loc = ParamNameLoc;
509  if (!ParamName)
510    Loc = KeyLoc;
511
512  TemplateTypeParmDecl *Param
513    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
514                                   Loc, Depth, Position, ParamName, Typename,
515                                   Ellipsis);
516  if (Invalid)
517    Param->setInvalidDecl();
518
519  if (ParamName) {
520    // Add the template parameter into the current scope.
521    S->AddDecl(Param);
522    IdResolver.AddDecl(Param);
523  }
524
525  // Handle the default argument, if provided.
526  if (DefaultArg) {
527    TypeSourceInfo *DefaultTInfo;
528    GetTypeFromParser(DefaultArg, &DefaultTInfo);
529
530    assert(DefaultTInfo && "expected source information for type");
531
532    // C++0x [temp.param]p9:
533    // A default template-argument may be specified for any kind of
534    // template-parameter that is not a template parameter pack.
535    if (Ellipsis) {
536      Diag(EqualLoc, diag::err_template_param_pack_default_arg);
537      return Param;
538    }
539
540    // Check for unexpanded parameter packs.
541    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
542                                        UPPC_DefaultArgument))
543      return Param;
544
545    // Check the template argument itself.
546    if (CheckTemplateArgument(Param, DefaultTInfo)) {
547      Param->setInvalidDecl();
548      return Param;
549    }
550
551    Param->setDefaultArgument(DefaultTInfo, false);
552  }
553
554  return Param;
555}
556
557/// \brief Check that the type of a non-type template parameter is
558/// well-formed.
559///
560/// \returns the (possibly-promoted) parameter type if valid;
561/// otherwise, produces a diagnostic and returns a NULL type.
562QualType
563Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
564  // We don't allow variably-modified types as the type of non-type template
565  // parameters.
566  if (T->isVariablyModifiedType()) {
567    Diag(Loc, diag::err_variably_modified_nontype_template_param)
568      << T;
569    return QualType();
570  }
571
572  // C++ [temp.param]p4:
573  //
574  // A non-type template-parameter shall have one of the following
575  // (optionally cv-qualified) types:
576  //
577  //       -- integral or enumeration type,
578  if (T->isIntegralOrEnumerationType() ||
579      //   -- pointer to object or pointer to function,
580      T->isPointerType() ||
581      //   -- reference to object or reference to function,
582      T->isReferenceType() ||
583      //   -- pointer to member.
584      T->isMemberPointerType() ||
585      // If T is a dependent type, we can't do the check now, so we
586      // assume that it is well-formed.
587      T->isDependentType())
588    return T;
589  // C++ [temp.param]p8:
590  //
591  //   A non-type template-parameter of type "array of T" or
592  //   "function returning T" is adjusted to be of type "pointer to
593  //   T" or "pointer to function returning T", respectively.
594  else if (T->isArrayType())
595    // FIXME: Keep the type prior to promotion?
596    return Context.getArrayDecayedType(T);
597  else if (T->isFunctionType())
598    // FIXME: Keep the type prior to promotion?
599    return Context.getPointerType(T);
600
601  Diag(Loc, diag::err_template_nontype_parm_bad_type)
602    << T;
603
604  return QualType();
605}
606
607Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
608                                          unsigned Depth,
609                                          unsigned Position,
610                                          SourceLocation EqualLoc,
611                                          Expr *Default) {
612  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
613  QualType T = TInfo->getType();
614
615  assert(S->isTemplateParamScope() &&
616         "Non-type template parameter not in template parameter scope!");
617  bool Invalid = false;
618
619  IdentifierInfo *ParamName = D.getIdentifier();
620  if (ParamName) {
621    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
622                                           LookupOrdinaryName,
623                                           ForRedeclaration);
624    if (PrevDecl && PrevDecl->isTemplateParameter())
625      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
626                                                           PrevDecl);
627  }
628
629  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
630  if (T.isNull()) {
631    T = Context.IntTy; // Recover with an 'int' type.
632    Invalid = true;
633  }
634
635  NonTypeTemplateParmDecl *Param
636    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
637                                      D.getIdentifierLoc(),
638                                      Depth, Position, ParamName, T, TInfo);
639  if (Invalid)
640    Param->setInvalidDecl();
641
642  if (D.getIdentifier()) {
643    // Add the template parameter into the current scope.
644    S->AddDecl(Param);
645    IdResolver.AddDecl(Param);
646  }
647
648  // Check the well-formedness of the default template argument, if provided.
649  if (Default) {
650    // Check for unexpanded parameter packs.
651    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
652      return Param;
653
654    TemplateArgument Converted;
655    if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) {
656      Param->setInvalidDecl();
657      return Param;
658    }
659
660    Param->setDefaultArgument(Default, false);
661  }
662
663  return Param;
664}
665
666/// ActOnTemplateTemplateParameter - Called when a C++ template template
667/// parameter (e.g. T in template <template <typename> class T> class array)
668/// has been parsed. S is the current scope.
669Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
670                                           SourceLocation TmpLoc,
671                                           TemplateParamsTy *Params,
672                                           IdentifierInfo *Name,
673                                           SourceLocation NameLoc,
674                                           unsigned Depth,
675                                           unsigned Position,
676                                           SourceLocation EqualLoc,
677                                       const ParsedTemplateArgument &Default) {
678  assert(S->isTemplateParamScope() &&
679         "Template template parameter not in template parameter scope!");
680
681  // Construct the parameter object.
682  TemplateTemplateParmDecl *Param =
683    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
684                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
685                                     Depth, Position, Name,
686                                     Params);
687
688  // If the template template parameter has a name, then link the identifier
689  // into the scope and lookup mechanisms.
690  if (Name) {
691    S->AddDecl(Param);
692    IdResolver.AddDecl(Param);
693  }
694
695  if (Params->size() == 0) {
696    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
697    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
698    Param->setInvalidDecl();
699  }
700
701  if (!Default.isInvalid()) {
702    // Check only that we have a template template argument. We don't want to
703    // try to check well-formedness now, because our template template parameter
704    // might have dependent types in its template parameters, which we wouldn't
705    // be able to match now.
706    //
707    // If none of the template template parameter's template arguments mention
708    // other template parameters, we could actually perform more checking here.
709    // However, it isn't worth doing.
710    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
711    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
712      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
713        << DefaultArg.getSourceRange();
714      return Param;
715    }
716
717    // Check for unexpanded parameter packs.
718    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
719                                        DefaultArg.getArgument().getAsTemplate(),
720                                        UPPC_DefaultArgument))
721      return Param;
722
723    Param->setDefaultArgument(DefaultArg, false);
724  }
725
726  return Param;
727}
728
729/// ActOnTemplateParameterList - Builds a TemplateParameterList that
730/// contains the template parameters in Params/NumParams.
731Sema::TemplateParamsTy *
732Sema::ActOnTemplateParameterList(unsigned Depth,
733                                 SourceLocation ExportLoc,
734                                 SourceLocation TemplateLoc,
735                                 SourceLocation LAngleLoc,
736                                 Decl **Params, unsigned NumParams,
737                                 SourceLocation RAngleLoc) {
738  if (ExportLoc.isValid())
739    Diag(ExportLoc, diag::warn_template_export_unsupported);
740
741  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
742                                       (NamedDecl**)Params, NumParams,
743                                       RAngleLoc);
744}
745
746static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
747  if (SS.isSet())
748    T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
749                        SS.getRange());
750}
751
752DeclResult
753Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
754                         SourceLocation KWLoc, CXXScopeSpec &SS,
755                         IdentifierInfo *Name, SourceLocation NameLoc,
756                         AttributeList *Attr,
757                         TemplateParameterList *TemplateParams,
758                         AccessSpecifier AS) {
759  assert(TemplateParams && TemplateParams->size() > 0 &&
760         "No template parameters");
761  assert(TUK != TUK_Reference && "Can only declare or define class templates");
762  bool Invalid = false;
763
764  // Check that we can declare a template here.
765  if (CheckTemplateDeclScope(S, TemplateParams))
766    return true;
767
768  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
769  assert(Kind != TTK_Enum && "can't build template of enumerated type");
770
771  // There is no such thing as an unnamed class template.
772  if (!Name) {
773    Diag(KWLoc, diag::err_template_unnamed_class);
774    return true;
775  }
776
777  // Find any previous declaration with this name.
778  DeclContext *SemanticContext;
779  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
780                        ForRedeclaration);
781  if (SS.isNotEmpty() && !SS.isInvalid()) {
782    SemanticContext = computeDeclContext(SS, true);
783    if (!SemanticContext) {
784      // FIXME: Produce a reasonable diagnostic here
785      return true;
786    }
787
788    if (RequireCompleteDeclContext(SS, SemanticContext))
789      return true;
790
791    LookupQualifiedName(Previous, SemanticContext);
792  } else {
793    SemanticContext = CurContext;
794    LookupName(Previous, S);
795  }
796
797  if (Previous.isAmbiguous())
798    return true;
799
800  NamedDecl *PrevDecl = 0;
801  if (Previous.begin() != Previous.end())
802    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
803
804  // If there is a previous declaration with the same name, check
805  // whether this is a valid redeclaration.
806  ClassTemplateDecl *PrevClassTemplate
807    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
808
809  // We may have found the injected-class-name of a class template,
810  // class template partial specialization, or class template specialization.
811  // In these cases, grab the template that is being defined or specialized.
812  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
813      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
814    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
815    PrevClassTemplate
816      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
817    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
818      PrevClassTemplate
819        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
820            ->getSpecializedTemplate();
821    }
822  }
823
824  if (TUK == TUK_Friend) {
825    // C++ [namespace.memdef]p3:
826    //   [...] When looking for a prior declaration of a class or a function
827    //   declared as a friend, and when the name of the friend class or
828    //   function is neither a qualified name nor a template-id, scopes outside
829    //   the innermost enclosing namespace scope are not considered.
830    if (!SS.isSet()) {
831      DeclContext *OutermostContext = CurContext;
832      while (!OutermostContext->isFileContext())
833        OutermostContext = OutermostContext->getLookupParent();
834
835      if (PrevDecl &&
836          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
837           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
838        SemanticContext = PrevDecl->getDeclContext();
839      } else {
840        // Declarations in outer scopes don't matter. However, the outermost
841        // context we computed is the semantic context for our new
842        // declaration.
843        PrevDecl = PrevClassTemplate = 0;
844        SemanticContext = OutermostContext;
845      }
846    }
847
848    if (CurContext->isDependentContext()) {
849      // If this is a dependent context, we don't want to link the friend
850      // class template to the template in scope, because that would perform
851      // checking of the template parameter lists that can't be performed
852      // until the outer context is instantiated.
853      PrevDecl = PrevClassTemplate = 0;
854    }
855  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
856    PrevDecl = PrevClassTemplate = 0;
857
858  if (PrevClassTemplate) {
859    // Ensure that the template parameter lists are compatible.
860    if (!TemplateParameterListsAreEqual(TemplateParams,
861                                   PrevClassTemplate->getTemplateParameters(),
862                                        /*Complain=*/true,
863                                        TPL_TemplateMatch))
864      return true;
865
866    // C++ [temp.class]p4:
867    //   In a redeclaration, partial specialization, explicit
868    //   specialization or explicit instantiation of a class template,
869    //   the class-key shall agree in kind with the original class
870    //   template declaration (7.1.5.3).
871    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
872    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
873      Diag(KWLoc, diag::err_use_with_wrong_tag)
874        << Name
875        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
876      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
877      Kind = PrevRecordDecl->getTagKind();
878    }
879
880    // Check for redefinition of this class template.
881    if (TUK == TUK_Definition) {
882      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
883        Diag(NameLoc, diag::err_redefinition) << Name;
884        Diag(Def->getLocation(), diag::note_previous_definition);
885        // FIXME: Would it make sense to try to "forget" the previous
886        // definition, as part of error recovery?
887        return true;
888      }
889    }
890  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
891    // Maybe we will complain about the shadowed template parameter.
892    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
893    // Just pretend that we didn't see the previous declaration.
894    PrevDecl = 0;
895  } else if (PrevDecl) {
896    // C++ [temp]p5:
897    //   A class template shall not have the same name as any other
898    //   template, class, function, object, enumeration, enumerator,
899    //   namespace, or type in the same scope (3.3), except as specified
900    //   in (14.5.4).
901    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
902    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
903    return true;
904  }
905
906  // Check the template parameter list of this declaration, possibly
907  // merging in the template parameter list from the previous class
908  // template declaration.
909  if (CheckTemplateParameterList(TemplateParams,
910            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
911                                 TPC_ClassTemplate))
912    Invalid = true;
913
914  if (SS.isSet()) {
915    // If the name of the template was qualified, we must be defining the
916    // template out-of-line.
917    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
918        !(TUK == TUK_Friend && CurContext->isDependentContext()))
919      Diag(NameLoc, diag::err_member_def_does_not_match)
920        << Name << SemanticContext << SS.getRange();
921  }
922
923  CXXRecordDecl *NewClass =
924    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
925                          PrevClassTemplate?
926                            PrevClassTemplate->getTemplatedDecl() : 0,
927                          /*DelayTypeCreation=*/true);
928  SetNestedNameSpecifier(NewClass, SS);
929
930  ClassTemplateDecl *NewTemplate
931    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
932                                DeclarationName(Name), TemplateParams,
933                                NewClass, PrevClassTemplate);
934  NewClass->setDescribedClassTemplate(NewTemplate);
935
936  // Build the type for the class template declaration now.
937  QualType T = NewTemplate->getInjectedClassNameSpecialization();
938  T = Context.getInjectedClassNameType(NewClass, T);
939  assert(T->isDependentType() && "Class template type is not dependent?");
940  (void)T;
941
942  // If we are providing an explicit specialization of a member that is a
943  // class template, make a note of that.
944  if (PrevClassTemplate &&
945      PrevClassTemplate->getInstantiatedFromMemberTemplate())
946    PrevClassTemplate->setMemberSpecialization();
947
948  // Set the access specifier.
949  if (!Invalid && TUK != TUK_Friend)
950    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
951
952  // Set the lexical context of these templates
953  NewClass->setLexicalDeclContext(CurContext);
954  NewTemplate->setLexicalDeclContext(CurContext);
955
956  if (TUK == TUK_Definition)
957    NewClass->startDefinition();
958
959  if (Attr)
960    ProcessDeclAttributeList(S, NewClass, Attr);
961
962  if (TUK != TUK_Friend)
963    PushOnScopeChains(NewTemplate, S);
964  else {
965    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
966      NewTemplate->setAccess(PrevClassTemplate->getAccess());
967      NewClass->setAccess(PrevClassTemplate->getAccess());
968    }
969
970    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
971                                       PrevClassTemplate != NULL);
972
973    // Friend templates are visible in fairly strange ways.
974    if (!CurContext->isDependentContext()) {
975      DeclContext *DC = SemanticContext->getRedeclContext();
976      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
977      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
978        PushOnScopeChains(NewTemplate, EnclosingScope,
979                          /* AddToContext = */ false);
980    }
981
982    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
983                                            NewClass->getLocation(),
984                                            NewTemplate,
985                                    /*FIXME:*/NewClass->getLocation());
986    Friend->setAccess(AS_public);
987    CurContext->addDecl(Friend);
988  }
989
990  if (Invalid) {
991    NewTemplate->setInvalidDecl();
992    NewClass->setInvalidDecl();
993  }
994  return NewTemplate;
995}
996
997/// \brief Diagnose the presence of a default template argument on a
998/// template parameter, which is ill-formed in certain contexts.
999///
1000/// \returns true if the default template argument should be dropped.
1001static bool DiagnoseDefaultTemplateArgument(Sema &S,
1002                                            Sema::TemplateParamListContext TPC,
1003                                            SourceLocation ParamLoc,
1004                                            SourceRange DefArgRange) {
1005  switch (TPC) {
1006  case Sema::TPC_ClassTemplate:
1007    return false;
1008
1009  case Sema::TPC_FunctionTemplate:
1010    // C++ [temp.param]p9:
1011    //   A default template-argument shall not be specified in a
1012    //   function template declaration or a function template
1013    //   definition [...]
1014    // (This sentence is not in C++0x, per DR226).
1015    if (!S.getLangOptions().CPlusPlus0x)
1016      S.Diag(ParamLoc,
1017             diag::err_template_parameter_default_in_function_template)
1018        << DefArgRange;
1019    return false;
1020
1021  case Sema::TPC_ClassTemplateMember:
1022    // C++0x [temp.param]p9:
1023    //   A default template-argument shall not be specified in the
1024    //   template-parameter-lists of the definition of a member of a
1025    //   class template that appears outside of the member's class.
1026    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1027      << DefArgRange;
1028    return true;
1029
1030  case Sema::TPC_FriendFunctionTemplate:
1031    // C++ [temp.param]p9:
1032    //   A default template-argument shall not be specified in a
1033    //   friend template declaration.
1034    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1035      << DefArgRange;
1036    return true;
1037
1038    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1039    // for friend function templates if there is only a single
1040    // declaration (and it is a definition). Strange!
1041  }
1042
1043  return false;
1044}
1045
1046/// \brief Check for unexpanded parameter packs within the template parameters
1047/// of a template template parameter, recursively.
1048bool DiagnoseUnexpandedParameterPacks(Sema &S, TemplateTemplateParmDecl *TTP){
1049  TemplateParameterList *Params = TTP->getTemplateParameters();
1050  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1051    NamedDecl *P = Params->getParam(I);
1052    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1053      if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1054                                            NTTP->getTypeSourceInfo(),
1055                                      Sema::UPPC_NonTypeTemplateParameterType))
1056        return true;
1057
1058      continue;
1059    }
1060
1061    if (TemplateTemplateParmDecl *InnerTTP
1062                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1063      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1064        return true;
1065  }
1066
1067  return false;
1068}
1069
1070/// \brief Checks the validity of a template parameter list, possibly
1071/// considering the template parameter list from a previous
1072/// declaration.
1073///
1074/// If an "old" template parameter list is provided, it must be
1075/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1076/// template parameter list.
1077///
1078/// \param NewParams Template parameter list for a new template
1079/// declaration. This template parameter list will be updated with any
1080/// default arguments that are carried through from the previous
1081/// template parameter list.
1082///
1083/// \param OldParams If provided, template parameter list from a
1084/// previous declaration of the same template. Default template
1085/// arguments will be merged from the old template parameter list to
1086/// the new template parameter list.
1087///
1088/// \param TPC Describes the context in which we are checking the given
1089/// template parameter list.
1090///
1091/// \returns true if an error occurred, false otherwise.
1092bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1093                                      TemplateParameterList *OldParams,
1094                                      TemplateParamListContext TPC) {
1095  bool Invalid = false;
1096
1097  // C++ [temp.param]p10:
1098  //   The set of default template-arguments available for use with a
1099  //   template declaration or definition is obtained by merging the
1100  //   default arguments from the definition (if in scope) and all
1101  //   declarations in scope in the same way default function
1102  //   arguments are (8.3.6).
1103  bool SawDefaultArgument = false;
1104  SourceLocation PreviousDefaultArgLoc;
1105
1106  bool SawParameterPack = false;
1107  SourceLocation ParameterPackLoc;
1108
1109  // Dummy initialization to avoid warnings.
1110  TemplateParameterList::iterator OldParam = NewParams->end();
1111  if (OldParams)
1112    OldParam = OldParams->begin();
1113
1114  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1115                                    NewParamEnd = NewParams->end();
1116       NewParam != NewParamEnd; ++NewParam) {
1117    // Variables used to diagnose redundant default arguments
1118    bool RedundantDefaultArg = false;
1119    SourceLocation OldDefaultLoc;
1120    SourceLocation NewDefaultLoc;
1121
1122    // Variables used to diagnose missing default arguments
1123    bool MissingDefaultArg = false;
1124
1125    // C++0x [temp.param]p11:
1126    // If a template parameter of a class template is a template parameter pack,
1127    // it must be the last template parameter.
1128    if (SawParameterPack) {
1129      Diag(ParameterPackLoc,
1130           diag::err_template_param_pack_must_be_last_template_parameter);
1131      Invalid = true;
1132    }
1133
1134    if (TemplateTypeParmDecl *NewTypeParm
1135          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1136      // Check the presence of a default argument here.
1137      if (NewTypeParm->hasDefaultArgument() &&
1138          DiagnoseDefaultTemplateArgument(*this, TPC,
1139                                          NewTypeParm->getLocation(),
1140               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1141                                                       .getSourceRange()))
1142        NewTypeParm->removeDefaultArgument();
1143
1144      // Merge default arguments for template type parameters.
1145      TemplateTypeParmDecl *OldTypeParm
1146          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1147
1148      if (NewTypeParm->isParameterPack()) {
1149        assert(!NewTypeParm->hasDefaultArgument() &&
1150               "Parameter packs can't have a default argument!");
1151        SawParameterPack = true;
1152        ParameterPackLoc = NewTypeParm->getLocation();
1153      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1154                 NewTypeParm->hasDefaultArgument()) {
1155        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1156        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1157        SawDefaultArgument = true;
1158        RedundantDefaultArg = true;
1159        PreviousDefaultArgLoc = NewDefaultLoc;
1160      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1161        // Merge the default argument from the old declaration to the
1162        // new declaration.
1163        SawDefaultArgument = true;
1164        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1165                                        true);
1166        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1167      } else if (NewTypeParm->hasDefaultArgument()) {
1168        SawDefaultArgument = true;
1169        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1170      } else if (SawDefaultArgument)
1171        MissingDefaultArg = true;
1172    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1173               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1174      // Check for unexpanded parameter packs.
1175      if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1176                                          NewNonTypeParm->getTypeSourceInfo(),
1177                                          UPPC_NonTypeTemplateParameterType)) {
1178        Invalid = true;
1179        continue;
1180      }
1181
1182      // Check the presence of a default argument here.
1183      if (NewNonTypeParm->hasDefaultArgument() &&
1184          DiagnoseDefaultTemplateArgument(*this, TPC,
1185                                          NewNonTypeParm->getLocation(),
1186                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1187        NewNonTypeParm->removeDefaultArgument();
1188      }
1189
1190      // Merge default arguments for non-type template parameters
1191      NonTypeTemplateParmDecl *OldNonTypeParm
1192        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1193      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1194          NewNonTypeParm->hasDefaultArgument()) {
1195        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1196        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1197        SawDefaultArgument = true;
1198        RedundantDefaultArg = true;
1199        PreviousDefaultArgLoc = NewDefaultLoc;
1200      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1201        // Merge the default argument from the old declaration to the
1202        // new declaration.
1203        SawDefaultArgument = true;
1204        // FIXME: We need to create a new kind of "default argument"
1205        // expression that points to a previous template template
1206        // parameter.
1207        NewNonTypeParm->setDefaultArgument(
1208                                         OldNonTypeParm->getDefaultArgument(),
1209                                         /*Inherited=*/ true);
1210        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1211      } else if (NewNonTypeParm->hasDefaultArgument()) {
1212        SawDefaultArgument = true;
1213        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1214      } else if (SawDefaultArgument)
1215        MissingDefaultArg = true;
1216    } else {
1217      // Check the presence of a default argument here.
1218      TemplateTemplateParmDecl *NewTemplateParm
1219        = cast<TemplateTemplateParmDecl>(*NewParam);
1220
1221      // Check for unexpanded parameter packs, recursively.
1222      if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1223        Invalid = true;
1224        continue;
1225      }
1226
1227      if (NewTemplateParm->hasDefaultArgument() &&
1228          DiagnoseDefaultTemplateArgument(*this, TPC,
1229                                          NewTemplateParm->getLocation(),
1230                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1231        NewTemplateParm->removeDefaultArgument();
1232
1233      // Merge default arguments for template template parameters
1234      TemplateTemplateParmDecl *OldTemplateParm
1235        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1236      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1237          NewTemplateParm->hasDefaultArgument()) {
1238        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1239        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1240        SawDefaultArgument = true;
1241        RedundantDefaultArg = true;
1242        PreviousDefaultArgLoc = NewDefaultLoc;
1243      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1244        // Merge the default argument from the old declaration to the
1245        // new declaration.
1246        SawDefaultArgument = true;
1247        // FIXME: We need to create a new kind of "default argument" expression
1248        // that points to a previous template template parameter.
1249        NewTemplateParm->setDefaultArgument(
1250                                          OldTemplateParm->getDefaultArgument(),
1251                                          /*Inherited=*/ true);
1252        PreviousDefaultArgLoc
1253          = OldTemplateParm->getDefaultArgument().getLocation();
1254      } else if (NewTemplateParm->hasDefaultArgument()) {
1255        SawDefaultArgument = true;
1256        PreviousDefaultArgLoc
1257          = NewTemplateParm->getDefaultArgument().getLocation();
1258      } else if (SawDefaultArgument)
1259        MissingDefaultArg = true;
1260    }
1261
1262    if (RedundantDefaultArg) {
1263      // C++ [temp.param]p12:
1264      //   A template-parameter shall not be given default arguments
1265      //   by two different declarations in the same scope.
1266      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1267      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1268      Invalid = true;
1269    } else if (MissingDefaultArg) {
1270      // C++ [temp.param]p11:
1271      //   If a template-parameter has a default template-argument,
1272      //   all subsequent template-parameters shall have a default
1273      //   template-argument supplied.
1274      Diag((*NewParam)->getLocation(),
1275           diag::err_template_param_default_arg_missing);
1276      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1277      Invalid = true;
1278    }
1279
1280    // If we have an old template parameter list that we're merging
1281    // in, move on to the next parameter.
1282    if (OldParams)
1283      ++OldParam;
1284  }
1285
1286  return Invalid;
1287}
1288
1289namespace {
1290
1291/// A class which looks for a use of a certain level of template
1292/// parameter.
1293struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1294  typedef RecursiveASTVisitor<DependencyChecker> super;
1295
1296  unsigned Depth;
1297  bool Match;
1298
1299  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1300    NamedDecl *ND = Params->getParam(0);
1301    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1302      Depth = PD->getDepth();
1303    } else if (NonTypeTemplateParmDecl *PD =
1304                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1305      Depth = PD->getDepth();
1306    } else {
1307      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1308    }
1309  }
1310
1311  bool Matches(unsigned ParmDepth) {
1312    if (ParmDepth >= Depth) {
1313      Match = true;
1314      return true;
1315    }
1316    return false;
1317  }
1318
1319  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1320    return !Matches(T->getDepth());
1321  }
1322
1323  bool TraverseTemplateName(TemplateName N) {
1324    if (TemplateTemplateParmDecl *PD =
1325          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1326      if (Matches(PD->getDepth())) return false;
1327    return super::TraverseTemplateName(N);
1328  }
1329
1330  bool VisitDeclRefExpr(DeclRefExpr *E) {
1331    if (NonTypeTemplateParmDecl *PD =
1332          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1333      if (PD->getDepth() == Depth) {
1334        Match = true;
1335        return false;
1336      }
1337    }
1338    return super::VisitDeclRefExpr(E);
1339  }
1340};
1341}
1342
1343/// Determines whether a template-id depends on the given parameter
1344/// list.
1345static bool
1346DependsOnTemplateParameters(const TemplateSpecializationType *TemplateId,
1347                            TemplateParameterList *Params) {
1348  DependencyChecker Checker(Params);
1349  Checker.TraverseType(QualType(TemplateId, 0));
1350  return Checker.Match;
1351}
1352
1353/// \brief Match the given template parameter lists to the given scope
1354/// specifier, returning the template parameter list that applies to the
1355/// name.
1356///
1357/// \param DeclStartLoc the start of the declaration that has a scope
1358/// specifier or a template parameter list.
1359///
1360/// \param SS the scope specifier that will be matched to the given template
1361/// parameter lists. This scope specifier precedes a qualified name that is
1362/// being declared.
1363///
1364/// \param ParamLists the template parameter lists, from the outermost to the
1365/// innermost template parameter lists.
1366///
1367/// \param NumParamLists the number of template parameter lists in ParamLists.
1368///
1369/// \param IsFriend Whether to apply the slightly different rules for
1370/// matching template parameters to scope specifiers in friend
1371/// declarations.
1372///
1373/// \param IsExplicitSpecialization will be set true if the entity being
1374/// declared is an explicit specialization, false otherwise.
1375///
1376/// \returns the template parameter list, if any, that corresponds to the
1377/// name that is preceded by the scope specifier @p SS. This template
1378/// parameter list may be have template parameters (if we're declaring a
1379/// template) or may have no template parameters (if we're declaring a
1380/// template specialization), or may be NULL (if we were's declaring isn't
1381/// itself a template).
1382TemplateParameterList *
1383Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1384                                              const CXXScopeSpec &SS,
1385                                          TemplateParameterList **ParamLists,
1386                                              unsigned NumParamLists,
1387                                              bool IsFriend,
1388                                              bool &IsExplicitSpecialization,
1389                                              bool &Invalid) {
1390  IsExplicitSpecialization = false;
1391
1392  // Find the template-ids that occur within the nested-name-specifier. These
1393  // template-ids will match up with the template parameter lists.
1394  llvm::SmallVector<const TemplateSpecializationType *, 4>
1395    TemplateIdsInSpecifier;
1396  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1397    ExplicitSpecializationsInSpecifier;
1398  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1399       NNS; NNS = NNS->getPrefix()) {
1400    const Type *T = NNS->getAsType();
1401    if (!T) break;
1402
1403    // C++0x [temp.expl.spec]p17:
1404    //   A member or a member template may be nested within many
1405    //   enclosing class templates. In an explicit specialization for
1406    //   such a member, the member declaration shall be preceded by a
1407    //   template<> for each enclosing class template that is
1408    //   explicitly specialized.
1409    //
1410    // Following the existing practice of GNU and EDG, we allow a typedef of a
1411    // template specialization type.
1412    while (const TypedefType *TT = dyn_cast<TypedefType>(T))
1413      T = TT->getDecl()->getUnderlyingType().getTypePtr();
1414
1415    if (const TemplateSpecializationType *SpecType
1416                                  = dyn_cast<TemplateSpecializationType>(T)) {
1417      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1418      if (!Template)
1419        continue; // FIXME: should this be an error? probably...
1420
1421      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1422        ClassTemplateSpecializationDecl *SpecDecl
1423          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1424        // If the nested name specifier refers to an explicit specialization,
1425        // we don't need a template<> header.
1426        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1427          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1428          continue;
1429        }
1430      }
1431
1432      TemplateIdsInSpecifier.push_back(SpecType);
1433    }
1434  }
1435
1436  // Reverse the list of template-ids in the scope specifier, so that we can
1437  // more easily match up the template-ids and the template parameter lists.
1438  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1439
1440  SourceLocation FirstTemplateLoc = DeclStartLoc;
1441  if (NumParamLists)
1442    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1443
1444  // Match the template-ids found in the specifier to the template parameter
1445  // lists.
1446  unsigned ParamIdx = 0, TemplateIdx = 0;
1447  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1448       TemplateIdx != NumTemplateIds; ++TemplateIdx) {
1449    const TemplateSpecializationType *TemplateId
1450      = TemplateIdsInSpecifier[TemplateIdx];
1451    bool DependentTemplateId = TemplateId->isDependentType();
1452
1453    // In friend declarations we can have template-ids which don't
1454    // depend on the corresponding template parameter lists.  But
1455    // assume that empty parameter lists are supposed to match this
1456    // template-id.
1457    if (IsFriend && ParamIdx < NumParamLists && ParamLists[ParamIdx]->size()) {
1458      if (!DependentTemplateId ||
1459          !DependsOnTemplateParameters(TemplateId, ParamLists[ParamIdx]))
1460        continue;
1461    }
1462
1463    if (ParamIdx >= NumParamLists) {
1464      // We have a template-id without a corresponding template parameter
1465      // list.
1466
1467      // ...which is fine if this is a friend declaration.
1468      if (IsFriend) {
1469        IsExplicitSpecialization = true;
1470        break;
1471      }
1472
1473      if (DependentTemplateId) {
1474        // FIXME: the location information here isn't great.
1475        Diag(SS.getRange().getBegin(),
1476             diag::err_template_spec_needs_template_parameters)
1477          << QualType(TemplateId, 0)
1478          << SS.getRange();
1479        Invalid = true;
1480      } else {
1481        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1482          << SS.getRange()
1483          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1484        IsExplicitSpecialization = true;
1485      }
1486      return 0;
1487    }
1488
1489    // Check the template parameter list against its corresponding template-id.
1490    if (DependentTemplateId) {
1491      TemplateParameterList *ExpectedTemplateParams = 0;
1492
1493      // Are there cases in (e.g.) friends where this won't match?
1494      if (const InjectedClassNameType *Injected
1495            = TemplateId->getAs<InjectedClassNameType>()) {
1496        CXXRecordDecl *Record = Injected->getDecl();
1497        if (ClassTemplatePartialSpecializationDecl *Partial =
1498              dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1499          ExpectedTemplateParams = Partial->getTemplateParameters();
1500        else
1501          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1502            ->getTemplateParameters();
1503      }
1504
1505      if (ExpectedTemplateParams)
1506        TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1507                                       ExpectedTemplateParams,
1508                                       true, TPL_TemplateMatch);
1509
1510      CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1511                                 TPC_ClassTemplateMember);
1512    } else if (ParamLists[ParamIdx]->size() > 0)
1513      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1514           diag::err_template_param_list_matches_nontemplate)
1515        << TemplateId
1516        << ParamLists[ParamIdx]->getSourceRange();
1517    else
1518      IsExplicitSpecialization = true;
1519
1520    ++ParamIdx;
1521  }
1522
1523  // If there were at least as many template-ids as there were template
1524  // parameter lists, then there are no template parameter lists remaining for
1525  // the declaration itself.
1526  if (ParamIdx >= NumParamLists)
1527    return 0;
1528
1529  // If there were too many template parameter lists, complain about that now.
1530  if (ParamIdx != NumParamLists - 1) {
1531    while (ParamIdx < NumParamLists - 1) {
1532      bool isExplicitSpecHeader = ParamLists[ParamIdx]->size() == 0;
1533      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1534           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1535                               : diag::err_template_spec_extra_headers)
1536        << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1537                       ParamLists[ParamIdx]->getRAngleLoc());
1538
1539      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1540        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1541             diag::note_explicit_template_spec_does_not_need_header)
1542          << ExplicitSpecializationsInSpecifier.back();
1543        ExplicitSpecializationsInSpecifier.pop_back();
1544      }
1545
1546      // We have a template parameter list with no corresponding scope, which
1547      // means that the resulting template declaration can't be instantiated
1548      // properly (we'll end up with dependent nodes when we shouldn't).
1549      if (!isExplicitSpecHeader)
1550        Invalid = true;
1551
1552      ++ParamIdx;
1553    }
1554  }
1555
1556  // Return the last template parameter list, which corresponds to the
1557  // entity being declared.
1558  return ParamLists[NumParamLists - 1];
1559}
1560
1561QualType Sema::CheckTemplateIdType(TemplateName Name,
1562                                   SourceLocation TemplateLoc,
1563                              const TemplateArgumentListInfo &TemplateArgs) {
1564  TemplateDecl *Template = Name.getAsTemplateDecl();
1565  if (!Template) {
1566    // The template name does not resolve to a template, so we just
1567    // build a dependent template-id type.
1568    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1569  }
1570
1571  // Check that the template argument list is well-formed for this
1572  // template.
1573  llvm::SmallVector<TemplateArgument, 4> Converted;
1574  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1575                                false, Converted))
1576    return QualType();
1577
1578  assert((Converted.size() == Template->getTemplateParameters()->size()) &&
1579         "Converted template argument list is too short!");
1580
1581  QualType CanonType;
1582
1583  if (Name.isDependent() ||
1584      TemplateSpecializationType::anyDependentTemplateArguments(
1585                                                      TemplateArgs)) {
1586    // This class template specialization is a dependent
1587    // type. Therefore, its canonical type is another class template
1588    // specialization type that contains all of the converted
1589    // arguments in canonical form. This ensures that, e.g., A<T> and
1590    // A<T, T> have identical types when A is declared as:
1591    //
1592    //   template<typename T, typename U = T> struct A;
1593    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1594    CanonType = Context.getTemplateSpecializationType(CanonName,
1595                                                      Converted.data(),
1596                                                      Converted.size());
1597
1598    // FIXME: CanonType is not actually the canonical type, and unfortunately
1599    // it is a TemplateSpecializationType that we will never use again.
1600    // In the future, we need to teach getTemplateSpecializationType to only
1601    // build the canonical type and return that to us.
1602    CanonType = Context.getCanonicalType(CanonType);
1603
1604    // This might work out to be a current instantiation, in which
1605    // case the canonical type needs to be the InjectedClassNameType.
1606    //
1607    // TODO: in theory this could be a simple hashtable lookup; most
1608    // changes to CurContext don't change the set of current
1609    // instantiations.
1610    if (isa<ClassTemplateDecl>(Template)) {
1611      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1612        // If we get out to a namespace, we're done.
1613        if (Ctx->isFileContext()) break;
1614
1615        // If this isn't a record, keep looking.
1616        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1617        if (!Record) continue;
1618
1619        // Look for one of the two cases with InjectedClassNameTypes
1620        // and check whether it's the same template.
1621        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1622            !Record->getDescribedClassTemplate())
1623          continue;
1624
1625        // Fetch the injected class name type and check whether its
1626        // injected type is equal to the type we just built.
1627        QualType ICNT = Context.getTypeDeclType(Record);
1628        QualType Injected = cast<InjectedClassNameType>(ICNT)
1629          ->getInjectedSpecializationType();
1630
1631        if (CanonType != Injected->getCanonicalTypeInternal())
1632          continue;
1633
1634        // If so, the canonical type of this TST is the injected
1635        // class name type of the record we just found.
1636        assert(ICNT.isCanonical());
1637        CanonType = ICNT;
1638        break;
1639      }
1640    }
1641  } else if (ClassTemplateDecl *ClassTemplate
1642               = dyn_cast<ClassTemplateDecl>(Template)) {
1643    // Find the class template specialization declaration that
1644    // corresponds to these arguments.
1645    void *InsertPos = 0;
1646    ClassTemplateSpecializationDecl *Decl
1647      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
1648                                          InsertPos);
1649    if (!Decl) {
1650      // This is the first time we have referenced this class template
1651      // specialization. Create the canonical declaration and add it to
1652      // the set of specializations.
1653      Decl = ClassTemplateSpecializationDecl::Create(Context,
1654                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1655                                                ClassTemplate->getDeclContext(),
1656                                                ClassTemplate->getLocation(),
1657                                                     ClassTemplate,
1658                                                     Converted.data(),
1659                                                     Converted.size(), 0);
1660      ClassTemplate->AddSpecialization(Decl, InsertPos);
1661      Decl->setLexicalDeclContext(CurContext);
1662    }
1663
1664    CanonType = Context.getTypeDeclType(Decl);
1665    assert(isa<RecordType>(CanonType) &&
1666           "type of non-dependent specialization is not a RecordType");
1667  }
1668
1669  // Build the fully-sugared type for this class template
1670  // specialization, which refers back to the class template
1671  // specialization we created or found.
1672  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1673}
1674
1675TypeResult
1676Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1677                          SourceLocation LAngleLoc,
1678                          ASTTemplateArgsPtr TemplateArgsIn,
1679                          SourceLocation RAngleLoc) {
1680  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1681
1682  // Translate the parser's template argument list in our AST format.
1683  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1684  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1685
1686  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1687  TemplateArgsIn.release();
1688
1689  if (Result.isNull())
1690    return true;
1691
1692  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1693  TemplateSpecializationTypeLoc TL
1694    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1695  TL.setTemplateNameLoc(TemplateLoc);
1696  TL.setLAngleLoc(LAngleLoc);
1697  TL.setRAngleLoc(RAngleLoc);
1698  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1699    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1700
1701  return CreateParsedType(Result, DI);
1702}
1703
1704TypeResult Sema::ActOnTagTemplateIdType(CXXScopeSpec &SS,
1705                                        TypeResult TypeResult,
1706                                        TagUseKind TUK,
1707                                        TypeSpecifierType TagSpec,
1708                                        SourceLocation TagLoc) {
1709  if (TypeResult.isInvalid())
1710    return ::TypeResult();
1711
1712  TypeSourceInfo *DI;
1713  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1714
1715  // Verify the tag specifier.
1716  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1717
1718  if (const RecordType *RT = Type->getAs<RecordType>()) {
1719    RecordDecl *D = RT->getDecl();
1720
1721    IdentifierInfo *Id = D->getIdentifier();
1722    assert(Id && "templated class must have an identifier");
1723
1724    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1725      Diag(TagLoc, diag::err_use_with_wrong_tag)
1726        << Type
1727        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1728      Diag(D->getLocation(), diag::note_previous_use);
1729    }
1730  }
1731
1732  ElaboratedTypeKeyword Keyword
1733    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
1734  QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type);
1735
1736  TypeSourceInfo *ElabDI = Context.CreateTypeSourceInfo(ElabType);
1737  ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(ElabDI->getTypeLoc());
1738  TL.setKeywordLoc(TagLoc);
1739  TL.setQualifierRange(SS.getRange());
1740  TL.getNamedTypeLoc().initializeFullCopy(DI->getTypeLoc());
1741  return CreateParsedType(ElabType, ElabDI);
1742}
1743
1744ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1745                                                 LookupResult &R,
1746                                                 bool RequiresADL,
1747                                 const TemplateArgumentListInfo &TemplateArgs) {
1748  // FIXME: Can we do any checking at this point? I guess we could check the
1749  // template arguments that we have against the template name, if the template
1750  // name refers to a single template. That's not a terribly common case,
1751  // though.
1752
1753  // These should be filtered out by our callers.
1754  assert(!R.empty() && "empty lookup results when building templateid");
1755  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1756
1757  NestedNameSpecifier *Qualifier = 0;
1758  SourceRange QualifierRange;
1759  if (SS.isSet()) {
1760    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1761    QualifierRange = SS.getRange();
1762  }
1763
1764  // We don't want lookup warnings at this point.
1765  R.suppressDiagnostics();
1766
1767  UnresolvedLookupExpr *ULE
1768    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
1769                                   Qualifier, QualifierRange,
1770                                   R.getLookupNameInfo(),
1771                                   RequiresADL, TemplateArgs,
1772                                   R.begin(), R.end());
1773
1774  return Owned(ULE);
1775}
1776
1777// We actually only call this from template instantiation.
1778ExprResult
1779Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1780                                   const DeclarationNameInfo &NameInfo,
1781                             const TemplateArgumentListInfo &TemplateArgs) {
1782  DeclContext *DC;
1783  if (!(DC = computeDeclContext(SS, false)) ||
1784      DC->isDependentContext() ||
1785      RequireCompleteDeclContext(SS, DC))
1786    return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
1787
1788  bool MemberOfUnknownSpecialization;
1789  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1790  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
1791                     MemberOfUnknownSpecialization);
1792
1793  if (R.isAmbiguous())
1794    return ExprError();
1795
1796  if (R.empty()) {
1797    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
1798      << NameInfo.getName() << SS.getRange();
1799    return ExprError();
1800  }
1801
1802  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1803    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
1804      << (NestedNameSpecifier*) SS.getScopeRep()
1805      << NameInfo.getName() << SS.getRange();
1806    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1807    return ExprError();
1808  }
1809
1810  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1811}
1812
1813/// \brief Form a dependent template name.
1814///
1815/// This action forms a dependent template name given the template
1816/// name and its (presumably dependent) scope specifier. For
1817/// example, given "MetaFun::template apply", the scope specifier \p
1818/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1819/// of the "template" keyword, and "apply" is the \p Name.
1820TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
1821                                                  SourceLocation TemplateKWLoc,
1822                                                  CXXScopeSpec &SS,
1823                                                  UnqualifiedId &Name,
1824                                                  ParsedType ObjectType,
1825                                                  bool EnteringContext,
1826                                                  TemplateTy &Result) {
1827  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
1828      !getLangOptions().CPlusPlus0x)
1829    Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
1830      << FixItHint::CreateRemoval(TemplateKWLoc);
1831
1832  DeclContext *LookupCtx = 0;
1833  if (SS.isSet())
1834    LookupCtx = computeDeclContext(SS, EnteringContext);
1835  if (!LookupCtx && ObjectType)
1836    LookupCtx = computeDeclContext(ObjectType.get());
1837  if (LookupCtx) {
1838    // C++0x [temp.names]p5:
1839    //   If a name prefixed by the keyword template is not the name of
1840    //   a template, the program is ill-formed. [Note: the keyword
1841    //   template may not be applied to non-template members of class
1842    //   templates. -end note ] [ Note: as is the case with the
1843    //   typename prefix, the template prefix is allowed in cases
1844    //   where it is not strictly necessary; i.e., when the
1845    //   nested-name-specifier or the expression on the left of the ->
1846    //   or . is not dependent on a template-parameter, or the use
1847    //   does not appear in the scope of a template. -end note]
1848    //
1849    // Note: C++03 was more strict here, because it banned the use of
1850    // the "template" keyword prior to a template-name that was not a
1851    // dependent name. C++ DR468 relaxed this requirement (the
1852    // "template" keyword is now permitted). We follow the C++0x
1853    // rules, even in C++03 mode with a warning, retroactively applying the DR.
1854    bool MemberOfUnknownSpecialization;
1855    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
1856                                          ObjectType, EnteringContext, Result,
1857                                          MemberOfUnknownSpecialization);
1858    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1859        isa<CXXRecordDecl>(LookupCtx) &&
1860        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1861      // This is a dependent template. Handle it below.
1862    } else if (TNK == TNK_Non_template) {
1863      Diag(Name.getSourceRange().getBegin(),
1864           diag::err_template_kw_refers_to_non_template)
1865        << GetNameFromUnqualifiedId(Name).getName()
1866        << Name.getSourceRange()
1867        << TemplateKWLoc;
1868      return TNK_Non_template;
1869    } else {
1870      // We found something; return it.
1871      return TNK;
1872    }
1873  }
1874
1875  NestedNameSpecifier *Qualifier
1876    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1877
1878  switch (Name.getKind()) {
1879  case UnqualifiedId::IK_Identifier:
1880    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1881                                                              Name.Identifier));
1882    return TNK_Dependent_template_name;
1883
1884  case UnqualifiedId::IK_OperatorFunctionId:
1885    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1886                                             Name.OperatorFunctionId.Operator));
1887    return TNK_Dependent_template_name;
1888
1889  case UnqualifiedId::IK_LiteralOperatorId:
1890    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1891
1892  default:
1893    break;
1894  }
1895
1896  Diag(Name.getSourceRange().getBegin(),
1897       diag::err_template_kw_refers_to_non_template)
1898    << GetNameFromUnqualifiedId(Name).getName()
1899    << Name.getSourceRange()
1900    << TemplateKWLoc;
1901  return TNK_Non_template;
1902}
1903
1904bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1905                                     const TemplateArgumentLoc &AL,
1906                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
1907  const TemplateArgument &Arg = AL.getArgument();
1908
1909  // Check template type parameter.
1910  switch(Arg.getKind()) {
1911  case TemplateArgument::Type:
1912    // C++ [temp.arg.type]p1:
1913    //   A template-argument for a template-parameter which is a
1914    //   type shall be a type-id.
1915    break;
1916  case TemplateArgument::Template: {
1917    // We have a template type parameter but the template argument
1918    // is a template without any arguments.
1919    SourceRange SR = AL.getSourceRange();
1920    TemplateName Name = Arg.getAsTemplate();
1921    Diag(SR.getBegin(), diag::err_template_missing_args)
1922      << Name << SR;
1923    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
1924      Diag(Decl->getLocation(), diag::note_template_decl_here);
1925
1926    return true;
1927  }
1928  default: {
1929    // We have a template type parameter but the template argument
1930    // is not a type.
1931    SourceRange SR = AL.getSourceRange();
1932    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1933    Diag(Param->getLocation(), diag::note_template_param_here);
1934
1935    return true;
1936  }
1937  }
1938
1939  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1940    return true;
1941
1942  // Add the converted template type argument.
1943  Converted.push_back(
1944                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1945  return false;
1946}
1947
1948/// \brief Substitute template arguments into the default template argument for
1949/// the given template type parameter.
1950///
1951/// \param SemaRef the semantic analysis object for which we are performing
1952/// the substitution.
1953///
1954/// \param Template the template that we are synthesizing template arguments
1955/// for.
1956///
1957/// \param TemplateLoc the location of the template name that started the
1958/// template-id we are checking.
1959///
1960/// \param RAngleLoc the location of the right angle bracket ('>') that
1961/// terminates the template-id.
1962///
1963/// \param Param the template template parameter whose default we are
1964/// substituting into.
1965///
1966/// \param Converted the list of template arguments provided for template
1967/// parameters that precede \p Param in the template parameter list.
1968///
1969/// \returns the substituted template argument, or NULL if an error occurred.
1970static TypeSourceInfo *
1971SubstDefaultTemplateArgument(Sema &SemaRef,
1972                             TemplateDecl *Template,
1973                             SourceLocation TemplateLoc,
1974                             SourceLocation RAngleLoc,
1975                             TemplateTypeParmDecl *Param,
1976                         llvm::SmallVectorImpl<TemplateArgument> &Converted) {
1977  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
1978
1979  // If the argument type is dependent, instantiate it now based
1980  // on the previously-computed template arguments.
1981  if (ArgType->getType()->isDependentType()) {
1982    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1983                                      Converted.data(), Converted.size());
1984
1985    MultiLevelTemplateArgumentList AllTemplateArgs
1986      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1987
1988    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1989                                     Template, Converted.data(),
1990                                     Converted.size(),
1991                                     SourceRange(TemplateLoc, RAngleLoc));
1992
1993    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1994                                Param->getDefaultArgumentLoc(),
1995                                Param->getDeclName());
1996  }
1997
1998  return ArgType;
1999}
2000
2001/// \brief Substitute template arguments into the default template argument for
2002/// the given non-type template parameter.
2003///
2004/// \param SemaRef the semantic analysis object for which we are performing
2005/// the substitution.
2006///
2007/// \param Template the template that we are synthesizing template arguments
2008/// for.
2009///
2010/// \param TemplateLoc the location of the template name that started the
2011/// template-id we are checking.
2012///
2013/// \param RAngleLoc the location of the right angle bracket ('>') that
2014/// terminates the template-id.
2015///
2016/// \param Param the non-type template parameter whose default we are
2017/// substituting into.
2018///
2019/// \param Converted the list of template arguments provided for template
2020/// parameters that precede \p Param in the template parameter list.
2021///
2022/// \returns the substituted template argument, or NULL if an error occurred.
2023static ExprResult
2024SubstDefaultTemplateArgument(Sema &SemaRef,
2025                             TemplateDecl *Template,
2026                             SourceLocation TemplateLoc,
2027                             SourceLocation RAngleLoc,
2028                             NonTypeTemplateParmDecl *Param,
2029                        llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2030  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2031                                    Converted.data(), Converted.size());
2032
2033  MultiLevelTemplateArgumentList AllTemplateArgs
2034    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2035
2036  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2037                                   Template, Converted.data(),
2038                                   Converted.size(),
2039                                   SourceRange(TemplateLoc, RAngleLoc));
2040
2041  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2042}
2043
2044/// \brief Substitute template arguments into the default template argument for
2045/// the given template template parameter.
2046///
2047/// \param SemaRef the semantic analysis object for which we are performing
2048/// the substitution.
2049///
2050/// \param Template the template that we are synthesizing template arguments
2051/// for.
2052///
2053/// \param TemplateLoc the location of the template name that started the
2054/// template-id we are checking.
2055///
2056/// \param RAngleLoc the location of the right angle bracket ('>') that
2057/// terminates the template-id.
2058///
2059/// \param Param the template template parameter whose default we are
2060/// substituting into.
2061///
2062/// \param Converted the list of template arguments provided for template
2063/// parameters that precede \p Param in the template parameter list.
2064///
2065/// \returns the substituted template argument, or NULL if an error occurred.
2066static TemplateName
2067SubstDefaultTemplateArgument(Sema &SemaRef,
2068                             TemplateDecl *Template,
2069                             SourceLocation TemplateLoc,
2070                             SourceLocation RAngleLoc,
2071                             TemplateTemplateParmDecl *Param,
2072                       llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2073  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2074                                    Converted.data(), Converted.size());
2075
2076  MultiLevelTemplateArgumentList AllTemplateArgs
2077    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2078
2079  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2080                                   Template, Converted.data(),
2081                                   Converted.size(),
2082                                   SourceRange(TemplateLoc, RAngleLoc));
2083
2084  return SemaRef.SubstTemplateName(
2085                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2086                              Param->getDefaultArgument().getTemplateNameLoc(),
2087                                   AllTemplateArgs);
2088}
2089
2090/// \brief If the given template parameter has a default template
2091/// argument, substitute into that default template argument and
2092/// return the corresponding template argument.
2093TemplateArgumentLoc
2094Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2095                                              SourceLocation TemplateLoc,
2096                                              SourceLocation RAngleLoc,
2097                                              Decl *Param,
2098                      llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2099   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2100    if (!TypeParm->hasDefaultArgument())
2101      return TemplateArgumentLoc();
2102
2103    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2104                                                      TemplateLoc,
2105                                                      RAngleLoc,
2106                                                      TypeParm,
2107                                                      Converted);
2108    if (DI)
2109      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2110
2111    return TemplateArgumentLoc();
2112  }
2113
2114  if (NonTypeTemplateParmDecl *NonTypeParm
2115        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2116    if (!NonTypeParm->hasDefaultArgument())
2117      return TemplateArgumentLoc();
2118
2119    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2120                                                        TemplateLoc,
2121                                                        RAngleLoc,
2122                                                        NonTypeParm,
2123                                                        Converted);
2124    if (Arg.isInvalid())
2125      return TemplateArgumentLoc();
2126
2127    Expr *ArgE = Arg.takeAs<Expr>();
2128    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2129  }
2130
2131  TemplateTemplateParmDecl *TempTempParm
2132    = cast<TemplateTemplateParmDecl>(Param);
2133  if (!TempTempParm->hasDefaultArgument())
2134    return TemplateArgumentLoc();
2135
2136  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2137                                                    TemplateLoc,
2138                                                    RAngleLoc,
2139                                                    TempTempParm,
2140                                                    Converted);
2141  if (TName.isNull())
2142    return TemplateArgumentLoc();
2143
2144  return TemplateArgumentLoc(TemplateArgument(TName),
2145                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
2146                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2147}
2148
2149/// \brief Check that the given template argument corresponds to the given
2150/// template parameter.
2151bool Sema::CheckTemplateArgument(NamedDecl *Param,
2152                                 const TemplateArgumentLoc &Arg,
2153                                 TemplateDecl *Template,
2154                                 SourceLocation TemplateLoc,
2155                                 SourceLocation RAngleLoc,
2156                            llvm::SmallVectorImpl<TemplateArgument> &Converted,
2157                                 CheckTemplateArgumentKind CTAK) {
2158  // Check template type parameters.
2159  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2160    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2161
2162  // Check non-type template parameters.
2163  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2164    // Do substitution on the type of the non-type template parameter
2165    // with the template arguments we've seen thus far.  But if the
2166    // template has a dependent context then we cannot substitute yet.
2167    QualType NTTPType = NTTP->getType();
2168    if (NTTPType->isDependentType() &&
2169        !isa<TemplateTemplateParmDecl>(Template) &&
2170        !Template->getDeclContext()->isDependentContext()) {
2171      // Do substitution on the type of the non-type template parameter.
2172      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2173                                 NTTP, Converted.data(), Converted.size(),
2174                                 SourceRange(TemplateLoc, RAngleLoc));
2175
2176      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2177                                        Converted.data(), Converted.size());
2178      NTTPType = SubstType(NTTPType,
2179                           MultiLevelTemplateArgumentList(TemplateArgs),
2180                           NTTP->getLocation(),
2181                           NTTP->getDeclName());
2182      // If that worked, check the non-type template parameter type
2183      // for validity.
2184      if (!NTTPType.isNull())
2185        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2186                                                     NTTP->getLocation());
2187      if (NTTPType.isNull())
2188        return true;
2189    }
2190
2191    switch (Arg.getArgument().getKind()) {
2192    case TemplateArgument::Null:
2193      assert(false && "Should never see a NULL template argument here");
2194      return true;
2195
2196    case TemplateArgument::Expression: {
2197      Expr *E = Arg.getArgument().getAsExpr();
2198      TemplateArgument Result;
2199      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
2200        return true;
2201
2202      Converted.push_back(Result);
2203      break;
2204    }
2205
2206    case TemplateArgument::Declaration:
2207    case TemplateArgument::Integral:
2208      // We've already checked this template argument, so just copy
2209      // it to the list of converted arguments.
2210      Converted.push_back(Arg.getArgument());
2211      break;
2212
2213    case TemplateArgument::Template:
2214      // We were given a template template argument. It may not be ill-formed;
2215      // see below.
2216      if (DependentTemplateName *DTN
2217            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
2218        // We have a template argument such as \c T::template X, which we
2219        // parsed as a template template argument. However, since we now
2220        // know that we need a non-type template argument, convert this
2221        // template name into an expression.
2222
2223        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2224                                     Arg.getTemplateNameLoc());
2225
2226        Expr *E = DependentScopeDeclRefExpr::Create(Context,
2227                                                    DTN->getQualifier(),
2228                                               Arg.getTemplateQualifierRange(),
2229                                                    NameInfo);
2230
2231        TemplateArgument Result;
2232        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2233          return true;
2234
2235        Converted.push_back(Result);
2236        break;
2237      }
2238
2239      // We have a template argument that actually does refer to a class
2240      // template, template alias, or template template parameter, and
2241      // therefore cannot be a non-type template argument.
2242      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2243        << Arg.getSourceRange();
2244
2245      Diag(Param->getLocation(), diag::note_template_param_here);
2246      return true;
2247
2248    case TemplateArgument::Type: {
2249      // We have a non-type template parameter but the template
2250      // argument is a type.
2251
2252      // C++ [temp.arg]p2:
2253      //   In a template-argument, an ambiguity between a type-id and
2254      //   an expression is resolved to a type-id, regardless of the
2255      //   form of the corresponding template-parameter.
2256      //
2257      // We warn specifically about this case, since it can be rather
2258      // confusing for users.
2259      QualType T = Arg.getArgument().getAsType();
2260      SourceRange SR = Arg.getSourceRange();
2261      if (T->isFunctionType())
2262        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2263      else
2264        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2265      Diag(Param->getLocation(), diag::note_template_param_here);
2266      return true;
2267    }
2268
2269    case TemplateArgument::Pack:
2270      llvm_unreachable("Caller must expand template argument packs");
2271      break;
2272    }
2273
2274    return false;
2275  }
2276
2277
2278  // Check template template parameters.
2279  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2280
2281  // Substitute into the template parameter list of the template
2282  // template parameter, since previously-supplied template arguments
2283  // may appear within the template template parameter.
2284  {
2285    // Set up a template instantiation context.
2286    LocalInstantiationScope Scope(*this);
2287    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2288                               TempParm, Converted.data(), Converted.size(),
2289                               SourceRange(TemplateLoc, RAngleLoc));
2290
2291    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2292                                      Converted.data(), Converted.size());
2293    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2294                      SubstDecl(TempParm, CurContext,
2295                                MultiLevelTemplateArgumentList(TemplateArgs)));
2296    if (!TempParm)
2297      return true;
2298  }
2299
2300  switch (Arg.getArgument().getKind()) {
2301  case TemplateArgument::Null:
2302    assert(false && "Should never see a NULL template argument here");
2303    return true;
2304
2305  case TemplateArgument::Template:
2306    if (CheckTemplateArgument(TempParm, Arg))
2307      return true;
2308
2309    Converted.push_back(Arg.getArgument());
2310    break;
2311
2312  case TemplateArgument::Expression:
2313  case TemplateArgument::Type:
2314    // We have a template template parameter but the template
2315    // argument does not refer to a template.
2316    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2317    return true;
2318
2319  case TemplateArgument::Declaration:
2320    llvm_unreachable(
2321                       "Declaration argument with template template parameter");
2322    break;
2323  case TemplateArgument::Integral:
2324    llvm_unreachable(
2325                          "Integral argument with template template parameter");
2326    break;
2327
2328  case TemplateArgument::Pack:
2329    llvm_unreachable("Caller must expand template argument packs");
2330    break;
2331  }
2332
2333  return false;
2334}
2335
2336/// \brief Check that the given template argument list is well-formed
2337/// for specializing the given template.
2338bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2339                                     SourceLocation TemplateLoc,
2340                                const TemplateArgumentListInfo &TemplateArgs,
2341                                     bool PartialTemplateArgs,
2342                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2343  TemplateParameterList *Params = Template->getTemplateParameters();
2344  unsigned NumParams = Params->size();
2345  unsigned NumArgs = TemplateArgs.size();
2346  bool Invalid = false;
2347
2348  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2349
2350  bool HasParameterPack =
2351    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2352
2353  if ((NumArgs > NumParams && !HasParameterPack) ||
2354      (NumArgs < Params->getMinRequiredArguments() &&
2355       !PartialTemplateArgs)) {
2356    // FIXME: point at either the first arg beyond what we can handle,
2357    // or the '>', depending on whether we have too many or too few
2358    // arguments.
2359    SourceRange Range;
2360    if (NumArgs > NumParams)
2361      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2362    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2363      << (NumArgs > NumParams)
2364      << (isa<ClassTemplateDecl>(Template)? 0 :
2365          isa<FunctionTemplateDecl>(Template)? 1 :
2366          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2367      << Template << Range;
2368    Diag(Template->getLocation(), diag::note_template_decl_here)
2369      << Params->getSourceRange();
2370    Invalid = true;
2371  }
2372
2373  // C++ [temp.arg]p1:
2374  //   [...] The type and form of each template-argument specified in
2375  //   a template-id shall match the type and form specified for the
2376  //   corresponding parameter declared by the template in its
2377  //   template-parameter-list.
2378  llvm::SmallVector<TemplateArgument, 2> ArgumentPack;
2379  TemplateParameterList::iterator Param = Params->begin(),
2380                               ParamEnd = Params->end();
2381  unsigned ArgIdx = 0;
2382  while (Param != ParamEnd) {
2383    if (ArgIdx > NumArgs && PartialTemplateArgs)
2384      break;
2385
2386    if (ArgIdx < NumArgs) {
2387      // Check the template argument we were given.
2388      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2389                                TemplateLoc, RAngleLoc, Converted))
2390        return true;
2391
2392      if ((*Param)->isTemplateParameterPack()) {
2393        // The template parameter was a template parameter pack, so take the
2394        // deduced argument and place it on the argument pack. Note that we
2395        // stay on the same template parameter so that we can deduce more
2396        // arguments.
2397        ArgumentPack.push_back(Converted.back());
2398        Converted.pop_back();
2399      } else {
2400        // Move to the next template parameter.
2401        ++Param;
2402      }
2403      ++ArgIdx;
2404      continue;
2405    }
2406
2407    // If we have a template parameter pack with no more corresponding
2408    // arguments, just break out now and we'll fill in the argument pack below.
2409    if ((*Param)->isTemplateParameterPack())
2410      break;
2411
2412    // We have a default template argument that we will use.
2413    TemplateArgumentLoc Arg;
2414
2415    // Retrieve the default template argument from the template
2416    // parameter. For each kind of template parameter, we substitute the
2417    // template arguments provided thus far and any "outer" template arguments
2418    // (when the template parameter was part of a nested template) into
2419    // the default argument.
2420    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2421      if (!TTP->hasDefaultArgument()) {
2422        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2423        break;
2424      }
2425
2426      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2427                                                             Template,
2428                                                             TemplateLoc,
2429                                                             RAngleLoc,
2430                                                             TTP,
2431                                                             Converted);
2432      if (!ArgType)
2433        return true;
2434
2435      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2436                                ArgType);
2437    } else if (NonTypeTemplateParmDecl *NTTP
2438                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2439      if (!NTTP->hasDefaultArgument()) {
2440        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2441        break;
2442      }
2443
2444      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2445                                                              TemplateLoc,
2446                                                              RAngleLoc,
2447                                                              NTTP,
2448                                                              Converted);
2449      if (E.isInvalid())
2450        return true;
2451
2452      Expr *Ex = E.takeAs<Expr>();
2453      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2454    } else {
2455      TemplateTemplateParmDecl *TempParm
2456        = cast<TemplateTemplateParmDecl>(*Param);
2457
2458      if (!TempParm->hasDefaultArgument()) {
2459        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2460        break;
2461      }
2462
2463      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2464                                                       TemplateLoc,
2465                                                       RAngleLoc,
2466                                                       TempParm,
2467                                                       Converted);
2468      if (Name.isNull())
2469        return true;
2470
2471      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2472                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2473                  TempParm->getDefaultArgument().getTemplateNameLoc());
2474    }
2475
2476    // Introduce an instantiation record that describes where we are using
2477    // the default template argument.
2478    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2479                                        Converted.data(), Converted.size(),
2480                                        SourceRange(TemplateLoc, RAngleLoc));
2481
2482    // Check the default template argument.
2483    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2484                              RAngleLoc, Converted))
2485      return true;
2486
2487    // Move to the next template parameter and argument.
2488    ++Param;
2489    ++ArgIdx;
2490  }
2491
2492  // Form argument packs for each of the parameter packs remaining.
2493  while (Param != ParamEnd) {
2494    if ((*Param)->isTemplateParameterPack()) {
2495      // The parameter pack takes the contents of the current argument pack,
2496      // which we built up earlier.
2497      if (ArgumentPack.empty()) {
2498        Converted.push_back(TemplateArgument(0, 0));
2499      } else {
2500        TemplateArgument *PackedArgs
2501          = new (Context) TemplateArgument [ArgumentPack.size()];
2502        std::copy(ArgumentPack.begin(), ArgumentPack.end(), PackedArgs);
2503        Converted.push_back(TemplateArgument(PackedArgs, ArgumentPack.size()));
2504        ArgumentPack.clear();
2505      }
2506    }
2507
2508    ++Param;
2509  }
2510
2511  return Invalid;
2512}
2513
2514namespace {
2515  class UnnamedLocalNoLinkageFinder
2516    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
2517  {
2518    Sema &S;
2519    SourceRange SR;
2520
2521    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
2522
2523  public:
2524    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
2525
2526    bool Visit(QualType T) {
2527      return inherited::Visit(T.getTypePtr());
2528    }
2529
2530#define TYPE(Class, Parent) \
2531    bool Visit##Class##Type(const Class##Type *);
2532#define ABSTRACT_TYPE(Class, Parent) \
2533    bool Visit##Class##Type(const Class##Type *) { return false; }
2534#define NON_CANONICAL_TYPE(Class, Parent) \
2535    bool Visit##Class##Type(const Class##Type *) { return false; }
2536#include "clang/AST/TypeNodes.def"
2537
2538    bool VisitTagDecl(const TagDecl *Tag);
2539    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
2540  };
2541}
2542
2543bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
2544  return false;
2545}
2546
2547bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
2548  return Visit(T->getElementType());
2549}
2550
2551bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
2552  return Visit(T->getPointeeType());
2553}
2554
2555bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
2556                                                    const BlockPointerType* T) {
2557  return Visit(T->getPointeeType());
2558}
2559
2560bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
2561                                                const LValueReferenceType* T) {
2562  return Visit(T->getPointeeType());
2563}
2564
2565bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
2566                                                const RValueReferenceType* T) {
2567  return Visit(T->getPointeeType());
2568}
2569
2570bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
2571                                                  const MemberPointerType* T) {
2572  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
2573}
2574
2575bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
2576                                                  const ConstantArrayType* T) {
2577  return Visit(T->getElementType());
2578}
2579
2580bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
2581                                                 const IncompleteArrayType* T) {
2582  return Visit(T->getElementType());
2583}
2584
2585bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
2586                                                   const VariableArrayType* T) {
2587  return Visit(T->getElementType());
2588}
2589
2590bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
2591                                            const DependentSizedArrayType* T) {
2592  return Visit(T->getElementType());
2593}
2594
2595bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
2596                                         const DependentSizedExtVectorType* T) {
2597  return Visit(T->getElementType());
2598}
2599
2600bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
2601  return Visit(T->getElementType());
2602}
2603
2604bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
2605  return Visit(T->getElementType());
2606}
2607
2608bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
2609                                                  const FunctionProtoType* T) {
2610  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
2611                                         AEnd = T->arg_type_end();
2612       A != AEnd; ++A) {
2613    if (Visit(*A))
2614      return true;
2615  }
2616
2617  return Visit(T->getResultType());
2618}
2619
2620bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
2621                                               const FunctionNoProtoType* T) {
2622  return Visit(T->getResultType());
2623}
2624
2625bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
2626                                                  const UnresolvedUsingType*) {
2627  return false;
2628}
2629
2630bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
2631  return false;
2632}
2633
2634bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
2635  return Visit(T->getUnderlyingType());
2636}
2637
2638bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
2639  return false;
2640}
2641
2642bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
2643  return VisitTagDecl(T->getDecl());
2644}
2645
2646bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
2647  return VisitTagDecl(T->getDecl());
2648}
2649
2650bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
2651                                                 const TemplateTypeParmType*) {
2652  return false;
2653}
2654
2655bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
2656                                            const TemplateSpecializationType*) {
2657  return false;
2658}
2659
2660bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
2661                                              const InjectedClassNameType* T) {
2662  return VisitTagDecl(T->getDecl());
2663}
2664
2665bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
2666                                                   const DependentNameType* T) {
2667  return VisitNestedNameSpecifier(T->getQualifier());
2668}
2669
2670bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
2671                                 const DependentTemplateSpecializationType* T) {
2672  return VisitNestedNameSpecifier(T->getQualifier());
2673}
2674
2675bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
2676                                                   const PackExpansionType* T) {
2677  return Visit(T->getPattern());
2678}
2679
2680bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
2681  return false;
2682}
2683
2684bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
2685                                                   const ObjCInterfaceType *) {
2686  return false;
2687}
2688
2689bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
2690                                                const ObjCObjectPointerType *) {
2691  return false;
2692}
2693
2694bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
2695  if (Tag->getDeclContext()->isFunctionOrMethod()) {
2696    S.Diag(SR.getBegin(), diag::ext_template_arg_local_type)
2697      << S.Context.getTypeDeclType(Tag) << SR;
2698    return true;
2699  }
2700
2701  if (!Tag->getDeclName() && !Tag->getTypedefForAnonDecl()) {
2702    S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR;
2703    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
2704    return true;
2705  }
2706
2707  return false;
2708}
2709
2710bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
2711                                                    NestedNameSpecifier *NNS) {
2712  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
2713    return true;
2714
2715  switch (NNS->getKind()) {
2716  case NestedNameSpecifier::Identifier:
2717  case NestedNameSpecifier::Namespace:
2718  case NestedNameSpecifier::Global:
2719    return false;
2720
2721  case NestedNameSpecifier::TypeSpec:
2722  case NestedNameSpecifier::TypeSpecWithTemplate:
2723    return Visit(QualType(NNS->getAsType(), 0));
2724  }
2725  return false;
2726}
2727
2728
2729/// \brief Check a template argument against its corresponding
2730/// template type parameter.
2731///
2732/// This routine implements the semantics of C++ [temp.arg.type]. It
2733/// returns true if an error occurred, and false otherwise.
2734bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2735                                 TypeSourceInfo *ArgInfo) {
2736  assert(ArgInfo && "invalid TypeSourceInfo");
2737  QualType Arg = ArgInfo->getType();
2738  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2739
2740  if (Arg->isVariablyModifiedType()) {
2741    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
2742  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2743    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2744  }
2745
2746  // C++03 [temp.arg.type]p2:
2747  //   A local type, a type with no linkage, an unnamed type or a type
2748  //   compounded from any of these types shall not be used as a
2749  //   template-argument for a template type-parameter.
2750  //
2751  // C++0x allows these, and even in C++03 we allow them as an extension with
2752  // a warning.
2753  if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) {
2754    UnnamedLocalNoLinkageFinder Finder(*this, SR);
2755    (void)Finder.Visit(Context.getCanonicalType(Arg));
2756  }
2757
2758  return false;
2759}
2760
2761/// \brief Checks whether the given template argument is the address
2762/// of an object or function according to C++ [temp.arg.nontype]p1.
2763static bool
2764CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2765                                               NonTypeTemplateParmDecl *Param,
2766                                               QualType ParamType,
2767                                               Expr *ArgIn,
2768                                               TemplateArgument &Converted) {
2769  bool Invalid = false;
2770  Expr *Arg = ArgIn;
2771  QualType ArgType = Arg->getType();
2772
2773  // See through any implicit casts we added to fix the type.
2774  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2775    Arg = Cast->getSubExpr();
2776
2777  // C++ [temp.arg.nontype]p1:
2778  //
2779  //   A template-argument for a non-type, non-template
2780  //   template-parameter shall be one of: [...]
2781  //
2782  //     -- the address of an object or function with external
2783  //        linkage, including function templates and function
2784  //        template-ids but excluding non-static class members,
2785  //        expressed as & id-expression where the & is optional if
2786  //        the name refers to a function or array, or if the
2787  //        corresponding template-parameter is a reference; or
2788  DeclRefExpr *DRE = 0;
2789
2790  // In C++98/03 mode, give an extension warning on any extra parentheses.
2791  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
2792  bool ExtraParens = false;
2793  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2794    if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) {
2795      S.Diag(Arg->getSourceRange().getBegin(),
2796             diag::ext_template_arg_extra_parens)
2797        << Arg->getSourceRange();
2798      ExtraParens = true;
2799    }
2800
2801    Arg = Parens->getSubExpr();
2802  }
2803
2804  bool AddressTaken = false;
2805  SourceLocation AddrOpLoc;
2806  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2807    if (UnOp->getOpcode() == UO_AddrOf) {
2808      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2809      AddressTaken = true;
2810      AddrOpLoc = UnOp->getOperatorLoc();
2811    }
2812  } else
2813    DRE = dyn_cast<DeclRefExpr>(Arg);
2814
2815  if (!DRE) {
2816    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2817      << Arg->getSourceRange();
2818    S.Diag(Param->getLocation(), diag::note_template_param_here);
2819    return true;
2820  }
2821
2822  // Stop checking the precise nature of the argument if it is value dependent,
2823  // it should be checked when instantiated.
2824  if (Arg->isValueDependent()) {
2825    Converted = TemplateArgument(ArgIn);
2826    return false;
2827  }
2828
2829  if (!isa<ValueDecl>(DRE->getDecl())) {
2830    S.Diag(Arg->getSourceRange().getBegin(),
2831           diag::err_template_arg_not_object_or_func_form)
2832      << Arg->getSourceRange();
2833    S.Diag(Param->getLocation(), diag::note_template_param_here);
2834    return true;
2835  }
2836
2837  NamedDecl *Entity = 0;
2838
2839  // Cannot refer to non-static data members
2840  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
2841    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2842      << Field << Arg->getSourceRange();
2843    S.Diag(Param->getLocation(), diag::note_template_param_here);
2844    return true;
2845  }
2846
2847  // Cannot refer to non-static member functions
2848  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2849    if (!Method->isStatic()) {
2850      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
2851        << Method << Arg->getSourceRange();
2852      S.Diag(Param->getLocation(), diag::note_template_param_here);
2853      return true;
2854    }
2855
2856  // Functions must have external linkage.
2857  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2858    if (!isExternalLinkage(Func->getLinkage())) {
2859      S.Diag(Arg->getSourceRange().getBegin(),
2860             diag::err_template_arg_function_not_extern)
2861        << Func << Arg->getSourceRange();
2862      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2863        << true;
2864      return true;
2865    }
2866
2867    // Okay: we've named a function with external linkage.
2868    Entity = Func;
2869
2870    // If the template parameter has pointer type, the function decays.
2871    if (ParamType->isPointerType() && !AddressTaken)
2872      ArgType = S.Context.getPointerType(Func->getType());
2873    else if (AddressTaken && ParamType->isReferenceType()) {
2874      // If we originally had an address-of operator, but the
2875      // parameter has reference type, complain and (if things look
2876      // like they will work) drop the address-of operator.
2877      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
2878                                            ParamType.getNonReferenceType())) {
2879        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2880          << ParamType;
2881        S.Diag(Param->getLocation(), diag::note_template_param_here);
2882        return true;
2883      }
2884
2885      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2886        << ParamType
2887        << FixItHint::CreateRemoval(AddrOpLoc);
2888      S.Diag(Param->getLocation(), diag::note_template_param_here);
2889
2890      ArgType = Func->getType();
2891    }
2892  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2893    if (!isExternalLinkage(Var->getLinkage())) {
2894      S.Diag(Arg->getSourceRange().getBegin(),
2895             diag::err_template_arg_object_not_extern)
2896        << Var << Arg->getSourceRange();
2897      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2898        << true;
2899      return true;
2900    }
2901
2902    // A value of reference type is not an object.
2903    if (Var->getType()->isReferenceType()) {
2904      S.Diag(Arg->getSourceRange().getBegin(),
2905             diag::err_template_arg_reference_var)
2906        << Var->getType() << Arg->getSourceRange();
2907      S.Diag(Param->getLocation(), diag::note_template_param_here);
2908      return true;
2909    }
2910
2911    // Okay: we've named an object with external linkage
2912    Entity = Var;
2913
2914    // If the template parameter has pointer type, we must have taken
2915    // the address of this object.
2916    if (ParamType->isReferenceType()) {
2917      if (AddressTaken) {
2918        // If we originally had an address-of operator, but the
2919        // parameter has reference type, complain and (if things look
2920        // like they will work) drop the address-of operator.
2921        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
2922                                            ParamType.getNonReferenceType())) {
2923          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2924            << ParamType;
2925          S.Diag(Param->getLocation(), diag::note_template_param_here);
2926          return true;
2927        }
2928
2929        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2930          << ParamType
2931          << FixItHint::CreateRemoval(AddrOpLoc);
2932        S.Diag(Param->getLocation(), diag::note_template_param_here);
2933
2934        ArgType = Var->getType();
2935      }
2936    } else if (!AddressTaken && ParamType->isPointerType()) {
2937      if (Var->getType()->isArrayType()) {
2938        // Array-to-pointer decay.
2939        ArgType = S.Context.getArrayDecayedType(Var->getType());
2940      } else {
2941        // If the template parameter has pointer type but the address of
2942        // this object was not taken, complain and (possibly) recover by
2943        // taking the address of the entity.
2944        ArgType = S.Context.getPointerType(Var->getType());
2945        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2946          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2947            << ParamType;
2948          S.Diag(Param->getLocation(), diag::note_template_param_here);
2949          return true;
2950        }
2951
2952        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2953          << ParamType
2954          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
2955
2956        S.Diag(Param->getLocation(), diag::note_template_param_here);
2957      }
2958    }
2959  } else {
2960    // We found something else, but we don't know specifically what it is.
2961    S.Diag(Arg->getSourceRange().getBegin(),
2962           diag::err_template_arg_not_object_or_func)
2963      << Arg->getSourceRange();
2964    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
2965    return true;
2966  }
2967
2968  if (ParamType->isPointerType() &&
2969      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
2970      S.IsQualificationConversion(ArgType, ParamType)) {
2971    // For pointer-to-object types, qualification conversions are
2972    // permitted.
2973  } else {
2974    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
2975      if (!ParamRef->getPointeeType()->isFunctionType()) {
2976        // C++ [temp.arg.nontype]p5b3:
2977        //   For a non-type template-parameter of type reference to
2978        //   object, no conversions apply. The type referred to by the
2979        //   reference may be more cv-qualified than the (otherwise
2980        //   identical) type of the template- argument. The
2981        //   template-parameter is bound directly to the
2982        //   template-argument, which shall be an lvalue.
2983
2984        // FIXME: Other qualifiers?
2985        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
2986        unsigned ArgQuals = ArgType.getCVRQualifiers();
2987
2988        if ((ParamQuals | ArgQuals) != ParamQuals) {
2989          S.Diag(Arg->getSourceRange().getBegin(),
2990                 diag::err_template_arg_ref_bind_ignores_quals)
2991            << ParamType << Arg->getType()
2992            << Arg->getSourceRange();
2993          S.Diag(Param->getLocation(), diag::note_template_param_here);
2994          return true;
2995        }
2996      }
2997    }
2998
2999    // At this point, the template argument refers to an object or
3000    // function with external linkage. We now need to check whether the
3001    // argument and parameter types are compatible.
3002    if (!S.Context.hasSameUnqualifiedType(ArgType,
3003                                          ParamType.getNonReferenceType())) {
3004      // We can't perform this conversion or binding.
3005      if (ParamType->isReferenceType())
3006        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3007          << ParamType << Arg->getType() << Arg->getSourceRange();
3008      else
3009        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
3010          << Arg->getType() << ParamType << Arg->getSourceRange();
3011      S.Diag(Param->getLocation(), diag::note_template_param_here);
3012      return true;
3013    }
3014  }
3015
3016  // Create the template argument.
3017  Converted = TemplateArgument(Entity->getCanonicalDecl());
3018  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
3019  return false;
3020}
3021
3022/// \brief Checks whether the given template argument is a pointer to
3023/// member constant according to C++ [temp.arg.nontype]p1.
3024bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
3025                                                TemplateArgument &Converted) {
3026  bool Invalid = false;
3027
3028  // See through any implicit casts we added to fix the type.
3029  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3030    Arg = Cast->getSubExpr();
3031
3032  // C++ [temp.arg.nontype]p1:
3033  //
3034  //   A template-argument for a non-type, non-template
3035  //   template-parameter shall be one of: [...]
3036  //
3037  //     -- a pointer to member expressed as described in 5.3.1.
3038  DeclRefExpr *DRE = 0;
3039
3040  // In C++98/03 mode, give an extension warning on any extra parentheses.
3041  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3042  bool ExtraParens = false;
3043  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3044    if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) {
3045      Diag(Arg->getSourceRange().getBegin(),
3046           diag::ext_template_arg_extra_parens)
3047        << Arg->getSourceRange();
3048      ExtraParens = true;
3049    }
3050
3051    Arg = Parens->getSubExpr();
3052  }
3053
3054  // A pointer-to-member constant written &Class::member.
3055  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3056    if (UnOp->getOpcode() == UO_AddrOf) {
3057      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3058      if (DRE && !DRE->getQualifier())
3059        DRE = 0;
3060    }
3061  }
3062  // A constant of pointer-to-member type.
3063  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
3064    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
3065      if (VD->getType()->isMemberPointerType()) {
3066        if (isa<NonTypeTemplateParmDecl>(VD) ||
3067            (isa<VarDecl>(VD) &&
3068             Context.getCanonicalType(VD->getType()).isConstQualified())) {
3069          if (Arg->isTypeDependent() || Arg->isValueDependent())
3070            Converted = TemplateArgument(Arg);
3071          else
3072            Converted = TemplateArgument(VD->getCanonicalDecl());
3073          return Invalid;
3074        }
3075      }
3076    }
3077
3078    DRE = 0;
3079  }
3080
3081  if (!DRE)
3082    return Diag(Arg->getSourceRange().getBegin(),
3083                diag::err_template_arg_not_pointer_to_member_form)
3084      << Arg->getSourceRange();
3085
3086  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
3087    assert((isa<FieldDecl>(DRE->getDecl()) ||
3088            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
3089           "Only non-static member pointers can make it here");
3090
3091    // Okay: this is the address of a non-static member, and therefore
3092    // a member pointer constant.
3093    if (Arg->isTypeDependent() || Arg->isValueDependent())
3094      Converted = TemplateArgument(Arg);
3095    else
3096      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3097    return Invalid;
3098  }
3099
3100  // We found something else, but we don't know specifically what it is.
3101  Diag(Arg->getSourceRange().getBegin(),
3102       diag::err_template_arg_not_pointer_to_member_form)
3103      << Arg->getSourceRange();
3104  Diag(DRE->getDecl()->getLocation(),
3105       diag::note_template_arg_refers_here);
3106  return true;
3107}
3108
3109/// \brief Check a template argument against its corresponding
3110/// non-type template parameter.
3111///
3112/// This routine implements the semantics of C++ [temp.arg.nontype].
3113/// It returns true if an error occurred, and false otherwise. \p
3114/// InstantiatedParamType is the type of the non-type template
3115/// parameter after it has been instantiated.
3116///
3117/// If no error was detected, Converted receives the converted template argument.
3118bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3119                                 QualType InstantiatedParamType, Expr *&Arg,
3120                                 TemplateArgument &Converted,
3121                                 CheckTemplateArgumentKind CTAK) {
3122  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
3123
3124  // If either the parameter has a dependent type or the argument is
3125  // type-dependent, there's nothing we can check now.
3126  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3127    // FIXME: Produce a cloned, canonical expression?
3128    Converted = TemplateArgument(Arg);
3129    return false;
3130  }
3131
3132  // C++ [temp.arg.nontype]p5:
3133  //   The following conversions are performed on each expression used
3134  //   as a non-type template-argument. If a non-type
3135  //   template-argument cannot be converted to the type of the
3136  //   corresponding template-parameter then the program is
3137  //   ill-formed.
3138  //
3139  //     -- for a non-type template-parameter of integral or
3140  //        enumeration type, integral promotions (4.5) and integral
3141  //        conversions (4.7) are applied.
3142  QualType ParamType = InstantiatedParamType;
3143  QualType ArgType = Arg->getType();
3144  if (ParamType->isIntegralOrEnumerationType()) {
3145    // C++ [temp.arg.nontype]p1:
3146    //   A template-argument for a non-type, non-template
3147    //   template-parameter shall be one of:
3148    //
3149    //     -- an integral constant-expression of integral or enumeration
3150    //        type; or
3151    //     -- the name of a non-type template-parameter; or
3152    SourceLocation NonConstantLoc;
3153    llvm::APSInt Value;
3154    if (!ArgType->isIntegralOrEnumerationType()) {
3155      Diag(Arg->getSourceRange().getBegin(),
3156           diag::err_template_arg_not_integral_or_enumeral)
3157        << ArgType << Arg->getSourceRange();
3158      Diag(Param->getLocation(), diag::note_template_param_here);
3159      return true;
3160    } else if (!Arg->isValueDependent() &&
3161               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
3162      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
3163        << ArgType << Arg->getSourceRange();
3164      return true;
3165    }
3166
3167    // From here on out, all we care about are the unqualified forms
3168    // of the parameter and argument types.
3169    ParamType = ParamType.getUnqualifiedType();
3170    ArgType = ArgType.getUnqualifiedType();
3171
3172    // Try to convert the argument to the parameter's type.
3173    if (Context.hasSameType(ParamType, ArgType)) {
3174      // Okay: no conversion necessary
3175    } else if (CTAK == CTAK_Deduced) {
3176      // C++ [temp.deduct.type]p17:
3177      //   If, in the declaration of a function template with a non-type
3178      //   template-parameter, the non-type template- parameter is used
3179      //   in an expression in the function parameter-list and, if the
3180      //   corresponding template-argument is deduced, the
3181      //   template-argument type shall match the type of the
3182      //   template-parameter exactly, except that a template-argument
3183      //   deduced from an array bound may be of any integral type.
3184      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
3185        << ArgType << ParamType;
3186      Diag(Param->getLocation(), diag::note_template_param_here);
3187      return true;
3188    } else if (ParamType->isBooleanType()) {
3189      // This is an integral-to-boolean conversion.
3190      ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean);
3191    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
3192               !ParamType->isEnumeralType()) {
3193      // This is an integral promotion or conversion.
3194      ImpCastExprToType(Arg, ParamType, CK_IntegralCast);
3195    } else {
3196      // We can't perform this conversion.
3197      Diag(Arg->getSourceRange().getBegin(),
3198           diag::err_template_arg_not_convertible)
3199        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3200      Diag(Param->getLocation(), diag::note_template_param_here);
3201      return true;
3202    }
3203
3204    QualType IntegerType = Context.getCanonicalType(ParamType);
3205    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3206      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
3207
3208    if (!Arg->isValueDependent()) {
3209      llvm::APSInt OldValue = Value;
3210
3211      // Coerce the template argument's value to the value it will have
3212      // based on the template parameter's type.
3213      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3214      if (Value.getBitWidth() != AllowedBits)
3215        Value = Value.extOrTrunc(AllowedBits);
3216      Value.setIsSigned(IntegerType->isSignedIntegerType());
3217
3218      // Complain if an unsigned parameter received a negative value.
3219      if (IntegerType->isUnsignedIntegerType()
3220          && (OldValue.isSigned() && OldValue.isNegative())) {
3221        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
3222          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3223          << Arg->getSourceRange();
3224        Diag(Param->getLocation(), diag::note_template_param_here);
3225      }
3226
3227      // Complain if we overflowed the template parameter's type.
3228      unsigned RequiredBits;
3229      if (IntegerType->isUnsignedIntegerType())
3230        RequiredBits = OldValue.getActiveBits();
3231      else if (OldValue.isUnsigned())
3232        RequiredBits = OldValue.getActiveBits() + 1;
3233      else
3234        RequiredBits = OldValue.getMinSignedBits();
3235      if (RequiredBits > AllowedBits) {
3236        Diag(Arg->getSourceRange().getBegin(),
3237             diag::warn_template_arg_too_large)
3238          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3239          << Arg->getSourceRange();
3240        Diag(Param->getLocation(), diag::note_template_param_here);
3241      }
3242    }
3243
3244    // Add the value of this argument to the list of converted
3245    // arguments. We use the bitwidth and signedness of the template
3246    // parameter.
3247    if (Arg->isValueDependent()) {
3248      // The argument is value-dependent. Create a new
3249      // TemplateArgument with the converted expression.
3250      Converted = TemplateArgument(Arg);
3251      return false;
3252    }
3253
3254    Converted = TemplateArgument(Value,
3255                                 ParamType->isEnumeralType() ? ParamType
3256                                                             : IntegerType);
3257    return false;
3258  }
3259
3260  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
3261
3262  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
3263  // from a template argument of type std::nullptr_t to a non-type
3264  // template parameter of type pointer to object, pointer to
3265  // function, or pointer-to-member, respectively.
3266  if (ArgType->isNullPtrType() &&
3267      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
3268    Converted = TemplateArgument((NamedDecl *)0);
3269    return false;
3270  }
3271
3272  // Handle pointer-to-function, reference-to-function, and
3273  // pointer-to-member-function all in (roughly) the same way.
3274  if (// -- For a non-type template-parameter of type pointer to
3275      //    function, only the function-to-pointer conversion (4.3) is
3276      //    applied. If the template-argument represents a set of
3277      //    overloaded functions (or a pointer to such), the matching
3278      //    function is selected from the set (13.4).
3279      (ParamType->isPointerType() &&
3280       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
3281      // -- For a non-type template-parameter of type reference to
3282      //    function, no conversions apply. If the template-argument
3283      //    represents a set of overloaded functions, the matching
3284      //    function is selected from the set (13.4).
3285      (ParamType->isReferenceType() &&
3286       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
3287      // -- For a non-type template-parameter of type pointer to
3288      //    member function, no conversions apply. If the
3289      //    template-argument represents a set of overloaded member
3290      //    functions, the matching member function is selected from
3291      //    the set (13.4).
3292      (ParamType->isMemberPointerType() &&
3293       ParamType->getAs<MemberPointerType>()->getPointeeType()
3294         ->isFunctionType())) {
3295
3296    if (Arg->getType() == Context.OverloadTy) {
3297      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
3298                                                                true,
3299                                                                FoundResult)) {
3300        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3301          return true;
3302
3303        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3304        ArgType = Arg->getType();
3305      } else
3306        return true;
3307    }
3308
3309    if (!ParamType->isMemberPointerType())
3310      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3311                                                            ParamType,
3312                                                            Arg, Converted);
3313
3314    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) {
3315      ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3316    } else if (!Context.hasSameUnqualifiedType(ArgType,
3317                                           ParamType.getNonReferenceType())) {
3318      // We can't perform this conversion.
3319      Diag(Arg->getSourceRange().getBegin(),
3320           diag::err_template_arg_not_convertible)
3321        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3322      Diag(Param->getLocation(), diag::note_template_param_here);
3323      return true;
3324    }
3325
3326    return CheckTemplateArgumentPointerToMember(Arg, Converted);
3327  }
3328
3329  if (ParamType->isPointerType()) {
3330    //   -- for a non-type template-parameter of type pointer to
3331    //      object, qualification conversions (4.4) and the
3332    //      array-to-pointer conversion (4.2) are applied.
3333    // C++0x also allows a value of std::nullptr_t.
3334    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
3335           "Only object pointers allowed here");
3336
3337    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3338                                                          ParamType,
3339                                                          Arg, Converted);
3340  }
3341
3342  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
3343    //   -- For a non-type template-parameter of type reference to
3344    //      object, no conversions apply. The type referred to by the
3345    //      reference may be more cv-qualified than the (otherwise
3346    //      identical) type of the template-argument. The
3347    //      template-parameter is bound directly to the
3348    //      template-argument, which must be an lvalue.
3349    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
3350           "Only object references allowed here");
3351
3352    if (Arg->getType() == Context.OverloadTy) {
3353      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
3354                                                 ParamRefType->getPointeeType(),
3355                                                                true,
3356                                                                FoundResult)) {
3357        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3358          return true;
3359
3360        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3361        ArgType = Arg->getType();
3362      } else
3363        return true;
3364    }
3365
3366    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3367                                                          ParamType,
3368                                                          Arg, Converted);
3369  }
3370
3371  //     -- For a non-type template-parameter of type pointer to data
3372  //        member, qualification conversions (4.4) are applied.
3373  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
3374
3375  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
3376    // Types match exactly: nothing more to do here.
3377  } else if (IsQualificationConversion(ArgType, ParamType)) {
3378    ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3379  } else {
3380    // We can't perform this conversion.
3381    Diag(Arg->getSourceRange().getBegin(),
3382         diag::err_template_arg_not_convertible)
3383      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3384    Diag(Param->getLocation(), diag::note_template_param_here);
3385    return true;
3386  }
3387
3388  return CheckTemplateArgumentPointerToMember(Arg, Converted);
3389}
3390
3391/// \brief Check a template argument against its corresponding
3392/// template template parameter.
3393///
3394/// This routine implements the semantics of C++ [temp.arg.template].
3395/// It returns true if an error occurred, and false otherwise.
3396bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3397                                 const TemplateArgumentLoc &Arg) {
3398  TemplateName Name = Arg.getArgument().getAsTemplate();
3399  TemplateDecl *Template = Name.getAsTemplateDecl();
3400  if (!Template) {
3401    // Any dependent template name is fine.
3402    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3403    return false;
3404  }
3405
3406  // C++ [temp.arg.template]p1:
3407  //   A template-argument for a template template-parameter shall be
3408  //   the name of a class template, expressed as id-expression. Only
3409  //   primary class templates are considered when matching the
3410  //   template template argument with the corresponding parameter;
3411  //   partial specializations are not considered even if their
3412  //   parameter lists match that of the template template parameter.
3413  //
3414  // Note that we also allow template template parameters here, which
3415  // will happen when we are dealing with, e.g., class template
3416  // partial specializations.
3417  if (!isa<ClassTemplateDecl>(Template) &&
3418      !isa<TemplateTemplateParmDecl>(Template)) {
3419    assert(isa<FunctionTemplateDecl>(Template) &&
3420           "Only function templates are possible here");
3421    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3422    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3423      << Template;
3424  }
3425
3426  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3427                                         Param->getTemplateParameters(),
3428                                         true,
3429                                         TPL_TemplateTemplateArgumentMatch,
3430                                         Arg.getLocation());
3431}
3432
3433/// \brief Given a non-type template argument that refers to a
3434/// declaration and the type of its corresponding non-type template
3435/// parameter, produce an expression that properly refers to that
3436/// declaration.
3437ExprResult
3438Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3439                                              QualType ParamType,
3440                                              SourceLocation Loc) {
3441  assert(Arg.getKind() == TemplateArgument::Declaration &&
3442         "Only declaration template arguments permitted here");
3443  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3444
3445  if (VD->getDeclContext()->isRecord() &&
3446      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3447    // If the value is a class member, we might have a pointer-to-member.
3448    // Determine whether the non-type template template parameter is of
3449    // pointer-to-member type. If so, we need to build an appropriate
3450    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3451    // would refer to the member itself.
3452    if (ParamType->isMemberPointerType()) {
3453      QualType ClassType
3454        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3455      NestedNameSpecifier *Qualifier
3456        = NestedNameSpecifier::Create(Context, 0, false,
3457                                      ClassType.getTypePtr());
3458      CXXScopeSpec SS;
3459      SS.setScopeRep(Qualifier);
3460
3461      // The actual value-ness of this is unimportant, but for
3462      // internal consistency's sake, references to instance methods
3463      // are r-values.
3464      ExprValueKind VK = VK_LValue;
3465      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
3466        VK = VK_RValue;
3467
3468      ExprResult RefExpr = BuildDeclRefExpr(VD,
3469                                            VD->getType().getNonReferenceType(),
3470                                            VK,
3471                                            Loc,
3472                                            &SS);
3473      if (RefExpr.isInvalid())
3474        return ExprError();
3475
3476      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3477
3478      // We might need to perform a trailing qualification conversion, since
3479      // the element type on the parameter could be more qualified than the
3480      // element type in the expression we constructed.
3481      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
3482                                    ParamType.getUnqualifiedType())) {
3483        Expr *RefE = RefExpr.takeAs<Expr>();
3484        ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp);
3485        RefExpr = Owned(RefE);
3486      }
3487
3488      assert(!RefExpr.isInvalid() &&
3489             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3490                                 ParamType.getUnqualifiedType()));
3491      return move(RefExpr);
3492    }
3493  }
3494
3495  QualType T = VD->getType().getNonReferenceType();
3496  if (ParamType->isPointerType()) {
3497    // When the non-type template parameter is a pointer, take the
3498    // address of the declaration.
3499    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
3500    if (RefExpr.isInvalid())
3501      return ExprError();
3502
3503    if (T->isFunctionType() || T->isArrayType()) {
3504      // Decay functions and arrays.
3505      Expr *RefE = (Expr *)RefExpr.get();
3506      DefaultFunctionArrayConversion(RefE);
3507      if (RefE != RefExpr.get()) {
3508        RefExpr.release();
3509        RefExpr = Owned(RefE);
3510      }
3511
3512      return move(RefExpr);
3513    }
3514
3515    // Take the address of everything else
3516    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3517  }
3518
3519  ExprValueKind VK = VK_RValue;
3520
3521  // If the non-type template parameter has reference type, qualify the
3522  // resulting declaration reference with the extra qualifiers on the
3523  // type that the reference refers to.
3524  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
3525    VK = VK_LValue;
3526    T = Context.getQualifiedType(T,
3527                              TargetRef->getPointeeType().getQualifiers());
3528  }
3529
3530  return BuildDeclRefExpr(VD, T, VK, Loc);
3531}
3532
3533/// \brief Construct a new expression that refers to the given
3534/// integral template argument with the given source-location
3535/// information.
3536///
3537/// This routine takes care of the mapping from an integral template
3538/// argument (which may have any integral type) to the appropriate
3539/// literal value.
3540ExprResult
3541Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3542                                                  SourceLocation Loc) {
3543  assert(Arg.getKind() == TemplateArgument::Integral &&
3544         "Operation is only value for integral template arguments");
3545  QualType T = Arg.getIntegralType();
3546  if (T->isCharType() || T->isWideCharType())
3547    return Owned(new (Context) CharacterLiteral(
3548                                             Arg.getAsIntegral()->getZExtValue(),
3549                                             T->isWideCharType(),
3550                                             T,
3551                                             Loc));
3552  if (T->isBooleanType())
3553    return Owned(new (Context) CXXBoolLiteralExpr(
3554                                            Arg.getAsIntegral()->getBoolValue(),
3555                                            T,
3556                                            Loc));
3557
3558  QualType BT;
3559  if (const EnumType *ET = T->getAs<EnumType>())
3560    BT = ET->getDecl()->getPromotionType();
3561  else
3562    BT = T;
3563
3564  Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
3565  ImpCastExprToType(E, T, CK_IntegralCast);
3566
3567  return Owned(E);
3568}
3569
3570
3571/// \brief Determine whether the given template parameter lists are
3572/// equivalent.
3573///
3574/// \param New  The new template parameter list, typically written in the
3575/// source code as part of a new template declaration.
3576///
3577/// \param Old  The old template parameter list, typically found via
3578/// name lookup of the template declared with this template parameter
3579/// list.
3580///
3581/// \param Complain  If true, this routine will produce a diagnostic if
3582/// the template parameter lists are not equivalent.
3583///
3584/// \param Kind describes how we are to match the template parameter lists.
3585///
3586/// \param TemplateArgLoc If this source location is valid, then we
3587/// are actually checking the template parameter list of a template
3588/// argument (New) against the template parameter list of its
3589/// corresponding template template parameter (Old). We produce
3590/// slightly different diagnostics in this scenario.
3591///
3592/// \returns True if the template parameter lists are equal, false
3593/// otherwise.
3594bool
3595Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3596                                     TemplateParameterList *Old,
3597                                     bool Complain,
3598                                     TemplateParameterListEqualKind Kind,
3599                                     SourceLocation TemplateArgLoc) {
3600  if (Old->size() != New->size()) {
3601    if (Complain) {
3602      unsigned NextDiag = diag::err_template_param_list_different_arity;
3603      if (TemplateArgLoc.isValid()) {
3604        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3605        NextDiag = diag::note_template_param_list_different_arity;
3606      }
3607      Diag(New->getTemplateLoc(), NextDiag)
3608          << (New->size() > Old->size())
3609          << (Kind != TPL_TemplateMatch)
3610          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3611      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3612        << (Kind != TPL_TemplateMatch)
3613        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3614    }
3615
3616    return false;
3617  }
3618
3619  for (TemplateParameterList::iterator OldParm = Old->begin(),
3620         OldParmEnd = Old->end(), NewParm = New->begin();
3621       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
3622    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
3623      if (Complain) {
3624        unsigned NextDiag = diag::err_template_param_different_kind;
3625        if (TemplateArgLoc.isValid()) {
3626          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3627          NextDiag = diag::note_template_param_different_kind;
3628        }
3629        Diag((*NewParm)->getLocation(), NextDiag)
3630          << (Kind != TPL_TemplateMatch);
3631        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
3632          << (Kind != TPL_TemplateMatch);
3633      }
3634      return false;
3635    }
3636
3637    if (TemplateTypeParmDecl *OldTTP
3638                                  = dyn_cast<TemplateTypeParmDecl>(*OldParm)) {
3639      // Template type parameters are equivalent if either both are template
3640      // type parameter packs or neither are (since we know we're at the same
3641      // index).
3642      TemplateTypeParmDecl *NewTTP = cast<TemplateTypeParmDecl>(*NewParm);
3643      if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) {
3644        // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that
3645        // allow one to match a template parameter pack in the template
3646        // parameter list of a template template parameter to one or more
3647        // template parameters in the template parameter list of the
3648        // corresponding template template argument.
3649        if (Complain) {
3650          unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3651          if (TemplateArgLoc.isValid()) {
3652            Diag(TemplateArgLoc,
3653                 diag::err_template_arg_template_params_mismatch);
3654            NextDiag = diag::note_template_parameter_pack_non_pack;
3655          }
3656          Diag(NewTTP->getLocation(), NextDiag)
3657            << 0 << NewTTP->isParameterPack();
3658          Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here)
3659            << 0 << OldTTP->isParameterPack();
3660        }
3661        return false;
3662      }
3663    } else if (NonTypeTemplateParmDecl *OldNTTP
3664                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
3665      // The types of non-type template parameters must agree.
3666      NonTypeTemplateParmDecl *NewNTTP
3667        = cast<NonTypeTemplateParmDecl>(*NewParm);
3668
3669      // If we are matching a template template argument to a template
3670      // template parameter and one of the non-type template parameter types
3671      // is dependent, then we must wait until template instantiation time
3672      // to actually compare the arguments.
3673      if (Kind == TPL_TemplateTemplateArgumentMatch &&
3674          (OldNTTP->getType()->isDependentType() ||
3675           NewNTTP->getType()->isDependentType()))
3676        continue;
3677
3678      if (Context.getCanonicalType(OldNTTP->getType()) !=
3679            Context.getCanonicalType(NewNTTP->getType())) {
3680        if (Complain) {
3681          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3682          if (TemplateArgLoc.isValid()) {
3683            Diag(TemplateArgLoc,
3684                 diag::err_template_arg_template_params_mismatch);
3685            NextDiag = diag::note_template_nontype_parm_different_type;
3686          }
3687          Diag(NewNTTP->getLocation(), NextDiag)
3688            << NewNTTP->getType()
3689            << (Kind != TPL_TemplateMatch);
3690          Diag(OldNTTP->getLocation(),
3691               diag::note_template_nontype_parm_prev_declaration)
3692            << OldNTTP->getType();
3693        }
3694        return false;
3695      }
3696    } else {
3697      // The template parameter lists of template template
3698      // parameters must agree.
3699      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
3700             "Only template template parameters handled here");
3701      TemplateTemplateParmDecl *OldTTP
3702        = cast<TemplateTemplateParmDecl>(*OldParm);
3703      TemplateTemplateParmDecl *NewTTP
3704        = cast<TemplateTemplateParmDecl>(*NewParm);
3705      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3706                                          OldTTP->getTemplateParameters(),
3707                                          Complain,
3708              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
3709                                          TemplateArgLoc))
3710        return false;
3711    }
3712  }
3713
3714  return true;
3715}
3716
3717/// \brief Check whether a template can be declared within this scope.
3718///
3719/// If the template declaration is valid in this scope, returns
3720/// false. Otherwise, issues a diagnostic and returns true.
3721bool
3722Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3723  // Find the nearest enclosing declaration scope.
3724  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3725         (S->getFlags() & Scope::TemplateParamScope) != 0)
3726    S = S->getParent();
3727
3728  // C++ [temp]p2:
3729  //   A template-declaration can appear only as a namespace scope or
3730  //   class scope declaration.
3731  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3732  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3733      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3734    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3735             << TemplateParams->getSourceRange();
3736
3737  while (Ctx && isa<LinkageSpecDecl>(Ctx))
3738    Ctx = Ctx->getParent();
3739
3740  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3741    return false;
3742
3743  return Diag(TemplateParams->getTemplateLoc(),
3744              diag::err_template_outside_namespace_or_class_scope)
3745    << TemplateParams->getSourceRange();
3746}
3747
3748/// \brief Determine what kind of template specialization the given declaration
3749/// is.
3750static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3751  if (!D)
3752    return TSK_Undeclared;
3753
3754  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3755    return Record->getTemplateSpecializationKind();
3756  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3757    return Function->getTemplateSpecializationKind();
3758  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3759    return Var->getTemplateSpecializationKind();
3760
3761  return TSK_Undeclared;
3762}
3763
3764/// \brief Check whether a specialization is well-formed in the current
3765/// context.
3766///
3767/// This routine determines whether a template specialization can be declared
3768/// in the current context (C++ [temp.expl.spec]p2).
3769///
3770/// \param S the semantic analysis object for which this check is being
3771/// performed.
3772///
3773/// \param Specialized the entity being specialized or instantiated, which
3774/// may be a kind of template (class template, function template, etc.) or
3775/// a member of a class template (member function, static data member,
3776/// member class).
3777///
3778/// \param PrevDecl the previous declaration of this entity, if any.
3779///
3780/// \param Loc the location of the explicit specialization or instantiation of
3781/// this entity.
3782///
3783/// \param IsPartialSpecialization whether this is a partial specialization of
3784/// a class template.
3785///
3786/// \returns true if there was an error that we cannot recover from, false
3787/// otherwise.
3788static bool CheckTemplateSpecializationScope(Sema &S,
3789                                             NamedDecl *Specialized,
3790                                             NamedDecl *PrevDecl,
3791                                             SourceLocation Loc,
3792                                             bool IsPartialSpecialization) {
3793  // Keep these "kind" numbers in sync with the %select statements in the
3794  // various diagnostics emitted by this routine.
3795  int EntityKind = 0;
3796  bool isTemplateSpecialization = false;
3797  if (isa<ClassTemplateDecl>(Specialized)) {
3798    EntityKind = IsPartialSpecialization? 1 : 0;
3799    isTemplateSpecialization = true;
3800  } else if (isa<FunctionTemplateDecl>(Specialized)) {
3801    EntityKind = 2;
3802    isTemplateSpecialization = true;
3803  } else if (isa<CXXMethodDecl>(Specialized))
3804    EntityKind = 3;
3805  else if (isa<VarDecl>(Specialized))
3806    EntityKind = 4;
3807  else if (isa<RecordDecl>(Specialized))
3808    EntityKind = 5;
3809  else {
3810    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3811    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3812    return true;
3813  }
3814
3815  // C++ [temp.expl.spec]p2:
3816  //   An explicit specialization shall be declared in the namespace
3817  //   of which the template is a member, or, for member templates, in
3818  //   the namespace of which the enclosing class or enclosing class
3819  //   template is a member. An explicit specialization of a member
3820  //   function, member class or static data member of a class
3821  //   template shall be declared in the namespace of which the class
3822  //   template is a member. Such a declaration may also be a
3823  //   definition. If the declaration is not a definition, the
3824  //   specialization may be defined later in the name- space in which
3825  //   the explicit specialization was declared, or in a namespace
3826  //   that encloses the one in which the explicit specialization was
3827  //   declared.
3828  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
3829    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3830      << Specialized;
3831    return true;
3832  }
3833
3834  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3835    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3836      << Specialized;
3837    return true;
3838  }
3839
3840  // C++ [temp.class.spec]p6:
3841  //   A class template partial specialization may be declared or redeclared
3842  //   in any namespace scope in which its definition may be defined (14.5.1
3843  //   and 14.5.2).
3844  bool ComplainedAboutScope = false;
3845  DeclContext *SpecializedContext
3846    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3847  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3848  if ((!PrevDecl ||
3849       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3850       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3851    // C++ [temp.exp.spec]p2:
3852    //   An explicit specialization shall be declared in the namespace of which
3853    //   the template is a member, or, for member templates, in the namespace
3854    //   of which the enclosing class or enclosing class template is a member.
3855    //   An explicit specialization of a member function, member class or
3856    //   static data member of a class template shall be declared in the
3857    //   namespace of which the class template is a member.
3858    //
3859    // C++0x [temp.expl.spec]p2:
3860    //   An explicit specialization shall be declared in a namespace enclosing
3861    //   the specialized template.
3862    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) &&
3863        !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) {
3864      bool IsCPlusPlus0xExtension
3865        = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext);
3866      if (isa<TranslationUnitDecl>(SpecializedContext))
3867        S.Diag(Loc, IsCPlusPlus0xExtension
3868                      ? diag::ext_template_spec_decl_out_of_scope_global
3869                      : diag::err_template_spec_decl_out_of_scope_global)
3870          << EntityKind << Specialized;
3871      else if (isa<NamespaceDecl>(SpecializedContext))
3872        S.Diag(Loc, IsCPlusPlus0xExtension
3873                      ? diag::ext_template_spec_decl_out_of_scope
3874                      : diag::err_template_spec_decl_out_of_scope)
3875          << EntityKind << Specialized
3876          << cast<NamedDecl>(SpecializedContext);
3877
3878      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3879      ComplainedAboutScope = true;
3880    }
3881  }
3882
3883  // Make sure that this redeclaration (or definition) occurs in an enclosing
3884  // namespace.
3885  // Note that HandleDeclarator() performs this check for explicit
3886  // specializations of function templates, static data members, and member
3887  // functions, so we skip the check here for those kinds of entities.
3888  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3889  // Should we refactor that check, so that it occurs later?
3890  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3891      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3892        isa<FunctionDecl>(Specialized))) {
3893    if (isa<TranslationUnitDecl>(SpecializedContext))
3894      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3895        << EntityKind << Specialized;
3896    else if (isa<NamespaceDecl>(SpecializedContext))
3897      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3898        << EntityKind << Specialized
3899        << cast<NamedDecl>(SpecializedContext);
3900
3901    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3902  }
3903
3904  // FIXME: check for specialization-after-instantiation errors and such.
3905
3906  return false;
3907}
3908
3909/// \brief Check the non-type template arguments of a class template
3910/// partial specialization according to C++ [temp.class.spec]p9.
3911///
3912/// \param TemplateParams the template parameters of the primary class
3913/// template.
3914///
3915/// \param TemplateArg the template arguments of the class template
3916/// partial specialization.
3917///
3918/// \param MirrorsPrimaryTemplate will be set true if the class
3919/// template partial specialization arguments are identical to the
3920/// implicit template arguments of the primary template. This is not
3921/// necessarily an error (C++0x), and it is left to the caller to diagnose
3922/// this condition when it is an error.
3923///
3924/// \returns true if there was an error, false otherwise.
3925bool Sema::CheckClassTemplatePartialSpecializationArgs(
3926                                        TemplateParameterList *TemplateParams,
3927                         llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs,
3928                                        bool &MirrorsPrimaryTemplate) {
3929  // FIXME: the interface to this function will have to change to
3930  // accommodate variadic templates.
3931  MirrorsPrimaryTemplate = true;
3932
3933  const TemplateArgument *ArgList = TemplateArgs.data();
3934
3935  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3936    // Determine whether the template argument list of the partial
3937    // specialization is identical to the implicit argument list of
3938    // the primary template. The caller may need to diagnostic this as
3939    // an error per C++ [temp.class.spec]p9b3.
3940    if (MirrorsPrimaryTemplate) {
3941      if (TemplateTypeParmDecl *TTP
3942            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3943        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3944              Context.getCanonicalType(ArgList[I].getAsType()))
3945          MirrorsPrimaryTemplate = false;
3946      } else if (TemplateTemplateParmDecl *TTP
3947                   = dyn_cast<TemplateTemplateParmDecl>(
3948                                                 TemplateParams->getParam(I))) {
3949        TemplateName Name = ArgList[I].getAsTemplate();
3950        TemplateTemplateParmDecl *ArgDecl
3951          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3952        if (!ArgDecl ||
3953            ArgDecl->getIndex() != TTP->getIndex() ||
3954            ArgDecl->getDepth() != TTP->getDepth())
3955          MirrorsPrimaryTemplate = false;
3956      }
3957    }
3958
3959    NonTypeTemplateParmDecl *Param
3960      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3961    if (!Param) {
3962      continue;
3963    }
3964
3965    Expr *ArgExpr = ArgList[I].getAsExpr();
3966    if (!ArgExpr) {
3967      MirrorsPrimaryTemplate = false;
3968      continue;
3969    }
3970
3971    // C++ [temp.class.spec]p8:
3972    //   A non-type argument is non-specialized if it is the name of a
3973    //   non-type parameter. All other non-type arguments are
3974    //   specialized.
3975    //
3976    // Below, we check the two conditions that only apply to
3977    // specialized non-type arguments, so skip any non-specialized
3978    // arguments.
3979    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3980      if (NonTypeTemplateParmDecl *NTTP
3981            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3982        if (MirrorsPrimaryTemplate &&
3983            (Param->getIndex() != NTTP->getIndex() ||
3984             Param->getDepth() != NTTP->getDepth()))
3985          MirrorsPrimaryTemplate = false;
3986
3987        continue;
3988      }
3989
3990    // C++ [temp.class.spec]p9:
3991    //   Within the argument list of a class template partial
3992    //   specialization, the following restrictions apply:
3993    //     -- A partially specialized non-type argument expression
3994    //        shall not involve a template parameter of the partial
3995    //        specialization except when the argument expression is a
3996    //        simple identifier.
3997    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3998      Diag(ArgExpr->getLocStart(),
3999           diag::err_dependent_non_type_arg_in_partial_spec)
4000        << ArgExpr->getSourceRange();
4001      return true;
4002    }
4003
4004    //     -- The type of a template parameter corresponding to a
4005    //        specialized non-type argument shall not be dependent on a
4006    //        parameter of the specialization.
4007    if (Param->getType()->isDependentType()) {
4008      Diag(ArgExpr->getLocStart(),
4009           diag::err_dependent_typed_non_type_arg_in_partial_spec)
4010        << Param->getType()
4011        << ArgExpr->getSourceRange();
4012      Diag(Param->getLocation(), diag::note_template_param_here);
4013      return true;
4014    }
4015
4016    MirrorsPrimaryTemplate = false;
4017  }
4018
4019  return false;
4020}
4021
4022/// \brief Retrieve the previous declaration of the given declaration.
4023static NamedDecl *getPreviousDecl(NamedDecl *ND) {
4024  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
4025    return VD->getPreviousDeclaration();
4026  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
4027    return FD->getPreviousDeclaration();
4028  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
4029    return TD->getPreviousDeclaration();
4030  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
4031    return TD->getPreviousDeclaration();
4032  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4033    return FTD->getPreviousDeclaration();
4034  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
4035    return CTD->getPreviousDeclaration();
4036  return 0;
4037}
4038
4039DeclResult
4040Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
4041                                       TagUseKind TUK,
4042                                       SourceLocation KWLoc,
4043                                       CXXScopeSpec &SS,
4044                                       TemplateTy TemplateD,
4045                                       SourceLocation TemplateNameLoc,
4046                                       SourceLocation LAngleLoc,
4047                                       ASTTemplateArgsPtr TemplateArgsIn,
4048                                       SourceLocation RAngleLoc,
4049                                       AttributeList *Attr,
4050                               MultiTemplateParamsArg TemplateParameterLists) {
4051  assert(TUK != TUK_Reference && "References are not specializations");
4052
4053  // Find the class template we're specializing
4054  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4055  ClassTemplateDecl *ClassTemplate
4056    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
4057
4058  if (!ClassTemplate) {
4059    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
4060      << (Name.getAsTemplateDecl() &&
4061          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
4062    return true;
4063  }
4064
4065  bool isExplicitSpecialization = false;
4066  bool isPartialSpecialization = false;
4067
4068  // Check the validity of the template headers that introduce this
4069  // template.
4070  // FIXME: We probably shouldn't complain about these headers for
4071  // friend declarations.
4072  bool Invalid = false;
4073  TemplateParameterList *TemplateParams
4074    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
4075                        (TemplateParameterList**)TemplateParameterLists.get(),
4076                                              TemplateParameterLists.size(),
4077                                              TUK == TUK_Friend,
4078                                              isExplicitSpecialization,
4079                                              Invalid);
4080  if (Invalid)
4081    return true;
4082
4083  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
4084  if (TemplateParams)
4085    --NumMatchedTemplateParamLists;
4086
4087  if (TemplateParams && TemplateParams->size() > 0) {
4088    isPartialSpecialization = true;
4089
4090    if (TUK == TUK_Friend) {
4091      Diag(KWLoc, diag::err_partial_specialization_friend)
4092        << SourceRange(LAngleLoc, RAngleLoc);
4093      return true;
4094    }
4095
4096    // C++ [temp.class.spec]p10:
4097    //   The template parameter list of a specialization shall not
4098    //   contain default template argument values.
4099    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4100      Decl *Param = TemplateParams->getParam(I);
4101      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4102        if (TTP->hasDefaultArgument()) {
4103          Diag(TTP->getDefaultArgumentLoc(),
4104               diag::err_default_arg_in_partial_spec);
4105          TTP->removeDefaultArgument();
4106        }
4107      } else if (NonTypeTemplateParmDecl *NTTP
4108                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4109        if (Expr *DefArg = NTTP->getDefaultArgument()) {
4110          Diag(NTTP->getDefaultArgumentLoc(),
4111               diag::err_default_arg_in_partial_spec)
4112            << DefArg->getSourceRange();
4113          NTTP->removeDefaultArgument();
4114        }
4115      } else {
4116        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
4117        if (TTP->hasDefaultArgument()) {
4118          Diag(TTP->getDefaultArgument().getLocation(),
4119               diag::err_default_arg_in_partial_spec)
4120            << TTP->getDefaultArgument().getSourceRange();
4121          TTP->removeDefaultArgument();
4122        }
4123      }
4124    }
4125  } else if (TemplateParams) {
4126    if (TUK == TUK_Friend)
4127      Diag(KWLoc, diag::err_template_spec_friend)
4128        << FixItHint::CreateRemoval(
4129                                SourceRange(TemplateParams->getTemplateLoc(),
4130                                            TemplateParams->getRAngleLoc()))
4131        << SourceRange(LAngleLoc, RAngleLoc);
4132    else
4133      isExplicitSpecialization = true;
4134  } else if (TUK != TUK_Friend) {
4135    Diag(KWLoc, diag::err_template_spec_needs_header)
4136      << FixItHint::CreateInsertion(KWLoc, "template<> ");
4137    isExplicitSpecialization = true;
4138  }
4139
4140  // Check that the specialization uses the same tag kind as the
4141  // original template.
4142  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4143  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
4144  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4145                                    Kind, KWLoc,
4146                                    *ClassTemplate->getIdentifier())) {
4147    Diag(KWLoc, diag::err_use_with_wrong_tag)
4148      << ClassTemplate
4149      << FixItHint::CreateReplacement(KWLoc,
4150                            ClassTemplate->getTemplatedDecl()->getKindName());
4151    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4152         diag::note_previous_use);
4153    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4154  }
4155
4156  // Translate the parser's template argument list in our AST format.
4157  TemplateArgumentListInfo TemplateArgs;
4158  TemplateArgs.setLAngleLoc(LAngleLoc);
4159  TemplateArgs.setRAngleLoc(RAngleLoc);
4160  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4161
4162  // Check that the template argument list is well-formed for this
4163  // template.
4164  llvm::SmallVector<TemplateArgument, 4> Converted;
4165  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4166                                TemplateArgs, false, Converted))
4167    return true;
4168
4169  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
4170         "Converted template argument list is too short!");
4171
4172  // Find the class template (partial) specialization declaration that
4173  // corresponds to these arguments.
4174  if (isPartialSpecialization) {
4175    bool MirrorsPrimaryTemplate;
4176    if (CheckClassTemplatePartialSpecializationArgs(
4177                                         ClassTemplate->getTemplateParameters(),
4178                                         Converted, MirrorsPrimaryTemplate))
4179      return true;
4180
4181    if (MirrorsPrimaryTemplate) {
4182      // C++ [temp.class.spec]p9b3:
4183      //
4184      //   -- The argument list of the specialization shall not be identical
4185      //      to the implicit argument list of the primary template.
4186      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4187        << (TUK == TUK_Definition)
4188        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4189      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
4190                                ClassTemplate->getIdentifier(),
4191                                TemplateNameLoc,
4192                                Attr,
4193                                TemplateParams,
4194                                AS_none);
4195    }
4196
4197    // FIXME: Diagnose friend partial specializations
4198
4199    if (!Name.isDependent() &&
4200        !TemplateSpecializationType::anyDependentTemplateArguments(
4201                                             TemplateArgs.getArgumentArray(),
4202                                                         TemplateArgs.size())) {
4203      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4204        << ClassTemplate->getDeclName();
4205      isPartialSpecialization = false;
4206    }
4207  }
4208
4209  void *InsertPos = 0;
4210  ClassTemplateSpecializationDecl *PrevDecl = 0;
4211
4212  if (isPartialSpecialization)
4213    // FIXME: Template parameter list matters, too
4214    PrevDecl
4215      = ClassTemplate->findPartialSpecialization(Converted.data(),
4216                                                 Converted.size(),
4217                                                 InsertPos);
4218  else
4219    PrevDecl
4220      = ClassTemplate->findSpecialization(Converted.data(),
4221                                          Converted.size(), InsertPos);
4222
4223  ClassTemplateSpecializationDecl *Specialization = 0;
4224
4225  // Check whether we can declare a class template specialization in
4226  // the current scope.
4227  if (TUK != TUK_Friend &&
4228      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
4229                                       TemplateNameLoc,
4230                                       isPartialSpecialization))
4231    return true;
4232
4233  // The canonical type
4234  QualType CanonType;
4235  if (PrevDecl &&
4236      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
4237               TUK == TUK_Friend)) {
4238    // Since the only prior class template specialization with these
4239    // arguments was referenced but not declared, or we're only
4240    // referencing this specialization as a friend, reuse that
4241    // declaration node as our own, updating its source location to
4242    // reflect our new declaration.
4243    Specialization = PrevDecl;
4244    Specialization->setLocation(TemplateNameLoc);
4245    PrevDecl = 0;
4246    CanonType = Context.getTypeDeclType(Specialization);
4247  } else if (isPartialSpecialization) {
4248    // Build the canonical type that describes the converted template
4249    // arguments of the class template partial specialization.
4250    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4251    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
4252                                                  Converted.data(),
4253                                                  Converted.size());
4254
4255    // Create a new class template partial specialization declaration node.
4256    ClassTemplatePartialSpecializationDecl *PrevPartial
4257      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
4258    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
4259                            : ClassTemplate->getNextPartialSpecSequenceNumber();
4260    ClassTemplatePartialSpecializationDecl *Partial
4261      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
4262                                             ClassTemplate->getDeclContext(),
4263                                                       TemplateNameLoc,
4264                                                       TemplateParams,
4265                                                       ClassTemplate,
4266                                                       Converted.data(),
4267                                                       Converted.size(),
4268                                                       TemplateArgs,
4269                                                       CanonType,
4270                                                       PrevPartial,
4271                                                       SequenceNumber);
4272    SetNestedNameSpecifier(Partial, SS);
4273    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4274      Partial->setTemplateParameterListsInfo(Context,
4275                                             NumMatchedTemplateParamLists,
4276                    (TemplateParameterList**) TemplateParameterLists.release());
4277    }
4278
4279    if (!PrevPartial)
4280      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
4281    Specialization = Partial;
4282
4283    // If we are providing an explicit specialization of a member class
4284    // template specialization, make a note of that.
4285    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4286      PrevPartial->setMemberSpecialization();
4287
4288    // Check that all of the template parameters of the class template
4289    // partial specialization are deducible from the template
4290    // arguments. If not, this class template partial specialization
4291    // will never be used.
4292    llvm::SmallVector<bool, 8> DeducibleParams;
4293    DeducibleParams.resize(TemplateParams->size());
4294    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4295                               TemplateParams->getDepth(),
4296                               DeducibleParams);
4297    unsigned NumNonDeducible = 0;
4298    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
4299      if (!DeducibleParams[I])
4300        ++NumNonDeducible;
4301
4302    if (NumNonDeducible) {
4303      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
4304        << (NumNonDeducible > 1)
4305        << SourceRange(TemplateNameLoc, RAngleLoc);
4306      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4307        if (!DeducibleParams[I]) {
4308          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
4309          if (Param->getDeclName())
4310            Diag(Param->getLocation(),
4311                 diag::note_partial_spec_unused_parameter)
4312              << Param->getDeclName();
4313          else
4314            Diag(Param->getLocation(),
4315                 diag::note_partial_spec_unused_parameter)
4316              << "<anonymous>";
4317        }
4318      }
4319    }
4320  } else {
4321    // Create a new class template specialization declaration node for
4322    // this explicit specialization or friend declaration.
4323    Specialization
4324      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4325                                             ClassTemplate->getDeclContext(),
4326                                                TemplateNameLoc,
4327                                                ClassTemplate,
4328                                                Converted.data(),
4329                                                Converted.size(),
4330                                                PrevDecl);
4331    SetNestedNameSpecifier(Specialization, SS);
4332    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4333      Specialization->setTemplateParameterListsInfo(Context,
4334                                                  NumMatchedTemplateParamLists,
4335                    (TemplateParameterList**) TemplateParameterLists.release());
4336    }
4337
4338    if (!PrevDecl)
4339      ClassTemplate->AddSpecialization(Specialization, InsertPos);
4340
4341    CanonType = Context.getTypeDeclType(Specialization);
4342  }
4343
4344  // C++ [temp.expl.spec]p6:
4345  //   If a template, a member template or the member of a class template is
4346  //   explicitly specialized then that specialization shall be declared
4347  //   before the first use of that specialization that would cause an implicit
4348  //   instantiation to take place, in every translation unit in which such a
4349  //   use occurs; no diagnostic is required.
4350  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4351    bool Okay = false;
4352    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4353      // Is there any previous explicit specialization declaration?
4354      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4355        Okay = true;
4356        break;
4357      }
4358    }
4359
4360    if (!Okay) {
4361      SourceRange Range(TemplateNameLoc, RAngleLoc);
4362      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4363        << Context.getTypeDeclType(Specialization) << Range;
4364
4365      Diag(PrevDecl->getPointOfInstantiation(),
4366           diag::note_instantiation_required_here)
4367        << (PrevDecl->getTemplateSpecializationKind()
4368                                                != TSK_ImplicitInstantiation);
4369      return true;
4370    }
4371  }
4372
4373  // If this is not a friend, note that this is an explicit specialization.
4374  if (TUK != TUK_Friend)
4375    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4376
4377  // Check that this isn't a redefinition of this specialization.
4378  if (TUK == TUK_Definition) {
4379    if (RecordDecl *Def = Specialization->getDefinition()) {
4380      SourceRange Range(TemplateNameLoc, RAngleLoc);
4381      Diag(TemplateNameLoc, diag::err_redefinition)
4382        << Context.getTypeDeclType(Specialization) << Range;
4383      Diag(Def->getLocation(), diag::note_previous_definition);
4384      Specialization->setInvalidDecl();
4385      return true;
4386    }
4387  }
4388
4389  if (Attr)
4390    ProcessDeclAttributeList(S, Specialization, Attr);
4391
4392  // Build the fully-sugared type for this class template
4393  // specialization as the user wrote in the specialization
4394  // itself. This means that we'll pretty-print the type retrieved
4395  // from the specialization's declaration the way that the user
4396  // actually wrote the specialization, rather than formatting the
4397  // name based on the "canonical" representation used to store the
4398  // template arguments in the specialization.
4399  TypeSourceInfo *WrittenTy
4400    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4401                                                TemplateArgs, CanonType);
4402  if (TUK != TUK_Friend) {
4403    Specialization->setTypeAsWritten(WrittenTy);
4404    if (TemplateParams)
4405      Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc());
4406  }
4407  TemplateArgsIn.release();
4408
4409  // C++ [temp.expl.spec]p9:
4410  //   A template explicit specialization is in the scope of the
4411  //   namespace in which the template was defined.
4412  //
4413  // We actually implement this paragraph where we set the semantic
4414  // context (in the creation of the ClassTemplateSpecializationDecl),
4415  // but we also maintain the lexical context where the actual
4416  // definition occurs.
4417  Specialization->setLexicalDeclContext(CurContext);
4418
4419  // We may be starting the definition of this specialization.
4420  if (TUK == TUK_Definition)
4421    Specialization->startDefinition();
4422
4423  if (TUK == TUK_Friend) {
4424    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
4425                                            TemplateNameLoc,
4426                                            WrittenTy,
4427                                            /*FIXME:*/KWLoc);
4428    Friend->setAccess(AS_public);
4429    CurContext->addDecl(Friend);
4430  } else {
4431    // Add the specialization into its lexical context, so that it can
4432    // be seen when iterating through the list of declarations in that
4433    // context. However, specializations are not found by name lookup.
4434    CurContext->addDecl(Specialization);
4435  }
4436  return Specialization;
4437}
4438
4439Decl *Sema::ActOnTemplateDeclarator(Scope *S,
4440                              MultiTemplateParamsArg TemplateParameterLists,
4441                                    Declarator &D) {
4442  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
4443}
4444
4445Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
4446                               MultiTemplateParamsArg TemplateParameterLists,
4447                                            Declarator &D) {
4448  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4449  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4450
4451  if (FTI.hasPrototype) {
4452    // FIXME: Diagnose arguments without names in C.
4453  }
4454
4455  Scope *ParentScope = FnBodyScope->getParent();
4456
4457  Decl *DP = HandleDeclarator(ParentScope, D,
4458                              move(TemplateParameterLists),
4459                              /*IsFunctionDefinition=*/true);
4460  if (FunctionTemplateDecl *FunctionTemplate
4461        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
4462    return ActOnStartOfFunctionDef(FnBodyScope,
4463                                   FunctionTemplate->getTemplatedDecl());
4464  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
4465    return ActOnStartOfFunctionDef(FnBodyScope, Function);
4466  return 0;
4467}
4468
4469/// \brief Strips various properties off an implicit instantiation
4470/// that has just been explicitly specialized.
4471static void StripImplicitInstantiation(NamedDecl *D) {
4472  D->dropAttrs();
4473
4474  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4475    FD->setInlineSpecified(false);
4476  }
4477}
4478
4479/// \brief Diagnose cases where we have an explicit template specialization
4480/// before/after an explicit template instantiation, producing diagnostics
4481/// for those cases where they are required and determining whether the
4482/// new specialization/instantiation will have any effect.
4483///
4484/// \param NewLoc the location of the new explicit specialization or
4485/// instantiation.
4486///
4487/// \param NewTSK the kind of the new explicit specialization or instantiation.
4488///
4489/// \param PrevDecl the previous declaration of the entity.
4490///
4491/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4492///
4493/// \param PrevPointOfInstantiation if valid, indicates where the previus
4494/// declaration was instantiated (either implicitly or explicitly).
4495///
4496/// \param HasNoEffect will be set to true to indicate that the new
4497/// specialization or instantiation has no effect and should be ignored.
4498///
4499/// \returns true if there was an error that should prevent the introduction of
4500/// the new declaration into the AST, false otherwise.
4501bool
4502Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4503                                             TemplateSpecializationKind NewTSK,
4504                                             NamedDecl *PrevDecl,
4505                                             TemplateSpecializationKind PrevTSK,
4506                                        SourceLocation PrevPointOfInstantiation,
4507                                             bool &HasNoEffect) {
4508  HasNoEffect = false;
4509
4510  switch (NewTSK) {
4511  case TSK_Undeclared:
4512  case TSK_ImplicitInstantiation:
4513    assert(false && "Don't check implicit instantiations here");
4514    return false;
4515
4516  case TSK_ExplicitSpecialization:
4517    switch (PrevTSK) {
4518    case TSK_Undeclared:
4519    case TSK_ExplicitSpecialization:
4520      // Okay, we're just specializing something that is either already
4521      // explicitly specialized or has merely been mentioned without any
4522      // instantiation.
4523      return false;
4524
4525    case TSK_ImplicitInstantiation:
4526      if (PrevPointOfInstantiation.isInvalid()) {
4527        // The declaration itself has not actually been instantiated, so it is
4528        // still okay to specialize it.
4529        StripImplicitInstantiation(PrevDecl);
4530        return false;
4531      }
4532      // Fall through
4533
4534    case TSK_ExplicitInstantiationDeclaration:
4535    case TSK_ExplicitInstantiationDefinition:
4536      assert((PrevTSK == TSK_ImplicitInstantiation ||
4537              PrevPointOfInstantiation.isValid()) &&
4538             "Explicit instantiation without point of instantiation?");
4539
4540      // C++ [temp.expl.spec]p6:
4541      //   If a template, a member template or the member of a class template
4542      //   is explicitly specialized then that specialization shall be declared
4543      //   before the first use of that specialization that would cause an
4544      //   implicit instantiation to take place, in every translation unit in
4545      //   which such a use occurs; no diagnostic is required.
4546      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4547        // Is there any previous explicit specialization declaration?
4548        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4549          return false;
4550      }
4551
4552      Diag(NewLoc, diag::err_specialization_after_instantiation)
4553        << PrevDecl;
4554      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4555        << (PrevTSK != TSK_ImplicitInstantiation);
4556
4557      return true;
4558    }
4559    break;
4560
4561  case TSK_ExplicitInstantiationDeclaration:
4562    switch (PrevTSK) {
4563    case TSK_ExplicitInstantiationDeclaration:
4564      // This explicit instantiation declaration is redundant (that's okay).
4565      HasNoEffect = true;
4566      return false;
4567
4568    case TSK_Undeclared:
4569    case TSK_ImplicitInstantiation:
4570      // We're explicitly instantiating something that may have already been
4571      // implicitly instantiated; that's fine.
4572      return false;
4573
4574    case TSK_ExplicitSpecialization:
4575      // C++0x [temp.explicit]p4:
4576      //   For a given set of template parameters, if an explicit instantiation
4577      //   of a template appears after a declaration of an explicit
4578      //   specialization for that template, the explicit instantiation has no
4579      //   effect.
4580      HasNoEffect = true;
4581      return false;
4582
4583    case TSK_ExplicitInstantiationDefinition:
4584      // C++0x [temp.explicit]p10:
4585      //   If an entity is the subject of both an explicit instantiation
4586      //   declaration and an explicit instantiation definition in the same
4587      //   translation unit, the definition shall follow the declaration.
4588      Diag(NewLoc,
4589           diag::err_explicit_instantiation_declaration_after_definition);
4590      Diag(PrevPointOfInstantiation,
4591           diag::note_explicit_instantiation_definition_here);
4592      assert(PrevPointOfInstantiation.isValid() &&
4593             "Explicit instantiation without point of instantiation?");
4594      HasNoEffect = true;
4595      return false;
4596    }
4597    break;
4598
4599  case TSK_ExplicitInstantiationDefinition:
4600    switch (PrevTSK) {
4601    case TSK_Undeclared:
4602    case TSK_ImplicitInstantiation:
4603      // We're explicitly instantiating something that may have already been
4604      // implicitly instantiated; that's fine.
4605      return false;
4606
4607    case TSK_ExplicitSpecialization:
4608      // C++ DR 259, C++0x [temp.explicit]p4:
4609      //   For a given set of template parameters, if an explicit
4610      //   instantiation of a template appears after a declaration of
4611      //   an explicit specialization for that template, the explicit
4612      //   instantiation has no effect.
4613      //
4614      // In C++98/03 mode, we only give an extension warning here, because it
4615      // is not harmful to try to explicitly instantiate something that
4616      // has been explicitly specialized.
4617      if (!getLangOptions().CPlusPlus0x) {
4618        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4619          << PrevDecl;
4620        Diag(PrevDecl->getLocation(),
4621             diag::note_previous_template_specialization);
4622      }
4623      HasNoEffect = true;
4624      return false;
4625
4626    case TSK_ExplicitInstantiationDeclaration:
4627      // We're explicity instantiating a definition for something for which we
4628      // were previously asked to suppress instantiations. That's fine.
4629      return false;
4630
4631    case TSK_ExplicitInstantiationDefinition:
4632      // C++0x [temp.spec]p5:
4633      //   For a given template and a given set of template-arguments,
4634      //     - an explicit instantiation definition shall appear at most once
4635      //       in a program,
4636      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4637        << PrevDecl;
4638      Diag(PrevPointOfInstantiation,
4639           diag::note_previous_explicit_instantiation);
4640      HasNoEffect = true;
4641      return false;
4642    }
4643    break;
4644  }
4645
4646  assert(false && "Missing specialization/instantiation case?");
4647
4648  return false;
4649}
4650
4651/// \brief Perform semantic analysis for the given dependent function
4652/// template specialization.  The only possible way to get a dependent
4653/// function template specialization is with a friend declaration,
4654/// like so:
4655///
4656///   template <class T> void foo(T);
4657///   template <class T> class A {
4658///     friend void foo<>(T);
4659///   };
4660///
4661/// There really isn't any useful analysis we can do here, so we
4662/// just store the information.
4663bool
4664Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
4665                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
4666                                                   LookupResult &Previous) {
4667  // Remove anything from Previous that isn't a function template in
4668  // the correct context.
4669  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4670  LookupResult::Filter F = Previous.makeFilter();
4671  while (F.hasNext()) {
4672    NamedDecl *D = F.next()->getUnderlyingDecl();
4673    if (!isa<FunctionTemplateDecl>(D) ||
4674        !FDLookupContext->InEnclosingNamespaceSetOf(
4675                              D->getDeclContext()->getRedeclContext()))
4676      F.erase();
4677  }
4678  F.done();
4679
4680  // Should this be diagnosed here?
4681  if (Previous.empty()) return true;
4682
4683  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
4684                                         ExplicitTemplateArgs);
4685  return false;
4686}
4687
4688/// \brief Perform semantic analysis for the given function template
4689/// specialization.
4690///
4691/// This routine performs all of the semantic analysis required for an
4692/// explicit function template specialization. On successful completion,
4693/// the function declaration \p FD will become a function template
4694/// specialization.
4695///
4696/// \param FD the function declaration, which will be updated to become a
4697/// function template specialization.
4698///
4699/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4700/// if any. Note that this may be valid info even when 0 arguments are
4701/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
4702/// as it anyway contains info on the angle brackets locations.
4703///
4704/// \param PrevDecl the set of declarations that may be specialized by
4705/// this function specialization.
4706bool
4707Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4708                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
4709                                          LookupResult &Previous) {
4710  // The set of function template specializations that could match this
4711  // explicit function template specialization.
4712  UnresolvedSet<8> Candidates;
4713
4714  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4715  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4716         I != E; ++I) {
4717    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4718    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4719      // Only consider templates found within the same semantic lookup scope as
4720      // FD.
4721      if (!FDLookupContext->InEnclosingNamespaceSetOf(
4722                                Ovl->getDeclContext()->getRedeclContext()))
4723        continue;
4724
4725      // C++ [temp.expl.spec]p11:
4726      //   A trailing template-argument can be left unspecified in the
4727      //   template-id naming an explicit function template specialization
4728      //   provided it can be deduced from the function argument type.
4729      // Perform template argument deduction to determine whether we may be
4730      // specializing this template.
4731      // FIXME: It is somewhat wasteful to build
4732      TemplateDeductionInfo Info(Context, FD->getLocation());
4733      FunctionDecl *Specialization = 0;
4734      if (TemplateDeductionResult TDK
4735            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4736                                      FD->getType(),
4737                                      Specialization,
4738                                      Info)) {
4739        // FIXME: Template argument deduction failed; record why it failed, so
4740        // that we can provide nifty diagnostics.
4741        (void)TDK;
4742        continue;
4743      }
4744
4745      // Record this candidate.
4746      Candidates.addDecl(Specialization, I.getAccess());
4747    }
4748  }
4749
4750  // Find the most specialized function template.
4751  UnresolvedSetIterator Result
4752    = getMostSpecialized(Candidates.begin(), Candidates.end(),
4753                         TPOC_Other, FD->getLocation(),
4754                  PDiag(diag::err_function_template_spec_no_match)
4755                    << FD->getDeclName(),
4756                  PDiag(diag::err_function_template_spec_ambiguous)
4757                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4758                  PDiag(diag::note_function_template_spec_matched));
4759  if (Result == Candidates.end())
4760    return true;
4761
4762  // Ignore access information;  it doesn't figure into redeclaration checking.
4763  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4764  Specialization->setLocation(FD->getLocation());
4765
4766  // FIXME: Check if the prior specialization has a point of instantiation.
4767  // If so, we have run afoul of .
4768
4769  // If this is a friend declaration, then we're not really declaring
4770  // an explicit specialization.
4771  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4772
4773  // Check the scope of this explicit specialization.
4774  if (!isFriend &&
4775      CheckTemplateSpecializationScope(*this,
4776                                       Specialization->getPrimaryTemplate(),
4777                                       Specialization, FD->getLocation(),
4778                                       false))
4779    return true;
4780
4781  // C++ [temp.expl.spec]p6:
4782  //   If a template, a member template or the member of a class template is
4783  //   explicitly specialized then that specialization shall be declared
4784  //   before the first use of that specialization that would cause an implicit
4785  //   instantiation to take place, in every translation unit in which such a
4786  //   use occurs; no diagnostic is required.
4787  FunctionTemplateSpecializationInfo *SpecInfo
4788    = Specialization->getTemplateSpecializationInfo();
4789  assert(SpecInfo && "Function template specialization info missing?");
4790
4791  bool HasNoEffect = false;
4792  if (!isFriend &&
4793      CheckSpecializationInstantiationRedecl(FD->getLocation(),
4794                                             TSK_ExplicitSpecialization,
4795                                             Specialization,
4796                                   SpecInfo->getTemplateSpecializationKind(),
4797                                         SpecInfo->getPointOfInstantiation(),
4798                                             HasNoEffect))
4799    return true;
4800
4801  // Mark the prior declaration as an explicit specialization, so that later
4802  // clients know that this is an explicit specialization.
4803  if (!isFriend) {
4804    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
4805    MarkUnusedFileScopedDecl(Specialization);
4806  }
4807
4808  // Turn the given function declaration into a function template
4809  // specialization, with the template arguments from the previous
4810  // specialization.
4811  // Take copies of (semantic and syntactic) template argument lists.
4812  const TemplateArgumentList* TemplArgs = new (Context)
4813    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
4814  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
4815    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
4816  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
4817                                        TemplArgs, /*InsertPos=*/0,
4818                                    SpecInfo->getTemplateSpecializationKind(),
4819                                        TemplArgsAsWritten);
4820
4821  // The "previous declaration" for this function template specialization is
4822  // the prior function template specialization.
4823  Previous.clear();
4824  Previous.addDecl(Specialization);
4825  return false;
4826}
4827
4828/// \brief Perform semantic analysis for the given non-template member
4829/// specialization.
4830///
4831/// This routine performs all of the semantic analysis required for an
4832/// explicit member function specialization. On successful completion,
4833/// the function declaration \p FD will become a member function
4834/// specialization.
4835///
4836/// \param Member the member declaration, which will be updated to become a
4837/// specialization.
4838///
4839/// \param Previous the set of declarations, one of which may be specialized
4840/// by this function specialization;  the set will be modified to contain the
4841/// redeclared member.
4842bool
4843Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
4844  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
4845
4846  // Try to find the member we are instantiating.
4847  NamedDecl *Instantiation = 0;
4848  NamedDecl *InstantiatedFrom = 0;
4849  MemberSpecializationInfo *MSInfo = 0;
4850
4851  if (Previous.empty()) {
4852    // Nowhere to look anyway.
4853  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
4854    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4855           I != E; ++I) {
4856      NamedDecl *D = (*I)->getUnderlyingDecl();
4857      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4858        if (Context.hasSameType(Function->getType(), Method->getType())) {
4859          Instantiation = Method;
4860          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
4861          MSInfo = Method->getMemberSpecializationInfo();
4862          break;
4863        }
4864      }
4865    }
4866  } else if (isa<VarDecl>(Member)) {
4867    VarDecl *PrevVar;
4868    if (Previous.isSingleResult() &&
4869        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4870      if (PrevVar->isStaticDataMember()) {
4871        Instantiation = PrevVar;
4872        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4873        MSInfo = PrevVar->getMemberSpecializationInfo();
4874      }
4875  } else if (isa<RecordDecl>(Member)) {
4876    CXXRecordDecl *PrevRecord;
4877    if (Previous.isSingleResult() &&
4878        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4879      Instantiation = PrevRecord;
4880      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4881      MSInfo = PrevRecord->getMemberSpecializationInfo();
4882    }
4883  }
4884
4885  if (!Instantiation) {
4886    // There is no previous declaration that matches. Since member
4887    // specializations are always out-of-line, the caller will complain about
4888    // this mismatch later.
4889    return false;
4890  }
4891
4892  // If this is a friend, just bail out here before we start turning
4893  // things into explicit specializations.
4894  if (Member->getFriendObjectKind() != Decl::FOK_None) {
4895    // Preserve instantiation information.
4896    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
4897      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
4898                                      cast<CXXMethodDecl>(InstantiatedFrom),
4899        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
4900    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
4901      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4902                                      cast<CXXRecordDecl>(InstantiatedFrom),
4903        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
4904    }
4905
4906    Previous.clear();
4907    Previous.addDecl(Instantiation);
4908    return false;
4909  }
4910
4911  // Make sure that this is a specialization of a member.
4912  if (!InstantiatedFrom) {
4913    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
4914      << Member;
4915    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
4916    return true;
4917  }
4918
4919  // C++ [temp.expl.spec]p6:
4920  //   If a template, a member template or the member of a class template is
4921  //   explicitly specialized then that spe- cialization shall be declared
4922  //   before the first use of that specialization that would cause an implicit
4923  //   instantiation to take place, in every translation unit in which such a
4924  //   use occurs; no diagnostic is required.
4925  assert(MSInfo && "Member specialization info missing?");
4926
4927  bool HasNoEffect = false;
4928  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
4929                                             TSK_ExplicitSpecialization,
4930                                             Instantiation,
4931                                     MSInfo->getTemplateSpecializationKind(),
4932                                           MSInfo->getPointOfInstantiation(),
4933                                             HasNoEffect))
4934    return true;
4935
4936  // Check the scope of this explicit specialization.
4937  if (CheckTemplateSpecializationScope(*this,
4938                                       InstantiatedFrom,
4939                                       Instantiation, Member->getLocation(),
4940                                       false))
4941    return true;
4942
4943  // Note that this is an explicit instantiation of a member.
4944  // the original declaration to note that it is an explicit specialization
4945  // (if it was previously an implicit instantiation). This latter step
4946  // makes bookkeeping easier.
4947  if (isa<FunctionDecl>(Member)) {
4948    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4949    if (InstantiationFunction->getTemplateSpecializationKind() ==
4950          TSK_ImplicitInstantiation) {
4951      InstantiationFunction->setTemplateSpecializationKind(
4952                                                  TSK_ExplicitSpecialization);
4953      InstantiationFunction->setLocation(Member->getLocation());
4954    }
4955
4956    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4957                                        cast<CXXMethodDecl>(InstantiatedFrom),
4958                                                  TSK_ExplicitSpecialization);
4959    MarkUnusedFileScopedDecl(InstantiationFunction);
4960  } else if (isa<VarDecl>(Member)) {
4961    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4962    if (InstantiationVar->getTemplateSpecializationKind() ==
4963          TSK_ImplicitInstantiation) {
4964      InstantiationVar->setTemplateSpecializationKind(
4965                                                  TSK_ExplicitSpecialization);
4966      InstantiationVar->setLocation(Member->getLocation());
4967    }
4968
4969    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4970                                                cast<VarDecl>(InstantiatedFrom),
4971                                                TSK_ExplicitSpecialization);
4972    MarkUnusedFileScopedDecl(InstantiationVar);
4973  } else {
4974    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4975    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4976    if (InstantiationClass->getTemplateSpecializationKind() ==
4977          TSK_ImplicitInstantiation) {
4978      InstantiationClass->setTemplateSpecializationKind(
4979                                                   TSK_ExplicitSpecialization);
4980      InstantiationClass->setLocation(Member->getLocation());
4981    }
4982
4983    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4984                                        cast<CXXRecordDecl>(InstantiatedFrom),
4985                                                   TSK_ExplicitSpecialization);
4986  }
4987
4988  // Save the caller the trouble of having to figure out which declaration
4989  // this specialization matches.
4990  Previous.clear();
4991  Previous.addDecl(Instantiation);
4992  return false;
4993}
4994
4995/// \brief Check the scope of an explicit instantiation.
4996///
4997/// \returns true if a serious error occurs, false otherwise.
4998static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4999                                            SourceLocation InstLoc,
5000                                            bool WasQualifiedName) {
5001  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
5002  DeclContext *CurContext = S.CurContext->getRedeclContext();
5003
5004  if (CurContext->isRecord()) {
5005    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
5006      << D;
5007    return true;
5008  }
5009
5010  // C++0x [temp.explicit]p2:
5011  //   An explicit instantiation shall appear in an enclosing namespace of its
5012  //   template.
5013  //
5014  // This is DR275, which we do not retroactively apply to C++98/03.
5015  if (S.getLangOptions().CPlusPlus0x &&
5016      !CurContext->Encloses(OrigContext)) {
5017    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext))
5018      S.Diag(InstLoc,
5019             S.getLangOptions().CPlusPlus0x?
5020                 diag::err_explicit_instantiation_out_of_scope
5021               : diag::warn_explicit_instantiation_out_of_scope_0x)
5022        << D << NS;
5023    else
5024      S.Diag(InstLoc,
5025             S.getLangOptions().CPlusPlus0x?
5026                 diag::err_explicit_instantiation_must_be_global
5027               : diag::warn_explicit_instantiation_out_of_scope_0x)
5028        << D;
5029    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5030    return false;
5031  }
5032
5033  // C++0x [temp.explicit]p2:
5034  //   If the name declared in the explicit instantiation is an unqualified
5035  //   name, the explicit instantiation shall appear in the namespace where
5036  //   its template is declared or, if that namespace is inline (7.3.1), any
5037  //   namespace from its enclosing namespace set.
5038  if (WasQualifiedName)
5039    return false;
5040
5041  if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
5042    return false;
5043
5044  S.Diag(InstLoc,
5045         S.getLangOptions().CPlusPlus0x?
5046             diag::err_explicit_instantiation_unqualified_wrong_namespace
5047           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
5048    << D << OrigContext;
5049  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5050  return false;
5051}
5052
5053/// \brief Determine whether the given scope specifier has a template-id in it.
5054static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
5055  if (!SS.isSet())
5056    return false;
5057
5058  // C++0x [temp.explicit]p2:
5059  //   If the explicit instantiation is for a member function, a member class
5060  //   or a static data member of a class template specialization, the name of
5061  //   the class template specialization in the qualified-id for the member
5062  //   name shall be a simple-template-id.
5063  //
5064  // C++98 has the same restriction, just worded differently.
5065  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
5066       NNS; NNS = NNS->getPrefix())
5067    if (Type *T = NNS->getAsType())
5068      if (isa<TemplateSpecializationType>(T))
5069        return true;
5070
5071  return false;
5072}
5073
5074// Explicit instantiation of a class template specialization
5075DeclResult
5076Sema::ActOnExplicitInstantiation(Scope *S,
5077                                 SourceLocation ExternLoc,
5078                                 SourceLocation TemplateLoc,
5079                                 unsigned TagSpec,
5080                                 SourceLocation KWLoc,
5081                                 const CXXScopeSpec &SS,
5082                                 TemplateTy TemplateD,
5083                                 SourceLocation TemplateNameLoc,
5084                                 SourceLocation LAngleLoc,
5085                                 ASTTemplateArgsPtr TemplateArgsIn,
5086                                 SourceLocation RAngleLoc,
5087                                 AttributeList *Attr) {
5088  // Find the class template we're specializing
5089  TemplateName Name = TemplateD.getAsVal<TemplateName>();
5090  ClassTemplateDecl *ClassTemplate
5091    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
5092
5093  // Check that the specialization uses the same tag kind as the
5094  // original template.
5095  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5096  assert(Kind != TTK_Enum &&
5097         "Invalid enum tag in class template explicit instantiation!");
5098  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5099                                    Kind, KWLoc,
5100                                    *ClassTemplate->getIdentifier())) {
5101    Diag(KWLoc, diag::err_use_with_wrong_tag)
5102      << ClassTemplate
5103      << FixItHint::CreateReplacement(KWLoc,
5104                            ClassTemplate->getTemplatedDecl()->getKindName());
5105    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5106         diag::note_previous_use);
5107    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5108  }
5109
5110  // C++0x [temp.explicit]p2:
5111  //   There are two forms of explicit instantiation: an explicit instantiation
5112  //   definition and an explicit instantiation declaration. An explicit
5113  //   instantiation declaration begins with the extern keyword. [...]
5114  TemplateSpecializationKind TSK
5115    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5116                           : TSK_ExplicitInstantiationDeclaration;
5117
5118  // Translate the parser's template argument list in our AST format.
5119  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
5120  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5121
5122  // Check that the template argument list is well-formed for this
5123  // template.
5124  llvm::SmallVector<TemplateArgument, 4> Converted;
5125  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5126                                TemplateArgs, false, Converted))
5127    return true;
5128
5129  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
5130         "Converted template argument list is too short!");
5131
5132  // Find the class template specialization declaration that
5133  // corresponds to these arguments.
5134  void *InsertPos = 0;
5135  ClassTemplateSpecializationDecl *PrevDecl
5136    = ClassTemplate->findSpecialization(Converted.data(),
5137                                        Converted.size(), InsertPos);
5138
5139  TemplateSpecializationKind PrevDecl_TSK
5140    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
5141
5142  // C++0x [temp.explicit]p2:
5143  //   [...] An explicit instantiation shall appear in an enclosing
5144  //   namespace of its template. [...]
5145  //
5146  // This is C++ DR 275.
5147  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
5148                                      SS.isSet()))
5149    return true;
5150
5151  ClassTemplateSpecializationDecl *Specialization = 0;
5152
5153  bool ReusedDecl = false;
5154  bool HasNoEffect = false;
5155  if (PrevDecl) {
5156    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
5157                                               PrevDecl, PrevDecl_TSK,
5158                                            PrevDecl->getPointOfInstantiation(),
5159                                               HasNoEffect))
5160      return PrevDecl;
5161
5162    // Even though HasNoEffect == true means that this explicit instantiation
5163    // has no effect on semantics, we go on to put its syntax in the AST.
5164
5165    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
5166        PrevDecl_TSK == TSK_Undeclared) {
5167      // Since the only prior class template specialization with these
5168      // arguments was referenced but not declared, reuse that
5169      // declaration node as our own, updating the source location
5170      // for the template name to reflect our new declaration.
5171      // (Other source locations will be updated later.)
5172      Specialization = PrevDecl;
5173      Specialization->setLocation(TemplateNameLoc);
5174      PrevDecl = 0;
5175      ReusedDecl = true;
5176    }
5177  }
5178
5179  if (!Specialization) {
5180    // Create a new class template specialization declaration node for
5181    // this explicit specialization.
5182    Specialization
5183      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5184                                             ClassTemplate->getDeclContext(),
5185                                                TemplateNameLoc,
5186                                                ClassTemplate,
5187                                                Converted.data(),
5188                                                Converted.size(),
5189                                                PrevDecl);
5190    SetNestedNameSpecifier(Specialization, SS);
5191
5192    if (!HasNoEffect && !PrevDecl) {
5193      // Insert the new specialization.
5194      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5195    }
5196  }
5197
5198  // Build the fully-sugared type for this explicit instantiation as
5199  // the user wrote in the explicit instantiation itself. This means
5200  // that we'll pretty-print the type retrieved from the
5201  // specialization's declaration the way that the user actually wrote
5202  // the explicit instantiation, rather than formatting the name based
5203  // on the "canonical" representation used to store the template
5204  // arguments in the specialization.
5205  TypeSourceInfo *WrittenTy
5206    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5207                                                TemplateArgs,
5208                                  Context.getTypeDeclType(Specialization));
5209  Specialization->setTypeAsWritten(WrittenTy);
5210  TemplateArgsIn.release();
5211
5212  // Set source locations for keywords.
5213  Specialization->setExternLoc(ExternLoc);
5214  Specialization->setTemplateKeywordLoc(TemplateLoc);
5215
5216  // Add the explicit instantiation into its lexical context. However,
5217  // since explicit instantiations are never found by name lookup, we
5218  // just put it into the declaration context directly.
5219  Specialization->setLexicalDeclContext(CurContext);
5220  CurContext->addDecl(Specialization);
5221
5222  // Syntax is now OK, so return if it has no other effect on semantics.
5223  if (HasNoEffect) {
5224    // Set the template specialization kind.
5225    Specialization->setTemplateSpecializationKind(TSK);
5226    return Specialization;
5227  }
5228
5229  // C++ [temp.explicit]p3:
5230  //   A definition of a class template or class member template
5231  //   shall be in scope at the point of the explicit instantiation of
5232  //   the class template or class member template.
5233  //
5234  // This check comes when we actually try to perform the
5235  // instantiation.
5236  ClassTemplateSpecializationDecl *Def
5237    = cast_or_null<ClassTemplateSpecializationDecl>(
5238                                              Specialization->getDefinition());
5239  if (!Def)
5240    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
5241  else if (TSK == TSK_ExplicitInstantiationDefinition) {
5242    MarkVTableUsed(TemplateNameLoc, Specialization, true);
5243    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
5244  }
5245
5246  // Instantiate the members of this class template specialization.
5247  Def = cast_or_null<ClassTemplateSpecializationDecl>(
5248                                       Specialization->getDefinition());
5249  if (Def) {
5250    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
5251
5252    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
5253    // TSK_ExplicitInstantiationDefinition
5254    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
5255        TSK == TSK_ExplicitInstantiationDefinition)
5256      Def->setTemplateSpecializationKind(TSK);
5257
5258    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
5259  }
5260
5261  // Set the template specialization kind.
5262  Specialization->setTemplateSpecializationKind(TSK);
5263  return Specialization;
5264}
5265
5266// Explicit instantiation of a member class of a class template.
5267DeclResult
5268Sema::ActOnExplicitInstantiation(Scope *S,
5269                                 SourceLocation ExternLoc,
5270                                 SourceLocation TemplateLoc,
5271                                 unsigned TagSpec,
5272                                 SourceLocation KWLoc,
5273                                 CXXScopeSpec &SS,
5274                                 IdentifierInfo *Name,
5275                                 SourceLocation NameLoc,
5276                                 AttributeList *Attr) {
5277
5278  bool Owned = false;
5279  bool IsDependent = false;
5280  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
5281                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
5282                        MultiTemplateParamsArg(*this, 0, 0),
5283                        Owned, IsDependent, false, false,
5284                        TypeResult());
5285  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
5286
5287  if (!TagD)
5288    return true;
5289
5290  TagDecl *Tag = cast<TagDecl>(TagD);
5291  if (Tag->isEnum()) {
5292    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
5293      << Context.getTypeDeclType(Tag);
5294    return true;
5295  }
5296
5297  if (Tag->isInvalidDecl())
5298    return true;
5299
5300  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
5301  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
5302  if (!Pattern) {
5303    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
5304      << Context.getTypeDeclType(Record);
5305    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
5306    return true;
5307  }
5308
5309  // C++0x [temp.explicit]p2:
5310  //   If the explicit instantiation is for a class or member class, the
5311  //   elaborated-type-specifier in the declaration shall include a
5312  //   simple-template-id.
5313  //
5314  // C++98 has the same restriction, just worded differently.
5315  if (!ScopeSpecifierHasTemplateId(SS))
5316    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
5317      << Record << SS.getRange();
5318
5319  // C++0x [temp.explicit]p2:
5320  //   There are two forms of explicit instantiation: an explicit instantiation
5321  //   definition and an explicit instantiation declaration. An explicit
5322  //   instantiation declaration begins with the extern keyword. [...]
5323  TemplateSpecializationKind TSK
5324    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5325                           : TSK_ExplicitInstantiationDeclaration;
5326
5327  // C++0x [temp.explicit]p2:
5328  //   [...] An explicit instantiation shall appear in an enclosing
5329  //   namespace of its template. [...]
5330  //
5331  // This is C++ DR 275.
5332  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
5333
5334  // Verify that it is okay to explicitly instantiate here.
5335  CXXRecordDecl *PrevDecl
5336    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
5337  if (!PrevDecl && Record->getDefinition())
5338    PrevDecl = Record;
5339  if (PrevDecl) {
5340    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
5341    bool HasNoEffect = false;
5342    assert(MSInfo && "No member specialization information?");
5343    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
5344                                               PrevDecl,
5345                                        MSInfo->getTemplateSpecializationKind(),
5346                                             MSInfo->getPointOfInstantiation(),
5347                                               HasNoEffect))
5348      return true;
5349    if (HasNoEffect)
5350      return TagD;
5351  }
5352
5353  CXXRecordDecl *RecordDef
5354    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5355  if (!RecordDef) {
5356    // C++ [temp.explicit]p3:
5357    //   A definition of a member class of a class template shall be in scope
5358    //   at the point of an explicit instantiation of the member class.
5359    CXXRecordDecl *Def
5360      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
5361    if (!Def) {
5362      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
5363        << 0 << Record->getDeclName() << Record->getDeclContext();
5364      Diag(Pattern->getLocation(), diag::note_forward_declaration)
5365        << Pattern;
5366      return true;
5367    } else {
5368      if (InstantiateClass(NameLoc, Record, Def,
5369                           getTemplateInstantiationArgs(Record),
5370                           TSK))
5371        return true;
5372
5373      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5374      if (!RecordDef)
5375        return true;
5376    }
5377  }
5378
5379  // Instantiate all of the members of the class.
5380  InstantiateClassMembers(NameLoc, RecordDef,
5381                          getTemplateInstantiationArgs(Record), TSK);
5382
5383  if (TSK == TSK_ExplicitInstantiationDefinition)
5384    MarkVTableUsed(NameLoc, RecordDef, true);
5385
5386  // FIXME: We don't have any representation for explicit instantiations of
5387  // member classes. Such a representation is not needed for compilation, but it
5388  // should be available for clients that want to see all of the declarations in
5389  // the source code.
5390  return TagD;
5391}
5392
5393DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
5394                                            SourceLocation ExternLoc,
5395                                            SourceLocation TemplateLoc,
5396                                            Declarator &D) {
5397  // Explicit instantiations always require a name.
5398  // TODO: check if/when DNInfo should replace Name.
5399  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5400  DeclarationName Name = NameInfo.getName();
5401  if (!Name) {
5402    if (!D.isInvalidType())
5403      Diag(D.getDeclSpec().getSourceRange().getBegin(),
5404           diag::err_explicit_instantiation_requires_name)
5405        << D.getDeclSpec().getSourceRange()
5406        << D.getSourceRange();
5407
5408    return true;
5409  }
5410
5411  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5412  // we find one that is.
5413  while ((S->getFlags() & Scope::DeclScope) == 0 ||
5414         (S->getFlags() & Scope::TemplateParamScope) != 0)
5415    S = S->getParent();
5416
5417  // Determine the type of the declaration.
5418  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
5419  QualType R = T->getType();
5420  if (R.isNull())
5421    return true;
5422
5423  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5424    // Cannot explicitly instantiate a typedef.
5425    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
5426      << Name;
5427    return true;
5428  }
5429
5430  // C++0x [temp.explicit]p1:
5431  //   [...] An explicit instantiation of a function template shall not use the
5432  //   inline or constexpr specifiers.
5433  // Presumably, this also applies to member functions of class templates as
5434  // well.
5435  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
5436    Diag(D.getDeclSpec().getInlineSpecLoc(),
5437         diag::err_explicit_instantiation_inline)
5438      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5439
5440  // FIXME: check for constexpr specifier.
5441
5442  // C++0x [temp.explicit]p2:
5443  //   There are two forms of explicit instantiation: an explicit instantiation
5444  //   definition and an explicit instantiation declaration. An explicit
5445  //   instantiation declaration begins with the extern keyword. [...]
5446  TemplateSpecializationKind TSK
5447    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5448                           : TSK_ExplicitInstantiationDeclaration;
5449
5450  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
5451  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
5452
5453  if (!R->isFunctionType()) {
5454    // C++ [temp.explicit]p1:
5455    //   A [...] static data member of a class template can be explicitly
5456    //   instantiated from the member definition associated with its class
5457    //   template.
5458    if (Previous.isAmbiguous())
5459      return true;
5460
5461    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
5462    if (!Prev || !Prev->isStaticDataMember()) {
5463      // We expect to see a data data member here.
5464      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
5465        << Name;
5466      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5467           P != PEnd; ++P)
5468        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
5469      return true;
5470    }
5471
5472    if (!Prev->getInstantiatedFromStaticDataMember()) {
5473      // FIXME: Check for explicit specialization?
5474      Diag(D.getIdentifierLoc(),
5475           diag::err_explicit_instantiation_data_member_not_instantiated)
5476        << Prev;
5477      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
5478      // FIXME: Can we provide a note showing where this was declared?
5479      return true;
5480    }
5481
5482    // C++0x [temp.explicit]p2:
5483    //   If the explicit instantiation is for a member function, a member class
5484    //   or a static data member of a class template specialization, the name of
5485    //   the class template specialization in the qualified-id for the member
5486    //   name shall be a simple-template-id.
5487    //
5488    // C++98 has the same restriction, just worded differently.
5489    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5490      Diag(D.getIdentifierLoc(),
5491           diag::ext_explicit_instantiation_without_qualified_id)
5492        << Prev << D.getCXXScopeSpec().getRange();
5493
5494    // Check the scope of this explicit instantiation.
5495    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
5496
5497    // Verify that it is okay to explicitly instantiate here.
5498    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
5499    assert(MSInfo && "Missing static data member specialization info?");
5500    bool HasNoEffect = false;
5501    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
5502                                        MSInfo->getTemplateSpecializationKind(),
5503                                              MSInfo->getPointOfInstantiation(),
5504                                               HasNoEffect))
5505      return true;
5506    if (HasNoEffect)
5507      return (Decl*) 0;
5508
5509    // Instantiate static data member.
5510    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5511    if (TSK == TSK_ExplicitInstantiationDefinition)
5512      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
5513
5514    // FIXME: Create an ExplicitInstantiation node?
5515    return (Decl*) 0;
5516  }
5517
5518  // If the declarator is a template-id, translate the parser's template
5519  // argument list into our AST format.
5520  bool HasExplicitTemplateArgs = false;
5521  TemplateArgumentListInfo TemplateArgs;
5522  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5523    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5524    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5525    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5526    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5527                                       TemplateId->getTemplateArgs(),
5528                                       TemplateId->NumArgs);
5529    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5530    HasExplicitTemplateArgs = true;
5531    TemplateArgsPtr.release();
5532  }
5533
5534  // C++ [temp.explicit]p1:
5535  //   A [...] function [...] can be explicitly instantiated from its template.
5536  //   A member function [...] of a class template can be explicitly
5537  //  instantiated from the member definition associated with its class
5538  //  template.
5539  UnresolvedSet<8> Matches;
5540  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5541       P != PEnd; ++P) {
5542    NamedDecl *Prev = *P;
5543    if (!HasExplicitTemplateArgs) {
5544      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5545        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5546          Matches.clear();
5547
5548          Matches.addDecl(Method, P.getAccess());
5549          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5550            break;
5551        }
5552      }
5553    }
5554
5555    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5556    if (!FunTmpl)
5557      continue;
5558
5559    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5560    FunctionDecl *Specialization = 0;
5561    if (TemplateDeductionResult TDK
5562          = DeduceTemplateArguments(FunTmpl,
5563                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5564                                    R, Specialization, Info)) {
5565      // FIXME: Keep track of almost-matches?
5566      (void)TDK;
5567      continue;
5568    }
5569
5570    Matches.addDecl(Specialization, P.getAccess());
5571  }
5572
5573  // Find the most specialized function template specialization.
5574  UnresolvedSetIterator Result
5575    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other,
5576                         D.getIdentifierLoc(),
5577                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
5578                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5579                         PDiag(diag::note_explicit_instantiation_candidate));
5580
5581  if (Result == Matches.end())
5582    return true;
5583
5584  // Ignore access control bits, we don't need them for redeclaration checking.
5585  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5586
5587  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5588    Diag(D.getIdentifierLoc(),
5589         diag::err_explicit_instantiation_member_function_not_instantiated)
5590      << Specialization
5591      << (Specialization->getTemplateSpecializationKind() ==
5592          TSK_ExplicitSpecialization);
5593    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5594    return true;
5595  }
5596
5597  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5598  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5599    PrevDecl = Specialization;
5600
5601  if (PrevDecl) {
5602    bool HasNoEffect = false;
5603    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5604                                               PrevDecl,
5605                                     PrevDecl->getTemplateSpecializationKind(),
5606                                          PrevDecl->getPointOfInstantiation(),
5607                                               HasNoEffect))
5608      return true;
5609
5610    // FIXME: We may still want to build some representation of this
5611    // explicit specialization.
5612    if (HasNoEffect)
5613      return (Decl*) 0;
5614  }
5615
5616  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5617
5618  if (TSK == TSK_ExplicitInstantiationDefinition)
5619    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
5620
5621  // C++0x [temp.explicit]p2:
5622  //   If the explicit instantiation is for a member function, a member class
5623  //   or a static data member of a class template specialization, the name of
5624  //   the class template specialization in the qualified-id for the member
5625  //   name shall be a simple-template-id.
5626  //
5627  // C++98 has the same restriction, just worded differently.
5628  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5629  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5630      D.getCXXScopeSpec().isSet() &&
5631      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5632    Diag(D.getIdentifierLoc(),
5633         diag::ext_explicit_instantiation_without_qualified_id)
5634    << Specialization << D.getCXXScopeSpec().getRange();
5635
5636  CheckExplicitInstantiationScope(*this,
5637                   FunTmpl? (NamedDecl *)FunTmpl
5638                          : Specialization->getInstantiatedFromMemberFunction(),
5639                                  D.getIdentifierLoc(),
5640                                  D.getCXXScopeSpec().isSet());
5641
5642  // FIXME: Create some kind of ExplicitInstantiationDecl here.
5643  return (Decl*) 0;
5644}
5645
5646TypeResult
5647Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5648                        const CXXScopeSpec &SS, IdentifierInfo *Name,
5649                        SourceLocation TagLoc, SourceLocation NameLoc) {
5650  // This has to hold, because SS is expected to be defined.
5651  assert(Name && "Expected a name in a dependent tag");
5652
5653  NestedNameSpecifier *NNS
5654    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5655  if (!NNS)
5656    return true;
5657
5658  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5659
5660  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
5661    Diag(NameLoc, diag::err_dependent_tag_decl)
5662      << (TUK == TUK_Definition) << Kind << SS.getRange();
5663    return true;
5664  }
5665
5666  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
5667  return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name));
5668}
5669
5670TypeResult
5671Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5672                        const CXXScopeSpec &SS, const IdentifierInfo &II,
5673                        SourceLocation IdLoc) {
5674  NestedNameSpecifier *NNS
5675    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5676  if (!NNS)
5677    return true;
5678
5679  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5680      !getLangOptions().CPlusPlus0x)
5681    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5682      << FixItHint::CreateRemoval(TypenameLoc);
5683
5684  QualType T = CheckTypenameType(ETK_Typename, NNS, II,
5685                                 TypenameLoc, SS.getRange(), IdLoc);
5686  if (T.isNull())
5687    return true;
5688
5689  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5690  if (isa<DependentNameType>(T)) {
5691    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5692    TL.setKeywordLoc(TypenameLoc);
5693    TL.setQualifierRange(SS.getRange());
5694    TL.setNameLoc(IdLoc);
5695  } else {
5696    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
5697    TL.setKeywordLoc(TypenameLoc);
5698    TL.setQualifierRange(SS.getRange());
5699    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
5700  }
5701
5702  return CreateParsedType(T, TSI);
5703}
5704
5705TypeResult
5706Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5707                        const CXXScopeSpec &SS, SourceLocation TemplateLoc,
5708                        ParsedType Ty) {
5709  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5710      !getLangOptions().CPlusPlus0x)
5711    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5712      << FixItHint::CreateRemoval(TypenameLoc);
5713
5714  TypeSourceInfo *InnerTSI = 0;
5715  QualType T = GetTypeFromParser(Ty, &InnerTSI);
5716
5717  assert(isa<TemplateSpecializationType>(T) &&
5718         "Expected a template specialization type");
5719
5720  if (computeDeclContext(SS, false)) {
5721    // If we can compute a declaration context, then the "typename"
5722    // keyword was superfluous. Just build an ElaboratedType to keep
5723    // track of the nested-name-specifier.
5724
5725    // Push the inner type, preserving its source locations if possible.
5726    TypeLocBuilder Builder;
5727    if (InnerTSI)
5728      Builder.pushFullCopy(InnerTSI->getTypeLoc());
5729    else
5730      Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc);
5731
5732    /* Note: NNS already embedded in template specialization type T. */
5733    T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T);
5734    ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
5735    TL.setKeywordLoc(TypenameLoc);
5736    TL.setQualifierRange(SS.getRange());
5737
5738    TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
5739    return CreateParsedType(T, TSI);
5740  }
5741
5742  // TODO: it's really silly that we make a template specialization
5743  // type earlier only to drop it again here.
5744  TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
5745  DependentTemplateName *DTN =
5746    TST->getTemplateName().getAsDependentTemplateName();
5747  assert(DTN && "dependent template has non-dependent name?");
5748  assert(DTN->getQualifier()
5749         == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
5750  T = Context.getDependentTemplateSpecializationType(ETK_Typename,
5751                                                     DTN->getQualifier(),
5752                                                     DTN->getIdentifier(),
5753                                                     TST->getNumArgs(),
5754                                                     TST->getArgs());
5755  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5756  DependentTemplateSpecializationTypeLoc TL =
5757    cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc());
5758  if (InnerTSI) {
5759    TemplateSpecializationTypeLoc TSTL =
5760      cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc());
5761    TL.setLAngleLoc(TSTL.getLAngleLoc());
5762    TL.setRAngleLoc(TSTL.getRAngleLoc());
5763    for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I)
5764      TL.setArgLocInfo(I, TSTL.getArgLocInfo(I));
5765  } else {
5766    TL.initializeLocal(SourceLocation());
5767  }
5768  TL.setKeywordLoc(TypenameLoc);
5769  TL.setQualifierRange(SS.getRange());
5770  return CreateParsedType(T, TSI);
5771}
5772
5773/// \brief Build the type that describes a C++ typename specifier,
5774/// e.g., "typename T::type".
5775QualType
5776Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
5777                        NestedNameSpecifier *NNS, const IdentifierInfo &II,
5778                        SourceLocation KeywordLoc, SourceRange NNSRange,
5779                        SourceLocation IILoc) {
5780  CXXScopeSpec SS;
5781  SS.setScopeRep(NNS);
5782  SS.setRange(NNSRange);
5783
5784  DeclContext *Ctx = computeDeclContext(SS);
5785  if (!Ctx) {
5786    // If the nested-name-specifier is dependent and couldn't be
5787    // resolved to a type, build a typename type.
5788    assert(NNS->isDependent());
5789    return Context.getDependentNameType(Keyword, NNS, &II);
5790  }
5791
5792  // If the nested-name-specifier refers to the current instantiation,
5793  // the "typename" keyword itself is superfluous. In C++03, the
5794  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
5795  // allows such extraneous "typename" keywords, and we retroactively
5796  // apply this DR to C++03 code with only a warning. In any case we continue.
5797
5798  if (RequireCompleteDeclContext(SS, Ctx))
5799    return QualType();
5800
5801  DeclarationName Name(&II);
5802  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
5803  LookupQualifiedName(Result, Ctx);
5804  unsigned DiagID = 0;
5805  Decl *Referenced = 0;
5806  switch (Result.getResultKind()) {
5807  case LookupResult::NotFound:
5808    DiagID = diag::err_typename_nested_not_found;
5809    break;
5810
5811  case LookupResult::FoundUnresolvedValue: {
5812    // We found a using declaration that is a value. Most likely, the using
5813    // declaration itself is meant to have the 'typename' keyword.
5814    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5815                          IILoc);
5816    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
5817      << Name << Ctx << FullRange;
5818    if (UnresolvedUsingValueDecl *Using
5819          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
5820      SourceLocation Loc = Using->getTargetNestedNameRange().getBegin();
5821      Diag(Loc, diag::note_using_value_decl_missing_typename)
5822        << FixItHint::CreateInsertion(Loc, "typename ");
5823    }
5824  }
5825  // Fall through to create a dependent typename type, from which we can recover
5826  // better.
5827
5828  case LookupResult::NotFoundInCurrentInstantiation:
5829    // Okay, it's a member of an unknown instantiation.
5830    return Context.getDependentNameType(Keyword, NNS, &II);
5831
5832  case LookupResult::Found:
5833    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
5834      // We found a type. Build an ElaboratedType, since the
5835      // typename-specifier was just sugar.
5836      return Context.getElaboratedType(ETK_Typename, NNS,
5837                                       Context.getTypeDeclType(Type));
5838    }
5839
5840    DiagID = diag::err_typename_nested_not_type;
5841    Referenced = Result.getFoundDecl();
5842    break;
5843
5844
5845    llvm_unreachable("unresolved using decl in non-dependent context");
5846    return QualType();
5847
5848  case LookupResult::FoundOverloaded:
5849    DiagID = diag::err_typename_nested_not_type;
5850    Referenced = *Result.begin();
5851    break;
5852
5853  case LookupResult::Ambiguous:
5854    return QualType();
5855  }
5856
5857  // If we get here, it's because name lookup did not find a
5858  // type. Emit an appropriate diagnostic and return an error.
5859  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5860                        IILoc);
5861  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
5862  if (Referenced)
5863    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
5864      << Name;
5865  return QualType();
5866}
5867
5868namespace {
5869  // See Sema::RebuildTypeInCurrentInstantiation
5870  class CurrentInstantiationRebuilder
5871    : public TreeTransform<CurrentInstantiationRebuilder> {
5872    SourceLocation Loc;
5873    DeclarationName Entity;
5874
5875  public:
5876    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
5877
5878    CurrentInstantiationRebuilder(Sema &SemaRef,
5879                                  SourceLocation Loc,
5880                                  DeclarationName Entity)
5881    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
5882      Loc(Loc), Entity(Entity) { }
5883
5884    /// \brief Determine whether the given type \p T has already been
5885    /// transformed.
5886    ///
5887    /// For the purposes of type reconstruction, a type has already been
5888    /// transformed if it is NULL or if it is not dependent.
5889    bool AlreadyTransformed(QualType T) {
5890      return T.isNull() || !T->isDependentType();
5891    }
5892
5893    /// \brief Returns the location of the entity whose type is being
5894    /// rebuilt.
5895    SourceLocation getBaseLocation() { return Loc; }
5896
5897    /// \brief Returns the name of the entity whose type is being rebuilt.
5898    DeclarationName getBaseEntity() { return Entity; }
5899
5900    /// \brief Sets the "base" location and entity when that
5901    /// information is known based on another transformation.
5902    void setBase(SourceLocation Loc, DeclarationName Entity) {
5903      this->Loc = Loc;
5904      this->Entity = Entity;
5905    }
5906  };
5907}
5908
5909/// \brief Rebuilds a type within the context of the current instantiation.
5910///
5911/// The type \p T is part of the type of an out-of-line member definition of
5912/// a class template (or class template partial specialization) that was parsed
5913/// and constructed before we entered the scope of the class template (or
5914/// partial specialization thereof). This routine will rebuild that type now
5915/// that we have entered the declarator's scope, which may produce different
5916/// canonical types, e.g.,
5917///
5918/// \code
5919/// template<typename T>
5920/// struct X {
5921///   typedef T* pointer;
5922///   pointer data();
5923/// };
5924///
5925/// template<typename T>
5926/// typename X<T>::pointer X<T>::data() { ... }
5927/// \endcode
5928///
5929/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
5930/// since we do not know that we can look into X<T> when we parsed the type.
5931/// This function will rebuild the type, performing the lookup of "pointer"
5932/// in X<T> and returning an ElaboratedType whose canonical type is the same
5933/// as the canonical type of T*, allowing the return types of the out-of-line
5934/// definition and the declaration to match.
5935TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
5936                                                        SourceLocation Loc,
5937                                                        DeclarationName Name) {
5938  if (!T || !T->getType()->isDependentType())
5939    return T;
5940
5941  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
5942  return Rebuilder.TransformType(T);
5943}
5944
5945ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
5946  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
5947                                          DeclarationName());
5948  return Rebuilder.TransformExpr(E);
5949}
5950
5951bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
5952  if (SS.isInvalid()) return true;
5953
5954  NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5955  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
5956                                          DeclarationName());
5957  NestedNameSpecifier *Rebuilt =
5958    Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange());
5959  if (!Rebuilt) return true;
5960
5961  SS.setScopeRep(Rebuilt);
5962  return false;
5963}
5964
5965/// \brief Produces a formatted string that describes the binding of
5966/// template parameters to template arguments.
5967std::string
5968Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5969                                      const TemplateArgumentList &Args) {
5970  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
5971}
5972
5973std::string
5974Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5975                                      const TemplateArgument *Args,
5976                                      unsigned NumArgs) {
5977  llvm::SmallString<128> Str;
5978  llvm::raw_svector_ostream Out(Str);
5979
5980  if (!Params || Params->size() == 0 || NumArgs == 0)
5981    return std::string();
5982
5983  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
5984    if (I >= NumArgs)
5985      break;
5986
5987    if (I == 0)
5988      Out << "[with ";
5989    else
5990      Out << ", ";
5991
5992    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
5993      Out << Id->getName();
5994    } else {
5995      Out << '$' << I;
5996    }
5997
5998    Out << " = ";
5999    Args[I].print(Context.PrintingPolicy, Out);
6000  }
6001
6002  Out << ']';
6003  return Out.str();
6004}
6005
6006