SemaTemplate.cpp revision b10cd04880672103660e5844e51ee91af7361a20
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "Sema.h" 13#include "Lookup.h" 14#include "TreeTransform.h" 15#include "clang/AST/ASTContext.h" 16#include "clang/AST/Expr.h" 17#include "clang/AST/ExprCXX.h" 18#include "clang/AST/DeclTemplate.h" 19#include "clang/Parse/DeclSpec.h" 20#include "clang/Parse/Template.h" 21#include "clang/Basic/LangOptions.h" 22#include "clang/Basic/PartialDiagnostic.h" 23#include "llvm/ADT/StringExtras.h" 24using namespace clang; 25 26/// \brief Determine whether the declaration found is acceptable as the name 27/// of a template and, if so, return that template declaration. Otherwise, 28/// returns NULL. 29static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) { 30 if (!D) 31 return 0; 32 33 if (isa<TemplateDecl>(D)) 34 return D; 35 36 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 37 // C++ [temp.local]p1: 38 // Like normal (non-template) classes, class templates have an 39 // injected-class-name (Clause 9). The injected-class-name 40 // can be used with or without a template-argument-list. When 41 // it is used without a template-argument-list, it is 42 // equivalent to the injected-class-name followed by the 43 // template-parameters of the class template enclosed in 44 // <>. When it is used with a template-argument-list, it 45 // refers to the specified class template specialization, 46 // which could be the current specialization or another 47 // specialization. 48 if (Record->isInjectedClassName()) { 49 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 50 if (Record->getDescribedClassTemplate()) 51 return Record->getDescribedClassTemplate(); 52 53 if (ClassTemplateSpecializationDecl *Spec 54 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 55 return Spec->getSpecializedTemplate(); 56 } 57 58 return 0; 59 } 60 61 return 0; 62} 63 64static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) { 65 LookupResult::Filter filter = R.makeFilter(); 66 while (filter.hasNext()) { 67 NamedDecl *Orig = filter.next(); 68 NamedDecl *Repl = isAcceptableTemplateName(C, Orig->getUnderlyingDecl()); 69 if (!Repl) 70 filter.erase(); 71 else if (Repl != Orig) 72 filter.replace(Repl); 73 } 74 filter.done(); 75} 76 77TemplateNameKind Sema::isTemplateName(Scope *S, 78 const CXXScopeSpec &SS, 79 UnqualifiedId &Name, 80 TypeTy *ObjectTypePtr, 81 bool EnteringContext, 82 TemplateTy &TemplateResult) { 83 assert(getLangOptions().CPlusPlus && "No template names in C!"); 84 85 DeclarationName TName; 86 87 switch (Name.getKind()) { 88 case UnqualifiedId::IK_Identifier: 89 TName = DeclarationName(Name.Identifier); 90 break; 91 92 case UnqualifiedId::IK_OperatorFunctionId: 93 TName = Context.DeclarationNames.getCXXOperatorName( 94 Name.OperatorFunctionId.Operator); 95 break; 96 97 case UnqualifiedId::IK_LiteralOperatorId: 98 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 99 break; 100 101 default: 102 return TNK_Non_template; 103 } 104 105 QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr); 106 107 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 108 LookupOrdinaryName); 109 R.suppressDiagnostics(); 110 LookupTemplateName(R, S, SS, ObjectType, EnteringContext); 111 if (R.empty()) 112 return TNK_Non_template; 113 114 TemplateName Template; 115 TemplateNameKind TemplateKind; 116 117 unsigned ResultCount = R.end() - R.begin(); 118 if (ResultCount > 1) { 119 // We assume that we'll preserve the qualifier from a function 120 // template name in other ways. 121 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 122 TemplateKind = TNK_Function_template; 123 } else { 124 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 125 126 if (SS.isSet() && !SS.isInvalid()) { 127 NestedNameSpecifier *Qualifier 128 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 129 Template = Context.getQualifiedTemplateName(Qualifier, false, TD); 130 } else { 131 Template = TemplateName(TD); 132 } 133 134 if (isa<FunctionTemplateDecl>(TD)) 135 TemplateKind = TNK_Function_template; 136 else { 137 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD)); 138 TemplateKind = TNK_Type_template; 139 } 140 } 141 142 TemplateResult = TemplateTy::make(Template); 143 return TemplateKind; 144} 145 146bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 147 SourceLocation IILoc, 148 Scope *S, 149 const CXXScopeSpec *SS, 150 TemplateTy &SuggestedTemplate, 151 TemplateNameKind &SuggestedKind) { 152 // We can't recover unless there's a dependent scope specifier preceding the 153 // template name. 154 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 155 computeDeclContext(*SS)) 156 return false; 157 158 // The code is missing a 'template' keyword prior to the dependent template 159 // name. 160 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 161 Diag(IILoc, diag::err_template_kw_missing) 162 << Qualifier << II.getName() 163 << CodeModificationHint::CreateInsertion(IILoc, "template "); 164 SuggestedTemplate 165 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 166 SuggestedKind = TNK_Dependent_template_name; 167 return true; 168} 169 170void Sema::LookupTemplateName(LookupResult &Found, 171 Scope *S, const CXXScopeSpec &SS, 172 QualType ObjectType, 173 bool EnteringContext) { 174 // Determine where to perform name lookup 175 DeclContext *LookupCtx = 0; 176 bool isDependent = false; 177 if (!ObjectType.isNull()) { 178 // This nested-name-specifier occurs in a member access expression, e.g., 179 // x->B::f, and we are looking into the type of the object. 180 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 181 LookupCtx = computeDeclContext(ObjectType); 182 isDependent = ObjectType->isDependentType(); 183 assert((isDependent || !ObjectType->isIncompleteType()) && 184 "Caller should have completed object type"); 185 } else if (SS.isSet()) { 186 // This nested-name-specifier occurs after another nested-name-specifier, 187 // so long into the context associated with the prior nested-name-specifier. 188 LookupCtx = computeDeclContext(SS, EnteringContext); 189 isDependent = isDependentScopeSpecifier(SS); 190 191 // The declaration context must be complete. 192 if (LookupCtx && RequireCompleteDeclContext(SS)) 193 return; 194 } 195 196 bool ObjectTypeSearchedInScope = false; 197 if (LookupCtx) { 198 // Perform "qualified" name lookup into the declaration context we 199 // computed, which is either the type of the base of a member access 200 // expression or the declaration context associated with a prior 201 // nested-name-specifier. 202 LookupQualifiedName(Found, LookupCtx); 203 204 if (!ObjectType.isNull() && Found.empty()) { 205 // C++ [basic.lookup.classref]p1: 206 // In a class member access expression (5.2.5), if the . or -> token is 207 // immediately followed by an identifier followed by a <, the 208 // identifier must be looked up to determine whether the < is the 209 // beginning of a template argument list (14.2) or a less-than operator. 210 // The identifier is first looked up in the class of the object 211 // expression. If the identifier is not found, it is then looked up in 212 // the context of the entire postfix-expression and shall name a class 213 // or function template. 214 // 215 // FIXME: When we're instantiating a template, do we actually have to 216 // look in the scope of the template? Seems fishy... 217 if (S) LookupName(Found, S); 218 ObjectTypeSearchedInScope = true; 219 } 220 } else if (isDependent) { 221 // We cannot look into a dependent object type or nested nme 222 // specifier. 223 return; 224 } else { 225 // Perform unqualified name lookup in the current scope. 226 LookupName(Found, S); 227 } 228 229 // FIXME: Cope with ambiguous name-lookup results. 230 assert(!Found.isAmbiguous() && 231 "Cannot handle template name-lookup ambiguities"); 232 233 if (Found.empty() && !isDependent) { 234 // If we did not find any names, attempt to correct any typos. 235 DeclarationName Name = Found.getLookupName(); 236 if (CorrectTypo(Found, S, &SS, LookupCtx)) { 237 FilterAcceptableTemplateNames(Context, Found); 238 if (!Found.empty() && isa<TemplateDecl>(*Found.begin())) { 239 if (LookupCtx) 240 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 241 << Name << LookupCtx << Found.getLookupName() << SS.getRange() 242 << CodeModificationHint::CreateReplacement(Found.getNameLoc(), 243 Found.getLookupName().getAsString()); 244 else 245 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 246 << Name << Found.getLookupName() 247 << CodeModificationHint::CreateReplacement(Found.getNameLoc(), 248 Found.getLookupName().getAsString()); 249 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 250 Diag(Template->getLocation(), diag::note_previous_decl) 251 << Template->getDeclName(); 252 } else 253 Found.clear(); 254 } else { 255 Found.clear(); 256 } 257 } 258 259 FilterAcceptableTemplateNames(Context, Found); 260 if (Found.empty()) 261 return; 262 263 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 264 // C++ [basic.lookup.classref]p1: 265 // [...] If the lookup in the class of the object expression finds a 266 // template, the name is also looked up in the context of the entire 267 // postfix-expression and [...] 268 // 269 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 270 LookupOrdinaryName); 271 LookupName(FoundOuter, S); 272 FilterAcceptableTemplateNames(Context, FoundOuter); 273 // FIXME: Handle ambiguities in this lookup better 274 275 if (FoundOuter.empty()) { 276 // - if the name is not found, the name found in the class of the 277 // object expression is used, otherwise 278 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 279 // - if the name is found in the context of the entire 280 // postfix-expression and does not name a class template, the name 281 // found in the class of the object expression is used, otherwise 282 } else { 283 // - if the name found is a class template, it must refer to the same 284 // entity as the one found in the class of the object expression, 285 // otherwise the program is ill-formed. 286 if (!Found.isSingleResult() || 287 Found.getFoundDecl()->getCanonicalDecl() 288 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 289 Diag(Found.getNameLoc(), 290 diag::err_nested_name_member_ref_lookup_ambiguous) 291 << Found.getLookupName(); 292 Diag(Found.getRepresentativeDecl()->getLocation(), 293 diag::note_ambig_member_ref_object_type) 294 << ObjectType; 295 Diag(FoundOuter.getFoundDecl()->getLocation(), 296 diag::note_ambig_member_ref_scope); 297 298 // Recover by taking the template that we found in the object 299 // expression's type. 300 } 301 } 302 } 303} 304 305/// ActOnDependentIdExpression - Handle a dependent id-expression that 306/// was just parsed. This is only possible with an explicit scope 307/// specifier naming a dependent type. 308Sema::OwningExprResult 309Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 310 DeclarationName Name, 311 SourceLocation NameLoc, 312 bool isAddressOfOperand, 313 const TemplateArgumentListInfo *TemplateArgs) { 314 NestedNameSpecifier *Qualifier 315 = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 316 317 if (!isAddressOfOperand && 318 isa<CXXMethodDecl>(CurContext) && 319 cast<CXXMethodDecl>(CurContext)->isInstance()) { 320 QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context); 321 322 // Since the 'this' expression is synthesized, we don't need to 323 // perform the double-lookup check. 324 NamedDecl *FirstQualifierInScope = 0; 325 326 return Owned(CXXDependentScopeMemberExpr::Create(Context, 327 /*This*/ 0, ThisType, 328 /*IsArrow*/ true, 329 /*Op*/ SourceLocation(), 330 Qualifier, SS.getRange(), 331 FirstQualifierInScope, 332 Name, NameLoc, 333 TemplateArgs)); 334 } 335 336 return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs); 337} 338 339Sema::OwningExprResult 340Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 341 DeclarationName Name, 342 SourceLocation NameLoc, 343 const TemplateArgumentListInfo *TemplateArgs) { 344 return Owned(DependentScopeDeclRefExpr::Create(Context, 345 static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 346 SS.getRange(), 347 Name, NameLoc, 348 TemplateArgs)); 349} 350 351/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 352/// that the template parameter 'PrevDecl' is being shadowed by a new 353/// declaration at location Loc. Returns true to indicate that this is 354/// an error, and false otherwise. 355bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 356 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 357 358 // Microsoft Visual C++ permits template parameters to be shadowed. 359 if (getLangOptions().Microsoft) 360 return false; 361 362 // C++ [temp.local]p4: 363 // A template-parameter shall not be redeclared within its 364 // scope (including nested scopes). 365 Diag(Loc, diag::err_template_param_shadow) 366 << cast<NamedDecl>(PrevDecl)->getDeclName(); 367 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 368 return true; 369} 370 371/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 372/// the parameter D to reference the templated declaration and return a pointer 373/// to the template declaration. Otherwise, do nothing to D and return null. 374TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) { 375 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) { 376 D = DeclPtrTy::make(Temp->getTemplatedDecl()); 377 return Temp; 378 } 379 return 0; 380} 381 382static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 383 const ParsedTemplateArgument &Arg) { 384 385 switch (Arg.getKind()) { 386 case ParsedTemplateArgument::Type: { 387 TypeSourceInfo *DI; 388 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 389 if (!DI) 390 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 391 return TemplateArgumentLoc(TemplateArgument(T), DI); 392 } 393 394 case ParsedTemplateArgument::NonType: { 395 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 396 return TemplateArgumentLoc(TemplateArgument(E), E); 397 } 398 399 case ParsedTemplateArgument::Template: { 400 TemplateName Template 401 = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get()); 402 return TemplateArgumentLoc(TemplateArgument(Template), 403 Arg.getScopeSpec().getRange(), 404 Arg.getLocation()); 405 } 406 } 407 408 llvm_unreachable("Unhandled parsed template argument"); 409 return TemplateArgumentLoc(); 410} 411 412/// \brief Translates template arguments as provided by the parser 413/// into template arguments used by semantic analysis. 414void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 415 TemplateArgumentListInfo &TemplateArgs) { 416 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 417 TemplateArgs.addArgument(translateTemplateArgument(*this, 418 TemplateArgsIn[I])); 419} 420 421/// ActOnTypeParameter - Called when a C++ template type parameter 422/// (e.g., "typename T") has been parsed. Typename specifies whether 423/// the keyword "typename" was used to declare the type parameter 424/// (otherwise, "class" was used), and KeyLoc is the location of the 425/// "class" or "typename" keyword. ParamName is the name of the 426/// parameter (NULL indicates an unnamed template parameter) and 427/// ParamName is the location of the parameter name (if any). 428/// If the type parameter has a default argument, it will be added 429/// later via ActOnTypeParameterDefault. 430Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 431 SourceLocation EllipsisLoc, 432 SourceLocation KeyLoc, 433 IdentifierInfo *ParamName, 434 SourceLocation ParamNameLoc, 435 unsigned Depth, unsigned Position) { 436 assert(S->isTemplateParamScope() && 437 "Template type parameter not in template parameter scope!"); 438 bool Invalid = false; 439 440 if (ParamName) { 441 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName); 442 if (PrevDecl && PrevDecl->isTemplateParameter()) 443 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 444 PrevDecl); 445 } 446 447 SourceLocation Loc = ParamNameLoc; 448 if (!ParamName) 449 Loc = KeyLoc; 450 451 TemplateTypeParmDecl *Param 452 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 453 Loc, Depth, Position, ParamName, Typename, 454 Ellipsis); 455 if (Invalid) 456 Param->setInvalidDecl(); 457 458 if (ParamName) { 459 // Add the template parameter into the current scope. 460 S->AddDecl(DeclPtrTy::make(Param)); 461 IdResolver.AddDecl(Param); 462 } 463 464 return DeclPtrTy::make(Param); 465} 466 467/// ActOnTypeParameterDefault - Adds a default argument (the type 468/// Default) to the given template type parameter (TypeParam). 469void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam, 470 SourceLocation EqualLoc, 471 SourceLocation DefaultLoc, 472 TypeTy *DefaultT) { 473 TemplateTypeParmDecl *Parm 474 = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>()); 475 476 TypeSourceInfo *DefaultTInfo; 477 GetTypeFromParser(DefaultT, &DefaultTInfo); 478 479 assert(DefaultTInfo && "expected source information for type"); 480 481 // C++0x [temp.param]p9: 482 // A default template-argument may be specified for any kind of 483 // template-parameter that is not a template parameter pack. 484 if (Parm->isParameterPack()) { 485 Diag(DefaultLoc, diag::err_template_param_pack_default_arg); 486 return; 487 } 488 489 // C++ [temp.param]p14: 490 // A template-parameter shall not be used in its own default argument. 491 // FIXME: Implement this check! Needs a recursive walk over the types. 492 493 // Check the template argument itself. 494 if (CheckTemplateArgument(Parm, DefaultTInfo)) { 495 Parm->setInvalidDecl(); 496 return; 497 } 498 499 Parm->setDefaultArgument(DefaultTInfo, false); 500} 501 502/// \brief Check that the type of a non-type template parameter is 503/// well-formed. 504/// 505/// \returns the (possibly-promoted) parameter type if valid; 506/// otherwise, produces a diagnostic and returns a NULL type. 507QualType 508Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 509 // C++ [temp.param]p4: 510 // 511 // A non-type template-parameter shall have one of the following 512 // (optionally cv-qualified) types: 513 // 514 // -- integral or enumeration type, 515 if (T->isIntegralType() || T->isEnumeralType() || 516 // -- pointer to object or pointer to function, 517 (T->isPointerType() && 518 (T->getAs<PointerType>()->getPointeeType()->isObjectType() || 519 T->getAs<PointerType>()->getPointeeType()->isFunctionType())) || 520 // -- reference to object or reference to function, 521 T->isReferenceType() || 522 // -- pointer to member. 523 T->isMemberPointerType() || 524 // If T is a dependent type, we can't do the check now, so we 525 // assume that it is well-formed. 526 T->isDependentType()) 527 return T; 528 // C++ [temp.param]p8: 529 // 530 // A non-type template-parameter of type "array of T" or 531 // "function returning T" is adjusted to be of type "pointer to 532 // T" or "pointer to function returning T", respectively. 533 else if (T->isArrayType()) 534 // FIXME: Keep the type prior to promotion? 535 return Context.getArrayDecayedType(T); 536 else if (T->isFunctionType()) 537 // FIXME: Keep the type prior to promotion? 538 return Context.getPointerType(T); 539 540 Diag(Loc, diag::err_template_nontype_parm_bad_type) 541 << T; 542 543 return QualType(); 544} 545 546/// ActOnNonTypeTemplateParameter - Called when a C++ non-type 547/// template parameter (e.g., "int Size" in "template<int Size> 548/// class Array") has been parsed. S is the current scope and D is 549/// the parsed declarator. 550Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 551 unsigned Depth, 552 unsigned Position) { 553 TypeSourceInfo *TInfo = 0; 554 QualType T = GetTypeForDeclarator(D, S, &TInfo); 555 556 assert(S->isTemplateParamScope() && 557 "Non-type template parameter not in template parameter scope!"); 558 bool Invalid = false; 559 560 IdentifierInfo *ParamName = D.getIdentifier(); 561 if (ParamName) { 562 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName); 563 if (PrevDecl && PrevDecl->isTemplateParameter()) 564 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 565 PrevDecl); 566 } 567 568 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 569 if (T.isNull()) { 570 T = Context.IntTy; // Recover with an 'int' type. 571 Invalid = true; 572 } 573 574 NonTypeTemplateParmDecl *Param 575 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 576 D.getIdentifierLoc(), 577 Depth, Position, ParamName, T, TInfo); 578 if (Invalid) 579 Param->setInvalidDecl(); 580 581 if (D.getIdentifier()) { 582 // Add the template parameter into the current scope. 583 S->AddDecl(DeclPtrTy::make(Param)); 584 IdResolver.AddDecl(Param); 585 } 586 return DeclPtrTy::make(Param); 587} 588 589/// \brief Adds a default argument to the given non-type template 590/// parameter. 591void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD, 592 SourceLocation EqualLoc, 593 ExprArg DefaultE) { 594 NonTypeTemplateParmDecl *TemplateParm 595 = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 596 Expr *Default = static_cast<Expr *>(DefaultE.get()); 597 598 // C++ [temp.param]p14: 599 // A template-parameter shall not be used in its own default argument. 600 // FIXME: Implement this check! Needs a recursive walk over the types. 601 602 // Check the well-formedness of the default template argument. 603 TemplateArgument Converted; 604 if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default, 605 Converted)) { 606 TemplateParm->setInvalidDecl(); 607 return; 608 } 609 610 TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>()); 611} 612 613 614/// ActOnTemplateTemplateParameter - Called when a C++ template template 615/// parameter (e.g. T in template <template <typename> class T> class array) 616/// has been parsed. S is the current scope. 617Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S, 618 SourceLocation TmpLoc, 619 TemplateParamsTy *Params, 620 IdentifierInfo *Name, 621 SourceLocation NameLoc, 622 unsigned Depth, 623 unsigned Position) { 624 assert(S->isTemplateParamScope() && 625 "Template template parameter not in template parameter scope!"); 626 627 // Construct the parameter object. 628 TemplateTemplateParmDecl *Param = 629 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 630 TmpLoc, Depth, Position, Name, 631 (TemplateParameterList*)Params); 632 633 // Make sure the parameter is valid. 634 // FIXME: Decl object is not currently invalidated anywhere so this doesn't 635 // do anything yet. However, if the template parameter list or (eventual) 636 // default value is ever invalidated, that will propagate here. 637 bool Invalid = false; 638 if (Invalid) { 639 Param->setInvalidDecl(); 640 } 641 642 // If the tt-param has a name, then link the identifier into the scope 643 // and lookup mechanisms. 644 if (Name) { 645 S->AddDecl(DeclPtrTy::make(Param)); 646 IdResolver.AddDecl(Param); 647 } 648 649 return DeclPtrTy::make(Param); 650} 651 652/// \brief Adds a default argument to the given template template 653/// parameter. 654void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD, 655 SourceLocation EqualLoc, 656 const ParsedTemplateArgument &Default) { 657 TemplateTemplateParmDecl *TemplateParm 658 = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 659 660 // C++ [temp.param]p14: 661 // A template-parameter shall not be used in its own default argument. 662 // FIXME: Implement this check! Needs a recursive walk over the types. 663 664 // Check only that we have a template template argument. We don't want to 665 // try to check well-formedness now, because our template template parameter 666 // might have dependent types in its template parameters, which we wouldn't 667 // be able to match now. 668 // 669 // If none of the template template parameter's template arguments mention 670 // other template parameters, we could actually perform more checking here. 671 // However, it isn't worth doing. 672 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 673 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 674 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 675 << DefaultArg.getSourceRange(); 676 return; 677 } 678 679 TemplateParm->setDefaultArgument(DefaultArg); 680} 681 682/// ActOnTemplateParameterList - Builds a TemplateParameterList that 683/// contains the template parameters in Params/NumParams. 684Sema::TemplateParamsTy * 685Sema::ActOnTemplateParameterList(unsigned Depth, 686 SourceLocation ExportLoc, 687 SourceLocation TemplateLoc, 688 SourceLocation LAngleLoc, 689 DeclPtrTy *Params, unsigned NumParams, 690 SourceLocation RAngleLoc) { 691 if (ExportLoc.isValid()) 692 Diag(ExportLoc, diag::warn_template_export_unsupported); 693 694 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 695 (NamedDecl**)Params, NumParams, 696 RAngleLoc); 697} 698 699Sema::DeclResult 700Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 701 SourceLocation KWLoc, const CXXScopeSpec &SS, 702 IdentifierInfo *Name, SourceLocation NameLoc, 703 AttributeList *Attr, 704 TemplateParameterList *TemplateParams, 705 AccessSpecifier AS) { 706 assert(TemplateParams && TemplateParams->size() > 0 && 707 "No template parameters"); 708 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 709 bool Invalid = false; 710 711 // Check that we can declare a template here. 712 if (CheckTemplateDeclScope(S, TemplateParams)) 713 return true; 714 715 TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec); 716 assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type"); 717 718 // There is no such thing as an unnamed class template. 719 if (!Name) { 720 Diag(KWLoc, diag::err_template_unnamed_class); 721 return true; 722 } 723 724 // Find any previous declaration with this name. 725 DeclContext *SemanticContext; 726 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 727 ForRedeclaration); 728 if (SS.isNotEmpty() && !SS.isInvalid()) { 729 if (RequireCompleteDeclContext(SS)) 730 return true; 731 732 SemanticContext = computeDeclContext(SS, true); 733 if (!SemanticContext) { 734 // FIXME: Produce a reasonable diagnostic here 735 return true; 736 } 737 738 LookupQualifiedName(Previous, SemanticContext); 739 } else { 740 SemanticContext = CurContext; 741 LookupName(Previous, S); 742 } 743 744 assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?"); 745 NamedDecl *PrevDecl = 0; 746 if (Previous.begin() != Previous.end()) 747 PrevDecl = *Previous.begin(); 748 749 // If there is a previous declaration with the same name, check 750 // whether this is a valid redeclaration. 751 ClassTemplateDecl *PrevClassTemplate 752 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 753 754 // We may have found the injected-class-name of a class template, 755 // class template partial specialization, or class template specialization. 756 // In these cases, grab the template that is being defined or specialized. 757 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 758 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 759 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 760 PrevClassTemplate 761 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 762 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 763 PrevClassTemplate 764 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 765 ->getSpecializedTemplate(); 766 } 767 } 768 769 if (TUK == TUK_Friend) { 770 // C++ [namespace.memdef]p3: 771 // [...] When looking for a prior declaration of a class or a function 772 // declared as a friend, and when the name of the friend class or 773 // function is neither a qualified name nor a template-id, scopes outside 774 // the innermost enclosing namespace scope are not considered. 775 DeclContext *OutermostContext = CurContext; 776 while (!OutermostContext->isFileContext()) 777 OutermostContext = OutermostContext->getLookupParent(); 778 779 if (PrevDecl && 780 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 781 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 782 SemanticContext = PrevDecl->getDeclContext(); 783 } else { 784 // Declarations in outer scopes don't matter. However, the outermost 785 // context we computed is the semantic context for our new 786 // declaration. 787 PrevDecl = PrevClassTemplate = 0; 788 SemanticContext = OutermostContext; 789 } 790 791 if (CurContext->isDependentContext()) { 792 // If this is a dependent context, we don't want to link the friend 793 // class template to the template in scope, because that would perform 794 // checking of the template parameter lists that can't be performed 795 // until the outer context is instantiated. 796 PrevDecl = PrevClassTemplate = 0; 797 } 798 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 799 PrevDecl = PrevClassTemplate = 0; 800 801 if (PrevClassTemplate) { 802 // Ensure that the template parameter lists are compatible. 803 if (!TemplateParameterListsAreEqual(TemplateParams, 804 PrevClassTemplate->getTemplateParameters(), 805 /*Complain=*/true, 806 TPL_TemplateMatch)) 807 return true; 808 809 // C++ [temp.class]p4: 810 // In a redeclaration, partial specialization, explicit 811 // specialization or explicit instantiation of a class template, 812 // the class-key shall agree in kind with the original class 813 // template declaration (7.1.5.3). 814 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 815 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 816 Diag(KWLoc, diag::err_use_with_wrong_tag) 817 << Name 818 << CodeModificationHint::CreateReplacement(KWLoc, 819 PrevRecordDecl->getKindName()); 820 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 821 Kind = PrevRecordDecl->getTagKind(); 822 } 823 824 // Check for redefinition of this class template. 825 if (TUK == TUK_Definition) { 826 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 827 Diag(NameLoc, diag::err_redefinition) << Name; 828 Diag(Def->getLocation(), diag::note_previous_definition); 829 // FIXME: Would it make sense to try to "forget" the previous 830 // definition, as part of error recovery? 831 return true; 832 } 833 } 834 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 835 // Maybe we will complain about the shadowed template parameter. 836 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 837 // Just pretend that we didn't see the previous declaration. 838 PrevDecl = 0; 839 } else if (PrevDecl) { 840 // C++ [temp]p5: 841 // A class template shall not have the same name as any other 842 // template, class, function, object, enumeration, enumerator, 843 // namespace, or type in the same scope (3.3), except as specified 844 // in (14.5.4). 845 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 846 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 847 return true; 848 } 849 850 // Check the template parameter list of this declaration, possibly 851 // merging in the template parameter list from the previous class 852 // template declaration. 853 if (CheckTemplateParameterList(TemplateParams, 854 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 855 TPC_ClassTemplate)) 856 Invalid = true; 857 858 // FIXME: If we had a scope specifier, we better have a previous template 859 // declaration! 860 861 CXXRecordDecl *NewClass = 862 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 863 PrevClassTemplate? 864 PrevClassTemplate->getTemplatedDecl() : 0, 865 /*DelayTypeCreation=*/true); 866 867 ClassTemplateDecl *NewTemplate 868 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 869 DeclarationName(Name), TemplateParams, 870 NewClass, PrevClassTemplate); 871 NewClass->setDescribedClassTemplate(NewTemplate); 872 873 // Build the type for the class template declaration now. 874 QualType T = 875 Context.getTypeDeclType(NewClass, 876 PrevClassTemplate? 877 PrevClassTemplate->getTemplatedDecl() : 0); 878 assert(T->isDependentType() && "Class template type is not dependent?"); 879 (void)T; 880 881 // If we are providing an explicit specialization of a member that is a 882 // class template, make a note of that. 883 if (PrevClassTemplate && 884 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 885 PrevClassTemplate->setMemberSpecialization(); 886 887 // Set the access specifier. 888 if (!Invalid && TUK != TUK_Friend) 889 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 890 891 // Set the lexical context of these templates 892 NewClass->setLexicalDeclContext(CurContext); 893 NewTemplate->setLexicalDeclContext(CurContext); 894 895 if (TUK == TUK_Definition) 896 NewClass->startDefinition(); 897 898 if (Attr) 899 ProcessDeclAttributeList(S, NewClass, Attr); 900 901 if (TUK != TUK_Friend) 902 PushOnScopeChains(NewTemplate, S); 903 else { 904 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 905 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 906 NewClass->setAccess(PrevClassTemplate->getAccess()); 907 } 908 909 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 910 PrevClassTemplate != NULL); 911 912 // Friend templates are visible in fairly strange ways. 913 if (!CurContext->isDependentContext()) { 914 DeclContext *DC = SemanticContext->getLookupContext(); 915 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 916 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 917 PushOnScopeChains(NewTemplate, EnclosingScope, 918 /* AddToContext = */ false); 919 } 920 921 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 922 NewClass->getLocation(), 923 NewTemplate, 924 /*FIXME:*/NewClass->getLocation()); 925 Friend->setAccess(AS_public); 926 CurContext->addDecl(Friend); 927 } 928 929 if (Invalid) { 930 NewTemplate->setInvalidDecl(); 931 NewClass->setInvalidDecl(); 932 } 933 return DeclPtrTy::make(NewTemplate); 934} 935 936/// \brief Diagnose the presence of a default template argument on a 937/// template parameter, which is ill-formed in certain contexts. 938/// 939/// \returns true if the default template argument should be dropped. 940static bool DiagnoseDefaultTemplateArgument(Sema &S, 941 Sema::TemplateParamListContext TPC, 942 SourceLocation ParamLoc, 943 SourceRange DefArgRange) { 944 switch (TPC) { 945 case Sema::TPC_ClassTemplate: 946 return false; 947 948 case Sema::TPC_FunctionTemplate: 949 // C++ [temp.param]p9: 950 // A default template-argument shall not be specified in a 951 // function template declaration or a function template 952 // definition [...] 953 // (This sentence is not in C++0x, per DR226). 954 if (!S.getLangOptions().CPlusPlus0x) 955 S.Diag(ParamLoc, 956 diag::err_template_parameter_default_in_function_template) 957 << DefArgRange; 958 return false; 959 960 case Sema::TPC_ClassTemplateMember: 961 // C++0x [temp.param]p9: 962 // A default template-argument shall not be specified in the 963 // template-parameter-lists of the definition of a member of a 964 // class template that appears outside of the member's class. 965 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 966 << DefArgRange; 967 return true; 968 969 case Sema::TPC_FriendFunctionTemplate: 970 // C++ [temp.param]p9: 971 // A default template-argument shall not be specified in a 972 // friend template declaration. 973 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 974 << DefArgRange; 975 return true; 976 977 // FIXME: C++0x [temp.param]p9 allows default template-arguments 978 // for friend function templates if there is only a single 979 // declaration (and it is a definition). Strange! 980 } 981 982 return false; 983} 984 985/// \brief Checks the validity of a template parameter list, possibly 986/// considering the template parameter list from a previous 987/// declaration. 988/// 989/// If an "old" template parameter list is provided, it must be 990/// equivalent (per TemplateParameterListsAreEqual) to the "new" 991/// template parameter list. 992/// 993/// \param NewParams Template parameter list for a new template 994/// declaration. This template parameter list will be updated with any 995/// default arguments that are carried through from the previous 996/// template parameter list. 997/// 998/// \param OldParams If provided, template parameter list from a 999/// previous declaration of the same template. Default template 1000/// arguments will be merged from the old template parameter list to 1001/// the new template parameter list. 1002/// 1003/// \param TPC Describes the context in which we are checking the given 1004/// template parameter list. 1005/// 1006/// \returns true if an error occurred, false otherwise. 1007bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1008 TemplateParameterList *OldParams, 1009 TemplateParamListContext TPC) { 1010 bool Invalid = false; 1011 1012 // C++ [temp.param]p10: 1013 // The set of default template-arguments available for use with a 1014 // template declaration or definition is obtained by merging the 1015 // default arguments from the definition (if in scope) and all 1016 // declarations in scope in the same way default function 1017 // arguments are (8.3.6). 1018 bool SawDefaultArgument = false; 1019 SourceLocation PreviousDefaultArgLoc; 1020 1021 bool SawParameterPack = false; 1022 SourceLocation ParameterPackLoc; 1023 1024 // Dummy initialization to avoid warnings. 1025 TemplateParameterList::iterator OldParam = NewParams->end(); 1026 if (OldParams) 1027 OldParam = OldParams->begin(); 1028 1029 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1030 NewParamEnd = NewParams->end(); 1031 NewParam != NewParamEnd; ++NewParam) { 1032 // Variables used to diagnose redundant default arguments 1033 bool RedundantDefaultArg = false; 1034 SourceLocation OldDefaultLoc; 1035 SourceLocation NewDefaultLoc; 1036 1037 // Variables used to diagnose missing default arguments 1038 bool MissingDefaultArg = false; 1039 1040 // C++0x [temp.param]p11: 1041 // If a template parameter of a class template is a template parameter pack, 1042 // it must be the last template parameter. 1043 if (SawParameterPack) { 1044 Diag(ParameterPackLoc, 1045 diag::err_template_param_pack_must_be_last_template_parameter); 1046 Invalid = true; 1047 } 1048 1049 if (TemplateTypeParmDecl *NewTypeParm 1050 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1051 // Check the presence of a default argument here. 1052 if (NewTypeParm->hasDefaultArgument() && 1053 DiagnoseDefaultTemplateArgument(*this, TPC, 1054 NewTypeParm->getLocation(), 1055 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1056 .getFullSourceRange())) 1057 NewTypeParm->removeDefaultArgument(); 1058 1059 // Merge default arguments for template type parameters. 1060 TemplateTypeParmDecl *OldTypeParm 1061 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1062 1063 if (NewTypeParm->isParameterPack()) { 1064 assert(!NewTypeParm->hasDefaultArgument() && 1065 "Parameter packs can't have a default argument!"); 1066 SawParameterPack = true; 1067 ParameterPackLoc = NewTypeParm->getLocation(); 1068 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1069 NewTypeParm->hasDefaultArgument()) { 1070 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1071 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1072 SawDefaultArgument = true; 1073 RedundantDefaultArg = true; 1074 PreviousDefaultArgLoc = NewDefaultLoc; 1075 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1076 // Merge the default argument from the old declaration to the 1077 // new declaration. 1078 SawDefaultArgument = true; 1079 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1080 true); 1081 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1082 } else if (NewTypeParm->hasDefaultArgument()) { 1083 SawDefaultArgument = true; 1084 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1085 } else if (SawDefaultArgument) 1086 MissingDefaultArg = true; 1087 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1088 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1089 // Check the presence of a default argument here. 1090 if (NewNonTypeParm->hasDefaultArgument() && 1091 DiagnoseDefaultTemplateArgument(*this, TPC, 1092 NewNonTypeParm->getLocation(), 1093 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1094 NewNonTypeParm->getDefaultArgument()->Destroy(Context); 1095 NewNonTypeParm->setDefaultArgument(0); 1096 } 1097 1098 // Merge default arguments for non-type template parameters 1099 NonTypeTemplateParmDecl *OldNonTypeParm 1100 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1101 if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1102 NewNonTypeParm->hasDefaultArgument()) { 1103 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1104 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1105 SawDefaultArgument = true; 1106 RedundantDefaultArg = true; 1107 PreviousDefaultArgLoc = NewDefaultLoc; 1108 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1109 // Merge the default argument from the old declaration to the 1110 // new declaration. 1111 SawDefaultArgument = true; 1112 // FIXME: We need to create a new kind of "default argument" 1113 // expression that points to a previous template template 1114 // parameter. 1115 NewNonTypeParm->setDefaultArgument( 1116 OldNonTypeParm->getDefaultArgument()); 1117 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1118 } else if (NewNonTypeParm->hasDefaultArgument()) { 1119 SawDefaultArgument = true; 1120 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1121 } else if (SawDefaultArgument) 1122 MissingDefaultArg = true; 1123 } else { 1124 // Check the presence of a default argument here. 1125 TemplateTemplateParmDecl *NewTemplateParm 1126 = cast<TemplateTemplateParmDecl>(*NewParam); 1127 if (NewTemplateParm->hasDefaultArgument() && 1128 DiagnoseDefaultTemplateArgument(*this, TPC, 1129 NewTemplateParm->getLocation(), 1130 NewTemplateParm->getDefaultArgument().getSourceRange())) 1131 NewTemplateParm->setDefaultArgument(TemplateArgumentLoc()); 1132 1133 // Merge default arguments for template template parameters 1134 TemplateTemplateParmDecl *OldTemplateParm 1135 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1136 if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1137 NewTemplateParm->hasDefaultArgument()) { 1138 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1139 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1140 SawDefaultArgument = true; 1141 RedundantDefaultArg = true; 1142 PreviousDefaultArgLoc = NewDefaultLoc; 1143 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1144 // Merge the default argument from the old declaration to the 1145 // new declaration. 1146 SawDefaultArgument = true; 1147 // FIXME: We need to create a new kind of "default argument" expression 1148 // that points to a previous template template parameter. 1149 NewTemplateParm->setDefaultArgument( 1150 OldTemplateParm->getDefaultArgument()); 1151 PreviousDefaultArgLoc 1152 = OldTemplateParm->getDefaultArgument().getLocation(); 1153 } else if (NewTemplateParm->hasDefaultArgument()) { 1154 SawDefaultArgument = true; 1155 PreviousDefaultArgLoc 1156 = NewTemplateParm->getDefaultArgument().getLocation(); 1157 } else if (SawDefaultArgument) 1158 MissingDefaultArg = true; 1159 } 1160 1161 if (RedundantDefaultArg) { 1162 // C++ [temp.param]p12: 1163 // A template-parameter shall not be given default arguments 1164 // by two different declarations in the same scope. 1165 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1166 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1167 Invalid = true; 1168 } else if (MissingDefaultArg) { 1169 // C++ [temp.param]p11: 1170 // If a template-parameter has a default template-argument, 1171 // all subsequent template-parameters shall have a default 1172 // template-argument supplied. 1173 Diag((*NewParam)->getLocation(), 1174 diag::err_template_param_default_arg_missing); 1175 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1176 Invalid = true; 1177 } 1178 1179 // If we have an old template parameter list that we're merging 1180 // in, move on to the next parameter. 1181 if (OldParams) 1182 ++OldParam; 1183 } 1184 1185 return Invalid; 1186} 1187 1188/// \brief Match the given template parameter lists to the given scope 1189/// specifier, returning the template parameter list that applies to the 1190/// name. 1191/// 1192/// \param DeclStartLoc the start of the declaration that has a scope 1193/// specifier or a template parameter list. 1194/// 1195/// \param SS the scope specifier that will be matched to the given template 1196/// parameter lists. This scope specifier precedes a qualified name that is 1197/// being declared. 1198/// 1199/// \param ParamLists the template parameter lists, from the outermost to the 1200/// innermost template parameter lists. 1201/// 1202/// \param NumParamLists the number of template parameter lists in ParamLists. 1203/// 1204/// \param IsExplicitSpecialization will be set true if the entity being 1205/// declared is an explicit specialization, false otherwise. 1206/// 1207/// \returns the template parameter list, if any, that corresponds to the 1208/// name that is preceded by the scope specifier @p SS. This template 1209/// parameter list may be have template parameters (if we're declaring a 1210/// template) or may have no template parameters (if we're declaring a 1211/// template specialization), or may be NULL (if we were's declaring isn't 1212/// itself a template). 1213TemplateParameterList * 1214Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1215 const CXXScopeSpec &SS, 1216 TemplateParameterList **ParamLists, 1217 unsigned NumParamLists, 1218 bool &IsExplicitSpecialization) { 1219 IsExplicitSpecialization = false; 1220 1221 // Find the template-ids that occur within the nested-name-specifier. These 1222 // template-ids will match up with the template parameter lists. 1223 llvm::SmallVector<const TemplateSpecializationType *, 4> 1224 TemplateIdsInSpecifier; 1225 llvm::SmallVector<ClassTemplateSpecializationDecl *, 4> 1226 ExplicitSpecializationsInSpecifier; 1227 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 1228 NNS; NNS = NNS->getPrefix()) { 1229 const Type *T = NNS->getAsType(); 1230 if (!T) break; 1231 1232 // C++0x [temp.expl.spec]p17: 1233 // A member or a member template may be nested within many 1234 // enclosing class templates. In an explicit specialization for 1235 // such a member, the member declaration shall be preceded by a 1236 // template<> for each enclosing class template that is 1237 // explicitly specialized. 1238 // 1239 // Following the existing practice of GNU and EDG, we allow a typedef of a 1240 // template specialization type. 1241 if (const TypedefType *TT = dyn_cast<TypedefType>(T)) 1242 T = TT->LookThroughTypedefs().getTypePtr(); 1243 1244 if (const TemplateSpecializationType *SpecType 1245 = dyn_cast<TemplateSpecializationType>(T)) { 1246 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 1247 if (!Template) 1248 continue; // FIXME: should this be an error? probably... 1249 1250 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 1251 ClassTemplateSpecializationDecl *SpecDecl 1252 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 1253 // If the nested name specifier refers to an explicit specialization, 1254 // we don't need a template<> header. 1255 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) { 1256 ExplicitSpecializationsInSpecifier.push_back(SpecDecl); 1257 continue; 1258 } 1259 } 1260 1261 TemplateIdsInSpecifier.push_back(SpecType); 1262 } 1263 } 1264 1265 // Reverse the list of template-ids in the scope specifier, so that we can 1266 // more easily match up the template-ids and the template parameter lists. 1267 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 1268 1269 SourceLocation FirstTemplateLoc = DeclStartLoc; 1270 if (NumParamLists) 1271 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 1272 1273 // Match the template-ids found in the specifier to the template parameter 1274 // lists. 1275 unsigned Idx = 0; 1276 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 1277 Idx != NumTemplateIds; ++Idx) { 1278 QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0); 1279 bool DependentTemplateId = TemplateId->isDependentType(); 1280 if (Idx >= NumParamLists) { 1281 // We have a template-id without a corresponding template parameter 1282 // list. 1283 if (DependentTemplateId) { 1284 // FIXME: the location information here isn't great. 1285 Diag(SS.getRange().getBegin(), 1286 diag::err_template_spec_needs_template_parameters) 1287 << TemplateId 1288 << SS.getRange(); 1289 } else { 1290 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 1291 << SS.getRange() 1292 << CodeModificationHint::CreateInsertion(FirstTemplateLoc, 1293 "template<> "); 1294 IsExplicitSpecialization = true; 1295 } 1296 return 0; 1297 } 1298 1299 // Check the template parameter list against its corresponding template-id. 1300 if (DependentTemplateId) { 1301 TemplateDecl *Template 1302 = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl(); 1303 1304 if (ClassTemplateDecl *ClassTemplate 1305 = dyn_cast<ClassTemplateDecl>(Template)) { 1306 TemplateParameterList *ExpectedTemplateParams = 0; 1307 // Is this template-id naming the primary template? 1308 if (Context.hasSameType(TemplateId, 1309 ClassTemplate->getInjectedClassNameType(Context))) 1310 ExpectedTemplateParams = ClassTemplate->getTemplateParameters(); 1311 // ... or a partial specialization? 1312 else if (ClassTemplatePartialSpecializationDecl *PartialSpec 1313 = ClassTemplate->findPartialSpecialization(TemplateId)) 1314 ExpectedTemplateParams = PartialSpec->getTemplateParameters(); 1315 1316 if (ExpectedTemplateParams) 1317 TemplateParameterListsAreEqual(ParamLists[Idx], 1318 ExpectedTemplateParams, 1319 true, TPL_TemplateMatch); 1320 } 1321 1322 CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember); 1323 } else if (ParamLists[Idx]->size() > 0) 1324 Diag(ParamLists[Idx]->getTemplateLoc(), 1325 diag::err_template_param_list_matches_nontemplate) 1326 << TemplateId 1327 << ParamLists[Idx]->getSourceRange(); 1328 else 1329 IsExplicitSpecialization = true; 1330 } 1331 1332 // If there were at least as many template-ids as there were template 1333 // parameter lists, then there are no template parameter lists remaining for 1334 // the declaration itself. 1335 if (Idx >= NumParamLists) 1336 return 0; 1337 1338 // If there were too many template parameter lists, complain about that now. 1339 if (Idx != NumParamLists - 1) { 1340 while (Idx < NumParamLists - 1) { 1341 bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0; 1342 Diag(ParamLists[Idx]->getTemplateLoc(), 1343 isExplicitSpecHeader? diag::warn_template_spec_extra_headers 1344 : diag::err_template_spec_extra_headers) 1345 << SourceRange(ParamLists[Idx]->getTemplateLoc(), 1346 ParamLists[Idx]->getRAngleLoc()); 1347 1348 if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) { 1349 Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(), 1350 diag::note_explicit_template_spec_does_not_need_header) 1351 << ExplicitSpecializationsInSpecifier.back(); 1352 ExplicitSpecializationsInSpecifier.pop_back(); 1353 } 1354 1355 ++Idx; 1356 } 1357 } 1358 1359 // Return the last template parameter list, which corresponds to the 1360 // entity being declared. 1361 return ParamLists[NumParamLists - 1]; 1362} 1363 1364QualType Sema::CheckTemplateIdType(TemplateName Name, 1365 SourceLocation TemplateLoc, 1366 const TemplateArgumentListInfo &TemplateArgs) { 1367 TemplateDecl *Template = Name.getAsTemplateDecl(); 1368 if (!Template) { 1369 // The template name does not resolve to a template, so we just 1370 // build a dependent template-id type. 1371 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1372 } 1373 1374 // Check that the template argument list is well-formed for this 1375 // template. 1376 TemplateArgumentListBuilder Converted(Template->getTemplateParameters(), 1377 TemplateArgs.size()); 1378 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1379 false, Converted)) 1380 return QualType(); 1381 1382 assert((Converted.structuredSize() == 1383 Template->getTemplateParameters()->size()) && 1384 "Converted template argument list is too short!"); 1385 1386 QualType CanonType; 1387 1388 if (Name.isDependent() || 1389 TemplateSpecializationType::anyDependentTemplateArguments( 1390 TemplateArgs)) { 1391 // This class template specialization is a dependent 1392 // type. Therefore, its canonical type is another class template 1393 // specialization type that contains all of the converted 1394 // arguments in canonical form. This ensures that, e.g., A<T> and 1395 // A<T, T> have identical types when A is declared as: 1396 // 1397 // template<typename T, typename U = T> struct A; 1398 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1399 CanonType = Context.getTemplateSpecializationType(CanonName, 1400 Converted.getFlatArguments(), 1401 Converted.flatSize()); 1402 1403 // FIXME: CanonType is not actually the canonical type, and unfortunately 1404 // it is a TemplateSpecializationType that we will never use again. 1405 // In the future, we need to teach getTemplateSpecializationType to only 1406 // build the canonical type and return that to us. 1407 CanonType = Context.getCanonicalType(CanonType); 1408 } else if (ClassTemplateDecl *ClassTemplate 1409 = dyn_cast<ClassTemplateDecl>(Template)) { 1410 // Find the class template specialization declaration that 1411 // corresponds to these arguments. 1412 llvm::FoldingSetNodeID ID; 1413 ClassTemplateSpecializationDecl::Profile(ID, 1414 Converted.getFlatArguments(), 1415 Converted.flatSize(), 1416 Context); 1417 void *InsertPos = 0; 1418 ClassTemplateSpecializationDecl *Decl 1419 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 1420 if (!Decl) { 1421 // This is the first time we have referenced this class template 1422 // specialization. Create the canonical declaration and add it to 1423 // the set of specializations. 1424 Decl = ClassTemplateSpecializationDecl::Create(Context, 1425 ClassTemplate->getDeclContext(), 1426 ClassTemplate->getLocation(), 1427 ClassTemplate, 1428 Converted, 0); 1429 ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos); 1430 Decl->setLexicalDeclContext(CurContext); 1431 } 1432 1433 CanonType = Context.getTypeDeclType(Decl); 1434 } 1435 1436 // Build the fully-sugared type for this class template 1437 // specialization, which refers back to the class template 1438 // specialization we created or found. 1439 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 1440} 1441 1442Action::TypeResult 1443Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1444 SourceLocation LAngleLoc, 1445 ASTTemplateArgsPtr TemplateArgsIn, 1446 SourceLocation RAngleLoc) { 1447 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1448 1449 // Translate the parser's template argument list in our AST format. 1450 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 1451 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 1452 1453 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 1454 TemplateArgsIn.release(); 1455 1456 if (Result.isNull()) 1457 return true; 1458 1459 TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result); 1460 TemplateSpecializationTypeLoc TL 1461 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc()); 1462 TL.setTemplateNameLoc(TemplateLoc); 1463 TL.setLAngleLoc(LAngleLoc); 1464 TL.setRAngleLoc(RAngleLoc); 1465 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 1466 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 1467 1468 return CreateLocInfoType(Result, DI).getAsOpaquePtr(); 1469} 1470 1471Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult, 1472 TagUseKind TUK, 1473 DeclSpec::TST TagSpec, 1474 SourceLocation TagLoc) { 1475 if (TypeResult.isInvalid()) 1476 return Sema::TypeResult(); 1477 1478 // FIXME: preserve source info, ideally without copying the DI. 1479 TypeSourceInfo *DI; 1480 QualType Type = GetTypeFromParser(TypeResult.get(), &DI); 1481 1482 // Verify the tag specifier. 1483 TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec); 1484 1485 if (const RecordType *RT = Type->getAs<RecordType>()) { 1486 RecordDecl *D = RT->getDecl(); 1487 1488 IdentifierInfo *Id = D->getIdentifier(); 1489 assert(Id && "templated class must have an identifier"); 1490 1491 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 1492 Diag(TagLoc, diag::err_use_with_wrong_tag) 1493 << Type 1494 << CodeModificationHint::CreateReplacement(SourceRange(TagLoc), 1495 D->getKindName()); 1496 Diag(D->getLocation(), diag::note_previous_use); 1497 } 1498 } 1499 1500 QualType ElabType = Context.getElaboratedType(Type, TagKind); 1501 1502 return ElabType.getAsOpaquePtr(); 1503} 1504 1505Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 1506 LookupResult &R, 1507 bool RequiresADL, 1508 const TemplateArgumentListInfo &TemplateArgs) { 1509 // FIXME: Can we do any checking at this point? I guess we could check the 1510 // template arguments that we have against the template name, if the template 1511 // name refers to a single template. That's not a terribly common case, 1512 // though. 1513 1514 // These should be filtered out by our callers. 1515 assert(!R.empty() && "empty lookup results when building templateid"); 1516 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 1517 1518 NestedNameSpecifier *Qualifier = 0; 1519 SourceRange QualifierRange; 1520 if (SS.isSet()) { 1521 Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 1522 QualifierRange = SS.getRange(); 1523 } 1524 1525 // We don't want lookup warnings at this point. 1526 R.suppressDiagnostics(); 1527 1528 bool Dependent 1529 = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 1530 &TemplateArgs); 1531 UnresolvedLookupExpr *ULE 1532 = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(), 1533 Qualifier, QualifierRange, 1534 R.getLookupName(), R.getNameLoc(), 1535 RequiresADL, TemplateArgs); 1536 ULE->addDecls(R.begin(), R.end()); 1537 1538 return Owned(ULE); 1539} 1540 1541// We actually only call this from template instantiation. 1542Sema::OwningExprResult 1543Sema::BuildQualifiedTemplateIdExpr(const CXXScopeSpec &SS, 1544 DeclarationName Name, 1545 SourceLocation NameLoc, 1546 const TemplateArgumentListInfo &TemplateArgs) { 1547 DeclContext *DC; 1548 if (!(DC = computeDeclContext(SS, false)) || 1549 DC->isDependentContext() || 1550 RequireCompleteDeclContext(SS)) 1551 return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs); 1552 1553 LookupResult R(*this, Name, NameLoc, LookupOrdinaryName); 1554 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false); 1555 1556 if (R.isAmbiguous()) 1557 return ExprError(); 1558 1559 if (R.empty()) { 1560 Diag(NameLoc, diag::err_template_kw_refers_to_non_template) 1561 << Name << SS.getRange(); 1562 return ExprError(); 1563 } 1564 1565 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 1566 Diag(NameLoc, diag::err_template_kw_refers_to_class_template) 1567 << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange(); 1568 Diag(Temp->getLocation(), diag::note_referenced_class_template); 1569 return ExprError(); 1570 } 1571 1572 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 1573} 1574 1575/// \brief Form a dependent template name. 1576/// 1577/// This action forms a dependent template name given the template 1578/// name and its (presumably dependent) scope specifier. For 1579/// example, given "MetaFun::template apply", the scope specifier \p 1580/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1581/// of the "template" keyword, and "apply" is the \p Name. 1582Sema::TemplateTy 1583Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc, 1584 const CXXScopeSpec &SS, 1585 UnqualifiedId &Name, 1586 TypeTy *ObjectType, 1587 bool EnteringContext) { 1588 DeclContext *LookupCtx = 0; 1589 if (SS.isSet()) 1590 LookupCtx = computeDeclContext(SS, EnteringContext); 1591 if (!LookupCtx && ObjectType) 1592 LookupCtx = computeDeclContext(QualType::getFromOpaquePtr(ObjectType)); 1593 if (LookupCtx) { 1594 // C++0x [temp.names]p5: 1595 // If a name prefixed by the keyword template is not the name of 1596 // a template, the program is ill-formed. [Note: the keyword 1597 // template may not be applied to non-template members of class 1598 // templates. -end note ] [ Note: as is the case with the 1599 // typename prefix, the template prefix is allowed in cases 1600 // where it is not strictly necessary; i.e., when the 1601 // nested-name-specifier or the expression on the left of the -> 1602 // or . is not dependent on a template-parameter, or the use 1603 // does not appear in the scope of a template. -end note] 1604 // 1605 // Note: C++03 was more strict here, because it banned the use of 1606 // the "template" keyword prior to a template-name that was not a 1607 // dependent name. C++ DR468 relaxed this requirement (the 1608 // "template" keyword is now permitted). We follow the C++0x 1609 // rules, even in C++03 mode, retroactively applying the DR. 1610 TemplateTy Template; 1611 TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType, 1612 EnteringContext, Template); 1613 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 1614 isa<CXXRecordDecl>(LookupCtx) && 1615 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) { 1616 // This is a dependent template. 1617 } else if (TNK == TNK_Non_template) { 1618 Diag(Name.getSourceRange().getBegin(), 1619 diag::err_template_kw_refers_to_non_template) 1620 << GetNameFromUnqualifiedId(Name) 1621 << Name.getSourceRange(); 1622 return TemplateTy(); 1623 } else { 1624 // We found something; return it. 1625 return Template; 1626 } 1627 } 1628 1629 NestedNameSpecifier *Qualifier 1630 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1631 1632 switch (Name.getKind()) { 1633 case UnqualifiedId::IK_Identifier: 1634 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1635 Name.Identifier)); 1636 1637 case UnqualifiedId::IK_OperatorFunctionId: 1638 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1639 Name.OperatorFunctionId.Operator)); 1640 1641 case UnqualifiedId::IK_LiteralOperatorId: 1642 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 1643 1644 default: 1645 break; 1646 } 1647 1648 Diag(Name.getSourceRange().getBegin(), 1649 diag::err_template_kw_refers_to_non_template) 1650 << GetNameFromUnqualifiedId(Name) 1651 << Name.getSourceRange(); 1652 return TemplateTy(); 1653} 1654 1655bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1656 const TemplateArgumentLoc &AL, 1657 TemplateArgumentListBuilder &Converted) { 1658 const TemplateArgument &Arg = AL.getArgument(); 1659 1660 // Check template type parameter. 1661 if (Arg.getKind() != TemplateArgument::Type) { 1662 // C++ [temp.arg.type]p1: 1663 // A template-argument for a template-parameter which is a 1664 // type shall be a type-id. 1665 1666 // We have a template type parameter but the template argument 1667 // is not a type. 1668 SourceRange SR = AL.getSourceRange(); 1669 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 1670 Diag(Param->getLocation(), diag::note_template_param_here); 1671 1672 return true; 1673 } 1674 1675 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 1676 return true; 1677 1678 // Add the converted template type argument. 1679 Converted.Append( 1680 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 1681 return false; 1682} 1683 1684/// \brief Substitute template arguments into the default template argument for 1685/// the given template type parameter. 1686/// 1687/// \param SemaRef the semantic analysis object for which we are performing 1688/// the substitution. 1689/// 1690/// \param Template the template that we are synthesizing template arguments 1691/// for. 1692/// 1693/// \param TemplateLoc the location of the template name that started the 1694/// template-id we are checking. 1695/// 1696/// \param RAngleLoc the location of the right angle bracket ('>') that 1697/// terminates the template-id. 1698/// 1699/// \param Param the template template parameter whose default we are 1700/// substituting into. 1701/// 1702/// \param Converted the list of template arguments provided for template 1703/// parameters that precede \p Param in the template parameter list. 1704/// 1705/// \returns the substituted template argument, or NULL if an error occurred. 1706static TypeSourceInfo * 1707SubstDefaultTemplateArgument(Sema &SemaRef, 1708 TemplateDecl *Template, 1709 SourceLocation TemplateLoc, 1710 SourceLocation RAngleLoc, 1711 TemplateTypeParmDecl *Param, 1712 TemplateArgumentListBuilder &Converted) { 1713 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 1714 1715 // If the argument type is dependent, instantiate it now based 1716 // on the previously-computed template arguments. 1717 if (ArgType->getType()->isDependentType()) { 1718 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1719 /*TakeArgs=*/false); 1720 1721 MultiLevelTemplateArgumentList AllTemplateArgs 1722 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1723 1724 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1725 Template, Converted.getFlatArguments(), 1726 Converted.flatSize(), 1727 SourceRange(TemplateLoc, RAngleLoc)); 1728 1729 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 1730 Param->getDefaultArgumentLoc(), 1731 Param->getDeclName()); 1732 } 1733 1734 return ArgType; 1735} 1736 1737/// \brief Substitute template arguments into the default template argument for 1738/// the given non-type template parameter. 1739/// 1740/// \param SemaRef the semantic analysis object for which we are performing 1741/// the substitution. 1742/// 1743/// \param Template the template that we are synthesizing template arguments 1744/// for. 1745/// 1746/// \param TemplateLoc the location of the template name that started the 1747/// template-id we are checking. 1748/// 1749/// \param RAngleLoc the location of the right angle bracket ('>') that 1750/// terminates the template-id. 1751/// 1752/// \param Param the non-type template parameter whose default we are 1753/// substituting into. 1754/// 1755/// \param Converted the list of template arguments provided for template 1756/// parameters that precede \p Param in the template parameter list. 1757/// 1758/// \returns the substituted template argument, or NULL if an error occurred. 1759static Sema::OwningExprResult 1760SubstDefaultTemplateArgument(Sema &SemaRef, 1761 TemplateDecl *Template, 1762 SourceLocation TemplateLoc, 1763 SourceLocation RAngleLoc, 1764 NonTypeTemplateParmDecl *Param, 1765 TemplateArgumentListBuilder &Converted) { 1766 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1767 /*TakeArgs=*/false); 1768 1769 MultiLevelTemplateArgumentList AllTemplateArgs 1770 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1771 1772 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1773 Template, Converted.getFlatArguments(), 1774 Converted.flatSize(), 1775 SourceRange(TemplateLoc, RAngleLoc)); 1776 1777 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 1778} 1779 1780/// \brief Substitute template arguments into the default template argument for 1781/// the given template template parameter. 1782/// 1783/// \param SemaRef the semantic analysis object for which we are performing 1784/// the substitution. 1785/// 1786/// \param Template the template that we are synthesizing template arguments 1787/// for. 1788/// 1789/// \param TemplateLoc the location of the template name that started the 1790/// template-id we are checking. 1791/// 1792/// \param RAngleLoc the location of the right angle bracket ('>') that 1793/// terminates the template-id. 1794/// 1795/// \param Param the template template parameter whose default we are 1796/// substituting into. 1797/// 1798/// \param Converted the list of template arguments provided for template 1799/// parameters that precede \p Param in the template parameter list. 1800/// 1801/// \returns the substituted template argument, or NULL if an error occurred. 1802static TemplateName 1803SubstDefaultTemplateArgument(Sema &SemaRef, 1804 TemplateDecl *Template, 1805 SourceLocation TemplateLoc, 1806 SourceLocation RAngleLoc, 1807 TemplateTemplateParmDecl *Param, 1808 TemplateArgumentListBuilder &Converted) { 1809 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1810 /*TakeArgs=*/false); 1811 1812 MultiLevelTemplateArgumentList AllTemplateArgs 1813 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1814 1815 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1816 Template, Converted.getFlatArguments(), 1817 Converted.flatSize(), 1818 SourceRange(TemplateLoc, RAngleLoc)); 1819 1820 return SemaRef.SubstTemplateName( 1821 Param->getDefaultArgument().getArgument().getAsTemplate(), 1822 Param->getDefaultArgument().getTemplateNameLoc(), 1823 AllTemplateArgs); 1824} 1825 1826/// \brief If the given template parameter has a default template 1827/// argument, substitute into that default template argument and 1828/// return the corresponding template argument. 1829TemplateArgumentLoc 1830Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 1831 SourceLocation TemplateLoc, 1832 SourceLocation RAngleLoc, 1833 Decl *Param, 1834 TemplateArgumentListBuilder &Converted) { 1835 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 1836 if (!TypeParm->hasDefaultArgument()) 1837 return TemplateArgumentLoc(); 1838 1839 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 1840 TemplateLoc, 1841 RAngleLoc, 1842 TypeParm, 1843 Converted); 1844 if (DI) 1845 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 1846 1847 return TemplateArgumentLoc(); 1848 } 1849 1850 if (NonTypeTemplateParmDecl *NonTypeParm 1851 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 1852 if (!NonTypeParm->hasDefaultArgument()) 1853 return TemplateArgumentLoc(); 1854 1855 OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 1856 TemplateLoc, 1857 RAngleLoc, 1858 NonTypeParm, 1859 Converted); 1860 if (Arg.isInvalid()) 1861 return TemplateArgumentLoc(); 1862 1863 Expr *ArgE = Arg.takeAs<Expr>(); 1864 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 1865 } 1866 1867 TemplateTemplateParmDecl *TempTempParm 1868 = cast<TemplateTemplateParmDecl>(Param); 1869 if (!TempTempParm->hasDefaultArgument()) 1870 return TemplateArgumentLoc(); 1871 1872 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 1873 TemplateLoc, 1874 RAngleLoc, 1875 TempTempParm, 1876 Converted); 1877 if (TName.isNull()) 1878 return TemplateArgumentLoc(); 1879 1880 return TemplateArgumentLoc(TemplateArgument(TName), 1881 TempTempParm->getDefaultArgument().getTemplateQualifierRange(), 1882 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 1883} 1884 1885/// \brief Check that the given template argument corresponds to the given 1886/// template parameter. 1887bool Sema::CheckTemplateArgument(NamedDecl *Param, 1888 const TemplateArgumentLoc &Arg, 1889 TemplateDecl *Template, 1890 SourceLocation TemplateLoc, 1891 SourceLocation RAngleLoc, 1892 TemplateArgumentListBuilder &Converted) { 1893 // Check template type parameters. 1894 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 1895 return CheckTemplateTypeArgument(TTP, Arg, Converted); 1896 1897 // Check non-type template parameters. 1898 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 1899 // Do substitution on the type of the non-type template parameter 1900 // with the template arguments we've seen thus far. 1901 QualType NTTPType = NTTP->getType(); 1902 if (NTTPType->isDependentType()) { 1903 // Do substitution on the type of the non-type template parameter. 1904 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 1905 NTTP, Converted.getFlatArguments(), 1906 Converted.flatSize(), 1907 SourceRange(TemplateLoc, RAngleLoc)); 1908 1909 TemplateArgumentList TemplateArgs(Context, Converted, 1910 /*TakeArgs=*/false); 1911 NTTPType = SubstType(NTTPType, 1912 MultiLevelTemplateArgumentList(TemplateArgs), 1913 NTTP->getLocation(), 1914 NTTP->getDeclName()); 1915 // If that worked, check the non-type template parameter type 1916 // for validity. 1917 if (!NTTPType.isNull()) 1918 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 1919 NTTP->getLocation()); 1920 if (NTTPType.isNull()) 1921 return true; 1922 } 1923 1924 switch (Arg.getArgument().getKind()) { 1925 case TemplateArgument::Null: 1926 assert(false && "Should never see a NULL template argument here"); 1927 return true; 1928 1929 case TemplateArgument::Expression: { 1930 Expr *E = Arg.getArgument().getAsExpr(); 1931 TemplateArgument Result; 1932 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 1933 return true; 1934 1935 Converted.Append(Result); 1936 break; 1937 } 1938 1939 case TemplateArgument::Declaration: 1940 case TemplateArgument::Integral: 1941 // We've already checked this template argument, so just copy 1942 // it to the list of converted arguments. 1943 Converted.Append(Arg.getArgument()); 1944 break; 1945 1946 case TemplateArgument::Template: 1947 // We were given a template template argument. It may not be ill-formed; 1948 // see below. 1949 if (DependentTemplateName *DTN 1950 = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) { 1951 // We have a template argument such as \c T::template X, which we 1952 // parsed as a template template argument. However, since we now 1953 // know that we need a non-type template argument, convert this 1954 // template name into an expression. 1955 Expr *E = DependentScopeDeclRefExpr::Create(Context, 1956 DTN->getQualifier(), 1957 Arg.getTemplateQualifierRange(), 1958 DTN->getIdentifier(), 1959 Arg.getTemplateNameLoc()); 1960 1961 TemplateArgument Result; 1962 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 1963 return true; 1964 1965 Converted.Append(Result); 1966 break; 1967 } 1968 1969 // We have a template argument that actually does refer to a class 1970 // template, template alias, or template template parameter, and 1971 // therefore cannot be a non-type template argument. 1972 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 1973 << Arg.getSourceRange(); 1974 1975 Diag(Param->getLocation(), diag::note_template_param_here); 1976 return true; 1977 1978 case TemplateArgument::Type: { 1979 // We have a non-type template parameter but the template 1980 // argument is a type. 1981 1982 // C++ [temp.arg]p2: 1983 // In a template-argument, an ambiguity between a type-id and 1984 // an expression is resolved to a type-id, regardless of the 1985 // form of the corresponding template-parameter. 1986 // 1987 // We warn specifically about this case, since it can be rather 1988 // confusing for users. 1989 QualType T = Arg.getArgument().getAsType(); 1990 SourceRange SR = Arg.getSourceRange(); 1991 if (T->isFunctionType()) 1992 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 1993 else 1994 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 1995 Diag(Param->getLocation(), diag::note_template_param_here); 1996 return true; 1997 } 1998 1999 case TemplateArgument::Pack: 2000 llvm_unreachable("Caller must expand template argument packs"); 2001 break; 2002 } 2003 2004 return false; 2005 } 2006 2007 2008 // Check template template parameters. 2009 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2010 2011 // Substitute into the template parameter list of the template 2012 // template parameter, since previously-supplied template arguments 2013 // may appear within the template template parameter. 2014 { 2015 // Set up a template instantiation context. 2016 LocalInstantiationScope Scope(*this); 2017 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2018 TempParm, Converted.getFlatArguments(), 2019 Converted.flatSize(), 2020 SourceRange(TemplateLoc, RAngleLoc)); 2021 2022 TemplateArgumentList TemplateArgs(Context, Converted, 2023 /*TakeArgs=*/false); 2024 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2025 SubstDecl(TempParm, CurContext, 2026 MultiLevelTemplateArgumentList(TemplateArgs))); 2027 if (!TempParm) 2028 return true; 2029 2030 // FIXME: TempParam is leaked. 2031 } 2032 2033 switch (Arg.getArgument().getKind()) { 2034 case TemplateArgument::Null: 2035 assert(false && "Should never see a NULL template argument here"); 2036 return true; 2037 2038 case TemplateArgument::Template: 2039 if (CheckTemplateArgument(TempParm, Arg)) 2040 return true; 2041 2042 Converted.Append(Arg.getArgument()); 2043 break; 2044 2045 case TemplateArgument::Expression: 2046 case TemplateArgument::Type: 2047 // We have a template template parameter but the template 2048 // argument does not refer to a template. 2049 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 2050 return true; 2051 2052 case TemplateArgument::Declaration: 2053 llvm_unreachable( 2054 "Declaration argument with template template parameter"); 2055 break; 2056 case TemplateArgument::Integral: 2057 llvm_unreachable( 2058 "Integral argument with template template parameter"); 2059 break; 2060 2061 case TemplateArgument::Pack: 2062 llvm_unreachable("Caller must expand template argument packs"); 2063 break; 2064 } 2065 2066 return false; 2067} 2068 2069/// \brief Check that the given template argument list is well-formed 2070/// for specializing the given template. 2071bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2072 SourceLocation TemplateLoc, 2073 const TemplateArgumentListInfo &TemplateArgs, 2074 bool PartialTemplateArgs, 2075 TemplateArgumentListBuilder &Converted) { 2076 TemplateParameterList *Params = Template->getTemplateParameters(); 2077 unsigned NumParams = Params->size(); 2078 unsigned NumArgs = TemplateArgs.size(); 2079 bool Invalid = false; 2080 2081 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2082 2083 bool HasParameterPack = 2084 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2085 2086 if ((NumArgs > NumParams && !HasParameterPack) || 2087 (NumArgs < Params->getMinRequiredArguments() && 2088 !PartialTemplateArgs)) { 2089 // FIXME: point at either the first arg beyond what we can handle, 2090 // or the '>', depending on whether we have too many or too few 2091 // arguments. 2092 SourceRange Range; 2093 if (NumArgs > NumParams) 2094 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2095 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2096 << (NumArgs > NumParams) 2097 << (isa<ClassTemplateDecl>(Template)? 0 : 2098 isa<FunctionTemplateDecl>(Template)? 1 : 2099 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2100 << Template << Range; 2101 Diag(Template->getLocation(), diag::note_template_decl_here) 2102 << Params->getSourceRange(); 2103 Invalid = true; 2104 } 2105 2106 // C++ [temp.arg]p1: 2107 // [...] The type and form of each template-argument specified in 2108 // a template-id shall match the type and form specified for the 2109 // corresponding parameter declared by the template in its 2110 // template-parameter-list. 2111 unsigned ArgIdx = 0; 2112 for (TemplateParameterList::iterator Param = Params->begin(), 2113 ParamEnd = Params->end(); 2114 Param != ParamEnd; ++Param, ++ArgIdx) { 2115 if (ArgIdx > NumArgs && PartialTemplateArgs) 2116 break; 2117 2118 // If we have a template parameter pack, check every remaining template 2119 // argument against that template parameter pack. 2120 if ((*Param)->isTemplateParameterPack()) { 2121 Converted.BeginPack(); 2122 for (; ArgIdx < NumArgs; ++ArgIdx) { 2123 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2124 TemplateLoc, RAngleLoc, Converted)) { 2125 Invalid = true; 2126 break; 2127 } 2128 } 2129 Converted.EndPack(); 2130 continue; 2131 } 2132 2133 if (ArgIdx < NumArgs) { 2134 // Check the template argument we were given. 2135 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2136 TemplateLoc, RAngleLoc, Converted)) 2137 return true; 2138 2139 continue; 2140 } 2141 2142 // We have a default template argument that we will use. 2143 TemplateArgumentLoc Arg; 2144 2145 // Retrieve the default template argument from the template 2146 // parameter. For each kind of template parameter, we substitute the 2147 // template arguments provided thus far and any "outer" template arguments 2148 // (when the template parameter was part of a nested template) into 2149 // the default argument. 2150 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2151 if (!TTP->hasDefaultArgument()) { 2152 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2153 break; 2154 } 2155 2156 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2157 Template, 2158 TemplateLoc, 2159 RAngleLoc, 2160 TTP, 2161 Converted); 2162 if (!ArgType) 2163 return true; 2164 2165 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2166 ArgType); 2167 } else if (NonTypeTemplateParmDecl *NTTP 2168 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2169 if (!NTTP->hasDefaultArgument()) { 2170 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2171 break; 2172 } 2173 2174 Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template, 2175 TemplateLoc, 2176 RAngleLoc, 2177 NTTP, 2178 Converted); 2179 if (E.isInvalid()) 2180 return true; 2181 2182 Expr *Ex = E.takeAs<Expr>(); 2183 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2184 } else { 2185 TemplateTemplateParmDecl *TempParm 2186 = cast<TemplateTemplateParmDecl>(*Param); 2187 2188 if (!TempParm->hasDefaultArgument()) { 2189 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2190 break; 2191 } 2192 2193 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2194 TemplateLoc, 2195 RAngleLoc, 2196 TempParm, 2197 Converted); 2198 if (Name.isNull()) 2199 return true; 2200 2201 Arg = TemplateArgumentLoc(TemplateArgument(Name), 2202 TempParm->getDefaultArgument().getTemplateQualifierRange(), 2203 TempParm->getDefaultArgument().getTemplateNameLoc()); 2204 } 2205 2206 // Introduce an instantiation record that describes where we are using 2207 // the default template argument. 2208 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 2209 Converted.getFlatArguments(), 2210 Converted.flatSize(), 2211 SourceRange(TemplateLoc, RAngleLoc)); 2212 2213 // Check the default template argument. 2214 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 2215 RAngleLoc, Converted)) 2216 return true; 2217 } 2218 2219 return Invalid; 2220} 2221 2222/// \brief Check a template argument against its corresponding 2223/// template type parameter. 2224/// 2225/// This routine implements the semantics of C++ [temp.arg.type]. It 2226/// returns true if an error occurred, and false otherwise. 2227bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 2228 TypeSourceInfo *ArgInfo) { 2229 assert(ArgInfo && "invalid TypeSourceInfo"); 2230 QualType Arg = ArgInfo->getType(); 2231 2232 // C++ [temp.arg.type]p2: 2233 // A local type, a type with no linkage, an unnamed type or a type 2234 // compounded from any of these types shall not be used as a 2235 // template-argument for a template type-parameter. 2236 // 2237 // FIXME: Perform the recursive and no-linkage type checks. 2238 const TagType *Tag = 0; 2239 if (const EnumType *EnumT = Arg->getAs<EnumType>()) 2240 Tag = EnumT; 2241 else if (const RecordType *RecordT = Arg->getAs<RecordType>()) 2242 Tag = RecordT; 2243 if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) { 2244 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2245 return Diag(SR.getBegin(), diag::err_template_arg_local_type) 2246 << QualType(Tag, 0) << SR; 2247 } else if (Tag && !Tag->getDecl()->getDeclName() && 2248 !Tag->getDecl()->getTypedefForAnonDecl()) { 2249 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2250 Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR; 2251 Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here); 2252 return true; 2253 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 2254 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2255 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 2256 } 2257 2258 return false; 2259} 2260 2261/// \brief Checks whether the given template argument is the address 2262/// of an object or function according to C++ [temp.arg.nontype]p1. 2263bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg, 2264 NamedDecl *&Entity) { 2265 bool Invalid = false; 2266 2267 // See through any implicit casts we added to fix the type. 2268 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2269 Arg = Cast->getSubExpr(); 2270 2271 // C++0x allows nullptr, and there's no further checking to be done for that. 2272 if (Arg->getType()->isNullPtrType()) 2273 return false; 2274 2275 // C++ [temp.arg.nontype]p1: 2276 // 2277 // A template-argument for a non-type, non-template 2278 // template-parameter shall be one of: [...] 2279 // 2280 // -- the address of an object or function with external 2281 // linkage, including function templates and function 2282 // template-ids but excluding non-static class members, 2283 // expressed as & id-expression where the & is optional if 2284 // the name refers to a function or array, or if the 2285 // corresponding template-parameter is a reference; or 2286 DeclRefExpr *DRE = 0; 2287 2288 // Ignore (and complain about) any excess parentheses. 2289 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2290 if (!Invalid) { 2291 Diag(Arg->getSourceRange().getBegin(), 2292 diag::err_template_arg_extra_parens) 2293 << Arg->getSourceRange(); 2294 Invalid = true; 2295 } 2296 2297 Arg = Parens->getSubExpr(); 2298 } 2299 2300 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2301 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 2302 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2303 } else 2304 DRE = dyn_cast<DeclRefExpr>(Arg); 2305 2306 if (!DRE) 2307 return Diag(Arg->getSourceRange().getBegin(), 2308 diag::err_template_arg_not_decl_ref) 2309 << Arg->getSourceRange(); 2310 2311 // Stop checking the precise nature of the argument if it is value dependent, 2312 // it should be checked when instantiated. 2313 if (Arg->isValueDependent()) 2314 return false; 2315 2316 if (!isa<ValueDecl>(DRE->getDecl())) 2317 return Diag(Arg->getSourceRange().getBegin(), 2318 diag::err_template_arg_not_object_or_func_form) 2319 << Arg->getSourceRange(); 2320 2321 // Cannot refer to non-static data members 2322 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) 2323 return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 2324 << Field << Arg->getSourceRange(); 2325 2326 // Cannot refer to non-static member functions 2327 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 2328 if (!Method->isStatic()) 2329 return Diag(Arg->getSourceRange().getBegin(), 2330 diag::err_template_arg_method) 2331 << Method << Arg->getSourceRange(); 2332 2333 // Functions must have external linkage. 2334 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 2335 if (!isExternalLinkage(Func->getLinkage())) { 2336 Diag(Arg->getSourceRange().getBegin(), 2337 diag::err_template_arg_function_not_extern) 2338 << Func << Arg->getSourceRange(); 2339 Diag(Func->getLocation(), diag::note_template_arg_internal_object) 2340 << true; 2341 return true; 2342 } 2343 2344 // Okay: we've named a function with external linkage. 2345 Entity = Func; 2346 return Invalid; 2347 } 2348 2349 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 2350 if (!isExternalLinkage(Var->getLinkage())) { 2351 Diag(Arg->getSourceRange().getBegin(), 2352 diag::err_template_arg_object_not_extern) 2353 << Var << Arg->getSourceRange(); 2354 Diag(Var->getLocation(), diag::note_template_arg_internal_object) 2355 << true; 2356 return true; 2357 } 2358 2359 // Okay: we've named an object with external linkage 2360 Entity = Var; 2361 return Invalid; 2362 } 2363 2364 // We found something else, but we don't know specifically what it is. 2365 Diag(Arg->getSourceRange().getBegin(), 2366 diag::err_template_arg_not_object_or_func) 2367 << Arg->getSourceRange(); 2368 Diag(DRE->getDecl()->getLocation(), 2369 diag::note_template_arg_refers_here); 2370 return true; 2371} 2372 2373/// \brief Checks whether the given template argument is a pointer to 2374/// member constant according to C++ [temp.arg.nontype]p1. 2375bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 2376 TemplateArgument &Converted) { 2377 bool Invalid = false; 2378 2379 // See through any implicit casts we added to fix the type. 2380 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2381 Arg = Cast->getSubExpr(); 2382 2383 // C++0x allows nullptr, and there's no further checking to be done for that. 2384 if (Arg->getType()->isNullPtrType()) 2385 return false; 2386 2387 // C++ [temp.arg.nontype]p1: 2388 // 2389 // A template-argument for a non-type, non-template 2390 // template-parameter shall be one of: [...] 2391 // 2392 // -- a pointer to member expressed as described in 5.3.1. 2393 DeclRefExpr *DRE = 0; 2394 2395 // Ignore (and complain about) any excess parentheses. 2396 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2397 if (!Invalid) { 2398 Diag(Arg->getSourceRange().getBegin(), 2399 diag::err_template_arg_extra_parens) 2400 << Arg->getSourceRange(); 2401 Invalid = true; 2402 } 2403 2404 Arg = Parens->getSubExpr(); 2405 } 2406 2407 // A pointer-to-member constant written &Class::member. 2408 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2409 if (UnOp->getOpcode() == UnaryOperator::AddrOf) { 2410 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2411 if (DRE && !DRE->getQualifier()) 2412 DRE = 0; 2413 } 2414 } 2415 // A constant of pointer-to-member type. 2416 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 2417 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 2418 if (VD->getType()->isMemberPointerType()) { 2419 if (isa<NonTypeTemplateParmDecl>(VD) || 2420 (isa<VarDecl>(VD) && 2421 Context.getCanonicalType(VD->getType()).isConstQualified())) { 2422 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2423 Converted = TemplateArgument(Arg->Retain()); 2424 else 2425 Converted = TemplateArgument(VD->getCanonicalDecl()); 2426 return Invalid; 2427 } 2428 } 2429 } 2430 2431 DRE = 0; 2432 } 2433 2434 if (!DRE) 2435 return Diag(Arg->getSourceRange().getBegin(), 2436 diag::err_template_arg_not_pointer_to_member_form) 2437 << Arg->getSourceRange(); 2438 2439 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 2440 assert((isa<FieldDecl>(DRE->getDecl()) || 2441 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 2442 "Only non-static member pointers can make it here"); 2443 2444 // Okay: this is the address of a non-static member, and therefore 2445 // a member pointer constant. 2446 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2447 Converted = TemplateArgument(Arg->Retain()); 2448 else 2449 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 2450 return Invalid; 2451 } 2452 2453 // We found something else, but we don't know specifically what it is. 2454 Diag(Arg->getSourceRange().getBegin(), 2455 diag::err_template_arg_not_pointer_to_member_form) 2456 << Arg->getSourceRange(); 2457 Diag(DRE->getDecl()->getLocation(), 2458 diag::note_template_arg_refers_here); 2459 return true; 2460} 2461 2462/// \brief Check a template argument against its corresponding 2463/// non-type template parameter. 2464/// 2465/// This routine implements the semantics of C++ [temp.arg.nontype]. 2466/// It returns true if an error occurred, and false otherwise. \p 2467/// InstantiatedParamType is the type of the non-type template 2468/// parameter after it has been instantiated. 2469/// 2470/// If no error was detected, Converted receives the converted template argument. 2471bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 2472 QualType InstantiatedParamType, Expr *&Arg, 2473 TemplateArgument &Converted) { 2474 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 2475 2476 // If either the parameter has a dependent type or the argument is 2477 // type-dependent, there's nothing we can check now. 2478 // FIXME: Add template argument to Converted! 2479 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 2480 // FIXME: Produce a cloned, canonical expression? 2481 Converted = TemplateArgument(Arg); 2482 return false; 2483 } 2484 2485 // C++ [temp.arg.nontype]p5: 2486 // The following conversions are performed on each expression used 2487 // as a non-type template-argument. If a non-type 2488 // template-argument cannot be converted to the type of the 2489 // corresponding template-parameter then the program is 2490 // ill-formed. 2491 // 2492 // -- for a non-type template-parameter of integral or 2493 // enumeration type, integral promotions (4.5) and integral 2494 // conversions (4.7) are applied. 2495 QualType ParamType = InstantiatedParamType; 2496 QualType ArgType = Arg->getType(); 2497 if (ParamType->isIntegralType() || ParamType->isEnumeralType()) { 2498 // C++ [temp.arg.nontype]p1: 2499 // A template-argument for a non-type, non-template 2500 // template-parameter shall be one of: 2501 // 2502 // -- an integral constant-expression of integral or enumeration 2503 // type; or 2504 // -- the name of a non-type template-parameter; or 2505 SourceLocation NonConstantLoc; 2506 llvm::APSInt Value; 2507 if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) { 2508 Diag(Arg->getSourceRange().getBegin(), 2509 diag::err_template_arg_not_integral_or_enumeral) 2510 << ArgType << Arg->getSourceRange(); 2511 Diag(Param->getLocation(), diag::note_template_param_here); 2512 return true; 2513 } else if (!Arg->isValueDependent() && 2514 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 2515 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 2516 << ArgType << Arg->getSourceRange(); 2517 return true; 2518 } 2519 2520 // FIXME: We need some way to more easily get the unqualified form 2521 // of the types without going all the way to the 2522 // canonical type. 2523 if (Context.getCanonicalType(ParamType).getCVRQualifiers()) 2524 ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType(); 2525 if (Context.getCanonicalType(ArgType).getCVRQualifiers()) 2526 ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType(); 2527 2528 // Try to convert the argument to the parameter's type. 2529 if (Context.hasSameType(ParamType, ArgType)) { 2530 // Okay: no conversion necessary 2531 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 2532 !ParamType->isEnumeralType()) { 2533 // This is an integral promotion or conversion. 2534 ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast); 2535 } else { 2536 // We can't perform this conversion. 2537 Diag(Arg->getSourceRange().getBegin(), 2538 diag::err_template_arg_not_convertible) 2539 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2540 Diag(Param->getLocation(), diag::note_template_param_here); 2541 return true; 2542 } 2543 2544 QualType IntegerType = Context.getCanonicalType(ParamType); 2545 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 2546 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 2547 2548 if (!Arg->isValueDependent()) { 2549 // Check that an unsigned parameter does not receive a negative 2550 // value. 2551 if (IntegerType->isUnsignedIntegerType() 2552 && (Value.isSigned() && Value.isNegative())) { 2553 Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative) 2554 << Value.toString(10) << Param->getType() 2555 << Arg->getSourceRange(); 2556 Diag(Param->getLocation(), diag::note_template_param_here); 2557 return true; 2558 } 2559 2560 // Check that we don't overflow the template parameter type. 2561 unsigned AllowedBits = Context.getTypeSize(IntegerType); 2562 unsigned RequiredBits; 2563 if (IntegerType->isUnsignedIntegerType()) 2564 RequiredBits = Value.getActiveBits(); 2565 else if (Value.isUnsigned()) 2566 RequiredBits = Value.getActiveBits() + 1; 2567 else 2568 RequiredBits = Value.getMinSignedBits(); 2569 if (RequiredBits > AllowedBits) { 2570 Diag(Arg->getSourceRange().getBegin(), 2571 diag::err_template_arg_too_large) 2572 << Value.toString(10) << Param->getType() 2573 << Arg->getSourceRange(); 2574 Diag(Param->getLocation(), diag::note_template_param_here); 2575 return true; 2576 } 2577 2578 if (Value.getBitWidth() != AllowedBits) 2579 Value.extOrTrunc(AllowedBits); 2580 Value.setIsSigned(IntegerType->isSignedIntegerType()); 2581 } 2582 2583 // Add the value of this argument to the list of converted 2584 // arguments. We use the bitwidth and signedness of the template 2585 // parameter. 2586 if (Arg->isValueDependent()) { 2587 // The argument is value-dependent. Create a new 2588 // TemplateArgument with the converted expression. 2589 Converted = TemplateArgument(Arg); 2590 return false; 2591 } 2592 2593 Converted = TemplateArgument(Value, 2594 ParamType->isEnumeralType() ? ParamType 2595 : IntegerType); 2596 return false; 2597 } 2598 2599 // Handle pointer-to-function, reference-to-function, and 2600 // pointer-to-member-function all in (roughly) the same way. 2601 if (// -- For a non-type template-parameter of type pointer to 2602 // function, only the function-to-pointer conversion (4.3) is 2603 // applied. If the template-argument represents a set of 2604 // overloaded functions (or a pointer to such), the matching 2605 // function is selected from the set (13.4). 2606 // In C++0x, any std::nullptr_t value can be converted. 2607 (ParamType->isPointerType() && 2608 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 2609 // -- For a non-type template-parameter of type reference to 2610 // function, no conversions apply. If the template-argument 2611 // represents a set of overloaded functions, the matching 2612 // function is selected from the set (13.4). 2613 (ParamType->isReferenceType() && 2614 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 2615 // -- For a non-type template-parameter of type pointer to 2616 // member function, no conversions apply. If the 2617 // template-argument represents a set of overloaded member 2618 // functions, the matching member function is selected from 2619 // the set (13.4). 2620 // Again, C++0x allows a std::nullptr_t value. 2621 (ParamType->isMemberPointerType() && 2622 ParamType->getAs<MemberPointerType>()->getPointeeType() 2623 ->isFunctionType())) { 2624 if (Context.hasSameUnqualifiedType(ArgType, 2625 ParamType.getNonReferenceType())) { 2626 // We don't have to do anything: the types already match. 2627 } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() || 2628 ParamType->isMemberPointerType())) { 2629 ArgType = ParamType; 2630 if (ParamType->isMemberPointerType()) 2631 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer); 2632 else 2633 ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast); 2634 } else if (ArgType->isFunctionType() && ParamType->isPointerType()) { 2635 ArgType = Context.getPointerType(ArgType); 2636 ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay); 2637 } else if (FunctionDecl *Fn 2638 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) { 2639 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2640 return true; 2641 2642 Arg = FixOverloadedFunctionReference(Arg, Fn); 2643 ArgType = Arg->getType(); 2644 if (ArgType->isFunctionType() && ParamType->isPointerType()) { 2645 ArgType = Context.getPointerType(Arg->getType()); 2646 ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay); 2647 } 2648 } 2649 2650 if (!Context.hasSameUnqualifiedType(ArgType, 2651 ParamType.getNonReferenceType())) { 2652 // We can't perform this conversion. 2653 Diag(Arg->getSourceRange().getBegin(), 2654 diag::err_template_arg_not_convertible) 2655 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2656 Diag(Param->getLocation(), diag::note_template_param_here); 2657 return true; 2658 } 2659 2660 if (ParamType->isMemberPointerType()) 2661 return CheckTemplateArgumentPointerToMember(Arg, Converted); 2662 2663 NamedDecl *Entity = 0; 2664 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2665 return true; 2666 2667 if (Arg->isValueDependent()) { 2668 Converted = TemplateArgument(Arg); 2669 } else { 2670 if (Entity) 2671 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2672 Converted = TemplateArgument(Entity); 2673 } 2674 return false; 2675 } 2676 2677 if (ParamType->isPointerType()) { 2678 // -- for a non-type template-parameter of type pointer to 2679 // object, qualification conversions (4.4) and the 2680 // array-to-pointer conversion (4.2) are applied. 2681 // C++0x also allows a value of std::nullptr_t. 2682 assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() && 2683 "Only object pointers allowed here"); 2684 2685 if (ArgType->isNullPtrType()) { 2686 ArgType = ParamType; 2687 ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast); 2688 } else if (ArgType->isArrayType()) { 2689 ArgType = Context.getArrayDecayedType(ArgType); 2690 ImpCastExprToType(Arg, ArgType, CastExpr::CK_ArrayToPointerDecay); 2691 } 2692 2693 if (IsQualificationConversion(ArgType, ParamType)) { 2694 ArgType = ParamType; 2695 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp); 2696 } 2697 2698 if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) { 2699 // We can't perform this conversion. 2700 Diag(Arg->getSourceRange().getBegin(), 2701 diag::err_template_arg_not_convertible) 2702 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2703 Diag(Param->getLocation(), diag::note_template_param_here); 2704 return true; 2705 } 2706 2707 NamedDecl *Entity = 0; 2708 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2709 return true; 2710 2711 if (Arg->isValueDependent()) { 2712 Converted = TemplateArgument(Arg); 2713 } else { 2714 if (Entity) 2715 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2716 Converted = TemplateArgument(Entity); 2717 } 2718 return false; 2719 } 2720 2721 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 2722 // -- For a non-type template-parameter of type reference to 2723 // object, no conversions apply. The type referred to by the 2724 // reference may be more cv-qualified than the (otherwise 2725 // identical) type of the template-argument. The 2726 // template-parameter is bound directly to the 2727 // template-argument, which must be an lvalue. 2728 assert(ParamRefType->getPointeeType()->isObjectType() && 2729 "Only object references allowed here"); 2730 2731 QualType ReferredType = ParamRefType->getPointeeType(); 2732 if (!Context.hasSameUnqualifiedType(ReferredType, ArgType)) { 2733 Diag(Arg->getSourceRange().getBegin(), 2734 diag::err_template_arg_no_ref_bind) 2735 << InstantiatedParamType << Arg->getType() 2736 << Arg->getSourceRange(); 2737 Diag(Param->getLocation(), diag::note_template_param_here); 2738 return true; 2739 } 2740 2741 unsigned ParamQuals 2742 = Context.getCanonicalType(ReferredType).getCVRQualifiers(); 2743 unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers(); 2744 2745 if ((ParamQuals | ArgQuals) != ParamQuals) { 2746 Diag(Arg->getSourceRange().getBegin(), 2747 diag::err_template_arg_ref_bind_ignores_quals) 2748 << InstantiatedParamType << Arg->getType() 2749 << Arg->getSourceRange(); 2750 Diag(Param->getLocation(), diag::note_template_param_here); 2751 return true; 2752 } 2753 2754 NamedDecl *Entity = 0; 2755 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2756 return true; 2757 2758 if (Arg->isValueDependent()) { 2759 Converted = TemplateArgument(Arg); 2760 } else { 2761 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2762 Converted = TemplateArgument(Entity); 2763 } 2764 return false; 2765 } 2766 2767 // -- For a non-type template-parameter of type pointer to data 2768 // member, qualification conversions (4.4) are applied. 2769 // C++0x allows std::nullptr_t values. 2770 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 2771 2772 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 2773 // Types match exactly: nothing more to do here. 2774 } else if (ArgType->isNullPtrType()) { 2775 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer); 2776 } else if (IsQualificationConversion(ArgType, ParamType)) { 2777 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp); 2778 } else { 2779 // We can't perform this conversion. 2780 Diag(Arg->getSourceRange().getBegin(), 2781 diag::err_template_arg_not_convertible) 2782 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2783 Diag(Param->getLocation(), diag::note_template_param_here); 2784 return true; 2785 } 2786 2787 return CheckTemplateArgumentPointerToMember(Arg, Converted); 2788} 2789 2790/// \brief Check a template argument against its corresponding 2791/// template template parameter. 2792/// 2793/// This routine implements the semantics of C++ [temp.arg.template]. 2794/// It returns true if an error occurred, and false otherwise. 2795bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 2796 const TemplateArgumentLoc &Arg) { 2797 TemplateName Name = Arg.getArgument().getAsTemplate(); 2798 TemplateDecl *Template = Name.getAsTemplateDecl(); 2799 if (!Template) { 2800 // Any dependent template name is fine. 2801 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 2802 return false; 2803 } 2804 2805 // C++ [temp.arg.template]p1: 2806 // A template-argument for a template template-parameter shall be 2807 // the name of a class template, expressed as id-expression. Only 2808 // primary class templates are considered when matching the 2809 // template template argument with the corresponding parameter; 2810 // partial specializations are not considered even if their 2811 // parameter lists match that of the template template parameter. 2812 // 2813 // Note that we also allow template template parameters here, which 2814 // will happen when we are dealing with, e.g., class template 2815 // partial specializations. 2816 if (!isa<ClassTemplateDecl>(Template) && 2817 !isa<TemplateTemplateParmDecl>(Template)) { 2818 assert(isa<FunctionTemplateDecl>(Template) && 2819 "Only function templates are possible here"); 2820 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 2821 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 2822 << Template; 2823 } 2824 2825 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 2826 Param->getTemplateParameters(), 2827 true, 2828 TPL_TemplateTemplateArgumentMatch, 2829 Arg.getLocation()); 2830} 2831 2832/// \brief Determine whether the given template parameter lists are 2833/// equivalent. 2834/// 2835/// \param New The new template parameter list, typically written in the 2836/// source code as part of a new template declaration. 2837/// 2838/// \param Old The old template parameter list, typically found via 2839/// name lookup of the template declared with this template parameter 2840/// list. 2841/// 2842/// \param Complain If true, this routine will produce a diagnostic if 2843/// the template parameter lists are not equivalent. 2844/// 2845/// \param Kind describes how we are to match the template parameter lists. 2846/// 2847/// \param TemplateArgLoc If this source location is valid, then we 2848/// are actually checking the template parameter list of a template 2849/// argument (New) against the template parameter list of its 2850/// corresponding template template parameter (Old). We produce 2851/// slightly different diagnostics in this scenario. 2852/// 2853/// \returns True if the template parameter lists are equal, false 2854/// otherwise. 2855bool 2856Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 2857 TemplateParameterList *Old, 2858 bool Complain, 2859 TemplateParameterListEqualKind Kind, 2860 SourceLocation TemplateArgLoc) { 2861 if (Old->size() != New->size()) { 2862 if (Complain) { 2863 unsigned NextDiag = diag::err_template_param_list_different_arity; 2864 if (TemplateArgLoc.isValid()) { 2865 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 2866 NextDiag = diag::note_template_param_list_different_arity; 2867 } 2868 Diag(New->getTemplateLoc(), NextDiag) 2869 << (New->size() > Old->size()) 2870 << (Kind != TPL_TemplateMatch) 2871 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 2872 Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 2873 << (Kind != TPL_TemplateMatch) 2874 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 2875 } 2876 2877 return false; 2878 } 2879 2880 for (TemplateParameterList::iterator OldParm = Old->begin(), 2881 OldParmEnd = Old->end(), NewParm = New->begin(); 2882 OldParm != OldParmEnd; ++OldParm, ++NewParm) { 2883 if ((*OldParm)->getKind() != (*NewParm)->getKind()) { 2884 if (Complain) { 2885 unsigned NextDiag = diag::err_template_param_different_kind; 2886 if (TemplateArgLoc.isValid()) { 2887 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 2888 NextDiag = diag::note_template_param_different_kind; 2889 } 2890 Diag((*NewParm)->getLocation(), NextDiag) 2891 << (Kind != TPL_TemplateMatch); 2892 Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration) 2893 << (Kind != TPL_TemplateMatch); 2894 } 2895 return false; 2896 } 2897 2898 if (isa<TemplateTypeParmDecl>(*OldParm)) { 2899 // Okay; all template type parameters are equivalent (since we 2900 // know we're at the same index). 2901 } else if (NonTypeTemplateParmDecl *OldNTTP 2902 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) { 2903 // The types of non-type template parameters must agree. 2904 NonTypeTemplateParmDecl *NewNTTP 2905 = cast<NonTypeTemplateParmDecl>(*NewParm); 2906 2907 // If we are matching a template template argument to a template 2908 // template parameter and one of the non-type template parameter types 2909 // is dependent, then we must wait until template instantiation time 2910 // to actually compare the arguments. 2911 if (Kind == TPL_TemplateTemplateArgumentMatch && 2912 (OldNTTP->getType()->isDependentType() || 2913 NewNTTP->getType()->isDependentType())) 2914 continue; 2915 2916 if (Context.getCanonicalType(OldNTTP->getType()) != 2917 Context.getCanonicalType(NewNTTP->getType())) { 2918 if (Complain) { 2919 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 2920 if (TemplateArgLoc.isValid()) { 2921 Diag(TemplateArgLoc, 2922 diag::err_template_arg_template_params_mismatch); 2923 NextDiag = diag::note_template_nontype_parm_different_type; 2924 } 2925 Diag(NewNTTP->getLocation(), NextDiag) 2926 << NewNTTP->getType() 2927 << (Kind != TPL_TemplateMatch); 2928 Diag(OldNTTP->getLocation(), 2929 diag::note_template_nontype_parm_prev_declaration) 2930 << OldNTTP->getType(); 2931 } 2932 return false; 2933 } 2934 } else { 2935 // The template parameter lists of template template 2936 // parameters must agree. 2937 assert(isa<TemplateTemplateParmDecl>(*OldParm) && 2938 "Only template template parameters handled here"); 2939 TemplateTemplateParmDecl *OldTTP 2940 = cast<TemplateTemplateParmDecl>(*OldParm); 2941 TemplateTemplateParmDecl *NewTTP 2942 = cast<TemplateTemplateParmDecl>(*NewParm); 2943 if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 2944 OldTTP->getTemplateParameters(), 2945 Complain, 2946 (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind), 2947 TemplateArgLoc)) 2948 return false; 2949 } 2950 } 2951 2952 return true; 2953} 2954 2955/// \brief Check whether a template can be declared within this scope. 2956/// 2957/// If the template declaration is valid in this scope, returns 2958/// false. Otherwise, issues a diagnostic and returns true. 2959bool 2960Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 2961 // Find the nearest enclosing declaration scope. 2962 while ((S->getFlags() & Scope::DeclScope) == 0 || 2963 (S->getFlags() & Scope::TemplateParamScope) != 0) 2964 S = S->getParent(); 2965 2966 // C++ [temp]p2: 2967 // A template-declaration can appear only as a namespace scope or 2968 // class scope declaration. 2969 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 2970 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 2971 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 2972 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 2973 << TemplateParams->getSourceRange(); 2974 2975 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 2976 Ctx = Ctx->getParent(); 2977 2978 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 2979 return false; 2980 2981 return Diag(TemplateParams->getTemplateLoc(), 2982 diag::err_template_outside_namespace_or_class_scope) 2983 << TemplateParams->getSourceRange(); 2984} 2985 2986/// \brief Determine what kind of template specialization the given declaration 2987/// is. 2988static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 2989 if (!D) 2990 return TSK_Undeclared; 2991 2992 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 2993 return Record->getTemplateSpecializationKind(); 2994 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 2995 return Function->getTemplateSpecializationKind(); 2996 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 2997 return Var->getTemplateSpecializationKind(); 2998 2999 return TSK_Undeclared; 3000} 3001 3002/// \brief Check whether a specialization is well-formed in the current 3003/// context. 3004/// 3005/// This routine determines whether a template specialization can be declared 3006/// in the current context (C++ [temp.expl.spec]p2). 3007/// 3008/// \param S the semantic analysis object for which this check is being 3009/// performed. 3010/// 3011/// \param Specialized the entity being specialized or instantiated, which 3012/// may be a kind of template (class template, function template, etc.) or 3013/// a member of a class template (member function, static data member, 3014/// member class). 3015/// 3016/// \param PrevDecl the previous declaration of this entity, if any. 3017/// 3018/// \param Loc the location of the explicit specialization or instantiation of 3019/// this entity. 3020/// 3021/// \param IsPartialSpecialization whether this is a partial specialization of 3022/// a class template. 3023/// 3024/// \returns true if there was an error that we cannot recover from, false 3025/// otherwise. 3026static bool CheckTemplateSpecializationScope(Sema &S, 3027 NamedDecl *Specialized, 3028 NamedDecl *PrevDecl, 3029 SourceLocation Loc, 3030 bool IsPartialSpecialization) { 3031 // Keep these "kind" numbers in sync with the %select statements in the 3032 // various diagnostics emitted by this routine. 3033 int EntityKind = 0; 3034 bool isTemplateSpecialization = false; 3035 if (isa<ClassTemplateDecl>(Specialized)) { 3036 EntityKind = IsPartialSpecialization? 1 : 0; 3037 isTemplateSpecialization = true; 3038 } else if (isa<FunctionTemplateDecl>(Specialized)) { 3039 EntityKind = 2; 3040 isTemplateSpecialization = true; 3041 } else if (isa<CXXMethodDecl>(Specialized)) 3042 EntityKind = 3; 3043 else if (isa<VarDecl>(Specialized)) 3044 EntityKind = 4; 3045 else if (isa<RecordDecl>(Specialized)) 3046 EntityKind = 5; 3047 else { 3048 S.Diag(Loc, diag::err_template_spec_unknown_kind); 3049 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3050 return true; 3051 } 3052 3053 // C++ [temp.expl.spec]p2: 3054 // An explicit specialization shall be declared in the namespace 3055 // of which the template is a member, or, for member templates, in 3056 // the namespace of which the enclosing class or enclosing class 3057 // template is a member. An explicit specialization of a member 3058 // function, member class or static data member of a class 3059 // template shall be declared in the namespace of which the class 3060 // template is a member. Such a declaration may also be a 3061 // definition. If the declaration is not a definition, the 3062 // specialization may be defined later in the name- space in which 3063 // the explicit specialization was declared, or in a namespace 3064 // that encloses the one in which the explicit specialization was 3065 // declared. 3066 if (S.CurContext->getLookupContext()->isFunctionOrMethod()) { 3067 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 3068 << Specialized; 3069 return true; 3070 } 3071 3072 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 3073 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 3074 << Specialized; 3075 return true; 3076 } 3077 3078 // C++ [temp.class.spec]p6: 3079 // A class template partial specialization may be declared or redeclared 3080 // in any namespace scope in which its definition may be defined (14.5.1 3081 // and 14.5.2). 3082 bool ComplainedAboutScope = false; 3083 DeclContext *SpecializedContext 3084 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 3085 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 3086 if ((!PrevDecl || 3087 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 3088 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 3089 // There is no prior declaration of this entity, so this 3090 // specialization must be in the same context as the template 3091 // itself. 3092 if (!DC->Equals(SpecializedContext)) { 3093 if (isa<TranslationUnitDecl>(SpecializedContext)) 3094 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 3095 << EntityKind << Specialized; 3096 else if (isa<NamespaceDecl>(SpecializedContext)) 3097 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope) 3098 << EntityKind << Specialized 3099 << cast<NamedDecl>(SpecializedContext); 3100 3101 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3102 ComplainedAboutScope = true; 3103 } 3104 } 3105 3106 // Make sure that this redeclaration (or definition) occurs in an enclosing 3107 // namespace. 3108 // Note that HandleDeclarator() performs this check for explicit 3109 // specializations of function templates, static data members, and member 3110 // functions, so we skip the check here for those kinds of entities. 3111 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 3112 // Should we refactor that check, so that it occurs later? 3113 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 3114 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 3115 isa<FunctionDecl>(Specialized))) { 3116 if (isa<TranslationUnitDecl>(SpecializedContext)) 3117 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 3118 << EntityKind << Specialized; 3119 else if (isa<NamespaceDecl>(SpecializedContext)) 3120 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 3121 << EntityKind << Specialized 3122 << cast<NamedDecl>(SpecializedContext); 3123 3124 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3125 } 3126 3127 // FIXME: check for specialization-after-instantiation errors and such. 3128 3129 return false; 3130} 3131 3132/// \brief Check the non-type template arguments of a class template 3133/// partial specialization according to C++ [temp.class.spec]p9. 3134/// 3135/// \param TemplateParams the template parameters of the primary class 3136/// template. 3137/// 3138/// \param TemplateArg the template arguments of the class template 3139/// partial specialization. 3140/// 3141/// \param MirrorsPrimaryTemplate will be set true if the class 3142/// template partial specialization arguments are identical to the 3143/// implicit template arguments of the primary template. This is not 3144/// necessarily an error (C++0x), and it is left to the caller to diagnose 3145/// this condition when it is an error. 3146/// 3147/// \returns true if there was an error, false otherwise. 3148bool Sema::CheckClassTemplatePartialSpecializationArgs( 3149 TemplateParameterList *TemplateParams, 3150 const TemplateArgumentListBuilder &TemplateArgs, 3151 bool &MirrorsPrimaryTemplate) { 3152 // FIXME: the interface to this function will have to change to 3153 // accommodate variadic templates. 3154 MirrorsPrimaryTemplate = true; 3155 3156 const TemplateArgument *ArgList = TemplateArgs.getFlatArguments(); 3157 3158 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3159 // Determine whether the template argument list of the partial 3160 // specialization is identical to the implicit argument list of 3161 // the primary template. The caller may need to diagnostic this as 3162 // an error per C++ [temp.class.spec]p9b3. 3163 if (MirrorsPrimaryTemplate) { 3164 if (TemplateTypeParmDecl *TTP 3165 = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) { 3166 if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) != 3167 Context.getCanonicalType(ArgList[I].getAsType())) 3168 MirrorsPrimaryTemplate = false; 3169 } else if (TemplateTemplateParmDecl *TTP 3170 = dyn_cast<TemplateTemplateParmDecl>( 3171 TemplateParams->getParam(I))) { 3172 TemplateName Name = ArgList[I].getAsTemplate(); 3173 TemplateTemplateParmDecl *ArgDecl 3174 = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()); 3175 if (!ArgDecl || 3176 ArgDecl->getIndex() != TTP->getIndex() || 3177 ArgDecl->getDepth() != TTP->getDepth()) 3178 MirrorsPrimaryTemplate = false; 3179 } 3180 } 3181 3182 NonTypeTemplateParmDecl *Param 3183 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 3184 if (!Param) { 3185 continue; 3186 } 3187 3188 Expr *ArgExpr = ArgList[I].getAsExpr(); 3189 if (!ArgExpr) { 3190 MirrorsPrimaryTemplate = false; 3191 continue; 3192 } 3193 3194 // C++ [temp.class.spec]p8: 3195 // A non-type argument is non-specialized if it is the name of a 3196 // non-type parameter. All other non-type arguments are 3197 // specialized. 3198 // 3199 // Below, we check the two conditions that only apply to 3200 // specialized non-type arguments, so skip any non-specialized 3201 // arguments. 3202 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 3203 if (NonTypeTemplateParmDecl *NTTP 3204 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) { 3205 if (MirrorsPrimaryTemplate && 3206 (Param->getIndex() != NTTP->getIndex() || 3207 Param->getDepth() != NTTP->getDepth())) 3208 MirrorsPrimaryTemplate = false; 3209 3210 continue; 3211 } 3212 3213 // C++ [temp.class.spec]p9: 3214 // Within the argument list of a class template partial 3215 // specialization, the following restrictions apply: 3216 // -- A partially specialized non-type argument expression 3217 // shall not involve a template parameter of the partial 3218 // specialization except when the argument expression is a 3219 // simple identifier. 3220 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 3221 Diag(ArgExpr->getLocStart(), 3222 diag::err_dependent_non_type_arg_in_partial_spec) 3223 << ArgExpr->getSourceRange(); 3224 return true; 3225 } 3226 3227 // -- The type of a template parameter corresponding to a 3228 // specialized non-type argument shall not be dependent on a 3229 // parameter of the specialization. 3230 if (Param->getType()->isDependentType()) { 3231 Diag(ArgExpr->getLocStart(), 3232 diag::err_dependent_typed_non_type_arg_in_partial_spec) 3233 << Param->getType() 3234 << ArgExpr->getSourceRange(); 3235 Diag(Param->getLocation(), diag::note_template_param_here); 3236 return true; 3237 } 3238 3239 MirrorsPrimaryTemplate = false; 3240 } 3241 3242 return false; 3243} 3244 3245Sema::DeclResult 3246Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 3247 TagUseKind TUK, 3248 SourceLocation KWLoc, 3249 const CXXScopeSpec &SS, 3250 TemplateTy TemplateD, 3251 SourceLocation TemplateNameLoc, 3252 SourceLocation LAngleLoc, 3253 ASTTemplateArgsPtr TemplateArgsIn, 3254 SourceLocation RAngleLoc, 3255 AttributeList *Attr, 3256 MultiTemplateParamsArg TemplateParameterLists) { 3257 assert(TUK != TUK_Reference && "References are not specializations"); 3258 3259 // Find the class template we're specializing 3260 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 3261 ClassTemplateDecl *ClassTemplate 3262 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 3263 3264 if (!ClassTemplate) { 3265 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 3266 << (Name.getAsTemplateDecl() && 3267 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 3268 return true; 3269 } 3270 3271 bool isExplicitSpecialization = false; 3272 bool isPartialSpecialization = false; 3273 3274 // Check the validity of the template headers that introduce this 3275 // template. 3276 // FIXME: We probably shouldn't complain about these headers for 3277 // friend declarations. 3278 TemplateParameterList *TemplateParams 3279 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 3280 (TemplateParameterList**)TemplateParameterLists.get(), 3281 TemplateParameterLists.size(), 3282 isExplicitSpecialization); 3283 if (TemplateParams && TemplateParams->size() > 0) { 3284 isPartialSpecialization = true; 3285 3286 // C++ [temp.class.spec]p10: 3287 // The template parameter list of a specialization shall not 3288 // contain default template argument values. 3289 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3290 Decl *Param = TemplateParams->getParam(I); 3291 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 3292 if (TTP->hasDefaultArgument()) { 3293 Diag(TTP->getDefaultArgumentLoc(), 3294 diag::err_default_arg_in_partial_spec); 3295 TTP->removeDefaultArgument(); 3296 } 3297 } else if (NonTypeTemplateParmDecl *NTTP 3298 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3299 if (Expr *DefArg = NTTP->getDefaultArgument()) { 3300 Diag(NTTP->getDefaultArgumentLoc(), 3301 diag::err_default_arg_in_partial_spec) 3302 << DefArg->getSourceRange(); 3303 NTTP->setDefaultArgument(0); 3304 DefArg->Destroy(Context); 3305 } 3306 } else { 3307 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 3308 if (TTP->hasDefaultArgument()) { 3309 Diag(TTP->getDefaultArgument().getLocation(), 3310 diag::err_default_arg_in_partial_spec) 3311 << TTP->getDefaultArgument().getSourceRange(); 3312 TTP->setDefaultArgument(TemplateArgumentLoc()); 3313 } 3314 } 3315 } 3316 } else if (TemplateParams) { 3317 if (TUK == TUK_Friend) 3318 Diag(KWLoc, diag::err_template_spec_friend) 3319 << CodeModificationHint::CreateRemoval( 3320 SourceRange(TemplateParams->getTemplateLoc(), 3321 TemplateParams->getRAngleLoc())) 3322 << SourceRange(LAngleLoc, RAngleLoc); 3323 else 3324 isExplicitSpecialization = true; 3325 } else if (TUK != TUK_Friend) { 3326 Diag(KWLoc, diag::err_template_spec_needs_header) 3327 << CodeModificationHint::CreateInsertion(KWLoc, "template<> "); 3328 isExplicitSpecialization = true; 3329 } 3330 3331 // Check that the specialization uses the same tag kind as the 3332 // original template. 3333 TagDecl::TagKind Kind; 3334 switch (TagSpec) { 3335 default: assert(0 && "Unknown tag type!"); 3336 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 3337 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 3338 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 3339 } 3340 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 3341 Kind, KWLoc, 3342 *ClassTemplate->getIdentifier())) { 3343 Diag(KWLoc, diag::err_use_with_wrong_tag) 3344 << ClassTemplate 3345 << CodeModificationHint::CreateReplacement(KWLoc, 3346 ClassTemplate->getTemplatedDecl()->getKindName()); 3347 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 3348 diag::note_previous_use); 3349 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 3350 } 3351 3352 // Translate the parser's template argument list in our AST format. 3353 TemplateArgumentListInfo TemplateArgs; 3354 TemplateArgs.setLAngleLoc(LAngleLoc); 3355 TemplateArgs.setRAngleLoc(RAngleLoc); 3356 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3357 3358 // Check that the template argument list is well-formed for this 3359 // template. 3360 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 3361 TemplateArgs.size()); 3362 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 3363 TemplateArgs, false, Converted)) 3364 return true; 3365 3366 assert((Converted.structuredSize() == 3367 ClassTemplate->getTemplateParameters()->size()) && 3368 "Converted template argument list is too short!"); 3369 3370 // Find the class template (partial) specialization declaration that 3371 // corresponds to these arguments. 3372 llvm::FoldingSetNodeID ID; 3373 if (isPartialSpecialization) { 3374 bool MirrorsPrimaryTemplate; 3375 if (CheckClassTemplatePartialSpecializationArgs( 3376 ClassTemplate->getTemplateParameters(), 3377 Converted, MirrorsPrimaryTemplate)) 3378 return true; 3379 3380 if (MirrorsPrimaryTemplate) { 3381 // C++ [temp.class.spec]p9b3: 3382 // 3383 // -- The argument list of the specialization shall not be identical 3384 // to the implicit argument list of the primary template. 3385 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 3386 << (TUK == TUK_Definition) 3387 << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc, 3388 RAngleLoc)); 3389 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 3390 ClassTemplate->getIdentifier(), 3391 TemplateNameLoc, 3392 Attr, 3393 TemplateParams, 3394 AS_none); 3395 } 3396 3397 // FIXME: Diagnose friend partial specializations 3398 3399 if (!Name.isDependent() && 3400 !TemplateSpecializationType::anyDependentTemplateArguments( 3401 TemplateArgs.getArgumentArray(), 3402 TemplateArgs.size())) { 3403 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 3404 << ClassTemplate->getDeclName(); 3405 isPartialSpecialization = false; 3406 } else { 3407 // FIXME: Template parameter list matters, too 3408 ClassTemplatePartialSpecializationDecl::Profile(ID, 3409 Converted.getFlatArguments(), 3410 Converted.flatSize(), 3411 Context); 3412 } 3413 } 3414 3415 if (!isPartialSpecialization) 3416 ClassTemplateSpecializationDecl::Profile(ID, 3417 Converted.getFlatArguments(), 3418 Converted.flatSize(), 3419 Context); 3420 void *InsertPos = 0; 3421 ClassTemplateSpecializationDecl *PrevDecl = 0; 3422 3423 if (isPartialSpecialization) 3424 PrevDecl 3425 = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID, 3426 InsertPos); 3427 else 3428 PrevDecl 3429 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 3430 3431 ClassTemplateSpecializationDecl *Specialization = 0; 3432 3433 // Check whether we can declare a class template specialization in 3434 // the current scope. 3435 if (TUK != TUK_Friend && 3436 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 3437 TemplateNameLoc, 3438 isPartialSpecialization)) 3439 return true; 3440 3441 // The canonical type 3442 QualType CanonType; 3443 if (PrevDecl && 3444 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 3445 TUK == TUK_Friend)) { 3446 // Since the only prior class template specialization with these 3447 // arguments was referenced but not declared, or we're only 3448 // referencing this specialization as a friend, reuse that 3449 // declaration node as our own, updating its source location to 3450 // reflect our new declaration. 3451 Specialization = PrevDecl; 3452 Specialization->setLocation(TemplateNameLoc); 3453 PrevDecl = 0; 3454 CanonType = Context.getTypeDeclType(Specialization); 3455 } else if (isPartialSpecialization) { 3456 // Build the canonical type that describes the converted template 3457 // arguments of the class template partial specialization. 3458 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 3459 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 3460 Converted.getFlatArguments(), 3461 Converted.flatSize()); 3462 3463 // Create a new class template partial specialization declaration node. 3464 ClassTemplatePartialSpecializationDecl *PrevPartial 3465 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 3466 ClassTemplatePartialSpecializationDecl *Partial 3467 = ClassTemplatePartialSpecializationDecl::Create(Context, 3468 ClassTemplate->getDeclContext(), 3469 TemplateNameLoc, 3470 TemplateParams, 3471 ClassTemplate, 3472 Converted, 3473 TemplateArgs, 3474 PrevPartial); 3475 3476 if (PrevPartial) { 3477 ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial); 3478 ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial); 3479 } else { 3480 ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos); 3481 } 3482 Specialization = Partial; 3483 3484 // If we are providing an explicit specialization of a member class 3485 // template specialization, make a note of that. 3486 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 3487 PrevPartial->setMemberSpecialization(); 3488 3489 // Check that all of the template parameters of the class template 3490 // partial specialization are deducible from the template 3491 // arguments. If not, this class template partial specialization 3492 // will never be used. 3493 llvm::SmallVector<bool, 8> DeducibleParams; 3494 DeducibleParams.resize(TemplateParams->size()); 3495 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 3496 TemplateParams->getDepth(), 3497 DeducibleParams); 3498 unsigned NumNonDeducible = 0; 3499 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 3500 if (!DeducibleParams[I]) 3501 ++NumNonDeducible; 3502 3503 if (NumNonDeducible) { 3504 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 3505 << (NumNonDeducible > 1) 3506 << SourceRange(TemplateNameLoc, RAngleLoc); 3507 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 3508 if (!DeducibleParams[I]) { 3509 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 3510 if (Param->getDeclName()) 3511 Diag(Param->getLocation(), 3512 diag::note_partial_spec_unused_parameter) 3513 << Param->getDeclName(); 3514 else 3515 Diag(Param->getLocation(), 3516 diag::note_partial_spec_unused_parameter) 3517 << std::string("<anonymous>"); 3518 } 3519 } 3520 } 3521 } else { 3522 // Create a new class template specialization declaration node for 3523 // this explicit specialization or friend declaration. 3524 Specialization 3525 = ClassTemplateSpecializationDecl::Create(Context, 3526 ClassTemplate->getDeclContext(), 3527 TemplateNameLoc, 3528 ClassTemplate, 3529 Converted, 3530 PrevDecl); 3531 3532 if (PrevDecl) { 3533 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 3534 ClassTemplate->getSpecializations().GetOrInsertNode(Specialization); 3535 } else { 3536 ClassTemplate->getSpecializations().InsertNode(Specialization, 3537 InsertPos); 3538 } 3539 3540 CanonType = Context.getTypeDeclType(Specialization); 3541 } 3542 3543 // C++ [temp.expl.spec]p6: 3544 // If a template, a member template or the member of a class template is 3545 // explicitly specialized then that specialization shall be declared 3546 // before the first use of that specialization that would cause an implicit 3547 // instantiation to take place, in every translation unit in which such a 3548 // use occurs; no diagnostic is required. 3549 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 3550 SourceRange Range(TemplateNameLoc, RAngleLoc); 3551 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 3552 << Context.getTypeDeclType(Specialization) << Range; 3553 3554 Diag(PrevDecl->getPointOfInstantiation(), 3555 diag::note_instantiation_required_here) 3556 << (PrevDecl->getTemplateSpecializationKind() 3557 != TSK_ImplicitInstantiation); 3558 return true; 3559 } 3560 3561 // If this is not a friend, note that this is an explicit specialization. 3562 if (TUK != TUK_Friend) 3563 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 3564 3565 // Check that this isn't a redefinition of this specialization. 3566 if (TUK == TUK_Definition) { 3567 if (RecordDecl *Def = Specialization->getDefinition()) { 3568 SourceRange Range(TemplateNameLoc, RAngleLoc); 3569 Diag(TemplateNameLoc, diag::err_redefinition) 3570 << Context.getTypeDeclType(Specialization) << Range; 3571 Diag(Def->getLocation(), diag::note_previous_definition); 3572 Specialization->setInvalidDecl(); 3573 return true; 3574 } 3575 } 3576 3577 // Build the fully-sugared type for this class template 3578 // specialization as the user wrote in the specialization 3579 // itself. This means that we'll pretty-print the type retrieved 3580 // from the specialization's declaration the way that the user 3581 // actually wrote the specialization, rather than formatting the 3582 // name based on the "canonical" representation used to store the 3583 // template arguments in the specialization. 3584 QualType WrittenTy 3585 = Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 3586 if (TUK != TUK_Friend) 3587 Specialization->setTypeAsWritten(WrittenTy); 3588 TemplateArgsIn.release(); 3589 3590 // C++ [temp.expl.spec]p9: 3591 // A template explicit specialization is in the scope of the 3592 // namespace in which the template was defined. 3593 // 3594 // We actually implement this paragraph where we set the semantic 3595 // context (in the creation of the ClassTemplateSpecializationDecl), 3596 // but we also maintain the lexical context where the actual 3597 // definition occurs. 3598 Specialization->setLexicalDeclContext(CurContext); 3599 3600 // We may be starting the definition of this specialization. 3601 if (TUK == TUK_Definition) 3602 Specialization->startDefinition(); 3603 3604 if (TUK == TUK_Friend) { 3605 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 3606 TemplateNameLoc, 3607 WrittenTy.getTypePtr(), 3608 /*FIXME:*/KWLoc); 3609 Friend->setAccess(AS_public); 3610 CurContext->addDecl(Friend); 3611 } else { 3612 // Add the specialization into its lexical context, so that it can 3613 // be seen when iterating through the list of declarations in that 3614 // context. However, specializations are not found by name lookup. 3615 CurContext->addDecl(Specialization); 3616 } 3617 return DeclPtrTy::make(Specialization); 3618} 3619 3620Sema::DeclPtrTy 3621Sema::ActOnTemplateDeclarator(Scope *S, 3622 MultiTemplateParamsArg TemplateParameterLists, 3623 Declarator &D) { 3624 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 3625} 3626 3627Sema::DeclPtrTy 3628Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 3629 MultiTemplateParamsArg TemplateParameterLists, 3630 Declarator &D) { 3631 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 3632 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && 3633 "Not a function declarator!"); 3634 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; 3635 3636 if (FTI.hasPrototype) { 3637 // FIXME: Diagnose arguments without names in C. 3638 } 3639 3640 Scope *ParentScope = FnBodyScope->getParent(); 3641 3642 DeclPtrTy DP = HandleDeclarator(ParentScope, D, 3643 move(TemplateParameterLists), 3644 /*IsFunctionDefinition=*/true); 3645 if (FunctionTemplateDecl *FunctionTemplate 3646 = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>())) 3647 return ActOnStartOfFunctionDef(FnBodyScope, 3648 DeclPtrTy::make(FunctionTemplate->getTemplatedDecl())); 3649 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>())) 3650 return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function)); 3651 return DeclPtrTy(); 3652} 3653 3654/// \brief Strips various properties off an implicit instantiation 3655/// that has just been explicitly specialized. 3656static void StripImplicitInstantiation(NamedDecl *D) { 3657 D->invalidateAttrs(); 3658 3659 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 3660 FD->setInlineSpecified(false); 3661 } 3662} 3663 3664/// \brief Diagnose cases where we have an explicit template specialization 3665/// before/after an explicit template instantiation, producing diagnostics 3666/// for those cases where they are required and determining whether the 3667/// new specialization/instantiation will have any effect. 3668/// 3669/// \param NewLoc the location of the new explicit specialization or 3670/// instantiation. 3671/// 3672/// \param NewTSK the kind of the new explicit specialization or instantiation. 3673/// 3674/// \param PrevDecl the previous declaration of the entity. 3675/// 3676/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 3677/// 3678/// \param PrevPointOfInstantiation if valid, indicates where the previus 3679/// declaration was instantiated (either implicitly or explicitly). 3680/// 3681/// \param SuppressNew will be set to true to indicate that the new 3682/// specialization or instantiation has no effect and should be ignored. 3683/// 3684/// \returns true if there was an error that should prevent the introduction of 3685/// the new declaration into the AST, false otherwise. 3686bool 3687Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 3688 TemplateSpecializationKind NewTSK, 3689 NamedDecl *PrevDecl, 3690 TemplateSpecializationKind PrevTSK, 3691 SourceLocation PrevPointOfInstantiation, 3692 bool &SuppressNew) { 3693 SuppressNew = false; 3694 3695 switch (NewTSK) { 3696 case TSK_Undeclared: 3697 case TSK_ImplicitInstantiation: 3698 assert(false && "Don't check implicit instantiations here"); 3699 return false; 3700 3701 case TSK_ExplicitSpecialization: 3702 switch (PrevTSK) { 3703 case TSK_Undeclared: 3704 case TSK_ExplicitSpecialization: 3705 // Okay, we're just specializing something that is either already 3706 // explicitly specialized or has merely been mentioned without any 3707 // instantiation. 3708 return false; 3709 3710 case TSK_ImplicitInstantiation: 3711 if (PrevPointOfInstantiation.isInvalid()) { 3712 // The declaration itself has not actually been instantiated, so it is 3713 // still okay to specialize it. 3714 StripImplicitInstantiation(PrevDecl); 3715 return false; 3716 } 3717 // Fall through 3718 3719 case TSK_ExplicitInstantiationDeclaration: 3720 case TSK_ExplicitInstantiationDefinition: 3721 assert((PrevTSK == TSK_ImplicitInstantiation || 3722 PrevPointOfInstantiation.isValid()) && 3723 "Explicit instantiation without point of instantiation?"); 3724 3725 // C++ [temp.expl.spec]p6: 3726 // If a template, a member template or the member of a class template 3727 // is explicitly specialized then that specialization shall be declared 3728 // before the first use of that specialization that would cause an 3729 // implicit instantiation to take place, in every translation unit in 3730 // which such a use occurs; no diagnostic is required. 3731 Diag(NewLoc, diag::err_specialization_after_instantiation) 3732 << PrevDecl; 3733 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 3734 << (PrevTSK != TSK_ImplicitInstantiation); 3735 3736 return true; 3737 } 3738 break; 3739 3740 case TSK_ExplicitInstantiationDeclaration: 3741 switch (PrevTSK) { 3742 case TSK_ExplicitInstantiationDeclaration: 3743 // This explicit instantiation declaration is redundant (that's okay). 3744 SuppressNew = true; 3745 return false; 3746 3747 case TSK_Undeclared: 3748 case TSK_ImplicitInstantiation: 3749 // We're explicitly instantiating something that may have already been 3750 // implicitly instantiated; that's fine. 3751 return false; 3752 3753 case TSK_ExplicitSpecialization: 3754 // C++0x [temp.explicit]p4: 3755 // For a given set of template parameters, if an explicit instantiation 3756 // of a template appears after a declaration of an explicit 3757 // specialization for that template, the explicit instantiation has no 3758 // effect. 3759 return false; 3760 3761 case TSK_ExplicitInstantiationDefinition: 3762 // C++0x [temp.explicit]p10: 3763 // If an entity is the subject of both an explicit instantiation 3764 // declaration and an explicit instantiation definition in the same 3765 // translation unit, the definition shall follow the declaration. 3766 Diag(NewLoc, 3767 diag::err_explicit_instantiation_declaration_after_definition); 3768 Diag(PrevPointOfInstantiation, 3769 diag::note_explicit_instantiation_definition_here); 3770 assert(PrevPointOfInstantiation.isValid() && 3771 "Explicit instantiation without point of instantiation?"); 3772 SuppressNew = true; 3773 return false; 3774 } 3775 break; 3776 3777 case TSK_ExplicitInstantiationDefinition: 3778 switch (PrevTSK) { 3779 case TSK_Undeclared: 3780 case TSK_ImplicitInstantiation: 3781 // We're explicitly instantiating something that may have already been 3782 // implicitly instantiated; that's fine. 3783 return false; 3784 3785 case TSK_ExplicitSpecialization: 3786 // C++ DR 259, C++0x [temp.explicit]p4: 3787 // For a given set of template parameters, if an explicit 3788 // instantiation of a template appears after a declaration of 3789 // an explicit specialization for that template, the explicit 3790 // instantiation has no effect. 3791 // 3792 // In C++98/03 mode, we only give an extension warning here, because it 3793 // is not not harmful to try to explicitly instantiate something that 3794 // has been explicitly specialized. 3795 if (!getLangOptions().CPlusPlus0x) { 3796 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 3797 << PrevDecl; 3798 Diag(PrevDecl->getLocation(), 3799 diag::note_previous_template_specialization); 3800 } 3801 SuppressNew = true; 3802 return false; 3803 3804 case TSK_ExplicitInstantiationDeclaration: 3805 // We're explicity instantiating a definition for something for which we 3806 // were previously asked to suppress instantiations. That's fine. 3807 return false; 3808 3809 case TSK_ExplicitInstantiationDefinition: 3810 // C++0x [temp.spec]p5: 3811 // For a given template and a given set of template-arguments, 3812 // - an explicit instantiation definition shall appear at most once 3813 // in a program, 3814 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 3815 << PrevDecl; 3816 Diag(PrevPointOfInstantiation, 3817 diag::note_previous_explicit_instantiation); 3818 SuppressNew = true; 3819 return false; 3820 } 3821 break; 3822 } 3823 3824 assert(false && "Missing specialization/instantiation case?"); 3825 3826 return false; 3827} 3828 3829/// \brief Perform semantic analysis for the given function template 3830/// specialization. 3831/// 3832/// This routine performs all of the semantic analysis required for an 3833/// explicit function template specialization. On successful completion, 3834/// the function declaration \p FD will become a function template 3835/// specialization. 3836/// 3837/// \param FD the function declaration, which will be updated to become a 3838/// function template specialization. 3839/// 3840/// \param HasExplicitTemplateArgs whether any template arguments were 3841/// explicitly provided. 3842/// 3843/// \param LAngleLoc the location of the left angle bracket ('<'), if 3844/// template arguments were explicitly provided. 3845/// 3846/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 3847/// if any. 3848/// 3849/// \param NumExplicitTemplateArgs the number of explicitly-provided template 3850/// arguments. This number may be zero even when HasExplicitTemplateArgs is 3851/// true as in, e.g., \c void sort<>(char*, char*); 3852/// 3853/// \param RAngleLoc the location of the right angle bracket ('>'), if 3854/// template arguments were explicitly provided. 3855/// 3856/// \param PrevDecl the set of declarations that 3857bool 3858Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 3859 const TemplateArgumentListInfo *ExplicitTemplateArgs, 3860 LookupResult &Previous) { 3861 // The set of function template specializations that could match this 3862 // explicit function template specialization. 3863 UnresolvedSet<8> Candidates; 3864 3865 DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext(); 3866 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 3867 I != E; ++I) { 3868 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 3869 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 3870 // Only consider templates found within the same semantic lookup scope as 3871 // FD. 3872 if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext())) 3873 continue; 3874 3875 // C++ [temp.expl.spec]p11: 3876 // A trailing template-argument can be left unspecified in the 3877 // template-id naming an explicit function template specialization 3878 // provided it can be deduced from the function argument type. 3879 // Perform template argument deduction to determine whether we may be 3880 // specializing this template. 3881 // FIXME: It is somewhat wasteful to build 3882 TemplateDeductionInfo Info(Context, FD->getLocation()); 3883 FunctionDecl *Specialization = 0; 3884 if (TemplateDeductionResult TDK 3885 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 3886 FD->getType(), 3887 Specialization, 3888 Info)) { 3889 // FIXME: Template argument deduction failed; record why it failed, so 3890 // that we can provide nifty diagnostics. 3891 (void)TDK; 3892 continue; 3893 } 3894 3895 // Record this candidate. 3896 Candidates.addDecl(Specialization, I.getAccess()); 3897 } 3898 } 3899 3900 // Find the most specialized function template. 3901 UnresolvedSetIterator Result 3902 = getMostSpecialized(Candidates.begin(), Candidates.end(), 3903 TPOC_Other, FD->getLocation(), 3904 PartialDiagnostic(diag::err_function_template_spec_no_match) 3905 << FD->getDeclName(), 3906 PartialDiagnostic(diag::err_function_template_spec_ambiguous) 3907 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 3908 PartialDiagnostic(diag::note_function_template_spec_matched)); 3909 if (Result == Candidates.end()) 3910 return true; 3911 3912 // Ignore access information; it doesn't figure into redeclaration checking. 3913 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 3914 3915 // FIXME: Check if the prior specialization has a point of instantiation. 3916 // If so, we have run afoul of . 3917 3918 // Check the scope of this explicit specialization. 3919 if (CheckTemplateSpecializationScope(*this, 3920 Specialization->getPrimaryTemplate(), 3921 Specialization, FD->getLocation(), 3922 false)) 3923 return true; 3924 3925 // C++ [temp.expl.spec]p6: 3926 // If a template, a member template or the member of a class template is 3927 // explicitly specialized then that specialization shall be declared 3928 // before the first use of that specialization that would cause an implicit 3929 // instantiation to take place, in every translation unit in which such a 3930 // use occurs; no diagnostic is required. 3931 FunctionTemplateSpecializationInfo *SpecInfo 3932 = Specialization->getTemplateSpecializationInfo(); 3933 assert(SpecInfo && "Function template specialization info missing?"); 3934 3935 bool SuppressNew = false; 3936 if (CheckSpecializationInstantiationRedecl(FD->getLocation(), 3937 TSK_ExplicitSpecialization, 3938 Specialization, 3939 SpecInfo->getTemplateSpecializationKind(), 3940 SpecInfo->getPointOfInstantiation(), 3941 SuppressNew)) 3942 return true; 3943 3944 // Mark the prior declaration as an explicit specialization, so that later 3945 // clients know that this is an explicit specialization. 3946 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 3947 3948 // Turn the given function declaration into a function template 3949 // specialization, with the template arguments from the previous 3950 // specialization. 3951 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 3952 new (Context) TemplateArgumentList( 3953 *Specialization->getTemplateSpecializationArgs()), 3954 /*InsertPos=*/0, 3955 TSK_ExplicitSpecialization); 3956 3957 // The "previous declaration" for this function template specialization is 3958 // the prior function template specialization. 3959 Previous.clear(); 3960 Previous.addDecl(Specialization); 3961 return false; 3962} 3963 3964/// \brief Perform semantic analysis for the given non-template member 3965/// specialization. 3966/// 3967/// This routine performs all of the semantic analysis required for an 3968/// explicit member function specialization. On successful completion, 3969/// the function declaration \p FD will become a member function 3970/// specialization. 3971/// 3972/// \param Member the member declaration, which will be updated to become a 3973/// specialization. 3974/// 3975/// \param Previous the set of declarations, one of which may be specialized 3976/// by this function specialization; the set will be modified to contain the 3977/// redeclared member. 3978bool 3979Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 3980 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 3981 3982 // Try to find the member we are instantiating. 3983 NamedDecl *Instantiation = 0; 3984 NamedDecl *InstantiatedFrom = 0; 3985 MemberSpecializationInfo *MSInfo = 0; 3986 3987 if (Previous.empty()) { 3988 // Nowhere to look anyway. 3989 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 3990 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 3991 I != E; ++I) { 3992 NamedDecl *D = (*I)->getUnderlyingDecl(); 3993 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 3994 if (Context.hasSameType(Function->getType(), Method->getType())) { 3995 Instantiation = Method; 3996 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 3997 MSInfo = Method->getMemberSpecializationInfo(); 3998 break; 3999 } 4000 } 4001 } 4002 } else if (isa<VarDecl>(Member)) { 4003 VarDecl *PrevVar; 4004 if (Previous.isSingleResult() && 4005 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 4006 if (PrevVar->isStaticDataMember()) { 4007 Instantiation = PrevVar; 4008 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 4009 MSInfo = PrevVar->getMemberSpecializationInfo(); 4010 } 4011 } else if (isa<RecordDecl>(Member)) { 4012 CXXRecordDecl *PrevRecord; 4013 if (Previous.isSingleResult() && 4014 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 4015 Instantiation = PrevRecord; 4016 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 4017 MSInfo = PrevRecord->getMemberSpecializationInfo(); 4018 } 4019 } 4020 4021 if (!Instantiation) { 4022 // There is no previous declaration that matches. Since member 4023 // specializations are always out-of-line, the caller will complain about 4024 // this mismatch later. 4025 return false; 4026 } 4027 4028 // Make sure that this is a specialization of a member. 4029 if (!InstantiatedFrom) { 4030 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 4031 << Member; 4032 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 4033 return true; 4034 } 4035 4036 // C++ [temp.expl.spec]p6: 4037 // If a template, a member template or the member of a class template is 4038 // explicitly specialized then that spe- cialization shall be declared 4039 // before the first use of that specialization that would cause an implicit 4040 // instantiation to take place, in every translation unit in which such a 4041 // use occurs; no diagnostic is required. 4042 assert(MSInfo && "Member specialization info missing?"); 4043 4044 bool SuppressNew = false; 4045 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 4046 TSK_ExplicitSpecialization, 4047 Instantiation, 4048 MSInfo->getTemplateSpecializationKind(), 4049 MSInfo->getPointOfInstantiation(), 4050 SuppressNew)) 4051 return true; 4052 4053 // Check the scope of this explicit specialization. 4054 if (CheckTemplateSpecializationScope(*this, 4055 InstantiatedFrom, 4056 Instantiation, Member->getLocation(), 4057 false)) 4058 return true; 4059 4060 // Note that this is an explicit instantiation of a member. 4061 // the original declaration to note that it is an explicit specialization 4062 // (if it was previously an implicit instantiation). This latter step 4063 // makes bookkeeping easier. 4064 if (isa<FunctionDecl>(Member)) { 4065 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 4066 if (InstantiationFunction->getTemplateSpecializationKind() == 4067 TSK_ImplicitInstantiation) { 4068 InstantiationFunction->setTemplateSpecializationKind( 4069 TSK_ExplicitSpecialization); 4070 InstantiationFunction->setLocation(Member->getLocation()); 4071 } 4072 4073 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 4074 cast<CXXMethodDecl>(InstantiatedFrom), 4075 TSK_ExplicitSpecialization); 4076 } else if (isa<VarDecl>(Member)) { 4077 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 4078 if (InstantiationVar->getTemplateSpecializationKind() == 4079 TSK_ImplicitInstantiation) { 4080 InstantiationVar->setTemplateSpecializationKind( 4081 TSK_ExplicitSpecialization); 4082 InstantiationVar->setLocation(Member->getLocation()); 4083 } 4084 4085 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 4086 cast<VarDecl>(InstantiatedFrom), 4087 TSK_ExplicitSpecialization); 4088 } else { 4089 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 4090 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 4091 if (InstantiationClass->getTemplateSpecializationKind() == 4092 TSK_ImplicitInstantiation) { 4093 InstantiationClass->setTemplateSpecializationKind( 4094 TSK_ExplicitSpecialization); 4095 InstantiationClass->setLocation(Member->getLocation()); 4096 } 4097 4098 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 4099 cast<CXXRecordDecl>(InstantiatedFrom), 4100 TSK_ExplicitSpecialization); 4101 } 4102 4103 // Save the caller the trouble of having to figure out which declaration 4104 // this specialization matches. 4105 Previous.clear(); 4106 Previous.addDecl(Instantiation); 4107 return false; 4108} 4109 4110/// \brief Check the scope of an explicit instantiation. 4111static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 4112 SourceLocation InstLoc, 4113 bool WasQualifiedName) { 4114 DeclContext *ExpectedContext 4115 = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext(); 4116 DeclContext *CurContext = S.CurContext->getLookupContext(); 4117 4118 // C++0x [temp.explicit]p2: 4119 // An explicit instantiation shall appear in an enclosing namespace of its 4120 // template. 4121 // 4122 // This is DR275, which we do not retroactively apply to C++98/03. 4123 if (S.getLangOptions().CPlusPlus0x && 4124 !CurContext->Encloses(ExpectedContext)) { 4125 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext)) 4126 S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope) 4127 << D << NS; 4128 else 4129 S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global) 4130 << D; 4131 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4132 return; 4133 } 4134 4135 // C++0x [temp.explicit]p2: 4136 // If the name declared in the explicit instantiation is an unqualified 4137 // name, the explicit instantiation shall appear in the namespace where 4138 // its template is declared or, if that namespace is inline (7.3.1), any 4139 // namespace from its enclosing namespace set. 4140 if (WasQualifiedName) 4141 return; 4142 4143 if (CurContext->Equals(ExpectedContext)) 4144 return; 4145 4146 S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace) 4147 << D << ExpectedContext; 4148 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4149} 4150 4151/// \brief Determine whether the given scope specifier has a template-id in it. 4152static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 4153 if (!SS.isSet()) 4154 return false; 4155 4156 // C++0x [temp.explicit]p2: 4157 // If the explicit instantiation is for a member function, a member class 4158 // or a static data member of a class template specialization, the name of 4159 // the class template specialization in the qualified-id for the member 4160 // name shall be a simple-template-id. 4161 // 4162 // C++98 has the same restriction, just worded differently. 4163 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 4164 NNS; NNS = NNS->getPrefix()) 4165 if (Type *T = NNS->getAsType()) 4166 if (isa<TemplateSpecializationType>(T)) 4167 return true; 4168 4169 return false; 4170} 4171 4172// Explicit instantiation of a class template specialization 4173// FIXME: Implement extern template semantics 4174Sema::DeclResult 4175Sema::ActOnExplicitInstantiation(Scope *S, 4176 SourceLocation ExternLoc, 4177 SourceLocation TemplateLoc, 4178 unsigned TagSpec, 4179 SourceLocation KWLoc, 4180 const CXXScopeSpec &SS, 4181 TemplateTy TemplateD, 4182 SourceLocation TemplateNameLoc, 4183 SourceLocation LAngleLoc, 4184 ASTTemplateArgsPtr TemplateArgsIn, 4185 SourceLocation RAngleLoc, 4186 AttributeList *Attr) { 4187 // Find the class template we're specializing 4188 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4189 ClassTemplateDecl *ClassTemplate 4190 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4191 4192 // Check that the specialization uses the same tag kind as the 4193 // original template. 4194 TagDecl::TagKind Kind; 4195 switch (TagSpec) { 4196 default: assert(0 && "Unknown tag type!"); 4197 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 4198 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 4199 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 4200 } 4201 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4202 Kind, KWLoc, 4203 *ClassTemplate->getIdentifier())) { 4204 Diag(KWLoc, diag::err_use_with_wrong_tag) 4205 << ClassTemplate 4206 << CodeModificationHint::CreateReplacement(KWLoc, 4207 ClassTemplate->getTemplatedDecl()->getKindName()); 4208 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4209 diag::note_previous_use); 4210 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4211 } 4212 4213 // C++0x [temp.explicit]p2: 4214 // There are two forms of explicit instantiation: an explicit instantiation 4215 // definition and an explicit instantiation declaration. An explicit 4216 // instantiation declaration begins with the extern keyword. [...] 4217 TemplateSpecializationKind TSK 4218 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4219 : TSK_ExplicitInstantiationDeclaration; 4220 4221 // Translate the parser's template argument list in our AST format. 4222 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 4223 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4224 4225 // Check that the template argument list is well-formed for this 4226 // template. 4227 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 4228 TemplateArgs.size()); 4229 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4230 TemplateArgs, false, Converted)) 4231 return true; 4232 4233 assert((Converted.structuredSize() == 4234 ClassTemplate->getTemplateParameters()->size()) && 4235 "Converted template argument list is too short!"); 4236 4237 // Find the class template specialization declaration that 4238 // corresponds to these arguments. 4239 llvm::FoldingSetNodeID ID; 4240 ClassTemplateSpecializationDecl::Profile(ID, 4241 Converted.getFlatArguments(), 4242 Converted.flatSize(), 4243 Context); 4244 void *InsertPos = 0; 4245 ClassTemplateSpecializationDecl *PrevDecl 4246 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 4247 4248 // C++0x [temp.explicit]p2: 4249 // [...] An explicit instantiation shall appear in an enclosing 4250 // namespace of its template. [...] 4251 // 4252 // This is C++ DR 275. 4253 CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 4254 SS.isSet()); 4255 4256 ClassTemplateSpecializationDecl *Specialization = 0; 4257 4258 bool ReusedDecl = false; 4259 if (PrevDecl) { 4260 bool SuppressNew = false; 4261 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 4262 PrevDecl, 4263 PrevDecl->getSpecializationKind(), 4264 PrevDecl->getPointOfInstantiation(), 4265 SuppressNew)) 4266 return DeclPtrTy::make(PrevDecl); 4267 4268 if (SuppressNew) 4269 return DeclPtrTy::make(PrevDecl); 4270 4271 if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation || 4272 PrevDecl->getSpecializationKind() == TSK_Undeclared) { 4273 // Since the only prior class template specialization with these 4274 // arguments was referenced but not declared, reuse that 4275 // declaration node as our own, updating its source location to 4276 // reflect our new declaration. 4277 Specialization = PrevDecl; 4278 Specialization->setLocation(TemplateNameLoc); 4279 PrevDecl = 0; 4280 ReusedDecl = true; 4281 } 4282 } 4283 4284 if (!Specialization) { 4285 // Create a new class template specialization declaration node for 4286 // this explicit specialization. 4287 Specialization 4288 = ClassTemplateSpecializationDecl::Create(Context, 4289 ClassTemplate->getDeclContext(), 4290 TemplateNameLoc, 4291 ClassTemplate, 4292 Converted, PrevDecl); 4293 4294 if (PrevDecl) { 4295 // Remove the previous declaration from the folding set, since we want 4296 // to introduce a new declaration. 4297 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 4298 ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 4299 } 4300 4301 // Insert the new specialization. 4302 ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos); 4303 } 4304 4305 // Build the fully-sugared type for this explicit instantiation as 4306 // the user wrote in the explicit instantiation itself. This means 4307 // that we'll pretty-print the type retrieved from the 4308 // specialization's declaration the way that the user actually wrote 4309 // the explicit instantiation, rather than formatting the name based 4310 // on the "canonical" representation used to store the template 4311 // arguments in the specialization. 4312 QualType WrittenTy 4313 = Context.getTemplateSpecializationType(Name, TemplateArgs, 4314 Context.getTypeDeclType(Specialization)); 4315 Specialization->setTypeAsWritten(WrittenTy); 4316 TemplateArgsIn.release(); 4317 4318 if (!ReusedDecl) { 4319 // Add the explicit instantiation into its lexical context. However, 4320 // since explicit instantiations are never found by name lookup, we 4321 // just put it into the declaration context directly. 4322 Specialization->setLexicalDeclContext(CurContext); 4323 CurContext->addDecl(Specialization); 4324 } 4325 4326 // C++ [temp.explicit]p3: 4327 // A definition of a class template or class member template 4328 // shall be in scope at the point of the explicit instantiation of 4329 // the class template or class member template. 4330 // 4331 // This check comes when we actually try to perform the 4332 // instantiation. 4333 ClassTemplateSpecializationDecl *Def 4334 = cast_or_null<ClassTemplateSpecializationDecl>( 4335 Specialization->getDefinition()); 4336 if (!Def) 4337 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 4338 4339 // Instantiate the members of this class template specialization. 4340 Def = cast_or_null<ClassTemplateSpecializationDecl>( 4341 Specialization->getDefinition()); 4342 if (Def) 4343 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 4344 4345 return DeclPtrTy::make(Specialization); 4346} 4347 4348// Explicit instantiation of a member class of a class template. 4349Sema::DeclResult 4350Sema::ActOnExplicitInstantiation(Scope *S, 4351 SourceLocation ExternLoc, 4352 SourceLocation TemplateLoc, 4353 unsigned TagSpec, 4354 SourceLocation KWLoc, 4355 const CXXScopeSpec &SS, 4356 IdentifierInfo *Name, 4357 SourceLocation NameLoc, 4358 AttributeList *Attr) { 4359 4360 bool Owned = false; 4361 bool IsDependent = false; 4362 DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference, 4363 KWLoc, SS, Name, NameLoc, Attr, AS_none, 4364 MultiTemplateParamsArg(*this, 0, 0), 4365 Owned, IsDependent); 4366 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 4367 4368 if (!TagD) 4369 return true; 4370 4371 TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>()); 4372 if (Tag->isEnum()) { 4373 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 4374 << Context.getTypeDeclType(Tag); 4375 return true; 4376 } 4377 4378 if (Tag->isInvalidDecl()) 4379 return true; 4380 4381 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 4382 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 4383 if (!Pattern) { 4384 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 4385 << Context.getTypeDeclType(Record); 4386 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 4387 return true; 4388 } 4389 4390 // C++0x [temp.explicit]p2: 4391 // If the explicit instantiation is for a class or member class, the 4392 // elaborated-type-specifier in the declaration shall include a 4393 // simple-template-id. 4394 // 4395 // C++98 has the same restriction, just worded differently. 4396 if (!ScopeSpecifierHasTemplateId(SS)) 4397 Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id) 4398 << Record << SS.getRange(); 4399 4400 // C++0x [temp.explicit]p2: 4401 // There are two forms of explicit instantiation: an explicit instantiation 4402 // definition and an explicit instantiation declaration. An explicit 4403 // instantiation declaration begins with the extern keyword. [...] 4404 TemplateSpecializationKind TSK 4405 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4406 : TSK_ExplicitInstantiationDeclaration; 4407 4408 // C++0x [temp.explicit]p2: 4409 // [...] An explicit instantiation shall appear in an enclosing 4410 // namespace of its template. [...] 4411 // 4412 // This is C++ DR 275. 4413 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 4414 4415 // Verify that it is okay to explicitly instantiate here. 4416 CXXRecordDecl *PrevDecl 4417 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 4418 if (!PrevDecl && Record->getDefinition()) 4419 PrevDecl = Record; 4420 if (PrevDecl) { 4421 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 4422 bool SuppressNew = false; 4423 assert(MSInfo && "No member specialization information?"); 4424 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 4425 PrevDecl, 4426 MSInfo->getTemplateSpecializationKind(), 4427 MSInfo->getPointOfInstantiation(), 4428 SuppressNew)) 4429 return true; 4430 if (SuppressNew) 4431 return TagD; 4432 } 4433 4434 CXXRecordDecl *RecordDef 4435 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 4436 if (!RecordDef) { 4437 // C++ [temp.explicit]p3: 4438 // A definition of a member class of a class template shall be in scope 4439 // at the point of an explicit instantiation of the member class. 4440 CXXRecordDecl *Def 4441 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 4442 if (!Def) { 4443 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 4444 << 0 << Record->getDeclName() << Record->getDeclContext(); 4445 Diag(Pattern->getLocation(), diag::note_forward_declaration) 4446 << Pattern; 4447 return true; 4448 } else { 4449 if (InstantiateClass(NameLoc, Record, Def, 4450 getTemplateInstantiationArgs(Record), 4451 TSK)) 4452 return true; 4453 4454 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 4455 if (!RecordDef) 4456 return true; 4457 } 4458 } 4459 4460 // Instantiate all of the members of the class. 4461 InstantiateClassMembers(NameLoc, RecordDef, 4462 getTemplateInstantiationArgs(Record), TSK); 4463 4464 // FIXME: We don't have any representation for explicit instantiations of 4465 // member classes. Such a representation is not needed for compilation, but it 4466 // should be available for clients that want to see all of the declarations in 4467 // the source code. 4468 return TagD; 4469} 4470 4471Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 4472 SourceLocation ExternLoc, 4473 SourceLocation TemplateLoc, 4474 Declarator &D) { 4475 // Explicit instantiations always require a name. 4476 DeclarationName Name = GetNameForDeclarator(D); 4477 if (!Name) { 4478 if (!D.isInvalidType()) 4479 Diag(D.getDeclSpec().getSourceRange().getBegin(), 4480 diag::err_explicit_instantiation_requires_name) 4481 << D.getDeclSpec().getSourceRange() 4482 << D.getSourceRange(); 4483 4484 return true; 4485 } 4486 4487 // The scope passed in may not be a decl scope. Zip up the scope tree until 4488 // we find one that is. 4489 while ((S->getFlags() & Scope::DeclScope) == 0 || 4490 (S->getFlags() & Scope::TemplateParamScope) != 0) 4491 S = S->getParent(); 4492 4493 // Determine the type of the declaration. 4494 QualType R = GetTypeForDeclarator(D, S, 0); 4495 if (R.isNull()) 4496 return true; 4497 4498 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 4499 // Cannot explicitly instantiate a typedef. 4500 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 4501 << Name; 4502 return true; 4503 } 4504 4505 // C++0x [temp.explicit]p1: 4506 // [...] An explicit instantiation of a function template shall not use the 4507 // inline or constexpr specifiers. 4508 // Presumably, this also applies to member functions of class templates as 4509 // well. 4510 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 4511 Diag(D.getDeclSpec().getInlineSpecLoc(), 4512 diag::err_explicit_instantiation_inline) 4513 <<CodeModificationHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 4514 4515 // FIXME: check for constexpr specifier. 4516 4517 // C++0x [temp.explicit]p2: 4518 // There are two forms of explicit instantiation: an explicit instantiation 4519 // definition and an explicit instantiation declaration. An explicit 4520 // instantiation declaration begins with the extern keyword. [...] 4521 TemplateSpecializationKind TSK 4522 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4523 : TSK_ExplicitInstantiationDeclaration; 4524 4525 LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName); 4526 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 4527 4528 if (!R->isFunctionType()) { 4529 // C++ [temp.explicit]p1: 4530 // A [...] static data member of a class template can be explicitly 4531 // instantiated from the member definition associated with its class 4532 // template. 4533 if (Previous.isAmbiguous()) 4534 return true; 4535 4536 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 4537 if (!Prev || !Prev->isStaticDataMember()) { 4538 // We expect to see a data data member here. 4539 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 4540 << Name; 4541 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 4542 P != PEnd; ++P) 4543 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 4544 return true; 4545 } 4546 4547 if (!Prev->getInstantiatedFromStaticDataMember()) { 4548 // FIXME: Check for explicit specialization? 4549 Diag(D.getIdentifierLoc(), 4550 diag::err_explicit_instantiation_data_member_not_instantiated) 4551 << Prev; 4552 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 4553 // FIXME: Can we provide a note showing where this was declared? 4554 return true; 4555 } 4556 4557 // C++0x [temp.explicit]p2: 4558 // If the explicit instantiation is for a member function, a member class 4559 // or a static data member of a class template specialization, the name of 4560 // the class template specialization in the qualified-id for the member 4561 // name shall be a simple-template-id. 4562 // 4563 // C++98 has the same restriction, just worded differently. 4564 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 4565 Diag(D.getIdentifierLoc(), 4566 diag::err_explicit_instantiation_without_qualified_id) 4567 << Prev << D.getCXXScopeSpec().getRange(); 4568 4569 // Check the scope of this explicit instantiation. 4570 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 4571 4572 // Verify that it is okay to explicitly instantiate here. 4573 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 4574 assert(MSInfo && "Missing static data member specialization info?"); 4575 bool SuppressNew = false; 4576 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 4577 MSInfo->getTemplateSpecializationKind(), 4578 MSInfo->getPointOfInstantiation(), 4579 SuppressNew)) 4580 return true; 4581 if (SuppressNew) 4582 return DeclPtrTy(); 4583 4584 // Instantiate static data member. 4585 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 4586 if (TSK == TSK_ExplicitInstantiationDefinition) 4587 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false, 4588 /*DefinitionRequired=*/true); 4589 4590 // FIXME: Create an ExplicitInstantiation node? 4591 return DeclPtrTy(); 4592 } 4593 4594 // If the declarator is a template-id, translate the parser's template 4595 // argument list into our AST format. 4596 bool HasExplicitTemplateArgs = false; 4597 TemplateArgumentListInfo TemplateArgs; 4598 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 4599 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 4600 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 4601 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 4602 ASTTemplateArgsPtr TemplateArgsPtr(*this, 4603 TemplateId->getTemplateArgs(), 4604 TemplateId->NumArgs); 4605 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 4606 HasExplicitTemplateArgs = true; 4607 TemplateArgsPtr.release(); 4608 } 4609 4610 // C++ [temp.explicit]p1: 4611 // A [...] function [...] can be explicitly instantiated from its template. 4612 // A member function [...] of a class template can be explicitly 4613 // instantiated from the member definition associated with its class 4614 // template. 4615 UnresolvedSet<8> Matches; 4616 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 4617 P != PEnd; ++P) { 4618 NamedDecl *Prev = *P; 4619 if (!HasExplicitTemplateArgs) { 4620 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 4621 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 4622 Matches.clear(); 4623 4624 Matches.addDecl(Method, P.getAccess()); 4625 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 4626 break; 4627 } 4628 } 4629 } 4630 4631 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 4632 if (!FunTmpl) 4633 continue; 4634 4635 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 4636 FunctionDecl *Specialization = 0; 4637 if (TemplateDeductionResult TDK 4638 = DeduceTemplateArguments(FunTmpl, 4639 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 4640 R, Specialization, Info)) { 4641 // FIXME: Keep track of almost-matches? 4642 (void)TDK; 4643 continue; 4644 } 4645 4646 Matches.addDecl(Specialization, P.getAccess()); 4647 } 4648 4649 // Find the most specialized function template specialization. 4650 UnresolvedSetIterator Result 4651 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 4652 D.getIdentifierLoc(), 4653 PartialDiagnostic(diag::err_explicit_instantiation_not_known) << Name, 4654 PartialDiagnostic(diag::err_explicit_instantiation_ambiguous) << Name, 4655 PartialDiagnostic(diag::note_explicit_instantiation_candidate)); 4656 4657 if (Result == Matches.end()) 4658 return true; 4659 4660 // Ignore access control bits, we don't need them for redeclaration checking. 4661 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 4662 4663 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 4664 Diag(D.getIdentifierLoc(), 4665 diag::err_explicit_instantiation_member_function_not_instantiated) 4666 << Specialization 4667 << (Specialization->getTemplateSpecializationKind() == 4668 TSK_ExplicitSpecialization); 4669 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 4670 return true; 4671 } 4672 4673 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 4674 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 4675 PrevDecl = Specialization; 4676 4677 if (PrevDecl) { 4678 bool SuppressNew = false; 4679 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 4680 PrevDecl, 4681 PrevDecl->getTemplateSpecializationKind(), 4682 PrevDecl->getPointOfInstantiation(), 4683 SuppressNew)) 4684 return true; 4685 4686 // FIXME: We may still want to build some representation of this 4687 // explicit specialization. 4688 if (SuppressNew) 4689 return DeclPtrTy(); 4690 } 4691 4692 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 4693 4694 if (TSK == TSK_ExplicitInstantiationDefinition) 4695 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization, 4696 false, /*DefinitionRequired=*/true); 4697 4698 // C++0x [temp.explicit]p2: 4699 // If the explicit instantiation is for a member function, a member class 4700 // or a static data member of a class template specialization, the name of 4701 // the class template specialization in the qualified-id for the member 4702 // name shall be a simple-template-id. 4703 // 4704 // C++98 has the same restriction, just worded differently. 4705 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 4706 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 4707 D.getCXXScopeSpec().isSet() && 4708 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 4709 Diag(D.getIdentifierLoc(), 4710 diag::err_explicit_instantiation_without_qualified_id) 4711 << Specialization << D.getCXXScopeSpec().getRange(); 4712 4713 CheckExplicitInstantiationScope(*this, 4714 FunTmpl? (NamedDecl *)FunTmpl 4715 : Specialization->getInstantiatedFromMemberFunction(), 4716 D.getIdentifierLoc(), 4717 D.getCXXScopeSpec().isSet()); 4718 4719 // FIXME: Create some kind of ExplicitInstantiationDecl here. 4720 return DeclPtrTy(); 4721} 4722 4723Sema::TypeResult 4724Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 4725 const CXXScopeSpec &SS, IdentifierInfo *Name, 4726 SourceLocation TagLoc, SourceLocation NameLoc) { 4727 // This has to hold, because SS is expected to be defined. 4728 assert(Name && "Expected a name in a dependent tag"); 4729 4730 NestedNameSpecifier *NNS 4731 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 4732 if (!NNS) 4733 return true; 4734 4735 QualType T = CheckTypenameType(NNS, *Name, SourceRange(TagLoc, NameLoc)); 4736 if (T.isNull()) 4737 return true; 4738 4739 TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec); 4740 QualType ElabType = Context.getElaboratedType(T, TagKind); 4741 4742 return ElabType.getAsOpaquePtr(); 4743} 4744 4745Sema::TypeResult 4746Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 4747 const IdentifierInfo &II, SourceLocation IdLoc) { 4748 NestedNameSpecifier *NNS 4749 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 4750 if (!NNS) 4751 return true; 4752 4753 QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc)); 4754 if (T.isNull()) 4755 return true; 4756 return T.getAsOpaquePtr(); 4757} 4758 4759Sema::TypeResult 4760Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 4761 SourceLocation TemplateLoc, TypeTy *Ty) { 4762 QualType T = GetTypeFromParser(Ty); 4763 NestedNameSpecifier *NNS 4764 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 4765 const TemplateSpecializationType *TemplateId 4766 = T->getAs<TemplateSpecializationType>(); 4767 assert(TemplateId && "Expected a template specialization type"); 4768 4769 if (computeDeclContext(SS, false)) { 4770 // If we can compute a declaration context, then the "typename" 4771 // keyword was superfluous. Just build a QualifiedNameType to keep 4772 // track of the nested-name-specifier. 4773 4774 // FIXME: Note that the QualifiedNameType had the "typename" keyword! 4775 return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr(); 4776 } 4777 4778 return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr(); 4779} 4780 4781/// \brief Build the type that describes a C++ typename specifier, 4782/// e.g., "typename T::type". 4783QualType 4784Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II, 4785 SourceRange Range) { 4786 CXXRecordDecl *CurrentInstantiation = 0; 4787 if (NNS->isDependent()) { 4788 CurrentInstantiation = getCurrentInstantiationOf(NNS); 4789 4790 // If the nested-name-specifier does not refer to the current 4791 // instantiation, then build a typename type. 4792 if (!CurrentInstantiation) 4793 return Context.getTypenameType(NNS, &II); 4794 4795 // The nested-name-specifier refers to the current instantiation, so the 4796 // "typename" keyword itself is superfluous. In C++03, the program is 4797 // actually ill-formed. However, DR 382 (in C++0x CD1) allows such 4798 // extraneous "typename" keywords, and we retroactively apply this DR to 4799 // C++03 code. 4800 } 4801 4802 DeclContext *Ctx = 0; 4803 4804 if (CurrentInstantiation) 4805 Ctx = CurrentInstantiation; 4806 else { 4807 CXXScopeSpec SS; 4808 SS.setScopeRep(NNS); 4809 SS.setRange(Range); 4810 if (RequireCompleteDeclContext(SS)) 4811 return QualType(); 4812 4813 Ctx = computeDeclContext(SS); 4814 } 4815 assert(Ctx && "No declaration context?"); 4816 4817 DeclarationName Name(&II); 4818 LookupResult Result(*this, Name, Range.getEnd(), LookupOrdinaryName); 4819 LookupQualifiedName(Result, Ctx); 4820 unsigned DiagID = 0; 4821 Decl *Referenced = 0; 4822 switch (Result.getResultKind()) { 4823 case LookupResult::NotFound: 4824 DiagID = diag::err_typename_nested_not_found; 4825 break; 4826 4827 case LookupResult::NotFoundInCurrentInstantiation: 4828 // Okay, it's a member of an unknown instantiation. 4829 return Context.getTypenameType(NNS, &II); 4830 4831 case LookupResult::Found: 4832 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 4833 // We found a type. Build a QualifiedNameType, since the 4834 // typename-specifier was just sugar. FIXME: Tell 4835 // QualifiedNameType that it has a "typename" prefix. 4836 return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type)); 4837 } 4838 4839 DiagID = diag::err_typename_nested_not_type; 4840 Referenced = Result.getFoundDecl(); 4841 break; 4842 4843 case LookupResult::FoundUnresolvedValue: 4844 llvm_unreachable("unresolved using decl in non-dependent context"); 4845 return QualType(); 4846 4847 case LookupResult::FoundOverloaded: 4848 DiagID = diag::err_typename_nested_not_type; 4849 Referenced = *Result.begin(); 4850 break; 4851 4852 case LookupResult::Ambiguous: 4853 return QualType(); 4854 } 4855 4856 // If we get here, it's because name lookup did not find a 4857 // type. Emit an appropriate diagnostic and return an error. 4858 Diag(Range.getEnd(), DiagID) << Range << Name << Ctx; 4859 if (Referenced) 4860 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 4861 << Name; 4862 return QualType(); 4863} 4864 4865namespace { 4866 // See Sema::RebuildTypeInCurrentInstantiation 4867 class CurrentInstantiationRebuilder 4868 : public TreeTransform<CurrentInstantiationRebuilder> { 4869 SourceLocation Loc; 4870 DeclarationName Entity; 4871 4872 public: 4873 CurrentInstantiationRebuilder(Sema &SemaRef, 4874 SourceLocation Loc, 4875 DeclarationName Entity) 4876 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 4877 Loc(Loc), Entity(Entity) { } 4878 4879 /// \brief Determine whether the given type \p T has already been 4880 /// transformed. 4881 /// 4882 /// For the purposes of type reconstruction, a type has already been 4883 /// transformed if it is NULL or if it is not dependent. 4884 bool AlreadyTransformed(QualType T) { 4885 return T.isNull() || !T->isDependentType(); 4886 } 4887 4888 /// \brief Returns the location of the entity whose type is being 4889 /// rebuilt. 4890 SourceLocation getBaseLocation() { return Loc; } 4891 4892 /// \brief Returns the name of the entity whose type is being rebuilt. 4893 DeclarationName getBaseEntity() { return Entity; } 4894 4895 /// \brief Sets the "base" location and entity when that 4896 /// information is known based on another transformation. 4897 void setBase(SourceLocation Loc, DeclarationName Entity) { 4898 this->Loc = Loc; 4899 this->Entity = Entity; 4900 } 4901 4902 /// \brief Transforms an expression by returning the expression itself 4903 /// (an identity function). 4904 /// 4905 /// FIXME: This is completely unsafe; we will need to actually clone the 4906 /// expressions. 4907 Sema::OwningExprResult TransformExpr(Expr *E) { 4908 return getSema().Owned(E); 4909 } 4910 4911 /// \brief Transforms a typename type by determining whether the type now 4912 /// refers to a member of the current instantiation, and then 4913 /// type-checking and building a QualifiedNameType (when possible). 4914 QualType TransformTypenameType(TypeLocBuilder &TLB, TypenameTypeLoc TL, 4915 QualType ObjectType); 4916 }; 4917} 4918 4919QualType 4920CurrentInstantiationRebuilder::TransformTypenameType(TypeLocBuilder &TLB, 4921 TypenameTypeLoc TL, 4922 QualType ObjectType) { 4923 TypenameType *T = TL.getTypePtr(); 4924 4925 NestedNameSpecifier *NNS 4926 = TransformNestedNameSpecifier(T->getQualifier(), 4927 /*FIXME:*/SourceRange(getBaseLocation()), 4928 false, 4929 ObjectType); 4930 if (!NNS) 4931 return QualType(); 4932 4933 // If the nested-name-specifier did not change, and we cannot compute the 4934 // context corresponding to the nested-name-specifier, then this 4935 // typename type will not change; exit early. 4936 CXXScopeSpec SS; 4937 SS.setRange(SourceRange(getBaseLocation())); 4938 SS.setScopeRep(NNS); 4939 4940 QualType Result; 4941 if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0) 4942 Result = QualType(T, 0); 4943 4944 // Rebuild the typename type, which will probably turn into a 4945 // QualifiedNameType. 4946 else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) { 4947 QualType NewTemplateId 4948 = TransformType(QualType(TemplateId, 0)); 4949 if (NewTemplateId.isNull()) 4950 return QualType(); 4951 4952 if (NNS == T->getQualifier() && 4953 NewTemplateId == QualType(TemplateId, 0)) 4954 Result = QualType(T, 0); 4955 else 4956 Result = getDerived().RebuildTypenameType(NNS, NewTemplateId); 4957 } else 4958 Result = getDerived().RebuildTypenameType(NNS, T->getIdentifier(), 4959 SourceRange(TL.getNameLoc())); 4960 4961 TypenameTypeLoc NewTL = TLB.push<TypenameTypeLoc>(Result); 4962 NewTL.setNameLoc(TL.getNameLoc()); 4963 return Result; 4964} 4965 4966/// \brief Rebuilds a type within the context of the current instantiation. 4967/// 4968/// The type \p T is part of the type of an out-of-line member definition of 4969/// a class template (or class template partial specialization) that was parsed 4970/// and constructed before we entered the scope of the class template (or 4971/// partial specialization thereof). This routine will rebuild that type now 4972/// that we have entered the declarator's scope, which may produce different 4973/// canonical types, e.g., 4974/// 4975/// \code 4976/// template<typename T> 4977/// struct X { 4978/// typedef T* pointer; 4979/// pointer data(); 4980/// }; 4981/// 4982/// template<typename T> 4983/// typename X<T>::pointer X<T>::data() { ... } 4984/// \endcode 4985/// 4986/// Here, the type "typename X<T>::pointer" will be created as a TypenameType, 4987/// since we do not know that we can look into X<T> when we parsed the type. 4988/// This function will rebuild the type, performing the lookup of "pointer" 4989/// in X<T> and returning a QualifiedNameType whose canonical type is the same 4990/// as the canonical type of T*, allowing the return types of the out-of-line 4991/// definition and the declaration to match. 4992QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc, 4993 DeclarationName Name) { 4994 if (T.isNull() || !T->isDependentType()) 4995 return T; 4996 4997 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 4998 return Rebuilder.TransformType(T); 4999} 5000 5001/// \brief Produces a formatted string that describes the binding of 5002/// template parameters to template arguments. 5003std::string 5004Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 5005 const TemplateArgumentList &Args) { 5006 // FIXME: For variadic templates, we'll need to get the structured list. 5007 return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(), 5008 Args.flat_size()); 5009} 5010 5011std::string 5012Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 5013 const TemplateArgument *Args, 5014 unsigned NumArgs) { 5015 std::string Result; 5016 5017 if (!Params || Params->size() == 0 || NumArgs == 0) 5018 return Result; 5019 5020 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 5021 if (I >= NumArgs) 5022 break; 5023 5024 if (I == 0) 5025 Result += "[with "; 5026 else 5027 Result += ", "; 5028 5029 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 5030 Result += Id->getName(); 5031 } else { 5032 Result += '$'; 5033 Result += llvm::utostr(I); 5034 } 5035 5036 Result += " = "; 5037 5038 switch (Args[I].getKind()) { 5039 case TemplateArgument::Null: 5040 Result += "<no value>"; 5041 break; 5042 5043 case TemplateArgument::Type: { 5044 std::string TypeStr; 5045 Args[I].getAsType().getAsStringInternal(TypeStr, 5046 Context.PrintingPolicy); 5047 Result += TypeStr; 5048 break; 5049 } 5050 5051 case TemplateArgument::Declaration: { 5052 bool Unnamed = true; 5053 if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) { 5054 if (ND->getDeclName()) { 5055 Unnamed = false; 5056 Result += ND->getNameAsString(); 5057 } 5058 } 5059 5060 if (Unnamed) { 5061 Result += "<anonymous>"; 5062 } 5063 break; 5064 } 5065 5066 case TemplateArgument::Template: { 5067 std::string Str; 5068 llvm::raw_string_ostream OS(Str); 5069 Args[I].getAsTemplate().print(OS, Context.PrintingPolicy); 5070 Result += OS.str(); 5071 break; 5072 } 5073 5074 case TemplateArgument::Integral: { 5075 Result += Args[I].getAsIntegral()->toString(10); 5076 break; 5077 } 5078 5079 case TemplateArgument::Expression: { 5080 assert(false && "No expressions in deduced template arguments!"); 5081 Result += "<expression>"; 5082 break; 5083 } 5084 5085 case TemplateArgument::Pack: 5086 // FIXME: Format template argument packs 5087 Result += "<template argument pack>"; 5088 break; 5089 } 5090 } 5091 5092 Result += ']'; 5093 return Result; 5094} 5095