SemaTemplate.cpp revision c421f546e63b2f85caa1ca0d94d508f99bb871cb
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "clang/Sema/SemaInternal.h" 13#include "clang/Sema/Lookup.h" 14#include "clang/Sema/Scope.h" 15#include "clang/Sema/Template.h" 16#include "clang/Sema/TemplateDeduction.h" 17#include "TreeTransform.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ExprCXX.h" 21#include "clang/AST/DeclFriend.h" 22#include "clang/AST/DeclTemplate.h" 23#include "clang/AST/RecursiveASTVisitor.h" 24#include "clang/AST/TypeVisitor.h" 25#include "clang/Sema/DeclSpec.h" 26#include "clang/Sema/ParsedTemplate.h" 27#include "clang/Basic/LangOptions.h" 28#include "clang/Basic/PartialDiagnostic.h" 29#include "llvm/ADT/StringExtras.h" 30using namespace clang; 31using namespace sema; 32 33// Exported for use by Parser. 34SourceRange 35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 36 unsigned N) { 37 if (!N) return SourceRange(); 38 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 39} 40 41/// \brief Determine whether the declaration found is acceptable as the name 42/// of a template and, if so, return that template declaration. Otherwise, 43/// returns NULL. 44static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 45 NamedDecl *Orig) { 46 NamedDecl *D = Orig->getUnderlyingDecl(); 47 48 if (isa<TemplateDecl>(D)) 49 return Orig; 50 51 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 52 // C++ [temp.local]p1: 53 // Like normal (non-template) classes, class templates have an 54 // injected-class-name (Clause 9). The injected-class-name 55 // can be used with or without a template-argument-list. When 56 // it is used without a template-argument-list, it is 57 // equivalent to the injected-class-name followed by the 58 // template-parameters of the class template enclosed in 59 // <>. When it is used with a template-argument-list, it 60 // refers to the specified class template specialization, 61 // which could be the current specialization or another 62 // specialization. 63 if (Record->isInjectedClassName()) { 64 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 65 if (Record->getDescribedClassTemplate()) 66 return Record->getDescribedClassTemplate(); 67 68 if (ClassTemplateSpecializationDecl *Spec 69 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 70 return Spec->getSpecializedTemplate(); 71 } 72 73 return 0; 74 } 75 76 return 0; 77} 78 79static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) { 80 // The set of class templates we've already seen. 81 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 82 LookupResult::Filter filter = R.makeFilter(); 83 while (filter.hasNext()) { 84 NamedDecl *Orig = filter.next(); 85 NamedDecl *Repl = isAcceptableTemplateName(C, Orig); 86 if (!Repl) 87 filter.erase(); 88 else if (Repl != Orig) { 89 90 // C++ [temp.local]p3: 91 // A lookup that finds an injected-class-name (10.2) can result in an 92 // ambiguity in certain cases (for example, if it is found in more than 93 // one base class). If all of the injected-class-names that are found 94 // refer to specializations of the same class template, and if the name 95 // is followed by a template-argument-list, the reference refers to the 96 // class template itself and not a specialization thereof, and is not 97 // ambiguous. 98 // 99 // FIXME: Will we eventually have to do the same for alias templates? 100 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 101 if (!ClassTemplates.insert(ClassTmpl)) { 102 filter.erase(); 103 continue; 104 } 105 106 // FIXME: we promote access to public here as a workaround to 107 // the fact that LookupResult doesn't let us remember that we 108 // found this template through a particular injected class name, 109 // which means we end up doing nasty things to the invariants. 110 // Pretending that access is public is *much* safer. 111 filter.replace(Repl, AS_public); 112 } 113 } 114 filter.done(); 115} 116 117TemplateNameKind Sema::isTemplateName(Scope *S, 118 CXXScopeSpec &SS, 119 bool hasTemplateKeyword, 120 UnqualifiedId &Name, 121 ParsedType ObjectTypePtr, 122 bool EnteringContext, 123 TemplateTy &TemplateResult, 124 bool &MemberOfUnknownSpecialization) { 125 assert(getLangOptions().CPlusPlus && "No template names in C!"); 126 127 DeclarationName TName; 128 MemberOfUnknownSpecialization = false; 129 130 switch (Name.getKind()) { 131 case UnqualifiedId::IK_Identifier: 132 TName = DeclarationName(Name.Identifier); 133 break; 134 135 case UnqualifiedId::IK_OperatorFunctionId: 136 TName = Context.DeclarationNames.getCXXOperatorName( 137 Name.OperatorFunctionId.Operator); 138 break; 139 140 case UnqualifiedId::IK_LiteralOperatorId: 141 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 142 break; 143 144 default: 145 return TNK_Non_template; 146 } 147 148 QualType ObjectType = ObjectTypePtr.get(); 149 150 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 151 LookupOrdinaryName); 152 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 153 MemberOfUnknownSpecialization); 154 if (R.empty()) return TNK_Non_template; 155 if (R.isAmbiguous()) { 156 // Suppress diagnostics; we'll redo this lookup later. 157 R.suppressDiagnostics(); 158 159 // FIXME: we might have ambiguous templates, in which case we 160 // should at least parse them properly! 161 return TNK_Non_template; 162 } 163 164 TemplateName Template; 165 TemplateNameKind TemplateKind; 166 167 unsigned ResultCount = R.end() - R.begin(); 168 if (ResultCount > 1) { 169 // We assume that we'll preserve the qualifier from a function 170 // template name in other ways. 171 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 172 TemplateKind = TNK_Function_template; 173 174 // We'll do this lookup again later. 175 R.suppressDiagnostics(); 176 } else { 177 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 178 179 if (SS.isSet() && !SS.isInvalid()) { 180 NestedNameSpecifier *Qualifier 181 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 182 Template = Context.getQualifiedTemplateName(Qualifier, 183 hasTemplateKeyword, TD); 184 } else { 185 Template = TemplateName(TD); 186 } 187 188 if (isa<FunctionTemplateDecl>(TD)) { 189 TemplateKind = TNK_Function_template; 190 191 // We'll do this lookup again later. 192 R.suppressDiagnostics(); 193 } else { 194 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD)); 195 TemplateKind = TNK_Type_template; 196 } 197 } 198 199 TemplateResult = TemplateTy::make(Template); 200 return TemplateKind; 201} 202 203bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 204 SourceLocation IILoc, 205 Scope *S, 206 const CXXScopeSpec *SS, 207 TemplateTy &SuggestedTemplate, 208 TemplateNameKind &SuggestedKind) { 209 // We can't recover unless there's a dependent scope specifier preceding the 210 // template name. 211 // FIXME: Typo correction? 212 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 213 computeDeclContext(*SS)) 214 return false; 215 216 // The code is missing a 'template' keyword prior to the dependent template 217 // name. 218 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 219 Diag(IILoc, diag::err_template_kw_missing) 220 << Qualifier << II.getName() 221 << FixItHint::CreateInsertion(IILoc, "template "); 222 SuggestedTemplate 223 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 224 SuggestedKind = TNK_Dependent_template_name; 225 return true; 226} 227 228void Sema::LookupTemplateName(LookupResult &Found, 229 Scope *S, CXXScopeSpec &SS, 230 QualType ObjectType, 231 bool EnteringContext, 232 bool &MemberOfUnknownSpecialization) { 233 // Determine where to perform name lookup 234 MemberOfUnknownSpecialization = false; 235 DeclContext *LookupCtx = 0; 236 bool isDependent = false; 237 if (!ObjectType.isNull()) { 238 // This nested-name-specifier occurs in a member access expression, e.g., 239 // x->B::f, and we are looking into the type of the object. 240 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 241 LookupCtx = computeDeclContext(ObjectType); 242 isDependent = ObjectType->isDependentType(); 243 assert((isDependent || !ObjectType->isIncompleteType()) && 244 "Caller should have completed object type"); 245 } else if (SS.isSet()) { 246 // This nested-name-specifier occurs after another nested-name-specifier, 247 // so long into the context associated with the prior nested-name-specifier. 248 LookupCtx = computeDeclContext(SS, EnteringContext); 249 isDependent = isDependentScopeSpecifier(SS); 250 251 // The declaration context must be complete. 252 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 253 return; 254 } 255 256 bool ObjectTypeSearchedInScope = false; 257 if (LookupCtx) { 258 // Perform "qualified" name lookup into the declaration context we 259 // computed, which is either the type of the base of a member access 260 // expression or the declaration context associated with a prior 261 // nested-name-specifier. 262 LookupQualifiedName(Found, LookupCtx); 263 264 if (!ObjectType.isNull() && Found.empty()) { 265 // C++ [basic.lookup.classref]p1: 266 // In a class member access expression (5.2.5), if the . or -> token is 267 // immediately followed by an identifier followed by a <, the 268 // identifier must be looked up to determine whether the < is the 269 // beginning of a template argument list (14.2) or a less-than operator. 270 // The identifier is first looked up in the class of the object 271 // expression. If the identifier is not found, it is then looked up in 272 // the context of the entire postfix-expression and shall name a class 273 // or function template. 274 if (S) LookupName(Found, S); 275 ObjectTypeSearchedInScope = true; 276 } 277 } else if (isDependent && (!S || ObjectType.isNull())) { 278 // We cannot look into a dependent object type or nested nme 279 // specifier. 280 MemberOfUnknownSpecialization = true; 281 return; 282 } else { 283 // Perform unqualified name lookup in the current scope. 284 LookupName(Found, S); 285 } 286 287 if (Found.empty() && !isDependent) { 288 // If we did not find any names, attempt to correct any typos. 289 DeclarationName Name = Found.getLookupName(); 290 if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx, 291 false, CTC_CXXCasts)) { 292 FilterAcceptableTemplateNames(Context, Found); 293 if (!Found.empty()) { 294 if (LookupCtx) 295 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 296 << Name << LookupCtx << Found.getLookupName() << SS.getRange() 297 << FixItHint::CreateReplacement(Found.getNameLoc(), 298 Found.getLookupName().getAsString()); 299 else 300 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 301 << Name << Found.getLookupName() 302 << FixItHint::CreateReplacement(Found.getNameLoc(), 303 Found.getLookupName().getAsString()); 304 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 305 Diag(Template->getLocation(), diag::note_previous_decl) 306 << Template->getDeclName(); 307 } 308 } else { 309 Found.clear(); 310 Found.setLookupName(Name); 311 } 312 } 313 314 FilterAcceptableTemplateNames(Context, Found); 315 if (Found.empty()) { 316 if (isDependent) 317 MemberOfUnknownSpecialization = true; 318 return; 319 } 320 321 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 322 // C++ [basic.lookup.classref]p1: 323 // [...] If the lookup in the class of the object expression finds a 324 // template, the name is also looked up in the context of the entire 325 // postfix-expression and [...] 326 // 327 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 328 LookupOrdinaryName); 329 LookupName(FoundOuter, S); 330 FilterAcceptableTemplateNames(Context, FoundOuter); 331 332 if (FoundOuter.empty()) { 333 // - if the name is not found, the name found in the class of the 334 // object expression is used, otherwise 335 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 336 // - if the name is found in the context of the entire 337 // postfix-expression and does not name a class template, the name 338 // found in the class of the object expression is used, otherwise 339 } else if (!Found.isSuppressingDiagnostics()) { 340 // - if the name found is a class template, it must refer to the same 341 // entity as the one found in the class of the object expression, 342 // otherwise the program is ill-formed. 343 if (!Found.isSingleResult() || 344 Found.getFoundDecl()->getCanonicalDecl() 345 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 346 Diag(Found.getNameLoc(), 347 diag::ext_nested_name_member_ref_lookup_ambiguous) 348 << Found.getLookupName() 349 << ObjectType; 350 Diag(Found.getRepresentativeDecl()->getLocation(), 351 diag::note_ambig_member_ref_object_type) 352 << ObjectType; 353 Diag(FoundOuter.getFoundDecl()->getLocation(), 354 diag::note_ambig_member_ref_scope); 355 356 // Recover by taking the template that we found in the object 357 // expression's type. 358 } 359 } 360 } 361} 362 363/// ActOnDependentIdExpression - Handle a dependent id-expression that 364/// was just parsed. This is only possible with an explicit scope 365/// specifier naming a dependent type. 366ExprResult 367Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 368 const DeclarationNameInfo &NameInfo, 369 bool isAddressOfOperand, 370 const TemplateArgumentListInfo *TemplateArgs) { 371 NestedNameSpecifier *Qualifier 372 = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 373 374 DeclContext *DC = getFunctionLevelDeclContext(); 375 376 if (!isAddressOfOperand && 377 isa<CXXMethodDecl>(DC) && 378 cast<CXXMethodDecl>(DC)->isInstance()) { 379 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 380 381 // Since the 'this' expression is synthesized, we don't need to 382 // perform the double-lookup check. 383 NamedDecl *FirstQualifierInScope = 0; 384 385 return Owned(CXXDependentScopeMemberExpr::Create(Context, 386 /*This*/ 0, ThisType, 387 /*IsArrow*/ true, 388 /*Op*/ SourceLocation(), 389 Qualifier, SS.getRange(), 390 FirstQualifierInScope, 391 NameInfo, 392 TemplateArgs)); 393 } 394 395 return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs); 396} 397 398ExprResult 399Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 400 const DeclarationNameInfo &NameInfo, 401 const TemplateArgumentListInfo *TemplateArgs) { 402 return Owned(DependentScopeDeclRefExpr::Create(Context, 403 static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 404 SS.getRange(), 405 NameInfo, 406 TemplateArgs)); 407} 408 409/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 410/// that the template parameter 'PrevDecl' is being shadowed by a new 411/// declaration at location Loc. Returns true to indicate that this is 412/// an error, and false otherwise. 413bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 414 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 415 416 // Microsoft Visual C++ permits template parameters to be shadowed. 417 if (getLangOptions().Microsoft) 418 return false; 419 420 // C++ [temp.local]p4: 421 // A template-parameter shall not be redeclared within its 422 // scope (including nested scopes). 423 Diag(Loc, diag::err_template_param_shadow) 424 << cast<NamedDecl>(PrevDecl)->getDeclName(); 425 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 426 return true; 427} 428 429/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 430/// the parameter D to reference the templated declaration and return a pointer 431/// to the template declaration. Otherwise, do nothing to D and return null. 432TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 433 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 434 D = Temp->getTemplatedDecl(); 435 return Temp; 436 } 437 return 0; 438} 439 440ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 441 SourceLocation EllipsisLoc) const { 442 assert(Kind == Template && 443 "Only template template arguments can be pack expansions here"); 444 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 445 "Template template argument pack expansion without packs"); 446 ParsedTemplateArgument Result(*this); 447 Result.EllipsisLoc = EllipsisLoc; 448 return Result; 449} 450 451static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 452 const ParsedTemplateArgument &Arg) { 453 454 switch (Arg.getKind()) { 455 case ParsedTemplateArgument::Type: { 456 TypeSourceInfo *DI; 457 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 458 if (!DI) 459 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 460 return TemplateArgumentLoc(TemplateArgument(T), DI); 461 } 462 463 case ParsedTemplateArgument::NonType: { 464 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 465 return TemplateArgumentLoc(TemplateArgument(E), E); 466 } 467 468 case ParsedTemplateArgument::Template: { 469 TemplateName Template = Arg.getAsTemplate().get(); 470 return TemplateArgumentLoc(TemplateArgument(Template, 471 Arg.getEllipsisLoc().isValid()), 472 Arg.getScopeSpec().getRange(), 473 Arg.getLocation(), 474 Arg.getEllipsisLoc()); 475 } 476 } 477 478 llvm_unreachable("Unhandled parsed template argument"); 479 return TemplateArgumentLoc(); 480} 481 482/// \brief Translates template arguments as provided by the parser 483/// into template arguments used by semantic analysis. 484void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 485 TemplateArgumentListInfo &TemplateArgs) { 486 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 487 TemplateArgs.addArgument(translateTemplateArgument(*this, 488 TemplateArgsIn[I])); 489} 490 491/// ActOnTypeParameter - Called when a C++ template type parameter 492/// (e.g., "typename T") has been parsed. Typename specifies whether 493/// the keyword "typename" was used to declare the type parameter 494/// (otherwise, "class" was used), and KeyLoc is the location of the 495/// "class" or "typename" keyword. ParamName is the name of the 496/// parameter (NULL indicates an unnamed template parameter) and 497/// ParamName is the location of the parameter name (if any). 498/// If the type parameter has a default argument, it will be added 499/// later via ActOnTypeParameterDefault. 500Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 501 SourceLocation EllipsisLoc, 502 SourceLocation KeyLoc, 503 IdentifierInfo *ParamName, 504 SourceLocation ParamNameLoc, 505 unsigned Depth, unsigned Position, 506 SourceLocation EqualLoc, 507 ParsedType DefaultArg) { 508 assert(S->isTemplateParamScope() && 509 "Template type parameter not in template parameter scope!"); 510 bool Invalid = false; 511 512 if (ParamName) { 513 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 514 LookupOrdinaryName, 515 ForRedeclaration); 516 if (PrevDecl && PrevDecl->isTemplateParameter()) 517 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 518 PrevDecl); 519 } 520 521 SourceLocation Loc = ParamNameLoc; 522 if (!ParamName) 523 Loc = KeyLoc; 524 525 TemplateTypeParmDecl *Param 526 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 527 Loc, Depth, Position, ParamName, Typename, 528 Ellipsis); 529 if (Invalid) 530 Param->setInvalidDecl(); 531 532 if (ParamName) { 533 // Add the template parameter into the current scope. 534 S->AddDecl(Param); 535 IdResolver.AddDecl(Param); 536 } 537 538 // C++0x [temp.param]p9: 539 // A default template-argument may be specified for any kind of 540 // template-parameter that is not a template parameter pack. 541 if (DefaultArg && Ellipsis) { 542 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 543 DefaultArg = ParsedType(); 544 } 545 546 // Handle the default argument, if provided. 547 if (DefaultArg) { 548 TypeSourceInfo *DefaultTInfo; 549 GetTypeFromParser(DefaultArg, &DefaultTInfo); 550 551 assert(DefaultTInfo && "expected source information for type"); 552 553 // Check for unexpanded parameter packs. 554 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, 555 UPPC_DefaultArgument)) 556 return Param; 557 558 // Check the template argument itself. 559 if (CheckTemplateArgument(Param, DefaultTInfo)) { 560 Param->setInvalidDecl(); 561 return Param; 562 } 563 564 Param->setDefaultArgument(DefaultTInfo, false); 565 } 566 567 return Param; 568} 569 570/// \brief Check that the type of a non-type template parameter is 571/// well-formed. 572/// 573/// \returns the (possibly-promoted) parameter type if valid; 574/// otherwise, produces a diagnostic and returns a NULL type. 575QualType 576Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 577 // We don't allow variably-modified types as the type of non-type template 578 // parameters. 579 if (T->isVariablyModifiedType()) { 580 Diag(Loc, diag::err_variably_modified_nontype_template_param) 581 << T; 582 return QualType(); 583 } 584 585 // C++ [temp.param]p4: 586 // 587 // A non-type template-parameter shall have one of the following 588 // (optionally cv-qualified) types: 589 // 590 // -- integral or enumeration type, 591 if (T->isIntegralOrEnumerationType() || 592 // -- pointer to object or pointer to function, 593 T->isPointerType() || 594 // -- reference to object or reference to function, 595 T->isReferenceType() || 596 // -- pointer to member. 597 T->isMemberPointerType() || 598 // If T is a dependent type, we can't do the check now, so we 599 // assume that it is well-formed. 600 T->isDependentType()) 601 return T; 602 // C++ [temp.param]p8: 603 // 604 // A non-type template-parameter of type "array of T" or 605 // "function returning T" is adjusted to be of type "pointer to 606 // T" or "pointer to function returning T", respectively. 607 else if (T->isArrayType()) 608 // FIXME: Keep the type prior to promotion? 609 return Context.getArrayDecayedType(T); 610 else if (T->isFunctionType()) 611 // FIXME: Keep the type prior to promotion? 612 return Context.getPointerType(T); 613 614 Diag(Loc, diag::err_template_nontype_parm_bad_type) 615 << T; 616 617 return QualType(); 618} 619 620Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 621 unsigned Depth, 622 unsigned Position, 623 SourceLocation EqualLoc, 624 Expr *Default) { 625 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 626 QualType T = TInfo->getType(); 627 628 assert(S->isTemplateParamScope() && 629 "Non-type template parameter not in template parameter scope!"); 630 bool Invalid = false; 631 632 IdentifierInfo *ParamName = D.getIdentifier(); 633 if (ParamName) { 634 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 635 LookupOrdinaryName, 636 ForRedeclaration); 637 if (PrevDecl && PrevDecl->isTemplateParameter()) 638 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 639 PrevDecl); 640 } 641 642 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 643 if (T.isNull()) { 644 T = Context.IntTy; // Recover with an 'int' type. 645 Invalid = true; 646 } 647 648 bool IsParameterPack = D.hasEllipsis(); 649 NonTypeTemplateParmDecl *Param 650 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 651 D.getIdentifierLoc(), 652 Depth, Position, ParamName, T, 653 IsParameterPack, TInfo); 654 if (Invalid) 655 Param->setInvalidDecl(); 656 657 if (D.getIdentifier()) { 658 // Add the template parameter into the current scope. 659 S->AddDecl(Param); 660 IdResolver.AddDecl(Param); 661 } 662 663 // C++0x [temp.param]p9: 664 // A default template-argument may be specified for any kind of 665 // template-parameter that is not a template parameter pack. 666 if (Default && IsParameterPack) { 667 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 668 Default = 0; 669 } 670 671 // Check the well-formedness of the default template argument, if provided. 672 if (Default) { 673 // Check for unexpanded parameter packs. 674 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 675 return Param; 676 677 TemplateArgument Converted; 678 if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) { 679 Param->setInvalidDecl(); 680 return Param; 681 } 682 683 Param->setDefaultArgument(Default, false); 684 } 685 686 return Param; 687} 688 689/// ActOnTemplateTemplateParameter - Called when a C++ template template 690/// parameter (e.g. T in template <template <typename> class T> class array) 691/// has been parsed. S is the current scope. 692Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 693 SourceLocation TmpLoc, 694 TemplateParamsTy *Params, 695 SourceLocation EllipsisLoc, 696 IdentifierInfo *Name, 697 SourceLocation NameLoc, 698 unsigned Depth, 699 unsigned Position, 700 SourceLocation EqualLoc, 701 ParsedTemplateArgument Default) { 702 assert(S->isTemplateParamScope() && 703 "Template template parameter not in template parameter scope!"); 704 705 // Construct the parameter object. 706 bool IsParameterPack = EllipsisLoc.isValid(); 707 // FIXME: Pack-ness is dropped 708 TemplateTemplateParmDecl *Param = 709 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 710 NameLoc.isInvalid()? TmpLoc : NameLoc, 711 Depth, Position, IsParameterPack, 712 Name, Params); 713 714 // If the template template parameter has a name, then link the identifier 715 // into the scope and lookup mechanisms. 716 if (Name) { 717 S->AddDecl(Param); 718 IdResolver.AddDecl(Param); 719 } 720 721 if (Params->size() == 0) { 722 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 723 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 724 Param->setInvalidDecl(); 725 } 726 727 // C++0x [temp.param]p9: 728 // A default template-argument may be specified for any kind of 729 // template-parameter that is not a template parameter pack. 730 if (IsParameterPack && !Default.isInvalid()) { 731 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 732 Default = ParsedTemplateArgument(); 733 } 734 735 if (!Default.isInvalid()) { 736 // Check only that we have a template template argument. We don't want to 737 // try to check well-formedness now, because our template template parameter 738 // might have dependent types in its template parameters, which we wouldn't 739 // be able to match now. 740 // 741 // If none of the template template parameter's template arguments mention 742 // other template parameters, we could actually perform more checking here. 743 // However, it isn't worth doing. 744 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 745 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 746 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 747 << DefaultArg.getSourceRange(); 748 return Param; 749 } 750 751 // Check for unexpanded parameter packs. 752 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 753 DefaultArg.getArgument().getAsTemplate(), 754 UPPC_DefaultArgument)) 755 return Param; 756 757 Param->setDefaultArgument(DefaultArg, false); 758 } 759 760 return Param; 761} 762 763/// ActOnTemplateParameterList - Builds a TemplateParameterList that 764/// contains the template parameters in Params/NumParams. 765Sema::TemplateParamsTy * 766Sema::ActOnTemplateParameterList(unsigned Depth, 767 SourceLocation ExportLoc, 768 SourceLocation TemplateLoc, 769 SourceLocation LAngleLoc, 770 Decl **Params, unsigned NumParams, 771 SourceLocation RAngleLoc) { 772 if (ExportLoc.isValid()) 773 Diag(ExportLoc, diag::warn_template_export_unsupported); 774 775 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 776 (NamedDecl**)Params, NumParams, 777 RAngleLoc); 778} 779 780static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 781 if (SS.isSet()) 782 T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 783 SS.getRange()); 784} 785 786DeclResult 787Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 788 SourceLocation KWLoc, CXXScopeSpec &SS, 789 IdentifierInfo *Name, SourceLocation NameLoc, 790 AttributeList *Attr, 791 TemplateParameterList *TemplateParams, 792 AccessSpecifier AS) { 793 assert(TemplateParams && TemplateParams->size() > 0 && 794 "No template parameters"); 795 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 796 bool Invalid = false; 797 798 // Check that we can declare a template here. 799 if (CheckTemplateDeclScope(S, TemplateParams)) 800 return true; 801 802 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 803 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 804 805 // There is no such thing as an unnamed class template. 806 if (!Name) { 807 Diag(KWLoc, diag::err_template_unnamed_class); 808 return true; 809 } 810 811 // Find any previous declaration with this name. 812 DeclContext *SemanticContext; 813 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 814 ForRedeclaration); 815 if (SS.isNotEmpty() && !SS.isInvalid()) { 816 SemanticContext = computeDeclContext(SS, true); 817 if (!SemanticContext) { 818 // FIXME: Produce a reasonable diagnostic here 819 return true; 820 } 821 822 if (RequireCompleteDeclContext(SS, SemanticContext)) 823 return true; 824 825 LookupQualifiedName(Previous, SemanticContext); 826 } else { 827 SemanticContext = CurContext; 828 LookupName(Previous, S); 829 } 830 831 if (Previous.isAmbiguous()) 832 return true; 833 834 NamedDecl *PrevDecl = 0; 835 if (Previous.begin() != Previous.end()) 836 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 837 838 // If there is a previous declaration with the same name, check 839 // whether this is a valid redeclaration. 840 ClassTemplateDecl *PrevClassTemplate 841 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 842 843 // We may have found the injected-class-name of a class template, 844 // class template partial specialization, or class template specialization. 845 // In these cases, grab the template that is being defined or specialized. 846 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 847 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 848 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 849 PrevClassTemplate 850 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 851 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 852 PrevClassTemplate 853 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 854 ->getSpecializedTemplate(); 855 } 856 } 857 858 if (TUK == TUK_Friend) { 859 // C++ [namespace.memdef]p3: 860 // [...] When looking for a prior declaration of a class or a function 861 // declared as a friend, and when the name of the friend class or 862 // function is neither a qualified name nor a template-id, scopes outside 863 // the innermost enclosing namespace scope are not considered. 864 if (!SS.isSet()) { 865 DeclContext *OutermostContext = CurContext; 866 while (!OutermostContext->isFileContext()) 867 OutermostContext = OutermostContext->getLookupParent(); 868 869 if (PrevDecl && 870 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 871 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 872 SemanticContext = PrevDecl->getDeclContext(); 873 } else { 874 // Declarations in outer scopes don't matter. However, the outermost 875 // context we computed is the semantic context for our new 876 // declaration. 877 PrevDecl = PrevClassTemplate = 0; 878 SemanticContext = OutermostContext; 879 } 880 } 881 882 if (CurContext->isDependentContext()) { 883 // If this is a dependent context, we don't want to link the friend 884 // class template to the template in scope, because that would perform 885 // checking of the template parameter lists that can't be performed 886 // until the outer context is instantiated. 887 PrevDecl = PrevClassTemplate = 0; 888 } 889 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 890 PrevDecl = PrevClassTemplate = 0; 891 892 if (PrevClassTemplate) { 893 // Ensure that the template parameter lists are compatible. 894 if (!TemplateParameterListsAreEqual(TemplateParams, 895 PrevClassTemplate->getTemplateParameters(), 896 /*Complain=*/true, 897 TPL_TemplateMatch)) 898 return true; 899 900 // C++ [temp.class]p4: 901 // In a redeclaration, partial specialization, explicit 902 // specialization or explicit instantiation of a class template, 903 // the class-key shall agree in kind with the original class 904 // template declaration (7.1.5.3). 905 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 906 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 907 Diag(KWLoc, diag::err_use_with_wrong_tag) 908 << Name 909 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 910 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 911 Kind = PrevRecordDecl->getTagKind(); 912 } 913 914 // Check for redefinition of this class template. 915 if (TUK == TUK_Definition) { 916 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 917 Diag(NameLoc, diag::err_redefinition) << Name; 918 Diag(Def->getLocation(), diag::note_previous_definition); 919 // FIXME: Would it make sense to try to "forget" the previous 920 // definition, as part of error recovery? 921 return true; 922 } 923 } 924 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 925 // Maybe we will complain about the shadowed template parameter. 926 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 927 // Just pretend that we didn't see the previous declaration. 928 PrevDecl = 0; 929 } else if (PrevDecl) { 930 // C++ [temp]p5: 931 // A class template shall not have the same name as any other 932 // template, class, function, object, enumeration, enumerator, 933 // namespace, or type in the same scope (3.3), except as specified 934 // in (14.5.4). 935 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 936 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 937 return true; 938 } 939 940 // Check the template parameter list of this declaration, possibly 941 // merging in the template parameter list from the previous class 942 // template declaration. 943 if (CheckTemplateParameterList(TemplateParams, 944 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 945 TPC_ClassTemplate)) 946 Invalid = true; 947 948 if (SS.isSet()) { 949 // If the name of the template was qualified, we must be defining the 950 // template out-of-line. 951 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate && 952 !(TUK == TUK_Friend && CurContext->isDependentContext())) 953 Diag(NameLoc, diag::err_member_def_does_not_match) 954 << Name << SemanticContext << SS.getRange(); 955 } 956 957 CXXRecordDecl *NewClass = 958 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 959 PrevClassTemplate? 960 PrevClassTemplate->getTemplatedDecl() : 0, 961 /*DelayTypeCreation=*/true); 962 SetNestedNameSpecifier(NewClass, SS); 963 964 ClassTemplateDecl *NewTemplate 965 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 966 DeclarationName(Name), TemplateParams, 967 NewClass, PrevClassTemplate); 968 NewClass->setDescribedClassTemplate(NewTemplate); 969 970 // Build the type for the class template declaration now. 971 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 972 T = Context.getInjectedClassNameType(NewClass, T); 973 assert(T->isDependentType() && "Class template type is not dependent?"); 974 (void)T; 975 976 // If we are providing an explicit specialization of a member that is a 977 // class template, make a note of that. 978 if (PrevClassTemplate && 979 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 980 PrevClassTemplate->setMemberSpecialization(); 981 982 // Set the access specifier. 983 if (!Invalid && TUK != TUK_Friend) 984 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 985 986 // Set the lexical context of these templates 987 NewClass->setLexicalDeclContext(CurContext); 988 NewTemplate->setLexicalDeclContext(CurContext); 989 990 if (TUK == TUK_Definition) 991 NewClass->startDefinition(); 992 993 if (Attr) 994 ProcessDeclAttributeList(S, NewClass, Attr); 995 996 if (TUK != TUK_Friend) 997 PushOnScopeChains(NewTemplate, S); 998 else { 999 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1000 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1001 NewClass->setAccess(PrevClassTemplate->getAccess()); 1002 } 1003 1004 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 1005 PrevClassTemplate != NULL); 1006 1007 // Friend templates are visible in fairly strange ways. 1008 if (!CurContext->isDependentContext()) { 1009 DeclContext *DC = SemanticContext->getRedeclContext(); 1010 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 1011 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1012 PushOnScopeChains(NewTemplate, EnclosingScope, 1013 /* AddToContext = */ false); 1014 } 1015 1016 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 1017 NewClass->getLocation(), 1018 NewTemplate, 1019 /*FIXME:*/NewClass->getLocation()); 1020 Friend->setAccess(AS_public); 1021 CurContext->addDecl(Friend); 1022 } 1023 1024 if (Invalid) { 1025 NewTemplate->setInvalidDecl(); 1026 NewClass->setInvalidDecl(); 1027 } 1028 return NewTemplate; 1029} 1030 1031/// \brief Diagnose the presence of a default template argument on a 1032/// template parameter, which is ill-formed in certain contexts. 1033/// 1034/// \returns true if the default template argument should be dropped. 1035static bool DiagnoseDefaultTemplateArgument(Sema &S, 1036 Sema::TemplateParamListContext TPC, 1037 SourceLocation ParamLoc, 1038 SourceRange DefArgRange) { 1039 switch (TPC) { 1040 case Sema::TPC_ClassTemplate: 1041 return false; 1042 1043 case Sema::TPC_FunctionTemplate: 1044 // C++ [temp.param]p9: 1045 // A default template-argument shall not be specified in a 1046 // function template declaration or a function template 1047 // definition [...] 1048 // (This sentence is not in C++0x, per DR226). 1049 if (!S.getLangOptions().CPlusPlus0x) 1050 S.Diag(ParamLoc, 1051 diag::err_template_parameter_default_in_function_template) 1052 << DefArgRange; 1053 return false; 1054 1055 case Sema::TPC_ClassTemplateMember: 1056 // C++0x [temp.param]p9: 1057 // A default template-argument shall not be specified in the 1058 // template-parameter-lists of the definition of a member of a 1059 // class template that appears outside of the member's class. 1060 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1061 << DefArgRange; 1062 return true; 1063 1064 case Sema::TPC_FriendFunctionTemplate: 1065 // C++ [temp.param]p9: 1066 // A default template-argument shall not be specified in a 1067 // friend template declaration. 1068 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1069 << DefArgRange; 1070 return true; 1071 1072 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1073 // for friend function templates if there is only a single 1074 // declaration (and it is a definition). Strange! 1075 } 1076 1077 return false; 1078} 1079 1080/// \brief Check for unexpanded parameter packs within the template parameters 1081/// of a template template parameter, recursively. 1082bool DiagnoseUnexpandedParameterPacks(Sema &S, TemplateTemplateParmDecl *TTP){ 1083 TemplateParameterList *Params = TTP->getTemplateParameters(); 1084 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 1085 NamedDecl *P = Params->getParam(I); 1086 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 1087 if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 1088 NTTP->getTypeSourceInfo(), 1089 Sema::UPPC_NonTypeTemplateParameterType)) 1090 return true; 1091 1092 continue; 1093 } 1094 1095 if (TemplateTemplateParmDecl *InnerTTP 1096 = dyn_cast<TemplateTemplateParmDecl>(P)) 1097 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 1098 return true; 1099 } 1100 1101 return false; 1102} 1103 1104/// \brief Checks the validity of a template parameter list, possibly 1105/// considering the template parameter list from a previous 1106/// declaration. 1107/// 1108/// If an "old" template parameter list is provided, it must be 1109/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1110/// template parameter list. 1111/// 1112/// \param NewParams Template parameter list for a new template 1113/// declaration. This template parameter list will be updated with any 1114/// default arguments that are carried through from the previous 1115/// template parameter list. 1116/// 1117/// \param OldParams If provided, template parameter list from a 1118/// previous declaration of the same template. Default template 1119/// arguments will be merged from the old template parameter list to 1120/// the new template parameter list. 1121/// 1122/// \param TPC Describes the context in which we are checking the given 1123/// template parameter list. 1124/// 1125/// \returns true if an error occurred, false otherwise. 1126bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1127 TemplateParameterList *OldParams, 1128 TemplateParamListContext TPC) { 1129 bool Invalid = false; 1130 1131 // C++ [temp.param]p10: 1132 // The set of default template-arguments available for use with a 1133 // template declaration or definition is obtained by merging the 1134 // default arguments from the definition (if in scope) and all 1135 // declarations in scope in the same way default function 1136 // arguments are (8.3.6). 1137 bool SawDefaultArgument = false; 1138 SourceLocation PreviousDefaultArgLoc; 1139 1140 bool SawParameterPack = false; 1141 SourceLocation ParameterPackLoc; 1142 1143 // Dummy initialization to avoid warnings. 1144 TemplateParameterList::iterator OldParam = NewParams->end(); 1145 if (OldParams) 1146 OldParam = OldParams->begin(); 1147 1148 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1149 NewParamEnd = NewParams->end(); 1150 NewParam != NewParamEnd; ++NewParam) { 1151 // Variables used to diagnose redundant default arguments 1152 bool RedundantDefaultArg = false; 1153 SourceLocation OldDefaultLoc; 1154 SourceLocation NewDefaultLoc; 1155 1156 // Variables used to diagnose missing default arguments 1157 bool MissingDefaultArg = false; 1158 1159 // C++0x [temp.param]p11: 1160 // If a template parameter of a primary class template is a template 1161 // parameter pack, it shall be the last template parameter. 1162 if (SawParameterPack && TPC == TPC_ClassTemplate) { 1163 Diag(ParameterPackLoc, 1164 diag::err_template_param_pack_must_be_last_template_parameter); 1165 Invalid = true; 1166 } 1167 1168 if (TemplateTypeParmDecl *NewTypeParm 1169 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1170 // Check the presence of a default argument here. 1171 if (NewTypeParm->hasDefaultArgument() && 1172 DiagnoseDefaultTemplateArgument(*this, TPC, 1173 NewTypeParm->getLocation(), 1174 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1175 .getSourceRange())) 1176 NewTypeParm->removeDefaultArgument(); 1177 1178 // Merge default arguments for template type parameters. 1179 TemplateTypeParmDecl *OldTypeParm 1180 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1181 1182 if (NewTypeParm->isParameterPack()) { 1183 assert(!NewTypeParm->hasDefaultArgument() && 1184 "Parameter packs can't have a default argument!"); 1185 SawParameterPack = true; 1186 ParameterPackLoc = NewTypeParm->getLocation(); 1187 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1188 NewTypeParm->hasDefaultArgument()) { 1189 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1190 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1191 SawDefaultArgument = true; 1192 RedundantDefaultArg = true; 1193 PreviousDefaultArgLoc = NewDefaultLoc; 1194 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1195 // Merge the default argument from the old declaration to the 1196 // new declaration. 1197 SawDefaultArgument = true; 1198 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1199 true); 1200 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1201 } else if (NewTypeParm->hasDefaultArgument()) { 1202 SawDefaultArgument = true; 1203 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1204 } else if (SawDefaultArgument) 1205 MissingDefaultArg = true; 1206 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1207 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1208 // Check for unexpanded parameter packs. 1209 if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 1210 NewNonTypeParm->getTypeSourceInfo(), 1211 UPPC_NonTypeTemplateParameterType)) { 1212 Invalid = true; 1213 continue; 1214 } 1215 1216 // Check the presence of a default argument here. 1217 if (NewNonTypeParm->hasDefaultArgument() && 1218 DiagnoseDefaultTemplateArgument(*this, TPC, 1219 NewNonTypeParm->getLocation(), 1220 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1221 NewNonTypeParm->removeDefaultArgument(); 1222 } 1223 1224 // Merge default arguments for non-type template parameters 1225 NonTypeTemplateParmDecl *OldNonTypeParm 1226 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1227 if (NewNonTypeParm->isParameterPack()) { 1228 assert(!NewNonTypeParm->hasDefaultArgument() && 1229 "Parameter packs can't have a default argument!"); 1230 SawParameterPack = true; 1231 ParameterPackLoc = NewNonTypeParm->getLocation(); 1232 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1233 NewNonTypeParm->hasDefaultArgument()) { 1234 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1235 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1236 SawDefaultArgument = true; 1237 RedundantDefaultArg = true; 1238 PreviousDefaultArgLoc = NewDefaultLoc; 1239 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1240 // Merge the default argument from the old declaration to the 1241 // new declaration. 1242 SawDefaultArgument = true; 1243 // FIXME: We need to create a new kind of "default argument" 1244 // expression that points to a previous non-type template 1245 // parameter. 1246 NewNonTypeParm->setDefaultArgument( 1247 OldNonTypeParm->getDefaultArgument(), 1248 /*Inherited=*/ true); 1249 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1250 } else if (NewNonTypeParm->hasDefaultArgument()) { 1251 SawDefaultArgument = true; 1252 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1253 } else if (SawDefaultArgument) 1254 MissingDefaultArg = true; 1255 } else { 1256 // Check the presence of a default argument here. 1257 TemplateTemplateParmDecl *NewTemplateParm 1258 = cast<TemplateTemplateParmDecl>(*NewParam); 1259 1260 // Check for unexpanded parameter packs, recursively. 1261 if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 1262 Invalid = true; 1263 continue; 1264 } 1265 1266 if (NewTemplateParm->hasDefaultArgument() && 1267 DiagnoseDefaultTemplateArgument(*this, TPC, 1268 NewTemplateParm->getLocation(), 1269 NewTemplateParm->getDefaultArgument().getSourceRange())) 1270 NewTemplateParm->removeDefaultArgument(); 1271 1272 // Merge default arguments for template template parameters 1273 TemplateTemplateParmDecl *OldTemplateParm 1274 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1275 if (NewTemplateParm->isParameterPack()) { 1276 assert(!NewTemplateParm->hasDefaultArgument() && 1277 "Parameter packs can't have a default argument!"); 1278 SawParameterPack = true; 1279 ParameterPackLoc = NewTemplateParm->getLocation(); 1280 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1281 NewTemplateParm->hasDefaultArgument()) { 1282 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1283 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1284 SawDefaultArgument = true; 1285 RedundantDefaultArg = true; 1286 PreviousDefaultArgLoc = NewDefaultLoc; 1287 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1288 // Merge the default argument from the old declaration to the 1289 // new declaration. 1290 SawDefaultArgument = true; 1291 // FIXME: We need to create a new kind of "default argument" expression 1292 // that points to a previous template template parameter. 1293 NewTemplateParm->setDefaultArgument( 1294 OldTemplateParm->getDefaultArgument(), 1295 /*Inherited=*/ true); 1296 PreviousDefaultArgLoc 1297 = OldTemplateParm->getDefaultArgument().getLocation(); 1298 } else if (NewTemplateParm->hasDefaultArgument()) { 1299 SawDefaultArgument = true; 1300 PreviousDefaultArgLoc 1301 = NewTemplateParm->getDefaultArgument().getLocation(); 1302 } else if (SawDefaultArgument) 1303 MissingDefaultArg = true; 1304 } 1305 1306 if (RedundantDefaultArg) { 1307 // C++ [temp.param]p12: 1308 // A template-parameter shall not be given default arguments 1309 // by two different declarations in the same scope. 1310 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1311 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1312 Invalid = true; 1313 } else if (MissingDefaultArg) { 1314 // C++ [temp.param]p11: 1315 // If a template-parameter of a class template has a default 1316 // template-argument, each subsequent template- parameter shall either 1317 // have a default template-argument supplied or be a template parameter 1318 // pack. 1319 Diag((*NewParam)->getLocation(), 1320 diag::err_template_param_default_arg_missing); 1321 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1322 Invalid = true; 1323 } 1324 1325 // If we have an old template parameter list that we're merging 1326 // in, move on to the next parameter. 1327 if (OldParams) 1328 ++OldParam; 1329 } 1330 1331 return Invalid; 1332} 1333 1334namespace { 1335 1336/// A class which looks for a use of a certain level of template 1337/// parameter. 1338struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 1339 typedef RecursiveASTVisitor<DependencyChecker> super; 1340 1341 unsigned Depth; 1342 bool Match; 1343 1344 DependencyChecker(TemplateParameterList *Params) : Match(false) { 1345 NamedDecl *ND = Params->getParam(0); 1346 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 1347 Depth = PD->getDepth(); 1348 } else if (NonTypeTemplateParmDecl *PD = 1349 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 1350 Depth = PD->getDepth(); 1351 } else { 1352 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 1353 } 1354 } 1355 1356 bool Matches(unsigned ParmDepth) { 1357 if (ParmDepth >= Depth) { 1358 Match = true; 1359 return true; 1360 } 1361 return false; 1362 } 1363 1364 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 1365 return !Matches(T->getDepth()); 1366 } 1367 1368 bool TraverseTemplateName(TemplateName N) { 1369 if (TemplateTemplateParmDecl *PD = 1370 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 1371 if (Matches(PD->getDepth())) return false; 1372 return super::TraverseTemplateName(N); 1373 } 1374 1375 bool VisitDeclRefExpr(DeclRefExpr *E) { 1376 if (NonTypeTemplateParmDecl *PD = 1377 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) { 1378 if (PD->getDepth() == Depth) { 1379 Match = true; 1380 return false; 1381 } 1382 } 1383 return super::VisitDeclRefExpr(E); 1384 } 1385}; 1386} 1387 1388/// Determines whether a template-id depends on the given parameter 1389/// list. 1390static bool 1391DependsOnTemplateParameters(const TemplateSpecializationType *TemplateId, 1392 TemplateParameterList *Params) { 1393 DependencyChecker Checker(Params); 1394 Checker.TraverseType(QualType(TemplateId, 0)); 1395 return Checker.Match; 1396} 1397 1398/// \brief Match the given template parameter lists to the given scope 1399/// specifier, returning the template parameter list that applies to the 1400/// name. 1401/// 1402/// \param DeclStartLoc the start of the declaration that has a scope 1403/// specifier or a template parameter list. 1404/// 1405/// \param SS the scope specifier that will be matched to the given template 1406/// parameter lists. This scope specifier precedes a qualified name that is 1407/// being declared. 1408/// 1409/// \param ParamLists the template parameter lists, from the outermost to the 1410/// innermost template parameter lists. 1411/// 1412/// \param NumParamLists the number of template parameter lists in ParamLists. 1413/// 1414/// \param IsFriend Whether to apply the slightly different rules for 1415/// matching template parameters to scope specifiers in friend 1416/// declarations. 1417/// 1418/// \param IsExplicitSpecialization will be set true if the entity being 1419/// declared is an explicit specialization, false otherwise. 1420/// 1421/// \returns the template parameter list, if any, that corresponds to the 1422/// name that is preceded by the scope specifier @p SS. This template 1423/// parameter list may be have template parameters (if we're declaring a 1424/// template) or may have no template parameters (if we're declaring a 1425/// template specialization), or may be NULL (if we were's declaring isn't 1426/// itself a template). 1427TemplateParameterList * 1428Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1429 const CXXScopeSpec &SS, 1430 TemplateParameterList **ParamLists, 1431 unsigned NumParamLists, 1432 bool IsFriend, 1433 bool &IsExplicitSpecialization, 1434 bool &Invalid) { 1435 IsExplicitSpecialization = false; 1436 1437 // Find the template-ids that occur within the nested-name-specifier. These 1438 // template-ids will match up with the template parameter lists. 1439 llvm::SmallVector<const TemplateSpecializationType *, 4> 1440 TemplateIdsInSpecifier; 1441 llvm::SmallVector<ClassTemplateSpecializationDecl *, 4> 1442 ExplicitSpecializationsInSpecifier; 1443 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 1444 NNS; NNS = NNS->getPrefix()) { 1445 const Type *T = NNS->getAsType(); 1446 if (!T) break; 1447 1448 // C++0x [temp.expl.spec]p17: 1449 // A member or a member template may be nested within many 1450 // enclosing class templates. In an explicit specialization for 1451 // such a member, the member declaration shall be preceded by a 1452 // template<> for each enclosing class template that is 1453 // explicitly specialized. 1454 // 1455 // Following the existing practice of GNU and EDG, we allow a typedef of a 1456 // template specialization type. 1457 while (const TypedefType *TT = dyn_cast<TypedefType>(T)) 1458 T = TT->getDecl()->getUnderlyingType().getTypePtr(); 1459 1460 if (const TemplateSpecializationType *SpecType 1461 = dyn_cast<TemplateSpecializationType>(T)) { 1462 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 1463 if (!Template) 1464 continue; // FIXME: should this be an error? probably... 1465 1466 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 1467 ClassTemplateSpecializationDecl *SpecDecl 1468 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 1469 // If the nested name specifier refers to an explicit specialization, 1470 // we don't need a template<> header. 1471 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) { 1472 ExplicitSpecializationsInSpecifier.push_back(SpecDecl); 1473 continue; 1474 } 1475 } 1476 1477 TemplateIdsInSpecifier.push_back(SpecType); 1478 } 1479 } 1480 1481 // Reverse the list of template-ids in the scope specifier, so that we can 1482 // more easily match up the template-ids and the template parameter lists. 1483 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 1484 1485 SourceLocation FirstTemplateLoc = DeclStartLoc; 1486 if (NumParamLists) 1487 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 1488 1489 // Match the template-ids found in the specifier to the template parameter 1490 // lists. 1491 unsigned ParamIdx = 0, TemplateIdx = 0; 1492 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 1493 TemplateIdx != NumTemplateIds; ++TemplateIdx) { 1494 const TemplateSpecializationType *TemplateId 1495 = TemplateIdsInSpecifier[TemplateIdx]; 1496 bool DependentTemplateId = TemplateId->isDependentType(); 1497 1498 // In friend declarations we can have template-ids which don't 1499 // depend on the corresponding template parameter lists. But 1500 // assume that empty parameter lists are supposed to match this 1501 // template-id. 1502 if (IsFriend && ParamIdx < NumParamLists && ParamLists[ParamIdx]->size()) { 1503 if (!DependentTemplateId || 1504 !DependsOnTemplateParameters(TemplateId, ParamLists[ParamIdx])) 1505 continue; 1506 } 1507 1508 if (ParamIdx >= NumParamLists) { 1509 // We have a template-id without a corresponding template parameter 1510 // list. 1511 1512 // ...which is fine if this is a friend declaration. 1513 if (IsFriend) { 1514 IsExplicitSpecialization = true; 1515 break; 1516 } 1517 1518 if (DependentTemplateId) { 1519 // FIXME: the location information here isn't great. 1520 Diag(SS.getRange().getBegin(), 1521 diag::err_template_spec_needs_template_parameters) 1522 << QualType(TemplateId, 0) 1523 << SS.getRange(); 1524 Invalid = true; 1525 } else { 1526 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 1527 << SS.getRange() 1528 << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> "); 1529 IsExplicitSpecialization = true; 1530 } 1531 return 0; 1532 } 1533 1534 // Check the template parameter list against its corresponding template-id. 1535 if (DependentTemplateId) { 1536 TemplateParameterList *ExpectedTemplateParams = 0; 1537 1538 // Are there cases in (e.g.) friends where this won't match? 1539 if (const InjectedClassNameType *Injected 1540 = TemplateId->getAs<InjectedClassNameType>()) { 1541 CXXRecordDecl *Record = Injected->getDecl(); 1542 if (ClassTemplatePartialSpecializationDecl *Partial = 1543 dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) 1544 ExpectedTemplateParams = Partial->getTemplateParameters(); 1545 else 1546 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1547 ->getTemplateParameters(); 1548 } 1549 1550 if (ExpectedTemplateParams) 1551 TemplateParameterListsAreEqual(ParamLists[ParamIdx], 1552 ExpectedTemplateParams, 1553 true, TPL_TemplateMatch); 1554 1555 CheckTemplateParameterList(ParamLists[ParamIdx], 0, 1556 TPC_ClassTemplateMember); 1557 } else if (ParamLists[ParamIdx]->size() > 0) 1558 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1559 diag::err_template_param_list_matches_nontemplate) 1560 << TemplateId 1561 << ParamLists[ParamIdx]->getSourceRange(); 1562 else 1563 IsExplicitSpecialization = true; 1564 1565 ++ParamIdx; 1566 } 1567 1568 // If there were at least as many template-ids as there were template 1569 // parameter lists, then there are no template parameter lists remaining for 1570 // the declaration itself. 1571 if (ParamIdx >= NumParamLists) 1572 return 0; 1573 1574 // If there were too many template parameter lists, complain about that now. 1575 if (ParamIdx != NumParamLists - 1) { 1576 while (ParamIdx < NumParamLists - 1) { 1577 bool isExplicitSpecHeader = ParamLists[ParamIdx]->size() == 0; 1578 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1579 isExplicitSpecHeader? diag::warn_template_spec_extra_headers 1580 : diag::err_template_spec_extra_headers) 1581 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 1582 ParamLists[ParamIdx]->getRAngleLoc()); 1583 1584 if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) { 1585 Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(), 1586 diag::note_explicit_template_spec_does_not_need_header) 1587 << ExplicitSpecializationsInSpecifier.back(); 1588 ExplicitSpecializationsInSpecifier.pop_back(); 1589 } 1590 1591 // We have a template parameter list with no corresponding scope, which 1592 // means that the resulting template declaration can't be instantiated 1593 // properly (we'll end up with dependent nodes when we shouldn't). 1594 if (!isExplicitSpecHeader) 1595 Invalid = true; 1596 1597 ++ParamIdx; 1598 } 1599 } 1600 1601 // Return the last template parameter list, which corresponds to the 1602 // entity being declared. 1603 return ParamLists[NumParamLists - 1]; 1604} 1605 1606QualType Sema::CheckTemplateIdType(TemplateName Name, 1607 SourceLocation TemplateLoc, 1608 const TemplateArgumentListInfo &TemplateArgs) { 1609 TemplateDecl *Template = Name.getAsTemplateDecl(); 1610 if (!Template) { 1611 // The template name does not resolve to a template, so we just 1612 // build a dependent template-id type. 1613 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1614 } 1615 1616 // Check that the template argument list is well-formed for this 1617 // template. 1618 llvm::SmallVector<TemplateArgument, 4> Converted; 1619 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1620 false, Converted)) 1621 return QualType(); 1622 1623 assert((Converted.size() == Template->getTemplateParameters()->size()) && 1624 "Converted template argument list is too short!"); 1625 1626 QualType CanonType; 1627 1628 if (Name.isDependent() || 1629 TemplateSpecializationType::anyDependentTemplateArguments( 1630 TemplateArgs)) { 1631 // This class template specialization is a dependent 1632 // type. Therefore, its canonical type is another class template 1633 // specialization type that contains all of the converted 1634 // arguments in canonical form. This ensures that, e.g., A<T> and 1635 // A<T, T> have identical types when A is declared as: 1636 // 1637 // template<typename T, typename U = T> struct A; 1638 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1639 CanonType = Context.getTemplateSpecializationType(CanonName, 1640 Converted.data(), 1641 Converted.size()); 1642 1643 // FIXME: CanonType is not actually the canonical type, and unfortunately 1644 // it is a TemplateSpecializationType that we will never use again. 1645 // In the future, we need to teach getTemplateSpecializationType to only 1646 // build the canonical type and return that to us. 1647 CanonType = Context.getCanonicalType(CanonType); 1648 1649 // This might work out to be a current instantiation, in which 1650 // case the canonical type needs to be the InjectedClassNameType. 1651 // 1652 // TODO: in theory this could be a simple hashtable lookup; most 1653 // changes to CurContext don't change the set of current 1654 // instantiations. 1655 if (isa<ClassTemplateDecl>(Template)) { 1656 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 1657 // If we get out to a namespace, we're done. 1658 if (Ctx->isFileContext()) break; 1659 1660 // If this isn't a record, keep looking. 1661 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 1662 if (!Record) continue; 1663 1664 // Look for one of the two cases with InjectedClassNameTypes 1665 // and check whether it's the same template. 1666 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 1667 !Record->getDescribedClassTemplate()) 1668 continue; 1669 1670 // Fetch the injected class name type and check whether its 1671 // injected type is equal to the type we just built. 1672 QualType ICNT = Context.getTypeDeclType(Record); 1673 QualType Injected = cast<InjectedClassNameType>(ICNT) 1674 ->getInjectedSpecializationType(); 1675 1676 if (CanonType != Injected->getCanonicalTypeInternal()) 1677 continue; 1678 1679 // If so, the canonical type of this TST is the injected 1680 // class name type of the record we just found. 1681 assert(ICNT.isCanonical()); 1682 CanonType = ICNT; 1683 break; 1684 } 1685 } 1686 } else if (ClassTemplateDecl *ClassTemplate 1687 = dyn_cast<ClassTemplateDecl>(Template)) { 1688 // Find the class template specialization declaration that 1689 // corresponds to these arguments. 1690 void *InsertPos = 0; 1691 ClassTemplateSpecializationDecl *Decl 1692 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(), 1693 InsertPos); 1694 if (!Decl) { 1695 // This is the first time we have referenced this class template 1696 // specialization. Create the canonical declaration and add it to 1697 // the set of specializations. 1698 Decl = ClassTemplateSpecializationDecl::Create(Context, 1699 ClassTemplate->getTemplatedDecl()->getTagKind(), 1700 ClassTemplate->getDeclContext(), 1701 ClassTemplate->getLocation(), 1702 ClassTemplate, 1703 Converted.data(), 1704 Converted.size(), 0); 1705 ClassTemplate->AddSpecialization(Decl, InsertPos); 1706 Decl->setLexicalDeclContext(CurContext); 1707 } 1708 1709 CanonType = Context.getTypeDeclType(Decl); 1710 assert(isa<RecordType>(CanonType) && 1711 "type of non-dependent specialization is not a RecordType"); 1712 } 1713 1714 // Build the fully-sugared type for this class template 1715 // specialization, which refers back to the class template 1716 // specialization we created or found. 1717 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 1718} 1719 1720TypeResult 1721Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1722 SourceLocation LAngleLoc, 1723 ASTTemplateArgsPtr TemplateArgsIn, 1724 SourceLocation RAngleLoc) { 1725 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1726 1727 // Translate the parser's template argument list in our AST format. 1728 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 1729 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 1730 1731 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 1732 TemplateArgsIn.release(); 1733 1734 if (Result.isNull()) 1735 return true; 1736 1737 TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result); 1738 TemplateSpecializationTypeLoc TL 1739 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc()); 1740 TL.setTemplateNameLoc(TemplateLoc); 1741 TL.setLAngleLoc(LAngleLoc); 1742 TL.setRAngleLoc(RAngleLoc); 1743 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 1744 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 1745 1746 return CreateParsedType(Result, DI); 1747} 1748 1749TypeResult Sema::ActOnTagTemplateIdType(CXXScopeSpec &SS, 1750 TypeResult TypeResult, 1751 TagUseKind TUK, 1752 TypeSpecifierType TagSpec, 1753 SourceLocation TagLoc) { 1754 if (TypeResult.isInvalid()) 1755 return ::TypeResult(); 1756 1757 TypeSourceInfo *DI; 1758 QualType Type = GetTypeFromParser(TypeResult.get(), &DI); 1759 1760 // Verify the tag specifier. 1761 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 1762 1763 if (const RecordType *RT = Type->getAs<RecordType>()) { 1764 RecordDecl *D = RT->getDecl(); 1765 1766 IdentifierInfo *Id = D->getIdentifier(); 1767 assert(Id && "templated class must have an identifier"); 1768 1769 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 1770 Diag(TagLoc, diag::err_use_with_wrong_tag) 1771 << Type 1772 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 1773 Diag(D->getLocation(), diag::note_previous_use); 1774 } 1775 } 1776 1777 ElaboratedTypeKeyword Keyword 1778 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 1779 QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type); 1780 1781 TypeSourceInfo *ElabDI = Context.CreateTypeSourceInfo(ElabType); 1782 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(ElabDI->getTypeLoc()); 1783 TL.setKeywordLoc(TagLoc); 1784 TL.setQualifierRange(SS.getRange()); 1785 TL.getNamedTypeLoc().initializeFullCopy(DI->getTypeLoc()); 1786 return CreateParsedType(ElabType, ElabDI); 1787} 1788 1789ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 1790 LookupResult &R, 1791 bool RequiresADL, 1792 const TemplateArgumentListInfo &TemplateArgs) { 1793 // FIXME: Can we do any checking at this point? I guess we could check the 1794 // template arguments that we have against the template name, if the template 1795 // name refers to a single template. That's not a terribly common case, 1796 // though. 1797 1798 // These should be filtered out by our callers. 1799 assert(!R.empty() && "empty lookup results when building templateid"); 1800 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 1801 1802 NestedNameSpecifier *Qualifier = 0; 1803 SourceRange QualifierRange; 1804 if (SS.isSet()) { 1805 Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 1806 QualifierRange = SS.getRange(); 1807 } 1808 1809 // We don't want lookup warnings at this point. 1810 R.suppressDiagnostics(); 1811 1812 UnresolvedLookupExpr *ULE 1813 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 1814 Qualifier, QualifierRange, 1815 R.getLookupNameInfo(), 1816 RequiresADL, TemplateArgs, 1817 R.begin(), R.end()); 1818 1819 return Owned(ULE); 1820} 1821 1822// We actually only call this from template instantiation. 1823ExprResult 1824Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 1825 const DeclarationNameInfo &NameInfo, 1826 const TemplateArgumentListInfo &TemplateArgs) { 1827 DeclContext *DC; 1828 if (!(DC = computeDeclContext(SS, false)) || 1829 DC->isDependentContext() || 1830 RequireCompleteDeclContext(SS, DC)) 1831 return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs); 1832 1833 bool MemberOfUnknownSpecialization; 1834 LookupResult R(*this, NameInfo, LookupOrdinaryName); 1835 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 1836 MemberOfUnknownSpecialization); 1837 1838 if (R.isAmbiguous()) 1839 return ExprError(); 1840 1841 if (R.empty()) { 1842 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 1843 << NameInfo.getName() << SS.getRange(); 1844 return ExprError(); 1845 } 1846 1847 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 1848 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 1849 << (NestedNameSpecifier*) SS.getScopeRep() 1850 << NameInfo.getName() << SS.getRange(); 1851 Diag(Temp->getLocation(), diag::note_referenced_class_template); 1852 return ExprError(); 1853 } 1854 1855 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 1856} 1857 1858/// \brief Form a dependent template name. 1859/// 1860/// This action forms a dependent template name given the template 1861/// name and its (presumably dependent) scope specifier. For 1862/// example, given "MetaFun::template apply", the scope specifier \p 1863/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1864/// of the "template" keyword, and "apply" is the \p Name. 1865TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 1866 SourceLocation TemplateKWLoc, 1867 CXXScopeSpec &SS, 1868 UnqualifiedId &Name, 1869 ParsedType ObjectType, 1870 bool EnteringContext, 1871 TemplateTy &Result) { 1872 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() && 1873 !getLangOptions().CPlusPlus0x) 1874 Diag(TemplateKWLoc, diag::ext_template_outside_of_template) 1875 << FixItHint::CreateRemoval(TemplateKWLoc); 1876 1877 DeclContext *LookupCtx = 0; 1878 if (SS.isSet()) 1879 LookupCtx = computeDeclContext(SS, EnteringContext); 1880 if (!LookupCtx && ObjectType) 1881 LookupCtx = computeDeclContext(ObjectType.get()); 1882 if (LookupCtx) { 1883 // C++0x [temp.names]p5: 1884 // If a name prefixed by the keyword template is not the name of 1885 // a template, the program is ill-formed. [Note: the keyword 1886 // template may not be applied to non-template members of class 1887 // templates. -end note ] [ Note: as is the case with the 1888 // typename prefix, the template prefix is allowed in cases 1889 // where it is not strictly necessary; i.e., when the 1890 // nested-name-specifier or the expression on the left of the -> 1891 // or . is not dependent on a template-parameter, or the use 1892 // does not appear in the scope of a template. -end note] 1893 // 1894 // Note: C++03 was more strict here, because it banned the use of 1895 // the "template" keyword prior to a template-name that was not a 1896 // dependent name. C++ DR468 relaxed this requirement (the 1897 // "template" keyword is now permitted). We follow the C++0x 1898 // rules, even in C++03 mode with a warning, retroactively applying the DR. 1899 bool MemberOfUnknownSpecialization; 1900 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name, 1901 ObjectType, EnteringContext, Result, 1902 MemberOfUnknownSpecialization); 1903 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 1904 isa<CXXRecordDecl>(LookupCtx) && 1905 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) { 1906 // This is a dependent template. Handle it below. 1907 } else if (TNK == TNK_Non_template) { 1908 Diag(Name.getSourceRange().getBegin(), 1909 diag::err_template_kw_refers_to_non_template) 1910 << GetNameFromUnqualifiedId(Name).getName() 1911 << Name.getSourceRange() 1912 << TemplateKWLoc; 1913 return TNK_Non_template; 1914 } else { 1915 // We found something; return it. 1916 return TNK; 1917 } 1918 } 1919 1920 NestedNameSpecifier *Qualifier 1921 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1922 1923 switch (Name.getKind()) { 1924 case UnqualifiedId::IK_Identifier: 1925 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1926 Name.Identifier)); 1927 return TNK_Dependent_template_name; 1928 1929 case UnqualifiedId::IK_OperatorFunctionId: 1930 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1931 Name.OperatorFunctionId.Operator)); 1932 return TNK_Dependent_template_name; 1933 1934 case UnqualifiedId::IK_LiteralOperatorId: 1935 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 1936 1937 default: 1938 break; 1939 } 1940 1941 Diag(Name.getSourceRange().getBegin(), 1942 diag::err_template_kw_refers_to_non_template) 1943 << GetNameFromUnqualifiedId(Name).getName() 1944 << Name.getSourceRange() 1945 << TemplateKWLoc; 1946 return TNK_Non_template; 1947} 1948 1949bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1950 const TemplateArgumentLoc &AL, 1951 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 1952 const TemplateArgument &Arg = AL.getArgument(); 1953 1954 // Check template type parameter. 1955 switch(Arg.getKind()) { 1956 case TemplateArgument::Type: 1957 // C++ [temp.arg.type]p1: 1958 // A template-argument for a template-parameter which is a 1959 // type shall be a type-id. 1960 break; 1961 case TemplateArgument::Template: { 1962 // We have a template type parameter but the template argument 1963 // is a template without any arguments. 1964 SourceRange SR = AL.getSourceRange(); 1965 TemplateName Name = Arg.getAsTemplate(); 1966 Diag(SR.getBegin(), diag::err_template_missing_args) 1967 << Name << SR; 1968 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 1969 Diag(Decl->getLocation(), diag::note_template_decl_here); 1970 1971 return true; 1972 } 1973 default: { 1974 // We have a template type parameter but the template argument 1975 // is not a type. 1976 SourceRange SR = AL.getSourceRange(); 1977 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 1978 Diag(Param->getLocation(), diag::note_template_param_here); 1979 1980 return true; 1981 } 1982 } 1983 1984 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 1985 return true; 1986 1987 // Add the converted template type argument. 1988 Converted.push_back( 1989 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 1990 return false; 1991} 1992 1993/// \brief Substitute template arguments into the default template argument for 1994/// the given template type parameter. 1995/// 1996/// \param SemaRef the semantic analysis object for which we are performing 1997/// the substitution. 1998/// 1999/// \param Template the template that we are synthesizing template arguments 2000/// for. 2001/// 2002/// \param TemplateLoc the location of the template name that started the 2003/// template-id we are checking. 2004/// 2005/// \param RAngleLoc the location of the right angle bracket ('>') that 2006/// terminates the template-id. 2007/// 2008/// \param Param the template template parameter whose default we are 2009/// substituting into. 2010/// 2011/// \param Converted the list of template arguments provided for template 2012/// parameters that precede \p Param in the template parameter list. 2013/// 2014/// \returns the substituted template argument, or NULL if an error occurred. 2015static TypeSourceInfo * 2016SubstDefaultTemplateArgument(Sema &SemaRef, 2017 TemplateDecl *Template, 2018 SourceLocation TemplateLoc, 2019 SourceLocation RAngleLoc, 2020 TemplateTypeParmDecl *Param, 2021 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2022 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 2023 2024 // If the argument type is dependent, instantiate it now based 2025 // on the previously-computed template arguments. 2026 if (ArgType->getType()->isDependentType()) { 2027 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2028 Converted.data(), Converted.size()); 2029 2030 MultiLevelTemplateArgumentList AllTemplateArgs 2031 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2032 2033 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2034 Template, Converted.data(), 2035 Converted.size(), 2036 SourceRange(TemplateLoc, RAngleLoc)); 2037 2038 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 2039 Param->getDefaultArgumentLoc(), 2040 Param->getDeclName()); 2041 } 2042 2043 return ArgType; 2044} 2045 2046/// \brief Substitute template arguments into the default template argument for 2047/// the given non-type template parameter. 2048/// 2049/// \param SemaRef the semantic analysis object for which we are performing 2050/// the substitution. 2051/// 2052/// \param Template the template that we are synthesizing template arguments 2053/// for. 2054/// 2055/// \param TemplateLoc the location of the template name that started the 2056/// template-id we are checking. 2057/// 2058/// \param RAngleLoc the location of the right angle bracket ('>') that 2059/// terminates the template-id. 2060/// 2061/// \param Param the non-type template parameter whose default we are 2062/// substituting into. 2063/// 2064/// \param Converted the list of template arguments provided for template 2065/// parameters that precede \p Param in the template parameter list. 2066/// 2067/// \returns the substituted template argument, or NULL if an error occurred. 2068static ExprResult 2069SubstDefaultTemplateArgument(Sema &SemaRef, 2070 TemplateDecl *Template, 2071 SourceLocation TemplateLoc, 2072 SourceLocation RAngleLoc, 2073 NonTypeTemplateParmDecl *Param, 2074 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2075 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2076 Converted.data(), Converted.size()); 2077 2078 MultiLevelTemplateArgumentList AllTemplateArgs 2079 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2080 2081 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2082 Template, Converted.data(), 2083 Converted.size(), 2084 SourceRange(TemplateLoc, RAngleLoc)); 2085 2086 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 2087} 2088 2089/// \brief Substitute template arguments into the default template argument for 2090/// the given template template parameter. 2091/// 2092/// \param SemaRef the semantic analysis object for which we are performing 2093/// the substitution. 2094/// 2095/// \param Template the template that we are synthesizing template arguments 2096/// for. 2097/// 2098/// \param TemplateLoc the location of the template name that started the 2099/// template-id we are checking. 2100/// 2101/// \param RAngleLoc the location of the right angle bracket ('>') that 2102/// terminates the template-id. 2103/// 2104/// \param Param the template template parameter whose default we are 2105/// substituting into. 2106/// 2107/// \param Converted the list of template arguments provided for template 2108/// parameters that precede \p Param in the template parameter list. 2109/// 2110/// \returns the substituted template argument, or NULL if an error occurred. 2111static TemplateName 2112SubstDefaultTemplateArgument(Sema &SemaRef, 2113 TemplateDecl *Template, 2114 SourceLocation TemplateLoc, 2115 SourceLocation RAngleLoc, 2116 TemplateTemplateParmDecl *Param, 2117 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2118 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2119 Converted.data(), Converted.size()); 2120 2121 MultiLevelTemplateArgumentList AllTemplateArgs 2122 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2123 2124 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2125 Template, Converted.data(), 2126 Converted.size(), 2127 SourceRange(TemplateLoc, RAngleLoc)); 2128 2129 return SemaRef.SubstTemplateName( 2130 Param->getDefaultArgument().getArgument().getAsTemplate(), 2131 Param->getDefaultArgument().getTemplateNameLoc(), 2132 AllTemplateArgs); 2133} 2134 2135/// \brief If the given template parameter has a default template 2136/// argument, substitute into that default template argument and 2137/// return the corresponding template argument. 2138TemplateArgumentLoc 2139Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 2140 SourceLocation TemplateLoc, 2141 SourceLocation RAngleLoc, 2142 Decl *Param, 2143 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2144 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 2145 if (!TypeParm->hasDefaultArgument()) 2146 return TemplateArgumentLoc(); 2147 2148 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 2149 TemplateLoc, 2150 RAngleLoc, 2151 TypeParm, 2152 Converted); 2153 if (DI) 2154 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 2155 2156 return TemplateArgumentLoc(); 2157 } 2158 2159 if (NonTypeTemplateParmDecl *NonTypeParm 2160 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2161 if (!NonTypeParm->hasDefaultArgument()) 2162 return TemplateArgumentLoc(); 2163 2164 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 2165 TemplateLoc, 2166 RAngleLoc, 2167 NonTypeParm, 2168 Converted); 2169 if (Arg.isInvalid()) 2170 return TemplateArgumentLoc(); 2171 2172 Expr *ArgE = Arg.takeAs<Expr>(); 2173 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 2174 } 2175 2176 TemplateTemplateParmDecl *TempTempParm 2177 = cast<TemplateTemplateParmDecl>(Param); 2178 if (!TempTempParm->hasDefaultArgument()) 2179 return TemplateArgumentLoc(); 2180 2181 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 2182 TemplateLoc, 2183 RAngleLoc, 2184 TempTempParm, 2185 Converted); 2186 if (TName.isNull()) 2187 return TemplateArgumentLoc(); 2188 2189 return TemplateArgumentLoc(TemplateArgument(TName), 2190 TempTempParm->getDefaultArgument().getTemplateQualifierRange(), 2191 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 2192} 2193 2194/// \brief Check that the given template argument corresponds to the given 2195/// template parameter. 2196bool Sema::CheckTemplateArgument(NamedDecl *Param, 2197 const TemplateArgumentLoc &Arg, 2198 NamedDecl *Template, 2199 SourceLocation TemplateLoc, 2200 SourceLocation RAngleLoc, 2201 llvm::SmallVectorImpl<TemplateArgument> &Converted, 2202 CheckTemplateArgumentKind CTAK) { 2203 // Check template type parameters. 2204 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2205 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2206 2207 // Check non-type template parameters. 2208 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2209 // Do substitution on the type of the non-type template parameter 2210 // with the template arguments we've seen thus far. But if the 2211 // template has a dependent context then we cannot substitute yet. 2212 QualType NTTPType = NTTP->getType(); 2213 if (NTTPType->isDependentType() && 2214 !isa<TemplateTemplateParmDecl>(Template) && 2215 !Template->getDeclContext()->isDependentContext()) { 2216 // Do substitution on the type of the non-type template parameter. 2217 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2218 NTTP, Converted.data(), Converted.size(), 2219 SourceRange(TemplateLoc, RAngleLoc)); 2220 2221 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2222 Converted.data(), Converted.size()); 2223 NTTPType = SubstType(NTTPType, 2224 MultiLevelTemplateArgumentList(TemplateArgs), 2225 NTTP->getLocation(), 2226 NTTP->getDeclName()); 2227 // If that worked, check the non-type template parameter type 2228 // for validity. 2229 if (!NTTPType.isNull()) 2230 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2231 NTTP->getLocation()); 2232 if (NTTPType.isNull()) 2233 return true; 2234 } 2235 2236 switch (Arg.getArgument().getKind()) { 2237 case TemplateArgument::Null: 2238 assert(false && "Should never see a NULL template argument here"); 2239 return true; 2240 2241 case TemplateArgument::Expression: { 2242 Expr *E = Arg.getArgument().getAsExpr(); 2243 TemplateArgument Result; 2244 if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK)) 2245 return true; 2246 2247 Converted.push_back(Result); 2248 break; 2249 } 2250 2251 case TemplateArgument::Declaration: 2252 case TemplateArgument::Integral: 2253 // We've already checked this template argument, so just copy 2254 // it to the list of converted arguments. 2255 Converted.push_back(Arg.getArgument()); 2256 break; 2257 2258 case TemplateArgument::Template: 2259 case TemplateArgument::TemplateExpansion: 2260 // We were given a template template argument. It may not be ill-formed; 2261 // see below. 2262 if (DependentTemplateName *DTN 2263 = Arg.getArgument().getAsTemplateOrTemplatePattern() 2264 .getAsDependentTemplateName()) { 2265 // We have a template argument such as \c T::template X, which we 2266 // parsed as a template template argument. However, since we now 2267 // know that we need a non-type template argument, convert this 2268 // template name into an expression. 2269 2270 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 2271 Arg.getTemplateNameLoc()); 2272 2273 Expr *E = DependentScopeDeclRefExpr::Create(Context, 2274 DTN->getQualifier(), 2275 Arg.getTemplateQualifierRange(), 2276 NameInfo); 2277 2278 // If we parsed the template argument as a pack expansion, create a 2279 // pack expansion expression. 2280 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 2281 ExprResult Expansion = ActOnPackExpansion(E, 2282 Arg.getTemplateEllipsisLoc()); 2283 if (Expansion.isInvalid()) 2284 return true; 2285 2286 E = Expansion.get(); 2287 } 2288 2289 TemplateArgument Result; 2290 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 2291 return true; 2292 2293 Converted.push_back(Result); 2294 break; 2295 } 2296 2297 // We have a template argument that actually does refer to a class 2298 // template, template alias, or template template parameter, and 2299 // therefore cannot be a non-type template argument. 2300 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2301 << Arg.getSourceRange(); 2302 2303 Diag(Param->getLocation(), diag::note_template_param_here); 2304 return true; 2305 2306 case TemplateArgument::Type: { 2307 // We have a non-type template parameter but the template 2308 // argument is a type. 2309 2310 // C++ [temp.arg]p2: 2311 // In a template-argument, an ambiguity between a type-id and 2312 // an expression is resolved to a type-id, regardless of the 2313 // form of the corresponding template-parameter. 2314 // 2315 // We warn specifically about this case, since it can be rather 2316 // confusing for users. 2317 QualType T = Arg.getArgument().getAsType(); 2318 SourceRange SR = Arg.getSourceRange(); 2319 if (T->isFunctionType()) 2320 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2321 else 2322 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2323 Diag(Param->getLocation(), diag::note_template_param_here); 2324 return true; 2325 } 2326 2327 case TemplateArgument::Pack: 2328 llvm_unreachable("Caller must expand template argument packs"); 2329 break; 2330 } 2331 2332 return false; 2333 } 2334 2335 2336 // Check template template parameters. 2337 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2338 2339 // Substitute into the template parameter list of the template 2340 // template parameter, since previously-supplied template arguments 2341 // may appear within the template template parameter. 2342 { 2343 // Set up a template instantiation context. 2344 LocalInstantiationScope Scope(*this); 2345 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2346 TempParm, Converted.data(), Converted.size(), 2347 SourceRange(TemplateLoc, RAngleLoc)); 2348 2349 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2350 Converted.data(), Converted.size()); 2351 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2352 SubstDecl(TempParm, CurContext, 2353 MultiLevelTemplateArgumentList(TemplateArgs))); 2354 if (!TempParm) 2355 return true; 2356 } 2357 2358 switch (Arg.getArgument().getKind()) { 2359 case TemplateArgument::Null: 2360 assert(false && "Should never see a NULL template argument here"); 2361 return true; 2362 2363 case TemplateArgument::Template: 2364 case TemplateArgument::TemplateExpansion: 2365 if (CheckTemplateArgument(TempParm, Arg)) 2366 return true; 2367 2368 Converted.push_back(Arg.getArgument()); 2369 break; 2370 2371 case TemplateArgument::Expression: 2372 case TemplateArgument::Type: 2373 // We have a template template parameter but the template 2374 // argument does not refer to a template. 2375 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 2376 return true; 2377 2378 case TemplateArgument::Declaration: 2379 llvm_unreachable( 2380 "Declaration argument with template template parameter"); 2381 break; 2382 case TemplateArgument::Integral: 2383 llvm_unreachable( 2384 "Integral argument with template template parameter"); 2385 break; 2386 2387 case TemplateArgument::Pack: 2388 llvm_unreachable("Caller must expand template argument packs"); 2389 break; 2390 } 2391 2392 return false; 2393} 2394 2395/// \brief Check that the given template argument list is well-formed 2396/// for specializing the given template. 2397bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2398 SourceLocation TemplateLoc, 2399 const TemplateArgumentListInfo &TemplateArgs, 2400 bool PartialTemplateArgs, 2401 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2402 TemplateParameterList *Params = Template->getTemplateParameters(); 2403 unsigned NumParams = Params->size(); 2404 unsigned NumArgs = TemplateArgs.size(); 2405 bool Invalid = false; 2406 2407 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2408 2409 bool HasParameterPack = 2410 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2411 2412 if ((NumArgs > NumParams && !HasParameterPack) || 2413 (NumArgs < Params->getMinRequiredArguments() && 2414 !PartialTemplateArgs)) { 2415 // FIXME: point at either the first arg beyond what we can handle, 2416 // or the '>', depending on whether we have too many or too few 2417 // arguments. 2418 SourceRange Range; 2419 if (NumArgs > NumParams) 2420 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2421 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2422 << (NumArgs > NumParams) 2423 << (isa<ClassTemplateDecl>(Template)? 0 : 2424 isa<FunctionTemplateDecl>(Template)? 1 : 2425 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2426 << Template << Range; 2427 Diag(Template->getLocation(), diag::note_template_decl_here) 2428 << Params->getSourceRange(); 2429 Invalid = true; 2430 } 2431 2432 // C++ [temp.arg]p1: 2433 // [...] The type and form of each template-argument specified in 2434 // a template-id shall match the type and form specified for the 2435 // corresponding parameter declared by the template in its 2436 // template-parameter-list. 2437 llvm::SmallVector<TemplateArgument, 2> ArgumentPack; 2438 TemplateParameterList::iterator Param = Params->begin(), 2439 ParamEnd = Params->end(); 2440 unsigned ArgIdx = 0; 2441 while (Param != ParamEnd) { 2442 if (ArgIdx > NumArgs && PartialTemplateArgs) 2443 break; 2444 2445 if (ArgIdx < NumArgs) { 2446 // Check the template argument we were given. 2447 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2448 TemplateLoc, RAngleLoc, Converted)) 2449 return true; 2450 2451 if ((*Param)->isTemplateParameterPack()) { 2452 // The template parameter was a template parameter pack, so take the 2453 // deduced argument and place it on the argument pack. Note that we 2454 // stay on the same template parameter so that we can deduce more 2455 // arguments. 2456 ArgumentPack.push_back(Converted.back()); 2457 Converted.pop_back(); 2458 } else { 2459 // Move to the next template parameter. 2460 ++Param; 2461 } 2462 ++ArgIdx; 2463 continue; 2464 } 2465 2466 // If we have a template parameter pack with no more corresponding 2467 // arguments, just break out now and we'll fill in the argument pack below. 2468 if ((*Param)->isTemplateParameterPack()) 2469 break; 2470 2471 // We have a default template argument that we will use. 2472 TemplateArgumentLoc Arg; 2473 2474 // Retrieve the default template argument from the template 2475 // parameter. For each kind of template parameter, we substitute the 2476 // template arguments provided thus far and any "outer" template arguments 2477 // (when the template parameter was part of a nested template) into 2478 // the default argument. 2479 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2480 if (!TTP->hasDefaultArgument()) { 2481 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2482 break; 2483 } 2484 2485 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2486 Template, 2487 TemplateLoc, 2488 RAngleLoc, 2489 TTP, 2490 Converted); 2491 if (!ArgType) 2492 return true; 2493 2494 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2495 ArgType); 2496 } else if (NonTypeTemplateParmDecl *NTTP 2497 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2498 if (!NTTP->hasDefaultArgument()) { 2499 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2500 break; 2501 } 2502 2503 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 2504 TemplateLoc, 2505 RAngleLoc, 2506 NTTP, 2507 Converted); 2508 if (E.isInvalid()) 2509 return true; 2510 2511 Expr *Ex = E.takeAs<Expr>(); 2512 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2513 } else { 2514 TemplateTemplateParmDecl *TempParm 2515 = cast<TemplateTemplateParmDecl>(*Param); 2516 2517 if (!TempParm->hasDefaultArgument()) { 2518 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2519 break; 2520 } 2521 2522 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2523 TemplateLoc, 2524 RAngleLoc, 2525 TempParm, 2526 Converted); 2527 if (Name.isNull()) 2528 return true; 2529 2530 Arg = TemplateArgumentLoc(TemplateArgument(Name), 2531 TempParm->getDefaultArgument().getTemplateQualifierRange(), 2532 TempParm->getDefaultArgument().getTemplateNameLoc()); 2533 } 2534 2535 // Introduce an instantiation record that describes where we are using 2536 // the default template argument. 2537 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 2538 Converted.data(), Converted.size(), 2539 SourceRange(TemplateLoc, RAngleLoc)); 2540 2541 // Check the default template argument. 2542 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 2543 RAngleLoc, Converted)) 2544 return true; 2545 2546 // Move to the next template parameter and argument. 2547 ++Param; 2548 ++ArgIdx; 2549 } 2550 2551 // Form argument packs for each of the parameter packs remaining. 2552 while (Param != ParamEnd) { 2553 // If we're checking a partial list of template arguments, don't fill 2554 // in arguments for non-template parameter packs. 2555 2556 if ((*Param)->isTemplateParameterPack()) { 2557 if (PartialTemplateArgs && ArgumentPack.empty()) { 2558 Converted.push_back(TemplateArgument()); 2559 } else if (ArgumentPack.empty()) 2560 Converted.push_back(TemplateArgument(0, 0)); 2561 else { 2562 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 2563 ArgumentPack.data(), 2564 ArgumentPack.size())); 2565 ArgumentPack.clear(); 2566 } 2567 } 2568 2569 ++Param; 2570 } 2571 2572 return Invalid; 2573} 2574 2575namespace { 2576 class UnnamedLocalNoLinkageFinder 2577 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 2578 { 2579 Sema &S; 2580 SourceRange SR; 2581 2582 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 2583 2584 public: 2585 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 2586 2587 bool Visit(QualType T) { 2588 return inherited::Visit(T.getTypePtr()); 2589 } 2590 2591#define TYPE(Class, Parent) \ 2592 bool Visit##Class##Type(const Class##Type *); 2593#define ABSTRACT_TYPE(Class, Parent) \ 2594 bool Visit##Class##Type(const Class##Type *) { return false; } 2595#define NON_CANONICAL_TYPE(Class, Parent) \ 2596 bool Visit##Class##Type(const Class##Type *) { return false; } 2597#include "clang/AST/TypeNodes.def" 2598 2599 bool VisitTagDecl(const TagDecl *Tag); 2600 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 2601 }; 2602} 2603 2604bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 2605 return false; 2606} 2607 2608bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 2609 return Visit(T->getElementType()); 2610} 2611 2612bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 2613 return Visit(T->getPointeeType()); 2614} 2615 2616bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 2617 const BlockPointerType* T) { 2618 return Visit(T->getPointeeType()); 2619} 2620 2621bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 2622 const LValueReferenceType* T) { 2623 return Visit(T->getPointeeType()); 2624} 2625 2626bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 2627 const RValueReferenceType* T) { 2628 return Visit(T->getPointeeType()); 2629} 2630 2631bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 2632 const MemberPointerType* T) { 2633 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 2634} 2635 2636bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 2637 const ConstantArrayType* T) { 2638 return Visit(T->getElementType()); 2639} 2640 2641bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 2642 const IncompleteArrayType* T) { 2643 return Visit(T->getElementType()); 2644} 2645 2646bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 2647 const VariableArrayType* T) { 2648 return Visit(T->getElementType()); 2649} 2650 2651bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 2652 const DependentSizedArrayType* T) { 2653 return Visit(T->getElementType()); 2654} 2655 2656bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 2657 const DependentSizedExtVectorType* T) { 2658 return Visit(T->getElementType()); 2659} 2660 2661bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 2662 return Visit(T->getElementType()); 2663} 2664 2665bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 2666 return Visit(T->getElementType()); 2667} 2668 2669bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 2670 const FunctionProtoType* T) { 2671 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), 2672 AEnd = T->arg_type_end(); 2673 A != AEnd; ++A) { 2674 if (Visit(*A)) 2675 return true; 2676 } 2677 2678 return Visit(T->getResultType()); 2679} 2680 2681bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 2682 const FunctionNoProtoType* T) { 2683 return Visit(T->getResultType()); 2684} 2685 2686bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 2687 const UnresolvedUsingType*) { 2688 return false; 2689} 2690 2691bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 2692 return false; 2693} 2694 2695bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 2696 return Visit(T->getUnderlyingType()); 2697} 2698 2699bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 2700 return false; 2701} 2702 2703bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 2704 return VisitTagDecl(T->getDecl()); 2705} 2706 2707bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 2708 return VisitTagDecl(T->getDecl()); 2709} 2710 2711bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 2712 const TemplateTypeParmType*) { 2713 return false; 2714} 2715 2716bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 2717 const TemplateSpecializationType*) { 2718 return false; 2719} 2720 2721bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 2722 const InjectedClassNameType* T) { 2723 return VisitTagDecl(T->getDecl()); 2724} 2725 2726bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 2727 const DependentNameType* T) { 2728 return VisitNestedNameSpecifier(T->getQualifier()); 2729} 2730 2731bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 2732 const DependentTemplateSpecializationType* T) { 2733 return VisitNestedNameSpecifier(T->getQualifier()); 2734} 2735 2736bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 2737 const PackExpansionType* T) { 2738 return Visit(T->getPattern()); 2739} 2740 2741bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 2742 return false; 2743} 2744 2745bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 2746 const ObjCInterfaceType *) { 2747 return false; 2748} 2749 2750bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 2751 const ObjCObjectPointerType *) { 2752 return false; 2753} 2754 2755bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 2756 if (Tag->getDeclContext()->isFunctionOrMethod()) { 2757 S.Diag(SR.getBegin(), diag::ext_template_arg_local_type) 2758 << S.Context.getTypeDeclType(Tag) << SR; 2759 return true; 2760 } 2761 2762 if (!Tag->getDeclName() && !Tag->getTypedefForAnonDecl()) { 2763 S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR; 2764 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 2765 return true; 2766 } 2767 2768 return false; 2769} 2770 2771bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 2772 NestedNameSpecifier *NNS) { 2773 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 2774 return true; 2775 2776 switch (NNS->getKind()) { 2777 case NestedNameSpecifier::Identifier: 2778 case NestedNameSpecifier::Namespace: 2779 case NestedNameSpecifier::Global: 2780 return false; 2781 2782 case NestedNameSpecifier::TypeSpec: 2783 case NestedNameSpecifier::TypeSpecWithTemplate: 2784 return Visit(QualType(NNS->getAsType(), 0)); 2785 } 2786 return false; 2787} 2788 2789 2790/// \brief Check a template argument against its corresponding 2791/// template type parameter. 2792/// 2793/// This routine implements the semantics of C++ [temp.arg.type]. It 2794/// returns true if an error occurred, and false otherwise. 2795bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 2796 TypeSourceInfo *ArgInfo) { 2797 assert(ArgInfo && "invalid TypeSourceInfo"); 2798 QualType Arg = ArgInfo->getType(); 2799 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 2800 2801 if (Arg->isVariablyModifiedType()) { 2802 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 2803 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 2804 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 2805 } 2806 2807 // C++03 [temp.arg.type]p2: 2808 // A local type, a type with no linkage, an unnamed type or a type 2809 // compounded from any of these types shall not be used as a 2810 // template-argument for a template type-parameter. 2811 // 2812 // C++0x allows these, and even in C++03 we allow them as an extension with 2813 // a warning. 2814 if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) { 2815 UnnamedLocalNoLinkageFinder Finder(*this, SR); 2816 (void)Finder.Visit(Context.getCanonicalType(Arg)); 2817 } 2818 2819 return false; 2820} 2821 2822/// \brief Checks whether the given template argument is the address 2823/// of an object or function according to C++ [temp.arg.nontype]p1. 2824static bool 2825CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 2826 NonTypeTemplateParmDecl *Param, 2827 QualType ParamType, 2828 Expr *ArgIn, 2829 TemplateArgument &Converted) { 2830 bool Invalid = false; 2831 Expr *Arg = ArgIn; 2832 QualType ArgType = Arg->getType(); 2833 2834 // See through any implicit casts we added to fix the type. 2835 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2836 Arg = Cast->getSubExpr(); 2837 2838 // C++ [temp.arg.nontype]p1: 2839 // 2840 // A template-argument for a non-type, non-template 2841 // template-parameter shall be one of: [...] 2842 // 2843 // -- the address of an object or function with external 2844 // linkage, including function templates and function 2845 // template-ids but excluding non-static class members, 2846 // expressed as & id-expression where the & is optional if 2847 // the name refers to a function or array, or if the 2848 // corresponding template-parameter is a reference; or 2849 DeclRefExpr *DRE = 0; 2850 2851 // In C++98/03 mode, give an extension warning on any extra parentheses. 2852 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 2853 bool ExtraParens = false; 2854 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2855 if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) { 2856 S.Diag(Arg->getSourceRange().getBegin(), 2857 diag::ext_template_arg_extra_parens) 2858 << Arg->getSourceRange(); 2859 ExtraParens = true; 2860 } 2861 2862 Arg = Parens->getSubExpr(); 2863 } 2864 2865 bool AddressTaken = false; 2866 SourceLocation AddrOpLoc; 2867 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2868 if (UnOp->getOpcode() == UO_AddrOf) { 2869 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2870 AddressTaken = true; 2871 AddrOpLoc = UnOp->getOperatorLoc(); 2872 } 2873 } else 2874 DRE = dyn_cast<DeclRefExpr>(Arg); 2875 2876 if (!DRE) { 2877 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 2878 << Arg->getSourceRange(); 2879 S.Diag(Param->getLocation(), diag::note_template_param_here); 2880 return true; 2881 } 2882 2883 // Stop checking the precise nature of the argument if it is value dependent, 2884 // it should be checked when instantiated. 2885 if (Arg->isValueDependent()) { 2886 Converted = TemplateArgument(ArgIn); 2887 return false; 2888 } 2889 2890 if (!isa<ValueDecl>(DRE->getDecl())) { 2891 S.Diag(Arg->getSourceRange().getBegin(), 2892 diag::err_template_arg_not_object_or_func_form) 2893 << Arg->getSourceRange(); 2894 S.Diag(Param->getLocation(), diag::note_template_param_here); 2895 return true; 2896 } 2897 2898 NamedDecl *Entity = 0; 2899 2900 // Cannot refer to non-static data members 2901 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) { 2902 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 2903 << Field << Arg->getSourceRange(); 2904 S.Diag(Param->getLocation(), diag::note_template_param_here); 2905 return true; 2906 } 2907 2908 // Cannot refer to non-static member functions 2909 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 2910 if (!Method->isStatic()) { 2911 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method) 2912 << Method << Arg->getSourceRange(); 2913 S.Diag(Param->getLocation(), diag::note_template_param_here); 2914 return true; 2915 } 2916 2917 // Functions must have external linkage. 2918 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 2919 if (!isExternalLinkage(Func->getLinkage())) { 2920 S.Diag(Arg->getSourceRange().getBegin(), 2921 diag::err_template_arg_function_not_extern) 2922 << Func << Arg->getSourceRange(); 2923 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object) 2924 << true; 2925 return true; 2926 } 2927 2928 // Okay: we've named a function with external linkage. 2929 Entity = Func; 2930 2931 // If the template parameter has pointer type, the function decays. 2932 if (ParamType->isPointerType() && !AddressTaken) 2933 ArgType = S.Context.getPointerType(Func->getType()); 2934 else if (AddressTaken && ParamType->isReferenceType()) { 2935 // If we originally had an address-of operator, but the 2936 // parameter has reference type, complain and (if things look 2937 // like they will work) drop the address-of operator. 2938 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 2939 ParamType.getNonReferenceType())) { 2940 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2941 << ParamType; 2942 S.Diag(Param->getLocation(), diag::note_template_param_here); 2943 return true; 2944 } 2945 2946 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2947 << ParamType 2948 << FixItHint::CreateRemoval(AddrOpLoc); 2949 S.Diag(Param->getLocation(), diag::note_template_param_here); 2950 2951 ArgType = Func->getType(); 2952 } 2953 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 2954 if (!isExternalLinkage(Var->getLinkage())) { 2955 S.Diag(Arg->getSourceRange().getBegin(), 2956 diag::err_template_arg_object_not_extern) 2957 << Var << Arg->getSourceRange(); 2958 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object) 2959 << true; 2960 return true; 2961 } 2962 2963 // A value of reference type is not an object. 2964 if (Var->getType()->isReferenceType()) { 2965 S.Diag(Arg->getSourceRange().getBegin(), 2966 diag::err_template_arg_reference_var) 2967 << Var->getType() << Arg->getSourceRange(); 2968 S.Diag(Param->getLocation(), diag::note_template_param_here); 2969 return true; 2970 } 2971 2972 // Okay: we've named an object with external linkage 2973 Entity = Var; 2974 2975 // If the template parameter has pointer type, we must have taken 2976 // the address of this object. 2977 if (ParamType->isReferenceType()) { 2978 if (AddressTaken) { 2979 // If we originally had an address-of operator, but the 2980 // parameter has reference type, complain and (if things look 2981 // like they will work) drop the address-of operator. 2982 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 2983 ParamType.getNonReferenceType())) { 2984 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2985 << ParamType; 2986 S.Diag(Param->getLocation(), diag::note_template_param_here); 2987 return true; 2988 } 2989 2990 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2991 << ParamType 2992 << FixItHint::CreateRemoval(AddrOpLoc); 2993 S.Diag(Param->getLocation(), diag::note_template_param_here); 2994 2995 ArgType = Var->getType(); 2996 } 2997 } else if (!AddressTaken && ParamType->isPointerType()) { 2998 if (Var->getType()->isArrayType()) { 2999 // Array-to-pointer decay. 3000 ArgType = S.Context.getArrayDecayedType(Var->getType()); 3001 } else { 3002 // If the template parameter has pointer type but the address of 3003 // this object was not taken, complain and (possibly) recover by 3004 // taking the address of the entity. 3005 ArgType = S.Context.getPointerType(Var->getType()); 3006 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 3007 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3008 << ParamType; 3009 S.Diag(Param->getLocation(), diag::note_template_param_here); 3010 return true; 3011 } 3012 3013 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3014 << ParamType 3015 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 3016 3017 S.Diag(Param->getLocation(), diag::note_template_param_here); 3018 } 3019 } 3020 } else { 3021 // We found something else, but we don't know specifically what it is. 3022 S.Diag(Arg->getSourceRange().getBegin(), 3023 diag::err_template_arg_not_object_or_func) 3024 << Arg->getSourceRange(); 3025 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 3026 return true; 3027 } 3028 3029 if (ParamType->isPointerType() && 3030 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 3031 S.IsQualificationConversion(ArgType, ParamType)) { 3032 // For pointer-to-object types, qualification conversions are 3033 // permitted. 3034 } else { 3035 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 3036 if (!ParamRef->getPointeeType()->isFunctionType()) { 3037 // C++ [temp.arg.nontype]p5b3: 3038 // For a non-type template-parameter of type reference to 3039 // object, no conversions apply. The type referred to by the 3040 // reference may be more cv-qualified than the (otherwise 3041 // identical) type of the template- argument. The 3042 // template-parameter is bound directly to the 3043 // template-argument, which shall be an lvalue. 3044 3045 // FIXME: Other qualifiers? 3046 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 3047 unsigned ArgQuals = ArgType.getCVRQualifiers(); 3048 3049 if ((ParamQuals | ArgQuals) != ParamQuals) { 3050 S.Diag(Arg->getSourceRange().getBegin(), 3051 diag::err_template_arg_ref_bind_ignores_quals) 3052 << ParamType << Arg->getType() 3053 << Arg->getSourceRange(); 3054 S.Diag(Param->getLocation(), diag::note_template_param_here); 3055 return true; 3056 } 3057 } 3058 } 3059 3060 // At this point, the template argument refers to an object or 3061 // function with external linkage. We now need to check whether the 3062 // argument and parameter types are compatible. 3063 if (!S.Context.hasSameUnqualifiedType(ArgType, 3064 ParamType.getNonReferenceType())) { 3065 // We can't perform this conversion or binding. 3066 if (ParamType->isReferenceType()) 3067 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 3068 << ParamType << Arg->getType() << Arg->getSourceRange(); 3069 else 3070 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3071 << Arg->getType() << ParamType << Arg->getSourceRange(); 3072 S.Diag(Param->getLocation(), diag::note_template_param_here); 3073 return true; 3074 } 3075 } 3076 3077 // Create the template argument. 3078 Converted = TemplateArgument(Entity->getCanonicalDecl()); 3079 S.MarkDeclarationReferenced(Arg->getLocStart(), Entity); 3080 return false; 3081} 3082 3083/// \brief Checks whether the given template argument is a pointer to 3084/// member constant according to C++ [temp.arg.nontype]p1. 3085bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 3086 TemplateArgument &Converted) { 3087 bool Invalid = false; 3088 3089 // See through any implicit casts we added to fix the type. 3090 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 3091 Arg = Cast->getSubExpr(); 3092 3093 // C++ [temp.arg.nontype]p1: 3094 // 3095 // A template-argument for a non-type, non-template 3096 // template-parameter shall be one of: [...] 3097 // 3098 // -- a pointer to member expressed as described in 5.3.1. 3099 DeclRefExpr *DRE = 0; 3100 3101 // In C++98/03 mode, give an extension warning on any extra parentheses. 3102 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3103 bool ExtraParens = false; 3104 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3105 if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) { 3106 Diag(Arg->getSourceRange().getBegin(), 3107 diag::ext_template_arg_extra_parens) 3108 << Arg->getSourceRange(); 3109 ExtraParens = true; 3110 } 3111 3112 Arg = Parens->getSubExpr(); 3113 } 3114 3115 // A pointer-to-member constant written &Class::member. 3116 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3117 if (UnOp->getOpcode() == UO_AddrOf) { 3118 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 3119 if (DRE && !DRE->getQualifier()) 3120 DRE = 0; 3121 } 3122 } 3123 // A constant of pointer-to-member type. 3124 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 3125 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 3126 if (VD->getType()->isMemberPointerType()) { 3127 if (isa<NonTypeTemplateParmDecl>(VD) || 3128 (isa<VarDecl>(VD) && 3129 Context.getCanonicalType(VD->getType()).isConstQualified())) { 3130 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3131 Converted = TemplateArgument(Arg); 3132 else 3133 Converted = TemplateArgument(VD->getCanonicalDecl()); 3134 return Invalid; 3135 } 3136 } 3137 } 3138 3139 DRE = 0; 3140 } 3141 3142 if (!DRE) 3143 return Diag(Arg->getSourceRange().getBegin(), 3144 diag::err_template_arg_not_pointer_to_member_form) 3145 << Arg->getSourceRange(); 3146 3147 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 3148 assert((isa<FieldDecl>(DRE->getDecl()) || 3149 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 3150 "Only non-static member pointers can make it here"); 3151 3152 // Okay: this is the address of a non-static member, and therefore 3153 // a member pointer constant. 3154 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3155 Converted = TemplateArgument(Arg); 3156 else 3157 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 3158 return Invalid; 3159 } 3160 3161 // We found something else, but we don't know specifically what it is. 3162 Diag(Arg->getSourceRange().getBegin(), 3163 diag::err_template_arg_not_pointer_to_member_form) 3164 << Arg->getSourceRange(); 3165 Diag(DRE->getDecl()->getLocation(), 3166 diag::note_template_arg_refers_here); 3167 return true; 3168} 3169 3170/// \brief Check a template argument against its corresponding 3171/// non-type template parameter. 3172/// 3173/// This routine implements the semantics of C++ [temp.arg.nontype]. 3174/// It returns true if an error occurred, and false otherwise. \p 3175/// InstantiatedParamType is the type of the non-type template 3176/// parameter after it has been instantiated. 3177/// 3178/// If no error was detected, Converted receives the converted template argument. 3179bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 3180 QualType InstantiatedParamType, Expr *&Arg, 3181 TemplateArgument &Converted, 3182 CheckTemplateArgumentKind CTAK) { 3183 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 3184 3185 // If either the parameter has a dependent type or the argument is 3186 // type-dependent, there's nothing we can check now. 3187 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 3188 // FIXME: Produce a cloned, canonical expression? 3189 Converted = TemplateArgument(Arg); 3190 return false; 3191 } 3192 3193 // C++ [temp.arg.nontype]p5: 3194 // The following conversions are performed on each expression used 3195 // as a non-type template-argument. If a non-type 3196 // template-argument cannot be converted to the type of the 3197 // corresponding template-parameter then the program is 3198 // ill-formed. 3199 // 3200 // -- for a non-type template-parameter of integral or 3201 // enumeration type, integral promotions (4.5) and integral 3202 // conversions (4.7) are applied. 3203 QualType ParamType = InstantiatedParamType; 3204 QualType ArgType = Arg->getType(); 3205 if (ParamType->isIntegralOrEnumerationType()) { 3206 // C++ [temp.arg.nontype]p1: 3207 // A template-argument for a non-type, non-template 3208 // template-parameter shall be one of: 3209 // 3210 // -- an integral constant-expression of integral or enumeration 3211 // type; or 3212 // -- the name of a non-type template-parameter; or 3213 SourceLocation NonConstantLoc; 3214 llvm::APSInt Value; 3215 if (!ArgType->isIntegralOrEnumerationType()) { 3216 Diag(Arg->getSourceRange().getBegin(), 3217 diag::err_template_arg_not_integral_or_enumeral) 3218 << ArgType << Arg->getSourceRange(); 3219 Diag(Param->getLocation(), diag::note_template_param_here); 3220 return true; 3221 } else if (!Arg->isValueDependent() && 3222 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 3223 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 3224 << ArgType << Arg->getSourceRange(); 3225 return true; 3226 } 3227 3228 // From here on out, all we care about are the unqualified forms 3229 // of the parameter and argument types. 3230 ParamType = ParamType.getUnqualifiedType(); 3231 ArgType = ArgType.getUnqualifiedType(); 3232 3233 // Try to convert the argument to the parameter's type. 3234 if (Context.hasSameType(ParamType, ArgType)) { 3235 // Okay: no conversion necessary 3236 } else if (CTAK == CTAK_Deduced) { 3237 // C++ [temp.deduct.type]p17: 3238 // If, in the declaration of a function template with a non-type 3239 // template-parameter, the non-type template- parameter is used 3240 // in an expression in the function parameter-list and, if the 3241 // corresponding template-argument is deduced, the 3242 // template-argument type shall match the type of the 3243 // template-parameter exactly, except that a template-argument 3244 // deduced from an array bound may be of any integral type. 3245 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 3246 << ArgType << ParamType; 3247 Diag(Param->getLocation(), diag::note_template_param_here); 3248 return true; 3249 } else if (ParamType->isBooleanType()) { 3250 // This is an integral-to-boolean conversion. 3251 ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean); 3252 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 3253 !ParamType->isEnumeralType()) { 3254 // This is an integral promotion or conversion. 3255 ImpCastExprToType(Arg, ParamType, CK_IntegralCast); 3256 } else { 3257 // We can't perform this conversion. 3258 Diag(Arg->getSourceRange().getBegin(), 3259 diag::err_template_arg_not_convertible) 3260 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3261 Diag(Param->getLocation(), diag::note_template_param_here); 3262 return true; 3263 } 3264 3265 QualType IntegerType = Context.getCanonicalType(ParamType); 3266 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 3267 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 3268 3269 if (!Arg->isValueDependent()) { 3270 llvm::APSInt OldValue = Value; 3271 3272 // Coerce the template argument's value to the value it will have 3273 // based on the template parameter's type. 3274 unsigned AllowedBits = Context.getTypeSize(IntegerType); 3275 if (Value.getBitWidth() != AllowedBits) 3276 Value = Value.extOrTrunc(AllowedBits); 3277 Value.setIsSigned(IntegerType->isSignedIntegerType()); 3278 3279 // Complain if an unsigned parameter received a negative value. 3280 if (IntegerType->isUnsignedIntegerType() 3281 && (OldValue.isSigned() && OldValue.isNegative())) { 3282 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative) 3283 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3284 << Arg->getSourceRange(); 3285 Diag(Param->getLocation(), diag::note_template_param_here); 3286 } 3287 3288 // Complain if we overflowed the template parameter's type. 3289 unsigned RequiredBits; 3290 if (IntegerType->isUnsignedIntegerType()) 3291 RequiredBits = OldValue.getActiveBits(); 3292 else if (OldValue.isUnsigned()) 3293 RequiredBits = OldValue.getActiveBits() + 1; 3294 else 3295 RequiredBits = OldValue.getMinSignedBits(); 3296 if (RequiredBits > AllowedBits) { 3297 Diag(Arg->getSourceRange().getBegin(), 3298 diag::warn_template_arg_too_large) 3299 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3300 << Arg->getSourceRange(); 3301 Diag(Param->getLocation(), diag::note_template_param_here); 3302 } 3303 } 3304 3305 // Add the value of this argument to the list of converted 3306 // arguments. We use the bitwidth and signedness of the template 3307 // parameter. 3308 if (Arg->isValueDependent()) { 3309 // The argument is value-dependent. Create a new 3310 // TemplateArgument with the converted expression. 3311 Converted = TemplateArgument(Arg); 3312 return false; 3313 } 3314 3315 Converted = TemplateArgument(Value, 3316 ParamType->isEnumeralType() ? ParamType 3317 : IntegerType); 3318 return false; 3319 } 3320 3321 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 3322 3323 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion 3324 // from a template argument of type std::nullptr_t to a non-type 3325 // template parameter of type pointer to object, pointer to 3326 // function, or pointer-to-member, respectively. 3327 if (ArgType->isNullPtrType() && 3328 (ParamType->isPointerType() || ParamType->isMemberPointerType())) { 3329 Converted = TemplateArgument((NamedDecl *)0); 3330 return false; 3331 } 3332 3333 // Handle pointer-to-function, reference-to-function, and 3334 // pointer-to-member-function all in (roughly) the same way. 3335 if (// -- For a non-type template-parameter of type pointer to 3336 // function, only the function-to-pointer conversion (4.3) is 3337 // applied. If the template-argument represents a set of 3338 // overloaded functions (or a pointer to such), the matching 3339 // function is selected from the set (13.4). 3340 (ParamType->isPointerType() && 3341 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 3342 // -- For a non-type template-parameter of type reference to 3343 // function, no conversions apply. If the template-argument 3344 // represents a set of overloaded functions, the matching 3345 // function is selected from the set (13.4). 3346 (ParamType->isReferenceType() && 3347 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 3348 // -- For a non-type template-parameter of type pointer to 3349 // member function, no conversions apply. If the 3350 // template-argument represents a set of overloaded member 3351 // functions, the matching member function is selected from 3352 // the set (13.4). 3353 (ParamType->isMemberPointerType() && 3354 ParamType->getAs<MemberPointerType>()->getPointeeType() 3355 ->isFunctionType())) { 3356 3357 if (Arg->getType() == Context.OverloadTy) { 3358 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 3359 true, 3360 FoundResult)) { 3361 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3362 return true; 3363 3364 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3365 ArgType = Arg->getType(); 3366 } else 3367 return true; 3368 } 3369 3370 if (!ParamType->isMemberPointerType()) 3371 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3372 ParamType, 3373 Arg, Converted); 3374 3375 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) { 3376 ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)); 3377 } else if (!Context.hasSameUnqualifiedType(ArgType, 3378 ParamType.getNonReferenceType())) { 3379 // We can't perform this conversion. 3380 Diag(Arg->getSourceRange().getBegin(), 3381 diag::err_template_arg_not_convertible) 3382 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3383 Diag(Param->getLocation(), diag::note_template_param_here); 3384 return true; 3385 } 3386 3387 return CheckTemplateArgumentPointerToMember(Arg, Converted); 3388 } 3389 3390 if (ParamType->isPointerType()) { 3391 // -- for a non-type template-parameter of type pointer to 3392 // object, qualification conversions (4.4) and the 3393 // array-to-pointer conversion (4.2) are applied. 3394 // C++0x also allows a value of std::nullptr_t. 3395 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 3396 "Only object pointers allowed here"); 3397 3398 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3399 ParamType, 3400 Arg, Converted); 3401 } 3402 3403 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 3404 // -- For a non-type template-parameter of type reference to 3405 // object, no conversions apply. The type referred to by the 3406 // reference may be more cv-qualified than the (otherwise 3407 // identical) type of the template-argument. The 3408 // template-parameter is bound directly to the 3409 // template-argument, which must be an lvalue. 3410 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 3411 "Only object references allowed here"); 3412 3413 if (Arg->getType() == Context.OverloadTy) { 3414 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 3415 ParamRefType->getPointeeType(), 3416 true, 3417 FoundResult)) { 3418 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3419 return true; 3420 3421 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3422 ArgType = Arg->getType(); 3423 } else 3424 return true; 3425 } 3426 3427 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3428 ParamType, 3429 Arg, Converted); 3430 } 3431 3432 // -- For a non-type template-parameter of type pointer to data 3433 // member, qualification conversions (4.4) are applied. 3434 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 3435 3436 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 3437 // Types match exactly: nothing more to do here. 3438 } else if (IsQualificationConversion(ArgType, ParamType)) { 3439 ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)); 3440 } else { 3441 // We can't perform this conversion. 3442 Diag(Arg->getSourceRange().getBegin(), 3443 diag::err_template_arg_not_convertible) 3444 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3445 Diag(Param->getLocation(), diag::note_template_param_here); 3446 return true; 3447 } 3448 3449 return CheckTemplateArgumentPointerToMember(Arg, Converted); 3450} 3451 3452/// \brief Check a template argument against its corresponding 3453/// template template parameter. 3454/// 3455/// This routine implements the semantics of C++ [temp.arg.template]. 3456/// It returns true if an error occurred, and false otherwise. 3457bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 3458 const TemplateArgumentLoc &Arg) { 3459 TemplateName Name = Arg.getArgument().getAsTemplate(); 3460 TemplateDecl *Template = Name.getAsTemplateDecl(); 3461 if (!Template) { 3462 // Any dependent template name is fine. 3463 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 3464 return false; 3465 } 3466 3467 // C++ [temp.arg.template]p1: 3468 // A template-argument for a template template-parameter shall be 3469 // the name of a class template, expressed as id-expression. Only 3470 // primary class templates are considered when matching the 3471 // template template argument with the corresponding parameter; 3472 // partial specializations are not considered even if their 3473 // parameter lists match that of the template template parameter. 3474 // 3475 // Note that we also allow template template parameters here, which 3476 // will happen when we are dealing with, e.g., class template 3477 // partial specializations. 3478 if (!isa<ClassTemplateDecl>(Template) && 3479 !isa<TemplateTemplateParmDecl>(Template)) { 3480 assert(isa<FunctionTemplateDecl>(Template) && 3481 "Only function templates are possible here"); 3482 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 3483 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 3484 << Template; 3485 } 3486 3487 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 3488 Param->getTemplateParameters(), 3489 true, 3490 TPL_TemplateTemplateArgumentMatch, 3491 Arg.getLocation()); 3492} 3493 3494/// \brief Given a non-type template argument that refers to a 3495/// declaration and the type of its corresponding non-type template 3496/// parameter, produce an expression that properly refers to that 3497/// declaration. 3498ExprResult 3499Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 3500 QualType ParamType, 3501 SourceLocation Loc) { 3502 assert(Arg.getKind() == TemplateArgument::Declaration && 3503 "Only declaration template arguments permitted here"); 3504 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 3505 3506 if (VD->getDeclContext()->isRecord() && 3507 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 3508 // If the value is a class member, we might have a pointer-to-member. 3509 // Determine whether the non-type template template parameter is of 3510 // pointer-to-member type. If so, we need to build an appropriate 3511 // expression for a pointer-to-member, since a "normal" DeclRefExpr 3512 // would refer to the member itself. 3513 if (ParamType->isMemberPointerType()) { 3514 QualType ClassType 3515 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 3516 NestedNameSpecifier *Qualifier 3517 = NestedNameSpecifier::Create(Context, 0, false, 3518 ClassType.getTypePtr()); 3519 CXXScopeSpec SS; 3520 SS.setScopeRep(Qualifier); 3521 3522 // The actual value-ness of this is unimportant, but for 3523 // internal consistency's sake, references to instance methods 3524 // are r-values. 3525 ExprValueKind VK = VK_LValue; 3526 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 3527 VK = VK_RValue; 3528 3529 ExprResult RefExpr = BuildDeclRefExpr(VD, 3530 VD->getType().getNonReferenceType(), 3531 VK, 3532 Loc, 3533 &SS); 3534 if (RefExpr.isInvalid()) 3535 return ExprError(); 3536 3537 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 3538 3539 // We might need to perform a trailing qualification conversion, since 3540 // the element type on the parameter could be more qualified than the 3541 // element type in the expression we constructed. 3542 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 3543 ParamType.getUnqualifiedType())) { 3544 Expr *RefE = RefExpr.takeAs<Expr>(); 3545 ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp); 3546 RefExpr = Owned(RefE); 3547 } 3548 3549 assert(!RefExpr.isInvalid() && 3550 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 3551 ParamType.getUnqualifiedType())); 3552 return move(RefExpr); 3553 } 3554 } 3555 3556 QualType T = VD->getType().getNonReferenceType(); 3557 if (ParamType->isPointerType()) { 3558 // When the non-type template parameter is a pointer, take the 3559 // address of the declaration. 3560 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 3561 if (RefExpr.isInvalid()) 3562 return ExprError(); 3563 3564 if (T->isFunctionType() || T->isArrayType()) { 3565 // Decay functions and arrays. 3566 Expr *RefE = (Expr *)RefExpr.get(); 3567 DefaultFunctionArrayConversion(RefE); 3568 if (RefE != RefExpr.get()) { 3569 RefExpr.release(); 3570 RefExpr = Owned(RefE); 3571 } 3572 3573 return move(RefExpr); 3574 } 3575 3576 // Take the address of everything else 3577 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 3578 } 3579 3580 ExprValueKind VK = VK_RValue; 3581 3582 // If the non-type template parameter has reference type, qualify the 3583 // resulting declaration reference with the extra qualifiers on the 3584 // type that the reference refers to. 3585 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 3586 VK = VK_LValue; 3587 T = Context.getQualifiedType(T, 3588 TargetRef->getPointeeType().getQualifiers()); 3589 } 3590 3591 return BuildDeclRefExpr(VD, T, VK, Loc); 3592} 3593 3594/// \brief Construct a new expression that refers to the given 3595/// integral template argument with the given source-location 3596/// information. 3597/// 3598/// This routine takes care of the mapping from an integral template 3599/// argument (which may have any integral type) to the appropriate 3600/// literal value. 3601ExprResult 3602Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 3603 SourceLocation Loc) { 3604 assert(Arg.getKind() == TemplateArgument::Integral && 3605 "Operation is only valid for integral template arguments"); 3606 QualType T = Arg.getIntegralType(); 3607 if (T->isCharType() || T->isWideCharType()) 3608 return Owned(new (Context) CharacterLiteral( 3609 Arg.getAsIntegral()->getZExtValue(), 3610 T->isWideCharType(), 3611 T, 3612 Loc)); 3613 if (T->isBooleanType()) 3614 return Owned(new (Context) CXXBoolLiteralExpr( 3615 Arg.getAsIntegral()->getBoolValue(), 3616 T, 3617 Loc)); 3618 3619 QualType BT; 3620 if (const EnumType *ET = T->getAs<EnumType>()) 3621 BT = ET->getDecl()->getPromotionType(); 3622 else 3623 BT = T; 3624 3625 Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc); 3626 ImpCastExprToType(E, T, CK_IntegralCast); 3627 3628 return Owned(E); 3629} 3630 3631/// \brief Match two template parameters within template parameter lists. 3632static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 3633 bool Complain, 3634 Sema::TemplateParameterListEqualKind Kind, 3635 SourceLocation TemplateArgLoc) { 3636 // Check the actual kind (type, non-type, template). 3637 if (Old->getKind() != New->getKind()) { 3638 if (Complain) { 3639 unsigned NextDiag = diag::err_template_param_different_kind; 3640 if (TemplateArgLoc.isValid()) { 3641 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3642 NextDiag = diag::note_template_param_different_kind; 3643 } 3644 S.Diag(New->getLocation(), NextDiag) 3645 << (Kind != Sema::TPL_TemplateMatch); 3646 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 3647 << (Kind != Sema::TPL_TemplateMatch); 3648 } 3649 3650 return false; 3651 } 3652 3653 // Check that both are parameter packs are neither are parameter packs. 3654 // However, if we are matching a template template argument to a 3655 // template template parameter, the template template parameter can have 3656 // a parameter pack where the template template argument does not. 3657 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 3658 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 3659 Old->isTemplateParameterPack())) { 3660 if (Complain) { 3661 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 3662 if (TemplateArgLoc.isValid()) { 3663 S.Diag(TemplateArgLoc, 3664 diag::err_template_arg_template_params_mismatch); 3665 NextDiag = diag::note_template_parameter_pack_non_pack; 3666 } 3667 3668 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 3669 : isa<NonTypeTemplateParmDecl>(New)? 1 3670 : 2; 3671 S.Diag(New->getLocation(), NextDiag) 3672 << ParamKind << New->isParameterPack(); 3673 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 3674 << ParamKind << Old->isParameterPack(); 3675 } 3676 3677 return false; 3678 } 3679 3680 // For non-type template parameters, check the type of the parameter. 3681 if (NonTypeTemplateParmDecl *OldNTTP 3682 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 3683 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 3684 3685 // If we are matching a template template argument to a template 3686 // template parameter and one of the non-type template parameter types 3687 // is dependent, then we must wait until template instantiation time 3688 // to actually compare the arguments. 3689 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && 3690 (OldNTTP->getType()->isDependentType() || 3691 NewNTTP->getType()->isDependentType())) 3692 return true; 3693 3694 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 3695 if (Complain) { 3696 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 3697 if (TemplateArgLoc.isValid()) { 3698 S.Diag(TemplateArgLoc, 3699 diag::err_template_arg_template_params_mismatch); 3700 NextDiag = diag::note_template_nontype_parm_different_type; 3701 } 3702 S.Diag(NewNTTP->getLocation(), NextDiag) 3703 << NewNTTP->getType() 3704 << (Kind != Sema::TPL_TemplateMatch); 3705 S.Diag(OldNTTP->getLocation(), 3706 diag::note_template_nontype_parm_prev_declaration) 3707 << OldNTTP->getType(); 3708 } 3709 3710 return false; 3711 } 3712 3713 return true; 3714 } 3715 3716 // For template template parameters, check the template parameter types. 3717 // The template parameter lists of template template 3718 // parameters must agree. 3719 if (TemplateTemplateParmDecl *OldTTP 3720 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 3721 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 3722 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 3723 OldTTP->getTemplateParameters(), 3724 Complain, 3725 (Kind == Sema::TPL_TemplateMatch 3726 ? Sema::TPL_TemplateTemplateParmMatch 3727 : Kind), 3728 TemplateArgLoc); 3729 } 3730 3731 return true; 3732} 3733 3734/// \brief Diagnose a known arity mismatch when comparing template argument 3735/// lists. 3736static 3737void DiagnoseTemplateParameterListArityMismatch(Sema &S, 3738 TemplateParameterList *New, 3739 TemplateParameterList *Old, 3740 Sema::TemplateParameterListEqualKind Kind, 3741 SourceLocation TemplateArgLoc) { 3742 unsigned NextDiag = diag::err_template_param_list_different_arity; 3743 if (TemplateArgLoc.isValid()) { 3744 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3745 NextDiag = diag::note_template_param_list_different_arity; 3746 } 3747 S.Diag(New->getTemplateLoc(), NextDiag) 3748 << (New->size() > Old->size()) 3749 << (Kind != Sema::TPL_TemplateMatch) 3750 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 3751 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 3752 << (Kind != Sema::TPL_TemplateMatch) 3753 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 3754} 3755 3756/// \brief Determine whether the given template parameter lists are 3757/// equivalent. 3758/// 3759/// \param New The new template parameter list, typically written in the 3760/// source code as part of a new template declaration. 3761/// 3762/// \param Old The old template parameter list, typically found via 3763/// name lookup of the template declared with this template parameter 3764/// list. 3765/// 3766/// \param Complain If true, this routine will produce a diagnostic if 3767/// the template parameter lists are not equivalent. 3768/// 3769/// \param Kind describes how we are to match the template parameter lists. 3770/// 3771/// \param TemplateArgLoc If this source location is valid, then we 3772/// are actually checking the template parameter list of a template 3773/// argument (New) against the template parameter list of its 3774/// corresponding template template parameter (Old). We produce 3775/// slightly different diagnostics in this scenario. 3776/// 3777/// \returns True if the template parameter lists are equal, false 3778/// otherwise. 3779bool 3780Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 3781 TemplateParameterList *Old, 3782 bool Complain, 3783 TemplateParameterListEqualKind Kind, 3784 SourceLocation TemplateArgLoc) { 3785 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 3786 if (Complain) 3787 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 3788 TemplateArgLoc); 3789 3790 return false; 3791 } 3792 3793 // C++0x [temp.arg.template]p3: 3794 // A template-argument matches a template template-parameter (call it P) 3795 // when each of the template parameters in the template-parameter-list of 3796 // the template-argument’s corresponding class template or template alias 3797 // (call it A) matches the corresponding template parameter in the 3798 // template-parameter-list of P. [...] 3799 TemplateParameterList::iterator NewParm = New->begin(); 3800 TemplateParameterList::iterator NewParmEnd = New->end(); 3801 for (TemplateParameterList::iterator OldParm = Old->begin(), 3802 OldParmEnd = Old->end(); 3803 OldParm != OldParmEnd; ++OldParm) { 3804 if (Kind != TPL_TemplateTemplateArgumentMatch || 3805 !(*OldParm)->isTemplateParameterPack()) { 3806 if (NewParm == NewParmEnd) { 3807 if (Complain) 3808 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 3809 TemplateArgLoc); 3810 3811 return false; 3812 } 3813 3814 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 3815 Kind, TemplateArgLoc)) 3816 return false; 3817 3818 ++NewParm; 3819 continue; 3820 } 3821 3822 // C++0x [temp.arg.template]p3: 3823 // [...] When P’s template- parameter-list contains a template parameter 3824 // pack (14.5.3), the template parameter pack will match zero or more 3825 // template parameters or template parameter packs in the 3826 // template-parameter-list of A with the same type and form as the 3827 // template parameter pack in P (ignoring whether those template 3828 // parameters are template parameter packs). 3829 for (; NewParm != NewParmEnd; ++NewParm) { 3830 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 3831 Kind, TemplateArgLoc)) 3832 return false; 3833 } 3834 } 3835 3836 // Make sure we exhausted all of the arguments. 3837 if (NewParm != NewParmEnd) { 3838 if (Complain) 3839 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 3840 TemplateArgLoc); 3841 3842 return false; 3843 } 3844 3845 return true; 3846} 3847 3848/// \brief Check whether a template can be declared within this scope. 3849/// 3850/// If the template declaration is valid in this scope, returns 3851/// false. Otherwise, issues a diagnostic and returns true. 3852bool 3853Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 3854 // Find the nearest enclosing declaration scope. 3855 while ((S->getFlags() & Scope::DeclScope) == 0 || 3856 (S->getFlags() & Scope::TemplateParamScope) != 0) 3857 S = S->getParent(); 3858 3859 // C++ [temp]p2: 3860 // A template-declaration can appear only as a namespace scope or 3861 // class scope declaration. 3862 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 3863 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 3864 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 3865 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 3866 << TemplateParams->getSourceRange(); 3867 3868 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 3869 Ctx = Ctx->getParent(); 3870 3871 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 3872 return false; 3873 3874 return Diag(TemplateParams->getTemplateLoc(), 3875 diag::err_template_outside_namespace_or_class_scope) 3876 << TemplateParams->getSourceRange(); 3877} 3878 3879/// \brief Determine what kind of template specialization the given declaration 3880/// is. 3881static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 3882 if (!D) 3883 return TSK_Undeclared; 3884 3885 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 3886 return Record->getTemplateSpecializationKind(); 3887 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 3888 return Function->getTemplateSpecializationKind(); 3889 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 3890 return Var->getTemplateSpecializationKind(); 3891 3892 return TSK_Undeclared; 3893} 3894 3895/// \brief Check whether a specialization is well-formed in the current 3896/// context. 3897/// 3898/// This routine determines whether a template specialization can be declared 3899/// in the current context (C++ [temp.expl.spec]p2). 3900/// 3901/// \param S the semantic analysis object for which this check is being 3902/// performed. 3903/// 3904/// \param Specialized the entity being specialized or instantiated, which 3905/// may be a kind of template (class template, function template, etc.) or 3906/// a member of a class template (member function, static data member, 3907/// member class). 3908/// 3909/// \param PrevDecl the previous declaration of this entity, if any. 3910/// 3911/// \param Loc the location of the explicit specialization or instantiation of 3912/// this entity. 3913/// 3914/// \param IsPartialSpecialization whether this is a partial specialization of 3915/// a class template. 3916/// 3917/// \returns true if there was an error that we cannot recover from, false 3918/// otherwise. 3919static bool CheckTemplateSpecializationScope(Sema &S, 3920 NamedDecl *Specialized, 3921 NamedDecl *PrevDecl, 3922 SourceLocation Loc, 3923 bool IsPartialSpecialization) { 3924 // Keep these "kind" numbers in sync with the %select statements in the 3925 // various diagnostics emitted by this routine. 3926 int EntityKind = 0; 3927 bool isTemplateSpecialization = false; 3928 if (isa<ClassTemplateDecl>(Specialized)) { 3929 EntityKind = IsPartialSpecialization? 1 : 0; 3930 isTemplateSpecialization = true; 3931 } else if (isa<FunctionTemplateDecl>(Specialized)) { 3932 EntityKind = 2; 3933 isTemplateSpecialization = true; 3934 } else if (isa<CXXMethodDecl>(Specialized)) 3935 EntityKind = 3; 3936 else if (isa<VarDecl>(Specialized)) 3937 EntityKind = 4; 3938 else if (isa<RecordDecl>(Specialized)) 3939 EntityKind = 5; 3940 else { 3941 S.Diag(Loc, diag::err_template_spec_unknown_kind); 3942 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3943 return true; 3944 } 3945 3946 // C++ [temp.expl.spec]p2: 3947 // An explicit specialization shall be declared in the namespace 3948 // of which the template is a member, or, for member templates, in 3949 // the namespace of which the enclosing class or enclosing class 3950 // template is a member. An explicit specialization of a member 3951 // function, member class or static data member of a class 3952 // template shall be declared in the namespace of which the class 3953 // template is a member. Such a declaration may also be a 3954 // definition. If the declaration is not a definition, the 3955 // specialization may be defined later in the name- space in which 3956 // the explicit specialization was declared, or in a namespace 3957 // that encloses the one in which the explicit specialization was 3958 // declared. 3959 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 3960 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 3961 << Specialized; 3962 return true; 3963 } 3964 3965 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 3966 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 3967 << Specialized; 3968 return true; 3969 } 3970 3971 // C++ [temp.class.spec]p6: 3972 // A class template partial specialization may be declared or redeclared 3973 // in any namespace scope in which its definition may be defined (14.5.1 3974 // and 14.5.2). 3975 bool ComplainedAboutScope = false; 3976 DeclContext *SpecializedContext 3977 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 3978 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 3979 if ((!PrevDecl || 3980 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 3981 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 3982 // C++ [temp.exp.spec]p2: 3983 // An explicit specialization shall be declared in the namespace of which 3984 // the template is a member, or, for member templates, in the namespace 3985 // of which the enclosing class or enclosing class template is a member. 3986 // An explicit specialization of a member function, member class or 3987 // static data member of a class template shall be declared in the 3988 // namespace of which the class template is a member. 3989 // 3990 // C++0x [temp.expl.spec]p2: 3991 // An explicit specialization shall be declared in a namespace enclosing 3992 // the specialized template. 3993 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) && 3994 !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) { 3995 bool IsCPlusPlus0xExtension 3996 = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext); 3997 if (isa<TranslationUnitDecl>(SpecializedContext)) 3998 S.Diag(Loc, IsCPlusPlus0xExtension 3999 ? diag::ext_template_spec_decl_out_of_scope_global 4000 : diag::err_template_spec_decl_out_of_scope_global) 4001 << EntityKind << Specialized; 4002 else if (isa<NamespaceDecl>(SpecializedContext)) 4003 S.Diag(Loc, IsCPlusPlus0xExtension 4004 ? diag::ext_template_spec_decl_out_of_scope 4005 : diag::err_template_spec_decl_out_of_scope) 4006 << EntityKind << Specialized 4007 << cast<NamedDecl>(SpecializedContext); 4008 4009 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4010 ComplainedAboutScope = true; 4011 } 4012 } 4013 4014 // Make sure that this redeclaration (or definition) occurs in an enclosing 4015 // namespace. 4016 // Note that HandleDeclarator() performs this check for explicit 4017 // specializations of function templates, static data members, and member 4018 // functions, so we skip the check here for those kinds of entities. 4019 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 4020 // Should we refactor that check, so that it occurs later? 4021 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 4022 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 4023 isa<FunctionDecl>(Specialized))) { 4024 if (isa<TranslationUnitDecl>(SpecializedContext)) 4025 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 4026 << EntityKind << Specialized; 4027 else if (isa<NamespaceDecl>(SpecializedContext)) 4028 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 4029 << EntityKind << Specialized 4030 << cast<NamedDecl>(SpecializedContext); 4031 4032 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4033 } 4034 4035 // FIXME: check for specialization-after-instantiation errors and such. 4036 4037 return false; 4038} 4039 4040/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs 4041/// that checks non-type template partial specialization arguments. 4042static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S, 4043 NonTypeTemplateParmDecl *Param, 4044 const TemplateArgument *Args, 4045 unsigned NumArgs) { 4046 for (unsigned I = 0; I != NumArgs; ++I) { 4047 if (Args[I].getKind() == TemplateArgument::Pack) { 4048 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4049 Args[I].pack_begin(), 4050 Args[I].pack_size())) 4051 return true; 4052 4053 continue; 4054 } 4055 4056 Expr *ArgExpr = Args[I].getAsExpr(); 4057 if (!ArgExpr) { 4058 continue; 4059 } 4060 4061 // We can have a pack expansion of any of the bullets below. 4062 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 4063 ArgExpr = Expansion->getPattern(); 4064 4065 // Strip off any implicit casts we added as part of type checking. 4066 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 4067 ArgExpr = ICE->getSubExpr(); 4068 4069 // C++ [temp.class.spec]p8: 4070 // A non-type argument is non-specialized if it is the name of a 4071 // non-type parameter. All other non-type arguments are 4072 // specialized. 4073 // 4074 // Below, we check the two conditions that only apply to 4075 // specialized non-type arguments, so skip any non-specialized 4076 // arguments. 4077 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 4078 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 4079 continue; 4080 4081 // C++ [temp.class.spec]p9: 4082 // Within the argument list of a class template partial 4083 // specialization, the following restrictions apply: 4084 // -- A partially specialized non-type argument expression 4085 // shall not involve a template parameter of the partial 4086 // specialization except when the argument expression is a 4087 // simple identifier. 4088 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 4089 S.Diag(ArgExpr->getLocStart(), 4090 diag::err_dependent_non_type_arg_in_partial_spec) 4091 << ArgExpr->getSourceRange(); 4092 return true; 4093 } 4094 4095 // -- The type of a template parameter corresponding to a 4096 // specialized non-type argument shall not be dependent on a 4097 // parameter of the specialization. 4098 if (Param->getType()->isDependentType()) { 4099 S.Diag(ArgExpr->getLocStart(), 4100 diag::err_dependent_typed_non_type_arg_in_partial_spec) 4101 << Param->getType() 4102 << ArgExpr->getSourceRange(); 4103 S.Diag(Param->getLocation(), diag::note_template_param_here); 4104 return true; 4105 } 4106 } 4107 4108 return false; 4109} 4110 4111/// \brief Check the non-type template arguments of a class template 4112/// partial specialization according to C++ [temp.class.spec]p9. 4113/// 4114/// \param TemplateParams the template parameters of the primary class 4115/// template. 4116/// 4117/// \param TemplateArg the template arguments of the class template 4118/// partial specialization. 4119/// 4120/// \returns true if there was an error, false otherwise. 4121static bool CheckClassTemplatePartialSpecializationArgs(Sema &S, 4122 TemplateParameterList *TemplateParams, 4123 llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs) { 4124 const TemplateArgument *ArgList = TemplateArgs.data(); 4125 4126 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4127 NonTypeTemplateParmDecl *Param 4128 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 4129 if (!Param) 4130 continue; 4131 4132 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4133 &ArgList[I], 1)) 4134 return true; 4135 } 4136 4137 return false; 4138} 4139 4140/// \brief Retrieve the previous declaration of the given declaration. 4141static NamedDecl *getPreviousDecl(NamedDecl *ND) { 4142 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 4143 return VD->getPreviousDeclaration(); 4144 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 4145 return FD->getPreviousDeclaration(); 4146 if (TagDecl *TD = dyn_cast<TagDecl>(ND)) 4147 return TD->getPreviousDeclaration(); 4148 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND)) 4149 return TD->getPreviousDeclaration(); 4150 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 4151 return FTD->getPreviousDeclaration(); 4152 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND)) 4153 return CTD->getPreviousDeclaration(); 4154 return 0; 4155} 4156 4157DeclResult 4158Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 4159 TagUseKind TUK, 4160 SourceLocation KWLoc, 4161 CXXScopeSpec &SS, 4162 TemplateTy TemplateD, 4163 SourceLocation TemplateNameLoc, 4164 SourceLocation LAngleLoc, 4165 ASTTemplateArgsPtr TemplateArgsIn, 4166 SourceLocation RAngleLoc, 4167 AttributeList *Attr, 4168 MultiTemplateParamsArg TemplateParameterLists) { 4169 assert(TUK != TUK_Reference && "References are not specializations"); 4170 4171 // Find the class template we're specializing 4172 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4173 ClassTemplateDecl *ClassTemplate 4174 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4175 4176 if (!ClassTemplate) { 4177 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 4178 << (Name.getAsTemplateDecl() && 4179 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 4180 return true; 4181 } 4182 4183 bool isExplicitSpecialization = false; 4184 bool isPartialSpecialization = false; 4185 4186 // Check the validity of the template headers that introduce this 4187 // template. 4188 // FIXME: We probably shouldn't complain about these headers for 4189 // friend declarations. 4190 bool Invalid = false; 4191 TemplateParameterList *TemplateParams 4192 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 4193 (TemplateParameterList**)TemplateParameterLists.get(), 4194 TemplateParameterLists.size(), 4195 TUK == TUK_Friend, 4196 isExplicitSpecialization, 4197 Invalid); 4198 if (Invalid) 4199 return true; 4200 4201 unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size(); 4202 if (TemplateParams) 4203 --NumMatchedTemplateParamLists; 4204 4205 if (TemplateParams && TemplateParams->size() > 0) { 4206 isPartialSpecialization = true; 4207 4208 if (TUK == TUK_Friend) { 4209 Diag(KWLoc, diag::err_partial_specialization_friend) 4210 << SourceRange(LAngleLoc, RAngleLoc); 4211 return true; 4212 } 4213 4214 // C++ [temp.class.spec]p10: 4215 // The template parameter list of a specialization shall not 4216 // contain default template argument values. 4217 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4218 Decl *Param = TemplateParams->getParam(I); 4219 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 4220 if (TTP->hasDefaultArgument()) { 4221 Diag(TTP->getDefaultArgumentLoc(), 4222 diag::err_default_arg_in_partial_spec); 4223 TTP->removeDefaultArgument(); 4224 } 4225 } else if (NonTypeTemplateParmDecl *NTTP 4226 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 4227 if (Expr *DefArg = NTTP->getDefaultArgument()) { 4228 Diag(NTTP->getDefaultArgumentLoc(), 4229 diag::err_default_arg_in_partial_spec) 4230 << DefArg->getSourceRange(); 4231 NTTP->removeDefaultArgument(); 4232 } 4233 } else { 4234 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 4235 if (TTP->hasDefaultArgument()) { 4236 Diag(TTP->getDefaultArgument().getLocation(), 4237 diag::err_default_arg_in_partial_spec) 4238 << TTP->getDefaultArgument().getSourceRange(); 4239 TTP->removeDefaultArgument(); 4240 } 4241 } 4242 } 4243 } else if (TemplateParams) { 4244 if (TUK == TUK_Friend) 4245 Diag(KWLoc, diag::err_template_spec_friend) 4246 << FixItHint::CreateRemoval( 4247 SourceRange(TemplateParams->getTemplateLoc(), 4248 TemplateParams->getRAngleLoc())) 4249 << SourceRange(LAngleLoc, RAngleLoc); 4250 else 4251 isExplicitSpecialization = true; 4252 } else if (TUK != TUK_Friend) { 4253 Diag(KWLoc, diag::err_template_spec_needs_header) 4254 << FixItHint::CreateInsertion(KWLoc, "template<> "); 4255 isExplicitSpecialization = true; 4256 } 4257 4258 // Check that the specialization uses the same tag kind as the 4259 // original template. 4260 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4261 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 4262 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4263 Kind, KWLoc, 4264 *ClassTemplate->getIdentifier())) { 4265 Diag(KWLoc, diag::err_use_with_wrong_tag) 4266 << ClassTemplate 4267 << FixItHint::CreateReplacement(KWLoc, 4268 ClassTemplate->getTemplatedDecl()->getKindName()); 4269 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4270 diag::note_previous_use); 4271 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4272 } 4273 4274 // Translate the parser's template argument list in our AST format. 4275 TemplateArgumentListInfo TemplateArgs; 4276 TemplateArgs.setLAngleLoc(LAngleLoc); 4277 TemplateArgs.setRAngleLoc(RAngleLoc); 4278 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4279 4280 // Check for unexpanded parameter packs in any of the template arguments. 4281 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 4282 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 4283 UPPC_PartialSpecialization)) 4284 return true; 4285 4286 // Check that the template argument list is well-formed for this 4287 // template. 4288 llvm::SmallVector<TemplateArgument, 4> Converted; 4289 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4290 TemplateArgs, false, Converted)) 4291 return true; 4292 4293 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 4294 "Converted template argument list is too short!"); 4295 4296 // Find the class template (partial) specialization declaration that 4297 // corresponds to these arguments. 4298 if (isPartialSpecialization) { 4299 if (CheckClassTemplatePartialSpecializationArgs(*this, 4300 ClassTemplate->getTemplateParameters(), 4301 Converted)) 4302 return true; 4303 4304 if (!Name.isDependent() && 4305 !TemplateSpecializationType::anyDependentTemplateArguments( 4306 TemplateArgs.getArgumentArray(), 4307 TemplateArgs.size())) { 4308 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 4309 << ClassTemplate->getDeclName(); 4310 isPartialSpecialization = false; 4311 } 4312 } 4313 4314 void *InsertPos = 0; 4315 ClassTemplateSpecializationDecl *PrevDecl = 0; 4316 4317 if (isPartialSpecialization) 4318 // FIXME: Template parameter list matters, too 4319 PrevDecl 4320 = ClassTemplate->findPartialSpecialization(Converted.data(), 4321 Converted.size(), 4322 InsertPos); 4323 else 4324 PrevDecl 4325 = ClassTemplate->findSpecialization(Converted.data(), 4326 Converted.size(), InsertPos); 4327 4328 ClassTemplateSpecializationDecl *Specialization = 0; 4329 4330 // Check whether we can declare a class template specialization in 4331 // the current scope. 4332 if (TUK != TUK_Friend && 4333 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 4334 TemplateNameLoc, 4335 isPartialSpecialization)) 4336 return true; 4337 4338 // The canonical type 4339 QualType CanonType; 4340 if (PrevDecl && 4341 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 4342 TUK == TUK_Friend)) { 4343 // Since the only prior class template specialization with these 4344 // arguments was referenced but not declared, or we're only 4345 // referencing this specialization as a friend, reuse that 4346 // declaration node as our own, updating its source location to 4347 // reflect our new declaration. 4348 Specialization = PrevDecl; 4349 Specialization->setLocation(TemplateNameLoc); 4350 PrevDecl = 0; 4351 CanonType = Context.getTypeDeclType(Specialization); 4352 } else if (isPartialSpecialization) { 4353 // Build the canonical type that describes the converted template 4354 // arguments of the class template partial specialization. 4355 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 4356 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 4357 Converted.data(), 4358 Converted.size()); 4359 4360 if (Context.hasSameType(CanonType, 4361 ClassTemplate->getInjectedClassNameSpecialization())) { 4362 // C++ [temp.class.spec]p9b3: 4363 // 4364 // -- The argument list of the specialization shall not be identical 4365 // to the implicit argument list of the primary template. 4366 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 4367 << (TUK == TUK_Definition) 4368 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 4369 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 4370 ClassTemplate->getIdentifier(), 4371 TemplateNameLoc, 4372 Attr, 4373 TemplateParams, 4374 AS_none); 4375 } 4376 4377 // Create a new class template partial specialization declaration node. 4378 ClassTemplatePartialSpecializationDecl *PrevPartial 4379 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 4380 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 4381 : ClassTemplate->getNextPartialSpecSequenceNumber(); 4382 ClassTemplatePartialSpecializationDecl *Partial 4383 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 4384 ClassTemplate->getDeclContext(), 4385 TemplateNameLoc, 4386 TemplateParams, 4387 ClassTemplate, 4388 Converted.data(), 4389 Converted.size(), 4390 TemplateArgs, 4391 CanonType, 4392 PrevPartial, 4393 SequenceNumber); 4394 SetNestedNameSpecifier(Partial, SS); 4395 if (NumMatchedTemplateParamLists > 0 && SS.isSet()) { 4396 Partial->setTemplateParameterListsInfo(Context, 4397 NumMatchedTemplateParamLists, 4398 (TemplateParameterList**) TemplateParameterLists.release()); 4399 } 4400 4401 if (!PrevPartial) 4402 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 4403 Specialization = Partial; 4404 4405 // If we are providing an explicit specialization of a member class 4406 // template specialization, make a note of that. 4407 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 4408 PrevPartial->setMemberSpecialization(); 4409 4410 // Check that all of the template parameters of the class template 4411 // partial specialization are deducible from the template 4412 // arguments. If not, this class template partial specialization 4413 // will never be used. 4414 llvm::SmallVector<bool, 8> DeducibleParams; 4415 DeducibleParams.resize(TemplateParams->size()); 4416 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 4417 TemplateParams->getDepth(), 4418 DeducibleParams); 4419 unsigned NumNonDeducible = 0; 4420 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 4421 if (!DeducibleParams[I]) 4422 ++NumNonDeducible; 4423 4424 if (NumNonDeducible) { 4425 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 4426 << (NumNonDeducible > 1) 4427 << SourceRange(TemplateNameLoc, RAngleLoc); 4428 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 4429 if (!DeducibleParams[I]) { 4430 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 4431 if (Param->getDeclName()) 4432 Diag(Param->getLocation(), 4433 diag::note_partial_spec_unused_parameter) 4434 << Param->getDeclName(); 4435 else 4436 Diag(Param->getLocation(), 4437 diag::note_partial_spec_unused_parameter) 4438 << "<anonymous>"; 4439 } 4440 } 4441 } 4442 } else { 4443 // Create a new class template specialization declaration node for 4444 // this explicit specialization or friend declaration. 4445 Specialization 4446 = ClassTemplateSpecializationDecl::Create(Context, Kind, 4447 ClassTemplate->getDeclContext(), 4448 TemplateNameLoc, 4449 ClassTemplate, 4450 Converted.data(), 4451 Converted.size(), 4452 PrevDecl); 4453 SetNestedNameSpecifier(Specialization, SS); 4454 if (NumMatchedTemplateParamLists > 0 && SS.isSet()) { 4455 Specialization->setTemplateParameterListsInfo(Context, 4456 NumMatchedTemplateParamLists, 4457 (TemplateParameterList**) TemplateParameterLists.release()); 4458 } 4459 4460 if (!PrevDecl) 4461 ClassTemplate->AddSpecialization(Specialization, InsertPos); 4462 4463 CanonType = Context.getTypeDeclType(Specialization); 4464 } 4465 4466 // C++ [temp.expl.spec]p6: 4467 // If a template, a member template or the member of a class template is 4468 // explicitly specialized then that specialization shall be declared 4469 // before the first use of that specialization that would cause an implicit 4470 // instantiation to take place, in every translation unit in which such a 4471 // use occurs; no diagnostic is required. 4472 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 4473 bool Okay = false; 4474 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 4475 // Is there any previous explicit specialization declaration? 4476 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 4477 Okay = true; 4478 break; 4479 } 4480 } 4481 4482 if (!Okay) { 4483 SourceRange Range(TemplateNameLoc, RAngleLoc); 4484 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 4485 << Context.getTypeDeclType(Specialization) << Range; 4486 4487 Diag(PrevDecl->getPointOfInstantiation(), 4488 diag::note_instantiation_required_here) 4489 << (PrevDecl->getTemplateSpecializationKind() 4490 != TSK_ImplicitInstantiation); 4491 return true; 4492 } 4493 } 4494 4495 // If this is not a friend, note that this is an explicit specialization. 4496 if (TUK != TUK_Friend) 4497 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 4498 4499 // Check that this isn't a redefinition of this specialization. 4500 if (TUK == TUK_Definition) { 4501 if (RecordDecl *Def = Specialization->getDefinition()) { 4502 SourceRange Range(TemplateNameLoc, RAngleLoc); 4503 Diag(TemplateNameLoc, diag::err_redefinition) 4504 << Context.getTypeDeclType(Specialization) << Range; 4505 Diag(Def->getLocation(), diag::note_previous_definition); 4506 Specialization->setInvalidDecl(); 4507 return true; 4508 } 4509 } 4510 4511 if (Attr) 4512 ProcessDeclAttributeList(S, Specialization, Attr); 4513 4514 // Build the fully-sugared type for this class template 4515 // specialization as the user wrote in the specialization 4516 // itself. This means that we'll pretty-print the type retrieved 4517 // from the specialization's declaration the way that the user 4518 // actually wrote the specialization, rather than formatting the 4519 // name based on the "canonical" representation used to store the 4520 // template arguments in the specialization. 4521 TypeSourceInfo *WrittenTy 4522 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 4523 TemplateArgs, CanonType); 4524 if (TUK != TUK_Friend) { 4525 Specialization->setTypeAsWritten(WrittenTy); 4526 if (TemplateParams) 4527 Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc()); 4528 } 4529 TemplateArgsIn.release(); 4530 4531 // C++ [temp.expl.spec]p9: 4532 // A template explicit specialization is in the scope of the 4533 // namespace in which the template was defined. 4534 // 4535 // We actually implement this paragraph where we set the semantic 4536 // context (in the creation of the ClassTemplateSpecializationDecl), 4537 // but we also maintain the lexical context where the actual 4538 // definition occurs. 4539 Specialization->setLexicalDeclContext(CurContext); 4540 4541 // We may be starting the definition of this specialization. 4542 if (TUK == TUK_Definition) 4543 Specialization->startDefinition(); 4544 4545 if (TUK == TUK_Friend) { 4546 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 4547 TemplateNameLoc, 4548 WrittenTy, 4549 /*FIXME:*/KWLoc); 4550 Friend->setAccess(AS_public); 4551 CurContext->addDecl(Friend); 4552 } else { 4553 // Add the specialization into its lexical context, so that it can 4554 // be seen when iterating through the list of declarations in that 4555 // context. However, specializations are not found by name lookup. 4556 CurContext->addDecl(Specialization); 4557 } 4558 return Specialization; 4559} 4560 4561Decl *Sema::ActOnTemplateDeclarator(Scope *S, 4562 MultiTemplateParamsArg TemplateParameterLists, 4563 Declarator &D) { 4564 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 4565} 4566 4567Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 4568 MultiTemplateParamsArg TemplateParameterLists, 4569 Declarator &D) { 4570 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 4571 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 4572 4573 if (FTI.hasPrototype) { 4574 // FIXME: Diagnose arguments without names in C. 4575 } 4576 4577 Scope *ParentScope = FnBodyScope->getParent(); 4578 4579 Decl *DP = HandleDeclarator(ParentScope, D, 4580 move(TemplateParameterLists), 4581 /*IsFunctionDefinition=*/true); 4582 if (FunctionTemplateDecl *FunctionTemplate 4583 = dyn_cast_or_null<FunctionTemplateDecl>(DP)) 4584 return ActOnStartOfFunctionDef(FnBodyScope, 4585 FunctionTemplate->getTemplatedDecl()); 4586 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP)) 4587 return ActOnStartOfFunctionDef(FnBodyScope, Function); 4588 return 0; 4589} 4590 4591/// \brief Strips various properties off an implicit instantiation 4592/// that has just been explicitly specialized. 4593static void StripImplicitInstantiation(NamedDecl *D) { 4594 D->dropAttrs(); 4595 4596 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 4597 FD->setInlineSpecified(false); 4598 } 4599} 4600 4601/// \brief Diagnose cases where we have an explicit template specialization 4602/// before/after an explicit template instantiation, producing diagnostics 4603/// for those cases where they are required and determining whether the 4604/// new specialization/instantiation will have any effect. 4605/// 4606/// \param NewLoc the location of the new explicit specialization or 4607/// instantiation. 4608/// 4609/// \param NewTSK the kind of the new explicit specialization or instantiation. 4610/// 4611/// \param PrevDecl the previous declaration of the entity. 4612/// 4613/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 4614/// 4615/// \param PrevPointOfInstantiation if valid, indicates where the previus 4616/// declaration was instantiated (either implicitly or explicitly). 4617/// 4618/// \param HasNoEffect will be set to true to indicate that the new 4619/// specialization or instantiation has no effect and should be ignored. 4620/// 4621/// \returns true if there was an error that should prevent the introduction of 4622/// the new declaration into the AST, false otherwise. 4623bool 4624Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 4625 TemplateSpecializationKind NewTSK, 4626 NamedDecl *PrevDecl, 4627 TemplateSpecializationKind PrevTSK, 4628 SourceLocation PrevPointOfInstantiation, 4629 bool &HasNoEffect) { 4630 HasNoEffect = false; 4631 4632 switch (NewTSK) { 4633 case TSK_Undeclared: 4634 case TSK_ImplicitInstantiation: 4635 assert(false && "Don't check implicit instantiations here"); 4636 return false; 4637 4638 case TSK_ExplicitSpecialization: 4639 switch (PrevTSK) { 4640 case TSK_Undeclared: 4641 case TSK_ExplicitSpecialization: 4642 // Okay, we're just specializing something that is either already 4643 // explicitly specialized or has merely been mentioned without any 4644 // instantiation. 4645 return false; 4646 4647 case TSK_ImplicitInstantiation: 4648 if (PrevPointOfInstantiation.isInvalid()) { 4649 // The declaration itself has not actually been instantiated, so it is 4650 // still okay to specialize it. 4651 StripImplicitInstantiation(PrevDecl); 4652 return false; 4653 } 4654 // Fall through 4655 4656 case TSK_ExplicitInstantiationDeclaration: 4657 case TSK_ExplicitInstantiationDefinition: 4658 assert((PrevTSK == TSK_ImplicitInstantiation || 4659 PrevPointOfInstantiation.isValid()) && 4660 "Explicit instantiation without point of instantiation?"); 4661 4662 // C++ [temp.expl.spec]p6: 4663 // If a template, a member template or the member of a class template 4664 // is explicitly specialized then that specialization shall be declared 4665 // before the first use of that specialization that would cause an 4666 // implicit instantiation to take place, in every translation unit in 4667 // which such a use occurs; no diagnostic is required. 4668 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 4669 // Is there any previous explicit specialization declaration? 4670 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 4671 return false; 4672 } 4673 4674 Diag(NewLoc, diag::err_specialization_after_instantiation) 4675 << PrevDecl; 4676 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 4677 << (PrevTSK != TSK_ImplicitInstantiation); 4678 4679 return true; 4680 } 4681 break; 4682 4683 case TSK_ExplicitInstantiationDeclaration: 4684 switch (PrevTSK) { 4685 case TSK_ExplicitInstantiationDeclaration: 4686 // This explicit instantiation declaration is redundant (that's okay). 4687 HasNoEffect = true; 4688 return false; 4689 4690 case TSK_Undeclared: 4691 case TSK_ImplicitInstantiation: 4692 // We're explicitly instantiating something that may have already been 4693 // implicitly instantiated; that's fine. 4694 return false; 4695 4696 case TSK_ExplicitSpecialization: 4697 // C++0x [temp.explicit]p4: 4698 // For a given set of template parameters, if an explicit instantiation 4699 // of a template appears after a declaration of an explicit 4700 // specialization for that template, the explicit instantiation has no 4701 // effect. 4702 HasNoEffect = true; 4703 return false; 4704 4705 case TSK_ExplicitInstantiationDefinition: 4706 // C++0x [temp.explicit]p10: 4707 // If an entity is the subject of both an explicit instantiation 4708 // declaration and an explicit instantiation definition in the same 4709 // translation unit, the definition shall follow the declaration. 4710 Diag(NewLoc, 4711 diag::err_explicit_instantiation_declaration_after_definition); 4712 Diag(PrevPointOfInstantiation, 4713 diag::note_explicit_instantiation_definition_here); 4714 assert(PrevPointOfInstantiation.isValid() && 4715 "Explicit instantiation without point of instantiation?"); 4716 HasNoEffect = true; 4717 return false; 4718 } 4719 break; 4720 4721 case TSK_ExplicitInstantiationDefinition: 4722 switch (PrevTSK) { 4723 case TSK_Undeclared: 4724 case TSK_ImplicitInstantiation: 4725 // We're explicitly instantiating something that may have already been 4726 // implicitly instantiated; that's fine. 4727 return false; 4728 4729 case TSK_ExplicitSpecialization: 4730 // C++ DR 259, C++0x [temp.explicit]p4: 4731 // For a given set of template parameters, if an explicit 4732 // instantiation of a template appears after a declaration of 4733 // an explicit specialization for that template, the explicit 4734 // instantiation has no effect. 4735 // 4736 // In C++98/03 mode, we only give an extension warning here, because it 4737 // is not harmful to try to explicitly instantiate something that 4738 // has been explicitly specialized. 4739 if (!getLangOptions().CPlusPlus0x) { 4740 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 4741 << PrevDecl; 4742 Diag(PrevDecl->getLocation(), 4743 diag::note_previous_template_specialization); 4744 } 4745 HasNoEffect = true; 4746 return false; 4747 4748 case TSK_ExplicitInstantiationDeclaration: 4749 // We're explicity instantiating a definition for something for which we 4750 // were previously asked to suppress instantiations. That's fine. 4751 return false; 4752 4753 case TSK_ExplicitInstantiationDefinition: 4754 // C++0x [temp.spec]p5: 4755 // For a given template and a given set of template-arguments, 4756 // - an explicit instantiation definition shall appear at most once 4757 // in a program, 4758 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 4759 << PrevDecl; 4760 Diag(PrevPointOfInstantiation, 4761 diag::note_previous_explicit_instantiation); 4762 HasNoEffect = true; 4763 return false; 4764 } 4765 break; 4766 } 4767 4768 assert(false && "Missing specialization/instantiation case?"); 4769 4770 return false; 4771} 4772 4773/// \brief Perform semantic analysis for the given dependent function 4774/// template specialization. The only possible way to get a dependent 4775/// function template specialization is with a friend declaration, 4776/// like so: 4777/// 4778/// template <class T> void foo(T); 4779/// template <class T> class A { 4780/// friend void foo<>(T); 4781/// }; 4782/// 4783/// There really isn't any useful analysis we can do here, so we 4784/// just store the information. 4785bool 4786Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 4787 const TemplateArgumentListInfo &ExplicitTemplateArgs, 4788 LookupResult &Previous) { 4789 // Remove anything from Previous that isn't a function template in 4790 // the correct context. 4791 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 4792 LookupResult::Filter F = Previous.makeFilter(); 4793 while (F.hasNext()) { 4794 NamedDecl *D = F.next()->getUnderlyingDecl(); 4795 if (!isa<FunctionTemplateDecl>(D) || 4796 !FDLookupContext->InEnclosingNamespaceSetOf( 4797 D->getDeclContext()->getRedeclContext())) 4798 F.erase(); 4799 } 4800 F.done(); 4801 4802 // Should this be diagnosed here? 4803 if (Previous.empty()) return true; 4804 4805 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 4806 ExplicitTemplateArgs); 4807 return false; 4808} 4809 4810/// \brief Perform semantic analysis for the given function template 4811/// specialization. 4812/// 4813/// This routine performs all of the semantic analysis required for an 4814/// explicit function template specialization. On successful completion, 4815/// the function declaration \p FD will become a function template 4816/// specialization. 4817/// 4818/// \param FD the function declaration, which will be updated to become a 4819/// function template specialization. 4820/// 4821/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 4822/// if any. Note that this may be valid info even when 0 arguments are 4823/// explicitly provided as in, e.g., \c void sort<>(char*, char*); 4824/// as it anyway contains info on the angle brackets locations. 4825/// 4826/// \param PrevDecl the set of declarations that may be specialized by 4827/// this function specialization. 4828bool 4829Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 4830 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4831 LookupResult &Previous) { 4832 // The set of function template specializations that could match this 4833 // explicit function template specialization. 4834 UnresolvedSet<8> Candidates; 4835 4836 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 4837 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4838 I != E; ++I) { 4839 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 4840 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 4841 // Only consider templates found within the same semantic lookup scope as 4842 // FD. 4843 if (!FDLookupContext->InEnclosingNamespaceSetOf( 4844 Ovl->getDeclContext()->getRedeclContext())) 4845 continue; 4846 4847 // C++ [temp.expl.spec]p11: 4848 // A trailing template-argument can be left unspecified in the 4849 // template-id naming an explicit function template specialization 4850 // provided it can be deduced from the function argument type. 4851 // Perform template argument deduction to determine whether we may be 4852 // specializing this template. 4853 // FIXME: It is somewhat wasteful to build 4854 TemplateDeductionInfo Info(Context, FD->getLocation()); 4855 FunctionDecl *Specialization = 0; 4856 if (TemplateDeductionResult TDK 4857 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 4858 FD->getType(), 4859 Specialization, 4860 Info)) { 4861 // FIXME: Template argument deduction failed; record why it failed, so 4862 // that we can provide nifty diagnostics. 4863 (void)TDK; 4864 continue; 4865 } 4866 4867 // Record this candidate. 4868 Candidates.addDecl(Specialization, I.getAccess()); 4869 } 4870 } 4871 4872 // Find the most specialized function template. 4873 UnresolvedSetIterator Result 4874 = getMostSpecialized(Candidates.begin(), Candidates.end(), 4875 TPOC_Other, 0, FD->getLocation(), 4876 PDiag(diag::err_function_template_spec_no_match) 4877 << FD->getDeclName(), 4878 PDiag(diag::err_function_template_spec_ambiguous) 4879 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 4880 PDiag(diag::note_function_template_spec_matched)); 4881 if (Result == Candidates.end()) 4882 return true; 4883 4884 // Ignore access information; it doesn't figure into redeclaration checking. 4885 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 4886 Specialization->setLocation(FD->getLocation()); 4887 4888 // FIXME: Check if the prior specialization has a point of instantiation. 4889 // If so, we have run afoul of . 4890 4891 // If this is a friend declaration, then we're not really declaring 4892 // an explicit specialization. 4893 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 4894 4895 // Check the scope of this explicit specialization. 4896 if (!isFriend && 4897 CheckTemplateSpecializationScope(*this, 4898 Specialization->getPrimaryTemplate(), 4899 Specialization, FD->getLocation(), 4900 false)) 4901 return true; 4902 4903 // C++ [temp.expl.spec]p6: 4904 // If a template, a member template or the member of a class template is 4905 // explicitly specialized then that specialization shall be declared 4906 // before the first use of that specialization that would cause an implicit 4907 // instantiation to take place, in every translation unit in which such a 4908 // use occurs; no diagnostic is required. 4909 FunctionTemplateSpecializationInfo *SpecInfo 4910 = Specialization->getTemplateSpecializationInfo(); 4911 assert(SpecInfo && "Function template specialization info missing?"); 4912 4913 bool HasNoEffect = false; 4914 if (!isFriend && 4915 CheckSpecializationInstantiationRedecl(FD->getLocation(), 4916 TSK_ExplicitSpecialization, 4917 Specialization, 4918 SpecInfo->getTemplateSpecializationKind(), 4919 SpecInfo->getPointOfInstantiation(), 4920 HasNoEffect)) 4921 return true; 4922 4923 // Mark the prior declaration as an explicit specialization, so that later 4924 // clients know that this is an explicit specialization. 4925 if (!isFriend) { 4926 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 4927 MarkUnusedFileScopedDecl(Specialization); 4928 } 4929 4930 // Turn the given function declaration into a function template 4931 // specialization, with the template arguments from the previous 4932 // specialization. 4933 // Take copies of (semantic and syntactic) template argument lists. 4934 const TemplateArgumentList* TemplArgs = new (Context) 4935 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 4936 const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs 4937 ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0; 4938 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 4939 TemplArgs, /*InsertPos=*/0, 4940 SpecInfo->getTemplateSpecializationKind(), 4941 TemplArgsAsWritten); 4942 4943 // The "previous declaration" for this function template specialization is 4944 // the prior function template specialization. 4945 Previous.clear(); 4946 Previous.addDecl(Specialization); 4947 return false; 4948} 4949 4950/// \brief Perform semantic analysis for the given non-template member 4951/// specialization. 4952/// 4953/// This routine performs all of the semantic analysis required for an 4954/// explicit member function specialization. On successful completion, 4955/// the function declaration \p FD will become a member function 4956/// specialization. 4957/// 4958/// \param Member the member declaration, which will be updated to become a 4959/// specialization. 4960/// 4961/// \param Previous the set of declarations, one of which may be specialized 4962/// by this function specialization; the set will be modified to contain the 4963/// redeclared member. 4964bool 4965Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 4966 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 4967 4968 // Try to find the member we are instantiating. 4969 NamedDecl *Instantiation = 0; 4970 NamedDecl *InstantiatedFrom = 0; 4971 MemberSpecializationInfo *MSInfo = 0; 4972 4973 if (Previous.empty()) { 4974 // Nowhere to look anyway. 4975 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 4976 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4977 I != E; ++I) { 4978 NamedDecl *D = (*I)->getUnderlyingDecl(); 4979 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 4980 if (Context.hasSameType(Function->getType(), Method->getType())) { 4981 Instantiation = Method; 4982 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 4983 MSInfo = Method->getMemberSpecializationInfo(); 4984 break; 4985 } 4986 } 4987 } 4988 } else if (isa<VarDecl>(Member)) { 4989 VarDecl *PrevVar; 4990 if (Previous.isSingleResult() && 4991 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 4992 if (PrevVar->isStaticDataMember()) { 4993 Instantiation = PrevVar; 4994 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 4995 MSInfo = PrevVar->getMemberSpecializationInfo(); 4996 } 4997 } else if (isa<RecordDecl>(Member)) { 4998 CXXRecordDecl *PrevRecord; 4999 if (Previous.isSingleResult() && 5000 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 5001 Instantiation = PrevRecord; 5002 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 5003 MSInfo = PrevRecord->getMemberSpecializationInfo(); 5004 } 5005 } 5006 5007 if (!Instantiation) { 5008 // There is no previous declaration that matches. Since member 5009 // specializations are always out-of-line, the caller will complain about 5010 // this mismatch later. 5011 return false; 5012 } 5013 5014 // If this is a friend, just bail out here before we start turning 5015 // things into explicit specializations. 5016 if (Member->getFriendObjectKind() != Decl::FOK_None) { 5017 // Preserve instantiation information. 5018 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 5019 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 5020 cast<CXXMethodDecl>(InstantiatedFrom), 5021 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 5022 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 5023 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5024 cast<CXXRecordDecl>(InstantiatedFrom), 5025 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 5026 } 5027 5028 Previous.clear(); 5029 Previous.addDecl(Instantiation); 5030 return false; 5031 } 5032 5033 // Make sure that this is a specialization of a member. 5034 if (!InstantiatedFrom) { 5035 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 5036 << Member; 5037 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 5038 return true; 5039 } 5040 5041 // C++ [temp.expl.spec]p6: 5042 // If a template, a member template or the member of a class template is 5043 // explicitly specialized then that spe- cialization shall be declared 5044 // before the first use of that specialization that would cause an implicit 5045 // instantiation to take place, in every translation unit in which such a 5046 // use occurs; no diagnostic is required. 5047 assert(MSInfo && "Member specialization info missing?"); 5048 5049 bool HasNoEffect = false; 5050 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 5051 TSK_ExplicitSpecialization, 5052 Instantiation, 5053 MSInfo->getTemplateSpecializationKind(), 5054 MSInfo->getPointOfInstantiation(), 5055 HasNoEffect)) 5056 return true; 5057 5058 // Check the scope of this explicit specialization. 5059 if (CheckTemplateSpecializationScope(*this, 5060 InstantiatedFrom, 5061 Instantiation, Member->getLocation(), 5062 false)) 5063 return true; 5064 5065 // Note that this is an explicit instantiation of a member. 5066 // the original declaration to note that it is an explicit specialization 5067 // (if it was previously an implicit instantiation). This latter step 5068 // makes bookkeeping easier. 5069 if (isa<FunctionDecl>(Member)) { 5070 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 5071 if (InstantiationFunction->getTemplateSpecializationKind() == 5072 TSK_ImplicitInstantiation) { 5073 InstantiationFunction->setTemplateSpecializationKind( 5074 TSK_ExplicitSpecialization); 5075 InstantiationFunction->setLocation(Member->getLocation()); 5076 } 5077 5078 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 5079 cast<CXXMethodDecl>(InstantiatedFrom), 5080 TSK_ExplicitSpecialization); 5081 MarkUnusedFileScopedDecl(InstantiationFunction); 5082 } else if (isa<VarDecl>(Member)) { 5083 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 5084 if (InstantiationVar->getTemplateSpecializationKind() == 5085 TSK_ImplicitInstantiation) { 5086 InstantiationVar->setTemplateSpecializationKind( 5087 TSK_ExplicitSpecialization); 5088 InstantiationVar->setLocation(Member->getLocation()); 5089 } 5090 5091 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 5092 cast<VarDecl>(InstantiatedFrom), 5093 TSK_ExplicitSpecialization); 5094 MarkUnusedFileScopedDecl(InstantiationVar); 5095 } else { 5096 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 5097 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 5098 if (InstantiationClass->getTemplateSpecializationKind() == 5099 TSK_ImplicitInstantiation) { 5100 InstantiationClass->setTemplateSpecializationKind( 5101 TSK_ExplicitSpecialization); 5102 InstantiationClass->setLocation(Member->getLocation()); 5103 } 5104 5105 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5106 cast<CXXRecordDecl>(InstantiatedFrom), 5107 TSK_ExplicitSpecialization); 5108 } 5109 5110 // Save the caller the trouble of having to figure out which declaration 5111 // this specialization matches. 5112 Previous.clear(); 5113 Previous.addDecl(Instantiation); 5114 return false; 5115} 5116 5117/// \brief Check the scope of an explicit instantiation. 5118/// 5119/// \returns true if a serious error occurs, false otherwise. 5120static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 5121 SourceLocation InstLoc, 5122 bool WasQualifiedName) { 5123 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 5124 DeclContext *CurContext = S.CurContext->getRedeclContext(); 5125 5126 if (CurContext->isRecord()) { 5127 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 5128 << D; 5129 return true; 5130 } 5131 5132 // C++0x [temp.explicit]p2: 5133 // An explicit instantiation shall appear in an enclosing namespace of its 5134 // template. 5135 // 5136 // This is DR275, which we do not retroactively apply to C++98/03. 5137 if (S.getLangOptions().CPlusPlus0x && 5138 !CurContext->Encloses(OrigContext)) { 5139 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) 5140 S.Diag(InstLoc, 5141 S.getLangOptions().CPlusPlus0x? 5142 diag::err_explicit_instantiation_out_of_scope 5143 : diag::warn_explicit_instantiation_out_of_scope_0x) 5144 << D << NS; 5145 else 5146 S.Diag(InstLoc, 5147 S.getLangOptions().CPlusPlus0x? 5148 diag::err_explicit_instantiation_must_be_global 5149 : diag::warn_explicit_instantiation_out_of_scope_0x) 5150 << D; 5151 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 5152 return false; 5153 } 5154 5155 // C++0x [temp.explicit]p2: 5156 // If the name declared in the explicit instantiation is an unqualified 5157 // name, the explicit instantiation shall appear in the namespace where 5158 // its template is declared or, if that namespace is inline (7.3.1), any 5159 // namespace from its enclosing namespace set. 5160 if (WasQualifiedName) 5161 return false; 5162 5163 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 5164 return false; 5165 5166 S.Diag(InstLoc, 5167 S.getLangOptions().CPlusPlus0x? 5168 diag::err_explicit_instantiation_unqualified_wrong_namespace 5169 : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 5170 << D << OrigContext; 5171 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 5172 return false; 5173} 5174 5175/// \brief Determine whether the given scope specifier has a template-id in it. 5176static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 5177 if (!SS.isSet()) 5178 return false; 5179 5180 // C++0x [temp.explicit]p2: 5181 // If the explicit instantiation is for a member function, a member class 5182 // or a static data member of a class template specialization, the name of 5183 // the class template specialization in the qualified-id for the member 5184 // name shall be a simple-template-id. 5185 // 5186 // C++98 has the same restriction, just worded differently. 5187 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 5188 NNS; NNS = NNS->getPrefix()) 5189 if (Type *T = NNS->getAsType()) 5190 if (isa<TemplateSpecializationType>(T)) 5191 return true; 5192 5193 return false; 5194} 5195 5196// Explicit instantiation of a class template specialization 5197DeclResult 5198Sema::ActOnExplicitInstantiation(Scope *S, 5199 SourceLocation ExternLoc, 5200 SourceLocation TemplateLoc, 5201 unsigned TagSpec, 5202 SourceLocation KWLoc, 5203 const CXXScopeSpec &SS, 5204 TemplateTy TemplateD, 5205 SourceLocation TemplateNameLoc, 5206 SourceLocation LAngleLoc, 5207 ASTTemplateArgsPtr TemplateArgsIn, 5208 SourceLocation RAngleLoc, 5209 AttributeList *Attr) { 5210 // Find the class template we're specializing 5211 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 5212 ClassTemplateDecl *ClassTemplate 5213 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 5214 5215 // Check that the specialization uses the same tag kind as the 5216 // original template. 5217 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5218 assert(Kind != TTK_Enum && 5219 "Invalid enum tag in class template explicit instantiation!"); 5220 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 5221 Kind, KWLoc, 5222 *ClassTemplate->getIdentifier())) { 5223 Diag(KWLoc, diag::err_use_with_wrong_tag) 5224 << ClassTemplate 5225 << FixItHint::CreateReplacement(KWLoc, 5226 ClassTemplate->getTemplatedDecl()->getKindName()); 5227 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 5228 diag::note_previous_use); 5229 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 5230 } 5231 5232 // C++0x [temp.explicit]p2: 5233 // There are two forms of explicit instantiation: an explicit instantiation 5234 // definition and an explicit instantiation declaration. An explicit 5235 // instantiation declaration begins with the extern keyword. [...] 5236 TemplateSpecializationKind TSK 5237 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5238 : TSK_ExplicitInstantiationDeclaration; 5239 5240 // Translate the parser's template argument list in our AST format. 5241 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 5242 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 5243 5244 // Check that the template argument list is well-formed for this 5245 // template. 5246 llvm::SmallVector<TemplateArgument, 4> Converted; 5247 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 5248 TemplateArgs, false, Converted)) 5249 return true; 5250 5251 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 5252 "Converted template argument list is too short!"); 5253 5254 // Find the class template specialization declaration that 5255 // corresponds to these arguments. 5256 void *InsertPos = 0; 5257 ClassTemplateSpecializationDecl *PrevDecl 5258 = ClassTemplate->findSpecialization(Converted.data(), 5259 Converted.size(), InsertPos); 5260 5261 TemplateSpecializationKind PrevDecl_TSK 5262 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 5263 5264 // C++0x [temp.explicit]p2: 5265 // [...] An explicit instantiation shall appear in an enclosing 5266 // namespace of its template. [...] 5267 // 5268 // This is C++ DR 275. 5269 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 5270 SS.isSet())) 5271 return true; 5272 5273 ClassTemplateSpecializationDecl *Specialization = 0; 5274 5275 bool ReusedDecl = false; 5276 bool HasNoEffect = false; 5277 if (PrevDecl) { 5278 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 5279 PrevDecl, PrevDecl_TSK, 5280 PrevDecl->getPointOfInstantiation(), 5281 HasNoEffect)) 5282 return PrevDecl; 5283 5284 // Even though HasNoEffect == true means that this explicit instantiation 5285 // has no effect on semantics, we go on to put its syntax in the AST. 5286 5287 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 5288 PrevDecl_TSK == TSK_Undeclared) { 5289 // Since the only prior class template specialization with these 5290 // arguments was referenced but not declared, reuse that 5291 // declaration node as our own, updating the source location 5292 // for the template name to reflect our new declaration. 5293 // (Other source locations will be updated later.) 5294 Specialization = PrevDecl; 5295 Specialization->setLocation(TemplateNameLoc); 5296 PrevDecl = 0; 5297 ReusedDecl = true; 5298 } 5299 } 5300 5301 if (!Specialization) { 5302 // Create a new class template specialization declaration node for 5303 // this explicit specialization. 5304 Specialization 5305 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5306 ClassTemplate->getDeclContext(), 5307 TemplateNameLoc, 5308 ClassTemplate, 5309 Converted.data(), 5310 Converted.size(), 5311 PrevDecl); 5312 SetNestedNameSpecifier(Specialization, SS); 5313 5314 if (!HasNoEffect && !PrevDecl) { 5315 // Insert the new specialization. 5316 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5317 } 5318 } 5319 5320 // Build the fully-sugared type for this explicit instantiation as 5321 // the user wrote in the explicit instantiation itself. This means 5322 // that we'll pretty-print the type retrieved from the 5323 // specialization's declaration the way that the user actually wrote 5324 // the explicit instantiation, rather than formatting the name based 5325 // on the "canonical" representation used to store the template 5326 // arguments in the specialization. 5327 TypeSourceInfo *WrittenTy 5328 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5329 TemplateArgs, 5330 Context.getTypeDeclType(Specialization)); 5331 Specialization->setTypeAsWritten(WrittenTy); 5332 TemplateArgsIn.release(); 5333 5334 // Set source locations for keywords. 5335 Specialization->setExternLoc(ExternLoc); 5336 Specialization->setTemplateKeywordLoc(TemplateLoc); 5337 5338 // Add the explicit instantiation into its lexical context. However, 5339 // since explicit instantiations are never found by name lookup, we 5340 // just put it into the declaration context directly. 5341 Specialization->setLexicalDeclContext(CurContext); 5342 CurContext->addDecl(Specialization); 5343 5344 // Syntax is now OK, so return if it has no other effect on semantics. 5345 if (HasNoEffect) { 5346 // Set the template specialization kind. 5347 Specialization->setTemplateSpecializationKind(TSK); 5348 return Specialization; 5349 } 5350 5351 // C++ [temp.explicit]p3: 5352 // A definition of a class template or class member template 5353 // shall be in scope at the point of the explicit instantiation of 5354 // the class template or class member template. 5355 // 5356 // This check comes when we actually try to perform the 5357 // instantiation. 5358 ClassTemplateSpecializationDecl *Def 5359 = cast_or_null<ClassTemplateSpecializationDecl>( 5360 Specialization->getDefinition()); 5361 if (!Def) 5362 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 5363 else if (TSK == TSK_ExplicitInstantiationDefinition) { 5364 MarkVTableUsed(TemplateNameLoc, Specialization, true); 5365 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 5366 } 5367 5368 // Instantiate the members of this class template specialization. 5369 Def = cast_or_null<ClassTemplateSpecializationDecl>( 5370 Specialization->getDefinition()); 5371 if (Def) { 5372 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 5373 5374 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 5375 // TSK_ExplicitInstantiationDefinition 5376 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 5377 TSK == TSK_ExplicitInstantiationDefinition) 5378 Def->setTemplateSpecializationKind(TSK); 5379 5380 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 5381 } 5382 5383 // Set the template specialization kind. 5384 Specialization->setTemplateSpecializationKind(TSK); 5385 return Specialization; 5386} 5387 5388// Explicit instantiation of a member class of a class template. 5389DeclResult 5390Sema::ActOnExplicitInstantiation(Scope *S, 5391 SourceLocation ExternLoc, 5392 SourceLocation TemplateLoc, 5393 unsigned TagSpec, 5394 SourceLocation KWLoc, 5395 CXXScopeSpec &SS, 5396 IdentifierInfo *Name, 5397 SourceLocation NameLoc, 5398 AttributeList *Attr) { 5399 5400 bool Owned = false; 5401 bool IsDependent = false; 5402 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 5403 KWLoc, SS, Name, NameLoc, Attr, AS_none, 5404 MultiTemplateParamsArg(*this, 0, 0), 5405 Owned, IsDependent, false, false, 5406 TypeResult()); 5407 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 5408 5409 if (!TagD) 5410 return true; 5411 5412 TagDecl *Tag = cast<TagDecl>(TagD); 5413 if (Tag->isEnum()) { 5414 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 5415 << Context.getTypeDeclType(Tag); 5416 return true; 5417 } 5418 5419 if (Tag->isInvalidDecl()) 5420 return true; 5421 5422 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 5423 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 5424 if (!Pattern) { 5425 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 5426 << Context.getTypeDeclType(Record); 5427 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 5428 return true; 5429 } 5430 5431 // C++0x [temp.explicit]p2: 5432 // If the explicit instantiation is for a class or member class, the 5433 // elaborated-type-specifier in the declaration shall include a 5434 // simple-template-id. 5435 // 5436 // C++98 has the same restriction, just worded differently. 5437 if (!ScopeSpecifierHasTemplateId(SS)) 5438 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 5439 << Record << SS.getRange(); 5440 5441 // C++0x [temp.explicit]p2: 5442 // There are two forms of explicit instantiation: an explicit instantiation 5443 // definition and an explicit instantiation declaration. An explicit 5444 // instantiation declaration begins with the extern keyword. [...] 5445 TemplateSpecializationKind TSK 5446 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5447 : TSK_ExplicitInstantiationDeclaration; 5448 5449 // C++0x [temp.explicit]p2: 5450 // [...] An explicit instantiation shall appear in an enclosing 5451 // namespace of its template. [...] 5452 // 5453 // This is C++ DR 275. 5454 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 5455 5456 // Verify that it is okay to explicitly instantiate here. 5457 CXXRecordDecl *PrevDecl 5458 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 5459 if (!PrevDecl && Record->getDefinition()) 5460 PrevDecl = Record; 5461 if (PrevDecl) { 5462 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 5463 bool HasNoEffect = false; 5464 assert(MSInfo && "No member specialization information?"); 5465 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 5466 PrevDecl, 5467 MSInfo->getTemplateSpecializationKind(), 5468 MSInfo->getPointOfInstantiation(), 5469 HasNoEffect)) 5470 return true; 5471 if (HasNoEffect) 5472 return TagD; 5473 } 5474 5475 CXXRecordDecl *RecordDef 5476 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 5477 if (!RecordDef) { 5478 // C++ [temp.explicit]p3: 5479 // A definition of a member class of a class template shall be in scope 5480 // at the point of an explicit instantiation of the member class. 5481 CXXRecordDecl *Def 5482 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 5483 if (!Def) { 5484 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 5485 << 0 << Record->getDeclName() << Record->getDeclContext(); 5486 Diag(Pattern->getLocation(), diag::note_forward_declaration) 5487 << Pattern; 5488 return true; 5489 } else { 5490 if (InstantiateClass(NameLoc, Record, Def, 5491 getTemplateInstantiationArgs(Record), 5492 TSK)) 5493 return true; 5494 5495 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 5496 if (!RecordDef) 5497 return true; 5498 } 5499 } 5500 5501 // Instantiate all of the members of the class. 5502 InstantiateClassMembers(NameLoc, RecordDef, 5503 getTemplateInstantiationArgs(Record), TSK); 5504 5505 if (TSK == TSK_ExplicitInstantiationDefinition) 5506 MarkVTableUsed(NameLoc, RecordDef, true); 5507 5508 // FIXME: We don't have any representation for explicit instantiations of 5509 // member classes. Such a representation is not needed for compilation, but it 5510 // should be available for clients that want to see all of the declarations in 5511 // the source code. 5512 return TagD; 5513} 5514 5515DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 5516 SourceLocation ExternLoc, 5517 SourceLocation TemplateLoc, 5518 Declarator &D) { 5519 // Explicit instantiations always require a name. 5520 // TODO: check if/when DNInfo should replace Name. 5521 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 5522 DeclarationName Name = NameInfo.getName(); 5523 if (!Name) { 5524 if (!D.isInvalidType()) 5525 Diag(D.getDeclSpec().getSourceRange().getBegin(), 5526 diag::err_explicit_instantiation_requires_name) 5527 << D.getDeclSpec().getSourceRange() 5528 << D.getSourceRange(); 5529 5530 return true; 5531 } 5532 5533 // The scope passed in may not be a decl scope. Zip up the scope tree until 5534 // we find one that is. 5535 while ((S->getFlags() & Scope::DeclScope) == 0 || 5536 (S->getFlags() & Scope::TemplateParamScope) != 0) 5537 S = S->getParent(); 5538 5539 // Determine the type of the declaration. 5540 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 5541 QualType R = T->getType(); 5542 if (R.isNull()) 5543 return true; 5544 5545 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 5546 // Cannot explicitly instantiate a typedef. 5547 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 5548 << Name; 5549 return true; 5550 } 5551 5552 // C++0x [temp.explicit]p1: 5553 // [...] An explicit instantiation of a function template shall not use the 5554 // inline or constexpr specifiers. 5555 // Presumably, this also applies to member functions of class templates as 5556 // well. 5557 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 5558 Diag(D.getDeclSpec().getInlineSpecLoc(), 5559 diag::err_explicit_instantiation_inline) 5560 <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 5561 5562 // FIXME: check for constexpr specifier. 5563 5564 // C++0x [temp.explicit]p2: 5565 // There are two forms of explicit instantiation: an explicit instantiation 5566 // definition and an explicit instantiation declaration. An explicit 5567 // instantiation declaration begins with the extern keyword. [...] 5568 TemplateSpecializationKind TSK 5569 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5570 : TSK_ExplicitInstantiationDeclaration; 5571 5572 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 5573 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 5574 5575 if (!R->isFunctionType()) { 5576 // C++ [temp.explicit]p1: 5577 // A [...] static data member of a class template can be explicitly 5578 // instantiated from the member definition associated with its class 5579 // template. 5580 if (Previous.isAmbiguous()) 5581 return true; 5582 5583 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 5584 if (!Prev || !Prev->isStaticDataMember()) { 5585 // We expect to see a data data member here. 5586 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 5587 << Name; 5588 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 5589 P != PEnd; ++P) 5590 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 5591 return true; 5592 } 5593 5594 if (!Prev->getInstantiatedFromStaticDataMember()) { 5595 // FIXME: Check for explicit specialization? 5596 Diag(D.getIdentifierLoc(), 5597 diag::err_explicit_instantiation_data_member_not_instantiated) 5598 << Prev; 5599 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 5600 // FIXME: Can we provide a note showing where this was declared? 5601 return true; 5602 } 5603 5604 // C++0x [temp.explicit]p2: 5605 // If the explicit instantiation is for a member function, a member class 5606 // or a static data member of a class template specialization, the name of 5607 // the class template specialization in the qualified-id for the member 5608 // name shall be a simple-template-id. 5609 // 5610 // C++98 has the same restriction, just worded differently. 5611 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5612 Diag(D.getIdentifierLoc(), 5613 diag::ext_explicit_instantiation_without_qualified_id) 5614 << Prev << D.getCXXScopeSpec().getRange(); 5615 5616 // Check the scope of this explicit instantiation. 5617 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 5618 5619 // Verify that it is okay to explicitly instantiate here. 5620 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 5621 assert(MSInfo && "Missing static data member specialization info?"); 5622 bool HasNoEffect = false; 5623 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 5624 MSInfo->getTemplateSpecializationKind(), 5625 MSInfo->getPointOfInstantiation(), 5626 HasNoEffect)) 5627 return true; 5628 if (HasNoEffect) 5629 return (Decl*) 0; 5630 5631 // Instantiate static data member. 5632 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5633 if (TSK == TSK_ExplicitInstantiationDefinition) 5634 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev); 5635 5636 // FIXME: Create an ExplicitInstantiation node? 5637 return (Decl*) 0; 5638 } 5639 5640 // If the declarator is a template-id, translate the parser's template 5641 // argument list into our AST format. 5642 bool HasExplicitTemplateArgs = false; 5643 TemplateArgumentListInfo TemplateArgs; 5644 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 5645 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 5646 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 5647 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 5648 ASTTemplateArgsPtr TemplateArgsPtr(*this, 5649 TemplateId->getTemplateArgs(), 5650 TemplateId->NumArgs); 5651 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 5652 HasExplicitTemplateArgs = true; 5653 TemplateArgsPtr.release(); 5654 } 5655 5656 // C++ [temp.explicit]p1: 5657 // A [...] function [...] can be explicitly instantiated from its template. 5658 // A member function [...] of a class template can be explicitly 5659 // instantiated from the member definition associated with its class 5660 // template. 5661 UnresolvedSet<8> Matches; 5662 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 5663 P != PEnd; ++P) { 5664 NamedDecl *Prev = *P; 5665 if (!HasExplicitTemplateArgs) { 5666 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 5667 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 5668 Matches.clear(); 5669 5670 Matches.addDecl(Method, P.getAccess()); 5671 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 5672 break; 5673 } 5674 } 5675 } 5676 5677 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 5678 if (!FunTmpl) 5679 continue; 5680 5681 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 5682 FunctionDecl *Specialization = 0; 5683 if (TemplateDeductionResult TDK 5684 = DeduceTemplateArguments(FunTmpl, 5685 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 5686 R, Specialization, Info)) { 5687 // FIXME: Keep track of almost-matches? 5688 (void)TDK; 5689 continue; 5690 } 5691 5692 Matches.addDecl(Specialization, P.getAccess()); 5693 } 5694 5695 // Find the most specialized function template specialization. 5696 UnresolvedSetIterator Result 5697 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0, 5698 D.getIdentifierLoc(), 5699 PDiag(diag::err_explicit_instantiation_not_known) << Name, 5700 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 5701 PDiag(diag::note_explicit_instantiation_candidate)); 5702 5703 if (Result == Matches.end()) 5704 return true; 5705 5706 // Ignore access control bits, we don't need them for redeclaration checking. 5707 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5708 5709 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 5710 Diag(D.getIdentifierLoc(), 5711 diag::err_explicit_instantiation_member_function_not_instantiated) 5712 << Specialization 5713 << (Specialization->getTemplateSpecializationKind() == 5714 TSK_ExplicitSpecialization); 5715 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 5716 return true; 5717 } 5718 5719 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 5720 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 5721 PrevDecl = Specialization; 5722 5723 if (PrevDecl) { 5724 bool HasNoEffect = false; 5725 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 5726 PrevDecl, 5727 PrevDecl->getTemplateSpecializationKind(), 5728 PrevDecl->getPointOfInstantiation(), 5729 HasNoEffect)) 5730 return true; 5731 5732 // FIXME: We may still want to build some representation of this 5733 // explicit specialization. 5734 if (HasNoEffect) 5735 return (Decl*) 0; 5736 } 5737 5738 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5739 5740 if (TSK == TSK_ExplicitInstantiationDefinition) 5741 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 5742 5743 // C++0x [temp.explicit]p2: 5744 // If the explicit instantiation is for a member function, a member class 5745 // or a static data member of a class template specialization, the name of 5746 // the class template specialization in the qualified-id for the member 5747 // name shall be a simple-template-id. 5748 // 5749 // C++98 has the same restriction, just worded differently. 5750 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 5751 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 5752 D.getCXXScopeSpec().isSet() && 5753 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5754 Diag(D.getIdentifierLoc(), 5755 diag::ext_explicit_instantiation_without_qualified_id) 5756 << Specialization << D.getCXXScopeSpec().getRange(); 5757 5758 CheckExplicitInstantiationScope(*this, 5759 FunTmpl? (NamedDecl *)FunTmpl 5760 : Specialization->getInstantiatedFromMemberFunction(), 5761 D.getIdentifierLoc(), 5762 D.getCXXScopeSpec().isSet()); 5763 5764 // FIXME: Create some kind of ExplicitInstantiationDecl here. 5765 return (Decl*) 0; 5766} 5767 5768TypeResult 5769Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 5770 const CXXScopeSpec &SS, IdentifierInfo *Name, 5771 SourceLocation TagLoc, SourceLocation NameLoc) { 5772 // This has to hold, because SS is expected to be defined. 5773 assert(Name && "Expected a name in a dependent tag"); 5774 5775 NestedNameSpecifier *NNS 5776 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5777 if (!NNS) 5778 return true; 5779 5780 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5781 5782 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 5783 Diag(NameLoc, diag::err_dependent_tag_decl) 5784 << (TUK == TUK_Definition) << Kind << SS.getRange(); 5785 return true; 5786 } 5787 5788 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 5789 return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name)); 5790} 5791 5792TypeResult 5793Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 5794 const CXXScopeSpec &SS, const IdentifierInfo &II, 5795 SourceLocation IdLoc) { 5796 NestedNameSpecifier *NNS 5797 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5798 if (!NNS) 5799 return true; 5800 5801 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 5802 !getLangOptions().CPlusPlus0x) 5803 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 5804 << FixItHint::CreateRemoval(TypenameLoc); 5805 5806 QualType T = CheckTypenameType(ETK_Typename, NNS, II, 5807 TypenameLoc, SS.getRange(), IdLoc); 5808 if (T.isNull()) 5809 return true; 5810 5811 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5812 if (isa<DependentNameType>(T)) { 5813 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 5814 TL.setKeywordLoc(TypenameLoc); 5815 TL.setQualifierRange(SS.getRange()); 5816 TL.setNameLoc(IdLoc); 5817 } else { 5818 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 5819 TL.setKeywordLoc(TypenameLoc); 5820 TL.setQualifierRange(SS.getRange()); 5821 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc); 5822 } 5823 5824 return CreateParsedType(T, TSI); 5825} 5826 5827TypeResult 5828Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 5829 const CXXScopeSpec &SS, SourceLocation TemplateLoc, 5830 ParsedType Ty) { 5831 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 5832 !getLangOptions().CPlusPlus0x) 5833 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 5834 << FixItHint::CreateRemoval(TypenameLoc); 5835 5836 TypeSourceInfo *InnerTSI = 0; 5837 QualType T = GetTypeFromParser(Ty, &InnerTSI); 5838 5839 assert(isa<TemplateSpecializationType>(T) && 5840 "Expected a template specialization type"); 5841 5842 if (computeDeclContext(SS, false)) { 5843 // If we can compute a declaration context, then the "typename" 5844 // keyword was superfluous. Just build an ElaboratedType to keep 5845 // track of the nested-name-specifier. 5846 5847 // Push the inner type, preserving its source locations if possible. 5848 TypeLocBuilder Builder; 5849 if (InnerTSI) 5850 Builder.pushFullCopy(InnerTSI->getTypeLoc()); 5851 else 5852 Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc); 5853 5854 /* Note: NNS already embedded in template specialization type T. */ 5855 T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T); 5856 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 5857 TL.setKeywordLoc(TypenameLoc); 5858 TL.setQualifierRange(SS.getRange()); 5859 5860 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 5861 return CreateParsedType(T, TSI); 5862 } 5863 5864 // TODO: it's really silly that we make a template specialization 5865 // type earlier only to drop it again here. 5866 TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T); 5867 DependentTemplateName *DTN = 5868 TST->getTemplateName().getAsDependentTemplateName(); 5869 assert(DTN && "dependent template has non-dependent name?"); 5870 assert(DTN->getQualifier() 5871 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 5872 T = Context.getDependentTemplateSpecializationType(ETK_Typename, 5873 DTN->getQualifier(), 5874 DTN->getIdentifier(), 5875 TST->getNumArgs(), 5876 TST->getArgs()); 5877 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5878 DependentTemplateSpecializationTypeLoc TL = 5879 cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc()); 5880 if (InnerTSI) { 5881 TemplateSpecializationTypeLoc TSTL = 5882 cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc()); 5883 TL.setLAngleLoc(TSTL.getLAngleLoc()); 5884 TL.setRAngleLoc(TSTL.getRAngleLoc()); 5885 for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I) 5886 TL.setArgLocInfo(I, TSTL.getArgLocInfo(I)); 5887 } else { 5888 TL.initializeLocal(SourceLocation()); 5889 } 5890 TL.setKeywordLoc(TypenameLoc); 5891 TL.setQualifierRange(SS.getRange()); 5892 return CreateParsedType(T, TSI); 5893} 5894 5895/// \brief Build the type that describes a C++ typename specifier, 5896/// e.g., "typename T::type". 5897QualType 5898Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 5899 NestedNameSpecifier *NNS, const IdentifierInfo &II, 5900 SourceLocation KeywordLoc, SourceRange NNSRange, 5901 SourceLocation IILoc) { 5902 CXXScopeSpec SS; 5903 SS.setScopeRep(NNS); 5904 SS.setRange(NNSRange); 5905 5906 DeclContext *Ctx = computeDeclContext(SS); 5907 if (!Ctx) { 5908 // If the nested-name-specifier is dependent and couldn't be 5909 // resolved to a type, build a typename type. 5910 assert(NNS->isDependent()); 5911 return Context.getDependentNameType(Keyword, NNS, &II); 5912 } 5913 5914 // If the nested-name-specifier refers to the current instantiation, 5915 // the "typename" keyword itself is superfluous. In C++03, the 5916 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 5917 // allows such extraneous "typename" keywords, and we retroactively 5918 // apply this DR to C++03 code with only a warning. In any case we continue. 5919 5920 if (RequireCompleteDeclContext(SS, Ctx)) 5921 return QualType(); 5922 5923 DeclarationName Name(&II); 5924 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 5925 LookupQualifiedName(Result, Ctx); 5926 unsigned DiagID = 0; 5927 Decl *Referenced = 0; 5928 switch (Result.getResultKind()) { 5929 case LookupResult::NotFound: 5930 DiagID = diag::err_typename_nested_not_found; 5931 break; 5932 5933 case LookupResult::FoundUnresolvedValue: { 5934 // We found a using declaration that is a value. Most likely, the using 5935 // declaration itself is meant to have the 'typename' keyword. 5936 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(), 5937 IILoc); 5938 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 5939 << Name << Ctx << FullRange; 5940 if (UnresolvedUsingValueDecl *Using 5941 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 5942 SourceLocation Loc = Using->getTargetNestedNameRange().getBegin(); 5943 Diag(Loc, diag::note_using_value_decl_missing_typename) 5944 << FixItHint::CreateInsertion(Loc, "typename "); 5945 } 5946 } 5947 // Fall through to create a dependent typename type, from which we can recover 5948 // better. 5949 5950 case LookupResult::NotFoundInCurrentInstantiation: 5951 // Okay, it's a member of an unknown instantiation. 5952 return Context.getDependentNameType(Keyword, NNS, &II); 5953 5954 case LookupResult::Found: 5955 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 5956 // We found a type. Build an ElaboratedType, since the 5957 // typename-specifier was just sugar. 5958 return Context.getElaboratedType(ETK_Typename, NNS, 5959 Context.getTypeDeclType(Type)); 5960 } 5961 5962 DiagID = diag::err_typename_nested_not_type; 5963 Referenced = Result.getFoundDecl(); 5964 break; 5965 5966 5967 llvm_unreachable("unresolved using decl in non-dependent context"); 5968 return QualType(); 5969 5970 case LookupResult::FoundOverloaded: 5971 DiagID = diag::err_typename_nested_not_type; 5972 Referenced = *Result.begin(); 5973 break; 5974 5975 case LookupResult::Ambiguous: 5976 return QualType(); 5977 } 5978 5979 // If we get here, it's because name lookup did not find a 5980 // type. Emit an appropriate diagnostic and return an error. 5981 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(), 5982 IILoc); 5983 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 5984 if (Referenced) 5985 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 5986 << Name; 5987 return QualType(); 5988} 5989 5990namespace { 5991 // See Sema::RebuildTypeInCurrentInstantiation 5992 class CurrentInstantiationRebuilder 5993 : public TreeTransform<CurrentInstantiationRebuilder> { 5994 SourceLocation Loc; 5995 DeclarationName Entity; 5996 5997 public: 5998 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 5999 6000 CurrentInstantiationRebuilder(Sema &SemaRef, 6001 SourceLocation Loc, 6002 DeclarationName Entity) 6003 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 6004 Loc(Loc), Entity(Entity) { } 6005 6006 /// \brief Determine whether the given type \p T has already been 6007 /// transformed. 6008 /// 6009 /// For the purposes of type reconstruction, a type has already been 6010 /// transformed if it is NULL or if it is not dependent. 6011 bool AlreadyTransformed(QualType T) { 6012 return T.isNull() || !T->isDependentType(); 6013 } 6014 6015 /// \brief Returns the location of the entity whose type is being 6016 /// rebuilt. 6017 SourceLocation getBaseLocation() { return Loc; } 6018 6019 /// \brief Returns the name of the entity whose type is being rebuilt. 6020 DeclarationName getBaseEntity() { return Entity; } 6021 6022 /// \brief Sets the "base" location and entity when that 6023 /// information is known based on another transformation. 6024 void setBase(SourceLocation Loc, DeclarationName Entity) { 6025 this->Loc = Loc; 6026 this->Entity = Entity; 6027 } 6028 }; 6029} 6030 6031/// \brief Rebuilds a type within the context of the current instantiation. 6032/// 6033/// The type \p T is part of the type of an out-of-line member definition of 6034/// a class template (or class template partial specialization) that was parsed 6035/// and constructed before we entered the scope of the class template (or 6036/// partial specialization thereof). This routine will rebuild that type now 6037/// that we have entered the declarator's scope, which may produce different 6038/// canonical types, e.g., 6039/// 6040/// \code 6041/// template<typename T> 6042/// struct X { 6043/// typedef T* pointer; 6044/// pointer data(); 6045/// }; 6046/// 6047/// template<typename T> 6048/// typename X<T>::pointer X<T>::data() { ... } 6049/// \endcode 6050/// 6051/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 6052/// since we do not know that we can look into X<T> when we parsed the type. 6053/// This function will rebuild the type, performing the lookup of "pointer" 6054/// in X<T> and returning an ElaboratedType whose canonical type is the same 6055/// as the canonical type of T*, allowing the return types of the out-of-line 6056/// definition and the declaration to match. 6057TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 6058 SourceLocation Loc, 6059 DeclarationName Name) { 6060 if (!T || !T->getType()->isDependentType()) 6061 return T; 6062 6063 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 6064 return Rebuilder.TransformType(T); 6065} 6066 6067ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 6068 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 6069 DeclarationName()); 6070 return Rebuilder.TransformExpr(E); 6071} 6072 6073bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 6074 if (SS.isInvalid()) return true; 6075 6076 NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 6077 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 6078 DeclarationName()); 6079 NestedNameSpecifier *Rebuilt = 6080 Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange()); 6081 if (!Rebuilt) return true; 6082 6083 SS.setScopeRep(Rebuilt); 6084 return false; 6085} 6086 6087/// \brief Produces a formatted string that describes the binding of 6088/// template parameters to template arguments. 6089std::string 6090Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6091 const TemplateArgumentList &Args) { 6092 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 6093} 6094 6095std::string 6096Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6097 const TemplateArgument *Args, 6098 unsigned NumArgs) { 6099 llvm::SmallString<128> Str; 6100 llvm::raw_svector_ostream Out(Str); 6101 6102 if (!Params || Params->size() == 0 || NumArgs == 0) 6103 return std::string(); 6104 6105 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 6106 if (I >= NumArgs) 6107 break; 6108 6109 if (I == 0) 6110 Out << "[with "; 6111 else 6112 Out << ", "; 6113 6114 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 6115 Out << Id->getName(); 6116 } else { 6117 Out << '$' << I; 6118 } 6119 6120 Out << " = "; 6121 Args[I].print(Context.PrintingPolicy, Out); 6122 } 6123 6124 Out << ']'; 6125 return Out.str(); 6126} 6127 6128