SemaTemplate.cpp revision ca63c200346c0ca9e00194ec6e34a5a7b0ed9321
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/StringExtras.h"
30using namespace clang;
31using namespace sema;
32
33// Exported for use by Parser.
34SourceRange
35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
36                              unsigned N) {
37  if (!N) return SourceRange();
38  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
39}
40
41/// \brief Determine whether the declaration found is acceptable as the name
42/// of a template and, if so, return that template declaration. Otherwise,
43/// returns NULL.
44static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
45                                           NamedDecl *Orig) {
46  NamedDecl *D = Orig->getUnderlyingDecl();
47
48  if (isa<TemplateDecl>(D))
49    return Orig;
50
51  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
52    // C++ [temp.local]p1:
53    //   Like normal (non-template) classes, class templates have an
54    //   injected-class-name (Clause 9). The injected-class-name
55    //   can be used with or without a template-argument-list. When
56    //   it is used without a template-argument-list, it is
57    //   equivalent to the injected-class-name followed by the
58    //   template-parameters of the class template enclosed in
59    //   <>. When it is used with a template-argument-list, it
60    //   refers to the specified class template specialization,
61    //   which could be the current specialization or another
62    //   specialization.
63    if (Record->isInjectedClassName()) {
64      Record = cast<CXXRecordDecl>(Record->getDeclContext());
65      if (Record->getDescribedClassTemplate())
66        return Record->getDescribedClassTemplate();
67
68      if (ClassTemplateSpecializationDecl *Spec
69            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
70        return Spec->getSpecializedTemplate();
71    }
72
73    return 0;
74  }
75
76  return 0;
77}
78
79void Sema::FilterAcceptableTemplateNames(LookupResult &R) {
80  // The set of class templates we've already seen.
81  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
82  LookupResult::Filter filter = R.makeFilter();
83  while (filter.hasNext()) {
84    NamedDecl *Orig = filter.next();
85    NamedDecl *Repl = isAcceptableTemplateName(Context, Orig);
86    if (!Repl)
87      filter.erase();
88    else if (Repl != Orig) {
89
90      // C++ [temp.local]p3:
91      //   A lookup that finds an injected-class-name (10.2) can result in an
92      //   ambiguity in certain cases (for example, if it is found in more than
93      //   one base class). If all of the injected-class-names that are found
94      //   refer to specializations of the same class template, and if the name
95      //   is used as a template-name, the reference refers to the class
96      //   template itself and not a specialization thereof, and is not
97      //   ambiguous.
98      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
99        if (!ClassTemplates.insert(ClassTmpl)) {
100          filter.erase();
101          continue;
102        }
103
104      // FIXME: we promote access to public here as a workaround to
105      // the fact that LookupResult doesn't let us remember that we
106      // found this template through a particular injected class name,
107      // which means we end up doing nasty things to the invariants.
108      // Pretending that access is public is *much* safer.
109      filter.replace(Repl, AS_public);
110    }
111  }
112  filter.done();
113}
114
115bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R) {
116  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
117    if (isAcceptableTemplateName(Context, *I))
118      return true;
119
120  return false;
121}
122
123TemplateNameKind Sema::isTemplateName(Scope *S,
124                                      CXXScopeSpec &SS,
125                                      bool hasTemplateKeyword,
126                                      UnqualifiedId &Name,
127                                      ParsedType ObjectTypePtr,
128                                      bool EnteringContext,
129                                      TemplateTy &TemplateResult,
130                                      bool &MemberOfUnknownSpecialization) {
131  assert(getLangOptions().CPlusPlus && "No template names in C!");
132
133  DeclarationName TName;
134  MemberOfUnknownSpecialization = false;
135
136  switch (Name.getKind()) {
137  case UnqualifiedId::IK_Identifier:
138    TName = DeclarationName(Name.Identifier);
139    break;
140
141  case UnqualifiedId::IK_OperatorFunctionId:
142    TName = Context.DeclarationNames.getCXXOperatorName(
143                                              Name.OperatorFunctionId.Operator);
144    break;
145
146  case UnqualifiedId::IK_LiteralOperatorId:
147    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
148    break;
149
150  default:
151    return TNK_Non_template;
152  }
153
154  QualType ObjectType = ObjectTypePtr.get();
155
156  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
157                 LookupOrdinaryName);
158  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
159                     MemberOfUnknownSpecialization);
160  if (R.empty()) return TNK_Non_template;
161  if (R.isAmbiguous()) {
162    // Suppress diagnostics;  we'll redo this lookup later.
163    R.suppressDiagnostics();
164
165    // FIXME: we might have ambiguous templates, in which case we
166    // should at least parse them properly!
167    return TNK_Non_template;
168  }
169
170  TemplateName Template;
171  TemplateNameKind TemplateKind;
172
173  unsigned ResultCount = R.end() - R.begin();
174  if (ResultCount > 1) {
175    // We assume that we'll preserve the qualifier from a function
176    // template name in other ways.
177    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
178    TemplateKind = TNK_Function_template;
179
180    // We'll do this lookup again later.
181    R.suppressDiagnostics();
182  } else {
183    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
184
185    if (SS.isSet() && !SS.isInvalid()) {
186      NestedNameSpecifier *Qualifier
187        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
188      Template = Context.getQualifiedTemplateName(Qualifier,
189                                                  hasTemplateKeyword, TD);
190    } else {
191      Template = TemplateName(TD);
192    }
193
194    if (isa<FunctionTemplateDecl>(TD)) {
195      TemplateKind = TNK_Function_template;
196
197      // We'll do this lookup again later.
198      R.suppressDiagnostics();
199    } else {
200      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
201             isa<TypeAliasTemplateDecl>(TD));
202      TemplateKind = TNK_Type_template;
203    }
204  }
205
206  TemplateResult = TemplateTy::make(Template);
207  return TemplateKind;
208}
209
210bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
211                                       SourceLocation IILoc,
212                                       Scope *S,
213                                       const CXXScopeSpec *SS,
214                                       TemplateTy &SuggestedTemplate,
215                                       TemplateNameKind &SuggestedKind) {
216  // We can't recover unless there's a dependent scope specifier preceding the
217  // template name.
218  // FIXME: Typo correction?
219  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
220      computeDeclContext(*SS))
221    return false;
222
223  // The code is missing a 'template' keyword prior to the dependent template
224  // name.
225  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
226  Diag(IILoc, diag::err_template_kw_missing)
227    << Qualifier << II.getName()
228    << FixItHint::CreateInsertion(IILoc, "template ");
229  SuggestedTemplate
230    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
231  SuggestedKind = TNK_Dependent_template_name;
232  return true;
233}
234
235void Sema::LookupTemplateName(LookupResult &Found,
236                              Scope *S, CXXScopeSpec &SS,
237                              QualType ObjectType,
238                              bool EnteringContext,
239                              bool &MemberOfUnknownSpecialization) {
240  // Determine where to perform name lookup
241  MemberOfUnknownSpecialization = false;
242  DeclContext *LookupCtx = 0;
243  bool isDependent = false;
244  if (!ObjectType.isNull()) {
245    // This nested-name-specifier occurs in a member access expression, e.g.,
246    // x->B::f, and we are looking into the type of the object.
247    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
248    LookupCtx = computeDeclContext(ObjectType);
249    isDependent = ObjectType->isDependentType();
250    assert((isDependent || !ObjectType->isIncompleteType()) &&
251           "Caller should have completed object type");
252  } else if (SS.isSet()) {
253    // This nested-name-specifier occurs after another nested-name-specifier,
254    // so long into the context associated with the prior nested-name-specifier.
255    LookupCtx = computeDeclContext(SS, EnteringContext);
256    isDependent = isDependentScopeSpecifier(SS);
257
258    // The declaration context must be complete.
259    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
260      return;
261  }
262
263  bool ObjectTypeSearchedInScope = false;
264  if (LookupCtx) {
265    // Perform "qualified" name lookup into the declaration context we
266    // computed, which is either the type of the base of a member access
267    // expression or the declaration context associated with a prior
268    // nested-name-specifier.
269    LookupQualifiedName(Found, LookupCtx);
270
271    if (!ObjectType.isNull() && Found.empty()) {
272      // C++ [basic.lookup.classref]p1:
273      //   In a class member access expression (5.2.5), if the . or -> token is
274      //   immediately followed by an identifier followed by a <, the
275      //   identifier must be looked up to determine whether the < is the
276      //   beginning of a template argument list (14.2) or a less-than operator.
277      //   The identifier is first looked up in the class of the object
278      //   expression. If the identifier is not found, it is then looked up in
279      //   the context of the entire postfix-expression and shall name a class
280      //   or function template.
281      if (S) LookupName(Found, S);
282      ObjectTypeSearchedInScope = true;
283    }
284  } else if (isDependent && (!S || ObjectType.isNull())) {
285    // We cannot look into a dependent object type or nested nme
286    // specifier.
287    MemberOfUnknownSpecialization = true;
288    return;
289  } else {
290    // Perform unqualified name lookup in the current scope.
291    LookupName(Found, S);
292  }
293
294  if (Found.empty() && !isDependent) {
295    // If we did not find any names, attempt to correct any typos.
296    DeclarationName Name = Found.getLookupName();
297    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
298                                                false, CTC_CXXCasts)) {
299      FilterAcceptableTemplateNames(Found);
300      if (!Found.empty()) {
301        if (LookupCtx)
302          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
303            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
304            << FixItHint::CreateReplacement(Found.getNameLoc(),
305                                          Found.getLookupName().getAsString());
306        else
307          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
308            << Name << Found.getLookupName()
309            << FixItHint::CreateReplacement(Found.getNameLoc(),
310                                          Found.getLookupName().getAsString());
311        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
312          Diag(Template->getLocation(), diag::note_previous_decl)
313            << Template->getDeclName();
314      }
315    } else {
316      Found.clear();
317      Found.setLookupName(Name);
318    }
319  }
320
321  FilterAcceptableTemplateNames(Found);
322  if (Found.empty()) {
323    if (isDependent)
324      MemberOfUnknownSpecialization = true;
325    return;
326  }
327
328  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
329    // C++ [basic.lookup.classref]p1:
330    //   [...] If the lookup in the class of the object expression finds a
331    //   template, the name is also looked up in the context of the entire
332    //   postfix-expression and [...]
333    //
334    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
335                            LookupOrdinaryName);
336    LookupName(FoundOuter, S);
337    FilterAcceptableTemplateNames(FoundOuter);
338
339    if (FoundOuter.empty()) {
340      //   - if the name is not found, the name found in the class of the
341      //     object expression is used, otherwise
342    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
343      //   - if the name is found in the context of the entire
344      //     postfix-expression and does not name a class template, the name
345      //     found in the class of the object expression is used, otherwise
346    } else if (!Found.isSuppressingDiagnostics()) {
347      //   - if the name found is a class template, it must refer to the same
348      //     entity as the one found in the class of the object expression,
349      //     otherwise the program is ill-formed.
350      if (!Found.isSingleResult() ||
351          Found.getFoundDecl()->getCanonicalDecl()
352            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
353        Diag(Found.getNameLoc(),
354             diag::ext_nested_name_member_ref_lookup_ambiguous)
355          << Found.getLookupName()
356          << ObjectType;
357        Diag(Found.getRepresentativeDecl()->getLocation(),
358             diag::note_ambig_member_ref_object_type)
359          << ObjectType;
360        Diag(FoundOuter.getFoundDecl()->getLocation(),
361             diag::note_ambig_member_ref_scope);
362
363        // Recover by taking the template that we found in the object
364        // expression's type.
365      }
366    }
367  }
368}
369
370/// ActOnDependentIdExpression - Handle a dependent id-expression that
371/// was just parsed.  This is only possible with an explicit scope
372/// specifier naming a dependent type.
373ExprResult
374Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
375                                 const DeclarationNameInfo &NameInfo,
376                                 bool isAddressOfOperand,
377                           const TemplateArgumentListInfo *TemplateArgs) {
378  DeclContext *DC = getFunctionLevelDeclContext();
379
380  if (!isAddressOfOperand &&
381      isa<CXXMethodDecl>(DC) &&
382      cast<CXXMethodDecl>(DC)->isInstance()) {
383    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
384
385    // Since the 'this' expression is synthesized, we don't need to
386    // perform the double-lookup check.
387    NamedDecl *FirstQualifierInScope = 0;
388
389    return Owned(CXXDependentScopeMemberExpr::Create(Context,
390                                                     /*This*/ 0, ThisType,
391                                                     /*IsArrow*/ true,
392                                                     /*Op*/ SourceLocation(),
393                                               SS.getWithLocInContext(Context),
394                                                     FirstQualifierInScope,
395                                                     NameInfo,
396                                                     TemplateArgs));
397  }
398
399  return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
400}
401
402ExprResult
403Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
404                                const DeclarationNameInfo &NameInfo,
405                                const TemplateArgumentListInfo *TemplateArgs) {
406  return Owned(DependentScopeDeclRefExpr::Create(Context,
407                                               SS.getWithLocInContext(Context),
408                                                 NameInfo,
409                                                 TemplateArgs));
410}
411
412/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
413/// that the template parameter 'PrevDecl' is being shadowed by a new
414/// declaration at location Loc. Returns true to indicate that this is
415/// an error, and false otherwise.
416bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
417  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
418
419  // Microsoft Visual C++ permits template parameters to be shadowed.
420  if (getLangOptions().Microsoft)
421    return false;
422
423  // C++ [temp.local]p4:
424  //   A template-parameter shall not be redeclared within its
425  //   scope (including nested scopes).
426  Diag(Loc, diag::err_template_param_shadow)
427    << cast<NamedDecl>(PrevDecl)->getDeclName();
428  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
429  return true;
430}
431
432/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
433/// the parameter D to reference the templated declaration and return a pointer
434/// to the template declaration. Otherwise, do nothing to D and return null.
435TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
436  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
437    D = Temp->getTemplatedDecl();
438    return Temp;
439  }
440  return 0;
441}
442
443ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
444                                             SourceLocation EllipsisLoc) const {
445  assert(Kind == Template &&
446         "Only template template arguments can be pack expansions here");
447  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
448         "Template template argument pack expansion without packs");
449  ParsedTemplateArgument Result(*this);
450  Result.EllipsisLoc = EllipsisLoc;
451  return Result;
452}
453
454static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
455                                            const ParsedTemplateArgument &Arg) {
456
457  switch (Arg.getKind()) {
458  case ParsedTemplateArgument::Type: {
459    TypeSourceInfo *DI;
460    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
461    if (!DI)
462      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
463    return TemplateArgumentLoc(TemplateArgument(T), DI);
464  }
465
466  case ParsedTemplateArgument::NonType: {
467    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
468    return TemplateArgumentLoc(TemplateArgument(E), E);
469  }
470
471  case ParsedTemplateArgument::Template: {
472    TemplateName Template = Arg.getAsTemplate().get();
473    TemplateArgument TArg;
474    if (Arg.getEllipsisLoc().isValid())
475      TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
476    else
477      TArg = Template;
478    return TemplateArgumentLoc(TArg,
479                               Arg.getScopeSpec().getWithLocInContext(
480                                                              SemaRef.Context),
481                               Arg.getLocation(),
482                               Arg.getEllipsisLoc());
483  }
484  }
485
486  llvm_unreachable("Unhandled parsed template argument");
487  return TemplateArgumentLoc();
488}
489
490/// \brief Translates template arguments as provided by the parser
491/// into template arguments used by semantic analysis.
492void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
493                                      TemplateArgumentListInfo &TemplateArgs) {
494 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
495   TemplateArgs.addArgument(translateTemplateArgument(*this,
496                                                      TemplateArgsIn[I]));
497}
498
499/// ActOnTypeParameter - Called when a C++ template type parameter
500/// (e.g., "typename T") has been parsed. Typename specifies whether
501/// the keyword "typename" was used to declare the type parameter
502/// (otherwise, "class" was used), and KeyLoc is the location of the
503/// "class" or "typename" keyword. ParamName is the name of the
504/// parameter (NULL indicates an unnamed template parameter) and
505/// ParamNameLoc is the location of the parameter name (if any).
506/// If the type parameter has a default argument, it will be added
507/// later via ActOnTypeParameterDefault.
508Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
509                               SourceLocation EllipsisLoc,
510                               SourceLocation KeyLoc,
511                               IdentifierInfo *ParamName,
512                               SourceLocation ParamNameLoc,
513                               unsigned Depth, unsigned Position,
514                               SourceLocation EqualLoc,
515                               ParsedType DefaultArg) {
516  assert(S->isTemplateParamScope() &&
517         "Template type parameter not in template parameter scope!");
518  bool Invalid = false;
519
520  if (ParamName) {
521    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
522                                           LookupOrdinaryName,
523                                           ForRedeclaration);
524    if (PrevDecl && PrevDecl->isTemplateParameter())
525      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
526                                                           PrevDecl);
527  }
528
529  SourceLocation Loc = ParamNameLoc;
530  if (!ParamName)
531    Loc = KeyLoc;
532
533  TemplateTypeParmDecl *Param
534    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
535                                   KeyLoc, Loc, Depth, Position, ParamName,
536                                   Typename, Ellipsis);
537  Param->setAccess(AS_public);
538  if (Invalid)
539    Param->setInvalidDecl();
540
541  if (ParamName) {
542    // Add the template parameter into the current scope.
543    S->AddDecl(Param);
544    IdResolver.AddDecl(Param);
545  }
546
547  // C++0x [temp.param]p9:
548  //   A default template-argument may be specified for any kind of
549  //   template-parameter that is not a template parameter pack.
550  if (DefaultArg && Ellipsis) {
551    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
552    DefaultArg = ParsedType();
553  }
554
555  // Handle the default argument, if provided.
556  if (DefaultArg) {
557    TypeSourceInfo *DefaultTInfo;
558    GetTypeFromParser(DefaultArg, &DefaultTInfo);
559
560    assert(DefaultTInfo && "expected source information for type");
561
562    // Check for unexpanded parameter packs.
563    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
564                                        UPPC_DefaultArgument))
565      return Param;
566
567    // Check the template argument itself.
568    if (CheckTemplateArgument(Param, DefaultTInfo)) {
569      Param->setInvalidDecl();
570      return Param;
571    }
572
573    Param->setDefaultArgument(DefaultTInfo, false);
574  }
575
576  return Param;
577}
578
579/// \brief Check that the type of a non-type template parameter is
580/// well-formed.
581///
582/// \returns the (possibly-promoted) parameter type if valid;
583/// otherwise, produces a diagnostic and returns a NULL type.
584QualType
585Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
586  // We don't allow variably-modified types as the type of non-type template
587  // parameters.
588  if (T->isVariablyModifiedType()) {
589    Diag(Loc, diag::err_variably_modified_nontype_template_param)
590      << T;
591    return QualType();
592  }
593
594  // C++ [temp.param]p4:
595  //
596  // A non-type template-parameter shall have one of the following
597  // (optionally cv-qualified) types:
598  //
599  //       -- integral or enumeration type,
600  if (T->isIntegralOrEnumerationType() ||
601      //   -- pointer to object or pointer to function,
602      T->isPointerType() ||
603      //   -- reference to object or reference to function,
604      T->isReferenceType() ||
605      //   -- pointer to member,
606      T->isMemberPointerType() ||
607      //   -- std::nullptr_t.
608      T->isNullPtrType() ||
609      // If T is a dependent type, we can't do the check now, so we
610      // assume that it is well-formed.
611      T->isDependentType())
612    return T;
613  // C++ [temp.param]p8:
614  //
615  //   A non-type template-parameter of type "array of T" or
616  //   "function returning T" is adjusted to be of type "pointer to
617  //   T" or "pointer to function returning T", respectively.
618  else if (T->isArrayType())
619    // FIXME: Keep the type prior to promotion?
620    return Context.getArrayDecayedType(T);
621  else if (T->isFunctionType())
622    // FIXME: Keep the type prior to promotion?
623    return Context.getPointerType(T);
624
625  Diag(Loc, diag::err_template_nontype_parm_bad_type)
626    << T;
627
628  return QualType();
629}
630
631Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
632                                          unsigned Depth,
633                                          unsigned Position,
634                                          SourceLocation EqualLoc,
635                                          Expr *Default) {
636  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
637  QualType T = TInfo->getType();
638
639  assert(S->isTemplateParamScope() &&
640         "Non-type template parameter not in template parameter scope!");
641  bool Invalid = false;
642
643  IdentifierInfo *ParamName = D.getIdentifier();
644  if (ParamName) {
645    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
646                                           LookupOrdinaryName,
647                                           ForRedeclaration);
648    if (PrevDecl && PrevDecl->isTemplateParameter())
649      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
650                                                           PrevDecl);
651  }
652
653  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
654  if (T.isNull()) {
655    T = Context.IntTy; // Recover with an 'int' type.
656    Invalid = true;
657  }
658
659  bool IsParameterPack = D.hasEllipsis();
660  NonTypeTemplateParmDecl *Param
661    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
662                                      D.getSourceRange().getBegin(),
663                                      D.getIdentifierLoc(),
664                                      Depth, Position, ParamName, T,
665                                      IsParameterPack, TInfo);
666  Param->setAccess(AS_public);
667
668  if (Invalid)
669    Param->setInvalidDecl();
670
671  if (D.getIdentifier()) {
672    // Add the template parameter into the current scope.
673    S->AddDecl(Param);
674    IdResolver.AddDecl(Param);
675  }
676
677  // C++0x [temp.param]p9:
678  //   A default template-argument may be specified for any kind of
679  //   template-parameter that is not a template parameter pack.
680  if (Default && IsParameterPack) {
681    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
682    Default = 0;
683  }
684
685  // Check the well-formedness of the default template argument, if provided.
686  if (Default) {
687    // Check for unexpanded parameter packs.
688    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
689      return Param;
690
691    TemplateArgument Converted;
692    ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
693    if (DefaultRes.isInvalid()) {
694      Param->setInvalidDecl();
695      return Param;
696    }
697    Default = DefaultRes.take();
698
699    Param->setDefaultArgument(Default, false);
700  }
701
702  return Param;
703}
704
705/// ActOnTemplateTemplateParameter - Called when a C++ template template
706/// parameter (e.g. T in template <template <typename> class T> class array)
707/// has been parsed. S is the current scope.
708Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
709                                           SourceLocation TmpLoc,
710                                           TemplateParamsTy *Params,
711                                           SourceLocation EllipsisLoc,
712                                           IdentifierInfo *Name,
713                                           SourceLocation NameLoc,
714                                           unsigned Depth,
715                                           unsigned Position,
716                                           SourceLocation EqualLoc,
717                                           ParsedTemplateArgument Default) {
718  assert(S->isTemplateParamScope() &&
719         "Template template parameter not in template parameter scope!");
720
721  // Construct the parameter object.
722  bool IsParameterPack = EllipsisLoc.isValid();
723  TemplateTemplateParmDecl *Param =
724    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
725                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
726                                     Depth, Position, IsParameterPack,
727                                     Name, Params);
728  Param->setAccess(AS_public);
729
730  // If the template template parameter has a name, then link the identifier
731  // into the scope and lookup mechanisms.
732  if (Name) {
733    S->AddDecl(Param);
734    IdResolver.AddDecl(Param);
735  }
736
737  if (Params->size() == 0) {
738    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
739    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
740    Param->setInvalidDecl();
741  }
742
743  // C++0x [temp.param]p9:
744  //   A default template-argument may be specified for any kind of
745  //   template-parameter that is not a template parameter pack.
746  if (IsParameterPack && !Default.isInvalid()) {
747    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
748    Default = ParsedTemplateArgument();
749  }
750
751  if (!Default.isInvalid()) {
752    // Check only that we have a template template argument. We don't want to
753    // try to check well-formedness now, because our template template parameter
754    // might have dependent types in its template parameters, which we wouldn't
755    // be able to match now.
756    //
757    // If none of the template template parameter's template arguments mention
758    // other template parameters, we could actually perform more checking here.
759    // However, it isn't worth doing.
760    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
761    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
762      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
763        << DefaultArg.getSourceRange();
764      return Param;
765    }
766
767    // Check for unexpanded parameter packs.
768    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
769                                        DefaultArg.getArgument().getAsTemplate(),
770                                        UPPC_DefaultArgument))
771      return Param;
772
773    Param->setDefaultArgument(DefaultArg, false);
774  }
775
776  return Param;
777}
778
779/// ActOnTemplateParameterList - Builds a TemplateParameterList that
780/// contains the template parameters in Params/NumParams.
781Sema::TemplateParamsTy *
782Sema::ActOnTemplateParameterList(unsigned Depth,
783                                 SourceLocation ExportLoc,
784                                 SourceLocation TemplateLoc,
785                                 SourceLocation LAngleLoc,
786                                 Decl **Params, unsigned NumParams,
787                                 SourceLocation RAngleLoc) {
788  if (ExportLoc.isValid())
789    Diag(ExportLoc, diag::warn_template_export_unsupported);
790
791  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
792                                       (NamedDecl**)Params, NumParams,
793                                       RAngleLoc);
794}
795
796static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
797  if (SS.isSet())
798    T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
799}
800
801DeclResult
802Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
803                         SourceLocation KWLoc, CXXScopeSpec &SS,
804                         IdentifierInfo *Name, SourceLocation NameLoc,
805                         AttributeList *Attr,
806                         TemplateParameterList *TemplateParams,
807                         AccessSpecifier AS,
808                         unsigned NumOuterTemplateParamLists,
809                         TemplateParameterList** OuterTemplateParamLists) {
810  assert(TemplateParams && TemplateParams->size() > 0 &&
811         "No template parameters");
812  assert(TUK != TUK_Reference && "Can only declare or define class templates");
813  bool Invalid = false;
814
815  // Check that we can declare a template here.
816  if (CheckTemplateDeclScope(S, TemplateParams))
817    return true;
818
819  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
820  assert(Kind != TTK_Enum && "can't build template of enumerated type");
821
822  // There is no such thing as an unnamed class template.
823  if (!Name) {
824    Diag(KWLoc, diag::err_template_unnamed_class);
825    return true;
826  }
827
828  // Find any previous declaration with this name.
829  DeclContext *SemanticContext;
830  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
831                        ForRedeclaration);
832  if (SS.isNotEmpty() && !SS.isInvalid()) {
833    SemanticContext = computeDeclContext(SS, true);
834    if (!SemanticContext) {
835      // FIXME: Produce a reasonable diagnostic here
836      return true;
837    }
838
839    if (RequireCompleteDeclContext(SS, SemanticContext))
840      return true;
841
842    LookupQualifiedName(Previous, SemanticContext);
843  } else {
844    SemanticContext = CurContext;
845    LookupName(Previous, S);
846  }
847
848  if (Previous.isAmbiguous())
849    return true;
850
851  NamedDecl *PrevDecl = 0;
852  if (Previous.begin() != Previous.end())
853    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
854
855  // If there is a previous declaration with the same name, check
856  // whether this is a valid redeclaration.
857  ClassTemplateDecl *PrevClassTemplate
858    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
859
860  // We may have found the injected-class-name of a class template,
861  // class template partial specialization, or class template specialization.
862  // In these cases, grab the template that is being defined or specialized.
863  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
864      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
865    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
866    PrevClassTemplate
867      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
868    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
869      PrevClassTemplate
870        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
871            ->getSpecializedTemplate();
872    }
873  }
874
875  if (TUK == TUK_Friend) {
876    // C++ [namespace.memdef]p3:
877    //   [...] When looking for a prior declaration of a class or a function
878    //   declared as a friend, and when the name of the friend class or
879    //   function is neither a qualified name nor a template-id, scopes outside
880    //   the innermost enclosing namespace scope are not considered.
881    if (!SS.isSet()) {
882      DeclContext *OutermostContext = CurContext;
883      while (!OutermostContext->isFileContext())
884        OutermostContext = OutermostContext->getLookupParent();
885
886      if (PrevDecl &&
887          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
888           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
889        SemanticContext = PrevDecl->getDeclContext();
890      } else {
891        // Declarations in outer scopes don't matter. However, the outermost
892        // context we computed is the semantic context for our new
893        // declaration.
894        PrevDecl = PrevClassTemplate = 0;
895        SemanticContext = OutermostContext;
896      }
897    }
898
899    if (CurContext->isDependentContext()) {
900      // If this is a dependent context, we don't want to link the friend
901      // class template to the template in scope, because that would perform
902      // checking of the template parameter lists that can't be performed
903      // until the outer context is instantiated.
904      PrevDecl = PrevClassTemplate = 0;
905    }
906  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
907    PrevDecl = PrevClassTemplate = 0;
908
909  if (PrevClassTemplate) {
910    // Ensure that the template parameter lists are compatible.
911    if (!TemplateParameterListsAreEqual(TemplateParams,
912                                   PrevClassTemplate->getTemplateParameters(),
913                                        /*Complain=*/true,
914                                        TPL_TemplateMatch))
915      return true;
916
917    // C++ [temp.class]p4:
918    //   In a redeclaration, partial specialization, explicit
919    //   specialization or explicit instantiation of a class template,
920    //   the class-key shall agree in kind with the original class
921    //   template declaration (7.1.5.3).
922    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
923    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
924      Diag(KWLoc, diag::err_use_with_wrong_tag)
925        << Name
926        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
927      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
928      Kind = PrevRecordDecl->getTagKind();
929    }
930
931    // Check for redefinition of this class template.
932    if (TUK == TUK_Definition) {
933      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
934        Diag(NameLoc, diag::err_redefinition) << Name;
935        Diag(Def->getLocation(), diag::note_previous_definition);
936        // FIXME: Would it make sense to try to "forget" the previous
937        // definition, as part of error recovery?
938        return true;
939      }
940    }
941  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
942    // Maybe we will complain about the shadowed template parameter.
943    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
944    // Just pretend that we didn't see the previous declaration.
945    PrevDecl = 0;
946  } else if (PrevDecl) {
947    // C++ [temp]p5:
948    //   A class template shall not have the same name as any other
949    //   template, class, function, object, enumeration, enumerator,
950    //   namespace, or type in the same scope (3.3), except as specified
951    //   in (14.5.4).
952    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
953    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
954    return true;
955  }
956
957  // Check the template parameter list of this declaration, possibly
958  // merging in the template parameter list from the previous class
959  // template declaration.
960  if (CheckTemplateParameterList(TemplateParams,
961            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
962                                 (SS.isSet() && SemanticContext &&
963                                  SemanticContext->isRecord() &&
964                                  SemanticContext->isDependentContext())
965                                   ? TPC_ClassTemplateMember
966                                   : TPC_ClassTemplate))
967    Invalid = true;
968
969  if (SS.isSet()) {
970    // If the name of the template was qualified, we must be defining the
971    // template out-of-line.
972    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
973        !(TUK == TUK_Friend && CurContext->isDependentContext()))
974      Diag(NameLoc, diag::err_member_def_does_not_match)
975        << Name << SemanticContext << SS.getRange();
976  }
977
978  CXXRecordDecl *NewClass =
979    CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
980                          PrevClassTemplate?
981                            PrevClassTemplate->getTemplatedDecl() : 0,
982                          /*DelayTypeCreation=*/true);
983  SetNestedNameSpecifier(NewClass, SS);
984  if (NumOuterTemplateParamLists > 0)
985    NewClass->setTemplateParameterListsInfo(Context,
986                                            NumOuterTemplateParamLists,
987                                            OuterTemplateParamLists);
988
989  ClassTemplateDecl *NewTemplate
990    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
991                                DeclarationName(Name), TemplateParams,
992                                NewClass, PrevClassTemplate);
993  NewClass->setDescribedClassTemplate(NewTemplate);
994
995  // Build the type for the class template declaration now.
996  QualType T = NewTemplate->getInjectedClassNameSpecialization();
997  T = Context.getInjectedClassNameType(NewClass, T);
998  assert(T->isDependentType() && "Class template type is not dependent?");
999  (void)T;
1000
1001  // If we are providing an explicit specialization of a member that is a
1002  // class template, make a note of that.
1003  if (PrevClassTemplate &&
1004      PrevClassTemplate->getInstantiatedFromMemberTemplate())
1005    PrevClassTemplate->setMemberSpecialization();
1006
1007  // Set the access specifier.
1008  if (!Invalid && TUK != TUK_Friend)
1009    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1010
1011  // Set the lexical context of these templates
1012  NewClass->setLexicalDeclContext(CurContext);
1013  NewTemplate->setLexicalDeclContext(CurContext);
1014
1015  if (TUK == TUK_Definition)
1016    NewClass->startDefinition();
1017
1018  if (Attr)
1019    ProcessDeclAttributeList(S, NewClass, Attr);
1020
1021  if (TUK != TUK_Friend)
1022    PushOnScopeChains(NewTemplate, S);
1023  else {
1024    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1025      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1026      NewClass->setAccess(PrevClassTemplate->getAccess());
1027    }
1028
1029    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1030                                       PrevClassTemplate != NULL);
1031
1032    // Friend templates are visible in fairly strange ways.
1033    if (!CurContext->isDependentContext()) {
1034      DeclContext *DC = SemanticContext->getRedeclContext();
1035      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
1036      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1037        PushOnScopeChains(NewTemplate, EnclosingScope,
1038                          /* AddToContext = */ false);
1039    }
1040
1041    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1042                                            NewClass->getLocation(),
1043                                            NewTemplate,
1044                                    /*FIXME:*/NewClass->getLocation());
1045    Friend->setAccess(AS_public);
1046    CurContext->addDecl(Friend);
1047  }
1048
1049  if (Invalid) {
1050    NewTemplate->setInvalidDecl();
1051    NewClass->setInvalidDecl();
1052  }
1053  return NewTemplate;
1054}
1055
1056/// \brief Diagnose the presence of a default template argument on a
1057/// template parameter, which is ill-formed in certain contexts.
1058///
1059/// \returns true if the default template argument should be dropped.
1060static bool DiagnoseDefaultTemplateArgument(Sema &S,
1061                                            Sema::TemplateParamListContext TPC,
1062                                            SourceLocation ParamLoc,
1063                                            SourceRange DefArgRange) {
1064  switch (TPC) {
1065  case Sema::TPC_ClassTemplate:
1066  case Sema::TPC_TypeAliasTemplate:
1067    return false;
1068
1069  case Sema::TPC_FunctionTemplate:
1070  case Sema::TPC_FriendFunctionTemplateDefinition:
1071    // C++ [temp.param]p9:
1072    //   A default template-argument shall not be specified in a
1073    //   function template declaration or a function template
1074    //   definition [...]
1075    //   If a friend function template declaration specifies a default
1076    //   template-argument, that declaration shall be a definition and shall be
1077    //   the only declaration of the function template in the translation unit.
1078    // (C++98/03 doesn't have this wording; see DR226).
1079    if (!S.getLangOptions().CPlusPlus0x)
1080      S.Diag(ParamLoc,
1081             diag::ext_template_parameter_default_in_function_template)
1082        << DefArgRange;
1083    return false;
1084
1085  case Sema::TPC_ClassTemplateMember:
1086    // C++0x [temp.param]p9:
1087    //   A default template-argument shall not be specified in the
1088    //   template-parameter-lists of the definition of a member of a
1089    //   class template that appears outside of the member's class.
1090    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1091      << DefArgRange;
1092    return true;
1093
1094  case Sema::TPC_FriendFunctionTemplate:
1095    // C++ [temp.param]p9:
1096    //   A default template-argument shall not be specified in a
1097    //   friend template declaration.
1098    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1099      << DefArgRange;
1100    return true;
1101
1102    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1103    // for friend function templates if there is only a single
1104    // declaration (and it is a definition). Strange!
1105  }
1106
1107  return false;
1108}
1109
1110/// \brief Check for unexpanded parameter packs within the template parameters
1111/// of a template template parameter, recursively.
1112static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1113                                             TemplateTemplateParmDecl *TTP) {
1114  TemplateParameterList *Params = TTP->getTemplateParameters();
1115  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1116    NamedDecl *P = Params->getParam(I);
1117    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1118      if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1119                                            NTTP->getTypeSourceInfo(),
1120                                      Sema::UPPC_NonTypeTemplateParameterType))
1121        return true;
1122
1123      continue;
1124    }
1125
1126    if (TemplateTemplateParmDecl *InnerTTP
1127                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1128      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1129        return true;
1130  }
1131
1132  return false;
1133}
1134
1135/// \brief Checks the validity of a template parameter list, possibly
1136/// considering the template parameter list from a previous
1137/// declaration.
1138///
1139/// If an "old" template parameter list is provided, it must be
1140/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1141/// template parameter list.
1142///
1143/// \param NewParams Template parameter list for a new template
1144/// declaration. This template parameter list will be updated with any
1145/// default arguments that are carried through from the previous
1146/// template parameter list.
1147///
1148/// \param OldParams If provided, template parameter list from a
1149/// previous declaration of the same template. Default template
1150/// arguments will be merged from the old template parameter list to
1151/// the new template parameter list.
1152///
1153/// \param TPC Describes the context in which we are checking the given
1154/// template parameter list.
1155///
1156/// \returns true if an error occurred, false otherwise.
1157bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1158                                      TemplateParameterList *OldParams,
1159                                      TemplateParamListContext TPC) {
1160  bool Invalid = false;
1161
1162  // C++ [temp.param]p10:
1163  //   The set of default template-arguments available for use with a
1164  //   template declaration or definition is obtained by merging the
1165  //   default arguments from the definition (if in scope) and all
1166  //   declarations in scope in the same way default function
1167  //   arguments are (8.3.6).
1168  bool SawDefaultArgument = false;
1169  SourceLocation PreviousDefaultArgLoc;
1170
1171  bool SawParameterPack = false;
1172  SourceLocation ParameterPackLoc;
1173
1174  // Dummy initialization to avoid warnings.
1175  TemplateParameterList::iterator OldParam = NewParams->end();
1176  if (OldParams)
1177    OldParam = OldParams->begin();
1178
1179  bool RemoveDefaultArguments = false;
1180  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1181                                    NewParamEnd = NewParams->end();
1182       NewParam != NewParamEnd; ++NewParam) {
1183    // Variables used to diagnose redundant default arguments
1184    bool RedundantDefaultArg = false;
1185    SourceLocation OldDefaultLoc;
1186    SourceLocation NewDefaultLoc;
1187
1188    // Variables used to diagnose missing default arguments
1189    bool MissingDefaultArg = false;
1190
1191    // C++0x [temp.param]p11:
1192    //   If a template parameter of a primary class template or alias template
1193    //   is a template parameter pack, it shall be the last template parameter.
1194    if (SawParameterPack &&
1195        (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) {
1196      Diag(ParameterPackLoc,
1197           diag::err_template_param_pack_must_be_last_template_parameter);
1198      Invalid = true;
1199    }
1200
1201    if (TemplateTypeParmDecl *NewTypeParm
1202          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1203      // Check the presence of a default argument here.
1204      if (NewTypeParm->hasDefaultArgument() &&
1205          DiagnoseDefaultTemplateArgument(*this, TPC,
1206                                          NewTypeParm->getLocation(),
1207               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1208                                                       .getSourceRange()))
1209        NewTypeParm->removeDefaultArgument();
1210
1211      // Merge default arguments for template type parameters.
1212      TemplateTypeParmDecl *OldTypeParm
1213          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1214
1215      if (NewTypeParm->isParameterPack()) {
1216        assert(!NewTypeParm->hasDefaultArgument() &&
1217               "Parameter packs can't have a default argument!");
1218        SawParameterPack = true;
1219        ParameterPackLoc = NewTypeParm->getLocation();
1220      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1221                 NewTypeParm->hasDefaultArgument()) {
1222        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1223        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1224        SawDefaultArgument = true;
1225        RedundantDefaultArg = true;
1226        PreviousDefaultArgLoc = NewDefaultLoc;
1227      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1228        // Merge the default argument from the old declaration to the
1229        // new declaration.
1230        SawDefaultArgument = true;
1231        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1232                                        true);
1233        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1234      } else if (NewTypeParm->hasDefaultArgument()) {
1235        SawDefaultArgument = true;
1236        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1237      } else if (SawDefaultArgument)
1238        MissingDefaultArg = true;
1239    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1240               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1241      // Check for unexpanded parameter packs.
1242      if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1243                                          NewNonTypeParm->getTypeSourceInfo(),
1244                                          UPPC_NonTypeTemplateParameterType)) {
1245        Invalid = true;
1246        continue;
1247      }
1248
1249      // Check the presence of a default argument here.
1250      if (NewNonTypeParm->hasDefaultArgument() &&
1251          DiagnoseDefaultTemplateArgument(*this, TPC,
1252                                          NewNonTypeParm->getLocation(),
1253                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1254        NewNonTypeParm->removeDefaultArgument();
1255      }
1256
1257      // Merge default arguments for non-type template parameters
1258      NonTypeTemplateParmDecl *OldNonTypeParm
1259        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1260      if (NewNonTypeParm->isParameterPack()) {
1261        assert(!NewNonTypeParm->hasDefaultArgument() &&
1262               "Parameter packs can't have a default argument!");
1263        SawParameterPack = true;
1264        ParameterPackLoc = NewNonTypeParm->getLocation();
1265      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1266          NewNonTypeParm->hasDefaultArgument()) {
1267        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1268        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1269        SawDefaultArgument = true;
1270        RedundantDefaultArg = true;
1271        PreviousDefaultArgLoc = NewDefaultLoc;
1272      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1273        // Merge the default argument from the old declaration to the
1274        // new declaration.
1275        SawDefaultArgument = true;
1276        // FIXME: We need to create a new kind of "default argument"
1277        // expression that points to a previous non-type template
1278        // parameter.
1279        NewNonTypeParm->setDefaultArgument(
1280                                         OldNonTypeParm->getDefaultArgument(),
1281                                         /*Inherited=*/ true);
1282        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1283      } else if (NewNonTypeParm->hasDefaultArgument()) {
1284        SawDefaultArgument = true;
1285        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1286      } else if (SawDefaultArgument)
1287        MissingDefaultArg = true;
1288    } else {
1289      // Check the presence of a default argument here.
1290      TemplateTemplateParmDecl *NewTemplateParm
1291        = cast<TemplateTemplateParmDecl>(*NewParam);
1292
1293      // Check for unexpanded parameter packs, recursively.
1294      if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1295        Invalid = true;
1296        continue;
1297      }
1298
1299      if (NewTemplateParm->hasDefaultArgument() &&
1300          DiagnoseDefaultTemplateArgument(*this, TPC,
1301                                          NewTemplateParm->getLocation(),
1302                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1303        NewTemplateParm->removeDefaultArgument();
1304
1305      // Merge default arguments for template template parameters
1306      TemplateTemplateParmDecl *OldTemplateParm
1307        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1308      if (NewTemplateParm->isParameterPack()) {
1309        assert(!NewTemplateParm->hasDefaultArgument() &&
1310               "Parameter packs can't have a default argument!");
1311        SawParameterPack = true;
1312        ParameterPackLoc = NewTemplateParm->getLocation();
1313      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1314          NewTemplateParm->hasDefaultArgument()) {
1315        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1316        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1317        SawDefaultArgument = true;
1318        RedundantDefaultArg = true;
1319        PreviousDefaultArgLoc = NewDefaultLoc;
1320      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1321        // Merge the default argument from the old declaration to the
1322        // new declaration.
1323        SawDefaultArgument = true;
1324        // FIXME: We need to create a new kind of "default argument" expression
1325        // that points to a previous template template parameter.
1326        NewTemplateParm->setDefaultArgument(
1327                                          OldTemplateParm->getDefaultArgument(),
1328                                          /*Inherited=*/ true);
1329        PreviousDefaultArgLoc
1330          = OldTemplateParm->getDefaultArgument().getLocation();
1331      } else if (NewTemplateParm->hasDefaultArgument()) {
1332        SawDefaultArgument = true;
1333        PreviousDefaultArgLoc
1334          = NewTemplateParm->getDefaultArgument().getLocation();
1335      } else if (SawDefaultArgument)
1336        MissingDefaultArg = true;
1337    }
1338
1339    if (RedundantDefaultArg) {
1340      // C++ [temp.param]p12:
1341      //   A template-parameter shall not be given default arguments
1342      //   by two different declarations in the same scope.
1343      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1344      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1345      Invalid = true;
1346    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1347      // C++ [temp.param]p11:
1348      //   If a template-parameter of a class template has a default
1349      //   template-argument, each subsequent template-parameter shall either
1350      //   have a default template-argument supplied or be a template parameter
1351      //   pack.
1352      Diag((*NewParam)->getLocation(),
1353           diag::err_template_param_default_arg_missing);
1354      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1355      Invalid = true;
1356      RemoveDefaultArguments = true;
1357    }
1358
1359    // If we have an old template parameter list that we're merging
1360    // in, move on to the next parameter.
1361    if (OldParams)
1362      ++OldParam;
1363  }
1364
1365  // We were missing some default arguments at the end of the list, so remove
1366  // all of the default arguments.
1367  if (RemoveDefaultArguments) {
1368    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1369                                      NewParamEnd = NewParams->end();
1370         NewParam != NewParamEnd; ++NewParam) {
1371      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1372        TTP->removeDefaultArgument();
1373      else if (NonTypeTemplateParmDecl *NTTP
1374                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1375        NTTP->removeDefaultArgument();
1376      else
1377        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1378    }
1379  }
1380
1381  return Invalid;
1382}
1383
1384namespace {
1385
1386/// A class which looks for a use of a certain level of template
1387/// parameter.
1388struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1389  typedef RecursiveASTVisitor<DependencyChecker> super;
1390
1391  unsigned Depth;
1392  bool Match;
1393
1394  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1395    NamedDecl *ND = Params->getParam(0);
1396    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1397      Depth = PD->getDepth();
1398    } else if (NonTypeTemplateParmDecl *PD =
1399                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1400      Depth = PD->getDepth();
1401    } else {
1402      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1403    }
1404  }
1405
1406  bool Matches(unsigned ParmDepth) {
1407    if (ParmDepth >= Depth) {
1408      Match = true;
1409      return true;
1410    }
1411    return false;
1412  }
1413
1414  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1415    return !Matches(T->getDepth());
1416  }
1417
1418  bool TraverseTemplateName(TemplateName N) {
1419    if (TemplateTemplateParmDecl *PD =
1420          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1421      if (Matches(PD->getDepth())) return false;
1422    return super::TraverseTemplateName(N);
1423  }
1424
1425  bool VisitDeclRefExpr(DeclRefExpr *E) {
1426    if (NonTypeTemplateParmDecl *PD =
1427          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1428      if (PD->getDepth() == Depth) {
1429        Match = true;
1430        return false;
1431      }
1432    }
1433    return super::VisitDeclRefExpr(E);
1434  }
1435
1436  bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1437    return TraverseType(T->getInjectedSpecializationType());
1438  }
1439};
1440}
1441
1442/// Determines whether a given type depends on the given parameter
1443/// list.
1444static bool
1445DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1446  DependencyChecker Checker(Params);
1447  Checker.TraverseType(T);
1448  return Checker.Match;
1449}
1450
1451// Find the source range corresponding to the named type in the given
1452// nested-name-specifier, if any.
1453static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1454                                                       QualType T,
1455                                                       const CXXScopeSpec &SS) {
1456  NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1457  while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1458    if (const Type *CurType = NNS->getAsType()) {
1459      if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1460        return NNSLoc.getTypeLoc().getSourceRange();
1461    } else
1462      break;
1463
1464    NNSLoc = NNSLoc.getPrefix();
1465  }
1466
1467  return SourceRange();
1468}
1469
1470/// \brief Match the given template parameter lists to the given scope
1471/// specifier, returning the template parameter list that applies to the
1472/// name.
1473///
1474/// \param DeclStartLoc the start of the declaration that has a scope
1475/// specifier or a template parameter list.
1476///
1477/// \param DeclLoc The location of the declaration itself.
1478///
1479/// \param SS the scope specifier that will be matched to the given template
1480/// parameter lists. This scope specifier precedes a qualified name that is
1481/// being declared.
1482///
1483/// \param ParamLists the template parameter lists, from the outermost to the
1484/// innermost template parameter lists.
1485///
1486/// \param NumParamLists the number of template parameter lists in ParamLists.
1487///
1488/// \param IsFriend Whether to apply the slightly different rules for
1489/// matching template parameters to scope specifiers in friend
1490/// declarations.
1491///
1492/// \param IsExplicitSpecialization will be set true if the entity being
1493/// declared is an explicit specialization, false otherwise.
1494///
1495/// \returns the template parameter list, if any, that corresponds to the
1496/// name that is preceded by the scope specifier @p SS. This template
1497/// parameter list may have template parameters (if we're declaring a
1498/// template) or may have no template parameters (if we're declaring a
1499/// template specialization), or may be NULL (if what we're declaring isn't
1500/// itself a template).
1501TemplateParameterList *
1502Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1503                                              SourceLocation DeclLoc,
1504                                              const CXXScopeSpec &SS,
1505                                          TemplateParameterList **ParamLists,
1506                                              unsigned NumParamLists,
1507                                              bool IsFriend,
1508                                              bool &IsExplicitSpecialization,
1509                                              bool &Invalid) {
1510  IsExplicitSpecialization = false;
1511  Invalid = false;
1512
1513  // The sequence of nested types to which we will match up the template
1514  // parameter lists. We first build this list by starting with the type named
1515  // by the nested-name-specifier and walking out until we run out of types.
1516  llvm::SmallVector<QualType, 4> NestedTypes;
1517  QualType T;
1518  if (SS.getScopeRep()) {
1519    if (CXXRecordDecl *Record
1520              = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1521      T = Context.getTypeDeclType(Record);
1522    else
1523      T = QualType(SS.getScopeRep()->getAsType(), 0);
1524  }
1525
1526  // If we found an explicit specialization that prevents us from needing
1527  // 'template<>' headers, this will be set to the location of that
1528  // explicit specialization.
1529  SourceLocation ExplicitSpecLoc;
1530
1531  while (!T.isNull()) {
1532    NestedTypes.push_back(T);
1533
1534    // Retrieve the parent of a record type.
1535    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1536      // If this type is an explicit specialization, we're done.
1537      if (ClassTemplateSpecializationDecl *Spec
1538          = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1539        if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1540            Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1541          ExplicitSpecLoc = Spec->getLocation();
1542          break;
1543        }
1544      } else if (Record->getTemplateSpecializationKind()
1545                                                == TSK_ExplicitSpecialization) {
1546        ExplicitSpecLoc = Record->getLocation();
1547        break;
1548      }
1549
1550      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1551        T = Context.getTypeDeclType(Parent);
1552      else
1553        T = QualType();
1554      continue;
1555    }
1556
1557    if (const TemplateSpecializationType *TST
1558                                     = T->getAs<TemplateSpecializationType>()) {
1559      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1560        if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1561          T = Context.getTypeDeclType(Parent);
1562        else
1563          T = QualType();
1564        continue;
1565      }
1566    }
1567
1568    // Look one step prior in a dependent template specialization type.
1569    if (const DependentTemplateSpecializationType *DependentTST
1570                          = T->getAs<DependentTemplateSpecializationType>()) {
1571      if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1572        T = QualType(NNS->getAsType(), 0);
1573      else
1574        T = QualType();
1575      continue;
1576    }
1577
1578    // Look one step prior in a dependent name type.
1579    if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1580      if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1581        T = QualType(NNS->getAsType(), 0);
1582      else
1583        T = QualType();
1584      continue;
1585    }
1586
1587    // Retrieve the parent of an enumeration type.
1588    if (const EnumType *EnumT = T->getAs<EnumType>()) {
1589      // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1590      // check here.
1591      EnumDecl *Enum = EnumT->getDecl();
1592
1593      // Get to the parent type.
1594      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1595        T = Context.getTypeDeclType(Parent);
1596      else
1597        T = QualType();
1598      continue;
1599    }
1600
1601    T = QualType();
1602  }
1603  // Reverse the nested types list, since we want to traverse from the outermost
1604  // to the innermost while checking template-parameter-lists.
1605  std::reverse(NestedTypes.begin(), NestedTypes.end());
1606
1607  // C++0x [temp.expl.spec]p17:
1608  //   A member or a member template may be nested within many
1609  //   enclosing class templates. In an explicit specialization for
1610  //   such a member, the member declaration shall be preceded by a
1611  //   template<> for each enclosing class template that is
1612  //   explicitly specialized.
1613  unsigned ParamIdx = 0;
1614  for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1615       ++TypeIdx) {
1616    T = NestedTypes[TypeIdx];
1617
1618    // Whether we expect a 'template<>' header.
1619    bool NeedEmptyTemplateHeader = false;
1620
1621    // Whether we expect a template header with parameters.
1622    bool NeedNonemptyTemplateHeader = false;
1623
1624    // For a dependent type, the set of template parameters that we
1625    // expect to see.
1626    TemplateParameterList *ExpectedTemplateParams = 0;
1627
1628    // C++0x [temp.expl.spec]p15:
1629    //   A member or a member template may be nested within many enclosing
1630    //   class templates. In an explicit specialization for such a member, the
1631    //   member declaration shall be preceded by a template<> for each
1632    //   enclosing class template that is explicitly specialized.
1633    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1634      if (ClassTemplatePartialSpecializationDecl *Partial
1635            = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1636        ExpectedTemplateParams = Partial->getTemplateParameters();
1637        NeedNonemptyTemplateHeader = true;
1638      } else if (Record->isDependentType()) {
1639        if (Record->getDescribedClassTemplate()) {
1640          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1641                                                      ->getTemplateParameters();
1642          NeedNonemptyTemplateHeader = true;
1643        }
1644      } else if (ClassTemplateSpecializationDecl *Spec
1645                     = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1646        // C++0x [temp.expl.spec]p4:
1647        //   Members of an explicitly specialized class template are defined
1648        //   in the same manner as members of normal classes, and not using
1649        //   the template<> syntax.
1650        if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1651          NeedEmptyTemplateHeader = true;
1652        else
1653          break;
1654      } else if (Record->getTemplateSpecializationKind()) {
1655        if (Record->getTemplateSpecializationKind()
1656                                                != TSK_ExplicitSpecialization &&
1657            TypeIdx == NumTypes - 1)
1658          IsExplicitSpecialization = true;
1659
1660        continue;
1661      }
1662    } else if (const TemplateSpecializationType *TST
1663                                     = T->getAs<TemplateSpecializationType>()) {
1664      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1665        ExpectedTemplateParams = Template->getTemplateParameters();
1666        NeedNonemptyTemplateHeader = true;
1667      }
1668    } else if (T->getAs<DependentTemplateSpecializationType>()) {
1669      // FIXME:  We actually could/should check the template arguments here
1670      // against the corresponding template parameter list.
1671      NeedNonemptyTemplateHeader = false;
1672    }
1673
1674    if (NeedEmptyTemplateHeader) {
1675      // If we're on the last of the types, and we need a 'template<>' header
1676      // here, then it's an explicit specialization.
1677      if (TypeIdx == NumTypes - 1)
1678        IsExplicitSpecialization = true;
1679
1680      if (ParamIdx < NumParamLists) {
1681        if (ParamLists[ParamIdx]->size() > 0) {
1682          // The header has template parameters when it shouldn't. Complain.
1683          Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1684               diag::err_template_param_list_matches_nontemplate)
1685            << T
1686            << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1687                           ParamLists[ParamIdx]->getRAngleLoc())
1688            << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1689          Invalid = true;
1690          return 0;
1691        }
1692
1693        // Consume this template header.
1694        ++ParamIdx;
1695        continue;
1696      }
1697
1698      if (!IsFriend) {
1699        // We don't have a template header, but we should.
1700        SourceLocation ExpectedTemplateLoc;
1701        if (NumParamLists > 0)
1702          ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1703        else
1704          ExpectedTemplateLoc = DeclStartLoc;
1705
1706        Diag(DeclLoc, diag::err_template_spec_needs_header)
1707          << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
1708          << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1709      }
1710
1711      continue;
1712    }
1713
1714    if (NeedNonemptyTemplateHeader) {
1715      // In friend declarations we can have template-ids which don't
1716      // depend on the corresponding template parameter lists.  But
1717      // assume that empty parameter lists are supposed to match this
1718      // template-id.
1719      if (IsFriend && T->isDependentType()) {
1720        if (ParamIdx < NumParamLists &&
1721            DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1722          ExpectedTemplateParams = 0;
1723        else
1724          continue;
1725      }
1726
1727      if (ParamIdx < NumParamLists) {
1728        // Check the template parameter list, if we can.
1729        if (ExpectedTemplateParams &&
1730            !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1731                                            ExpectedTemplateParams,
1732                                            true, TPL_TemplateMatch))
1733          Invalid = true;
1734
1735        if (!Invalid &&
1736            CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1737                                       TPC_ClassTemplateMember))
1738          Invalid = true;
1739
1740        ++ParamIdx;
1741        continue;
1742      }
1743
1744      Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1745        << T
1746        << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1747      Invalid = true;
1748      continue;
1749    }
1750  }
1751
1752  // If there were at least as many template-ids as there were template
1753  // parameter lists, then there are no template parameter lists remaining for
1754  // the declaration itself.
1755  if (ParamIdx >= NumParamLists)
1756    return 0;
1757
1758  // If there were too many template parameter lists, complain about that now.
1759  if (ParamIdx < NumParamLists - 1) {
1760    bool HasAnyExplicitSpecHeader = false;
1761    bool AllExplicitSpecHeaders = true;
1762    for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) {
1763      if (ParamLists[I]->size() == 0)
1764        HasAnyExplicitSpecHeader = true;
1765      else
1766        AllExplicitSpecHeaders = false;
1767    }
1768
1769    Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1770         AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers
1771                               : diag::err_template_spec_extra_headers)
1772      << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1773                     ParamLists[NumParamLists - 2]->getRAngleLoc());
1774
1775    // If there was a specialization somewhere, such that 'template<>' is
1776    // not required, and there were any 'template<>' headers, note where the
1777    // specialization occurred.
1778    if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1779      Diag(ExplicitSpecLoc,
1780           diag::note_explicit_template_spec_does_not_need_header)
1781        << NestedTypes.back();
1782
1783    // We have a template parameter list with no corresponding scope, which
1784    // means that the resulting template declaration can't be instantiated
1785    // properly (we'll end up with dependent nodes when we shouldn't).
1786    if (!AllExplicitSpecHeaders)
1787      Invalid = true;
1788  }
1789
1790  // Return the last template parameter list, which corresponds to the
1791  // entity being declared.
1792  return ParamLists[NumParamLists - 1];
1793}
1794
1795void Sema::NoteAllFoundTemplates(TemplateName Name) {
1796  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1797    Diag(Template->getLocation(), diag::note_template_declared_here)
1798      << (isa<FunctionTemplateDecl>(Template)? 0
1799          : isa<ClassTemplateDecl>(Template)? 1
1800          : isa<TypeAliasTemplateDecl>(Template)? 2
1801          : 3)
1802      << Template->getDeclName();
1803    return;
1804  }
1805
1806  if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1807    for (OverloadedTemplateStorage::iterator I = OST->begin(),
1808                                          IEnd = OST->end();
1809         I != IEnd; ++I)
1810      Diag((*I)->getLocation(), diag::note_template_declared_here)
1811        << 0 << (*I)->getDeclName();
1812
1813    return;
1814  }
1815}
1816
1817
1818QualType Sema::CheckTemplateIdType(TemplateName Name,
1819                                   SourceLocation TemplateLoc,
1820                                   TemplateArgumentListInfo &TemplateArgs) {
1821  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
1822  if (DTN && DTN->isIdentifier())
1823    // When building a template-id where the template-name is dependent,
1824    // assume the template is a type template. Either our assumption is
1825    // correct, or the code is ill-formed and will be diagnosed when the
1826    // dependent name is substituted.
1827    return Context.getDependentTemplateSpecializationType(ETK_None,
1828                                                          DTN->getQualifier(),
1829                                                          DTN->getIdentifier(),
1830                                                          TemplateArgs);
1831
1832  TemplateDecl *Template = Name.getAsTemplateDecl();
1833  if (!Template || isa<FunctionTemplateDecl>(Template)) {
1834    // We might have a substituted template template parameter pack. If so,
1835    // build a template specialization type for it.
1836    if (Name.getAsSubstTemplateTemplateParmPack())
1837      return Context.getTemplateSpecializationType(Name, TemplateArgs);
1838
1839    Diag(TemplateLoc, diag::err_template_id_not_a_type)
1840      << Name;
1841    NoteAllFoundTemplates(Name);
1842    return QualType();
1843  }
1844
1845  // Check that the template argument list is well-formed for this
1846  // template.
1847  llvm::SmallVector<TemplateArgument, 4> Converted;
1848  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1849                                false, Converted))
1850    return QualType();
1851
1852  assert((Converted.size() == Template->getTemplateParameters()->size()) &&
1853         "Converted template argument list is too short!");
1854
1855  QualType CanonType;
1856
1857  if (TypeAliasTemplateDecl *AliasTemplate
1858        = dyn_cast<TypeAliasTemplateDecl>(Template)) {
1859    // Find the canonical type for this type alias template specialization.
1860    TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
1861    if (Pattern->isInvalidDecl())
1862      return QualType();
1863
1864    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1865                                      Converted.data(), Converted.size());
1866
1867    // Only substitute for the innermost template argument list.
1868    MultiLevelTemplateArgumentList TemplateArgLists;
1869    TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
1870    unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
1871    for (unsigned I = 0; I < Depth; ++I)
1872      TemplateArgLists.addOuterTemplateArguments(0, 0);
1873
1874    InstantiatingTemplate Inst(*this, TemplateLoc, Template);
1875    CanonType = SubstType(Pattern->getUnderlyingType(),
1876                          TemplateArgLists, AliasTemplate->getLocation(),
1877                          AliasTemplate->getDeclName());
1878    if (CanonType.isNull())
1879      return QualType();
1880  } else if (Name.isDependent() ||
1881             TemplateSpecializationType::anyDependentTemplateArguments(
1882               TemplateArgs)) {
1883    // This class template specialization is a dependent
1884    // type. Therefore, its canonical type is another class template
1885    // specialization type that contains all of the converted
1886    // arguments in canonical form. This ensures that, e.g., A<T> and
1887    // A<T, T> have identical types when A is declared as:
1888    //
1889    //   template<typename T, typename U = T> struct A;
1890    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1891    CanonType = Context.getTemplateSpecializationType(CanonName,
1892                                                      Converted.data(),
1893                                                      Converted.size());
1894
1895    // FIXME: CanonType is not actually the canonical type, and unfortunately
1896    // it is a TemplateSpecializationType that we will never use again.
1897    // In the future, we need to teach getTemplateSpecializationType to only
1898    // build the canonical type and return that to us.
1899    CanonType = Context.getCanonicalType(CanonType);
1900
1901    // This might work out to be a current instantiation, in which
1902    // case the canonical type needs to be the InjectedClassNameType.
1903    //
1904    // TODO: in theory this could be a simple hashtable lookup; most
1905    // changes to CurContext don't change the set of current
1906    // instantiations.
1907    if (isa<ClassTemplateDecl>(Template)) {
1908      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1909        // If we get out to a namespace, we're done.
1910        if (Ctx->isFileContext()) break;
1911
1912        // If this isn't a record, keep looking.
1913        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1914        if (!Record) continue;
1915
1916        // Look for one of the two cases with InjectedClassNameTypes
1917        // and check whether it's the same template.
1918        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1919            !Record->getDescribedClassTemplate())
1920          continue;
1921
1922        // Fetch the injected class name type and check whether its
1923        // injected type is equal to the type we just built.
1924        QualType ICNT = Context.getTypeDeclType(Record);
1925        QualType Injected = cast<InjectedClassNameType>(ICNT)
1926          ->getInjectedSpecializationType();
1927
1928        if (CanonType != Injected->getCanonicalTypeInternal())
1929          continue;
1930
1931        // If so, the canonical type of this TST is the injected
1932        // class name type of the record we just found.
1933        assert(ICNT.isCanonical());
1934        CanonType = ICNT;
1935        break;
1936      }
1937    }
1938  } else if (ClassTemplateDecl *ClassTemplate
1939               = dyn_cast<ClassTemplateDecl>(Template)) {
1940    // Find the class template specialization declaration that
1941    // corresponds to these arguments.
1942    void *InsertPos = 0;
1943    ClassTemplateSpecializationDecl *Decl
1944      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
1945                                          InsertPos);
1946    if (!Decl) {
1947      // This is the first time we have referenced this class template
1948      // specialization. Create the canonical declaration and add it to
1949      // the set of specializations.
1950      Decl = ClassTemplateSpecializationDecl::Create(Context,
1951                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1952                                                ClassTemplate->getDeclContext(),
1953                                                ClassTemplate->getLocation(),
1954                                                ClassTemplate->getLocation(),
1955                                                     ClassTemplate,
1956                                                     Converted.data(),
1957                                                     Converted.size(), 0);
1958      ClassTemplate->AddSpecialization(Decl, InsertPos);
1959      Decl->setLexicalDeclContext(CurContext);
1960    }
1961
1962    CanonType = Context.getTypeDeclType(Decl);
1963    assert(isa<RecordType>(CanonType) &&
1964           "type of non-dependent specialization is not a RecordType");
1965  }
1966
1967  // Build the fully-sugared type for this class template
1968  // specialization, which refers back to the class template
1969  // specialization we created or found.
1970  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1971}
1972
1973TypeResult
1974Sema::ActOnTemplateIdType(CXXScopeSpec &SS,
1975                          TemplateTy TemplateD, SourceLocation TemplateLoc,
1976                          SourceLocation LAngleLoc,
1977                          ASTTemplateArgsPtr TemplateArgsIn,
1978                          SourceLocation RAngleLoc) {
1979  if (SS.isInvalid())
1980    return true;
1981
1982  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1983
1984  // Translate the parser's template argument list in our AST format.
1985  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1986  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1987
1988  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
1989    QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
1990                                                           DTN->getQualifier(),
1991                                                           DTN->getIdentifier(),
1992                                                                TemplateArgs);
1993
1994    // Build type-source information.
1995    TypeLocBuilder TLB;
1996    DependentTemplateSpecializationTypeLoc SpecTL
1997      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
1998    SpecTL.setKeywordLoc(SourceLocation());
1999    SpecTL.setNameLoc(TemplateLoc);
2000    SpecTL.setLAngleLoc(LAngleLoc);
2001    SpecTL.setRAngleLoc(RAngleLoc);
2002    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2003    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2004      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2005    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2006  }
2007
2008  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2009  TemplateArgsIn.release();
2010
2011  if (Result.isNull())
2012    return true;
2013
2014  // Build type-source information.
2015  TypeLocBuilder TLB;
2016  TemplateSpecializationTypeLoc SpecTL
2017    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2018  SpecTL.setTemplateNameLoc(TemplateLoc);
2019  SpecTL.setLAngleLoc(LAngleLoc);
2020  SpecTL.setRAngleLoc(RAngleLoc);
2021  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2022    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2023
2024  if (SS.isNotEmpty()) {
2025    // Create an elaborated-type-specifier containing the nested-name-specifier.
2026    Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2027    ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2028    ElabTL.setKeywordLoc(SourceLocation());
2029    ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2030  }
2031
2032  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2033}
2034
2035TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2036                                        TypeSpecifierType TagSpec,
2037                                        SourceLocation TagLoc,
2038                                        CXXScopeSpec &SS,
2039                                        TemplateTy TemplateD,
2040                                        SourceLocation TemplateLoc,
2041                                        SourceLocation LAngleLoc,
2042                                        ASTTemplateArgsPtr TemplateArgsIn,
2043                                        SourceLocation RAngleLoc) {
2044  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2045
2046  // Translate the parser's template argument list in our AST format.
2047  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2048  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2049
2050  // Determine the tag kind
2051  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2052  ElaboratedTypeKeyword Keyword
2053    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2054
2055  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2056    QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2057                                                          DTN->getQualifier(),
2058                                                          DTN->getIdentifier(),
2059                                                                TemplateArgs);
2060
2061    // Build type-source information.
2062    TypeLocBuilder TLB;
2063    DependentTemplateSpecializationTypeLoc SpecTL
2064    = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2065    SpecTL.setKeywordLoc(TagLoc);
2066    SpecTL.setNameLoc(TemplateLoc);
2067    SpecTL.setLAngleLoc(LAngleLoc);
2068    SpecTL.setRAngleLoc(RAngleLoc);
2069    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2070    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2071      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2072    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2073  }
2074
2075  if (TypeAliasTemplateDecl *TAT =
2076        dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2077    // C++0x [dcl.type.elab]p2:
2078    //   If the identifier resolves to a typedef-name or the simple-template-id
2079    //   resolves to an alias template specialization, the
2080    //   elaborated-type-specifier is ill-formed.
2081    Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2082    Diag(TAT->getLocation(), diag::note_declared_at);
2083  }
2084
2085  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2086  if (Result.isNull())
2087    return TypeResult();
2088
2089  // Check the tag kind
2090  if (const RecordType *RT = Result->getAs<RecordType>()) {
2091    RecordDecl *D = RT->getDecl();
2092
2093    IdentifierInfo *Id = D->getIdentifier();
2094    assert(Id && "templated class must have an identifier");
2095
2096    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
2097      Diag(TagLoc, diag::err_use_with_wrong_tag)
2098        << Result
2099        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2100      Diag(D->getLocation(), diag::note_previous_use);
2101    }
2102  }
2103
2104  // Provide source-location information for the template specialization.
2105  TypeLocBuilder TLB;
2106  TemplateSpecializationTypeLoc SpecTL
2107    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2108  SpecTL.setTemplateNameLoc(TemplateLoc);
2109  SpecTL.setLAngleLoc(LAngleLoc);
2110  SpecTL.setRAngleLoc(RAngleLoc);
2111  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2112    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2113
2114  // Construct an elaborated type containing the nested-name-specifier (if any)
2115  // and keyword.
2116  Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2117  ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2118  ElabTL.setKeywordLoc(TagLoc);
2119  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2120  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2121}
2122
2123ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2124                                     LookupResult &R,
2125                                     bool RequiresADL,
2126                                 const TemplateArgumentListInfo &TemplateArgs) {
2127  // FIXME: Can we do any checking at this point? I guess we could check the
2128  // template arguments that we have against the template name, if the template
2129  // name refers to a single template. That's not a terribly common case,
2130  // though.
2131  // foo<int> could identify a single function unambiguously
2132  // This approach does NOT work, since f<int>(1);
2133  // gets resolved prior to resorting to overload resolution
2134  // i.e., template<class T> void f(double);
2135  //       vs template<class T, class U> void f(U);
2136
2137  // These should be filtered out by our callers.
2138  assert(!R.empty() && "empty lookup results when building templateid");
2139  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2140
2141  // We don't want lookup warnings at this point.
2142  R.suppressDiagnostics();
2143
2144  UnresolvedLookupExpr *ULE
2145    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2146                                   SS.getWithLocInContext(Context),
2147                                   R.getLookupNameInfo(),
2148                                   RequiresADL, TemplateArgs,
2149                                   R.begin(), R.end());
2150
2151  return Owned(ULE);
2152}
2153
2154// We actually only call this from template instantiation.
2155ExprResult
2156Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2157                                   const DeclarationNameInfo &NameInfo,
2158                             const TemplateArgumentListInfo &TemplateArgs) {
2159  DeclContext *DC;
2160  if (!(DC = computeDeclContext(SS, false)) ||
2161      DC->isDependentContext() ||
2162      RequireCompleteDeclContext(SS, DC))
2163    return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
2164
2165  bool MemberOfUnknownSpecialization;
2166  LookupResult R(*this, NameInfo, LookupOrdinaryName);
2167  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
2168                     MemberOfUnknownSpecialization);
2169
2170  if (R.isAmbiguous())
2171    return ExprError();
2172
2173  if (R.empty()) {
2174    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2175      << NameInfo.getName() << SS.getRange();
2176    return ExprError();
2177  }
2178
2179  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2180    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2181      << (NestedNameSpecifier*) SS.getScopeRep()
2182      << NameInfo.getName() << SS.getRange();
2183    Diag(Temp->getLocation(), diag::note_referenced_class_template);
2184    return ExprError();
2185  }
2186
2187  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
2188}
2189
2190/// \brief Form a dependent template name.
2191///
2192/// This action forms a dependent template name given the template
2193/// name and its (presumably dependent) scope specifier. For
2194/// example, given "MetaFun::template apply", the scope specifier \p
2195/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2196/// of the "template" keyword, and "apply" is the \p Name.
2197TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2198                                                  SourceLocation TemplateKWLoc,
2199                                                  CXXScopeSpec &SS,
2200                                                  UnqualifiedId &Name,
2201                                                  ParsedType ObjectType,
2202                                                  bool EnteringContext,
2203                                                  TemplateTy &Result) {
2204  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
2205      !getLangOptions().CPlusPlus0x)
2206    Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
2207      << FixItHint::CreateRemoval(TemplateKWLoc);
2208
2209  DeclContext *LookupCtx = 0;
2210  if (SS.isSet())
2211    LookupCtx = computeDeclContext(SS, EnteringContext);
2212  if (!LookupCtx && ObjectType)
2213    LookupCtx = computeDeclContext(ObjectType.get());
2214  if (LookupCtx) {
2215    // C++0x [temp.names]p5:
2216    //   If a name prefixed by the keyword template is not the name of
2217    //   a template, the program is ill-formed. [Note: the keyword
2218    //   template may not be applied to non-template members of class
2219    //   templates. -end note ] [ Note: as is the case with the
2220    //   typename prefix, the template prefix is allowed in cases
2221    //   where it is not strictly necessary; i.e., when the
2222    //   nested-name-specifier or the expression on the left of the ->
2223    //   or . is not dependent on a template-parameter, or the use
2224    //   does not appear in the scope of a template. -end note]
2225    //
2226    // Note: C++03 was more strict here, because it banned the use of
2227    // the "template" keyword prior to a template-name that was not a
2228    // dependent name. C++ DR468 relaxed this requirement (the
2229    // "template" keyword is now permitted). We follow the C++0x
2230    // rules, even in C++03 mode with a warning, retroactively applying the DR.
2231    bool MemberOfUnknownSpecialization;
2232    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
2233                                          ObjectType, EnteringContext, Result,
2234                                          MemberOfUnknownSpecialization);
2235    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2236        isa<CXXRecordDecl>(LookupCtx) &&
2237        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2238         cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2239      // This is a dependent template. Handle it below.
2240    } else if (TNK == TNK_Non_template) {
2241      Diag(Name.getSourceRange().getBegin(),
2242           diag::err_template_kw_refers_to_non_template)
2243        << GetNameFromUnqualifiedId(Name).getName()
2244        << Name.getSourceRange()
2245        << TemplateKWLoc;
2246      return TNK_Non_template;
2247    } else {
2248      // We found something; return it.
2249      return TNK;
2250    }
2251  }
2252
2253  NestedNameSpecifier *Qualifier
2254    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2255
2256  switch (Name.getKind()) {
2257  case UnqualifiedId::IK_Identifier:
2258    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2259                                                              Name.Identifier));
2260    return TNK_Dependent_template_name;
2261
2262  case UnqualifiedId::IK_OperatorFunctionId:
2263    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2264                                             Name.OperatorFunctionId.Operator));
2265    return TNK_Dependent_template_name;
2266
2267  case UnqualifiedId::IK_LiteralOperatorId:
2268    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
2269
2270  default:
2271    break;
2272  }
2273
2274  Diag(Name.getSourceRange().getBegin(),
2275       diag::err_template_kw_refers_to_non_template)
2276    << GetNameFromUnqualifiedId(Name).getName()
2277    << Name.getSourceRange()
2278    << TemplateKWLoc;
2279  return TNK_Non_template;
2280}
2281
2282bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2283                                     const TemplateArgumentLoc &AL,
2284                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2285  const TemplateArgument &Arg = AL.getArgument();
2286
2287  // Check template type parameter.
2288  switch(Arg.getKind()) {
2289  case TemplateArgument::Type:
2290    // C++ [temp.arg.type]p1:
2291    //   A template-argument for a template-parameter which is a
2292    //   type shall be a type-id.
2293    break;
2294  case TemplateArgument::Template: {
2295    // We have a template type parameter but the template argument
2296    // is a template without any arguments.
2297    SourceRange SR = AL.getSourceRange();
2298    TemplateName Name = Arg.getAsTemplate();
2299    Diag(SR.getBegin(), diag::err_template_missing_args)
2300      << Name << SR;
2301    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2302      Diag(Decl->getLocation(), diag::note_template_decl_here);
2303
2304    return true;
2305  }
2306  default: {
2307    // We have a template type parameter but the template argument
2308    // is not a type.
2309    SourceRange SR = AL.getSourceRange();
2310    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2311    Diag(Param->getLocation(), diag::note_template_param_here);
2312
2313    return true;
2314  }
2315  }
2316
2317  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2318    return true;
2319
2320  // Add the converted template type argument.
2321  Converted.push_back(
2322                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
2323  return false;
2324}
2325
2326/// \brief Substitute template arguments into the default template argument for
2327/// the given template type parameter.
2328///
2329/// \param SemaRef the semantic analysis object for which we are performing
2330/// the substitution.
2331///
2332/// \param Template the template that we are synthesizing template arguments
2333/// for.
2334///
2335/// \param TemplateLoc the location of the template name that started the
2336/// template-id we are checking.
2337///
2338/// \param RAngleLoc the location of the right angle bracket ('>') that
2339/// terminates the template-id.
2340///
2341/// \param Param the template template parameter whose default we are
2342/// substituting into.
2343///
2344/// \param Converted the list of template arguments provided for template
2345/// parameters that precede \p Param in the template parameter list.
2346/// \returns the substituted template argument, or NULL if an error occurred.
2347static TypeSourceInfo *
2348SubstDefaultTemplateArgument(Sema &SemaRef,
2349                             TemplateDecl *Template,
2350                             SourceLocation TemplateLoc,
2351                             SourceLocation RAngleLoc,
2352                             TemplateTypeParmDecl *Param,
2353                         llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2354  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2355
2356  // If the argument type is dependent, instantiate it now based
2357  // on the previously-computed template arguments.
2358  if (ArgType->getType()->isDependentType()) {
2359    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2360                                      Converted.data(), Converted.size());
2361
2362    MultiLevelTemplateArgumentList AllTemplateArgs
2363      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2364
2365    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2366                                     Template, Converted.data(),
2367                                     Converted.size(),
2368                                     SourceRange(TemplateLoc, RAngleLoc));
2369
2370    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2371                                Param->getDefaultArgumentLoc(),
2372                                Param->getDeclName());
2373  }
2374
2375  return ArgType;
2376}
2377
2378/// \brief Substitute template arguments into the default template argument for
2379/// the given non-type template parameter.
2380///
2381/// \param SemaRef the semantic analysis object for which we are performing
2382/// the substitution.
2383///
2384/// \param Template the template that we are synthesizing template arguments
2385/// for.
2386///
2387/// \param TemplateLoc the location of the template name that started the
2388/// template-id we are checking.
2389///
2390/// \param RAngleLoc the location of the right angle bracket ('>') that
2391/// terminates the template-id.
2392///
2393/// \param Param the non-type template parameter whose default we are
2394/// substituting into.
2395///
2396/// \param Converted the list of template arguments provided for template
2397/// parameters that precede \p Param in the template parameter list.
2398///
2399/// \returns the substituted template argument, or NULL if an error occurred.
2400static ExprResult
2401SubstDefaultTemplateArgument(Sema &SemaRef,
2402                             TemplateDecl *Template,
2403                             SourceLocation TemplateLoc,
2404                             SourceLocation RAngleLoc,
2405                             NonTypeTemplateParmDecl *Param,
2406                        llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2407  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2408                                    Converted.data(), Converted.size());
2409
2410  MultiLevelTemplateArgumentList AllTemplateArgs
2411    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2412
2413  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2414                                   Template, Converted.data(),
2415                                   Converted.size(),
2416                                   SourceRange(TemplateLoc, RAngleLoc));
2417
2418  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2419}
2420
2421/// \brief Substitute template arguments into the default template argument for
2422/// the given template template parameter.
2423///
2424/// \param SemaRef the semantic analysis object for which we are performing
2425/// the substitution.
2426///
2427/// \param Template the template that we are synthesizing template arguments
2428/// for.
2429///
2430/// \param TemplateLoc the location of the template name that started the
2431/// template-id we are checking.
2432///
2433/// \param RAngleLoc the location of the right angle bracket ('>') that
2434/// terminates the template-id.
2435///
2436/// \param Param the template template parameter whose default we are
2437/// substituting into.
2438///
2439/// \param Converted the list of template arguments provided for template
2440/// parameters that precede \p Param in the template parameter list.
2441///
2442/// \param QualifierLoc Will be set to the nested-name-specifier (with
2443/// source-location information) that precedes the template name.
2444///
2445/// \returns the substituted template argument, or NULL if an error occurred.
2446static TemplateName
2447SubstDefaultTemplateArgument(Sema &SemaRef,
2448                             TemplateDecl *Template,
2449                             SourceLocation TemplateLoc,
2450                             SourceLocation RAngleLoc,
2451                             TemplateTemplateParmDecl *Param,
2452                       llvm::SmallVectorImpl<TemplateArgument> &Converted,
2453                             NestedNameSpecifierLoc &QualifierLoc) {
2454  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2455                                    Converted.data(), Converted.size());
2456
2457  MultiLevelTemplateArgumentList AllTemplateArgs
2458    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2459
2460  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2461                                   Template, Converted.data(),
2462                                   Converted.size(),
2463                                   SourceRange(TemplateLoc, RAngleLoc));
2464
2465  // Substitute into the nested-name-specifier first,
2466  QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
2467  if (QualifierLoc) {
2468    QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2469                                                       AllTemplateArgs);
2470    if (!QualifierLoc)
2471      return TemplateName();
2472  }
2473
2474  return SemaRef.SubstTemplateName(QualifierLoc,
2475                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2476                              Param->getDefaultArgument().getTemplateNameLoc(),
2477                                   AllTemplateArgs);
2478}
2479
2480/// \brief If the given template parameter has a default template
2481/// argument, substitute into that default template argument and
2482/// return the corresponding template argument.
2483TemplateArgumentLoc
2484Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2485                                              SourceLocation TemplateLoc,
2486                                              SourceLocation RAngleLoc,
2487                                              Decl *Param,
2488                      llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2489   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2490    if (!TypeParm->hasDefaultArgument())
2491      return TemplateArgumentLoc();
2492
2493    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2494                                                      TemplateLoc,
2495                                                      RAngleLoc,
2496                                                      TypeParm,
2497                                                      Converted);
2498    if (DI)
2499      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2500
2501    return TemplateArgumentLoc();
2502  }
2503
2504  if (NonTypeTemplateParmDecl *NonTypeParm
2505        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2506    if (!NonTypeParm->hasDefaultArgument())
2507      return TemplateArgumentLoc();
2508
2509    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2510                                                  TemplateLoc,
2511                                                  RAngleLoc,
2512                                                  NonTypeParm,
2513                                                  Converted);
2514    if (Arg.isInvalid())
2515      return TemplateArgumentLoc();
2516
2517    Expr *ArgE = Arg.takeAs<Expr>();
2518    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2519  }
2520
2521  TemplateTemplateParmDecl *TempTempParm
2522    = cast<TemplateTemplateParmDecl>(Param);
2523  if (!TempTempParm->hasDefaultArgument())
2524    return TemplateArgumentLoc();
2525
2526
2527  NestedNameSpecifierLoc QualifierLoc;
2528  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2529                                                    TemplateLoc,
2530                                                    RAngleLoc,
2531                                                    TempTempParm,
2532                                                    Converted,
2533                                                    QualifierLoc);
2534  if (TName.isNull())
2535    return TemplateArgumentLoc();
2536
2537  return TemplateArgumentLoc(TemplateArgument(TName),
2538                TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
2539                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2540}
2541
2542/// \brief Check that the given template argument corresponds to the given
2543/// template parameter.
2544///
2545/// \param Param The template parameter against which the argument will be
2546/// checked.
2547///
2548/// \param Arg The template argument.
2549///
2550/// \param Template The template in which the template argument resides.
2551///
2552/// \param TemplateLoc The location of the template name for the template
2553/// whose argument list we're matching.
2554///
2555/// \param RAngleLoc The location of the right angle bracket ('>') that closes
2556/// the template argument list.
2557///
2558/// \param ArgumentPackIndex The index into the argument pack where this
2559/// argument will be placed. Only valid if the parameter is a parameter pack.
2560///
2561/// \param Converted The checked, converted argument will be added to the
2562/// end of this small vector.
2563///
2564/// \param CTAK Describes how we arrived at this particular template argument:
2565/// explicitly written, deduced, etc.
2566///
2567/// \returns true on error, false otherwise.
2568bool Sema::CheckTemplateArgument(NamedDecl *Param,
2569                                 const TemplateArgumentLoc &Arg,
2570                                 NamedDecl *Template,
2571                                 SourceLocation TemplateLoc,
2572                                 SourceLocation RAngleLoc,
2573                                 unsigned ArgumentPackIndex,
2574                            llvm::SmallVectorImpl<TemplateArgument> &Converted,
2575                                 CheckTemplateArgumentKind CTAK) {
2576  // Check template type parameters.
2577  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2578    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2579
2580  // Check non-type template parameters.
2581  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2582    // Do substitution on the type of the non-type template parameter
2583    // with the template arguments we've seen thus far.  But if the
2584    // template has a dependent context then we cannot substitute yet.
2585    QualType NTTPType = NTTP->getType();
2586    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
2587      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
2588
2589    if (NTTPType->isDependentType() &&
2590        !isa<TemplateTemplateParmDecl>(Template) &&
2591        !Template->getDeclContext()->isDependentContext()) {
2592      // Do substitution on the type of the non-type template parameter.
2593      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2594                                 NTTP, Converted.data(), Converted.size(),
2595                                 SourceRange(TemplateLoc, RAngleLoc));
2596
2597      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2598                                        Converted.data(), Converted.size());
2599      NTTPType = SubstType(NTTPType,
2600                           MultiLevelTemplateArgumentList(TemplateArgs),
2601                           NTTP->getLocation(),
2602                           NTTP->getDeclName());
2603      // If that worked, check the non-type template parameter type
2604      // for validity.
2605      if (!NTTPType.isNull())
2606        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2607                                                     NTTP->getLocation());
2608      if (NTTPType.isNull())
2609        return true;
2610    }
2611
2612    switch (Arg.getArgument().getKind()) {
2613    case TemplateArgument::Null:
2614      assert(false && "Should never see a NULL template argument here");
2615      return true;
2616
2617    case TemplateArgument::Expression: {
2618      TemplateArgument Result;
2619      ExprResult Res =
2620        CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
2621                              Result, CTAK);
2622      if (Res.isInvalid())
2623        return true;
2624
2625      Converted.push_back(Result);
2626      break;
2627    }
2628
2629    case TemplateArgument::Declaration:
2630    case TemplateArgument::Integral:
2631      // We've already checked this template argument, so just copy
2632      // it to the list of converted arguments.
2633      Converted.push_back(Arg.getArgument());
2634      break;
2635
2636    case TemplateArgument::Template:
2637    case TemplateArgument::TemplateExpansion:
2638      // We were given a template template argument. It may not be ill-formed;
2639      // see below.
2640      if (DependentTemplateName *DTN
2641            = Arg.getArgument().getAsTemplateOrTemplatePattern()
2642                                              .getAsDependentTemplateName()) {
2643        // We have a template argument such as \c T::template X, which we
2644        // parsed as a template template argument. However, since we now
2645        // know that we need a non-type template argument, convert this
2646        // template name into an expression.
2647
2648        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2649                                     Arg.getTemplateNameLoc());
2650
2651        CXXScopeSpec SS;
2652        SS.Adopt(Arg.getTemplateQualifierLoc());
2653        ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
2654                                                SS.getWithLocInContext(Context),
2655                                                    NameInfo));
2656
2657        // If we parsed the template argument as a pack expansion, create a
2658        // pack expansion expression.
2659        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2660          E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
2661          if (E.isInvalid())
2662            return true;
2663        }
2664
2665        TemplateArgument Result;
2666        E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
2667        if (E.isInvalid())
2668          return true;
2669
2670        Converted.push_back(Result);
2671        break;
2672      }
2673
2674      // We have a template argument that actually does refer to a class
2675      // template, alias template, or template template parameter, and
2676      // therefore cannot be a non-type template argument.
2677      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2678        << Arg.getSourceRange();
2679
2680      Diag(Param->getLocation(), diag::note_template_param_here);
2681      return true;
2682
2683    case TemplateArgument::Type: {
2684      // We have a non-type template parameter but the template
2685      // argument is a type.
2686
2687      // C++ [temp.arg]p2:
2688      //   In a template-argument, an ambiguity between a type-id and
2689      //   an expression is resolved to a type-id, regardless of the
2690      //   form of the corresponding template-parameter.
2691      //
2692      // We warn specifically about this case, since it can be rather
2693      // confusing for users.
2694      QualType T = Arg.getArgument().getAsType();
2695      SourceRange SR = Arg.getSourceRange();
2696      if (T->isFunctionType())
2697        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2698      else
2699        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2700      Diag(Param->getLocation(), diag::note_template_param_here);
2701      return true;
2702    }
2703
2704    case TemplateArgument::Pack:
2705      llvm_unreachable("Caller must expand template argument packs");
2706      break;
2707    }
2708
2709    return false;
2710  }
2711
2712
2713  // Check template template parameters.
2714  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2715
2716  // Substitute into the template parameter list of the template
2717  // template parameter, since previously-supplied template arguments
2718  // may appear within the template template parameter.
2719  {
2720    // Set up a template instantiation context.
2721    LocalInstantiationScope Scope(*this);
2722    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2723                               TempParm, Converted.data(), Converted.size(),
2724                               SourceRange(TemplateLoc, RAngleLoc));
2725
2726    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2727                                      Converted.data(), Converted.size());
2728    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2729                      SubstDecl(TempParm, CurContext,
2730                                MultiLevelTemplateArgumentList(TemplateArgs)));
2731    if (!TempParm)
2732      return true;
2733  }
2734
2735  switch (Arg.getArgument().getKind()) {
2736  case TemplateArgument::Null:
2737    assert(false && "Should never see a NULL template argument here");
2738    return true;
2739
2740  case TemplateArgument::Template:
2741  case TemplateArgument::TemplateExpansion:
2742    if (CheckTemplateArgument(TempParm, Arg))
2743      return true;
2744
2745    Converted.push_back(Arg.getArgument());
2746    break;
2747
2748  case TemplateArgument::Expression:
2749  case TemplateArgument::Type:
2750    // We have a template template parameter but the template
2751    // argument does not refer to a template.
2752    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
2753      << getLangOptions().CPlusPlus0x;
2754    return true;
2755
2756  case TemplateArgument::Declaration:
2757    llvm_unreachable(
2758                       "Declaration argument with template template parameter");
2759    break;
2760  case TemplateArgument::Integral:
2761    llvm_unreachable(
2762                          "Integral argument with template template parameter");
2763    break;
2764
2765  case TemplateArgument::Pack:
2766    llvm_unreachable("Caller must expand template argument packs");
2767    break;
2768  }
2769
2770  return false;
2771}
2772
2773/// \brief Check that the given template argument list is well-formed
2774/// for specializing the given template.
2775bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2776                                     SourceLocation TemplateLoc,
2777                                     TemplateArgumentListInfo &TemplateArgs,
2778                                     bool PartialTemplateArgs,
2779                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2780  TemplateParameterList *Params = Template->getTemplateParameters();
2781  unsigned NumParams = Params->size();
2782  unsigned NumArgs = TemplateArgs.size();
2783  bool Invalid = false;
2784
2785  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2786
2787  bool HasParameterPack =
2788    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2789
2790  if ((NumArgs > NumParams && !HasParameterPack) ||
2791      (NumArgs < Params->getMinRequiredArguments() &&
2792       !PartialTemplateArgs)) {
2793    // FIXME: point at either the first arg beyond what we can handle,
2794    // or the '>', depending on whether we have too many or too few
2795    // arguments.
2796    SourceRange Range;
2797    if (NumArgs > NumParams)
2798      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2799    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2800      << (NumArgs > NumParams)
2801      << (isa<ClassTemplateDecl>(Template)? 0 :
2802          isa<FunctionTemplateDecl>(Template)? 1 :
2803          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2804      << Template << Range;
2805    Diag(Template->getLocation(), diag::note_template_decl_here)
2806      << Params->getSourceRange();
2807    Invalid = true;
2808  }
2809
2810  // C++ [temp.arg]p1:
2811  //   [...] The type and form of each template-argument specified in
2812  //   a template-id shall match the type and form specified for the
2813  //   corresponding parameter declared by the template in its
2814  //   template-parameter-list.
2815  bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
2816  llvm::SmallVector<TemplateArgument, 2> ArgumentPack;
2817  TemplateParameterList::iterator Param = Params->begin(),
2818                               ParamEnd = Params->end();
2819  unsigned ArgIdx = 0;
2820  LocalInstantiationScope InstScope(*this, true);
2821  while (Param != ParamEnd) {
2822    if (ArgIdx > NumArgs && PartialTemplateArgs)
2823      break;
2824
2825    if (ArgIdx < NumArgs) {
2826      // If we have an expanded parameter pack, make sure we don't have too
2827      // many arguments.
2828      if (NonTypeTemplateParmDecl *NTTP
2829                                = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2830        if (NTTP->isExpandedParameterPack() &&
2831            ArgumentPack.size() >= NTTP->getNumExpansionTypes()) {
2832          Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2833            << true
2834            << (isa<ClassTemplateDecl>(Template)? 0 :
2835                isa<FunctionTemplateDecl>(Template)? 1 :
2836                isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2837            << Template;
2838          Diag(Template->getLocation(), diag::note_template_decl_here)
2839            << Params->getSourceRange();
2840          return true;
2841        }
2842      }
2843
2844      // Check the template argument we were given.
2845      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2846                                TemplateLoc, RAngleLoc,
2847                                ArgumentPack.size(), Converted))
2848        return true;
2849
2850      if ((*Param)->isTemplateParameterPack()) {
2851        // The template parameter was a template parameter pack, so take the
2852        // deduced argument and place it on the argument pack. Note that we
2853        // stay on the same template parameter so that we can deduce more
2854        // arguments.
2855        ArgumentPack.push_back(Converted.back());
2856        Converted.pop_back();
2857      } else {
2858        // Move to the next template parameter.
2859        ++Param;
2860      }
2861      ++ArgIdx;
2862      continue;
2863    }
2864
2865    // If we have a template parameter pack with no more corresponding
2866    // arguments, just break out now and we'll fill in the argument pack below.
2867    if ((*Param)->isTemplateParameterPack())
2868      break;
2869
2870    // We have a default template argument that we will use.
2871    TemplateArgumentLoc Arg;
2872
2873    // Retrieve the default template argument from the template
2874    // parameter. For each kind of template parameter, we substitute the
2875    // template arguments provided thus far and any "outer" template arguments
2876    // (when the template parameter was part of a nested template) into
2877    // the default argument.
2878    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2879      if (!TTP->hasDefaultArgument()) {
2880        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2881        break;
2882      }
2883
2884      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2885                                                             Template,
2886                                                             TemplateLoc,
2887                                                             RAngleLoc,
2888                                                             TTP,
2889                                                             Converted);
2890      if (!ArgType)
2891        return true;
2892
2893      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2894                                ArgType);
2895    } else if (NonTypeTemplateParmDecl *NTTP
2896                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2897      if (!NTTP->hasDefaultArgument()) {
2898        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2899        break;
2900      }
2901
2902      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2903                                                              TemplateLoc,
2904                                                              RAngleLoc,
2905                                                              NTTP,
2906                                                              Converted);
2907      if (E.isInvalid())
2908        return true;
2909
2910      Expr *Ex = E.takeAs<Expr>();
2911      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2912    } else {
2913      TemplateTemplateParmDecl *TempParm
2914        = cast<TemplateTemplateParmDecl>(*Param);
2915
2916      if (!TempParm->hasDefaultArgument()) {
2917        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2918        break;
2919      }
2920
2921      NestedNameSpecifierLoc QualifierLoc;
2922      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2923                                                       TemplateLoc,
2924                                                       RAngleLoc,
2925                                                       TempParm,
2926                                                       Converted,
2927                                                       QualifierLoc);
2928      if (Name.isNull())
2929        return true;
2930
2931      Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
2932                           TempParm->getDefaultArgument().getTemplateNameLoc());
2933    }
2934
2935    // Introduce an instantiation record that describes where we are using
2936    // the default template argument.
2937    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2938                                        Converted.data(), Converted.size(),
2939                                        SourceRange(TemplateLoc, RAngleLoc));
2940
2941    // Check the default template argument.
2942    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2943                              RAngleLoc, 0, Converted))
2944      return true;
2945
2946    // Core issue 150 (assumed resolution): if this is a template template
2947    // parameter, keep track of the default template arguments from the
2948    // template definition.
2949    if (isTemplateTemplateParameter)
2950      TemplateArgs.addArgument(Arg);
2951
2952    // Move to the next template parameter and argument.
2953    ++Param;
2954    ++ArgIdx;
2955  }
2956
2957  // Form argument packs for each of the parameter packs remaining.
2958  while (Param != ParamEnd) {
2959    // If we're checking a partial list of template arguments, don't fill
2960    // in arguments for non-template parameter packs.
2961
2962    if ((*Param)->isTemplateParameterPack()) {
2963      if (PartialTemplateArgs && ArgumentPack.empty()) {
2964        Converted.push_back(TemplateArgument());
2965      } else if (ArgumentPack.empty())
2966        Converted.push_back(TemplateArgument(0, 0));
2967      else {
2968        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
2969                                                          ArgumentPack.data(),
2970                                                         ArgumentPack.size()));
2971        ArgumentPack.clear();
2972      }
2973    }
2974
2975    ++Param;
2976  }
2977
2978  return Invalid;
2979}
2980
2981namespace {
2982  class UnnamedLocalNoLinkageFinder
2983    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
2984  {
2985    Sema &S;
2986    SourceRange SR;
2987
2988    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
2989
2990  public:
2991    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
2992
2993    bool Visit(QualType T) {
2994      return inherited::Visit(T.getTypePtr());
2995    }
2996
2997#define TYPE(Class, Parent) \
2998    bool Visit##Class##Type(const Class##Type *);
2999#define ABSTRACT_TYPE(Class, Parent) \
3000    bool Visit##Class##Type(const Class##Type *) { return false; }
3001#define NON_CANONICAL_TYPE(Class, Parent) \
3002    bool Visit##Class##Type(const Class##Type *) { return false; }
3003#include "clang/AST/TypeNodes.def"
3004
3005    bool VisitTagDecl(const TagDecl *Tag);
3006    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3007  };
3008}
3009
3010bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3011  return false;
3012}
3013
3014bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3015  return Visit(T->getElementType());
3016}
3017
3018bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3019  return Visit(T->getPointeeType());
3020}
3021
3022bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3023                                                    const BlockPointerType* T) {
3024  return Visit(T->getPointeeType());
3025}
3026
3027bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3028                                                const LValueReferenceType* T) {
3029  return Visit(T->getPointeeType());
3030}
3031
3032bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3033                                                const RValueReferenceType* T) {
3034  return Visit(T->getPointeeType());
3035}
3036
3037bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3038                                                  const MemberPointerType* T) {
3039  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3040}
3041
3042bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3043                                                  const ConstantArrayType* T) {
3044  return Visit(T->getElementType());
3045}
3046
3047bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3048                                                 const IncompleteArrayType* T) {
3049  return Visit(T->getElementType());
3050}
3051
3052bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3053                                                   const VariableArrayType* T) {
3054  return Visit(T->getElementType());
3055}
3056
3057bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3058                                            const DependentSizedArrayType* T) {
3059  return Visit(T->getElementType());
3060}
3061
3062bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3063                                         const DependentSizedExtVectorType* T) {
3064  return Visit(T->getElementType());
3065}
3066
3067bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3068  return Visit(T->getElementType());
3069}
3070
3071bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3072  return Visit(T->getElementType());
3073}
3074
3075bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3076                                                  const FunctionProtoType* T) {
3077  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
3078                                         AEnd = T->arg_type_end();
3079       A != AEnd; ++A) {
3080    if (Visit(*A))
3081      return true;
3082  }
3083
3084  return Visit(T->getResultType());
3085}
3086
3087bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3088                                               const FunctionNoProtoType* T) {
3089  return Visit(T->getResultType());
3090}
3091
3092bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
3093                                                  const UnresolvedUsingType*) {
3094  return false;
3095}
3096
3097bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
3098  return false;
3099}
3100
3101bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
3102  return Visit(T->getUnderlyingType());
3103}
3104
3105bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
3106  return false;
3107}
3108
3109bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
3110                                                    const UnaryTransformType*) {
3111  return false;
3112}
3113
3114bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
3115  return Visit(T->getDeducedType());
3116}
3117
3118bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
3119  return VisitTagDecl(T->getDecl());
3120}
3121
3122bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
3123  return VisitTagDecl(T->getDecl());
3124}
3125
3126bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
3127                                                 const TemplateTypeParmType*) {
3128  return false;
3129}
3130
3131bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
3132                                        const SubstTemplateTypeParmPackType *) {
3133  return false;
3134}
3135
3136bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
3137                                            const TemplateSpecializationType*) {
3138  return false;
3139}
3140
3141bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
3142                                              const InjectedClassNameType* T) {
3143  return VisitTagDecl(T->getDecl());
3144}
3145
3146bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
3147                                                   const DependentNameType* T) {
3148  return VisitNestedNameSpecifier(T->getQualifier());
3149}
3150
3151bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
3152                                 const DependentTemplateSpecializationType* T) {
3153  return VisitNestedNameSpecifier(T->getQualifier());
3154}
3155
3156bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
3157                                                   const PackExpansionType* T) {
3158  return Visit(T->getPattern());
3159}
3160
3161bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
3162  return false;
3163}
3164
3165bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
3166                                                   const ObjCInterfaceType *) {
3167  return false;
3168}
3169
3170bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
3171                                                const ObjCObjectPointerType *) {
3172  return false;
3173}
3174
3175bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
3176  if (Tag->getDeclContext()->isFunctionOrMethod()) {
3177    S.Diag(SR.getBegin(), diag::ext_template_arg_local_type)
3178      << S.Context.getTypeDeclType(Tag) << SR;
3179    return true;
3180  }
3181
3182  if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) {
3183    S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR;
3184    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
3185    return true;
3186  }
3187
3188  return false;
3189}
3190
3191bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
3192                                                    NestedNameSpecifier *NNS) {
3193  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
3194    return true;
3195
3196  switch (NNS->getKind()) {
3197  case NestedNameSpecifier::Identifier:
3198  case NestedNameSpecifier::Namespace:
3199  case NestedNameSpecifier::NamespaceAlias:
3200  case NestedNameSpecifier::Global:
3201    return false;
3202
3203  case NestedNameSpecifier::TypeSpec:
3204  case NestedNameSpecifier::TypeSpecWithTemplate:
3205    return Visit(QualType(NNS->getAsType(), 0));
3206  }
3207  return false;
3208}
3209
3210
3211/// \brief Check a template argument against its corresponding
3212/// template type parameter.
3213///
3214/// This routine implements the semantics of C++ [temp.arg.type]. It
3215/// returns true if an error occurred, and false otherwise.
3216bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
3217                                 TypeSourceInfo *ArgInfo) {
3218  assert(ArgInfo && "invalid TypeSourceInfo");
3219  QualType Arg = ArgInfo->getType();
3220  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
3221
3222  if (Arg->isVariablyModifiedType()) {
3223    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
3224  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
3225    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
3226  }
3227
3228  // C++03 [temp.arg.type]p2:
3229  //   A local type, a type with no linkage, an unnamed type or a type
3230  //   compounded from any of these types shall not be used as a
3231  //   template-argument for a template type-parameter.
3232  //
3233  // C++0x allows these, and even in C++03 we allow them as an extension with
3234  // a warning.
3235  if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) {
3236    UnnamedLocalNoLinkageFinder Finder(*this, SR);
3237    (void)Finder.Visit(Context.getCanonicalType(Arg));
3238  }
3239
3240  return false;
3241}
3242
3243/// \brief Checks whether the given template argument is the address
3244/// of an object or function according to C++ [temp.arg.nontype]p1.
3245static bool
3246CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
3247                                               NonTypeTemplateParmDecl *Param,
3248                                               QualType ParamType,
3249                                               Expr *ArgIn,
3250                                               TemplateArgument &Converted) {
3251  bool Invalid = false;
3252  Expr *Arg = ArgIn;
3253  QualType ArgType = Arg->getType();
3254
3255  // See through any implicit casts we added to fix the type.
3256  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3257    Arg = Cast->getSubExpr();
3258
3259  // C++ [temp.arg.nontype]p1:
3260  //
3261  //   A template-argument for a non-type, non-template
3262  //   template-parameter shall be one of: [...]
3263  //
3264  //     -- the address of an object or function with external
3265  //        linkage, including function templates and function
3266  //        template-ids but excluding non-static class members,
3267  //        expressed as & id-expression where the & is optional if
3268  //        the name refers to a function or array, or if the
3269  //        corresponding template-parameter is a reference; or
3270  DeclRefExpr *DRE = 0;
3271
3272  // In C++98/03 mode, give an extension warning on any extra parentheses.
3273  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3274  bool ExtraParens = false;
3275  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3276    if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) {
3277      S.Diag(Arg->getSourceRange().getBegin(),
3278             diag::ext_template_arg_extra_parens)
3279        << Arg->getSourceRange();
3280      ExtraParens = true;
3281    }
3282
3283    Arg = Parens->getSubExpr();
3284  }
3285
3286  bool AddressTaken = false;
3287  SourceLocation AddrOpLoc;
3288  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3289    if (UnOp->getOpcode() == UO_AddrOf) {
3290      // Support &__uuidof(class_with_uuid) as a non-type template argument.
3291      // Very common in Microsoft COM headers.
3292      if (S.getLangOptions().Microsoft &&
3293        isa<CXXUuidofExpr>(UnOp->getSubExpr())) {
3294        Converted = TemplateArgument(ArgIn);
3295        return false;
3296      }
3297
3298      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3299      AddressTaken = true;
3300      AddrOpLoc = UnOp->getOperatorLoc();
3301    }
3302  } else {
3303    if (S.getLangOptions().Microsoft && isa<CXXUuidofExpr>(Arg)) {
3304      Converted = TemplateArgument(ArgIn);
3305      return false;
3306    }
3307    DRE = dyn_cast<DeclRefExpr>(Arg);
3308  }
3309  if (!DRE) {
3310    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
3311      << Arg->getSourceRange();
3312    S.Diag(Param->getLocation(), diag::note_template_param_here);
3313    return true;
3314  }
3315
3316  // Stop checking the precise nature of the argument if it is value dependent,
3317  // it should be checked when instantiated.
3318  if (Arg->isValueDependent()) {
3319    Converted = TemplateArgument(ArgIn);
3320    return false;
3321  }
3322
3323  if (!isa<ValueDecl>(DRE->getDecl())) {
3324    S.Diag(Arg->getSourceRange().getBegin(),
3325           diag::err_template_arg_not_object_or_func_form)
3326      << Arg->getSourceRange();
3327    S.Diag(Param->getLocation(), diag::note_template_param_here);
3328    return true;
3329  }
3330
3331  NamedDecl *Entity = 0;
3332
3333  // Cannot refer to non-static data members
3334  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
3335    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
3336      << Field << Arg->getSourceRange();
3337    S.Diag(Param->getLocation(), diag::note_template_param_here);
3338    return true;
3339  }
3340
3341  // Cannot refer to non-static member functions
3342  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
3343    if (!Method->isStatic()) {
3344      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
3345        << Method << Arg->getSourceRange();
3346      S.Diag(Param->getLocation(), diag::note_template_param_here);
3347      return true;
3348    }
3349
3350  // Functions must have external linkage.
3351  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
3352    if (!isExternalLinkage(Func->getLinkage())) {
3353      S.Diag(Arg->getSourceRange().getBegin(),
3354             diag::err_template_arg_function_not_extern)
3355        << Func << Arg->getSourceRange();
3356      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
3357        << true;
3358      return true;
3359    }
3360
3361    // Okay: we've named a function with external linkage.
3362    Entity = Func;
3363
3364    // If the template parameter has pointer type, the function decays.
3365    if (ParamType->isPointerType() && !AddressTaken)
3366      ArgType = S.Context.getPointerType(Func->getType());
3367    else if (AddressTaken && ParamType->isReferenceType()) {
3368      // If we originally had an address-of operator, but the
3369      // parameter has reference type, complain and (if things look
3370      // like they will work) drop the address-of operator.
3371      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
3372                                            ParamType.getNonReferenceType())) {
3373        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3374          << ParamType;
3375        S.Diag(Param->getLocation(), diag::note_template_param_here);
3376        return true;
3377      }
3378
3379      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3380        << ParamType
3381        << FixItHint::CreateRemoval(AddrOpLoc);
3382      S.Diag(Param->getLocation(), diag::note_template_param_here);
3383
3384      ArgType = Func->getType();
3385    }
3386  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
3387    if (!isExternalLinkage(Var->getLinkage())) {
3388      S.Diag(Arg->getSourceRange().getBegin(),
3389             diag::err_template_arg_object_not_extern)
3390        << Var << Arg->getSourceRange();
3391      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
3392        << true;
3393      return true;
3394    }
3395
3396    // A value of reference type is not an object.
3397    if (Var->getType()->isReferenceType()) {
3398      S.Diag(Arg->getSourceRange().getBegin(),
3399             diag::err_template_arg_reference_var)
3400        << Var->getType() << Arg->getSourceRange();
3401      S.Diag(Param->getLocation(), diag::note_template_param_here);
3402      return true;
3403    }
3404
3405    // Okay: we've named an object with external linkage
3406    Entity = Var;
3407
3408    // If the template parameter has pointer type, we must have taken
3409    // the address of this object.
3410    if (ParamType->isReferenceType()) {
3411      if (AddressTaken) {
3412        // If we originally had an address-of operator, but the
3413        // parameter has reference type, complain and (if things look
3414        // like they will work) drop the address-of operator.
3415        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
3416                                            ParamType.getNonReferenceType())) {
3417          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3418            << ParamType;
3419          S.Diag(Param->getLocation(), diag::note_template_param_here);
3420          return true;
3421        }
3422
3423        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3424          << ParamType
3425          << FixItHint::CreateRemoval(AddrOpLoc);
3426        S.Diag(Param->getLocation(), diag::note_template_param_here);
3427
3428        ArgType = Var->getType();
3429      }
3430    } else if (!AddressTaken && ParamType->isPointerType()) {
3431      if (Var->getType()->isArrayType()) {
3432        // Array-to-pointer decay.
3433        ArgType = S.Context.getArrayDecayedType(Var->getType());
3434      } else {
3435        // If the template parameter has pointer type but the address of
3436        // this object was not taken, complain and (possibly) recover by
3437        // taking the address of the entity.
3438        ArgType = S.Context.getPointerType(Var->getType());
3439        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3440          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3441            << ParamType;
3442          S.Diag(Param->getLocation(), diag::note_template_param_here);
3443          return true;
3444        }
3445
3446        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3447          << ParamType
3448          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3449
3450        S.Diag(Param->getLocation(), diag::note_template_param_here);
3451      }
3452    }
3453  } else {
3454    // We found something else, but we don't know specifically what it is.
3455    S.Diag(Arg->getSourceRange().getBegin(),
3456           diag::err_template_arg_not_object_or_func)
3457      << Arg->getSourceRange();
3458    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3459    return true;
3460  }
3461
3462  if (ParamType->isPointerType() &&
3463      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3464      S.IsQualificationConversion(ArgType, ParamType, false)) {
3465    // For pointer-to-object types, qualification conversions are
3466    // permitted.
3467  } else {
3468    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3469      if (!ParamRef->getPointeeType()->isFunctionType()) {
3470        // C++ [temp.arg.nontype]p5b3:
3471        //   For a non-type template-parameter of type reference to
3472        //   object, no conversions apply. The type referred to by the
3473        //   reference may be more cv-qualified than the (otherwise
3474        //   identical) type of the template- argument. The
3475        //   template-parameter is bound directly to the
3476        //   template-argument, which shall be an lvalue.
3477
3478        // FIXME: Other qualifiers?
3479        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3480        unsigned ArgQuals = ArgType.getCVRQualifiers();
3481
3482        if ((ParamQuals | ArgQuals) != ParamQuals) {
3483          S.Diag(Arg->getSourceRange().getBegin(),
3484                 diag::err_template_arg_ref_bind_ignores_quals)
3485            << ParamType << Arg->getType()
3486            << Arg->getSourceRange();
3487          S.Diag(Param->getLocation(), diag::note_template_param_here);
3488          return true;
3489        }
3490      }
3491    }
3492
3493    // At this point, the template argument refers to an object or
3494    // function with external linkage. We now need to check whether the
3495    // argument and parameter types are compatible.
3496    if (!S.Context.hasSameUnqualifiedType(ArgType,
3497                                          ParamType.getNonReferenceType())) {
3498      // We can't perform this conversion or binding.
3499      if (ParamType->isReferenceType())
3500        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3501          << ParamType << Arg->getType() << Arg->getSourceRange();
3502      else
3503        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
3504          << Arg->getType() << ParamType << Arg->getSourceRange();
3505      S.Diag(Param->getLocation(), diag::note_template_param_here);
3506      return true;
3507    }
3508  }
3509
3510  // Create the template argument.
3511  Converted = TemplateArgument(Entity->getCanonicalDecl());
3512  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
3513  return false;
3514}
3515
3516/// \brief Checks whether the given template argument is a pointer to
3517/// member constant according to C++ [temp.arg.nontype]p1.
3518bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
3519                                                TemplateArgument &Converted) {
3520  bool Invalid = false;
3521
3522  // See through any implicit casts we added to fix the type.
3523  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3524    Arg = Cast->getSubExpr();
3525
3526  // C++ [temp.arg.nontype]p1:
3527  //
3528  //   A template-argument for a non-type, non-template
3529  //   template-parameter shall be one of: [...]
3530  //
3531  //     -- a pointer to member expressed as described in 5.3.1.
3532  DeclRefExpr *DRE = 0;
3533
3534  // In C++98/03 mode, give an extension warning on any extra parentheses.
3535  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3536  bool ExtraParens = false;
3537  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3538    if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) {
3539      Diag(Arg->getSourceRange().getBegin(),
3540           diag::ext_template_arg_extra_parens)
3541        << Arg->getSourceRange();
3542      ExtraParens = true;
3543    }
3544
3545    Arg = Parens->getSubExpr();
3546  }
3547
3548  // A pointer-to-member constant written &Class::member.
3549  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3550    if (UnOp->getOpcode() == UO_AddrOf) {
3551      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3552      if (DRE && !DRE->getQualifier())
3553        DRE = 0;
3554    }
3555  }
3556  // A constant of pointer-to-member type.
3557  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
3558    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
3559      if (VD->getType()->isMemberPointerType()) {
3560        if (isa<NonTypeTemplateParmDecl>(VD) ||
3561            (isa<VarDecl>(VD) &&
3562             Context.getCanonicalType(VD->getType()).isConstQualified())) {
3563          if (Arg->isTypeDependent() || Arg->isValueDependent())
3564            Converted = TemplateArgument(Arg);
3565          else
3566            Converted = TemplateArgument(VD->getCanonicalDecl());
3567          return Invalid;
3568        }
3569      }
3570    }
3571
3572    DRE = 0;
3573  }
3574
3575  if (!DRE)
3576    return Diag(Arg->getSourceRange().getBegin(),
3577                diag::err_template_arg_not_pointer_to_member_form)
3578      << Arg->getSourceRange();
3579
3580  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
3581    assert((isa<FieldDecl>(DRE->getDecl()) ||
3582            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
3583           "Only non-static member pointers can make it here");
3584
3585    // Okay: this is the address of a non-static member, and therefore
3586    // a member pointer constant.
3587    if (Arg->isTypeDependent() || Arg->isValueDependent())
3588      Converted = TemplateArgument(Arg);
3589    else
3590      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3591    return Invalid;
3592  }
3593
3594  // We found something else, but we don't know specifically what it is.
3595  Diag(Arg->getSourceRange().getBegin(),
3596       diag::err_template_arg_not_pointer_to_member_form)
3597      << Arg->getSourceRange();
3598  Diag(DRE->getDecl()->getLocation(),
3599       diag::note_template_arg_refers_here);
3600  return true;
3601}
3602
3603/// \brief Check a template argument against its corresponding
3604/// non-type template parameter.
3605///
3606/// This routine implements the semantics of C++ [temp.arg.nontype].
3607/// If an error occurred, it returns ExprError(); otherwise, it
3608/// returns the converted template argument. \p
3609/// InstantiatedParamType is the type of the non-type template
3610/// parameter after it has been instantiated.
3611ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3612                                       QualType InstantiatedParamType, Expr *Arg,
3613                                       TemplateArgument &Converted,
3614                                       CheckTemplateArgumentKind CTAK) {
3615  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
3616
3617  // If either the parameter has a dependent type or the argument is
3618  // type-dependent, there's nothing we can check now.
3619  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3620    // FIXME: Produce a cloned, canonical expression?
3621    Converted = TemplateArgument(Arg);
3622    return Owned(Arg);
3623  }
3624
3625  // C++ [temp.arg.nontype]p5:
3626  //   The following conversions are performed on each expression used
3627  //   as a non-type template-argument. If a non-type
3628  //   template-argument cannot be converted to the type of the
3629  //   corresponding template-parameter then the program is
3630  //   ill-formed.
3631  //
3632  //     -- for a non-type template-parameter of integral or
3633  //        enumeration type, integral promotions (4.5) and integral
3634  //        conversions (4.7) are applied.
3635  QualType ParamType = InstantiatedParamType;
3636  QualType ArgType = Arg->getType();
3637  if (ParamType->isIntegralOrEnumerationType()) {
3638    // C++ [temp.arg.nontype]p1:
3639    //   A template-argument for a non-type, non-template
3640    //   template-parameter shall be one of:
3641    //
3642    //     -- an integral constant-expression of integral or enumeration
3643    //        type; or
3644    //     -- the name of a non-type template-parameter; or
3645    SourceLocation NonConstantLoc;
3646    llvm::APSInt Value;
3647    if (!ArgType->isIntegralOrEnumerationType()) {
3648      Diag(Arg->getSourceRange().getBegin(),
3649           diag::err_template_arg_not_integral_or_enumeral)
3650        << ArgType << Arg->getSourceRange();
3651      Diag(Param->getLocation(), diag::note_template_param_here);
3652      return ExprError();
3653    } else if (!Arg->isValueDependent() &&
3654               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
3655      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
3656        << ArgType << Arg->getSourceRange();
3657      return ExprError();
3658    }
3659
3660    // From here on out, all we care about are the unqualified forms
3661    // of the parameter and argument types.
3662    ParamType = ParamType.getUnqualifiedType();
3663    ArgType = ArgType.getUnqualifiedType();
3664
3665    // Try to convert the argument to the parameter's type.
3666    if (Context.hasSameType(ParamType, ArgType)) {
3667      // Okay: no conversion necessary
3668    } else if (CTAK == CTAK_Deduced) {
3669      // C++ [temp.deduct.type]p17:
3670      //   If, in the declaration of a function template with a non-type
3671      //   template-parameter, the non-type template- parameter is used
3672      //   in an expression in the function parameter-list and, if the
3673      //   corresponding template-argument is deduced, the
3674      //   template-argument type shall match the type of the
3675      //   template-parameter exactly, except that a template-argument
3676      //   deduced from an array bound may be of any integral type.
3677      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
3678        << ArgType << ParamType;
3679      Diag(Param->getLocation(), diag::note_template_param_here);
3680      return ExprError();
3681    } else if (ParamType->isBooleanType()) {
3682      // This is an integral-to-boolean conversion.
3683      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
3684    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
3685               !ParamType->isEnumeralType()) {
3686      // This is an integral promotion or conversion.
3687      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
3688    } else {
3689      // We can't perform this conversion.
3690      Diag(Arg->getSourceRange().getBegin(),
3691           diag::err_template_arg_not_convertible)
3692        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3693      Diag(Param->getLocation(), diag::note_template_param_here);
3694      return ExprError();
3695    }
3696
3697    // Add the value of this argument to the list of converted
3698    // arguments. We use the bitwidth and signedness of the template
3699    // parameter.
3700    if (Arg->isValueDependent()) {
3701      // The argument is value-dependent. Create a new
3702      // TemplateArgument with the converted expression.
3703      Converted = TemplateArgument(Arg);
3704      return Owned(Arg);
3705    }
3706
3707    QualType IntegerType = Context.getCanonicalType(ParamType);
3708    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3709      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
3710
3711    if (ParamType->isBooleanType()) {
3712      // Value must be zero or one.
3713      Value = Value != 0;
3714      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3715      if (Value.getBitWidth() != AllowedBits)
3716        Value = Value.extOrTrunc(AllowedBits);
3717      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
3718    } else {
3719      llvm::APSInt OldValue = Value;
3720
3721      // Coerce the template argument's value to the value it will have
3722      // based on the template parameter's type.
3723      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3724      if (Value.getBitWidth() != AllowedBits)
3725        Value = Value.extOrTrunc(AllowedBits);
3726      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
3727
3728      // Complain if an unsigned parameter received a negative value.
3729      if (IntegerType->isUnsignedIntegerOrEnumerationType()
3730               && (OldValue.isSigned() && OldValue.isNegative())) {
3731        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
3732          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3733          << Arg->getSourceRange();
3734        Diag(Param->getLocation(), diag::note_template_param_here);
3735      }
3736
3737      // Complain if we overflowed the template parameter's type.
3738      unsigned RequiredBits;
3739      if (IntegerType->isUnsignedIntegerOrEnumerationType())
3740        RequiredBits = OldValue.getActiveBits();
3741      else if (OldValue.isUnsigned())
3742        RequiredBits = OldValue.getActiveBits() + 1;
3743      else
3744        RequiredBits = OldValue.getMinSignedBits();
3745      if (RequiredBits > AllowedBits) {
3746        Diag(Arg->getSourceRange().getBegin(),
3747             diag::warn_template_arg_too_large)
3748          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3749          << Arg->getSourceRange();
3750        Diag(Param->getLocation(), diag::note_template_param_here);
3751      }
3752    }
3753
3754    Converted = TemplateArgument(Value,
3755                                 ParamType->isEnumeralType() ? ParamType
3756                                                             : IntegerType);
3757    return Owned(Arg);
3758  }
3759
3760  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
3761
3762  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
3763  // from a template argument of type std::nullptr_t to a non-type
3764  // template parameter of type pointer to object, pointer to
3765  // function, or pointer-to-member, respectively.
3766  if (ArgType->isNullPtrType()) {
3767    if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
3768      Converted = TemplateArgument((NamedDecl *)0);
3769      return Owned(Arg);
3770    }
3771
3772    if (ParamType->isNullPtrType()) {
3773      llvm::APSInt Zero(Context.getTypeSize(Context.NullPtrTy), true);
3774      Converted = TemplateArgument(Zero, Context.NullPtrTy);
3775      return Owned(Arg);
3776    }
3777  }
3778
3779  // Handle pointer-to-function, reference-to-function, and
3780  // pointer-to-member-function all in (roughly) the same way.
3781  if (// -- For a non-type template-parameter of type pointer to
3782      //    function, only the function-to-pointer conversion (4.3) is
3783      //    applied. If the template-argument represents a set of
3784      //    overloaded functions (or a pointer to such), the matching
3785      //    function is selected from the set (13.4).
3786      (ParamType->isPointerType() &&
3787       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
3788      // -- For a non-type template-parameter of type reference to
3789      //    function, no conversions apply. If the template-argument
3790      //    represents a set of overloaded functions, the matching
3791      //    function is selected from the set (13.4).
3792      (ParamType->isReferenceType() &&
3793       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
3794      // -- For a non-type template-parameter of type pointer to
3795      //    member function, no conversions apply. If the
3796      //    template-argument represents a set of overloaded member
3797      //    functions, the matching member function is selected from
3798      //    the set (13.4).
3799      (ParamType->isMemberPointerType() &&
3800       ParamType->getAs<MemberPointerType>()->getPointeeType()
3801         ->isFunctionType())) {
3802
3803    if (Arg->getType() == Context.OverloadTy) {
3804      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
3805                                                                true,
3806                                                                FoundResult)) {
3807        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3808          return ExprError();
3809
3810        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3811        ArgType = Arg->getType();
3812      } else
3813        return ExprError();
3814    }
3815
3816    if (!ParamType->isMemberPointerType()) {
3817      if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3818                                                         ParamType,
3819                                                         Arg, Converted))
3820        return ExprError();
3821      return Owned(Arg);
3822    }
3823
3824    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(),
3825                                  false)) {
3826      Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)).take();
3827    } else if (!Context.hasSameUnqualifiedType(ArgType,
3828                                           ParamType.getNonReferenceType())) {
3829      // We can't perform this conversion.
3830      Diag(Arg->getSourceRange().getBegin(),
3831           diag::err_template_arg_not_convertible)
3832        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3833      Diag(Param->getLocation(), diag::note_template_param_here);
3834      return ExprError();
3835    }
3836
3837    if (CheckTemplateArgumentPointerToMember(Arg, Converted))
3838      return ExprError();
3839    return Owned(Arg);
3840  }
3841
3842  if (ParamType->isPointerType()) {
3843    //   -- for a non-type template-parameter of type pointer to
3844    //      object, qualification conversions (4.4) and the
3845    //      array-to-pointer conversion (4.2) are applied.
3846    // C++0x also allows a value of std::nullptr_t.
3847    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
3848           "Only object pointers allowed here");
3849
3850    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3851                                                       ParamType,
3852                                                       Arg, Converted))
3853      return ExprError();
3854    return Owned(Arg);
3855  }
3856
3857  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
3858    //   -- For a non-type template-parameter of type reference to
3859    //      object, no conversions apply. The type referred to by the
3860    //      reference may be more cv-qualified than the (otherwise
3861    //      identical) type of the template-argument. The
3862    //      template-parameter is bound directly to the
3863    //      template-argument, which must be an lvalue.
3864    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
3865           "Only object references allowed here");
3866
3867    if (Arg->getType() == Context.OverloadTy) {
3868      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
3869                                                 ParamRefType->getPointeeType(),
3870                                                                true,
3871                                                                FoundResult)) {
3872        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3873          return ExprError();
3874
3875        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3876        ArgType = Arg->getType();
3877      } else
3878        return ExprError();
3879    }
3880
3881    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3882                                                       ParamType,
3883                                                       Arg, Converted))
3884      return ExprError();
3885    return Owned(Arg);
3886  }
3887
3888  //     -- For a non-type template-parameter of type pointer to data
3889  //        member, qualification conversions (4.4) are applied.
3890  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
3891
3892  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
3893    // Types match exactly: nothing more to do here.
3894  } else if (IsQualificationConversion(ArgType, ParamType, false)) {
3895    Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)).take();
3896  } else {
3897    // We can't perform this conversion.
3898    Diag(Arg->getSourceRange().getBegin(),
3899         diag::err_template_arg_not_convertible)
3900      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3901    Diag(Param->getLocation(), diag::note_template_param_here);
3902    return ExprError();
3903  }
3904
3905  if (CheckTemplateArgumentPointerToMember(Arg, Converted))
3906    return ExprError();
3907  return Owned(Arg);
3908}
3909
3910/// \brief Check a template argument against its corresponding
3911/// template template parameter.
3912///
3913/// This routine implements the semantics of C++ [temp.arg.template].
3914/// It returns true if an error occurred, and false otherwise.
3915bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3916                                 const TemplateArgumentLoc &Arg) {
3917  TemplateName Name = Arg.getArgument().getAsTemplate();
3918  TemplateDecl *Template = Name.getAsTemplateDecl();
3919  if (!Template) {
3920    // Any dependent template name is fine.
3921    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3922    return false;
3923  }
3924
3925  // C++0x [temp.arg.template]p1:
3926  //   A template-argument for a template template-parameter shall be
3927  //   the name of a class template or an alias template, expressed as an
3928  //   id-expression. When the template-argument names a class template, only
3929  //   primary class templates are considered when matching the
3930  //   template template argument with the corresponding parameter;
3931  //   partial specializations are not considered even if their
3932  //   parameter lists match that of the template template parameter.
3933  //
3934  // Note that we also allow template template parameters here, which
3935  // will happen when we are dealing with, e.g., class template
3936  // partial specializations.
3937  if (!isa<ClassTemplateDecl>(Template) &&
3938      !isa<TemplateTemplateParmDecl>(Template) &&
3939      !isa<TypeAliasTemplateDecl>(Template)) {
3940    assert(isa<FunctionTemplateDecl>(Template) &&
3941           "Only function templates are possible here");
3942    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3943    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3944      << Template;
3945  }
3946
3947  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3948                                         Param->getTemplateParameters(),
3949                                         true,
3950                                         TPL_TemplateTemplateArgumentMatch,
3951                                         Arg.getLocation());
3952}
3953
3954/// \brief Given a non-type template argument that refers to a
3955/// declaration and the type of its corresponding non-type template
3956/// parameter, produce an expression that properly refers to that
3957/// declaration.
3958ExprResult
3959Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3960                                              QualType ParamType,
3961                                              SourceLocation Loc) {
3962  assert(Arg.getKind() == TemplateArgument::Declaration &&
3963         "Only declaration template arguments permitted here");
3964  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3965
3966  if (VD->getDeclContext()->isRecord() &&
3967      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3968    // If the value is a class member, we might have a pointer-to-member.
3969    // Determine whether the non-type template template parameter is of
3970    // pointer-to-member type. If so, we need to build an appropriate
3971    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3972    // would refer to the member itself.
3973    if (ParamType->isMemberPointerType()) {
3974      QualType ClassType
3975        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3976      NestedNameSpecifier *Qualifier
3977        = NestedNameSpecifier::Create(Context, 0, false,
3978                                      ClassType.getTypePtr());
3979      CXXScopeSpec SS;
3980      SS.MakeTrivial(Context, Qualifier, Loc);
3981
3982      // The actual value-ness of this is unimportant, but for
3983      // internal consistency's sake, references to instance methods
3984      // are r-values.
3985      ExprValueKind VK = VK_LValue;
3986      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
3987        VK = VK_RValue;
3988
3989      ExprResult RefExpr = BuildDeclRefExpr(VD,
3990                                            VD->getType().getNonReferenceType(),
3991                                            VK,
3992                                            Loc,
3993                                            &SS);
3994      if (RefExpr.isInvalid())
3995        return ExprError();
3996
3997      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3998
3999      // We might need to perform a trailing qualification conversion, since
4000      // the element type on the parameter could be more qualified than the
4001      // element type in the expression we constructed.
4002      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
4003                                    ParamType.getUnqualifiedType(), false))
4004        RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
4005
4006      assert(!RefExpr.isInvalid() &&
4007             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
4008                                 ParamType.getUnqualifiedType()));
4009      return move(RefExpr);
4010    }
4011  }
4012
4013  QualType T = VD->getType().getNonReferenceType();
4014  if (ParamType->isPointerType()) {
4015    // When the non-type template parameter is a pointer, take the
4016    // address of the declaration.
4017    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
4018    if (RefExpr.isInvalid())
4019      return ExprError();
4020
4021    if (T->isFunctionType() || T->isArrayType()) {
4022      // Decay functions and arrays.
4023      RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
4024      if (RefExpr.isInvalid())
4025        return ExprError();
4026
4027      return move(RefExpr);
4028    }
4029
4030    // Take the address of everything else
4031    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4032  }
4033
4034  ExprValueKind VK = VK_RValue;
4035
4036  // If the non-type template parameter has reference type, qualify the
4037  // resulting declaration reference with the extra qualifiers on the
4038  // type that the reference refers to.
4039  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
4040    VK = VK_LValue;
4041    T = Context.getQualifiedType(T,
4042                              TargetRef->getPointeeType().getQualifiers());
4043  }
4044
4045  return BuildDeclRefExpr(VD, T, VK, Loc);
4046}
4047
4048/// \brief Construct a new expression that refers to the given
4049/// integral template argument with the given source-location
4050/// information.
4051///
4052/// This routine takes care of the mapping from an integral template
4053/// argument (which may have any integral type) to the appropriate
4054/// literal value.
4055ExprResult
4056Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
4057                                                  SourceLocation Loc) {
4058  assert(Arg.getKind() == TemplateArgument::Integral &&
4059         "Operation is only valid for integral template arguments");
4060  QualType T = Arg.getIntegralType();
4061  if (T->isCharType() || T->isWideCharType())
4062    return Owned(new (Context) CharacterLiteral(
4063                                             Arg.getAsIntegral()->getZExtValue(),
4064                                             T->isWideCharType(), T, Loc));
4065  if (T->isBooleanType())
4066    return Owned(new (Context) CXXBoolLiteralExpr(
4067                                            Arg.getAsIntegral()->getBoolValue(),
4068                                            T, Loc));
4069
4070  if (T->isNullPtrType())
4071    return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
4072
4073  // If this is an enum type that we're instantiating, we need to use an integer
4074  // type the same size as the enumerator.  We don't want to build an
4075  // IntegerLiteral with enum type.
4076  QualType BT;
4077  if (const EnumType *ET = T->getAs<EnumType>())
4078    BT = ET->getDecl()->getIntegerType();
4079  else
4080    BT = T;
4081
4082  Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
4083  if (T->isEnumeralType()) {
4084    // FIXME: This is a hack. We need a better way to handle substituted
4085    // non-type template parameters.
4086    E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0,
4087                               Context.getTrivialTypeSourceInfo(T, Loc),
4088                               Loc, Loc);
4089  }
4090
4091  return Owned(E);
4092}
4093
4094/// \brief Match two template parameters within template parameter lists.
4095static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
4096                                       bool Complain,
4097                                     Sema::TemplateParameterListEqualKind Kind,
4098                                       SourceLocation TemplateArgLoc) {
4099  // Check the actual kind (type, non-type, template).
4100  if (Old->getKind() != New->getKind()) {
4101    if (Complain) {
4102      unsigned NextDiag = diag::err_template_param_different_kind;
4103      if (TemplateArgLoc.isValid()) {
4104        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4105        NextDiag = diag::note_template_param_different_kind;
4106      }
4107      S.Diag(New->getLocation(), NextDiag)
4108        << (Kind != Sema::TPL_TemplateMatch);
4109      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
4110        << (Kind != Sema::TPL_TemplateMatch);
4111    }
4112
4113    return false;
4114  }
4115
4116  // Check that both are parameter packs are neither are parameter packs.
4117  // However, if we are matching a template template argument to a
4118  // template template parameter, the template template parameter can have
4119  // a parameter pack where the template template argument does not.
4120  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
4121      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4122        Old->isTemplateParameterPack())) {
4123    if (Complain) {
4124      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
4125      if (TemplateArgLoc.isValid()) {
4126        S.Diag(TemplateArgLoc,
4127             diag::err_template_arg_template_params_mismatch);
4128        NextDiag = diag::note_template_parameter_pack_non_pack;
4129      }
4130
4131      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
4132                      : isa<NonTypeTemplateParmDecl>(New)? 1
4133                      : 2;
4134      S.Diag(New->getLocation(), NextDiag)
4135        << ParamKind << New->isParameterPack();
4136      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
4137        << ParamKind << Old->isParameterPack();
4138    }
4139
4140    return false;
4141  }
4142
4143  // For non-type template parameters, check the type of the parameter.
4144  if (NonTypeTemplateParmDecl *OldNTTP
4145                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
4146    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
4147
4148    // If we are matching a template template argument to a template
4149    // template parameter and one of the non-type template parameter types
4150    // is dependent, then we must wait until template instantiation time
4151    // to actually compare the arguments.
4152    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4153        (OldNTTP->getType()->isDependentType() ||
4154         NewNTTP->getType()->isDependentType()))
4155      return true;
4156
4157    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
4158      if (Complain) {
4159        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
4160        if (TemplateArgLoc.isValid()) {
4161          S.Diag(TemplateArgLoc,
4162                 diag::err_template_arg_template_params_mismatch);
4163          NextDiag = diag::note_template_nontype_parm_different_type;
4164        }
4165        S.Diag(NewNTTP->getLocation(), NextDiag)
4166          << NewNTTP->getType()
4167          << (Kind != Sema::TPL_TemplateMatch);
4168        S.Diag(OldNTTP->getLocation(),
4169               diag::note_template_nontype_parm_prev_declaration)
4170          << OldNTTP->getType();
4171      }
4172
4173      return false;
4174    }
4175
4176    return true;
4177  }
4178
4179  // For template template parameters, check the template parameter types.
4180  // The template parameter lists of template template
4181  // parameters must agree.
4182  if (TemplateTemplateParmDecl *OldTTP
4183                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
4184    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
4185    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
4186                                            OldTTP->getTemplateParameters(),
4187                                            Complain,
4188                                        (Kind == Sema::TPL_TemplateMatch
4189                                           ? Sema::TPL_TemplateTemplateParmMatch
4190                                           : Kind),
4191                                            TemplateArgLoc);
4192  }
4193
4194  return true;
4195}
4196
4197/// \brief Diagnose a known arity mismatch when comparing template argument
4198/// lists.
4199static
4200void DiagnoseTemplateParameterListArityMismatch(Sema &S,
4201                                                TemplateParameterList *New,
4202                                                TemplateParameterList *Old,
4203                                      Sema::TemplateParameterListEqualKind Kind,
4204                                                SourceLocation TemplateArgLoc) {
4205  unsigned NextDiag = diag::err_template_param_list_different_arity;
4206  if (TemplateArgLoc.isValid()) {
4207    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4208    NextDiag = diag::note_template_param_list_different_arity;
4209  }
4210  S.Diag(New->getTemplateLoc(), NextDiag)
4211    << (New->size() > Old->size())
4212    << (Kind != Sema::TPL_TemplateMatch)
4213    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
4214  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
4215    << (Kind != Sema::TPL_TemplateMatch)
4216    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
4217}
4218
4219/// \brief Determine whether the given template parameter lists are
4220/// equivalent.
4221///
4222/// \param New  The new template parameter list, typically written in the
4223/// source code as part of a new template declaration.
4224///
4225/// \param Old  The old template parameter list, typically found via
4226/// name lookup of the template declared with this template parameter
4227/// list.
4228///
4229/// \param Complain  If true, this routine will produce a diagnostic if
4230/// the template parameter lists are not equivalent.
4231///
4232/// \param Kind describes how we are to match the template parameter lists.
4233///
4234/// \param TemplateArgLoc If this source location is valid, then we
4235/// are actually checking the template parameter list of a template
4236/// argument (New) against the template parameter list of its
4237/// corresponding template template parameter (Old). We produce
4238/// slightly different diagnostics in this scenario.
4239///
4240/// \returns True if the template parameter lists are equal, false
4241/// otherwise.
4242bool
4243Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
4244                                     TemplateParameterList *Old,
4245                                     bool Complain,
4246                                     TemplateParameterListEqualKind Kind,
4247                                     SourceLocation TemplateArgLoc) {
4248  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
4249    if (Complain)
4250      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4251                                                 TemplateArgLoc);
4252
4253    return false;
4254  }
4255
4256  // C++0x [temp.arg.template]p3:
4257  //   A template-argument matches a template template-parameter (call it P)
4258  //   when each of the template parameters in the template-parameter-list of
4259  //   the template-argument's corresponding class template or alias template
4260  //   (call it A) matches the corresponding template parameter in the
4261  //   template-parameter-list of P. [...]
4262  TemplateParameterList::iterator NewParm = New->begin();
4263  TemplateParameterList::iterator NewParmEnd = New->end();
4264  for (TemplateParameterList::iterator OldParm = Old->begin(),
4265                                    OldParmEnd = Old->end();
4266       OldParm != OldParmEnd; ++OldParm) {
4267    if (Kind != TPL_TemplateTemplateArgumentMatch ||
4268        !(*OldParm)->isTemplateParameterPack()) {
4269      if (NewParm == NewParmEnd) {
4270        if (Complain)
4271          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4272                                                     TemplateArgLoc);
4273
4274        return false;
4275      }
4276
4277      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4278                                      Kind, TemplateArgLoc))
4279        return false;
4280
4281      ++NewParm;
4282      continue;
4283    }
4284
4285    // C++0x [temp.arg.template]p3:
4286    //   [...] When P's template- parameter-list contains a template parameter
4287    //   pack (14.5.3), the template parameter pack will match zero or more
4288    //   template parameters or template parameter packs in the
4289    //   template-parameter-list of A with the same type and form as the
4290    //   template parameter pack in P (ignoring whether those template
4291    //   parameters are template parameter packs).
4292    for (; NewParm != NewParmEnd; ++NewParm) {
4293      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4294                                      Kind, TemplateArgLoc))
4295        return false;
4296    }
4297  }
4298
4299  // Make sure we exhausted all of the arguments.
4300  if (NewParm != NewParmEnd) {
4301    if (Complain)
4302      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4303                                                 TemplateArgLoc);
4304
4305    return false;
4306  }
4307
4308  return true;
4309}
4310
4311/// \brief Check whether a template can be declared within this scope.
4312///
4313/// If the template declaration is valid in this scope, returns
4314/// false. Otherwise, issues a diagnostic and returns true.
4315bool
4316Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
4317  // Find the nearest enclosing declaration scope.
4318  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4319         (S->getFlags() & Scope::TemplateParamScope) != 0)
4320    S = S->getParent();
4321
4322  // C++ [temp]p2:
4323  //   A template-declaration can appear only as a namespace scope or
4324  //   class scope declaration.
4325  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
4326  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
4327      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
4328    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
4329             << TemplateParams->getSourceRange();
4330
4331  while (Ctx && isa<LinkageSpecDecl>(Ctx))
4332    Ctx = Ctx->getParent();
4333
4334  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
4335    return false;
4336
4337  return Diag(TemplateParams->getTemplateLoc(),
4338              diag::err_template_outside_namespace_or_class_scope)
4339    << TemplateParams->getSourceRange();
4340}
4341
4342/// \brief Determine what kind of template specialization the given declaration
4343/// is.
4344static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
4345  if (!D)
4346    return TSK_Undeclared;
4347
4348  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
4349    return Record->getTemplateSpecializationKind();
4350  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
4351    return Function->getTemplateSpecializationKind();
4352  if (VarDecl *Var = dyn_cast<VarDecl>(D))
4353    return Var->getTemplateSpecializationKind();
4354
4355  return TSK_Undeclared;
4356}
4357
4358/// \brief Check whether a specialization is well-formed in the current
4359/// context.
4360///
4361/// This routine determines whether a template specialization can be declared
4362/// in the current context (C++ [temp.expl.spec]p2).
4363///
4364/// \param S the semantic analysis object for which this check is being
4365/// performed.
4366///
4367/// \param Specialized the entity being specialized or instantiated, which
4368/// may be a kind of template (class template, function template, etc.) or
4369/// a member of a class template (member function, static data member,
4370/// member class).
4371///
4372/// \param PrevDecl the previous declaration of this entity, if any.
4373///
4374/// \param Loc the location of the explicit specialization or instantiation of
4375/// this entity.
4376///
4377/// \param IsPartialSpecialization whether this is a partial specialization of
4378/// a class template.
4379///
4380/// \returns true if there was an error that we cannot recover from, false
4381/// otherwise.
4382static bool CheckTemplateSpecializationScope(Sema &S,
4383                                             NamedDecl *Specialized,
4384                                             NamedDecl *PrevDecl,
4385                                             SourceLocation Loc,
4386                                             bool IsPartialSpecialization) {
4387  // Keep these "kind" numbers in sync with the %select statements in the
4388  // various diagnostics emitted by this routine.
4389  int EntityKind = 0;
4390  if (isa<ClassTemplateDecl>(Specialized))
4391    EntityKind = IsPartialSpecialization? 1 : 0;
4392  else if (isa<FunctionTemplateDecl>(Specialized))
4393    EntityKind = 2;
4394  else if (isa<CXXMethodDecl>(Specialized))
4395    EntityKind = 3;
4396  else if (isa<VarDecl>(Specialized))
4397    EntityKind = 4;
4398  else if (isa<RecordDecl>(Specialized))
4399    EntityKind = 5;
4400  else {
4401    S.Diag(Loc, diag::err_template_spec_unknown_kind);
4402    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4403    return true;
4404  }
4405
4406  // C++ [temp.expl.spec]p2:
4407  //   An explicit specialization shall be declared in the namespace
4408  //   of which the template is a member, or, for member templates, in
4409  //   the namespace of which the enclosing class or enclosing class
4410  //   template is a member. An explicit specialization of a member
4411  //   function, member class or static data member of a class
4412  //   template shall be declared in the namespace of which the class
4413  //   template is a member. Such a declaration may also be a
4414  //   definition. If the declaration is not a definition, the
4415  //   specialization may be defined later in the name- space in which
4416  //   the explicit specialization was declared, or in a namespace
4417  //   that encloses the one in which the explicit specialization was
4418  //   declared.
4419  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4420    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
4421      << Specialized;
4422    return true;
4423  }
4424
4425  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
4426    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4427      << Specialized;
4428    return true;
4429  }
4430
4431  // C++ [temp.class.spec]p6:
4432  //   A class template partial specialization may be declared or redeclared
4433  //   in any namespace scope in which its definition may be defined (14.5.1
4434  //   and 14.5.2).
4435  bool ComplainedAboutScope = false;
4436  DeclContext *SpecializedContext
4437    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
4438  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
4439  if ((!PrevDecl ||
4440       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
4441       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
4442    // C++ [temp.exp.spec]p2:
4443    //   An explicit specialization shall be declared in the namespace of which
4444    //   the template is a member, or, for member templates, in the namespace
4445    //   of which the enclosing class or enclosing class template is a member.
4446    //   An explicit specialization of a member function, member class or
4447    //   static data member of a class template shall be declared in the
4448    //   namespace of which the class template is a member.
4449    //
4450    // C++0x [temp.expl.spec]p2:
4451    //   An explicit specialization shall be declared in a namespace enclosing
4452    //   the specialized template.
4453    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) &&
4454        !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) {
4455      bool IsCPlusPlus0xExtension
4456        = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext);
4457      if (isa<TranslationUnitDecl>(SpecializedContext))
4458        S.Diag(Loc, IsCPlusPlus0xExtension
4459                      ? diag::ext_template_spec_decl_out_of_scope_global
4460                      : diag::err_template_spec_decl_out_of_scope_global)
4461          << EntityKind << Specialized;
4462      else if (isa<NamespaceDecl>(SpecializedContext))
4463        S.Diag(Loc, IsCPlusPlus0xExtension
4464                      ? diag::ext_template_spec_decl_out_of_scope
4465                      : diag::err_template_spec_decl_out_of_scope)
4466          << EntityKind << Specialized
4467          << cast<NamedDecl>(SpecializedContext);
4468
4469      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4470      ComplainedAboutScope = true;
4471    }
4472  }
4473
4474  // Make sure that this redeclaration (or definition) occurs in an enclosing
4475  // namespace.
4476  // Note that HandleDeclarator() performs this check for explicit
4477  // specializations of function templates, static data members, and member
4478  // functions, so we skip the check here for those kinds of entities.
4479  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
4480  // Should we refactor that check, so that it occurs later?
4481  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
4482      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
4483        isa<FunctionDecl>(Specialized))) {
4484    if (isa<TranslationUnitDecl>(SpecializedContext))
4485      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
4486        << EntityKind << Specialized;
4487    else if (isa<NamespaceDecl>(SpecializedContext))
4488      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
4489        << EntityKind << Specialized
4490        << cast<NamedDecl>(SpecializedContext);
4491
4492    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4493  }
4494
4495  // FIXME: check for specialization-after-instantiation errors and such.
4496
4497  return false;
4498}
4499
4500/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
4501/// that checks non-type template partial specialization arguments.
4502static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
4503                                                NonTypeTemplateParmDecl *Param,
4504                                                  const TemplateArgument *Args,
4505                                                        unsigned NumArgs) {
4506  for (unsigned I = 0; I != NumArgs; ++I) {
4507    if (Args[I].getKind() == TemplateArgument::Pack) {
4508      if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4509                                                           Args[I].pack_begin(),
4510                                                           Args[I].pack_size()))
4511        return true;
4512
4513      continue;
4514    }
4515
4516    Expr *ArgExpr = Args[I].getAsExpr();
4517    if (!ArgExpr) {
4518      continue;
4519    }
4520
4521    // We can have a pack expansion of any of the bullets below.
4522    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
4523      ArgExpr = Expansion->getPattern();
4524
4525    // Strip off any implicit casts we added as part of type checking.
4526    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
4527      ArgExpr = ICE->getSubExpr();
4528
4529    // C++ [temp.class.spec]p8:
4530    //   A non-type argument is non-specialized if it is the name of a
4531    //   non-type parameter. All other non-type arguments are
4532    //   specialized.
4533    //
4534    // Below, we check the two conditions that only apply to
4535    // specialized non-type arguments, so skip any non-specialized
4536    // arguments.
4537    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
4538      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
4539        continue;
4540
4541    // C++ [temp.class.spec]p9:
4542    //   Within the argument list of a class template partial
4543    //   specialization, the following restrictions apply:
4544    //     -- A partially specialized non-type argument expression
4545    //        shall not involve a template parameter of the partial
4546    //        specialization except when the argument expression is a
4547    //        simple identifier.
4548    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
4549      S.Diag(ArgExpr->getLocStart(),
4550           diag::err_dependent_non_type_arg_in_partial_spec)
4551        << ArgExpr->getSourceRange();
4552      return true;
4553    }
4554
4555    //     -- The type of a template parameter corresponding to a
4556    //        specialized non-type argument shall not be dependent on a
4557    //        parameter of the specialization.
4558    if (Param->getType()->isDependentType()) {
4559      S.Diag(ArgExpr->getLocStart(),
4560           diag::err_dependent_typed_non_type_arg_in_partial_spec)
4561        << Param->getType()
4562        << ArgExpr->getSourceRange();
4563      S.Diag(Param->getLocation(), diag::note_template_param_here);
4564      return true;
4565    }
4566  }
4567
4568  return false;
4569}
4570
4571/// \brief Check the non-type template arguments of a class template
4572/// partial specialization according to C++ [temp.class.spec]p9.
4573///
4574/// \param TemplateParams the template parameters of the primary class
4575/// template.
4576///
4577/// \param TemplateArg the template arguments of the class template
4578/// partial specialization.
4579///
4580/// \returns true if there was an error, false otherwise.
4581static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
4582                                        TemplateParameterList *TemplateParams,
4583                       llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs) {
4584  const TemplateArgument *ArgList = TemplateArgs.data();
4585
4586  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4587    NonTypeTemplateParmDecl *Param
4588      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
4589    if (!Param)
4590      continue;
4591
4592    if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4593                                                           &ArgList[I], 1))
4594      return true;
4595  }
4596
4597  return false;
4598}
4599
4600/// \brief Retrieve the previous declaration of the given declaration.
4601static NamedDecl *getPreviousDecl(NamedDecl *ND) {
4602  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
4603    return VD->getPreviousDeclaration();
4604  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
4605    return FD->getPreviousDeclaration();
4606  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
4607    return TD->getPreviousDeclaration();
4608  if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
4609    return TD->getPreviousDeclaration();
4610  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4611    return FTD->getPreviousDeclaration();
4612  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
4613    return CTD->getPreviousDeclaration();
4614  return 0;
4615}
4616
4617DeclResult
4618Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
4619                                       TagUseKind TUK,
4620                                       SourceLocation KWLoc,
4621                                       CXXScopeSpec &SS,
4622                                       TemplateTy TemplateD,
4623                                       SourceLocation TemplateNameLoc,
4624                                       SourceLocation LAngleLoc,
4625                                       ASTTemplateArgsPtr TemplateArgsIn,
4626                                       SourceLocation RAngleLoc,
4627                                       AttributeList *Attr,
4628                               MultiTemplateParamsArg TemplateParameterLists) {
4629  assert(TUK != TUK_Reference && "References are not specializations");
4630
4631  // NOTE: KWLoc is the location of the tag keyword. This will instead
4632  // store the location of the outermost template keyword in the declaration.
4633  SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
4634    ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation();
4635
4636  // Find the class template we're specializing
4637  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4638  ClassTemplateDecl *ClassTemplate
4639    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
4640
4641  if (!ClassTemplate) {
4642    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
4643      << (Name.getAsTemplateDecl() &&
4644          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
4645    return true;
4646  }
4647
4648  bool isExplicitSpecialization = false;
4649  bool isPartialSpecialization = false;
4650
4651  // Check the validity of the template headers that introduce this
4652  // template.
4653  // FIXME: We probably shouldn't complain about these headers for
4654  // friend declarations.
4655  bool Invalid = false;
4656  TemplateParameterList *TemplateParams
4657    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc,
4658                                              TemplateNameLoc,
4659                                              SS,
4660                        (TemplateParameterList**)TemplateParameterLists.get(),
4661                                              TemplateParameterLists.size(),
4662                                              TUK == TUK_Friend,
4663                                              isExplicitSpecialization,
4664                                              Invalid);
4665  if (Invalid)
4666    return true;
4667
4668  if (TemplateParams && TemplateParams->size() > 0) {
4669    isPartialSpecialization = true;
4670
4671    if (TUK == TUK_Friend) {
4672      Diag(KWLoc, diag::err_partial_specialization_friend)
4673        << SourceRange(LAngleLoc, RAngleLoc);
4674      return true;
4675    }
4676
4677    // C++ [temp.class.spec]p10:
4678    //   The template parameter list of a specialization shall not
4679    //   contain default template argument values.
4680    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4681      Decl *Param = TemplateParams->getParam(I);
4682      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4683        if (TTP->hasDefaultArgument()) {
4684          Diag(TTP->getDefaultArgumentLoc(),
4685               diag::err_default_arg_in_partial_spec);
4686          TTP->removeDefaultArgument();
4687        }
4688      } else if (NonTypeTemplateParmDecl *NTTP
4689                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4690        if (Expr *DefArg = NTTP->getDefaultArgument()) {
4691          Diag(NTTP->getDefaultArgumentLoc(),
4692               diag::err_default_arg_in_partial_spec)
4693            << DefArg->getSourceRange();
4694          NTTP->removeDefaultArgument();
4695        }
4696      } else {
4697        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
4698        if (TTP->hasDefaultArgument()) {
4699          Diag(TTP->getDefaultArgument().getLocation(),
4700               diag::err_default_arg_in_partial_spec)
4701            << TTP->getDefaultArgument().getSourceRange();
4702          TTP->removeDefaultArgument();
4703        }
4704      }
4705    }
4706  } else if (TemplateParams) {
4707    if (TUK == TUK_Friend)
4708      Diag(KWLoc, diag::err_template_spec_friend)
4709        << FixItHint::CreateRemoval(
4710                                SourceRange(TemplateParams->getTemplateLoc(),
4711                                            TemplateParams->getRAngleLoc()))
4712        << SourceRange(LAngleLoc, RAngleLoc);
4713    else
4714      isExplicitSpecialization = true;
4715  } else if (TUK != TUK_Friend) {
4716    Diag(KWLoc, diag::err_template_spec_needs_header)
4717      << FixItHint::CreateInsertion(KWLoc, "template<> ");
4718    isExplicitSpecialization = true;
4719  }
4720
4721  // Check that the specialization uses the same tag kind as the
4722  // original template.
4723  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4724  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
4725  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4726                                    Kind, KWLoc,
4727                                    *ClassTemplate->getIdentifier())) {
4728    Diag(KWLoc, diag::err_use_with_wrong_tag)
4729      << ClassTemplate
4730      << FixItHint::CreateReplacement(KWLoc,
4731                            ClassTemplate->getTemplatedDecl()->getKindName());
4732    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4733         diag::note_previous_use);
4734    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4735  }
4736
4737  // Translate the parser's template argument list in our AST format.
4738  TemplateArgumentListInfo TemplateArgs;
4739  TemplateArgs.setLAngleLoc(LAngleLoc);
4740  TemplateArgs.setRAngleLoc(RAngleLoc);
4741  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4742
4743  // Check for unexpanded parameter packs in any of the template arguments.
4744  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4745    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4746                                        UPPC_PartialSpecialization))
4747      return true;
4748
4749  // Check that the template argument list is well-formed for this
4750  // template.
4751  llvm::SmallVector<TemplateArgument, 4> Converted;
4752  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4753                                TemplateArgs, false, Converted))
4754    return true;
4755
4756  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
4757         "Converted template argument list is too short!");
4758
4759  // Find the class template (partial) specialization declaration that
4760  // corresponds to these arguments.
4761  if (isPartialSpecialization) {
4762    if (CheckClassTemplatePartialSpecializationArgs(*this,
4763                                         ClassTemplate->getTemplateParameters(),
4764                                         Converted))
4765      return true;
4766
4767    if (!Name.isDependent() &&
4768        !TemplateSpecializationType::anyDependentTemplateArguments(
4769                                             TemplateArgs.getArgumentArray(),
4770                                                         TemplateArgs.size())) {
4771      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4772        << ClassTemplate->getDeclName();
4773      isPartialSpecialization = false;
4774    }
4775  }
4776
4777  void *InsertPos = 0;
4778  ClassTemplateSpecializationDecl *PrevDecl = 0;
4779
4780  if (isPartialSpecialization)
4781    // FIXME: Template parameter list matters, too
4782    PrevDecl
4783      = ClassTemplate->findPartialSpecialization(Converted.data(),
4784                                                 Converted.size(),
4785                                                 InsertPos);
4786  else
4787    PrevDecl
4788      = ClassTemplate->findSpecialization(Converted.data(),
4789                                          Converted.size(), InsertPos);
4790
4791  ClassTemplateSpecializationDecl *Specialization = 0;
4792
4793  // Check whether we can declare a class template specialization in
4794  // the current scope.
4795  if (TUK != TUK_Friend &&
4796      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
4797                                       TemplateNameLoc,
4798                                       isPartialSpecialization))
4799    return true;
4800
4801  // The canonical type
4802  QualType CanonType;
4803  if (PrevDecl &&
4804      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
4805               TUK == TUK_Friend)) {
4806    // Since the only prior class template specialization with these
4807    // arguments was referenced but not declared, or we're only
4808    // referencing this specialization as a friend, reuse that
4809    // declaration node as our own, updating its source location and
4810    // the list of outer template parameters to reflect our new declaration.
4811    Specialization = PrevDecl;
4812    Specialization->setLocation(TemplateNameLoc);
4813    if (TemplateParameterLists.size() > 0) {
4814      Specialization->setTemplateParameterListsInfo(Context,
4815                                              TemplateParameterLists.size(),
4816                    (TemplateParameterList**) TemplateParameterLists.release());
4817    }
4818    PrevDecl = 0;
4819    CanonType = Context.getTypeDeclType(Specialization);
4820  } else if (isPartialSpecialization) {
4821    // Build the canonical type that describes the converted template
4822    // arguments of the class template partial specialization.
4823    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4824    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
4825                                                      Converted.data(),
4826                                                      Converted.size());
4827
4828    if (Context.hasSameType(CanonType,
4829                        ClassTemplate->getInjectedClassNameSpecialization())) {
4830      // C++ [temp.class.spec]p9b3:
4831      //
4832      //   -- The argument list of the specialization shall not be identical
4833      //      to the implicit argument list of the primary template.
4834      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4835      << (TUK == TUK_Definition)
4836      << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4837      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
4838                                ClassTemplate->getIdentifier(),
4839                                TemplateNameLoc,
4840                                Attr,
4841                                TemplateParams,
4842                                AS_none,
4843                                TemplateParameterLists.size() - 1,
4844                  (TemplateParameterList**) TemplateParameterLists.release());
4845    }
4846
4847    // Create a new class template partial specialization declaration node.
4848    ClassTemplatePartialSpecializationDecl *PrevPartial
4849      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
4850    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
4851                            : ClassTemplate->getNextPartialSpecSequenceNumber();
4852    ClassTemplatePartialSpecializationDecl *Partial
4853      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
4854                                             ClassTemplate->getDeclContext(),
4855                                                       KWLoc, TemplateNameLoc,
4856                                                       TemplateParams,
4857                                                       ClassTemplate,
4858                                                       Converted.data(),
4859                                                       Converted.size(),
4860                                                       TemplateArgs,
4861                                                       CanonType,
4862                                                       PrevPartial,
4863                                                       SequenceNumber);
4864    SetNestedNameSpecifier(Partial, SS);
4865    if (TemplateParameterLists.size() > 1 && SS.isSet()) {
4866      Partial->setTemplateParameterListsInfo(Context,
4867                                             TemplateParameterLists.size() - 1,
4868                    (TemplateParameterList**) TemplateParameterLists.release());
4869    }
4870
4871    if (!PrevPartial)
4872      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
4873    Specialization = Partial;
4874
4875    // If we are providing an explicit specialization of a member class
4876    // template specialization, make a note of that.
4877    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4878      PrevPartial->setMemberSpecialization();
4879
4880    // Check that all of the template parameters of the class template
4881    // partial specialization are deducible from the template
4882    // arguments. If not, this class template partial specialization
4883    // will never be used.
4884    llvm::SmallVector<bool, 8> DeducibleParams;
4885    DeducibleParams.resize(TemplateParams->size());
4886    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4887                               TemplateParams->getDepth(),
4888                               DeducibleParams);
4889    unsigned NumNonDeducible = 0;
4890    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
4891      if (!DeducibleParams[I])
4892        ++NumNonDeducible;
4893
4894    if (NumNonDeducible) {
4895      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
4896        << (NumNonDeducible > 1)
4897        << SourceRange(TemplateNameLoc, RAngleLoc);
4898      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4899        if (!DeducibleParams[I]) {
4900          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
4901          if (Param->getDeclName())
4902            Diag(Param->getLocation(),
4903                 diag::note_partial_spec_unused_parameter)
4904              << Param->getDeclName();
4905          else
4906            Diag(Param->getLocation(),
4907                 diag::note_partial_spec_unused_parameter)
4908              << "<anonymous>";
4909        }
4910      }
4911    }
4912  } else {
4913    // Create a new class template specialization declaration node for
4914    // this explicit specialization or friend declaration.
4915    Specialization
4916      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4917                                             ClassTemplate->getDeclContext(),
4918                                                KWLoc, TemplateNameLoc,
4919                                                ClassTemplate,
4920                                                Converted.data(),
4921                                                Converted.size(),
4922                                                PrevDecl);
4923    SetNestedNameSpecifier(Specialization, SS);
4924    if (TemplateParameterLists.size() > 0) {
4925      Specialization->setTemplateParameterListsInfo(Context,
4926                                              TemplateParameterLists.size(),
4927                    (TemplateParameterList**) TemplateParameterLists.release());
4928    }
4929
4930    if (!PrevDecl)
4931      ClassTemplate->AddSpecialization(Specialization, InsertPos);
4932
4933    CanonType = Context.getTypeDeclType(Specialization);
4934  }
4935
4936  // C++ [temp.expl.spec]p6:
4937  //   If a template, a member template or the member of a class template is
4938  //   explicitly specialized then that specialization shall be declared
4939  //   before the first use of that specialization that would cause an implicit
4940  //   instantiation to take place, in every translation unit in which such a
4941  //   use occurs; no diagnostic is required.
4942  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4943    bool Okay = false;
4944    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4945      // Is there any previous explicit specialization declaration?
4946      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4947        Okay = true;
4948        break;
4949      }
4950    }
4951
4952    if (!Okay) {
4953      SourceRange Range(TemplateNameLoc, RAngleLoc);
4954      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4955        << Context.getTypeDeclType(Specialization) << Range;
4956
4957      Diag(PrevDecl->getPointOfInstantiation(),
4958           diag::note_instantiation_required_here)
4959        << (PrevDecl->getTemplateSpecializationKind()
4960                                                != TSK_ImplicitInstantiation);
4961      return true;
4962    }
4963  }
4964
4965  // If this is not a friend, note that this is an explicit specialization.
4966  if (TUK != TUK_Friend)
4967    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4968
4969  // Check that this isn't a redefinition of this specialization.
4970  if (TUK == TUK_Definition) {
4971    if (RecordDecl *Def = Specialization->getDefinition()) {
4972      SourceRange Range(TemplateNameLoc, RAngleLoc);
4973      Diag(TemplateNameLoc, diag::err_redefinition)
4974        << Context.getTypeDeclType(Specialization) << Range;
4975      Diag(Def->getLocation(), diag::note_previous_definition);
4976      Specialization->setInvalidDecl();
4977      return true;
4978    }
4979  }
4980
4981  if (Attr)
4982    ProcessDeclAttributeList(S, Specialization, Attr);
4983
4984  // Build the fully-sugared type for this class template
4985  // specialization as the user wrote in the specialization
4986  // itself. This means that we'll pretty-print the type retrieved
4987  // from the specialization's declaration the way that the user
4988  // actually wrote the specialization, rather than formatting the
4989  // name based on the "canonical" representation used to store the
4990  // template arguments in the specialization.
4991  TypeSourceInfo *WrittenTy
4992    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4993                                                TemplateArgs, CanonType);
4994  if (TUK != TUK_Friend) {
4995    Specialization->setTypeAsWritten(WrittenTy);
4996    Specialization->setTemplateKeywordLoc(TemplateKWLoc);
4997  }
4998  TemplateArgsIn.release();
4999
5000  // C++ [temp.expl.spec]p9:
5001  //   A template explicit specialization is in the scope of the
5002  //   namespace in which the template was defined.
5003  //
5004  // We actually implement this paragraph where we set the semantic
5005  // context (in the creation of the ClassTemplateSpecializationDecl),
5006  // but we also maintain the lexical context where the actual
5007  // definition occurs.
5008  Specialization->setLexicalDeclContext(CurContext);
5009
5010  // We may be starting the definition of this specialization.
5011  if (TUK == TUK_Definition)
5012    Specialization->startDefinition();
5013
5014  if (TUK == TUK_Friend) {
5015    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
5016                                            TemplateNameLoc,
5017                                            WrittenTy,
5018                                            /*FIXME:*/KWLoc);
5019    Friend->setAccess(AS_public);
5020    CurContext->addDecl(Friend);
5021  } else {
5022    // Add the specialization into its lexical context, so that it can
5023    // be seen when iterating through the list of declarations in that
5024    // context. However, specializations are not found by name lookup.
5025    CurContext->addDecl(Specialization);
5026  }
5027  return Specialization;
5028}
5029
5030Decl *Sema::ActOnTemplateDeclarator(Scope *S,
5031                              MultiTemplateParamsArg TemplateParameterLists,
5032                                    Declarator &D) {
5033  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
5034}
5035
5036Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
5037                               MultiTemplateParamsArg TemplateParameterLists,
5038                                            Declarator &D) {
5039  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5040  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5041
5042  if (FTI.hasPrototype) {
5043    // FIXME: Diagnose arguments without names in C.
5044  }
5045
5046  Scope *ParentScope = FnBodyScope->getParent();
5047
5048  Decl *DP = HandleDeclarator(ParentScope, D,
5049                              move(TemplateParameterLists),
5050                              /*IsFunctionDefinition=*/true);
5051  if (FunctionTemplateDecl *FunctionTemplate
5052        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
5053    return ActOnStartOfFunctionDef(FnBodyScope,
5054                                   FunctionTemplate->getTemplatedDecl());
5055  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
5056    return ActOnStartOfFunctionDef(FnBodyScope, Function);
5057  return 0;
5058}
5059
5060/// \brief Strips various properties off an implicit instantiation
5061/// that has just been explicitly specialized.
5062static void StripImplicitInstantiation(NamedDecl *D) {
5063  D->dropAttrs();
5064
5065  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5066    FD->setInlineSpecified(false);
5067  }
5068}
5069
5070/// \brief Diagnose cases where we have an explicit template specialization
5071/// before/after an explicit template instantiation, producing diagnostics
5072/// for those cases where they are required and determining whether the
5073/// new specialization/instantiation will have any effect.
5074///
5075/// \param NewLoc the location of the new explicit specialization or
5076/// instantiation.
5077///
5078/// \param NewTSK the kind of the new explicit specialization or instantiation.
5079///
5080/// \param PrevDecl the previous declaration of the entity.
5081///
5082/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
5083///
5084/// \param PrevPointOfInstantiation if valid, indicates where the previus
5085/// declaration was instantiated (either implicitly or explicitly).
5086///
5087/// \param HasNoEffect will be set to true to indicate that the new
5088/// specialization or instantiation has no effect and should be ignored.
5089///
5090/// \returns true if there was an error that should prevent the introduction of
5091/// the new declaration into the AST, false otherwise.
5092bool
5093Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
5094                                             TemplateSpecializationKind NewTSK,
5095                                             NamedDecl *PrevDecl,
5096                                             TemplateSpecializationKind PrevTSK,
5097                                        SourceLocation PrevPointOfInstantiation,
5098                                             bool &HasNoEffect) {
5099  HasNoEffect = false;
5100
5101  switch (NewTSK) {
5102  case TSK_Undeclared:
5103  case TSK_ImplicitInstantiation:
5104    assert(false && "Don't check implicit instantiations here");
5105    return false;
5106
5107  case TSK_ExplicitSpecialization:
5108    switch (PrevTSK) {
5109    case TSK_Undeclared:
5110    case TSK_ExplicitSpecialization:
5111      // Okay, we're just specializing something that is either already
5112      // explicitly specialized or has merely been mentioned without any
5113      // instantiation.
5114      return false;
5115
5116    case TSK_ImplicitInstantiation:
5117      if (PrevPointOfInstantiation.isInvalid()) {
5118        // The declaration itself has not actually been instantiated, so it is
5119        // still okay to specialize it.
5120        StripImplicitInstantiation(PrevDecl);
5121        return false;
5122      }
5123      // Fall through
5124
5125    case TSK_ExplicitInstantiationDeclaration:
5126    case TSK_ExplicitInstantiationDefinition:
5127      assert((PrevTSK == TSK_ImplicitInstantiation ||
5128              PrevPointOfInstantiation.isValid()) &&
5129             "Explicit instantiation without point of instantiation?");
5130
5131      // C++ [temp.expl.spec]p6:
5132      //   If a template, a member template or the member of a class template
5133      //   is explicitly specialized then that specialization shall be declared
5134      //   before the first use of that specialization that would cause an
5135      //   implicit instantiation to take place, in every translation unit in
5136      //   which such a use occurs; no diagnostic is required.
5137      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
5138        // Is there any previous explicit specialization declaration?
5139        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
5140          return false;
5141      }
5142
5143      Diag(NewLoc, diag::err_specialization_after_instantiation)
5144        << PrevDecl;
5145      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
5146        << (PrevTSK != TSK_ImplicitInstantiation);
5147
5148      return true;
5149    }
5150    break;
5151
5152  case TSK_ExplicitInstantiationDeclaration:
5153    switch (PrevTSK) {
5154    case TSK_ExplicitInstantiationDeclaration:
5155      // This explicit instantiation declaration is redundant (that's okay).
5156      HasNoEffect = true;
5157      return false;
5158
5159    case TSK_Undeclared:
5160    case TSK_ImplicitInstantiation:
5161      // We're explicitly instantiating something that may have already been
5162      // implicitly instantiated; that's fine.
5163      return false;
5164
5165    case TSK_ExplicitSpecialization:
5166      // C++0x [temp.explicit]p4:
5167      //   For a given set of template parameters, if an explicit instantiation
5168      //   of a template appears after a declaration of an explicit
5169      //   specialization for that template, the explicit instantiation has no
5170      //   effect.
5171      HasNoEffect = true;
5172      return false;
5173
5174    case TSK_ExplicitInstantiationDefinition:
5175      // C++0x [temp.explicit]p10:
5176      //   If an entity is the subject of both an explicit instantiation
5177      //   declaration and an explicit instantiation definition in the same
5178      //   translation unit, the definition shall follow the declaration.
5179      Diag(NewLoc,
5180           diag::err_explicit_instantiation_declaration_after_definition);
5181      Diag(PrevPointOfInstantiation,
5182           diag::note_explicit_instantiation_definition_here);
5183      assert(PrevPointOfInstantiation.isValid() &&
5184             "Explicit instantiation without point of instantiation?");
5185      HasNoEffect = true;
5186      return false;
5187    }
5188    break;
5189
5190  case TSK_ExplicitInstantiationDefinition:
5191    switch (PrevTSK) {
5192    case TSK_Undeclared:
5193    case TSK_ImplicitInstantiation:
5194      // We're explicitly instantiating something that may have already been
5195      // implicitly instantiated; that's fine.
5196      return false;
5197
5198    case TSK_ExplicitSpecialization:
5199      // C++ DR 259, C++0x [temp.explicit]p4:
5200      //   For a given set of template parameters, if an explicit
5201      //   instantiation of a template appears after a declaration of
5202      //   an explicit specialization for that template, the explicit
5203      //   instantiation has no effect.
5204      //
5205      // In C++98/03 mode, we only give an extension warning here, because it
5206      // is not harmful to try to explicitly instantiate something that
5207      // has been explicitly specialized.
5208      if (!getLangOptions().CPlusPlus0x) {
5209        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
5210          << PrevDecl;
5211        Diag(PrevDecl->getLocation(),
5212             diag::note_previous_template_specialization);
5213      }
5214      HasNoEffect = true;
5215      return false;
5216
5217    case TSK_ExplicitInstantiationDeclaration:
5218      // We're explicity instantiating a definition for something for which we
5219      // were previously asked to suppress instantiations. That's fine.
5220      return false;
5221
5222    case TSK_ExplicitInstantiationDefinition:
5223      // C++0x [temp.spec]p5:
5224      //   For a given template and a given set of template-arguments,
5225      //     - an explicit instantiation definition shall appear at most once
5226      //       in a program,
5227      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
5228        << PrevDecl;
5229      Diag(PrevPointOfInstantiation,
5230           diag::note_previous_explicit_instantiation);
5231      HasNoEffect = true;
5232      return false;
5233    }
5234    break;
5235  }
5236
5237  assert(false && "Missing specialization/instantiation case?");
5238
5239  return false;
5240}
5241
5242/// \brief Perform semantic analysis for the given dependent function
5243/// template specialization.  The only possible way to get a dependent
5244/// function template specialization is with a friend declaration,
5245/// like so:
5246///
5247///   template <class T> void foo(T);
5248///   template <class T> class A {
5249///     friend void foo<>(T);
5250///   };
5251///
5252/// There really isn't any useful analysis we can do here, so we
5253/// just store the information.
5254bool
5255Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
5256                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
5257                                                   LookupResult &Previous) {
5258  // Remove anything from Previous that isn't a function template in
5259  // the correct context.
5260  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5261  LookupResult::Filter F = Previous.makeFilter();
5262  while (F.hasNext()) {
5263    NamedDecl *D = F.next()->getUnderlyingDecl();
5264    if (!isa<FunctionTemplateDecl>(D) ||
5265        !FDLookupContext->InEnclosingNamespaceSetOf(
5266                              D->getDeclContext()->getRedeclContext()))
5267      F.erase();
5268  }
5269  F.done();
5270
5271  // Should this be diagnosed here?
5272  if (Previous.empty()) return true;
5273
5274  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
5275                                         ExplicitTemplateArgs);
5276  return false;
5277}
5278
5279/// \brief Perform semantic analysis for the given function template
5280/// specialization.
5281///
5282/// This routine performs all of the semantic analysis required for an
5283/// explicit function template specialization. On successful completion,
5284/// the function declaration \p FD will become a function template
5285/// specialization.
5286///
5287/// \param FD the function declaration, which will be updated to become a
5288/// function template specialization.
5289///
5290/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
5291/// if any. Note that this may be valid info even when 0 arguments are
5292/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
5293/// as it anyway contains info on the angle brackets locations.
5294///
5295/// \param PrevDecl the set of declarations that may be specialized by
5296/// this function specialization.
5297bool
5298Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
5299                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5300                                          LookupResult &Previous) {
5301  // The set of function template specializations that could match this
5302  // explicit function template specialization.
5303  UnresolvedSet<8> Candidates;
5304
5305  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5306  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5307         I != E; ++I) {
5308    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
5309    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
5310      // Only consider templates found within the same semantic lookup scope as
5311      // FD.
5312      if (!FDLookupContext->InEnclosingNamespaceSetOf(
5313                                Ovl->getDeclContext()->getRedeclContext()))
5314        continue;
5315
5316      // C++ [temp.expl.spec]p11:
5317      //   A trailing template-argument can be left unspecified in the
5318      //   template-id naming an explicit function template specialization
5319      //   provided it can be deduced from the function argument type.
5320      // Perform template argument deduction to determine whether we may be
5321      // specializing this template.
5322      // FIXME: It is somewhat wasteful to build
5323      TemplateDeductionInfo Info(Context, FD->getLocation());
5324      FunctionDecl *Specialization = 0;
5325      if (TemplateDeductionResult TDK
5326            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
5327                                      FD->getType(),
5328                                      Specialization,
5329                                      Info)) {
5330        // FIXME: Template argument deduction failed; record why it failed, so
5331        // that we can provide nifty diagnostics.
5332        (void)TDK;
5333        continue;
5334      }
5335
5336      // Record this candidate.
5337      Candidates.addDecl(Specialization, I.getAccess());
5338    }
5339  }
5340
5341  // Find the most specialized function template.
5342  UnresolvedSetIterator Result
5343    = getMostSpecialized(Candidates.begin(), Candidates.end(),
5344                         TPOC_Other, 0, FD->getLocation(),
5345                  PDiag(diag::err_function_template_spec_no_match)
5346                    << FD->getDeclName(),
5347                  PDiag(diag::err_function_template_spec_ambiguous)
5348                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
5349                  PDiag(diag::note_function_template_spec_matched));
5350  if (Result == Candidates.end())
5351    return true;
5352
5353  // Ignore access information;  it doesn't figure into redeclaration checking.
5354  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5355
5356  FunctionTemplateSpecializationInfo *SpecInfo
5357    = Specialization->getTemplateSpecializationInfo();
5358  assert(SpecInfo && "Function template specialization info missing?");
5359  {
5360    // Note: do not overwrite location info if previous template
5361    // specialization kind was explicit.
5362    TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
5363    if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation)
5364      Specialization->setLocation(FD->getLocation());
5365  }
5366
5367  // FIXME: Check if the prior specialization has a point of instantiation.
5368  // If so, we have run afoul of .
5369
5370  // If this is a friend declaration, then we're not really declaring
5371  // an explicit specialization.
5372  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
5373
5374  // Check the scope of this explicit specialization.
5375  if (!isFriend &&
5376      CheckTemplateSpecializationScope(*this,
5377                                       Specialization->getPrimaryTemplate(),
5378                                       Specialization, FD->getLocation(),
5379                                       false))
5380    return true;
5381
5382  // C++ [temp.expl.spec]p6:
5383  //   If a template, a member template or the member of a class template is
5384  //   explicitly specialized then that specialization shall be declared
5385  //   before the first use of that specialization that would cause an implicit
5386  //   instantiation to take place, in every translation unit in which such a
5387  //   use occurs; no diagnostic is required.
5388  bool HasNoEffect = false;
5389  if (!isFriend &&
5390      CheckSpecializationInstantiationRedecl(FD->getLocation(),
5391                                             TSK_ExplicitSpecialization,
5392                                             Specialization,
5393                                   SpecInfo->getTemplateSpecializationKind(),
5394                                         SpecInfo->getPointOfInstantiation(),
5395                                             HasNoEffect))
5396    return true;
5397
5398  // Mark the prior declaration as an explicit specialization, so that later
5399  // clients know that this is an explicit specialization.
5400  if (!isFriend) {
5401    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
5402    MarkUnusedFileScopedDecl(Specialization);
5403  }
5404
5405  // Turn the given function declaration into a function template
5406  // specialization, with the template arguments from the previous
5407  // specialization.
5408  // Take copies of (semantic and syntactic) template argument lists.
5409  const TemplateArgumentList* TemplArgs = new (Context)
5410    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
5411  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
5412    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
5413  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
5414                                        TemplArgs, /*InsertPos=*/0,
5415                                    SpecInfo->getTemplateSpecializationKind(),
5416                                        TemplArgsAsWritten);
5417  FD->setStorageClass(Specialization->getStorageClass());
5418
5419  // The "previous declaration" for this function template specialization is
5420  // the prior function template specialization.
5421  Previous.clear();
5422  Previous.addDecl(Specialization);
5423  return false;
5424}
5425
5426/// \brief Perform semantic analysis for the given non-template member
5427/// specialization.
5428///
5429/// This routine performs all of the semantic analysis required for an
5430/// explicit member function specialization. On successful completion,
5431/// the function declaration \p FD will become a member function
5432/// specialization.
5433///
5434/// \param Member the member declaration, which will be updated to become a
5435/// specialization.
5436///
5437/// \param Previous the set of declarations, one of which may be specialized
5438/// by this function specialization;  the set will be modified to contain the
5439/// redeclared member.
5440bool
5441Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
5442  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
5443
5444  // Try to find the member we are instantiating.
5445  NamedDecl *Instantiation = 0;
5446  NamedDecl *InstantiatedFrom = 0;
5447  MemberSpecializationInfo *MSInfo = 0;
5448
5449  if (Previous.empty()) {
5450    // Nowhere to look anyway.
5451  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
5452    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5453           I != E; ++I) {
5454      NamedDecl *D = (*I)->getUnderlyingDecl();
5455      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5456        if (Context.hasSameType(Function->getType(), Method->getType())) {
5457          Instantiation = Method;
5458          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
5459          MSInfo = Method->getMemberSpecializationInfo();
5460          break;
5461        }
5462      }
5463    }
5464  } else if (isa<VarDecl>(Member)) {
5465    VarDecl *PrevVar;
5466    if (Previous.isSingleResult() &&
5467        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
5468      if (PrevVar->isStaticDataMember()) {
5469        Instantiation = PrevVar;
5470        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
5471        MSInfo = PrevVar->getMemberSpecializationInfo();
5472      }
5473  } else if (isa<RecordDecl>(Member)) {
5474    CXXRecordDecl *PrevRecord;
5475    if (Previous.isSingleResult() &&
5476        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
5477      Instantiation = PrevRecord;
5478      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
5479      MSInfo = PrevRecord->getMemberSpecializationInfo();
5480    }
5481  }
5482
5483  if (!Instantiation) {
5484    // There is no previous declaration that matches. Since member
5485    // specializations are always out-of-line, the caller will complain about
5486    // this mismatch later.
5487    return false;
5488  }
5489
5490  // If this is a friend, just bail out here before we start turning
5491  // things into explicit specializations.
5492  if (Member->getFriendObjectKind() != Decl::FOK_None) {
5493    // Preserve instantiation information.
5494    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
5495      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
5496                                      cast<CXXMethodDecl>(InstantiatedFrom),
5497        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
5498    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
5499      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5500                                      cast<CXXRecordDecl>(InstantiatedFrom),
5501        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
5502    }
5503
5504    Previous.clear();
5505    Previous.addDecl(Instantiation);
5506    return false;
5507  }
5508
5509  // Make sure that this is a specialization of a member.
5510  if (!InstantiatedFrom) {
5511    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
5512      << Member;
5513    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
5514    return true;
5515  }
5516
5517  // C++ [temp.expl.spec]p6:
5518  //   If a template, a member template or the member of a class template is
5519  //   explicitly specialized then that spe- cialization shall be declared
5520  //   before the first use of that specialization that would cause an implicit
5521  //   instantiation to take place, in every translation unit in which such a
5522  //   use occurs; no diagnostic is required.
5523  assert(MSInfo && "Member specialization info missing?");
5524
5525  bool HasNoEffect = false;
5526  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
5527                                             TSK_ExplicitSpecialization,
5528                                             Instantiation,
5529                                     MSInfo->getTemplateSpecializationKind(),
5530                                           MSInfo->getPointOfInstantiation(),
5531                                             HasNoEffect))
5532    return true;
5533
5534  // Check the scope of this explicit specialization.
5535  if (CheckTemplateSpecializationScope(*this,
5536                                       InstantiatedFrom,
5537                                       Instantiation, Member->getLocation(),
5538                                       false))
5539    return true;
5540
5541  // Note that this is an explicit instantiation of a member.
5542  // the original declaration to note that it is an explicit specialization
5543  // (if it was previously an implicit instantiation). This latter step
5544  // makes bookkeeping easier.
5545  if (isa<FunctionDecl>(Member)) {
5546    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
5547    if (InstantiationFunction->getTemplateSpecializationKind() ==
5548          TSK_ImplicitInstantiation) {
5549      InstantiationFunction->setTemplateSpecializationKind(
5550                                                  TSK_ExplicitSpecialization);
5551      InstantiationFunction->setLocation(Member->getLocation());
5552    }
5553
5554    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
5555                                        cast<CXXMethodDecl>(InstantiatedFrom),
5556                                                  TSK_ExplicitSpecialization);
5557    MarkUnusedFileScopedDecl(InstantiationFunction);
5558  } else if (isa<VarDecl>(Member)) {
5559    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
5560    if (InstantiationVar->getTemplateSpecializationKind() ==
5561          TSK_ImplicitInstantiation) {
5562      InstantiationVar->setTemplateSpecializationKind(
5563                                                  TSK_ExplicitSpecialization);
5564      InstantiationVar->setLocation(Member->getLocation());
5565    }
5566
5567    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
5568                                                cast<VarDecl>(InstantiatedFrom),
5569                                                TSK_ExplicitSpecialization);
5570    MarkUnusedFileScopedDecl(InstantiationVar);
5571  } else {
5572    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
5573    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
5574    if (InstantiationClass->getTemplateSpecializationKind() ==
5575          TSK_ImplicitInstantiation) {
5576      InstantiationClass->setTemplateSpecializationKind(
5577                                                   TSK_ExplicitSpecialization);
5578      InstantiationClass->setLocation(Member->getLocation());
5579    }
5580
5581    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5582                                        cast<CXXRecordDecl>(InstantiatedFrom),
5583                                                   TSK_ExplicitSpecialization);
5584  }
5585
5586  // Save the caller the trouble of having to figure out which declaration
5587  // this specialization matches.
5588  Previous.clear();
5589  Previous.addDecl(Instantiation);
5590  return false;
5591}
5592
5593/// \brief Check the scope of an explicit instantiation.
5594///
5595/// \returns true if a serious error occurs, false otherwise.
5596static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
5597                                            SourceLocation InstLoc,
5598                                            bool WasQualifiedName) {
5599  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
5600  DeclContext *CurContext = S.CurContext->getRedeclContext();
5601
5602  if (CurContext->isRecord()) {
5603    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
5604      << D;
5605    return true;
5606  }
5607
5608  // C++0x [temp.explicit]p2:
5609  //   An explicit instantiation shall appear in an enclosing namespace of its
5610  //   template.
5611  //
5612  // This is DR275, which we do not retroactively apply to C++98/03.
5613  if (S.getLangOptions().CPlusPlus0x &&
5614      !CurContext->Encloses(OrigContext)) {
5615    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext))
5616      S.Diag(InstLoc,
5617             S.getLangOptions().CPlusPlus0x?
5618                 diag::err_explicit_instantiation_out_of_scope
5619               : diag::warn_explicit_instantiation_out_of_scope_0x)
5620        << D << NS;
5621    else
5622      S.Diag(InstLoc,
5623             S.getLangOptions().CPlusPlus0x?
5624                 diag::err_explicit_instantiation_must_be_global
5625               : diag::warn_explicit_instantiation_out_of_scope_0x)
5626        << D;
5627    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5628    return false;
5629  }
5630
5631  // C++0x [temp.explicit]p2:
5632  //   If the name declared in the explicit instantiation is an unqualified
5633  //   name, the explicit instantiation shall appear in the namespace where
5634  //   its template is declared or, if that namespace is inline (7.3.1), any
5635  //   namespace from its enclosing namespace set.
5636  if (WasQualifiedName)
5637    return false;
5638
5639  if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
5640    return false;
5641
5642  S.Diag(InstLoc,
5643         S.getLangOptions().CPlusPlus0x?
5644             diag::err_explicit_instantiation_unqualified_wrong_namespace
5645           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
5646    << D << OrigContext;
5647  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5648  return false;
5649}
5650
5651/// \brief Determine whether the given scope specifier has a template-id in it.
5652static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
5653  if (!SS.isSet())
5654    return false;
5655
5656  // C++0x [temp.explicit]p2:
5657  //   If the explicit instantiation is for a member function, a member class
5658  //   or a static data member of a class template specialization, the name of
5659  //   the class template specialization in the qualified-id for the member
5660  //   name shall be a simple-template-id.
5661  //
5662  // C++98 has the same restriction, just worded differently.
5663  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
5664       NNS; NNS = NNS->getPrefix())
5665    if (const Type *T = NNS->getAsType())
5666      if (isa<TemplateSpecializationType>(T))
5667        return true;
5668
5669  return false;
5670}
5671
5672// Explicit instantiation of a class template specialization
5673DeclResult
5674Sema::ActOnExplicitInstantiation(Scope *S,
5675                                 SourceLocation ExternLoc,
5676                                 SourceLocation TemplateLoc,
5677                                 unsigned TagSpec,
5678                                 SourceLocation KWLoc,
5679                                 const CXXScopeSpec &SS,
5680                                 TemplateTy TemplateD,
5681                                 SourceLocation TemplateNameLoc,
5682                                 SourceLocation LAngleLoc,
5683                                 ASTTemplateArgsPtr TemplateArgsIn,
5684                                 SourceLocation RAngleLoc,
5685                                 AttributeList *Attr) {
5686  // Find the class template we're specializing
5687  TemplateName Name = TemplateD.getAsVal<TemplateName>();
5688  ClassTemplateDecl *ClassTemplate
5689    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
5690
5691  // Check that the specialization uses the same tag kind as the
5692  // original template.
5693  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5694  assert(Kind != TTK_Enum &&
5695         "Invalid enum tag in class template explicit instantiation!");
5696  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5697                                    Kind, KWLoc,
5698                                    *ClassTemplate->getIdentifier())) {
5699    Diag(KWLoc, diag::err_use_with_wrong_tag)
5700      << ClassTemplate
5701      << FixItHint::CreateReplacement(KWLoc,
5702                            ClassTemplate->getTemplatedDecl()->getKindName());
5703    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5704         diag::note_previous_use);
5705    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5706  }
5707
5708  // C++0x [temp.explicit]p2:
5709  //   There are two forms of explicit instantiation: an explicit instantiation
5710  //   definition and an explicit instantiation declaration. An explicit
5711  //   instantiation declaration begins with the extern keyword. [...]
5712  TemplateSpecializationKind TSK
5713    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5714                           : TSK_ExplicitInstantiationDeclaration;
5715
5716  // Translate the parser's template argument list in our AST format.
5717  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
5718  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5719
5720  // Check that the template argument list is well-formed for this
5721  // template.
5722  llvm::SmallVector<TemplateArgument, 4> Converted;
5723  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5724                                TemplateArgs, false, Converted))
5725    return true;
5726
5727  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
5728         "Converted template argument list is too short!");
5729
5730  // Find the class template specialization declaration that
5731  // corresponds to these arguments.
5732  void *InsertPos = 0;
5733  ClassTemplateSpecializationDecl *PrevDecl
5734    = ClassTemplate->findSpecialization(Converted.data(),
5735                                        Converted.size(), InsertPos);
5736
5737  TemplateSpecializationKind PrevDecl_TSK
5738    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
5739
5740  // C++0x [temp.explicit]p2:
5741  //   [...] An explicit instantiation shall appear in an enclosing
5742  //   namespace of its template. [...]
5743  //
5744  // This is C++ DR 275.
5745  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
5746                                      SS.isSet()))
5747    return true;
5748
5749  ClassTemplateSpecializationDecl *Specialization = 0;
5750
5751  bool HasNoEffect = false;
5752  if (PrevDecl) {
5753    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
5754                                               PrevDecl, PrevDecl_TSK,
5755                                            PrevDecl->getPointOfInstantiation(),
5756                                               HasNoEffect))
5757      return PrevDecl;
5758
5759    // Even though HasNoEffect == true means that this explicit instantiation
5760    // has no effect on semantics, we go on to put its syntax in the AST.
5761
5762    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
5763        PrevDecl_TSK == TSK_Undeclared) {
5764      // Since the only prior class template specialization with these
5765      // arguments was referenced but not declared, reuse that
5766      // declaration node as our own, updating the source location
5767      // for the template name to reflect our new declaration.
5768      // (Other source locations will be updated later.)
5769      Specialization = PrevDecl;
5770      Specialization->setLocation(TemplateNameLoc);
5771      PrevDecl = 0;
5772    }
5773  }
5774
5775  if (!Specialization) {
5776    // Create a new class template specialization declaration node for
5777    // this explicit specialization.
5778    Specialization
5779      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5780                                             ClassTemplate->getDeclContext(),
5781                                                KWLoc, TemplateNameLoc,
5782                                                ClassTemplate,
5783                                                Converted.data(),
5784                                                Converted.size(),
5785                                                PrevDecl);
5786    SetNestedNameSpecifier(Specialization, SS);
5787
5788    if (!HasNoEffect && !PrevDecl) {
5789      // Insert the new specialization.
5790      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5791    }
5792  }
5793
5794  // Build the fully-sugared type for this explicit instantiation as
5795  // the user wrote in the explicit instantiation itself. This means
5796  // that we'll pretty-print the type retrieved from the
5797  // specialization's declaration the way that the user actually wrote
5798  // the explicit instantiation, rather than formatting the name based
5799  // on the "canonical" representation used to store the template
5800  // arguments in the specialization.
5801  TypeSourceInfo *WrittenTy
5802    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5803                                                TemplateArgs,
5804                                  Context.getTypeDeclType(Specialization));
5805  Specialization->setTypeAsWritten(WrittenTy);
5806  TemplateArgsIn.release();
5807
5808  // Set source locations for keywords.
5809  Specialization->setExternLoc(ExternLoc);
5810  Specialization->setTemplateKeywordLoc(TemplateLoc);
5811
5812  // Add the explicit instantiation into its lexical context. However,
5813  // since explicit instantiations are never found by name lookup, we
5814  // just put it into the declaration context directly.
5815  Specialization->setLexicalDeclContext(CurContext);
5816  CurContext->addDecl(Specialization);
5817
5818  // Syntax is now OK, so return if it has no other effect on semantics.
5819  if (HasNoEffect) {
5820    // Set the template specialization kind.
5821    Specialization->setTemplateSpecializationKind(TSK);
5822    return Specialization;
5823  }
5824
5825  // C++ [temp.explicit]p3:
5826  //   A definition of a class template or class member template
5827  //   shall be in scope at the point of the explicit instantiation of
5828  //   the class template or class member template.
5829  //
5830  // This check comes when we actually try to perform the
5831  // instantiation.
5832  ClassTemplateSpecializationDecl *Def
5833    = cast_or_null<ClassTemplateSpecializationDecl>(
5834                                              Specialization->getDefinition());
5835  if (!Def)
5836    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
5837  else if (TSK == TSK_ExplicitInstantiationDefinition) {
5838    MarkVTableUsed(TemplateNameLoc, Specialization, true);
5839    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
5840  }
5841
5842  // Instantiate the members of this class template specialization.
5843  Def = cast_or_null<ClassTemplateSpecializationDecl>(
5844                                       Specialization->getDefinition());
5845  if (Def) {
5846    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
5847
5848    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
5849    // TSK_ExplicitInstantiationDefinition
5850    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
5851        TSK == TSK_ExplicitInstantiationDefinition)
5852      Def->setTemplateSpecializationKind(TSK);
5853
5854    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
5855  }
5856
5857  // Set the template specialization kind.
5858  Specialization->setTemplateSpecializationKind(TSK);
5859  return Specialization;
5860}
5861
5862// Explicit instantiation of a member class of a class template.
5863DeclResult
5864Sema::ActOnExplicitInstantiation(Scope *S,
5865                                 SourceLocation ExternLoc,
5866                                 SourceLocation TemplateLoc,
5867                                 unsigned TagSpec,
5868                                 SourceLocation KWLoc,
5869                                 CXXScopeSpec &SS,
5870                                 IdentifierInfo *Name,
5871                                 SourceLocation NameLoc,
5872                                 AttributeList *Attr) {
5873
5874  bool Owned = false;
5875  bool IsDependent = false;
5876  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
5877                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
5878                        MultiTemplateParamsArg(*this, 0, 0),
5879                        Owned, IsDependent, false, false,
5880                        TypeResult());
5881  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
5882
5883  if (!TagD)
5884    return true;
5885
5886  TagDecl *Tag = cast<TagDecl>(TagD);
5887  if (Tag->isEnum()) {
5888    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
5889      << Context.getTypeDeclType(Tag);
5890    return true;
5891  }
5892
5893  if (Tag->isInvalidDecl())
5894    return true;
5895
5896  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
5897  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
5898  if (!Pattern) {
5899    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
5900      << Context.getTypeDeclType(Record);
5901    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
5902    return true;
5903  }
5904
5905  // C++0x [temp.explicit]p2:
5906  //   If the explicit instantiation is for a class or member class, the
5907  //   elaborated-type-specifier in the declaration shall include a
5908  //   simple-template-id.
5909  //
5910  // C++98 has the same restriction, just worded differently.
5911  if (!ScopeSpecifierHasTemplateId(SS))
5912    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
5913      << Record << SS.getRange();
5914
5915  // C++0x [temp.explicit]p2:
5916  //   There are two forms of explicit instantiation: an explicit instantiation
5917  //   definition and an explicit instantiation declaration. An explicit
5918  //   instantiation declaration begins with the extern keyword. [...]
5919  TemplateSpecializationKind TSK
5920    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5921                           : TSK_ExplicitInstantiationDeclaration;
5922
5923  // C++0x [temp.explicit]p2:
5924  //   [...] An explicit instantiation shall appear in an enclosing
5925  //   namespace of its template. [...]
5926  //
5927  // This is C++ DR 275.
5928  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
5929
5930  // Verify that it is okay to explicitly instantiate here.
5931  CXXRecordDecl *PrevDecl
5932    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
5933  if (!PrevDecl && Record->getDefinition())
5934    PrevDecl = Record;
5935  if (PrevDecl) {
5936    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
5937    bool HasNoEffect = false;
5938    assert(MSInfo && "No member specialization information?");
5939    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
5940                                               PrevDecl,
5941                                        MSInfo->getTemplateSpecializationKind(),
5942                                             MSInfo->getPointOfInstantiation(),
5943                                               HasNoEffect))
5944      return true;
5945    if (HasNoEffect)
5946      return TagD;
5947  }
5948
5949  CXXRecordDecl *RecordDef
5950    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5951  if (!RecordDef) {
5952    // C++ [temp.explicit]p3:
5953    //   A definition of a member class of a class template shall be in scope
5954    //   at the point of an explicit instantiation of the member class.
5955    CXXRecordDecl *Def
5956      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
5957    if (!Def) {
5958      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
5959        << 0 << Record->getDeclName() << Record->getDeclContext();
5960      Diag(Pattern->getLocation(), diag::note_forward_declaration)
5961        << Pattern;
5962      return true;
5963    } else {
5964      if (InstantiateClass(NameLoc, Record, Def,
5965                           getTemplateInstantiationArgs(Record),
5966                           TSK))
5967        return true;
5968
5969      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5970      if (!RecordDef)
5971        return true;
5972    }
5973  }
5974
5975  // Instantiate all of the members of the class.
5976  InstantiateClassMembers(NameLoc, RecordDef,
5977                          getTemplateInstantiationArgs(Record), TSK);
5978
5979  if (TSK == TSK_ExplicitInstantiationDefinition)
5980    MarkVTableUsed(NameLoc, RecordDef, true);
5981
5982  // FIXME: We don't have any representation for explicit instantiations of
5983  // member classes. Such a representation is not needed for compilation, but it
5984  // should be available for clients that want to see all of the declarations in
5985  // the source code.
5986  return TagD;
5987}
5988
5989DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
5990                                            SourceLocation ExternLoc,
5991                                            SourceLocation TemplateLoc,
5992                                            Declarator &D) {
5993  // Explicit instantiations always require a name.
5994  // TODO: check if/when DNInfo should replace Name.
5995  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5996  DeclarationName Name = NameInfo.getName();
5997  if (!Name) {
5998    if (!D.isInvalidType())
5999      Diag(D.getDeclSpec().getSourceRange().getBegin(),
6000           diag::err_explicit_instantiation_requires_name)
6001        << D.getDeclSpec().getSourceRange()
6002        << D.getSourceRange();
6003
6004    return true;
6005  }
6006
6007  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6008  // we find one that is.
6009  while ((S->getFlags() & Scope::DeclScope) == 0 ||
6010         (S->getFlags() & Scope::TemplateParamScope) != 0)
6011    S = S->getParent();
6012
6013  // Determine the type of the declaration.
6014  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
6015  QualType R = T->getType();
6016  if (R.isNull())
6017    return true;
6018
6019  // C++ [dcl.stc]p1:
6020  //   A storage-class-specifier shall not be specified in [...] an explicit
6021  //   instantiation (14.7.2) directive.
6022  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
6023    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
6024      << Name;
6025    return true;
6026  } else if (D.getDeclSpec().getStorageClassSpec()
6027                                                != DeclSpec::SCS_unspecified) {
6028    // Complain about then remove the storage class specifier.
6029    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
6030      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6031
6032    D.getMutableDeclSpec().ClearStorageClassSpecs();
6033  }
6034
6035  // C++0x [temp.explicit]p1:
6036  //   [...] An explicit instantiation of a function template shall not use the
6037  //   inline or constexpr specifiers.
6038  // Presumably, this also applies to member functions of class templates as
6039  // well.
6040  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
6041    Diag(D.getDeclSpec().getInlineSpecLoc(),
6042         diag::err_explicit_instantiation_inline)
6043      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6044
6045  // FIXME: check for constexpr specifier.
6046
6047  // C++0x [temp.explicit]p2:
6048  //   There are two forms of explicit instantiation: an explicit instantiation
6049  //   definition and an explicit instantiation declaration. An explicit
6050  //   instantiation declaration begins with the extern keyword. [...]
6051  TemplateSpecializationKind TSK
6052    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6053                           : TSK_ExplicitInstantiationDeclaration;
6054
6055  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
6056  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
6057
6058  if (!R->isFunctionType()) {
6059    // C++ [temp.explicit]p1:
6060    //   A [...] static data member of a class template can be explicitly
6061    //   instantiated from the member definition associated with its class
6062    //   template.
6063    if (Previous.isAmbiguous())
6064      return true;
6065
6066    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
6067    if (!Prev || !Prev->isStaticDataMember()) {
6068      // We expect to see a data data member here.
6069      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
6070        << Name;
6071      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6072           P != PEnd; ++P)
6073        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
6074      return true;
6075    }
6076
6077    if (!Prev->getInstantiatedFromStaticDataMember()) {
6078      // FIXME: Check for explicit specialization?
6079      Diag(D.getIdentifierLoc(),
6080           diag::err_explicit_instantiation_data_member_not_instantiated)
6081        << Prev;
6082      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
6083      // FIXME: Can we provide a note showing where this was declared?
6084      return true;
6085    }
6086
6087    // C++0x [temp.explicit]p2:
6088    //   If the explicit instantiation is for a member function, a member class
6089    //   or a static data member of a class template specialization, the name of
6090    //   the class template specialization in the qualified-id for the member
6091    //   name shall be a simple-template-id.
6092    //
6093    // C++98 has the same restriction, just worded differently.
6094    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6095      Diag(D.getIdentifierLoc(),
6096           diag::ext_explicit_instantiation_without_qualified_id)
6097        << Prev << D.getCXXScopeSpec().getRange();
6098
6099    // Check the scope of this explicit instantiation.
6100    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
6101
6102    // Verify that it is okay to explicitly instantiate here.
6103    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
6104    assert(MSInfo && "Missing static data member specialization info?");
6105    bool HasNoEffect = false;
6106    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
6107                                        MSInfo->getTemplateSpecializationKind(),
6108                                              MSInfo->getPointOfInstantiation(),
6109                                               HasNoEffect))
6110      return true;
6111    if (HasNoEffect)
6112      return (Decl*) 0;
6113
6114    // Instantiate static data member.
6115    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6116    if (TSK == TSK_ExplicitInstantiationDefinition)
6117      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
6118
6119    // FIXME: Create an ExplicitInstantiation node?
6120    return (Decl*) 0;
6121  }
6122
6123  // If the declarator is a template-id, translate the parser's template
6124  // argument list into our AST format.
6125  bool HasExplicitTemplateArgs = false;
6126  TemplateArgumentListInfo TemplateArgs;
6127  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6128    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6129    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6130    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6131    ASTTemplateArgsPtr TemplateArgsPtr(*this,
6132                                       TemplateId->getTemplateArgs(),
6133                                       TemplateId->NumArgs);
6134    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
6135    HasExplicitTemplateArgs = true;
6136    TemplateArgsPtr.release();
6137  }
6138
6139  // C++ [temp.explicit]p1:
6140  //   A [...] function [...] can be explicitly instantiated from its template.
6141  //   A member function [...] of a class template can be explicitly
6142  //  instantiated from the member definition associated with its class
6143  //  template.
6144  UnresolvedSet<8> Matches;
6145  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6146       P != PEnd; ++P) {
6147    NamedDecl *Prev = *P;
6148    if (!HasExplicitTemplateArgs) {
6149      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
6150        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
6151          Matches.clear();
6152
6153          Matches.addDecl(Method, P.getAccess());
6154          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
6155            break;
6156        }
6157      }
6158    }
6159
6160    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
6161    if (!FunTmpl)
6162      continue;
6163
6164    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
6165    FunctionDecl *Specialization = 0;
6166    if (TemplateDeductionResult TDK
6167          = DeduceTemplateArguments(FunTmpl,
6168                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6169                                    R, Specialization, Info)) {
6170      // FIXME: Keep track of almost-matches?
6171      (void)TDK;
6172      continue;
6173    }
6174
6175    Matches.addDecl(Specialization, P.getAccess());
6176  }
6177
6178  // Find the most specialized function template specialization.
6179  UnresolvedSetIterator Result
6180    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
6181                         D.getIdentifierLoc(),
6182                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
6183                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
6184                         PDiag(diag::note_explicit_instantiation_candidate));
6185
6186  if (Result == Matches.end())
6187    return true;
6188
6189  // Ignore access control bits, we don't need them for redeclaration checking.
6190  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6191
6192  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
6193    Diag(D.getIdentifierLoc(),
6194         diag::err_explicit_instantiation_member_function_not_instantiated)
6195      << Specialization
6196      << (Specialization->getTemplateSpecializationKind() ==
6197          TSK_ExplicitSpecialization);
6198    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
6199    return true;
6200  }
6201
6202  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
6203  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
6204    PrevDecl = Specialization;
6205
6206  if (PrevDecl) {
6207    bool HasNoEffect = false;
6208    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
6209                                               PrevDecl,
6210                                     PrevDecl->getTemplateSpecializationKind(),
6211                                          PrevDecl->getPointOfInstantiation(),
6212                                               HasNoEffect))
6213      return true;
6214
6215    // FIXME: We may still want to build some representation of this
6216    // explicit specialization.
6217    if (HasNoEffect)
6218      return (Decl*) 0;
6219  }
6220
6221  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6222
6223  if (TSK == TSK_ExplicitInstantiationDefinition)
6224    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
6225
6226  // C++0x [temp.explicit]p2:
6227  //   If the explicit instantiation is for a member function, a member class
6228  //   or a static data member of a class template specialization, the name of
6229  //   the class template specialization in the qualified-id for the member
6230  //   name shall be a simple-template-id.
6231  //
6232  // C++98 has the same restriction, just worded differently.
6233  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
6234  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
6235      D.getCXXScopeSpec().isSet() &&
6236      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6237    Diag(D.getIdentifierLoc(),
6238         diag::ext_explicit_instantiation_without_qualified_id)
6239    << Specialization << D.getCXXScopeSpec().getRange();
6240
6241  CheckExplicitInstantiationScope(*this,
6242                   FunTmpl? (NamedDecl *)FunTmpl
6243                          : Specialization->getInstantiatedFromMemberFunction(),
6244                                  D.getIdentifierLoc(),
6245                                  D.getCXXScopeSpec().isSet());
6246
6247  // FIXME: Create some kind of ExplicitInstantiationDecl here.
6248  return (Decl*) 0;
6249}
6250
6251TypeResult
6252Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6253                        const CXXScopeSpec &SS, IdentifierInfo *Name,
6254                        SourceLocation TagLoc, SourceLocation NameLoc) {
6255  // This has to hold, because SS is expected to be defined.
6256  assert(Name && "Expected a name in a dependent tag");
6257
6258  NestedNameSpecifier *NNS
6259    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6260  if (!NNS)
6261    return true;
6262
6263  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6264
6265  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
6266    Diag(NameLoc, diag::err_dependent_tag_decl)
6267      << (TUK == TUK_Definition) << Kind << SS.getRange();
6268    return true;
6269  }
6270
6271  // Create the resulting type.
6272  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6273  QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
6274
6275  // Create type-source location information for this type.
6276  TypeLocBuilder TLB;
6277  DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
6278  TL.setKeywordLoc(TagLoc);
6279  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6280  TL.setNameLoc(NameLoc);
6281  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
6282}
6283
6284TypeResult
6285Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6286                        const CXXScopeSpec &SS, const IdentifierInfo &II,
6287                        SourceLocation IdLoc) {
6288  if (SS.isInvalid())
6289    return true;
6290
6291  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
6292      !getLangOptions().CPlusPlus0x)
6293    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
6294      << FixItHint::CreateRemoval(TypenameLoc);
6295
6296  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6297  QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
6298                                 TypenameLoc, QualifierLoc, II, IdLoc);
6299  if (T.isNull())
6300    return true;
6301
6302  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6303  if (isa<DependentNameType>(T)) {
6304    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6305    TL.setKeywordLoc(TypenameLoc);
6306    TL.setQualifierLoc(QualifierLoc);
6307    TL.setNameLoc(IdLoc);
6308  } else {
6309    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6310    TL.setKeywordLoc(TypenameLoc);
6311    TL.setQualifierLoc(QualifierLoc);
6312    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
6313  }
6314
6315  return CreateParsedType(T, TSI);
6316}
6317
6318TypeResult
6319Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6320                        const CXXScopeSpec &SS,
6321                        SourceLocation TemplateLoc,
6322                        TemplateTy TemplateIn,
6323                        SourceLocation TemplateNameLoc,
6324                        SourceLocation LAngleLoc,
6325                        ASTTemplateArgsPtr TemplateArgsIn,
6326                        SourceLocation RAngleLoc) {
6327  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
6328      !getLangOptions().CPlusPlus0x)
6329    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
6330    << FixItHint::CreateRemoval(TypenameLoc);
6331
6332  // Translate the parser's template argument list in our AST format.
6333  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6334  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6335
6336  TemplateName Template = TemplateIn.get();
6337  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
6338    // Construct a dependent template specialization type.
6339    assert(DTN && "dependent template has non-dependent name?");
6340    assert(DTN->getQualifier()
6341           == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
6342    QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
6343                                                          DTN->getQualifier(),
6344                                                          DTN->getIdentifier(),
6345                                                                TemplateArgs);
6346
6347    // Create source-location information for this type.
6348    TypeLocBuilder Builder;
6349    DependentTemplateSpecializationTypeLoc SpecTL
6350    = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
6351    SpecTL.setLAngleLoc(LAngleLoc);
6352    SpecTL.setRAngleLoc(RAngleLoc);
6353    SpecTL.setKeywordLoc(TypenameLoc);
6354    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
6355    SpecTL.setNameLoc(TemplateNameLoc);
6356    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6357      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6358    return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
6359  }
6360
6361  QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
6362  if (T.isNull())
6363    return true;
6364
6365  // Provide source-location information for the template specialization
6366  // type.
6367  TypeLocBuilder Builder;
6368  TemplateSpecializationTypeLoc SpecTL
6369    = Builder.push<TemplateSpecializationTypeLoc>(T);
6370
6371  // FIXME: No place to set the location of the 'template' keyword!
6372  SpecTL.setLAngleLoc(LAngleLoc);
6373  SpecTL.setRAngleLoc(RAngleLoc);
6374  SpecTL.setTemplateNameLoc(TemplateNameLoc);
6375  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6376    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6377
6378  T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
6379  ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
6380  TL.setKeywordLoc(TypenameLoc);
6381  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6382
6383  TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
6384  return CreateParsedType(T, TSI);
6385}
6386
6387
6388/// \brief Build the type that describes a C++ typename specifier,
6389/// e.g., "typename T::type".
6390QualType
6391Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
6392                        SourceLocation KeywordLoc,
6393                        NestedNameSpecifierLoc QualifierLoc,
6394                        const IdentifierInfo &II,
6395                        SourceLocation IILoc) {
6396  CXXScopeSpec SS;
6397  SS.Adopt(QualifierLoc);
6398
6399  DeclContext *Ctx = computeDeclContext(SS);
6400  if (!Ctx) {
6401    // If the nested-name-specifier is dependent and couldn't be
6402    // resolved to a type, build a typename type.
6403    assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
6404    return Context.getDependentNameType(Keyword,
6405                                        QualifierLoc.getNestedNameSpecifier(),
6406                                        &II);
6407  }
6408
6409  // If the nested-name-specifier refers to the current instantiation,
6410  // the "typename" keyword itself is superfluous. In C++03, the
6411  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
6412  // allows such extraneous "typename" keywords, and we retroactively
6413  // apply this DR to C++03 code with only a warning. In any case we continue.
6414
6415  if (RequireCompleteDeclContext(SS, Ctx))
6416    return QualType();
6417
6418  DeclarationName Name(&II);
6419  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
6420  LookupQualifiedName(Result, Ctx);
6421  unsigned DiagID = 0;
6422  Decl *Referenced = 0;
6423  switch (Result.getResultKind()) {
6424  case LookupResult::NotFound:
6425    DiagID = diag::err_typename_nested_not_found;
6426    break;
6427
6428  case LookupResult::FoundUnresolvedValue: {
6429    // We found a using declaration that is a value. Most likely, the using
6430    // declaration itself is meant to have the 'typename' keyword.
6431    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6432                          IILoc);
6433    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
6434      << Name << Ctx << FullRange;
6435    if (UnresolvedUsingValueDecl *Using
6436          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
6437      SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
6438      Diag(Loc, diag::note_using_value_decl_missing_typename)
6439        << FixItHint::CreateInsertion(Loc, "typename ");
6440    }
6441  }
6442  // Fall through to create a dependent typename type, from which we can recover
6443  // better.
6444
6445  case LookupResult::NotFoundInCurrentInstantiation:
6446    // Okay, it's a member of an unknown instantiation.
6447    return Context.getDependentNameType(Keyword,
6448                                        QualifierLoc.getNestedNameSpecifier(),
6449                                        &II);
6450
6451  case LookupResult::Found:
6452    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
6453      // We found a type. Build an ElaboratedType, since the
6454      // typename-specifier was just sugar.
6455      return Context.getElaboratedType(ETK_Typename,
6456                                       QualifierLoc.getNestedNameSpecifier(),
6457                                       Context.getTypeDeclType(Type));
6458    }
6459
6460    DiagID = diag::err_typename_nested_not_type;
6461    Referenced = Result.getFoundDecl();
6462    break;
6463
6464
6465    llvm_unreachable("unresolved using decl in non-dependent context");
6466    return QualType();
6467
6468  case LookupResult::FoundOverloaded:
6469    DiagID = diag::err_typename_nested_not_type;
6470    Referenced = *Result.begin();
6471    break;
6472
6473  case LookupResult::Ambiguous:
6474    return QualType();
6475  }
6476
6477  // If we get here, it's because name lookup did not find a
6478  // type. Emit an appropriate diagnostic and return an error.
6479  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6480                        IILoc);
6481  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
6482  if (Referenced)
6483    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
6484      << Name;
6485  return QualType();
6486}
6487
6488namespace {
6489  // See Sema::RebuildTypeInCurrentInstantiation
6490  class CurrentInstantiationRebuilder
6491    : public TreeTransform<CurrentInstantiationRebuilder> {
6492    SourceLocation Loc;
6493    DeclarationName Entity;
6494
6495  public:
6496    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
6497
6498    CurrentInstantiationRebuilder(Sema &SemaRef,
6499                                  SourceLocation Loc,
6500                                  DeclarationName Entity)
6501    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
6502      Loc(Loc), Entity(Entity) { }
6503
6504    /// \brief Determine whether the given type \p T has already been
6505    /// transformed.
6506    ///
6507    /// For the purposes of type reconstruction, a type has already been
6508    /// transformed if it is NULL or if it is not dependent.
6509    bool AlreadyTransformed(QualType T) {
6510      return T.isNull() || !T->isDependentType();
6511    }
6512
6513    /// \brief Returns the location of the entity whose type is being
6514    /// rebuilt.
6515    SourceLocation getBaseLocation() { return Loc; }
6516
6517    /// \brief Returns the name of the entity whose type is being rebuilt.
6518    DeclarationName getBaseEntity() { return Entity; }
6519
6520    /// \brief Sets the "base" location and entity when that
6521    /// information is known based on another transformation.
6522    void setBase(SourceLocation Loc, DeclarationName Entity) {
6523      this->Loc = Loc;
6524      this->Entity = Entity;
6525    }
6526  };
6527}
6528
6529/// \brief Rebuilds a type within the context of the current instantiation.
6530///
6531/// The type \p T is part of the type of an out-of-line member definition of
6532/// a class template (or class template partial specialization) that was parsed
6533/// and constructed before we entered the scope of the class template (or
6534/// partial specialization thereof). This routine will rebuild that type now
6535/// that we have entered the declarator's scope, which may produce different
6536/// canonical types, e.g.,
6537///
6538/// \code
6539/// template<typename T>
6540/// struct X {
6541///   typedef T* pointer;
6542///   pointer data();
6543/// };
6544///
6545/// template<typename T>
6546/// typename X<T>::pointer X<T>::data() { ... }
6547/// \endcode
6548///
6549/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
6550/// since we do not know that we can look into X<T> when we parsed the type.
6551/// This function will rebuild the type, performing the lookup of "pointer"
6552/// in X<T> and returning an ElaboratedType whose canonical type is the same
6553/// as the canonical type of T*, allowing the return types of the out-of-line
6554/// definition and the declaration to match.
6555TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
6556                                                        SourceLocation Loc,
6557                                                        DeclarationName Name) {
6558  if (!T || !T->getType()->isDependentType())
6559    return T;
6560
6561  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
6562  return Rebuilder.TransformType(T);
6563}
6564
6565ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
6566  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
6567                                          DeclarationName());
6568  return Rebuilder.TransformExpr(E);
6569}
6570
6571bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
6572  if (SS.isInvalid())
6573    return true;
6574
6575  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6576  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
6577                                          DeclarationName());
6578  NestedNameSpecifierLoc Rebuilt
6579    = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
6580  if (!Rebuilt)
6581    return true;
6582
6583  SS.Adopt(Rebuilt);
6584  return false;
6585}
6586
6587/// \brief Produces a formatted string that describes the binding of
6588/// template parameters to template arguments.
6589std::string
6590Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6591                                      const TemplateArgumentList &Args) {
6592  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
6593}
6594
6595std::string
6596Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6597                                      const TemplateArgument *Args,
6598                                      unsigned NumArgs) {
6599  llvm::SmallString<128> Str;
6600  llvm::raw_svector_ostream Out(Str);
6601
6602  if (!Params || Params->size() == 0 || NumArgs == 0)
6603    return std::string();
6604
6605  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
6606    if (I >= NumArgs)
6607      break;
6608
6609    if (I == 0)
6610      Out << "[with ";
6611    else
6612      Out << ", ";
6613
6614    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
6615      Out << Id->getName();
6616    } else {
6617      Out << '$' << I;
6618    }
6619
6620    Out << " = ";
6621    Args[I].print(Context.PrintingPolicy, Out);
6622  }
6623
6624  Out << ']';
6625  return Out.str();
6626}
6627
6628void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) {
6629  if (!FD)
6630    return;
6631  FD->setLateTemplateParsed(Flag);
6632}
6633
6634bool Sema::IsInsideALocalClassWithinATemplateFunction() {
6635  DeclContext *DC = CurContext;
6636
6637  while (DC) {
6638    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
6639      const FunctionDecl *FD = RD->isLocalClass();
6640      return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
6641    } else if (DC->isTranslationUnit() || DC->isNamespace())
6642      return false;
6643
6644    DC = DC->getParent();
6645  }
6646  return false;
6647}
6648