SemaTemplate.cpp revision ca63c200346c0ca9e00194ec6e34a5a7b0ed9321
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "clang/Sema/SemaInternal.h" 13#include "clang/Sema/Lookup.h" 14#include "clang/Sema/Scope.h" 15#include "clang/Sema/Template.h" 16#include "clang/Sema/TemplateDeduction.h" 17#include "TreeTransform.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ExprCXX.h" 21#include "clang/AST/DeclFriend.h" 22#include "clang/AST/DeclTemplate.h" 23#include "clang/AST/RecursiveASTVisitor.h" 24#include "clang/AST/TypeVisitor.h" 25#include "clang/Sema/DeclSpec.h" 26#include "clang/Sema/ParsedTemplate.h" 27#include "clang/Basic/LangOptions.h" 28#include "clang/Basic/PartialDiagnostic.h" 29#include "llvm/ADT/StringExtras.h" 30using namespace clang; 31using namespace sema; 32 33// Exported for use by Parser. 34SourceRange 35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 36 unsigned N) { 37 if (!N) return SourceRange(); 38 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 39} 40 41/// \brief Determine whether the declaration found is acceptable as the name 42/// of a template and, if so, return that template declaration. Otherwise, 43/// returns NULL. 44static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 45 NamedDecl *Orig) { 46 NamedDecl *D = Orig->getUnderlyingDecl(); 47 48 if (isa<TemplateDecl>(D)) 49 return Orig; 50 51 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 52 // C++ [temp.local]p1: 53 // Like normal (non-template) classes, class templates have an 54 // injected-class-name (Clause 9). The injected-class-name 55 // can be used with or without a template-argument-list. When 56 // it is used without a template-argument-list, it is 57 // equivalent to the injected-class-name followed by the 58 // template-parameters of the class template enclosed in 59 // <>. When it is used with a template-argument-list, it 60 // refers to the specified class template specialization, 61 // which could be the current specialization or another 62 // specialization. 63 if (Record->isInjectedClassName()) { 64 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 65 if (Record->getDescribedClassTemplate()) 66 return Record->getDescribedClassTemplate(); 67 68 if (ClassTemplateSpecializationDecl *Spec 69 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 70 return Spec->getSpecializedTemplate(); 71 } 72 73 return 0; 74 } 75 76 return 0; 77} 78 79void Sema::FilterAcceptableTemplateNames(LookupResult &R) { 80 // The set of class templates we've already seen. 81 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 82 LookupResult::Filter filter = R.makeFilter(); 83 while (filter.hasNext()) { 84 NamedDecl *Orig = filter.next(); 85 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig); 86 if (!Repl) 87 filter.erase(); 88 else if (Repl != Orig) { 89 90 // C++ [temp.local]p3: 91 // A lookup that finds an injected-class-name (10.2) can result in an 92 // ambiguity in certain cases (for example, if it is found in more than 93 // one base class). If all of the injected-class-names that are found 94 // refer to specializations of the same class template, and if the name 95 // is used as a template-name, the reference refers to the class 96 // template itself and not a specialization thereof, and is not 97 // ambiguous. 98 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 99 if (!ClassTemplates.insert(ClassTmpl)) { 100 filter.erase(); 101 continue; 102 } 103 104 // FIXME: we promote access to public here as a workaround to 105 // the fact that LookupResult doesn't let us remember that we 106 // found this template through a particular injected class name, 107 // which means we end up doing nasty things to the invariants. 108 // Pretending that access is public is *much* safer. 109 filter.replace(Repl, AS_public); 110 } 111 } 112 filter.done(); 113} 114 115bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R) { 116 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) 117 if (isAcceptableTemplateName(Context, *I)) 118 return true; 119 120 return false; 121} 122 123TemplateNameKind Sema::isTemplateName(Scope *S, 124 CXXScopeSpec &SS, 125 bool hasTemplateKeyword, 126 UnqualifiedId &Name, 127 ParsedType ObjectTypePtr, 128 bool EnteringContext, 129 TemplateTy &TemplateResult, 130 bool &MemberOfUnknownSpecialization) { 131 assert(getLangOptions().CPlusPlus && "No template names in C!"); 132 133 DeclarationName TName; 134 MemberOfUnknownSpecialization = false; 135 136 switch (Name.getKind()) { 137 case UnqualifiedId::IK_Identifier: 138 TName = DeclarationName(Name.Identifier); 139 break; 140 141 case UnqualifiedId::IK_OperatorFunctionId: 142 TName = Context.DeclarationNames.getCXXOperatorName( 143 Name.OperatorFunctionId.Operator); 144 break; 145 146 case UnqualifiedId::IK_LiteralOperatorId: 147 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 148 break; 149 150 default: 151 return TNK_Non_template; 152 } 153 154 QualType ObjectType = ObjectTypePtr.get(); 155 156 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 157 LookupOrdinaryName); 158 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 159 MemberOfUnknownSpecialization); 160 if (R.empty()) return TNK_Non_template; 161 if (R.isAmbiguous()) { 162 // Suppress diagnostics; we'll redo this lookup later. 163 R.suppressDiagnostics(); 164 165 // FIXME: we might have ambiguous templates, in which case we 166 // should at least parse them properly! 167 return TNK_Non_template; 168 } 169 170 TemplateName Template; 171 TemplateNameKind TemplateKind; 172 173 unsigned ResultCount = R.end() - R.begin(); 174 if (ResultCount > 1) { 175 // We assume that we'll preserve the qualifier from a function 176 // template name in other ways. 177 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 178 TemplateKind = TNK_Function_template; 179 180 // We'll do this lookup again later. 181 R.suppressDiagnostics(); 182 } else { 183 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 184 185 if (SS.isSet() && !SS.isInvalid()) { 186 NestedNameSpecifier *Qualifier 187 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 188 Template = Context.getQualifiedTemplateName(Qualifier, 189 hasTemplateKeyword, TD); 190 } else { 191 Template = TemplateName(TD); 192 } 193 194 if (isa<FunctionTemplateDecl>(TD)) { 195 TemplateKind = TNK_Function_template; 196 197 // We'll do this lookup again later. 198 R.suppressDiagnostics(); 199 } else { 200 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 201 isa<TypeAliasTemplateDecl>(TD)); 202 TemplateKind = TNK_Type_template; 203 } 204 } 205 206 TemplateResult = TemplateTy::make(Template); 207 return TemplateKind; 208} 209 210bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 211 SourceLocation IILoc, 212 Scope *S, 213 const CXXScopeSpec *SS, 214 TemplateTy &SuggestedTemplate, 215 TemplateNameKind &SuggestedKind) { 216 // We can't recover unless there's a dependent scope specifier preceding the 217 // template name. 218 // FIXME: Typo correction? 219 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 220 computeDeclContext(*SS)) 221 return false; 222 223 // The code is missing a 'template' keyword prior to the dependent template 224 // name. 225 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 226 Diag(IILoc, diag::err_template_kw_missing) 227 << Qualifier << II.getName() 228 << FixItHint::CreateInsertion(IILoc, "template "); 229 SuggestedTemplate 230 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 231 SuggestedKind = TNK_Dependent_template_name; 232 return true; 233} 234 235void Sema::LookupTemplateName(LookupResult &Found, 236 Scope *S, CXXScopeSpec &SS, 237 QualType ObjectType, 238 bool EnteringContext, 239 bool &MemberOfUnknownSpecialization) { 240 // Determine where to perform name lookup 241 MemberOfUnknownSpecialization = false; 242 DeclContext *LookupCtx = 0; 243 bool isDependent = false; 244 if (!ObjectType.isNull()) { 245 // This nested-name-specifier occurs in a member access expression, e.g., 246 // x->B::f, and we are looking into the type of the object. 247 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 248 LookupCtx = computeDeclContext(ObjectType); 249 isDependent = ObjectType->isDependentType(); 250 assert((isDependent || !ObjectType->isIncompleteType()) && 251 "Caller should have completed object type"); 252 } else if (SS.isSet()) { 253 // This nested-name-specifier occurs after another nested-name-specifier, 254 // so long into the context associated with the prior nested-name-specifier. 255 LookupCtx = computeDeclContext(SS, EnteringContext); 256 isDependent = isDependentScopeSpecifier(SS); 257 258 // The declaration context must be complete. 259 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 260 return; 261 } 262 263 bool ObjectTypeSearchedInScope = false; 264 if (LookupCtx) { 265 // Perform "qualified" name lookup into the declaration context we 266 // computed, which is either the type of the base of a member access 267 // expression or the declaration context associated with a prior 268 // nested-name-specifier. 269 LookupQualifiedName(Found, LookupCtx); 270 271 if (!ObjectType.isNull() && Found.empty()) { 272 // C++ [basic.lookup.classref]p1: 273 // In a class member access expression (5.2.5), if the . or -> token is 274 // immediately followed by an identifier followed by a <, the 275 // identifier must be looked up to determine whether the < is the 276 // beginning of a template argument list (14.2) or a less-than operator. 277 // The identifier is first looked up in the class of the object 278 // expression. If the identifier is not found, it is then looked up in 279 // the context of the entire postfix-expression and shall name a class 280 // or function template. 281 if (S) LookupName(Found, S); 282 ObjectTypeSearchedInScope = true; 283 } 284 } else if (isDependent && (!S || ObjectType.isNull())) { 285 // We cannot look into a dependent object type or nested nme 286 // specifier. 287 MemberOfUnknownSpecialization = true; 288 return; 289 } else { 290 // Perform unqualified name lookup in the current scope. 291 LookupName(Found, S); 292 } 293 294 if (Found.empty() && !isDependent) { 295 // If we did not find any names, attempt to correct any typos. 296 DeclarationName Name = Found.getLookupName(); 297 if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx, 298 false, CTC_CXXCasts)) { 299 FilterAcceptableTemplateNames(Found); 300 if (!Found.empty()) { 301 if (LookupCtx) 302 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 303 << Name << LookupCtx << Found.getLookupName() << SS.getRange() 304 << FixItHint::CreateReplacement(Found.getNameLoc(), 305 Found.getLookupName().getAsString()); 306 else 307 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 308 << Name << Found.getLookupName() 309 << FixItHint::CreateReplacement(Found.getNameLoc(), 310 Found.getLookupName().getAsString()); 311 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 312 Diag(Template->getLocation(), diag::note_previous_decl) 313 << Template->getDeclName(); 314 } 315 } else { 316 Found.clear(); 317 Found.setLookupName(Name); 318 } 319 } 320 321 FilterAcceptableTemplateNames(Found); 322 if (Found.empty()) { 323 if (isDependent) 324 MemberOfUnknownSpecialization = true; 325 return; 326 } 327 328 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 329 // C++ [basic.lookup.classref]p1: 330 // [...] If the lookup in the class of the object expression finds a 331 // template, the name is also looked up in the context of the entire 332 // postfix-expression and [...] 333 // 334 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 335 LookupOrdinaryName); 336 LookupName(FoundOuter, S); 337 FilterAcceptableTemplateNames(FoundOuter); 338 339 if (FoundOuter.empty()) { 340 // - if the name is not found, the name found in the class of the 341 // object expression is used, otherwise 342 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 343 // - if the name is found in the context of the entire 344 // postfix-expression and does not name a class template, the name 345 // found in the class of the object expression is used, otherwise 346 } else if (!Found.isSuppressingDiagnostics()) { 347 // - if the name found is a class template, it must refer to the same 348 // entity as the one found in the class of the object expression, 349 // otherwise the program is ill-formed. 350 if (!Found.isSingleResult() || 351 Found.getFoundDecl()->getCanonicalDecl() 352 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 353 Diag(Found.getNameLoc(), 354 diag::ext_nested_name_member_ref_lookup_ambiguous) 355 << Found.getLookupName() 356 << ObjectType; 357 Diag(Found.getRepresentativeDecl()->getLocation(), 358 diag::note_ambig_member_ref_object_type) 359 << ObjectType; 360 Diag(FoundOuter.getFoundDecl()->getLocation(), 361 diag::note_ambig_member_ref_scope); 362 363 // Recover by taking the template that we found in the object 364 // expression's type. 365 } 366 } 367 } 368} 369 370/// ActOnDependentIdExpression - Handle a dependent id-expression that 371/// was just parsed. This is only possible with an explicit scope 372/// specifier naming a dependent type. 373ExprResult 374Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 375 const DeclarationNameInfo &NameInfo, 376 bool isAddressOfOperand, 377 const TemplateArgumentListInfo *TemplateArgs) { 378 DeclContext *DC = getFunctionLevelDeclContext(); 379 380 if (!isAddressOfOperand && 381 isa<CXXMethodDecl>(DC) && 382 cast<CXXMethodDecl>(DC)->isInstance()) { 383 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 384 385 // Since the 'this' expression is synthesized, we don't need to 386 // perform the double-lookup check. 387 NamedDecl *FirstQualifierInScope = 0; 388 389 return Owned(CXXDependentScopeMemberExpr::Create(Context, 390 /*This*/ 0, ThisType, 391 /*IsArrow*/ true, 392 /*Op*/ SourceLocation(), 393 SS.getWithLocInContext(Context), 394 FirstQualifierInScope, 395 NameInfo, 396 TemplateArgs)); 397 } 398 399 return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs); 400} 401 402ExprResult 403Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 404 const DeclarationNameInfo &NameInfo, 405 const TemplateArgumentListInfo *TemplateArgs) { 406 return Owned(DependentScopeDeclRefExpr::Create(Context, 407 SS.getWithLocInContext(Context), 408 NameInfo, 409 TemplateArgs)); 410} 411 412/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 413/// that the template parameter 'PrevDecl' is being shadowed by a new 414/// declaration at location Loc. Returns true to indicate that this is 415/// an error, and false otherwise. 416bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 417 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 418 419 // Microsoft Visual C++ permits template parameters to be shadowed. 420 if (getLangOptions().Microsoft) 421 return false; 422 423 // C++ [temp.local]p4: 424 // A template-parameter shall not be redeclared within its 425 // scope (including nested scopes). 426 Diag(Loc, diag::err_template_param_shadow) 427 << cast<NamedDecl>(PrevDecl)->getDeclName(); 428 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 429 return true; 430} 431 432/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 433/// the parameter D to reference the templated declaration and return a pointer 434/// to the template declaration. Otherwise, do nothing to D and return null. 435TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 436 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 437 D = Temp->getTemplatedDecl(); 438 return Temp; 439 } 440 return 0; 441} 442 443ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 444 SourceLocation EllipsisLoc) const { 445 assert(Kind == Template && 446 "Only template template arguments can be pack expansions here"); 447 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 448 "Template template argument pack expansion without packs"); 449 ParsedTemplateArgument Result(*this); 450 Result.EllipsisLoc = EllipsisLoc; 451 return Result; 452} 453 454static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 455 const ParsedTemplateArgument &Arg) { 456 457 switch (Arg.getKind()) { 458 case ParsedTemplateArgument::Type: { 459 TypeSourceInfo *DI; 460 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 461 if (!DI) 462 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 463 return TemplateArgumentLoc(TemplateArgument(T), DI); 464 } 465 466 case ParsedTemplateArgument::NonType: { 467 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 468 return TemplateArgumentLoc(TemplateArgument(E), E); 469 } 470 471 case ParsedTemplateArgument::Template: { 472 TemplateName Template = Arg.getAsTemplate().get(); 473 TemplateArgument TArg; 474 if (Arg.getEllipsisLoc().isValid()) 475 TArg = TemplateArgument(Template, llvm::Optional<unsigned int>()); 476 else 477 TArg = Template; 478 return TemplateArgumentLoc(TArg, 479 Arg.getScopeSpec().getWithLocInContext( 480 SemaRef.Context), 481 Arg.getLocation(), 482 Arg.getEllipsisLoc()); 483 } 484 } 485 486 llvm_unreachable("Unhandled parsed template argument"); 487 return TemplateArgumentLoc(); 488} 489 490/// \brief Translates template arguments as provided by the parser 491/// into template arguments used by semantic analysis. 492void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 493 TemplateArgumentListInfo &TemplateArgs) { 494 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 495 TemplateArgs.addArgument(translateTemplateArgument(*this, 496 TemplateArgsIn[I])); 497} 498 499/// ActOnTypeParameter - Called when a C++ template type parameter 500/// (e.g., "typename T") has been parsed. Typename specifies whether 501/// the keyword "typename" was used to declare the type parameter 502/// (otherwise, "class" was used), and KeyLoc is the location of the 503/// "class" or "typename" keyword. ParamName is the name of the 504/// parameter (NULL indicates an unnamed template parameter) and 505/// ParamNameLoc is the location of the parameter name (if any). 506/// If the type parameter has a default argument, it will be added 507/// later via ActOnTypeParameterDefault. 508Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 509 SourceLocation EllipsisLoc, 510 SourceLocation KeyLoc, 511 IdentifierInfo *ParamName, 512 SourceLocation ParamNameLoc, 513 unsigned Depth, unsigned Position, 514 SourceLocation EqualLoc, 515 ParsedType DefaultArg) { 516 assert(S->isTemplateParamScope() && 517 "Template type parameter not in template parameter scope!"); 518 bool Invalid = false; 519 520 if (ParamName) { 521 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 522 LookupOrdinaryName, 523 ForRedeclaration); 524 if (PrevDecl && PrevDecl->isTemplateParameter()) 525 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 526 PrevDecl); 527 } 528 529 SourceLocation Loc = ParamNameLoc; 530 if (!ParamName) 531 Loc = KeyLoc; 532 533 TemplateTypeParmDecl *Param 534 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 535 KeyLoc, Loc, Depth, Position, ParamName, 536 Typename, Ellipsis); 537 Param->setAccess(AS_public); 538 if (Invalid) 539 Param->setInvalidDecl(); 540 541 if (ParamName) { 542 // Add the template parameter into the current scope. 543 S->AddDecl(Param); 544 IdResolver.AddDecl(Param); 545 } 546 547 // C++0x [temp.param]p9: 548 // A default template-argument may be specified for any kind of 549 // template-parameter that is not a template parameter pack. 550 if (DefaultArg && Ellipsis) { 551 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 552 DefaultArg = ParsedType(); 553 } 554 555 // Handle the default argument, if provided. 556 if (DefaultArg) { 557 TypeSourceInfo *DefaultTInfo; 558 GetTypeFromParser(DefaultArg, &DefaultTInfo); 559 560 assert(DefaultTInfo && "expected source information for type"); 561 562 // Check for unexpanded parameter packs. 563 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, 564 UPPC_DefaultArgument)) 565 return Param; 566 567 // Check the template argument itself. 568 if (CheckTemplateArgument(Param, DefaultTInfo)) { 569 Param->setInvalidDecl(); 570 return Param; 571 } 572 573 Param->setDefaultArgument(DefaultTInfo, false); 574 } 575 576 return Param; 577} 578 579/// \brief Check that the type of a non-type template parameter is 580/// well-formed. 581/// 582/// \returns the (possibly-promoted) parameter type if valid; 583/// otherwise, produces a diagnostic and returns a NULL type. 584QualType 585Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 586 // We don't allow variably-modified types as the type of non-type template 587 // parameters. 588 if (T->isVariablyModifiedType()) { 589 Diag(Loc, diag::err_variably_modified_nontype_template_param) 590 << T; 591 return QualType(); 592 } 593 594 // C++ [temp.param]p4: 595 // 596 // A non-type template-parameter shall have one of the following 597 // (optionally cv-qualified) types: 598 // 599 // -- integral or enumeration type, 600 if (T->isIntegralOrEnumerationType() || 601 // -- pointer to object or pointer to function, 602 T->isPointerType() || 603 // -- reference to object or reference to function, 604 T->isReferenceType() || 605 // -- pointer to member, 606 T->isMemberPointerType() || 607 // -- std::nullptr_t. 608 T->isNullPtrType() || 609 // If T is a dependent type, we can't do the check now, so we 610 // assume that it is well-formed. 611 T->isDependentType()) 612 return T; 613 // C++ [temp.param]p8: 614 // 615 // A non-type template-parameter of type "array of T" or 616 // "function returning T" is adjusted to be of type "pointer to 617 // T" or "pointer to function returning T", respectively. 618 else if (T->isArrayType()) 619 // FIXME: Keep the type prior to promotion? 620 return Context.getArrayDecayedType(T); 621 else if (T->isFunctionType()) 622 // FIXME: Keep the type prior to promotion? 623 return Context.getPointerType(T); 624 625 Diag(Loc, diag::err_template_nontype_parm_bad_type) 626 << T; 627 628 return QualType(); 629} 630 631Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 632 unsigned Depth, 633 unsigned Position, 634 SourceLocation EqualLoc, 635 Expr *Default) { 636 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 637 QualType T = TInfo->getType(); 638 639 assert(S->isTemplateParamScope() && 640 "Non-type template parameter not in template parameter scope!"); 641 bool Invalid = false; 642 643 IdentifierInfo *ParamName = D.getIdentifier(); 644 if (ParamName) { 645 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 646 LookupOrdinaryName, 647 ForRedeclaration); 648 if (PrevDecl && PrevDecl->isTemplateParameter()) 649 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 650 PrevDecl); 651 } 652 653 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 654 if (T.isNull()) { 655 T = Context.IntTy; // Recover with an 'int' type. 656 Invalid = true; 657 } 658 659 bool IsParameterPack = D.hasEllipsis(); 660 NonTypeTemplateParmDecl *Param 661 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 662 D.getSourceRange().getBegin(), 663 D.getIdentifierLoc(), 664 Depth, Position, ParamName, T, 665 IsParameterPack, TInfo); 666 Param->setAccess(AS_public); 667 668 if (Invalid) 669 Param->setInvalidDecl(); 670 671 if (D.getIdentifier()) { 672 // Add the template parameter into the current scope. 673 S->AddDecl(Param); 674 IdResolver.AddDecl(Param); 675 } 676 677 // C++0x [temp.param]p9: 678 // A default template-argument may be specified for any kind of 679 // template-parameter that is not a template parameter pack. 680 if (Default && IsParameterPack) { 681 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 682 Default = 0; 683 } 684 685 // Check the well-formedness of the default template argument, if provided. 686 if (Default) { 687 // Check for unexpanded parameter packs. 688 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 689 return Param; 690 691 TemplateArgument Converted; 692 ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted); 693 if (DefaultRes.isInvalid()) { 694 Param->setInvalidDecl(); 695 return Param; 696 } 697 Default = DefaultRes.take(); 698 699 Param->setDefaultArgument(Default, false); 700 } 701 702 return Param; 703} 704 705/// ActOnTemplateTemplateParameter - Called when a C++ template template 706/// parameter (e.g. T in template <template <typename> class T> class array) 707/// has been parsed. S is the current scope. 708Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 709 SourceLocation TmpLoc, 710 TemplateParamsTy *Params, 711 SourceLocation EllipsisLoc, 712 IdentifierInfo *Name, 713 SourceLocation NameLoc, 714 unsigned Depth, 715 unsigned Position, 716 SourceLocation EqualLoc, 717 ParsedTemplateArgument Default) { 718 assert(S->isTemplateParamScope() && 719 "Template template parameter not in template parameter scope!"); 720 721 // Construct the parameter object. 722 bool IsParameterPack = EllipsisLoc.isValid(); 723 TemplateTemplateParmDecl *Param = 724 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 725 NameLoc.isInvalid()? TmpLoc : NameLoc, 726 Depth, Position, IsParameterPack, 727 Name, Params); 728 Param->setAccess(AS_public); 729 730 // If the template template parameter has a name, then link the identifier 731 // into the scope and lookup mechanisms. 732 if (Name) { 733 S->AddDecl(Param); 734 IdResolver.AddDecl(Param); 735 } 736 737 if (Params->size() == 0) { 738 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 739 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 740 Param->setInvalidDecl(); 741 } 742 743 // C++0x [temp.param]p9: 744 // A default template-argument may be specified for any kind of 745 // template-parameter that is not a template parameter pack. 746 if (IsParameterPack && !Default.isInvalid()) { 747 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 748 Default = ParsedTemplateArgument(); 749 } 750 751 if (!Default.isInvalid()) { 752 // Check only that we have a template template argument. We don't want to 753 // try to check well-formedness now, because our template template parameter 754 // might have dependent types in its template parameters, which we wouldn't 755 // be able to match now. 756 // 757 // If none of the template template parameter's template arguments mention 758 // other template parameters, we could actually perform more checking here. 759 // However, it isn't worth doing. 760 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 761 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 762 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 763 << DefaultArg.getSourceRange(); 764 return Param; 765 } 766 767 // Check for unexpanded parameter packs. 768 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 769 DefaultArg.getArgument().getAsTemplate(), 770 UPPC_DefaultArgument)) 771 return Param; 772 773 Param->setDefaultArgument(DefaultArg, false); 774 } 775 776 return Param; 777} 778 779/// ActOnTemplateParameterList - Builds a TemplateParameterList that 780/// contains the template parameters in Params/NumParams. 781Sema::TemplateParamsTy * 782Sema::ActOnTemplateParameterList(unsigned Depth, 783 SourceLocation ExportLoc, 784 SourceLocation TemplateLoc, 785 SourceLocation LAngleLoc, 786 Decl **Params, unsigned NumParams, 787 SourceLocation RAngleLoc) { 788 if (ExportLoc.isValid()) 789 Diag(ExportLoc, diag::warn_template_export_unsupported); 790 791 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 792 (NamedDecl**)Params, NumParams, 793 RAngleLoc); 794} 795 796static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 797 if (SS.isSet()) 798 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext())); 799} 800 801DeclResult 802Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 803 SourceLocation KWLoc, CXXScopeSpec &SS, 804 IdentifierInfo *Name, SourceLocation NameLoc, 805 AttributeList *Attr, 806 TemplateParameterList *TemplateParams, 807 AccessSpecifier AS, 808 unsigned NumOuterTemplateParamLists, 809 TemplateParameterList** OuterTemplateParamLists) { 810 assert(TemplateParams && TemplateParams->size() > 0 && 811 "No template parameters"); 812 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 813 bool Invalid = false; 814 815 // Check that we can declare a template here. 816 if (CheckTemplateDeclScope(S, TemplateParams)) 817 return true; 818 819 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 820 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 821 822 // There is no such thing as an unnamed class template. 823 if (!Name) { 824 Diag(KWLoc, diag::err_template_unnamed_class); 825 return true; 826 } 827 828 // Find any previous declaration with this name. 829 DeclContext *SemanticContext; 830 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 831 ForRedeclaration); 832 if (SS.isNotEmpty() && !SS.isInvalid()) { 833 SemanticContext = computeDeclContext(SS, true); 834 if (!SemanticContext) { 835 // FIXME: Produce a reasonable diagnostic here 836 return true; 837 } 838 839 if (RequireCompleteDeclContext(SS, SemanticContext)) 840 return true; 841 842 LookupQualifiedName(Previous, SemanticContext); 843 } else { 844 SemanticContext = CurContext; 845 LookupName(Previous, S); 846 } 847 848 if (Previous.isAmbiguous()) 849 return true; 850 851 NamedDecl *PrevDecl = 0; 852 if (Previous.begin() != Previous.end()) 853 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 854 855 // If there is a previous declaration with the same name, check 856 // whether this is a valid redeclaration. 857 ClassTemplateDecl *PrevClassTemplate 858 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 859 860 // We may have found the injected-class-name of a class template, 861 // class template partial specialization, or class template specialization. 862 // In these cases, grab the template that is being defined or specialized. 863 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 864 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 865 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 866 PrevClassTemplate 867 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 868 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 869 PrevClassTemplate 870 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 871 ->getSpecializedTemplate(); 872 } 873 } 874 875 if (TUK == TUK_Friend) { 876 // C++ [namespace.memdef]p3: 877 // [...] When looking for a prior declaration of a class or a function 878 // declared as a friend, and when the name of the friend class or 879 // function is neither a qualified name nor a template-id, scopes outside 880 // the innermost enclosing namespace scope are not considered. 881 if (!SS.isSet()) { 882 DeclContext *OutermostContext = CurContext; 883 while (!OutermostContext->isFileContext()) 884 OutermostContext = OutermostContext->getLookupParent(); 885 886 if (PrevDecl && 887 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 888 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 889 SemanticContext = PrevDecl->getDeclContext(); 890 } else { 891 // Declarations in outer scopes don't matter. However, the outermost 892 // context we computed is the semantic context for our new 893 // declaration. 894 PrevDecl = PrevClassTemplate = 0; 895 SemanticContext = OutermostContext; 896 } 897 } 898 899 if (CurContext->isDependentContext()) { 900 // If this is a dependent context, we don't want to link the friend 901 // class template to the template in scope, because that would perform 902 // checking of the template parameter lists that can't be performed 903 // until the outer context is instantiated. 904 PrevDecl = PrevClassTemplate = 0; 905 } 906 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 907 PrevDecl = PrevClassTemplate = 0; 908 909 if (PrevClassTemplate) { 910 // Ensure that the template parameter lists are compatible. 911 if (!TemplateParameterListsAreEqual(TemplateParams, 912 PrevClassTemplate->getTemplateParameters(), 913 /*Complain=*/true, 914 TPL_TemplateMatch)) 915 return true; 916 917 // C++ [temp.class]p4: 918 // In a redeclaration, partial specialization, explicit 919 // specialization or explicit instantiation of a class template, 920 // the class-key shall agree in kind with the original class 921 // template declaration (7.1.5.3). 922 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 923 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 924 Diag(KWLoc, diag::err_use_with_wrong_tag) 925 << Name 926 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 927 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 928 Kind = PrevRecordDecl->getTagKind(); 929 } 930 931 // Check for redefinition of this class template. 932 if (TUK == TUK_Definition) { 933 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 934 Diag(NameLoc, diag::err_redefinition) << Name; 935 Diag(Def->getLocation(), diag::note_previous_definition); 936 // FIXME: Would it make sense to try to "forget" the previous 937 // definition, as part of error recovery? 938 return true; 939 } 940 } 941 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 942 // Maybe we will complain about the shadowed template parameter. 943 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 944 // Just pretend that we didn't see the previous declaration. 945 PrevDecl = 0; 946 } else if (PrevDecl) { 947 // C++ [temp]p5: 948 // A class template shall not have the same name as any other 949 // template, class, function, object, enumeration, enumerator, 950 // namespace, or type in the same scope (3.3), except as specified 951 // in (14.5.4). 952 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 953 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 954 return true; 955 } 956 957 // Check the template parameter list of this declaration, possibly 958 // merging in the template parameter list from the previous class 959 // template declaration. 960 if (CheckTemplateParameterList(TemplateParams, 961 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 962 (SS.isSet() && SemanticContext && 963 SemanticContext->isRecord() && 964 SemanticContext->isDependentContext()) 965 ? TPC_ClassTemplateMember 966 : TPC_ClassTemplate)) 967 Invalid = true; 968 969 if (SS.isSet()) { 970 // If the name of the template was qualified, we must be defining the 971 // template out-of-line. 972 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate && 973 !(TUK == TUK_Friend && CurContext->isDependentContext())) 974 Diag(NameLoc, diag::err_member_def_does_not_match) 975 << Name << SemanticContext << SS.getRange(); 976 } 977 978 CXXRecordDecl *NewClass = 979 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 980 PrevClassTemplate? 981 PrevClassTemplate->getTemplatedDecl() : 0, 982 /*DelayTypeCreation=*/true); 983 SetNestedNameSpecifier(NewClass, SS); 984 if (NumOuterTemplateParamLists > 0) 985 NewClass->setTemplateParameterListsInfo(Context, 986 NumOuterTemplateParamLists, 987 OuterTemplateParamLists); 988 989 ClassTemplateDecl *NewTemplate 990 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 991 DeclarationName(Name), TemplateParams, 992 NewClass, PrevClassTemplate); 993 NewClass->setDescribedClassTemplate(NewTemplate); 994 995 // Build the type for the class template declaration now. 996 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 997 T = Context.getInjectedClassNameType(NewClass, T); 998 assert(T->isDependentType() && "Class template type is not dependent?"); 999 (void)T; 1000 1001 // If we are providing an explicit specialization of a member that is a 1002 // class template, make a note of that. 1003 if (PrevClassTemplate && 1004 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 1005 PrevClassTemplate->setMemberSpecialization(); 1006 1007 // Set the access specifier. 1008 if (!Invalid && TUK != TUK_Friend) 1009 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 1010 1011 // Set the lexical context of these templates 1012 NewClass->setLexicalDeclContext(CurContext); 1013 NewTemplate->setLexicalDeclContext(CurContext); 1014 1015 if (TUK == TUK_Definition) 1016 NewClass->startDefinition(); 1017 1018 if (Attr) 1019 ProcessDeclAttributeList(S, NewClass, Attr); 1020 1021 if (TUK != TUK_Friend) 1022 PushOnScopeChains(NewTemplate, S); 1023 else { 1024 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1025 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1026 NewClass->setAccess(PrevClassTemplate->getAccess()); 1027 } 1028 1029 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 1030 PrevClassTemplate != NULL); 1031 1032 // Friend templates are visible in fairly strange ways. 1033 if (!CurContext->isDependentContext()) { 1034 DeclContext *DC = SemanticContext->getRedeclContext(); 1035 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 1036 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1037 PushOnScopeChains(NewTemplate, EnclosingScope, 1038 /* AddToContext = */ false); 1039 } 1040 1041 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 1042 NewClass->getLocation(), 1043 NewTemplate, 1044 /*FIXME:*/NewClass->getLocation()); 1045 Friend->setAccess(AS_public); 1046 CurContext->addDecl(Friend); 1047 } 1048 1049 if (Invalid) { 1050 NewTemplate->setInvalidDecl(); 1051 NewClass->setInvalidDecl(); 1052 } 1053 return NewTemplate; 1054} 1055 1056/// \brief Diagnose the presence of a default template argument on a 1057/// template parameter, which is ill-formed in certain contexts. 1058/// 1059/// \returns true if the default template argument should be dropped. 1060static bool DiagnoseDefaultTemplateArgument(Sema &S, 1061 Sema::TemplateParamListContext TPC, 1062 SourceLocation ParamLoc, 1063 SourceRange DefArgRange) { 1064 switch (TPC) { 1065 case Sema::TPC_ClassTemplate: 1066 case Sema::TPC_TypeAliasTemplate: 1067 return false; 1068 1069 case Sema::TPC_FunctionTemplate: 1070 case Sema::TPC_FriendFunctionTemplateDefinition: 1071 // C++ [temp.param]p9: 1072 // A default template-argument shall not be specified in a 1073 // function template declaration or a function template 1074 // definition [...] 1075 // If a friend function template declaration specifies a default 1076 // template-argument, that declaration shall be a definition and shall be 1077 // the only declaration of the function template in the translation unit. 1078 // (C++98/03 doesn't have this wording; see DR226). 1079 if (!S.getLangOptions().CPlusPlus0x) 1080 S.Diag(ParamLoc, 1081 diag::ext_template_parameter_default_in_function_template) 1082 << DefArgRange; 1083 return false; 1084 1085 case Sema::TPC_ClassTemplateMember: 1086 // C++0x [temp.param]p9: 1087 // A default template-argument shall not be specified in the 1088 // template-parameter-lists of the definition of a member of a 1089 // class template that appears outside of the member's class. 1090 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1091 << DefArgRange; 1092 return true; 1093 1094 case Sema::TPC_FriendFunctionTemplate: 1095 // C++ [temp.param]p9: 1096 // A default template-argument shall not be specified in a 1097 // friend template declaration. 1098 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1099 << DefArgRange; 1100 return true; 1101 1102 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1103 // for friend function templates if there is only a single 1104 // declaration (and it is a definition). Strange! 1105 } 1106 1107 return false; 1108} 1109 1110/// \brief Check for unexpanded parameter packs within the template parameters 1111/// of a template template parameter, recursively. 1112static bool DiagnoseUnexpandedParameterPacks(Sema &S, 1113 TemplateTemplateParmDecl *TTP) { 1114 TemplateParameterList *Params = TTP->getTemplateParameters(); 1115 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 1116 NamedDecl *P = Params->getParam(I); 1117 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 1118 if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 1119 NTTP->getTypeSourceInfo(), 1120 Sema::UPPC_NonTypeTemplateParameterType)) 1121 return true; 1122 1123 continue; 1124 } 1125 1126 if (TemplateTemplateParmDecl *InnerTTP 1127 = dyn_cast<TemplateTemplateParmDecl>(P)) 1128 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 1129 return true; 1130 } 1131 1132 return false; 1133} 1134 1135/// \brief Checks the validity of a template parameter list, possibly 1136/// considering the template parameter list from a previous 1137/// declaration. 1138/// 1139/// If an "old" template parameter list is provided, it must be 1140/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1141/// template parameter list. 1142/// 1143/// \param NewParams Template parameter list for a new template 1144/// declaration. This template parameter list will be updated with any 1145/// default arguments that are carried through from the previous 1146/// template parameter list. 1147/// 1148/// \param OldParams If provided, template parameter list from a 1149/// previous declaration of the same template. Default template 1150/// arguments will be merged from the old template parameter list to 1151/// the new template parameter list. 1152/// 1153/// \param TPC Describes the context in which we are checking the given 1154/// template parameter list. 1155/// 1156/// \returns true if an error occurred, false otherwise. 1157bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1158 TemplateParameterList *OldParams, 1159 TemplateParamListContext TPC) { 1160 bool Invalid = false; 1161 1162 // C++ [temp.param]p10: 1163 // The set of default template-arguments available for use with a 1164 // template declaration or definition is obtained by merging the 1165 // default arguments from the definition (if in scope) and all 1166 // declarations in scope in the same way default function 1167 // arguments are (8.3.6). 1168 bool SawDefaultArgument = false; 1169 SourceLocation PreviousDefaultArgLoc; 1170 1171 bool SawParameterPack = false; 1172 SourceLocation ParameterPackLoc; 1173 1174 // Dummy initialization to avoid warnings. 1175 TemplateParameterList::iterator OldParam = NewParams->end(); 1176 if (OldParams) 1177 OldParam = OldParams->begin(); 1178 1179 bool RemoveDefaultArguments = false; 1180 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1181 NewParamEnd = NewParams->end(); 1182 NewParam != NewParamEnd; ++NewParam) { 1183 // Variables used to diagnose redundant default arguments 1184 bool RedundantDefaultArg = false; 1185 SourceLocation OldDefaultLoc; 1186 SourceLocation NewDefaultLoc; 1187 1188 // Variables used to diagnose missing default arguments 1189 bool MissingDefaultArg = false; 1190 1191 // C++0x [temp.param]p11: 1192 // If a template parameter of a primary class template or alias template 1193 // is a template parameter pack, it shall be the last template parameter. 1194 if (SawParameterPack && 1195 (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) { 1196 Diag(ParameterPackLoc, 1197 diag::err_template_param_pack_must_be_last_template_parameter); 1198 Invalid = true; 1199 } 1200 1201 if (TemplateTypeParmDecl *NewTypeParm 1202 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1203 // Check the presence of a default argument here. 1204 if (NewTypeParm->hasDefaultArgument() && 1205 DiagnoseDefaultTemplateArgument(*this, TPC, 1206 NewTypeParm->getLocation(), 1207 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1208 .getSourceRange())) 1209 NewTypeParm->removeDefaultArgument(); 1210 1211 // Merge default arguments for template type parameters. 1212 TemplateTypeParmDecl *OldTypeParm 1213 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1214 1215 if (NewTypeParm->isParameterPack()) { 1216 assert(!NewTypeParm->hasDefaultArgument() && 1217 "Parameter packs can't have a default argument!"); 1218 SawParameterPack = true; 1219 ParameterPackLoc = NewTypeParm->getLocation(); 1220 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1221 NewTypeParm->hasDefaultArgument()) { 1222 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1223 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1224 SawDefaultArgument = true; 1225 RedundantDefaultArg = true; 1226 PreviousDefaultArgLoc = NewDefaultLoc; 1227 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1228 // Merge the default argument from the old declaration to the 1229 // new declaration. 1230 SawDefaultArgument = true; 1231 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1232 true); 1233 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1234 } else if (NewTypeParm->hasDefaultArgument()) { 1235 SawDefaultArgument = true; 1236 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1237 } else if (SawDefaultArgument) 1238 MissingDefaultArg = true; 1239 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1240 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1241 // Check for unexpanded parameter packs. 1242 if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 1243 NewNonTypeParm->getTypeSourceInfo(), 1244 UPPC_NonTypeTemplateParameterType)) { 1245 Invalid = true; 1246 continue; 1247 } 1248 1249 // Check the presence of a default argument here. 1250 if (NewNonTypeParm->hasDefaultArgument() && 1251 DiagnoseDefaultTemplateArgument(*this, TPC, 1252 NewNonTypeParm->getLocation(), 1253 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1254 NewNonTypeParm->removeDefaultArgument(); 1255 } 1256 1257 // Merge default arguments for non-type template parameters 1258 NonTypeTemplateParmDecl *OldNonTypeParm 1259 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1260 if (NewNonTypeParm->isParameterPack()) { 1261 assert(!NewNonTypeParm->hasDefaultArgument() && 1262 "Parameter packs can't have a default argument!"); 1263 SawParameterPack = true; 1264 ParameterPackLoc = NewNonTypeParm->getLocation(); 1265 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1266 NewNonTypeParm->hasDefaultArgument()) { 1267 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1268 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1269 SawDefaultArgument = true; 1270 RedundantDefaultArg = true; 1271 PreviousDefaultArgLoc = NewDefaultLoc; 1272 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1273 // Merge the default argument from the old declaration to the 1274 // new declaration. 1275 SawDefaultArgument = true; 1276 // FIXME: We need to create a new kind of "default argument" 1277 // expression that points to a previous non-type template 1278 // parameter. 1279 NewNonTypeParm->setDefaultArgument( 1280 OldNonTypeParm->getDefaultArgument(), 1281 /*Inherited=*/ true); 1282 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1283 } else if (NewNonTypeParm->hasDefaultArgument()) { 1284 SawDefaultArgument = true; 1285 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1286 } else if (SawDefaultArgument) 1287 MissingDefaultArg = true; 1288 } else { 1289 // Check the presence of a default argument here. 1290 TemplateTemplateParmDecl *NewTemplateParm 1291 = cast<TemplateTemplateParmDecl>(*NewParam); 1292 1293 // Check for unexpanded parameter packs, recursively. 1294 if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 1295 Invalid = true; 1296 continue; 1297 } 1298 1299 if (NewTemplateParm->hasDefaultArgument() && 1300 DiagnoseDefaultTemplateArgument(*this, TPC, 1301 NewTemplateParm->getLocation(), 1302 NewTemplateParm->getDefaultArgument().getSourceRange())) 1303 NewTemplateParm->removeDefaultArgument(); 1304 1305 // Merge default arguments for template template parameters 1306 TemplateTemplateParmDecl *OldTemplateParm 1307 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1308 if (NewTemplateParm->isParameterPack()) { 1309 assert(!NewTemplateParm->hasDefaultArgument() && 1310 "Parameter packs can't have a default argument!"); 1311 SawParameterPack = true; 1312 ParameterPackLoc = NewTemplateParm->getLocation(); 1313 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1314 NewTemplateParm->hasDefaultArgument()) { 1315 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1316 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1317 SawDefaultArgument = true; 1318 RedundantDefaultArg = true; 1319 PreviousDefaultArgLoc = NewDefaultLoc; 1320 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1321 // Merge the default argument from the old declaration to the 1322 // new declaration. 1323 SawDefaultArgument = true; 1324 // FIXME: We need to create a new kind of "default argument" expression 1325 // that points to a previous template template parameter. 1326 NewTemplateParm->setDefaultArgument( 1327 OldTemplateParm->getDefaultArgument(), 1328 /*Inherited=*/ true); 1329 PreviousDefaultArgLoc 1330 = OldTemplateParm->getDefaultArgument().getLocation(); 1331 } else if (NewTemplateParm->hasDefaultArgument()) { 1332 SawDefaultArgument = true; 1333 PreviousDefaultArgLoc 1334 = NewTemplateParm->getDefaultArgument().getLocation(); 1335 } else if (SawDefaultArgument) 1336 MissingDefaultArg = true; 1337 } 1338 1339 if (RedundantDefaultArg) { 1340 // C++ [temp.param]p12: 1341 // A template-parameter shall not be given default arguments 1342 // by two different declarations in the same scope. 1343 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1344 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1345 Invalid = true; 1346 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 1347 // C++ [temp.param]p11: 1348 // If a template-parameter of a class template has a default 1349 // template-argument, each subsequent template-parameter shall either 1350 // have a default template-argument supplied or be a template parameter 1351 // pack. 1352 Diag((*NewParam)->getLocation(), 1353 diag::err_template_param_default_arg_missing); 1354 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1355 Invalid = true; 1356 RemoveDefaultArguments = true; 1357 } 1358 1359 // If we have an old template parameter list that we're merging 1360 // in, move on to the next parameter. 1361 if (OldParams) 1362 ++OldParam; 1363 } 1364 1365 // We were missing some default arguments at the end of the list, so remove 1366 // all of the default arguments. 1367 if (RemoveDefaultArguments) { 1368 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1369 NewParamEnd = NewParams->end(); 1370 NewParam != NewParamEnd; ++NewParam) { 1371 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 1372 TTP->removeDefaultArgument(); 1373 else if (NonTypeTemplateParmDecl *NTTP 1374 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 1375 NTTP->removeDefaultArgument(); 1376 else 1377 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 1378 } 1379 } 1380 1381 return Invalid; 1382} 1383 1384namespace { 1385 1386/// A class which looks for a use of a certain level of template 1387/// parameter. 1388struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 1389 typedef RecursiveASTVisitor<DependencyChecker> super; 1390 1391 unsigned Depth; 1392 bool Match; 1393 1394 DependencyChecker(TemplateParameterList *Params) : Match(false) { 1395 NamedDecl *ND = Params->getParam(0); 1396 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 1397 Depth = PD->getDepth(); 1398 } else if (NonTypeTemplateParmDecl *PD = 1399 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 1400 Depth = PD->getDepth(); 1401 } else { 1402 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 1403 } 1404 } 1405 1406 bool Matches(unsigned ParmDepth) { 1407 if (ParmDepth >= Depth) { 1408 Match = true; 1409 return true; 1410 } 1411 return false; 1412 } 1413 1414 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 1415 return !Matches(T->getDepth()); 1416 } 1417 1418 bool TraverseTemplateName(TemplateName N) { 1419 if (TemplateTemplateParmDecl *PD = 1420 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 1421 if (Matches(PD->getDepth())) return false; 1422 return super::TraverseTemplateName(N); 1423 } 1424 1425 bool VisitDeclRefExpr(DeclRefExpr *E) { 1426 if (NonTypeTemplateParmDecl *PD = 1427 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) { 1428 if (PD->getDepth() == Depth) { 1429 Match = true; 1430 return false; 1431 } 1432 } 1433 return super::VisitDeclRefExpr(E); 1434 } 1435 1436 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 1437 return TraverseType(T->getInjectedSpecializationType()); 1438 } 1439}; 1440} 1441 1442/// Determines whether a given type depends on the given parameter 1443/// list. 1444static bool 1445DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 1446 DependencyChecker Checker(Params); 1447 Checker.TraverseType(T); 1448 return Checker.Match; 1449} 1450 1451// Find the source range corresponding to the named type in the given 1452// nested-name-specifier, if any. 1453static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 1454 QualType T, 1455 const CXXScopeSpec &SS) { 1456 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 1457 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 1458 if (const Type *CurType = NNS->getAsType()) { 1459 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 1460 return NNSLoc.getTypeLoc().getSourceRange(); 1461 } else 1462 break; 1463 1464 NNSLoc = NNSLoc.getPrefix(); 1465 } 1466 1467 return SourceRange(); 1468} 1469 1470/// \brief Match the given template parameter lists to the given scope 1471/// specifier, returning the template parameter list that applies to the 1472/// name. 1473/// 1474/// \param DeclStartLoc the start of the declaration that has a scope 1475/// specifier or a template parameter list. 1476/// 1477/// \param DeclLoc The location of the declaration itself. 1478/// 1479/// \param SS the scope specifier that will be matched to the given template 1480/// parameter lists. This scope specifier precedes a qualified name that is 1481/// being declared. 1482/// 1483/// \param ParamLists the template parameter lists, from the outermost to the 1484/// innermost template parameter lists. 1485/// 1486/// \param NumParamLists the number of template parameter lists in ParamLists. 1487/// 1488/// \param IsFriend Whether to apply the slightly different rules for 1489/// matching template parameters to scope specifiers in friend 1490/// declarations. 1491/// 1492/// \param IsExplicitSpecialization will be set true if the entity being 1493/// declared is an explicit specialization, false otherwise. 1494/// 1495/// \returns the template parameter list, if any, that corresponds to the 1496/// name that is preceded by the scope specifier @p SS. This template 1497/// parameter list may have template parameters (if we're declaring a 1498/// template) or may have no template parameters (if we're declaring a 1499/// template specialization), or may be NULL (if what we're declaring isn't 1500/// itself a template). 1501TemplateParameterList * 1502Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1503 SourceLocation DeclLoc, 1504 const CXXScopeSpec &SS, 1505 TemplateParameterList **ParamLists, 1506 unsigned NumParamLists, 1507 bool IsFriend, 1508 bool &IsExplicitSpecialization, 1509 bool &Invalid) { 1510 IsExplicitSpecialization = false; 1511 Invalid = false; 1512 1513 // The sequence of nested types to which we will match up the template 1514 // parameter lists. We first build this list by starting with the type named 1515 // by the nested-name-specifier and walking out until we run out of types. 1516 llvm::SmallVector<QualType, 4> NestedTypes; 1517 QualType T; 1518 if (SS.getScopeRep()) { 1519 if (CXXRecordDecl *Record 1520 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 1521 T = Context.getTypeDeclType(Record); 1522 else 1523 T = QualType(SS.getScopeRep()->getAsType(), 0); 1524 } 1525 1526 // If we found an explicit specialization that prevents us from needing 1527 // 'template<>' headers, this will be set to the location of that 1528 // explicit specialization. 1529 SourceLocation ExplicitSpecLoc; 1530 1531 while (!T.isNull()) { 1532 NestedTypes.push_back(T); 1533 1534 // Retrieve the parent of a record type. 1535 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1536 // If this type is an explicit specialization, we're done. 1537 if (ClassTemplateSpecializationDecl *Spec 1538 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1539 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 1540 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 1541 ExplicitSpecLoc = Spec->getLocation(); 1542 break; 1543 } 1544 } else if (Record->getTemplateSpecializationKind() 1545 == TSK_ExplicitSpecialization) { 1546 ExplicitSpecLoc = Record->getLocation(); 1547 break; 1548 } 1549 1550 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 1551 T = Context.getTypeDeclType(Parent); 1552 else 1553 T = QualType(); 1554 continue; 1555 } 1556 1557 if (const TemplateSpecializationType *TST 1558 = T->getAs<TemplateSpecializationType>()) { 1559 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1560 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 1561 T = Context.getTypeDeclType(Parent); 1562 else 1563 T = QualType(); 1564 continue; 1565 } 1566 } 1567 1568 // Look one step prior in a dependent template specialization type. 1569 if (const DependentTemplateSpecializationType *DependentTST 1570 = T->getAs<DependentTemplateSpecializationType>()) { 1571 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 1572 T = QualType(NNS->getAsType(), 0); 1573 else 1574 T = QualType(); 1575 continue; 1576 } 1577 1578 // Look one step prior in a dependent name type. 1579 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 1580 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 1581 T = QualType(NNS->getAsType(), 0); 1582 else 1583 T = QualType(); 1584 continue; 1585 } 1586 1587 // Retrieve the parent of an enumeration type. 1588 if (const EnumType *EnumT = T->getAs<EnumType>()) { 1589 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 1590 // check here. 1591 EnumDecl *Enum = EnumT->getDecl(); 1592 1593 // Get to the parent type. 1594 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 1595 T = Context.getTypeDeclType(Parent); 1596 else 1597 T = QualType(); 1598 continue; 1599 } 1600 1601 T = QualType(); 1602 } 1603 // Reverse the nested types list, since we want to traverse from the outermost 1604 // to the innermost while checking template-parameter-lists. 1605 std::reverse(NestedTypes.begin(), NestedTypes.end()); 1606 1607 // C++0x [temp.expl.spec]p17: 1608 // A member or a member template may be nested within many 1609 // enclosing class templates. In an explicit specialization for 1610 // such a member, the member declaration shall be preceded by a 1611 // template<> for each enclosing class template that is 1612 // explicitly specialized. 1613 unsigned ParamIdx = 0; 1614 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 1615 ++TypeIdx) { 1616 T = NestedTypes[TypeIdx]; 1617 1618 // Whether we expect a 'template<>' header. 1619 bool NeedEmptyTemplateHeader = false; 1620 1621 // Whether we expect a template header with parameters. 1622 bool NeedNonemptyTemplateHeader = false; 1623 1624 // For a dependent type, the set of template parameters that we 1625 // expect to see. 1626 TemplateParameterList *ExpectedTemplateParams = 0; 1627 1628 // C++0x [temp.expl.spec]p15: 1629 // A member or a member template may be nested within many enclosing 1630 // class templates. In an explicit specialization for such a member, the 1631 // member declaration shall be preceded by a template<> for each 1632 // enclosing class template that is explicitly specialized. 1633 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1634 if (ClassTemplatePartialSpecializationDecl *Partial 1635 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 1636 ExpectedTemplateParams = Partial->getTemplateParameters(); 1637 NeedNonemptyTemplateHeader = true; 1638 } else if (Record->isDependentType()) { 1639 if (Record->getDescribedClassTemplate()) { 1640 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1641 ->getTemplateParameters(); 1642 NeedNonemptyTemplateHeader = true; 1643 } 1644 } else if (ClassTemplateSpecializationDecl *Spec 1645 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1646 // C++0x [temp.expl.spec]p4: 1647 // Members of an explicitly specialized class template are defined 1648 // in the same manner as members of normal classes, and not using 1649 // the template<> syntax. 1650 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 1651 NeedEmptyTemplateHeader = true; 1652 else 1653 break; 1654 } else if (Record->getTemplateSpecializationKind()) { 1655 if (Record->getTemplateSpecializationKind() 1656 != TSK_ExplicitSpecialization && 1657 TypeIdx == NumTypes - 1) 1658 IsExplicitSpecialization = true; 1659 1660 continue; 1661 } 1662 } else if (const TemplateSpecializationType *TST 1663 = T->getAs<TemplateSpecializationType>()) { 1664 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1665 ExpectedTemplateParams = Template->getTemplateParameters(); 1666 NeedNonemptyTemplateHeader = true; 1667 } 1668 } else if (T->getAs<DependentTemplateSpecializationType>()) { 1669 // FIXME: We actually could/should check the template arguments here 1670 // against the corresponding template parameter list. 1671 NeedNonemptyTemplateHeader = false; 1672 } 1673 1674 if (NeedEmptyTemplateHeader) { 1675 // If we're on the last of the types, and we need a 'template<>' header 1676 // here, then it's an explicit specialization. 1677 if (TypeIdx == NumTypes - 1) 1678 IsExplicitSpecialization = true; 1679 1680 if (ParamIdx < NumParamLists) { 1681 if (ParamLists[ParamIdx]->size() > 0) { 1682 // The header has template parameters when it shouldn't. Complain. 1683 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1684 diag::err_template_param_list_matches_nontemplate) 1685 << T 1686 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 1687 ParamLists[ParamIdx]->getRAngleLoc()) 1688 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1689 Invalid = true; 1690 return 0; 1691 } 1692 1693 // Consume this template header. 1694 ++ParamIdx; 1695 continue; 1696 } 1697 1698 if (!IsFriend) { 1699 // We don't have a template header, but we should. 1700 SourceLocation ExpectedTemplateLoc; 1701 if (NumParamLists > 0) 1702 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 1703 else 1704 ExpectedTemplateLoc = DeclStartLoc; 1705 1706 Diag(DeclLoc, diag::err_template_spec_needs_header) 1707 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS) 1708 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 1709 } 1710 1711 continue; 1712 } 1713 1714 if (NeedNonemptyTemplateHeader) { 1715 // In friend declarations we can have template-ids which don't 1716 // depend on the corresponding template parameter lists. But 1717 // assume that empty parameter lists are supposed to match this 1718 // template-id. 1719 if (IsFriend && T->isDependentType()) { 1720 if (ParamIdx < NumParamLists && 1721 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 1722 ExpectedTemplateParams = 0; 1723 else 1724 continue; 1725 } 1726 1727 if (ParamIdx < NumParamLists) { 1728 // Check the template parameter list, if we can. 1729 if (ExpectedTemplateParams && 1730 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 1731 ExpectedTemplateParams, 1732 true, TPL_TemplateMatch)) 1733 Invalid = true; 1734 1735 if (!Invalid && 1736 CheckTemplateParameterList(ParamLists[ParamIdx], 0, 1737 TPC_ClassTemplateMember)) 1738 Invalid = true; 1739 1740 ++ParamIdx; 1741 continue; 1742 } 1743 1744 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 1745 << T 1746 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1747 Invalid = true; 1748 continue; 1749 } 1750 } 1751 1752 // If there were at least as many template-ids as there were template 1753 // parameter lists, then there are no template parameter lists remaining for 1754 // the declaration itself. 1755 if (ParamIdx >= NumParamLists) 1756 return 0; 1757 1758 // If there were too many template parameter lists, complain about that now. 1759 if (ParamIdx < NumParamLists - 1) { 1760 bool HasAnyExplicitSpecHeader = false; 1761 bool AllExplicitSpecHeaders = true; 1762 for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) { 1763 if (ParamLists[I]->size() == 0) 1764 HasAnyExplicitSpecHeader = true; 1765 else 1766 AllExplicitSpecHeaders = false; 1767 } 1768 1769 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1770 AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers 1771 : diag::err_template_spec_extra_headers) 1772 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 1773 ParamLists[NumParamLists - 2]->getRAngleLoc()); 1774 1775 // If there was a specialization somewhere, such that 'template<>' is 1776 // not required, and there were any 'template<>' headers, note where the 1777 // specialization occurred. 1778 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader) 1779 Diag(ExplicitSpecLoc, 1780 diag::note_explicit_template_spec_does_not_need_header) 1781 << NestedTypes.back(); 1782 1783 // We have a template parameter list with no corresponding scope, which 1784 // means that the resulting template declaration can't be instantiated 1785 // properly (we'll end up with dependent nodes when we shouldn't). 1786 if (!AllExplicitSpecHeaders) 1787 Invalid = true; 1788 } 1789 1790 // Return the last template parameter list, which corresponds to the 1791 // entity being declared. 1792 return ParamLists[NumParamLists - 1]; 1793} 1794 1795void Sema::NoteAllFoundTemplates(TemplateName Name) { 1796 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 1797 Diag(Template->getLocation(), diag::note_template_declared_here) 1798 << (isa<FunctionTemplateDecl>(Template)? 0 1799 : isa<ClassTemplateDecl>(Template)? 1 1800 : isa<TypeAliasTemplateDecl>(Template)? 2 1801 : 3) 1802 << Template->getDeclName(); 1803 return; 1804 } 1805 1806 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 1807 for (OverloadedTemplateStorage::iterator I = OST->begin(), 1808 IEnd = OST->end(); 1809 I != IEnd; ++I) 1810 Diag((*I)->getLocation(), diag::note_template_declared_here) 1811 << 0 << (*I)->getDeclName(); 1812 1813 return; 1814 } 1815} 1816 1817 1818QualType Sema::CheckTemplateIdType(TemplateName Name, 1819 SourceLocation TemplateLoc, 1820 TemplateArgumentListInfo &TemplateArgs) { 1821 DependentTemplateName *DTN = Name.getAsDependentTemplateName(); 1822 if (DTN && DTN->isIdentifier()) 1823 // When building a template-id where the template-name is dependent, 1824 // assume the template is a type template. Either our assumption is 1825 // correct, or the code is ill-formed and will be diagnosed when the 1826 // dependent name is substituted. 1827 return Context.getDependentTemplateSpecializationType(ETK_None, 1828 DTN->getQualifier(), 1829 DTN->getIdentifier(), 1830 TemplateArgs); 1831 1832 TemplateDecl *Template = Name.getAsTemplateDecl(); 1833 if (!Template || isa<FunctionTemplateDecl>(Template)) { 1834 // We might have a substituted template template parameter pack. If so, 1835 // build a template specialization type for it. 1836 if (Name.getAsSubstTemplateTemplateParmPack()) 1837 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1838 1839 Diag(TemplateLoc, diag::err_template_id_not_a_type) 1840 << Name; 1841 NoteAllFoundTemplates(Name); 1842 return QualType(); 1843 } 1844 1845 // Check that the template argument list is well-formed for this 1846 // template. 1847 llvm::SmallVector<TemplateArgument, 4> Converted; 1848 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1849 false, Converted)) 1850 return QualType(); 1851 1852 assert((Converted.size() == Template->getTemplateParameters()->size()) && 1853 "Converted template argument list is too short!"); 1854 1855 QualType CanonType; 1856 1857 if (TypeAliasTemplateDecl *AliasTemplate 1858 = dyn_cast<TypeAliasTemplateDecl>(Template)) { 1859 // Find the canonical type for this type alias template specialization. 1860 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 1861 if (Pattern->isInvalidDecl()) 1862 return QualType(); 1863 1864 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 1865 Converted.data(), Converted.size()); 1866 1867 // Only substitute for the innermost template argument list. 1868 MultiLevelTemplateArgumentList TemplateArgLists; 1869 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 1870 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth(); 1871 for (unsigned I = 0; I < Depth; ++I) 1872 TemplateArgLists.addOuterTemplateArguments(0, 0); 1873 1874 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 1875 CanonType = SubstType(Pattern->getUnderlyingType(), 1876 TemplateArgLists, AliasTemplate->getLocation(), 1877 AliasTemplate->getDeclName()); 1878 if (CanonType.isNull()) 1879 return QualType(); 1880 } else if (Name.isDependent() || 1881 TemplateSpecializationType::anyDependentTemplateArguments( 1882 TemplateArgs)) { 1883 // This class template specialization is a dependent 1884 // type. Therefore, its canonical type is another class template 1885 // specialization type that contains all of the converted 1886 // arguments in canonical form. This ensures that, e.g., A<T> and 1887 // A<T, T> have identical types when A is declared as: 1888 // 1889 // template<typename T, typename U = T> struct A; 1890 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1891 CanonType = Context.getTemplateSpecializationType(CanonName, 1892 Converted.data(), 1893 Converted.size()); 1894 1895 // FIXME: CanonType is not actually the canonical type, and unfortunately 1896 // it is a TemplateSpecializationType that we will never use again. 1897 // In the future, we need to teach getTemplateSpecializationType to only 1898 // build the canonical type and return that to us. 1899 CanonType = Context.getCanonicalType(CanonType); 1900 1901 // This might work out to be a current instantiation, in which 1902 // case the canonical type needs to be the InjectedClassNameType. 1903 // 1904 // TODO: in theory this could be a simple hashtable lookup; most 1905 // changes to CurContext don't change the set of current 1906 // instantiations. 1907 if (isa<ClassTemplateDecl>(Template)) { 1908 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 1909 // If we get out to a namespace, we're done. 1910 if (Ctx->isFileContext()) break; 1911 1912 // If this isn't a record, keep looking. 1913 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 1914 if (!Record) continue; 1915 1916 // Look for one of the two cases with InjectedClassNameTypes 1917 // and check whether it's the same template. 1918 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 1919 !Record->getDescribedClassTemplate()) 1920 continue; 1921 1922 // Fetch the injected class name type and check whether its 1923 // injected type is equal to the type we just built. 1924 QualType ICNT = Context.getTypeDeclType(Record); 1925 QualType Injected = cast<InjectedClassNameType>(ICNT) 1926 ->getInjectedSpecializationType(); 1927 1928 if (CanonType != Injected->getCanonicalTypeInternal()) 1929 continue; 1930 1931 // If so, the canonical type of this TST is the injected 1932 // class name type of the record we just found. 1933 assert(ICNT.isCanonical()); 1934 CanonType = ICNT; 1935 break; 1936 } 1937 } 1938 } else if (ClassTemplateDecl *ClassTemplate 1939 = dyn_cast<ClassTemplateDecl>(Template)) { 1940 // Find the class template specialization declaration that 1941 // corresponds to these arguments. 1942 void *InsertPos = 0; 1943 ClassTemplateSpecializationDecl *Decl 1944 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(), 1945 InsertPos); 1946 if (!Decl) { 1947 // This is the first time we have referenced this class template 1948 // specialization. Create the canonical declaration and add it to 1949 // the set of specializations. 1950 Decl = ClassTemplateSpecializationDecl::Create(Context, 1951 ClassTemplate->getTemplatedDecl()->getTagKind(), 1952 ClassTemplate->getDeclContext(), 1953 ClassTemplate->getLocation(), 1954 ClassTemplate->getLocation(), 1955 ClassTemplate, 1956 Converted.data(), 1957 Converted.size(), 0); 1958 ClassTemplate->AddSpecialization(Decl, InsertPos); 1959 Decl->setLexicalDeclContext(CurContext); 1960 } 1961 1962 CanonType = Context.getTypeDeclType(Decl); 1963 assert(isa<RecordType>(CanonType) && 1964 "type of non-dependent specialization is not a RecordType"); 1965 } 1966 1967 // Build the fully-sugared type for this class template 1968 // specialization, which refers back to the class template 1969 // specialization we created or found. 1970 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 1971} 1972 1973TypeResult 1974Sema::ActOnTemplateIdType(CXXScopeSpec &SS, 1975 TemplateTy TemplateD, SourceLocation TemplateLoc, 1976 SourceLocation LAngleLoc, 1977 ASTTemplateArgsPtr TemplateArgsIn, 1978 SourceLocation RAngleLoc) { 1979 if (SS.isInvalid()) 1980 return true; 1981 1982 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1983 1984 // Translate the parser's template argument list in our AST format. 1985 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 1986 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 1987 1988 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 1989 QualType T = Context.getDependentTemplateSpecializationType(ETK_None, 1990 DTN->getQualifier(), 1991 DTN->getIdentifier(), 1992 TemplateArgs); 1993 1994 // Build type-source information. 1995 TypeLocBuilder TLB; 1996 DependentTemplateSpecializationTypeLoc SpecTL 1997 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 1998 SpecTL.setKeywordLoc(SourceLocation()); 1999 SpecTL.setNameLoc(TemplateLoc); 2000 SpecTL.setLAngleLoc(LAngleLoc); 2001 SpecTL.setRAngleLoc(RAngleLoc); 2002 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2003 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2004 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2005 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2006 } 2007 2008 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2009 TemplateArgsIn.release(); 2010 2011 if (Result.isNull()) 2012 return true; 2013 2014 // Build type-source information. 2015 TypeLocBuilder TLB; 2016 TemplateSpecializationTypeLoc SpecTL 2017 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2018 SpecTL.setTemplateNameLoc(TemplateLoc); 2019 SpecTL.setLAngleLoc(LAngleLoc); 2020 SpecTL.setRAngleLoc(RAngleLoc); 2021 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2022 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2023 2024 if (SS.isNotEmpty()) { 2025 // Create an elaborated-type-specifier containing the nested-name-specifier. 2026 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); 2027 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2028 ElabTL.setKeywordLoc(SourceLocation()); 2029 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2030 } 2031 2032 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2033} 2034 2035TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 2036 TypeSpecifierType TagSpec, 2037 SourceLocation TagLoc, 2038 CXXScopeSpec &SS, 2039 TemplateTy TemplateD, 2040 SourceLocation TemplateLoc, 2041 SourceLocation LAngleLoc, 2042 ASTTemplateArgsPtr TemplateArgsIn, 2043 SourceLocation RAngleLoc) { 2044 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2045 2046 // Translate the parser's template argument list in our AST format. 2047 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2048 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2049 2050 // Determine the tag kind 2051 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 2052 ElaboratedTypeKeyword Keyword 2053 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 2054 2055 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2056 QualType T = Context.getDependentTemplateSpecializationType(Keyword, 2057 DTN->getQualifier(), 2058 DTN->getIdentifier(), 2059 TemplateArgs); 2060 2061 // Build type-source information. 2062 TypeLocBuilder TLB; 2063 DependentTemplateSpecializationTypeLoc SpecTL 2064 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2065 SpecTL.setKeywordLoc(TagLoc); 2066 SpecTL.setNameLoc(TemplateLoc); 2067 SpecTL.setLAngleLoc(LAngleLoc); 2068 SpecTL.setRAngleLoc(RAngleLoc); 2069 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2070 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2071 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2072 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2073 } 2074 2075 if (TypeAliasTemplateDecl *TAT = 2076 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 2077 // C++0x [dcl.type.elab]p2: 2078 // If the identifier resolves to a typedef-name or the simple-template-id 2079 // resolves to an alias template specialization, the 2080 // elaborated-type-specifier is ill-formed. 2081 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4; 2082 Diag(TAT->getLocation(), diag::note_declared_at); 2083 } 2084 2085 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2086 if (Result.isNull()) 2087 return TypeResult(); 2088 2089 // Check the tag kind 2090 if (const RecordType *RT = Result->getAs<RecordType>()) { 2091 RecordDecl *D = RT->getDecl(); 2092 2093 IdentifierInfo *Id = D->getIdentifier(); 2094 assert(Id && "templated class must have an identifier"); 2095 2096 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 2097 Diag(TagLoc, diag::err_use_with_wrong_tag) 2098 << Result 2099 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 2100 Diag(D->getLocation(), diag::note_previous_use); 2101 } 2102 } 2103 2104 // Provide source-location information for the template specialization. 2105 TypeLocBuilder TLB; 2106 TemplateSpecializationTypeLoc SpecTL 2107 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2108 SpecTL.setTemplateNameLoc(TemplateLoc); 2109 SpecTL.setLAngleLoc(LAngleLoc); 2110 SpecTL.setRAngleLoc(RAngleLoc); 2111 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2112 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2113 2114 // Construct an elaborated type containing the nested-name-specifier (if any) 2115 // and keyword. 2116 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 2117 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2118 ElabTL.setKeywordLoc(TagLoc); 2119 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2120 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2121} 2122 2123ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 2124 LookupResult &R, 2125 bool RequiresADL, 2126 const TemplateArgumentListInfo &TemplateArgs) { 2127 // FIXME: Can we do any checking at this point? I guess we could check the 2128 // template arguments that we have against the template name, if the template 2129 // name refers to a single template. That's not a terribly common case, 2130 // though. 2131 // foo<int> could identify a single function unambiguously 2132 // This approach does NOT work, since f<int>(1); 2133 // gets resolved prior to resorting to overload resolution 2134 // i.e., template<class T> void f(double); 2135 // vs template<class T, class U> void f(U); 2136 2137 // These should be filtered out by our callers. 2138 assert(!R.empty() && "empty lookup results when building templateid"); 2139 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 2140 2141 // We don't want lookup warnings at this point. 2142 R.suppressDiagnostics(); 2143 2144 UnresolvedLookupExpr *ULE 2145 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 2146 SS.getWithLocInContext(Context), 2147 R.getLookupNameInfo(), 2148 RequiresADL, TemplateArgs, 2149 R.begin(), R.end()); 2150 2151 return Owned(ULE); 2152} 2153 2154// We actually only call this from template instantiation. 2155ExprResult 2156Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 2157 const DeclarationNameInfo &NameInfo, 2158 const TemplateArgumentListInfo &TemplateArgs) { 2159 DeclContext *DC; 2160 if (!(DC = computeDeclContext(SS, false)) || 2161 DC->isDependentContext() || 2162 RequireCompleteDeclContext(SS, DC)) 2163 return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs); 2164 2165 bool MemberOfUnknownSpecialization; 2166 LookupResult R(*this, NameInfo, LookupOrdinaryName); 2167 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 2168 MemberOfUnknownSpecialization); 2169 2170 if (R.isAmbiguous()) 2171 return ExprError(); 2172 2173 if (R.empty()) { 2174 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 2175 << NameInfo.getName() << SS.getRange(); 2176 return ExprError(); 2177 } 2178 2179 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 2180 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 2181 << (NestedNameSpecifier*) SS.getScopeRep() 2182 << NameInfo.getName() << SS.getRange(); 2183 Diag(Temp->getLocation(), diag::note_referenced_class_template); 2184 return ExprError(); 2185 } 2186 2187 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 2188} 2189 2190/// \brief Form a dependent template name. 2191/// 2192/// This action forms a dependent template name given the template 2193/// name and its (presumably dependent) scope specifier. For 2194/// example, given "MetaFun::template apply", the scope specifier \p 2195/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 2196/// of the "template" keyword, and "apply" is the \p Name. 2197TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 2198 SourceLocation TemplateKWLoc, 2199 CXXScopeSpec &SS, 2200 UnqualifiedId &Name, 2201 ParsedType ObjectType, 2202 bool EnteringContext, 2203 TemplateTy &Result) { 2204 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() && 2205 !getLangOptions().CPlusPlus0x) 2206 Diag(TemplateKWLoc, diag::ext_template_outside_of_template) 2207 << FixItHint::CreateRemoval(TemplateKWLoc); 2208 2209 DeclContext *LookupCtx = 0; 2210 if (SS.isSet()) 2211 LookupCtx = computeDeclContext(SS, EnteringContext); 2212 if (!LookupCtx && ObjectType) 2213 LookupCtx = computeDeclContext(ObjectType.get()); 2214 if (LookupCtx) { 2215 // C++0x [temp.names]p5: 2216 // If a name prefixed by the keyword template is not the name of 2217 // a template, the program is ill-formed. [Note: the keyword 2218 // template may not be applied to non-template members of class 2219 // templates. -end note ] [ Note: as is the case with the 2220 // typename prefix, the template prefix is allowed in cases 2221 // where it is not strictly necessary; i.e., when the 2222 // nested-name-specifier or the expression on the left of the -> 2223 // or . is not dependent on a template-parameter, or the use 2224 // does not appear in the scope of a template. -end note] 2225 // 2226 // Note: C++03 was more strict here, because it banned the use of 2227 // the "template" keyword prior to a template-name that was not a 2228 // dependent name. C++ DR468 relaxed this requirement (the 2229 // "template" keyword is now permitted). We follow the C++0x 2230 // rules, even in C++03 mode with a warning, retroactively applying the DR. 2231 bool MemberOfUnknownSpecialization; 2232 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name, 2233 ObjectType, EnteringContext, Result, 2234 MemberOfUnknownSpecialization); 2235 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 2236 isa<CXXRecordDecl>(LookupCtx) && 2237 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() || 2238 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) { 2239 // This is a dependent template. Handle it below. 2240 } else if (TNK == TNK_Non_template) { 2241 Diag(Name.getSourceRange().getBegin(), 2242 diag::err_template_kw_refers_to_non_template) 2243 << GetNameFromUnqualifiedId(Name).getName() 2244 << Name.getSourceRange() 2245 << TemplateKWLoc; 2246 return TNK_Non_template; 2247 } else { 2248 // We found something; return it. 2249 return TNK; 2250 } 2251 } 2252 2253 NestedNameSpecifier *Qualifier 2254 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 2255 2256 switch (Name.getKind()) { 2257 case UnqualifiedId::IK_Identifier: 2258 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2259 Name.Identifier)); 2260 return TNK_Dependent_template_name; 2261 2262 case UnqualifiedId::IK_OperatorFunctionId: 2263 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2264 Name.OperatorFunctionId.Operator)); 2265 return TNK_Dependent_template_name; 2266 2267 case UnqualifiedId::IK_LiteralOperatorId: 2268 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 2269 2270 default: 2271 break; 2272 } 2273 2274 Diag(Name.getSourceRange().getBegin(), 2275 diag::err_template_kw_refers_to_non_template) 2276 << GetNameFromUnqualifiedId(Name).getName() 2277 << Name.getSourceRange() 2278 << TemplateKWLoc; 2279 return TNK_Non_template; 2280} 2281 2282bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 2283 const TemplateArgumentLoc &AL, 2284 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2285 const TemplateArgument &Arg = AL.getArgument(); 2286 2287 // Check template type parameter. 2288 switch(Arg.getKind()) { 2289 case TemplateArgument::Type: 2290 // C++ [temp.arg.type]p1: 2291 // A template-argument for a template-parameter which is a 2292 // type shall be a type-id. 2293 break; 2294 case TemplateArgument::Template: { 2295 // We have a template type parameter but the template argument 2296 // is a template without any arguments. 2297 SourceRange SR = AL.getSourceRange(); 2298 TemplateName Name = Arg.getAsTemplate(); 2299 Diag(SR.getBegin(), diag::err_template_missing_args) 2300 << Name << SR; 2301 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 2302 Diag(Decl->getLocation(), diag::note_template_decl_here); 2303 2304 return true; 2305 } 2306 default: { 2307 // We have a template type parameter but the template argument 2308 // is not a type. 2309 SourceRange SR = AL.getSourceRange(); 2310 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 2311 Diag(Param->getLocation(), diag::note_template_param_here); 2312 2313 return true; 2314 } 2315 } 2316 2317 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 2318 return true; 2319 2320 // Add the converted template type argument. 2321 Converted.push_back( 2322 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 2323 return false; 2324} 2325 2326/// \brief Substitute template arguments into the default template argument for 2327/// the given template type parameter. 2328/// 2329/// \param SemaRef the semantic analysis object for which we are performing 2330/// the substitution. 2331/// 2332/// \param Template the template that we are synthesizing template arguments 2333/// for. 2334/// 2335/// \param TemplateLoc the location of the template name that started the 2336/// template-id we are checking. 2337/// 2338/// \param RAngleLoc the location of the right angle bracket ('>') that 2339/// terminates the template-id. 2340/// 2341/// \param Param the template template parameter whose default we are 2342/// substituting into. 2343/// 2344/// \param Converted the list of template arguments provided for template 2345/// parameters that precede \p Param in the template parameter list. 2346/// \returns the substituted template argument, or NULL if an error occurred. 2347static TypeSourceInfo * 2348SubstDefaultTemplateArgument(Sema &SemaRef, 2349 TemplateDecl *Template, 2350 SourceLocation TemplateLoc, 2351 SourceLocation RAngleLoc, 2352 TemplateTypeParmDecl *Param, 2353 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2354 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 2355 2356 // If the argument type is dependent, instantiate it now based 2357 // on the previously-computed template arguments. 2358 if (ArgType->getType()->isDependentType()) { 2359 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2360 Converted.data(), Converted.size()); 2361 2362 MultiLevelTemplateArgumentList AllTemplateArgs 2363 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2364 2365 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2366 Template, Converted.data(), 2367 Converted.size(), 2368 SourceRange(TemplateLoc, RAngleLoc)); 2369 2370 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 2371 Param->getDefaultArgumentLoc(), 2372 Param->getDeclName()); 2373 } 2374 2375 return ArgType; 2376} 2377 2378/// \brief Substitute template arguments into the default template argument for 2379/// the given non-type template parameter. 2380/// 2381/// \param SemaRef the semantic analysis object for which we are performing 2382/// the substitution. 2383/// 2384/// \param Template the template that we are synthesizing template arguments 2385/// for. 2386/// 2387/// \param TemplateLoc the location of the template name that started the 2388/// template-id we are checking. 2389/// 2390/// \param RAngleLoc the location of the right angle bracket ('>') that 2391/// terminates the template-id. 2392/// 2393/// \param Param the non-type template parameter whose default we are 2394/// substituting into. 2395/// 2396/// \param Converted the list of template arguments provided for template 2397/// parameters that precede \p Param in the template parameter list. 2398/// 2399/// \returns the substituted template argument, or NULL if an error occurred. 2400static ExprResult 2401SubstDefaultTemplateArgument(Sema &SemaRef, 2402 TemplateDecl *Template, 2403 SourceLocation TemplateLoc, 2404 SourceLocation RAngleLoc, 2405 NonTypeTemplateParmDecl *Param, 2406 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2407 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2408 Converted.data(), Converted.size()); 2409 2410 MultiLevelTemplateArgumentList AllTemplateArgs 2411 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2412 2413 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2414 Template, Converted.data(), 2415 Converted.size(), 2416 SourceRange(TemplateLoc, RAngleLoc)); 2417 2418 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 2419} 2420 2421/// \brief Substitute template arguments into the default template argument for 2422/// the given template template parameter. 2423/// 2424/// \param SemaRef the semantic analysis object for which we are performing 2425/// the substitution. 2426/// 2427/// \param Template the template that we are synthesizing template arguments 2428/// for. 2429/// 2430/// \param TemplateLoc the location of the template name that started the 2431/// template-id we are checking. 2432/// 2433/// \param RAngleLoc the location of the right angle bracket ('>') that 2434/// terminates the template-id. 2435/// 2436/// \param Param the template template parameter whose default we are 2437/// substituting into. 2438/// 2439/// \param Converted the list of template arguments provided for template 2440/// parameters that precede \p Param in the template parameter list. 2441/// 2442/// \param QualifierLoc Will be set to the nested-name-specifier (with 2443/// source-location information) that precedes the template name. 2444/// 2445/// \returns the substituted template argument, or NULL if an error occurred. 2446static TemplateName 2447SubstDefaultTemplateArgument(Sema &SemaRef, 2448 TemplateDecl *Template, 2449 SourceLocation TemplateLoc, 2450 SourceLocation RAngleLoc, 2451 TemplateTemplateParmDecl *Param, 2452 llvm::SmallVectorImpl<TemplateArgument> &Converted, 2453 NestedNameSpecifierLoc &QualifierLoc) { 2454 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2455 Converted.data(), Converted.size()); 2456 2457 MultiLevelTemplateArgumentList AllTemplateArgs 2458 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2459 2460 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2461 Template, Converted.data(), 2462 Converted.size(), 2463 SourceRange(TemplateLoc, RAngleLoc)); 2464 2465 // Substitute into the nested-name-specifier first, 2466 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 2467 if (QualifierLoc) { 2468 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 2469 AllTemplateArgs); 2470 if (!QualifierLoc) 2471 return TemplateName(); 2472 } 2473 2474 return SemaRef.SubstTemplateName(QualifierLoc, 2475 Param->getDefaultArgument().getArgument().getAsTemplate(), 2476 Param->getDefaultArgument().getTemplateNameLoc(), 2477 AllTemplateArgs); 2478} 2479 2480/// \brief If the given template parameter has a default template 2481/// argument, substitute into that default template argument and 2482/// return the corresponding template argument. 2483TemplateArgumentLoc 2484Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 2485 SourceLocation TemplateLoc, 2486 SourceLocation RAngleLoc, 2487 Decl *Param, 2488 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2489 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 2490 if (!TypeParm->hasDefaultArgument()) 2491 return TemplateArgumentLoc(); 2492 2493 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 2494 TemplateLoc, 2495 RAngleLoc, 2496 TypeParm, 2497 Converted); 2498 if (DI) 2499 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 2500 2501 return TemplateArgumentLoc(); 2502 } 2503 2504 if (NonTypeTemplateParmDecl *NonTypeParm 2505 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2506 if (!NonTypeParm->hasDefaultArgument()) 2507 return TemplateArgumentLoc(); 2508 2509 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 2510 TemplateLoc, 2511 RAngleLoc, 2512 NonTypeParm, 2513 Converted); 2514 if (Arg.isInvalid()) 2515 return TemplateArgumentLoc(); 2516 2517 Expr *ArgE = Arg.takeAs<Expr>(); 2518 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 2519 } 2520 2521 TemplateTemplateParmDecl *TempTempParm 2522 = cast<TemplateTemplateParmDecl>(Param); 2523 if (!TempTempParm->hasDefaultArgument()) 2524 return TemplateArgumentLoc(); 2525 2526 2527 NestedNameSpecifierLoc QualifierLoc; 2528 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 2529 TemplateLoc, 2530 RAngleLoc, 2531 TempTempParm, 2532 Converted, 2533 QualifierLoc); 2534 if (TName.isNull()) 2535 return TemplateArgumentLoc(); 2536 2537 return TemplateArgumentLoc(TemplateArgument(TName), 2538 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 2539 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 2540} 2541 2542/// \brief Check that the given template argument corresponds to the given 2543/// template parameter. 2544/// 2545/// \param Param The template parameter against which the argument will be 2546/// checked. 2547/// 2548/// \param Arg The template argument. 2549/// 2550/// \param Template The template in which the template argument resides. 2551/// 2552/// \param TemplateLoc The location of the template name for the template 2553/// whose argument list we're matching. 2554/// 2555/// \param RAngleLoc The location of the right angle bracket ('>') that closes 2556/// the template argument list. 2557/// 2558/// \param ArgumentPackIndex The index into the argument pack where this 2559/// argument will be placed. Only valid if the parameter is a parameter pack. 2560/// 2561/// \param Converted The checked, converted argument will be added to the 2562/// end of this small vector. 2563/// 2564/// \param CTAK Describes how we arrived at this particular template argument: 2565/// explicitly written, deduced, etc. 2566/// 2567/// \returns true on error, false otherwise. 2568bool Sema::CheckTemplateArgument(NamedDecl *Param, 2569 const TemplateArgumentLoc &Arg, 2570 NamedDecl *Template, 2571 SourceLocation TemplateLoc, 2572 SourceLocation RAngleLoc, 2573 unsigned ArgumentPackIndex, 2574 llvm::SmallVectorImpl<TemplateArgument> &Converted, 2575 CheckTemplateArgumentKind CTAK) { 2576 // Check template type parameters. 2577 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2578 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2579 2580 // Check non-type template parameters. 2581 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2582 // Do substitution on the type of the non-type template parameter 2583 // with the template arguments we've seen thus far. But if the 2584 // template has a dependent context then we cannot substitute yet. 2585 QualType NTTPType = NTTP->getType(); 2586 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 2587 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 2588 2589 if (NTTPType->isDependentType() && 2590 !isa<TemplateTemplateParmDecl>(Template) && 2591 !Template->getDeclContext()->isDependentContext()) { 2592 // Do substitution on the type of the non-type template parameter. 2593 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2594 NTTP, Converted.data(), Converted.size(), 2595 SourceRange(TemplateLoc, RAngleLoc)); 2596 2597 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2598 Converted.data(), Converted.size()); 2599 NTTPType = SubstType(NTTPType, 2600 MultiLevelTemplateArgumentList(TemplateArgs), 2601 NTTP->getLocation(), 2602 NTTP->getDeclName()); 2603 // If that worked, check the non-type template parameter type 2604 // for validity. 2605 if (!NTTPType.isNull()) 2606 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2607 NTTP->getLocation()); 2608 if (NTTPType.isNull()) 2609 return true; 2610 } 2611 2612 switch (Arg.getArgument().getKind()) { 2613 case TemplateArgument::Null: 2614 assert(false && "Should never see a NULL template argument here"); 2615 return true; 2616 2617 case TemplateArgument::Expression: { 2618 TemplateArgument Result; 2619 ExprResult Res = 2620 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), 2621 Result, CTAK); 2622 if (Res.isInvalid()) 2623 return true; 2624 2625 Converted.push_back(Result); 2626 break; 2627 } 2628 2629 case TemplateArgument::Declaration: 2630 case TemplateArgument::Integral: 2631 // We've already checked this template argument, so just copy 2632 // it to the list of converted arguments. 2633 Converted.push_back(Arg.getArgument()); 2634 break; 2635 2636 case TemplateArgument::Template: 2637 case TemplateArgument::TemplateExpansion: 2638 // We were given a template template argument. It may not be ill-formed; 2639 // see below. 2640 if (DependentTemplateName *DTN 2641 = Arg.getArgument().getAsTemplateOrTemplatePattern() 2642 .getAsDependentTemplateName()) { 2643 // We have a template argument such as \c T::template X, which we 2644 // parsed as a template template argument. However, since we now 2645 // know that we need a non-type template argument, convert this 2646 // template name into an expression. 2647 2648 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 2649 Arg.getTemplateNameLoc()); 2650 2651 CXXScopeSpec SS; 2652 SS.Adopt(Arg.getTemplateQualifierLoc()); 2653 ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context, 2654 SS.getWithLocInContext(Context), 2655 NameInfo)); 2656 2657 // If we parsed the template argument as a pack expansion, create a 2658 // pack expansion expression. 2659 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 2660 E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc()); 2661 if (E.isInvalid()) 2662 return true; 2663 } 2664 2665 TemplateArgument Result; 2666 E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result); 2667 if (E.isInvalid()) 2668 return true; 2669 2670 Converted.push_back(Result); 2671 break; 2672 } 2673 2674 // We have a template argument that actually does refer to a class 2675 // template, alias template, or template template parameter, and 2676 // therefore cannot be a non-type template argument. 2677 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2678 << Arg.getSourceRange(); 2679 2680 Diag(Param->getLocation(), diag::note_template_param_here); 2681 return true; 2682 2683 case TemplateArgument::Type: { 2684 // We have a non-type template parameter but the template 2685 // argument is a type. 2686 2687 // C++ [temp.arg]p2: 2688 // In a template-argument, an ambiguity between a type-id and 2689 // an expression is resolved to a type-id, regardless of the 2690 // form of the corresponding template-parameter. 2691 // 2692 // We warn specifically about this case, since it can be rather 2693 // confusing for users. 2694 QualType T = Arg.getArgument().getAsType(); 2695 SourceRange SR = Arg.getSourceRange(); 2696 if (T->isFunctionType()) 2697 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2698 else 2699 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2700 Diag(Param->getLocation(), diag::note_template_param_here); 2701 return true; 2702 } 2703 2704 case TemplateArgument::Pack: 2705 llvm_unreachable("Caller must expand template argument packs"); 2706 break; 2707 } 2708 2709 return false; 2710 } 2711 2712 2713 // Check template template parameters. 2714 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2715 2716 // Substitute into the template parameter list of the template 2717 // template parameter, since previously-supplied template arguments 2718 // may appear within the template template parameter. 2719 { 2720 // Set up a template instantiation context. 2721 LocalInstantiationScope Scope(*this); 2722 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2723 TempParm, Converted.data(), Converted.size(), 2724 SourceRange(TemplateLoc, RAngleLoc)); 2725 2726 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2727 Converted.data(), Converted.size()); 2728 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2729 SubstDecl(TempParm, CurContext, 2730 MultiLevelTemplateArgumentList(TemplateArgs))); 2731 if (!TempParm) 2732 return true; 2733 } 2734 2735 switch (Arg.getArgument().getKind()) { 2736 case TemplateArgument::Null: 2737 assert(false && "Should never see a NULL template argument here"); 2738 return true; 2739 2740 case TemplateArgument::Template: 2741 case TemplateArgument::TemplateExpansion: 2742 if (CheckTemplateArgument(TempParm, Arg)) 2743 return true; 2744 2745 Converted.push_back(Arg.getArgument()); 2746 break; 2747 2748 case TemplateArgument::Expression: 2749 case TemplateArgument::Type: 2750 // We have a template template parameter but the template 2751 // argument does not refer to a template. 2752 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 2753 << getLangOptions().CPlusPlus0x; 2754 return true; 2755 2756 case TemplateArgument::Declaration: 2757 llvm_unreachable( 2758 "Declaration argument with template template parameter"); 2759 break; 2760 case TemplateArgument::Integral: 2761 llvm_unreachable( 2762 "Integral argument with template template parameter"); 2763 break; 2764 2765 case TemplateArgument::Pack: 2766 llvm_unreachable("Caller must expand template argument packs"); 2767 break; 2768 } 2769 2770 return false; 2771} 2772 2773/// \brief Check that the given template argument list is well-formed 2774/// for specializing the given template. 2775bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2776 SourceLocation TemplateLoc, 2777 TemplateArgumentListInfo &TemplateArgs, 2778 bool PartialTemplateArgs, 2779 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2780 TemplateParameterList *Params = Template->getTemplateParameters(); 2781 unsigned NumParams = Params->size(); 2782 unsigned NumArgs = TemplateArgs.size(); 2783 bool Invalid = false; 2784 2785 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2786 2787 bool HasParameterPack = 2788 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2789 2790 if ((NumArgs > NumParams && !HasParameterPack) || 2791 (NumArgs < Params->getMinRequiredArguments() && 2792 !PartialTemplateArgs)) { 2793 // FIXME: point at either the first arg beyond what we can handle, 2794 // or the '>', depending on whether we have too many or too few 2795 // arguments. 2796 SourceRange Range; 2797 if (NumArgs > NumParams) 2798 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2799 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2800 << (NumArgs > NumParams) 2801 << (isa<ClassTemplateDecl>(Template)? 0 : 2802 isa<FunctionTemplateDecl>(Template)? 1 : 2803 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2804 << Template << Range; 2805 Diag(Template->getLocation(), diag::note_template_decl_here) 2806 << Params->getSourceRange(); 2807 Invalid = true; 2808 } 2809 2810 // C++ [temp.arg]p1: 2811 // [...] The type and form of each template-argument specified in 2812 // a template-id shall match the type and form specified for the 2813 // corresponding parameter declared by the template in its 2814 // template-parameter-list. 2815 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 2816 llvm::SmallVector<TemplateArgument, 2> ArgumentPack; 2817 TemplateParameterList::iterator Param = Params->begin(), 2818 ParamEnd = Params->end(); 2819 unsigned ArgIdx = 0; 2820 LocalInstantiationScope InstScope(*this, true); 2821 while (Param != ParamEnd) { 2822 if (ArgIdx > NumArgs && PartialTemplateArgs) 2823 break; 2824 2825 if (ArgIdx < NumArgs) { 2826 // If we have an expanded parameter pack, make sure we don't have too 2827 // many arguments. 2828 if (NonTypeTemplateParmDecl *NTTP 2829 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2830 if (NTTP->isExpandedParameterPack() && 2831 ArgumentPack.size() >= NTTP->getNumExpansionTypes()) { 2832 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2833 << true 2834 << (isa<ClassTemplateDecl>(Template)? 0 : 2835 isa<FunctionTemplateDecl>(Template)? 1 : 2836 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2837 << Template; 2838 Diag(Template->getLocation(), diag::note_template_decl_here) 2839 << Params->getSourceRange(); 2840 return true; 2841 } 2842 } 2843 2844 // Check the template argument we were given. 2845 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2846 TemplateLoc, RAngleLoc, 2847 ArgumentPack.size(), Converted)) 2848 return true; 2849 2850 if ((*Param)->isTemplateParameterPack()) { 2851 // The template parameter was a template parameter pack, so take the 2852 // deduced argument and place it on the argument pack. Note that we 2853 // stay on the same template parameter so that we can deduce more 2854 // arguments. 2855 ArgumentPack.push_back(Converted.back()); 2856 Converted.pop_back(); 2857 } else { 2858 // Move to the next template parameter. 2859 ++Param; 2860 } 2861 ++ArgIdx; 2862 continue; 2863 } 2864 2865 // If we have a template parameter pack with no more corresponding 2866 // arguments, just break out now and we'll fill in the argument pack below. 2867 if ((*Param)->isTemplateParameterPack()) 2868 break; 2869 2870 // We have a default template argument that we will use. 2871 TemplateArgumentLoc Arg; 2872 2873 // Retrieve the default template argument from the template 2874 // parameter. For each kind of template parameter, we substitute the 2875 // template arguments provided thus far and any "outer" template arguments 2876 // (when the template parameter was part of a nested template) into 2877 // the default argument. 2878 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2879 if (!TTP->hasDefaultArgument()) { 2880 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2881 break; 2882 } 2883 2884 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2885 Template, 2886 TemplateLoc, 2887 RAngleLoc, 2888 TTP, 2889 Converted); 2890 if (!ArgType) 2891 return true; 2892 2893 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2894 ArgType); 2895 } else if (NonTypeTemplateParmDecl *NTTP 2896 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2897 if (!NTTP->hasDefaultArgument()) { 2898 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2899 break; 2900 } 2901 2902 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 2903 TemplateLoc, 2904 RAngleLoc, 2905 NTTP, 2906 Converted); 2907 if (E.isInvalid()) 2908 return true; 2909 2910 Expr *Ex = E.takeAs<Expr>(); 2911 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2912 } else { 2913 TemplateTemplateParmDecl *TempParm 2914 = cast<TemplateTemplateParmDecl>(*Param); 2915 2916 if (!TempParm->hasDefaultArgument()) { 2917 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2918 break; 2919 } 2920 2921 NestedNameSpecifierLoc QualifierLoc; 2922 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2923 TemplateLoc, 2924 RAngleLoc, 2925 TempParm, 2926 Converted, 2927 QualifierLoc); 2928 if (Name.isNull()) 2929 return true; 2930 2931 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc, 2932 TempParm->getDefaultArgument().getTemplateNameLoc()); 2933 } 2934 2935 // Introduce an instantiation record that describes where we are using 2936 // the default template argument. 2937 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 2938 Converted.data(), Converted.size(), 2939 SourceRange(TemplateLoc, RAngleLoc)); 2940 2941 // Check the default template argument. 2942 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 2943 RAngleLoc, 0, Converted)) 2944 return true; 2945 2946 // Core issue 150 (assumed resolution): if this is a template template 2947 // parameter, keep track of the default template arguments from the 2948 // template definition. 2949 if (isTemplateTemplateParameter) 2950 TemplateArgs.addArgument(Arg); 2951 2952 // Move to the next template parameter and argument. 2953 ++Param; 2954 ++ArgIdx; 2955 } 2956 2957 // Form argument packs for each of the parameter packs remaining. 2958 while (Param != ParamEnd) { 2959 // If we're checking a partial list of template arguments, don't fill 2960 // in arguments for non-template parameter packs. 2961 2962 if ((*Param)->isTemplateParameterPack()) { 2963 if (PartialTemplateArgs && ArgumentPack.empty()) { 2964 Converted.push_back(TemplateArgument()); 2965 } else if (ArgumentPack.empty()) 2966 Converted.push_back(TemplateArgument(0, 0)); 2967 else { 2968 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 2969 ArgumentPack.data(), 2970 ArgumentPack.size())); 2971 ArgumentPack.clear(); 2972 } 2973 } 2974 2975 ++Param; 2976 } 2977 2978 return Invalid; 2979} 2980 2981namespace { 2982 class UnnamedLocalNoLinkageFinder 2983 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 2984 { 2985 Sema &S; 2986 SourceRange SR; 2987 2988 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 2989 2990 public: 2991 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 2992 2993 bool Visit(QualType T) { 2994 return inherited::Visit(T.getTypePtr()); 2995 } 2996 2997#define TYPE(Class, Parent) \ 2998 bool Visit##Class##Type(const Class##Type *); 2999#define ABSTRACT_TYPE(Class, Parent) \ 3000 bool Visit##Class##Type(const Class##Type *) { return false; } 3001#define NON_CANONICAL_TYPE(Class, Parent) \ 3002 bool Visit##Class##Type(const Class##Type *) { return false; } 3003#include "clang/AST/TypeNodes.def" 3004 3005 bool VisitTagDecl(const TagDecl *Tag); 3006 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 3007 }; 3008} 3009 3010bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 3011 return false; 3012} 3013 3014bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 3015 return Visit(T->getElementType()); 3016} 3017 3018bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 3019 return Visit(T->getPointeeType()); 3020} 3021 3022bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 3023 const BlockPointerType* T) { 3024 return Visit(T->getPointeeType()); 3025} 3026 3027bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 3028 const LValueReferenceType* T) { 3029 return Visit(T->getPointeeType()); 3030} 3031 3032bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 3033 const RValueReferenceType* T) { 3034 return Visit(T->getPointeeType()); 3035} 3036 3037bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 3038 const MemberPointerType* T) { 3039 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 3040} 3041 3042bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 3043 const ConstantArrayType* T) { 3044 return Visit(T->getElementType()); 3045} 3046 3047bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 3048 const IncompleteArrayType* T) { 3049 return Visit(T->getElementType()); 3050} 3051 3052bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 3053 const VariableArrayType* T) { 3054 return Visit(T->getElementType()); 3055} 3056 3057bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 3058 const DependentSizedArrayType* T) { 3059 return Visit(T->getElementType()); 3060} 3061 3062bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 3063 const DependentSizedExtVectorType* T) { 3064 return Visit(T->getElementType()); 3065} 3066 3067bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 3068 return Visit(T->getElementType()); 3069} 3070 3071bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 3072 return Visit(T->getElementType()); 3073} 3074 3075bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 3076 const FunctionProtoType* T) { 3077 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), 3078 AEnd = T->arg_type_end(); 3079 A != AEnd; ++A) { 3080 if (Visit(*A)) 3081 return true; 3082 } 3083 3084 return Visit(T->getResultType()); 3085} 3086 3087bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 3088 const FunctionNoProtoType* T) { 3089 return Visit(T->getResultType()); 3090} 3091 3092bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 3093 const UnresolvedUsingType*) { 3094 return false; 3095} 3096 3097bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 3098 return false; 3099} 3100 3101bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 3102 return Visit(T->getUnderlyingType()); 3103} 3104 3105bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 3106 return false; 3107} 3108 3109bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 3110 const UnaryTransformType*) { 3111 return false; 3112} 3113 3114bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 3115 return Visit(T->getDeducedType()); 3116} 3117 3118bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 3119 return VisitTagDecl(T->getDecl()); 3120} 3121 3122bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 3123 return VisitTagDecl(T->getDecl()); 3124} 3125 3126bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 3127 const TemplateTypeParmType*) { 3128 return false; 3129} 3130 3131bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 3132 const SubstTemplateTypeParmPackType *) { 3133 return false; 3134} 3135 3136bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 3137 const TemplateSpecializationType*) { 3138 return false; 3139} 3140 3141bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 3142 const InjectedClassNameType* T) { 3143 return VisitTagDecl(T->getDecl()); 3144} 3145 3146bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 3147 const DependentNameType* T) { 3148 return VisitNestedNameSpecifier(T->getQualifier()); 3149} 3150 3151bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 3152 const DependentTemplateSpecializationType* T) { 3153 return VisitNestedNameSpecifier(T->getQualifier()); 3154} 3155 3156bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 3157 const PackExpansionType* T) { 3158 return Visit(T->getPattern()); 3159} 3160 3161bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 3162 return false; 3163} 3164 3165bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 3166 const ObjCInterfaceType *) { 3167 return false; 3168} 3169 3170bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 3171 const ObjCObjectPointerType *) { 3172 return false; 3173} 3174 3175bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 3176 if (Tag->getDeclContext()->isFunctionOrMethod()) { 3177 S.Diag(SR.getBegin(), diag::ext_template_arg_local_type) 3178 << S.Context.getTypeDeclType(Tag) << SR; 3179 return true; 3180 } 3181 3182 if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) { 3183 S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR; 3184 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 3185 return true; 3186 } 3187 3188 return false; 3189} 3190 3191bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 3192 NestedNameSpecifier *NNS) { 3193 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 3194 return true; 3195 3196 switch (NNS->getKind()) { 3197 case NestedNameSpecifier::Identifier: 3198 case NestedNameSpecifier::Namespace: 3199 case NestedNameSpecifier::NamespaceAlias: 3200 case NestedNameSpecifier::Global: 3201 return false; 3202 3203 case NestedNameSpecifier::TypeSpec: 3204 case NestedNameSpecifier::TypeSpecWithTemplate: 3205 return Visit(QualType(NNS->getAsType(), 0)); 3206 } 3207 return false; 3208} 3209 3210 3211/// \brief Check a template argument against its corresponding 3212/// template type parameter. 3213/// 3214/// This routine implements the semantics of C++ [temp.arg.type]. It 3215/// returns true if an error occurred, and false otherwise. 3216bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 3217 TypeSourceInfo *ArgInfo) { 3218 assert(ArgInfo && "invalid TypeSourceInfo"); 3219 QualType Arg = ArgInfo->getType(); 3220 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 3221 3222 if (Arg->isVariablyModifiedType()) { 3223 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 3224 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 3225 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 3226 } 3227 3228 // C++03 [temp.arg.type]p2: 3229 // A local type, a type with no linkage, an unnamed type or a type 3230 // compounded from any of these types shall not be used as a 3231 // template-argument for a template type-parameter. 3232 // 3233 // C++0x allows these, and even in C++03 we allow them as an extension with 3234 // a warning. 3235 if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) { 3236 UnnamedLocalNoLinkageFinder Finder(*this, SR); 3237 (void)Finder.Visit(Context.getCanonicalType(Arg)); 3238 } 3239 3240 return false; 3241} 3242 3243/// \brief Checks whether the given template argument is the address 3244/// of an object or function according to C++ [temp.arg.nontype]p1. 3245static bool 3246CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 3247 NonTypeTemplateParmDecl *Param, 3248 QualType ParamType, 3249 Expr *ArgIn, 3250 TemplateArgument &Converted) { 3251 bool Invalid = false; 3252 Expr *Arg = ArgIn; 3253 QualType ArgType = Arg->getType(); 3254 3255 // See through any implicit casts we added to fix the type. 3256 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 3257 Arg = Cast->getSubExpr(); 3258 3259 // C++ [temp.arg.nontype]p1: 3260 // 3261 // A template-argument for a non-type, non-template 3262 // template-parameter shall be one of: [...] 3263 // 3264 // -- the address of an object or function with external 3265 // linkage, including function templates and function 3266 // template-ids but excluding non-static class members, 3267 // expressed as & id-expression where the & is optional if 3268 // the name refers to a function or array, or if the 3269 // corresponding template-parameter is a reference; or 3270 DeclRefExpr *DRE = 0; 3271 3272 // In C++98/03 mode, give an extension warning on any extra parentheses. 3273 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3274 bool ExtraParens = false; 3275 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3276 if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) { 3277 S.Diag(Arg->getSourceRange().getBegin(), 3278 diag::ext_template_arg_extra_parens) 3279 << Arg->getSourceRange(); 3280 ExtraParens = true; 3281 } 3282 3283 Arg = Parens->getSubExpr(); 3284 } 3285 3286 bool AddressTaken = false; 3287 SourceLocation AddrOpLoc; 3288 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3289 if (UnOp->getOpcode() == UO_AddrOf) { 3290 // Support &__uuidof(class_with_uuid) as a non-type template argument. 3291 // Very common in Microsoft COM headers. 3292 if (S.getLangOptions().Microsoft && 3293 isa<CXXUuidofExpr>(UnOp->getSubExpr())) { 3294 Converted = TemplateArgument(ArgIn); 3295 return false; 3296 } 3297 3298 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 3299 AddressTaken = true; 3300 AddrOpLoc = UnOp->getOperatorLoc(); 3301 } 3302 } else { 3303 if (S.getLangOptions().Microsoft && isa<CXXUuidofExpr>(Arg)) { 3304 Converted = TemplateArgument(ArgIn); 3305 return false; 3306 } 3307 DRE = dyn_cast<DeclRefExpr>(Arg); 3308 } 3309 if (!DRE) { 3310 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 3311 << Arg->getSourceRange(); 3312 S.Diag(Param->getLocation(), diag::note_template_param_here); 3313 return true; 3314 } 3315 3316 // Stop checking the precise nature of the argument if it is value dependent, 3317 // it should be checked when instantiated. 3318 if (Arg->isValueDependent()) { 3319 Converted = TemplateArgument(ArgIn); 3320 return false; 3321 } 3322 3323 if (!isa<ValueDecl>(DRE->getDecl())) { 3324 S.Diag(Arg->getSourceRange().getBegin(), 3325 diag::err_template_arg_not_object_or_func_form) 3326 << Arg->getSourceRange(); 3327 S.Diag(Param->getLocation(), diag::note_template_param_here); 3328 return true; 3329 } 3330 3331 NamedDecl *Entity = 0; 3332 3333 // Cannot refer to non-static data members 3334 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) { 3335 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 3336 << Field << Arg->getSourceRange(); 3337 S.Diag(Param->getLocation(), diag::note_template_param_here); 3338 return true; 3339 } 3340 3341 // Cannot refer to non-static member functions 3342 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 3343 if (!Method->isStatic()) { 3344 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method) 3345 << Method << Arg->getSourceRange(); 3346 S.Diag(Param->getLocation(), diag::note_template_param_here); 3347 return true; 3348 } 3349 3350 // Functions must have external linkage. 3351 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 3352 if (!isExternalLinkage(Func->getLinkage())) { 3353 S.Diag(Arg->getSourceRange().getBegin(), 3354 diag::err_template_arg_function_not_extern) 3355 << Func << Arg->getSourceRange(); 3356 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object) 3357 << true; 3358 return true; 3359 } 3360 3361 // Okay: we've named a function with external linkage. 3362 Entity = Func; 3363 3364 // If the template parameter has pointer type, the function decays. 3365 if (ParamType->isPointerType() && !AddressTaken) 3366 ArgType = S.Context.getPointerType(Func->getType()); 3367 else if (AddressTaken && ParamType->isReferenceType()) { 3368 // If we originally had an address-of operator, but the 3369 // parameter has reference type, complain and (if things look 3370 // like they will work) drop the address-of operator. 3371 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 3372 ParamType.getNonReferenceType())) { 3373 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3374 << ParamType; 3375 S.Diag(Param->getLocation(), diag::note_template_param_here); 3376 return true; 3377 } 3378 3379 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3380 << ParamType 3381 << FixItHint::CreateRemoval(AddrOpLoc); 3382 S.Diag(Param->getLocation(), diag::note_template_param_here); 3383 3384 ArgType = Func->getType(); 3385 } 3386 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 3387 if (!isExternalLinkage(Var->getLinkage())) { 3388 S.Diag(Arg->getSourceRange().getBegin(), 3389 diag::err_template_arg_object_not_extern) 3390 << Var << Arg->getSourceRange(); 3391 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object) 3392 << true; 3393 return true; 3394 } 3395 3396 // A value of reference type is not an object. 3397 if (Var->getType()->isReferenceType()) { 3398 S.Diag(Arg->getSourceRange().getBegin(), 3399 diag::err_template_arg_reference_var) 3400 << Var->getType() << Arg->getSourceRange(); 3401 S.Diag(Param->getLocation(), diag::note_template_param_here); 3402 return true; 3403 } 3404 3405 // Okay: we've named an object with external linkage 3406 Entity = Var; 3407 3408 // If the template parameter has pointer type, we must have taken 3409 // the address of this object. 3410 if (ParamType->isReferenceType()) { 3411 if (AddressTaken) { 3412 // If we originally had an address-of operator, but the 3413 // parameter has reference type, complain and (if things look 3414 // like they will work) drop the address-of operator. 3415 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 3416 ParamType.getNonReferenceType())) { 3417 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3418 << ParamType; 3419 S.Diag(Param->getLocation(), diag::note_template_param_here); 3420 return true; 3421 } 3422 3423 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3424 << ParamType 3425 << FixItHint::CreateRemoval(AddrOpLoc); 3426 S.Diag(Param->getLocation(), diag::note_template_param_here); 3427 3428 ArgType = Var->getType(); 3429 } 3430 } else if (!AddressTaken && ParamType->isPointerType()) { 3431 if (Var->getType()->isArrayType()) { 3432 // Array-to-pointer decay. 3433 ArgType = S.Context.getArrayDecayedType(Var->getType()); 3434 } else { 3435 // If the template parameter has pointer type but the address of 3436 // this object was not taken, complain and (possibly) recover by 3437 // taking the address of the entity. 3438 ArgType = S.Context.getPointerType(Var->getType()); 3439 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 3440 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3441 << ParamType; 3442 S.Diag(Param->getLocation(), diag::note_template_param_here); 3443 return true; 3444 } 3445 3446 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3447 << ParamType 3448 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 3449 3450 S.Diag(Param->getLocation(), diag::note_template_param_here); 3451 } 3452 } 3453 } else { 3454 // We found something else, but we don't know specifically what it is. 3455 S.Diag(Arg->getSourceRange().getBegin(), 3456 diag::err_template_arg_not_object_or_func) 3457 << Arg->getSourceRange(); 3458 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 3459 return true; 3460 } 3461 3462 if (ParamType->isPointerType() && 3463 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 3464 S.IsQualificationConversion(ArgType, ParamType, false)) { 3465 // For pointer-to-object types, qualification conversions are 3466 // permitted. 3467 } else { 3468 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 3469 if (!ParamRef->getPointeeType()->isFunctionType()) { 3470 // C++ [temp.arg.nontype]p5b3: 3471 // For a non-type template-parameter of type reference to 3472 // object, no conversions apply. The type referred to by the 3473 // reference may be more cv-qualified than the (otherwise 3474 // identical) type of the template- argument. The 3475 // template-parameter is bound directly to the 3476 // template-argument, which shall be an lvalue. 3477 3478 // FIXME: Other qualifiers? 3479 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 3480 unsigned ArgQuals = ArgType.getCVRQualifiers(); 3481 3482 if ((ParamQuals | ArgQuals) != ParamQuals) { 3483 S.Diag(Arg->getSourceRange().getBegin(), 3484 diag::err_template_arg_ref_bind_ignores_quals) 3485 << ParamType << Arg->getType() 3486 << Arg->getSourceRange(); 3487 S.Diag(Param->getLocation(), diag::note_template_param_here); 3488 return true; 3489 } 3490 } 3491 } 3492 3493 // At this point, the template argument refers to an object or 3494 // function with external linkage. We now need to check whether the 3495 // argument and parameter types are compatible. 3496 if (!S.Context.hasSameUnqualifiedType(ArgType, 3497 ParamType.getNonReferenceType())) { 3498 // We can't perform this conversion or binding. 3499 if (ParamType->isReferenceType()) 3500 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 3501 << ParamType << Arg->getType() << Arg->getSourceRange(); 3502 else 3503 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3504 << Arg->getType() << ParamType << Arg->getSourceRange(); 3505 S.Diag(Param->getLocation(), diag::note_template_param_here); 3506 return true; 3507 } 3508 } 3509 3510 // Create the template argument. 3511 Converted = TemplateArgument(Entity->getCanonicalDecl()); 3512 S.MarkDeclarationReferenced(Arg->getLocStart(), Entity); 3513 return false; 3514} 3515 3516/// \brief Checks whether the given template argument is a pointer to 3517/// member constant according to C++ [temp.arg.nontype]p1. 3518bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 3519 TemplateArgument &Converted) { 3520 bool Invalid = false; 3521 3522 // See through any implicit casts we added to fix the type. 3523 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 3524 Arg = Cast->getSubExpr(); 3525 3526 // C++ [temp.arg.nontype]p1: 3527 // 3528 // A template-argument for a non-type, non-template 3529 // template-parameter shall be one of: [...] 3530 // 3531 // -- a pointer to member expressed as described in 5.3.1. 3532 DeclRefExpr *DRE = 0; 3533 3534 // In C++98/03 mode, give an extension warning on any extra parentheses. 3535 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3536 bool ExtraParens = false; 3537 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3538 if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) { 3539 Diag(Arg->getSourceRange().getBegin(), 3540 diag::ext_template_arg_extra_parens) 3541 << Arg->getSourceRange(); 3542 ExtraParens = true; 3543 } 3544 3545 Arg = Parens->getSubExpr(); 3546 } 3547 3548 // A pointer-to-member constant written &Class::member. 3549 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3550 if (UnOp->getOpcode() == UO_AddrOf) { 3551 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 3552 if (DRE && !DRE->getQualifier()) 3553 DRE = 0; 3554 } 3555 } 3556 // A constant of pointer-to-member type. 3557 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 3558 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 3559 if (VD->getType()->isMemberPointerType()) { 3560 if (isa<NonTypeTemplateParmDecl>(VD) || 3561 (isa<VarDecl>(VD) && 3562 Context.getCanonicalType(VD->getType()).isConstQualified())) { 3563 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3564 Converted = TemplateArgument(Arg); 3565 else 3566 Converted = TemplateArgument(VD->getCanonicalDecl()); 3567 return Invalid; 3568 } 3569 } 3570 } 3571 3572 DRE = 0; 3573 } 3574 3575 if (!DRE) 3576 return Diag(Arg->getSourceRange().getBegin(), 3577 diag::err_template_arg_not_pointer_to_member_form) 3578 << Arg->getSourceRange(); 3579 3580 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 3581 assert((isa<FieldDecl>(DRE->getDecl()) || 3582 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 3583 "Only non-static member pointers can make it here"); 3584 3585 // Okay: this is the address of a non-static member, and therefore 3586 // a member pointer constant. 3587 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3588 Converted = TemplateArgument(Arg); 3589 else 3590 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 3591 return Invalid; 3592 } 3593 3594 // We found something else, but we don't know specifically what it is. 3595 Diag(Arg->getSourceRange().getBegin(), 3596 diag::err_template_arg_not_pointer_to_member_form) 3597 << Arg->getSourceRange(); 3598 Diag(DRE->getDecl()->getLocation(), 3599 diag::note_template_arg_refers_here); 3600 return true; 3601} 3602 3603/// \brief Check a template argument against its corresponding 3604/// non-type template parameter. 3605/// 3606/// This routine implements the semantics of C++ [temp.arg.nontype]. 3607/// If an error occurred, it returns ExprError(); otherwise, it 3608/// returns the converted template argument. \p 3609/// InstantiatedParamType is the type of the non-type template 3610/// parameter after it has been instantiated. 3611ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 3612 QualType InstantiatedParamType, Expr *Arg, 3613 TemplateArgument &Converted, 3614 CheckTemplateArgumentKind CTAK) { 3615 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 3616 3617 // If either the parameter has a dependent type or the argument is 3618 // type-dependent, there's nothing we can check now. 3619 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 3620 // FIXME: Produce a cloned, canonical expression? 3621 Converted = TemplateArgument(Arg); 3622 return Owned(Arg); 3623 } 3624 3625 // C++ [temp.arg.nontype]p5: 3626 // The following conversions are performed on each expression used 3627 // as a non-type template-argument. If a non-type 3628 // template-argument cannot be converted to the type of the 3629 // corresponding template-parameter then the program is 3630 // ill-formed. 3631 // 3632 // -- for a non-type template-parameter of integral or 3633 // enumeration type, integral promotions (4.5) and integral 3634 // conversions (4.7) are applied. 3635 QualType ParamType = InstantiatedParamType; 3636 QualType ArgType = Arg->getType(); 3637 if (ParamType->isIntegralOrEnumerationType()) { 3638 // C++ [temp.arg.nontype]p1: 3639 // A template-argument for a non-type, non-template 3640 // template-parameter shall be one of: 3641 // 3642 // -- an integral constant-expression of integral or enumeration 3643 // type; or 3644 // -- the name of a non-type template-parameter; or 3645 SourceLocation NonConstantLoc; 3646 llvm::APSInt Value; 3647 if (!ArgType->isIntegralOrEnumerationType()) { 3648 Diag(Arg->getSourceRange().getBegin(), 3649 diag::err_template_arg_not_integral_or_enumeral) 3650 << ArgType << Arg->getSourceRange(); 3651 Diag(Param->getLocation(), diag::note_template_param_here); 3652 return ExprError(); 3653 } else if (!Arg->isValueDependent() && 3654 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 3655 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 3656 << ArgType << Arg->getSourceRange(); 3657 return ExprError(); 3658 } 3659 3660 // From here on out, all we care about are the unqualified forms 3661 // of the parameter and argument types. 3662 ParamType = ParamType.getUnqualifiedType(); 3663 ArgType = ArgType.getUnqualifiedType(); 3664 3665 // Try to convert the argument to the parameter's type. 3666 if (Context.hasSameType(ParamType, ArgType)) { 3667 // Okay: no conversion necessary 3668 } else if (CTAK == CTAK_Deduced) { 3669 // C++ [temp.deduct.type]p17: 3670 // If, in the declaration of a function template with a non-type 3671 // template-parameter, the non-type template- parameter is used 3672 // in an expression in the function parameter-list and, if the 3673 // corresponding template-argument is deduced, the 3674 // template-argument type shall match the type of the 3675 // template-parameter exactly, except that a template-argument 3676 // deduced from an array bound may be of any integral type. 3677 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 3678 << ArgType << ParamType; 3679 Diag(Param->getLocation(), diag::note_template_param_here); 3680 return ExprError(); 3681 } else if (ParamType->isBooleanType()) { 3682 // This is an integral-to-boolean conversion. 3683 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take(); 3684 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 3685 !ParamType->isEnumeralType()) { 3686 // This is an integral promotion or conversion. 3687 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take(); 3688 } else { 3689 // We can't perform this conversion. 3690 Diag(Arg->getSourceRange().getBegin(), 3691 diag::err_template_arg_not_convertible) 3692 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3693 Diag(Param->getLocation(), diag::note_template_param_here); 3694 return ExprError(); 3695 } 3696 3697 // Add the value of this argument to the list of converted 3698 // arguments. We use the bitwidth and signedness of the template 3699 // parameter. 3700 if (Arg->isValueDependent()) { 3701 // The argument is value-dependent. Create a new 3702 // TemplateArgument with the converted expression. 3703 Converted = TemplateArgument(Arg); 3704 return Owned(Arg); 3705 } 3706 3707 QualType IntegerType = Context.getCanonicalType(ParamType); 3708 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 3709 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 3710 3711 if (ParamType->isBooleanType()) { 3712 // Value must be zero or one. 3713 Value = Value != 0; 3714 unsigned AllowedBits = Context.getTypeSize(IntegerType); 3715 if (Value.getBitWidth() != AllowedBits) 3716 Value = Value.extOrTrunc(AllowedBits); 3717 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 3718 } else { 3719 llvm::APSInt OldValue = Value; 3720 3721 // Coerce the template argument's value to the value it will have 3722 // based on the template parameter's type. 3723 unsigned AllowedBits = Context.getTypeSize(IntegerType); 3724 if (Value.getBitWidth() != AllowedBits) 3725 Value = Value.extOrTrunc(AllowedBits); 3726 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 3727 3728 // Complain if an unsigned parameter received a negative value. 3729 if (IntegerType->isUnsignedIntegerOrEnumerationType() 3730 && (OldValue.isSigned() && OldValue.isNegative())) { 3731 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative) 3732 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3733 << Arg->getSourceRange(); 3734 Diag(Param->getLocation(), diag::note_template_param_here); 3735 } 3736 3737 // Complain if we overflowed the template parameter's type. 3738 unsigned RequiredBits; 3739 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 3740 RequiredBits = OldValue.getActiveBits(); 3741 else if (OldValue.isUnsigned()) 3742 RequiredBits = OldValue.getActiveBits() + 1; 3743 else 3744 RequiredBits = OldValue.getMinSignedBits(); 3745 if (RequiredBits > AllowedBits) { 3746 Diag(Arg->getSourceRange().getBegin(), 3747 diag::warn_template_arg_too_large) 3748 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3749 << Arg->getSourceRange(); 3750 Diag(Param->getLocation(), diag::note_template_param_here); 3751 } 3752 } 3753 3754 Converted = TemplateArgument(Value, 3755 ParamType->isEnumeralType() ? ParamType 3756 : IntegerType); 3757 return Owned(Arg); 3758 } 3759 3760 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 3761 3762 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion 3763 // from a template argument of type std::nullptr_t to a non-type 3764 // template parameter of type pointer to object, pointer to 3765 // function, or pointer-to-member, respectively. 3766 if (ArgType->isNullPtrType()) { 3767 if (ParamType->isPointerType() || ParamType->isMemberPointerType()) { 3768 Converted = TemplateArgument((NamedDecl *)0); 3769 return Owned(Arg); 3770 } 3771 3772 if (ParamType->isNullPtrType()) { 3773 llvm::APSInt Zero(Context.getTypeSize(Context.NullPtrTy), true); 3774 Converted = TemplateArgument(Zero, Context.NullPtrTy); 3775 return Owned(Arg); 3776 } 3777 } 3778 3779 // Handle pointer-to-function, reference-to-function, and 3780 // pointer-to-member-function all in (roughly) the same way. 3781 if (// -- For a non-type template-parameter of type pointer to 3782 // function, only the function-to-pointer conversion (4.3) is 3783 // applied. If the template-argument represents a set of 3784 // overloaded functions (or a pointer to such), the matching 3785 // function is selected from the set (13.4). 3786 (ParamType->isPointerType() && 3787 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 3788 // -- For a non-type template-parameter of type reference to 3789 // function, no conversions apply. If the template-argument 3790 // represents a set of overloaded functions, the matching 3791 // function is selected from the set (13.4). 3792 (ParamType->isReferenceType() && 3793 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 3794 // -- For a non-type template-parameter of type pointer to 3795 // member function, no conversions apply. If the 3796 // template-argument represents a set of overloaded member 3797 // functions, the matching member function is selected from 3798 // the set (13.4). 3799 (ParamType->isMemberPointerType() && 3800 ParamType->getAs<MemberPointerType>()->getPointeeType() 3801 ->isFunctionType())) { 3802 3803 if (Arg->getType() == Context.OverloadTy) { 3804 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 3805 true, 3806 FoundResult)) { 3807 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3808 return ExprError(); 3809 3810 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3811 ArgType = Arg->getType(); 3812 } else 3813 return ExprError(); 3814 } 3815 3816 if (!ParamType->isMemberPointerType()) { 3817 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3818 ParamType, 3819 Arg, Converted)) 3820 return ExprError(); 3821 return Owned(Arg); 3822 } 3823 3824 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(), 3825 false)) { 3826 Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)).take(); 3827 } else if (!Context.hasSameUnqualifiedType(ArgType, 3828 ParamType.getNonReferenceType())) { 3829 // We can't perform this conversion. 3830 Diag(Arg->getSourceRange().getBegin(), 3831 diag::err_template_arg_not_convertible) 3832 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3833 Diag(Param->getLocation(), diag::note_template_param_here); 3834 return ExprError(); 3835 } 3836 3837 if (CheckTemplateArgumentPointerToMember(Arg, Converted)) 3838 return ExprError(); 3839 return Owned(Arg); 3840 } 3841 3842 if (ParamType->isPointerType()) { 3843 // -- for a non-type template-parameter of type pointer to 3844 // object, qualification conversions (4.4) and the 3845 // array-to-pointer conversion (4.2) are applied. 3846 // C++0x also allows a value of std::nullptr_t. 3847 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 3848 "Only object pointers allowed here"); 3849 3850 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3851 ParamType, 3852 Arg, Converted)) 3853 return ExprError(); 3854 return Owned(Arg); 3855 } 3856 3857 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 3858 // -- For a non-type template-parameter of type reference to 3859 // object, no conversions apply. The type referred to by the 3860 // reference may be more cv-qualified than the (otherwise 3861 // identical) type of the template-argument. The 3862 // template-parameter is bound directly to the 3863 // template-argument, which must be an lvalue. 3864 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 3865 "Only object references allowed here"); 3866 3867 if (Arg->getType() == Context.OverloadTy) { 3868 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 3869 ParamRefType->getPointeeType(), 3870 true, 3871 FoundResult)) { 3872 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3873 return ExprError(); 3874 3875 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3876 ArgType = Arg->getType(); 3877 } else 3878 return ExprError(); 3879 } 3880 3881 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3882 ParamType, 3883 Arg, Converted)) 3884 return ExprError(); 3885 return Owned(Arg); 3886 } 3887 3888 // -- For a non-type template-parameter of type pointer to data 3889 // member, qualification conversions (4.4) are applied. 3890 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 3891 3892 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 3893 // Types match exactly: nothing more to do here. 3894 } else if (IsQualificationConversion(ArgType, ParamType, false)) { 3895 Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)).take(); 3896 } else { 3897 // We can't perform this conversion. 3898 Diag(Arg->getSourceRange().getBegin(), 3899 diag::err_template_arg_not_convertible) 3900 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3901 Diag(Param->getLocation(), diag::note_template_param_here); 3902 return ExprError(); 3903 } 3904 3905 if (CheckTemplateArgumentPointerToMember(Arg, Converted)) 3906 return ExprError(); 3907 return Owned(Arg); 3908} 3909 3910/// \brief Check a template argument against its corresponding 3911/// template template parameter. 3912/// 3913/// This routine implements the semantics of C++ [temp.arg.template]. 3914/// It returns true if an error occurred, and false otherwise. 3915bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 3916 const TemplateArgumentLoc &Arg) { 3917 TemplateName Name = Arg.getArgument().getAsTemplate(); 3918 TemplateDecl *Template = Name.getAsTemplateDecl(); 3919 if (!Template) { 3920 // Any dependent template name is fine. 3921 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 3922 return false; 3923 } 3924 3925 // C++0x [temp.arg.template]p1: 3926 // A template-argument for a template template-parameter shall be 3927 // the name of a class template or an alias template, expressed as an 3928 // id-expression. When the template-argument names a class template, only 3929 // primary class templates are considered when matching the 3930 // template template argument with the corresponding parameter; 3931 // partial specializations are not considered even if their 3932 // parameter lists match that of the template template parameter. 3933 // 3934 // Note that we also allow template template parameters here, which 3935 // will happen when we are dealing with, e.g., class template 3936 // partial specializations. 3937 if (!isa<ClassTemplateDecl>(Template) && 3938 !isa<TemplateTemplateParmDecl>(Template) && 3939 !isa<TypeAliasTemplateDecl>(Template)) { 3940 assert(isa<FunctionTemplateDecl>(Template) && 3941 "Only function templates are possible here"); 3942 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 3943 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 3944 << Template; 3945 } 3946 3947 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 3948 Param->getTemplateParameters(), 3949 true, 3950 TPL_TemplateTemplateArgumentMatch, 3951 Arg.getLocation()); 3952} 3953 3954/// \brief Given a non-type template argument that refers to a 3955/// declaration and the type of its corresponding non-type template 3956/// parameter, produce an expression that properly refers to that 3957/// declaration. 3958ExprResult 3959Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 3960 QualType ParamType, 3961 SourceLocation Loc) { 3962 assert(Arg.getKind() == TemplateArgument::Declaration && 3963 "Only declaration template arguments permitted here"); 3964 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 3965 3966 if (VD->getDeclContext()->isRecord() && 3967 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 3968 // If the value is a class member, we might have a pointer-to-member. 3969 // Determine whether the non-type template template parameter is of 3970 // pointer-to-member type. If so, we need to build an appropriate 3971 // expression for a pointer-to-member, since a "normal" DeclRefExpr 3972 // would refer to the member itself. 3973 if (ParamType->isMemberPointerType()) { 3974 QualType ClassType 3975 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 3976 NestedNameSpecifier *Qualifier 3977 = NestedNameSpecifier::Create(Context, 0, false, 3978 ClassType.getTypePtr()); 3979 CXXScopeSpec SS; 3980 SS.MakeTrivial(Context, Qualifier, Loc); 3981 3982 // The actual value-ness of this is unimportant, but for 3983 // internal consistency's sake, references to instance methods 3984 // are r-values. 3985 ExprValueKind VK = VK_LValue; 3986 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 3987 VK = VK_RValue; 3988 3989 ExprResult RefExpr = BuildDeclRefExpr(VD, 3990 VD->getType().getNonReferenceType(), 3991 VK, 3992 Loc, 3993 &SS); 3994 if (RefExpr.isInvalid()) 3995 return ExprError(); 3996 3997 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 3998 3999 // We might need to perform a trailing qualification conversion, since 4000 // the element type on the parameter could be more qualified than the 4001 // element type in the expression we constructed. 4002 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 4003 ParamType.getUnqualifiedType(), false)) 4004 RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp); 4005 4006 assert(!RefExpr.isInvalid() && 4007 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 4008 ParamType.getUnqualifiedType())); 4009 return move(RefExpr); 4010 } 4011 } 4012 4013 QualType T = VD->getType().getNonReferenceType(); 4014 if (ParamType->isPointerType()) { 4015 // When the non-type template parameter is a pointer, take the 4016 // address of the declaration. 4017 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 4018 if (RefExpr.isInvalid()) 4019 return ExprError(); 4020 4021 if (T->isFunctionType() || T->isArrayType()) { 4022 // Decay functions and arrays. 4023 RefExpr = DefaultFunctionArrayConversion(RefExpr.take()); 4024 if (RefExpr.isInvalid()) 4025 return ExprError(); 4026 4027 return move(RefExpr); 4028 } 4029 4030 // Take the address of everything else 4031 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4032 } 4033 4034 ExprValueKind VK = VK_RValue; 4035 4036 // If the non-type template parameter has reference type, qualify the 4037 // resulting declaration reference with the extra qualifiers on the 4038 // type that the reference refers to. 4039 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 4040 VK = VK_LValue; 4041 T = Context.getQualifiedType(T, 4042 TargetRef->getPointeeType().getQualifiers()); 4043 } 4044 4045 return BuildDeclRefExpr(VD, T, VK, Loc); 4046} 4047 4048/// \brief Construct a new expression that refers to the given 4049/// integral template argument with the given source-location 4050/// information. 4051/// 4052/// This routine takes care of the mapping from an integral template 4053/// argument (which may have any integral type) to the appropriate 4054/// literal value. 4055ExprResult 4056Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 4057 SourceLocation Loc) { 4058 assert(Arg.getKind() == TemplateArgument::Integral && 4059 "Operation is only valid for integral template arguments"); 4060 QualType T = Arg.getIntegralType(); 4061 if (T->isCharType() || T->isWideCharType()) 4062 return Owned(new (Context) CharacterLiteral( 4063 Arg.getAsIntegral()->getZExtValue(), 4064 T->isWideCharType(), T, Loc)); 4065 if (T->isBooleanType()) 4066 return Owned(new (Context) CXXBoolLiteralExpr( 4067 Arg.getAsIntegral()->getBoolValue(), 4068 T, Loc)); 4069 4070 if (T->isNullPtrType()) 4071 return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc)); 4072 4073 // If this is an enum type that we're instantiating, we need to use an integer 4074 // type the same size as the enumerator. We don't want to build an 4075 // IntegerLiteral with enum type. 4076 QualType BT; 4077 if (const EnumType *ET = T->getAs<EnumType>()) 4078 BT = ET->getDecl()->getIntegerType(); 4079 else 4080 BT = T; 4081 4082 Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc); 4083 if (T->isEnumeralType()) { 4084 // FIXME: This is a hack. We need a better way to handle substituted 4085 // non-type template parameters. 4086 E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0, 4087 Context.getTrivialTypeSourceInfo(T, Loc), 4088 Loc, Loc); 4089 } 4090 4091 return Owned(E); 4092} 4093 4094/// \brief Match two template parameters within template parameter lists. 4095static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 4096 bool Complain, 4097 Sema::TemplateParameterListEqualKind Kind, 4098 SourceLocation TemplateArgLoc) { 4099 // Check the actual kind (type, non-type, template). 4100 if (Old->getKind() != New->getKind()) { 4101 if (Complain) { 4102 unsigned NextDiag = diag::err_template_param_different_kind; 4103 if (TemplateArgLoc.isValid()) { 4104 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4105 NextDiag = diag::note_template_param_different_kind; 4106 } 4107 S.Diag(New->getLocation(), NextDiag) 4108 << (Kind != Sema::TPL_TemplateMatch); 4109 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 4110 << (Kind != Sema::TPL_TemplateMatch); 4111 } 4112 4113 return false; 4114 } 4115 4116 // Check that both are parameter packs are neither are parameter packs. 4117 // However, if we are matching a template template argument to a 4118 // template template parameter, the template template parameter can have 4119 // a parameter pack where the template template argument does not. 4120 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 4121 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4122 Old->isTemplateParameterPack())) { 4123 if (Complain) { 4124 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 4125 if (TemplateArgLoc.isValid()) { 4126 S.Diag(TemplateArgLoc, 4127 diag::err_template_arg_template_params_mismatch); 4128 NextDiag = diag::note_template_parameter_pack_non_pack; 4129 } 4130 4131 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 4132 : isa<NonTypeTemplateParmDecl>(New)? 1 4133 : 2; 4134 S.Diag(New->getLocation(), NextDiag) 4135 << ParamKind << New->isParameterPack(); 4136 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 4137 << ParamKind << Old->isParameterPack(); 4138 } 4139 4140 return false; 4141 } 4142 4143 // For non-type template parameters, check the type of the parameter. 4144 if (NonTypeTemplateParmDecl *OldNTTP 4145 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 4146 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 4147 4148 // If we are matching a template template argument to a template 4149 // template parameter and one of the non-type template parameter types 4150 // is dependent, then we must wait until template instantiation time 4151 // to actually compare the arguments. 4152 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4153 (OldNTTP->getType()->isDependentType() || 4154 NewNTTP->getType()->isDependentType())) 4155 return true; 4156 4157 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 4158 if (Complain) { 4159 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 4160 if (TemplateArgLoc.isValid()) { 4161 S.Diag(TemplateArgLoc, 4162 diag::err_template_arg_template_params_mismatch); 4163 NextDiag = diag::note_template_nontype_parm_different_type; 4164 } 4165 S.Diag(NewNTTP->getLocation(), NextDiag) 4166 << NewNTTP->getType() 4167 << (Kind != Sema::TPL_TemplateMatch); 4168 S.Diag(OldNTTP->getLocation(), 4169 diag::note_template_nontype_parm_prev_declaration) 4170 << OldNTTP->getType(); 4171 } 4172 4173 return false; 4174 } 4175 4176 return true; 4177 } 4178 4179 // For template template parameters, check the template parameter types. 4180 // The template parameter lists of template template 4181 // parameters must agree. 4182 if (TemplateTemplateParmDecl *OldTTP 4183 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 4184 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 4185 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 4186 OldTTP->getTemplateParameters(), 4187 Complain, 4188 (Kind == Sema::TPL_TemplateMatch 4189 ? Sema::TPL_TemplateTemplateParmMatch 4190 : Kind), 4191 TemplateArgLoc); 4192 } 4193 4194 return true; 4195} 4196 4197/// \brief Diagnose a known arity mismatch when comparing template argument 4198/// lists. 4199static 4200void DiagnoseTemplateParameterListArityMismatch(Sema &S, 4201 TemplateParameterList *New, 4202 TemplateParameterList *Old, 4203 Sema::TemplateParameterListEqualKind Kind, 4204 SourceLocation TemplateArgLoc) { 4205 unsigned NextDiag = diag::err_template_param_list_different_arity; 4206 if (TemplateArgLoc.isValid()) { 4207 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4208 NextDiag = diag::note_template_param_list_different_arity; 4209 } 4210 S.Diag(New->getTemplateLoc(), NextDiag) 4211 << (New->size() > Old->size()) 4212 << (Kind != Sema::TPL_TemplateMatch) 4213 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 4214 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 4215 << (Kind != Sema::TPL_TemplateMatch) 4216 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 4217} 4218 4219/// \brief Determine whether the given template parameter lists are 4220/// equivalent. 4221/// 4222/// \param New The new template parameter list, typically written in the 4223/// source code as part of a new template declaration. 4224/// 4225/// \param Old The old template parameter list, typically found via 4226/// name lookup of the template declared with this template parameter 4227/// list. 4228/// 4229/// \param Complain If true, this routine will produce a diagnostic if 4230/// the template parameter lists are not equivalent. 4231/// 4232/// \param Kind describes how we are to match the template parameter lists. 4233/// 4234/// \param TemplateArgLoc If this source location is valid, then we 4235/// are actually checking the template parameter list of a template 4236/// argument (New) against the template parameter list of its 4237/// corresponding template template parameter (Old). We produce 4238/// slightly different diagnostics in this scenario. 4239/// 4240/// \returns True if the template parameter lists are equal, false 4241/// otherwise. 4242bool 4243Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 4244 TemplateParameterList *Old, 4245 bool Complain, 4246 TemplateParameterListEqualKind Kind, 4247 SourceLocation TemplateArgLoc) { 4248 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 4249 if (Complain) 4250 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4251 TemplateArgLoc); 4252 4253 return false; 4254 } 4255 4256 // C++0x [temp.arg.template]p3: 4257 // A template-argument matches a template template-parameter (call it P) 4258 // when each of the template parameters in the template-parameter-list of 4259 // the template-argument's corresponding class template or alias template 4260 // (call it A) matches the corresponding template parameter in the 4261 // template-parameter-list of P. [...] 4262 TemplateParameterList::iterator NewParm = New->begin(); 4263 TemplateParameterList::iterator NewParmEnd = New->end(); 4264 for (TemplateParameterList::iterator OldParm = Old->begin(), 4265 OldParmEnd = Old->end(); 4266 OldParm != OldParmEnd; ++OldParm) { 4267 if (Kind != TPL_TemplateTemplateArgumentMatch || 4268 !(*OldParm)->isTemplateParameterPack()) { 4269 if (NewParm == NewParmEnd) { 4270 if (Complain) 4271 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4272 TemplateArgLoc); 4273 4274 return false; 4275 } 4276 4277 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4278 Kind, TemplateArgLoc)) 4279 return false; 4280 4281 ++NewParm; 4282 continue; 4283 } 4284 4285 // C++0x [temp.arg.template]p3: 4286 // [...] When P's template- parameter-list contains a template parameter 4287 // pack (14.5.3), the template parameter pack will match zero or more 4288 // template parameters or template parameter packs in the 4289 // template-parameter-list of A with the same type and form as the 4290 // template parameter pack in P (ignoring whether those template 4291 // parameters are template parameter packs). 4292 for (; NewParm != NewParmEnd; ++NewParm) { 4293 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4294 Kind, TemplateArgLoc)) 4295 return false; 4296 } 4297 } 4298 4299 // Make sure we exhausted all of the arguments. 4300 if (NewParm != NewParmEnd) { 4301 if (Complain) 4302 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4303 TemplateArgLoc); 4304 4305 return false; 4306 } 4307 4308 return true; 4309} 4310 4311/// \brief Check whether a template can be declared within this scope. 4312/// 4313/// If the template declaration is valid in this scope, returns 4314/// false. Otherwise, issues a diagnostic and returns true. 4315bool 4316Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 4317 // Find the nearest enclosing declaration scope. 4318 while ((S->getFlags() & Scope::DeclScope) == 0 || 4319 (S->getFlags() & Scope::TemplateParamScope) != 0) 4320 S = S->getParent(); 4321 4322 // C++ [temp]p2: 4323 // A template-declaration can appear only as a namespace scope or 4324 // class scope declaration. 4325 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 4326 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 4327 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 4328 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 4329 << TemplateParams->getSourceRange(); 4330 4331 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 4332 Ctx = Ctx->getParent(); 4333 4334 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 4335 return false; 4336 4337 return Diag(TemplateParams->getTemplateLoc(), 4338 diag::err_template_outside_namespace_or_class_scope) 4339 << TemplateParams->getSourceRange(); 4340} 4341 4342/// \brief Determine what kind of template specialization the given declaration 4343/// is. 4344static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 4345 if (!D) 4346 return TSK_Undeclared; 4347 4348 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 4349 return Record->getTemplateSpecializationKind(); 4350 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 4351 return Function->getTemplateSpecializationKind(); 4352 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 4353 return Var->getTemplateSpecializationKind(); 4354 4355 return TSK_Undeclared; 4356} 4357 4358/// \brief Check whether a specialization is well-formed in the current 4359/// context. 4360/// 4361/// This routine determines whether a template specialization can be declared 4362/// in the current context (C++ [temp.expl.spec]p2). 4363/// 4364/// \param S the semantic analysis object for which this check is being 4365/// performed. 4366/// 4367/// \param Specialized the entity being specialized or instantiated, which 4368/// may be a kind of template (class template, function template, etc.) or 4369/// a member of a class template (member function, static data member, 4370/// member class). 4371/// 4372/// \param PrevDecl the previous declaration of this entity, if any. 4373/// 4374/// \param Loc the location of the explicit specialization or instantiation of 4375/// this entity. 4376/// 4377/// \param IsPartialSpecialization whether this is a partial specialization of 4378/// a class template. 4379/// 4380/// \returns true if there was an error that we cannot recover from, false 4381/// otherwise. 4382static bool CheckTemplateSpecializationScope(Sema &S, 4383 NamedDecl *Specialized, 4384 NamedDecl *PrevDecl, 4385 SourceLocation Loc, 4386 bool IsPartialSpecialization) { 4387 // Keep these "kind" numbers in sync with the %select statements in the 4388 // various diagnostics emitted by this routine. 4389 int EntityKind = 0; 4390 if (isa<ClassTemplateDecl>(Specialized)) 4391 EntityKind = IsPartialSpecialization? 1 : 0; 4392 else if (isa<FunctionTemplateDecl>(Specialized)) 4393 EntityKind = 2; 4394 else if (isa<CXXMethodDecl>(Specialized)) 4395 EntityKind = 3; 4396 else if (isa<VarDecl>(Specialized)) 4397 EntityKind = 4; 4398 else if (isa<RecordDecl>(Specialized)) 4399 EntityKind = 5; 4400 else { 4401 S.Diag(Loc, diag::err_template_spec_unknown_kind); 4402 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4403 return true; 4404 } 4405 4406 // C++ [temp.expl.spec]p2: 4407 // An explicit specialization shall be declared in the namespace 4408 // of which the template is a member, or, for member templates, in 4409 // the namespace of which the enclosing class or enclosing class 4410 // template is a member. An explicit specialization of a member 4411 // function, member class or static data member of a class 4412 // template shall be declared in the namespace of which the class 4413 // template is a member. Such a declaration may also be a 4414 // definition. If the declaration is not a definition, the 4415 // specialization may be defined later in the name- space in which 4416 // the explicit specialization was declared, or in a namespace 4417 // that encloses the one in which the explicit specialization was 4418 // declared. 4419 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 4420 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 4421 << Specialized; 4422 return true; 4423 } 4424 4425 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 4426 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 4427 << Specialized; 4428 return true; 4429 } 4430 4431 // C++ [temp.class.spec]p6: 4432 // A class template partial specialization may be declared or redeclared 4433 // in any namespace scope in which its definition may be defined (14.5.1 4434 // and 14.5.2). 4435 bool ComplainedAboutScope = false; 4436 DeclContext *SpecializedContext 4437 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 4438 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 4439 if ((!PrevDecl || 4440 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 4441 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 4442 // C++ [temp.exp.spec]p2: 4443 // An explicit specialization shall be declared in the namespace of which 4444 // the template is a member, or, for member templates, in the namespace 4445 // of which the enclosing class or enclosing class template is a member. 4446 // An explicit specialization of a member function, member class or 4447 // static data member of a class template shall be declared in the 4448 // namespace of which the class template is a member. 4449 // 4450 // C++0x [temp.expl.spec]p2: 4451 // An explicit specialization shall be declared in a namespace enclosing 4452 // the specialized template. 4453 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) && 4454 !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) { 4455 bool IsCPlusPlus0xExtension 4456 = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext); 4457 if (isa<TranslationUnitDecl>(SpecializedContext)) 4458 S.Diag(Loc, IsCPlusPlus0xExtension 4459 ? diag::ext_template_spec_decl_out_of_scope_global 4460 : diag::err_template_spec_decl_out_of_scope_global) 4461 << EntityKind << Specialized; 4462 else if (isa<NamespaceDecl>(SpecializedContext)) 4463 S.Diag(Loc, IsCPlusPlus0xExtension 4464 ? diag::ext_template_spec_decl_out_of_scope 4465 : diag::err_template_spec_decl_out_of_scope) 4466 << EntityKind << Specialized 4467 << cast<NamedDecl>(SpecializedContext); 4468 4469 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4470 ComplainedAboutScope = true; 4471 } 4472 } 4473 4474 // Make sure that this redeclaration (or definition) occurs in an enclosing 4475 // namespace. 4476 // Note that HandleDeclarator() performs this check for explicit 4477 // specializations of function templates, static data members, and member 4478 // functions, so we skip the check here for those kinds of entities. 4479 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 4480 // Should we refactor that check, so that it occurs later? 4481 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 4482 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 4483 isa<FunctionDecl>(Specialized))) { 4484 if (isa<TranslationUnitDecl>(SpecializedContext)) 4485 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 4486 << EntityKind << Specialized; 4487 else if (isa<NamespaceDecl>(SpecializedContext)) 4488 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 4489 << EntityKind << Specialized 4490 << cast<NamedDecl>(SpecializedContext); 4491 4492 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4493 } 4494 4495 // FIXME: check for specialization-after-instantiation errors and such. 4496 4497 return false; 4498} 4499 4500/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs 4501/// that checks non-type template partial specialization arguments. 4502static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S, 4503 NonTypeTemplateParmDecl *Param, 4504 const TemplateArgument *Args, 4505 unsigned NumArgs) { 4506 for (unsigned I = 0; I != NumArgs; ++I) { 4507 if (Args[I].getKind() == TemplateArgument::Pack) { 4508 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4509 Args[I].pack_begin(), 4510 Args[I].pack_size())) 4511 return true; 4512 4513 continue; 4514 } 4515 4516 Expr *ArgExpr = Args[I].getAsExpr(); 4517 if (!ArgExpr) { 4518 continue; 4519 } 4520 4521 // We can have a pack expansion of any of the bullets below. 4522 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 4523 ArgExpr = Expansion->getPattern(); 4524 4525 // Strip off any implicit casts we added as part of type checking. 4526 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 4527 ArgExpr = ICE->getSubExpr(); 4528 4529 // C++ [temp.class.spec]p8: 4530 // A non-type argument is non-specialized if it is the name of a 4531 // non-type parameter. All other non-type arguments are 4532 // specialized. 4533 // 4534 // Below, we check the two conditions that only apply to 4535 // specialized non-type arguments, so skip any non-specialized 4536 // arguments. 4537 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 4538 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 4539 continue; 4540 4541 // C++ [temp.class.spec]p9: 4542 // Within the argument list of a class template partial 4543 // specialization, the following restrictions apply: 4544 // -- A partially specialized non-type argument expression 4545 // shall not involve a template parameter of the partial 4546 // specialization except when the argument expression is a 4547 // simple identifier. 4548 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 4549 S.Diag(ArgExpr->getLocStart(), 4550 diag::err_dependent_non_type_arg_in_partial_spec) 4551 << ArgExpr->getSourceRange(); 4552 return true; 4553 } 4554 4555 // -- The type of a template parameter corresponding to a 4556 // specialized non-type argument shall not be dependent on a 4557 // parameter of the specialization. 4558 if (Param->getType()->isDependentType()) { 4559 S.Diag(ArgExpr->getLocStart(), 4560 diag::err_dependent_typed_non_type_arg_in_partial_spec) 4561 << Param->getType() 4562 << ArgExpr->getSourceRange(); 4563 S.Diag(Param->getLocation(), diag::note_template_param_here); 4564 return true; 4565 } 4566 } 4567 4568 return false; 4569} 4570 4571/// \brief Check the non-type template arguments of a class template 4572/// partial specialization according to C++ [temp.class.spec]p9. 4573/// 4574/// \param TemplateParams the template parameters of the primary class 4575/// template. 4576/// 4577/// \param TemplateArg the template arguments of the class template 4578/// partial specialization. 4579/// 4580/// \returns true if there was an error, false otherwise. 4581static bool CheckClassTemplatePartialSpecializationArgs(Sema &S, 4582 TemplateParameterList *TemplateParams, 4583 llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs) { 4584 const TemplateArgument *ArgList = TemplateArgs.data(); 4585 4586 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4587 NonTypeTemplateParmDecl *Param 4588 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 4589 if (!Param) 4590 continue; 4591 4592 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4593 &ArgList[I], 1)) 4594 return true; 4595 } 4596 4597 return false; 4598} 4599 4600/// \brief Retrieve the previous declaration of the given declaration. 4601static NamedDecl *getPreviousDecl(NamedDecl *ND) { 4602 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 4603 return VD->getPreviousDeclaration(); 4604 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 4605 return FD->getPreviousDeclaration(); 4606 if (TagDecl *TD = dyn_cast<TagDecl>(ND)) 4607 return TD->getPreviousDeclaration(); 4608 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND)) 4609 return TD->getPreviousDeclaration(); 4610 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 4611 return FTD->getPreviousDeclaration(); 4612 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND)) 4613 return CTD->getPreviousDeclaration(); 4614 return 0; 4615} 4616 4617DeclResult 4618Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 4619 TagUseKind TUK, 4620 SourceLocation KWLoc, 4621 CXXScopeSpec &SS, 4622 TemplateTy TemplateD, 4623 SourceLocation TemplateNameLoc, 4624 SourceLocation LAngleLoc, 4625 ASTTemplateArgsPtr TemplateArgsIn, 4626 SourceLocation RAngleLoc, 4627 AttributeList *Attr, 4628 MultiTemplateParamsArg TemplateParameterLists) { 4629 assert(TUK != TUK_Reference && "References are not specializations"); 4630 4631 // NOTE: KWLoc is the location of the tag keyword. This will instead 4632 // store the location of the outermost template keyword in the declaration. 4633 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 4634 ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation(); 4635 4636 // Find the class template we're specializing 4637 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4638 ClassTemplateDecl *ClassTemplate 4639 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4640 4641 if (!ClassTemplate) { 4642 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 4643 << (Name.getAsTemplateDecl() && 4644 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 4645 return true; 4646 } 4647 4648 bool isExplicitSpecialization = false; 4649 bool isPartialSpecialization = false; 4650 4651 // Check the validity of the template headers that introduce this 4652 // template. 4653 // FIXME: We probably shouldn't complain about these headers for 4654 // friend declarations. 4655 bool Invalid = false; 4656 TemplateParameterList *TemplateParams 4657 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, 4658 TemplateNameLoc, 4659 SS, 4660 (TemplateParameterList**)TemplateParameterLists.get(), 4661 TemplateParameterLists.size(), 4662 TUK == TUK_Friend, 4663 isExplicitSpecialization, 4664 Invalid); 4665 if (Invalid) 4666 return true; 4667 4668 if (TemplateParams && TemplateParams->size() > 0) { 4669 isPartialSpecialization = true; 4670 4671 if (TUK == TUK_Friend) { 4672 Diag(KWLoc, diag::err_partial_specialization_friend) 4673 << SourceRange(LAngleLoc, RAngleLoc); 4674 return true; 4675 } 4676 4677 // C++ [temp.class.spec]p10: 4678 // The template parameter list of a specialization shall not 4679 // contain default template argument values. 4680 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4681 Decl *Param = TemplateParams->getParam(I); 4682 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 4683 if (TTP->hasDefaultArgument()) { 4684 Diag(TTP->getDefaultArgumentLoc(), 4685 diag::err_default_arg_in_partial_spec); 4686 TTP->removeDefaultArgument(); 4687 } 4688 } else if (NonTypeTemplateParmDecl *NTTP 4689 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 4690 if (Expr *DefArg = NTTP->getDefaultArgument()) { 4691 Diag(NTTP->getDefaultArgumentLoc(), 4692 diag::err_default_arg_in_partial_spec) 4693 << DefArg->getSourceRange(); 4694 NTTP->removeDefaultArgument(); 4695 } 4696 } else { 4697 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 4698 if (TTP->hasDefaultArgument()) { 4699 Diag(TTP->getDefaultArgument().getLocation(), 4700 diag::err_default_arg_in_partial_spec) 4701 << TTP->getDefaultArgument().getSourceRange(); 4702 TTP->removeDefaultArgument(); 4703 } 4704 } 4705 } 4706 } else if (TemplateParams) { 4707 if (TUK == TUK_Friend) 4708 Diag(KWLoc, diag::err_template_spec_friend) 4709 << FixItHint::CreateRemoval( 4710 SourceRange(TemplateParams->getTemplateLoc(), 4711 TemplateParams->getRAngleLoc())) 4712 << SourceRange(LAngleLoc, RAngleLoc); 4713 else 4714 isExplicitSpecialization = true; 4715 } else if (TUK != TUK_Friend) { 4716 Diag(KWLoc, diag::err_template_spec_needs_header) 4717 << FixItHint::CreateInsertion(KWLoc, "template<> "); 4718 isExplicitSpecialization = true; 4719 } 4720 4721 // Check that the specialization uses the same tag kind as the 4722 // original template. 4723 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4724 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 4725 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4726 Kind, KWLoc, 4727 *ClassTemplate->getIdentifier())) { 4728 Diag(KWLoc, diag::err_use_with_wrong_tag) 4729 << ClassTemplate 4730 << FixItHint::CreateReplacement(KWLoc, 4731 ClassTemplate->getTemplatedDecl()->getKindName()); 4732 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4733 diag::note_previous_use); 4734 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4735 } 4736 4737 // Translate the parser's template argument list in our AST format. 4738 TemplateArgumentListInfo TemplateArgs; 4739 TemplateArgs.setLAngleLoc(LAngleLoc); 4740 TemplateArgs.setRAngleLoc(RAngleLoc); 4741 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4742 4743 // Check for unexpanded parameter packs in any of the template arguments. 4744 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 4745 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 4746 UPPC_PartialSpecialization)) 4747 return true; 4748 4749 // Check that the template argument list is well-formed for this 4750 // template. 4751 llvm::SmallVector<TemplateArgument, 4> Converted; 4752 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4753 TemplateArgs, false, Converted)) 4754 return true; 4755 4756 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 4757 "Converted template argument list is too short!"); 4758 4759 // Find the class template (partial) specialization declaration that 4760 // corresponds to these arguments. 4761 if (isPartialSpecialization) { 4762 if (CheckClassTemplatePartialSpecializationArgs(*this, 4763 ClassTemplate->getTemplateParameters(), 4764 Converted)) 4765 return true; 4766 4767 if (!Name.isDependent() && 4768 !TemplateSpecializationType::anyDependentTemplateArguments( 4769 TemplateArgs.getArgumentArray(), 4770 TemplateArgs.size())) { 4771 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 4772 << ClassTemplate->getDeclName(); 4773 isPartialSpecialization = false; 4774 } 4775 } 4776 4777 void *InsertPos = 0; 4778 ClassTemplateSpecializationDecl *PrevDecl = 0; 4779 4780 if (isPartialSpecialization) 4781 // FIXME: Template parameter list matters, too 4782 PrevDecl 4783 = ClassTemplate->findPartialSpecialization(Converted.data(), 4784 Converted.size(), 4785 InsertPos); 4786 else 4787 PrevDecl 4788 = ClassTemplate->findSpecialization(Converted.data(), 4789 Converted.size(), InsertPos); 4790 4791 ClassTemplateSpecializationDecl *Specialization = 0; 4792 4793 // Check whether we can declare a class template specialization in 4794 // the current scope. 4795 if (TUK != TUK_Friend && 4796 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 4797 TemplateNameLoc, 4798 isPartialSpecialization)) 4799 return true; 4800 4801 // The canonical type 4802 QualType CanonType; 4803 if (PrevDecl && 4804 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 4805 TUK == TUK_Friend)) { 4806 // Since the only prior class template specialization with these 4807 // arguments was referenced but not declared, or we're only 4808 // referencing this specialization as a friend, reuse that 4809 // declaration node as our own, updating its source location and 4810 // the list of outer template parameters to reflect our new declaration. 4811 Specialization = PrevDecl; 4812 Specialization->setLocation(TemplateNameLoc); 4813 if (TemplateParameterLists.size() > 0) { 4814 Specialization->setTemplateParameterListsInfo(Context, 4815 TemplateParameterLists.size(), 4816 (TemplateParameterList**) TemplateParameterLists.release()); 4817 } 4818 PrevDecl = 0; 4819 CanonType = Context.getTypeDeclType(Specialization); 4820 } else if (isPartialSpecialization) { 4821 // Build the canonical type that describes the converted template 4822 // arguments of the class template partial specialization. 4823 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 4824 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 4825 Converted.data(), 4826 Converted.size()); 4827 4828 if (Context.hasSameType(CanonType, 4829 ClassTemplate->getInjectedClassNameSpecialization())) { 4830 // C++ [temp.class.spec]p9b3: 4831 // 4832 // -- The argument list of the specialization shall not be identical 4833 // to the implicit argument list of the primary template. 4834 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 4835 << (TUK == TUK_Definition) 4836 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 4837 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 4838 ClassTemplate->getIdentifier(), 4839 TemplateNameLoc, 4840 Attr, 4841 TemplateParams, 4842 AS_none, 4843 TemplateParameterLists.size() - 1, 4844 (TemplateParameterList**) TemplateParameterLists.release()); 4845 } 4846 4847 // Create a new class template partial specialization declaration node. 4848 ClassTemplatePartialSpecializationDecl *PrevPartial 4849 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 4850 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 4851 : ClassTemplate->getNextPartialSpecSequenceNumber(); 4852 ClassTemplatePartialSpecializationDecl *Partial 4853 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 4854 ClassTemplate->getDeclContext(), 4855 KWLoc, TemplateNameLoc, 4856 TemplateParams, 4857 ClassTemplate, 4858 Converted.data(), 4859 Converted.size(), 4860 TemplateArgs, 4861 CanonType, 4862 PrevPartial, 4863 SequenceNumber); 4864 SetNestedNameSpecifier(Partial, SS); 4865 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 4866 Partial->setTemplateParameterListsInfo(Context, 4867 TemplateParameterLists.size() - 1, 4868 (TemplateParameterList**) TemplateParameterLists.release()); 4869 } 4870 4871 if (!PrevPartial) 4872 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 4873 Specialization = Partial; 4874 4875 // If we are providing an explicit specialization of a member class 4876 // template specialization, make a note of that. 4877 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 4878 PrevPartial->setMemberSpecialization(); 4879 4880 // Check that all of the template parameters of the class template 4881 // partial specialization are deducible from the template 4882 // arguments. If not, this class template partial specialization 4883 // will never be used. 4884 llvm::SmallVector<bool, 8> DeducibleParams; 4885 DeducibleParams.resize(TemplateParams->size()); 4886 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 4887 TemplateParams->getDepth(), 4888 DeducibleParams); 4889 unsigned NumNonDeducible = 0; 4890 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 4891 if (!DeducibleParams[I]) 4892 ++NumNonDeducible; 4893 4894 if (NumNonDeducible) { 4895 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 4896 << (NumNonDeducible > 1) 4897 << SourceRange(TemplateNameLoc, RAngleLoc); 4898 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 4899 if (!DeducibleParams[I]) { 4900 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 4901 if (Param->getDeclName()) 4902 Diag(Param->getLocation(), 4903 diag::note_partial_spec_unused_parameter) 4904 << Param->getDeclName(); 4905 else 4906 Diag(Param->getLocation(), 4907 diag::note_partial_spec_unused_parameter) 4908 << "<anonymous>"; 4909 } 4910 } 4911 } 4912 } else { 4913 // Create a new class template specialization declaration node for 4914 // this explicit specialization or friend declaration. 4915 Specialization 4916 = ClassTemplateSpecializationDecl::Create(Context, Kind, 4917 ClassTemplate->getDeclContext(), 4918 KWLoc, TemplateNameLoc, 4919 ClassTemplate, 4920 Converted.data(), 4921 Converted.size(), 4922 PrevDecl); 4923 SetNestedNameSpecifier(Specialization, SS); 4924 if (TemplateParameterLists.size() > 0) { 4925 Specialization->setTemplateParameterListsInfo(Context, 4926 TemplateParameterLists.size(), 4927 (TemplateParameterList**) TemplateParameterLists.release()); 4928 } 4929 4930 if (!PrevDecl) 4931 ClassTemplate->AddSpecialization(Specialization, InsertPos); 4932 4933 CanonType = Context.getTypeDeclType(Specialization); 4934 } 4935 4936 // C++ [temp.expl.spec]p6: 4937 // If a template, a member template or the member of a class template is 4938 // explicitly specialized then that specialization shall be declared 4939 // before the first use of that specialization that would cause an implicit 4940 // instantiation to take place, in every translation unit in which such a 4941 // use occurs; no diagnostic is required. 4942 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 4943 bool Okay = false; 4944 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 4945 // Is there any previous explicit specialization declaration? 4946 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 4947 Okay = true; 4948 break; 4949 } 4950 } 4951 4952 if (!Okay) { 4953 SourceRange Range(TemplateNameLoc, RAngleLoc); 4954 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 4955 << Context.getTypeDeclType(Specialization) << Range; 4956 4957 Diag(PrevDecl->getPointOfInstantiation(), 4958 diag::note_instantiation_required_here) 4959 << (PrevDecl->getTemplateSpecializationKind() 4960 != TSK_ImplicitInstantiation); 4961 return true; 4962 } 4963 } 4964 4965 // If this is not a friend, note that this is an explicit specialization. 4966 if (TUK != TUK_Friend) 4967 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 4968 4969 // Check that this isn't a redefinition of this specialization. 4970 if (TUK == TUK_Definition) { 4971 if (RecordDecl *Def = Specialization->getDefinition()) { 4972 SourceRange Range(TemplateNameLoc, RAngleLoc); 4973 Diag(TemplateNameLoc, diag::err_redefinition) 4974 << Context.getTypeDeclType(Specialization) << Range; 4975 Diag(Def->getLocation(), diag::note_previous_definition); 4976 Specialization->setInvalidDecl(); 4977 return true; 4978 } 4979 } 4980 4981 if (Attr) 4982 ProcessDeclAttributeList(S, Specialization, Attr); 4983 4984 // Build the fully-sugared type for this class template 4985 // specialization as the user wrote in the specialization 4986 // itself. This means that we'll pretty-print the type retrieved 4987 // from the specialization's declaration the way that the user 4988 // actually wrote the specialization, rather than formatting the 4989 // name based on the "canonical" representation used to store the 4990 // template arguments in the specialization. 4991 TypeSourceInfo *WrittenTy 4992 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 4993 TemplateArgs, CanonType); 4994 if (TUK != TUK_Friend) { 4995 Specialization->setTypeAsWritten(WrittenTy); 4996 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 4997 } 4998 TemplateArgsIn.release(); 4999 5000 // C++ [temp.expl.spec]p9: 5001 // A template explicit specialization is in the scope of the 5002 // namespace in which the template was defined. 5003 // 5004 // We actually implement this paragraph where we set the semantic 5005 // context (in the creation of the ClassTemplateSpecializationDecl), 5006 // but we also maintain the lexical context where the actual 5007 // definition occurs. 5008 Specialization->setLexicalDeclContext(CurContext); 5009 5010 // We may be starting the definition of this specialization. 5011 if (TUK == TUK_Definition) 5012 Specialization->startDefinition(); 5013 5014 if (TUK == TUK_Friend) { 5015 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 5016 TemplateNameLoc, 5017 WrittenTy, 5018 /*FIXME:*/KWLoc); 5019 Friend->setAccess(AS_public); 5020 CurContext->addDecl(Friend); 5021 } else { 5022 // Add the specialization into its lexical context, so that it can 5023 // be seen when iterating through the list of declarations in that 5024 // context. However, specializations are not found by name lookup. 5025 CurContext->addDecl(Specialization); 5026 } 5027 return Specialization; 5028} 5029 5030Decl *Sema::ActOnTemplateDeclarator(Scope *S, 5031 MultiTemplateParamsArg TemplateParameterLists, 5032 Declarator &D) { 5033 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 5034} 5035 5036Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 5037 MultiTemplateParamsArg TemplateParameterLists, 5038 Declarator &D) { 5039 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 5040 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 5041 5042 if (FTI.hasPrototype) { 5043 // FIXME: Diagnose arguments without names in C. 5044 } 5045 5046 Scope *ParentScope = FnBodyScope->getParent(); 5047 5048 Decl *DP = HandleDeclarator(ParentScope, D, 5049 move(TemplateParameterLists), 5050 /*IsFunctionDefinition=*/true); 5051 if (FunctionTemplateDecl *FunctionTemplate 5052 = dyn_cast_or_null<FunctionTemplateDecl>(DP)) 5053 return ActOnStartOfFunctionDef(FnBodyScope, 5054 FunctionTemplate->getTemplatedDecl()); 5055 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP)) 5056 return ActOnStartOfFunctionDef(FnBodyScope, Function); 5057 return 0; 5058} 5059 5060/// \brief Strips various properties off an implicit instantiation 5061/// that has just been explicitly specialized. 5062static void StripImplicitInstantiation(NamedDecl *D) { 5063 D->dropAttrs(); 5064 5065 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5066 FD->setInlineSpecified(false); 5067 } 5068} 5069 5070/// \brief Diagnose cases where we have an explicit template specialization 5071/// before/after an explicit template instantiation, producing diagnostics 5072/// for those cases where they are required and determining whether the 5073/// new specialization/instantiation will have any effect. 5074/// 5075/// \param NewLoc the location of the new explicit specialization or 5076/// instantiation. 5077/// 5078/// \param NewTSK the kind of the new explicit specialization or instantiation. 5079/// 5080/// \param PrevDecl the previous declaration of the entity. 5081/// 5082/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 5083/// 5084/// \param PrevPointOfInstantiation if valid, indicates where the previus 5085/// declaration was instantiated (either implicitly or explicitly). 5086/// 5087/// \param HasNoEffect will be set to true to indicate that the new 5088/// specialization or instantiation has no effect and should be ignored. 5089/// 5090/// \returns true if there was an error that should prevent the introduction of 5091/// the new declaration into the AST, false otherwise. 5092bool 5093Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 5094 TemplateSpecializationKind NewTSK, 5095 NamedDecl *PrevDecl, 5096 TemplateSpecializationKind PrevTSK, 5097 SourceLocation PrevPointOfInstantiation, 5098 bool &HasNoEffect) { 5099 HasNoEffect = false; 5100 5101 switch (NewTSK) { 5102 case TSK_Undeclared: 5103 case TSK_ImplicitInstantiation: 5104 assert(false && "Don't check implicit instantiations here"); 5105 return false; 5106 5107 case TSK_ExplicitSpecialization: 5108 switch (PrevTSK) { 5109 case TSK_Undeclared: 5110 case TSK_ExplicitSpecialization: 5111 // Okay, we're just specializing something that is either already 5112 // explicitly specialized or has merely been mentioned without any 5113 // instantiation. 5114 return false; 5115 5116 case TSK_ImplicitInstantiation: 5117 if (PrevPointOfInstantiation.isInvalid()) { 5118 // The declaration itself has not actually been instantiated, so it is 5119 // still okay to specialize it. 5120 StripImplicitInstantiation(PrevDecl); 5121 return false; 5122 } 5123 // Fall through 5124 5125 case TSK_ExplicitInstantiationDeclaration: 5126 case TSK_ExplicitInstantiationDefinition: 5127 assert((PrevTSK == TSK_ImplicitInstantiation || 5128 PrevPointOfInstantiation.isValid()) && 5129 "Explicit instantiation without point of instantiation?"); 5130 5131 // C++ [temp.expl.spec]p6: 5132 // If a template, a member template or the member of a class template 5133 // is explicitly specialized then that specialization shall be declared 5134 // before the first use of that specialization that would cause an 5135 // implicit instantiation to take place, in every translation unit in 5136 // which such a use occurs; no diagnostic is required. 5137 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 5138 // Is there any previous explicit specialization declaration? 5139 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 5140 return false; 5141 } 5142 5143 Diag(NewLoc, diag::err_specialization_after_instantiation) 5144 << PrevDecl; 5145 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 5146 << (PrevTSK != TSK_ImplicitInstantiation); 5147 5148 return true; 5149 } 5150 break; 5151 5152 case TSK_ExplicitInstantiationDeclaration: 5153 switch (PrevTSK) { 5154 case TSK_ExplicitInstantiationDeclaration: 5155 // This explicit instantiation declaration is redundant (that's okay). 5156 HasNoEffect = true; 5157 return false; 5158 5159 case TSK_Undeclared: 5160 case TSK_ImplicitInstantiation: 5161 // We're explicitly instantiating something that may have already been 5162 // implicitly instantiated; that's fine. 5163 return false; 5164 5165 case TSK_ExplicitSpecialization: 5166 // C++0x [temp.explicit]p4: 5167 // For a given set of template parameters, if an explicit instantiation 5168 // of a template appears after a declaration of an explicit 5169 // specialization for that template, the explicit instantiation has no 5170 // effect. 5171 HasNoEffect = true; 5172 return false; 5173 5174 case TSK_ExplicitInstantiationDefinition: 5175 // C++0x [temp.explicit]p10: 5176 // If an entity is the subject of both an explicit instantiation 5177 // declaration and an explicit instantiation definition in the same 5178 // translation unit, the definition shall follow the declaration. 5179 Diag(NewLoc, 5180 diag::err_explicit_instantiation_declaration_after_definition); 5181 Diag(PrevPointOfInstantiation, 5182 diag::note_explicit_instantiation_definition_here); 5183 assert(PrevPointOfInstantiation.isValid() && 5184 "Explicit instantiation without point of instantiation?"); 5185 HasNoEffect = true; 5186 return false; 5187 } 5188 break; 5189 5190 case TSK_ExplicitInstantiationDefinition: 5191 switch (PrevTSK) { 5192 case TSK_Undeclared: 5193 case TSK_ImplicitInstantiation: 5194 // We're explicitly instantiating something that may have already been 5195 // implicitly instantiated; that's fine. 5196 return false; 5197 5198 case TSK_ExplicitSpecialization: 5199 // C++ DR 259, C++0x [temp.explicit]p4: 5200 // For a given set of template parameters, if an explicit 5201 // instantiation of a template appears after a declaration of 5202 // an explicit specialization for that template, the explicit 5203 // instantiation has no effect. 5204 // 5205 // In C++98/03 mode, we only give an extension warning here, because it 5206 // is not harmful to try to explicitly instantiate something that 5207 // has been explicitly specialized. 5208 if (!getLangOptions().CPlusPlus0x) { 5209 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 5210 << PrevDecl; 5211 Diag(PrevDecl->getLocation(), 5212 diag::note_previous_template_specialization); 5213 } 5214 HasNoEffect = true; 5215 return false; 5216 5217 case TSK_ExplicitInstantiationDeclaration: 5218 // We're explicity instantiating a definition for something for which we 5219 // were previously asked to suppress instantiations. That's fine. 5220 return false; 5221 5222 case TSK_ExplicitInstantiationDefinition: 5223 // C++0x [temp.spec]p5: 5224 // For a given template and a given set of template-arguments, 5225 // - an explicit instantiation definition shall appear at most once 5226 // in a program, 5227 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 5228 << PrevDecl; 5229 Diag(PrevPointOfInstantiation, 5230 diag::note_previous_explicit_instantiation); 5231 HasNoEffect = true; 5232 return false; 5233 } 5234 break; 5235 } 5236 5237 assert(false && "Missing specialization/instantiation case?"); 5238 5239 return false; 5240} 5241 5242/// \brief Perform semantic analysis for the given dependent function 5243/// template specialization. The only possible way to get a dependent 5244/// function template specialization is with a friend declaration, 5245/// like so: 5246/// 5247/// template <class T> void foo(T); 5248/// template <class T> class A { 5249/// friend void foo<>(T); 5250/// }; 5251/// 5252/// There really isn't any useful analysis we can do here, so we 5253/// just store the information. 5254bool 5255Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 5256 const TemplateArgumentListInfo &ExplicitTemplateArgs, 5257 LookupResult &Previous) { 5258 // Remove anything from Previous that isn't a function template in 5259 // the correct context. 5260 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5261 LookupResult::Filter F = Previous.makeFilter(); 5262 while (F.hasNext()) { 5263 NamedDecl *D = F.next()->getUnderlyingDecl(); 5264 if (!isa<FunctionTemplateDecl>(D) || 5265 !FDLookupContext->InEnclosingNamespaceSetOf( 5266 D->getDeclContext()->getRedeclContext())) 5267 F.erase(); 5268 } 5269 F.done(); 5270 5271 // Should this be diagnosed here? 5272 if (Previous.empty()) return true; 5273 5274 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 5275 ExplicitTemplateArgs); 5276 return false; 5277} 5278 5279/// \brief Perform semantic analysis for the given function template 5280/// specialization. 5281/// 5282/// This routine performs all of the semantic analysis required for an 5283/// explicit function template specialization. On successful completion, 5284/// the function declaration \p FD will become a function template 5285/// specialization. 5286/// 5287/// \param FD the function declaration, which will be updated to become a 5288/// function template specialization. 5289/// 5290/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 5291/// if any. Note that this may be valid info even when 0 arguments are 5292/// explicitly provided as in, e.g., \c void sort<>(char*, char*); 5293/// as it anyway contains info on the angle brackets locations. 5294/// 5295/// \param PrevDecl the set of declarations that may be specialized by 5296/// this function specialization. 5297bool 5298Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 5299 TemplateArgumentListInfo *ExplicitTemplateArgs, 5300 LookupResult &Previous) { 5301 // The set of function template specializations that could match this 5302 // explicit function template specialization. 5303 UnresolvedSet<8> Candidates; 5304 5305 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5306 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5307 I != E; ++I) { 5308 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 5309 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 5310 // Only consider templates found within the same semantic lookup scope as 5311 // FD. 5312 if (!FDLookupContext->InEnclosingNamespaceSetOf( 5313 Ovl->getDeclContext()->getRedeclContext())) 5314 continue; 5315 5316 // C++ [temp.expl.spec]p11: 5317 // A trailing template-argument can be left unspecified in the 5318 // template-id naming an explicit function template specialization 5319 // provided it can be deduced from the function argument type. 5320 // Perform template argument deduction to determine whether we may be 5321 // specializing this template. 5322 // FIXME: It is somewhat wasteful to build 5323 TemplateDeductionInfo Info(Context, FD->getLocation()); 5324 FunctionDecl *Specialization = 0; 5325 if (TemplateDeductionResult TDK 5326 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 5327 FD->getType(), 5328 Specialization, 5329 Info)) { 5330 // FIXME: Template argument deduction failed; record why it failed, so 5331 // that we can provide nifty diagnostics. 5332 (void)TDK; 5333 continue; 5334 } 5335 5336 // Record this candidate. 5337 Candidates.addDecl(Specialization, I.getAccess()); 5338 } 5339 } 5340 5341 // Find the most specialized function template. 5342 UnresolvedSetIterator Result 5343 = getMostSpecialized(Candidates.begin(), Candidates.end(), 5344 TPOC_Other, 0, FD->getLocation(), 5345 PDiag(diag::err_function_template_spec_no_match) 5346 << FD->getDeclName(), 5347 PDiag(diag::err_function_template_spec_ambiguous) 5348 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 5349 PDiag(diag::note_function_template_spec_matched)); 5350 if (Result == Candidates.end()) 5351 return true; 5352 5353 // Ignore access information; it doesn't figure into redeclaration checking. 5354 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5355 5356 FunctionTemplateSpecializationInfo *SpecInfo 5357 = Specialization->getTemplateSpecializationInfo(); 5358 assert(SpecInfo && "Function template specialization info missing?"); 5359 { 5360 // Note: do not overwrite location info if previous template 5361 // specialization kind was explicit. 5362 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 5363 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) 5364 Specialization->setLocation(FD->getLocation()); 5365 } 5366 5367 // FIXME: Check if the prior specialization has a point of instantiation. 5368 // If so, we have run afoul of . 5369 5370 // If this is a friend declaration, then we're not really declaring 5371 // an explicit specialization. 5372 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 5373 5374 // Check the scope of this explicit specialization. 5375 if (!isFriend && 5376 CheckTemplateSpecializationScope(*this, 5377 Specialization->getPrimaryTemplate(), 5378 Specialization, FD->getLocation(), 5379 false)) 5380 return true; 5381 5382 // C++ [temp.expl.spec]p6: 5383 // If a template, a member template or the member of a class template is 5384 // explicitly specialized then that specialization shall be declared 5385 // before the first use of that specialization that would cause an implicit 5386 // instantiation to take place, in every translation unit in which such a 5387 // use occurs; no diagnostic is required. 5388 bool HasNoEffect = false; 5389 if (!isFriend && 5390 CheckSpecializationInstantiationRedecl(FD->getLocation(), 5391 TSK_ExplicitSpecialization, 5392 Specialization, 5393 SpecInfo->getTemplateSpecializationKind(), 5394 SpecInfo->getPointOfInstantiation(), 5395 HasNoEffect)) 5396 return true; 5397 5398 // Mark the prior declaration as an explicit specialization, so that later 5399 // clients know that this is an explicit specialization. 5400 if (!isFriend) { 5401 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 5402 MarkUnusedFileScopedDecl(Specialization); 5403 } 5404 5405 // Turn the given function declaration into a function template 5406 // specialization, with the template arguments from the previous 5407 // specialization. 5408 // Take copies of (semantic and syntactic) template argument lists. 5409 const TemplateArgumentList* TemplArgs = new (Context) 5410 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 5411 const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs 5412 ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0; 5413 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 5414 TemplArgs, /*InsertPos=*/0, 5415 SpecInfo->getTemplateSpecializationKind(), 5416 TemplArgsAsWritten); 5417 FD->setStorageClass(Specialization->getStorageClass()); 5418 5419 // The "previous declaration" for this function template specialization is 5420 // the prior function template specialization. 5421 Previous.clear(); 5422 Previous.addDecl(Specialization); 5423 return false; 5424} 5425 5426/// \brief Perform semantic analysis for the given non-template member 5427/// specialization. 5428/// 5429/// This routine performs all of the semantic analysis required for an 5430/// explicit member function specialization. On successful completion, 5431/// the function declaration \p FD will become a member function 5432/// specialization. 5433/// 5434/// \param Member the member declaration, which will be updated to become a 5435/// specialization. 5436/// 5437/// \param Previous the set of declarations, one of which may be specialized 5438/// by this function specialization; the set will be modified to contain the 5439/// redeclared member. 5440bool 5441Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 5442 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 5443 5444 // Try to find the member we are instantiating. 5445 NamedDecl *Instantiation = 0; 5446 NamedDecl *InstantiatedFrom = 0; 5447 MemberSpecializationInfo *MSInfo = 0; 5448 5449 if (Previous.empty()) { 5450 // Nowhere to look anyway. 5451 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 5452 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5453 I != E; ++I) { 5454 NamedDecl *D = (*I)->getUnderlyingDecl(); 5455 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 5456 if (Context.hasSameType(Function->getType(), Method->getType())) { 5457 Instantiation = Method; 5458 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 5459 MSInfo = Method->getMemberSpecializationInfo(); 5460 break; 5461 } 5462 } 5463 } 5464 } else if (isa<VarDecl>(Member)) { 5465 VarDecl *PrevVar; 5466 if (Previous.isSingleResult() && 5467 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 5468 if (PrevVar->isStaticDataMember()) { 5469 Instantiation = PrevVar; 5470 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 5471 MSInfo = PrevVar->getMemberSpecializationInfo(); 5472 } 5473 } else if (isa<RecordDecl>(Member)) { 5474 CXXRecordDecl *PrevRecord; 5475 if (Previous.isSingleResult() && 5476 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 5477 Instantiation = PrevRecord; 5478 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 5479 MSInfo = PrevRecord->getMemberSpecializationInfo(); 5480 } 5481 } 5482 5483 if (!Instantiation) { 5484 // There is no previous declaration that matches. Since member 5485 // specializations are always out-of-line, the caller will complain about 5486 // this mismatch later. 5487 return false; 5488 } 5489 5490 // If this is a friend, just bail out here before we start turning 5491 // things into explicit specializations. 5492 if (Member->getFriendObjectKind() != Decl::FOK_None) { 5493 // Preserve instantiation information. 5494 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 5495 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 5496 cast<CXXMethodDecl>(InstantiatedFrom), 5497 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 5498 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 5499 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5500 cast<CXXRecordDecl>(InstantiatedFrom), 5501 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 5502 } 5503 5504 Previous.clear(); 5505 Previous.addDecl(Instantiation); 5506 return false; 5507 } 5508 5509 // Make sure that this is a specialization of a member. 5510 if (!InstantiatedFrom) { 5511 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 5512 << Member; 5513 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 5514 return true; 5515 } 5516 5517 // C++ [temp.expl.spec]p6: 5518 // If a template, a member template or the member of a class template is 5519 // explicitly specialized then that spe- cialization shall be declared 5520 // before the first use of that specialization that would cause an implicit 5521 // instantiation to take place, in every translation unit in which such a 5522 // use occurs; no diagnostic is required. 5523 assert(MSInfo && "Member specialization info missing?"); 5524 5525 bool HasNoEffect = false; 5526 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 5527 TSK_ExplicitSpecialization, 5528 Instantiation, 5529 MSInfo->getTemplateSpecializationKind(), 5530 MSInfo->getPointOfInstantiation(), 5531 HasNoEffect)) 5532 return true; 5533 5534 // Check the scope of this explicit specialization. 5535 if (CheckTemplateSpecializationScope(*this, 5536 InstantiatedFrom, 5537 Instantiation, Member->getLocation(), 5538 false)) 5539 return true; 5540 5541 // Note that this is an explicit instantiation of a member. 5542 // the original declaration to note that it is an explicit specialization 5543 // (if it was previously an implicit instantiation). This latter step 5544 // makes bookkeeping easier. 5545 if (isa<FunctionDecl>(Member)) { 5546 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 5547 if (InstantiationFunction->getTemplateSpecializationKind() == 5548 TSK_ImplicitInstantiation) { 5549 InstantiationFunction->setTemplateSpecializationKind( 5550 TSK_ExplicitSpecialization); 5551 InstantiationFunction->setLocation(Member->getLocation()); 5552 } 5553 5554 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 5555 cast<CXXMethodDecl>(InstantiatedFrom), 5556 TSK_ExplicitSpecialization); 5557 MarkUnusedFileScopedDecl(InstantiationFunction); 5558 } else if (isa<VarDecl>(Member)) { 5559 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 5560 if (InstantiationVar->getTemplateSpecializationKind() == 5561 TSK_ImplicitInstantiation) { 5562 InstantiationVar->setTemplateSpecializationKind( 5563 TSK_ExplicitSpecialization); 5564 InstantiationVar->setLocation(Member->getLocation()); 5565 } 5566 5567 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 5568 cast<VarDecl>(InstantiatedFrom), 5569 TSK_ExplicitSpecialization); 5570 MarkUnusedFileScopedDecl(InstantiationVar); 5571 } else { 5572 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 5573 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 5574 if (InstantiationClass->getTemplateSpecializationKind() == 5575 TSK_ImplicitInstantiation) { 5576 InstantiationClass->setTemplateSpecializationKind( 5577 TSK_ExplicitSpecialization); 5578 InstantiationClass->setLocation(Member->getLocation()); 5579 } 5580 5581 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5582 cast<CXXRecordDecl>(InstantiatedFrom), 5583 TSK_ExplicitSpecialization); 5584 } 5585 5586 // Save the caller the trouble of having to figure out which declaration 5587 // this specialization matches. 5588 Previous.clear(); 5589 Previous.addDecl(Instantiation); 5590 return false; 5591} 5592 5593/// \brief Check the scope of an explicit instantiation. 5594/// 5595/// \returns true if a serious error occurs, false otherwise. 5596static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 5597 SourceLocation InstLoc, 5598 bool WasQualifiedName) { 5599 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 5600 DeclContext *CurContext = S.CurContext->getRedeclContext(); 5601 5602 if (CurContext->isRecord()) { 5603 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 5604 << D; 5605 return true; 5606 } 5607 5608 // C++0x [temp.explicit]p2: 5609 // An explicit instantiation shall appear in an enclosing namespace of its 5610 // template. 5611 // 5612 // This is DR275, which we do not retroactively apply to C++98/03. 5613 if (S.getLangOptions().CPlusPlus0x && 5614 !CurContext->Encloses(OrigContext)) { 5615 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) 5616 S.Diag(InstLoc, 5617 S.getLangOptions().CPlusPlus0x? 5618 diag::err_explicit_instantiation_out_of_scope 5619 : diag::warn_explicit_instantiation_out_of_scope_0x) 5620 << D << NS; 5621 else 5622 S.Diag(InstLoc, 5623 S.getLangOptions().CPlusPlus0x? 5624 diag::err_explicit_instantiation_must_be_global 5625 : diag::warn_explicit_instantiation_out_of_scope_0x) 5626 << D; 5627 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 5628 return false; 5629 } 5630 5631 // C++0x [temp.explicit]p2: 5632 // If the name declared in the explicit instantiation is an unqualified 5633 // name, the explicit instantiation shall appear in the namespace where 5634 // its template is declared or, if that namespace is inline (7.3.1), any 5635 // namespace from its enclosing namespace set. 5636 if (WasQualifiedName) 5637 return false; 5638 5639 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 5640 return false; 5641 5642 S.Diag(InstLoc, 5643 S.getLangOptions().CPlusPlus0x? 5644 diag::err_explicit_instantiation_unqualified_wrong_namespace 5645 : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 5646 << D << OrigContext; 5647 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 5648 return false; 5649} 5650 5651/// \brief Determine whether the given scope specifier has a template-id in it. 5652static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 5653 if (!SS.isSet()) 5654 return false; 5655 5656 // C++0x [temp.explicit]p2: 5657 // If the explicit instantiation is for a member function, a member class 5658 // or a static data member of a class template specialization, the name of 5659 // the class template specialization in the qualified-id for the member 5660 // name shall be a simple-template-id. 5661 // 5662 // C++98 has the same restriction, just worded differently. 5663 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 5664 NNS; NNS = NNS->getPrefix()) 5665 if (const Type *T = NNS->getAsType()) 5666 if (isa<TemplateSpecializationType>(T)) 5667 return true; 5668 5669 return false; 5670} 5671 5672// Explicit instantiation of a class template specialization 5673DeclResult 5674Sema::ActOnExplicitInstantiation(Scope *S, 5675 SourceLocation ExternLoc, 5676 SourceLocation TemplateLoc, 5677 unsigned TagSpec, 5678 SourceLocation KWLoc, 5679 const CXXScopeSpec &SS, 5680 TemplateTy TemplateD, 5681 SourceLocation TemplateNameLoc, 5682 SourceLocation LAngleLoc, 5683 ASTTemplateArgsPtr TemplateArgsIn, 5684 SourceLocation RAngleLoc, 5685 AttributeList *Attr) { 5686 // Find the class template we're specializing 5687 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 5688 ClassTemplateDecl *ClassTemplate 5689 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 5690 5691 // Check that the specialization uses the same tag kind as the 5692 // original template. 5693 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5694 assert(Kind != TTK_Enum && 5695 "Invalid enum tag in class template explicit instantiation!"); 5696 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 5697 Kind, KWLoc, 5698 *ClassTemplate->getIdentifier())) { 5699 Diag(KWLoc, diag::err_use_with_wrong_tag) 5700 << ClassTemplate 5701 << FixItHint::CreateReplacement(KWLoc, 5702 ClassTemplate->getTemplatedDecl()->getKindName()); 5703 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 5704 diag::note_previous_use); 5705 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 5706 } 5707 5708 // C++0x [temp.explicit]p2: 5709 // There are two forms of explicit instantiation: an explicit instantiation 5710 // definition and an explicit instantiation declaration. An explicit 5711 // instantiation declaration begins with the extern keyword. [...] 5712 TemplateSpecializationKind TSK 5713 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5714 : TSK_ExplicitInstantiationDeclaration; 5715 5716 // Translate the parser's template argument list in our AST format. 5717 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 5718 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 5719 5720 // Check that the template argument list is well-formed for this 5721 // template. 5722 llvm::SmallVector<TemplateArgument, 4> Converted; 5723 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 5724 TemplateArgs, false, Converted)) 5725 return true; 5726 5727 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 5728 "Converted template argument list is too short!"); 5729 5730 // Find the class template specialization declaration that 5731 // corresponds to these arguments. 5732 void *InsertPos = 0; 5733 ClassTemplateSpecializationDecl *PrevDecl 5734 = ClassTemplate->findSpecialization(Converted.data(), 5735 Converted.size(), InsertPos); 5736 5737 TemplateSpecializationKind PrevDecl_TSK 5738 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 5739 5740 // C++0x [temp.explicit]p2: 5741 // [...] An explicit instantiation shall appear in an enclosing 5742 // namespace of its template. [...] 5743 // 5744 // This is C++ DR 275. 5745 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 5746 SS.isSet())) 5747 return true; 5748 5749 ClassTemplateSpecializationDecl *Specialization = 0; 5750 5751 bool HasNoEffect = false; 5752 if (PrevDecl) { 5753 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 5754 PrevDecl, PrevDecl_TSK, 5755 PrevDecl->getPointOfInstantiation(), 5756 HasNoEffect)) 5757 return PrevDecl; 5758 5759 // Even though HasNoEffect == true means that this explicit instantiation 5760 // has no effect on semantics, we go on to put its syntax in the AST. 5761 5762 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 5763 PrevDecl_TSK == TSK_Undeclared) { 5764 // Since the only prior class template specialization with these 5765 // arguments was referenced but not declared, reuse that 5766 // declaration node as our own, updating the source location 5767 // for the template name to reflect our new declaration. 5768 // (Other source locations will be updated later.) 5769 Specialization = PrevDecl; 5770 Specialization->setLocation(TemplateNameLoc); 5771 PrevDecl = 0; 5772 } 5773 } 5774 5775 if (!Specialization) { 5776 // Create a new class template specialization declaration node for 5777 // this explicit specialization. 5778 Specialization 5779 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5780 ClassTemplate->getDeclContext(), 5781 KWLoc, TemplateNameLoc, 5782 ClassTemplate, 5783 Converted.data(), 5784 Converted.size(), 5785 PrevDecl); 5786 SetNestedNameSpecifier(Specialization, SS); 5787 5788 if (!HasNoEffect && !PrevDecl) { 5789 // Insert the new specialization. 5790 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5791 } 5792 } 5793 5794 // Build the fully-sugared type for this explicit instantiation as 5795 // the user wrote in the explicit instantiation itself. This means 5796 // that we'll pretty-print the type retrieved from the 5797 // specialization's declaration the way that the user actually wrote 5798 // the explicit instantiation, rather than formatting the name based 5799 // on the "canonical" representation used to store the template 5800 // arguments in the specialization. 5801 TypeSourceInfo *WrittenTy 5802 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5803 TemplateArgs, 5804 Context.getTypeDeclType(Specialization)); 5805 Specialization->setTypeAsWritten(WrittenTy); 5806 TemplateArgsIn.release(); 5807 5808 // Set source locations for keywords. 5809 Specialization->setExternLoc(ExternLoc); 5810 Specialization->setTemplateKeywordLoc(TemplateLoc); 5811 5812 // Add the explicit instantiation into its lexical context. However, 5813 // since explicit instantiations are never found by name lookup, we 5814 // just put it into the declaration context directly. 5815 Specialization->setLexicalDeclContext(CurContext); 5816 CurContext->addDecl(Specialization); 5817 5818 // Syntax is now OK, so return if it has no other effect on semantics. 5819 if (HasNoEffect) { 5820 // Set the template specialization kind. 5821 Specialization->setTemplateSpecializationKind(TSK); 5822 return Specialization; 5823 } 5824 5825 // C++ [temp.explicit]p3: 5826 // A definition of a class template or class member template 5827 // shall be in scope at the point of the explicit instantiation of 5828 // the class template or class member template. 5829 // 5830 // This check comes when we actually try to perform the 5831 // instantiation. 5832 ClassTemplateSpecializationDecl *Def 5833 = cast_or_null<ClassTemplateSpecializationDecl>( 5834 Specialization->getDefinition()); 5835 if (!Def) 5836 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 5837 else if (TSK == TSK_ExplicitInstantiationDefinition) { 5838 MarkVTableUsed(TemplateNameLoc, Specialization, true); 5839 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 5840 } 5841 5842 // Instantiate the members of this class template specialization. 5843 Def = cast_or_null<ClassTemplateSpecializationDecl>( 5844 Specialization->getDefinition()); 5845 if (Def) { 5846 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 5847 5848 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 5849 // TSK_ExplicitInstantiationDefinition 5850 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 5851 TSK == TSK_ExplicitInstantiationDefinition) 5852 Def->setTemplateSpecializationKind(TSK); 5853 5854 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 5855 } 5856 5857 // Set the template specialization kind. 5858 Specialization->setTemplateSpecializationKind(TSK); 5859 return Specialization; 5860} 5861 5862// Explicit instantiation of a member class of a class template. 5863DeclResult 5864Sema::ActOnExplicitInstantiation(Scope *S, 5865 SourceLocation ExternLoc, 5866 SourceLocation TemplateLoc, 5867 unsigned TagSpec, 5868 SourceLocation KWLoc, 5869 CXXScopeSpec &SS, 5870 IdentifierInfo *Name, 5871 SourceLocation NameLoc, 5872 AttributeList *Attr) { 5873 5874 bool Owned = false; 5875 bool IsDependent = false; 5876 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 5877 KWLoc, SS, Name, NameLoc, Attr, AS_none, 5878 MultiTemplateParamsArg(*this, 0, 0), 5879 Owned, IsDependent, false, false, 5880 TypeResult()); 5881 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 5882 5883 if (!TagD) 5884 return true; 5885 5886 TagDecl *Tag = cast<TagDecl>(TagD); 5887 if (Tag->isEnum()) { 5888 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 5889 << Context.getTypeDeclType(Tag); 5890 return true; 5891 } 5892 5893 if (Tag->isInvalidDecl()) 5894 return true; 5895 5896 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 5897 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 5898 if (!Pattern) { 5899 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 5900 << Context.getTypeDeclType(Record); 5901 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 5902 return true; 5903 } 5904 5905 // C++0x [temp.explicit]p2: 5906 // If the explicit instantiation is for a class or member class, the 5907 // elaborated-type-specifier in the declaration shall include a 5908 // simple-template-id. 5909 // 5910 // C++98 has the same restriction, just worded differently. 5911 if (!ScopeSpecifierHasTemplateId(SS)) 5912 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 5913 << Record << SS.getRange(); 5914 5915 // C++0x [temp.explicit]p2: 5916 // There are two forms of explicit instantiation: an explicit instantiation 5917 // definition and an explicit instantiation declaration. An explicit 5918 // instantiation declaration begins with the extern keyword. [...] 5919 TemplateSpecializationKind TSK 5920 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5921 : TSK_ExplicitInstantiationDeclaration; 5922 5923 // C++0x [temp.explicit]p2: 5924 // [...] An explicit instantiation shall appear in an enclosing 5925 // namespace of its template. [...] 5926 // 5927 // This is C++ DR 275. 5928 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 5929 5930 // Verify that it is okay to explicitly instantiate here. 5931 CXXRecordDecl *PrevDecl 5932 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 5933 if (!PrevDecl && Record->getDefinition()) 5934 PrevDecl = Record; 5935 if (PrevDecl) { 5936 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 5937 bool HasNoEffect = false; 5938 assert(MSInfo && "No member specialization information?"); 5939 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 5940 PrevDecl, 5941 MSInfo->getTemplateSpecializationKind(), 5942 MSInfo->getPointOfInstantiation(), 5943 HasNoEffect)) 5944 return true; 5945 if (HasNoEffect) 5946 return TagD; 5947 } 5948 5949 CXXRecordDecl *RecordDef 5950 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 5951 if (!RecordDef) { 5952 // C++ [temp.explicit]p3: 5953 // A definition of a member class of a class template shall be in scope 5954 // at the point of an explicit instantiation of the member class. 5955 CXXRecordDecl *Def 5956 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 5957 if (!Def) { 5958 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 5959 << 0 << Record->getDeclName() << Record->getDeclContext(); 5960 Diag(Pattern->getLocation(), diag::note_forward_declaration) 5961 << Pattern; 5962 return true; 5963 } else { 5964 if (InstantiateClass(NameLoc, Record, Def, 5965 getTemplateInstantiationArgs(Record), 5966 TSK)) 5967 return true; 5968 5969 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 5970 if (!RecordDef) 5971 return true; 5972 } 5973 } 5974 5975 // Instantiate all of the members of the class. 5976 InstantiateClassMembers(NameLoc, RecordDef, 5977 getTemplateInstantiationArgs(Record), TSK); 5978 5979 if (TSK == TSK_ExplicitInstantiationDefinition) 5980 MarkVTableUsed(NameLoc, RecordDef, true); 5981 5982 // FIXME: We don't have any representation for explicit instantiations of 5983 // member classes. Such a representation is not needed for compilation, but it 5984 // should be available for clients that want to see all of the declarations in 5985 // the source code. 5986 return TagD; 5987} 5988 5989DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 5990 SourceLocation ExternLoc, 5991 SourceLocation TemplateLoc, 5992 Declarator &D) { 5993 // Explicit instantiations always require a name. 5994 // TODO: check if/when DNInfo should replace Name. 5995 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 5996 DeclarationName Name = NameInfo.getName(); 5997 if (!Name) { 5998 if (!D.isInvalidType()) 5999 Diag(D.getDeclSpec().getSourceRange().getBegin(), 6000 diag::err_explicit_instantiation_requires_name) 6001 << D.getDeclSpec().getSourceRange() 6002 << D.getSourceRange(); 6003 6004 return true; 6005 } 6006 6007 // The scope passed in may not be a decl scope. Zip up the scope tree until 6008 // we find one that is. 6009 while ((S->getFlags() & Scope::DeclScope) == 0 || 6010 (S->getFlags() & Scope::TemplateParamScope) != 0) 6011 S = S->getParent(); 6012 6013 // Determine the type of the declaration. 6014 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 6015 QualType R = T->getType(); 6016 if (R.isNull()) 6017 return true; 6018 6019 // C++ [dcl.stc]p1: 6020 // A storage-class-specifier shall not be specified in [...] an explicit 6021 // instantiation (14.7.2) directive. 6022 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 6023 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 6024 << Name; 6025 return true; 6026 } else if (D.getDeclSpec().getStorageClassSpec() 6027 != DeclSpec::SCS_unspecified) { 6028 // Complain about then remove the storage class specifier. 6029 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 6030 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6031 6032 D.getMutableDeclSpec().ClearStorageClassSpecs(); 6033 } 6034 6035 // C++0x [temp.explicit]p1: 6036 // [...] An explicit instantiation of a function template shall not use the 6037 // inline or constexpr specifiers. 6038 // Presumably, this also applies to member functions of class templates as 6039 // well. 6040 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 6041 Diag(D.getDeclSpec().getInlineSpecLoc(), 6042 diag::err_explicit_instantiation_inline) 6043 <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 6044 6045 // FIXME: check for constexpr specifier. 6046 6047 // C++0x [temp.explicit]p2: 6048 // There are two forms of explicit instantiation: an explicit instantiation 6049 // definition and an explicit instantiation declaration. An explicit 6050 // instantiation declaration begins with the extern keyword. [...] 6051 TemplateSpecializationKind TSK 6052 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6053 : TSK_ExplicitInstantiationDeclaration; 6054 6055 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 6056 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 6057 6058 if (!R->isFunctionType()) { 6059 // C++ [temp.explicit]p1: 6060 // A [...] static data member of a class template can be explicitly 6061 // instantiated from the member definition associated with its class 6062 // template. 6063 if (Previous.isAmbiguous()) 6064 return true; 6065 6066 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 6067 if (!Prev || !Prev->isStaticDataMember()) { 6068 // We expect to see a data data member here. 6069 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 6070 << Name; 6071 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6072 P != PEnd; ++P) 6073 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 6074 return true; 6075 } 6076 6077 if (!Prev->getInstantiatedFromStaticDataMember()) { 6078 // FIXME: Check for explicit specialization? 6079 Diag(D.getIdentifierLoc(), 6080 diag::err_explicit_instantiation_data_member_not_instantiated) 6081 << Prev; 6082 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 6083 // FIXME: Can we provide a note showing where this was declared? 6084 return true; 6085 } 6086 6087 // C++0x [temp.explicit]p2: 6088 // If the explicit instantiation is for a member function, a member class 6089 // or a static data member of a class template specialization, the name of 6090 // the class template specialization in the qualified-id for the member 6091 // name shall be a simple-template-id. 6092 // 6093 // C++98 has the same restriction, just worded differently. 6094 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6095 Diag(D.getIdentifierLoc(), 6096 diag::ext_explicit_instantiation_without_qualified_id) 6097 << Prev << D.getCXXScopeSpec().getRange(); 6098 6099 // Check the scope of this explicit instantiation. 6100 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 6101 6102 // Verify that it is okay to explicitly instantiate here. 6103 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 6104 assert(MSInfo && "Missing static data member specialization info?"); 6105 bool HasNoEffect = false; 6106 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 6107 MSInfo->getTemplateSpecializationKind(), 6108 MSInfo->getPointOfInstantiation(), 6109 HasNoEffect)) 6110 return true; 6111 if (HasNoEffect) 6112 return (Decl*) 0; 6113 6114 // Instantiate static data member. 6115 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6116 if (TSK == TSK_ExplicitInstantiationDefinition) 6117 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev); 6118 6119 // FIXME: Create an ExplicitInstantiation node? 6120 return (Decl*) 0; 6121 } 6122 6123 // If the declarator is a template-id, translate the parser's template 6124 // argument list into our AST format. 6125 bool HasExplicitTemplateArgs = false; 6126 TemplateArgumentListInfo TemplateArgs; 6127 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 6128 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 6129 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 6130 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 6131 ASTTemplateArgsPtr TemplateArgsPtr(*this, 6132 TemplateId->getTemplateArgs(), 6133 TemplateId->NumArgs); 6134 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 6135 HasExplicitTemplateArgs = true; 6136 TemplateArgsPtr.release(); 6137 } 6138 6139 // C++ [temp.explicit]p1: 6140 // A [...] function [...] can be explicitly instantiated from its template. 6141 // A member function [...] of a class template can be explicitly 6142 // instantiated from the member definition associated with its class 6143 // template. 6144 UnresolvedSet<8> Matches; 6145 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6146 P != PEnd; ++P) { 6147 NamedDecl *Prev = *P; 6148 if (!HasExplicitTemplateArgs) { 6149 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 6150 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 6151 Matches.clear(); 6152 6153 Matches.addDecl(Method, P.getAccess()); 6154 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 6155 break; 6156 } 6157 } 6158 } 6159 6160 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 6161 if (!FunTmpl) 6162 continue; 6163 6164 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 6165 FunctionDecl *Specialization = 0; 6166 if (TemplateDeductionResult TDK 6167 = DeduceTemplateArguments(FunTmpl, 6168 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 6169 R, Specialization, Info)) { 6170 // FIXME: Keep track of almost-matches? 6171 (void)TDK; 6172 continue; 6173 } 6174 6175 Matches.addDecl(Specialization, P.getAccess()); 6176 } 6177 6178 // Find the most specialized function template specialization. 6179 UnresolvedSetIterator Result 6180 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0, 6181 D.getIdentifierLoc(), 6182 PDiag(diag::err_explicit_instantiation_not_known) << Name, 6183 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 6184 PDiag(diag::note_explicit_instantiation_candidate)); 6185 6186 if (Result == Matches.end()) 6187 return true; 6188 6189 // Ignore access control bits, we don't need them for redeclaration checking. 6190 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 6191 6192 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 6193 Diag(D.getIdentifierLoc(), 6194 diag::err_explicit_instantiation_member_function_not_instantiated) 6195 << Specialization 6196 << (Specialization->getTemplateSpecializationKind() == 6197 TSK_ExplicitSpecialization); 6198 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 6199 return true; 6200 } 6201 6202 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 6203 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 6204 PrevDecl = Specialization; 6205 6206 if (PrevDecl) { 6207 bool HasNoEffect = false; 6208 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 6209 PrevDecl, 6210 PrevDecl->getTemplateSpecializationKind(), 6211 PrevDecl->getPointOfInstantiation(), 6212 HasNoEffect)) 6213 return true; 6214 6215 // FIXME: We may still want to build some representation of this 6216 // explicit specialization. 6217 if (HasNoEffect) 6218 return (Decl*) 0; 6219 } 6220 6221 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6222 6223 if (TSK == TSK_ExplicitInstantiationDefinition) 6224 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 6225 6226 // C++0x [temp.explicit]p2: 6227 // If the explicit instantiation is for a member function, a member class 6228 // or a static data member of a class template specialization, the name of 6229 // the class template specialization in the qualified-id for the member 6230 // name shall be a simple-template-id. 6231 // 6232 // C++98 has the same restriction, just worded differently. 6233 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 6234 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 6235 D.getCXXScopeSpec().isSet() && 6236 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6237 Diag(D.getIdentifierLoc(), 6238 diag::ext_explicit_instantiation_without_qualified_id) 6239 << Specialization << D.getCXXScopeSpec().getRange(); 6240 6241 CheckExplicitInstantiationScope(*this, 6242 FunTmpl? (NamedDecl *)FunTmpl 6243 : Specialization->getInstantiatedFromMemberFunction(), 6244 D.getIdentifierLoc(), 6245 D.getCXXScopeSpec().isSet()); 6246 6247 // FIXME: Create some kind of ExplicitInstantiationDecl here. 6248 return (Decl*) 0; 6249} 6250 6251TypeResult 6252Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 6253 const CXXScopeSpec &SS, IdentifierInfo *Name, 6254 SourceLocation TagLoc, SourceLocation NameLoc) { 6255 // This has to hold, because SS is expected to be defined. 6256 assert(Name && "Expected a name in a dependent tag"); 6257 6258 NestedNameSpecifier *NNS 6259 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 6260 if (!NNS) 6261 return true; 6262 6263 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 6264 6265 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 6266 Diag(NameLoc, diag::err_dependent_tag_decl) 6267 << (TUK == TUK_Definition) << Kind << SS.getRange(); 6268 return true; 6269 } 6270 6271 // Create the resulting type. 6272 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 6273 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 6274 6275 // Create type-source location information for this type. 6276 TypeLocBuilder TLB; 6277 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 6278 TL.setKeywordLoc(TagLoc); 6279 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6280 TL.setNameLoc(NameLoc); 6281 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 6282} 6283 6284TypeResult 6285Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 6286 const CXXScopeSpec &SS, const IdentifierInfo &II, 6287 SourceLocation IdLoc) { 6288 if (SS.isInvalid()) 6289 return true; 6290 6291 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 6292 !getLangOptions().CPlusPlus0x) 6293 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 6294 << FixItHint::CreateRemoval(TypenameLoc); 6295 6296 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 6297 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, 6298 TypenameLoc, QualifierLoc, II, IdLoc); 6299 if (T.isNull()) 6300 return true; 6301 6302 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 6303 if (isa<DependentNameType>(T)) { 6304 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 6305 TL.setKeywordLoc(TypenameLoc); 6306 TL.setQualifierLoc(QualifierLoc); 6307 TL.setNameLoc(IdLoc); 6308 } else { 6309 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 6310 TL.setKeywordLoc(TypenameLoc); 6311 TL.setQualifierLoc(QualifierLoc); 6312 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc); 6313 } 6314 6315 return CreateParsedType(T, TSI); 6316} 6317 6318TypeResult 6319Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 6320 const CXXScopeSpec &SS, 6321 SourceLocation TemplateLoc, 6322 TemplateTy TemplateIn, 6323 SourceLocation TemplateNameLoc, 6324 SourceLocation LAngleLoc, 6325 ASTTemplateArgsPtr TemplateArgsIn, 6326 SourceLocation RAngleLoc) { 6327 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 6328 !getLangOptions().CPlusPlus0x) 6329 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 6330 << FixItHint::CreateRemoval(TypenameLoc); 6331 6332 // Translate the parser's template argument list in our AST format. 6333 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 6334 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 6335 6336 TemplateName Template = TemplateIn.get(); 6337 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 6338 // Construct a dependent template specialization type. 6339 assert(DTN && "dependent template has non-dependent name?"); 6340 assert(DTN->getQualifier() 6341 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 6342 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, 6343 DTN->getQualifier(), 6344 DTN->getIdentifier(), 6345 TemplateArgs); 6346 6347 // Create source-location information for this type. 6348 TypeLocBuilder Builder; 6349 DependentTemplateSpecializationTypeLoc SpecTL 6350 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 6351 SpecTL.setLAngleLoc(LAngleLoc); 6352 SpecTL.setRAngleLoc(RAngleLoc); 6353 SpecTL.setKeywordLoc(TypenameLoc); 6354 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 6355 SpecTL.setNameLoc(TemplateNameLoc); 6356 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6357 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 6358 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 6359 } 6360 6361 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs); 6362 if (T.isNull()) 6363 return true; 6364 6365 // Provide source-location information for the template specialization 6366 // type. 6367 TypeLocBuilder Builder; 6368 TemplateSpecializationTypeLoc SpecTL 6369 = Builder.push<TemplateSpecializationTypeLoc>(T); 6370 6371 // FIXME: No place to set the location of the 'template' keyword! 6372 SpecTL.setLAngleLoc(LAngleLoc); 6373 SpecTL.setRAngleLoc(RAngleLoc); 6374 SpecTL.setTemplateNameLoc(TemplateNameLoc); 6375 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6376 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 6377 6378 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); 6379 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 6380 TL.setKeywordLoc(TypenameLoc); 6381 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6382 6383 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 6384 return CreateParsedType(T, TSI); 6385} 6386 6387 6388/// \brief Build the type that describes a C++ typename specifier, 6389/// e.g., "typename T::type". 6390QualType 6391Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 6392 SourceLocation KeywordLoc, 6393 NestedNameSpecifierLoc QualifierLoc, 6394 const IdentifierInfo &II, 6395 SourceLocation IILoc) { 6396 CXXScopeSpec SS; 6397 SS.Adopt(QualifierLoc); 6398 6399 DeclContext *Ctx = computeDeclContext(SS); 6400 if (!Ctx) { 6401 // If the nested-name-specifier is dependent and couldn't be 6402 // resolved to a type, build a typename type. 6403 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 6404 return Context.getDependentNameType(Keyword, 6405 QualifierLoc.getNestedNameSpecifier(), 6406 &II); 6407 } 6408 6409 // If the nested-name-specifier refers to the current instantiation, 6410 // the "typename" keyword itself is superfluous. In C++03, the 6411 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 6412 // allows such extraneous "typename" keywords, and we retroactively 6413 // apply this DR to C++03 code with only a warning. In any case we continue. 6414 6415 if (RequireCompleteDeclContext(SS, Ctx)) 6416 return QualType(); 6417 6418 DeclarationName Name(&II); 6419 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 6420 LookupQualifiedName(Result, Ctx); 6421 unsigned DiagID = 0; 6422 Decl *Referenced = 0; 6423 switch (Result.getResultKind()) { 6424 case LookupResult::NotFound: 6425 DiagID = diag::err_typename_nested_not_found; 6426 break; 6427 6428 case LookupResult::FoundUnresolvedValue: { 6429 // We found a using declaration that is a value. Most likely, the using 6430 // declaration itself is meant to have the 'typename' keyword. 6431 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 6432 IILoc); 6433 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 6434 << Name << Ctx << FullRange; 6435 if (UnresolvedUsingValueDecl *Using 6436 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 6437 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 6438 Diag(Loc, diag::note_using_value_decl_missing_typename) 6439 << FixItHint::CreateInsertion(Loc, "typename "); 6440 } 6441 } 6442 // Fall through to create a dependent typename type, from which we can recover 6443 // better. 6444 6445 case LookupResult::NotFoundInCurrentInstantiation: 6446 // Okay, it's a member of an unknown instantiation. 6447 return Context.getDependentNameType(Keyword, 6448 QualifierLoc.getNestedNameSpecifier(), 6449 &II); 6450 6451 case LookupResult::Found: 6452 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 6453 // We found a type. Build an ElaboratedType, since the 6454 // typename-specifier was just sugar. 6455 return Context.getElaboratedType(ETK_Typename, 6456 QualifierLoc.getNestedNameSpecifier(), 6457 Context.getTypeDeclType(Type)); 6458 } 6459 6460 DiagID = diag::err_typename_nested_not_type; 6461 Referenced = Result.getFoundDecl(); 6462 break; 6463 6464 6465 llvm_unreachable("unresolved using decl in non-dependent context"); 6466 return QualType(); 6467 6468 case LookupResult::FoundOverloaded: 6469 DiagID = diag::err_typename_nested_not_type; 6470 Referenced = *Result.begin(); 6471 break; 6472 6473 case LookupResult::Ambiguous: 6474 return QualType(); 6475 } 6476 6477 // If we get here, it's because name lookup did not find a 6478 // type. Emit an appropriate diagnostic and return an error. 6479 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 6480 IILoc); 6481 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 6482 if (Referenced) 6483 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 6484 << Name; 6485 return QualType(); 6486} 6487 6488namespace { 6489 // See Sema::RebuildTypeInCurrentInstantiation 6490 class CurrentInstantiationRebuilder 6491 : public TreeTransform<CurrentInstantiationRebuilder> { 6492 SourceLocation Loc; 6493 DeclarationName Entity; 6494 6495 public: 6496 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 6497 6498 CurrentInstantiationRebuilder(Sema &SemaRef, 6499 SourceLocation Loc, 6500 DeclarationName Entity) 6501 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 6502 Loc(Loc), Entity(Entity) { } 6503 6504 /// \brief Determine whether the given type \p T has already been 6505 /// transformed. 6506 /// 6507 /// For the purposes of type reconstruction, a type has already been 6508 /// transformed if it is NULL or if it is not dependent. 6509 bool AlreadyTransformed(QualType T) { 6510 return T.isNull() || !T->isDependentType(); 6511 } 6512 6513 /// \brief Returns the location of the entity whose type is being 6514 /// rebuilt. 6515 SourceLocation getBaseLocation() { return Loc; } 6516 6517 /// \brief Returns the name of the entity whose type is being rebuilt. 6518 DeclarationName getBaseEntity() { return Entity; } 6519 6520 /// \brief Sets the "base" location and entity when that 6521 /// information is known based on another transformation. 6522 void setBase(SourceLocation Loc, DeclarationName Entity) { 6523 this->Loc = Loc; 6524 this->Entity = Entity; 6525 } 6526 }; 6527} 6528 6529/// \brief Rebuilds a type within the context of the current instantiation. 6530/// 6531/// The type \p T is part of the type of an out-of-line member definition of 6532/// a class template (or class template partial specialization) that was parsed 6533/// and constructed before we entered the scope of the class template (or 6534/// partial specialization thereof). This routine will rebuild that type now 6535/// that we have entered the declarator's scope, which may produce different 6536/// canonical types, e.g., 6537/// 6538/// \code 6539/// template<typename T> 6540/// struct X { 6541/// typedef T* pointer; 6542/// pointer data(); 6543/// }; 6544/// 6545/// template<typename T> 6546/// typename X<T>::pointer X<T>::data() { ... } 6547/// \endcode 6548/// 6549/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 6550/// since we do not know that we can look into X<T> when we parsed the type. 6551/// This function will rebuild the type, performing the lookup of "pointer" 6552/// in X<T> and returning an ElaboratedType whose canonical type is the same 6553/// as the canonical type of T*, allowing the return types of the out-of-line 6554/// definition and the declaration to match. 6555TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 6556 SourceLocation Loc, 6557 DeclarationName Name) { 6558 if (!T || !T->getType()->isDependentType()) 6559 return T; 6560 6561 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 6562 return Rebuilder.TransformType(T); 6563} 6564 6565ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 6566 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 6567 DeclarationName()); 6568 return Rebuilder.TransformExpr(E); 6569} 6570 6571bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 6572 if (SS.isInvalid()) 6573 return true; 6574 6575 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 6576 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 6577 DeclarationName()); 6578 NestedNameSpecifierLoc Rebuilt 6579 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 6580 if (!Rebuilt) 6581 return true; 6582 6583 SS.Adopt(Rebuilt); 6584 return false; 6585} 6586 6587/// \brief Produces a formatted string that describes the binding of 6588/// template parameters to template arguments. 6589std::string 6590Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6591 const TemplateArgumentList &Args) { 6592 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 6593} 6594 6595std::string 6596Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6597 const TemplateArgument *Args, 6598 unsigned NumArgs) { 6599 llvm::SmallString<128> Str; 6600 llvm::raw_svector_ostream Out(Str); 6601 6602 if (!Params || Params->size() == 0 || NumArgs == 0) 6603 return std::string(); 6604 6605 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 6606 if (I >= NumArgs) 6607 break; 6608 6609 if (I == 0) 6610 Out << "[with "; 6611 else 6612 Out << ", "; 6613 6614 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 6615 Out << Id->getName(); 6616 } else { 6617 Out << '$' << I; 6618 } 6619 6620 Out << " = "; 6621 Args[I].print(Context.PrintingPolicy, Out); 6622 } 6623 6624 Out << ']'; 6625 return Out.str(); 6626} 6627 6628void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) { 6629 if (!FD) 6630 return; 6631 FD->setLateTemplateParsed(Flag); 6632} 6633 6634bool Sema::IsInsideALocalClassWithinATemplateFunction() { 6635 DeclContext *DC = CurContext; 6636 6637 while (DC) { 6638 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 6639 const FunctionDecl *FD = RD->isLocalClass(); 6640 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 6641 } else if (DC->isTranslationUnit() || DC->isNamespace()) 6642 return false; 6643 6644 DC = DC->getParent(); 6645 } 6646 return false; 6647} 6648