SemaTemplate.cpp revision cc0b1bc979b650a8a8b34b2032a074fd7724a90d
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "Sema.h"
13#include "Lookup.h"
14#include "TreeTransform.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/DeclFriend.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Parse/Template.h"
22#include "clang/Basic/LangOptions.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "llvm/ADT/StringExtras.h"
25using namespace clang;
26
27/// \brief Determine whether the declaration found is acceptable as the name
28/// of a template and, if so, return that template declaration. Otherwise,
29/// returns NULL.
30static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
31                                           NamedDecl *Orig) {
32  NamedDecl *D = Orig->getUnderlyingDecl();
33
34  if (isa<TemplateDecl>(D))
35    return Orig;
36
37  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
38    // C++ [temp.local]p1:
39    //   Like normal (non-template) classes, class templates have an
40    //   injected-class-name (Clause 9). The injected-class-name
41    //   can be used with or without a template-argument-list. When
42    //   it is used without a template-argument-list, it is
43    //   equivalent to the injected-class-name followed by the
44    //   template-parameters of the class template enclosed in
45    //   <>. When it is used with a template-argument-list, it
46    //   refers to the specified class template specialization,
47    //   which could be the current specialization or another
48    //   specialization.
49    if (Record->isInjectedClassName()) {
50      Record = cast<CXXRecordDecl>(Record->getDeclContext());
51      if (Record->getDescribedClassTemplate())
52        return Record->getDescribedClassTemplate();
53
54      if (ClassTemplateSpecializationDecl *Spec
55            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
56        return Spec->getSpecializedTemplate();
57    }
58
59    return 0;
60  }
61
62  return 0;
63}
64
65static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
66  // The set of class templates we've already seen.
67  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
68  LookupResult::Filter filter = R.makeFilter();
69  while (filter.hasNext()) {
70    NamedDecl *Orig = filter.next();
71    NamedDecl *Repl = isAcceptableTemplateName(C, Orig);
72    if (!Repl)
73      filter.erase();
74    else if (Repl != Orig) {
75
76      // C++ [temp.local]p3:
77      //   A lookup that finds an injected-class-name (10.2) can result in an
78      //   ambiguity in certain cases (for example, if it is found in more than
79      //   one base class). If all of the injected-class-names that are found
80      //   refer to specializations of the same class template, and if the name
81      //   is followed by a template-argument-list, the reference refers to the
82      //   class template itself and not a specialization thereof, and is not
83      //   ambiguous.
84      //
85      // FIXME: Will we eventually have to do the same for alias templates?
86      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
87        if (!ClassTemplates.insert(ClassTmpl)) {
88          filter.erase();
89          continue;
90        }
91
92      filter.replace(Repl);
93    }
94  }
95  filter.done();
96}
97
98TemplateNameKind Sema::isTemplateName(Scope *S,
99                                      CXXScopeSpec &SS,
100                                      UnqualifiedId &Name,
101                                      TypeTy *ObjectTypePtr,
102                                      bool EnteringContext,
103                                      TemplateTy &TemplateResult,
104                                      bool &MemberOfUnknownSpecialization) {
105  assert(getLangOptions().CPlusPlus && "No template names in C!");
106
107  DeclarationName TName;
108  MemberOfUnknownSpecialization = false;
109
110  switch (Name.getKind()) {
111  case UnqualifiedId::IK_Identifier:
112    TName = DeclarationName(Name.Identifier);
113    break;
114
115  case UnqualifiedId::IK_OperatorFunctionId:
116    TName = Context.DeclarationNames.getCXXOperatorName(
117                                              Name.OperatorFunctionId.Operator);
118    break;
119
120  case UnqualifiedId::IK_LiteralOperatorId:
121    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
122    break;
123
124  default:
125    return TNK_Non_template;
126  }
127
128  QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
129
130  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
131                 LookupOrdinaryName);
132  R.suppressDiagnostics();
133  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
134                     MemberOfUnknownSpecialization);
135  if (R.empty() || R.isAmbiguous())
136    return TNK_Non_template;
137
138  TemplateName Template;
139  TemplateNameKind TemplateKind;
140
141  unsigned ResultCount = R.end() - R.begin();
142  if (ResultCount > 1) {
143    // We assume that we'll preserve the qualifier from a function
144    // template name in other ways.
145    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
146    TemplateKind = TNK_Function_template;
147  } else {
148    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
149
150    if (SS.isSet() && !SS.isInvalid()) {
151      NestedNameSpecifier *Qualifier
152        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
153      Template = Context.getQualifiedTemplateName(Qualifier, false, TD);
154    } else {
155      Template = TemplateName(TD);
156    }
157
158    if (isa<FunctionTemplateDecl>(TD))
159      TemplateKind = TNK_Function_template;
160    else {
161      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
162      TemplateKind = TNK_Type_template;
163    }
164  }
165
166  TemplateResult = TemplateTy::make(Template);
167  return TemplateKind;
168}
169
170bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
171                                       SourceLocation IILoc,
172                                       Scope *S,
173                                       const CXXScopeSpec *SS,
174                                       TemplateTy &SuggestedTemplate,
175                                       TemplateNameKind &SuggestedKind) {
176  // We can't recover unless there's a dependent scope specifier preceding the
177  // template name.
178  // FIXME: Typo correction?
179  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
180      computeDeclContext(*SS))
181    return false;
182
183  // The code is missing a 'template' keyword prior to the dependent template
184  // name.
185  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
186  Diag(IILoc, diag::err_template_kw_missing)
187    << Qualifier << II.getName()
188    << FixItHint::CreateInsertion(IILoc, "template ");
189  SuggestedTemplate
190    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
191  SuggestedKind = TNK_Dependent_template_name;
192  return true;
193}
194
195void Sema::LookupTemplateName(LookupResult &Found,
196                              Scope *S, CXXScopeSpec &SS,
197                              QualType ObjectType,
198                              bool EnteringContext,
199                              bool &MemberOfUnknownSpecialization) {
200  // Determine where to perform name lookup
201  MemberOfUnknownSpecialization = false;
202  DeclContext *LookupCtx = 0;
203  bool isDependent = false;
204  if (!ObjectType.isNull()) {
205    // This nested-name-specifier occurs in a member access expression, e.g.,
206    // x->B::f, and we are looking into the type of the object.
207    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
208    LookupCtx = computeDeclContext(ObjectType);
209    isDependent = ObjectType->isDependentType();
210    assert((isDependent || !ObjectType->isIncompleteType()) &&
211           "Caller should have completed object type");
212  } else if (SS.isSet()) {
213    // This nested-name-specifier occurs after another nested-name-specifier,
214    // so long into the context associated with the prior nested-name-specifier.
215    LookupCtx = computeDeclContext(SS, EnteringContext);
216    isDependent = isDependentScopeSpecifier(SS);
217
218    // The declaration context must be complete.
219    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
220      return;
221  }
222
223  bool ObjectTypeSearchedInScope = false;
224  if (LookupCtx) {
225    // Perform "qualified" name lookup into the declaration context we
226    // computed, which is either the type of the base of a member access
227    // expression or the declaration context associated with a prior
228    // nested-name-specifier.
229    LookupQualifiedName(Found, LookupCtx);
230
231    if (!ObjectType.isNull() && Found.empty()) {
232      // C++ [basic.lookup.classref]p1:
233      //   In a class member access expression (5.2.5), if the . or -> token is
234      //   immediately followed by an identifier followed by a <, the
235      //   identifier must be looked up to determine whether the < is the
236      //   beginning of a template argument list (14.2) or a less-than operator.
237      //   The identifier is first looked up in the class of the object
238      //   expression. If the identifier is not found, it is then looked up in
239      //   the context of the entire postfix-expression and shall name a class
240      //   or function template.
241      if (S) LookupName(Found, S);
242      ObjectTypeSearchedInScope = true;
243    }
244  } else if (isDependent && (!S || ObjectType.isNull())) {
245    // We cannot look into a dependent object type or nested nme
246    // specifier.
247    MemberOfUnknownSpecialization = true;
248    return;
249  } else {
250    // Perform unqualified name lookup in the current scope.
251    LookupName(Found, S);
252  }
253
254  if (Found.empty() && !isDependent) {
255    // If we did not find any names, attempt to correct any typos.
256    DeclarationName Name = Found.getLookupName();
257    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
258                                                false, CTC_CXXCasts)) {
259      FilterAcceptableTemplateNames(Context, Found);
260      if (!Found.empty()) {
261        if (LookupCtx)
262          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
263            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
264            << FixItHint::CreateReplacement(Found.getNameLoc(),
265                                          Found.getLookupName().getAsString());
266        else
267          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
268            << Name << Found.getLookupName()
269            << FixItHint::CreateReplacement(Found.getNameLoc(),
270                                          Found.getLookupName().getAsString());
271        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
272          Diag(Template->getLocation(), diag::note_previous_decl)
273            << Template->getDeclName();
274      }
275    } else {
276      Found.clear();
277      Found.setLookupName(Name);
278    }
279  }
280
281  FilterAcceptableTemplateNames(Context, Found);
282  if (Found.empty()) {
283    if (isDependent)
284      MemberOfUnknownSpecialization = true;
285    return;
286  }
287
288  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
289    // C++ [basic.lookup.classref]p1:
290    //   [...] If the lookup in the class of the object expression finds a
291    //   template, the name is also looked up in the context of the entire
292    //   postfix-expression and [...]
293    //
294    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
295                            LookupOrdinaryName);
296    LookupName(FoundOuter, S);
297    FilterAcceptableTemplateNames(Context, FoundOuter);
298
299    if (FoundOuter.empty()) {
300      //   - if the name is not found, the name found in the class of the
301      //     object expression is used, otherwise
302    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
303      //   - if the name is found in the context of the entire
304      //     postfix-expression and does not name a class template, the name
305      //     found in the class of the object expression is used, otherwise
306    } else if (!Found.isSuppressingDiagnostics()) {
307      //   - if the name found is a class template, it must refer to the same
308      //     entity as the one found in the class of the object expression,
309      //     otherwise the program is ill-formed.
310      if (!Found.isSingleResult() ||
311          Found.getFoundDecl()->getCanonicalDecl()
312            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
313        Diag(Found.getNameLoc(),
314             diag::ext_nested_name_member_ref_lookup_ambiguous)
315          << Found.getLookupName()
316          << ObjectType;
317        Diag(Found.getRepresentativeDecl()->getLocation(),
318             diag::note_ambig_member_ref_object_type)
319          << ObjectType;
320        Diag(FoundOuter.getFoundDecl()->getLocation(),
321             diag::note_ambig_member_ref_scope);
322
323        // Recover by taking the template that we found in the object
324        // expression's type.
325      }
326    }
327  }
328}
329
330/// ActOnDependentIdExpression - Handle a dependent id-expression that
331/// was just parsed.  This is only possible with an explicit scope
332/// specifier naming a dependent type.
333Sema::OwningExprResult
334Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
335                                 DeclarationName Name,
336                                 SourceLocation NameLoc,
337                                 bool isAddressOfOperand,
338                           const TemplateArgumentListInfo *TemplateArgs) {
339  NestedNameSpecifier *Qualifier
340    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
341
342  DeclContext *DC = getFunctionLevelDeclContext();
343
344  if (!isAddressOfOperand &&
345      isa<CXXMethodDecl>(DC) &&
346      cast<CXXMethodDecl>(DC)->isInstance()) {
347    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
348
349    // Since the 'this' expression is synthesized, we don't need to
350    // perform the double-lookup check.
351    NamedDecl *FirstQualifierInScope = 0;
352
353    return Owned(CXXDependentScopeMemberExpr::Create(Context,
354                                                     /*This*/ 0, ThisType,
355                                                     /*IsArrow*/ true,
356                                                     /*Op*/ SourceLocation(),
357                                                     Qualifier, SS.getRange(),
358                                                     FirstQualifierInScope,
359                                                     Name, NameLoc,
360                                                     TemplateArgs));
361  }
362
363  return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs);
364}
365
366Sema::OwningExprResult
367Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
368                                DeclarationName Name,
369                                SourceLocation NameLoc,
370                                const TemplateArgumentListInfo *TemplateArgs) {
371  return Owned(DependentScopeDeclRefExpr::Create(Context,
372               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
373                                                 SS.getRange(),
374                                                 Name, NameLoc,
375                                                 TemplateArgs));
376}
377
378/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
379/// that the template parameter 'PrevDecl' is being shadowed by a new
380/// declaration at location Loc. Returns true to indicate that this is
381/// an error, and false otherwise.
382bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
383  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
384
385  // Microsoft Visual C++ permits template parameters to be shadowed.
386  if (getLangOptions().Microsoft)
387    return false;
388
389  // C++ [temp.local]p4:
390  //   A template-parameter shall not be redeclared within its
391  //   scope (including nested scopes).
392  Diag(Loc, diag::err_template_param_shadow)
393    << cast<NamedDecl>(PrevDecl)->getDeclName();
394  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
395  return true;
396}
397
398/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
399/// the parameter D to reference the templated declaration and return a pointer
400/// to the template declaration. Otherwise, do nothing to D and return null.
401TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
402  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) {
403    D = DeclPtrTy::make(Temp->getTemplatedDecl());
404    return Temp;
405  }
406  return 0;
407}
408
409static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
410                                            const ParsedTemplateArgument &Arg) {
411
412  switch (Arg.getKind()) {
413  case ParsedTemplateArgument::Type: {
414    TypeSourceInfo *DI;
415    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
416    if (!DI)
417      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
418    return TemplateArgumentLoc(TemplateArgument(T), DI);
419  }
420
421  case ParsedTemplateArgument::NonType: {
422    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
423    return TemplateArgumentLoc(TemplateArgument(E), E);
424  }
425
426  case ParsedTemplateArgument::Template: {
427    TemplateName Template
428      = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get());
429    return TemplateArgumentLoc(TemplateArgument(Template),
430                               Arg.getScopeSpec().getRange(),
431                               Arg.getLocation());
432  }
433  }
434
435  llvm_unreachable("Unhandled parsed template argument");
436  return TemplateArgumentLoc();
437}
438
439/// \brief Translates template arguments as provided by the parser
440/// into template arguments used by semantic analysis.
441void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
442                                      TemplateArgumentListInfo &TemplateArgs) {
443 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
444   TemplateArgs.addArgument(translateTemplateArgument(*this,
445                                                      TemplateArgsIn[I]));
446}
447
448/// ActOnTypeParameter - Called when a C++ template type parameter
449/// (e.g., "typename T") has been parsed. Typename specifies whether
450/// the keyword "typename" was used to declare the type parameter
451/// (otherwise, "class" was used), and KeyLoc is the location of the
452/// "class" or "typename" keyword. ParamName is the name of the
453/// parameter (NULL indicates an unnamed template parameter) and
454/// ParamName is the location of the parameter name (if any).
455/// If the type parameter has a default argument, it will be added
456/// later via ActOnTypeParameterDefault.
457Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
458                                         SourceLocation EllipsisLoc,
459                                         SourceLocation KeyLoc,
460                                         IdentifierInfo *ParamName,
461                                         SourceLocation ParamNameLoc,
462                                         unsigned Depth, unsigned Position,
463                                         SourceLocation EqualLoc,
464                                         TypeTy *DefaultArg) {
465  assert(S->isTemplateParamScope() &&
466         "Template type parameter not in template parameter scope!");
467  bool Invalid = false;
468
469  if (ParamName) {
470    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
471                                           LookupOrdinaryName,
472                                           ForRedeclaration);
473    if (PrevDecl && PrevDecl->isTemplateParameter())
474      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
475                                                           PrevDecl);
476  }
477
478  SourceLocation Loc = ParamNameLoc;
479  if (!ParamName)
480    Loc = KeyLoc;
481
482  TemplateTypeParmDecl *Param
483    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
484                                   Loc, Depth, Position, ParamName, Typename,
485                                   Ellipsis);
486  if (Invalid)
487    Param->setInvalidDecl();
488
489  if (ParamName) {
490    // Add the template parameter into the current scope.
491    S->AddDecl(DeclPtrTy::make(Param));
492    IdResolver.AddDecl(Param);
493  }
494
495  // Handle the default argument, if provided.
496  if (DefaultArg) {
497    TypeSourceInfo *DefaultTInfo;
498    GetTypeFromParser(DefaultArg, &DefaultTInfo);
499
500    assert(DefaultTInfo && "expected source information for type");
501
502    // C++0x [temp.param]p9:
503    // A default template-argument may be specified for any kind of
504    // template-parameter that is not a template parameter pack.
505    if (Ellipsis) {
506      Diag(EqualLoc, diag::err_template_param_pack_default_arg);
507      return DeclPtrTy::make(Param);
508    }
509
510    // Check the template argument itself.
511    if (CheckTemplateArgument(Param, DefaultTInfo)) {
512      Param->setInvalidDecl();
513      return DeclPtrTy::make(Param);;
514    }
515
516    Param->setDefaultArgument(DefaultTInfo, false);
517  }
518
519  return DeclPtrTy::make(Param);
520}
521
522/// \brief Check that the type of a non-type template parameter is
523/// well-formed.
524///
525/// \returns the (possibly-promoted) parameter type if valid;
526/// otherwise, produces a diagnostic and returns a NULL type.
527QualType
528Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
529  // We don't allow variably-modified types as the type of non-type template
530  // parameters.
531  if (T->isVariablyModifiedType()) {
532    Diag(Loc, diag::err_variably_modified_nontype_template_param)
533      << T;
534    return QualType();
535  }
536
537  // C++ [temp.param]p4:
538  //
539  // A non-type template-parameter shall have one of the following
540  // (optionally cv-qualified) types:
541  //
542  //       -- integral or enumeration type,
543  if (T->isIntegralOrEnumerationType() ||
544      //   -- pointer to object or pointer to function,
545      (T->isPointerType() &&
546       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
547        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
548      //   -- reference to object or reference to function,
549      T->isReferenceType() ||
550      //   -- pointer to member.
551      T->isMemberPointerType() ||
552      // If T is a dependent type, we can't do the check now, so we
553      // assume that it is well-formed.
554      T->isDependentType())
555    return T;
556  // C++ [temp.param]p8:
557  //
558  //   A non-type template-parameter of type "array of T" or
559  //   "function returning T" is adjusted to be of type "pointer to
560  //   T" or "pointer to function returning T", respectively.
561  else if (T->isArrayType())
562    // FIXME: Keep the type prior to promotion?
563    return Context.getArrayDecayedType(T);
564  else if (T->isFunctionType())
565    // FIXME: Keep the type prior to promotion?
566    return Context.getPointerType(T);
567
568  Diag(Loc, diag::err_template_nontype_parm_bad_type)
569    << T;
570
571  return QualType();
572}
573
574Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
575                                                    unsigned Depth,
576                                                    unsigned Position,
577                                                    SourceLocation EqualLoc,
578                                                    ExprArg DefaultArg) {
579  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
580  QualType T = TInfo->getType();
581
582  assert(S->isTemplateParamScope() &&
583         "Non-type template parameter not in template parameter scope!");
584  bool Invalid = false;
585
586  IdentifierInfo *ParamName = D.getIdentifier();
587  if (ParamName) {
588    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
589                                           LookupOrdinaryName,
590                                           ForRedeclaration);
591    if (PrevDecl && PrevDecl->isTemplateParameter())
592      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
593                                                           PrevDecl);
594  }
595
596  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
597  if (T.isNull()) {
598    T = Context.IntTy; // Recover with an 'int' type.
599    Invalid = true;
600  }
601
602  NonTypeTemplateParmDecl *Param
603    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
604                                      D.getIdentifierLoc(),
605                                      Depth, Position, ParamName, T, TInfo);
606  if (Invalid)
607    Param->setInvalidDecl();
608
609  if (D.getIdentifier()) {
610    // Add the template parameter into the current scope.
611    S->AddDecl(DeclPtrTy::make(Param));
612    IdResolver.AddDecl(Param);
613  }
614
615  // Check the well-formedness of the default template argument, if provided.
616  if (Expr *Default = static_cast<Expr *>(DefaultArg.get())) {
617    TemplateArgument Converted;
618    if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) {
619      Param->setInvalidDecl();
620      return DeclPtrTy::make(Param);;
621    }
622
623    Param->setDefaultArgument(DefaultArg.takeAs<Expr>(), false);
624  }
625
626  return DeclPtrTy::make(Param);
627}
628
629/// ActOnTemplateTemplateParameter - Called when a C++ template template
630/// parameter (e.g. T in template <template <typename> class T> class array)
631/// has been parsed. S is the current scope.
632Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
633                                                     SourceLocation TmpLoc,
634                                                     TemplateParamsTy *Params,
635                                                     IdentifierInfo *Name,
636                                                     SourceLocation NameLoc,
637                                                     unsigned Depth,
638                                                     unsigned Position,
639                                                     SourceLocation EqualLoc,
640                                       const ParsedTemplateArgument &Default) {
641  assert(S->isTemplateParamScope() &&
642         "Template template parameter not in template parameter scope!");
643
644  // Construct the parameter object.
645  TemplateTemplateParmDecl *Param =
646    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
647                                     TmpLoc, Depth, Position, Name,
648                                     (TemplateParameterList*)Params);
649
650  // If the template template parameter has a name, then link the identifier
651  // into the scope and lookup mechanisms.
652  if (Name) {
653    S->AddDecl(DeclPtrTy::make(Param));
654    IdResolver.AddDecl(Param);
655  }
656
657  if (!Default.isInvalid()) {
658    // Check only that we have a template template argument. We don't want to
659    // try to check well-formedness now, because our template template parameter
660    // might have dependent types in its template parameters, which we wouldn't
661    // be able to match now.
662    //
663    // If none of the template template parameter's template arguments mention
664    // other template parameters, we could actually perform more checking here.
665    // However, it isn't worth doing.
666    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
667    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
668      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
669        << DefaultArg.getSourceRange();
670      return DeclPtrTy::make(Param);
671    }
672
673    Param->setDefaultArgument(DefaultArg, false);
674  }
675
676  return DeclPtrTy::make(Param);
677}
678
679/// ActOnTemplateParameterList - Builds a TemplateParameterList that
680/// contains the template parameters in Params/NumParams.
681Sema::TemplateParamsTy *
682Sema::ActOnTemplateParameterList(unsigned Depth,
683                                 SourceLocation ExportLoc,
684                                 SourceLocation TemplateLoc,
685                                 SourceLocation LAngleLoc,
686                                 DeclPtrTy *Params, unsigned NumParams,
687                                 SourceLocation RAngleLoc) {
688  if (ExportLoc.isValid())
689    Diag(ExportLoc, diag::warn_template_export_unsupported);
690
691  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
692                                       (NamedDecl**)Params, NumParams,
693                                       RAngleLoc);
694}
695
696static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
697  if (SS.isSet())
698    T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
699                        SS.getRange());
700}
701
702Sema::DeclResult
703Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
704                         SourceLocation KWLoc, CXXScopeSpec &SS,
705                         IdentifierInfo *Name, SourceLocation NameLoc,
706                         AttributeList *Attr,
707                         TemplateParameterList *TemplateParams,
708                         AccessSpecifier AS) {
709  assert(TemplateParams && TemplateParams->size() > 0 &&
710         "No template parameters");
711  assert(TUK != TUK_Reference && "Can only declare or define class templates");
712  bool Invalid = false;
713
714  // Check that we can declare a template here.
715  if (CheckTemplateDeclScope(S, TemplateParams))
716    return true;
717
718  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
719  assert(Kind != TTK_Enum && "can't build template of enumerated type");
720
721  // There is no such thing as an unnamed class template.
722  if (!Name) {
723    Diag(KWLoc, diag::err_template_unnamed_class);
724    return true;
725  }
726
727  // Find any previous declaration with this name.
728  DeclContext *SemanticContext;
729  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
730                        ForRedeclaration);
731  if (SS.isNotEmpty() && !SS.isInvalid()) {
732    SemanticContext = computeDeclContext(SS, true);
733    if (!SemanticContext) {
734      // FIXME: Produce a reasonable diagnostic here
735      return true;
736    }
737
738    if (RequireCompleteDeclContext(SS, SemanticContext))
739      return true;
740
741    LookupQualifiedName(Previous, SemanticContext);
742  } else {
743    SemanticContext = CurContext;
744    LookupName(Previous, S);
745  }
746
747  if (Previous.isAmbiguous())
748    return true;
749
750  NamedDecl *PrevDecl = 0;
751  if (Previous.begin() != Previous.end())
752    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
753
754  // If there is a previous declaration with the same name, check
755  // whether this is a valid redeclaration.
756  ClassTemplateDecl *PrevClassTemplate
757    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
758
759  // We may have found the injected-class-name of a class template,
760  // class template partial specialization, or class template specialization.
761  // In these cases, grab the template that is being defined or specialized.
762  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
763      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
764    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
765    PrevClassTemplate
766      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
767    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
768      PrevClassTemplate
769        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
770            ->getSpecializedTemplate();
771    }
772  }
773
774  if (TUK == TUK_Friend) {
775    // C++ [namespace.memdef]p3:
776    //   [...] When looking for a prior declaration of a class or a function
777    //   declared as a friend, and when the name of the friend class or
778    //   function is neither a qualified name nor a template-id, scopes outside
779    //   the innermost enclosing namespace scope are not considered.
780    if (!SS.isSet()) {
781      DeclContext *OutermostContext = CurContext;
782      while (!OutermostContext->isFileContext())
783        OutermostContext = OutermostContext->getLookupParent();
784
785      if (PrevDecl &&
786          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
787           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
788        SemanticContext = PrevDecl->getDeclContext();
789      } else {
790        // Declarations in outer scopes don't matter. However, the outermost
791        // context we computed is the semantic context for our new
792        // declaration.
793        PrevDecl = PrevClassTemplate = 0;
794        SemanticContext = OutermostContext;
795      }
796    }
797
798    if (CurContext->isDependentContext()) {
799      // If this is a dependent context, we don't want to link the friend
800      // class template to the template in scope, because that would perform
801      // checking of the template parameter lists that can't be performed
802      // until the outer context is instantiated.
803      PrevDecl = PrevClassTemplate = 0;
804    }
805  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
806    PrevDecl = PrevClassTemplate = 0;
807
808  if (PrevClassTemplate) {
809    // Ensure that the template parameter lists are compatible.
810    if (!TemplateParameterListsAreEqual(TemplateParams,
811                                   PrevClassTemplate->getTemplateParameters(),
812                                        /*Complain=*/true,
813                                        TPL_TemplateMatch))
814      return true;
815
816    // C++ [temp.class]p4:
817    //   In a redeclaration, partial specialization, explicit
818    //   specialization or explicit instantiation of a class template,
819    //   the class-key shall agree in kind with the original class
820    //   template declaration (7.1.5.3).
821    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
822    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
823      Diag(KWLoc, diag::err_use_with_wrong_tag)
824        << Name
825        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
826      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
827      Kind = PrevRecordDecl->getTagKind();
828    }
829
830    // Check for redefinition of this class template.
831    if (TUK == TUK_Definition) {
832      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
833        Diag(NameLoc, diag::err_redefinition) << Name;
834        Diag(Def->getLocation(), diag::note_previous_definition);
835        // FIXME: Would it make sense to try to "forget" the previous
836        // definition, as part of error recovery?
837        return true;
838      }
839    }
840  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
841    // Maybe we will complain about the shadowed template parameter.
842    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
843    // Just pretend that we didn't see the previous declaration.
844    PrevDecl = 0;
845  } else if (PrevDecl) {
846    // C++ [temp]p5:
847    //   A class template shall not have the same name as any other
848    //   template, class, function, object, enumeration, enumerator,
849    //   namespace, or type in the same scope (3.3), except as specified
850    //   in (14.5.4).
851    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
852    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
853    return true;
854  }
855
856  // Check the template parameter list of this declaration, possibly
857  // merging in the template parameter list from the previous class
858  // template declaration.
859  if (CheckTemplateParameterList(TemplateParams,
860            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
861                                 TPC_ClassTemplate))
862    Invalid = true;
863
864  if (SS.isSet()) {
865    // If the name of the template was qualified, we must be defining the
866    // template out-of-line.
867    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
868        !(TUK == TUK_Friend && CurContext->isDependentContext()))
869      Diag(NameLoc, diag::err_member_def_does_not_match)
870        << Name << SemanticContext << SS.getRange();
871  }
872
873  CXXRecordDecl *NewClass =
874    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
875                          PrevClassTemplate?
876                            PrevClassTemplate->getTemplatedDecl() : 0,
877                          /*DelayTypeCreation=*/true);
878  SetNestedNameSpecifier(NewClass, SS);
879
880  ClassTemplateDecl *NewTemplate
881    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
882                                DeclarationName(Name), TemplateParams,
883                                NewClass, PrevClassTemplate);
884  NewClass->setDescribedClassTemplate(NewTemplate);
885
886  // Build the type for the class template declaration now.
887  QualType T = NewTemplate->getInjectedClassNameSpecialization();
888  T = Context.getInjectedClassNameType(NewClass, T);
889  assert(T->isDependentType() && "Class template type is not dependent?");
890  (void)T;
891
892  // If we are providing an explicit specialization of a member that is a
893  // class template, make a note of that.
894  if (PrevClassTemplate &&
895      PrevClassTemplate->getInstantiatedFromMemberTemplate())
896    PrevClassTemplate->setMemberSpecialization();
897
898  // Set the access specifier.
899  if (!Invalid && TUK != TUK_Friend)
900    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
901
902  // Set the lexical context of these templates
903  NewClass->setLexicalDeclContext(CurContext);
904  NewTemplate->setLexicalDeclContext(CurContext);
905
906  if (TUK == TUK_Definition)
907    NewClass->startDefinition();
908
909  if (Attr)
910    ProcessDeclAttributeList(S, NewClass, Attr);
911
912  if (TUK != TUK_Friend)
913    PushOnScopeChains(NewTemplate, S);
914  else {
915    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
916      NewTemplate->setAccess(PrevClassTemplate->getAccess());
917      NewClass->setAccess(PrevClassTemplate->getAccess());
918    }
919
920    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
921                                       PrevClassTemplate != NULL);
922
923    // Friend templates are visible in fairly strange ways.
924    if (!CurContext->isDependentContext()) {
925      DeclContext *DC = SemanticContext->getLookupContext();
926      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
927      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
928        PushOnScopeChains(NewTemplate, EnclosingScope,
929                          /* AddToContext = */ false);
930    }
931
932    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
933                                            NewClass->getLocation(),
934                                            NewTemplate,
935                                    /*FIXME:*/NewClass->getLocation());
936    Friend->setAccess(AS_public);
937    CurContext->addDecl(Friend);
938  }
939
940  if (Invalid) {
941    NewTemplate->setInvalidDecl();
942    NewClass->setInvalidDecl();
943  }
944  return DeclPtrTy::make(NewTemplate);
945}
946
947/// \brief Diagnose the presence of a default template argument on a
948/// template parameter, which is ill-formed in certain contexts.
949///
950/// \returns true if the default template argument should be dropped.
951static bool DiagnoseDefaultTemplateArgument(Sema &S,
952                                            Sema::TemplateParamListContext TPC,
953                                            SourceLocation ParamLoc,
954                                            SourceRange DefArgRange) {
955  switch (TPC) {
956  case Sema::TPC_ClassTemplate:
957    return false;
958
959  case Sema::TPC_FunctionTemplate:
960    // C++ [temp.param]p9:
961    //   A default template-argument shall not be specified in a
962    //   function template declaration or a function template
963    //   definition [...]
964    // (This sentence is not in C++0x, per DR226).
965    if (!S.getLangOptions().CPlusPlus0x)
966      S.Diag(ParamLoc,
967             diag::err_template_parameter_default_in_function_template)
968        << DefArgRange;
969    return false;
970
971  case Sema::TPC_ClassTemplateMember:
972    // C++0x [temp.param]p9:
973    //   A default template-argument shall not be specified in the
974    //   template-parameter-lists of the definition of a member of a
975    //   class template that appears outside of the member's class.
976    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
977      << DefArgRange;
978    return true;
979
980  case Sema::TPC_FriendFunctionTemplate:
981    // C++ [temp.param]p9:
982    //   A default template-argument shall not be specified in a
983    //   friend template declaration.
984    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
985      << DefArgRange;
986    return true;
987
988    // FIXME: C++0x [temp.param]p9 allows default template-arguments
989    // for friend function templates if there is only a single
990    // declaration (and it is a definition). Strange!
991  }
992
993  return false;
994}
995
996/// \brief Checks the validity of a template parameter list, possibly
997/// considering the template parameter list from a previous
998/// declaration.
999///
1000/// If an "old" template parameter list is provided, it must be
1001/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1002/// template parameter list.
1003///
1004/// \param NewParams Template parameter list for a new template
1005/// declaration. This template parameter list will be updated with any
1006/// default arguments that are carried through from the previous
1007/// template parameter list.
1008///
1009/// \param OldParams If provided, template parameter list from a
1010/// previous declaration of the same template. Default template
1011/// arguments will be merged from the old template parameter list to
1012/// the new template parameter list.
1013///
1014/// \param TPC Describes the context in which we are checking the given
1015/// template parameter list.
1016///
1017/// \returns true if an error occurred, false otherwise.
1018bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1019                                      TemplateParameterList *OldParams,
1020                                      TemplateParamListContext TPC) {
1021  bool Invalid = false;
1022
1023  // C++ [temp.param]p10:
1024  //   The set of default template-arguments available for use with a
1025  //   template declaration or definition is obtained by merging the
1026  //   default arguments from the definition (if in scope) and all
1027  //   declarations in scope in the same way default function
1028  //   arguments are (8.3.6).
1029  bool SawDefaultArgument = false;
1030  SourceLocation PreviousDefaultArgLoc;
1031
1032  bool SawParameterPack = false;
1033  SourceLocation ParameterPackLoc;
1034
1035  // Dummy initialization to avoid warnings.
1036  TemplateParameterList::iterator OldParam = NewParams->end();
1037  if (OldParams)
1038    OldParam = OldParams->begin();
1039
1040  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1041                                    NewParamEnd = NewParams->end();
1042       NewParam != NewParamEnd; ++NewParam) {
1043    // Variables used to diagnose redundant default arguments
1044    bool RedundantDefaultArg = false;
1045    SourceLocation OldDefaultLoc;
1046    SourceLocation NewDefaultLoc;
1047
1048    // Variables used to diagnose missing default arguments
1049    bool MissingDefaultArg = false;
1050
1051    // C++0x [temp.param]p11:
1052    // If a template parameter of a class template is a template parameter pack,
1053    // it must be the last template parameter.
1054    if (SawParameterPack) {
1055      Diag(ParameterPackLoc,
1056           diag::err_template_param_pack_must_be_last_template_parameter);
1057      Invalid = true;
1058    }
1059
1060    if (TemplateTypeParmDecl *NewTypeParm
1061          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1062      // Check the presence of a default argument here.
1063      if (NewTypeParm->hasDefaultArgument() &&
1064          DiagnoseDefaultTemplateArgument(*this, TPC,
1065                                          NewTypeParm->getLocation(),
1066               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1067                                                       .getSourceRange()))
1068        NewTypeParm->removeDefaultArgument();
1069
1070      // Merge default arguments for template type parameters.
1071      TemplateTypeParmDecl *OldTypeParm
1072          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1073
1074      if (NewTypeParm->isParameterPack()) {
1075        assert(!NewTypeParm->hasDefaultArgument() &&
1076               "Parameter packs can't have a default argument!");
1077        SawParameterPack = true;
1078        ParameterPackLoc = NewTypeParm->getLocation();
1079      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1080                 NewTypeParm->hasDefaultArgument()) {
1081        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1082        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1083        SawDefaultArgument = true;
1084        RedundantDefaultArg = true;
1085        PreviousDefaultArgLoc = NewDefaultLoc;
1086      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1087        // Merge the default argument from the old declaration to the
1088        // new declaration.
1089        SawDefaultArgument = true;
1090        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1091                                        true);
1092        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1093      } else if (NewTypeParm->hasDefaultArgument()) {
1094        SawDefaultArgument = true;
1095        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1096      } else if (SawDefaultArgument)
1097        MissingDefaultArg = true;
1098    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1099               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1100      // Check the presence of a default argument here.
1101      if (NewNonTypeParm->hasDefaultArgument() &&
1102          DiagnoseDefaultTemplateArgument(*this, TPC,
1103                                          NewNonTypeParm->getLocation(),
1104                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1105        NewNonTypeParm->getDefaultArgument()->Destroy(Context);
1106        NewNonTypeParm->removeDefaultArgument();
1107      }
1108
1109      // Merge default arguments for non-type template parameters
1110      NonTypeTemplateParmDecl *OldNonTypeParm
1111        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1112      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1113          NewNonTypeParm->hasDefaultArgument()) {
1114        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1115        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1116        SawDefaultArgument = true;
1117        RedundantDefaultArg = true;
1118        PreviousDefaultArgLoc = NewDefaultLoc;
1119      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1120        // Merge the default argument from the old declaration to the
1121        // new declaration.
1122        SawDefaultArgument = true;
1123        // FIXME: We need to create a new kind of "default argument"
1124        // expression that points to a previous template template
1125        // parameter.
1126        NewNonTypeParm->setDefaultArgument(
1127                                         OldNonTypeParm->getDefaultArgument(),
1128                                         /*Inherited=*/ true);
1129        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1130      } else if (NewNonTypeParm->hasDefaultArgument()) {
1131        SawDefaultArgument = true;
1132        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1133      } else if (SawDefaultArgument)
1134        MissingDefaultArg = true;
1135    } else {
1136      // Check the presence of a default argument here.
1137      TemplateTemplateParmDecl *NewTemplateParm
1138        = cast<TemplateTemplateParmDecl>(*NewParam);
1139      if (NewTemplateParm->hasDefaultArgument() &&
1140          DiagnoseDefaultTemplateArgument(*this, TPC,
1141                                          NewTemplateParm->getLocation(),
1142                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1143        NewTemplateParm->removeDefaultArgument();
1144
1145      // Merge default arguments for template template parameters
1146      TemplateTemplateParmDecl *OldTemplateParm
1147        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1148      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1149          NewTemplateParm->hasDefaultArgument()) {
1150        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1151        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1152        SawDefaultArgument = true;
1153        RedundantDefaultArg = true;
1154        PreviousDefaultArgLoc = NewDefaultLoc;
1155      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1156        // Merge the default argument from the old declaration to the
1157        // new declaration.
1158        SawDefaultArgument = true;
1159        // FIXME: We need to create a new kind of "default argument" expression
1160        // that points to a previous template template parameter.
1161        NewTemplateParm->setDefaultArgument(
1162                                          OldTemplateParm->getDefaultArgument(),
1163                                          /*Inherited=*/ true);
1164        PreviousDefaultArgLoc
1165          = OldTemplateParm->getDefaultArgument().getLocation();
1166      } else if (NewTemplateParm->hasDefaultArgument()) {
1167        SawDefaultArgument = true;
1168        PreviousDefaultArgLoc
1169          = NewTemplateParm->getDefaultArgument().getLocation();
1170      } else if (SawDefaultArgument)
1171        MissingDefaultArg = true;
1172    }
1173
1174    if (RedundantDefaultArg) {
1175      // C++ [temp.param]p12:
1176      //   A template-parameter shall not be given default arguments
1177      //   by two different declarations in the same scope.
1178      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1179      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1180      Invalid = true;
1181    } else if (MissingDefaultArg) {
1182      // C++ [temp.param]p11:
1183      //   If a template-parameter has a default template-argument,
1184      //   all subsequent template-parameters shall have a default
1185      //   template-argument supplied.
1186      Diag((*NewParam)->getLocation(),
1187           diag::err_template_param_default_arg_missing);
1188      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1189      Invalid = true;
1190    }
1191
1192    // If we have an old template parameter list that we're merging
1193    // in, move on to the next parameter.
1194    if (OldParams)
1195      ++OldParam;
1196  }
1197
1198  return Invalid;
1199}
1200
1201/// \brief Match the given template parameter lists to the given scope
1202/// specifier, returning the template parameter list that applies to the
1203/// name.
1204///
1205/// \param DeclStartLoc the start of the declaration that has a scope
1206/// specifier or a template parameter list.
1207///
1208/// \param SS the scope specifier that will be matched to the given template
1209/// parameter lists. This scope specifier precedes a qualified name that is
1210/// being declared.
1211///
1212/// \param ParamLists the template parameter lists, from the outermost to the
1213/// innermost template parameter lists.
1214///
1215/// \param NumParamLists the number of template parameter lists in ParamLists.
1216///
1217/// \param IsFriend Whether to apply the slightly different rules for
1218/// matching template parameters to scope specifiers in friend
1219/// declarations.
1220///
1221/// \param IsExplicitSpecialization will be set true if the entity being
1222/// declared is an explicit specialization, false otherwise.
1223///
1224/// \returns the template parameter list, if any, that corresponds to the
1225/// name that is preceded by the scope specifier @p SS. This template
1226/// parameter list may be have template parameters (if we're declaring a
1227/// template) or may have no template parameters (if we're declaring a
1228/// template specialization), or may be NULL (if we were's declaring isn't
1229/// itself a template).
1230TemplateParameterList *
1231Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1232                                              const CXXScopeSpec &SS,
1233                                          TemplateParameterList **ParamLists,
1234                                              unsigned NumParamLists,
1235                                              bool IsFriend,
1236                                              bool &IsExplicitSpecialization,
1237                                              bool &Invalid) {
1238  IsExplicitSpecialization = false;
1239
1240  // Find the template-ids that occur within the nested-name-specifier. These
1241  // template-ids will match up with the template parameter lists.
1242  llvm::SmallVector<const TemplateSpecializationType *, 4>
1243    TemplateIdsInSpecifier;
1244  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1245    ExplicitSpecializationsInSpecifier;
1246  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1247       NNS; NNS = NNS->getPrefix()) {
1248    const Type *T = NNS->getAsType();
1249    if (!T) break;
1250
1251    // C++0x [temp.expl.spec]p17:
1252    //   A member or a member template may be nested within many
1253    //   enclosing class templates. In an explicit specialization for
1254    //   such a member, the member declaration shall be preceded by a
1255    //   template<> for each enclosing class template that is
1256    //   explicitly specialized.
1257    //
1258    // Following the existing practice of GNU and EDG, we allow a typedef of a
1259    // template specialization type.
1260    if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1261      T = TT->LookThroughTypedefs().getTypePtr();
1262
1263    if (const TemplateSpecializationType *SpecType
1264                                  = dyn_cast<TemplateSpecializationType>(T)) {
1265      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1266      if (!Template)
1267        continue; // FIXME: should this be an error? probably...
1268
1269      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1270        ClassTemplateSpecializationDecl *SpecDecl
1271          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1272        // If the nested name specifier refers to an explicit specialization,
1273        // we don't need a template<> header.
1274        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1275          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1276          continue;
1277        }
1278      }
1279
1280      TemplateIdsInSpecifier.push_back(SpecType);
1281    }
1282  }
1283
1284  // Reverse the list of template-ids in the scope specifier, so that we can
1285  // more easily match up the template-ids and the template parameter lists.
1286  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1287
1288  SourceLocation FirstTemplateLoc = DeclStartLoc;
1289  if (NumParamLists)
1290    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1291
1292  // Match the template-ids found in the specifier to the template parameter
1293  // lists.
1294  unsigned Idx = 0;
1295  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1296       Idx != NumTemplateIds; ++Idx) {
1297    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
1298    bool DependentTemplateId = TemplateId->isDependentType();
1299    if (Idx >= NumParamLists) {
1300      // We have a template-id without a corresponding template parameter
1301      // list.
1302
1303      // ...which is fine if this is a friend declaration.
1304      if (IsFriend) {
1305        IsExplicitSpecialization = true;
1306        break;
1307      }
1308
1309      if (DependentTemplateId) {
1310        // FIXME: the location information here isn't great.
1311        Diag(SS.getRange().getBegin(),
1312             diag::err_template_spec_needs_template_parameters)
1313          << TemplateId
1314          << SS.getRange();
1315        Invalid = true;
1316      } else {
1317        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1318          << SS.getRange()
1319          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1320        IsExplicitSpecialization = true;
1321      }
1322      return 0;
1323    }
1324
1325    // Check the template parameter list against its corresponding template-id.
1326    if (DependentTemplateId) {
1327      TemplateParameterList *ExpectedTemplateParams = 0;
1328
1329      // Are there cases in (e.g.) friends where this won't match?
1330      if (const InjectedClassNameType *Injected
1331            = TemplateId->getAs<InjectedClassNameType>()) {
1332        CXXRecordDecl *Record = Injected->getDecl();
1333        if (ClassTemplatePartialSpecializationDecl *Partial =
1334              dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1335          ExpectedTemplateParams = Partial->getTemplateParameters();
1336        else
1337          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1338            ->getTemplateParameters();
1339      }
1340
1341      if (ExpectedTemplateParams)
1342        TemplateParameterListsAreEqual(ParamLists[Idx],
1343                                       ExpectedTemplateParams,
1344                                       true, TPL_TemplateMatch);
1345
1346      CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember);
1347    } else if (ParamLists[Idx]->size() > 0)
1348      Diag(ParamLists[Idx]->getTemplateLoc(),
1349           diag::err_template_param_list_matches_nontemplate)
1350        << TemplateId
1351        << ParamLists[Idx]->getSourceRange();
1352    else
1353      IsExplicitSpecialization = true;
1354  }
1355
1356  // If there were at least as many template-ids as there were template
1357  // parameter lists, then there are no template parameter lists remaining for
1358  // the declaration itself.
1359  if (Idx >= NumParamLists)
1360    return 0;
1361
1362  // If there were too many template parameter lists, complain about that now.
1363  if (Idx != NumParamLists - 1) {
1364    while (Idx < NumParamLists - 1) {
1365      bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0;
1366      Diag(ParamLists[Idx]->getTemplateLoc(),
1367           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1368                               : diag::err_template_spec_extra_headers)
1369        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1370                       ParamLists[Idx]->getRAngleLoc());
1371
1372      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1373        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1374             diag::note_explicit_template_spec_does_not_need_header)
1375          << ExplicitSpecializationsInSpecifier.back();
1376        ExplicitSpecializationsInSpecifier.pop_back();
1377      }
1378
1379      // We have a template parameter list with no corresponding scope, which
1380      // means that the resulting template declaration can't be instantiated
1381      // properly (we'll end up with dependent nodes when we shouldn't).
1382      if (!isExplicitSpecHeader)
1383        Invalid = true;
1384
1385      ++Idx;
1386    }
1387  }
1388
1389  // Return the last template parameter list, which corresponds to the
1390  // entity being declared.
1391  return ParamLists[NumParamLists - 1];
1392}
1393
1394QualType Sema::CheckTemplateIdType(TemplateName Name,
1395                                   SourceLocation TemplateLoc,
1396                              const TemplateArgumentListInfo &TemplateArgs) {
1397  TemplateDecl *Template = Name.getAsTemplateDecl();
1398  if (!Template) {
1399    // The template name does not resolve to a template, so we just
1400    // build a dependent template-id type.
1401    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1402  }
1403
1404  // Check that the template argument list is well-formed for this
1405  // template.
1406  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1407                                        TemplateArgs.size());
1408  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1409                                false, Converted))
1410    return QualType();
1411
1412  assert((Converted.structuredSize() ==
1413            Template->getTemplateParameters()->size()) &&
1414         "Converted template argument list is too short!");
1415
1416  QualType CanonType;
1417
1418  if (Name.isDependent() ||
1419      TemplateSpecializationType::anyDependentTemplateArguments(
1420                                                      TemplateArgs)) {
1421    // This class template specialization is a dependent
1422    // type. Therefore, its canonical type is another class template
1423    // specialization type that contains all of the converted
1424    // arguments in canonical form. This ensures that, e.g., A<T> and
1425    // A<T, T> have identical types when A is declared as:
1426    //
1427    //   template<typename T, typename U = T> struct A;
1428    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1429    CanonType = Context.getTemplateSpecializationType(CanonName,
1430                                                   Converted.getFlatArguments(),
1431                                                   Converted.flatSize());
1432
1433    // FIXME: CanonType is not actually the canonical type, and unfortunately
1434    // it is a TemplateSpecializationType that we will never use again.
1435    // In the future, we need to teach getTemplateSpecializationType to only
1436    // build the canonical type and return that to us.
1437    CanonType = Context.getCanonicalType(CanonType);
1438
1439    // This might work out to be a current instantiation, in which
1440    // case the canonical type needs to be the InjectedClassNameType.
1441    //
1442    // TODO: in theory this could be a simple hashtable lookup; most
1443    // changes to CurContext don't change the set of current
1444    // instantiations.
1445    if (isa<ClassTemplateDecl>(Template)) {
1446      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1447        // If we get out to a namespace, we're done.
1448        if (Ctx->isFileContext()) break;
1449
1450        // If this isn't a record, keep looking.
1451        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1452        if (!Record) continue;
1453
1454        // Look for one of the two cases with InjectedClassNameTypes
1455        // and check whether it's the same template.
1456        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1457            !Record->getDescribedClassTemplate())
1458          continue;
1459
1460        // Fetch the injected class name type and check whether its
1461        // injected type is equal to the type we just built.
1462        QualType ICNT = Context.getTypeDeclType(Record);
1463        QualType Injected = cast<InjectedClassNameType>(ICNT)
1464          ->getInjectedSpecializationType();
1465
1466        if (CanonType != Injected->getCanonicalTypeInternal())
1467          continue;
1468
1469        // If so, the canonical type of this TST is the injected
1470        // class name type of the record we just found.
1471        assert(ICNT.isCanonical());
1472        CanonType = ICNT;
1473        break;
1474      }
1475    }
1476  } else if (ClassTemplateDecl *ClassTemplate
1477               = dyn_cast<ClassTemplateDecl>(Template)) {
1478    // Find the class template specialization declaration that
1479    // corresponds to these arguments.
1480    void *InsertPos = 0;
1481    ClassTemplateSpecializationDecl *Decl
1482      = ClassTemplate->findSpecialization(Converted.getFlatArguments(),
1483                                          Converted.flatSize(), InsertPos);
1484    if (!Decl) {
1485      // This is the first time we have referenced this class template
1486      // specialization. Create the canonical declaration and add it to
1487      // the set of specializations.
1488      Decl = ClassTemplateSpecializationDecl::Create(Context,
1489                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1490                                                ClassTemplate->getDeclContext(),
1491                                                ClassTemplate->getLocation(),
1492                                                ClassTemplate,
1493                                                Converted, 0);
1494      ClassTemplate->AddSpecialization(Decl, InsertPos);
1495      Decl->setLexicalDeclContext(CurContext);
1496    }
1497
1498    CanonType = Context.getTypeDeclType(Decl);
1499    assert(isa<RecordType>(CanonType) &&
1500           "type of non-dependent specialization is not a RecordType");
1501  }
1502
1503  // Build the fully-sugared type for this class template
1504  // specialization, which refers back to the class template
1505  // specialization we created or found.
1506  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1507}
1508
1509Action::TypeResult
1510Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1511                          SourceLocation LAngleLoc,
1512                          ASTTemplateArgsPtr TemplateArgsIn,
1513                          SourceLocation RAngleLoc) {
1514  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1515
1516  // Translate the parser's template argument list in our AST format.
1517  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1518  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1519
1520  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1521  TemplateArgsIn.release();
1522
1523  if (Result.isNull())
1524    return true;
1525
1526  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1527  TemplateSpecializationTypeLoc TL
1528    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1529  TL.setTemplateNameLoc(TemplateLoc);
1530  TL.setLAngleLoc(LAngleLoc);
1531  TL.setRAngleLoc(RAngleLoc);
1532  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1533    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1534
1535  return CreateLocInfoType(Result, DI).getAsOpaquePtr();
1536}
1537
1538Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1539                                              TagUseKind TUK,
1540                                              DeclSpec::TST TagSpec,
1541                                              SourceLocation TagLoc) {
1542  if (TypeResult.isInvalid())
1543    return Sema::TypeResult();
1544
1545  // FIXME: preserve source info, ideally without copying the DI.
1546  TypeSourceInfo *DI;
1547  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1548
1549  // Verify the tag specifier.
1550  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1551
1552  if (const RecordType *RT = Type->getAs<RecordType>()) {
1553    RecordDecl *D = RT->getDecl();
1554
1555    IdentifierInfo *Id = D->getIdentifier();
1556    assert(Id && "templated class must have an identifier");
1557
1558    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1559      Diag(TagLoc, diag::err_use_with_wrong_tag)
1560        << Type
1561        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1562      Diag(D->getLocation(), diag::note_previous_use);
1563    }
1564  }
1565
1566  ElaboratedTypeKeyword Keyword
1567    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
1568  QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type);
1569
1570  return ElabType.getAsOpaquePtr();
1571}
1572
1573Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1574                                                 LookupResult &R,
1575                                                 bool RequiresADL,
1576                                 const TemplateArgumentListInfo &TemplateArgs) {
1577  // FIXME: Can we do any checking at this point? I guess we could check the
1578  // template arguments that we have against the template name, if the template
1579  // name refers to a single template. That's not a terribly common case,
1580  // though.
1581
1582  // These should be filtered out by our callers.
1583  assert(!R.empty() && "empty lookup results when building templateid");
1584  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1585
1586  NestedNameSpecifier *Qualifier = 0;
1587  SourceRange QualifierRange;
1588  if (SS.isSet()) {
1589    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1590    QualifierRange = SS.getRange();
1591  }
1592
1593  // We don't want lookup warnings at this point.
1594  R.suppressDiagnostics();
1595
1596  bool Dependent
1597    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(),
1598                                              &TemplateArgs);
1599  UnresolvedLookupExpr *ULE
1600    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1601                                   Qualifier, QualifierRange,
1602                                   R.getLookupName(), R.getNameLoc(),
1603                                   RequiresADL, TemplateArgs,
1604                                   R.begin(), R.end());
1605
1606  return Owned(ULE);
1607}
1608
1609// We actually only call this from template instantiation.
1610Sema::OwningExprResult
1611Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1612                                   DeclarationName Name,
1613                                   SourceLocation NameLoc,
1614                             const TemplateArgumentListInfo &TemplateArgs) {
1615  DeclContext *DC;
1616  if (!(DC = computeDeclContext(SS, false)) ||
1617      DC->isDependentContext() ||
1618      RequireCompleteDeclContext(SS, DC))
1619    return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs);
1620
1621  bool MemberOfUnknownSpecialization;
1622  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1623  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
1624                     MemberOfUnknownSpecialization);
1625
1626  if (R.isAmbiguous())
1627    return ExprError();
1628
1629  if (R.empty()) {
1630    Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
1631      << Name << SS.getRange();
1632    return ExprError();
1633  }
1634
1635  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1636    Diag(NameLoc, diag::err_template_kw_refers_to_class_template)
1637      << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange();
1638    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1639    return ExprError();
1640  }
1641
1642  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1643}
1644
1645/// \brief Form a dependent template name.
1646///
1647/// This action forms a dependent template name given the template
1648/// name and its (presumably dependent) scope specifier. For
1649/// example, given "MetaFun::template apply", the scope specifier \p
1650/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1651/// of the "template" keyword, and "apply" is the \p Name.
1652TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
1653                                                  SourceLocation TemplateKWLoc,
1654                                                  CXXScopeSpec &SS,
1655                                                  UnqualifiedId &Name,
1656                                                  TypeTy *ObjectType,
1657                                                  bool EnteringContext,
1658                                                  TemplateTy &Result) {
1659  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
1660      !getLangOptions().CPlusPlus0x)
1661    Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
1662      << FixItHint::CreateRemoval(TemplateKWLoc);
1663
1664  DeclContext *LookupCtx = 0;
1665  if (SS.isSet())
1666    LookupCtx = computeDeclContext(SS, EnteringContext);
1667  if (!LookupCtx && ObjectType)
1668    LookupCtx = computeDeclContext(QualType::getFromOpaquePtr(ObjectType));
1669  if (LookupCtx) {
1670    // C++0x [temp.names]p5:
1671    //   If a name prefixed by the keyword template is not the name of
1672    //   a template, the program is ill-formed. [Note: the keyword
1673    //   template may not be applied to non-template members of class
1674    //   templates. -end note ] [ Note: as is the case with the
1675    //   typename prefix, the template prefix is allowed in cases
1676    //   where it is not strictly necessary; i.e., when the
1677    //   nested-name-specifier or the expression on the left of the ->
1678    //   or . is not dependent on a template-parameter, or the use
1679    //   does not appear in the scope of a template. -end note]
1680    //
1681    // Note: C++03 was more strict here, because it banned the use of
1682    // the "template" keyword prior to a template-name that was not a
1683    // dependent name. C++ DR468 relaxed this requirement (the
1684    // "template" keyword is now permitted). We follow the C++0x
1685    // rules, even in C++03 mode with a warning, retroactively applying the DR.
1686    bool MemberOfUnknownSpecialization;
1687    TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType,
1688                                          EnteringContext, Result,
1689                                          MemberOfUnknownSpecialization);
1690    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1691        isa<CXXRecordDecl>(LookupCtx) &&
1692        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1693      // This is a dependent template. Handle it below.
1694    } else if (TNK == TNK_Non_template) {
1695      Diag(Name.getSourceRange().getBegin(),
1696           diag::err_template_kw_refers_to_non_template)
1697        << GetNameFromUnqualifiedId(Name)
1698        << Name.getSourceRange()
1699        << TemplateKWLoc;
1700      return TNK_Non_template;
1701    } else {
1702      // We found something; return it.
1703      return TNK;
1704    }
1705  }
1706
1707  NestedNameSpecifier *Qualifier
1708    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1709
1710  switch (Name.getKind()) {
1711  case UnqualifiedId::IK_Identifier:
1712    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1713                                                              Name.Identifier));
1714    return TNK_Dependent_template_name;
1715
1716  case UnqualifiedId::IK_OperatorFunctionId:
1717    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1718                                             Name.OperatorFunctionId.Operator));
1719    return TNK_Dependent_template_name;
1720
1721  case UnqualifiedId::IK_LiteralOperatorId:
1722    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1723
1724  default:
1725    break;
1726  }
1727
1728  Diag(Name.getSourceRange().getBegin(),
1729       diag::err_template_kw_refers_to_non_template)
1730    << GetNameFromUnqualifiedId(Name)
1731    << Name.getSourceRange()
1732    << TemplateKWLoc;
1733  return TNK_Non_template;
1734}
1735
1736bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1737                                     const TemplateArgumentLoc &AL,
1738                                     TemplateArgumentListBuilder &Converted) {
1739  const TemplateArgument &Arg = AL.getArgument();
1740
1741  // Check template type parameter.
1742  switch(Arg.getKind()) {
1743  case TemplateArgument::Type:
1744    // C++ [temp.arg.type]p1:
1745    //   A template-argument for a template-parameter which is a
1746    //   type shall be a type-id.
1747    break;
1748  case TemplateArgument::Template: {
1749    // We have a template type parameter but the template argument
1750    // is a template without any arguments.
1751    SourceRange SR = AL.getSourceRange();
1752    TemplateName Name = Arg.getAsTemplate();
1753    Diag(SR.getBegin(), diag::err_template_missing_args)
1754      << Name << SR;
1755    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
1756      Diag(Decl->getLocation(), diag::note_template_decl_here);
1757
1758    return true;
1759  }
1760  default: {
1761    // We have a template type parameter but the template argument
1762    // is not a type.
1763    SourceRange SR = AL.getSourceRange();
1764    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1765    Diag(Param->getLocation(), diag::note_template_param_here);
1766
1767    return true;
1768  }
1769  }
1770
1771  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1772    return true;
1773
1774  // Add the converted template type argument.
1775  Converted.Append(
1776                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1777  return false;
1778}
1779
1780/// \brief Substitute template arguments into the default template argument for
1781/// the given template type parameter.
1782///
1783/// \param SemaRef the semantic analysis object for which we are performing
1784/// the substitution.
1785///
1786/// \param Template the template that we are synthesizing template arguments
1787/// for.
1788///
1789/// \param TemplateLoc the location of the template name that started the
1790/// template-id we are checking.
1791///
1792/// \param RAngleLoc the location of the right angle bracket ('>') that
1793/// terminates the template-id.
1794///
1795/// \param Param the template template parameter whose default we are
1796/// substituting into.
1797///
1798/// \param Converted the list of template arguments provided for template
1799/// parameters that precede \p Param in the template parameter list.
1800///
1801/// \returns the substituted template argument, or NULL if an error occurred.
1802static TypeSourceInfo *
1803SubstDefaultTemplateArgument(Sema &SemaRef,
1804                             TemplateDecl *Template,
1805                             SourceLocation TemplateLoc,
1806                             SourceLocation RAngleLoc,
1807                             TemplateTypeParmDecl *Param,
1808                             TemplateArgumentListBuilder &Converted) {
1809  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
1810
1811  // If the argument type is dependent, instantiate it now based
1812  // on the previously-computed template arguments.
1813  if (ArgType->getType()->isDependentType()) {
1814    TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1815                                      /*TakeArgs=*/false);
1816
1817    MultiLevelTemplateArgumentList AllTemplateArgs
1818      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1819
1820    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1821                                     Template, Converted.getFlatArguments(),
1822                                     Converted.flatSize(),
1823                                     SourceRange(TemplateLoc, RAngleLoc));
1824
1825    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1826                                Param->getDefaultArgumentLoc(),
1827                                Param->getDeclName());
1828  }
1829
1830  return ArgType;
1831}
1832
1833/// \brief Substitute template arguments into the default template argument for
1834/// the given non-type template parameter.
1835///
1836/// \param SemaRef the semantic analysis object for which we are performing
1837/// the substitution.
1838///
1839/// \param Template the template that we are synthesizing template arguments
1840/// for.
1841///
1842/// \param TemplateLoc the location of the template name that started the
1843/// template-id we are checking.
1844///
1845/// \param RAngleLoc the location of the right angle bracket ('>') that
1846/// terminates the template-id.
1847///
1848/// \param Param the non-type template parameter whose default we are
1849/// substituting into.
1850///
1851/// \param Converted the list of template arguments provided for template
1852/// parameters that precede \p Param in the template parameter list.
1853///
1854/// \returns the substituted template argument, or NULL if an error occurred.
1855static Sema::OwningExprResult
1856SubstDefaultTemplateArgument(Sema &SemaRef,
1857                             TemplateDecl *Template,
1858                             SourceLocation TemplateLoc,
1859                             SourceLocation RAngleLoc,
1860                             NonTypeTemplateParmDecl *Param,
1861                             TemplateArgumentListBuilder &Converted) {
1862  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1863                                    /*TakeArgs=*/false);
1864
1865  MultiLevelTemplateArgumentList AllTemplateArgs
1866    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1867
1868  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1869                                   Template, Converted.getFlatArguments(),
1870                                   Converted.flatSize(),
1871                                   SourceRange(TemplateLoc, RAngleLoc));
1872
1873  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1874}
1875
1876/// \brief Substitute template arguments into the default template argument for
1877/// the given template template parameter.
1878///
1879/// \param SemaRef the semantic analysis object for which we are performing
1880/// the substitution.
1881///
1882/// \param Template the template that we are synthesizing template arguments
1883/// for.
1884///
1885/// \param TemplateLoc the location of the template name that started the
1886/// template-id we are checking.
1887///
1888/// \param RAngleLoc the location of the right angle bracket ('>') that
1889/// terminates the template-id.
1890///
1891/// \param Param the template template parameter whose default we are
1892/// substituting into.
1893///
1894/// \param Converted the list of template arguments provided for template
1895/// parameters that precede \p Param in the template parameter list.
1896///
1897/// \returns the substituted template argument, or NULL if an error occurred.
1898static TemplateName
1899SubstDefaultTemplateArgument(Sema &SemaRef,
1900                             TemplateDecl *Template,
1901                             SourceLocation TemplateLoc,
1902                             SourceLocation RAngleLoc,
1903                             TemplateTemplateParmDecl *Param,
1904                             TemplateArgumentListBuilder &Converted) {
1905  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1906                                    /*TakeArgs=*/false);
1907
1908  MultiLevelTemplateArgumentList AllTemplateArgs
1909    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1910
1911  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1912                                   Template, Converted.getFlatArguments(),
1913                                   Converted.flatSize(),
1914                                   SourceRange(TemplateLoc, RAngleLoc));
1915
1916  return SemaRef.SubstTemplateName(
1917                      Param->getDefaultArgument().getArgument().getAsTemplate(),
1918                              Param->getDefaultArgument().getTemplateNameLoc(),
1919                                   AllTemplateArgs);
1920}
1921
1922/// \brief If the given template parameter has a default template
1923/// argument, substitute into that default template argument and
1924/// return the corresponding template argument.
1925TemplateArgumentLoc
1926Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
1927                                              SourceLocation TemplateLoc,
1928                                              SourceLocation RAngleLoc,
1929                                              Decl *Param,
1930                                     TemplateArgumentListBuilder &Converted) {
1931  if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
1932    if (!TypeParm->hasDefaultArgument())
1933      return TemplateArgumentLoc();
1934
1935    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
1936                                                      TemplateLoc,
1937                                                      RAngleLoc,
1938                                                      TypeParm,
1939                                                      Converted);
1940    if (DI)
1941      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
1942
1943    return TemplateArgumentLoc();
1944  }
1945
1946  if (NonTypeTemplateParmDecl *NonTypeParm
1947        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1948    if (!NonTypeParm->hasDefaultArgument())
1949      return TemplateArgumentLoc();
1950
1951    OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
1952                                                        TemplateLoc,
1953                                                        RAngleLoc,
1954                                                        NonTypeParm,
1955                                                        Converted);
1956    if (Arg.isInvalid())
1957      return TemplateArgumentLoc();
1958
1959    Expr *ArgE = Arg.takeAs<Expr>();
1960    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
1961  }
1962
1963  TemplateTemplateParmDecl *TempTempParm
1964    = cast<TemplateTemplateParmDecl>(Param);
1965  if (!TempTempParm->hasDefaultArgument())
1966    return TemplateArgumentLoc();
1967
1968  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
1969                                                    TemplateLoc,
1970                                                    RAngleLoc,
1971                                                    TempTempParm,
1972                                                    Converted);
1973  if (TName.isNull())
1974    return TemplateArgumentLoc();
1975
1976  return TemplateArgumentLoc(TemplateArgument(TName),
1977                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
1978                TempTempParm->getDefaultArgument().getTemplateNameLoc());
1979}
1980
1981/// \brief Check that the given template argument corresponds to the given
1982/// template parameter.
1983bool Sema::CheckTemplateArgument(NamedDecl *Param,
1984                                 const TemplateArgumentLoc &Arg,
1985                                 TemplateDecl *Template,
1986                                 SourceLocation TemplateLoc,
1987                                 SourceLocation RAngleLoc,
1988                                 TemplateArgumentListBuilder &Converted,
1989                                 CheckTemplateArgumentKind CTAK) {
1990  // Check template type parameters.
1991  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
1992    return CheckTemplateTypeArgument(TTP, Arg, Converted);
1993
1994  // Check non-type template parameters.
1995  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1996    // Do substitution on the type of the non-type template parameter
1997    // with the template arguments we've seen thus far.
1998    QualType NTTPType = NTTP->getType();
1999    if (NTTPType->isDependentType()) {
2000      // Do substitution on the type of the non-type template parameter.
2001      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2002                                 NTTP, Converted.getFlatArguments(),
2003                                 Converted.flatSize(),
2004                                 SourceRange(TemplateLoc, RAngleLoc));
2005
2006      TemplateArgumentList TemplateArgs(Context, Converted,
2007                                        /*TakeArgs=*/false);
2008      NTTPType = SubstType(NTTPType,
2009                           MultiLevelTemplateArgumentList(TemplateArgs),
2010                           NTTP->getLocation(),
2011                           NTTP->getDeclName());
2012      // If that worked, check the non-type template parameter type
2013      // for validity.
2014      if (!NTTPType.isNull())
2015        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2016                                                     NTTP->getLocation());
2017      if (NTTPType.isNull())
2018        return true;
2019    }
2020
2021    switch (Arg.getArgument().getKind()) {
2022    case TemplateArgument::Null:
2023      assert(false && "Should never see a NULL template argument here");
2024      return true;
2025
2026    case TemplateArgument::Expression: {
2027      Expr *E = Arg.getArgument().getAsExpr();
2028      TemplateArgument Result;
2029      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
2030        return true;
2031
2032      Converted.Append(Result);
2033      break;
2034    }
2035
2036    case TemplateArgument::Declaration:
2037    case TemplateArgument::Integral:
2038      // We've already checked this template argument, so just copy
2039      // it to the list of converted arguments.
2040      Converted.Append(Arg.getArgument());
2041      break;
2042
2043    case TemplateArgument::Template:
2044      // We were given a template template argument. It may not be ill-formed;
2045      // see below.
2046      if (DependentTemplateName *DTN
2047            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
2048        // We have a template argument such as \c T::template X, which we
2049        // parsed as a template template argument. However, since we now
2050        // know that we need a non-type template argument, convert this
2051        // template name into an expression.
2052        Expr *E = DependentScopeDeclRefExpr::Create(Context,
2053                                                    DTN->getQualifier(),
2054                                               Arg.getTemplateQualifierRange(),
2055                                                    DTN->getIdentifier(),
2056                                                    Arg.getTemplateNameLoc());
2057
2058        TemplateArgument Result;
2059        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2060          return true;
2061
2062        Converted.Append(Result);
2063        break;
2064      }
2065
2066      // We have a template argument that actually does refer to a class
2067      // template, template alias, or template template parameter, and
2068      // therefore cannot be a non-type template argument.
2069      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2070        << Arg.getSourceRange();
2071
2072      Diag(Param->getLocation(), diag::note_template_param_here);
2073      return true;
2074
2075    case TemplateArgument::Type: {
2076      // We have a non-type template parameter but the template
2077      // argument is a type.
2078
2079      // C++ [temp.arg]p2:
2080      //   In a template-argument, an ambiguity between a type-id and
2081      //   an expression is resolved to a type-id, regardless of the
2082      //   form of the corresponding template-parameter.
2083      //
2084      // We warn specifically about this case, since it can be rather
2085      // confusing for users.
2086      QualType T = Arg.getArgument().getAsType();
2087      SourceRange SR = Arg.getSourceRange();
2088      if (T->isFunctionType())
2089        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2090      else
2091        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2092      Diag(Param->getLocation(), diag::note_template_param_here);
2093      return true;
2094    }
2095
2096    case TemplateArgument::Pack:
2097      llvm_unreachable("Caller must expand template argument packs");
2098      break;
2099    }
2100
2101    return false;
2102  }
2103
2104
2105  // Check template template parameters.
2106  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2107
2108  // Substitute into the template parameter list of the template
2109  // template parameter, since previously-supplied template arguments
2110  // may appear within the template template parameter.
2111  {
2112    // Set up a template instantiation context.
2113    LocalInstantiationScope Scope(*this);
2114    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2115                               TempParm, Converted.getFlatArguments(),
2116                               Converted.flatSize(),
2117                               SourceRange(TemplateLoc, RAngleLoc));
2118
2119    TemplateArgumentList TemplateArgs(Context, Converted,
2120                                      /*TakeArgs=*/false);
2121    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2122                      SubstDecl(TempParm, CurContext,
2123                                MultiLevelTemplateArgumentList(TemplateArgs)));
2124    if (!TempParm)
2125      return true;
2126
2127    // FIXME: TempParam is leaked.
2128  }
2129
2130  switch (Arg.getArgument().getKind()) {
2131  case TemplateArgument::Null:
2132    assert(false && "Should never see a NULL template argument here");
2133    return true;
2134
2135  case TemplateArgument::Template:
2136    if (CheckTemplateArgument(TempParm, Arg))
2137      return true;
2138
2139    Converted.Append(Arg.getArgument());
2140    break;
2141
2142  case TemplateArgument::Expression:
2143  case TemplateArgument::Type:
2144    // We have a template template parameter but the template
2145    // argument does not refer to a template.
2146    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2147    return true;
2148
2149  case TemplateArgument::Declaration:
2150    llvm_unreachable(
2151                       "Declaration argument with template template parameter");
2152    break;
2153  case TemplateArgument::Integral:
2154    llvm_unreachable(
2155                          "Integral argument with template template parameter");
2156    break;
2157
2158  case TemplateArgument::Pack:
2159    llvm_unreachable("Caller must expand template argument packs");
2160    break;
2161  }
2162
2163  return false;
2164}
2165
2166/// \brief Check that the given template argument list is well-formed
2167/// for specializing the given template.
2168bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2169                                     SourceLocation TemplateLoc,
2170                                const TemplateArgumentListInfo &TemplateArgs,
2171                                     bool PartialTemplateArgs,
2172                                     TemplateArgumentListBuilder &Converted) {
2173  TemplateParameterList *Params = Template->getTemplateParameters();
2174  unsigned NumParams = Params->size();
2175  unsigned NumArgs = TemplateArgs.size();
2176  bool Invalid = false;
2177
2178  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2179
2180  bool HasParameterPack =
2181    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2182
2183  if ((NumArgs > NumParams && !HasParameterPack) ||
2184      (NumArgs < Params->getMinRequiredArguments() &&
2185       !PartialTemplateArgs)) {
2186    // FIXME: point at either the first arg beyond what we can handle,
2187    // or the '>', depending on whether we have too many or too few
2188    // arguments.
2189    SourceRange Range;
2190    if (NumArgs > NumParams)
2191      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2192    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2193      << (NumArgs > NumParams)
2194      << (isa<ClassTemplateDecl>(Template)? 0 :
2195          isa<FunctionTemplateDecl>(Template)? 1 :
2196          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2197      << Template << Range;
2198    Diag(Template->getLocation(), diag::note_template_decl_here)
2199      << Params->getSourceRange();
2200    Invalid = true;
2201  }
2202
2203  // C++ [temp.arg]p1:
2204  //   [...] The type and form of each template-argument specified in
2205  //   a template-id shall match the type and form specified for the
2206  //   corresponding parameter declared by the template in its
2207  //   template-parameter-list.
2208  unsigned ArgIdx = 0;
2209  for (TemplateParameterList::iterator Param = Params->begin(),
2210                                       ParamEnd = Params->end();
2211       Param != ParamEnd; ++Param, ++ArgIdx) {
2212    if (ArgIdx > NumArgs && PartialTemplateArgs)
2213      break;
2214
2215    // If we have a template parameter pack, check every remaining template
2216    // argument against that template parameter pack.
2217    if ((*Param)->isTemplateParameterPack()) {
2218      Converted.BeginPack();
2219      for (; ArgIdx < NumArgs; ++ArgIdx) {
2220        if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2221                                  TemplateLoc, RAngleLoc, Converted)) {
2222          Invalid = true;
2223          break;
2224        }
2225      }
2226      Converted.EndPack();
2227      continue;
2228    }
2229
2230    if (ArgIdx < NumArgs) {
2231      // Check the template argument we were given.
2232      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2233                                TemplateLoc, RAngleLoc, Converted))
2234        return true;
2235
2236      continue;
2237    }
2238
2239    // We have a default template argument that we will use.
2240    TemplateArgumentLoc Arg;
2241
2242    // Retrieve the default template argument from the template
2243    // parameter. For each kind of template parameter, we substitute the
2244    // template arguments provided thus far and any "outer" template arguments
2245    // (when the template parameter was part of a nested template) into
2246    // the default argument.
2247    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2248      if (!TTP->hasDefaultArgument()) {
2249        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2250        break;
2251      }
2252
2253      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2254                                                             Template,
2255                                                             TemplateLoc,
2256                                                             RAngleLoc,
2257                                                             TTP,
2258                                                             Converted);
2259      if (!ArgType)
2260        return true;
2261
2262      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2263                                ArgType);
2264    } else if (NonTypeTemplateParmDecl *NTTP
2265                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2266      if (!NTTP->hasDefaultArgument()) {
2267        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2268        break;
2269      }
2270
2271      Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template,
2272                                                              TemplateLoc,
2273                                                              RAngleLoc,
2274                                                              NTTP,
2275                                                              Converted);
2276      if (E.isInvalid())
2277        return true;
2278
2279      Expr *Ex = E.takeAs<Expr>();
2280      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2281    } else {
2282      TemplateTemplateParmDecl *TempParm
2283        = cast<TemplateTemplateParmDecl>(*Param);
2284
2285      if (!TempParm->hasDefaultArgument()) {
2286        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2287        break;
2288      }
2289
2290      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2291                                                       TemplateLoc,
2292                                                       RAngleLoc,
2293                                                       TempParm,
2294                                                       Converted);
2295      if (Name.isNull())
2296        return true;
2297
2298      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2299                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2300                  TempParm->getDefaultArgument().getTemplateNameLoc());
2301    }
2302
2303    // Introduce an instantiation record that describes where we are using
2304    // the default template argument.
2305    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2306                                        Converted.getFlatArguments(),
2307                                        Converted.flatSize(),
2308                                        SourceRange(TemplateLoc, RAngleLoc));
2309
2310    // Check the default template argument.
2311    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2312                              RAngleLoc, Converted))
2313      return true;
2314  }
2315
2316  return Invalid;
2317}
2318
2319/// \brief Check a template argument against its corresponding
2320/// template type parameter.
2321///
2322/// This routine implements the semantics of C++ [temp.arg.type]. It
2323/// returns true if an error occurred, and false otherwise.
2324bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2325                                 TypeSourceInfo *ArgInfo) {
2326  assert(ArgInfo && "invalid TypeSourceInfo");
2327  QualType Arg = ArgInfo->getType();
2328
2329  // C++ [temp.arg.type]p2:
2330  //   A local type, a type with no linkage, an unnamed type or a type
2331  //   compounded from any of these types shall not be used as a
2332  //   template-argument for a template type-parameter.
2333  //
2334  // FIXME: Perform the unnamed type check.
2335  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2336  const TagType *Tag = 0;
2337  if (const EnumType *EnumT = Arg->getAs<EnumType>())
2338    Tag = EnumT;
2339  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
2340    Tag = RecordT;
2341  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
2342    SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2343    return Diag(SR.getBegin(), diag::err_template_arg_local_type)
2344      << QualType(Tag, 0) << SR;
2345  } else if (Tag && !Tag->getDecl()->getDeclName() &&
2346           !Tag->getDecl()->getTypedefForAnonDecl()) {
2347    Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR;
2348    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
2349    return true;
2350  } else if (Arg->isVariablyModifiedType()) {
2351    Diag(SR.getBegin(), diag::err_variably_modified_template_arg)
2352      << Arg;
2353    return true;
2354  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2355    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2356  }
2357
2358  return false;
2359}
2360
2361/// \brief Checks whether the given template argument is the address
2362/// of an object or function according to C++ [temp.arg.nontype]p1.
2363static bool
2364CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2365                                               NonTypeTemplateParmDecl *Param,
2366                                               QualType ParamType,
2367                                               Expr *ArgIn,
2368                                               TemplateArgument &Converted) {
2369  bool Invalid = false;
2370  Expr *Arg = ArgIn;
2371  QualType ArgType = Arg->getType();
2372
2373  // See through any implicit casts we added to fix the type.
2374  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2375    Arg = Cast->getSubExpr();
2376
2377  // C++ [temp.arg.nontype]p1:
2378  //
2379  //   A template-argument for a non-type, non-template
2380  //   template-parameter shall be one of: [...]
2381  //
2382  //     -- the address of an object or function with external
2383  //        linkage, including function templates and function
2384  //        template-ids but excluding non-static class members,
2385  //        expressed as & id-expression where the & is optional if
2386  //        the name refers to a function or array, or if the
2387  //        corresponding template-parameter is a reference; or
2388  DeclRefExpr *DRE = 0;
2389
2390  // Ignore (and complain about) any excess parentheses.
2391  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2392    if (!Invalid) {
2393      S.Diag(Arg->getSourceRange().getBegin(),
2394             diag::err_template_arg_extra_parens)
2395        << Arg->getSourceRange();
2396      Invalid = true;
2397    }
2398
2399    Arg = Parens->getSubExpr();
2400  }
2401
2402  bool AddressTaken = false;
2403  SourceLocation AddrOpLoc;
2404  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2405    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2406      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2407      AddressTaken = true;
2408      AddrOpLoc = UnOp->getOperatorLoc();
2409    }
2410  } else
2411    DRE = dyn_cast<DeclRefExpr>(Arg);
2412
2413  if (!DRE) {
2414    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2415      << Arg->getSourceRange();
2416    S.Diag(Param->getLocation(), diag::note_template_param_here);
2417    return true;
2418  }
2419
2420  // Stop checking the precise nature of the argument if it is value dependent,
2421  // it should be checked when instantiated.
2422  if (Arg->isValueDependent()) {
2423    Converted = TemplateArgument(ArgIn->Retain());
2424    return false;
2425  }
2426
2427  if (!isa<ValueDecl>(DRE->getDecl())) {
2428    S.Diag(Arg->getSourceRange().getBegin(),
2429           diag::err_template_arg_not_object_or_func_form)
2430      << Arg->getSourceRange();
2431    S.Diag(Param->getLocation(), diag::note_template_param_here);
2432    return true;
2433  }
2434
2435  NamedDecl *Entity = 0;
2436
2437  // Cannot refer to non-static data members
2438  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
2439    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2440      << Field << Arg->getSourceRange();
2441    S.Diag(Param->getLocation(), diag::note_template_param_here);
2442    return true;
2443  }
2444
2445  // Cannot refer to non-static member functions
2446  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2447    if (!Method->isStatic()) {
2448      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
2449        << Method << Arg->getSourceRange();
2450      S.Diag(Param->getLocation(), diag::note_template_param_here);
2451      return true;
2452    }
2453
2454  // Functions must have external linkage.
2455  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2456    if (!isExternalLinkage(Func->getLinkage())) {
2457      S.Diag(Arg->getSourceRange().getBegin(),
2458             diag::err_template_arg_function_not_extern)
2459        << Func << Arg->getSourceRange();
2460      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2461        << true;
2462      return true;
2463    }
2464
2465    // Okay: we've named a function with external linkage.
2466    Entity = Func;
2467
2468    // If the template parameter has pointer type, the function decays.
2469    if (ParamType->isPointerType() && !AddressTaken)
2470      ArgType = S.Context.getPointerType(Func->getType());
2471    else if (AddressTaken && ParamType->isReferenceType()) {
2472      // If we originally had an address-of operator, but the
2473      // parameter has reference type, complain and (if things look
2474      // like they will work) drop the address-of operator.
2475      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
2476                                            ParamType.getNonReferenceType())) {
2477        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2478          << ParamType;
2479        S.Diag(Param->getLocation(), diag::note_template_param_here);
2480        return true;
2481      }
2482
2483      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2484        << ParamType
2485        << FixItHint::CreateRemoval(AddrOpLoc);
2486      S.Diag(Param->getLocation(), diag::note_template_param_here);
2487
2488      ArgType = Func->getType();
2489    }
2490  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2491    if (!isExternalLinkage(Var->getLinkage())) {
2492      S.Diag(Arg->getSourceRange().getBegin(),
2493             diag::err_template_arg_object_not_extern)
2494        << Var << Arg->getSourceRange();
2495      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2496        << true;
2497      return true;
2498    }
2499
2500    // A value of reference type is not an object.
2501    if (Var->getType()->isReferenceType()) {
2502      S.Diag(Arg->getSourceRange().getBegin(),
2503             diag::err_template_arg_reference_var)
2504        << Var->getType() << Arg->getSourceRange();
2505      S.Diag(Param->getLocation(), diag::note_template_param_here);
2506      return true;
2507    }
2508
2509    // Okay: we've named an object with external linkage
2510    Entity = Var;
2511
2512    // If the template parameter has pointer type, we must have taken
2513    // the address of this object.
2514    if (ParamType->isReferenceType()) {
2515      if (AddressTaken) {
2516        // If we originally had an address-of operator, but the
2517        // parameter has reference type, complain and (if things look
2518        // like they will work) drop the address-of operator.
2519        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
2520                                            ParamType.getNonReferenceType())) {
2521          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2522            << ParamType;
2523          S.Diag(Param->getLocation(), diag::note_template_param_here);
2524          return true;
2525        }
2526
2527        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2528          << ParamType
2529          << FixItHint::CreateRemoval(AddrOpLoc);
2530        S.Diag(Param->getLocation(), diag::note_template_param_here);
2531
2532        ArgType = Var->getType();
2533      }
2534    } else if (!AddressTaken && ParamType->isPointerType()) {
2535      if (Var->getType()->isArrayType()) {
2536        // Array-to-pointer decay.
2537        ArgType = S.Context.getArrayDecayedType(Var->getType());
2538      } else {
2539        // If the template parameter has pointer type but the address of
2540        // this object was not taken, complain and (possibly) recover by
2541        // taking the address of the entity.
2542        ArgType = S.Context.getPointerType(Var->getType());
2543        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2544          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2545            << ParamType;
2546          S.Diag(Param->getLocation(), diag::note_template_param_here);
2547          return true;
2548        }
2549
2550        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2551          << ParamType
2552          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
2553
2554        S.Diag(Param->getLocation(), diag::note_template_param_here);
2555      }
2556    }
2557  } else {
2558    // We found something else, but we don't know specifically what it is.
2559    S.Diag(Arg->getSourceRange().getBegin(),
2560           diag::err_template_arg_not_object_or_func)
2561      << Arg->getSourceRange();
2562    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
2563    return true;
2564  }
2565
2566  if (ParamType->isPointerType() &&
2567      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
2568      S.IsQualificationConversion(ArgType, ParamType)) {
2569    // For pointer-to-object types, qualification conversions are
2570    // permitted.
2571  } else {
2572    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
2573      if (!ParamRef->getPointeeType()->isFunctionType()) {
2574        // C++ [temp.arg.nontype]p5b3:
2575        //   For a non-type template-parameter of type reference to
2576        //   object, no conversions apply. The type referred to by the
2577        //   reference may be more cv-qualified than the (otherwise
2578        //   identical) type of the template- argument. The
2579        //   template-parameter is bound directly to the
2580        //   template-argument, which shall be an lvalue.
2581
2582        // FIXME: Other qualifiers?
2583        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
2584        unsigned ArgQuals = ArgType.getCVRQualifiers();
2585
2586        if ((ParamQuals | ArgQuals) != ParamQuals) {
2587          S.Diag(Arg->getSourceRange().getBegin(),
2588                 diag::err_template_arg_ref_bind_ignores_quals)
2589            << ParamType << Arg->getType()
2590            << Arg->getSourceRange();
2591          S.Diag(Param->getLocation(), diag::note_template_param_here);
2592          return true;
2593        }
2594      }
2595    }
2596
2597    // At this point, the template argument refers to an object or
2598    // function with external linkage. We now need to check whether the
2599    // argument and parameter types are compatible.
2600    if (!S.Context.hasSameUnqualifiedType(ArgType,
2601                                          ParamType.getNonReferenceType())) {
2602      // We can't perform this conversion or binding.
2603      if (ParamType->isReferenceType())
2604        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
2605          << ParamType << Arg->getType() << Arg->getSourceRange();
2606      else
2607        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
2608          << Arg->getType() << ParamType << Arg->getSourceRange();
2609      S.Diag(Param->getLocation(), diag::note_template_param_here);
2610      return true;
2611    }
2612  }
2613
2614  // Create the template argument.
2615  Converted = TemplateArgument(Entity->getCanonicalDecl());
2616  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
2617  return false;
2618}
2619
2620/// \brief Checks whether the given template argument is a pointer to
2621/// member constant according to C++ [temp.arg.nontype]p1.
2622bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2623                                                TemplateArgument &Converted) {
2624  bool Invalid = false;
2625
2626  // See through any implicit casts we added to fix the type.
2627  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2628    Arg = Cast->getSubExpr();
2629
2630  // C++ [temp.arg.nontype]p1:
2631  //
2632  //   A template-argument for a non-type, non-template
2633  //   template-parameter shall be one of: [...]
2634  //
2635  //     -- a pointer to member expressed as described in 5.3.1.
2636  DeclRefExpr *DRE = 0;
2637
2638  // Ignore (and complain about) any excess parentheses.
2639  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2640    if (!Invalid) {
2641      Diag(Arg->getSourceRange().getBegin(),
2642           diag::err_template_arg_extra_parens)
2643        << Arg->getSourceRange();
2644      Invalid = true;
2645    }
2646
2647    Arg = Parens->getSubExpr();
2648  }
2649
2650  // A pointer-to-member constant written &Class::member.
2651  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2652    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2653      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2654      if (DRE && !DRE->getQualifier())
2655        DRE = 0;
2656    }
2657  }
2658  // A constant of pointer-to-member type.
2659  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2660    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2661      if (VD->getType()->isMemberPointerType()) {
2662        if (isa<NonTypeTemplateParmDecl>(VD) ||
2663            (isa<VarDecl>(VD) &&
2664             Context.getCanonicalType(VD->getType()).isConstQualified())) {
2665          if (Arg->isTypeDependent() || Arg->isValueDependent())
2666            Converted = TemplateArgument(Arg->Retain());
2667          else
2668            Converted = TemplateArgument(VD->getCanonicalDecl());
2669          return Invalid;
2670        }
2671      }
2672    }
2673
2674    DRE = 0;
2675  }
2676
2677  if (!DRE)
2678    return Diag(Arg->getSourceRange().getBegin(),
2679                diag::err_template_arg_not_pointer_to_member_form)
2680      << Arg->getSourceRange();
2681
2682  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2683    assert((isa<FieldDecl>(DRE->getDecl()) ||
2684            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2685           "Only non-static member pointers can make it here");
2686
2687    // Okay: this is the address of a non-static member, and therefore
2688    // a member pointer constant.
2689    if (Arg->isTypeDependent() || Arg->isValueDependent())
2690      Converted = TemplateArgument(Arg->Retain());
2691    else
2692      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
2693    return Invalid;
2694  }
2695
2696  // We found something else, but we don't know specifically what it is.
2697  Diag(Arg->getSourceRange().getBegin(),
2698       diag::err_template_arg_not_pointer_to_member_form)
2699      << Arg->getSourceRange();
2700  Diag(DRE->getDecl()->getLocation(),
2701       diag::note_template_arg_refers_here);
2702  return true;
2703}
2704
2705/// \brief Check a template argument against its corresponding
2706/// non-type template parameter.
2707///
2708/// This routine implements the semantics of C++ [temp.arg.nontype].
2709/// It returns true if an error occurred, and false otherwise. \p
2710/// InstantiatedParamType is the type of the non-type template
2711/// parameter after it has been instantiated.
2712///
2713/// If no error was detected, Converted receives the converted template argument.
2714bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
2715                                 QualType InstantiatedParamType, Expr *&Arg,
2716                                 TemplateArgument &Converted,
2717                                 CheckTemplateArgumentKind CTAK) {
2718  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
2719
2720  // If either the parameter has a dependent type or the argument is
2721  // type-dependent, there's nothing we can check now.
2722  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
2723    // FIXME: Produce a cloned, canonical expression?
2724    Converted = TemplateArgument(Arg);
2725    return false;
2726  }
2727
2728  // C++ [temp.arg.nontype]p5:
2729  //   The following conversions are performed on each expression used
2730  //   as a non-type template-argument. If a non-type
2731  //   template-argument cannot be converted to the type of the
2732  //   corresponding template-parameter then the program is
2733  //   ill-formed.
2734  //
2735  //     -- for a non-type template-parameter of integral or
2736  //        enumeration type, integral promotions (4.5) and integral
2737  //        conversions (4.7) are applied.
2738  QualType ParamType = InstantiatedParamType;
2739  QualType ArgType = Arg->getType();
2740  if (ParamType->isIntegralOrEnumerationType()) {
2741    // C++ [temp.arg.nontype]p1:
2742    //   A template-argument for a non-type, non-template
2743    //   template-parameter shall be one of:
2744    //
2745    //     -- an integral constant-expression of integral or enumeration
2746    //        type; or
2747    //     -- the name of a non-type template-parameter; or
2748    SourceLocation NonConstantLoc;
2749    llvm::APSInt Value;
2750    if (!ArgType->isIntegralOrEnumerationType()) {
2751      Diag(Arg->getSourceRange().getBegin(),
2752           diag::err_template_arg_not_integral_or_enumeral)
2753        << ArgType << Arg->getSourceRange();
2754      Diag(Param->getLocation(), diag::note_template_param_here);
2755      return true;
2756    } else if (!Arg->isValueDependent() &&
2757               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
2758      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
2759        << ArgType << Arg->getSourceRange();
2760      return true;
2761    }
2762
2763    // From here on out, all we care about are the unqualified forms
2764    // of the parameter and argument types.
2765    ParamType = ParamType.getUnqualifiedType();
2766    ArgType = ArgType.getUnqualifiedType();
2767
2768    // Try to convert the argument to the parameter's type.
2769    if (Context.hasSameType(ParamType, ArgType)) {
2770      // Okay: no conversion necessary
2771    } else if (CTAK == CTAK_Deduced) {
2772      // C++ [temp.deduct.type]p17:
2773      //   If, in the declaration of a function template with a non-type
2774      //   template-parameter, the non-type template- parameter is used
2775      //   in an expression in the function parameter-list and, if the
2776      //   corresponding template-argument is deduced, the
2777      //   template-argument type shall match the type of the
2778      //   template-parameter exactly, except that a template-argument
2779      //   deduced from an array bound may be of any integral type.
2780      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
2781        << ArgType << ParamType;
2782      Diag(Param->getLocation(), diag::note_template_param_here);
2783      return true;
2784    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
2785               !ParamType->isEnumeralType()) {
2786      // This is an integral promotion or conversion.
2787      ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast);
2788    } else {
2789      // We can't perform this conversion.
2790      Diag(Arg->getSourceRange().getBegin(),
2791           diag::err_template_arg_not_convertible)
2792        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2793      Diag(Param->getLocation(), diag::note_template_param_here);
2794      return true;
2795    }
2796
2797    QualType IntegerType = Context.getCanonicalType(ParamType);
2798    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
2799      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
2800
2801    if (!Arg->isValueDependent()) {
2802      llvm::APSInt OldValue = Value;
2803
2804      // Coerce the template argument's value to the value it will have
2805      // based on the template parameter's type.
2806      unsigned AllowedBits = Context.getTypeSize(IntegerType);
2807      if (Value.getBitWidth() != AllowedBits)
2808        Value.extOrTrunc(AllowedBits);
2809      Value.setIsSigned(IntegerType->isSignedIntegerType());
2810
2811      // Complain if an unsigned parameter received a negative value.
2812      if (IntegerType->isUnsignedIntegerType()
2813          && (OldValue.isSigned() && OldValue.isNegative())) {
2814        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
2815          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2816          << Arg->getSourceRange();
2817        Diag(Param->getLocation(), diag::note_template_param_here);
2818      }
2819
2820      // Complain if we overflowed the template parameter's type.
2821      unsigned RequiredBits;
2822      if (IntegerType->isUnsignedIntegerType())
2823        RequiredBits = OldValue.getActiveBits();
2824      else if (OldValue.isUnsigned())
2825        RequiredBits = OldValue.getActiveBits() + 1;
2826      else
2827        RequiredBits = OldValue.getMinSignedBits();
2828      if (RequiredBits > AllowedBits) {
2829        Diag(Arg->getSourceRange().getBegin(),
2830             diag::warn_template_arg_too_large)
2831          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2832          << Arg->getSourceRange();
2833        Diag(Param->getLocation(), diag::note_template_param_here);
2834      }
2835    }
2836
2837    // Add the value of this argument to the list of converted
2838    // arguments. We use the bitwidth and signedness of the template
2839    // parameter.
2840    if (Arg->isValueDependent()) {
2841      // The argument is value-dependent. Create a new
2842      // TemplateArgument with the converted expression.
2843      Converted = TemplateArgument(Arg);
2844      return false;
2845    }
2846
2847    Converted = TemplateArgument(Value,
2848                                 ParamType->isEnumeralType() ? ParamType
2849                                                             : IntegerType);
2850    return false;
2851  }
2852
2853  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
2854
2855  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
2856  // from a template argument of type std::nullptr_t to a non-type
2857  // template parameter of type pointer to object, pointer to
2858  // function, or pointer-to-member, respectively.
2859  if (ArgType->isNullPtrType() &&
2860      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
2861    Converted = TemplateArgument((NamedDecl *)0);
2862    return false;
2863  }
2864
2865  // Handle pointer-to-function, reference-to-function, and
2866  // pointer-to-member-function all in (roughly) the same way.
2867  if (// -- For a non-type template-parameter of type pointer to
2868      //    function, only the function-to-pointer conversion (4.3) is
2869      //    applied. If the template-argument represents a set of
2870      //    overloaded functions (or a pointer to such), the matching
2871      //    function is selected from the set (13.4).
2872      (ParamType->isPointerType() &&
2873       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
2874      // -- For a non-type template-parameter of type reference to
2875      //    function, no conversions apply. If the template-argument
2876      //    represents a set of overloaded functions, the matching
2877      //    function is selected from the set (13.4).
2878      (ParamType->isReferenceType() &&
2879       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
2880      // -- For a non-type template-parameter of type pointer to
2881      //    member function, no conversions apply. If the
2882      //    template-argument represents a set of overloaded member
2883      //    functions, the matching member function is selected from
2884      //    the set (13.4).
2885      (ParamType->isMemberPointerType() &&
2886       ParamType->getAs<MemberPointerType>()->getPointeeType()
2887         ->isFunctionType())) {
2888
2889    if (Arg->getType() == Context.OverloadTy) {
2890      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
2891                                                                true,
2892                                                                FoundResult)) {
2893        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2894          return true;
2895
2896        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2897        ArgType = Arg->getType();
2898      } else
2899        return true;
2900    }
2901
2902    if (!ParamType->isMemberPointerType())
2903      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2904                                                            ParamType,
2905                                                            Arg, Converted);
2906
2907    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) {
2908      ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp, CastCategory(Arg));
2909    } else if (!Context.hasSameUnqualifiedType(ArgType,
2910                                           ParamType.getNonReferenceType())) {
2911      // We can't perform this conversion.
2912      Diag(Arg->getSourceRange().getBegin(),
2913           diag::err_template_arg_not_convertible)
2914        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2915      Diag(Param->getLocation(), diag::note_template_param_here);
2916      return true;
2917    }
2918
2919    return CheckTemplateArgumentPointerToMember(Arg, Converted);
2920  }
2921
2922  if (ParamType->isPointerType()) {
2923    //   -- for a non-type template-parameter of type pointer to
2924    //      object, qualification conversions (4.4) and the
2925    //      array-to-pointer conversion (4.2) are applied.
2926    // C++0x also allows a value of std::nullptr_t.
2927    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
2928           "Only object pointers allowed here");
2929
2930    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2931                                                          ParamType,
2932                                                          Arg, Converted);
2933  }
2934
2935  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2936    //   -- For a non-type template-parameter of type reference to
2937    //      object, no conversions apply. The type referred to by the
2938    //      reference may be more cv-qualified than the (otherwise
2939    //      identical) type of the template-argument. The
2940    //      template-parameter is bound directly to the
2941    //      template-argument, which must be an lvalue.
2942    assert(ParamRefType->getPointeeType()->isObjectType() &&
2943           "Only object references allowed here");
2944
2945    if (Arg->getType() == Context.OverloadTy) {
2946      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
2947                                                 ParamRefType->getPointeeType(),
2948                                                                true,
2949                                                                FoundResult)) {
2950        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2951          return true;
2952
2953        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2954        ArgType = Arg->getType();
2955      } else
2956        return true;
2957    }
2958
2959    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2960                                                          ParamType,
2961                                                          Arg, Converted);
2962  }
2963
2964  //     -- For a non-type template-parameter of type pointer to data
2965  //        member, qualification conversions (4.4) are applied.
2966  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
2967
2968  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
2969    // Types match exactly: nothing more to do here.
2970  } else if (IsQualificationConversion(ArgType, ParamType)) {
2971    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp, CastCategory(Arg));
2972  } else {
2973    // We can't perform this conversion.
2974    Diag(Arg->getSourceRange().getBegin(),
2975         diag::err_template_arg_not_convertible)
2976      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2977    Diag(Param->getLocation(), diag::note_template_param_here);
2978    return true;
2979  }
2980
2981  return CheckTemplateArgumentPointerToMember(Arg, Converted);
2982}
2983
2984/// \brief Check a template argument against its corresponding
2985/// template template parameter.
2986///
2987/// This routine implements the semantics of C++ [temp.arg.template].
2988/// It returns true if an error occurred, and false otherwise.
2989bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
2990                                 const TemplateArgumentLoc &Arg) {
2991  TemplateName Name = Arg.getArgument().getAsTemplate();
2992  TemplateDecl *Template = Name.getAsTemplateDecl();
2993  if (!Template) {
2994    // Any dependent template name is fine.
2995    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
2996    return false;
2997  }
2998
2999  // C++ [temp.arg.template]p1:
3000  //   A template-argument for a template template-parameter shall be
3001  //   the name of a class template, expressed as id-expression. Only
3002  //   primary class templates are considered when matching the
3003  //   template template argument with the corresponding parameter;
3004  //   partial specializations are not considered even if their
3005  //   parameter lists match that of the template template parameter.
3006  //
3007  // Note that we also allow template template parameters here, which
3008  // will happen when we are dealing with, e.g., class template
3009  // partial specializations.
3010  if (!isa<ClassTemplateDecl>(Template) &&
3011      !isa<TemplateTemplateParmDecl>(Template)) {
3012    assert(isa<FunctionTemplateDecl>(Template) &&
3013           "Only function templates are possible here");
3014    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3015    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3016      << Template;
3017  }
3018
3019  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3020                                         Param->getTemplateParameters(),
3021                                         true,
3022                                         TPL_TemplateTemplateArgumentMatch,
3023                                         Arg.getLocation());
3024}
3025
3026/// \brief Given a non-type template argument that refers to a
3027/// declaration and the type of its corresponding non-type template
3028/// parameter, produce an expression that properly refers to that
3029/// declaration.
3030Sema::OwningExprResult
3031Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3032                                              QualType ParamType,
3033                                              SourceLocation Loc) {
3034  assert(Arg.getKind() == TemplateArgument::Declaration &&
3035         "Only declaration template arguments permitted here");
3036  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3037
3038  if (VD->getDeclContext()->isRecord() &&
3039      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3040    // If the value is a class member, we might have a pointer-to-member.
3041    // Determine whether the non-type template template parameter is of
3042    // pointer-to-member type. If so, we need to build an appropriate
3043    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3044    // would refer to the member itself.
3045    if (ParamType->isMemberPointerType()) {
3046      QualType ClassType
3047        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3048      NestedNameSpecifier *Qualifier
3049        = NestedNameSpecifier::Create(Context, 0, false, ClassType.getTypePtr());
3050      CXXScopeSpec SS;
3051      SS.setScopeRep(Qualifier);
3052      OwningExprResult RefExpr = BuildDeclRefExpr(VD,
3053                                           VD->getType().getNonReferenceType(),
3054                                                  Loc,
3055                                                  &SS);
3056      if (RefExpr.isInvalid())
3057        return ExprError();
3058
3059      RefExpr = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr));
3060
3061      // We might need to perform a trailing qualification conversion, since
3062      // the element type on the parameter could be more qualified than the
3063      // element type in the expression we constructed.
3064      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
3065                                    ParamType.getUnqualifiedType())) {
3066        Expr *RefE = RefExpr.takeAs<Expr>();
3067        ImpCastExprToType(RefE, ParamType.getUnqualifiedType(),
3068                          CastExpr::CK_NoOp);
3069        RefExpr = Owned(RefE);
3070      }
3071
3072      assert(!RefExpr.isInvalid() &&
3073             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3074                                 ParamType.getUnqualifiedType()));
3075      return move(RefExpr);
3076    }
3077  }
3078
3079  QualType T = VD->getType().getNonReferenceType();
3080  if (ParamType->isPointerType()) {
3081    // When the non-type template parameter is a pointer, take the
3082    // address of the declaration.
3083    OwningExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc);
3084    if (RefExpr.isInvalid())
3085      return ExprError();
3086
3087    if (T->isFunctionType() || T->isArrayType()) {
3088      // Decay functions and arrays.
3089      Expr *RefE = (Expr *)RefExpr.get();
3090      DefaultFunctionArrayConversion(RefE);
3091      if (RefE != RefExpr.get()) {
3092        RefExpr.release();
3093        RefExpr = Owned(RefE);
3094      }
3095
3096      return move(RefExpr);
3097    }
3098
3099    // Take the address of everything else
3100    return CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr));
3101  }
3102
3103  // If the non-type template parameter has reference type, qualify the
3104  // resulting declaration reference with the extra qualifiers on the
3105  // type that the reference refers to.
3106  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>())
3107    T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers());
3108
3109  return BuildDeclRefExpr(VD, T, Loc);
3110}
3111
3112/// \brief Construct a new expression that refers to the given
3113/// integral template argument with the given source-location
3114/// information.
3115///
3116/// This routine takes care of the mapping from an integral template
3117/// argument (which may have any integral type) to the appropriate
3118/// literal value.
3119Sema::OwningExprResult
3120Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3121                                                  SourceLocation Loc) {
3122  assert(Arg.getKind() == TemplateArgument::Integral &&
3123         "Operation is only value for integral template arguments");
3124  QualType T = Arg.getIntegralType();
3125  if (T->isCharType() || T->isWideCharType())
3126    return Owned(new (Context) CharacterLiteral(
3127                                             Arg.getAsIntegral()->getZExtValue(),
3128                                             T->isWideCharType(),
3129                                             T,
3130                                             Loc));
3131  if (T->isBooleanType())
3132    return Owned(new (Context) CXXBoolLiteralExpr(
3133                                            Arg.getAsIntegral()->getBoolValue(),
3134                                            T,
3135                                            Loc));
3136
3137  return Owned(new (Context) IntegerLiteral(*Arg.getAsIntegral(), T, Loc));
3138}
3139
3140
3141/// \brief Determine whether the given template parameter lists are
3142/// equivalent.
3143///
3144/// \param New  The new template parameter list, typically written in the
3145/// source code as part of a new template declaration.
3146///
3147/// \param Old  The old template parameter list, typically found via
3148/// name lookup of the template declared with this template parameter
3149/// list.
3150///
3151/// \param Complain  If true, this routine will produce a diagnostic if
3152/// the template parameter lists are not equivalent.
3153///
3154/// \param Kind describes how we are to match the template parameter lists.
3155///
3156/// \param TemplateArgLoc If this source location is valid, then we
3157/// are actually checking the template parameter list of a template
3158/// argument (New) against the template parameter list of its
3159/// corresponding template template parameter (Old). We produce
3160/// slightly different diagnostics in this scenario.
3161///
3162/// \returns True if the template parameter lists are equal, false
3163/// otherwise.
3164bool
3165Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3166                                     TemplateParameterList *Old,
3167                                     bool Complain,
3168                                     TemplateParameterListEqualKind Kind,
3169                                     SourceLocation TemplateArgLoc) {
3170  if (Old->size() != New->size()) {
3171    if (Complain) {
3172      unsigned NextDiag = diag::err_template_param_list_different_arity;
3173      if (TemplateArgLoc.isValid()) {
3174        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3175        NextDiag = diag::note_template_param_list_different_arity;
3176      }
3177      Diag(New->getTemplateLoc(), NextDiag)
3178          << (New->size() > Old->size())
3179          << (Kind != TPL_TemplateMatch)
3180          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3181      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3182        << (Kind != TPL_TemplateMatch)
3183        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3184    }
3185
3186    return false;
3187  }
3188
3189  for (TemplateParameterList::iterator OldParm = Old->begin(),
3190         OldParmEnd = Old->end(), NewParm = New->begin();
3191       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
3192    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
3193      if (Complain) {
3194        unsigned NextDiag = diag::err_template_param_different_kind;
3195        if (TemplateArgLoc.isValid()) {
3196          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3197          NextDiag = diag::note_template_param_different_kind;
3198        }
3199        Diag((*NewParm)->getLocation(), NextDiag)
3200          << (Kind != TPL_TemplateMatch);
3201        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
3202          << (Kind != TPL_TemplateMatch);
3203      }
3204      return false;
3205    }
3206
3207    if (TemplateTypeParmDecl *OldTTP
3208                                  = dyn_cast<TemplateTypeParmDecl>(*OldParm)) {
3209      // Template type parameters are equivalent if either both are template
3210      // type parameter packs or neither are (since we know we're at the same
3211      // index).
3212      TemplateTypeParmDecl *NewTTP = cast<TemplateTypeParmDecl>(*NewParm);
3213      if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) {
3214        // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that
3215        // allow one to match a template parameter pack in the template
3216        // parameter list of a template template parameter to one or more
3217        // template parameters in the template parameter list of the
3218        // corresponding template template argument.
3219        if (Complain) {
3220          unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3221          if (TemplateArgLoc.isValid()) {
3222            Diag(TemplateArgLoc,
3223                 diag::err_template_arg_template_params_mismatch);
3224            NextDiag = diag::note_template_parameter_pack_non_pack;
3225          }
3226          Diag(NewTTP->getLocation(), NextDiag)
3227            << 0 << NewTTP->isParameterPack();
3228          Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here)
3229            << 0 << OldTTP->isParameterPack();
3230        }
3231        return false;
3232      }
3233    } else if (NonTypeTemplateParmDecl *OldNTTP
3234                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
3235      // The types of non-type template parameters must agree.
3236      NonTypeTemplateParmDecl *NewNTTP
3237        = cast<NonTypeTemplateParmDecl>(*NewParm);
3238
3239      // If we are matching a template template argument to a template
3240      // template parameter and one of the non-type template parameter types
3241      // is dependent, then we must wait until template instantiation time
3242      // to actually compare the arguments.
3243      if (Kind == TPL_TemplateTemplateArgumentMatch &&
3244          (OldNTTP->getType()->isDependentType() ||
3245           NewNTTP->getType()->isDependentType()))
3246        continue;
3247
3248      if (Context.getCanonicalType(OldNTTP->getType()) !=
3249            Context.getCanonicalType(NewNTTP->getType())) {
3250        if (Complain) {
3251          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3252          if (TemplateArgLoc.isValid()) {
3253            Diag(TemplateArgLoc,
3254                 diag::err_template_arg_template_params_mismatch);
3255            NextDiag = diag::note_template_nontype_parm_different_type;
3256          }
3257          Diag(NewNTTP->getLocation(), NextDiag)
3258            << NewNTTP->getType()
3259            << (Kind != TPL_TemplateMatch);
3260          Diag(OldNTTP->getLocation(),
3261               diag::note_template_nontype_parm_prev_declaration)
3262            << OldNTTP->getType();
3263        }
3264        return false;
3265      }
3266    } else {
3267      // The template parameter lists of template template
3268      // parameters must agree.
3269      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
3270             "Only template template parameters handled here");
3271      TemplateTemplateParmDecl *OldTTP
3272        = cast<TemplateTemplateParmDecl>(*OldParm);
3273      TemplateTemplateParmDecl *NewTTP
3274        = cast<TemplateTemplateParmDecl>(*NewParm);
3275      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3276                                          OldTTP->getTemplateParameters(),
3277                                          Complain,
3278              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
3279                                          TemplateArgLoc))
3280        return false;
3281    }
3282  }
3283
3284  return true;
3285}
3286
3287/// \brief Check whether a template can be declared within this scope.
3288///
3289/// If the template declaration is valid in this scope, returns
3290/// false. Otherwise, issues a diagnostic and returns true.
3291bool
3292Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3293  // Find the nearest enclosing declaration scope.
3294  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3295         (S->getFlags() & Scope::TemplateParamScope) != 0)
3296    S = S->getParent();
3297
3298  // C++ [temp]p2:
3299  //   A template-declaration can appear only as a namespace scope or
3300  //   class scope declaration.
3301  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3302  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3303      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3304    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3305             << TemplateParams->getSourceRange();
3306
3307  while (Ctx && isa<LinkageSpecDecl>(Ctx))
3308    Ctx = Ctx->getParent();
3309
3310  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3311    return false;
3312
3313  return Diag(TemplateParams->getTemplateLoc(),
3314              diag::err_template_outside_namespace_or_class_scope)
3315    << TemplateParams->getSourceRange();
3316}
3317
3318/// \brief Determine what kind of template specialization the given declaration
3319/// is.
3320static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3321  if (!D)
3322    return TSK_Undeclared;
3323
3324  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3325    return Record->getTemplateSpecializationKind();
3326  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3327    return Function->getTemplateSpecializationKind();
3328  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3329    return Var->getTemplateSpecializationKind();
3330
3331  return TSK_Undeclared;
3332}
3333
3334/// \brief Check whether a specialization is well-formed in the current
3335/// context.
3336///
3337/// This routine determines whether a template specialization can be declared
3338/// in the current context (C++ [temp.expl.spec]p2).
3339///
3340/// \param S the semantic analysis object for which this check is being
3341/// performed.
3342///
3343/// \param Specialized the entity being specialized or instantiated, which
3344/// may be a kind of template (class template, function template, etc.) or
3345/// a member of a class template (member function, static data member,
3346/// member class).
3347///
3348/// \param PrevDecl the previous declaration of this entity, if any.
3349///
3350/// \param Loc the location of the explicit specialization or instantiation of
3351/// this entity.
3352///
3353/// \param IsPartialSpecialization whether this is a partial specialization of
3354/// a class template.
3355///
3356/// \returns true if there was an error that we cannot recover from, false
3357/// otherwise.
3358static bool CheckTemplateSpecializationScope(Sema &S,
3359                                             NamedDecl *Specialized,
3360                                             NamedDecl *PrevDecl,
3361                                             SourceLocation Loc,
3362                                             bool IsPartialSpecialization) {
3363  // Keep these "kind" numbers in sync with the %select statements in the
3364  // various diagnostics emitted by this routine.
3365  int EntityKind = 0;
3366  bool isTemplateSpecialization = false;
3367  if (isa<ClassTemplateDecl>(Specialized)) {
3368    EntityKind = IsPartialSpecialization? 1 : 0;
3369    isTemplateSpecialization = true;
3370  } else if (isa<FunctionTemplateDecl>(Specialized)) {
3371    EntityKind = 2;
3372    isTemplateSpecialization = true;
3373  } else if (isa<CXXMethodDecl>(Specialized))
3374    EntityKind = 3;
3375  else if (isa<VarDecl>(Specialized))
3376    EntityKind = 4;
3377  else if (isa<RecordDecl>(Specialized))
3378    EntityKind = 5;
3379  else {
3380    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3381    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3382    return true;
3383  }
3384
3385  // C++ [temp.expl.spec]p2:
3386  //   An explicit specialization shall be declared in the namespace
3387  //   of which the template is a member, or, for member templates, in
3388  //   the namespace of which the enclosing class or enclosing class
3389  //   template is a member. An explicit specialization of a member
3390  //   function, member class or static data member of a class
3391  //   template shall be declared in the namespace of which the class
3392  //   template is a member. Such a declaration may also be a
3393  //   definition. If the declaration is not a definition, the
3394  //   specialization may be defined later in the name- space in which
3395  //   the explicit specialization was declared, or in a namespace
3396  //   that encloses the one in which the explicit specialization was
3397  //   declared.
3398  if (S.CurContext->getLookupContext()->isFunctionOrMethod()) {
3399    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3400      << Specialized;
3401    return true;
3402  }
3403
3404  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3405    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3406      << Specialized;
3407    return true;
3408  }
3409
3410  // C++ [temp.class.spec]p6:
3411  //   A class template partial specialization may be declared or redeclared
3412  //   in any namespace scope in which its definition may be defined (14.5.1
3413  //   and 14.5.2).
3414  bool ComplainedAboutScope = false;
3415  DeclContext *SpecializedContext
3416    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3417  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3418  if ((!PrevDecl ||
3419       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3420       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3421    // There is no prior declaration of this entity, so this
3422    // specialization must be in the same context as the template
3423    // itself.
3424    if (!DC->Equals(SpecializedContext)) {
3425      if (isa<TranslationUnitDecl>(SpecializedContext))
3426        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
3427        << EntityKind << Specialized;
3428      else if (isa<NamespaceDecl>(SpecializedContext))
3429        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope)
3430        << EntityKind << Specialized
3431        << cast<NamedDecl>(SpecializedContext);
3432
3433      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3434      ComplainedAboutScope = true;
3435    }
3436  }
3437
3438  // Make sure that this redeclaration (or definition) occurs in an enclosing
3439  // namespace.
3440  // Note that HandleDeclarator() performs this check for explicit
3441  // specializations of function templates, static data members, and member
3442  // functions, so we skip the check here for those kinds of entities.
3443  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3444  // Should we refactor that check, so that it occurs later?
3445  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3446      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3447        isa<FunctionDecl>(Specialized))) {
3448    if (isa<TranslationUnitDecl>(SpecializedContext))
3449      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3450        << EntityKind << Specialized;
3451    else if (isa<NamespaceDecl>(SpecializedContext))
3452      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3453        << EntityKind << Specialized
3454        << cast<NamedDecl>(SpecializedContext);
3455
3456    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3457  }
3458
3459  // FIXME: check for specialization-after-instantiation errors and such.
3460
3461  return false;
3462}
3463
3464/// \brief Check the non-type template arguments of a class template
3465/// partial specialization according to C++ [temp.class.spec]p9.
3466///
3467/// \param TemplateParams the template parameters of the primary class
3468/// template.
3469///
3470/// \param TemplateArg the template arguments of the class template
3471/// partial specialization.
3472///
3473/// \param MirrorsPrimaryTemplate will be set true if the class
3474/// template partial specialization arguments are identical to the
3475/// implicit template arguments of the primary template. This is not
3476/// necessarily an error (C++0x), and it is left to the caller to diagnose
3477/// this condition when it is an error.
3478///
3479/// \returns true if there was an error, false otherwise.
3480bool Sema::CheckClassTemplatePartialSpecializationArgs(
3481                                        TemplateParameterList *TemplateParams,
3482                             const TemplateArgumentListBuilder &TemplateArgs,
3483                                        bool &MirrorsPrimaryTemplate) {
3484  // FIXME: the interface to this function will have to change to
3485  // accommodate variadic templates.
3486  MirrorsPrimaryTemplate = true;
3487
3488  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
3489
3490  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3491    // Determine whether the template argument list of the partial
3492    // specialization is identical to the implicit argument list of
3493    // the primary template. The caller may need to diagnostic this as
3494    // an error per C++ [temp.class.spec]p9b3.
3495    if (MirrorsPrimaryTemplate) {
3496      if (TemplateTypeParmDecl *TTP
3497            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3498        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3499              Context.getCanonicalType(ArgList[I].getAsType()))
3500          MirrorsPrimaryTemplate = false;
3501      } else if (TemplateTemplateParmDecl *TTP
3502                   = dyn_cast<TemplateTemplateParmDecl>(
3503                                                 TemplateParams->getParam(I))) {
3504        TemplateName Name = ArgList[I].getAsTemplate();
3505        TemplateTemplateParmDecl *ArgDecl
3506          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3507        if (!ArgDecl ||
3508            ArgDecl->getIndex() != TTP->getIndex() ||
3509            ArgDecl->getDepth() != TTP->getDepth())
3510          MirrorsPrimaryTemplate = false;
3511      }
3512    }
3513
3514    NonTypeTemplateParmDecl *Param
3515      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3516    if (!Param) {
3517      continue;
3518    }
3519
3520    Expr *ArgExpr = ArgList[I].getAsExpr();
3521    if (!ArgExpr) {
3522      MirrorsPrimaryTemplate = false;
3523      continue;
3524    }
3525
3526    // C++ [temp.class.spec]p8:
3527    //   A non-type argument is non-specialized if it is the name of a
3528    //   non-type parameter. All other non-type arguments are
3529    //   specialized.
3530    //
3531    // Below, we check the two conditions that only apply to
3532    // specialized non-type arguments, so skip any non-specialized
3533    // arguments.
3534    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3535      if (NonTypeTemplateParmDecl *NTTP
3536            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3537        if (MirrorsPrimaryTemplate &&
3538            (Param->getIndex() != NTTP->getIndex() ||
3539             Param->getDepth() != NTTP->getDepth()))
3540          MirrorsPrimaryTemplate = false;
3541
3542        continue;
3543      }
3544
3545    // C++ [temp.class.spec]p9:
3546    //   Within the argument list of a class template partial
3547    //   specialization, the following restrictions apply:
3548    //     -- A partially specialized non-type argument expression
3549    //        shall not involve a template parameter of the partial
3550    //        specialization except when the argument expression is a
3551    //        simple identifier.
3552    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3553      Diag(ArgExpr->getLocStart(),
3554           diag::err_dependent_non_type_arg_in_partial_spec)
3555        << ArgExpr->getSourceRange();
3556      return true;
3557    }
3558
3559    //     -- The type of a template parameter corresponding to a
3560    //        specialized non-type argument shall not be dependent on a
3561    //        parameter of the specialization.
3562    if (Param->getType()->isDependentType()) {
3563      Diag(ArgExpr->getLocStart(),
3564           diag::err_dependent_typed_non_type_arg_in_partial_spec)
3565        << Param->getType()
3566        << ArgExpr->getSourceRange();
3567      Diag(Param->getLocation(), diag::note_template_param_here);
3568      return true;
3569    }
3570
3571    MirrorsPrimaryTemplate = false;
3572  }
3573
3574  return false;
3575}
3576
3577/// \brief Retrieve the previous declaration of the given declaration.
3578static NamedDecl *getPreviousDecl(NamedDecl *ND) {
3579  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
3580    return VD->getPreviousDeclaration();
3581  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
3582    return FD->getPreviousDeclaration();
3583  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
3584    return TD->getPreviousDeclaration();
3585  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
3586    return TD->getPreviousDeclaration();
3587  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
3588    return FTD->getPreviousDeclaration();
3589  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
3590    return CTD->getPreviousDeclaration();
3591  return 0;
3592}
3593
3594Sema::DeclResult
3595Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
3596                                       TagUseKind TUK,
3597                                       SourceLocation KWLoc,
3598                                       CXXScopeSpec &SS,
3599                                       TemplateTy TemplateD,
3600                                       SourceLocation TemplateNameLoc,
3601                                       SourceLocation LAngleLoc,
3602                                       ASTTemplateArgsPtr TemplateArgsIn,
3603                                       SourceLocation RAngleLoc,
3604                                       AttributeList *Attr,
3605                               MultiTemplateParamsArg TemplateParameterLists) {
3606  assert(TUK != TUK_Reference && "References are not specializations");
3607
3608  // Find the class template we're specializing
3609  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3610  ClassTemplateDecl *ClassTemplate
3611    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
3612
3613  if (!ClassTemplate) {
3614    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
3615      << (Name.getAsTemplateDecl() &&
3616          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
3617    return true;
3618  }
3619
3620  bool isExplicitSpecialization = false;
3621  bool isPartialSpecialization = false;
3622
3623  // Check the validity of the template headers that introduce this
3624  // template.
3625  // FIXME: We probably shouldn't complain about these headers for
3626  // friend declarations.
3627  bool Invalid = false;
3628  TemplateParameterList *TemplateParams
3629    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
3630                        (TemplateParameterList**)TemplateParameterLists.get(),
3631                                              TemplateParameterLists.size(),
3632                                              TUK == TUK_Friend,
3633                                              isExplicitSpecialization,
3634                                              Invalid);
3635  if (Invalid)
3636    return true;
3637
3638  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
3639  if (TemplateParams)
3640    --NumMatchedTemplateParamLists;
3641
3642  if (TemplateParams && TemplateParams->size() > 0) {
3643    isPartialSpecialization = true;
3644
3645    // C++ [temp.class.spec]p10:
3646    //   The template parameter list of a specialization shall not
3647    //   contain default template argument values.
3648    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3649      Decl *Param = TemplateParams->getParam(I);
3650      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
3651        if (TTP->hasDefaultArgument()) {
3652          Diag(TTP->getDefaultArgumentLoc(),
3653               diag::err_default_arg_in_partial_spec);
3654          TTP->removeDefaultArgument();
3655        }
3656      } else if (NonTypeTemplateParmDecl *NTTP
3657                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3658        if (Expr *DefArg = NTTP->getDefaultArgument()) {
3659          Diag(NTTP->getDefaultArgumentLoc(),
3660               diag::err_default_arg_in_partial_spec)
3661            << DefArg->getSourceRange();
3662          NTTP->removeDefaultArgument();
3663          DefArg->Destroy(Context);
3664        }
3665      } else {
3666        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
3667        if (TTP->hasDefaultArgument()) {
3668          Diag(TTP->getDefaultArgument().getLocation(),
3669               diag::err_default_arg_in_partial_spec)
3670            << TTP->getDefaultArgument().getSourceRange();
3671          TTP->removeDefaultArgument();
3672        }
3673      }
3674    }
3675  } else if (TemplateParams) {
3676    if (TUK == TUK_Friend)
3677      Diag(KWLoc, diag::err_template_spec_friend)
3678        << FixItHint::CreateRemoval(
3679                                SourceRange(TemplateParams->getTemplateLoc(),
3680                                            TemplateParams->getRAngleLoc()))
3681        << SourceRange(LAngleLoc, RAngleLoc);
3682    else
3683      isExplicitSpecialization = true;
3684  } else if (TUK != TUK_Friend) {
3685    Diag(KWLoc, diag::err_template_spec_needs_header)
3686      << FixItHint::CreateInsertion(KWLoc, "template<> ");
3687    isExplicitSpecialization = true;
3688  }
3689
3690  // Check that the specialization uses the same tag kind as the
3691  // original template.
3692  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
3693  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
3694  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3695                                    Kind, KWLoc,
3696                                    *ClassTemplate->getIdentifier())) {
3697    Diag(KWLoc, diag::err_use_with_wrong_tag)
3698      << ClassTemplate
3699      << FixItHint::CreateReplacement(KWLoc,
3700                            ClassTemplate->getTemplatedDecl()->getKindName());
3701    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3702         diag::note_previous_use);
3703    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3704  }
3705
3706  // Translate the parser's template argument list in our AST format.
3707  TemplateArgumentListInfo TemplateArgs;
3708  TemplateArgs.setLAngleLoc(LAngleLoc);
3709  TemplateArgs.setRAngleLoc(RAngleLoc);
3710  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3711
3712  // Check that the template argument list is well-formed for this
3713  // template.
3714  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3715                                        TemplateArgs.size());
3716  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
3717                                TemplateArgs, false, Converted))
3718    return true;
3719
3720  assert((Converted.structuredSize() ==
3721            ClassTemplate->getTemplateParameters()->size()) &&
3722         "Converted template argument list is too short!");
3723
3724  // Find the class template (partial) specialization declaration that
3725  // corresponds to these arguments.
3726  if (isPartialSpecialization) {
3727    bool MirrorsPrimaryTemplate;
3728    if (CheckClassTemplatePartialSpecializationArgs(
3729                                         ClassTemplate->getTemplateParameters(),
3730                                         Converted, MirrorsPrimaryTemplate))
3731      return true;
3732
3733    if (MirrorsPrimaryTemplate) {
3734      // C++ [temp.class.spec]p9b3:
3735      //
3736      //   -- The argument list of the specialization shall not be identical
3737      //      to the implicit argument list of the primary template.
3738      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3739        << (TUK == TUK_Definition)
3740        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
3741      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
3742                                ClassTemplate->getIdentifier(),
3743                                TemplateNameLoc,
3744                                Attr,
3745                                TemplateParams,
3746                                AS_none);
3747    }
3748
3749    // FIXME: Diagnose friend partial specializations
3750
3751    if (!Name.isDependent() &&
3752        !TemplateSpecializationType::anyDependentTemplateArguments(
3753                                             TemplateArgs.getArgumentArray(),
3754                                                         TemplateArgs.size())) {
3755      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
3756        << ClassTemplate->getDeclName();
3757      isPartialSpecialization = false;
3758    }
3759  }
3760
3761  void *InsertPos = 0;
3762  ClassTemplateSpecializationDecl *PrevDecl = 0;
3763
3764  if (isPartialSpecialization)
3765    // FIXME: Template parameter list matters, too
3766    PrevDecl
3767      = ClassTemplate->findPartialSpecialization(Converted.getFlatArguments(),
3768                                                 Converted.flatSize(),
3769                                                 InsertPos);
3770  else
3771    PrevDecl
3772      = ClassTemplate->findSpecialization(Converted.getFlatArguments(),
3773                                          Converted.flatSize(), InsertPos);
3774
3775  ClassTemplateSpecializationDecl *Specialization = 0;
3776
3777  // Check whether we can declare a class template specialization in
3778  // the current scope.
3779  if (TUK != TUK_Friend &&
3780      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
3781                                       TemplateNameLoc,
3782                                       isPartialSpecialization))
3783    return true;
3784
3785  // The canonical type
3786  QualType CanonType;
3787  if (PrevDecl &&
3788      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
3789               TUK == TUK_Friend)) {
3790    // Since the only prior class template specialization with these
3791    // arguments was referenced but not declared, or we're only
3792    // referencing this specialization as a friend, reuse that
3793    // declaration node as our own, updating its source location to
3794    // reflect our new declaration.
3795    Specialization = PrevDecl;
3796    Specialization->setLocation(TemplateNameLoc);
3797    PrevDecl = 0;
3798    CanonType = Context.getTypeDeclType(Specialization);
3799  } else if (isPartialSpecialization) {
3800    // Build the canonical type that describes the converted template
3801    // arguments of the class template partial specialization.
3802    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
3803    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
3804                                                  Converted.getFlatArguments(),
3805                                                  Converted.flatSize());
3806
3807    // Create a new class template partial specialization declaration node.
3808    ClassTemplatePartialSpecializationDecl *PrevPartial
3809      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
3810    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
3811                            : ClassTemplate->getNextPartialSpecSequenceNumber();
3812    ClassTemplatePartialSpecializationDecl *Partial
3813      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
3814                                             ClassTemplate->getDeclContext(),
3815                                                       TemplateNameLoc,
3816                                                       TemplateParams,
3817                                                       ClassTemplate,
3818                                                       Converted,
3819                                                       TemplateArgs,
3820                                                       CanonType,
3821                                                       PrevPartial,
3822                                                       SequenceNumber);
3823    SetNestedNameSpecifier(Partial, SS);
3824    if (NumMatchedTemplateParamLists > 0) {
3825      Partial->setTemplateParameterListsInfo(Context,
3826                                             NumMatchedTemplateParamLists,
3827                    (TemplateParameterList**) TemplateParameterLists.release());
3828    }
3829
3830    if (!PrevPartial)
3831      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
3832    Specialization = Partial;
3833
3834    // If we are providing an explicit specialization of a member class
3835    // template specialization, make a note of that.
3836    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3837      PrevPartial->setMemberSpecialization();
3838
3839    // Check that all of the template parameters of the class template
3840    // partial specialization are deducible from the template
3841    // arguments. If not, this class template partial specialization
3842    // will never be used.
3843    llvm::SmallVector<bool, 8> DeducibleParams;
3844    DeducibleParams.resize(TemplateParams->size());
3845    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3846                               TemplateParams->getDepth(),
3847                               DeducibleParams);
3848    unsigned NumNonDeducible = 0;
3849    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
3850      if (!DeducibleParams[I])
3851        ++NumNonDeducible;
3852
3853    if (NumNonDeducible) {
3854      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
3855        << (NumNonDeducible > 1)
3856        << SourceRange(TemplateNameLoc, RAngleLoc);
3857      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3858        if (!DeducibleParams[I]) {
3859          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3860          if (Param->getDeclName())
3861            Diag(Param->getLocation(),
3862                 diag::note_partial_spec_unused_parameter)
3863              << Param->getDeclName();
3864          else
3865            Diag(Param->getLocation(),
3866                 diag::note_partial_spec_unused_parameter)
3867              << std::string("<anonymous>");
3868        }
3869      }
3870    }
3871  } else {
3872    // Create a new class template specialization declaration node for
3873    // this explicit specialization or friend declaration.
3874    Specialization
3875      = ClassTemplateSpecializationDecl::Create(Context, Kind,
3876                                             ClassTemplate->getDeclContext(),
3877                                                TemplateNameLoc,
3878                                                ClassTemplate,
3879                                                Converted,
3880                                                PrevDecl);
3881    SetNestedNameSpecifier(Specialization, SS);
3882    if (NumMatchedTemplateParamLists > 0) {
3883      Specialization->setTemplateParameterListsInfo(Context,
3884                                                  NumMatchedTemplateParamLists,
3885                    (TemplateParameterList**) TemplateParameterLists.release());
3886    }
3887
3888    if (!PrevDecl)
3889      ClassTemplate->AddSpecialization(Specialization, InsertPos);
3890
3891    CanonType = Context.getTypeDeclType(Specialization);
3892  }
3893
3894  // C++ [temp.expl.spec]p6:
3895  //   If a template, a member template or the member of a class template is
3896  //   explicitly specialized then that specialization shall be declared
3897  //   before the first use of that specialization that would cause an implicit
3898  //   instantiation to take place, in every translation unit in which such a
3899  //   use occurs; no diagnostic is required.
3900  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3901    bool Okay = false;
3902    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
3903      // Is there any previous explicit specialization declaration?
3904      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
3905        Okay = true;
3906        break;
3907      }
3908    }
3909
3910    if (!Okay) {
3911      SourceRange Range(TemplateNameLoc, RAngleLoc);
3912      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3913        << Context.getTypeDeclType(Specialization) << Range;
3914
3915      Diag(PrevDecl->getPointOfInstantiation(),
3916           diag::note_instantiation_required_here)
3917        << (PrevDecl->getTemplateSpecializationKind()
3918                                                != TSK_ImplicitInstantiation);
3919      return true;
3920    }
3921  }
3922
3923  // If this is not a friend, note that this is an explicit specialization.
3924  if (TUK != TUK_Friend)
3925    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3926
3927  // Check that this isn't a redefinition of this specialization.
3928  if (TUK == TUK_Definition) {
3929    if (RecordDecl *Def = Specialization->getDefinition()) {
3930      SourceRange Range(TemplateNameLoc, RAngleLoc);
3931      Diag(TemplateNameLoc, diag::err_redefinition)
3932        << Context.getTypeDeclType(Specialization) << Range;
3933      Diag(Def->getLocation(), diag::note_previous_definition);
3934      Specialization->setInvalidDecl();
3935      return true;
3936    }
3937  }
3938
3939  // Build the fully-sugared type for this class template
3940  // specialization as the user wrote in the specialization
3941  // itself. This means that we'll pretty-print the type retrieved
3942  // from the specialization's declaration the way that the user
3943  // actually wrote the specialization, rather than formatting the
3944  // name based on the "canonical" representation used to store the
3945  // template arguments in the specialization.
3946  TypeSourceInfo *WrittenTy
3947    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
3948                                                TemplateArgs, CanonType);
3949  if (TUK != TUK_Friend) {
3950    Specialization->setTypeAsWritten(WrittenTy);
3951    if (TemplateParams)
3952      Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc());
3953  }
3954  TemplateArgsIn.release();
3955
3956  // C++ [temp.expl.spec]p9:
3957  //   A template explicit specialization is in the scope of the
3958  //   namespace in which the template was defined.
3959  //
3960  // We actually implement this paragraph where we set the semantic
3961  // context (in the creation of the ClassTemplateSpecializationDecl),
3962  // but we also maintain the lexical context where the actual
3963  // definition occurs.
3964  Specialization->setLexicalDeclContext(CurContext);
3965
3966  // We may be starting the definition of this specialization.
3967  if (TUK == TUK_Definition)
3968    Specialization->startDefinition();
3969
3970  if (TUK == TUK_Friend) {
3971    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
3972                                            TemplateNameLoc,
3973                                            WrittenTy,
3974                                            /*FIXME:*/KWLoc);
3975    Friend->setAccess(AS_public);
3976    CurContext->addDecl(Friend);
3977  } else {
3978    // Add the specialization into its lexical context, so that it can
3979    // be seen when iterating through the list of declarations in that
3980    // context. However, specializations are not found by name lookup.
3981    CurContext->addDecl(Specialization);
3982  }
3983  return DeclPtrTy::make(Specialization);
3984}
3985
3986Sema::DeclPtrTy
3987Sema::ActOnTemplateDeclarator(Scope *S,
3988                              MultiTemplateParamsArg TemplateParameterLists,
3989                              Declarator &D) {
3990  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
3991}
3992
3993Sema::DeclPtrTy
3994Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
3995                               MultiTemplateParamsArg TemplateParameterLists,
3996                                      Declarator &D) {
3997  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3998  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3999         "Not a function declarator!");
4000  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4001
4002  if (FTI.hasPrototype) {
4003    // FIXME: Diagnose arguments without names in C.
4004  }
4005
4006  Scope *ParentScope = FnBodyScope->getParent();
4007
4008  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4009                                  move(TemplateParameterLists),
4010                                  /*IsFunctionDefinition=*/true);
4011  if (FunctionTemplateDecl *FunctionTemplate
4012        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
4013    return ActOnStartOfFunctionDef(FnBodyScope,
4014                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
4015  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
4016    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
4017  return DeclPtrTy();
4018}
4019
4020/// \brief Strips various properties off an implicit instantiation
4021/// that has just been explicitly specialized.
4022static void StripImplicitInstantiation(NamedDecl *D) {
4023  D->invalidateAttrs();
4024
4025  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4026    FD->setInlineSpecified(false);
4027  }
4028}
4029
4030/// \brief Diagnose cases where we have an explicit template specialization
4031/// before/after an explicit template instantiation, producing diagnostics
4032/// for those cases where they are required and determining whether the
4033/// new specialization/instantiation will have any effect.
4034///
4035/// \param NewLoc the location of the new explicit specialization or
4036/// instantiation.
4037///
4038/// \param NewTSK the kind of the new explicit specialization or instantiation.
4039///
4040/// \param PrevDecl the previous declaration of the entity.
4041///
4042/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4043///
4044/// \param PrevPointOfInstantiation if valid, indicates where the previus
4045/// declaration was instantiated (either implicitly or explicitly).
4046///
4047/// \param HasNoEffect will be set to true to indicate that the new
4048/// specialization or instantiation has no effect and should be ignored.
4049///
4050/// \returns true if there was an error that should prevent the introduction of
4051/// the new declaration into the AST, false otherwise.
4052bool
4053Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4054                                             TemplateSpecializationKind NewTSK,
4055                                             NamedDecl *PrevDecl,
4056                                             TemplateSpecializationKind PrevTSK,
4057                                        SourceLocation PrevPointOfInstantiation,
4058                                             bool &HasNoEffect) {
4059  HasNoEffect = false;
4060
4061  switch (NewTSK) {
4062  case TSK_Undeclared:
4063  case TSK_ImplicitInstantiation:
4064    assert(false && "Don't check implicit instantiations here");
4065    return false;
4066
4067  case TSK_ExplicitSpecialization:
4068    switch (PrevTSK) {
4069    case TSK_Undeclared:
4070    case TSK_ExplicitSpecialization:
4071      // Okay, we're just specializing something that is either already
4072      // explicitly specialized or has merely been mentioned without any
4073      // instantiation.
4074      return false;
4075
4076    case TSK_ImplicitInstantiation:
4077      if (PrevPointOfInstantiation.isInvalid()) {
4078        // The declaration itself has not actually been instantiated, so it is
4079        // still okay to specialize it.
4080        StripImplicitInstantiation(PrevDecl);
4081        return false;
4082      }
4083      // Fall through
4084
4085    case TSK_ExplicitInstantiationDeclaration:
4086    case TSK_ExplicitInstantiationDefinition:
4087      assert((PrevTSK == TSK_ImplicitInstantiation ||
4088              PrevPointOfInstantiation.isValid()) &&
4089             "Explicit instantiation without point of instantiation?");
4090
4091      // C++ [temp.expl.spec]p6:
4092      //   If a template, a member template or the member of a class template
4093      //   is explicitly specialized then that specialization shall be declared
4094      //   before the first use of that specialization that would cause an
4095      //   implicit instantiation to take place, in every translation unit in
4096      //   which such a use occurs; no diagnostic is required.
4097      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4098        // Is there any previous explicit specialization declaration?
4099        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4100          return false;
4101      }
4102
4103      Diag(NewLoc, diag::err_specialization_after_instantiation)
4104        << PrevDecl;
4105      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4106        << (PrevTSK != TSK_ImplicitInstantiation);
4107
4108      return true;
4109    }
4110    break;
4111
4112  case TSK_ExplicitInstantiationDeclaration:
4113    switch (PrevTSK) {
4114    case TSK_ExplicitInstantiationDeclaration:
4115      // This explicit instantiation declaration is redundant (that's okay).
4116      HasNoEffect = true;
4117      return false;
4118
4119    case TSK_Undeclared:
4120    case TSK_ImplicitInstantiation:
4121      // We're explicitly instantiating something that may have already been
4122      // implicitly instantiated; that's fine.
4123      return false;
4124
4125    case TSK_ExplicitSpecialization:
4126      // C++0x [temp.explicit]p4:
4127      //   For a given set of template parameters, if an explicit instantiation
4128      //   of a template appears after a declaration of an explicit
4129      //   specialization for that template, the explicit instantiation has no
4130      //   effect.
4131      HasNoEffect = true;
4132      return false;
4133
4134    case TSK_ExplicitInstantiationDefinition:
4135      // C++0x [temp.explicit]p10:
4136      //   If an entity is the subject of both an explicit instantiation
4137      //   declaration and an explicit instantiation definition in the same
4138      //   translation unit, the definition shall follow the declaration.
4139      Diag(NewLoc,
4140           diag::err_explicit_instantiation_declaration_after_definition);
4141      Diag(PrevPointOfInstantiation,
4142           diag::note_explicit_instantiation_definition_here);
4143      assert(PrevPointOfInstantiation.isValid() &&
4144             "Explicit instantiation without point of instantiation?");
4145      HasNoEffect = true;
4146      return false;
4147    }
4148    break;
4149
4150  case TSK_ExplicitInstantiationDefinition:
4151    switch (PrevTSK) {
4152    case TSK_Undeclared:
4153    case TSK_ImplicitInstantiation:
4154      // We're explicitly instantiating something that may have already been
4155      // implicitly instantiated; that's fine.
4156      return false;
4157
4158    case TSK_ExplicitSpecialization:
4159      // C++ DR 259, C++0x [temp.explicit]p4:
4160      //   For a given set of template parameters, if an explicit
4161      //   instantiation of a template appears after a declaration of
4162      //   an explicit specialization for that template, the explicit
4163      //   instantiation has no effect.
4164      //
4165      // In C++98/03 mode, we only give an extension warning here, because it
4166      // is not harmful to try to explicitly instantiate something that
4167      // has been explicitly specialized.
4168      if (!getLangOptions().CPlusPlus0x) {
4169        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4170          << PrevDecl;
4171        Diag(PrevDecl->getLocation(),
4172             diag::note_previous_template_specialization);
4173      }
4174      HasNoEffect = true;
4175      return false;
4176
4177    case TSK_ExplicitInstantiationDeclaration:
4178      // We're explicity instantiating a definition for something for which we
4179      // were previously asked to suppress instantiations. That's fine.
4180      return false;
4181
4182    case TSK_ExplicitInstantiationDefinition:
4183      // C++0x [temp.spec]p5:
4184      //   For a given template and a given set of template-arguments,
4185      //     - an explicit instantiation definition shall appear at most once
4186      //       in a program,
4187      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4188        << PrevDecl;
4189      Diag(PrevPointOfInstantiation,
4190           diag::note_previous_explicit_instantiation);
4191      HasNoEffect = true;
4192      return false;
4193    }
4194    break;
4195  }
4196
4197  assert(false && "Missing specialization/instantiation case?");
4198
4199  return false;
4200}
4201
4202/// \brief Perform semantic analysis for the given dependent function
4203/// template specialization.  The only possible way to get a dependent
4204/// function template specialization is with a friend declaration,
4205/// like so:
4206///
4207///   template <class T> void foo(T);
4208///   template <class T> class A {
4209///     friend void foo<>(T);
4210///   };
4211///
4212/// There really isn't any useful analysis we can do here, so we
4213/// just store the information.
4214bool
4215Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
4216                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
4217                                                   LookupResult &Previous) {
4218  // Remove anything from Previous that isn't a function template in
4219  // the correct context.
4220  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
4221  LookupResult::Filter F = Previous.makeFilter();
4222  while (F.hasNext()) {
4223    NamedDecl *D = F.next()->getUnderlyingDecl();
4224    if (!isa<FunctionTemplateDecl>(D) ||
4225        !FDLookupContext->Equals(D->getDeclContext()->getLookupContext()))
4226      F.erase();
4227  }
4228  F.done();
4229
4230  // Should this be diagnosed here?
4231  if (Previous.empty()) return true;
4232
4233  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
4234                                         ExplicitTemplateArgs);
4235  return false;
4236}
4237
4238/// \brief Perform semantic analysis for the given function template
4239/// specialization.
4240///
4241/// This routine performs all of the semantic analysis required for an
4242/// explicit function template specialization. On successful completion,
4243/// the function declaration \p FD will become a function template
4244/// specialization.
4245///
4246/// \param FD the function declaration, which will be updated to become a
4247/// function template specialization.
4248///
4249/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4250/// if any. Note that this may be valid info even when 0 arguments are
4251/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
4252/// as it anyway contains info on the angle brackets locations.
4253///
4254/// \param PrevDecl the set of declarations that may be specialized by
4255/// this function specialization.
4256bool
4257Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4258                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
4259                                          LookupResult &Previous) {
4260  // The set of function template specializations that could match this
4261  // explicit function template specialization.
4262  UnresolvedSet<8> Candidates;
4263
4264  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
4265  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4266         I != E; ++I) {
4267    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4268    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4269      // Only consider templates found within the same semantic lookup scope as
4270      // FD.
4271      if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext()))
4272        continue;
4273
4274      // C++ [temp.expl.spec]p11:
4275      //   A trailing template-argument can be left unspecified in the
4276      //   template-id naming an explicit function template specialization
4277      //   provided it can be deduced from the function argument type.
4278      // Perform template argument deduction to determine whether we may be
4279      // specializing this template.
4280      // FIXME: It is somewhat wasteful to build
4281      TemplateDeductionInfo Info(Context, FD->getLocation());
4282      FunctionDecl *Specialization = 0;
4283      if (TemplateDeductionResult TDK
4284            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4285                                      FD->getType(),
4286                                      Specialization,
4287                                      Info)) {
4288        // FIXME: Template argument deduction failed; record why it failed, so
4289        // that we can provide nifty diagnostics.
4290        (void)TDK;
4291        continue;
4292      }
4293
4294      // Record this candidate.
4295      Candidates.addDecl(Specialization, I.getAccess());
4296    }
4297  }
4298
4299  // Find the most specialized function template.
4300  UnresolvedSetIterator Result
4301    = getMostSpecialized(Candidates.begin(), Candidates.end(),
4302                         TPOC_Other, FD->getLocation(),
4303                  PDiag(diag::err_function_template_spec_no_match)
4304                    << FD->getDeclName(),
4305                  PDiag(diag::err_function_template_spec_ambiguous)
4306                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4307                  PDiag(diag::note_function_template_spec_matched));
4308  if (Result == Candidates.end())
4309    return true;
4310
4311  // Ignore access information;  it doesn't figure into redeclaration checking.
4312  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4313  Specialization->setLocation(FD->getLocation());
4314
4315  // FIXME: Check if the prior specialization has a point of instantiation.
4316  // If so, we have run afoul of .
4317
4318  // If this is a friend declaration, then we're not really declaring
4319  // an explicit specialization.
4320  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4321
4322  // Check the scope of this explicit specialization.
4323  if (!isFriend &&
4324      CheckTemplateSpecializationScope(*this,
4325                                       Specialization->getPrimaryTemplate(),
4326                                       Specialization, FD->getLocation(),
4327                                       false))
4328    return true;
4329
4330  // C++ [temp.expl.spec]p6:
4331  //   If a template, a member template or the member of a class template is
4332  //   explicitly specialized then that specialization shall be declared
4333  //   before the first use of that specialization that would cause an implicit
4334  //   instantiation to take place, in every translation unit in which such a
4335  //   use occurs; no diagnostic is required.
4336  FunctionTemplateSpecializationInfo *SpecInfo
4337    = Specialization->getTemplateSpecializationInfo();
4338  assert(SpecInfo && "Function template specialization info missing?");
4339
4340  bool HasNoEffect = false;
4341  if (!isFriend &&
4342      CheckSpecializationInstantiationRedecl(FD->getLocation(),
4343                                             TSK_ExplicitSpecialization,
4344                                             Specialization,
4345                                   SpecInfo->getTemplateSpecializationKind(),
4346                                         SpecInfo->getPointOfInstantiation(),
4347                                             HasNoEffect))
4348    return true;
4349
4350  // Mark the prior declaration as an explicit specialization, so that later
4351  // clients know that this is an explicit specialization.
4352  if (!isFriend)
4353    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
4354
4355  // Turn the given function declaration into a function template
4356  // specialization, with the template arguments from the previous
4357  // specialization.
4358  // Take copies of (semantic and syntactic) template argument lists.
4359  const TemplateArgumentList* TemplArgs = new (Context)
4360    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
4361  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
4362    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
4363  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
4364                                        TemplArgs, /*InsertPos=*/0,
4365                                    SpecInfo->getTemplateSpecializationKind(),
4366                                        TemplArgsAsWritten);
4367
4368  // The "previous declaration" for this function template specialization is
4369  // the prior function template specialization.
4370  Previous.clear();
4371  Previous.addDecl(Specialization);
4372  return false;
4373}
4374
4375/// \brief Perform semantic analysis for the given non-template member
4376/// specialization.
4377///
4378/// This routine performs all of the semantic analysis required for an
4379/// explicit member function specialization. On successful completion,
4380/// the function declaration \p FD will become a member function
4381/// specialization.
4382///
4383/// \param Member the member declaration, which will be updated to become a
4384/// specialization.
4385///
4386/// \param Previous the set of declarations, one of which may be specialized
4387/// by this function specialization;  the set will be modified to contain the
4388/// redeclared member.
4389bool
4390Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
4391  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
4392
4393  // Try to find the member we are instantiating.
4394  NamedDecl *Instantiation = 0;
4395  NamedDecl *InstantiatedFrom = 0;
4396  MemberSpecializationInfo *MSInfo = 0;
4397
4398  if (Previous.empty()) {
4399    // Nowhere to look anyway.
4400  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
4401    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4402           I != E; ++I) {
4403      NamedDecl *D = (*I)->getUnderlyingDecl();
4404      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4405        if (Context.hasSameType(Function->getType(), Method->getType())) {
4406          Instantiation = Method;
4407          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
4408          MSInfo = Method->getMemberSpecializationInfo();
4409          break;
4410        }
4411      }
4412    }
4413  } else if (isa<VarDecl>(Member)) {
4414    VarDecl *PrevVar;
4415    if (Previous.isSingleResult() &&
4416        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4417      if (PrevVar->isStaticDataMember()) {
4418        Instantiation = PrevVar;
4419        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4420        MSInfo = PrevVar->getMemberSpecializationInfo();
4421      }
4422  } else if (isa<RecordDecl>(Member)) {
4423    CXXRecordDecl *PrevRecord;
4424    if (Previous.isSingleResult() &&
4425        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4426      Instantiation = PrevRecord;
4427      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4428      MSInfo = PrevRecord->getMemberSpecializationInfo();
4429    }
4430  }
4431
4432  if (!Instantiation) {
4433    // There is no previous declaration that matches. Since member
4434    // specializations are always out-of-line, the caller will complain about
4435    // this mismatch later.
4436    return false;
4437  }
4438
4439  // If this is a friend, just bail out here before we start turning
4440  // things into explicit specializations.
4441  if (Member->getFriendObjectKind() != Decl::FOK_None) {
4442    // Preserve instantiation information.
4443    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
4444      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
4445                                      cast<CXXMethodDecl>(InstantiatedFrom),
4446        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
4447    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
4448      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4449                                      cast<CXXRecordDecl>(InstantiatedFrom),
4450        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
4451    }
4452
4453    Previous.clear();
4454    Previous.addDecl(Instantiation);
4455    return false;
4456  }
4457
4458  // Make sure that this is a specialization of a member.
4459  if (!InstantiatedFrom) {
4460    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
4461      << Member;
4462    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
4463    return true;
4464  }
4465
4466  // C++ [temp.expl.spec]p6:
4467  //   If a template, a member template or the member of a class template is
4468  //   explicitly specialized then that spe- cialization shall be declared
4469  //   before the first use of that specialization that would cause an implicit
4470  //   instantiation to take place, in every translation unit in which such a
4471  //   use occurs; no diagnostic is required.
4472  assert(MSInfo && "Member specialization info missing?");
4473
4474  bool HasNoEffect = false;
4475  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
4476                                             TSK_ExplicitSpecialization,
4477                                             Instantiation,
4478                                     MSInfo->getTemplateSpecializationKind(),
4479                                           MSInfo->getPointOfInstantiation(),
4480                                             HasNoEffect))
4481    return true;
4482
4483  // Check the scope of this explicit specialization.
4484  if (CheckTemplateSpecializationScope(*this,
4485                                       InstantiatedFrom,
4486                                       Instantiation, Member->getLocation(),
4487                                       false))
4488    return true;
4489
4490  // Note that this is an explicit instantiation of a member.
4491  // the original declaration to note that it is an explicit specialization
4492  // (if it was previously an implicit instantiation). This latter step
4493  // makes bookkeeping easier.
4494  if (isa<FunctionDecl>(Member)) {
4495    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4496    if (InstantiationFunction->getTemplateSpecializationKind() ==
4497          TSK_ImplicitInstantiation) {
4498      InstantiationFunction->setTemplateSpecializationKind(
4499                                                  TSK_ExplicitSpecialization);
4500      InstantiationFunction->setLocation(Member->getLocation());
4501    }
4502
4503    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4504                                        cast<CXXMethodDecl>(InstantiatedFrom),
4505                                                  TSK_ExplicitSpecialization);
4506  } else if (isa<VarDecl>(Member)) {
4507    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4508    if (InstantiationVar->getTemplateSpecializationKind() ==
4509          TSK_ImplicitInstantiation) {
4510      InstantiationVar->setTemplateSpecializationKind(
4511                                                  TSK_ExplicitSpecialization);
4512      InstantiationVar->setLocation(Member->getLocation());
4513    }
4514
4515    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4516                                                cast<VarDecl>(InstantiatedFrom),
4517                                                TSK_ExplicitSpecialization);
4518  } else {
4519    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4520    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4521    if (InstantiationClass->getTemplateSpecializationKind() ==
4522          TSK_ImplicitInstantiation) {
4523      InstantiationClass->setTemplateSpecializationKind(
4524                                                   TSK_ExplicitSpecialization);
4525      InstantiationClass->setLocation(Member->getLocation());
4526    }
4527
4528    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4529                                        cast<CXXRecordDecl>(InstantiatedFrom),
4530                                                   TSK_ExplicitSpecialization);
4531  }
4532
4533  // Save the caller the trouble of having to figure out which declaration
4534  // this specialization matches.
4535  Previous.clear();
4536  Previous.addDecl(Instantiation);
4537  return false;
4538}
4539
4540/// \brief Check the scope of an explicit instantiation.
4541///
4542/// \returns true if a serious error occurs, false otherwise.
4543static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4544                                            SourceLocation InstLoc,
4545                                            bool WasQualifiedName) {
4546  DeclContext *ExpectedContext
4547    = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext();
4548  DeclContext *CurContext = S.CurContext->getLookupContext();
4549
4550  if (CurContext->isRecord()) {
4551    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
4552      << D;
4553    return true;
4554  }
4555
4556  // C++0x [temp.explicit]p2:
4557  //   An explicit instantiation shall appear in an enclosing namespace of its
4558  //   template.
4559  //
4560  // This is DR275, which we do not retroactively apply to C++98/03.
4561  if (S.getLangOptions().CPlusPlus0x &&
4562      !CurContext->Encloses(ExpectedContext)) {
4563    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext))
4564      S.Diag(InstLoc,
4565             S.getLangOptions().CPlusPlus0x?
4566                 diag::err_explicit_instantiation_out_of_scope
4567               : diag::warn_explicit_instantiation_out_of_scope_0x)
4568        << D << NS;
4569    else
4570      S.Diag(InstLoc,
4571             S.getLangOptions().CPlusPlus0x?
4572                 diag::err_explicit_instantiation_must_be_global
4573               : diag::warn_explicit_instantiation_out_of_scope_0x)
4574        << D;
4575    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4576    return false;
4577  }
4578
4579  // C++0x [temp.explicit]p2:
4580  //   If the name declared in the explicit instantiation is an unqualified
4581  //   name, the explicit instantiation shall appear in the namespace where
4582  //   its template is declared or, if that namespace is inline (7.3.1), any
4583  //   namespace from its enclosing namespace set.
4584  if (WasQualifiedName)
4585    return false;
4586
4587  if (CurContext->Equals(ExpectedContext))
4588    return false;
4589
4590  S.Diag(InstLoc,
4591         S.getLangOptions().CPlusPlus0x?
4592             diag::err_explicit_instantiation_unqualified_wrong_namespace
4593           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
4594    << D << ExpectedContext;
4595  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4596  return false;
4597}
4598
4599/// \brief Determine whether the given scope specifier has a template-id in it.
4600static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
4601  if (!SS.isSet())
4602    return false;
4603
4604  // C++0x [temp.explicit]p2:
4605  //   If the explicit instantiation is for a member function, a member class
4606  //   or a static data member of a class template specialization, the name of
4607  //   the class template specialization in the qualified-id for the member
4608  //   name shall be a simple-template-id.
4609  //
4610  // C++98 has the same restriction, just worded differently.
4611  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
4612       NNS; NNS = NNS->getPrefix())
4613    if (Type *T = NNS->getAsType())
4614      if (isa<TemplateSpecializationType>(T))
4615        return true;
4616
4617  return false;
4618}
4619
4620// Explicit instantiation of a class template specialization
4621Sema::DeclResult
4622Sema::ActOnExplicitInstantiation(Scope *S,
4623                                 SourceLocation ExternLoc,
4624                                 SourceLocation TemplateLoc,
4625                                 unsigned TagSpec,
4626                                 SourceLocation KWLoc,
4627                                 const CXXScopeSpec &SS,
4628                                 TemplateTy TemplateD,
4629                                 SourceLocation TemplateNameLoc,
4630                                 SourceLocation LAngleLoc,
4631                                 ASTTemplateArgsPtr TemplateArgsIn,
4632                                 SourceLocation RAngleLoc,
4633                                 AttributeList *Attr) {
4634  // Find the class template we're specializing
4635  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4636  ClassTemplateDecl *ClassTemplate
4637    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
4638
4639  // Check that the specialization uses the same tag kind as the
4640  // original template.
4641  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4642  assert(Kind != TTK_Enum &&
4643         "Invalid enum tag in class template explicit instantiation!");
4644  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4645                                    Kind, KWLoc,
4646                                    *ClassTemplate->getIdentifier())) {
4647    Diag(KWLoc, diag::err_use_with_wrong_tag)
4648      << ClassTemplate
4649      << FixItHint::CreateReplacement(KWLoc,
4650                            ClassTemplate->getTemplatedDecl()->getKindName());
4651    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4652         diag::note_previous_use);
4653    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4654  }
4655
4656  // C++0x [temp.explicit]p2:
4657  //   There are two forms of explicit instantiation: an explicit instantiation
4658  //   definition and an explicit instantiation declaration. An explicit
4659  //   instantiation declaration begins with the extern keyword. [...]
4660  TemplateSpecializationKind TSK
4661    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4662                           : TSK_ExplicitInstantiationDeclaration;
4663
4664  // Translate the parser's template argument list in our AST format.
4665  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4666  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4667
4668  // Check that the template argument list is well-formed for this
4669  // template.
4670  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
4671                                        TemplateArgs.size());
4672  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4673                                TemplateArgs, false, Converted))
4674    return true;
4675
4676  assert((Converted.structuredSize() ==
4677            ClassTemplate->getTemplateParameters()->size()) &&
4678         "Converted template argument list is too short!");
4679
4680  // Find the class template specialization declaration that
4681  // corresponds to these arguments.
4682  void *InsertPos = 0;
4683  ClassTemplateSpecializationDecl *PrevDecl
4684    = ClassTemplate->findSpecialization(Converted.getFlatArguments(),
4685                                        Converted.flatSize(), InsertPos);
4686
4687  TemplateSpecializationKind PrevDecl_TSK
4688    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
4689
4690  // C++0x [temp.explicit]p2:
4691  //   [...] An explicit instantiation shall appear in an enclosing
4692  //   namespace of its template. [...]
4693  //
4694  // This is C++ DR 275.
4695  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
4696                                      SS.isSet()))
4697    return true;
4698
4699  ClassTemplateSpecializationDecl *Specialization = 0;
4700
4701  bool ReusedDecl = false;
4702  bool HasNoEffect = false;
4703  if (PrevDecl) {
4704    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
4705                                               PrevDecl, PrevDecl_TSK,
4706                                            PrevDecl->getPointOfInstantiation(),
4707                                               HasNoEffect))
4708      return DeclPtrTy::make(PrevDecl);
4709
4710    // Even though HasNoEffect == true means that this explicit instantiation
4711    // has no effect on semantics, we go on to put its syntax in the AST.
4712
4713    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
4714        PrevDecl_TSK == TSK_Undeclared) {
4715      // Since the only prior class template specialization with these
4716      // arguments was referenced but not declared, reuse that
4717      // declaration node as our own, updating the source location
4718      // for the template name to reflect our new declaration.
4719      // (Other source locations will be updated later.)
4720      Specialization = PrevDecl;
4721      Specialization->setLocation(TemplateNameLoc);
4722      PrevDecl = 0;
4723      ReusedDecl = true;
4724    }
4725  }
4726
4727  if (!Specialization) {
4728    // Create a new class template specialization declaration node for
4729    // this explicit specialization.
4730    Specialization
4731      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4732                                             ClassTemplate->getDeclContext(),
4733                                                TemplateNameLoc,
4734                                                ClassTemplate,
4735                                                Converted, PrevDecl);
4736    SetNestedNameSpecifier(Specialization, SS);
4737
4738    if (!HasNoEffect && !PrevDecl) {
4739      // Insert the new specialization.
4740      ClassTemplate->AddSpecialization(Specialization, InsertPos);
4741    }
4742  }
4743
4744  // Build the fully-sugared type for this explicit instantiation as
4745  // the user wrote in the explicit instantiation itself. This means
4746  // that we'll pretty-print the type retrieved from the
4747  // specialization's declaration the way that the user actually wrote
4748  // the explicit instantiation, rather than formatting the name based
4749  // on the "canonical" representation used to store the template
4750  // arguments in the specialization.
4751  TypeSourceInfo *WrittenTy
4752    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4753                                                TemplateArgs,
4754                                  Context.getTypeDeclType(Specialization));
4755  Specialization->setTypeAsWritten(WrittenTy);
4756  TemplateArgsIn.release();
4757
4758  // Set source locations for keywords.
4759  Specialization->setExternLoc(ExternLoc);
4760  Specialization->setTemplateKeywordLoc(TemplateLoc);
4761
4762  // Add the explicit instantiation into its lexical context. However,
4763  // since explicit instantiations are never found by name lookup, we
4764  // just put it into the declaration context directly.
4765  Specialization->setLexicalDeclContext(CurContext);
4766  CurContext->addDecl(Specialization);
4767
4768  // Syntax is now OK, so return if it has no other effect on semantics.
4769  if (HasNoEffect) {
4770    // Set the template specialization kind.
4771    Specialization->setTemplateSpecializationKind(TSK);
4772    return DeclPtrTy::make(Specialization);
4773  }
4774
4775  // C++ [temp.explicit]p3:
4776  //   A definition of a class template or class member template
4777  //   shall be in scope at the point of the explicit instantiation of
4778  //   the class template or class member template.
4779  //
4780  // This check comes when we actually try to perform the
4781  // instantiation.
4782  ClassTemplateSpecializationDecl *Def
4783    = cast_or_null<ClassTemplateSpecializationDecl>(
4784                                              Specialization->getDefinition());
4785  if (!Def)
4786    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
4787  else if (TSK == TSK_ExplicitInstantiationDefinition) {
4788    MarkVTableUsed(TemplateNameLoc, Specialization, true);
4789    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
4790  }
4791
4792  // Instantiate the members of this class template specialization.
4793  Def = cast_or_null<ClassTemplateSpecializationDecl>(
4794                                       Specialization->getDefinition());
4795  if (Def) {
4796    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
4797
4798    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
4799    // TSK_ExplicitInstantiationDefinition
4800    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
4801        TSK == TSK_ExplicitInstantiationDefinition)
4802      Def->setTemplateSpecializationKind(TSK);
4803
4804    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
4805  }
4806
4807  // Set the template specialization kind.
4808  Specialization->setTemplateSpecializationKind(TSK);
4809  return DeclPtrTy::make(Specialization);
4810}
4811
4812// Explicit instantiation of a member class of a class template.
4813Sema::DeclResult
4814Sema::ActOnExplicitInstantiation(Scope *S,
4815                                 SourceLocation ExternLoc,
4816                                 SourceLocation TemplateLoc,
4817                                 unsigned TagSpec,
4818                                 SourceLocation KWLoc,
4819                                 CXXScopeSpec &SS,
4820                                 IdentifierInfo *Name,
4821                                 SourceLocation NameLoc,
4822                                 AttributeList *Attr) {
4823
4824  bool Owned = false;
4825  bool IsDependent = false;
4826  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
4827                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
4828                            MultiTemplateParamsArg(*this, 0, 0),
4829                            Owned, IsDependent);
4830  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
4831
4832  if (!TagD)
4833    return true;
4834
4835  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4836  if (Tag->isEnum()) {
4837    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
4838      << Context.getTypeDeclType(Tag);
4839    return true;
4840  }
4841
4842  if (Tag->isInvalidDecl())
4843    return true;
4844
4845  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
4846  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
4847  if (!Pattern) {
4848    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
4849      << Context.getTypeDeclType(Record);
4850    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
4851    return true;
4852  }
4853
4854  // C++0x [temp.explicit]p2:
4855  //   If the explicit instantiation is for a class or member class, the
4856  //   elaborated-type-specifier in the declaration shall include a
4857  //   simple-template-id.
4858  //
4859  // C++98 has the same restriction, just worded differently.
4860  if (!ScopeSpecifierHasTemplateId(SS))
4861    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
4862      << Record << SS.getRange();
4863
4864  // C++0x [temp.explicit]p2:
4865  //   There are two forms of explicit instantiation: an explicit instantiation
4866  //   definition and an explicit instantiation declaration. An explicit
4867  //   instantiation declaration begins with the extern keyword. [...]
4868  TemplateSpecializationKind TSK
4869    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4870                           : TSK_ExplicitInstantiationDeclaration;
4871
4872  // C++0x [temp.explicit]p2:
4873  //   [...] An explicit instantiation shall appear in an enclosing
4874  //   namespace of its template. [...]
4875  //
4876  // This is C++ DR 275.
4877  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
4878
4879  // Verify that it is okay to explicitly instantiate here.
4880  CXXRecordDecl *PrevDecl
4881    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
4882  if (!PrevDecl && Record->getDefinition())
4883    PrevDecl = Record;
4884  if (PrevDecl) {
4885    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
4886    bool HasNoEffect = false;
4887    assert(MSInfo && "No member specialization information?");
4888    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
4889                                               PrevDecl,
4890                                        MSInfo->getTemplateSpecializationKind(),
4891                                             MSInfo->getPointOfInstantiation(),
4892                                               HasNoEffect))
4893      return true;
4894    if (HasNoEffect)
4895      return TagD;
4896  }
4897
4898  CXXRecordDecl *RecordDef
4899    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4900  if (!RecordDef) {
4901    // C++ [temp.explicit]p3:
4902    //   A definition of a member class of a class template shall be in scope
4903    //   at the point of an explicit instantiation of the member class.
4904    CXXRecordDecl *Def
4905      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
4906    if (!Def) {
4907      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
4908        << 0 << Record->getDeclName() << Record->getDeclContext();
4909      Diag(Pattern->getLocation(), diag::note_forward_declaration)
4910        << Pattern;
4911      return true;
4912    } else {
4913      if (InstantiateClass(NameLoc, Record, Def,
4914                           getTemplateInstantiationArgs(Record),
4915                           TSK))
4916        return true;
4917
4918      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4919      if (!RecordDef)
4920        return true;
4921    }
4922  }
4923
4924  // Instantiate all of the members of the class.
4925  InstantiateClassMembers(NameLoc, RecordDef,
4926                          getTemplateInstantiationArgs(Record), TSK);
4927
4928  if (TSK == TSK_ExplicitInstantiationDefinition)
4929    MarkVTableUsed(NameLoc, RecordDef, true);
4930
4931  // FIXME: We don't have any representation for explicit instantiations of
4932  // member classes. Such a representation is not needed for compilation, but it
4933  // should be available for clients that want to see all of the declarations in
4934  // the source code.
4935  return TagD;
4936}
4937
4938Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
4939                                                  SourceLocation ExternLoc,
4940                                                  SourceLocation TemplateLoc,
4941                                                  Declarator &D) {
4942  // Explicit instantiations always require a name.
4943  DeclarationName Name = GetNameForDeclarator(D);
4944  if (!Name) {
4945    if (!D.isInvalidType())
4946      Diag(D.getDeclSpec().getSourceRange().getBegin(),
4947           diag::err_explicit_instantiation_requires_name)
4948        << D.getDeclSpec().getSourceRange()
4949        << D.getSourceRange();
4950
4951    return true;
4952  }
4953
4954  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4955  // we find one that is.
4956  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4957         (S->getFlags() & Scope::TemplateParamScope) != 0)
4958    S = S->getParent();
4959
4960  // Determine the type of the declaration.
4961  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
4962  QualType R = T->getType();
4963  if (R.isNull())
4964    return true;
4965
4966  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4967    // Cannot explicitly instantiate a typedef.
4968    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
4969      << Name;
4970    return true;
4971  }
4972
4973  // C++0x [temp.explicit]p1:
4974  //   [...] An explicit instantiation of a function template shall not use the
4975  //   inline or constexpr specifiers.
4976  // Presumably, this also applies to member functions of class templates as
4977  // well.
4978  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
4979    Diag(D.getDeclSpec().getInlineSpecLoc(),
4980         diag::err_explicit_instantiation_inline)
4981      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4982
4983  // FIXME: check for constexpr specifier.
4984
4985  // C++0x [temp.explicit]p2:
4986  //   There are two forms of explicit instantiation: an explicit instantiation
4987  //   definition and an explicit instantiation declaration. An explicit
4988  //   instantiation declaration begins with the extern keyword. [...]
4989  TemplateSpecializationKind TSK
4990    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4991                           : TSK_ExplicitInstantiationDeclaration;
4992
4993  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName);
4994  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
4995
4996  if (!R->isFunctionType()) {
4997    // C++ [temp.explicit]p1:
4998    //   A [...] static data member of a class template can be explicitly
4999    //   instantiated from the member definition associated with its class
5000    //   template.
5001    if (Previous.isAmbiguous())
5002      return true;
5003
5004    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
5005    if (!Prev || !Prev->isStaticDataMember()) {
5006      // We expect to see a data data member here.
5007      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
5008        << Name;
5009      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5010           P != PEnd; ++P)
5011        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
5012      return true;
5013    }
5014
5015    if (!Prev->getInstantiatedFromStaticDataMember()) {
5016      // FIXME: Check for explicit specialization?
5017      Diag(D.getIdentifierLoc(),
5018           diag::err_explicit_instantiation_data_member_not_instantiated)
5019        << Prev;
5020      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
5021      // FIXME: Can we provide a note showing where this was declared?
5022      return true;
5023    }
5024
5025    // C++0x [temp.explicit]p2:
5026    //   If the explicit instantiation is for a member function, a member class
5027    //   or a static data member of a class template specialization, the name of
5028    //   the class template specialization in the qualified-id for the member
5029    //   name shall be a simple-template-id.
5030    //
5031    // C++98 has the same restriction, just worded differently.
5032    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5033      Diag(D.getIdentifierLoc(),
5034           diag::ext_explicit_instantiation_without_qualified_id)
5035        << Prev << D.getCXXScopeSpec().getRange();
5036
5037    // Check the scope of this explicit instantiation.
5038    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
5039
5040    // Verify that it is okay to explicitly instantiate here.
5041    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
5042    assert(MSInfo && "Missing static data member specialization info?");
5043    bool HasNoEffect = false;
5044    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
5045                                        MSInfo->getTemplateSpecializationKind(),
5046                                              MSInfo->getPointOfInstantiation(),
5047                                               HasNoEffect))
5048      return true;
5049    if (HasNoEffect)
5050      return DeclPtrTy();
5051
5052    // Instantiate static data member.
5053    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5054    if (TSK == TSK_ExplicitInstantiationDefinition)
5055      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false,
5056                                            /*DefinitionRequired=*/true);
5057
5058    // FIXME: Create an ExplicitInstantiation node?
5059    return DeclPtrTy();
5060  }
5061
5062  // If the declarator is a template-id, translate the parser's template
5063  // argument list into our AST format.
5064  bool HasExplicitTemplateArgs = false;
5065  TemplateArgumentListInfo TemplateArgs;
5066  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5067    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5068    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5069    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5070    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5071                                       TemplateId->getTemplateArgs(),
5072                                       TemplateId->NumArgs);
5073    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5074    HasExplicitTemplateArgs = true;
5075    TemplateArgsPtr.release();
5076  }
5077
5078  // C++ [temp.explicit]p1:
5079  //   A [...] function [...] can be explicitly instantiated from its template.
5080  //   A member function [...] of a class template can be explicitly
5081  //  instantiated from the member definition associated with its class
5082  //  template.
5083  UnresolvedSet<8> Matches;
5084  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5085       P != PEnd; ++P) {
5086    NamedDecl *Prev = *P;
5087    if (!HasExplicitTemplateArgs) {
5088      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5089        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5090          Matches.clear();
5091
5092          Matches.addDecl(Method, P.getAccess());
5093          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5094            break;
5095        }
5096      }
5097    }
5098
5099    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5100    if (!FunTmpl)
5101      continue;
5102
5103    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5104    FunctionDecl *Specialization = 0;
5105    if (TemplateDeductionResult TDK
5106          = DeduceTemplateArguments(FunTmpl,
5107                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5108                                    R, Specialization, Info)) {
5109      // FIXME: Keep track of almost-matches?
5110      (void)TDK;
5111      continue;
5112    }
5113
5114    Matches.addDecl(Specialization, P.getAccess());
5115  }
5116
5117  // Find the most specialized function template specialization.
5118  UnresolvedSetIterator Result
5119    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other,
5120                         D.getIdentifierLoc(),
5121                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
5122                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5123                         PDiag(diag::note_explicit_instantiation_candidate));
5124
5125  if (Result == Matches.end())
5126    return true;
5127
5128  // Ignore access control bits, we don't need them for redeclaration checking.
5129  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5130
5131  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5132    Diag(D.getIdentifierLoc(),
5133         diag::err_explicit_instantiation_member_function_not_instantiated)
5134      << Specialization
5135      << (Specialization->getTemplateSpecializationKind() ==
5136          TSK_ExplicitSpecialization);
5137    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5138    return true;
5139  }
5140
5141  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5142  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5143    PrevDecl = Specialization;
5144
5145  if (PrevDecl) {
5146    bool HasNoEffect = false;
5147    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5148                                               PrevDecl,
5149                                     PrevDecl->getTemplateSpecializationKind(),
5150                                          PrevDecl->getPointOfInstantiation(),
5151                                               HasNoEffect))
5152      return true;
5153
5154    // FIXME: We may still want to build some representation of this
5155    // explicit specialization.
5156    if (HasNoEffect)
5157      return DeclPtrTy();
5158  }
5159
5160  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5161
5162  if (TSK == TSK_ExplicitInstantiationDefinition)
5163    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization,
5164                                  false, /*DefinitionRequired=*/true);
5165
5166  // C++0x [temp.explicit]p2:
5167  //   If the explicit instantiation is for a member function, a member class
5168  //   or a static data member of a class template specialization, the name of
5169  //   the class template specialization in the qualified-id for the member
5170  //   name shall be a simple-template-id.
5171  //
5172  // C++98 has the same restriction, just worded differently.
5173  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5174  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5175      D.getCXXScopeSpec().isSet() &&
5176      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5177    Diag(D.getIdentifierLoc(),
5178         diag::ext_explicit_instantiation_without_qualified_id)
5179    << Specialization << D.getCXXScopeSpec().getRange();
5180
5181  CheckExplicitInstantiationScope(*this,
5182                   FunTmpl? (NamedDecl *)FunTmpl
5183                          : Specialization->getInstantiatedFromMemberFunction(),
5184                                  D.getIdentifierLoc(),
5185                                  D.getCXXScopeSpec().isSet());
5186
5187  // FIXME: Create some kind of ExplicitInstantiationDecl here.
5188  return DeclPtrTy();
5189}
5190
5191Sema::TypeResult
5192Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5193                        const CXXScopeSpec &SS, IdentifierInfo *Name,
5194                        SourceLocation TagLoc, SourceLocation NameLoc) {
5195  // This has to hold, because SS is expected to be defined.
5196  assert(Name && "Expected a name in a dependent tag");
5197
5198  NestedNameSpecifier *NNS
5199    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5200  if (!NNS)
5201    return true;
5202
5203  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5204
5205  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
5206    Diag(NameLoc, diag::err_dependent_tag_decl)
5207      << (TUK == TUK_Definition) << Kind << SS.getRange();
5208    return true;
5209  }
5210
5211  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
5212  return Context.getDependentNameType(Kwd, NNS, Name).getAsOpaquePtr();
5213}
5214
5215Sema::TypeResult
5216Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5217                        const CXXScopeSpec &SS, const IdentifierInfo &II,
5218                        SourceLocation IdLoc) {
5219  NestedNameSpecifier *NNS
5220    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5221  if (!NNS)
5222    return true;
5223
5224  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5225      !getLangOptions().CPlusPlus0x)
5226    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5227      << FixItHint::CreateRemoval(TypenameLoc);
5228
5229  QualType T = CheckTypenameType(ETK_Typename, NNS, II,
5230                                 TypenameLoc, SS.getRange(), IdLoc);
5231  if (T.isNull())
5232    return true;
5233
5234  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5235  if (isa<DependentNameType>(T)) {
5236    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5237    TL.setKeywordLoc(TypenameLoc);
5238    TL.setQualifierRange(SS.getRange());
5239    TL.setNameLoc(IdLoc);
5240  } else {
5241    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
5242    TL.setKeywordLoc(TypenameLoc);
5243    TL.setQualifierRange(SS.getRange());
5244    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
5245  }
5246
5247  return CreateLocInfoType(T, TSI).getAsOpaquePtr();
5248}
5249
5250Sema::TypeResult
5251Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5252                        const CXXScopeSpec &SS, SourceLocation TemplateLoc,
5253                        TypeTy *Ty) {
5254  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5255      !getLangOptions().CPlusPlus0x)
5256    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5257      << FixItHint::CreateRemoval(TypenameLoc);
5258
5259  TypeSourceInfo *InnerTSI = 0;
5260  QualType T = GetTypeFromParser(Ty, &InnerTSI);
5261  NestedNameSpecifier *NNS
5262    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5263
5264  assert(isa<TemplateSpecializationType>(T) &&
5265         "Expected a template specialization type");
5266
5267  if (computeDeclContext(SS, false)) {
5268    // If we can compute a declaration context, then the "typename"
5269    // keyword was superfluous. Just build an ElaboratedType to keep
5270    // track of the nested-name-specifier.
5271
5272    // Push the inner type, preserving its source locations if possible.
5273    TypeLocBuilder Builder;
5274    if (InnerTSI)
5275      Builder.pushFullCopy(InnerTSI->getTypeLoc());
5276    else
5277      Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc);
5278
5279    T = Context.getElaboratedType(ETK_Typename, NNS, T);
5280    ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
5281    TL.setKeywordLoc(TypenameLoc);
5282    TL.setQualifierRange(SS.getRange());
5283
5284    TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
5285    return CreateLocInfoType(T, TSI).getAsOpaquePtr();
5286  }
5287
5288  // TODO: it's really silly that we make a template specialization
5289  // type earlier only to drop it again here.
5290  TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
5291  DependentTemplateName *DTN =
5292    TST->getTemplateName().getAsDependentTemplateName();
5293  assert(DTN && "dependent template has non-dependent name?");
5294  T = Context.getDependentTemplateSpecializationType(ETK_Typename, NNS,
5295                                                     DTN->getIdentifier(),
5296                                                     TST->getNumArgs(),
5297                                                     TST->getArgs());
5298  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5299  DependentTemplateSpecializationTypeLoc TL =
5300    cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc());
5301  if (InnerTSI) {
5302    TemplateSpecializationTypeLoc TSTL =
5303      cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc());
5304    TL.setLAngleLoc(TSTL.getLAngleLoc());
5305    TL.setRAngleLoc(TSTL.getRAngleLoc());
5306    for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I)
5307      TL.setArgLocInfo(I, TSTL.getArgLocInfo(I));
5308  } else {
5309    TL.initializeLocal(SourceLocation());
5310  }
5311  TL.setKeywordLoc(TypenameLoc);
5312  TL.setQualifierRange(SS.getRange());
5313  return CreateLocInfoType(T, TSI).getAsOpaquePtr();
5314}
5315
5316/// \brief Build the type that describes a C++ typename specifier,
5317/// e.g., "typename T::type".
5318QualType
5319Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
5320                        NestedNameSpecifier *NNS, const IdentifierInfo &II,
5321                        SourceLocation KeywordLoc, SourceRange NNSRange,
5322                        SourceLocation IILoc) {
5323  CXXScopeSpec SS;
5324  SS.setScopeRep(NNS);
5325  SS.setRange(NNSRange);
5326
5327  DeclContext *Ctx = computeDeclContext(SS);
5328  if (!Ctx) {
5329    // If the nested-name-specifier is dependent and couldn't be
5330    // resolved to a type, build a typename type.
5331    assert(NNS->isDependent());
5332    return Context.getDependentNameType(Keyword, NNS, &II);
5333  }
5334
5335  // If the nested-name-specifier refers to the current instantiation,
5336  // the "typename" keyword itself is superfluous. In C++03, the
5337  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
5338  // allows such extraneous "typename" keywords, and we retroactively
5339  // apply this DR to C++03 code with only a warning. In any case we continue.
5340
5341  if (RequireCompleteDeclContext(SS, Ctx))
5342    return QualType();
5343
5344  DeclarationName Name(&II);
5345  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
5346  LookupQualifiedName(Result, Ctx);
5347  unsigned DiagID = 0;
5348  Decl *Referenced = 0;
5349  switch (Result.getResultKind()) {
5350  case LookupResult::NotFound:
5351    DiagID = diag::err_typename_nested_not_found;
5352    break;
5353
5354  case LookupResult::NotFoundInCurrentInstantiation:
5355    // Okay, it's a member of an unknown instantiation.
5356    return Context.getDependentNameType(Keyword, NNS, &II);
5357
5358  case LookupResult::Found:
5359    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
5360      // We found a type. Build an ElaboratedType, since the
5361      // typename-specifier was just sugar.
5362      return Context.getElaboratedType(ETK_Typename, NNS,
5363                                       Context.getTypeDeclType(Type));
5364    }
5365
5366    DiagID = diag::err_typename_nested_not_type;
5367    Referenced = Result.getFoundDecl();
5368    break;
5369
5370  case LookupResult::FoundUnresolvedValue:
5371    llvm_unreachable("unresolved using decl in non-dependent context");
5372    return QualType();
5373
5374  case LookupResult::FoundOverloaded:
5375    DiagID = diag::err_typename_nested_not_type;
5376    Referenced = *Result.begin();
5377    break;
5378
5379  case LookupResult::Ambiguous:
5380    return QualType();
5381  }
5382
5383  // If we get here, it's because name lookup did not find a
5384  // type. Emit an appropriate diagnostic and return an error.
5385  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5386                        IILoc);
5387  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
5388  if (Referenced)
5389    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
5390      << Name;
5391  return QualType();
5392}
5393
5394namespace {
5395  // See Sema::RebuildTypeInCurrentInstantiation
5396  class CurrentInstantiationRebuilder
5397    : public TreeTransform<CurrentInstantiationRebuilder> {
5398    SourceLocation Loc;
5399    DeclarationName Entity;
5400
5401  public:
5402    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
5403
5404    CurrentInstantiationRebuilder(Sema &SemaRef,
5405                                  SourceLocation Loc,
5406                                  DeclarationName Entity)
5407    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
5408      Loc(Loc), Entity(Entity) { }
5409
5410    /// \brief Determine whether the given type \p T has already been
5411    /// transformed.
5412    ///
5413    /// For the purposes of type reconstruction, a type has already been
5414    /// transformed if it is NULL or if it is not dependent.
5415    bool AlreadyTransformed(QualType T) {
5416      return T.isNull() || !T->isDependentType();
5417    }
5418
5419    /// \brief Returns the location of the entity whose type is being
5420    /// rebuilt.
5421    SourceLocation getBaseLocation() { return Loc; }
5422
5423    /// \brief Returns the name of the entity whose type is being rebuilt.
5424    DeclarationName getBaseEntity() { return Entity; }
5425
5426    /// \brief Sets the "base" location and entity when that
5427    /// information is known based on another transformation.
5428    void setBase(SourceLocation Loc, DeclarationName Entity) {
5429      this->Loc = Loc;
5430      this->Entity = Entity;
5431    }
5432
5433    /// \brief Transforms an expression by returning the expression itself
5434    /// (an identity function).
5435    ///
5436    /// FIXME: This is completely unsafe; we will need to actually clone the
5437    /// expressions.
5438    Sema::OwningExprResult TransformExpr(Expr *E) {
5439      return getSema().Owned(E->Retain());
5440    }
5441  };
5442}
5443
5444/// \brief Rebuilds a type within the context of the current instantiation.
5445///
5446/// The type \p T is part of the type of an out-of-line member definition of
5447/// a class template (or class template partial specialization) that was parsed
5448/// and constructed before we entered the scope of the class template (or
5449/// partial specialization thereof). This routine will rebuild that type now
5450/// that we have entered the declarator's scope, which may produce different
5451/// canonical types, e.g.,
5452///
5453/// \code
5454/// template<typename T>
5455/// struct X {
5456///   typedef T* pointer;
5457///   pointer data();
5458/// };
5459///
5460/// template<typename T>
5461/// typename X<T>::pointer X<T>::data() { ... }
5462/// \endcode
5463///
5464/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
5465/// since we do not know that we can look into X<T> when we parsed the type.
5466/// This function will rebuild the type, performing the lookup of "pointer"
5467/// in X<T> and returning an ElaboratedType whose canonical type is the same
5468/// as the canonical type of T*, allowing the return types of the out-of-line
5469/// definition and the declaration to match.
5470TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
5471                                                        SourceLocation Loc,
5472                                                        DeclarationName Name) {
5473  if (!T || !T->getType()->isDependentType())
5474    return T;
5475
5476  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
5477  return Rebuilder.TransformType(T);
5478}
5479
5480bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
5481  if (SS.isInvalid()) return true;
5482
5483  NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5484  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
5485                                          DeclarationName());
5486  NestedNameSpecifier *Rebuilt =
5487    Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange());
5488  if (!Rebuilt) return true;
5489
5490  SS.setScopeRep(Rebuilt);
5491  return false;
5492}
5493
5494/// \brief Produces a formatted string that describes the binding of
5495/// template parameters to template arguments.
5496std::string
5497Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5498                                      const TemplateArgumentList &Args) {
5499  // FIXME: For variadic templates, we'll need to get the structured list.
5500  return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
5501                                         Args.flat_size());
5502}
5503
5504std::string
5505Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5506                                      const TemplateArgument *Args,
5507                                      unsigned NumArgs) {
5508  std::string Result;
5509
5510  if (!Params || Params->size() == 0 || NumArgs == 0)
5511    return Result;
5512
5513  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
5514    if (I >= NumArgs)
5515      break;
5516
5517    if (I == 0)
5518      Result += "[with ";
5519    else
5520      Result += ", ";
5521
5522    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
5523      Result += Id->getName();
5524    } else {
5525      Result += '$';
5526      Result += llvm::utostr(I);
5527    }
5528
5529    Result += " = ";
5530
5531    switch (Args[I].getKind()) {
5532      case TemplateArgument::Null:
5533        Result += "<no value>";
5534        break;
5535
5536      case TemplateArgument::Type: {
5537        std::string TypeStr;
5538        Args[I].getAsType().getAsStringInternal(TypeStr,
5539                                                Context.PrintingPolicy);
5540        Result += TypeStr;
5541        break;
5542      }
5543
5544      case TemplateArgument::Declaration: {
5545        bool Unnamed = true;
5546        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
5547          if (ND->getDeclName()) {
5548            Unnamed = false;
5549            Result += ND->getNameAsString();
5550          }
5551        }
5552
5553        if (Unnamed) {
5554          Result += "<anonymous>";
5555        }
5556        break;
5557      }
5558
5559      case TemplateArgument::Template: {
5560        std::string Str;
5561        llvm::raw_string_ostream OS(Str);
5562        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
5563        Result += OS.str();
5564        break;
5565      }
5566
5567      case TemplateArgument::Integral: {
5568        Result += Args[I].getAsIntegral()->toString(10);
5569        break;
5570      }
5571
5572      case TemplateArgument::Expression: {
5573        // FIXME: This is non-optimal, since we're regurgitating the
5574        // expression we were given.
5575        std::string Str;
5576        {
5577          llvm::raw_string_ostream OS(Str);
5578          Args[I].getAsExpr()->printPretty(OS, Context, 0,
5579                                           Context.PrintingPolicy);
5580        }
5581        Result += Str;
5582        break;
5583      }
5584
5585      case TemplateArgument::Pack:
5586        // FIXME: Format template argument packs
5587        Result += "<template argument pack>";
5588        break;
5589    }
5590  }
5591
5592  Result += ']';
5593  return Result;
5594}
5595