SemaTemplate.cpp revision ce6426feda94ca716ee7743b71961850740eb08d
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "TreeTransform.h"
13#include "clang/AST/ASTContext.h"
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/DeclFriend.h"
16#include "clang/AST/DeclTemplate.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/RecursiveASTVisitor.h"
20#include "clang/AST/TypeVisitor.h"
21#include "clang/Basic/LangOptions.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "clang/Sema/DeclSpec.h"
24#include "clang/Sema/Lookup.h"
25#include "clang/Sema/ParsedTemplate.h"
26#include "clang/Sema/Scope.h"
27#include "clang/Sema/SemaInternal.h"
28#include "clang/Sema/Template.h"
29#include "clang/Sema/TemplateDeduction.h"
30#include "llvm/ADT/SmallBitVector.h"
31#include "llvm/ADT/SmallString.h"
32#include "llvm/ADT/StringExtras.h"
33using namespace clang;
34using namespace sema;
35
36// Exported for use by Parser.
37SourceRange
38clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
39                              unsigned N) {
40  if (!N) return SourceRange();
41  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
42}
43
44/// \brief Determine whether the declaration found is acceptable as the name
45/// of a template and, if so, return that template declaration. Otherwise,
46/// returns NULL.
47static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
48                                           NamedDecl *Orig,
49                                           bool AllowFunctionTemplates) {
50  NamedDecl *D = Orig->getUnderlyingDecl();
51
52  if (isa<TemplateDecl>(D)) {
53    if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
54      return 0;
55
56    return Orig;
57  }
58
59  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
60    // C++ [temp.local]p1:
61    //   Like normal (non-template) classes, class templates have an
62    //   injected-class-name (Clause 9). The injected-class-name
63    //   can be used with or without a template-argument-list. When
64    //   it is used without a template-argument-list, it is
65    //   equivalent to the injected-class-name followed by the
66    //   template-parameters of the class template enclosed in
67    //   <>. When it is used with a template-argument-list, it
68    //   refers to the specified class template specialization,
69    //   which could be the current specialization or another
70    //   specialization.
71    if (Record->isInjectedClassName()) {
72      Record = cast<CXXRecordDecl>(Record->getDeclContext());
73      if (Record->getDescribedClassTemplate())
74        return Record->getDescribedClassTemplate();
75
76      if (ClassTemplateSpecializationDecl *Spec
77            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
78        return Spec->getSpecializedTemplate();
79    }
80
81    return 0;
82  }
83
84  return 0;
85}
86
87void Sema::FilterAcceptableTemplateNames(LookupResult &R,
88                                         bool AllowFunctionTemplates) {
89  // The set of class templates we've already seen.
90  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
91  LookupResult::Filter filter = R.makeFilter();
92  while (filter.hasNext()) {
93    NamedDecl *Orig = filter.next();
94    NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
95                                               AllowFunctionTemplates);
96    if (!Repl)
97      filter.erase();
98    else if (Repl != Orig) {
99
100      // C++ [temp.local]p3:
101      //   A lookup that finds an injected-class-name (10.2) can result in an
102      //   ambiguity in certain cases (for example, if it is found in more than
103      //   one base class). If all of the injected-class-names that are found
104      //   refer to specializations of the same class template, and if the name
105      //   is used as a template-name, the reference refers to the class
106      //   template itself and not a specialization thereof, and is not
107      //   ambiguous.
108      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
109        if (!ClassTemplates.insert(ClassTmpl)) {
110          filter.erase();
111          continue;
112        }
113
114      // FIXME: we promote access to public here as a workaround to
115      // the fact that LookupResult doesn't let us remember that we
116      // found this template through a particular injected class name,
117      // which means we end up doing nasty things to the invariants.
118      // Pretending that access is public is *much* safer.
119      filter.replace(Repl, AS_public);
120    }
121  }
122  filter.done();
123}
124
125bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
126                                         bool AllowFunctionTemplates) {
127  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
128    if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
129      return true;
130
131  return false;
132}
133
134TemplateNameKind Sema::isTemplateName(Scope *S,
135                                      CXXScopeSpec &SS,
136                                      bool hasTemplateKeyword,
137                                      UnqualifiedId &Name,
138                                      ParsedType ObjectTypePtr,
139                                      bool EnteringContext,
140                                      TemplateTy &TemplateResult,
141                                      bool &MemberOfUnknownSpecialization) {
142  assert(getLangOpts().CPlusPlus && "No template names in C!");
143
144  DeclarationName TName;
145  MemberOfUnknownSpecialization = false;
146
147  switch (Name.getKind()) {
148  case UnqualifiedId::IK_Identifier:
149    TName = DeclarationName(Name.Identifier);
150    break;
151
152  case UnqualifiedId::IK_OperatorFunctionId:
153    TName = Context.DeclarationNames.getCXXOperatorName(
154                                              Name.OperatorFunctionId.Operator);
155    break;
156
157  case UnqualifiedId::IK_LiteralOperatorId:
158    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
159    break;
160
161  default:
162    return TNK_Non_template;
163  }
164
165  QualType ObjectType = ObjectTypePtr.get();
166
167  LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
168  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
169                     MemberOfUnknownSpecialization);
170  if (R.empty()) return TNK_Non_template;
171  if (R.isAmbiguous()) {
172    // Suppress diagnostics;  we'll redo this lookup later.
173    R.suppressDiagnostics();
174
175    // FIXME: we might have ambiguous templates, in which case we
176    // should at least parse them properly!
177    return TNK_Non_template;
178  }
179
180  TemplateName Template;
181  TemplateNameKind TemplateKind;
182
183  unsigned ResultCount = R.end() - R.begin();
184  if (ResultCount > 1) {
185    // We assume that we'll preserve the qualifier from a function
186    // template name in other ways.
187    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
188    TemplateKind = TNK_Function_template;
189
190    // We'll do this lookup again later.
191    R.suppressDiagnostics();
192  } else {
193    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
194
195    if (SS.isSet() && !SS.isInvalid()) {
196      NestedNameSpecifier *Qualifier
197        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
198      Template = Context.getQualifiedTemplateName(Qualifier,
199                                                  hasTemplateKeyword, TD);
200    } else {
201      Template = TemplateName(TD);
202    }
203
204    if (isa<FunctionTemplateDecl>(TD)) {
205      TemplateKind = TNK_Function_template;
206
207      // We'll do this lookup again later.
208      R.suppressDiagnostics();
209    } else {
210      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
211             isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD));
212      TemplateKind =
213          isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template;
214    }
215  }
216
217  TemplateResult = TemplateTy::make(Template);
218  return TemplateKind;
219}
220
221bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
222                                       SourceLocation IILoc,
223                                       Scope *S,
224                                       const CXXScopeSpec *SS,
225                                       TemplateTy &SuggestedTemplate,
226                                       TemplateNameKind &SuggestedKind) {
227  // We can't recover unless there's a dependent scope specifier preceding the
228  // template name.
229  // FIXME: Typo correction?
230  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
231      computeDeclContext(*SS))
232    return false;
233
234  // The code is missing a 'template' keyword prior to the dependent template
235  // name.
236  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
237  Diag(IILoc, diag::err_template_kw_missing)
238    << Qualifier << II.getName()
239    << FixItHint::CreateInsertion(IILoc, "template ");
240  SuggestedTemplate
241    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
242  SuggestedKind = TNK_Dependent_template_name;
243  return true;
244}
245
246void Sema::LookupTemplateName(LookupResult &Found,
247                              Scope *S, CXXScopeSpec &SS,
248                              QualType ObjectType,
249                              bool EnteringContext,
250                              bool &MemberOfUnknownSpecialization) {
251  // Determine where to perform name lookup
252  MemberOfUnknownSpecialization = false;
253  DeclContext *LookupCtx = 0;
254  bool isDependent = false;
255  if (!ObjectType.isNull()) {
256    // This nested-name-specifier occurs in a member access expression, e.g.,
257    // x->B::f, and we are looking into the type of the object.
258    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
259    LookupCtx = computeDeclContext(ObjectType);
260    isDependent = ObjectType->isDependentType();
261    assert((isDependent || !ObjectType->isIncompleteType() ||
262            ObjectType->castAs<TagType>()->isBeingDefined()) &&
263           "Caller should have completed object type");
264
265    // Template names cannot appear inside an Objective-C class or object type.
266    if (ObjectType->isObjCObjectOrInterfaceType()) {
267      Found.clear();
268      return;
269    }
270  } else if (SS.isSet()) {
271    // This nested-name-specifier occurs after another nested-name-specifier,
272    // so long into the context associated with the prior nested-name-specifier.
273    LookupCtx = computeDeclContext(SS, EnteringContext);
274    isDependent = isDependentScopeSpecifier(SS);
275
276    // The declaration context must be complete.
277    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
278      return;
279  }
280
281  bool ObjectTypeSearchedInScope = false;
282  bool AllowFunctionTemplatesInLookup = true;
283  if (LookupCtx) {
284    // Perform "qualified" name lookup into the declaration context we
285    // computed, which is either the type of the base of a member access
286    // expression or the declaration context associated with a prior
287    // nested-name-specifier.
288    LookupQualifiedName(Found, LookupCtx);
289    if (!ObjectType.isNull() && Found.empty()) {
290      // C++ [basic.lookup.classref]p1:
291      //   In a class member access expression (5.2.5), if the . or -> token is
292      //   immediately followed by an identifier followed by a <, the
293      //   identifier must be looked up to determine whether the < is the
294      //   beginning of a template argument list (14.2) or a less-than operator.
295      //   The identifier is first looked up in the class of the object
296      //   expression. If the identifier is not found, it is then looked up in
297      //   the context of the entire postfix-expression and shall name a class
298      //   or function template.
299      if (S) LookupName(Found, S);
300      ObjectTypeSearchedInScope = true;
301      AllowFunctionTemplatesInLookup = false;
302    }
303  } else if (isDependent && (!S || ObjectType.isNull())) {
304    // We cannot look into a dependent object type or nested nme
305    // specifier.
306    MemberOfUnknownSpecialization = true;
307    return;
308  } else {
309    // Perform unqualified name lookup in the current scope.
310    LookupName(Found, S);
311
312    if (!ObjectType.isNull())
313      AllowFunctionTemplatesInLookup = false;
314  }
315
316  if (Found.empty() && !isDependent) {
317    // If we did not find any names, attempt to correct any typos.
318    DeclarationName Name = Found.getLookupName();
319    Found.clear();
320    // Simple filter callback that, for keywords, only accepts the C++ *_cast
321    CorrectionCandidateCallback FilterCCC;
322    FilterCCC.WantTypeSpecifiers = false;
323    FilterCCC.WantExpressionKeywords = false;
324    FilterCCC.WantRemainingKeywords = false;
325    FilterCCC.WantCXXNamedCasts = true;
326    if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
327                                               Found.getLookupKind(), S, &SS,
328                                               FilterCCC, LookupCtx)) {
329      Found.setLookupName(Corrected.getCorrection());
330      if (Corrected.getCorrectionDecl())
331        Found.addDecl(Corrected.getCorrectionDecl());
332      FilterAcceptableTemplateNames(Found);
333      if (!Found.empty()) {
334        if (LookupCtx) {
335          std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
336          bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
337                                  Name.getAsString() == CorrectedStr;
338          diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
339                                    << Name << LookupCtx << DroppedSpecifier
340                                    << SS.getRange());
341        } else {
342          diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
343        }
344      }
345    } else {
346      Found.setLookupName(Name);
347    }
348  }
349
350  FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
351  if (Found.empty()) {
352    if (isDependent)
353      MemberOfUnknownSpecialization = true;
354    return;
355  }
356
357  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
358      !getLangOpts().CPlusPlus11) {
359    // C++03 [basic.lookup.classref]p1:
360    //   [...] If the lookup in the class of the object expression finds a
361    //   template, the name is also looked up in the context of the entire
362    //   postfix-expression and [...]
363    //
364    // Note: C++11 does not perform this second lookup.
365    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
366                            LookupOrdinaryName);
367    LookupName(FoundOuter, S);
368    FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
369
370    if (FoundOuter.empty()) {
371      //   - if the name is not found, the name found in the class of the
372      //     object expression is used, otherwise
373    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
374               FoundOuter.isAmbiguous()) {
375      //   - if the name is found in the context of the entire
376      //     postfix-expression and does not name a class template, the name
377      //     found in the class of the object expression is used, otherwise
378      FoundOuter.clear();
379    } else if (!Found.isSuppressingDiagnostics()) {
380      //   - if the name found is a class template, it must refer to the same
381      //     entity as the one found in the class of the object expression,
382      //     otherwise the program is ill-formed.
383      if (!Found.isSingleResult() ||
384          Found.getFoundDecl()->getCanonicalDecl()
385            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
386        Diag(Found.getNameLoc(),
387             diag::ext_nested_name_member_ref_lookup_ambiguous)
388          << Found.getLookupName()
389          << ObjectType;
390        Diag(Found.getRepresentativeDecl()->getLocation(),
391             diag::note_ambig_member_ref_object_type)
392          << ObjectType;
393        Diag(FoundOuter.getFoundDecl()->getLocation(),
394             diag::note_ambig_member_ref_scope);
395
396        // Recover by taking the template that we found in the object
397        // expression's type.
398      }
399    }
400  }
401}
402
403/// ActOnDependentIdExpression - Handle a dependent id-expression that
404/// was just parsed.  This is only possible with an explicit scope
405/// specifier naming a dependent type.
406ExprResult
407Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
408                                 SourceLocation TemplateKWLoc,
409                                 const DeclarationNameInfo &NameInfo,
410                                 bool isAddressOfOperand,
411                           const TemplateArgumentListInfo *TemplateArgs) {
412  DeclContext *DC = getFunctionLevelDeclContext();
413
414  if (!isAddressOfOperand &&
415      isa<CXXMethodDecl>(DC) &&
416      cast<CXXMethodDecl>(DC)->isInstance()) {
417    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
418
419    // Since the 'this' expression is synthesized, we don't need to
420    // perform the double-lookup check.
421    NamedDecl *FirstQualifierInScope = 0;
422
423    return Owned(CXXDependentScopeMemberExpr::Create(Context,
424                                                     /*This*/ 0, ThisType,
425                                                     /*IsArrow*/ true,
426                                                     /*Op*/ SourceLocation(),
427                                               SS.getWithLocInContext(Context),
428                                                     TemplateKWLoc,
429                                                     FirstQualifierInScope,
430                                                     NameInfo,
431                                                     TemplateArgs));
432  }
433
434  return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
435}
436
437ExprResult
438Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
439                                SourceLocation TemplateKWLoc,
440                                const DeclarationNameInfo &NameInfo,
441                                const TemplateArgumentListInfo *TemplateArgs) {
442  return Owned(DependentScopeDeclRefExpr::Create(Context,
443                                               SS.getWithLocInContext(Context),
444                                                 TemplateKWLoc,
445                                                 NameInfo,
446                                                 TemplateArgs));
447}
448
449/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
450/// that the template parameter 'PrevDecl' is being shadowed by a new
451/// declaration at location Loc. Returns true to indicate that this is
452/// an error, and false otherwise.
453void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
454  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
455
456  // Microsoft Visual C++ permits template parameters to be shadowed.
457  if (getLangOpts().MicrosoftExt)
458    return;
459
460  // C++ [temp.local]p4:
461  //   A template-parameter shall not be redeclared within its
462  //   scope (including nested scopes).
463  Diag(Loc, diag::err_template_param_shadow)
464    << cast<NamedDecl>(PrevDecl)->getDeclName();
465  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
466  return;
467}
468
469/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
470/// the parameter D to reference the templated declaration and return a pointer
471/// to the template declaration. Otherwise, do nothing to D and return null.
472TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
473  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
474    D = Temp->getTemplatedDecl();
475    return Temp;
476  }
477  return 0;
478}
479
480ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
481                                             SourceLocation EllipsisLoc) const {
482  assert(Kind == Template &&
483         "Only template template arguments can be pack expansions here");
484  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
485         "Template template argument pack expansion without packs");
486  ParsedTemplateArgument Result(*this);
487  Result.EllipsisLoc = EllipsisLoc;
488  return Result;
489}
490
491static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
492                                            const ParsedTemplateArgument &Arg) {
493
494  switch (Arg.getKind()) {
495  case ParsedTemplateArgument::Type: {
496    TypeSourceInfo *DI;
497    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
498    if (!DI)
499      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
500    return TemplateArgumentLoc(TemplateArgument(T), DI);
501  }
502
503  case ParsedTemplateArgument::NonType: {
504    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
505    return TemplateArgumentLoc(TemplateArgument(E), E);
506  }
507
508  case ParsedTemplateArgument::Template: {
509    TemplateName Template = Arg.getAsTemplate().get();
510    TemplateArgument TArg;
511    if (Arg.getEllipsisLoc().isValid())
512      TArg = TemplateArgument(Template, Optional<unsigned int>());
513    else
514      TArg = Template;
515    return TemplateArgumentLoc(TArg,
516                               Arg.getScopeSpec().getWithLocInContext(
517                                                              SemaRef.Context),
518                               Arg.getLocation(),
519                               Arg.getEllipsisLoc());
520  }
521  }
522
523  llvm_unreachable("Unhandled parsed template argument");
524}
525
526/// \brief Translates template arguments as provided by the parser
527/// into template arguments used by semantic analysis.
528void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
529                                      TemplateArgumentListInfo &TemplateArgs) {
530 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
531   TemplateArgs.addArgument(translateTemplateArgument(*this,
532                                                      TemplateArgsIn[I]));
533}
534
535static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
536                                                 SourceLocation Loc,
537                                                 IdentifierInfo *Name) {
538  NamedDecl *PrevDecl = SemaRef.LookupSingleName(
539      S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForRedeclaration);
540  if (PrevDecl && PrevDecl->isTemplateParameter())
541    SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
542}
543
544/// ActOnTypeParameter - Called when a C++ template type parameter
545/// (e.g., "typename T") has been parsed. Typename specifies whether
546/// the keyword "typename" was used to declare the type parameter
547/// (otherwise, "class" was used), and KeyLoc is the location of the
548/// "class" or "typename" keyword. ParamName is the name of the
549/// parameter (NULL indicates an unnamed template parameter) and
550/// ParamNameLoc is the location of the parameter name (if any).
551/// If the type parameter has a default argument, it will be added
552/// later via ActOnTypeParameterDefault.
553Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
554                               SourceLocation EllipsisLoc,
555                               SourceLocation KeyLoc,
556                               IdentifierInfo *ParamName,
557                               SourceLocation ParamNameLoc,
558                               unsigned Depth, unsigned Position,
559                               SourceLocation EqualLoc,
560                               ParsedType DefaultArg) {
561  assert(S->isTemplateParamScope() &&
562         "Template type parameter not in template parameter scope!");
563  bool Invalid = false;
564
565  SourceLocation Loc = ParamNameLoc;
566  if (!ParamName)
567    Loc = KeyLoc;
568
569  TemplateTypeParmDecl *Param
570    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
571                                   KeyLoc, Loc, Depth, Position, ParamName,
572                                   Typename, Ellipsis);
573  Param->setAccess(AS_public);
574  if (Invalid)
575    Param->setInvalidDecl();
576
577  if (ParamName) {
578    maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
579
580    // Add the template parameter into the current scope.
581    S->AddDecl(Param);
582    IdResolver.AddDecl(Param);
583  }
584
585  // C++0x [temp.param]p9:
586  //   A default template-argument may be specified for any kind of
587  //   template-parameter that is not a template parameter pack.
588  if (DefaultArg && Ellipsis) {
589    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
590    DefaultArg = ParsedType();
591  }
592
593  // Handle the default argument, if provided.
594  if (DefaultArg) {
595    TypeSourceInfo *DefaultTInfo;
596    GetTypeFromParser(DefaultArg, &DefaultTInfo);
597
598    assert(DefaultTInfo && "expected source information for type");
599
600    // Check for unexpanded parameter packs.
601    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
602                                        UPPC_DefaultArgument))
603      return Param;
604
605    // Check the template argument itself.
606    if (CheckTemplateArgument(Param, DefaultTInfo)) {
607      Param->setInvalidDecl();
608      return Param;
609    }
610
611    Param->setDefaultArgument(DefaultTInfo, false);
612  }
613
614  return Param;
615}
616
617/// \brief Check that the type of a non-type template parameter is
618/// well-formed.
619///
620/// \returns the (possibly-promoted) parameter type if valid;
621/// otherwise, produces a diagnostic and returns a NULL type.
622QualType
623Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
624  // We don't allow variably-modified types as the type of non-type template
625  // parameters.
626  if (T->isVariablyModifiedType()) {
627    Diag(Loc, diag::err_variably_modified_nontype_template_param)
628      << T;
629    return QualType();
630  }
631
632  // C++ [temp.param]p4:
633  //
634  // A non-type template-parameter shall have one of the following
635  // (optionally cv-qualified) types:
636  //
637  //       -- integral or enumeration type,
638  if (T->isIntegralOrEnumerationType() ||
639      //   -- pointer to object or pointer to function,
640      T->isPointerType() ||
641      //   -- reference to object or reference to function,
642      T->isReferenceType() ||
643      //   -- pointer to member,
644      T->isMemberPointerType() ||
645      //   -- std::nullptr_t.
646      T->isNullPtrType() ||
647      // If T is a dependent type, we can't do the check now, so we
648      // assume that it is well-formed.
649      T->isDependentType()) {
650    // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
651    // are ignored when determining its type.
652    return T.getUnqualifiedType();
653  }
654
655  // C++ [temp.param]p8:
656  //
657  //   A non-type template-parameter of type "array of T" or
658  //   "function returning T" is adjusted to be of type "pointer to
659  //   T" or "pointer to function returning T", respectively.
660  else if (T->isArrayType())
661    // FIXME: Keep the type prior to promotion?
662    return Context.getArrayDecayedType(T);
663  else if (T->isFunctionType())
664    // FIXME: Keep the type prior to promotion?
665    return Context.getPointerType(T);
666
667  Diag(Loc, diag::err_template_nontype_parm_bad_type)
668    << T;
669
670  return QualType();
671}
672
673Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
674                                          unsigned Depth,
675                                          unsigned Position,
676                                          SourceLocation EqualLoc,
677                                          Expr *Default) {
678  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
679  QualType T = TInfo->getType();
680
681  assert(S->isTemplateParamScope() &&
682         "Non-type template parameter not in template parameter scope!");
683  bool Invalid = false;
684
685  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
686  if (T.isNull()) {
687    T = Context.IntTy; // Recover with an 'int' type.
688    Invalid = true;
689  }
690
691  IdentifierInfo *ParamName = D.getIdentifier();
692  bool IsParameterPack = D.hasEllipsis();
693  NonTypeTemplateParmDecl *Param
694    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
695                                      D.getLocStart(),
696                                      D.getIdentifierLoc(),
697                                      Depth, Position, ParamName, T,
698                                      IsParameterPack, TInfo);
699  Param->setAccess(AS_public);
700
701  if (Invalid)
702    Param->setInvalidDecl();
703
704  if (ParamName) {
705    maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
706                                         ParamName);
707
708    // Add the template parameter into the current scope.
709    S->AddDecl(Param);
710    IdResolver.AddDecl(Param);
711  }
712
713  // C++0x [temp.param]p9:
714  //   A default template-argument may be specified for any kind of
715  //   template-parameter that is not a template parameter pack.
716  if (Default && IsParameterPack) {
717    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
718    Default = 0;
719  }
720
721  // Check the well-formedness of the default template argument, if provided.
722  if (Default) {
723    // Check for unexpanded parameter packs.
724    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
725      return Param;
726
727    TemplateArgument Converted;
728    ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
729    if (DefaultRes.isInvalid()) {
730      Param->setInvalidDecl();
731      return Param;
732    }
733    Default = DefaultRes.take();
734
735    Param->setDefaultArgument(Default, false);
736  }
737
738  return Param;
739}
740
741/// ActOnTemplateTemplateParameter - Called when a C++ template template
742/// parameter (e.g. T in template <template \<typename> class T> class array)
743/// has been parsed. S is the current scope.
744Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
745                                           SourceLocation TmpLoc,
746                                           TemplateParameterList *Params,
747                                           SourceLocation EllipsisLoc,
748                                           IdentifierInfo *Name,
749                                           SourceLocation NameLoc,
750                                           unsigned Depth,
751                                           unsigned Position,
752                                           SourceLocation EqualLoc,
753                                           ParsedTemplateArgument Default) {
754  assert(S->isTemplateParamScope() &&
755         "Template template parameter not in template parameter scope!");
756
757  // Construct the parameter object.
758  bool IsParameterPack = EllipsisLoc.isValid();
759  TemplateTemplateParmDecl *Param =
760    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
761                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
762                                     Depth, Position, IsParameterPack,
763                                     Name, Params);
764  Param->setAccess(AS_public);
765
766  // If the template template parameter has a name, then link the identifier
767  // into the scope and lookup mechanisms.
768  if (Name) {
769    maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
770
771    S->AddDecl(Param);
772    IdResolver.AddDecl(Param);
773  }
774
775  if (Params->size() == 0) {
776    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
777    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
778    Param->setInvalidDecl();
779  }
780
781  // C++0x [temp.param]p9:
782  //   A default template-argument may be specified for any kind of
783  //   template-parameter that is not a template parameter pack.
784  if (IsParameterPack && !Default.isInvalid()) {
785    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
786    Default = ParsedTemplateArgument();
787  }
788
789  if (!Default.isInvalid()) {
790    // Check only that we have a template template argument. We don't want to
791    // try to check well-formedness now, because our template template parameter
792    // might have dependent types in its template parameters, which we wouldn't
793    // be able to match now.
794    //
795    // If none of the template template parameter's template arguments mention
796    // other template parameters, we could actually perform more checking here.
797    // However, it isn't worth doing.
798    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
799    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
800      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
801        << DefaultArg.getSourceRange();
802      return Param;
803    }
804
805    // Check for unexpanded parameter packs.
806    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
807                                        DefaultArg.getArgument().getAsTemplate(),
808                                        UPPC_DefaultArgument))
809      return Param;
810
811    Param->setDefaultArgument(DefaultArg, false);
812  }
813
814  return Param;
815}
816
817/// ActOnTemplateParameterList - Builds a TemplateParameterList that
818/// contains the template parameters in Params/NumParams.
819TemplateParameterList *
820Sema::ActOnTemplateParameterList(unsigned Depth,
821                                 SourceLocation ExportLoc,
822                                 SourceLocation TemplateLoc,
823                                 SourceLocation LAngleLoc,
824                                 Decl **Params, unsigned NumParams,
825                                 SourceLocation RAngleLoc) {
826  if (ExportLoc.isValid())
827    Diag(ExportLoc, diag::warn_template_export_unsupported);
828
829  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
830                                       (NamedDecl**)Params, NumParams,
831                                       RAngleLoc);
832}
833
834static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
835  if (SS.isSet())
836    T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
837}
838
839DeclResult
840Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
841                         SourceLocation KWLoc, CXXScopeSpec &SS,
842                         IdentifierInfo *Name, SourceLocation NameLoc,
843                         AttributeList *Attr,
844                         TemplateParameterList *TemplateParams,
845                         AccessSpecifier AS, SourceLocation ModulePrivateLoc,
846                         unsigned NumOuterTemplateParamLists,
847                         TemplateParameterList** OuterTemplateParamLists) {
848  assert(TemplateParams && TemplateParams->size() > 0 &&
849         "No template parameters");
850  assert(TUK != TUK_Reference && "Can only declare or define class templates");
851  bool Invalid = false;
852
853  // Check that we can declare a template here.
854  if (CheckTemplateDeclScope(S, TemplateParams))
855    return true;
856
857  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
858  assert(Kind != TTK_Enum && "can't build template of enumerated type");
859
860  // There is no such thing as an unnamed class template.
861  if (!Name) {
862    Diag(KWLoc, diag::err_template_unnamed_class);
863    return true;
864  }
865
866  // Find any previous declaration with this name. For a friend with no
867  // scope explicitly specified, we only look for tag declarations (per
868  // C++11 [basic.lookup.elab]p2).
869  DeclContext *SemanticContext;
870  LookupResult Previous(*this, Name, NameLoc,
871                        (SS.isEmpty() && TUK == TUK_Friend)
872                          ? LookupTagName : LookupOrdinaryName,
873                        ForRedeclaration);
874  if (SS.isNotEmpty() && !SS.isInvalid()) {
875    SemanticContext = computeDeclContext(SS, true);
876    if (!SemanticContext) {
877      // FIXME: Horrible, horrible hack! We can't currently represent this
878      // in the AST, and historically we have just ignored such friend
879      // class templates, so don't complain here.
880      Diag(NameLoc, TUK == TUK_Friend
881                        ? diag::warn_template_qualified_friend_ignored
882                        : diag::err_template_qualified_declarator_no_match)
883          << SS.getScopeRep() << SS.getRange();
884      return TUK != TUK_Friend;
885    }
886
887    if (RequireCompleteDeclContext(SS, SemanticContext))
888      return true;
889
890    // If we're adding a template to a dependent context, we may need to
891    // rebuilding some of the types used within the template parameter list,
892    // now that we know what the current instantiation is.
893    if (SemanticContext->isDependentContext()) {
894      ContextRAII SavedContext(*this, SemanticContext);
895      if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
896        Invalid = true;
897    } else if (TUK != TUK_Friend && TUK != TUK_Reference)
898      diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
899
900    LookupQualifiedName(Previous, SemanticContext);
901  } else {
902    SemanticContext = CurContext;
903    LookupName(Previous, S);
904  }
905
906  if (Previous.isAmbiguous())
907    return true;
908
909  NamedDecl *PrevDecl = 0;
910  if (Previous.begin() != Previous.end())
911    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
912
913  // If there is a previous declaration with the same name, check
914  // whether this is a valid redeclaration.
915  ClassTemplateDecl *PrevClassTemplate
916    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
917
918  // We may have found the injected-class-name of a class template,
919  // class template partial specialization, or class template specialization.
920  // In these cases, grab the template that is being defined or specialized.
921  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
922      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
923    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
924    PrevClassTemplate
925      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
926    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
927      PrevClassTemplate
928        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
929            ->getSpecializedTemplate();
930    }
931  }
932
933  if (TUK == TUK_Friend) {
934    // C++ [namespace.memdef]p3:
935    //   [...] When looking for a prior declaration of a class or a function
936    //   declared as a friend, and when the name of the friend class or
937    //   function is neither a qualified name nor a template-id, scopes outside
938    //   the innermost enclosing namespace scope are not considered.
939    if (!SS.isSet()) {
940      DeclContext *OutermostContext = CurContext;
941      while (!OutermostContext->isFileContext())
942        OutermostContext = OutermostContext->getLookupParent();
943
944      if (PrevDecl &&
945          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
946           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
947        SemanticContext = PrevDecl->getDeclContext();
948      } else {
949        // Declarations in outer scopes don't matter. However, the outermost
950        // context we computed is the semantic context for our new
951        // declaration.
952        PrevDecl = PrevClassTemplate = 0;
953        SemanticContext = OutermostContext;
954
955        // Check that the chosen semantic context doesn't already contain a
956        // declaration of this name as a non-tag type.
957        LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
958                              ForRedeclaration);
959        DeclContext *LookupContext = SemanticContext;
960        while (LookupContext->isTransparentContext())
961          LookupContext = LookupContext->getLookupParent();
962        LookupQualifiedName(Previous, LookupContext);
963
964        if (Previous.isAmbiguous())
965          return true;
966
967        if (Previous.begin() != Previous.end())
968          PrevDecl = (*Previous.begin())->getUnderlyingDecl();
969      }
970    }
971  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
972    PrevDecl = PrevClassTemplate = 0;
973
974  if (PrevClassTemplate) {
975    // Ensure that the template parameter lists are compatible. Skip this check
976    // for a friend in a dependent context: the template parameter list itself
977    // could be dependent.
978    if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
979        !TemplateParameterListsAreEqual(TemplateParams,
980                                   PrevClassTemplate->getTemplateParameters(),
981                                        /*Complain=*/true,
982                                        TPL_TemplateMatch))
983      return true;
984
985    // C++ [temp.class]p4:
986    //   In a redeclaration, partial specialization, explicit
987    //   specialization or explicit instantiation of a class template,
988    //   the class-key shall agree in kind with the original class
989    //   template declaration (7.1.5.3).
990    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
991    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
992                                      TUK == TUK_Definition,  KWLoc, *Name)) {
993      Diag(KWLoc, diag::err_use_with_wrong_tag)
994        << Name
995        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
996      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
997      Kind = PrevRecordDecl->getTagKind();
998    }
999
1000    // Check for redefinition of this class template.
1001    if (TUK == TUK_Definition) {
1002      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1003        Diag(NameLoc, diag::err_redefinition) << Name;
1004        Diag(Def->getLocation(), diag::note_previous_definition);
1005        // FIXME: Would it make sense to try to "forget" the previous
1006        // definition, as part of error recovery?
1007        return true;
1008      }
1009    }
1010  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
1011    // Maybe we will complain about the shadowed template parameter.
1012    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1013    // Just pretend that we didn't see the previous declaration.
1014    PrevDecl = 0;
1015  } else if (PrevDecl) {
1016    // C++ [temp]p5:
1017    //   A class template shall not have the same name as any other
1018    //   template, class, function, object, enumeration, enumerator,
1019    //   namespace, or type in the same scope (3.3), except as specified
1020    //   in (14.5.4).
1021    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1022    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1023    return true;
1024  }
1025
1026  // Check the template parameter list of this declaration, possibly
1027  // merging in the template parameter list from the previous class
1028  // template declaration. Skip this check for a friend in a dependent
1029  // context, because the template parameter list might be dependent.
1030  if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1031      CheckTemplateParameterList(
1032          TemplateParams,
1033          PrevClassTemplate ? PrevClassTemplate->getTemplateParameters() : 0,
1034          (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
1035           SemanticContext->isDependentContext())
1036              ? TPC_ClassTemplateMember
1037              : TUK == TUK_Friend ? TPC_FriendClassTemplate
1038                                  : TPC_ClassTemplate))
1039    Invalid = true;
1040
1041  if (SS.isSet()) {
1042    // If the name of the template was qualified, we must be defining the
1043    // template out-of-line.
1044    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1045      Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1046                                      : diag::err_member_decl_does_not_match)
1047        << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
1048      Invalid = true;
1049    }
1050  }
1051
1052  CXXRecordDecl *NewClass =
1053    CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1054                          PrevClassTemplate?
1055                            PrevClassTemplate->getTemplatedDecl() : 0,
1056                          /*DelayTypeCreation=*/true);
1057  SetNestedNameSpecifier(NewClass, SS);
1058  if (NumOuterTemplateParamLists > 0)
1059    NewClass->setTemplateParameterListsInfo(Context,
1060                                            NumOuterTemplateParamLists,
1061                                            OuterTemplateParamLists);
1062
1063  // Add alignment attributes if necessary; these attributes are checked when
1064  // the ASTContext lays out the structure.
1065  if (TUK == TUK_Definition) {
1066    AddAlignmentAttributesForRecord(NewClass);
1067    AddMsStructLayoutForRecord(NewClass);
1068  }
1069
1070  ClassTemplateDecl *NewTemplate
1071    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1072                                DeclarationName(Name), TemplateParams,
1073                                NewClass, PrevClassTemplate);
1074  NewClass->setDescribedClassTemplate(NewTemplate);
1075
1076  if (ModulePrivateLoc.isValid())
1077    NewTemplate->setModulePrivate();
1078
1079  // Build the type for the class template declaration now.
1080  QualType T = NewTemplate->getInjectedClassNameSpecialization();
1081  T = Context.getInjectedClassNameType(NewClass, T);
1082  assert(T->isDependentType() && "Class template type is not dependent?");
1083  (void)T;
1084
1085  // If we are providing an explicit specialization of a member that is a
1086  // class template, make a note of that.
1087  if (PrevClassTemplate &&
1088      PrevClassTemplate->getInstantiatedFromMemberTemplate())
1089    PrevClassTemplate->setMemberSpecialization();
1090
1091  // Set the access specifier.
1092  if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1093    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1094
1095  // Set the lexical context of these templates
1096  NewClass->setLexicalDeclContext(CurContext);
1097  NewTemplate->setLexicalDeclContext(CurContext);
1098
1099  if (TUK == TUK_Definition)
1100    NewClass->startDefinition();
1101
1102  if (Attr)
1103    ProcessDeclAttributeList(S, NewClass, Attr);
1104
1105  if (PrevClassTemplate)
1106    mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
1107
1108  AddPushedVisibilityAttribute(NewClass);
1109
1110  if (TUK != TUK_Friend)
1111    PushOnScopeChains(NewTemplate, S);
1112  else {
1113    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1114      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1115      NewClass->setAccess(PrevClassTemplate->getAccess());
1116    }
1117
1118    NewTemplate->setObjectOfFriendDecl();
1119
1120    // Friend templates are visible in fairly strange ways.
1121    if (!CurContext->isDependentContext()) {
1122      DeclContext *DC = SemanticContext->getRedeclContext();
1123      DC->makeDeclVisibleInContext(NewTemplate);
1124      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1125        PushOnScopeChains(NewTemplate, EnclosingScope,
1126                          /* AddToContext = */ false);
1127    }
1128
1129    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1130                                            NewClass->getLocation(),
1131                                            NewTemplate,
1132                                    /*FIXME:*/NewClass->getLocation());
1133    Friend->setAccess(AS_public);
1134    CurContext->addDecl(Friend);
1135  }
1136
1137  if (Invalid) {
1138    NewTemplate->setInvalidDecl();
1139    NewClass->setInvalidDecl();
1140  }
1141
1142  ActOnDocumentableDecl(NewTemplate);
1143
1144  return NewTemplate;
1145}
1146
1147/// \brief Diagnose the presence of a default template argument on a
1148/// template parameter, which is ill-formed in certain contexts.
1149///
1150/// \returns true if the default template argument should be dropped.
1151static bool DiagnoseDefaultTemplateArgument(Sema &S,
1152                                            Sema::TemplateParamListContext TPC,
1153                                            SourceLocation ParamLoc,
1154                                            SourceRange DefArgRange) {
1155  switch (TPC) {
1156  case Sema::TPC_ClassTemplate:
1157  case Sema::TPC_VarTemplate:
1158  case Sema::TPC_TypeAliasTemplate:
1159    return false;
1160
1161  case Sema::TPC_FunctionTemplate:
1162  case Sema::TPC_FriendFunctionTemplateDefinition:
1163    // C++ [temp.param]p9:
1164    //   A default template-argument shall not be specified in a
1165    //   function template declaration or a function template
1166    //   definition [...]
1167    //   If a friend function template declaration specifies a default
1168    //   template-argument, that declaration shall be a definition and shall be
1169    //   the only declaration of the function template in the translation unit.
1170    // (C++98/03 doesn't have this wording; see DR226).
1171    S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
1172         diag::warn_cxx98_compat_template_parameter_default_in_function_template
1173           : diag::ext_template_parameter_default_in_function_template)
1174      << DefArgRange;
1175    return false;
1176
1177  case Sema::TPC_ClassTemplateMember:
1178    // C++0x [temp.param]p9:
1179    //   A default template-argument shall not be specified in the
1180    //   template-parameter-lists of the definition of a member of a
1181    //   class template that appears outside of the member's class.
1182    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1183      << DefArgRange;
1184    return true;
1185
1186  case Sema::TPC_FriendClassTemplate:
1187  case Sema::TPC_FriendFunctionTemplate:
1188    // C++ [temp.param]p9:
1189    //   A default template-argument shall not be specified in a
1190    //   friend template declaration.
1191    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1192      << DefArgRange;
1193    return true;
1194
1195    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1196    // for friend function templates if there is only a single
1197    // declaration (and it is a definition). Strange!
1198  }
1199
1200  llvm_unreachable("Invalid TemplateParamListContext!");
1201}
1202
1203/// \brief Check for unexpanded parameter packs within the template parameters
1204/// of a template template parameter, recursively.
1205static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1206                                             TemplateTemplateParmDecl *TTP) {
1207  // A template template parameter which is a parameter pack is also a pack
1208  // expansion.
1209  if (TTP->isParameterPack())
1210    return false;
1211
1212  TemplateParameterList *Params = TTP->getTemplateParameters();
1213  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1214    NamedDecl *P = Params->getParam(I);
1215    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1216      if (!NTTP->isParameterPack() &&
1217          S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1218                                            NTTP->getTypeSourceInfo(),
1219                                      Sema::UPPC_NonTypeTemplateParameterType))
1220        return true;
1221
1222      continue;
1223    }
1224
1225    if (TemplateTemplateParmDecl *InnerTTP
1226                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1227      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1228        return true;
1229  }
1230
1231  return false;
1232}
1233
1234/// \brief Checks the validity of a template parameter list, possibly
1235/// considering the template parameter list from a previous
1236/// declaration.
1237///
1238/// If an "old" template parameter list is provided, it must be
1239/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1240/// template parameter list.
1241///
1242/// \param NewParams Template parameter list for a new template
1243/// declaration. This template parameter list will be updated with any
1244/// default arguments that are carried through from the previous
1245/// template parameter list.
1246///
1247/// \param OldParams If provided, template parameter list from a
1248/// previous declaration of the same template. Default template
1249/// arguments will be merged from the old template parameter list to
1250/// the new template parameter list.
1251///
1252/// \param TPC Describes the context in which we are checking the given
1253/// template parameter list.
1254///
1255/// \returns true if an error occurred, false otherwise.
1256bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1257                                      TemplateParameterList *OldParams,
1258                                      TemplateParamListContext TPC) {
1259  bool Invalid = false;
1260
1261  // C++ [temp.param]p10:
1262  //   The set of default template-arguments available for use with a
1263  //   template declaration or definition is obtained by merging the
1264  //   default arguments from the definition (if in scope) and all
1265  //   declarations in scope in the same way default function
1266  //   arguments are (8.3.6).
1267  bool SawDefaultArgument = false;
1268  SourceLocation PreviousDefaultArgLoc;
1269
1270  // Dummy initialization to avoid warnings.
1271  TemplateParameterList::iterator OldParam = NewParams->end();
1272  if (OldParams)
1273    OldParam = OldParams->begin();
1274
1275  bool RemoveDefaultArguments = false;
1276  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1277                                    NewParamEnd = NewParams->end();
1278       NewParam != NewParamEnd; ++NewParam) {
1279    // Variables used to diagnose redundant default arguments
1280    bool RedundantDefaultArg = false;
1281    SourceLocation OldDefaultLoc;
1282    SourceLocation NewDefaultLoc;
1283
1284    // Variable used to diagnose missing default arguments
1285    bool MissingDefaultArg = false;
1286
1287    // Variable used to diagnose non-final parameter packs
1288    bool SawParameterPack = false;
1289
1290    if (TemplateTypeParmDecl *NewTypeParm
1291          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1292      // Check the presence of a default argument here.
1293      if (NewTypeParm->hasDefaultArgument() &&
1294          DiagnoseDefaultTemplateArgument(*this, TPC,
1295                                          NewTypeParm->getLocation(),
1296               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1297                                                       .getSourceRange()))
1298        NewTypeParm->removeDefaultArgument();
1299
1300      // Merge default arguments for template type parameters.
1301      TemplateTypeParmDecl *OldTypeParm
1302          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1303
1304      if (NewTypeParm->isParameterPack()) {
1305        assert(!NewTypeParm->hasDefaultArgument() &&
1306               "Parameter packs can't have a default argument!");
1307        SawParameterPack = true;
1308      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1309                 NewTypeParm->hasDefaultArgument()) {
1310        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1311        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1312        SawDefaultArgument = true;
1313        RedundantDefaultArg = true;
1314        PreviousDefaultArgLoc = NewDefaultLoc;
1315      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1316        // Merge the default argument from the old declaration to the
1317        // new declaration.
1318        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1319                                        true);
1320        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1321      } else if (NewTypeParm->hasDefaultArgument()) {
1322        SawDefaultArgument = true;
1323        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1324      } else if (SawDefaultArgument)
1325        MissingDefaultArg = true;
1326    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1327               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1328      // Check for unexpanded parameter packs.
1329      if (!NewNonTypeParm->isParameterPack() &&
1330          DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1331                                          NewNonTypeParm->getTypeSourceInfo(),
1332                                          UPPC_NonTypeTemplateParameterType)) {
1333        Invalid = true;
1334        continue;
1335      }
1336
1337      // Check the presence of a default argument here.
1338      if (NewNonTypeParm->hasDefaultArgument() &&
1339          DiagnoseDefaultTemplateArgument(*this, TPC,
1340                                          NewNonTypeParm->getLocation(),
1341                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1342        NewNonTypeParm->removeDefaultArgument();
1343      }
1344
1345      // Merge default arguments for non-type template parameters
1346      NonTypeTemplateParmDecl *OldNonTypeParm
1347        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1348      if (NewNonTypeParm->isParameterPack()) {
1349        assert(!NewNonTypeParm->hasDefaultArgument() &&
1350               "Parameter packs can't have a default argument!");
1351        if (!NewNonTypeParm->isPackExpansion())
1352          SawParameterPack = true;
1353      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1354                 NewNonTypeParm->hasDefaultArgument()) {
1355        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1356        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1357        SawDefaultArgument = true;
1358        RedundantDefaultArg = true;
1359        PreviousDefaultArgLoc = NewDefaultLoc;
1360      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1361        // Merge the default argument from the old declaration to the
1362        // new declaration.
1363        // FIXME: We need to create a new kind of "default argument"
1364        // expression that points to a previous non-type template
1365        // parameter.
1366        NewNonTypeParm->setDefaultArgument(
1367                                         OldNonTypeParm->getDefaultArgument(),
1368                                         /*Inherited=*/ true);
1369        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1370      } else if (NewNonTypeParm->hasDefaultArgument()) {
1371        SawDefaultArgument = true;
1372        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1373      } else if (SawDefaultArgument)
1374        MissingDefaultArg = true;
1375    } else {
1376      TemplateTemplateParmDecl *NewTemplateParm
1377        = cast<TemplateTemplateParmDecl>(*NewParam);
1378
1379      // Check for unexpanded parameter packs, recursively.
1380      if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1381        Invalid = true;
1382        continue;
1383      }
1384
1385      // Check the presence of a default argument here.
1386      if (NewTemplateParm->hasDefaultArgument() &&
1387          DiagnoseDefaultTemplateArgument(*this, TPC,
1388                                          NewTemplateParm->getLocation(),
1389                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1390        NewTemplateParm->removeDefaultArgument();
1391
1392      // Merge default arguments for template template parameters
1393      TemplateTemplateParmDecl *OldTemplateParm
1394        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1395      if (NewTemplateParm->isParameterPack()) {
1396        assert(!NewTemplateParm->hasDefaultArgument() &&
1397               "Parameter packs can't have a default argument!");
1398        if (!NewTemplateParm->isPackExpansion())
1399          SawParameterPack = true;
1400      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1401          NewTemplateParm->hasDefaultArgument()) {
1402        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1403        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1404        SawDefaultArgument = true;
1405        RedundantDefaultArg = true;
1406        PreviousDefaultArgLoc = NewDefaultLoc;
1407      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1408        // Merge the default argument from the old declaration to the
1409        // new declaration.
1410        // FIXME: We need to create a new kind of "default argument" expression
1411        // that points to a previous template template parameter.
1412        NewTemplateParm->setDefaultArgument(
1413                                          OldTemplateParm->getDefaultArgument(),
1414                                          /*Inherited=*/ true);
1415        PreviousDefaultArgLoc
1416          = OldTemplateParm->getDefaultArgument().getLocation();
1417      } else if (NewTemplateParm->hasDefaultArgument()) {
1418        SawDefaultArgument = true;
1419        PreviousDefaultArgLoc
1420          = NewTemplateParm->getDefaultArgument().getLocation();
1421      } else if (SawDefaultArgument)
1422        MissingDefaultArg = true;
1423    }
1424
1425    // C++11 [temp.param]p11:
1426    //   If a template parameter of a primary class template or alias template
1427    //   is a template parameter pack, it shall be the last template parameter.
1428    if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1429        (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
1430         TPC == TPC_TypeAliasTemplate)) {
1431      Diag((*NewParam)->getLocation(),
1432           diag::err_template_param_pack_must_be_last_template_parameter);
1433      Invalid = true;
1434    }
1435
1436    if (RedundantDefaultArg) {
1437      // C++ [temp.param]p12:
1438      //   A template-parameter shall not be given default arguments
1439      //   by two different declarations in the same scope.
1440      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1441      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1442      Invalid = true;
1443    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1444      // C++ [temp.param]p11:
1445      //   If a template-parameter of a class template has a default
1446      //   template-argument, each subsequent template-parameter shall either
1447      //   have a default template-argument supplied or be a template parameter
1448      //   pack.
1449      Diag((*NewParam)->getLocation(),
1450           diag::err_template_param_default_arg_missing);
1451      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1452      Invalid = true;
1453      RemoveDefaultArguments = true;
1454    }
1455
1456    // If we have an old template parameter list that we're merging
1457    // in, move on to the next parameter.
1458    if (OldParams)
1459      ++OldParam;
1460  }
1461
1462  // We were missing some default arguments at the end of the list, so remove
1463  // all of the default arguments.
1464  if (RemoveDefaultArguments) {
1465    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1466                                      NewParamEnd = NewParams->end();
1467         NewParam != NewParamEnd; ++NewParam) {
1468      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1469        TTP->removeDefaultArgument();
1470      else if (NonTypeTemplateParmDecl *NTTP
1471                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1472        NTTP->removeDefaultArgument();
1473      else
1474        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1475    }
1476  }
1477
1478  return Invalid;
1479}
1480
1481namespace {
1482
1483/// A class which looks for a use of a certain level of template
1484/// parameter.
1485struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1486  typedef RecursiveASTVisitor<DependencyChecker> super;
1487
1488  unsigned Depth;
1489  bool Match;
1490
1491  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1492    NamedDecl *ND = Params->getParam(0);
1493    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1494      Depth = PD->getDepth();
1495    } else if (NonTypeTemplateParmDecl *PD =
1496                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1497      Depth = PD->getDepth();
1498    } else {
1499      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1500    }
1501  }
1502
1503  bool Matches(unsigned ParmDepth) {
1504    if (ParmDepth >= Depth) {
1505      Match = true;
1506      return true;
1507    }
1508    return false;
1509  }
1510
1511  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1512    return !Matches(T->getDepth());
1513  }
1514
1515  bool TraverseTemplateName(TemplateName N) {
1516    if (TemplateTemplateParmDecl *PD =
1517          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1518      if (Matches(PD->getDepth())) return false;
1519    return super::TraverseTemplateName(N);
1520  }
1521
1522  bool VisitDeclRefExpr(DeclRefExpr *E) {
1523    if (NonTypeTemplateParmDecl *PD =
1524          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1525      if (PD->getDepth() == Depth) {
1526        Match = true;
1527        return false;
1528      }
1529    }
1530    return super::VisitDeclRefExpr(E);
1531  }
1532
1533  bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1534    return TraverseType(T->getInjectedSpecializationType());
1535  }
1536};
1537}
1538
1539/// Determines whether a given type depends on the given parameter
1540/// list.
1541static bool
1542DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1543  DependencyChecker Checker(Params);
1544  Checker.TraverseType(T);
1545  return Checker.Match;
1546}
1547
1548// Find the source range corresponding to the named type in the given
1549// nested-name-specifier, if any.
1550static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1551                                                       QualType T,
1552                                                       const CXXScopeSpec &SS) {
1553  NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1554  while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1555    if (const Type *CurType = NNS->getAsType()) {
1556      if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1557        return NNSLoc.getTypeLoc().getSourceRange();
1558    } else
1559      break;
1560
1561    NNSLoc = NNSLoc.getPrefix();
1562  }
1563
1564  return SourceRange();
1565}
1566
1567/// \brief Match the given template parameter lists to the given scope
1568/// specifier, returning the template parameter list that applies to the
1569/// name.
1570///
1571/// \param DeclStartLoc the start of the declaration that has a scope
1572/// specifier or a template parameter list.
1573///
1574/// \param DeclLoc The location of the declaration itself.
1575///
1576/// \param SS the scope specifier that will be matched to the given template
1577/// parameter lists. This scope specifier precedes a qualified name that is
1578/// being declared.
1579///
1580/// \param ParamLists the template parameter lists, from the outermost to the
1581/// innermost template parameter lists.
1582///
1583/// \param IsFriend Whether to apply the slightly different rules for
1584/// matching template parameters to scope specifiers in friend
1585/// declarations.
1586///
1587/// \param IsExplicitSpecialization will be set true if the entity being
1588/// declared is an explicit specialization, false otherwise.
1589///
1590/// \returns the template parameter list, if any, that corresponds to the
1591/// name that is preceded by the scope specifier @p SS. This template
1592/// parameter list may have template parameters (if we're declaring a
1593/// template) or may have no template parameters (if we're declaring a
1594/// template specialization), or may be NULL (if what we're declaring isn't
1595/// itself a template).
1596TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
1597    SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
1598    ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
1599    bool &IsExplicitSpecialization, bool &Invalid) {
1600  IsExplicitSpecialization = false;
1601  Invalid = false;
1602
1603  // The sequence of nested types to which we will match up the template
1604  // parameter lists. We first build this list by starting with the type named
1605  // by the nested-name-specifier and walking out until we run out of types.
1606  SmallVector<QualType, 4> NestedTypes;
1607  QualType T;
1608  if (SS.getScopeRep()) {
1609    if (CXXRecordDecl *Record
1610              = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1611      T = Context.getTypeDeclType(Record);
1612    else
1613      T = QualType(SS.getScopeRep()->getAsType(), 0);
1614  }
1615
1616  // If we found an explicit specialization that prevents us from needing
1617  // 'template<>' headers, this will be set to the location of that
1618  // explicit specialization.
1619  SourceLocation ExplicitSpecLoc;
1620
1621  while (!T.isNull()) {
1622    NestedTypes.push_back(T);
1623
1624    // Retrieve the parent of a record type.
1625    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1626      // If this type is an explicit specialization, we're done.
1627      if (ClassTemplateSpecializationDecl *Spec
1628          = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1629        if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1630            Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1631          ExplicitSpecLoc = Spec->getLocation();
1632          break;
1633        }
1634      } else if (Record->getTemplateSpecializationKind()
1635                                                == TSK_ExplicitSpecialization) {
1636        ExplicitSpecLoc = Record->getLocation();
1637        break;
1638      }
1639
1640      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1641        T = Context.getTypeDeclType(Parent);
1642      else
1643        T = QualType();
1644      continue;
1645    }
1646
1647    if (const TemplateSpecializationType *TST
1648                                     = T->getAs<TemplateSpecializationType>()) {
1649      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1650        if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1651          T = Context.getTypeDeclType(Parent);
1652        else
1653          T = QualType();
1654        continue;
1655      }
1656    }
1657
1658    // Look one step prior in a dependent template specialization type.
1659    if (const DependentTemplateSpecializationType *DependentTST
1660                          = T->getAs<DependentTemplateSpecializationType>()) {
1661      if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1662        T = QualType(NNS->getAsType(), 0);
1663      else
1664        T = QualType();
1665      continue;
1666    }
1667
1668    // Look one step prior in a dependent name type.
1669    if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1670      if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1671        T = QualType(NNS->getAsType(), 0);
1672      else
1673        T = QualType();
1674      continue;
1675    }
1676
1677    // Retrieve the parent of an enumeration type.
1678    if (const EnumType *EnumT = T->getAs<EnumType>()) {
1679      // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1680      // check here.
1681      EnumDecl *Enum = EnumT->getDecl();
1682
1683      // Get to the parent type.
1684      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1685        T = Context.getTypeDeclType(Parent);
1686      else
1687        T = QualType();
1688      continue;
1689    }
1690
1691    T = QualType();
1692  }
1693  // Reverse the nested types list, since we want to traverse from the outermost
1694  // to the innermost while checking template-parameter-lists.
1695  std::reverse(NestedTypes.begin(), NestedTypes.end());
1696
1697  // C++0x [temp.expl.spec]p17:
1698  //   A member or a member template may be nested within many
1699  //   enclosing class templates. In an explicit specialization for
1700  //   such a member, the member declaration shall be preceded by a
1701  //   template<> for each enclosing class template that is
1702  //   explicitly specialized.
1703  bool SawNonEmptyTemplateParameterList = false;
1704  unsigned ParamIdx = 0;
1705  for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1706       ++TypeIdx) {
1707    T = NestedTypes[TypeIdx];
1708
1709    // Whether we expect a 'template<>' header.
1710    bool NeedEmptyTemplateHeader = false;
1711
1712    // Whether we expect a template header with parameters.
1713    bool NeedNonemptyTemplateHeader = false;
1714
1715    // For a dependent type, the set of template parameters that we
1716    // expect to see.
1717    TemplateParameterList *ExpectedTemplateParams = 0;
1718
1719    // C++0x [temp.expl.spec]p15:
1720    //   A member or a member template may be nested within many enclosing
1721    //   class templates. In an explicit specialization for such a member, the
1722    //   member declaration shall be preceded by a template<> for each
1723    //   enclosing class template that is explicitly specialized.
1724    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1725      if (ClassTemplatePartialSpecializationDecl *Partial
1726            = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1727        ExpectedTemplateParams = Partial->getTemplateParameters();
1728        NeedNonemptyTemplateHeader = true;
1729      } else if (Record->isDependentType()) {
1730        if (Record->getDescribedClassTemplate()) {
1731          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1732                                                      ->getTemplateParameters();
1733          NeedNonemptyTemplateHeader = true;
1734        }
1735      } else if (ClassTemplateSpecializationDecl *Spec
1736                     = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1737        // C++0x [temp.expl.spec]p4:
1738        //   Members of an explicitly specialized class template are defined
1739        //   in the same manner as members of normal classes, and not using
1740        //   the template<> syntax.
1741        if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1742          NeedEmptyTemplateHeader = true;
1743        else
1744          continue;
1745      } else if (Record->getTemplateSpecializationKind()) {
1746        if (Record->getTemplateSpecializationKind()
1747                                                != TSK_ExplicitSpecialization &&
1748            TypeIdx == NumTypes - 1)
1749          IsExplicitSpecialization = true;
1750
1751        continue;
1752      }
1753    } else if (const TemplateSpecializationType *TST
1754                                     = T->getAs<TemplateSpecializationType>()) {
1755      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1756        ExpectedTemplateParams = Template->getTemplateParameters();
1757        NeedNonemptyTemplateHeader = true;
1758      }
1759    } else if (T->getAs<DependentTemplateSpecializationType>()) {
1760      // FIXME:  We actually could/should check the template arguments here
1761      // against the corresponding template parameter list.
1762      NeedNonemptyTemplateHeader = false;
1763    }
1764
1765    // C++ [temp.expl.spec]p16:
1766    //   In an explicit specialization declaration for a member of a class
1767    //   template or a member template that ap- pears in namespace scope, the
1768    //   member template and some of its enclosing class templates may remain
1769    //   unspecialized, except that the declaration shall not explicitly
1770    //   specialize a class member template if its en- closing class templates
1771    //   are not explicitly specialized as well.
1772    if (ParamIdx < ParamLists.size()) {
1773      if (ParamLists[ParamIdx]->size() == 0) {
1774        if (SawNonEmptyTemplateParameterList) {
1775          Diag(DeclLoc, diag::err_specialize_member_of_template)
1776            << ParamLists[ParamIdx]->getSourceRange();
1777          Invalid = true;
1778          IsExplicitSpecialization = false;
1779          return 0;
1780        }
1781      } else
1782        SawNonEmptyTemplateParameterList = true;
1783    }
1784
1785    if (NeedEmptyTemplateHeader) {
1786      // If we're on the last of the types, and we need a 'template<>' header
1787      // here, then it's an explicit specialization.
1788      if (TypeIdx == NumTypes - 1)
1789        IsExplicitSpecialization = true;
1790
1791      if (ParamIdx < ParamLists.size()) {
1792        if (ParamLists[ParamIdx]->size() > 0) {
1793          // The header has template parameters when it shouldn't. Complain.
1794          Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1795               diag::err_template_param_list_matches_nontemplate)
1796            << T
1797            << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1798                           ParamLists[ParamIdx]->getRAngleLoc())
1799            << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1800          Invalid = true;
1801          return 0;
1802        }
1803
1804        // Consume this template header.
1805        ++ParamIdx;
1806        continue;
1807      }
1808
1809      if (!IsFriend) {
1810        // We don't have a template header, but we should.
1811        SourceLocation ExpectedTemplateLoc;
1812        if (!ParamLists.empty())
1813          ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1814        else
1815          ExpectedTemplateLoc = DeclStartLoc;
1816
1817        Diag(DeclLoc, diag::err_template_spec_needs_header)
1818          << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
1819          << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1820      }
1821
1822      continue;
1823    }
1824
1825    if (NeedNonemptyTemplateHeader) {
1826      // In friend declarations we can have template-ids which don't
1827      // depend on the corresponding template parameter lists.  But
1828      // assume that empty parameter lists are supposed to match this
1829      // template-id.
1830      if (IsFriend && T->isDependentType()) {
1831        if (ParamIdx < ParamLists.size() &&
1832            DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1833          ExpectedTemplateParams = 0;
1834        else
1835          continue;
1836      }
1837
1838      if (ParamIdx < ParamLists.size()) {
1839        // Check the template parameter list, if we can.
1840        if (ExpectedTemplateParams &&
1841            !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1842                                            ExpectedTemplateParams,
1843                                            true, TPL_TemplateMatch))
1844          Invalid = true;
1845
1846        if (!Invalid &&
1847            CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1848                                       TPC_ClassTemplateMember))
1849          Invalid = true;
1850
1851        ++ParamIdx;
1852        continue;
1853      }
1854
1855      Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1856        << T
1857        << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1858      Invalid = true;
1859      continue;
1860    }
1861  }
1862
1863  // If there were at least as many template-ids as there were template
1864  // parameter lists, then there are no template parameter lists remaining for
1865  // the declaration itself.
1866  if (ParamIdx >= ParamLists.size())
1867    return 0;
1868
1869  // If there were too many template parameter lists, complain about that now.
1870  if (ParamIdx < ParamLists.size() - 1) {
1871    bool HasAnyExplicitSpecHeader = false;
1872    bool AllExplicitSpecHeaders = true;
1873    for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
1874      if (ParamLists[I]->size() == 0)
1875        HasAnyExplicitSpecHeader = true;
1876      else
1877        AllExplicitSpecHeaders = false;
1878    }
1879
1880    Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1881         AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
1882                                : diag::err_template_spec_extra_headers)
1883        << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1884                       ParamLists[ParamLists.size() - 2]->getRAngleLoc());
1885
1886    // If there was a specialization somewhere, such that 'template<>' is
1887    // not required, and there were any 'template<>' headers, note where the
1888    // specialization occurred.
1889    if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1890      Diag(ExplicitSpecLoc,
1891           diag::note_explicit_template_spec_does_not_need_header)
1892        << NestedTypes.back();
1893
1894    // We have a template parameter list with no corresponding scope, which
1895    // means that the resulting template declaration can't be instantiated
1896    // properly (we'll end up with dependent nodes when we shouldn't).
1897    if (!AllExplicitSpecHeaders)
1898      Invalid = true;
1899  }
1900
1901  // C++ [temp.expl.spec]p16:
1902  //   In an explicit specialization declaration for a member of a class
1903  //   template or a member template that ap- pears in namespace scope, the
1904  //   member template and some of its enclosing class templates may remain
1905  //   unspecialized, except that the declaration shall not explicitly
1906  //   specialize a class member template if its en- closing class templates
1907  //   are not explicitly specialized as well.
1908  if (ParamLists.back()->size() == 0 && SawNonEmptyTemplateParameterList) {
1909    Diag(DeclLoc, diag::err_specialize_member_of_template)
1910      << ParamLists[ParamIdx]->getSourceRange();
1911    Invalid = true;
1912    IsExplicitSpecialization = false;
1913    return 0;
1914  }
1915
1916  // Return the last template parameter list, which corresponds to the
1917  // entity being declared.
1918  return ParamLists.back();
1919}
1920
1921void Sema::NoteAllFoundTemplates(TemplateName Name) {
1922  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1923    Diag(Template->getLocation(), diag::note_template_declared_here)
1924        << (isa<FunctionTemplateDecl>(Template)
1925                ? 0
1926                : isa<ClassTemplateDecl>(Template)
1927                      ? 1
1928                      : isa<VarTemplateDecl>(Template)
1929                            ? 2
1930                            : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
1931        << Template->getDeclName();
1932    return;
1933  }
1934
1935  if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1936    for (OverloadedTemplateStorage::iterator I = OST->begin(),
1937                                          IEnd = OST->end();
1938         I != IEnd; ++I)
1939      Diag((*I)->getLocation(), diag::note_template_declared_here)
1940        << 0 << (*I)->getDeclName();
1941
1942    return;
1943  }
1944}
1945
1946QualType Sema::CheckTemplateIdType(TemplateName Name,
1947                                   SourceLocation TemplateLoc,
1948                                   TemplateArgumentListInfo &TemplateArgs) {
1949  DependentTemplateName *DTN
1950    = Name.getUnderlying().getAsDependentTemplateName();
1951  if (DTN && DTN->isIdentifier())
1952    // When building a template-id where the template-name is dependent,
1953    // assume the template is a type template. Either our assumption is
1954    // correct, or the code is ill-formed and will be diagnosed when the
1955    // dependent name is substituted.
1956    return Context.getDependentTemplateSpecializationType(ETK_None,
1957                                                          DTN->getQualifier(),
1958                                                          DTN->getIdentifier(),
1959                                                          TemplateArgs);
1960
1961  TemplateDecl *Template = Name.getAsTemplateDecl();
1962  if (!Template || isa<FunctionTemplateDecl>(Template)) {
1963    // We might have a substituted template template parameter pack. If so,
1964    // build a template specialization type for it.
1965    if (Name.getAsSubstTemplateTemplateParmPack())
1966      return Context.getTemplateSpecializationType(Name, TemplateArgs);
1967
1968    Diag(TemplateLoc, diag::err_template_id_not_a_type)
1969      << Name;
1970    NoteAllFoundTemplates(Name);
1971    return QualType();
1972  }
1973
1974  // Check that the template argument list is well-formed for this
1975  // template.
1976  SmallVector<TemplateArgument, 4> Converted;
1977  bool ExpansionIntoFixedList = false;
1978  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1979                                false, Converted, &ExpansionIntoFixedList))
1980    return QualType();
1981
1982  QualType CanonType;
1983
1984  bool InstantiationDependent = false;
1985  TypeAliasTemplateDecl *AliasTemplate = 0;
1986  if (!ExpansionIntoFixedList &&
1987      (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) {
1988    // Find the canonical type for this type alias template specialization.
1989    TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
1990    if (Pattern->isInvalidDecl())
1991      return QualType();
1992
1993    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1994                                      Converted.data(), Converted.size());
1995
1996    // Only substitute for the innermost template argument list.
1997    MultiLevelTemplateArgumentList TemplateArgLists;
1998    TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
1999    unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
2000    for (unsigned I = 0; I < Depth; ++I)
2001      TemplateArgLists.addOuterTemplateArguments(None);
2002
2003    LocalInstantiationScope Scope(*this);
2004    InstantiatingTemplate Inst(*this, TemplateLoc, Template);
2005    if (Inst.isInvalid())
2006      return QualType();
2007
2008    CanonType = SubstType(Pattern->getUnderlyingType(),
2009                          TemplateArgLists, AliasTemplate->getLocation(),
2010                          AliasTemplate->getDeclName());
2011    if (CanonType.isNull())
2012      return QualType();
2013  } else if (Name.isDependent() ||
2014             TemplateSpecializationType::anyDependentTemplateArguments(
2015               TemplateArgs, InstantiationDependent)) {
2016    // This class template specialization is a dependent
2017    // type. Therefore, its canonical type is another class template
2018    // specialization type that contains all of the converted
2019    // arguments in canonical form. This ensures that, e.g., A<T> and
2020    // A<T, T> have identical types when A is declared as:
2021    //
2022    //   template<typename T, typename U = T> struct A;
2023    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
2024    CanonType = Context.getTemplateSpecializationType(CanonName,
2025                                                      Converted.data(),
2026                                                      Converted.size());
2027
2028    // FIXME: CanonType is not actually the canonical type, and unfortunately
2029    // it is a TemplateSpecializationType that we will never use again.
2030    // In the future, we need to teach getTemplateSpecializationType to only
2031    // build the canonical type and return that to us.
2032    CanonType = Context.getCanonicalType(CanonType);
2033
2034    // This might work out to be a current instantiation, in which
2035    // case the canonical type needs to be the InjectedClassNameType.
2036    //
2037    // TODO: in theory this could be a simple hashtable lookup; most
2038    // changes to CurContext don't change the set of current
2039    // instantiations.
2040    if (isa<ClassTemplateDecl>(Template)) {
2041      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
2042        // If we get out to a namespace, we're done.
2043        if (Ctx->isFileContext()) break;
2044
2045        // If this isn't a record, keep looking.
2046        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
2047        if (!Record) continue;
2048
2049        // Look for one of the two cases with InjectedClassNameTypes
2050        // and check whether it's the same template.
2051        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
2052            !Record->getDescribedClassTemplate())
2053          continue;
2054
2055        // Fetch the injected class name type and check whether its
2056        // injected type is equal to the type we just built.
2057        QualType ICNT = Context.getTypeDeclType(Record);
2058        QualType Injected = cast<InjectedClassNameType>(ICNT)
2059          ->getInjectedSpecializationType();
2060
2061        if (CanonType != Injected->getCanonicalTypeInternal())
2062          continue;
2063
2064        // If so, the canonical type of this TST is the injected
2065        // class name type of the record we just found.
2066        assert(ICNT.isCanonical());
2067        CanonType = ICNT;
2068        break;
2069      }
2070    }
2071  } else if (ClassTemplateDecl *ClassTemplate
2072               = dyn_cast<ClassTemplateDecl>(Template)) {
2073    // Find the class template specialization declaration that
2074    // corresponds to these arguments.
2075    void *InsertPos = 0;
2076    ClassTemplateSpecializationDecl *Decl
2077      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
2078                                          InsertPos);
2079    if (!Decl) {
2080      // This is the first time we have referenced this class template
2081      // specialization. Create the canonical declaration and add it to
2082      // the set of specializations.
2083      Decl = ClassTemplateSpecializationDecl::Create(Context,
2084                            ClassTemplate->getTemplatedDecl()->getTagKind(),
2085                                                ClassTemplate->getDeclContext(),
2086                            ClassTemplate->getTemplatedDecl()->getLocStart(),
2087                                                ClassTemplate->getLocation(),
2088                                                     ClassTemplate,
2089                                                     Converted.data(),
2090                                                     Converted.size(), 0);
2091      ClassTemplate->AddSpecialization(Decl, InsertPos);
2092      if (ClassTemplate->isOutOfLine())
2093        Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
2094    }
2095
2096    // Diagnose uses of this specialization.
2097    (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
2098
2099    CanonType = Context.getTypeDeclType(Decl);
2100    assert(isa<RecordType>(CanonType) &&
2101           "type of non-dependent specialization is not a RecordType");
2102  }
2103
2104  // Build the fully-sugared type for this class template
2105  // specialization, which refers back to the class template
2106  // specialization we created or found.
2107  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2108}
2109
2110TypeResult
2111Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
2112                          TemplateTy TemplateD, SourceLocation TemplateLoc,
2113                          SourceLocation LAngleLoc,
2114                          ASTTemplateArgsPtr TemplateArgsIn,
2115                          SourceLocation RAngleLoc,
2116                          bool IsCtorOrDtorName) {
2117  if (SS.isInvalid())
2118    return true;
2119
2120  TemplateName Template = TemplateD.get();
2121
2122  // Translate the parser's template argument list in our AST format.
2123  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2124  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2125
2126  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2127    QualType T
2128      = Context.getDependentTemplateSpecializationType(ETK_None,
2129                                                       DTN->getQualifier(),
2130                                                       DTN->getIdentifier(),
2131                                                       TemplateArgs);
2132    // Build type-source information.
2133    TypeLocBuilder TLB;
2134    DependentTemplateSpecializationTypeLoc SpecTL
2135      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2136    SpecTL.setElaboratedKeywordLoc(SourceLocation());
2137    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2138    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2139    SpecTL.setTemplateNameLoc(TemplateLoc);
2140    SpecTL.setLAngleLoc(LAngleLoc);
2141    SpecTL.setRAngleLoc(RAngleLoc);
2142    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2143      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2144    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2145  }
2146
2147  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2148
2149  if (Result.isNull())
2150    return true;
2151
2152  // Build type-source information.
2153  TypeLocBuilder TLB;
2154  TemplateSpecializationTypeLoc SpecTL
2155    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2156  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2157  SpecTL.setTemplateNameLoc(TemplateLoc);
2158  SpecTL.setLAngleLoc(LAngleLoc);
2159  SpecTL.setRAngleLoc(RAngleLoc);
2160  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2161    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2162
2163  // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2164  // constructor or destructor name (in such a case, the scope specifier
2165  // will be attached to the enclosing Decl or Expr node).
2166  if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2167    // Create an elaborated-type-specifier containing the nested-name-specifier.
2168    Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2169    ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2170    ElabTL.setElaboratedKeywordLoc(SourceLocation());
2171    ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2172  }
2173
2174  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2175}
2176
2177TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2178                                        TypeSpecifierType TagSpec,
2179                                        SourceLocation TagLoc,
2180                                        CXXScopeSpec &SS,
2181                                        SourceLocation TemplateKWLoc,
2182                                        TemplateTy TemplateD,
2183                                        SourceLocation TemplateLoc,
2184                                        SourceLocation LAngleLoc,
2185                                        ASTTemplateArgsPtr TemplateArgsIn,
2186                                        SourceLocation RAngleLoc) {
2187  TemplateName Template = TemplateD.get();
2188
2189  // Translate the parser's template argument list in our AST format.
2190  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2191  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2192
2193  // Determine the tag kind
2194  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2195  ElaboratedTypeKeyword Keyword
2196    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2197
2198  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2199    QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2200                                                          DTN->getQualifier(),
2201                                                          DTN->getIdentifier(),
2202                                                                TemplateArgs);
2203
2204    // Build type-source information.
2205    TypeLocBuilder TLB;
2206    DependentTemplateSpecializationTypeLoc SpecTL
2207      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2208    SpecTL.setElaboratedKeywordLoc(TagLoc);
2209    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2210    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2211    SpecTL.setTemplateNameLoc(TemplateLoc);
2212    SpecTL.setLAngleLoc(LAngleLoc);
2213    SpecTL.setRAngleLoc(RAngleLoc);
2214    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2215      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2216    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2217  }
2218
2219  if (TypeAliasTemplateDecl *TAT =
2220        dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2221    // C++0x [dcl.type.elab]p2:
2222    //   If the identifier resolves to a typedef-name or the simple-template-id
2223    //   resolves to an alias template specialization, the
2224    //   elaborated-type-specifier is ill-formed.
2225    Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2226    Diag(TAT->getLocation(), diag::note_declared_at);
2227  }
2228
2229  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2230  if (Result.isNull())
2231    return TypeResult(true);
2232
2233  // Check the tag kind
2234  if (const RecordType *RT = Result->getAs<RecordType>()) {
2235    RecordDecl *D = RT->getDecl();
2236
2237    IdentifierInfo *Id = D->getIdentifier();
2238    assert(Id && "templated class must have an identifier");
2239
2240    if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2241                                      TagLoc, *Id)) {
2242      Diag(TagLoc, diag::err_use_with_wrong_tag)
2243        << Result
2244        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2245      Diag(D->getLocation(), diag::note_previous_use);
2246    }
2247  }
2248
2249  // Provide source-location information for the template specialization.
2250  TypeLocBuilder TLB;
2251  TemplateSpecializationTypeLoc SpecTL
2252    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2253  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2254  SpecTL.setTemplateNameLoc(TemplateLoc);
2255  SpecTL.setLAngleLoc(LAngleLoc);
2256  SpecTL.setRAngleLoc(RAngleLoc);
2257  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2258    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2259
2260  // Construct an elaborated type containing the nested-name-specifier (if any)
2261  // and tag keyword.
2262  Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2263  ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2264  ElabTL.setElaboratedKeywordLoc(TagLoc);
2265  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2266  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2267}
2268
2269static bool CheckTemplatePartialSpecializationArgs(
2270    Sema &S, TemplateParameterList *TemplateParams,
2271    SmallVectorImpl<TemplateArgument> &TemplateArgs);
2272
2273static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
2274                                             NamedDecl *PrevDecl,
2275                                             SourceLocation Loc,
2276                                             bool IsPartialSpecialization);
2277
2278static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
2279
2280static bool isTemplateArgumentTemplateParameter(
2281    const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
2282  switch (Arg.getKind()) {
2283  case TemplateArgument::Null:
2284  case TemplateArgument::NullPtr:
2285  case TemplateArgument::Integral:
2286  case TemplateArgument::Declaration:
2287  case TemplateArgument::Pack:
2288  case TemplateArgument::TemplateExpansion:
2289    return false;
2290
2291  case TemplateArgument::Type: {
2292    QualType Type = Arg.getAsType();
2293    const TemplateTypeParmType *TPT =
2294        Arg.getAsType()->getAs<TemplateTypeParmType>();
2295    return TPT && !Type.hasQualifiers() &&
2296           TPT->getDepth() == Depth && TPT->getIndex() == Index;
2297  }
2298
2299  case TemplateArgument::Expression: {
2300    DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
2301    if (!DRE || !DRE->getDecl())
2302      return false;
2303    const NonTypeTemplateParmDecl *NTTP =
2304        dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
2305    return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
2306  }
2307
2308  case TemplateArgument::Template:
2309    const TemplateTemplateParmDecl *TTP =
2310        dyn_cast_or_null<TemplateTemplateParmDecl>(
2311            Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
2312    return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
2313  }
2314  llvm_unreachable("unexpected kind of template argument");
2315}
2316
2317static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
2318                                    ArrayRef<TemplateArgument> Args) {
2319  if (Params->size() != Args.size())
2320    return false;
2321
2322  unsigned Depth = Params->getDepth();
2323
2324  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2325    TemplateArgument Arg = Args[I];
2326
2327    // If the parameter is a pack expansion, the argument must be a pack
2328    // whose only element is a pack expansion.
2329    if (Params->getParam(I)->isParameterPack()) {
2330      if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
2331          !Arg.pack_begin()->isPackExpansion())
2332        return false;
2333      Arg = Arg.pack_begin()->getPackExpansionPattern();
2334    }
2335
2336    if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
2337      return false;
2338  }
2339
2340  return true;
2341}
2342
2343DeclResult Sema::ActOnVarTemplateSpecialization(
2344    Scope *S, VarTemplateDecl *VarTemplate, Declarator &D, TypeSourceInfo *DI,
2345    SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams,
2346    VarDecl::StorageClass SC, bool IsPartialSpecialization) {
2347  assert(VarTemplate && "A variable template id without template?");
2348
2349  // D must be variable template id.
2350  assert(D.getName().getKind() == UnqualifiedId::IK_TemplateId &&
2351         "Variable template specialization is declared with a template it.");
2352
2353  TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2354  SourceLocation TemplateNameLoc = D.getIdentifierLoc();
2355  SourceLocation LAngleLoc = TemplateId->LAngleLoc;
2356  SourceLocation RAngleLoc = TemplateId->RAngleLoc;
2357  ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
2358                                     TemplateId->NumArgs);
2359  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2360  translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
2361  TemplateName Name(VarTemplate);
2362
2363  // Check for unexpanded parameter packs in any of the template arguments.
2364  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2365    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
2366                                        UPPC_PartialSpecialization))
2367      return true;
2368
2369  // Check that the template argument list is well-formed for this
2370  // template.
2371  SmallVector<TemplateArgument, 4> Converted;
2372  if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
2373                                false, Converted))
2374    return true;
2375
2376  // Check that the type of this variable template specialization
2377  // matches the expected type.
2378  TypeSourceInfo *ExpectedDI;
2379  {
2380    // Do substitution on the type of the declaration
2381    TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
2382                                         Converted.data(), Converted.size());
2383    InstantiatingTemplate Inst(*this, TemplateKWLoc, VarTemplate);
2384    if (Inst.isInvalid())
2385      return true;
2386    VarDecl *Templated = VarTemplate->getTemplatedDecl();
2387    ExpectedDI =
2388        SubstType(Templated->getTypeSourceInfo(),
2389                  MultiLevelTemplateArgumentList(TemplateArgList),
2390                  Templated->getTypeSpecStartLoc(), Templated->getDeclName());
2391  }
2392  if (!ExpectedDI)
2393    return true;
2394
2395  // Find the variable template (partial) specialization declaration that
2396  // corresponds to these arguments.
2397  if (IsPartialSpecialization) {
2398    if (CheckTemplatePartialSpecializationArgs(
2399            *this, VarTemplate->getTemplateParameters(), Converted))
2400      return true;
2401
2402    bool InstantiationDependent;
2403    if (!Name.isDependent() &&
2404        !TemplateSpecializationType::anyDependentTemplateArguments(
2405            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
2406            InstantiationDependent)) {
2407      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
2408          << VarTemplate->getDeclName();
2409      IsPartialSpecialization = false;
2410    }
2411
2412    if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
2413                                Converted)) {
2414      // C++ [temp.class.spec]p9b3:
2415      //
2416      //   -- The argument list of the specialization shall not be identical
2417      //      to the implicit argument list of the primary template.
2418      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
2419        << /*variable template*/ 1
2420        << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
2421        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
2422      // FIXME: Recover from this by treating the declaration as a redeclaration
2423      // of the primary template.
2424      return true;
2425    }
2426  }
2427
2428  void *InsertPos = 0;
2429  VarTemplateSpecializationDecl *PrevDecl = 0;
2430
2431  if (IsPartialSpecialization)
2432    // FIXME: Template parameter list matters too
2433    PrevDecl = VarTemplate->findPartialSpecialization(
2434        Converted.data(), Converted.size(), InsertPos);
2435  else
2436    PrevDecl = VarTemplate->findSpecialization(Converted.data(),
2437                                               Converted.size(), InsertPos);
2438
2439  VarTemplateSpecializationDecl *Specialization = 0;
2440
2441  // Check whether we can declare a variable template specialization in
2442  // the current scope.
2443  if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
2444                                       TemplateNameLoc,
2445                                       IsPartialSpecialization))
2446    return true;
2447
2448  if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
2449    // Since the only prior variable template specialization with these
2450    // arguments was referenced but not declared,  reuse that
2451    // declaration node as our own, updating its source location and
2452    // the list of outer template parameters to reflect our new declaration.
2453    Specialization = PrevDecl;
2454    Specialization->setLocation(TemplateNameLoc);
2455    PrevDecl = 0;
2456  } else if (IsPartialSpecialization) {
2457    // Create a new class template partial specialization declaration node.
2458    VarTemplatePartialSpecializationDecl *PrevPartial =
2459        cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
2460    VarTemplatePartialSpecializationDecl *Partial =
2461        VarTemplatePartialSpecializationDecl::Create(
2462            Context, VarTemplate->getDeclContext(), TemplateKWLoc,
2463            TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
2464            Converted.data(), Converted.size(), TemplateArgs);
2465
2466    if (!PrevPartial)
2467      VarTemplate->AddPartialSpecialization(Partial, InsertPos);
2468    Specialization = Partial;
2469
2470    // If we are providing an explicit specialization of a member variable
2471    // template specialization, make a note of that.
2472    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
2473      PrevPartial->setMemberSpecialization();
2474
2475    // Check that all of the template parameters of the variable template
2476    // partial specialization are deducible from the template
2477    // arguments. If not, this variable template partial specialization
2478    // will never be used.
2479    llvm::SmallBitVector DeducibleParams(TemplateParams->size());
2480    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
2481                               TemplateParams->getDepth(), DeducibleParams);
2482
2483    if (!DeducibleParams.all()) {
2484      unsigned NumNonDeducible =
2485          DeducibleParams.size() - DeducibleParams.count();
2486      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
2487        << /*variable template*/ 1 << (NumNonDeducible > 1)
2488        << SourceRange(TemplateNameLoc, RAngleLoc);
2489      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
2490        if (!DeducibleParams[I]) {
2491          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
2492          if (Param->getDeclName())
2493            Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2494                << Param->getDeclName();
2495          else
2496            Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2497                << "<anonymous>";
2498        }
2499      }
2500    }
2501  } else {
2502    // Create a new class template specialization declaration node for
2503    // this explicit specialization or friend declaration.
2504    Specialization = VarTemplateSpecializationDecl::Create(
2505        Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
2506        VarTemplate, DI->getType(), DI, SC, Converted.data(), Converted.size());
2507    Specialization->setTemplateArgsInfo(TemplateArgs);
2508
2509    if (!PrevDecl)
2510      VarTemplate->AddSpecialization(Specialization, InsertPos);
2511  }
2512
2513  // C++ [temp.expl.spec]p6:
2514  //   If a template, a member template or the member of a class template is
2515  //   explicitly specialized then that specialization shall be declared
2516  //   before the first use of that specialization that would cause an implicit
2517  //   instantiation to take place, in every translation unit in which such a
2518  //   use occurs; no diagnostic is required.
2519  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
2520    bool Okay = false;
2521    for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
2522      // Is there any previous explicit specialization declaration?
2523      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
2524        Okay = true;
2525        break;
2526      }
2527    }
2528
2529    if (!Okay) {
2530      SourceRange Range(TemplateNameLoc, RAngleLoc);
2531      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
2532          << Name << Range;
2533
2534      Diag(PrevDecl->getPointOfInstantiation(),
2535           diag::note_instantiation_required_here)
2536          << (PrevDecl->getTemplateSpecializationKind() !=
2537              TSK_ImplicitInstantiation);
2538      return true;
2539    }
2540  }
2541
2542  Specialization->setTemplateKeywordLoc(TemplateKWLoc);
2543  Specialization->setLexicalDeclContext(CurContext);
2544
2545  // Add the specialization into its lexical context, so that it can
2546  // be seen when iterating through the list of declarations in that
2547  // context. However, specializations are not found by name lookup.
2548  CurContext->addDecl(Specialization);
2549
2550  // Note that this is an explicit specialization.
2551  Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
2552
2553  if (PrevDecl) {
2554    // Check that this isn't a redefinition of this specialization,
2555    // merging with previous declarations.
2556    LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
2557                          ForRedeclaration);
2558    PrevSpec.addDecl(PrevDecl);
2559    D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
2560  } else if (Specialization->isStaticDataMember() &&
2561             Specialization->isOutOfLine()) {
2562    Specialization->setAccess(VarTemplate->getAccess());
2563  }
2564
2565  // Link instantiations of static data members back to the template from
2566  // which they were instantiated.
2567  if (Specialization->isStaticDataMember())
2568    Specialization->setInstantiationOfStaticDataMember(
2569        VarTemplate->getTemplatedDecl(),
2570        Specialization->getSpecializationKind());
2571
2572  return Specialization;
2573}
2574
2575namespace {
2576/// \brief A partial specialization whose template arguments have matched
2577/// a given template-id.
2578struct PartialSpecMatchResult {
2579  VarTemplatePartialSpecializationDecl *Partial;
2580  TemplateArgumentList *Args;
2581};
2582}
2583
2584DeclResult
2585Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
2586                         SourceLocation TemplateNameLoc,
2587                         const TemplateArgumentListInfo &TemplateArgs) {
2588  assert(Template && "A variable template id without template?");
2589
2590  // Check that the template argument list is well-formed for this template.
2591  SmallVector<TemplateArgument, 4> Converted;
2592  bool ExpansionIntoFixedList = false;
2593  if (CheckTemplateArgumentList(
2594          Template, TemplateNameLoc,
2595          const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
2596          Converted, &ExpansionIntoFixedList))
2597    return true;
2598
2599  // Find the variable template specialization declaration that
2600  // corresponds to these arguments.
2601  void *InsertPos = 0;
2602  if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
2603          Converted.data(), Converted.size(), InsertPos))
2604    // If we already have a variable template specialization, return it.
2605    return Spec;
2606
2607  // This is the first time we have referenced this variable template
2608  // specialization. Create the canonical declaration and add it to
2609  // the set of specializations, based on the closest partial specialization
2610  // that it represents. That is,
2611  VarDecl *InstantiationPattern = Template->getTemplatedDecl();
2612  TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
2613                                       Converted.data(), Converted.size());
2614  TemplateArgumentList *InstantiationArgs = &TemplateArgList;
2615  bool AmbiguousPartialSpec = false;
2616  typedef PartialSpecMatchResult MatchResult;
2617  SmallVector<MatchResult, 4> Matched;
2618  SourceLocation PointOfInstantiation = TemplateNameLoc;
2619  TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation);
2620
2621  // 1. Attempt to find the closest partial specialization that this
2622  // specializes, if any.
2623  // If any of the template arguments is dependent, then this is probably
2624  // a placeholder for an incomplete declarative context; which must be
2625  // complete by instantiation time. Thus, do not search through the partial
2626  // specializations yet.
2627  // TODO: Unify with InstantiateClassTemplateSpecialization()?
2628  //       Perhaps better after unification of DeduceTemplateArguments() and
2629  //       getMoreSpecializedPartialSpecialization().
2630  bool InstantiationDependent = false;
2631  if (!TemplateSpecializationType::anyDependentTemplateArguments(
2632          TemplateArgs, InstantiationDependent)) {
2633
2634    SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
2635    Template->getPartialSpecializations(PartialSpecs);
2636
2637    for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
2638      VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
2639      TemplateDeductionInfo Info(FailedCandidates.getLocation());
2640
2641      if (TemplateDeductionResult Result =
2642              DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
2643        // Store the failed-deduction information for use in diagnostics, later.
2644        // TODO: Actually use the failed-deduction info?
2645        FailedCandidates.addCandidate()
2646            .set(Partial, MakeDeductionFailureInfo(Context, Result, Info));
2647        (void)Result;
2648      } else {
2649        Matched.push_back(PartialSpecMatchResult());
2650        Matched.back().Partial = Partial;
2651        Matched.back().Args = Info.take();
2652      }
2653    }
2654
2655    // If we're dealing with a member template where the template parameters
2656    // have been instantiated, this provides the original template parameters
2657    // from which the member template's parameters were instantiated.
2658    SmallVector<const NamedDecl *, 4> InstantiatedTemplateParameters;
2659
2660    if (Matched.size() >= 1) {
2661      SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
2662      if (Matched.size() == 1) {
2663        //   -- If exactly one matching specialization is found, the
2664        //      instantiation is generated from that specialization.
2665        // We don't need to do anything for this.
2666      } else {
2667        //   -- If more than one matching specialization is found, the
2668        //      partial order rules (14.5.4.2) are used to determine
2669        //      whether one of the specializations is more specialized
2670        //      than the others. If none of the specializations is more
2671        //      specialized than all of the other matching
2672        //      specializations, then the use of the variable template is
2673        //      ambiguous and the program is ill-formed.
2674        for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
2675                                                   PEnd = Matched.end();
2676             P != PEnd; ++P) {
2677          if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
2678                                                      PointOfInstantiation) ==
2679              P->Partial)
2680            Best = P;
2681        }
2682
2683        // Determine if the best partial specialization is more specialized than
2684        // the others.
2685        for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2686                                                   PEnd = Matched.end();
2687             P != PEnd; ++P) {
2688          if (P != Best && getMoreSpecializedPartialSpecialization(
2689                               P->Partial, Best->Partial,
2690                               PointOfInstantiation) != Best->Partial) {
2691            AmbiguousPartialSpec = true;
2692            break;
2693          }
2694        }
2695      }
2696
2697      // Instantiate using the best variable template partial specialization.
2698      InstantiationPattern = Best->Partial;
2699      InstantiationArgs = Best->Args;
2700    } else {
2701      //   -- If no match is found, the instantiation is generated
2702      //      from the primary template.
2703      // InstantiationPattern = Template->getTemplatedDecl();
2704    }
2705  }
2706
2707  // 2. Create the canonical declaration.
2708  // Note that we do not instantiate the variable just yet, since
2709  // instantiation is handled in DoMarkVarDeclReferenced().
2710  // FIXME: LateAttrs et al.?
2711  VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
2712      Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
2713      Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
2714  if (!Decl)
2715    return true;
2716
2717  if (AmbiguousPartialSpec) {
2718    // Partial ordering did not produce a clear winner. Complain.
2719    Decl->setInvalidDecl();
2720    Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
2721        << Decl;
2722
2723    // Print the matching partial specializations.
2724    for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2725                                               PEnd = Matched.end();
2726         P != PEnd; ++P)
2727      Diag(P->Partial->getLocation(), diag::note_partial_spec_match)
2728          << getTemplateArgumentBindingsText(
2729                 P->Partial->getTemplateParameters(), *P->Args);
2730    return true;
2731  }
2732
2733  if (VarTemplatePartialSpecializationDecl *D =
2734          dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
2735    Decl->setInstantiationOf(D, InstantiationArgs);
2736
2737  assert(Decl && "No variable template specialization?");
2738  return Decl;
2739}
2740
2741ExprResult
2742Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
2743                         const DeclarationNameInfo &NameInfo,
2744                         VarTemplateDecl *Template, SourceLocation TemplateLoc,
2745                         const TemplateArgumentListInfo *TemplateArgs) {
2746
2747  DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
2748                                       *TemplateArgs);
2749  if (Decl.isInvalid())
2750    return ExprError();
2751
2752  VarDecl *Var = cast<VarDecl>(Decl.get());
2753  if (!Var->getTemplateSpecializationKind())
2754    Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
2755                                       NameInfo.getLoc());
2756
2757  // Build an ordinary singleton decl ref.
2758  return BuildDeclarationNameExpr(SS, NameInfo, Var,
2759                                  /*FoundD=*/0, TemplateArgs);
2760}
2761
2762ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2763                                     SourceLocation TemplateKWLoc,
2764                                     LookupResult &R,
2765                                     bool RequiresADL,
2766                                 const TemplateArgumentListInfo *TemplateArgs) {
2767  // FIXME: Can we do any checking at this point? I guess we could check the
2768  // template arguments that we have against the template name, if the template
2769  // name refers to a single template. That's not a terribly common case,
2770  // though.
2771  // foo<int> could identify a single function unambiguously
2772  // This approach does NOT work, since f<int>(1);
2773  // gets resolved prior to resorting to overload resolution
2774  // i.e., template<class T> void f(double);
2775  //       vs template<class T, class U> void f(U);
2776
2777  // These should be filtered out by our callers.
2778  assert(!R.empty() && "empty lookup results when building templateid");
2779  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2780
2781  // In C++1y, check variable template ids.
2782  if (R.getAsSingle<VarTemplateDecl>()) {
2783    return Owned(CheckVarTemplateId(SS, R.getLookupNameInfo(),
2784                                    R.getAsSingle<VarTemplateDecl>(),
2785                                    TemplateKWLoc, TemplateArgs));
2786  }
2787
2788  // We don't want lookup warnings at this point.
2789  R.suppressDiagnostics();
2790
2791  UnresolvedLookupExpr *ULE
2792    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2793                                   SS.getWithLocInContext(Context),
2794                                   TemplateKWLoc,
2795                                   R.getLookupNameInfo(),
2796                                   RequiresADL, TemplateArgs,
2797                                   R.begin(), R.end());
2798
2799  return Owned(ULE);
2800}
2801
2802// We actually only call this from template instantiation.
2803ExprResult
2804Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2805                                   SourceLocation TemplateKWLoc,
2806                                   const DeclarationNameInfo &NameInfo,
2807                             const TemplateArgumentListInfo *TemplateArgs) {
2808
2809  assert(TemplateArgs || TemplateKWLoc.isValid());
2810  DeclContext *DC;
2811  if (!(DC = computeDeclContext(SS, false)) ||
2812      DC->isDependentContext() ||
2813      RequireCompleteDeclContext(SS, DC))
2814    return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
2815
2816  bool MemberOfUnknownSpecialization;
2817  LookupResult R(*this, NameInfo, LookupOrdinaryName);
2818  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
2819                     MemberOfUnknownSpecialization);
2820
2821  if (R.isAmbiguous())
2822    return ExprError();
2823
2824  if (R.empty()) {
2825    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2826      << NameInfo.getName() << SS.getRange();
2827    return ExprError();
2828  }
2829
2830  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2831    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2832      << (NestedNameSpecifier*) SS.getScopeRep()
2833      << NameInfo.getName() << SS.getRange();
2834    Diag(Temp->getLocation(), diag::note_referenced_class_template);
2835    return ExprError();
2836  }
2837
2838  return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
2839}
2840
2841/// \brief Form a dependent template name.
2842///
2843/// This action forms a dependent template name given the template
2844/// name and its (presumably dependent) scope specifier. For
2845/// example, given "MetaFun::template apply", the scope specifier \p
2846/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2847/// of the "template" keyword, and "apply" is the \p Name.
2848TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2849                                                  CXXScopeSpec &SS,
2850                                                  SourceLocation TemplateKWLoc,
2851                                                  UnqualifiedId &Name,
2852                                                  ParsedType ObjectType,
2853                                                  bool EnteringContext,
2854                                                  TemplateTy &Result) {
2855  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
2856    Diag(TemplateKWLoc,
2857         getLangOpts().CPlusPlus11 ?
2858           diag::warn_cxx98_compat_template_outside_of_template :
2859           diag::ext_template_outside_of_template)
2860      << FixItHint::CreateRemoval(TemplateKWLoc);
2861
2862  DeclContext *LookupCtx = 0;
2863  if (SS.isSet())
2864    LookupCtx = computeDeclContext(SS, EnteringContext);
2865  if (!LookupCtx && ObjectType)
2866    LookupCtx = computeDeclContext(ObjectType.get());
2867  if (LookupCtx) {
2868    // C++0x [temp.names]p5:
2869    //   If a name prefixed by the keyword template is not the name of
2870    //   a template, the program is ill-formed. [Note: the keyword
2871    //   template may not be applied to non-template members of class
2872    //   templates. -end note ] [ Note: as is the case with the
2873    //   typename prefix, the template prefix is allowed in cases
2874    //   where it is not strictly necessary; i.e., when the
2875    //   nested-name-specifier or the expression on the left of the ->
2876    //   or . is not dependent on a template-parameter, or the use
2877    //   does not appear in the scope of a template. -end note]
2878    //
2879    // Note: C++03 was more strict here, because it banned the use of
2880    // the "template" keyword prior to a template-name that was not a
2881    // dependent name. C++ DR468 relaxed this requirement (the
2882    // "template" keyword is now permitted). We follow the C++0x
2883    // rules, even in C++03 mode with a warning, retroactively applying the DR.
2884    bool MemberOfUnknownSpecialization;
2885    TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
2886                                          ObjectType, EnteringContext, Result,
2887                                          MemberOfUnknownSpecialization);
2888    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2889        isa<CXXRecordDecl>(LookupCtx) &&
2890        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2891         cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2892      // This is a dependent template. Handle it below.
2893    } else if (TNK == TNK_Non_template) {
2894      Diag(Name.getLocStart(),
2895           diag::err_template_kw_refers_to_non_template)
2896        << GetNameFromUnqualifiedId(Name).getName()
2897        << Name.getSourceRange()
2898        << TemplateKWLoc;
2899      return TNK_Non_template;
2900    } else {
2901      // We found something; return it.
2902      return TNK;
2903    }
2904  }
2905
2906  NestedNameSpecifier *Qualifier
2907    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2908
2909  switch (Name.getKind()) {
2910  case UnqualifiedId::IK_Identifier:
2911    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2912                                                              Name.Identifier));
2913    return TNK_Dependent_template_name;
2914
2915  case UnqualifiedId::IK_OperatorFunctionId:
2916    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2917                                             Name.OperatorFunctionId.Operator));
2918    return TNK_Dependent_template_name;
2919
2920  case UnqualifiedId::IK_LiteralOperatorId:
2921    llvm_unreachable(
2922            "We don't support these; Parse shouldn't have allowed propagation");
2923
2924  default:
2925    break;
2926  }
2927
2928  Diag(Name.getLocStart(),
2929       diag::err_template_kw_refers_to_non_template)
2930    << GetNameFromUnqualifiedId(Name).getName()
2931    << Name.getSourceRange()
2932    << TemplateKWLoc;
2933  return TNK_Non_template;
2934}
2935
2936bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2937                                     const TemplateArgumentLoc &AL,
2938                          SmallVectorImpl<TemplateArgument> &Converted) {
2939  const TemplateArgument &Arg = AL.getArgument();
2940
2941  // Check template type parameter.
2942  switch(Arg.getKind()) {
2943  case TemplateArgument::Type:
2944    // C++ [temp.arg.type]p1:
2945    //   A template-argument for a template-parameter which is a
2946    //   type shall be a type-id.
2947    break;
2948  case TemplateArgument::Template: {
2949    // We have a template type parameter but the template argument
2950    // is a template without any arguments.
2951    SourceRange SR = AL.getSourceRange();
2952    TemplateName Name = Arg.getAsTemplate();
2953    Diag(SR.getBegin(), diag::err_template_missing_args)
2954      << Name << SR;
2955    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2956      Diag(Decl->getLocation(), diag::note_template_decl_here);
2957
2958    return true;
2959  }
2960  case TemplateArgument::Expression: {
2961    // We have a template type parameter but the template argument is an
2962    // expression; see if maybe it is missing the "typename" keyword.
2963    CXXScopeSpec SS;
2964    DeclarationNameInfo NameInfo;
2965
2966    if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
2967      SS.Adopt(ArgExpr->getQualifierLoc());
2968      NameInfo = ArgExpr->getNameInfo();
2969    } else if (DependentScopeDeclRefExpr *ArgExpr =
2970               dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
2971      SS.Adopt(ArgExpr->getQualifierLoc());
2972      NameInfo = ArgExpr->getNameInfo();
2973    } else if (CXXDependentScopeMemberExpr *ArgExpr =
2974               dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
2975      if (ArgExpr->isImplicitAccess()) {
2976        SS.Adopt(ArgExpr->getQualifierLoc());
2977        NameInfo = ArgExpr->getMemberNameInfo();
2978      }
2979    }
2980
2981    if (NameInfo.getName().isIdentifier()) {
2982      LookupResult Result(*this, NameInfo, LookupOrdinaryName);
2983      LookupParsedName(Result, CurScope, &SS);
2984
2985      if (Result.getAsSingle<TypeDecl>() ||
2986          Result.getResultKind() ==
2987            LookupResult::NotFoundInCurrentInstantiation) {
2988        // FIXME: Add a FixIt and fix up the template argument for recovery.
2989        SourceLocation Loc = AL.getSourceRange().getBegin();
2990        Diag(Loc, diag::err_template_arg_must_be_type_suggest);
2991        Diag(Param->getLocation(), diag::note_template_param_here);
2992        return true;
2993      }
2994    }
2995    // fallthrough
2996  }
2997  default: {
2998    // We have a template type parameter but the template argument
2999    // is not a type.
3000    SourceRange SR = AL.getSourceRange();
3001    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
3002    Diag(Param->getLocation(), diag::note_template_param_here);
3003
3004    return true;
3005  }
3006  }
3007
3008  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
3009    return true;
3010
3011  // Add the converted template type argument.
3012  QualType ArgType = Context.getCanonicalType(Arg.getAsType());
3013
3014  // Objective-C ARC:
3015  //   If an explicitly-specified template argument type is a lifetime type
3016  //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
3017  if (getLangOpts().ObjCAutoRefCount &&
3018      ArgType->isObjCLifetimeType() &&
3019      !ArgType.getObjCLifetime()) {
3020    Qualifiers Qs;
3021    Qs.setObjCLifetime(Qualifiers::OCL_Strong);
3022    ArgType = Context.getQualifiedType(ArgType, Qs);
3023  }
3024
3025  Converted.push_back(TemplateArgument(ArgType));
3026  return false;
3027}
3028
3029/// \brief Substitute template arguments into the default template argument for
3030/// the given template type parameter.
3031///
3032/// \param SemaRef the semantic analysis object for which we are performing
3033/// the substitution.
3034///
3035/// \param Template the template that we are synthesizing template arguments
3036/// for.
3037///
3038/// \param TemplateLoc the location of the template name that started the
3039/// template-id we are checking.
3040///
3041/// \param RAngleLoc the location of the right angle bracket ('>') that
3042/// terminates the template-id.
3043///
3044/// \param Param the template template parameter whose default we are
3045/// substituting into.
3046///
3047/// \param Converted the list of template arguments provided for template
3048/// parameters that precede \p Param in the template parameter list.
3049/// \returns the substituted template argument, or NULL if an error occurred.
3050static TypeSourceInfo *
3051SubstDefaultTemplateArgument(Sema &SemaRef,
3052                             TemplateDecl *Template,
3053                             SourceLocation TemplateLoc,
3054                             SourceLocation RAngleLoc,
3055                             TemplateTypeParmDecl *Param,
3056                         SmallVectorImpl<TemplateArgument> &Converted) {
3057  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
3058
3059  // If the argument type is dependent, instantiate it now based
3060  // on the previously-computed template arguments.
3061  if (ArgType->getType()->isDependentType()) {
3062    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3063                                     Template, Converted,
3064                                     SourceRange(TemplateLoc, RAngleLoc));
3065    if (Inst.isInvalid())
3066      return 0;
3067
3068    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3069                                      Converted.data(), Converted.size());
3070
3071    // Only substitute for the innermost template argument list.
3072    MultiLevelTemplateArgumentList TemplateArgLists;
3073    TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3074    for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3075      TemplateArgLists.addOuterTemplateArguments(None);
3076
3077    Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3078    ArgType =
3079        SemaRef.SubstType(ArgType, TemplateArgLists,
3080                          Param->getDefaultArgumentLoc(), Param->getDeclName());
3081  }
3082
3083  return ArgType;
3084}
3085
3086/// \brief Substitute template arguments into the default template argument for
3087/// the given non-type template parameter.
3088///
3089/// \param SemaRef the semantic analysis object for which we are performing
3090/// the substitution.
3091///
3092/// \param Template the template that we are synthesizing template arguments
3093/// for.
3094///
3095/// \param TemplateLoc the location of the template name that started the
3096/// template-id we are checking.
3097///
3098/// \param RAngleLoc the location of the right angle bracket ('>') that
3099/// terminates the template-id.
3100///
3101/// \param Param the non-type template parameter whose default we are
3102/// substituting into.
3103///
3104/// \param Converted the list of template arguments provided for template
3105/// parameters that precede \p Param in the template parameter list.
3106///
3107/// \returns the substituted template argument, or NULL if an error occurred.
3108static ExprResult
3109SubstDefaultTemplateArgument(Sema &SemaRef,
3110                             TemplateDecl *Template,
3111                             SourceLocation TemplateLoc,
3112                             SourceLocation RAngleLoc,
3113                             NonTypeTemplateParmDecl *Param,
3114                        SmallVectorImpl<TemplateArgument> &Converted) {
3115  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3116                                   Template, Converted,
3117                                   SourceRange(TemplateLoc, RAngleLoc));
3118  if (Inst.isInvalid())
3119    return ExprError();
3120
3121  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3122                                    Converted.data(), Converted.size());
3123
3124  // Only substitute for the innermost template argument list.
3125  MultiLevelTemplateArgumentList TemplateArgLists;
3126  TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3127  for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3128    TemplateArgLists.addOuterTemplateArguments(None);
3129
3130  Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3131  EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
3132  return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
3133}
3134
3135/// \brief Substitute template arguments into the default template argument for
3136/// the given template template parameter.
3137///
3138/// \param SemaRef the semantic analysis object for which we are performing
3139/// the substitution.
3140///
3141/// \param Template the template that we are synthesizing template arguments
3142/// for.
3143///
3144/// \param TemplateLoc the location of the template name that started the
3145/// template-id we are checking.
3146///
3147/// \param RAngleLoc the location of the right angle bracket ('>') that
3148/// terminates the template-id.
3149///
3150/// \param Param the template template parameter whose default we are
3151/// substituting into.
3152///
3153/// \param Converted the list of template arguments provided for template
3154/// parameters that precede \p Param in the template parameter list.
3155///
3156/// \param QualifierLoc Will be set to the nested-name-specifier (with
3157/// source-location information) that precedes the template name.
3158///
3159/// \returns the substituted template argument, or NULL if an error occurred.
3160static TemplateName
3161SubstDefaultTemplateArgument(Sema &SemaRef,
3162                             TemplateDecl *Template,
3163                             SourceLocation TemplateLoc,
3164                             SourceLocation RAngleLoc,
3165                             TemplateTemplateParmDecl *Param,
3166                       SmallVectorImpl<TemplateArgument> &Converted,
3167                             NestedNameSpecifierLoc &QualifierLoc) {
3168  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Template, Converted,
3169                                   SourceRange(TemplateLoc, RAngleLoc));
3170  if (Inst.isInvalid())
3171    return TemplateName();
3172
3173  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3174                                    Converted.data(), Converted.size());
3175
3176  // Only substitute for the innermost template argument list.
3177  MultiLevelTemplateArgumentList TemplateArgLists;
3178  TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3179  for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3180    TemplateArgLists.addOuterTemplateArguments(None);
3181
3182  Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3183  // Substitute into the nested-name-specifier first,
3184  QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
3185  if (QualifierLoc) {
3186    QualifierLoc =
3187        SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
3188    if (!QualifierLoc)
3189      return TemplateName();
3190  }
3191
3192  return SemaRef.SubstTemplateName(
3193             QualifierLoc,
3194             Param->getDefaultArgument().getArgument().getAsTemplate(),
3195             Param->getDefaultArgument().getTemplateNameLoc(),
3196             TemplateArgLists);
3197}
3198
3199/// \brief If the given template parameter has a default template
3200/// argument, substitute into that default template argument and
3201/// return the corresponding template argument.
3202TemplateArgumentLoc
3203Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
3204                                              SourceLocation TemplateLoc,
3205                                              SourceLocation RAngleLoc,
3206                                              Decl *Param,
3207                                              SmallVectorImpl<TemplateArgument>
3208                                                &Converted,
3209                                              bool &HasDefaultArg) {
3210  HasDefaultArg = false;
3211
3212  if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
3213    if (!TypeParm->hasDefaultArgument())
3214      return TemplateArgumentLoc();
3215
3216    HasDefaultArg = true;
3217    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
3218                                                      TemplateLoc,
3219                                                      RAngleLoc,
3220                                                      TypeParm,
3221                                                      Converted);
3222    if (DI)
3223      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
3224
3225    return TemplateArgumentLoc();
3226  }
3227
3228  if (NonTypeTemplateParmDecl *NonTypeParm
3229        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3230    if (!NonTypeParm->hasDefaultArgument())
3231      return TemplateArgumentLoc();
3232
3233    HasDefaultArg = true;
3234    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
3235                                                  TemplateLoc,
3236                                                  RAngleLoc,
3237                                                  NonTypeParm,
3238                                                  Converted);
3239    if (Arg.isInvalid())
3240      return TemplateArgumentLoc();
3241
3242    Expr *ArgE = Arg.takeAs<Expr>();
3243    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
3244  }
3245
3246  TemplateTemplateParmDecl *TempTempParm
3247    = cast<TemplateTemplateParmDecl>(Param);
3248  if (!TempTempParm->hasDefaultArgument())
3249    return TemplateArgumentLoc();
3250
3251  HasDefaultArg = true;
3252  NestedNameSpecifierLoc QualifierLoc;
3253  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
3254                                                    TemplateLoc,
3255                                                    RAngleLoc,
3256                                                    TempTempParm,
3257                                                    Converted,
3258                                                    QualifierLoc);
3259  if (TName.isNull())
3260    return TemplateArgumentLoc();
3261
3262  return TemplateArgumentLoc(TemplateArgument(TName),
3263                TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
3264                TempTempParm->getDefaultArgument().getTemplateNameLoc());
3265}
3266
3267/// \brief Check that the given template argument corresponds to the given
3268/// template parameter.
3269///
3270/// \param Param The template parameter against which the argument will be
3271/// checked.
3272///
3273/// \param Arg The template argument.
3274///
3275/// \param Template The template in which the template argument resides.
3276///
3277/// \param TemplateLoc The location of the template name for the template
3278/// whose argument list we're matching.
3279///
3280/// \param RAngleLoc The location of the right angle bracket ('>') that closes
3281/// the template argument list.
3282///
3283/// \param ArgumentPackIndex The index into the argument pack where this
3284/// argument will be placed. Only valid if the parameter is a parameter pack.
3285///
3286/// \param Converted The checked, converted argument will be added to the
3287/// end of this small vector.
3288///
3289/// \param CTAK Describes how we arrived at this particular template argument:
3290/// explicitly written, deduced, etc.
3291///
3292/// \returns true on error, false otherwise.
3293bool Sema::CheckTemplateArgument(NamedDecl *Param,
3294                                 const TemplateArgumentLoc &Arg,
3295                                 NamedDecl *Template,
3296                                 SourceLocation TemplateLoc,
3297                                 SourceLocation RAngleLoc,
3298                                 unsigned ArgumentPackIndex,
3299                            SmallVectorImpl<TemplateArgument> &Converted,
3300                                 CheckTemplateArgumentKind CTAK) {
3301  // Check template type parameters.
3302  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
3303    return CheckTemplateTypeArgument(TTP, Arg, Converted);
3304
3305  // Check non-type template parameters.
3306  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3307    // Do substitution on the type of the non-type template parameter
3308    // with the template arguments we've seen thus far.  But if the
3309    // template has a dependent context then we cannot substitute yet.
3310    QualType NTTPType = NTTP->getType();
3311    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
3312      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
3313
3314    if (NTTPType->isDependentType() &&
3315        !isa<TemplateTemplateParmDecl>(Template) &&
3316        !Template->getDeclContext()->isDependentContext()) {
3317      // Do substitution on the type of the non-type template parameter.
3318      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3319                                 NTTP, Converted,
3320                                 SourceRange(TemplateLoc, RAngleLoc));
3321      if (Inst.isInvalid())
3322        return true;
3323
3324      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3325                                        Converted.data(), Converted.size());
3326      NTTPType = SubstType(NTTPType,
3327                           MultiLevelTemplateArgumentList(TemplateArgs),
3328                           NTTP->getLocation(),
3329                           NTTP->getDeclName());
3330      // If that worked, check the non-type template parameter type
3331      // for validity.
3332      if (!NTTPType.isNull())
3333        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
3334                                                     NTTP->getLocation());
3335      if (NTTPType.isNull())
3336        return true;
3337    }
3338
3339    switch (Arg.getArgument().getKind()) {
3340    case TemplateArgument::Null:
3341      llvm_unreachable("Should never see a NULL template argument here");
3342
3343    case TemplateArgument::Expression: {
3344      TemplateArgument Result;
3345      ExprResult Res =
3346        CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
3347                              Result, CTAK);
3348      if (Res.isInvalid())
3349        return true;
3350
3351      Converted.push_back(Result);
3352      break;
3353    }
3354
3355    case TemplateArgument::Declaration:
3356    case TemplateArgument::Integral:
3357    case TemplateArgument::NullPtr:
3358      // We've already checked this template argument, so just copy
3359      // it to the list of converted arguments.
3360      Converted.push_back(Arg.getArgument());
3361      break;
3362
3363    case TemplateArgument::Template:
3364    case TemplateArgument::TemplateExpansion:
3365      // We were given a template template argument. It may not be ill-formed;
3366      // see below.
3367      if (DependentTemplateName *DTN
3368            = Arg.getArgument().getAsTemplateOrTemplatePattern()
3369                                              .getAsDependentTemplateName()) {
3370        // We have a template argument such as \c T::template X, which we
3371        // parsed as a template template argument. However, since we now
3372        // know that we need a non-type template argument, convert this
3373        // template name into an expression.
3374
3375        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
3376                                     Arg.getTemplateNameLoc());
3377
3378        CXXScopeSpec SS;
3379        SS.Adopt(Arg.getTemplateQualifierLoc());
3380        // FIXME: the template-template arg was a DependentTemplateName,
3381        // so it was provided with a template keyword. However, its source
3382        // location is not stored in the template argument structure.
3383        SourceLocation TemplateKWLoc;
3384        ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
3385                                                SS.getWithLocInContext(Context),
3386                                                               TemplateKWLoc,
3387                                                               NameInfo, 0));
3388
3389        // If we parsed the template argument as a pack expansion, create a
3390        // pack expansion expression.
3391        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
3392          E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
3393          if (E.isInvalid())
3394            return true;
3395        }
3396
3397        TemplateArgument Result;
3398        E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
3399        if (E.isInvalid())
3400          return true;
3401
3402        Converted.push_back(Result);
3403        break;
3404      }
3405
3406      // We have a template argument that actually does refer to a class
3407      // template, alias template, or template template parameter, and
3408      // therefore cannot be a non-type template argument.
3409      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
3410        << Arg.getSourceRange();
3411
3412      Diag(Param->getLocation(), diag::note_template_param_here);
3413      return true;
3414
3415    case TemplateArgument::Type: {
3416      // We have a non-type template parameter but the template
3417      // argument is a type.
3418
3419      // C++ [temp.arg]p2:
3420      //   In a template-argument, an ambiguity between a type-id and
3421      //   an expression is resolved to a type-id, regardless of the
3422      //   form of the corresponding template-parameter.
3423      //
3424      // We warn specifically about this case, since it can be rather
3425      // confusing for users.
3426      QualType T = Arg.getArgument().getAsType();
3427      SourceRange SR = Arg.getSourceRange();
3428      if (T->isFunctionType())
3429        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
3430      else
3431        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
3432      Diag(Param->getLocation(), diag::note_template_param_here);
3433      return true;
3434    }
3435
3436    case TemplateArgument::Pack:
3437      llvm_unreachable("Caller must expand template argument packs");
3438    }
3439
3440    return false;
3441  }
3442
3443
3444  // Check template template parameters.
3445  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
3446
3447  // Substitute into the template parameter list of the template
3448  // template parameter, since previously-supplied template arguments
3449  // may appear within the template template parameter.
3450  {
3451    // Set up a template instantiation context.
3452    LocalInstantiationScope Scope(*this);
3453    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3454                               TempParm, Converted,
3455                               SourceRange(TemplateLoc, RAngleLoc));
3456    if (Inst.isInvalid())
3457      return true;
3458
3459    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3460                                      Converted.data(), Converted.size());
3461    TempParm = cast_or_null<TemplateTemplateParmDecl>(
3462                      SubstDecl(TempParm, CurContext,
3463                                MultiLevelTemplateArgumentList(TemplateArgs)));
3464    if (!TempParm)
3465      return true;
3466  }
3467
3468  switch (Arg.getArgument().getKind()) {
3469  case TemplateArgument::Null:
3470    llvm_unreachable("Should never see a NULL template argument here");
3471
3472  case TemplateArgument::Template:
3473  case TemplateArgument::TemplateExpansion:
3474    if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex))
3475      return true;
3476
3477    Converted.push_back(Arg.getArgument());
3478    break;
3479
3480  case TemplateArgument::Expression:
3481  case TemplateArgument::Type:
3482    // We have a template template parameter but the template
3483    // argument does not refer to a template.
3484    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
3485      << getLangOpts().CPlusPlus11;
3486    return true;
3487
3488  case TemplateArgument::Declaration:
3489    llvm_unreachable("Declaration argument with template template parameter");
3490  case TemplateArgument::Integral:
3491    llvm_unreachable("Integral argument with template template parameter");
3492  case TemplateArgument::NullPtr:
3493    llvm_unreachable("Null pointer argument with template template parameter");
3494
3495  case TemplateArgument::Pack:
3496    llvm_unreachable("Caller must expand template argument packs");
3497  }
3498
3499  return false;
3500}
3501
3502/// \brief Diagnose an arity mismatch in the
3503static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
3504                                  SourceLocation TemplateLoc,
3505                                  TemplateArgumentListInfo &TemplateArgs) {
3506  TemplateParameterList *Params = Template->getTemplateParameters();
3507  unsigned NumParams = Params->size();
3508  unsigned NumArgs = TemplateArgs.size();
3509
3510  SourceRange Range;
3511  if (NumArgs > NumParams)
3512    Range = SourceRange(TemplateArgs[NumParams].getLocation(),
3513                        TemplateArgs.getRAngleLoc());
3514  S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3515    << (NumArgs > NumParams)
3516    << (isa<ClassTemplateDecl>(Template)? 0 :
3517        isa<FunctionTemplateDecl>(Template)? 1 :
3518        isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3519    << Template << Range;
3520  S.Diag(Template->getLocation(), diag::note_template_decl_here)
3521    << Params->getSourceRange();
3522  return true;
3523}
3524
3525/// \brief Check whether the template parameter is a pack expansion, and if so,
3526/// determine the number of parameters produced by that expansion. For instance:
3527///
3528/// \code
3529/// template<typename ...Ts> struct A {
3530///   template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
3531/// };
3532/// \endcode
3533///
3534/// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
3535/// is not a pack expansion, so returns an empty Optional.
3536static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
3537  if (NonTypeTemplateParmDecl *NTTP
3538        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3539    if (NTTP->isExpandedParameterPack())
3540      return NTTP->getNumExpansionTypes();
3541  }
3542
3543  if (TemplateTemplateParmDecl *TTP
3544        = dyn_cast<TemplateTemplateParmDecl>(Param)) {
3545    if (TTP->isExpandedParameterPack())
3546      return TTP->getNumExpansionTemplateParameters();
3547  }
3548
3549  return None;
3550}
3551
3552/// \brief Check that the given template argument list is well-formed
3553/// for specializing the given template.
3554bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
3555                                     SourceLocation TemplateLoc,
3556                                     TemplateArgumentListInfo &TemplateArgs,
3557                                     bool PartialTemplateArgs,
3558                          SmallVectorImpl<TemplateArgument> &Converted,
3559                                     bool *ExpansionIntoFixedList) {
3560  if (ExpansionIntoFixedList)
3561    *ExpansionIntoFixedList = false;
3562
3563  TemplateParameterList *Params = Template->getTemplateParameters();
3564
3565  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
3566
3567  // C++ [temp.arg]p1:
3568  //   [...] The type and form of each template-argument specified in
3569  //   a template-id shall match the type and form specified for the
3570  //   corresponding parameter declared by the template in its
3571  //   template-parameter-list.
3572  bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
3573  SmallVector<TemplateArgument, 2> ArgumentPack;
3574  unsigned ArgIdx = 0, NumArgs = TemplateArgs.size();
3575  LocalInstantiationScope InstScope(*this, true);
3576  for (TemplateParameterList::iterator Param = Params->begin(),
3577                                       ParamEnd = Params->end();
3578       Param != ParamEnd; /* increment in loop */) {
3579    // If we have an expanded parameter pack, make sure we don't have too
3580    // many arguments.
3581    if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
3582      if (*Expansions == ArgumentPack.size()) {
3583        // We're done with this parameter pack. Pack up its arguments and add
3584        // them to the list.
3585        Converted.push_back(
3586          TemplateArgument::CreatePackCopy(Context,
3587                                           ArgumentPack.data(),
3588                                           ArgumentPack.size()));
3589        ArgumentPack.clear();
3590
3591        // This argument is assigned to the next parameter.
3592        ++Param;
3593        continue;
3594      } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
3595        // Not enough arguments for this parameter pack.
3596        Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3597          << false
3598          << (isa<ClassTemplateDecl>(Template)? 0 :
3599              isa<FunctionTemplateDecl>(Template)? 1 :
3600              isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3601          << Template;
3602        Diag(Template->getLocation(), diag::note_template_decl_here)
3603          << Params->getSourceRange();
3604        return true;
3605      }
3606    }
3607
3608    if (ArgIdx < NumArgs) {
3609      // Check the template argument we were given.
3610      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
3611                                TemplateLoc, RAngleLoc,
3612                                ArgumentPack.size(), Converted))
3613        return true;
3614
3615      // We're now done with this argument.
3616      ++ArgIdx;
3617
3618      if ((*Param)->isTemplateParameterPack()) {
3619        // The template parameter was a template parameter pack, so take the
3620        // deduced argument and place it on the argument pack. Note that we
3621        // stay on the same template parameter so that we can deduce more
3622        // arguments.
3623        ArgumentPack.push_back(Converted.pop_back_val());
3624      } else {
3625        // Move to the next template parameter.
3626        ++Param;
3627      }
3628
3629      // If we just saw a pack expansion, then directly convert the remaining
3630      // arguments, because we don't know what parameters they'll match up
3631      // with.
3632      if (TemplateArgs[ArgIdx-1].getArgument().isPackExpansion()) {
3633        bool InFinalParameterPack = Param != ParamEnd &&
3634                                    Param + 1 == ParamEnd &&
3635                                    (*Param)->isTemplateParameterPack() &&
3636                                    !getExpandedPackSize(*Param);
3637
3638        if (!InFinalParameterPack && !ArgumentPack.empty()) {
3639          // If we were part way through filling in an expanded parameter pack,
3640          // fall back to just producing individual arguments.
3641          Converted.insert(Converted.end(),
3642                           ArgumentPack.begin(), ArgumentPack.end());
3643          ArgumentPack.clear();
3644        }
3645
3646        while (ArgIdx < NumArgs) {
3647          if (InFinalParameterPack)
3648            ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument());
3649          else
3650            Converted.push_back(TemplateArgs[ArgIdx].getArgument());
3651          ++ArgIdx;
3652        }
3653
3654        // Push the argument pack onto the list of converted arguments.
3655        if (InFinalParameterPack) {
3656          Converted.push_back(
3657            TemplateArgument::CreatePackCopy(Context,
3658                                             ArgumentPack.data(),
3659                                             ArgumentPack.size()));
3660          ArgumentPack.clear();
3661        } else if (ExpansionIntoFixedList) {
3662          // We have expanded a pack into a fixed list.
3663          *ExpansionIntoFixedList = true;
3664        }
3665
3666        return false;
3667      }
3668
3669      continue;
3670    }
3671
3672    // If we're checking a partial template argument list, we're done.
3673    if (PartialTemplateArgs) {
3674      if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
3675        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3676                                                         ArgumentPack.data(),
3677                                                         ArgumentPack.size()));
3678
3679      return false;
3680    }
3681
3682    // If we have a template parameter pack with no more corresponding
3683    // arguments, just break out now and we'll fill in the argument pack below.
3684    if ((*Param)->isTemplateParameterPack()) {
3685      assert(!getExpandedPackSize(*Param) &&
3686             "Should have dealt with this already");
3687
3688      // A non-expanded parameter pack before the end of the parameter list
3689      // only occurs for an ill-formed template parameter list, unless we've
3690      // got a partial argument list for a function template, so just bail out.
3691      if (Param + 1 != ParamEnd)
3692        return true;
3693
3694      Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3695                                                       ArgumentPack.data(),
3696                                                       ArgumentPack.size()));
3697      ArgumentPack.clear();
3698
3699      ++Param;
3700      continue;
3701    }
3702
3703    // Check whether we have a default argument.
3704    TemplateArgumentLoc Arg;
3705
3706    // Retrieve the default template argument from the template
3707    // parameter. For each kind of template parameter, we substitute the
3708    // template arguments provided thus far and any "outer" template arguments
3709    // (when the template parameter was part of a nested template) into
3710    // the default argument.
3711    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
3712      if (!TTP->hasDefaultArgument())
3713        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3714                                     TemplateArgs);
3715
3716      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
3717                                                             Template,
3718                                                             TemplateLoc,
3719                                                             RAngleLoc,
3720                                                             TTP,
3721                                                             Converted);
3722      if (!ArgType)
3723        return true;
3724
3725      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
3726                                ArgType);
3727    } else if (NonTypeTemplateParmDecl *NTTP
3728                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3729      if (!NTTP->hasDefaultArgument())
3730        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3731                                     TemplateArgs);
3732
3733      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
3734                                                              TemplateLoc,
3735                                                              RAngleLoc,
3736                                                              NTTP,
3737                                                              Converted);
3738      if (E.isInvalid())
3739        return true;
3740
3741      Expr *Ex = E.takeAs<Expr>();
3742      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
3743    } else {
3744      TemplateTemplateParmDecl *TempParm
3745        = cast<TemplateTemplateParmDecl>(*Param);
3746
3747      if (!TempParm->hasDefaultArgument())
3748        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3749                                     TemplateArgs);
3750
3751      NestedNameSpecifierLoc QualifierLoc;
3752      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3753                                                       TemplateLoc,
3754                                                       RAngleLoc,
3755                                                       TempParm,
3756                                                       Converted,
3757                                                       QualifierLoc);
3758      if (Name.isNull())
3759        return true;
3760
3761      Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3762                           TempParm->getDefaultArgument().getTemplateNameLoc());
3763    }
3764
3765    // Introduce an instantiation record that describes where we are using
3766    // the default template argument.
3767    InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
3768                               SourceRange(TemplateLoc, RAngleLoc));
3769    if (Inst.isInvalid())
3770      return true;
3771
3772    // Check the default template argument.
3773    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3774                              RAngleLoc, 0, Converted))
3775      return true;
3776
3777    // Core issue 150 (assumed resolution): if this is a template template
3778    // parameter, keep track of the default template arguments from the
3779    // template definition.
3780    if (isTemplateTemplateParameter)
3781      TemplateArgs.addArgument(Arg);
3782
3783    // Move to the next template parameter and argument.
3784    ++Param;
3785    ++ArgIdx;
3786  }
3787
3788  // If we have any leftover arguments, then there were too many arguments.
3789  // Complain and fail.
3790  if (ArgIdx < NumArgs)
3791    return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3792
3793  return false;
3794}
3795
3796namespace {
3797  class UnnamedLocalNoLinkageFinder
3798    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3799  {
3800    Sema &S;
3801    SourceRange SR;
3802
3803    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3804
3805  public:
3806    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3807
3808    bool Visit(QualType T) {
3809      return inherited::Visit(T.getTypePtr());
3810    }
3811
3812#define TYPE(Class, Parent) \
3813    bool Visit##Class##Type(const Class##Type *);
3814#define ABSTRACT_TYPE(Class, Parent) \
3815    bool Visit##Class##Type(const Class##Type *) { return false; }
3816#define NON_CANONICAL_TYPE(Class, Parent) \
3817    bool Visit##Class##Type(const Class##Type *) { return false; }
3818#include "clang/AST/TypeNodes.def"
3819
3820    bool VisitTagDecl(const TagDecl *Tag);
3821    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3822  };
3823}
3824
3825bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3826  return false;
3827}
3828
3829bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3830  return Visit(T->getElementType());
3831}
3832
3833bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3834  return Visit(T->getPointeeType());
3835}
3836
3837bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3838                                                    const BlockPointerType* T) {
3839  return Visit(T->getPointeeType());
3840}
3841
3842bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3843                                                const LValueReferenceType* T) {
3844  return Visit(T->getPointeeType());
3845}
3846
3847bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3848                                                const RValueReferenceType* T) {
3849  return Visit(T->getPointeeType());
3850}
3851
3852bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3853                                                  const MemberPointerType* T) {
3854  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3855}
3856
3857bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3858                                                  const ConstantArrayType* T) {
3859  return Visit(T->getElementType());
3860}
3861
3862bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3863                                                 const IncompleteArrayType* T) {
3864  return Visit(T->getElementType());
3865}
3866
3867bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3868                                                   const VariableArrayType* T) {
3869  return Visit(T->getElementType());
3870}
3871
3872bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3873                                            const DependentSizedArrayType* T) {
3874  return Visit(T->getElementType());
3875}
3876
3877bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3878                                         const DependentSizedExtVectorType* T) {
3879  return Visit(T->getElementType());
3880}
3881
3882bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3883  return Visit(T->getElementType());
3884}
3885
3886bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3887  return Visit(T->getElementType());
3888}
3889
3890bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3891                                                  const FunctionProtoType* T) {
3892  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
3893                                         AEnd = T->arg_type_end();
3894       A != AEnd; ++A) {
3895    if (Visit(*A))
3896      return true;
3897  }
3898
3899  return Visit(T->getResultType());
3900}
3901
3902bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3903                                               const FunctionNoProtoType* T) {
3904  return Visit(T->getResultType());
3905}
3906
3907bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
3908                                                  const UnresolvedUsingType*) {
3909  return false;
3910}
3911
3912bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
3913  return false;
3914}
3915
3916bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
3917  return Visit(T->getUnderlyingType());
3918}
3919
3920bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
3921  return false;
3922}
3923
3924bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
3925                                                    const UnaryTransformType*) {
3926  return false;
3927}
3928
3929bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
3930  return Visit(T->getDeducedType());
3931}
3932
3933bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
3934  return VisitTagDecl(T->getDecl());
3935}
3936
3937bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
3938  return VisitTagDecl(T->getDecl());
3939}
3940
3941bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
3942                                                 const TemplateTypeParmType*) {
3943  return false;
3944}
3945
3946bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
3947                                        const SubstTemplateTypeParmPackType *) {
3948  return false;
3949}
3950
3951bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
3952                                            const TemplateSpecializationType*) {
3953  return false;
3954}
3955
3956bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
3957                                              const InjectedClassNameType* T) {
3958  return VisitTagDecl(T->getDecl());
3959}
3960
3961bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
3962                                                   const DependentNameType* T) {
3963  return VisitNestedNameSpecifier(T->getQualifier());
3964}
3965
3966bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
3967                                 const DependentTemplateSpecializationType* T) {
3968  return VisitNestedNameSpecifier(T->getQualifier());
3969}
3970
3971bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
3972                                                   const PackExpansionType* T) {
3973  return Visit(T->getPattern());
3974}
3975
3976bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
3977  return false;
3978}
3979
3980bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
3981                                                   const ObjCInterfaceType *) {
3982  return false;
3983}
3984
3985bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
3986                                                const ObjCObjectPointerType *) {
3987  return false;
3988}
3989
3990bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
3991  return Visit(T->getValueType());
3992}
3993
3994bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
3995  if (Tag->getDeclContext()->isFunctionOrMethod()) {
3996    S.Diag(SR.getBegin(),
3997           S.getLangOpts().CPlusPlus11 ?
3998             diag::warn_cxx98_compat_template_arg_local_type :
3999             diag::ext_template_arg_local_type)
4000      << S.Context.getTypeDeclType(Tag) << SR;
4001    return true;
4002  }
4003
4004  if (!Tag->hasNameForLinkage()) {
4005    S.Diag(SR.getBegin(),
4006           S.getLangOpts().CPlusPlus11 ?
4007             diag::warn_cxx98_compat_template_arg_unnamed_type :
4008             diag::ext_template_arg_unnamed_type) << SR;
4009    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
4010    return true;
4011  }
4012
4013  return false;
4014}
4015
4016bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
4017                                                    NestedNameSpecifier *NNS) {
4018  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
4019    return true;
4020
4021  switch (NNS->getKind()) {
4022  case NestedNameSpecifier::Identifier:
4023  case NestedNameSpecifier::Namespace:
4024  case NestedNameSpecifier::NamespaceAlias:
4025  case NestedNameSpecifier::Global:
4026    return false;
4027
4028  case NestedNameSpecifier::TypeSpec:
4029  case NestedNameSpecifier::TypeSpecWithTemplate:
4030    return Visit(QualType(NNS->getAsType(), 0));
4031  }
4032  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4033}
4034
4035
4036/// \brief Check a template argument against its corresponding
4037/// template type parameter.
4038///
4039/// This routine implements the semantics of C++ [temp.arg.type]. It
4040/// returns true if an error occurred, and false otherwise.
4041bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
4042                                 TypeSourceInfo *ArgInfo) {
4043  assert(ArgInfo && "invalid TypeSourceInfo");
4044  QualType Arg = ArgInfo->getType();
4045  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
4046
4047  if (Arg->isVariablyModifiedType()) {
4048    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
4049  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
4050    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
4051  }
4052
4053  // C++03 [temp.arg.type]p2:
4054  //   A local type, a type with no linkage, an unnamed type or a type
4055  //   compounded from any of these types shall not be used as a
4056  //   template-argument for a template type-parameter.
4057  //
4058  // C++11 allows these, and even in C++03 we allow them as an extension with
4059  // a warning.
4060  if (LangOpts.CPlusPlus11 ?
4061     Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type,
4062                              SR.getBegin()) != DiagnosticsEngine::Ignored ||
4063      Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type,
4064                               SR.getBegin()) != DiagnosticsEngine::Ignored :
4065      Arg->hasUnnamedOrLocalType()) {
4066    UnnamedLocalNoLinkageFinder Finder(*this, SR);
4067    (void)Finder.Visit(Context.getCanonicalType(Arg));
4068  }
4069
4070  return false;
4071}
4072
4073enum NullPointerValueKind {
4074  NPV_NotNullPointer,
4075  NPV_NullPointer,
4076  NPV_Error
4077};
4078
4079/// \brief Determine whether the given template argument is a null pointer
4080/// value of the appropriate type.
4081static NullPointerValueKind
4082isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
4083                                   QualType ParamType, Expr *Arg) {
4084  if (Arg->isValueDependent() || Arg->isTypeDependent())
4085    return NPV_NotNullPointer;
4086
4087  if (!S.getLangOpts().CPlusPlus11)
4088    return NPV_NotNullPointer;
4089
4090  // Determine whether we have a constant expression.
4091  ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
4092  if (ArgRV.isInvalid())
4093    return NPV_Error;
4094  Arg = ArgRV.take();
4095
4096  Expr::EvalResult EvalResult;
4097  SmallVector<PartialDiagnosticAt, 8> Notes;
4098  EvalResult.Diag = &Notes;
4099  if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
4100      EvalResult.HasSideEffects) {
4101    SourceLocation DiagLoc = Arg->getExprLoc();
4102
4103    // If our only note is the usual "invalid subexpression" note, just point
4104    // the caret at its location rather than producing an essentially
4105    // redundant note.
4106    if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
4107        diag::note_invalid_subexpr_in_const_expr) {
4108      DiagLoc = Notes[0].first;
4109      Notes.clear();
4110    }
4111
4112    S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
4113      << Arg->getType() << Arg->getSourceRange();
4114    for (unsigned I = 0, N = Notes.size(); I != N; ++I)
4115      S.Diag(Notes[I].first, Notes[I].second);
4116
4117    S.Diag(Param->getLocation(), diag::note_template_param_here);
4118    return NPV_Error;
4119  }
4120
4121  // C++11 [temp.arg.nontype]p1:
4122  //   - an address constant expression of type std::nullptr_t
4123  if (Arg->getType()->isNullPtrType())
4124    return NPV_NullPointer;
4125
4126  //   - a constant expression that evaluates to a null pointer value (4.10); or
4127  //   - a constant expression that evaluates to a null member pointer value
4128  //     (4.11); or
4129  if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
4130      (EvalResult.Val.isMemberPointer() &&
4131       !EvalResult.Val.getMemberPointerDecl())) {
4132    // If our expression has an appropriate type, we've succeeded.
4133    bool ObjCLifetimeConversion;
4134    if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
4135        S.IsQualificationConversion(Arg->getType(), ParamType, false,
4136                                     ObjCLifetimeConversion))
4137      return NPV_NullPointer;
4138
4139    // The types didn't match, but we know we got a null pointer; complain,
4140    // then recover as if the types were correct.
4141    S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
4142      << Arg->getType() << ParamType << Arg->getSourceRange();
4143    S.Diag(Param->getLocation(), diag::note_template_param_here);
4144    return NPV_NullPointer;
4145  }
4146
4147  // If we don't have a null pointer value, but we do have a NULL pointer
4148  // constant, suggest a cast to the appropriate type.
4149  if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
4150    std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
4151    S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
4152      << ParamType
4153      << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
4154      << FixItHint::CreateInsertion(S.PP.getLocForEndOfToken(Arg->getLocEnd()),
4155                                    ")");
4156    S.Diag(Param->getLocation(), diag::note_template_param_here);
4157    return NPV_NullPointer;
4158  }
4159
4160  // FIXME: If we ever want to support general, address-constant expressions
4161  // as non-type template arguments, we should return the ExprResult here to
4162  // be interpreted by the caller.
4163  return NPV_NotNullPointer;
4164}
4165
4166/// \brief Checks whether the given template argument is compatible with its
4167/// template parameter.
4168static bool CheckTemplateArgumentIsCompatibleWithParameter(
4169    Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
4170    Expr *Arg, QualType ArgType) {
4171  bool ObjCLifetimeConversion;
4172  if (ParamType->isPointerType() &&
4173      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
4174      S.IsQualificationConversion(ArgType, ParamType, false,
4175                                  ObjCLifetimeConversion)) {
4176    // For pointer-to-object types, qualification conversions are
4177    // permitted.
4178  } else {
4179    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
4180      if (!ParamRef->getPointeeType()->isFunctionType()) {
4181        // C++ [temp.arg.nontype]p5b3:
4182        //   For a non-type template-parameter of type reference to
4183        //   object, no conversions apply. The type referred to by the
4184        //   reference may be more cv-qualified than the (otherwise
4185        //   identical) type of the template- argument. The
4186        //   template-parameter is bound directly to the
4187        //   template-argument, which shall be an lvalue.
4188
4189        // FIXME: Other qualifiers?
4190        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
4191        unsigned ArgQuals = ArgType.getCVRQualifiers();
4192
4193        if ((ParamQuals | ArgQuals) != ParamQuals) {
4194          S.Diag(Arg->getLocStart(),
4195                 diag::err_template_arg_ref_bind_ignores_quals)
4196            << ParamType << Arg->getType() << Arg->getSourceRange();
4197          S.Diag(Param->getLocation(), diag::note_template_param_here);
4198          return true;
4199        }
4200      }
4201    }
4202
4203    // At this point, the template argument refers to an object or
4204    // function with external linkage. We now need to check whether the
4205    // argument and parameter types are compatible.
4206    if (!S.Context.hasSameUnqualifiedType(ArgType,
4207                                          ParamType.getNonReferenceType())) {
4208      // We can't perform this conversion or binding.
4209      if (ParamType->isReferenceType())
4210        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
4211          << ParamType << ArgIn->getType() << Arg->getSourceRange();
4212      else
4213        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
4214          << ArgIn->getType() << ParamType << Arg->getSourceRange();
4215      S.Diag(Param->getLocation(), diag::note_template_param_here);
4216      return true;
4217    }
4218  }
4219
4220  return false;
4221}
4222
4223/// \brief Checks whether the given template argument is the address
4224/// of an object or function according to C++ [temp.arg.nontype]p1.
4225static bool
4226CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
4227                                               NonTypeTemplateParmDecl *Param,
4228                                               QualType ParamType,
4229                                               Expr *ArgIn,
4230                                               TemplateArgument &Converted) {
4231  bool Invalid = false;
4232  Expr *Arg = ArgIn;
4233  QualType ArgType = Arg->getType();
4234
4235  // If our parameter has pointer type, check for a null template value.
4236  if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
4237    switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
4238    case NPV_NullPointer:
4239      S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4240      Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
4241      return false;
4242
4243    case NPV_Error:
4244      return true;
4245
4246    case NPV_NotNullPointer:
4247      break;
4248    }
4249  }
4250
4251  bool AddressTaken = false;
4252  SourceLocation AddrOpLoc;
4253  if (S.getLangOpts().MicrosoftExt) {
4254    // Microsoft Visual C++ strips all casts, allows an arbitrary number of
4255    // dereference and address-of operators.
4256    Arg = Arg->IgnoreParenCasts();
4257
4258    bool ExtWarnMSTemplateArg = false;
4259    UnaryOperatorKind FirstOpKind;
4260    SourceLocation FirstOpLoc;
4261    while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4262      UnaryOperatorKind UnOpKind = UnOp->getOpcode();
4263      if (UnOpKind == UO_Deref)
4264        ExtWarnMSTemplateArg = true;
4265      if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
4266        Arg = UnOp->getSubExpr()->IgnoreParenCasts();
4267        if (!AddrOpLoc.isValid()) {
4268          FirstOpKind = UnOpKind;
4269          FirstOpLoc = UnOp->getOperatorLoc();
4270        }
4271      } else
4272        break;
4273    }
4274    if (FirstOpLoc.isValid()) {
4275      if (ExtWarnMSTemplateArg)
4276        S.Diag(ArgIn->getLocStart(), diag::ext_ms_deref_template_argument)
4277          << ArgIn->getSourceRange();
4278
4279      if (FirstOpKind == UO_AddrOf)
4280        AddressTaken = true;
4281      else if (Arg->getType()->isPointerType()) {
4282        // We cannot let pointers get dereferenced here, that is obviously not a
4283        // constant expression.
4284        assert(FirstOpKind == UO_Deref);
4285        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4286          << Arg->getSourceRange();
4287      }
4288    }
4289  } else {
4290    // See through any implicit casts we added to fix the type.
4291    Arg = Arg->IgnoreImpCasts();
4292
4293    // C++ [temp.arg.nontype]p1:
4294    //
4295    //   A template-argument for a non-type, non-template
4296    //   template-parameter shall be one of: [...]
4297    //
4298    //     -- the address of an object or function with external
4299    //        linkage, including function templates and function
4300    //        template-ids but excluding non-static class members,
4301    //        expressed as & id-expression where the & is optional if
4302    //        the name refers to a function or array, or if the
4303    //        corresponding template-parameter is a reference; or
4304
4305    // In C++98/03 mode, give an extension warning on any extra parentheses.
4306    // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4307    bool ExtraParens = false;
4308    while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4309      if (!Invalid && !ExtraParens) {
4310        S.Diag(Arg->getLocStart(),
4311               S.getLangOpts().CPlusPlus11
4312                   ? diag::warn_cxx98_compat_template_arg_extra_parens
4313                   : diag::ext_template_arg_extra_parens)
4314            << Arg->getSourceRange();
4315        ExtraParens = true;
4316      }
4317
4318      Arg = Parens->getSubExpr();
4319    }
4320
4321    while (SubstNonTypeTemplateParmExpr *subst =
4322               dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4323      Arg = subst->getReplacement()->IgnoreImpCasts();
4324
4325    if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4326      if (UnOp->getOpcode() == UO_AddrOf) {
4327        Arg = UnOp->getSubExpr();
4328        AddressTaken = true;
4329        AddrOpLoc = UnOp->getOperatorLoc();
4330      }
4331    }
4332
4333    while (SubstNonTypeTemplateParmExpr *subst =
4334               dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4335      Arg = subst->getReplacement()->IgnoreImpCasts();
4336  }
4337
4338  // Stop checking the precise nature of the argument if it is value dependent,
4339  // it should be checked when instantiated.
4340  if (Arg->isValueDependent()) {
4341    Converted = TemplateArgument(ArgIn);
4342    return false;
4343  }
4344
4345  if (isa<CXXUuidofExpr>(Arg)) {
4346    if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType,
4347                                                       ArgIn, Arg, ArgType))
4348      return true;
4349
4350    Converted = TemplateArgument(ArgIn);
4351    return false;
4352  }
4353
4354  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
4355  if (!DRE) {
4356    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4357    << Arg->getSourceRange();
4358    S.Diag(Param->getLocation(), diag::note_template_param_here);
4359    return true;
4360  }
4361
4362  ValueDecl *Entity = DRE->getDecl();
4363
4364  // Cannot refer to non-static data members
4365  if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
4366    S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
4367      << Entity << Arg->getSourceRange();
4368    S.Diag(Param->getLocation(), diag::note_template_param_here);
4369    return true;
4370  }
4371
4372  // Cannot refer to non-static member functions
4373  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
4374    if (!Method->isStatic()) {
4375      S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
4376        << Method << Arg->getSourceRange();
4377      S.Diag(Param->getLocation(), diag::note_template_param_here);
4378      return true;
4379    }
4380  }
4381
4382  FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
4383  VarDecl *Var = dyn_cast<VarDecl>(Entity);
4384
4385  // A non-type template argument must refer to an object or function.
4386  if (!Func && !Var) {
4387    // We found something, but we don't know specifically what it is.
4388    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
4389      << Arg->getSourceRange();
4390    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4391    return true;
4392  }
4393
4394  // Address / reference template args must have external linkage in C++98.
4395  if (Entity->getFormalLinkage() == InternalLinkage) {
4396    S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ?
4397             diag::warn_cxx98_compat_template_arg_object_internal :
4398             diag::ext_template_arg_object_internal)
4399      << !Func << Entity << Arg->getSourceRange();
4400    S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4401      << !Func;
4402  } else if (!Entity->hasLinkage()) {
4403    S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
4404      << !Func << Entity << Arg->getSourceRange();
4405    S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4406      << !Func;
4407    return true;
4408  }
4409
4410  if (Func) {
4411    // If the template parameter has pointer type, the function decays.
4412    if (ParamType->isPointerType() && !AddressTaken)
4413      ArgType = S.Context.getPointerType(Func->getType());
4414    else if (AddressTaken && ParamType->isReferenceType()) {
4415      // If we originally had an address-of operator, but the
4416      // parameter has reference type, complain and (if things look
4417      // like they will work) drop the address-of operator.
4418      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
4419                                            ParamType.getNonReferenceType())) {
4420        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4421          << ParamType;
4422        S.Diag(Param->getLocation(), diag::note_template_param_here);
4423        return true;
4424      }
4425
4426      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4427        << ParamType
4428        << FixItHint::CreateRemoval(AddrOpLoc);
4429      S.Diag(Param->getLocation(), diag::note_template_param_here);
4430
4431      ArgType = Func->getType();
4432    }
4433  } else {
4434    // A value of reference type is not an object.
4435    if (Var->getType()->isReferenceType()) {
4436      S.Diag(Arg->getLocStart(),
4437             diag::err_template_arg_reference_var)
4438        << Var->getType() << Arg->getSourceRange();
4439      S.Diag(Param->getLocation(), diag::note_template_param_here);
4440      return true;
4441    }
4442
4443    // A template argument must have static storage duration.
4444    if (Var->getTLSKind()) {
4445      S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
4446        << Arg->getSourceRange();
4447      S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
4448      return true;
4449    }
4450
4451    // If the template parameter has pointer type, we must have taken
4452    // the address of this object.
4453    if (ParamType->isReferenceType()) {
4454      if (AddressTaken) {
4455        // If we originally had an address-of operator, but the
4456        // parameter has reference type, complain and (if things look
4457        // like they will work) drop the address-of operator.
4458        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
4459                                            ParamType.getNonReferenceType())) {
4460          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4461            << ParamType;
4462          S.Diag(Param->getLocation(), diag::note_template_param_here);
4463          return true;
4464        }
4465
4466        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4467          << ParamType
4468          << FixItHint::CreateRemoval(AddrOpLoc);
4469        S.Diag(Param->getLocation(), diag::note_template_param_here);
4470
4471        ArgType = Var->getType();
4472      }
4473    } else if (!AddressTaken && ParamType->isPointerType()) {
4474      if (Var->getType()->isArrayType()) {
4475        // Array-to-pointer decay.
4476        ArgType = S.Context.getArrayDecayedType(Var->getType());
4477      } else {
4478        // If the template parameter has pointer type but the address of
4479        // this object was not taken, complain and (possibly) recover by
4480        // taking the address of the entity.
4481        ArgType = S.Context.getPointerType(Var->getType());
4482        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
4483          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4484            << ParamType;
4485          S.Diag(Param->getLocation(), diag::note_template_param_here);
4486          return true;
4487        }
4488
4489        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4490          << ParamType
4491          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
4492
4493        S.Diag(Param->getLocation(), diag::note_template_param_here);
4494      }
4495    }
4496  }
4497
4498  if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
4499                                                     Arg, ArgType))
4500    return true;
4501
4502  // Create the template argument.
4503  Converted = TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()),
4504                               ParamType->isReferenceType());
4505  S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false);
4506  return false;
4507}
4508
4509/// \brief Checks whether the given template argument is a pointer to
4510/// member constant according to C++ [temp.arg.nontype]p1.
4511static bool CheckTemplateArgumentPointerToMember(Sema &S,
4512                                                 NonTypeTemplateParmDecl *Param,
4513                                                 QualType ParamType,
4514                                                 Expr *&ResultArg,
4515                                                 TemplateArgument &Converted) {
4516  bool Invalid = false;
4517
4518  // Check for a null pointer value.
4519  Expr *Arg = ResultArg;
4520  switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
4521  case NPV_Error:
4522    return true;
4523  case NPV_NullPointer:
4524    S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4525    Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
4526    return false;
4527  case NPV_NotNullPointer:
4528    break;
4529  }
4530
4531  bool ObjCLifetimeConversion;
4532  if (S.IsQualificationConversion(Arg->getType(),
4533                                  ParamType.getNonReferenceType(),
4534                                  false, ObjCLifetimeConversion)) {
4535    Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
4536                              Arg->getValueKind()).take();
4537    ResultArg = Arg;
4538  } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
4539                ParamType.getNonReferenceType())) {
4540    // We can't perform this conversion.
4541    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
4542      << Arg->getType() << ParamType << Arg->getSourceRange();
4543    S.Diag(Param->getLocation(), diag::note_template_param_here);
4544    return true;
4545  }
4546
4547  // See through any implicit casts we added to fix the type.
4548  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
4549    Arg = Cast->getSubExpr();
4550
4551  // C++ [temp.arg.nontype]p1:
4552  //
4553  //   A template-argument for a non-type, non-template
4554  //   template-parameter shall be one of: [...]
4555  //
4556  //     -- a pointer to member expressed as described in 5.3.1.
4557  DeclRefExpr *DRE = 0;
4558
4559  // In C++98/03 mode, give an extension warning on any extra parentheses.
4560  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4561  bool ExtraParens = false;
4562  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4563    if (!Invalid && !ExtraParens) {
4564      S.Diag(Arg->getLocStart(),
4565             S.getLangOpts().CPlusPlus11 ?
4566               diag::warn_cxx98_compat_template_arg_extra_parens :
4567               diag::ext_template_arg_extra_parens)
4568        << Arg->getSourceRange();
4569      ExtraParens = true;
4570    }
4571
4572    Arg = Parens->getSubExpr();
4573  }
4574
4575  while (SubstNonTypeTemplateParmExpr *subst =
4576           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4577    Arg = subst->getReplacement()->IgnoreImpCasts();
4578
4579  // A pointer-to-member constant written &Class::member.
4580  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4581    if (UnOp->getOpcode() == UO_AddrOf) {
4582      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
4583      if (DRE && !DRE->getQualifier())
4584        DRE = 0;
4585    }
4586  }
4587  // A constant of pointer-to-member type.
4588  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
4589    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
4590      if (VD->getType()->isMemberPointerType()) {
4591        if (isa<NonTypeTemplateParmDecl>(VD) ||
4592            (isa<VarDecl>(VD) &&
4593             S.Context.getCanonicalType(VD->getType()).isConstQualified())) {
4594          if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4595            Converted = TemplateArgument(Arg);
4596          } else {
4597            VD = cast<ValueDecl>(VD->getCanonicalDecl());
4598            Converted = TemplateArgument(VD, /*isReferenceParam*/false);
4599          }
4600          return Invalid;
4601        }
4602      }
4603    }
4604
4605    DRE = 0;
4606  }
4607
4608  if (!DRE)
4609    return S.Diag(Arg->getLocStart(),
4610                  diag::err_template_arg_not_pointer_to_member_form)
4611      << Arg->getSourceRange();
4612
4613  if (isa<FieldDecl>(DRE->getDecl()) ||
4614      isa<IndirectFieldDecl>(DRE->getDecl()) ||
4615      isa<CXXMethodDecl>(DRE->getDecl())) {
4616    assert((isa<FieldDecl>(DRE->getDecl()) ||
4617            isa<IndirectFieldDecl>(DRE->getDecl()) ||
4618            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
4619           "Only non-static member pointers can make it here");
4620
4621    // Okay: this is the address of a non-static member, and therefore
4622    // a member pointer constant.
4623    if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4624      Converted = TemplateArgument(Arg);
4625    } else {
4626      ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
4627      Converted = TemplateArgument(D, /*isReferenceParam*/false);
4628    }
4629    return Invalid;
4630  }
4631
4632  // We found something else, but we don't know specifically what it is.
4633  S.Diag(Arg->getLocStart(),
4634         diag::err_template_arg_not_pointer_to_member_form)
4635    << Arg->getSourceRange();
4636  S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4637  return true;
4638}
4639
4640/// \brief Check a template argument against its corresponding
4641/// non-type template parameter.
4642///
4643/// This routine implements the semantics of C++ [temp.arg.nontype].
4644/// If an error occurred, it returns ExprError(); otherwise, it
4645/// returns the converted template argument. \p
4646/// InstantiatedParamType is the type of the non-type template
4647/// parameter after it has been instantiated.
4648ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
4649                                       QualType InstantiatedParamType, Expr *Arg,
4650                                       TemplateArgument &Converted,
4651                                       CheckTemplateArgumentKind CTAK) {
4652  SourceLocation StartLoc = Arg->getLocStart();
4653
4654  // If either the parameter has a dependent type or the argument is
4655  // type-dependent, there's nothing we can check now.
4656  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
4657    // FIXME: Produce a cloned, canonical expression?
4658    Converted = TemplateArgument(Arg);
4659    return Owned(Arg);
4660  }
4661
4662  // C++ [temp.arg.nontype]p5:
4663  //   The following conversions are performed on each expression used
4664  //   as a non-type template-argument. If a non-type
4665  //   template-argument cannot be converted to the type of the
4666  //   corresponding template-parameter then the program is
4667  //   ill-formed.
4668  QualType ParamType = InstantiatedParamType;
4669  if (ParamType->isIntegralOrEnumerationType()) {
4670    // C++11:
4671    //   -- for a non-type template-parameter of integral or
4672    //      enumeration type, conversions permitted in a converted
4673    //      constant expression are applied.
4674    //
4675    // C++98:
4676    //   -- for a non-type template-parameter of integral or
4677    //      enumeration type, integral promotions (4.5) and integral
4678    //      conversions (4.7) are applied.
4679
4680    if (CTAK == CTAK_Deduced &&
4681        !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
4682      // C++ [temp.deduct.type]p17:
4683      //   If, in the declaration of a function template with a non-type
4684      //   template-parameter, the non-type template-parameter is used
4685      //   in an expression in the function parameter-list and, if the
4686      //   corresponding template-argument is deduced, the
4687      //   template-argument type shall match the type of the
4688      //   template-parameter exactly, except that a template-argument
4689      //   deduced from an array bound may be of any integral type.
4690      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
4691        << Arg->getType().getUnqualifiedType()
4692        << ParamType.getUnqualifiedType();
4693      Diag(Param->getLocation(), diag::note_template_param_here);
4694      return ExprError();
4695    }
4696
4697    if (getLangOpts().CPlusPlus11) {
4698      // We can't check arbitrary value-dependent arguments.
4699      // FIXME: If there's no viable conversion to the template parameter type,
4700      // we should be able to diagnose that prior to instantiation.
4701      if (Arg->isValueDependent()) {
4702        Converted = TemplateArgument(Arg);
4703        return Owned(Arg);
4704      }
4705
4706      // C++ [temp.arg.nontype]p1:
4707      //   A template-argument for a non-type, non-template template-parameter
4708      //   shall be one of:
4709      //
4710      //     -- for a non-type template-parameter of integral or enumeration
4711      //        type, a converted constant expression of the type of the
4712      //        template-parameter; or
4713      llvm::APSInt Value;
4714      ExprResult ArgResult =
4715        CheckConvertedConstantExpression(Arg, ParamType, Value,
4716                                         CCEK_TemplateArg);
4717      if (ArgResult.isInvalid())
4718        return ExprError();
4719
4720      // Widen the argument value to sizeof(parameter type). This is almost
4721      // always a no-op, except when the parameter type is bool. In
4722      // that case, this may extend the argument from 1 bit to 8 bits.
4723      QualType IntegerType = ParamType;
4724      if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4725        IntegerType = Enum->getDecl()->getIntegerType();
4726      Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
4727
4728      Converted = TemplateArgument(Context, Value,
4729                                   Context.getCanonicalType(ParamType));
4730      return ArgResult;
4731    }
4732
4733    ExprResult ArgResult = DefaultLvalueConversion(Arg);
4734    if (ArgResult.isInvalid())
4735      return ExprError();
4736    Arg = ArgResult.take();
4737
4738    QualType ArgType = Arg->getType();
4739
4740    // C++ [temp.arg.nontype]p1:
4741    //   A template-argument for a non-type, non-template
4742    //   template-parameter shall be one of:
4743    //
4744    //     -- an integral constant-expression of integral or enumeration
4745    //        type; or
4746    //     -- the name of a non-type template-parameter; or
4747    SourceLocation NonConstantLoc;
4748    llvm::APSInt Value;
4749    if (!ArgType->isIntegralOrEnumerationType()) {
4750      Diag(Arg->getLocStart(),
4751           diag::err_template_arg_not_integral_or_enumeral)
4752        << ArgType << Arg->getSourceRange();
4753      Diag(Param->getLocation(), diag::note_template_param_here);
4754      return ExprError();
4755    } else if (!Arg->isValueDependent()) {
4756      class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
4757        QualType T;
4758
4759      public:
4760        TmplArgICEDiagnoser(QualType T) : T(T) { }
4761
4762        virtual void diagnoseNotICE(Sema &S, SourceLocation Loc,
4763                                    SourceRange SR) {
4764          S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
4765        }
4766      } Diagnoser(ArgType);
4767
4768      Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
4769                                            false).take();
4770      if (!Arg)
4771        return ExprError();
4772    }
4773
4774    // From here on out, all we care about are the unqualified forms
4775    // of the parameter and argument types.
4776    ParamType = ParamType.getUnqualifiedType();
4777    ArgType = ArgType.getUnqualifiedType();
4778
4779    // Try to convert the argument to the parameter's type.
4780    if (Context.hasSameType(ParamType, ArgType)) {
4781      // Okay: no conversion necessary
4782    } else if (ParamType->isBooleanType()) {
4783      // This is an integral-to-boolean conversion.
4784      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
4785    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
4786               !ParamType->isEnumeralType()) {
4787      // This is an integral promotion or conversion.
4788      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
4789    } else {
4790      // We can't perform this conversion.
4791      Diag(Arg->getLocStart(),
4792           diag::err_template_arg_not_convertible)
4793        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
4794      Diag(Param->getLocation(), diag::note_template_param_here);
4795      return ExprError();
4796    }
4797
4798    // Add the value of this argument to the list of converted
4799    // arguments. We use the bitwidth and signedness of the template
4800    // parameter.
4801    if (Arg->isValueDependent()) {
4802      // The argument is value-dependent. Create a new
4803      // TemplateArgument with the converted expression.
4804      Converted = TemplateArgument(Arg);
4805      return Owned(Arg);
4806    }
4807
4808    QualType IntegerType = Context.getCanonicalType(ParamType);
4809    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4810      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
4811
4812    if (ParamType->isBooleanType()) {
4813      // Value must be zero or one.
4814      Value = Value != 0;
4815      unsigned AllowedBits = Context.getTypeSize(IntegerType);
4816      if (Value.getBitWidth() != AllowedBits)
4817        Value = Value.extOrTrunc(AllowedBits);
4818      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4819    } else {
4820      llvm::APSInt OldValue = Value;
4821
4822      // Coerce the template argument's value to the value it will have
4823      // based on the template parameter's type.
4824      unsigned AllowedBits = Context.getTypeSize(IntegerType);
4825      if (Value.getBitWidth() != AllowedBits)
4826        Value = Value.extOrTrunc(AllowedBits);
4827      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4828
4829      // Complain if an unsigned parameter received a negative value.
4830      if (IntegerType->isUnsignedIntegerOrEnumerationType()
4831               && (OldValue.isSigned() && OldValue.isNegative())) {
4832        Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
4833          << OldValue.toString(10) << Value.toString(10) << Param->getType()
4834          << Arg->getSourceRange();
4835        Diag(Param->getLocation(), diag::note_template_param_here);
4836      }
4837
4838      // Complain if we overflowed the template parameter's type.
4839      unsigned RequiredBits;
4840      if (IntegerType->isUnsignedIntegerOrEnumerationType())
4841        RequiredBits = OldValue.getActiveBits();
4842      else if (OldValue.isUnsigned())
4843        RequiredBits = OldValue.getActiveBits() + 1;
4844      else
4845        RequiredBits = OldValue.getMinSignedBits();
4846      if (RequiredBits > AllowedBits) {
4847        Diag(Arg->getLocStart(),
4848             diag::warn_template_arg_too_large)
4849          << OldValue.toString(10) << Value.toString(10) << Param->getType()
4850          << Arg->getSourceRange();
4851        Diag(Param->getLocation(), diag::note_template_param_here);
4852      }
4853    }
4854
4855    Converted = TemplateArgument(Context, Value,
4856                                 ParamType->isEnumeralType()
4857                                   ? Context.getCanonicalType(ParamType)
4858                                   : IntegerType);
4859    return Owned(Arg);
4860  }
4861
4862  QualType ArgType = Arg->getType();
4863  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
4864
4865  // Handle pointer-to-function, reference-to-function, and
4866  // pointer-to-member-function all in (roughly) the same way.
4867  if (// -- For a non-type template-parameter of type pointer to
4868      //    function, only the function-to-pointer conversion (4.3) is
4869      //    applied. If the template-argument represents a set of
4870      //    overloaded functions (or a pointer to such), the matching
4871      //    function is selected from the set (13.4).
4872      (ParamType->isPointerType() &&
4873       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
4874      // -- For a non-type template-parameter of type reference to
4875      //    function, no conversions apply. If the template-argument
4876      //    represents a set of overloaded functions, the matching
4877      //    function is selected from the set (13.4).
4878      (ParamType->isReferenceType() &&
4879       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
4880      // -- For a non-type template-parameter of type pointer to
4881      //    member function, no conversions apply. If the
4882      //    template-argument represents a set of overloaded member
4883      //    functions, the matching member function is selected from
4884      //    the set (13.4).
4885      (ParamType->isMemberPointerType() &&
4886       ParamType->getAs<MemberPointerType>()->getPointeeType()
4887         ->isFunctionType())) {
4888
4889    if (Arg->getType() == Context.OverloadTy) {
4890      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
4891                                                                true,
4892                                                                FoundResult)) {
4893        if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4894          return ExprError();
4895
4896        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4897        ArgType = Arg->getType();
4898      } else
4899        return ExprError();
4900    }
4901
4902    if (!ParamType->isMemberPointerType()) {
4903      if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4904                                                         ParamType,
4905                                                         Arg, Converted))
4906        return ExprError();
4907      return Owned(Arg);
4908    }
4909
4910    if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4911                                             Converted))
4912      return ExprError();
4913    return Owned(Arg);
4914  }
4915
4916  if (ParamType->isPointerType()) {
4917    //   -- for a non-type template-parameter of type pointer to
4918    //      object, qualification conversions (4.4) and the
4919    //      array-to-pointer conversion (4.2) are applied.
4920    // C++0x also allows a value of std::nullptr_t.
4921    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
4922           "Only object pointers allowed here");
4923
4924    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4925                                                       ParamType,
4926                                                       Arg, Converted))
4927      return ExprError();
4928    return Owned(Arg);
4929  }
4930
4931  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
4932    //   -- For a non-type template-parameter of type reference to
4933    //      object, no conversions apply. The type referred to by the
4934    //      reference may be more cv-qualified than the (otherwise
4935    //      identical) type of the template-argument. The
4936    //      template-parameter is bound directly to the
4937    //      template-argument, which must be an lvalue.
4938    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
4939           "Only object references allowed here");
4940
4941    if (Arg->getType() == Context.OverloadTy) {
4942      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
4943                                                 ParamRefType->getPointeeType(),
4944                                                                true,
4945                                                                FoundResult)) {
4946        if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4947          return ExprError();
4948
4949        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4950        ArgType = Arg->getType();
4951      } else
4952        return ExprError();
4953    }
4954
4955    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4956                                                       ParamType,
4957                                                       Arg, Converted))
4958      return ExprError();
4959    return Owned(Arg);
4960  }
4961
4962  // Deal with parameters of type std::nullptr_t.
4963  if (ParamType->isNullPtrType()) {
4964    if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4965      Converted = TemplateArgument(Arg);
4966      return Owned(Arg);
4967    }
4968
4969    switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
4970    case NPV_NotNullPointer:
4971      Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
4972        << Arg->getType() << ParamType;
4973      Diag(Param->getLocation(), diag::note_template_param_here);
4974      return ExprError();
4975
4976    case NPV_Error:
4977      return ExprError();
4978
4979    case NPV_NullPointer:
4980      Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4981      Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
4982      return Owned(Arg);
4983    }
4984  }
4985
4986  //     -- For a non-type template-parameter of type pointer to data
4987  //        member, qualification conversions (4.4) are applied.
4988  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
4989
4990  if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4991                                           Converted))
4992    return ExprError();
4993  return Owned(Arg);
4994}
4995
4996/// \brief Check a template argument against its corresponding
4997/// template template parameter.
4998///
4999/// This routine implements the semantics of C++ [temp.arg.template].
5000/// It returns true if an error occurred, and false otherwise.
5001bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
5002                                 const TemplateArgumentLoc &Arg,
5003                                 unsigned ArgumentPackIndex) {
5004  TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
5005  TemplateDecl *Template = Name.getAsTemplateDecl();
5006  if (!Template) {
5007    // Any dependent template name is fine.
5008    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
5009    return false;
5010  }
5011
5012  // C++0x [temp.arg.template]p1:
5013  //   A template-argument for a template template-parameter shall be
5014  //   the name of a class template or an alias template, expressed as an
5015  //   id-expression. When the template-argument names a class template, only
5016  //   primary class templates are considered when matching the
5017  //   template template argument with the corresponding parameter;
5018  //   partial specializations are not considered even if their
5019  //   parameter lists match that of the template template parameter.
5020  //
5021  // Note that we also allow template template parameters here, which
5022  // will happen when we are dealing with, e.g., class template
5023  // partial specializations.
5024  if (!isa<ClassTemplateDecl>(Template) &&
5025      !isa<TemplateTemplateParmDecl>(Template) &&
5026      !isa<TypeAliasTemplateDecl>(Template)) {
5027    assert(isa<FunctionTemplateDecl>(Template) &&
5028           "Only function templates are possible here");
5029    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
5030    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
5031      << Template;
5032  }
5033
5034  TemplateParameterList *Params = Param->getTemplateParameters();
5035  if (Param->isExpandedParameterPack())
5036    Params = Param->getExpansionTemplateParameters(ArgumentPackIndex);
5037
5038  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
5039                                         Params,
5040                                         true,
5041                                         TPL_TemplateTemplateArgumentMatch,
5042                                         Arg.getLocation());
5043}
5044
5045/// \brief Given a non-type template argument that refers to a
5046/// declaration and the type of its corresponding non-type template
5047/// parameter, produce an expression that properly refers to that
5048/// declaration.
5049ExprResult
5050Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
5051                                              QualType ParamType,
5052                                              SourceLocation Loc) {
5053  // C++ [temp.param]p8:
5054  //
5055  //   A non-type template-parameter of type "array of T" or
5056  //   "function returning T" is adjusted to be of type "pointer to
5057  //   T" or "pointer to function returning T", respectively.
5058  if (ParamType->isArrayType())
5059    ParamType = Context.getArrayDecayedType(ParamType);
5060  else if (ParamType->isFunctionType())
5061    ParamType = Context.getPointerType(ParamType);
5062
5063  // For a NULL non-type template argument, return nullptr casted to the
5064  // parameter's type.
5065  if (Arg.getKind() == TemplateArgument::NullPtr) {
5066    return ImpCastExprToType(
5067             new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
5068                             ParamType,
5069                             ParamType->getAs<MemberPointerType>()
5070                               ? CK_NullToMemberPointer
5071                               : CK_NullToPointer);
5072  }
5073  assert(Arg.getKind() == TemplateArgument::Declaration &&
5074         "Only declaration template arguments permitted here");
5075
5076  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
5077
5078  if (VD->getDeclContext()->isRecord() &&
5079      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
5080       isa<IndirectFieldDecl>(VD))) {
5081    // If the value is a class member, we might have a pointer-to-member.
5082    // Determine whether the non-type template template parameter is of
5083    // pointer-to-member type. If so, we need to build an appropriate
5084    // expression for a pointer-to-member, since a "normal" DeclRefExpr
5085    // would refer to the member itself.
5086    if (ParamType->isMemberPointerType()) {
5087      QualType ClassType
5088        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
5089      NestedNameSpecifier *Qualifier
5090        = NestedNameSpecifier::Create(Context, 0, false,
5091                                      ClassType.getTypePtr());
5092      CXXScopeSpec SS;
5093      SS.MakeTrivial(Context, Qualifier, Loc);
5094
5095      // The actual value-ness of this is unimportant, but for
5096      // internal consistency's sake, references to instance methods
5097      // are r-values.
5098      ExprValueKind VK = VK_LValue;
5099      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
5100        VK = VK_RValue;
5101
5102      ExprResult RefExpr = BuildDeclRefExpr(VD,
5103                                            VD->getType().getNonReferenceType(),
5104                                            VK,
5105                                            Loc,
5106                                            &SS);
5107      if (RefExpr.isInvalid())
5108        return ExprError();
5109
5110      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5111
5112      // We might need to perform a trailing qualification conversion, since
5113      // the element type on the parameter could be more qualified than the
5114      // element type in the expression we constructed.
5115      bool ObjCLifetimeConversion;
5116      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
5117                                    ParamType.getUnqualifiedType(), false,
5118                                    ObjCLifetimeConversion))
5119        RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
5120
5121      assert(!RefExpr.isInvalid() &&
5122             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
5123                                 ParamType.getUnqualifiedType()));
5124      return RefExpr;
5125    }
5126  }
5127
5128  QualType T = VD->getType().getNonReferenceType();
5129
5130  if (ParamType->isPointerType()) {
5131    // When the non-type template parameter is a pointer, take the
5132    // address of the declaration.
5133    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
5134    if (RefExpr.isInvalid())
5135      return ExprError();
5136
5137    if (T->isFunctionType() || T->isArrayType()) {
5138      // Decay functions and arrays.
5139      RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
5140      if (RefExpr.isInvalid())
5141        return ExprError();
5142
5143      return RefExpr;
5144    }
5145
5146    // Take the address of everything else
5147    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5148  }
5149
5150  ExprValueKind VK = VK_RValue;
5151
5152  // If the non-type template parameter has reference type, qualify the
5153  // resulting declaration reference with the extra qualifiers on the
5154  // type that the reference refers to.
5155  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
5156    VK = VK_LValue;
5157    T = Context.getQualifiedType(T,
5158                              TargetRef->getPointeeType().getQualifiers());
5159  } else if (isa<FunctionDecl>(VD)) {
5160    // References to functions are always lvalues.
5161    VK = VK_LValue;
5162  }
5163
5164  return BuildDeclRefExpr(VD, T, VK, Loc);
5165}
5166
5167/// \brief Construct a new expression that refers to the given
5168/// integral template argument with the given source-location
5169/// information.
5170///
5171/// This routine takes care of the mapping from an integral template
5172/// argument (which may have any integral type) to the appropriate
5173/// literal value.
5174ExprResult
5175Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
5176                                                  SourceLocation Loc) {
5177  assert(Arg.getKind() == TemplateArgument::Integral &&
5178         "Operation is only valid for integral template arguments");
5179  QualType OrigT = Arg.getIntegralType();
5180
5181  // If this is an enum type that we're instantiating, we need to use an integer
5182  // type the same size as the enumerator.  We don't want to build an
5183  // IntegerLiteral with enum type.  The integer type of an enum type can be of
5184  // any integral type with C++11 enum classes, make sure we create the right
5185  // type of literal for it.
5186  QualType T = OrigT;
5187  if (const EnumType *ET = OrigT->getAs<EnumType>())
5188    T = ET->getDecl()->getIntegerType();
5189
5190  Expr *E;
5191  if (T->isAnyCharacterType()) {
5192    CharacterLiteral::CharacterKind Kind;
5193    if (T->isWideCharType())
5194      Kind = CharacterLiteral::Wide;
5195    else if (T->isChar16Type())
5196      Kind = CharacterLiteral::UTF16;
5197    else if (T->isChar32Type())
5198      Kind = CharacterLiteral::UTF32;
5199    else
5200      Kind = CharacterLiteral::Ascii;
5201
5202    E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
5203                                       Kind, T, Loc);
5204  } else if (T->isBooleanType()) {
5205    E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
5206                                         T, Loc);
5207  } else if (T->isNullPtrType()) {
5208    E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
5209  } else {
5210    E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
5211  }
5212
5213  if (OrigT->isEnumeralType()) {
5214    // FIXME: This is a hack. We need a better way to handle substituted
5215    // non-type template parameters.
5216    E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E, 0,
5217                               Context.getTrivialTypeSourceInfo(OrigT, Loc),
5218                               Loc, Loc);
5219  }
5220
5221  return Owned(E);
5222}
5223
5224/// \brief Match two template parameters within template parameter lists.
5225static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
5226                                       bool Complain,
5227                                     Sema::TemplateParameterListEqualKind Kind,
5228                                       SourceLocation TemplateArgLoc) {
5229  // Check the actual kind (type, non-type, template).
5230  if (Old->getKind() != New->getKind()) {
5231    if (Complain) {
5232      unsigned NextDiag = diag::err_template_param_different_kind;
5233      if (TemplateArgLoc.isValid()) {
5234        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5235        NextDiag = diag::note_template_param_different_kind;
5236      }
5237      S.Diag(New->getLocation(), NextDiag)
5238        << (Kind != Sema::TPL_TemplateMatch);
5239      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
5240        << (Kind != Sema::TPL_TemplateMatch);
5241    }
5242
5243    return false;
5244  }
5245
5246  // Check that both are parameter packs are neither are parameter packs.
5247  // However, if we are matching a template template argument to a
5248  // template template parameter, the template template parameter can have
5249  // a parameter pack where the template template argument does not.
5250  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
5251      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5252        Old->isTemplateParameterPack())) {
5253    if (Complain) {
5254      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
5255      if (TemplateArgLoc.isValid()) {
5256        S.Diag(TemplateArgLoc,
5257             diag::err_template_arg_template_params_mismatch);
5258        NextDiag = diag::note_template_parameter_pack_non_pack;
5259      }
5260
5261      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
5262                      : isa<NonTypeTemplateParmDecl>(New)? 1
5263                      : 2;
5264      S.Diag(New->getLocation(), NextDiag)
5265        << ParamKind << New->isParameterPack();
5266      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
5267        << ParamKind << Old->isParameterPack();
5268    }
5269
5270    return false;
5271  }
5272
5273  // For non-type template parameters, check the type of the parameter.
5274  if (NonTypeTemplateParmDecl *OldNTTP
5275                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
5276    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
5277
5278    // If we are matching a template template argument to a template
5279    // template parameter and one of the non-type template parameter types
5280    // is dependent, then we must wait until template instantiation time
5281    // to actually compare the arguments.
5282    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5283        (OldNTTP->getType()->isDependentType() ||
5284         NewNTTP->getType()->isDependentType()))
5285      return true;
5286
5287    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
5288      if (Complain) {
5289        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
5290        if (TemplateArgLoc.isValid()) {
5291          S.Diag(TemplateArgLoc,
5292                 diag::err_template_arg_template_params_mismatch);
5293          NextDiag = diag::note_template_nontype_parm_different_type;
5294        }
5295        S.Diag(NewNTTP->getLocation(), NextDiag)
5296          << NewNTTP->getType()
5297          << (Kind != Sema::TPL_TemplateMatch);
5298        S.Diag(OldNTTP->getLocation(),
5299               diag::note_template_nontype_parm_prev_declaration)
5300          << OldNTTP->getType();
5301      }
5302
5303      return false;
5304    }
5305
5306    return true;
5307  }
5308
5309  // For template template parameters, check the template parameter types.
5310  // The template parameter lists of template template
5311  // parameters must agree.
5312  if (TemplateTemplateParmDecl *OldTTP
5313                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
5314    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
5315    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
5316                                            OldTTP->getTemplateParameters(),
5317                                            Complain,
5318                                        (Kind == Sema::TPL_TemplateMatch
5319                                           ? Sema::TPL_TemplateTemplateParmMatch
5320                                           : Kind),
5321                                            TemplateArgLoc);
5322  }
5323
5324  return true;
5325}
5326
5327/// \brief Diagnose a known arity mismatch when comparing template argument
5328/// lists.
5329static
5330void DiagnoseTemplateParameterListArityMismatch(Sema &S,
5331                                                TemplateParameterList *New,
5332                                                TemplateParameterList *Old,
5333                                      Sema::TemplateParameterListEqualKind Kind,
5334                                                SourceLocation TemplateArgLoc) {
5335  unsigned NextDiag = diag::err_template_param_list_different_arity;
5336  if (TemplateArgLoc.isValid()) {
5337    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5338    NextDiag = diag::note_template_param_list_different_arity;
5339  }
5340  S.Diag(New->getTemplateLoc(), NextDiag)
5341    << (New->size() > Old->size())
5342    << (Kind != Sema::TPL_TemplateMatch)
5343    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
5344  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
5345    << (Kind != Sema::TPL_TemplateMatch)
5346    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
5347}
5348
5349/// \brief Determine whether the given template parameter lists are
5350/// equivalent.
5351///
5352/// \param New  The new template parameter list, typically written in the
5353/// source code as part of a new template declaration.
5354///
5355/// \param Old  The old template parameter list, typically found via
5356/// name lookup of the template declared with this template parameter
5357/// list.
5358///
5359/// \param Complain  If true, this routine will produce a diagnostic if
5360/// the template parameter lists are not equivalent.
5361///
5362/// \param Kind describes how we are to match the template parameter lists.
5363///
5364/// \param TemplateArgLoc If this source location is valid, then we
5365/// are actually checking the template parameter list of a template
5366/// argument (New) against the template parameter list of its
5367/// corresponding template template parameter (Old). We produce
5368/// slightly different diagnostics in this scenario.
5369///
5370/// \returns True if the template parameter lists are equal, false
5371/// otherwise.
5372bool
5373Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
5374                                     TemplateParameterList *Old,
5375                                     bool Complain,
5376                                     TemplateParameterListEqualKind Kind,
5377                                     SourceLocation TemplateArgLoc) {
5378  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
5379    if (Complain)
5380      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5381                                                 TemplateArgLoc);
5382
5383    return false;
5384  }
5385
5386  // C++0x [temp.arg.template]p3:
5387  //   A template-argument matches a template template-parameter (call it P)
5388  //   when each of the template parameters in the template-parameter-list of
5389  //   the template-argument's corresponding class template or alias template
5390  //   (call it A) matches the corresponding template parameter in the
5391  //   template-parameter-list of P. [...]
5392  TemplateParameterList::iterator NewParm = New->begin();
5393  TemplateParameterList::iterator NewParmEnd = New->end();
5394  for (TemplateParameterList::iterator OldParm = Old->begin(),
5395                                    OldParmEnd = Old->end();
5396       OldParm != OldParmEnd; ++OldParm) {
5397    if (Kind != TPL_TemplateTemplateArgumentMatch ||
5398        !(*OldParm)->isTemplateParameterPack()) {
5399      if (NewParm == NewParmEnd) {
5400        if (Complain)
5401          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5402                                                     TemplateArgLoc);
5403
5404        return false;
5405      }
5406
5407      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5408                                      Kind, TemplateArgLoc))
5409        return false;
5410
5411      ++NewParm;
5412      continue;
5413    }
5414
5415    // C++0x [temp.arg.template]p3:
5416    //   [...] When P's template- parameter-list contains a template parameter
5417    //   pack (14.5.3), the template parameter pack will match zero or more
5418    //   template parameters or template parameter packs in the
5419    //   template-parameter-list of A with the same type and form as the
5420    //   template parameter pack in P (ignoring whether those template
5421    //   parameters are template parameter packs).
5422    for (; NewParm != NewParmEnd; ++NewParm) {
5423      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5424                                      Kind, TemplateArgLoc))
5425        return false;
5426    }
5427  }
5428
5429  // Make sure we exhausted all of the arguments.
5430  if (NewParm != NewParmEnd) {
5431    if (Complain)
5432      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5433                                                 TemplateArgLoc);
5434
5435    return false;
5436  }
5437
5438  return true;
5439}
5440
5441/// \brief Check whether a template can be declared within this scope.
5442///
5443/// If the template declaration is valid in this scope, returns
5444/// false. Otherwise, issues a diagnostic and returns true.
5445bool
5446Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
5447  if (!S)
5448    return false;
5449
5450  // Find the nearest enclosing declaration scope.
5451  while ((S->getFlags() & Scope::DeclScope) == 0 ||
5452         (S->getFlags() & Scope::TemplateParamScope) != 0)
5453    S = S->getParent();
5454
5455  // C++ [temp]p2:
5456  //   A template-declaration can appear only as a namespace scope or
5457  //   class scope declaration.
5458  DeclContext *Ctx = S->getEntity();
5459  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
5460      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
5461    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
5462             << TemplateParams->getSourceRange();
5463
5464  while (Ctx && isa<LinkageSpecDecl>(Ctx))
5465    Ctx = Ctx->getParent();
5466
5467  if (Ctx) {
5468    if (Ctx->isFileContext())
5469      return false;
5470    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
5471      // C++ [temp.mem]p2:
5472      //   A local class shall not have member templates.
5473      if (RD->isLocalClass())
5474        return Diag(TemplateParams->getTemplateLoc(),
5475                    diag::err_template_inside_local_class)
5476          << TemplateParams->getSourceRange();
5477      else
5478        return false;
5479    }
5480  }
5481
5482  return Diag(TemplateParams->getTemplateLoc(),
5483              diag::err_template_outside_namespace_or_class_scope)
5484    << TemplateParams->getSourceRange();
5485}
5486
5487/// \brief Determine what kind of template specialization the given declaration
5488/// is.
5489static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
5490  if (!D)
5491    return TSK_Undeclared;
5492
5493  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
5494    return Record->getTemplateSpecializationKind();
5495  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
5496    return Function->getTemplateSpecializationKind();
5497  if (VarDecl *Var = dyn_cast<VarDecl>(D))
5498    return Var->getTemplateSpecializationKind();
5499
5500  return TSK_Undeclared;
5501}
5502
5503/// \brief Check whether a specialization is well-formed in the current
5504/// context.
5505///
5506/// This routine determines whether a template specialization can be declared
5507/// in the current context (C++ [temp.expl.spec]p2).
5508///
5509/// \param S the semantic analysis object for which this check is being
5510/// performed.
5511///
5512/// \param Specialized the entity being specialized or instantiated, which
5513/// may be a kind of template (class template, function template, etc.) or
5514/// a member of a class template (member function, static data member,
5515/// member class).
5516///
5517/// \param PrevDecl the previous declaration of this entity, if any.
5518///
5519/// \param Loc the location of the explicit specialization or instantiation of
5520/// this entity.
5521///
5522/// \param IsPartialSpecialization whether this is a partial specialization of
5523/// a class template.
5524///
5525/// \returns true if there was an error that we cannot recover from, false
5526/// otherwise.
5527static bool CheckTemplateSpecializationScope(Sema &S,
5528                                             NamedDecl *Specialized,
5529                                             NamedDecl *PrevDecl,
5530                                             SourceLocation Loc,
5531                                             bool IsPartialSpecialization) {
5532  // Keep these "kind" numbers in sync with the %select statements in the
5533  // various diagnostics emitted by this routine.
5534  int EntityKind = 0;
5535  if (isa<ClassTemplateDecl>(Specialized))
5536    EntityKind = IsPartialSpecialization? 1 : 0;
5537  else if (isa<VarTemplateDecl>(Specialized))
5538    EntityKind = IsPartialSpecialization ? 3 : 2;
5539  else if (isa<FunctionTemplateDecl>(Specialized))
5540    EntityKind = 4;
5541  else if (isa<CXXMethodDecl>(Specialized))
5542    EntityKind = 5;
5543  else if (isa<VarDecl>(Specialized))
5544    EntityKind = 6;
5545  else if (isa<RecordDecl>(Specialized))
5546    EntityKind = 7;
5547  else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
5548    EntityKind = 8;
5549  else {
5550    S.Diag(Loc, diag::err_template_spec_unknown_kind)
5551      << S.getLangOpts().CPlusPlus11;
5552    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5553    return true;
5554  }
5555
5556  // C++ [temp.expl.spec]p2:
5557  //   An explicit specialization shall be declared in the namespace
5558  //   of which the template is a member, or, for member templates, in
5559  //   the namespace of which the enclosing class or enclosing class
5560  //   template is a member. An explicit specialization of a member
5561  //   function, member class or static data member of a class
5562  //   template shall be declared in the namespace of which the class
5563  //   template is a member. Such a declaration may also be a
5564  //   definition. If the declaration is not a definition, the
5565  //   specialization may be defined later in the name- space in which
5566  //   the explicit specialization was declared, or in a namespace
5567  //   that encloses the one in which the explicit specialization was
5568  //   declared.
5569  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5570    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
5571      << Specialized;
5572    return true;
5573  }
5574
5575  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
5576    if (S.getLangOpts().MicrosoftExt) {
5577      // Do not warn for class scope explicit specialization during
5578      // instantiation, warning was already emitted during pattern
5579      // semantic analysis.
5580      if (!S.ActiveTemplateInstantiations.size())
5581        S.Diag(Loc, diag::ext_function_specialization_in_class)
5582          << Specialized;
5583    } else {
5584      S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5585        << Specialized;
5586      return true;
5587    }
5588  }
5589
5590  if (S.CurContext->isRecord() &&
5591      !S.CurContext->Equals(Specialized->getDeclContext())) {
5592    // Make sure that we're specializing in the right record context.
5593    // Otherwise, things can go horribly wrong.
5594    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5595      << Specialized;
5596    return true;
5597  }
5598
5599  // C++ [temp.class.spec]p6:
5600  //   A class template partial specialization may be declared or redeclared
5601  //   in any namespace scope in which its definition may be defined (14.5.1
5602  //   and 14.5.2).
5603  bool ComplainedAboutScope = false;
5604  DeclContext *SpecializedContext
5605    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
5606  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
5607  if ((!PrevDecl ||
5608       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
5609       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
5610    // C++ [temp.exp.spec]p2:
5611    //   An explicit specialization shall be declared in the namespace of which
5612    //   the template is a member, or, for member templates, in the namespace
5613    //   of which the enclosing class or enclosing class template is a member.
5614    //   An explicit specialization of a member function, member class or
5615    //   static data member of a class template shall be declared in the
5616    //   namespace of which the class template is a member.
5617    //
5618    // C++0x [temp.expl.spec]p2:
5619    //   An explicit specialization shall be declared in a namespace enclosing
5620    //   the specialized template.
5621    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
5622      bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext);
5623      if (isa<TranslationUnitDecl>(SpecializedContext)) {
5624        assert(!IsCPlusPlus11Extension &&
5625               "DC encloses TU but isn't in enclosing namespace set");
5626        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
5627          << EntityKind << Specialized;
5628      } else if (isa<NamespaceDecl>(SpecializedContext)) {
5629        int Diag;
5630        if (!IsCPlusPlus11Extension)
5631          Diag = diag::err_template_spec_decl_out_of_scope;
5632        else if (!S.getLangOpts().CPlusPlus11)
5633          Diag = diag::ext_template_spec_decl_out_of_scope;
5634        else
5635          Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
5636        S.Diag(Loc, Diag)
5637          << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
5638      }
5639
5640      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5641      ComplainedAboutScope =
5642        !(IsCPlusPlus11Extension && S.getLangOpts().CPlusPlus11);
5643    }
5644  }
5645
5646  // Make sure that this redeclaration (or definition) occurs in an enclosing
5647  // namespace.
5648  // Note that HandleDeclarator() performs this check for explicit
5649  // specializations of function templates, static data members, and member
5650  // functions, so we skip the check here for those kinds of entities.
5651  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
5652  // Should we refactor that check, so that it occurs later?
5653  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
5654      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
5655        isa<FunctionDecl>(Specialized))) {
5656    if (isa<TranslationUnitDecl>(SpecializedContext))
5657      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
5658        << EntityKind << Specialized;
5659    else if (isa<NamespaceDecl>(SpecializedContext))
5660      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
5661        << EntityKind << Specialized
5662        << cast<NamedDecl>(SpecializedContext);
5663
5664    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5665  }
5666
5667  // FIXME: check for specialization-after-instantiation errors and such.
5668
5669  return false;
5670}
5671
5672/// \brief Subroutine of Sema::CheckTemplatePartialSpecializationArgs
5673/// that checks non-type template partial specialization arguments.
5674static bool CheckNonTypeTemplatePartialSpecializationArgs(
5675    Sema &S, NonTypeTemplateParmDecl *Param, const TemplateArgument *Args,
5676    unsigned NumArgs) {
5677  for (unsigned I = 0; I != NumArgs; ++I) {
5678    if (Args[I].getKind() == TemplateArgument::Pack) {
5679      if (CheckNonTypeTemplatePartialSpecializationArgs(
5680              S, Param, Args[I].pack_begin(), Args[I].pack_size()))
5681        return true;
5682
5683      continue;
5684    }
5685
5686    if (Args[I].getKind() != TemplateArgument::Expression)
5687      continue;
5688
5689    Expr *ArgExpr = Args[I].getAsExpr();
5690
5691    // We can have a pack expansion of any of the bullets below.
5692    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
5693      ArgExpr = Expansion->getPattern();
5694
5695    // Strip off any implicit casts we added as part of type checking.
5696    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
5697      ArgExpr = ICE->getSubExpr();
5698
5699    // C++ [temp.class.spec]p8:
5700    //   A non-type argument is non-specialized if it is the name of a
5701    //   non-type parameter. All other non-type arguments are
5702    //   specialized.
5703    //
5704    // Below, we check the two conditions that only apply to
5705    // specialized non-type arguments, so skip any non-specialized
5706    // arguments.
5707    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
5708      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
5709        continue;
5710
5711    // C++ [temp.class.spec]p9:
5712    //   Within the argument list of a class template partial
5713    //   specialization, the following restrictions apply:
5714    //     -- A partially specialized non-type argument expression
5715    //        shall not involve a template parameter of the partial
5716    //        specialization except when the argument expression is a
5717    //        simple identifier.
5718    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
5719      S.Diag(ArgExpr->getLocStart(),
5720           diag::err_dependent_non_type_arg_in_partial_spec)
5721        << ArgExpr->getSourceRange();
5722      return true;
5723    }
5724
5725    //     -- The type of a template parameter corresponding to a
5726    //        specialized non-type argument shall not be dependent on a
5727    //        parameter of the specialization.
5728    if (Param->getType()->isDependentType()) {
5729      S.Diag(ArgExpr->getLocStart(),
5730           diag::err_dependent_typed_non_type_arg_in_partial_spec)
5731        << Param->getType()
5732        << ArgExpr->getSourceRange();
5733      S.Diag(Param->getLocation(), diag::note_template_param_here);
5734      return true;
5735    }
5736  }
5737
5738  return false;
5739}
5740
5741/// \brief Check the non-type template arguments of a class template
5742/// partial specialization according to C++ [temp.class.spec]p9.
5743///
5744/// \param TemplateParams the template parameters of the primary class
5745/// template.
5746///
5747/// \param TemplateArgs the template arguments of the class template
5748/// partial specialization.
5749///
5750/// \returns true if there was an error, false otherwise.
5751static bool CheckTemplatePartialSpecializationArgs(
5752    Sema &S, TemplateParameterList *TemplateParams,
5753    SmallVectorImpl<TemplateArgument> &TemplateArgs) {
5754  const TemplateArgument *ArgList = TemplateArgs.data();
5755
5756  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5757    NonTypeTemplateParmDecl *Param
5758      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
5759    if (!Param)
5760      continue;
5761
5762    if (CheckNonTypeTemplatePartialSpecializationArgs(S, Param, &ArgList[I], 1))
5763      return true;
5764  }
5765
5766  return false;
5767}
5768
5769DeclResult
5770Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
5771                                       TagUseKind TUK,
5772                                       SourceLocation KWLoc,
5773                                       SourceLocation ModulePrivateLoc,
5774                                       CXXScopeSpec &SS,
5775                                       TemplateTy TemplateD,
5776                                       SourceLocation TemplateNameLoc,
5777                                       SourceLocation LAngleLoc,
5778                                       ASTTemplateArgsPtr TemplateArgsIn,
5779                                       SourceLocation RAngleLoc,
5780                                       AttributeList *Attr,
5781                               MultiTemplateParamsArg TemplateParameterLists) {
5782  assert(TUK != TUK_Reference && "References are not specializations");
5783
5784  // NOTE: KWLoc is the location of the tag keyword. This will instead
5785  // store the location of the outermost template keyword in the declaration.
5786  SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
5787    ? TemplateParameterLists[0]->getTemplateLoc() : SourceLocation();
5788
5789  // Find the class template we're specializing
5790  TemplateName Name = TemplateD.get();
5791  ClassTemplateDecl *ClassTemplate
5792    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
5793
5794  if (!ClassTemplate) {
5795    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
5796      << (Name.getAsTemplateDecl() &&
5797          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
5798    return true;
5799  }
5800
5801  bool isExplicitSpecialization = false;
5802  bool isPartialSpecialization = false;
5803
5804  // Check the validity of the template headers that introduce this
5805  // template.
5806  // FIXME: We probably shouldn't complain about these headers for
5807  // friend declarations.
5808  bool Invalid = false;
5809  TemplateParameterList *TemplateParams =
5810      MatchTemplateParametersToScopeSpecifier(
5811          TemplateNameLoc, TemplateNameLoc, SS, TemplateParameterLists,
5812          TUK == TUK_Friend, isExplicitSpecialization, Invalid);
5813  if (Invalid)
5814    return true;
5815
5816  if (TemplateParams && TemplateParams->size() > 0) {
5817    isPartialSpecialization = true;
5818
5819    if (TUK == TUK_Friend) {
5820      Diag(KWLoc, diag::err_partial_specialization_friend)
5821        << SourceRange(LAngleLoc, RAngleLoc);
5822      return true;
5823    }
5824
5825    // C++ [temp.class.spec]p10:
5826    //   The template parameter list of a specialization shall not
5827    //   contain default template argument values.
5828    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5829      Decl *Param = TemplateParams->getParam(I);
5830      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
5831        if (TTP->hasDefaultArgument()) {
5832          Diag(TTP->getDefaultArgumentLoc(),
5833               diag::err_default_arg_in_partial_spec);
5834          TTP->removeDefaultArgument();
5835        }
5836      } else if (NonTypeTemplateParmDecl *NTTP
5837                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5838        if (Expr *DefArg = NTTP->getDefaultArgument()) {
5839          Diag(NTTP->getDefaultArgumentLoc(),
5840               diag::err_default_arg_in_partial_spec)
5841            << DefArg->getSourceRange();
5842          NTTP->removeDefaultArgument();
5843        }
5844      } else {
5845        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
5846        if (TTP->hasDefaultArgument()) {
5847          Diag(TTP->getDefaultArgument().getLocation(),
5848               diag::err_default_arg_in_partial_spec)
5849            << TTP->getDefaultArgument().getSourceRange();
5850          TTP->removeDefaultArgument();
5851        }
5852      }
5853    }
5854  } else if (TemplateParams) {
5855    if (TUK == TUK_Friend)
5856      Diag(KWLoc, diag::err_template_spec_friend)
5857        << FixItHint::CreateRemoval(
5858                                SourceRange(TemplateParams->getTemplateLoc(),
5859                                            TemplateParams->getRAngleLoc()))
5860        << SourceRange(LAngleLoc, RAngleLoc);
5861    else
5862      isExplicitSpecialization = true;
5863  } else if (TUK != TUK_Friend) {
5864    Diag(KWLoc, diag::err_template_spec_needs_header)
5865      << FixItHint::CreateInsertion(KWLoc, "template<> ");
5866    TemplateKWLoc = KWLoc;
5867    isExplicitSpecialization = true;
5868  }
5869
5870  // Check that the specialization uses the same tag kind as the
5871  // original template.
5872  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5873  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
5874  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5875                                    Kind, TUK == TUK_Definition, KWLoc,
5876                                    *ClassTemplate->getIdentifier())) {
5877    Diag(KWLoc, diag::err_use_with_wrong_tag)
5878      << ClassTemplate
5879      << FixItHint::CreateReplacement(KWLoc,
5880                            ClassTemplate->getTemplatedDecl()->getKindName());
5881    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5882         diag::note_previous_use);
5883    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5884  }
5885
5886  // Translate the parser's template argument list in our AST format.
5887  TemplateArgumentListInfo TemplateArgs;
5888  TemplateArgs.setLAngleLoc(LAngleLoc);
5889  TemplateArgs.setRAngleLoc(RAngleLoc);
5890  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5891
5892  // Check for unexpanded parameter packs in any of the template arguments.
5893  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
5894    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
5895                                        UPPC_PartialSpecialization))
5896      return true;
5897
5898  // Check that the template argument list is well-formed for this
5899  // template.
5900  SmallVector<TemplateArgument, 4> Converted;
5901  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5902                                TemplateArgs, false, Converted))
5903    return true;
5904
5905  // Find the class template (partial) specialization declaration that
5906  // corresponds to these arguments.
5907  if (isPartialSpecialization) {
5908    if (CheckTemplatePartialSpecializationArgs(
5909            *this, ClassTemplate->getTemplateParameters(), Converted))
5910      return true;
5911
5912    bool InstantiationDependent;
5913    if (!Name.isDependent() &&
5914        !TemplateSpecializationType::anyDependentTemplateArguments(
5915                                             TemplateArgs.getArgumentArray(),
5916                                                         TemplateArgs.size(),
5917                                                     InstantiationDependent)) {
5918      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
5919        << ClassTemplate->getDeclName();
5920      isPartialSpecialization = false;
5921    }
5922  }
5923
5924  void *InsertPos = 0;
5925  ClassTemplateSpecializationDecl *PrevDecl = 0;
5926
5927  if (isPartialSpecialization)
5928    // FIXME: Template parameter list matters, too
5929    PrevDecl
5930      = ClassTemplate->findPartialSpecialization(Converted.data(),
5931                                                 Converted.size(),
5932                                                 InsertPos);
5933  else
5934    PrevDecl
5935      = ClassTemplate->findSpecialization(Converted.data(),
5936                                          Converted.size(), InsertPos);
5937
5938  ClassTemplateSpecializationDecl *Specialization = 0;
5939
5940  // Check whether we can declare a class template specialization in
5941  // the current scope.
5942  if (TUK != TUK_Friend &&
5943      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
5944                                       TemplateNameLoc,
5945                                       isPartialSpecialization))
5946    return true;
5947
5948  // The canonical type
5949  QualType CanonType;
5950  if (PrevDecl &&
5951      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
5952               TUK == TUK_Friend)) {
5953    // Since the only prior class template specialization with these
5954    // arguments was referenced but not declared, or we're only
5955    // referencing this specialization as a friend, reuse that
5956    // declaration node as our own, updating its source location and
5957    // the list of outer template parameters to reflect our new declaration.
5958    Specialization = PrevDecl;
5959    Specialization->setLocation(TemplateNameLoc);
5960    if (TemplateParameterLists.size() > 0) {
5961      Specialization->setTemplateParameterListsInfo(Context,
5962                                              TemplateParameterLists.size(),
5963                                              TemplateParameterLists.data());
5964    }
5965    PrevDecl = 0;
5966    CanonType = Context.getTypeDeclType(Specialization);
5967  } else if (isPartialSpecialization) {
5968    // Build the canonical type that describes the converted template
5969    // arguments of the class template partial specialization.
5970    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
5971    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
5972                                                      Converted.data(),
5973                                                      Converted.size());
5974
5975    if (Context.hasSameType(CanonType,
5976                        ClassTemplate->getInjectedClassNameSpecialization())) {
5977      // C++ [temp.class.spec]p9b3:
5978      //
5979      //   -- The argument list of the specialization shall not be identical
5980      //      to the implicit argument list of the primary template.
5981      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
5982        << /*class template*/0 << (TUK == TUK_Definition)
5983        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
5984      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
5985                                ClassTemplate->getIdentifier(),
5986                                TemplateNameLoc,
5987                                Attr,
5988                                TemplateParams,
5989                                AS_none, /*ModulePrivateLoc=*/SourceLocation(),
5990                                TemplateParameterLists.size() - 1,
5991                                TemplateParameterLists.data());
5992    }
5993
5994    // Create a new class template partial specialization declaration node.
5995    ClassTemplatePartialSpecializationDecl *PrevPartial
5996      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
5997    ClassTemplatePartialSpecializationDecl *Partial
5998      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
5999                                             ClassTemplate->getDeclContext(),
6000                                                       KWLoc, TemplateNameLoc,
6001                                                       TemplateParams,
6002                                                       ClassTemplate,
6003                                                       Converted.data(),
6004                                                       Converted.size(),
6005                                                       TemplateArgs,
6006                                                       CanonType,
6007                                                       PrevPartial);
6008    SetNestedNameSpecifier(Partial, SS);
6009    if (TemplateParameterLists.size() > 1 && SS.isSet()) {
6010      Partial->setTemplateParameterListsInfo(Context,
6011                                             TemplateParameterLists.size() - 1,
6012                                             TemplateParameterLists.data());
6013    }
6014
6015    if (!PrevPartial)
6016      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
6017    Specialization = Partial;
6018
6019    // If we are providing an explicit specialization of a member class
6020    // template specialization, make a note of that.
6021    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
6022      PrevPartial->setMemberSpecialization();
6023
6024    // Check that all of the template parameters of the class template
6025    // partial specialization are deducible from the template
6026    // arguments. If not, this class template partial specialization
6027    // will never be used.
6028    llvm::SmallBitVector DeducibleParams(TemplateParams->size());
6029    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
6030                               TemplateParams->getDepth(),
6031                               DeducibleParams);
6032
6033    if (!DeducibleParams.all()) {
6034      unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
6035      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
6036        << /*class template*/0 << (NumNonDeducible > 1)
6037        << SourceRange(TemplateNameLoc, RAngleLoc);
6038      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
6039        if (!DeducibleParams[I]) {
6040          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
6041          if (Param->getDeclName())
6042            Diag(Param->getLocation(),
6043                 diag::note_partial_spec_unused_parameter)
6044              << Param->getDeclName();
6045          else
6046            Diag(Param->getLocation(),
6047                 diag::note_partial_spec_unused_parameter)
6048              << "<anonymous>";
6049        }
6050      }
6051    }
6052  } else {
6053    // Create a new class template specialization declaration node for
6054    // this explicit specialization or friend declaration.
6055    Specialization
6056      = ClassTemplateSpecializationDecl::Create(Context, Kind,
6057                                             ClassTemplate->getDeclContext(),
6058                                                KWLoc, TemplateNameLoc,
6059                                                ClassTemplate,
6060                                                Converted.data(),
6061                                                Converted.size(),
6062                                                PrevDecl);
6063    SetNestedNameSpecifier(Specialization, SS);
6064    if (TemplateParameterLists.size() > 0) {
6065      Specialization->setTemplateParameterListsInfo(Context,
6066                                              TemplateParameterLists.size(),
6067                                              TemplateParameterLists.data());
6068    }
6069
6070    if (!PrevDecl)
6071      ClassTemplate->AddSpecialization(Specialization, InsertPos);
6072
6073    CanonType = Context.getTypeDeclType(Specialization);
6074  }
6075
6076  // C++ [temp.expl.spec]p6:
6077  //   If a template, a member template or the member of a class template is
6078  //   explicitly specialized then that specialization shall be declared
6079  //   before the first use of that specialization that would cause an implicit
6080  //   instantiation to take place, in every translation unit in which such a
6081  //   use occurs; no diagnostic is required.
6082  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
6083    bool Okay = false;
6084    for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6085      // Is there any previous explicit specialization declaration?
6086      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
6087        Okay = true;
6088        break;
6089      }
6090    }
6091
6092    if (!Okay) {
6093      SourceRange Range(TemplateNameLoc, RAngleLoc);
6094      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
6095        << Context.getTypeDeclType(Specialization) << Range;
6096
6097      Diag(PrevDecl->getPointOfInstantiation(),
6098           diag::note_instantiation_required_here)
6099        << (PrevDecl->getTemplateSpecializationKind()
6100                                                != TSK_ImplicitInstantiation);
6101      return true;
6102    }
6103  }
6104
6105  // If this is not a friend, note that this is an explicit specialization.
6106  if (TUK != TUK_Friend)
6107    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
6108
6109  // Check that this isn't a redefinition of this specialization.
6110  if (TUK == TUK_Definition) {
6111    if (RecordDecl *Def = Specialization->getDefinition()) {
6112      SourceRange Range(TemplateNameLoc, RAngleLoc);
6113      Diag(TemplateNameLoc, diag::err_redefinition)
6114        << Context.getTypeDeclType(Specialization) << Range;
6115      Diag(Def->getLocation(), diag::note_previous_definition);
6116      Specialization->setInvalidDecl();
6117      return true;
6118    }
6119  }
6120
6121  if (Attr)
6122    ProcessDeclAttributeList(S, Specialization, Attr);
6123
6124  // Add alignment attributes if necessary; these attributes are checked when
6125  // the ASTContext lays out the structure.
6126  if (TUK == TUK_Definition) {
6127    AddAlignmentAttributesForRecord(Specialization);
6128    AddMsStructLayoutForRecord(Specialization);
6129  }
6130
6131  if (ModulePrivateLoc.isValid())
6132    Diag(Specialization->getLocation(), diag::err_module_private_specialization)
6133      << (isPartialSpecialization? 1 : 0)
6134      << FixItHint::CreateRemoval(ModulePrivateLoc);
6135
6136  // Build the fully-sugared type for this class template
6137  // specialization as the user wrote in the specialization
6138  // itself. This means that we'll pretty-print the type retrieved
6139  // from the specialization's declaration the way that the user
6140  // actually wrote the specialization, rather than formatting the
6141  // name based on the "canonical" representation used to store the
6142  // template arguments in the specialization.
6143  TypeSourceInfo *WrittenTy
6144    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6145                                                TemplateArgs, CanonType);
6146  if (TUK != TUK_Friend) {
6147    Specialization->setTypeAsWritten(WrittenTy);
6148    Specialization->setTemplateKeywordLoc(TemplateKWLoc);
6149  }
6150
6151  // C++ [temp.expl.spec]p9:
6152  //   A template explicit specialization is in the scope of the
6153  //   namespace in which the template was defined.
6154  //
6155  // We actually implement this paragraph where we set the semantic
6156  // context (in the creation of the ClassTemplateSpecializationDecl),
6157  // but we also maintain the lexical context where the actual
6158  // definition occurs.
6159  Specialization->setLexicalDeclContext(CurContext);
6160
6161  // We may be starting the definition of this specialization.
6162  if (TUK == TUK_Definition)
6163    Specialization->startDefinition();
6164
6165  if (TUK == TUK_Friend) {
6166    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
6167                                            TemplateNameLoc,
6168                                            WrittenTy,
6169                                            /*FIXME:*/KWLoc);
6170    Friend->setAccess(AS_public);
6171    CurContext->addDecl(Friend);
6172  } else {
6173    // Add the specialization into its lexical context, so that it can
6174    // be seen when iterating through the list of declarations in that
6175    // context. However, specializations are not found by name lookup.
6176    CurContext->addDecl(Specialization);
6177  }
6178  return Specialization;
6179}
6180
6181Decl *Sema::ActOnTemplateDeclarator(Scope *S,
6182                              MultiTemplateParamsArg TemplateParameterLists,
6183                                    Declarator &D) {
6184  Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
6185  ActOnDocumentableDecl(NewDecl);
6186  return NewDecl;
6187}
6188
6189Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
6190                               MultiTemplateParamsArg TemplateParameterLists,
6191                                            Declarator &D) {
6192  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6193  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6194
6195  if (FTI.hasPrototype) {
6196    // FIXME: Diagnose arguments without names in C.
6197  }
6198
6199  Scope *ParentScope = FnBodyScope->getParent();
6200
6201  D.setFunctionDefinitionKind(FDK_Definition);
6202  Decl *DP = HandleDeclarator(ParentScope, D,
6203                              TemplateParameterLists);
6204  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6205}
6206
6207/// \brief Strips various properties off an implicit instantiation
6208/// that has just been explicitly specialized.
6209static void StripImplicitInstantiation(NamedDecl *D) {
6210  D->dropAttrs();
6211
6212  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6213    FD->setInlineSpecified(false);
6214
6215    for (FunctionDecl::param_iterator I = FD->param_begin(),
6216                                      E = FD->param_end();
6217         I != E; ++I)
6218      (*I)->dropAttrs();
6219  }
6220}
6221
6222/// \brief Compute the diagnostic location for an explicit instantiation
6223//  declaration or definition.
6224static SourceLocation DiagLocForExplicitInstantiation(
6225    NamedDecl* D, SourceLocation PointOfInstantiation) {
6226  // Explicit instantiations following a specialization have no effect and
6227  // hence no PointOfInstantiation. In that case, walk decl backwards
6228  // until a valid name loc is found.
6229  SourceLocation PrevDiagLoc = PointOfInstantiation;
6230  for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
6231       Prev = Prev->getPreviousDecl()) {
6232    PrevDiagLoc = Prev->getLocation();
6233  }
6234  assert(PrevDiagLoc.isValid() &&
6235         "Explicit instantiation without point of instantiation?");
6236  return PrevDiagLoc;
6237}
6238
6239/// \brief Diagnose cases where we have an explicit template specialization
6240/// before/after an explicit template instantiation, producing diagnostics
6241/// for those cases where they are required and determining whether the
6242/// new specialization/instantiation will have any effect.
6243///
6244/// \param NewLoc the location of the new explicit specialization or
6245/// instantiation.
6246///
6247/// \param NewTSK the kind of the new explicit specialization or instantiation.
6248///
6249/// \param PrevDecl the previous declaration of the entity.
6250///
6251/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
6252///
6253/// \param PrevPointOfInstantiation if valid, indicates where the previus
6254/// declaration was instantiated (either implicitly or explicitly).
6255///
6256/// \param HasNoEffect will be set to true to indicate that the new
6257/// specialization or instantiation has no effect and should be ignored.
6258///
6259/// \returns true if there was an error that should prevent the introduction of
6260/// the new declaration into the AST, false otherwise.
6261bool
6262Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
6263                                             TemplateSpecializationKind NewTSK,
6264                                             NamedDecl *PrevDecl,
6265                                             TemplateSpecializationKind PrevTSK,
6266                                        SourceLocation PrevPointOfInstantiation,
6267                                             bool &HasNoEffect) {
6268  HasNoEffect = false;
6269
6270  switch (NewTSK) {
6271  case TSK_Undeclared:
6272  case TSK_ImplicitInstantiation:
6273    llvm_unreachable("Don't check implicit instantiations here");
6274
6275  case TSK_ExplicitSpecialization:
6276    switch (PrevTSK) {
6277    case TSK_Undeclared:
6278    case TSK_ExplicitSpecialization:
6279      // Okay, we're just specializing something that is either already
6280      // explicitly specialized or has merely been mentioned without any
6281      // instantiation.
6282      return false;
6283
6284    case TSK_ImplicitInstantiation:
6285      if (PrevPointOfInstantiation.isInvalid()) {
6286        // The declaration itself has not actually been instantiated, so it is
6287        // still okay to specialize it.
6288        StripImplicitInstantiation(PrevDecl);
6289        return false;
6290      }
6291      // Fall through
6292
6293    case TSK_ExplicitInstantiationDeclaration:
6294    case TSK_ExplicitInstantiationDefinition:
6295      assert((PrevTSK == TSK_ImplicitInstantiation ||
6296              PrevPointOfInstantiation.isValid()) &&
6297             "Explicit instantiation without point of instantiation?");
6298
6299      // C++ [temp.expl.spec]p6:
6300      //   If a template, a member template or the member of a class template
6301      //   is explicitly specialized then that specialization shall be declared
6302      //   before the first use of that specialization that would cause an
6303      //   implicit instantiation to take place, in every translation unit in
6304      //   which such a use occurs; no diagnostic is required.
6305      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6306        // Is there any previous explicit specialization declaration?
6307        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
6308          return false;
6309      }
6310
6311      Diag(NewLoc, diag::err_specialization_after_instantiation)
6312        << PrevDecl;
6313      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
6314        << (PrevTSK != TSK_ImplicitInstantiation);
6315
6316      return true;
6317    }
6318
6319  case TSK_ExplicitInstantiationDeclaration:
6320    switch (PrevTSK) {
6321    case TSK_ExplicitInstantiationDeclaration:
6322      // This explicit instantiation declaration is redundant (that's okay).
6323      HasNoEffect = true;
6324      return false;
6325
6326    case TSK_Undeclared:
6327    case TSK_ImplicitInstantiation:
6328      // We're explicitly instantiating something that may have already been
6329      // implicitly instantiated; that's fine.
6330      return false;
6331
6332    case TSK_ExplicitSpecialization:
6333      // C++0x [temp.explicit]p4:
6334      //   For a given set of template parameters, if an explicit instantiation
6335      //   of a template appears after a declaration of an explicit
6336      //   specialization for that template, the explicit instantiation has no
6337      //   effect.
6338      HasNoEffect = true;
6339      return false;
6340
6341    case TSK_ExplicitInstantiationDefinition:
6342      // C++0x [temp.explicit]p10:
6343      //   If an entity is the subject of both an explicit instantiation
6344      //   declaration and an explicit instantiation definition in the same
6345      //   translation unit, the definition shall follow the declaration.
6346      Diag(NewLoc,
6347           diag::err_explicit_instantiation_declaration_after_definition);
6348
6349      // Explicit instantiations following a specialization have no effect and
6350      // hence no PrevPointOfInstantiation. In that case, walk decl backwards
6351      // until a valid name loc is found.
6352      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6353           diag::note_explicit_instantiation_definition_here);
6354      HasNoEffect = true;
6355      return false;
6356    }
6357
6358  case TSK_ExplicitInstantiationDefinition:
6359    switch (PrevTSK) {
6360    case TSK_Undeclared:
6361    case TSK_ImplicitInstantiation:
6362      // We're explicitly instantiating something that may have already been
6363      // implicitly instantiated; that's fine.
6364      return false;
6365
6366    case TSK_ExplicitSpecialization:
6367      // C++ DR 259, C++0x [temp.explicit]p4:
6368      //   For a given set of template parameters, if an explicit
6369      //   instantiation of a template appears after a declaration of
6370      //   an explicit specialization for that template, the explicit
6371      //   instantiation has no effect.
6372      //
6373      // In C++98/03 mode, we only give an extension warning here, because it
6374      // is not harmful to try to explicitly instantiate something that
6375      // has been explicitly specialized.
6376      Diag(NewLoc, getLangOpts().CPlusPlus11 ?
6377           diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
6378           diag::ext_explicit_instantiation_after_specialization)
6379        << PrevDecl;
6380      Diag(PrevDecl->getLocation(),
6381           diag::note_previous_template_specialization);
6382      HasNoEffect = true;
6383      return false;
6384
6385    case TSK_ExplicitInstantiationDeclaration:
6386      // We're explicity instantiating a definition for something for which we
6387      // were previously asked to suppress instantiations. That's fine.
6388
6389      // C++0x [temp.explicit]p4:
6390      //   For a given set of template parameters, if an explicit instantiation
6391      //   of a template appears after a declaration of an explicit
6392      //   specialization for that template, the explicit instantiation has no
6393      //   effect.
6394      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6395        // Is there any previous explicit specialization declaration?
6396        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
6397          HasNoEffect = true;
6398          break;
6399        }
6400      }
6401
6402      return false;
6403
6404    case TSK_ExplicitInstantiationDefinition:
6405      // C++0x [temp.spec]p5:
6406      //   For a given template and a given set of template-arguments,
6407      //     - an explicit instantiation definition shall appear at most once
6408      //       in a program,
6409      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
6410        << PrevDecl;
6411      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6412           diag::note_previous_explicit_instantiation);
6413      HasNoEffect = true;
6414      return false;
6415    }
6416  }
6417
6418  llvm_unreachable("Missing specialization/instantiation case?");
6419}
6420
6421/// \brief Perform semantic analysis for the given dependent function
6422/// template specialization.
6423///
6424/// The only possible way to get a dependent function template specialization
6425/// is with a friend declaration, like so:
6426///
6427/// \code
6428///   template \<class T> void foo(T);
6429///   template \<class T> class A {
6430///     friend void foo<>(T);
6431///   };
6432/// \endcode
6433///
6434/// There really isn't any useful analysis we can do here, so we
6435/// just store the information.
6436bool
6437Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
6438                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
6439                                                   LookupResult &Previous) {
6440  // Remove anything from Previous that isn't a function template in
6441  // the correct context.
6442  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6443  LookupResult::Filter F = Previous.makeFilter();
6444  while (F.hasNext()) {
6445    NamedDecl *D = F.next()->getUnderlyingDecl();
6446    if (!isa<FunctionTemplateDecl>(D) ||
6447        !FDLookupContext->InEnclosingNamespaceSetOf(
6448                              D->getDeclContext()->getRedeclContext()))
6449      F.erase();
6450  }
6451  F.done();
6452
6453  // Should this be diagnosed here?
6454  if (Previous.empty()) return true;
6455
6456  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
6457                                         ExplicitTemplateArgs);
6458  return false;
6459}
6460
6461/// \brief Perform semantic analysis for the given function template
6462/// specialization.
6463///
6464/// This routine performs all of the semantic analysis required for an
6465/// explicit function template specialization. On successful completion,
6466/// the function declaration \p FD will become a function template
6467/// specialization.
6468///
6469/// \param FD the function declaration, which will be updated to become a
6470/// function template specialization.
6471///
6472/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
6473/// if any. Note that this may be valid info even when 0 arguments are
6474/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
6475/// as it anyway contains info on the angle brackets locations.
6476///
6477/// \param Previous the set of declarations that may be specialized by
6478/// this function specialization.
6479bool Sema::CheckFunctionTemplateSpecialization(
6480    FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
6481    LookupResult &Previous) {
6482  // The set of function template specializations that could match this
6483  // explicit function template specialization.
6484  UnresolvedSet<8> Candidates;
6485  TemplateSpecCandidateSet FailedCandidates(FD->getLocation());
6486
6487  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6488  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6489         I != E; ++I) {
6490    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
6491    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
6492      // Only consider templates found within the same semantic lookup scope as
6493      // FD.
6494      if (!FDLookupContext->InEnclosingNamespaceSetOf(
6495                                Ovl->getDeclContext()->getRedeclContext()))
6496        continue;
6497
6498      // When matching a constexpr member function template specialization
6499      // against the primary template, we don't yet know whether the
6500      // specialization has an implicit 'const' (because we don't know whether
6501      // it will be a static member function until we know which template it
6502      // specializes), so adjust it now assuming it specializes this template.
6503      QualType FT = FD->getType();
6504      const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
6505      FunctionDecl *TmplFD = FunTmpl->getTemplatedDecl();
6506      if (FD->isConstexpr()) {
6507        CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(TmplFD);
6508        if (OldMD && OldMD->isConst()) {
6509          FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6510          EPI.TypeQuals |= Qualifiers::Const;
6511          FT = Context.getFunctionType(FPT->getResultType(), FPT->getArgTypes(),
6512                                       EPI);
6513        }
6514      }
6515
6516      // Ignore differences in calling convention and noreturn until decl
6517      // merging.
6518      const FunctionProtoType *TmplFT =
6519          TmplFD->getType()->castAs<FunctionProtoType>();
6520      if (FPT->getCallConv() != TmplFT->getCallConv() ||
6521          FPT->getNoReturnAttr() != TmplFT->getNoReturnAttr()) {
6522        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6523        EPI.ExtInfo = EPI.ExtInfo.withCallingConv(TmplFT->getCallConv());
6524        EPI.ExtInfo = EPI.ExtInfo.withNoReturn(TmplFT->getNoReturnAttr());
6525        FT = Context.getFunctionType(FPT->getResultType(), FPT->getArgTypes(),
6526                                     EPI);
6527      }
6528
6529      // C++ [temp.expl.spec]p11:
6530      //   A trailing template-argument can be left unspecified in the
6531      //   template-id naming an explicit function template specialization
6532      //   provided it can be deduced from the function argument type.
6533      // Perform template argument deduction to determine whether we may be
6534      // specializing this template.
6535      // FIXME: It is somewhat wasteful to build
6536      TemplateDeductionInfo Info(FailedCandidates.getLocation());
6537      FunctionDecl *Specialization = 0;
6538      if (TemplateDeductionResult TDK
6539            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, FT,
6540                                      Specialization, Info)) {
6541        // Template argument deduction failed; record why it failed, so
6542        // that we can provide nifty diagnostics.
6543        FailedCandidates.addCandidate()
6544            .set(FunTmpl->getTemplatedDecl(),
6545                 MakeDeductionFailureInfo(Context, TDK, Info));
6546        (void)TDK;
6547        continue;
6548      }
6549
6550      // Record this candidate.
6551      Candidates.addDecl(Specialization, I.getAccess());
6552    }
6553  }
6554
6555  // Find the most specialized function template.
6556  UnresolvedSetIterator Result = getMostSpecialized(
6557      Candidates.begin(), Candidates.end(), FailedCandidates,
6558      FD->getLocation(),
6559      PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
6560      PDiag(diag::err_function_template_spec_ambiguous)
6561          << FD->getDeclName() << (ExplicitTemplateArgs != 0),
6562      PDiag(diag::note_function_template_spec_matched));
6563
6564  if (Result == Candidates.end())
6565    return true;
6566
6567  // Ignore access information;  it doesn't figure into redeclaration checking.
6568  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6569
6570  FunctionTemplateSpecializationInfo *SpecInfo
6571    = Specialization->getTemplateSpecializationInfo();
6572  assert(SpecInfo && "Function template specialization info missing?");
6573
6574  // Note: do not overwrite location info if previous template
6575  // specialization kind was explicit.
6576  TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
6577  if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
6578    Specialization->setLocation(FD->getLocation());
6579    // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
6580    // function can differ from the template declaration with respect to
6581    // the constexpr specifier.
6582    Specialization->setConstexpr(FD->isConstexpr());
6583  }
6584
6585  // FIXME: Check if the prior specialization has a point of instantiation.
6586  // If so, we have run afoul of .
6587
6588  // If this is a friend declaration, then we're not really declaring
6589  // an explicit specialization.
6590  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
6591
6592  // Check the scope of this explicit specialization.
6593  if (!isFriend &&
6594      CheckTemplateSpecializationScope(*this,
6595                                       Specialization->getPrimaryTemplate(),
6596                                       Specialization, FD->getLocation(),
6597                                       false))
6598    return true;
6599
6600  // C++ [temp.expl.spec]p6:
6601  //   If a template, a member template or the member of a class template is
6602  //   explicitly specialized then that specialization shall be declared
6603  //   before the first use of that specialization that would cause an implicit
6604  //   instantiation to take place, in every translation unit in which such a
6605  //   use occurs; no diagnostic is required.
6606  bool HasNoEffect = false;
6607  if (!isFriend &&
6608      CheckSpecializationInstantiationRedecl(FD->getLocation(),
6609                                             TSK_ExplicitSpecialization,
6610                                             Specialization,
6611                                   SpecInfo->getTemplateSpecializationKind(),
6612                                         SpecInfo->getPointOfInstantiation(),
6613                                             HasNoEffect))
6614    return true;
6615
6616  // Mark the prior declaration as an explicit specialization, so that later
6617  // clients know that this is an explicit specialization.
6618  if (!isFriend) {
6619    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
6620    MarkUnusedFileScopedDecl(Specialization);
6621  }
6622
6623  // Turn the given function declaration into a function template
6624  // specialization, with the template arguments from the previous
6625  // specialization.
6626  // Take copies of (semantic and syntactic) template argument lists.
6627  const TemplateArgumentList* TemplArgs = new (Context)
6628    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
6629  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
6630                                        TemplArgs, /*InsertPos=*/0,
6631                                    SpecInfo->getTemplateSpecializationKind(),
6632                                        ExplicitTemplateArgs);
6633
6634  // The "previous declaration" for this function template specialization is
6635  // the prior function template specialization.
6636  Previous.clear();
6637  Previous.addDecl(Specialization);
6638  return false;
6639}
6640
6641/// \brief Perform semantic analysis for the given non-template member
6642/// specialization.
6643///
6644/// This routine performs all of the semantic analysis required for an
6645/// explicit member function specialization. On successful completion,
6646/// the function declaration \p FD will become a member function
6647/// specialization.
6648///
6649/// \param Member the member declaration, which will be updated to become a
6650/// specialization.
6651///
6652/// \param Previous the set of declarations, one of which may be specialized
6653/// by this function specialization;  the set will be modified to contain the
6654/// redeclared member.
6655bool
6656Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
6657  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
6658
6659  // Try to find the member we are instantiating.
6660  NamedDecl *Instantiation = 0;
6661  NamedDecl *InstantiatedFrom = 0;
6662  MemberSpecializationInfo *MSInfo = 0;
6663
6664  if (Previous.empty()) {
6665    // Nowhere to look anyway.
6666  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
6667    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6668           I != E; ++I) {
6669      NamedDecl *D = (*I)->getUnderlyingDecl();
6670      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
6671        if (Context.hasSameType(Function->getType(), Method->getType())) {
6672          Instantiation = Method;
6673          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
6674          MSInfo = Method->getMemberSpecializationInfo();
6675          break;
6676        }
6677      }
6678    }
6679  } else if (isa<VarDecl>(Member)) {
6680    VarDecl *PrevVar;
6681    if (Previous.isSingleResult() &&
6682        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
6683      if (PrevVar->isStaticDataMember()) {
6684        Instantiation = PrevVar;
6685        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
6686        MSInfo = PrevVar->getMemberSpecializationInfo();
6687      }
6688  } else if (isa<RecordDecl>(Member)) {
6689    CXXRecordDecl *PrevRecord;
6690    if (Previous.isSingleResult() &&
6691        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
6692      Instantiation = PrevRecord;
6693      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
6694      MSInfo = PrevRecord->getMemberSpecializationInfo();
6695    }
6696  } else if (isa<EnumDecl>(Member)) {
6697    EnumDecl *PrevEnum;
6698    if (Previous.isSingleResult() &&
6699        (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
6700      Instantiation = PrevEnum;
6701      InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
6702      MSInfo = PrevEnum->getMemberSpecializationInfo();
6703    }
6704  }
6705
6706  if (!Instantiation) {
6707    // There is no previous declaration that matches. Since member
6708    // specializations are always out-of-line, the caller will complain about
6709    // this mismatch later.
6710    return false;
6711  }
6712
6713  // If this is a friend, just bail out here before we start turning
6714  // things into explicit specializations.
6715  if (Member->getFriendObjectKind() != Decl::FOK_None) {
6716    // Preserve instantiation information.
6717    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
6718      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
6719                                      cast<CXXMethodDecl>(InstantiatedFrom),
6720        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
6721    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
6722      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6723                                      cast<CXXRecordDecl>(InstantiatedFrom),
6724        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
6725    }
6726
6727    Previous.clear();
6728    Previous.addDecl(Instantiation);
6729    return false;
6730  }
6731
6732  // Make sure that this is a specialization of a member.
6733  if (!InstantiatedFrom) {
6734    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
6735      << Member;
6736    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
6737    return true;
6738  }
6739
6740  // C++ [temp.expl.spec]p6:
6741  //   If a template, a member template or the member of a class template is
6742  //   explicitly specialized then that specialization shall be declared
6743  //   before the first use of that specialization that would cause an implicit
6744  //   instantiation to take place, in every translation unit in which such a
6745  //   use occurs; no diagnostic is required.
6746  assert(MSInfo && "Member specialization info missing?");
6747
6748  bool HasNoEffect = false;
6749  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
6750                                             TSK_ExplicitSpecialization,
6751                                             Instantiation,
6752                                     MSInfo->getTemplateSpecializationKind(),
6753                                           MSInfo->getPointOfInstantiation(),
6754                                             HasNoEffect))
6755    return true;
6756
6757  // Check the scope of this explicit specialization.
6758  if (CheckTemplateSpecializationScope(*this,
6759                                       InstantiatedFrom,
6760                                       Instantiation, Member->getLocation(),
6761                                       false))
6762    return true;
6763
6764  // Note that this is an explicit instantiation of a member.
6765  // the original declaration to note that it is an explicit specialization
6766  // (if it was previously an implicit instantiation). This latter step
6767  // makes bookkeeping easier.
6768  if (isa<FunctionDecl>(Member)) {
6769    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
6770    if (InstantiationFunction->getTemplateSpecializationKind() ==
6771          TSK_ImplicitInstantiation) {
6772      InstantiationFunction->setTemplateSpecializationKind(
6773                                                  TSK_ExplicitSpecialization);
6774      InstantiationFunction->setLocation(Member->getLocation());
6775    }
6776
6777    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
6778                                        cast<CXXMethodDecl>(InstantiatedFrom),
6779                                                  TSK_ExplicitSpecialization);
6780    MarkUnusedFileScopedDecl(InstantiationFunction);
6781  } else if (isa<VarDecl>(Member)) {
6782    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
6783    if (InstantiationVar->getTemplateSpecializationKind() ==
6784          TSK_ImplicitInstantiation) {
6785      InstantiationVar->setTemplateSpecializationKind(
6786                                                  TSK_ExplicitSpecialization);
6787      InstantiationVar->setLocation(Member->getLocation());
6788    }
6789
6790    cast<VarDecl>(Member)->setInstantiationOfStaticDataMember(
6791        cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
6792    MarkUnusedFileScopedDecl(InstantiationVar);
6793  } else if (isa<CXXRecordDecl>(Member)) {
6794    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
6795    if (InstantiationClass->getTemplateSpecializationKind() ==
6796          TSK_ImplicitInstantiation) {
6797      InstantiationClass->setTemplateSpecializationKind(
6798                                                   TSK_ExplicitSpecialization);
6799      InstantiationClass->setLocation(Member->getLocation());
6800    }
6801
6802    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6803                                        cast<CXXRecordDecl>(InstantiatedFrom),
6804                                                   TSK_ExplicitSpecialization);
6805  } else {
6806    assert(isa<EnumDecl>(Member) && "Only member enums remain");
6807    EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
6808    if (InstantiationEnum->getTemplateSpecializationKind() ==
6809          TSK_ImplicitInstantiation) {
6810      InstantiationEnum->setTemplateSpecializationKind(
6811                                                   TSK_ExplicitSpecialization);
6812      InstantiationEnum->setLocation(Member->getLocation());
6813    }
6814
6815    cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
6816        cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
6817  }
6818
6819  // Save the caller the trouble of having to figure out which declaration
6820  // this specialization matches.
6821  Previous.clear();
6822  Previous.addDecl(Instantiation);
6823  return false;
6824}
6825
6826/// \brief Check the scope of an explicit instantiation.
6827///
6828/// \returns true if a serious error occurs, false otherwise.
6829static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
6830                                            SourceLocation InstLoc,
6831                                            bool WasQualifiedName) {
6832  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
6833  DeclContext *CurContext = S.CurContext->getRedeclContext();
6834
6835  if (CurContext->isRecord()) {
6836    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
6837      << D;
6838    return true;
6839  }
6840
6841  // C++11 [temp.explicit]p3:
6842  //   An explicit instantiation shall appear in an enclosing namespace of its
6843  //   template. If the name declared in the explicit instantiation is an
6844  //   unqualified name, the explicit instantiation shall appear in the
6845  //   namespace where its template is declared or, if that namespace is inline
6846  //   (7.3.1), any namespace from its enclosing namespace set.
6847  //
6848  // This is DR275, which we do not retroactively apply to C++98/03.
6849  if (WasQualifiedName) {
6850    if (CurContext->Encloses(OrigContext))
6851      return false;
6852  } else {
6853    if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
6854      return false;
6855  }
6856
6857  if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
6858    if (WasQualifiedName)
6859      S.Diag(InstLoc,
6860             S.getLangOpts().CPlusPlus11?
6861               diag::err_explicit_instantiation_out_of_scope :
6862               diag::warn_explicit_instantiation_out_of_scope_0x)
6863        << D << NS;
6864    else
6865      S.Diag(InstLoc,
6866             S.getLangOpts().CPlusPlus11?
6867               diag::err_explicit_instantiation_unqualified_wrong_namespace :
6868               diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
6869        << D << NS;
6870  } else
6871    S.Diag(InstLoc,
6872           S.getLangOpts().CPlusPlus11?
6873             diag::err_explicit_instantiation_must_be_global :
6874             diag::warn_explicit_instantiation_must_be_global_0x)
6875      << D;
6876  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
6877  return false;
6878}
6879
6880/// \brief Determine whether the given scope specifier has a template-id in it.
6881static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
6882  if (!SS.isSet())
6883    return false;
6884
6885  // C++11 [temp.explicit]p3:
6886  //   If the explicit instantiation is for a member function, a member class
6887  //   or a static data member of a class template specialization, the name of
6888  //   the class template specialization in the qualified-id for the member
6889  //   name shall be a simple-template-id.
6890  //
6891  // C++98 has the same restriction, just worded differently.
6892  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
6893       NNS; NNS = NNS->getPrefix())
6894    if (const Type *T = NNS->getAsType())
6895      if (isa<TemplateSpecializationType>(T))
6896        return true;
6897
6898  return false;
6899}
6900
6901// Explicit instantiation of a class template specialization
6902DeclResult
6903Sema::ActOnExplicitInstantiation(Scope *S,
6904                                 SourceLocation ExternLoc,
6905                                 SourceLocation TemplateLoc,
6906                                 unsigned TagSpec,
6907                                 SourceLocation KWLoc,
6908                                 const CXXScopeSpec &SS,
6909                                 TemplateTy TemplateD,
6910                                 SourceLocation TemplateNameLoc,
6911                                 SourceLocation LAngleLoc,
6912                                 ASTTemplateArgsPtr TemplateArgsIn,
6913                                 SourceLocation RAngleLoc,
6914                                 AttributeList *Attr) {
6915  // Find the class template we're specializing
6916  TemplateName Name = TemplateD.get();
6917  TemplateDecl *TD = Name.getAsTemplateDecl();
6918  // Check that the specialization uses the same tag kind as the
6919  // original template.
6920  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6921  assert(Kind != TTK_Enum &&
6922         "Invalid enum tag in class template explicit instantiation!");
6923
6924  if (isa<TypeAliasTemplateDecl>(TD)) {
6925      Diag(KWLoc, diag::err_tag_reference_non_tag) << Kind;
6926      Diag(TD->getTemplatedDecl()->getLocation(),
6927           diag::note_previous_use);
6928    return true;
6929  }
6930
6931  ClassTemplateDecl *ClassTemplate = cast<ClassTemplateDecl>(TD);
6932
6933  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
6934                                    Kind, /*isDefinition*/false, KWLoc,
6935                                    *ClassTemplate->getIdentifier())) {
6936    Diag(KWLoc, diag::err_use_with_wrong_tag)
6937      << ClassTemplate
6938      << FixItHint::CreateReplacement(KWLoc,
6939                            ClassTemplate->getTemplatedDecl()->getKindName());
6940    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
6941         diag::note_previous_use);
6942    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
6943  }
6944
6945  // C++0x [temp.explicit]p2:
6946  //   There are two forms of explicit instantiation: an explicit instantiation
6947  //   definition and an explicit instantiation declaration. An explicit
6948  //   instantiation declaration begins with the extern keyword. [...]
6949  TemplateSpecializationKind TSK
6950    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6951                           : TSK_ExplicitInstantiationDeclaration;
6952
6953  // Translate the parser's template argument list in our AST format.
6954  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6955  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6956
6957  // Check that the template argument list is well-formed for this
6958  // template.
6959  SmallVector<TemplateArgument, 4> Converted;
6960  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
6961                                TemplateArgs, false, Converted))
6962    return true;
6963
6964  // Find the class template specialization declaration that
6965  // corresponds to these arguments.
6966  void *InsertPos = 0;
6967  ClassTemplateSpecializationDecl *PrevDecl
6968    = ClassTemplate->findSpecialization(Converted.data(),
6969                                        Converted.size(), InsertPos);
6970
6971  TemplateSpecializationKind PrevDecl_TSK
6972    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
6973
6974  // C++0x [temp.explicit]p2:
6975  //   [...] An explicit instantiation shall appear in an enclosing
6976  //   namespace of its template. [...]
6977  //
6978  // This is C++ DR 275.
6979  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
6980                                      SS.isSet()))
6981    return true;
6982
6983  ClassTemplateSpecializationDecl *Specialization = 0;
6984
6985  bool HasNoEffect = false;
6986  if (PrevDecl) {
6987    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
6988                                               PrevDecl, PrevDecl_TSK,
6989                                            PrevDecl->getPointOfInstantiation(),
6990                                               HasNoEffect))
6991      return PrevDecl;
6992
6993    // Even though HasNoEffect == true means that this explicit instantiation
6994    // has no effect on semantics, we go on to put its syntax in the AST.
6995
6996    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
6997        PrevDecl_TSK == TSK_Undeclared) {
6998      // Since the only prior class template specialization with these
6999      // arguments was referenced but not declared, reuse that
7000      // declaration node as our own, updating the source location
7001      // for the template name to reflect our new declaration.
7002      // (Other source locations will be updated later.)
7003      Specialization = PrevDecl;
7004      Specialization->setLocation(TemplateNameLoc);
7005      PrevDecl = 0;
7006    }
7007  }
7008
7009  if (!Specialization) {
7010    // Create a new class template specialization declaration node for
7011    // this explicit specialization.
7012    Specialization
7013      = ClassTemplateSpecializationDecl::Create(Context, Kind,
7014                                             ClassTemplate->getDeclContext(),
7015                                                KWLoc, TemplateNameLoc,
7016                                                ClassTemplate,
7017                                                Converted.data(),
7018                                                Converted.size(),
7019                                                PrevDecl);
7020    SetNestedNameSpecifier(Specialization, SS);
7021
7022    if (!HasNoEffect && !PrevDecl) {
7023      // Insert the new specialization.
7024      ClassTemplate->AddSpecialization(Specialization, InsertPos);
7025    }
7026  }
7027
7028  // Build the fully-sugared type for this explicit instantiation as
7029  // the user wrote in the explicit instantiation itself. This means
7030  // that we'll pretty-print the type retrieved from the
7031  // specialization's declaration the way that the user actually wrote
7032  // the explicit instantiation, rather than formatting the name based
7033  // on the "canonical" representation used to store the template
7034  // arguments in the specialization.
7035  TypeSourceInfo *WrittenTy
7036    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
7037                                                TemplateArgs,
7038                                  Context.getTypeDeclType(Specialization));
7039  Specialization->setTypeAsWritten(WrittenTy);
7040
7041  // Set source locations for keywords.
7042  Specialization->setExternLoc(ExternLoc);
7043  Specialization->setTemplateKeywordLoc(TemplateLoc);
7044  Specialization->setRBraceLoc(SourceLocation());
7045
7046  if (Attr)
7047    ProcessDeclAttributeList(S, Specialization, Attr);
7048
7049  // Add the explicit instantiation into its lexical context. However,
7050  // since explicit instantiations are never found by name lookup, we
7051  // just put it into the declaration context directly.
7052  Specialization->setLexicalDeclContext(CurContext);
7053  CurContext->addDecl(Specialization);
7054
7055  // Syntax is now OK, so return if it has no other effect on semantics.
7056  if (HasNoEffect) {
7057    // Set the template specialization kind.
7058    Specialization->setTemplateSpecializationKind(TSK);
7059    return Specialization;
7060  }
7061
7062  // C++ [temp.explicit]p3:
7063  //   A definition of a class template or class member template
7064  //   shall be in scope at the point of the explicit instantiation of
7065  //   the class template or class member template.
7066  //
7067  // This check comes when we actually try to perform the
7068  // instantiation.
7069  ClassTemplateSpecializationDecl *Def
7070    = cast_or_null<ClassTemplateSpecializationDecl>(
7071                                              Specialization->getDefinition());
7072  if (!Def)
7073    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
7074  else if (TSK == TSK_ExplicitInstantiationDefinition) {
7075    MarkVTableUsed(TemplateNameLoc, Specialization, true);
7076    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
7077  }
7078
7079  // Instantiate the members of this class template specialization.
7080  Def = cast_or_null<ClassTemplateSpecializationDecl>(
7081                                       Specialization->getDefinition());
7082  if (Def) {
7083    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
7084
7085    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
7086    // TSK_ExplicitInstantiationDefinition
7087    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
7088        TSK == TSK_ExplicitInstantiationDefinition)
7089      Def->setTemplateSpecializationKind(TSK);
7090
7091    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
7092  }
7093
7094  // Set the template specialization kind.
7095  Specialization->setTemplateSpecializationKind(TSK);
7096  return Specialization;
7097}
7098
7099// Explicit instantiation of a member class of a class template.
7100DeclResult
7101Sema::ActOnExplicitInstantiation(Scope *S,
7102                                 SourceLocation ExternLoc,
7103                                 SourceLocation TemplateLoc,
7104                                 unsigned TagSpec,
7105                                 SourceLocation KWLoc,
7106                                 CXXScopeSpec &SS,
7107                                 IdentifierInfo *Name,
7108                                 SourceLocation NameLoc,
7109                                 AttributeList *Attr) {
7110
7111  bool Owned = false;
7112  bool IsDependent = false;
7113  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
7114                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
7115                        /*ModulePrivateLoc=*/SourceLocation(),
7116                        MultiTemplateParamsArg(), Owned, IsDependent,
7117                        SourceLocation(), false, TypeResult());
7118  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
7119
7120  if (!TagD)
7121    return true;
7122
7123  TagDecl *Tag = cast<TagDecl>(TagD);
7124  assert(!Tag->isEnum() && "shouldn't see enumerations here");
7125
7126  if (Tag->isInvalidDecl())
7127    return true;
7128
7129  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
7130  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
7131  if (!Pattern) {
7132    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
7133      << Context.getTypeDeclType(Record);
7134    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
7135    return true;
7136  }
7137
7138  // C++0x [temp.explicit]p2:
7139  //   If the explicit instantiation is for a class or member class, the
7140  //   elaborated-type-specifier in the declaration shall include a
7141  //   simple-template-id.
7142  //
7143  // C++98 has the same restriction, just worded differently.
7144  if (!ScopeSpecifierHasTemplateId(SS))
7145    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
7146      << Record << SS.getRange();
7147
7148  // C++0x [temp.explicit]p2:
7149  //   There are two forms of explicit instantiation: an explicit instantiation
7150  //   definition and an explicit instantiation declaration. An explicit
7151  //   instantiation declaration begins with the extern keyword. [...]
7152  TemplateSpecializationKind TSK
7153    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7154                           : TSK_ExplicitInstantiationDeclaration;
7155
7156  // C++0x [temp.explicit]p2:
7157  //   [...] An explicit instantiation shall appear in an enclosing
7158  //   namespace of its template. [...]
7159  //
7160  // This is C++ DR 275.
7161  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
7162
7163  // Verify that it is okay to explicitly instantiate here.
7164  CXXRecordDecl *PrevDecl
7165    = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
7166  if (!PrevDecl && Record->getDefinition())
7167    PrevDecl = Record;
7168  if (PrevDecl) {
7169    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
7170    bool HasNoEffect = false;
7171    assert(MSInfo && "No member specialization information?");
7172    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
7173                                               PrevDecl,
7174                                        MSInfo->getTemplateSpecializationKind(),
7175                                             MSInfo->getPointOfInstantiation(),
7176                                               HasNoEffect))
7177      return true;
7178    if (HasNoEffect)
7179      return TagD;
7180  }
7181
7182  CXXRecordDecl *RecordDef
7183    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7184  if (!RecordDef) {
7185    // C++ [temp.explicit]p3:
7186    //   A definition of a member class of a class template shall be in scope
7187    //   at the point of an explicit instantiation of the member class.
7188    CXXRecordDecl *Def
7189      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
7190    if (!Def) {
7191      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
7192        << 0 << Record->getDeclName() << Record->getDeclContext();
7193      Diag(Pattern->getLocation(), diag::note_forward_declaration)
7194        << Pattern;
7195      return true;
7196    } else {
7197      if (InstantiateClass(NameLoc, Record, Def,
7198                           getTemplateInstantiationArgs(Record),
7199                           TSK))
7200        return true;
7201
7202      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7203      if (!RecordDef)
7204        return true;
7205    }
7206  }
7207
7208  // Instantiate all of the members of the class.
7209  InstantiateClassMembers(NameLoc, RecordDef,
7210                          getTemplateInstantiationArgs(Record), TSK);
7211
7212  if (TSK == TSK_ExplicitInstantiationDefinition)
7213    MarkVTableUsed(NameLoc, RecordDef, true);
7214
7215  // FIXME: We don't have any representation for explicit instantiations of
7216  // member classes. Such a representation is not needed for compilation, but it
7217  // should be available for clients that want to see all of the declarations in
7218  // the source code.
7219  return TagD;
7220}
7221
7222DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
7223                                            SourceLocation ExternLoc,
7224                                            SourceLocation TemplateLoc,
7225                                            Declarator &D) {
7226  // Explicit instantiations always require a name.
7227  // TODO: check if/when DNInfo should replace Name.
7228  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7229  DeclarationName Name = NameInfo.getName();
7230  if (!Name) {
7231    if (!D.isInvalidType())
7232      Diag(D.getDeclSpec().getLocStart(),
7233           diag::err_explicit_instantiation_requires_name)
7234        << D.getDeclSpec().getSourceRange()
7235        << D.getSourceRange();
7236
7237    return true;
7238  }
7239
7240  // The scope passed in may not be a decl scope.  Zip up the scope tree until
7241  // we find one that is.
7242  while ((S->getFlags() & Scope::DeclScope) == 0 ||
7243         (S->getFlags() & Scope::TemplateParamScope) != 0)
7244    S = S->getParent();
7245
7246  // Determine the type of the declaration.
7247  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
7248  QualType R = T->getType();
7249  if (R.isNull())
7250    return true;
7251
7252  // C++ [dcl.stc]p1:
7253  //   A storage-class-specifier shall not be specified in [...] an explicit
7254  //   instantiation (14.7.2) directive.
7255  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
7256    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
7257      << Name;
7258    return true;
7259  } else if (D.getDeclSpec().getStorageClassSpec()
7260                                                != DeclSpec::SCS_unspecified) {
7261    // Complain about then remove the storage class specifier.
7262    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
7263      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7264
7265    D.getMutableDeclSpec().ClearStorageClassSpecs();
7266  }
7267
7268  // C++0x [temp.explicit]p1:
7269  //   [...] An explicit instantiation of a function template shall not use the
7270  //   inline or constexpr specifiers.
7271  // Presumably, this also applies to member functions of class templates as
7272  // well.
7273  if (D.getDeclSpec().isInlineSpecified())
7274    Diag(D.getDeclSpec().getInlineSpecLoc(),
7275         getLangOpts().CPlusPlus11 ?
7276           diag::err_explicit_instantiation_inline :
7277           diag::warn_explicit_instantiation_inline_0x)
7278      << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7279  if (D.getDeclSpec().isConstexprSpecified() && R->isFunctionType())
7280    // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
7281    // not already specified.
7282    Diag(D.getDeclSpec().getConstexprSpecLoc(),
7283         diag::err_explicit_instantiation_constexpr);
7284
7285  // C++0x [temp.explicit]p2:
7286  //   There are two forms of explicit instantiation: an explicit instantiation
7287  //   definition and an explicit instantiation declaration. An explicit
7288  //   instantiation declaration begins with the extern keyword. [...]
7289  TemplateSpecializationKind TSK
7290    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7291                           : TSK_ExplicitInstantiationDeclaration;
7292
7293  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
7294  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
7295
7296  if (!R->isFunctionType()) {
7297    // C++ [temp.explicit]p1:
7298    //   A [...] static data member of a class template can be explicitly
7299    //   instantiated from the member definition associated with its class
7300    //   template.
7301    // C++1y [temp.explicit]p1:
7302    //   A [...] variable [...] template specialization can be explicitly
7303    //   instantiated from its template.
7304    if (Previous.isAmbiguous())
7305      return true;
7306
7307    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
7308    VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
7309
7310    if (!PrevTemplate) {
7311      if (!Prev || !Prev->isStaticDataMember()) {
7312        // We expect to see a data data member here.
7313        Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
7314            << Name;
7315        for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7316             P != PEnd; ++P)
7317          Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
7318        return true;
7319      }
7320
7321      if (!Prev->getInstantiatedFromStaticDataMember()) {
7322        // FIXME: Check for explicit specialization?
7323        Diag(D.getIdentifierLoc(),
7324             diag::err_explicit_instantiation_data_member_not_instantiated)
7325            << Prev;
7326        Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
7327        // FIXME: Can we provide a note showing where this was declared?
7328        return true;
7329      }
7330    } else {
7331      // Explicitly instantiate a variable template.
7332
7333      // C++1y [dcl.spec.auto]p6:
7334      //   ... A program that uses auto or decltype(auto) in a context not
7335      //   explicitly allowed in this section is ill-formed.
7336      //
7337      // This includes auto-typed variable template instantiations.
7338      if (R->isUndeducedType()) {
7339        Diag(T->getTypeLoc().getLocStart(),
7340             diag::err_auto_not_allowed_var_inst);
7341        return true;
7342      }
7343
7344      if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
7345        // C++1y [temp.explicit]p3:
7346        //   If the explicit instantiation is for a variable, the unqualified-id
7347        //   in the declaration shall be a template-id.
7348        Diag(D.getIdentifierLoc(),
7349             diag::err_explicit_instantiation_without_template_id)
7350          << PrevTemplate;
7351        Diag(PrevTemplate->getLocation(),
7352             diag::note_explicit_instantiation_here);
7353        return true;
7354      }
7355
7356      // Translate the parser's template argument list into our AST format.
7357      TemplateArgumentListInfo TemplateArgs;
7358      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
7359      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
7360      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
7361      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7362                                         TemplateId->NumArgs);
7363      translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
7364
7365      DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
7366                                          D.getIdentifierLoc(), TemplateArgs);
7367      if (Res.isInvalid())
7368        return true;
7369
7370      // Ignore access control bits, we don't need them for redeclaration
7371      // checking.
7372      Prev = cast<VarDecl>(Res.get());
7373    }
7374
7375    // C++0x [temp.explicit]p2:
7376    //   If the explicit instantiation is for a member function, a member class
7377    //   or a static data member of a class template specialization, the name of
7378    //   the class template specialization in the qualified-id for the member
7379    //   name shall be a simple-template-id.
7380    //
7381    // C++98 has the same restriction, just worded differently.
7382    //
7383    // This does not apply to variable template specializations, where the
7384    // template-id is in the unqualified-id instead.
7385    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
7386      Diag(D.getIdentifierLoc(),
7387           diag::ext_explicit_instantiation_without_qualified_id)
7388        << Prev << D.getCXXScopeSpec().getRange();
7389
7390    // Check the scope of this explicit instantiation.
7391    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
7392
7393    // Verify that it is okay to explicitly instantiate here.
7394    TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
7395    SourceLocation POI = Prev->getPointOfInstantiation();
7396    bool HasNoEffect = false;
7397    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
7398                                               PrevTSK, POI, HasNoEffect))
7399      return true;
7400
7401    if (!HasNoEffect) {
7402      // Instantiate static data member or variable template.
7403
7404      Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
7405      if (PrevTemplate) {
7406        // Merge attributes.
7407        if (AttributeList *Attr = D.getDeclSpec().getAttributes().getList())
7408          ProcessDeclAttributeList(S, Prev, Attr);
7409      }
7410      if (TSK == TSK_ExplicitInstantiationDefinition)
7411        InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
7412    }
7413
7414    // Check the new variable specialization against the parsed input.
7415    if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
7416      Diag(T->getTypeLoc().getLocStart(),
7417           diag::err_invalid_var_template_spec_type)
7418          << 0 << PrevTemplate << R << Prev->getType();
7419      Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
7420          << 2 << PrevTemplate->getDeclName();
7421      return true;
7422    }
7423
7424    // FIXME: Create an ExplicitInstantiation node?
7425    return (Decl*) 0;
7426  }
7427
7428  // If the declarator is a template-id, translate the parser's template
7429  // argument list into our AST format.
7430  bool HasExplicitTemplateArgs = false;
7431  TemplateArgumentListInfo TemplateArgs;
7432  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7433    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
7434    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
7435    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
7436    ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7437                                       TemplateId->NumArgs);
7438    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
7439    HasExplicitTemplateArgs = true;
7440  }
7441
7442  // C++ [temp.explicit]p1:
7443  //   A [...] function [...] can be explicitly instantiated from its template.
7444  //   A member function [...] of a class template can be explicitly
7445  //  instantiated from the member definition associated with its class
7446  //  template.
7447  UnresolvedSet<8> Matches;
7448  TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
7449  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7450       P != PEnd; ++P) {
7451    NamedDecl *Prev = *P;
7452    if (!HasExplicitTemplateArgs) {
7453      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
7454        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
7455          Matches.clear();
7456
7457          Matches.addDecl(Method, P.getAccess());
7458          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
7459            break;
7460        }
7461      }
7462    }
7463
7464    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
7465    if (!FunTmpl)
7466      continue;
7467
7468    TemplateDeductionInfo Info(FailedCandidates.getLocation());
7469    FunctionDecl *Specialization = 0;
7470    if (TemplateDeductionResult TDK
7471          = DeduceTemplateArguments(FunTmpl,
7472                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
7473                                    R, Specialization, Info)) {
7474      // Keep track of almost-matches.
7475      FailedCandidates.addCandidate()
7476          .set(FunTmpl->getTemplatedDecl(),
7477               MakeDeductionFailureInfo(Context, TDK, Info));
7478      (void)TDK;
7479      continue;
7480    }
7481
7482    Matches.addDecl(Specialization, P.getAccess());
7483  }
7484
7485  // Find the most specialized function template specialization.
7486  UnresolvedSetIterator Result = getMostSpecialized(
7487      Matches.begin(), Matches.end(), FailedCandidates,
7488      D.getIdentifierLoc(),
7489      PDiag(diag::err_explicit_instantiation_not_known) << Name,
7490      PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
7491      PDiag(diag::note_explicit_instantiation_candidate));
7492
7493  if (Result == Matches.end())
7494    return true;
7495
7496  // Ignore access control bits, we don't need them for redeclaration checking.
7497  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
7498
7499  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
7500    Diag(D.getIdentifierLoc(),
7501         diag::err_explicit_instantiation_member_function_not_instantiated)
7502      << Specialization
7503      << (Specialization->getTemplateSpecializationKind() ==
7504          TSK_ExplicitSpecialization);
7505    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
7506    return true;
7507  }
7508
7509  FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
7510  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
7511    PrevDecl = Specialization;
7512
7513  if (PrevDecl) {
7514    bool HasNoEffect = false;
7515    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
7516                                               PrevDecl,
7517                                     PrevDecl->getTemplateSpecializationKind(),
7518                                          PrevDecl->getPointOfInstantiation(),
7519                                               HasNoEffect))
7520      return true;
7521
7522    // FIXME: We may still want to build some representation of this
7523    // explicit specialization.
7524    if (HasNoEffect)
7525      return (Decl*) 0;
7526  }
7527
7528  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
7529  AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
7530  if (Attr)
7531    ProcessDeclAttributeList(S, Specialization, Attr);
7532
7533  if (TSK == TSK_ExplicitInstantiationDefinition)
7534    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
7535
7536  // C++0x [temp.explicit]p2:
7537  //   If the explicit instantiation is for a member function, a member class
7538  //   or a static data member of a class template specialization, the name of
7539  //   the class template specialization in the qualified-id for the member
7540  //   name shall be a simple-template-id.
7541  //
7542  // C++98 has the same restriction, just worded differently.
7543  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
7544  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
7545      D.getCXXScopeSpec().isSet() &&
7546      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
7547    Diag(D.getIdentifierLoc(),
7548         diag::ext_explicit_instantiation_without_qualified_id)
7549    << Specialization << D.getCXXScopeSpec().getRange();
7550
7551  CheckExplicitInstantiationScope(*this,
7552                   FunTmpl? (NamedDecl *)FunTmpl
7553                          : Specialization->getInstantiatedFromMemberFunction(),
7554                                  D.getIdentifierLoc(),
7555                                  D.getCXXScopeSpec().isSet());
7556
7557  // FIXME: Create some kind of ExplicitInstantiationDecl here.
7558  return (Decl*) 0;
7559}
7560
7561TypeResult
7562Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7563                        const CXXScopeSpec &SS, IdentifierInfo *Name,
7564                        SourceLocation TagLoc, SourceLocation NameLoc) {
7565  // This has to hold, because SS is expected to be defined.
7566  assert(Name && "Expected a name in a dependent tag");
7567
7568  NestedNameSpecifier *NNS
7569    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
7570  if (!NNS)
7571    return true;
7572
7573  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7574
7575  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
7576    Diag(NameLoc, diag::err_dependent_tag_decl)
7577      << (TUK == TUK_Definition) << Kind << SS.getRange();
7578    return true;
7579  }
7580
7581  // Create the resulting type.
7582  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
7583  QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
7584
7585  // Create type-source location information for this type.
7586  TypeLocBuilder TLB;
7587  DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
7588  TL.setElaboratedKeywordLoc(TagLoc);
7589  TL.setQualifierLoc(SS.getWithLocInContext(Context));
7590  TL.setNameLoc(NameLoc);
7591  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
7592}
7593
7594TypeResult
7595Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
7596                        const CXXScopeSpec &SS, const IdentifierInfo &II,
7597                        SourceLocation IdLoc) {
7598  if (SS.isInvalid())
7599    return true;
7600
7601  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
7602    Diag(TypenameLoc,
7603         getLangOpts().CPlusPlus11 ?
7604           diag::warn_cxx98_compat_typename_outside_of_template :
7605           diag::ext_typename_outside_of_template)
7606      << FixItHint::CreateRemoval(TypenameLoc);
7607
7608  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7609  QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
7610                                 TypenameLoc, QualifierLoc, II, IdLoc);
7611  if (T.isNull())
7612    return true;
7613
7614  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
7615  if (isa<DependentNameType>(T)) {
7616    DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
7617    TL.setElaboratedKeywordLoc(TypenameLoc);
7618    TL.setQualifierLoc(QualifierLoc);
7619    TL.setNameLoc(IdLoc);
7620  } else {
7621    ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
7622    TL.setElaboratedKeywordLoc(TypenameLoc);
7623    TL.setQualifierLoc(QualifierLoc);
7624    TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
7625  }
7626
7627  return CreateParsedType(T, TSI);
7628}
7629
7630TypeResult
7631Sema::ActOnTypenameType(Scope *S,
7632                        SourceLocation TypenameLoc,
7633                        const CXXScopeSpec &SS,
7634                        SourceLocation TemplateKWLoc,
7635                        TemplateTy TemplateIn,
7636                        SourceLocation TemplateNameLoc,
7637                        SourceLocation LAngleLoc,
7638                        ASTTemplateArgsPtr TemplateArgsIn,
7639                        SourceLocation RAngleLoc) {
7640  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
7641    Diag(TypenameLoc,
7642         getLangOpts().CPlusPlus11 ?
7643           diag::warn_cxx98_compat_typename_outside_of_template :
7644           diag::ext_typename_outside_of_template)
7645      << FixItHint::CreateRemoval(TypenameLoc);
7646
7647  // Translate the parser's template argument list in our AST format.
7648  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
7649  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
7650
7651  TemplateName Template = TemplateIn.get();
7652  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
7653    // Construct a dependent template specialization type.
7654    assert(DTN && "dependent template has non-dependent name?");
7655    assert(DTN->getQualifier()
7656           == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
7657    QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
7658                                                          DTN->getQualifier(),
7659                                                          DTN->getIdentifier(),
7660                                                                TemplateArgs);
7661
7662    // Create source-location information for this type.
7663    TypeLocBuilder Builder;
7664    DependentTemplateSpecializationTypeLoc SpecTL
7665    = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
7666    SpecTL.setElaboratedKeywordLoc(TypenameLoc);
7667    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
7668    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
7669    SpecTL.setTemplateNameLoc(TemplateNameLoc);
7670    SpecTL.setLAngleLoc(LAngleLoc);
7671    SpecTL.setRAngleLoc(RAngleLoc);
7672    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7673      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
7674    return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
7675  }
7676
7677  QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
7678  if (T.isNull())
7679    return true;
7680
7681  // Provide source-location information for the template specialization type.
7682  TypeLocBuilder Builder;
7683  TemplateSpecializationTypeLoc SpecTL
7684    = Builder.push<TemplateSpecializationTypeLoc>(T);
7685  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
7686  SpecTL.setTemplateNameLoc(TemplateNameLoc);
7687  SpecTL.setLAngleLoc(LAngleLoc);
7688  SpecTL.setRAngleLoc(RAngleLoc);
7689  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7690    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
7691
7692  T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
7693  ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
7694  TL.setElaboratedKeywordLoc(TypenameLoc);
7695  TL.setQualifierLoc(SS.getWithLocInContext(Context));
7696
7697  TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
7698  return CreateParsedType(T, TSI);
7699}
7700
7701
7702/// Determine whether this failed name lookup should be treated as being
7703/// disabled by a usage of std::enable_if.
7704static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
7705                       SourceRange &CondRange) {
7706  // We must be looking for a ::type...
7707  if (!II.isStr("type"))
7708    return false;
7709
7710  // ... within an explicitly-written template specialization...
7711  if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
7712    return false;
7713  TypeLoc EnableIfTy = NNS.getTypeLoc();
7714  TemplateSpecializationTypeLoc EnableIfTSTLoc =
7715      EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
7716  if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
7717    return false;
7718  const TemplateSpecializationType *EnableIfTST =
7719    cast<TemplateSpecializationType>(EnableIfTSTLoc.getTypePtr());
7720
7721  // ... which names a complete class template declaration...
7722  const TemplateDecl *EnableIfDecl =
7723    EnableIfTST->getTemplateName().getAsTemplateDecl();
7724  if (!EnableIfDecl || EnableIfTST->isIncompleteType())
7725    return false;
7726
7727  // ... called "enable_if".
7728  const IdentifierInfo *EnableIfII =
7729    EnableIfDecl->getDeclName().getAsIdentifierInfo();
7730  if (!EnableIfII || !EnableIfII->isStr("enable_if"))
7731    return false;
7732
7733  // Assume the first template argument is the condition.
7734  CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
7735  return true;
7736}
7737
7738/// \brief Build the type that describes a C++ typename specifier,
7739/// e.g., "typename T::type".
7740QualType
7741Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
7742                        SourceLocation KeywordLoc,
7743                        NestedNameSpecifierLoc QualifierLoc,
7744                        const IdentifierInfo &II,
7745                        SourceLocation IILoc) {
7746  CXXScopeSpec SS;
7747  SS.Adopt(QualifierLoc);
7748
7749  DeclContext *Ctx = computeDeclContext(SS);
7750  if (!Ctx) {
7751    // If the nested-name-specifier is dependent and couldn't be
7752    // resolved to a type, build a typename type.
7753    assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
7754    return Context.getDependentNameType(Keyword,
7755                                        QualifierLoc.getNestedNameSpecifier(),
7756                                        &II);
7757  }
7758
7759  // If the nested-name-specifier refers to the current instantiation,
7760  // the "typename" keyword itself is superfluous. In C++03, the
7761  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
7762  // allows such extraneous "typename" keywords, and we retroactively
7763  // apply this DR to C++03 code with only a warning. In any case we continue.
7764
7765  if (RequireCompleteDeclContext(SS, Ctx))
7766    return QualType();
7767
7768  DeclarationName Name(&II);
7769  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
7770  LookupQualifiedName(Result, Ctx);
7771  unsigned DiagID = 0;
7772  Decl *Referenced = 0;
7773  switch (Result.getResultKind()) {
7774  case LookupResult::NotFound: {
7775    // If we're looking up 'type' within a template named 'enable_if', produce
7776    // a more specific diagnostic.
7777    SourceRange CondRange;
7778    if (isEnableIf(QualifierLoc, II, CondRange)) {
7779      Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
7780        << Ctx << CondRange;
7781      return QualType();
7782    }
7783
7784    DiagID = diag::err_typename_nested_not_found;
7785    break;
7786  }
7787
7788  case LookupResult::FoundUnresolvedValue: {
7789    // We found a using declaration that is a value. Most likely, the using
7790    // declaration itself is meant to have the 'typename' keyword.
7791    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7792                          IILoc);
7793    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
7794      << Name << Ctx << FullRange;
7795    if (UnresolvedUsingValueDecl *Using
7796          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
7797      SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
7798      Diag(Loc, diag::note_using_value_decl_missing_typename)
7799        << FixItHint::CreateInsertion(Loc, "typename ");
7800    }
7801  }
7802  // Fall through to create a dependent typename type, from which we can recover
7803  // better.
7804
7805  case LookupResult::NotFoundInCurrentInstantiation:
7806    // Okay, it's a member of an unknown instantiation.
7807    return Context.getDependentNameType(Keyword,
7808                                        QualifierLoc.getNestedNameSpecifier(),
7809                                        &II);
7810
7811  case LookupResult::Found:
7812    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
7813      // We found a type. Build an ElaboratedType, since the
7814      // typename-specifier was just sugar.
7815      return Context.getElaboratedType(ETK_Typename,
7816                                       QualifierLoc.getNestedNameSpecifier(),
7817                                       Context.getTypeDeclType(Type));
7818    }
7819
7820    DiagID = diag::err_typename_nested_not_type;
7821    Referenced = Result.getFoundDecl();
7822    break;
7823
7824  case LookupResult::FoundOverloaded:
7825    DiagID = diag::err_typename_nested_not_type;
7826    Referenced = *Result.begin();
7827    break;
7828
7829  case LookupResult::Ambiguous:
7830    return QualType();
7831  }
7832
7833  // If we get here, it's because name lookup did not find a
7834  // type. Emit an appropriate diagnostic and return an error.
7835  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7836                        IILoc);
7837  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
7838  if (Referenced)
7839    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
7840      << Name;
7841  return QualType();
7842}
7843
7844namespace {
7845  // See Sema::RebuildTypeInCurrentInstantiation
7846  class CurrentInstantiationRebuilder
7847    : public TreeTransform<CurrentInstantiationRebuilder> {
7848    SourceLocation Loc;
7849    DeclarationName Entity;
7850
7851  public:
7852    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
7853
7854    CurrentInstantiationRebuilder(Sema &SemaRef,
7855                                  SourceLocation Loc,
7856                                  DeclarationName Entity)
7857    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
7858      Loc(Loc), Entity(Entity) { }
7859
7860    /// \brief Determine whether the given type \p T has already been
7861    /// transformed.
7862    ///
7863    /// For the purposes of type reconstruction, a type has already been
7864    /// transformed if it is NULL or if it is not dependent.
7865    bool AlreadyTransformed(QualType T) {
7866      return T.isNull() || !T->isDependentType();
7867    }
7868
7869    /// \brief Returns the location of the entity whose type is being
7870    /// rebuilt.
7871    SourceLocation getBaseLocation() { return Loc; }
7872
7873    /// \brief Returns the name of the entity whose type is being rebuilt.
7874    DeclarationName getBaseEntity() { return Entity; }
7875
7876    /// \brief Sets the "base" location and entity when that
7877    /// information is known based on another transformation.
7878    void setBase(SourceLocation Loc, DeclarationName Entity) {
7879      this->Loc = Loc;
7880      this->Entity = Entity;
7881    }
7882
7883    ExprResult TransformLambdaExpr(LambdaExpr *E) {
7884      // Lambdas never need to be transformed.
7885      return E;
7886    }
7887  };
7888}
7889
7890/// \brief Rebuilds a type within the context of the current instantiation.
7891///
7892/// The type \p T is part of the type of an out-of-line member definition of
7893/// a class template (or class template partial specialization) that was parsed
7894/// and constructed before we entered the scope of the class template (or
7895/// partial specialization thereof). This routine will rebuild that type now
7896/// that we have entered the declarator's scope, which may produce different
7897/// canonical types, e.g.,
7898///
7899/// \code
7900/// template<typename T>
7901/// struct X {
7902///   typedef T* pointer;
7903///   pointer data();
7904/// };
7905///
7906/// template<typename T>
7907/// typename X<T>::pointer X<T>::data() { ... }
7908/// \endcode
7909///
7910/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
7911/// since we do not know that we can look into X<T> when we parsed the type.
7912/// This function will rebuild the type, performing the lookup of "pointer"
7913/// in X<T> and returning an ElaboratedType whose canonical type is the same
7914/// as the canonical type of T*, allowing the return types of the out-of-line
7915/// definition and the declaration to match.
7916TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
7917                                                        SourceLocation Loc,
7918                                                        DeclarationName Name) {
7919  if (!T || !T->getType()->isDependentType())
7920    return T;
7921
7922  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
7923  return Rebuilder.TransformType(T);
7924}
7925
7926ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
7927  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
7928                                          DeclarationName());
7929  return Rebuilder.TransformExpr(E);
7930}
7931
7932bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
7933  if (SS.isInvalid())
7934    return true;
7935
7936  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7937  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
7938                                          DeclarationName());
7939  NestedNameSpecifierLoc Rebuilt
7940    = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
7941  if (!Rebuilt)
7942    return true;
7943
7944  SS.Adopt(Rebuilt);
7945  return false;
7946}
7947
7948/// \brief Rebuild the template parameters now that we know we're in a current
7949/// instantiation.
7950bool Sema::RebuildTemplateParamsInCurrentInstantiation(
7951                                               TemplateParameterList *Params) {
7952  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7953    Decl *Param = Params->getParam(I);
7954
7955    // There is nothing to rebuild in a type parameter.
7956    if (isa<TemplateTypeParmDecl>(Param))
7957      continue;
7958
7959    // Rebuild the template parameter list of a template template parameter.
7960    if (TemplateTemplateParmDecl *TTP
7961        = dyn_cast<TemplateTemplateParmDecl>(Param)) {
7962      if (RebuildTemplateParamsInCurrentInstantiation(
7963            TTP->getTemplateParameters()))
7964        return true;
7965
7966      continue;
7967    }
7968
7969    // Rebuild the type of a non-type template parameter.
7970    NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
7971    TypeSourceInfo *NewTSI
7972      = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
7973                                          NTTP->getLocation(),
7974                                          NTTP->getDeclName());
7975    if (!NewTSI)
7976      return true;
7977
7978    if (NewTSI != NTTP->getTypeSourceInfo()) {
7979      NTTP->setTypeSourceInfo(NewTSI);
7980      NTTP->setType(NewTSI->getType());
7981    }
7982  }
7983
7984  return false;
7985}
7986
7987/// \brief Produces a formatted string that describes the binding of
7988/// template parameters to template arguments.
7989std::string
7990Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7991                                      const TemplateArgumentList &Args) {
7992  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
7993}
7994
7995std::string
7996Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7997                                      const TemplateArgument *Args,
7998                                      unsigned NumArgs) {
7999  SmallString<128> Str;
8000  llvm::raw_svector_ostream Out(Str);
8001
8002  if (!Params || Params->size() == 0 || NumArgs == 0)
8003    return std::string();
8004
8005  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
8006    if (I >= NumArgs)
8007      break;
8008
8009    if (I == 0)
8010      Out << "[with ";
8011    else
8012      Out << ", ";
8013
8014    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
8015      Out << Id->getName();
8016    } else {
8017      Out << '$' << I;
8018    }
8019
8020    Out << " = ";
8021    Args[I].print(getPrintingPolicy(), Out);
8022  }
8023
8024  Out << ']';
8025  return Out.str();
8026}
8027
8028void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
8029                                    CachedTokens &Toks) {
8030  if (!FD)
8031    return;
8032
8033  LateParsedTemplate *LPT = new LateParsedTemplate;
8034
8035  // Take tokens to avoid allocations
8036  LPT->Toks.swap(Toks);
8037  LPT->D = FnD;
8038  LateParsedTemplateMap[FD] = LPT;
8039
8040  FD->setLateTemplateParsed(true);
8041}
8042
8043void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
8044  if (!FD)
8045    return;
8046  FD->setLateTemplateParsed(false);
8047}
8048
8049bool Sema::IsInsideALocalClassWithinATemplateFunction() {
8050  DeclContext *DC = CurContext;
8051
8052  while (DC) {
8053    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
8054      const FunctionDecl *FD = RD->isLocalClass();
8055      return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
8056    } else if (DC->isTranslationUnit() || DC->isNamespace())
8057      return false;
8058
8059    DC = DC->getParent();
8060  }
8061  return false;
8062}
8063