SemaTemplate.cpp revision d6537015745128064dc12fcc06af65372dfd5da9
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/SmallBitVector.h"
30#include "llvm/ADT/SmallString.h"
31#include "llvm/ADT/StringExtras.h"
32using namespace clang;
33using namespace sema;
34
35// Exported for use by Parser.
36SourceRange
37clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
38                              unsigned N) {
39  if (!N) return SourceRange();
40  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
41}
42
43/// \brief Determine whether the declaration found is acceptable as the name
44/// of a template and, if so, return that template declaration. Otherwise,
45/// returns NULL.
46static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
47                                           NamedDecl *Orig,
48                                           bool AllowFunctionTemplates) {
49  NamedDecl *D = Orig->getUnderlyingDecl();
50
51  if (isa<TemplateDecl>(D)) {
52    if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
53      return 0;
54
55    return Orig;
56  }
57
58  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
59    // C++ [temp.local]p1:
60    //   Like normal (non-template) classes, class templates have an
61    //   injected-class-name (Clause 9). The injected-class-name
62    //   can be used with or without a template-argument-list. When
63    //   it is used without a template-argument-list, it is
64    //   equivalent to the injected-class-name followed by the
65    //   template-parameters of the class template enclosed in
66    //   <>. When it is used with a template-argument-list, it
67    //   refers to the specified class template specialization,
68    //   which could be the current specialization or another
69    //   specialization.
70    if (Record->isInjectedClassName()) {
71      Record = cast<CXXRecordDecl>(Record->getDeclContext());
72      if (Record->getDescribedClassTemplate())
73        return Record->getDescribedClassTemplate();
74
75      if (ClassTemplateSpecializationDecl *Spec
76            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
77        return Spec->getSpecializedTemplate();
78    }
79
80    return 0;
81  }
82
83  return 0;
84}
85
86void Sema::FilterAcceptableTemplateNames(LookupResult &R,
87                                         bool AllowFunctionTemplates) {
88  // The set of class templates we've already seen.
89  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
90  LookupResult::Filter filter = R.makeFilter();
91  while (filter.hasNext()) {
92    NamedDecl *Orig = filter.next();
93    NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
94                                               AllowFunctionTemplates);
95    if (!Repl)
96      filter.erase();
97    else if (Repl != Orig) {
98
99      // C++ [temp.local]p3:
100      //   A lookup that finds an injected-class-name (10.2) can result in an
101      //   ambiguity in certain cases (for example, if it is found in more than
102      //   one base class). If all of the injected-class-names that are found
103      //   refer to specializations of the same class template, and if the name
104      //   is used as a template-name, the reference refers to the class
105      //   template itself and not a specialization thereof, and is not
106      //   ambiguous.
107      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
108        if (!ClassTemplates.insert(ClassTmpl)) {
109          filter.erase();
110          continue;
111        }
112
113      // FIXME: we promote access to public here as a workaround to
114      // the fact that LookupResult doesn't let us remember that we
115      // found this template through a particular injected class name,
116      // which means we end up doing nasty things to the invariants.
117      // Pretending that access is public is *much* safer.
118      filter.replace(Repl, AS_public);
119    }
120  }
121  filter.done();
122}
123
124bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
125                                         bool AllowFunctionTemplates) {
126  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
127    if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
128      return true;
129
130  return false;
131}
132
133TemplateNameKind Sema::isTemplateName(Scope *S,
134                                      CXXScopeSpec &SS,
135                                      bool hasTemplateKeyword,
136                                      UnqualifiedId &Name,
137                                      ParsedType ObjectTypePtr,
138                                      bool EnteringContext,
139                                      TemplateTy &TemplateResult,
140                                      bool &MemberOfUnknownSpecialization) {
141  assert(getLangOpts().CPlusPlus && "No template names in C!");
142
143  DeclarationName TName;
144  MemberOfUnknownSpecialization = false;
145
146  switch (Name.getKind()) {
147  case UnqualifiedId::IK_Identifier:
148    TName = DeclarationName(Name.Identifier);
149    break;
150
151  case UnqualifiedId::IK_OperatorFunctionId:
152    TName = Context.DeclarationNames.getCXXOperatorName(
153                                              Name.OperatorFunctionId.Operator);
154    break;
155
156  case UnqualifiedId::IK_LiteralOperatorId:
157    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
158    break;
159
160  default:
161    return TNK_Non_template;
162  }
163
164  QualType ObjectType = ObjectTypePtr.get();
165
166  LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
167  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
168                     MemberOfUnknownSpecialization);
169  if (R.empty()) return TNK_Non_template;
170  if (R.isAmbiguous()) {
171    // Suppress diagnostics;  we'll redo this lookup later.
172    R.suppressDiagnostics();
173
174    // FIXME: we might have ambiguous templates, in which case we
175    // should at least parse them properly!
176    return TNK_Non_template;
177  }
178
179  TemplateName Template;
180  TemplateNameKind TemplateKind;
181
182  unsigned ResultCount = R.end() - R.begin();
183  if (ResultCount > 1) {
184    // We assume that we'll preserve the qualifier from a function
185    // template name in other ways.
186    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
187    TemplateKind = TNK_Function_template;
188
189    // We'll do this lookup again later.
190    R.suppressDiagnostics();
191  } else {
192    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
193
194    if (SS.isSet() && !SS.isInvalid()) {
195      NestedNameSpecifier *Qualifier
196        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
197      Template = Context.getQualifiedTemplateName(Qualifier,
198                                                  hasTemplateKeyword, TD);
199    } else {
200      Template = TemplateName(TD);
201    }
202
203    if (isa<FunctionTemplateDecl>(TD)) {
204      TemplateKind = TNK_Function_template;
205
206      // We'll do this lookup again later.
207      R.suppressDiagnostics();
208    } else {
209      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
210             isa<TypeAliasTemplateDecl>(TD));
211      TemplateKind = TNK_Type_template;
212    }
213  }
214
215  TemplateResult = TemplateTy::make(Template);
216  return TemplateKind;
217}
218
219bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
220                                       SourceLocation IILoc,
221                                       Scope *S,
222                                       const CXXScopeSpec *SS,
223                                       TemplateTy &SuggestedTemplate,
224                                       TemplateNameKind &SuggestedKind) {
225  // We can't recover unless there's a dependent scope specifier preceding the
226  // template name.
227  // FIXME: Typo correction?
228  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
229      computeDeclContext(*SS))
230    return false;
231
232  // The code is missing a 'template' keyword prior to the dependent template
233  // name.
234  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
235  Diag(IILoc, diag::err_template_kw_missing)
236    << Qualifier << II.getName()
237    << FixItHint::CreateInsertion(IILoc, "template ");
238  SuggestedTemplate
239    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
240  SuggestedKind = TNK_Dependent_template_name;
241  return true;
242}
243
244void Sema::LookupTemplateName(LookupResult &Found,
245                              Scope *S, CXXScopeSpec &SS,
246                              QualType ObjectType,
247                              bool EnteringContext,
248                              bool &MemberOfUnknownSpecialization) {
249  // Determine where to perform name lookup
250  MemberOfUnknownSpecialization = false;
251  DeclContext *LookupCtx = 0;
252  bool isDependent = false;
253  if (!ObjectType.isNull()) {
254    // This nested-name-specifier occurs in a member access expression, e.g.,
255    // x->B::f, and we are looking into the type of the object.
256    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
257    LookupCtx = computeDeclContext(ObjectType);
258    isDependent = ObjectType->isDependentType();
259    assert((isDependent || !ObjectType->isIncompleteType()) &&
260           "Caller should have completed object type");
261
262    // Template names cannot appear inside an Objective-C class or object type.
263    if (ObjectType->isObjCObjectOrInterfaceType()) {
264      Found.clear();
265      return;
266    }
267  } else if (SS.isSet()) {
268    // This nested-name-specifier occurs after another nested-name-specifier,
269    // so long into the context associated with the prior nested-name-specifier.
270    LookupCtx = computeDeclContext(SS, EnteringContext);
271    isDependent = isDependentScopeSpecifier(SS);
272
273    // The declaration context must be complete.
274    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
275      return;
276  }
277
278  bool ObjectTypeSearchedInScope = false;
279  bool AllowFunctionTemplatesInLookup = true;
280  if (LookupCtx) {
281    // Perform "qualified" name lookup into the declaration context we
282    // computed, which is either the type of the base of a member access
283    // expression or the declaration context associated with a prior
284    // nested-name-specifier.
285    LookupQualifiedName(Found, LookupCtx);
286    if (!ObjectType.isNull() && Found.empty()) {
287      // C++ [basic.lookup.classref]p1:
288      //   In a class member access expression (5.2.5), if the . or -> token is
289      //   immediately followed by an identifier followed by a <, the
290      //   identifier must be looked up to determine whether the < is the
291      //   beginning of a template argument list (14.2) or a less-than operator.
292      //   The identifier is first looked up in the class of the object
293      //   expression. If the identifier is not found, it is then looked up in
294      //   the context of the entire postfix-expression and shall name a class
295      //   or function template.
296      if (S) LookupName(Found, S);
297      ObjectTypeSearchedInScope = true;
298      AllowFunctionTemplatesInLookup = false;
299    }
300  } else if (isDependent && (!S || ObjectType.isNull())) {
301    // We cannot look into a dependent object type or nested nme
302    // specifier.
303    MemberOfUnknownSpecialization = true;
304    return;
305  } else {
306    // Perform unqualified name lookup in the current scope.
307    LookupName(Found, S);
308
309    if (!ObjectType.isNull())
310      AllowFunctionTemplatesInLookup = false;
311  }
312
313  if (Found.empty() && !isDependent) {
314    // If we did not find any names, attempt to correct any typos.
315    DeclarationName Name = Found.getLookupName();
316    Found.clear();
317    // Simple filter callback that, for keywords, only accepts the C++ *_cast
318    CorrectionCandidateCallback FilterCCC;
319    FilterCCC.WantTypeSpecifiers = false;
320    FilterCCC.WantExpressionKeywords = false;
321    FilterCCC.WantRemainingKeywords = false;
322    FilterCCC.WantCXXNamedCasts = true;
323    if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
324                                               Found.getLookupKind(), S, &SS,
325                                               FilterCCC, LookupCtx)) {
326      Found.setLookupName(Corrected.getCorrection());
327      if (Corrected.getCorrectionDecl())
328        Found.addDecl(Corrected.getCorrectionDecl());
329      FilterAcceptableTemplateNames(Found);
330      if (!Found.empty()) {
331        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
332        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
333        if (LookupCtx)
334          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
335            << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
336            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
337                                            CorrectedStr);
338        else
339          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
340            << Name << CorrectedQuotedStr
341            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
342        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
343          Diag(Template->getLocation(), diag::note_previous_decl)
344            << CorrectedQuotedStr;
345      }
346    } else {
347      Found.setLookupName(Name);
348    }
349  }
350
351  FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
352  if (Found.empty()) {
353    if (isDependent)
354      MemberOfUnknownSpecialization = true;
355    return;
356  }
357
358  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
359      !(getLangOpts().CPlusPlus0x && !Found.empty())) {
360    // C++03 [basic.lookup.classref]p1:
361    //   [...] If the lookup in the class of the object expression finds a
362    //   template, the name is also looked up in the context of the entire
363    //   postfix-expression and [...]
364    //
365    // Note: C++11 does not perform this second lookup.
366    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
367                            LookupOrdinaryName);
368    LookupName(FoundOuter, S);
369    FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
370
371    if (FoundOuter.empty()) {
372      //   - if the name is not found, the name found in the class of the
373      //     object expression is used, otherwise
374    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
375               FoundOuter.isAmbiguous()) {
376      //   - if the name is found in the context of the entire
377      //     postfix-expression and does not name a class template, the name
378      //     found in the class of the object expression is used, otherwise
379      FoundOuter.clear();
380    } else if (!Found.isSuppressingDiagnostics()) {
381      //   - if the name found is a class template, it must refer to the same
382      //     entity as the one found in the class of the object expression,
383      //     otherwise the program is ill-formed.
384      if (!Found.isSingleResult() ||
385          Found.getFoundDecl()->getCanonicalDecl()
386            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
387        Diag(Found.getNameLoc(),
388             diag::ext_nested_name_member_ref_lookup_ambiguous)
389          << Found.getLookupName()
390          << ObjectType;
391        Diag(Found.getRepresentativeDecl()->getLocation(),
392             diag::note_ambig_member_ref_object_type)
393          << ObjectType;
394        Diag(FoundOuter.getFoundDecl()->getLocation(),
395             diag::note_ambig_member_ref_scope);
396
397        // Recover by taking the template that we found in the object
398        // expression's type.
399      }
400    }
401  }
402}
403
404/// ActOnDependentIdExpression - Handle a dependent id-expression that
405/// was just parsed.  This is only possible with an explicit scope
406/// specifier naming a dependent type.
407ExprResult
408Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
409                                 SourceLocation TemplateKWLoc,
410                                 const DeclarationNameInfo &NameInfo,
411                                 bool isAddressOfOperand,
412                           const TemplateArgumentListInfo *TemplateArgs) {
413  DeclContext *DC = getFunctionLevelDeclContext();
414
415  if (!isAddressOfOperand &&
416      isa<CXXMethodDecl>(DC) &&
417      cast<CXXMethodDecl>(DC)->isInstance()) {
418    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
419
420    // Since the 'this' expression is synthesized, we don't need to
421    // perform the double-lookup check.
422    NamedDecl *FirstQualifierInScope = 0;
423
424    return Owned(CXXDependentScopeMemberExpr::Create(Context,
425                                                     /*This*/ 0, ThisType,
426                                                     /*IsArrow*/ true,
427                                                     /*Op*/ SourceLocation(),
428                                               SS.getWithLocInContext(Context),
429                                                     TemplateKWLoc,
430                                                     FirstQualifierInScope,
431                                                     NameInfo,
432                                                     TemplateArgs));
433  }
434
435  return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
436}
437
438ExprResult
439Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
440                                SourceLocation TemplateKWLoc,
441                                const DeclarationNameInfo &NameInfo,
442                                const TemplateArgumentListInfo *TemplateArgs) {
443  return Owned(DependentScopeDeclRefExpr::Create(Context,
444                                               SS.getWithLocInContext(Context),
445                                                 TemplateKWLoc,
446                                                 NameInfo,
447                                                 TemplateArgs));
448}
449
450/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
451/// that the template parameter 'PrevDecl' is being shadowed by a new
452/// declaration at location Loc. Returns true to indicate that this is
453/// an error, and false otherwise.
454void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
455  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
456
457  // Microsoft Visual C++ permits template parameters to be shadowed.
458  if (getLangOpts().MicrosoftExt)
459    return;
460
461  // C++ [temp.local]p4:
462  //   A template-parameter shall not be redeclared within its
463  //   scope (including nested scopes).
464  Diag(Loc, diag::err_template_param_shadow)
465    << cast<NamedDecl>(PrevDecl)->getDeclName();
466  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
467  return;
468}
469
470/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
471/// the parameter D to reference the templated declaration and return a pointer
472/// to the template declaration. Otherwise, do nothing to D and return null.
473TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
474  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
475    D = Temp->getTemplatedDecl();
476    return Temp;
477  }
478  return 0;
479}
480
481ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
482                                             SourceLocation EllipsisLoc) const {
483  assert(Kind == Template &&
484         "Only template template arguments can be pack expansions here");
485  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
486         "Template template argument pack expansion without packs");
487  ParsedTemplateArgument Result(*this);
488  Result.EllipsisLoc = EllipsisLoc;
489  return Result;
490}
491
492static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
493                                            const ParsedTemplateArgument &Arg) {
494
495  switch (Arg.getKind()) {
496  case ParsedTemplateArgument::Type: {
497    TypeSourceInfo *DI;
498    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
499    if (!DI)
500      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
501    return TemplateArgumentLoc(TemplateArgument(T), DI);
502  }
503
504  case ParsedTemplateArgument::NonType: {
505    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
506    return TemplateArgumentLoc(TemplateArgument(E), E);
507  }
508
509  case ParsedTemplateArgument::Template: {
510    TemplateName Template = Arg.getAsTemplate().get();
511    TemplateArgument TArg;
512    if (Arg.getEllipsisLoc().isValid())
513      TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
514    else
515      TArg = Template;
516    return TemplateArgumentLoc(TArg,
517                               Arg.getScopeSpec().getWithLocInContext(
518                                                              SemaRef.Context),
519                               Arg.getLocation(),
520                               Arg.getEllipsisLoc());
521  }
522  }
523
524  llvm_unreachable("Unhandled parsed template argument");
525}
526
527/// \brief Translates template arguments as provided by the parser
528/// into template arguments used by semantic analysis.
529void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
530                                      TemplateArgumentListInfo &TemplateArgs) {
531 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
532   TemplateArgs.addArgument(translateTemplateArgument(*this,
533                                                      TemplateArgsIn[I]));
534}
535
536/// ActOnTypeParameter - Called when a C++ template type parameter
537/// (e.g., "typename T") has been parsed. Typename specifies whether
538/// the keyword "typename" was used to declare the type parameter
539/// (otherwise, "class" was used), and KeyLoc is the location of the
540/// "class" or "typename" keyword. ParamName is the name of the
541/// parameter (NULL indicates an unnamed template parameter) and
542/// ParamNameLoc is the location of the parameter name (if any).
543/// If the type parameter has a default argument, it will be added
544/// later via ActOnTypeParameterDefault.
545Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
546                               SourceLocation EllipsisLoc,
547                               SourceLocation KeyLoc,
548                               IdentifierInfo *ParamName,
549                               SourceLocation ParamNameLoc,
550                               unsigned Depth, unsigned Position,
551                               SourceLocation EqualLoc,
552                               ParsedType DefaultArg) {
553  assert(S->isTemplateParamScope() &&
554         "Template type parameter not in template parameter scope!");
555  bool Invalid = false;
556
557  if (ParamName) {
558    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
559                                           LookupOrdinaryName,
560                                           ForRedeclaration);
561    if (PrevDecl && PrevDecl->isTemplateParameter()) {
562      DiagnoseTemplateParameterShadow(ParamNameLoc, PrevDecl);
563      PrevDecl = 0;
564    }
565  }
566
567  SourceLocation Loc = ParamNameLoc;
568  if (!ParamName)
569    Loc = KeyLoc;
570
571  TemplateTypeParmDecl *Param
572    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
573                                   KeyLoc, Loc, Depth, Position, ParamName,
574                                   Typename, Ellipsis);
575  Param->setAccess(AS_public);
576  if (Invalid)
577    Param->setInvalidDecl();
578
579  if (ParamName) {
580    // Add the template parameter into the current scope.
581    S->AddDecl(Param);
582    IdResolver.AddDecl(Param);
583  }
584
585  // C++0x [temp.param]p9:
586  //   A default template-argument may be specified for any kind of
587  //   template-parameter that is not a template parameter pack.
588  if (DefaultArg && Ellipsis) {
589    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
590    DefaultArg = ParsedType();
591  }
592
593  // Handle the default argument, if provided.
594  if (DefaultArg) {
595    TypeSourceInfo *DefaultTInfo;
596    GetTypeFromParser(DefaultArg, &DefaultTInfo);
597
598    assert(DefaultTInfo && "expected source information for type");
599
600    // Check for unexpanded parameter packs.
601    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
602                                        UPPC_DefaultArgument))
603      return Param;
604
605    // Check the template argument itself.
606    if (CheckTemplateArgument(Param, DefaultTInfo)) {
607      Param->setInvalidDecl();
608      return Param;
609    }
610
611    Param->setDefaultArgument(DefaultTInfo, false);
612  }
613
614  return Param;
615}
616
617/// \brief Check that the type of a non-type template parameter is
618/// well-formed.
619///
620/// \returns the (possibly-promoted) parameter type if valid;
621/// otherwise, produces a diagnostic and returns a NULL type.
622QualType
623Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
624  // We don't allow variably-modified types as the type of non-type template
625  // parameters.
626  if (T->isVariablyModifiedType()) {
627    Diag(Loc, diag::err_variably_modified_nontype_template_param)
628      << T;
629    return QualType();
630  }
631
632  // C++ [temp.param]p4:
633  //
634  // A non-type template-parameter shall have one of the following
635  // (optionally cv-qualified) types:
636  //
637  //       -- integral or enumeration type,
638  if (T->isIntegralOrEnumerationType() ||
639      //   -- pointer to object or pointer to function,
640      T->isPointerType() ||
641      //   -- reference to object or reference to function,
642      T->isReferenceType() ||
643      //   -- pointer to member,
644      T->isMemberPointerType() ||
645      //   -- std::nullptr_t.
646      T->isNullPtrType() ||
647      // If T is a dependent type, we can't do the check now, so we
648      // assume that it is well-formed.
649      T->isDependentType()) {
650    // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
651    // are ignored when determining its type.
652    return T.getUnqualifiedType();
653  }
654
655  // C++ [temp.param]p8:
656  //
657  //   A non-type template-parameter of type "array of T" or
658  //   "function returning T" is adjusted to be of type "pointer to
659  //   T" or "pointer to function returning T", respectively.
660  else if (T->isArrayType())
661    // FIXME: Keep the type prior to promotion?
662    return Context.getArrayDecayedType(T);
663  else if (T->isFunctionType())
664    // FIXME: Keep the type prior to promotion?
665    return Context.getPointerType(T);
666
667  Diag(Loc, diag::err_template_nontype_parm_bad_type)
668    << T;
669
670  return QualType();
671}
672
673Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
674                                          unsigned Depth,
675                                          unsigned Position,
676                                          SourceLocation EqualLoc,
677                                          Expr *Default) {
678  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
679  QualType T = TInfo->getType();
680
681  assert(S->isTemplateParamScope() &&
682         "Non-type template parameter not in template parameter scope!");
683  bool Invalid = false;
684
685  IdentifierInfo *ParamName = D.getIdentifier();
686  if (ParamName) {
687    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
688                                           LookupOrdinaryName,
689                                           ForRedeclaration);
690    if (PrevDecl && PrevDecl->isTemplateParameter()) {
691      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
692      PrevDecl = 0;
693    }
694  }
695
696  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
697  if (T.isNull()) {
698    T = Context.IntTy; // Recover with an 'int' type.
699    Invalid = true;
700  }
701
702  bool IsParameterPack = D.hasEllipsis();
703  NonTypeTemplateParmDecl *Param
704    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
705                                      D.getLocStart(),
706                                      D.getIdentifierLoc(),
707                                      Depth, Position, ParamName, T,
708                                      IsParameterPack, TInfo);
709  Param->setAccess(AS_public);
710
711  if (Invalid)
712    Param->setInvalidDecl();
713
714  if (D.getIdentifier()) {
715    // Add the template parameter into the current scope.
716    S->AddDecl(Param);
717    IdResolver.AddDecl(Param);
718  }
719
720  // C++0x [temp.param]p9:
721  //   A default template-argument may be specified for any kind of
722  //   template-parameter that is not a template parameter pack.
723  if (Default && IsParameterPack) {
724    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
725    Default = 0;
726  }
727
728  // Check the well-formedness of the default template argument, if provided.
729  if (Default) {
730    // Check for unexpanded parameter packs.
731    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
732      return Param;
733
734    TemplateArgument Converted;
735    ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
736    if (DefaultRes.isInvalid()) {
737      Param->setInvalidDecl();
738      return Param;
739    }
740    Default = DefaultRes.take();
741
742    Param->setDefaultArgument(Default, false);
743  }
744
745  return Param;
746}
747
748/// ActOnTemplateTemplateParameter - Called when a C++ template template
749/// parameter (e.g. T in template <template \<typename> class T> class array)
750/// has been parsed. S is the current scope.
751Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
752                                           SourceLocation TmpLoc,
753                                           TemplateParameterList *Params,
754                                           SourceLocation EllipsisLoc,
755                                           IdentifierInfo *Name,
756                                           SourceLocation NameLoc,
757                                           unsigned Depth,
758                                           unsigned Position,
759                                           SourceLocation EqualLoc,
760                                           ParsedTemplateArgument Default) {
761  assert(S->isTemplateParamScope() &&
762         "Template template parameter not in template parameter scope!");
763
764  // Construct the parameter object.
765  bool IsParameterPack = EllipsisLoc.isValid();
766  TemplateTemplateParmDecl *Param =
767    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
768                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
769                                     Depth, Position, IsParameterPack,
770                                     Name, Params);
771  Param->setAccess(AS_public);
772
773  // If the template template parameter has a name, then link the identifier
774  // into the scope and lookup mechanisms.
775  if (Name) {
776    S->AddDecl(Param);
777    IdResolver.AddDecl(Param);
778  }
779
780  if (Params->size() == 0) {
781    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
782    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
783    Param->setInvalidDecl();
784  }
785
786  // C++0x [temp.param]p9:
787  //   A default template-argument may be specified for any kind of
788  //   template-parameter that is not a template parameter pack.
789  if (IsParameterPack && !Default.isInvalid()) {
790    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
791    Default = ParsedTemplateArgument();
792  }
793
794  if (!Default.isInvalid()) {
795    // Check only that we have a template template argument. We don't want to
796    // try to check well-formedness now, because our template template parameter
797    // might have dependent types in its template parameters, which we wouldn't
798    // be able to match now.
799    //
800    // If none of the template template parameter's template arguments mention
801    // other template parameters, we could actually perform more checking here.
802    // However, it isn't worth doing.
803    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
804    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
805      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
806        << DefaultArg.getSourceRange();
807      return Param;
808    }
809
810    // Check for unexpanded parameter packs.
811    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
812                                        DefaultArg.getArgument().getAsTemplate(),
813                                        UPPC_DefaultArgument))
814      return Param;
815
816    Param->setDefaultArgument(DefaultArg, false);
817  }
818
819  return Param;
820}
821
822/// ActOnTemplateParameterList - Builds a TemplateParameterList that
823/// contains the template parameters in Params/NumParams.
824TemplateParameterList *
825Sema::ActOnTemplateParameterList(unsigned Depth,
826                                 SourceLocation ExportLoc,
827                                 SourceLocation TemplateLoc,
828                                 SourceLocation LAngleLoc,
829                                 Decl **Params, unsigned NumParams,
830                                 SourceLocation RAngleLoc) {
831  if (ExportLoc.isValid())
832    Diag(ExportLoc, diag::warn_template_export_unsupported);
833
834  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
835                                       (NamedDecl**)Params, NumParams,
836                                       RAngleLoc);
837}
838
839static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
840  if (SS.isSet())
841    T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
842}
843
844DeclResult
845Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
846                         SourceLocation KWLoc, CXXScopeSpec &SS,
847                         IdentifierInfo *Name, SourceLocation NameLoc,
848                         AttributeList *Attr,
849                         TemplateParameterList *TemplateParams,
850                         AccessSpecifier AS, SourceLocation ModulePrivateLoc,
851                         unsigned NumOuterTemplateParamLists,
852                         TemplateParameterList** OuterTemplateParamLists) {
853  assert(TemplateParams && TemplateParams->size() > 0 &&
854         "No template parameters");
855  assert(TUK != TUK_Reference && "Can only declare or define class templates");
856  bool Invalid = false;
857
858  // Check that we can declare a template here.
859  if (CheckTemplateDeclScope(S, TemplateParams))
860    return true;
861
862  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
863  assert(Kind != TTK_Enum && "can't build template of enumerated type");
864
865  // There is no such thing as an unnamed class template.
866  if (!Name) {
867    Diag(KWLoc, diag::err_template_unnamed_class);
868    return true;
869  }
870
871  // Find any previous declaration with this name. For a friend with no
872  // scope explicitly specified, we only look for tag declarations (per
873  // C++11 [basic.lookup.elab]p2).
874  DeclContext *SemanticContext;
875  LookupResult Previous(*this, Name, NameLoc,
876                        (SS.isEmpty() && TUK == TUK_Friend)
877                          ? LookupTagName : LookupOrdinaryName,
878                        ForRedeclaration);
879  if (SS.isNotEmpty() && !SS.isInvalid()) {
880    SemanticContext = computeDeclContext(SS, true);
881    if (!SemanticContext) {
882      // FIXME: Horrible, horrible hack! We can't currently represent this
883      // in the AST, and historically we have just ignored such friend
884      // class templates, so don't complain here.
885      if (TUK != TUK_Friend)
886        Diag(NameLoc, diag::err_template_qualified_declarator_no_match)
887          << SS.getScopeRep() << SS.getRange();
888      return true;
889    }
890
891    if (RequireCompleteDeclContext(SS, SemanticContext))
892      return true;
893
894    // If we're adding a template to a dependent context, we may need to
895    // rebuilding some of the types used within the template parameter list,
896    // now that we know what the current instantiation is.
897    if (SemanticContext->isDependentContext()) {
898      ContextRAII SavedContext(*this, SemanticContext);
899      if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
900        Invalid = true;
901    } else if (TUK != TUK_Friend && TUK != TUK_Reference)
902      diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
903
904    LookupQualifiedName(Previous, SemanticContext);
905  } else {
906    SemanticContext = CurContext;
907    LookupName(Previous, S);
908  }
909
910  if (Previous.isAmbiguous())
911    return true;
912
913  NamedDecl *PrevDecl = 0;
914  if (Previous.begin() != Previous.end())
915    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
916
917  // If there is a previous declaration with the same name, check
918  // whether this is a valid redeclaration.
919  ClassTemplateDecl *PrevClassTemplate
920    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
921
922  // We may have found the injected-class-name of a class template,
923  // class template partial specialization, or class template specialization.
924  // In these cases, grab the template that is being defined or specialized.
925  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
926      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
927    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
928    PrevClassTemplate
929      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
930    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
931      PrevClassTemplate
932        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
933            ->getSpecializedTemplate();
934    }
935  }
936
937  if (TUK == TUK_Friend) {
938    // C++ [namespace.memdef]p3:
939    //   [...] When looking for a prior declaration of a class or a function
940    //   declared as a friend, and when the name of the friend class or
941    //   function is neither a qualified name nor a template-id, scopes outside
942    //   the innermost enclosing namespace scope are not considered.
943    if (!SS.isSet()) {
944      DeclContext *OutermostContext = CurContext;
945      while (!OutermostContext->isFileContext())
946        OutermostContext = OutermostContext->getLookupParent();
947
948      if (PrevDecl &&
949          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
950           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
951        SemanticContext = PrevDecl->getDeclContext();
952      } else {
953        // Declarations in outer scopes don't matter. However, the outermost
954        // context we computed is the semantic context for our new
955        // declaration.
956        PrevDecl = PrevClassTemplate = 0;
957        SemanticContext = OutermostContext;
958
959        // Check that the chosen semantic context doesn't already contain a
960        // declaration of this name as a non-tag type.
961        LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
962                              ForRedeclaration);
963        DeclContext *LookupContext = SemanticContext;
964        while (LookupContext->isTransparentContext())
965          LookupContext = LookupContext->getLookupParent();
966        LookupQualifiedName(Previous, LookupContext);
967
968        if (Previous.isAmbiguous())
969          return true;
970
971        if (Previous.begin() != Previous.end())
972          PrevDecl = (*Previous.begin())->getUnderlyingDecl();
973      }
974    }
975  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
976    PrevDecl = PrevClassTemplate = 0;
977
978  if (PrevClassTemplate) {
979    // Ensure that the template parameter lists are compatible. Skip this check
980    // for a friend in a dependent context: the template parameter list itself
981    // could be dependent.
982    if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
983        !TemplateParameterListsAreEqual(TemplateParams,
984                                   PrevClassTemplate->getTemplateParameters(),
985                                        /*Complain=*/true,
986                                        TPL_TemplateMatch))
987      return true;
988
989    // C++ [temp.class]p4:
990    //   In a redeclaration, partial specialization, explicit
991    //   specialization or explicit instantiation of a class template,
992    //   the class-key shall agree in kind with the original class
993    //   template declaration (7.1.5.3).
994    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
995    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
996                                      TUK == TUK_Definition,  KWLoc, *Name)) {
997      Diag(KWLoc, diag::err_use_with_wrong_tag)
998        << Name
999        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
1000      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
1001      Kind = PrevRecordDecl->getTagKind();
1002    }
1003
1004    // Check for redefinition of this class template.
1005    if (TUK == TUK_Definition) {
1006      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1007        Diag(NameLoc, diag::err_redefinition) << Name;
1008        Diag(Def->getLocation(), diag::note_previous_definition);
1009        // FIXME: Would it make sense to try to "forget" the previous
1010        // definition, as part of error recovery?
1011        return true;
1012      }
1013    }
1014  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
1015    // Maybe we will complain about the shadowed template parameter.
1016    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1017    // Just pretend that we didn't see the previous declaration.
1018    PrevDecl = 0;
1019  } else if (PrevDecl) {
1020    // C++ [temp]p5:
1021    //   A class template shall not have the same name as any other
1022    //   template, class, function, object, enumeration, enumerator,
1023    //   namespace, or type in the same scope (3.3), except as specified
1024    //   in (14.5.4).
1025    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1026    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1027    return true;
1028  }
1029
1030  // Check the template parameter list of this declaration, possibly
1031  // merging in the template parameter list from the previous class
1032  // template declaration. Skip this check for a friend in a dependent
1033  // context, because the template parameter list might be dependent.
1034  if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1035      CheckTemplateParameterList(TemplateParams,
1036            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
1037                                 (SS.isSet() && SemanticContext &&
1038                                  SemanticContext->isRecord() &&
1039                                  SemanticContext->isDependentContext())
1040                                   ? TPC_ClassTemplateMember
1041                                   : TPC_ClassTemplate))
1042    Invalid = true;
1043
1044  if (SS.isSet()) {
1045    // If the name of the template was qualified, we must be defining the
1046    // template out-of-line.
1047    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1048      Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1049                                      : diag::err_member_def_does_not_match)
1050        << Name << SemanticContext << SS.getRange();
1051      Invalid = true;
1052    }
1053  }
1054
1055  CXXRecordDecl *NewClass =
1056    CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1057                          PrevClassTemplate?
1058                            PrevClassTemplate->getTemplatedDecl() : 0,
1059                          /*DelayTypeCreation=*/true);
1060  SetNestedNameSpecifier(NewClass, SS);
1061  if (NumOuterTemplateParamLists > 0)
1062    NewClass->setTemplateParameterListsInfo(Context,
1063                                            NumOuterTemplateParamLists,
1064                                            OuterTemplateParamLists);
1065
1066  // Add alignment attributes if necessary; these attributes are checked when
1067  // the ASTContext lays out the structure.
1068  if (TUK == TUK_Definition) {
1069    AddAlignmentAttributesForRecord(NewClass);
1070    AddMsStructLayoutForRecord(NewClass);
1071  }
1072
1073  ClassTemplateDecl *NewTemplate
1074    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1075                                DeclarationName(Name), TemplateParams,
1076                                NewClass, PrevClassTemplate);
1077  NewClass->setDescribedClassTemplate(NewTemplate);
1078
1079  if (ModulePrivateLoc.isValid())
1080    NewTemplate->setModulePrivate();
1081
1082  // Build the type for the class template declaration now.
1083  QualType T = NewTemplate->getInjectedClassNameSpecialization();
1084  T = Context.getInjectedClassNameType(NewClass, T);
1085  assert(T->isDependentType() && "Class template type is not dependent?");
1086  (void)T;
1087
1088  // If we are providing an explicit specialization of a member that is a
1089  // class template, make a note of that.
1090  if (PrevClassTemplate &&
1091      PrevClassTemplate->getInstantiatedFromMemberTemplate())
1092    PrevClassTemplate->setMemberSpecialization();
1093
1094  // Set the access specifier.
1095  if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1096    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1097
1098  // Set the lexical context of these templates
1099  NewClass->setLexicalDeclContext(CurContext);
1100  NewTemplate->setLexicalDeclContext(CurContext);
1101
1102  if (TUK == TUK_Definition)
1103    NewClass->startDefinition();
1104
1105  if (Attr)
1106    ProcessDeclAttributeList(S, NewClass, Attr);
1107
1108  if (PrevClassTemplate)
1109    mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
1110
1111  AddPushedVisibilityAttribute(NewClass);
1112
1113  if (TUK != TUK_Friend)
1114    PushOnScopeChains(NewTemplate, S);
1115  else {
1116    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1117      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1118      NewClass->setAccess(PrevClassTemplate->getAccess());
1119    }
1120
1121    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1122                                       PrevClassTemplate != NULL);
1123
1124    // Friend templates are visible in fairly strange ways.
1125    if (!CurContext->isDependentContext()) {
1126      DeclContext *DC = SemanticContext->getRedeclContext();
1127      DC->makeDeclVisibleInContext(NewTemplate);
1128      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1129        PushOnScopeChains(NewTemplate, EnclosingScope,
1130                          /* AddToContext = */ false);
1131    }
1132
1133    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1134                                            NewClass->getLocation(),
1135                                            NewTemplate,
1136                                    /*FIXME:*/NewClass->getLocation());
1137    Friend->setAccess(AS_public);
1138    CurContext->addDecl(Friend);
1139  }
1140
1141  if (Invalid) {
1142    NewTemplate->setInvalidDecl();
1143    NewClass->setInvalidDecl();
1144  }
1145
1146  ActOnDocumentableDecl(NewTemplate);
1147
1148  return NewTemplate;
1149}
1150
1151/// \brief Diagnose the presence of a default template argument on a
1152/// template parameter, which is ill-formed in certain contexts.
1153///
1154/// \returns true if the default template argument should be dropped.
1155static bool DiagnoseDefaultTemplateArgument(Sema &S,
1156                                            Sema::TemplateParamListContext TPC,
1157                                            SourceLocation ParamLoc,
1158                                            SourceRange DefArgRange) {
1159  switch (TPC) {
1160  case Sema::TPC_ClassTemplate:
1161  case Sema::TPC_TypeAliasTemplate:
1162    return false;
1163
1164  case Sema::TPC_FunctionTemplate:
1165  case Sema::TPC_FriendFunctionTemplateDefinition:
1166    // C++ [temp.param]p9:
1167    //   A default template-argument shall not be specified in a
1168    //   function template declaration or a function template
1169    //   definition [...]
1170    //   If a friend function template declaration specifies a default
1171    //   template-argument, that declaration shall be a definition and shall be
1172    //   the only declaration of the function template in the translation unit.
1173    // (C++98/03 doesn't have this wording; see DR226).
1174    S.Diag(ParamLoc, S.getLangOpts().CPlusPlus0x ?
1175         diag::warn_cxx98_compat_template_parameter_default_in_function_template
1176           : diag::ext_template_parameter_default_in_function_template)
1177      << DefArgRange;
1178    return false;
1179
1180  case Sema::TPC_ClassTemplateMember:
1181    // C++0x [temp.param]p9:
1182    //   A default template-argument shall not be specified in the
1183    //   template-parameter-lists of the definition of a member of a
1184    //   class template that appears outside of the member's class.
1185    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1186      << DefArgRange;
1187    return true;
1188
1189  case Sema::TPC_FriendFunctionTemplate:
1190    // C++ [temp.param]p9:
1191    //   A default template-argument shall not be specified in a
1192    //   friend template declaration.
1193    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1194      << DefArgRange;
1195    return true;
1196
1197    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1198    // for friend function templates if there is only a single
1199    // declaration (and it is a definition). Strange!
1200  }
1201
1202  llvm_unreachable("Invalid TemplateParamListContext!");
1203}
1204
1205/// \brief Check for unexpanded parameter packs within the template parameters
1206/// of a template template parameter, recursively.
1207static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1208                                             TemplateTemplateParmDecl *TTP) {
1209  // A template template parameter which is a parameter pack is also a pack
1210  // expansion.
1211  if (TTP->isParameterPack())
1212    return false;
1213
1214  TemplateParameterList *Params = TTP->getTemplateParameters();
1215  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1216    NamedDecl *P = Params->getParam(I);
1217    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1218      if (!NTTP->isParameterPack() &&
1219          S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1220                                            NTTP->getTypeSourceInfo(),
1221                                      Sema::UPPC_NonTypeTemplateParameterType))
1222        return true;
1223
1224      continue;
1225    }
1226
1227    if (TemplateTemplateParmDecl *InnerTTP
1228                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1229      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1230        return true;
1231  }
1232
1233  return false;
1234}
1235
1236/// \brief Checks the validity of a template parameter list, possibly
1237/// considering the template parameter list from a previous
1238/// declaration.
1239///
1240/// If an "old" template parameter list is provided, it must be
1241/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1242/// template parameter list.
1243///
1244/// \param NewParams Template parameter list for a new template
1245/// declaration. This template parameter list will be updated with any
1246/// default arguments that are carried through from the previous
1247/// template parameter list.
1248///
1249/// \param OldParams If provided, template parameter list from a
1250/// previous declaration of the same template. Default template
1251/// arguments will be merged from the old template parameter list to
1252/// the new template parameter list.
1253///
1254/// \param TPC Describes the context in which we are checking the given
1255/// template parameter list.
1256///
1257/// \returns true if an error occurred, false otherwise.
1258bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1259                                      TemplateParameterList *OldParams,
1260                                      TemplateParamListContext TPC) {
1261  bool Invalid = false;
1262
1263  // C++ [temp.param]p10:
1264  //   The set of default template-arguments available for use with a
1265  //   template declaration or definition is obtained by merging the
1266  //   default arguments from the definition (if in scope) and all
1267  //   declarations in scope in the same way default function
1268  //   arguments are (8.3.6).
1269  bool SawDefaultArgument = false;
1270  SourceLocation PreviousDefaultArgLoc;
1271
1272  // Dummy initialization to avoid warnings.
1273  TemplateParameterList::iterator OldParam = NewParams->end();
1274  if (OldParams)
1275    OldParam = OldParams->begin();
1276
1277  bool RemoveDefaultArguments = false;
1278  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1279                                    NewParamEnd = NewParams->end();
1280       NewParam != NewParamEnd; ++NewParam) {
1281    // Variables used to diagnose redundant default arguments
1282    bool RedundantDefaultArg = false;
1283    SourceLocation OldDefaultLoc;
1284    SourceLocation NewDefaultLoc;
1285
1286    // Variable used to diagnose missing default arguments
1287    bool MissingDefaultArg = false;
1288
1289    // Variable used to diagnose non-final parameter packs
1290    bool SawParameterPack = false;
1291
1292    if (TemplateTypeParmDecl *NewTypeParm
1293          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1294      // Check the presence of a default argument here.
1295      if (NewTypeParm->hasDefaultArgument() &&
1296          DiagnoseDefaultTemplateArgument(*this, TPC,
1297                                          NewTypeParm->getLocation(),
1298               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1299                                                       .getSourceRange()))
1300        NewTypeParm->removeDefaultArgument();
1301
1302      // Merge default arguments for template type parameters.
1303      TemplateTypeParmDecl *OldTypeParm
1304          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1305
1306      if (NewTypeParm->isParameterPack()) {
1307        assert(!NewTypeParm->hasDefaultArgument() &&
1308               "Parameter packs can't have a default argument!");
1309        SawParameterPack = true;
1310      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1311                 NewTypeParm->hasDefaultArgument()) {
1312        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1313        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1314        SawDefaultArgument = true;
1315        RedundantDefaultArg = true;
1316        PreviousDefaultArgLoc = NewDefaultLoc;
1317      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1318        // Merge the default argument from the old declaration to the
1319        // new declaration.
1320        SawDefaultArgument = true;
1321        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1322                                        true);
1323        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1324      } else if (NewTypeParm->hasDefaultArgument()) {
1325        SawDefaultArgument = true;
1326        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1327      } else if (SawDefaultArgument)
1328        MissingDefaultArg = true;
1329    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1330               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1331      // Check for unexpanded parameter packs.
1332      if (!NewNonTypeParm->isParameterPack() &&
1333          DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1334                                          NewNonTypeParm->getTypeSourceInfo(),
1335                                          UPPC_NonTypeTemplateParameterType)) {
1336        Invalid = true;
1337        continue;
1338      }
1339
1340      // Check the presence of a default argument here.
1341      if (NewNonTypeParm->hasDefaultArgument() &&
1342          DiagnoseDefaultTemplateArgument(*this, TPC,
1343                                          NewNonTypeParm->getLocation(),
1344                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1345        NewNonTypeParm->removeDefaultArgument();
1346      }
1347
1348      // Merge default arguments for non-type template parameters
1349      NonTypeTemplateParmDecl *OldNonTypeParm
1350        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1351      if (NewNonTypeParm->isParameterPack()) {
1352        assert(!NewNonTypeParm->hasDefaultArgument() &&
1353               "Parameter packs can't have a default argument!");
1354        if (!NewNonTypeParm->isPackExpansion())
1355          SawParameterPack = true;
1356      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1357          NewNonTypeParm->hasDefaultArgument()) {
1358        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1359        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1360        SawDefaultArgument = true;
1361        RedundantDefaultArg = true;
1362        PreviousDefaultArgLoc = NewDefaultLoc;
1363      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1364        // Merge the default argument from the old declaration to the
1365        // new declaration.
1366        SawDefaultArgument = true;
1367        // FIXME: We need to create a new kind of "default argument"
1368        // expression that points to a previous non-type template
1369        // parameter.
1370        NewNonTypeParm->setDefaultArgument(
1371                                         OldNonTypeParm->getDefaultArgument(),
1372                                         /*Inherited=*/ true);
1373        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1374      } else if (NewNonTypeParm->hasDefaultArgument()) {
1375        SawDefaultArgument = true;
1376        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1377      } else if (SawDefaultArgument)
1378        MissingDefaultArg = true;
1379    } else {
1380      TemplateTemplateParmDecl *NewTemplateParm
1381        = cast<TemplateTemplateParmDecl>(*NewParam);
1382
1383      // Check for unexpanded parameter packs, recursively.
1384      if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1385        Invalid = true;
1386        continue;
1387      }
1388
1389      // Check the presence of a default argument here.
1390      if (NewTemplateParm->hasDefaultArgument() &&
1391          DiagnoseDefaultTemplateArgument(*this, TPC,
1392                                          NewTemplateParm->getLocation(),
1393                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1394        NewTemplateParm->removeDefaultArgument();
1395
1396      // Merge default arguments for template template parameters
1397      TemplateTemplateParmDecl *OldTemplateParm
1398        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1399      if (NewTemplateParm->isParameterPack()) {
1400        assert(!NewTemplateParm->hasDefaultArgument() &&
1401               "Parameter packs can't have a default argument!");
1402        if (!NewTemplateParm->isPackExpansion())
1403          SawParameterPack = true;
1404      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1405          NewTemplateParm->hasDefaultArgument()) {
1406        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1407        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1408        SawDefaultArgument = true;
1409        RedundantDefaultArg = true;
1410        PreviousDefaultArgLoc = NewDefaultLoc;
1411      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1412        // Merge the default argument from the old declaration to the
1413        // new declaration.
1414        SawDefaultArgument = true;
1415        // FIXME: We need to create a new kind of "default argument" expression
1416        // that points to a previous template template parameter.
1417        NewTemplateParm->setDefaultArgument(
1418                                          OldTemplateParm->getDefaultArgument(),
1419                                          /*Inherited=*/ true);
1420        PreviousDefaultArgLoc
1421          = OldTemplateParm->getDefaultArgument().getLocation();
1422      } else if (NewTemplateParm->hasDefaultArgument()) {
1423        SawDefaultArgument = true;
1424        PreviousDefaultArgLoc
1425          = NewTemplateParm->getDefaultArgument().getLocation();
1426      } else if (SawDefaultArgument)
1427        MissingDefaultArg = true;
1428    }
1429
1430    // C++11 [temp.param]p11:
1431    //   If a template parameter of a primary class template or alias template
1432    //   is a template parameter pack, it shall be the last template parameter.
1433    if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1434        (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) {
1435      Diag((*NewParam)->getLocation(),
1436           diag::err_template_param_pack_must_be_last_template_parameter);
1437      Invalid = true;
1438    }
1439
1440    if (RedundantDefaultArg) {
1441      // C++ [temp.param]p12:
1442      //   A template-parameter shall not be given default arguments
1443      //   by two different declarations in the same scope.
1444      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1445      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1446      Invalid = true;
1447    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1448      // C++ [temp.param]p11:
1449      //   If a template-parameter of a class template has a default
1450      //   template-argument, each subsequent template-parameter shall either
1451      //   have a default template-argument supplied or be a template parameter
1452      //   pack.
1453      Diag((*NewParam)->getLocation(),
1454           diag::err_template_param_default_arg_missing);
1455      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1456      Invalid = true;
1457      RemoveDefaultArguments = true;
1458    }
1459
1460    // If we have an old template parameter list that we're merging
1461    // in, move on to the next parameter.
1462    if (OldParams)
1463      ++OldParam;
1464  }
1465
1466  // We were missing some default arguments at the end of the list, so remove
1467  // all of the default arguments.
1468  if (RemoveDefaultArguments) {
1469    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1470                                      NewParamEnd = NewParams->end();
1471         NewParam != NewParamEnd; ++NewParam) {
1472      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1473        TTP->removeDefaultArgument();
1474      else if (NonTypeTemplateParmDecl *NTTP
1475                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1476        NTTP->removeDefaultArgument();
1477      else
1478        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1479    }
1480  }
1481
1482  return Invalid;
1483}
1484
1485namespace {
1486
1487/// A class which looks for a use of a certain level of template
1488/// parameter.
1489struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1490  typedef RecursiveASTVisitor<DependencyChecker> super;
1491
1492  unsigned Depth;
1493  bool Match;
1494
1495  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1496    NamedDecl *ND = Params->getParam(0);
1497    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1498      Depth = PD->getDepth();
1499    } else if (NonTypeTemplateParmDecl *PD =
1500                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1501      Depth = PD->getDepth();
1502    } else {
1503      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1504    }
1505  }
1506
1507  bool Matches(unsigned ParmDepth) {
1508    if (ParmDepth >= Depth) {
1509      Match = true;
1510      return true;
1511    }
1512    return false;
1513  }
1514
1515  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1516    return !Matches(T->getDepth());
1517  }
1518
1519  bool TraverseTemplateName(TemplateName N) {
1520    if (TemplateTemplateParmDecl *PD =
1521          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1522      if (Matches(PD->getDepth())) return false;
1523    return super::TraverseTemplateName(N);
1524  }
1525
1526  bool VisitDeclRefExpr(DeclRefExpr *E) {
1527    if (NonTypeTemplateParmDecl *PD =
1528          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1529      if (PD->getDepth() == Depth) {
1530        Match = true;
1531        return false;
1532      }
1533    }
1534    return super::VisitDeclRefExpr(E);
1535  }
1536
1537  bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1538    return TraverseType(T->getInjectedSpecializationType());
1539  }
1540};
1541}
1542
1543/// Determines whether a given type depends on the given parameter
1544/// list.
1545static bool
1546DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1547  DependencyChecker Checker(Params);
1548  Checker.TraverseType(T);
1549  return Checker.Match;
1550}
1551
1552// Find the source range corresponding to the named type in the given
1553// nested-name-specifier, if any.
1554static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1555                                                       QualType T,
1556                                                       const CXXScopeSpec &SS) {
1557  NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1558  while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1559    if (const Type *CurType = NNS->getAsType()) {
1560      if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1561        return NNSLoc.getTypeLoc().getSourceRange();
1562    } else
1563      break;
1564
1565    NNSLoc = NNSLoc.getPrefix();
1566  }
1567
1568  return SourceRange();
1569}
1570
1571/// \brief Match the given template parameter lists to the given scope
1572/// specifier, returning the template parameter list that applies to the
1573/// name.
1574///
1575/// \param DeclStartLoc the start of the declaration that has a scope
1576/// specifier or a template parameter list.
1577///
1578/// \param DeclLoc The location of the declaration itself.
1579///
1580/// \param SS the scope specifier that will be matched to the given template
1581/// parameter lists. This scope specifier precedes a qualified name that is
1582/// being declared.
1583///
1584/// \param ParamLists the template parameter lists, from the outermost to the
1585/// innermost template parameter lists.
1586///
1587/// \param NumParamLists the number of template parameter lists in ParamLists.
1588///
1589/// \param IsFriend Whether to apply the slightly different rules for
1590/// matching template parameters to scope specifiers in friend
1591/// declarations.
1592///
1593/// \param IsExplicitSpecialization will be set true if the entity being
1594/// declared is an explicit specialization, false otherwise.
1595///
1596/// \returns the template parameter list, if any, that corresponds to the
1597/// name that is preceded by the scope specifier @p SS. This template
1598/// parameter list may have template parameters (if we're declaring a
1599/// template) or may have no template parameters (if we're declaring a
1600/// template specialization), or may be NULL (if what we're declaring isn't
1601/// itself a template).
1602TemplateParameterList *
1603Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1604                                              SourceLocation DeclLoc,
1605                                              const CXXScopeSpec &SS,
1606                                          TemplateParameterList **ParamLists,
1607                                              unsigned NumParamLists,
1608                                              bool IsFriend,
1609                                              bool &IsExplicitSpecialization,
1610                                              bool &Invalid) {
1611  IsExplicitSpecialization = false;
1612  Invalid = false;
1613
1614  // The sequence of nested types to which we will match up the template
1615  // parameter lists. We first build this list by starting with the type named
1616  // by the nested-name-specifier and walking out until we run out of types.
1617  SmallVector<QualType, 4> NestedTypes;
1618  QualType T;
1619  if (SS.getScopeRep()) {
1620    if (CXXRecordDecl *Record
1621              = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1622      T = Context.getTypeDeclType(Record);
1623    else
1624      T = QualType(SS.getScopeRep()->getAsType(), 0);
1625  }
1626
1627  // If we found an explicit specialization that prevents us from needing
1628  // 'template<>' headers, this will be set to the location of that
1629  // explicit specialization.
1630  SourceLocation ExplicitSpecLoc;
1631
1632  while (!T.isNull()) {
1633    NestedTypes.push_back(T);
1634
1635    // Retrieve the parent of a record type.
1636    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1637      // If this type is an explicit specialization, we're done.
1638      if (ClassTemplateSpecializationDecl *Spec
1639          = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1640        if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1641            Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1642          ExplicitSpecLoc = Spec->getLocation();
1643          break;
1644        }
1645      } else if (Record->getTemplateSpecializationKind()
1646                                                == TSK_ExplicitSpecialization) {
1647        ExplicitSpecLoc = Record->getLocation();
1648        break;
1649      }
1650
1651      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1652        T = Context.getTypeDeclType(Parent);
1653      else
1654        T = QualType();
1655      continue;
1656    }
1657
1658    if (const TemplateSpecializationType *TST
1659                                     = T->getAs<TemplateSpecializationType>()) {
1660      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1661        if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1662          T = Context.getTypeDeclType(Parent);
1663        else
1664          T = QualType();
1665        continue;
1666      }
1667    }
1668
1669    // Look one step prior in a dependent template specialization type.
1670    if (const DependentTemplateSpecializationType *DependentTST
1671                          = T->getAs<DependentTemplateSpecializationType>()) {
1672      if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1673        T = QualType(NNS->getAsType(), 0);
1674      else
1675        T = QualType();
1676      continue;
1677    }
1678
1679    // Look one step prior in a dependent name type.
1680    if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1681      if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1682        T = QualType(NNS->getAsType(), 0);
1683      else
1684        T = QualType();
1685      continue;
1686    }
1687
1688    // Retrieve the parent of an enumeration type.
1689    if (const EnumType *EnumT = T->getAs<EnumType>()) {
1690      // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1691      // check here.
1692      EnumDecl *Enum = EnumT->getDecl();
1693
1694      // Get to the parent type.
1695      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1696        T = Context.getTypeDeclType(Parent);
1697      else
1698        T = QualType();
1699      continue;
1700    }
1701
1702    T = QualType();
1703  }
1704  // Reverse the nested types list, since we want to traverse from the outermost
1705  // to the innermost while checking template-parameter-lists.
1706  std::reverse(NestedTypes.begin(), NestedTypes.end());
1707
1708  // C++0x [temp.expl.spec]p17:
1709  //   A member or a member template may be nested within many
1710  //   enclosing class templates. In an explicit specialization for
1711  //   such a member, the member declaration shall be preceded by a
1712  //   template<> for each enclosing class template that is
1713  //   explicitly specialized.
1714  bool SawNonEmptyTemplateParameterList = false;
1715  unsigned ParamIdx = 0;
1716  for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1717       ++TypeIdx) {
1718    T = NestedTypes[TypeIdx];
1719
1720    // Whether we expect a 'template<>' header.
1721    bool NeedEmptyTemplateHeader = false;
1722
1723    // Whether we expect a template header with parameters.
1724    bool NeedNonemptyTemplateHeader = false;
1725
1726    // For a dependent type, the set of template parameters that we
1727    // expect to see.
1728    TemplateParameterList *ExpectedTemplateParams = 0;
1729
1730    // C++0x [temp.expl.spec]p15:
1731    //   A member or a member template may be nested within many enclosing
1732    //   class templates. In an explicit specialization for such a member, the
1733    //   member declaration shall be preceded by a template<> for each
1734    //   enclosing class template that is explicitly specialized.
1735    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1736      if (ClassTemplatePartialSpecializationDecl *Partial
1737            = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1738        ExpectedTemplateParams = Partial->getTemplateParameters();
1739        NeedNonemptyTemplateHeader = true;
1740      } else if (Record->isDependentType()) {
1741        if (Record->getDescribedClassTemplate()) {
1742          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1743                                                      ->getTemplateParameters();
1744          NeedNonemptyTemplateHeader = true;
1745        }
1746      } else if (ClassTemplateSpecializationDecl *Spec
1747                     = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1748        // C++0x [temp.expl.spec]p4:
1749        //   Members of an explicitly specialized class template are defined
1750        //   in the same manner as members of normal classes, and not using
1751        //   the template<> syntax.
1752        if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1753          NeedEmptyTemplateHeader = true;
1754        else
1755          continue;
1756      } else if (Record->getTemplateSpecializationKind()) {
1757        if (Record->getTemplateSpecializationKind()
1758                                                != TSK_ExplicitSpecialization &&
1759            TypeIdx == NumTypes - 1)
1760          IsExplicitSpecialization = true;
1761
1762        continue;
1763      }
1764    } else if (const TemplateSpecializationType *TST
1765                                     = T->getAs<TemplateSpecializationType>()) {
1766      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1767        ExpectedTemplateParams = Template->getTemplateParameters();
1768        NeedNonemptyTemplateHeader = true;
1769      }
1770    } else if (T->getAs<DependentTemplateSpecializationType>()) {
1771      // FIXME:  We actually could/should check the template arguments here
1772      // against the corresponding template parameter list.
1773      NeedNonemptyTemplateHeader = false;
1774    }
1775
1776    // C++ [temp.expl.spec]p16:
1777    //   In an explicit specialization declaration for a member of a class
1778    //   template or a member template that ap- pears in namespace scope, the
1779    //   member template and some of its enclosing class templates may remain
1780    //   unspecialized, except that the declaration shall not explicitly
1781    //   specialize a class member template if its en- closing class templates
1782    //   are not explicitly specialized as well.
1783    if (ParamIdx < NumParamLists) {
1784      if (ParamLists[ParamIdx]->size() == 0) {
1785        if (SawNonEmptyTemplateParameterList) {
1786          Diag(DeclLoc, diag::err_specialize_member_of_template)
1787            << ParamLists[ParamIdx]->getSourceRange();
1788          Invalid = true;
1789          IsExplicitSpecialization = false;
1790          return 0;
1791        }
1792      } else
1793        SawNonEmptyTemplateParameterList = true;
1794    }
1795
1796    if (NeedEmptyTemplateHeader) {
1797      // If we're on the last of the types, and we need a 'template<>' header
1798      // here, then it's an explicit specialization.
1799      if (TypeIdx == NumTypes - 1)
1800        IsExplicitSpecialization = true;
1801
1802      if (ParamIdx < NumParamLists) {
1803        if (ParamLists[ParamIdx]->size() > 0) {
1804          // The header has template parameters when it shouldn't. Complain.
1805          Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1806               diag::err_template_param_list_matches_nontemplate)
1807            << T
1808            << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1809                           ParamLists[ParamIdx]->getRAngleLoc())
1810            << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1811          Invalid = true;
1812          return 0;
1813        }
1814
1815        // Consume this template header.
1816        ++ParamIdx;
1817        continue;
1818      }
1819
1820      if (!IsFriend) {
1821        // We don't have a template header, but we should.
1822        SourceLocation ExpectedTemplateLoc;
1823        if (NumParamLists > 0)
1824          ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1825        else
1826          ExpectedTemplateLoc = DeclStartLoc;
1827
1828        Diag(DeclLoc, diag::err_template_spec_needs_header)
1829          << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
1830          << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1831      }
1832
1833      continue;
1834    }
1835
1836    if (NeedNonemptyTemplateHeader) {
1837      // In friend declarations we can have template-ids which don't
1838      // depend on the corresponding template parameter lists.  But
1839      // assume that empty parameter lists are supposed to match this
1840      // template-id.
1841      if (IsFriend && T->isDependentType()) {
1842        if (ParamIdx < NumParamLists &&
1843            DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1844          ExpectedTemplateParams = 0;
1845        else
1846          continue;
1847      }
1848
1849      if (ParamIdx < NumParamLists) {
1850        // Check the template parameter list, if we can.
1851        if (ExpectedTemplateParams &&
1852            !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1853                                            ExpectedTemplateParams,
1854                                            true, TPL_TemplateMatch))
1855          Invalid = true;
1856
1857        if (!Invalid &&
1858            CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1859                                       TPC_ClassTemplateMember))
1860          Invalid = true;
1861
1862        ++ParamIdx;
1863        continue;
1864      }
1865
1866      Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1867        << T
1868        << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1869      Invalid = true;
1870      continue;
1871    }
1872  }
1873
1874  // If there were at least as many template-ids as there were template
1875  // parameter lists, then there are no template parameter lists remaining for
1876  // the declaration itself.
1877  if (ParamIdx >= NumParamLists)
1878    return 0;
1879
1880  // If there were too many template parameter lists, complain about that now.
1881  if (ParamIdx < NumParamLists - 1) {
1882    bool HasAnyExplicitSpecHeader = false;
1883    bool AllExplicitSpecHeaders = true;
1884    for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) {
1885      if (ParamLists[I]->size() == 0)
1886        HasAnyExplicitSpecHeader = true;
1887      else
1888        AllExplicitSpecHeaders = false;
1889    }
1890
1891    Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1892         AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers
1893                               : diag::err_template_spec_extra_headers)
1894      << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1895                     ParamLists[NumParamLists - 2]->getRAngleLoc());
1896
1897    // If there was a specialization somewhere, such that 'template<>' is
1898    // not required, and there were any 'template<>' headers, note where the
1899    // specialization occurred.
1900    if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1901      Diag(ExplicitSpecLoc,
1902           diag::note_explicit_template_spec_does_not_need_header)
1903        << NestedTypes.back();
1904
1905    // We have a template parameter list with no corresponding scope, which
1906    // means that the resulting template declaration can't be instantiated
1907    // properly (we'll end up with dependent nodes when we shouldn't).
1908    if (!AllExplicitSpecHeaders)
1909      Invalid = true;
1910  }
1911
1912  // C++ [temp.expl.spec]p16:
1913  //   In an explicit specialization declaration for a member of a class
1914  //   template or a member template that ap- pears in namespace scope, the
1915  //   member template and some of its enclosing class templates may remain
1916  //   unspecialized, except that the declaration shall not explicitly
1917  //   specialize a class member template if its en- closing class templates
1918  //   are not explicitly specialized as well.
1919  if (ParamLists[NumParamLists - 1]->size() == 0 &&
1920      SawNonEmptyTemplateParameterList) {
1921    Diag(DeclLoc, diag::err_specialize_member_of_template)
1922      << ParamLists[ParamIdx]->getSourceRange();
1923    Invalid = true;
1924    IsExplicitSpecialization = false;
1925    return 0;
1926  }
1927
1928  // Return the last template parameter list, which corresponds to the
1929  // entity being declared.
1930  return ParamLists[NumParamLists - 1];
1931}
1932
1933void Sema::NoteAllFoundTemplates(TemplateName Name) {
1934  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1935    Diag(Template->getLocation(), diag::note_template_declared_here)
1936      << (isa<FunctionTemplateDecl>(Template)? 0
1937          : isa<ClassTemplateDecl>(Template)? 1
1938          : isa<TypeAliasTemplateDecl>(Template)? 2
1939          : 3)
1940      << Template->getDeclName();
1941    return;
1942  }
1943
1944  if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1945    for (OverloadedTemplateStorage::iterator I = OST->begin(),
1946                                          IEnd = OST->end();
1947         I != IEnd; ++I)
1948      Diag((*I)->getLocation(), diag::note_template_declared_here)
1949        << 0 << (*I)->getDeclName();
1950
1951    return;
1952  }
1953}
1954
1955QualType Sema::CheckTemplateIdType(TemplateName Name,
1956                                   SourceLocation TemplateLoc,
1957                                   TemplateArgumentListInfo &TemplateArgs) {
1958  DependentTemplateName *DTN
1959    = Name.getUnderlying().getAsDependentTemplateName();
1960  if (DTN && DTN->isIdentifier())
1961    // When building a template-id where the template-name is dependent,
1962    // assume the template is a type template. Either our assumption is
1963    // correct, or the code is ill-formed and will be diagnosed when the
1964    // dependent name is substituted.
1965    return Context.getDependentTemplateSpecializationType(ETK_None,
1966                                                          DTN->getQualifier(),
1967                                                          DTN->getIdentifier(),
1968                                                          TemplateArgs);
1969
1970  TemplateDecl *Template = Name.getAsTemplateDecl();
1971  if (!Template || isa<FunctionTemplateDecl>(Template)) {
1972    // We might have a substituted template template parameter pack. If so,
1973    // build a template specialization type for it.
1974    if (Name.getAsSubstTemplateTemplateParmPack())
1975      return Context.getTemplateSpecializationType(Name, TemplateArgs);
1976
1977    Diag(TemplateLoc, diag::err_template_id_not_a_type)
1978      << Name;
1979    NoteAllFoundTemplates(Name);
1980    return QualType();
1981  }
1982
1983  // Check that the template argument list is well-formed for this
1984  // template.
1985  SmallVector<TemplateArgument, 4> Converted;
1986  bool ExpansionIntoFixedList = false;
1987  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1988                                false, Converted, &ExpansionIntoFixedList))
1989    return QualType();
1990
1991  QualType CanonType;
1992
1993  bool InstantiationDependent = false;
1994  TypeAliasTemplateDecl *AliasTemplate = 0;
1995  if (!ExpansionIntoFixedList &&
1996      (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) {
1997    // Find the canonical type for this type alias template specialization.
1998    TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
1999    if (Pattern->isInvalidDecl())
2000      return QualType();
2001
2002    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2003                                      Converted.data(), Converted.size());
2004
2005    // Only substitute for the innermost template argument list.
2006    MultiLevelTemplateArgumentList TemplateArgLists;
2007    TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
2008    unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
2009    for (unsigned I = 0; I < Depth; ++I)
2010      TemplateArgLists.addOuterTemplateArguments(0, 0);
2011
2012    LocalInstantiationScope Scope(*this);
2013    InstantiatingTemplate Inst(*this, TemplateLoc, Template);
2014    if (Inst)
2015      return QualType();
2016
2017    CanonType = SubstType(Pattern->getUnderlyingType(),
2018                          TemplateArgLists, AliasTemplate->getLocation(),
2019                          AliasTemplate->getDeclName());
2020    if (CanonType.isNull())
2021      return QualType();
2022  } else if (Name.isDependent() ||
2023             TemplateSpecializationType::anyDependentTemplateArguments(
2024               TemplateArgs, InstantiationDependent)) {
2025    // This class template specialization is a dependent
2026    // type. Therefore, its canonical type is another class template
2027    // specialization type that contains all of the converted
2028    // arguments in canonical form. This ensures that, e.g., A<T> and
2029    // A<T, T> have identical types when A is declared as:
2030    //
2031    //   template<typename T, typename U = T> struct A;
2032    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
2033    CanonType = Context.getTemplateSpecializationType(CanonName,
2034                                                      Converted.data(),
2035                                                      Converted.size());
2036
2037    // FIXME: CanonType is not actually the canonical type, and unfortunately
2038    // it is a TemplateSpecializationType that we will never use again.
2039    // In the future, we need to teach getTemplateSpecializationType to only
2040    // build the canonical type and return that to us.
2041    CanonType = Context.getCanonicalType(CanonType);
2042
2043    // This might work out to be a current instantiation, in which
2044    // case the canonical type needs to be the InjectedClassNameType.
2045    //
2046    // TODO: in theory this could be a simple hashtable lookup; most
2047    // changes to CurContext don't change the set of current
2048    // instantiations.
2049    if (isa<ClassTemplateDecl>(Template)) {
2050      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
2051        // If we get out to a namespace, we're done.
2052        if (Ctx->isFileContext()) break;
2053
2054        // If this isn't a record, keep looking.
2055        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
2056        if (!Record) continue;
2057
2058        // Look for one of the two cases with InjectedClassNameTypes
2059        // and check whether it's the same template.
2060        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
2061            !Record->getDescribedClassTemplate())
2062          continue;
2063
2064        // Fetch the injected class name type and check whether its
2065        // injected type is equal to the type we just built.
2066        QualType ICNT = Context.getTypeDeclType(Record);
2067        QualType Injected = cast<InjectedClassNameType>(ICNT)
2068          ->getInjectedSpecializationType();
2069
2070        if (CanonType != Injected->getCanonicalTypeInternal())
2071          continue;
2072
2073        // If so, the canonical type of this TST is the injected
2074        // class name type of the record we just found.
2075        assert(ICNT.isCanonical());
2076        CanonType = ICNT;
2077        break;
2078      }
2079    }
2080  } else if (ClassTemplateDecl *ClassTemplate
2081               = dyn_cast<ClassTemplateDecl>(Template)) {
2082    // Find the class template specialization declaration that
2083    // corresponds to these arguments.
2084    void *InsertPos = 0;
2085    ClassTemplateSpecializationDecl *Decl
2086      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
2087                                          InsertPos);
2088    if (!Decl) {
2089      // This is the first time we have referenced this class template
2090      // specialization. Create the canonical declaration and add it to
2091      // the set of specializations.
2092      Decl = ClassTemplateSpecializationDecl::Create(Context,
2093                            ClassTemplate->getTemplatedDecl()->getTagKind(),
2094                                                ClassTemplate->getDeclContext(),
2095                            ClassTemplate->getTemplatedDecl()->getLocStart(),
2096                                                ClassTemplate->getLocation(),
2097                                                     ClassTemplate,
2098                                                     Converted.data(),
2099                                                     Converted.size(), 0);
2100      ClassTemplate->AddSpecialization(Decl, InsertPos);
2101      if (ClassTemplate->isOutOfLine())
2102        Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
2103    }
2104
2105    CanonType = Context.getTypeDeclType(Decl);
2106    assert(isa<RecordType>(CanonType) &&
2107           "type of non-dependent specialization is not a RecordType");
2108  }
2109
2110  // Build the fully-sugared type for this class template
2111  // specialization, which refers back to the class template
2112  // specialization we created or found.
2113  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2114}
2115
2116TypeResult
2117Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
2118                          TemplateTy TemplateD, SourceLocation TemplateLoc,
2119                          SourceLocation LAngleLoc,
2120                          ASTTemplateArgsPtr TemplateArgsIn,
2121                          SourceLocation RAngleLoc,
2122                          bool IsCtorOrDtorName) {
2123  if (SS.isInvalid())
2124    return true;
2125
2126  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2127
2128  // Translate the parser's template argument list in our AST format.
2129  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2130  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2131
2132  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2133    QualType T
2134      = Context.getDependentTemplateSpecializationType(ETK_None,
2135                                                       DTN->getQualifier(),
2136                                                       DTN->getIdentifier(),
2137                                                       TemplateArgs);
2138    // Build type-source information.
2139    TypeLocBuilder TLB;
2140    DependentTemplateSpecializationTypeLoc SpecTL
2141      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2142    SpecTL.setElaboratedKeywordLoc(SourceLocation());
2143    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2144    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2145    SpecTL.setTemplateNameLoc(TemplateLoc);
2146    SpecTL.setLAngleLoc(LAngleLoc);
2147    SpecTL.setRAngleLoc(RAngleLoc);
2148    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2149      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2150    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2151  }
2152
2153  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2154
2155  if (Result.isNull())
2156    return true;
2157
2158  // Build type-source information.
2159  TypeLocBuilder TLB;
2160  TemplateSpecializationTypeLoc SpecTL
2161    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2162  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2163  SpecTL.setTemplateNameLoc(TemplateLoc);
2164  SpecTL.setLAngleLoc(LAngleLoc);
2165  SpecTL.setRAngleLoc(RAngleLoc);
2166  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2167    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2168
2169  // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2170  // constructor or destructor name (in such a case, the scope specifier
2171  // will be attached to the enclosing Decl or Expr node).
2172  if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2173    // Create an elaborated-type-specifier containing the nested-name-specifier.
2174    Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2175    ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2176    ElabTL.setElaboratedKeywordLoc(SourceLocation());
2177    ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2178  }
2179
2180  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2181}
2182
2183TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2184                                        TypeSpecifierType TagSpec,
2185                                        SourceLocation TagLoc,
2186                                        CXXScopeSpec &SS,
2187                                        SourceLocation TemplateKWLoc,
2188                                        TemplateTy TemplateD,
2189                                        SourceLocation TemplateLoc,
2190                                        SourceLocation LAngleLoc,
2191                                        ASTTemplateArgsPtr TemplateArgsIn,
2192                                        SourceLocation RAngleLoc) {
2193  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2194
2195  // Translate the parser's template argument list in our AST format.
2196  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2197  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2198
2199  // Determine the tag kind
2200  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2201  ElaboratedTypeKeyword Keyword
2202    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2203
2204  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2205    QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2206                                                          DTN->getQualifier(),
2207                                                          DTN->getIdentifier(),
2208                                                                TemplateArgs);
2209
2210    // Build type-source information.
2211    TypeLocBuilder TLB;
2212    DependentTemplateSpecializationTypeLoc SpecTL
2213      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2214    SpecTL.setElaboratedKeywordLoc(TagLoc);
2215    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2216    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2217    SpecTL.setTemplateNameLoc(TemplateLoc);
2218    SpecTL.setLAngleLoc(LAngleLoc);
2219    SpecTL.setRAngleLoc(RAngleLoc);
2220    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2221      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2222    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2223  }
2224
2225  if (TypeAliasTemplateDecl *TAT =
2226        dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2227    // C++0x [dcl.type.elab]p2:
2228    //   If the identifier resolves to a typedef-name or the simple-template-id
2229    //   resolves to an alias template specialization, the
2230    //   elaborated-type-specifier is ill-formed.
2231    Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2232    Diag(TAT->getLocation(), diag::note_declared_at);
2233  }
2234
2235  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2236  if (Result.isNull())
2237    return TypeResult(true);
2238
2239  // Check the tag kind
2240  if (const RecordType *RT = Result->getAs<RecordType>()) {
2241    RecordDecl *D = RT->getDecl();
2242
2243    IdentifierInfo *Id = D->getIdentifier();
2244    assert(Id && "templated class must have an identifier");
2245
2246    if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2247                                      TagLoc, *Id)) {
2248      Diag(TagLoc, diag::err_use_with_wrong_tag)
2249        << Result
2250        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2251      Diag(D->getLocation(), diag::note_previous_use);
2252    }
2253  }
2254
2255  // Provide source-location information for the template specialization.
2256  TypeLocBuilder TLB;
2257  TemplateSpecializationTypeLoc SpecTL
2258    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2259  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2260  SpecTL.setTemplateNameLoc(TemplateLoc);
2261  SpecTL.setLAngleLoc(LAngleLoc);
2262  SpecTL.setRAngleLoc(RAngleLoc);
2263  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2264    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2265
2266  // Construct an elaborated type containing the nested-name-specifier (if any)
2267  // and tag keyword.
2268  Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2269  ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2270  ElabTL.setElaboratedKeywordLoc(TagLoc);
2271  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2272  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2273}
2274
2275ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2276                                     SourceLocation TemplateKWLoc,
2277                                     LookupResult &R,
2278                                     bool RequiresADL,
2279                                 const TemplateArgumentListInfo *TemplateArgs) {
2280  // FIXME: Can we do any checking at this point? I guess we could check the
2281  // template arguments that we have against the template name, if the template
2282  // name refers to a single template. That's not a terribly common case,
2283  // though.
2284  // foo<int> could identify a single function unambiguously
2285  // This approach does NOT work, since f<int>(1);
2286  // gets resolved prior to resorting to overload resolution
2287  // i.e., template<class T> void f(double);
2288  //       vs template<class T, class U> void f(U);
2289
2290  // These should be filtered out by our callers.
2291  assert(!R.empty() && "empty lookup results when building templateid");
2292  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2293
2294  // We don't want lookup warnings at this point.
2295  R.suppressDiagnostics();
2296
2297  UnresolvedLookupExpr *ULE
2298    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2299                                   SS.getWithLocInContext(Context),
2300                                   TemplateKWLoc,
2301                                   R.getLookupNameInfo(),
2302                                   RequiresADL, TemplateArgs,
2303                                   R.begin(), R.end());
2304
2305  return Owned(ULE);
2306}
2307
2308// We actually only call this from template instantiation.
2309ExprResult
2310Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2311                                   SourceLocation TemplateKWLoc,
2312                                   const DeclarationNameInfo &NameInfo,
2313                             const TemplateArgumentListInfo *TemplateArgs) {
2314  assert(TemplateArgs || TemplateKWLoc.isValid());
2315  DeclContext *DC;
2316  if (!(DC = computeDeclContext(SS, false)) ||
2317      DC->isDependentContext() ||
2318      RequireCompleteDeclContext(SS, DC))
2319    return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
2320
2321  bool MemberOfUnknownSpecialization;
2322  LookupResult R(*this, NameInfo, LookupOrdinaryName);
2323  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
2324                     MemberOfUnknownSpecialization);
2325
2326  if (R.isAmbiguous())
2327    return ExprError();
2328
2329  if (R.empty()) {
2330    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2331      << NameInfo.getName() << SS.getRange();
2332    return ExprError();
2333  }
2334
2335  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2336    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2337      << (NestedNameSpecifier*) SS.getScopeRep()
2338      << NameInfo.getName() << SS.getRange();
2339    Diag(Temp->getLocation(), diag::note_referenced_class_template);
2340    return ExprError();
2341  }
2342
2343  return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
2344}
2345
2346/// \brief Form a dependent template name.
2347///
2348/// This action forms a dependent template name given the template
2349/// name and its (presumably dependent) scope specifier. For
2350/// example, given "MetaFun::template apply", the scope specifier \p
2351/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2352/// of the "template" keyword, and "apply" is the \p Name.
2353TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2354                                                  CXXScopeSpec &SS,
2355                                                  SourceLocation TemplateKWLoc,
2356                                                  UnqualifiedId &Name,
2357                                                  ParsedType ObjectType,
2358                                                  bool EnteringContext,
2359                                                  TemplateTy &Result) {
2360  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
2361    Diag(TemplateKWLoc,
2362         getLangOpts().CPlusPlus0x ?
2363           diag::warn_cxx98_compat_template_outside_of_template :
2364           diag::ext_template_outside_of_template)
2365      << FixItHint::CreateRemoval(TemplateKWLoc);
2366
2367  DeclContext *LookupCtx = 0;
2368  if (SS.isSet())
2369    LookupCtx = computeDeclContext(SS, EnteringContext);
2370  if (!LookupCtx && ObjectType)
2371    LookupCtx = computeDeclContext(ObjectType.get());
2372  if (LookupCtx) {
2373    // C++0x [temp.names]p5:
2374    //   If a name prefixed by the keyword template is not the name of
2375    //   a template, the program is ill-formed. [Note: the keyword
2376    //   template may not be applied to non-template members of class
2377    //   templates. -end note ] [ Note: as is the case with the
2378    //   typename prefix, the template prefix is allowed in cases
2379    //   where it is not strictly necessary; i.e., when the
2380    //   nested-name-specifier or the expression on the left of the ->
2381    //   or . is not dependent on a template-parameter, or the use
2382    //   does not appear in the scope of a template. -end note]
2383    //
2384    // Note: C++03 was more strict here, because it banned the use of
2385    // the "template" keyword prior to a template-name that was not a
2386    // dependent name. C++ DR468 relaxed this requirement (the
2387    // "template" keyword is now permitted). We follow the C++0x
2388    // rules, even in C++03 mode with a warning, retroactively applying the DR.
2389    bool MemberOfUnknownSpecialization;
2390    TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
2391                                          ObjectType, EnteringContext, Result,
2392                                          MemberOfUnknownSpecialization);
2393    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2394        isa<CXXRecordDecl>(LookupCtx) &&
2395        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2396         cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2397      // This is a dependent template. Handle it below.
2398    } else if (TNK == TNK_Non_template) {
2399      Diag(Name.getLocStart(),
2400           diag::err_template_kw_refers_to_non_template)
2401        << GetNameFromUnqualifiedId(Name).getName()
2402        << Name.getSourceRange()
2403        << TemplateKWLoc;
2404      return TNK_Non_template;
2405    } else {
2406      // We found something; return it.
2407      return TNK;
2408    }
2409  }
2410
2411  NestedNameSpecifier *Qualifier
2412    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2413
2414  switch (Name.getKind()) {
2415  case UnqualifiedId::IK_Identifier:
2416    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2417                                                              Name.Identifier));
2418    return TNK_Dependent_template_name;
2419
2420  case UnqualifiedId::IK_OperatorFunctionId:
2421    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2422                                             Name.OperatorFunctionId.Operator));
2423    return TNK_Dependent_template_name;
2424
2425  case UnqualifiedId::IK_LiteralOperatorId:
2426    llvm_unreachable(
2427            "We don't support these; Parse shouldn't have allowed propagation");
2428
2429  default:
2430    break;
2431  }
2432
2433  Diag(Name.getLocStart(),
2434       diag::err_template_kw_refers_to_non_template)
2435    << GetNameFromUnqualifiedId(Name).getName()
2436    << Name.getSourceRange()
2437    << TemplateKWLoc;
2438  return TNK_Non_template;
2439}
2440
2441bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2442                                     const TemplateArgumentLoc &AL,
2443                          SmallVectorImpl<TemplateArgument> &Converted) {
2444  const TemplateArgument &Arg = AL.getArgument();
2445
2446  // Check template type parameter.
2447  switch(Arg.getKind()) {
2448  case TemplateArgument::Type:
2449    // C++ [temp.arg.type]p1:
2450    //   A template-argument for a template-parameter which is a
2451    //   type shall be a type-id.
2452    break;
2453  case TemplateArgument::Template: {
2454    // We have a template type parameter but the template argument
2455    // is a template without any arguments.
2456    SourceRange SR = AL.getSourceRange();
2457    TemplateName Name = Arg.getAsTemplate();
2458    Diag(SR.getBegin(), diag::err_template_missing_args)
2459      << Name << SR;
2460    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2461      Diag(Decl->getLocation(), diag::note_template_decl_here);
2462
2463    return true;
2464  }
2465  case TemplateArgument::Expression: {
2466    // We have a template type parameter but the template argument is an
2467    // expression; see if maybe it is missing the "typename" keyword.
2468    CXXScopeSpec SS;
2469    DeclarationNameInfo NameInfo;
2470
2471    if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
2472      SS.Adopt(ArgExpr->getQualifierLoc());
2473      NameInfo = ArgExpr->getNameInfo();
2474    } else if (DependentScopeDeclRefExpr *ArgExpr =
2475               dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
2476      SS.Adopt(ArgExpr->getQualifierLoc());
2477      NameInfo = ArgExpr->getNameInfo();
2478    } else if (CXXDependentScopeMemberExpr *ArgExpr =
2479               dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
2480      if (ArgExpr->isImplicitAccess()) {
2481        SS.Adopt(ArgExpr->getQualifierLoc());
2482        NameInfo = ArgExpr->getMemberNameInfo();
2483      }
2484    }
2485
2486    if (NameInfo.getName().isIdentifier()) {
2487      LookupResult Result(*this, NameInfo, LookupOrdinaryName);
2488      LookupParsedName(Result, CurScope, &SS);
2489
2490      if (Result.getAsSingle<TypeDecl>() ||
2491          Result.getResultKind() ==
2492            LookupResult::NotFoundInCurrentInstantiation) {
2493        // FIXME: Add a FixIt and fix up the template argument for recovery.
2494        SourceLocation Loc = AL.getSourceRange().getBegin();
2495        Diag(Loc, diag::err_template_arg_must_be_type_suggest);
2496        Diag(Param->getLocation(), diag::note_template_param_here);
2497        return true;
2498      }
2499    }
2500    // fallthrough
2501  }
2502  default: {
2503    // We have a template type parameter but the template argument
2504    // is not a type.
2505    SourceRange SR = AL.getSourceRange();
2506    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2507    Diag(Param->getLocation(), diag::note_template_param_here);
2508
2509    return true;
2510  }
2511  }
2512
2513  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2514    return true;
2515
2516  // Add the converted template type argument.
2517  QualType ArgType = Context.getCanonicalType(Arg.getAsType());
2518
2519  // Objective-C ARC:
2520  //   If an explicitly-specified template argument type is a lifetime type
2521  //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
2522  if (getLangOpts().ObjCAutoRefCount &&
2523      ArgType->isObjCLifetimeType() &&
2524      !ArgType.getObjCLifetime()) {
2525    Qualifiers Qs;
2526    Qs.setObjCLifetime(Qualifiers::OCL_Strong);
2527    ArgType = Context.getQualifiedType(ArgType, Qs);
2528  }
2529
2530  Converted.push_back(TemplateArgument(ArgType));
2531  return false;
2532}
2533
2534/// \brief Substitute template arguments into the default template argument for
2535/// the given template type parameter.
2536///
2537/// \param SemaRef the semantic analysis object for which we are performing
2538/// the substitution.
2539///
2540/// \param Template the template that we are synthesizing template arguments
2541/// for.
2542///
2543/// \param TemplateLoc the location of the template name that started the
2544/// template-id we are checking.
2545///
2546/// \param RAngleLoc the location of the right angle bracket ('>') that
2547/// terminates the template-id.
2548///
2549/// \param Param the template template parameter whose default we are
2550/// substituting into.
2551///
2552/// \param Converted the list of template arguments provided for template
2553/// parameters that precede \p Param in the template parameter list.
2554/// \returns the substituted template argument, or NULL if an error occurred.
2555static TypeSourceInfo *
2556SubstDefaultTemplateArgument(Sema &SemaRef,
2557                             TemplateDecl *Template,
2558                             SourceLocation TemplateLoc,
2559                             SourceLocation RAngleLoc,
2560                             TemplateTypeParmDecl *Param,
2561                         SmallVectorImpl<TemplateArgument> &Converted) {
2562  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2563
2564  // If the argument type is dependent, instantiate it now based
2565  // on the previously-computed template arguments.
2566  if (ArgType->getType()->isDependentType()) {
2567    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2568                                      Converted.data(), Converted.size());
2569
2570    MultiLevelTemplateArgumentList AllTemplateArgs
2571      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2572
2573    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2574                                     Template, Converted,
2575                                     SourceRange(TemplateLoc, RAngleLoc));
2576    if (Inst)
2577      return 0;
2578
2579    Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
2580    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2581                                Param->getDefaultArgumentLoc(),
2582                                Param->getDeclName());
2583  }
2584
2585  return ArgType;
2586}
2587
2588/// \brief Substitute template arguments into the default template argument for
2589/// the given non-type template parameter.
2590///
2591/// \param SemaRef the semantic analysis object for which we are performing
2592/// the substitution.
2593///
2594/// \param Template the template that we are synthesizing template arguments
2595/// for.
2596///
2597/// \param TemplateLoc the location of the template name that started the
2598/// template-id we are checking.
2599///
2600/// \param RAngleLoc the location of the right angle bracket ('>') that
2601/// terminates the template-id.
2602///
2603/// \param Param the non-type template parameter whose default we are
2604/// substituting into.
2605///
2606/// \param Converted the list of template arguments provided for template
2607/// parameters that precede \p Param in the template parameter list.
2608///
2609/// \returns the substituted template argument, or NULL if an error occurred.
2610static ExprResult
2611SubstDefaultTemplateArgument(Sema &SemaRef,
2612                             TemplateDecl *Template,
2613                             SourceLocation TemplateLoc,
2614                             SourceLocation RAngleLoc,
2615                             NonTypeTemplateParmDecl *Param,
2616                        SmallVectorImpl<TemplateArgument> &Converted) {
2617  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2618                                    Converted.data(), Converted.size());
2619
2620  MultiLevelTemplateArgumentList AllTemplateArgs
2621    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2622
2623  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2624                                   Template, Converted,
2625                                   SourceRange(TemplateLoc, RAngleLoc));
2626  if (Inst)
2627    return ExprError();
2628
2629  Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
2630  EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
2631  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2632}
2633
2634/// \brief Substitute template arguments into the default template argument for
2635/// the given template template parameter.
2636///
2637/// \param SemaRef the semantic analysis object for which we are performing
2638/// the substitution.
2639///
2640/// \param Template the template that we are synthesizing template arguments
2641/// for.
2642///
2643/// \param TemplateLoc the location of the template name that started the
2644/// template-id we are checking.
2645///
2646/// \param RAngleLoc the location of the right angle bracket ('>') that
2647/// terminates the template-id.
2648///
2649/// \param Param the template template parameter whose default we are
2650/// substituting into.
2651///
2652/// \param Converted the list of template arguments provided for template
2653/// parameters that precede \p Param in the template parameter list.
2654///
2655/// \param QualifierLoc Will be set to the nested-name-specifier (with
2656/// source-location information) that precedes the template name.
2657///
2658/// \returns the substituted template argument, or NULL if an error occurred.
2659static TemplateName
2660SubstDefaultTemplateArgument(Sema &SemaRef,
2661                             TemplateDecl *Template,
2662                             SourceLocation TemplateLoc,
2663                             SourceLocation RAngleLoc,
2664                             TemplateTemplateParmDecl *Param,
2665                       SmallVectorImpl<TemplateArgument> &Converted,
2666                             NestedNameSpecifierLoc &QualifierLoc) {
2667  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2668                                    Converted.data(), Converted.size());
2669
2670  MultiLevelTemplateArgumentList AllTemplateArgs
2671    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2672
2673  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2674                                   Template, Converted,
2675                                   SourceRange(TemplateLoc, RAngleLoc));
2676  if (Inst)
2677    return TemplateName();
2678
2679  Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
2680  // Substitute into the nested-name-specifier first,
2681  QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
2682  if (QualifierLoc) {
2683    QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2684                                                       AllTemplateArgs);
2685    if (!QualifierLoc)
2686      return TemplateName();
2687  }
2688
2689  return SemaRef.SubstTemplateName(QualifierLoc,
2690                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2691                              Param->getDefaultArgument().getTemplateNameLoc(),
2692                                   AllTemplateArgs);
2693}
2694
2695/// \brief If the given template parameter has a default template
2696/// argument, substitute into that default template argument and
2697/// return the corresponding template argument.
2698TemplateArgumentLoc
2699Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2700                                              SourceLocation TemplateLoc,
2701                                              SourceLocation RAngleLoc,
2702                                              Decl *Param,
2703                      SmallVectorImpl<TemplateArgument> &Converted) {
2704   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2705    if (!TypeParm->hasDefaultArgument())
2706      return TemplateArgumentLoc();
2707
2708    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2709                                                      TemplateLoc,
2710                                                      RAngleLoc,
2711                                                      TypeParm,
2712                                                      Converted);
2713    if (DI)
2714      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2715
2716    return TemplateArgumentLoc();
2717  }
2718
2719  if (NonTypeTemplateParmDecl *NonTypeParm
2720        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2721    if (!NonTypeParm->hasDefaultArgument())
2722      return TemplateArgumentLoc();
2723
2724    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2725                                                  TemplateLoc,
2726                                                  RAngleLoc,
2727                                                  NonTypeParm,
2728                                                  Converted);
2729    if (Arg.isInvalid())
2730      return TemplateArgumentLoc();
2731
2732    Expr *ArgE = Arg.takeAs<Expr>();
2733    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2734  }
2735
2736  TemplateTemplateParmDecl *TempTempParm
2737    = cast<TemplateTemplateParmDecl>(Param);
2738  if (!TempTempParm->hasDefaultArgument())
2739    return TemplateArgumentLoc();
2740
2741
2742  NestedNameSpecifierLoc QualifierLoc;
2743  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2744                                                    TemplateLoc,
2745                                                    RAngleLoc,
2746                                                    TempTempParm,
2747                                                    Converted,
2748                                                    QualifierLoc);
2749  if (TName.isNull())
2750    return TemplateArgumentLoc();
2751
2752  return TemplateArgumentLoc(TemplateArgument(TName),
2753                TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
2754                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2755}
2756
2757/// \brief Check that the given template argument corresponds to the given
2758/// template parameter.
2759///
2760/// \param Param The template parameter against which the argument will be
2761/// checked.
2762///
2763/// \param Arg The template argument.
2764///
2765/// \param Template The template in which the template argument resides.
2766///
2767/// \param TemplateLoc The location of the template name for the template
2768/// whose argument list we're matching.
2769///
2770/// \param RAngleLoc The location of the right angle bracket ('>') that closes
2771/// the template argument list.
2772///
2773/// \param ArgumentPackIndex The index into the argument pack where this
2774/// argument will be placed. Only valid if the parameter is a parameter pack.
2775///
2776/// \param Converted The checked, converted argument will be added to the
2777/// end of this small vector.
2778///
2779/// \param CTAK Describes how we arrived at this particular template argument:
2780/// explicitly written, deduced, etc.
2781///
2782/// \returns true on error, false otherwise.
2783bool Sema::CheckTemplateArgument(NamedDecl *Param,
2784                                 const TemplateArgumentLoc &Arg,
2785                                 NamedDecl *Template,
2786                                 SourceLocation TemplateLoc,
2787                                 SourceLocation RAngleLoc,
2788                                 unsigned ArgumentPackIndex,
2789                            SmallVectorImpl<TemplateArgument> &Converted,
2790                                 CheckTemplateArgumentKind CTAK) {
2791  // Check template type parameters.
2792  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2793    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2794
2795  // Check non-type template parameters.
2796  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2797    // Do substitution on the type of the non-type template parameter
2798    // with the template arguments we've seen thus far.  But if the
2799    // template has a dependent context then we cannot substitute yet.
2800    QualType NTTPType = NTTP->getType();
2801    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
2802      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
2803
2804    if (NTTPType->isDependentType() &&
2805        !isa<TemplateTemplateParmDecl>(Template) &&
2806        !Template->getDeclContext()->isDependentContext()) {
2807      // Do substitution on the type of the non-type template parameter.
2808      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2809                                 NTTP, Converted,
2810                                 SourceRange(TemplateLoc, RAngleLoc));
2811      if (Inst)
2812        return true;
2813
2814      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2815                                        Converted.data(), Converted.size());
2816      NTTPType = SubstType(NTTPType,
2817                           MultiLevelTemplateArgumentList(TemplateArgs),
2818                           NTTP->getLocation(),
2819                           NTTP->getDeclName());
2820      // If that worked, check the non-type template parameter type
2821      // for validity.
2822      if (!NTTPType.isNull())
2823        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2824                                                     NTTP->getLocation());
2825      if (NTTPType.isNull())
2826        return true;
2827    }
2828
2829    switch (Arg.getArgument().getKind()) {
2830    case TemplateArgument::Null:
2831      llvm_unreachable("Should never see a NULL template argument here");
2832
2833    case TemplateArgument::Expression: {
2834      TemplateArgument Result;
2835      ExprResult Res =
2836        CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
2837                              Result, CTAK);
2838      if (Res.isInvalid())
2839        return true;
2840
2841      Converted.push_back(Result);
2842      break;
2843    }
2844
2845    case TemplateArgument::Declaration:
2846    case TemplateArgument::Integral:
2847    case TemplateArgument::NullPtr:
2848      // We've already checked this template argument, so just copy
2849      // it to the list of converted arguments.
2850      Converted.push_back(Arg.getArgument());
2851      break;
2852
2853    case TemplateArgument::Template:
2854    case TemplateArgument::TemplateExpansion:
2855      // We were given a template template argument. It may not be ill-formed;
2856      // see below.
2857      if (DependentTemplateName *DTN
2858            = Arg.getArgument().getAsTemplateOrTemplatePattern()
2859                                              .getAsDependentTemplateName()) {
2860        // We have a template argument such as \c T::template X, which we
2861        // parsed as a template template argument. However, since we now
2862        // know that we need a non-type template argument, convert this
2863        // template name into an expression.
2864
2865        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2866                                     Arg.getTemplateNameLoc());
2867
2868        CXXScopeSpec SS;
2869        SS.Adopt(Arg.getTemplateQualifierLoc());
2870        // FIXME: the template-template arg was a DependentTemplateName,
2871        // so it was provided with a template keyword. However, its source
2872        // location is not stored in the template argument structure.
2873        SourceLocation TemplateKWLoc;
2874        ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
2875                                                SS.getWithLocInContext(Context),
2876                                                               TemplateKWLoc,
2877                                                               NameInfo, 0));
2878
2879        // If we parsed the template argument as a pack expansion, create a
2880        // pack expansion expression.
2881        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2882          E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
2883          if (E.isInvalid())
2884            return true;
2885        }
2886
2887        TemplateArgument Result;
2888        E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
2889        if (E.isInvalid())
2890          return true;
2891
2892        Converted.push_back(Result);
2893        break;
2894      }
2895
2896      // We have a template argument that actually does refer to a class
2897      // template, alias template, or template template parameter, and
2898      // therefore cannot be a non-type template argument.
2899      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2900        << Arg.getSourceRange();
2901
2902      Diag(Param->getLocation(), diag::note_template_param_here);
2903      return true;
2904
2905    case TemplateArgument::Type: {
2906      // We have a non-type template parameter but the template
2907      // argument is a type.
2908
2909      // C++ [temp.arg]p2:
2910      //   In a template-argument, an ambiguity between a type-id and
2911      //   an expression is resolved to a type-id, regardless of the
2912      //   form of the corresponding template-parameter.
2913      //
2914      // We warn specifically about this case, since it can be rather
2915      // confusing for users.
2916      QualType T = Arg.getArgument().getAsType();
2917      SourceRange SR = Arg.getSourceRange();
2918      if (T->isFunctionType())
2919        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2920      else
2921        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2922      Diag(Param->getLocation(), diag::note_template_param_here);
2923      return true;
2924    }
2925
2926    case TemplateArgument::Pack:
2927      llvm_unreachable("Caller must expand template argument packs");
2928    }
2929
2930    return false;
2931  }
2932
2933
2934  // Check template template parameters.
2935  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2936
2937  // Substitute into the template parameter list of the template
2938  // template parameter, since previously-supplied template arguments
2939  // may appear within the template template parameter.
2940  {
2941    // Set up a template instantiation context.
2942    LocalInstantiationScope Scope(*this);
2943    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2944                               TempParm, Converted,
2945                               SourceRange(TemplateLoc, RAngleLoc));
2946    if (Inst)
2947      return true;
2948
2949    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2950                                      Converted.data(), Converted.size());
2951    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2952                      SubstDecl(TempParm, CurContext,
2953                                MultiLevelTemplateArgumentList(TemplateArgs)));
2954    if (!TempParm)
2955      return true;
2956  }
2957
2958  switch (Arg.getArgument().getKind()) {
2959  case TemplateArgument::Null:
2960    llvm_unreachable("Should never see a NULL template argument here");
2961
2962  case TemplateArgument::Template:
2963  case TemplateArgument::TemplateExpansion:
2964    if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex))
2965      return true;
2966
2967    Converted.push_back(Arg.getArgument());
2968    break;
2969
2970  case TemplateArgument::Expression:
2971  case TemplateArgument::Type:
2972    // We have a template template parameter but the template
2973    // argument does not refer to a template.
2974    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
2975      << getLangOpts().CPlusPlus0x;
2976    return true;
2977
2978  case TemplateArgument::Declaration:
2979    llvm_unreachable("Declaration argument with template template parameter");
2980  case TemplateArgument::Integral:
2981    llvm_unreachable("Integral argument with template template parameter");
2982  case TemplateArgument::NullPtr:
2983    llvm_unreachable("Null pointer argument with template template parameter");
2984
2985  case TemplateArgument::Pack:
2986    llvm_unreachable("Caller must expand template argument packs");
2987  }
2988
2989  return false;
2990}
2991
2992/// \brief Diagnose an arity mismatch in the
2993static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
2994                                  SourceLocation TemplateLoc,
2995                                  TemplateArgumentListInfo &TemplateArgs) {
2996  TemplateParameterList *Params = Template->getTemplateParameters();
2997  unsigned NumParams = Params->size();
2998  unsigned NumArgs = TemplateArgs.size();
2999
3000  SourceRange Range;
3001  if (NumArgs > NumParams)
3002    Range = SourceRange(TemplateArgs[NumParams].getLocation(),
3003                        TemplateArgs.getRAngleLoc());
3004  S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3005    << (NumArgs > NumParams)
3006    << (isa<ClassTemplateDecl>(Template)? 0 :
3007        isa<FunctionTemplateDecl>(Template)? 1 :
3008        isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3009    << Template << Range;
3010  S.Diag(Template->getLocation(), diag::note_template_decl_here)
3011    << Params->getSourceRange();
3012  return true;
3013}
3014
3015/// \brief Check whether the template parameter is a pack expansion, and if so,
3016/// determine the number of parameters produced by that expansion. For instance:
3017///
3018/// \code
3019/// template<typename ...Ts> struct A {
3020///   template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
3021/// };
3022/// \endcode
3023///
3024/// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
3025/// is not a pack expansion, so returns an empty Optional.
3026static llvm::Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
3027  if (NonTypeTemplateParmDecl *NTTP
3028        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3029    if (NTTP->isExpandedParameterPack())
3030      return NTTP->getNumExpansionTypes();
3031  }
3032
3033  if (TemplateTemplateParmDecl *TTP
3034        = dyn_cast<TemplateTemplateParmDecl>(Param)) {
3035    if (TTP->isExpandedParameterPack())
3036      return TTP->getNumExpansionTemplateParameters();
3037  }
3038
3039  return llvm::Optional<unsigned>();
3040}
3041
3042/// \brief Check that the given template argument list is well-formed
3043/// for specializing the given template.
3044bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
3045                                     SourceLocation TemplateLoc,
3046                                     TemplateArgumentListInfo &TemplateArgs,
3047                                     bool PartialTemplateArgs,
3048                          SmallVectorImpl<TemplateArgument> &Converted,
3049                                     bool *ExpansionIntoFixedList) {
3050  if (ExpansionIntoFixedList)
3051    *ExpansionIntoFixedList = false;
3052
3053  TemplateParameterList *Params = Template->getTemplateParameters();
3054
3055  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
3056
3057  // C++ [temp.arg]p1:
3058  //   [...] The type and form of each template-argument specified in
3059  //   a template-id shall match the type and form specified for the
3060  //   corresponding parameter declared by the template in its
3061  //   template-parameter-list.
3062  bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
3063  SmallVector<TemplateArgument, 2> ArgumentPack;
3064  unsigned ArgIdx = 0, NumArgs = TemplateArgs.size();
3065  LocalInstantiationScope InstScope(*this, true);
3066  for (TemplateParameterList::iterator Param = Params->begin(),
3067                                       ParamEnd = Params->end();
3068       Param != ParamEnd; /* increment in loop */) {
3069    // If we have an expanded parameter pack, make sure we don't have too
3070    // many arguments.
3071    if (llvm::Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
3072      if (*Expansions == ArgumentPack.size()) {
3073        // We're done with this parameter pack. Pack up its arguments and add
3074        // them to the list.
3075        Converted.push_back(
3076          TemplateArgument::CreatePackCopy(Context,
3077                                           ArgumentPack.data(),
3078                                           ArgumentPack.size()));
3079        ArgumentPack.clear();
3080
3081        // This argument is assigned to the next parameter.
3082        ++Param;
3083        continue;
3084      } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
3085        // Not enough arguments for this parameter pack.
3086        Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3087          << false
3088          << (isa<ClassTemplateDecl>(Template)? 0 :
3089              isa<FunctionTemplateDecl>(Template)? 1 :
3090              isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3091          << Template;
3092        Diag(Template->getLocation(), diag::note_template_decl_here)
3093          << Params->getSourceRange();
3094        return true;
3095      }
3096    }
3097
3098    if (ArgIdx < NumArgs) {
3099      // Check the template argument we were given.
3100      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
3101                                TemplateLoc, RAngleLoc,
3102                                ArgumentPack.size(), Converted))
3103        return true;
3104
3105      // We're now done with this argument.
3106      ++ArgIdx;
3107
3108      if ((*Param)->isTemplateParameterPack()) {
3109        // The template parameter was a template parameter pack, so take the
3110        // deduced argument and place it on the argument pack. Note that we
3111        // stay on the same template parameter so that we can deduce more
3112        // arguments.
3113        ArgumentPack.push_back(Converted.back());
3114        Converted.pop_back();
3115      } else {
3116        // Move to the next template parameter.
3117        ++Param;
3118      }
3119
3120      // If we just saw a pack expansion, then directly convert the remaining
3121      // arguments, because we don't know what parameters they'll match up
3122      // with.
3123      if (TemplateArgs[ArgIdx-1].getArgument().isPackExpansion()) {
3124        bool InFinalParameterPack = Param != ParamEnd &&
3125                                    Param + 1 == ParamEnd &&
3126                                    (*Param)->isTemplateParameterPack() &&
3127                                    !getExpandedPackSize(*Param);
3128
3129        if (!InFinalParameterPack && !ArgumentPack.empty()) {
3130          // If we were part way through filling in an expanded parameter pack,
3131          // fall back to just producing individual arguments.
3132          Converted.insert(Converted.end(),
3133                           ArgumentPack.begin(), ArgumentPack.end());
3134          ArgumentPack.clear();
3135        }
3136
3137        while (ArgIdx < NumArgs) {
3138          if (InFinalParameterPack)
3139            ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument());
3140          else
3141            Converted.push_back(TemplateArgs[ArgIdx].getArgument());
3142          ++ArgIdx;
3143        }
3144
3145        // Push the argument pack onto the list of converted arguments.
3146        if (InFinalParameterPack) {
3147          Converted.push_back(
3148            TemplateArgument::CreatePackCopy(Context,
3149                                             ArgumentPack.data(),
3150                                             ArgumentPack.size()));
3151          ArgumentPack.clear();
3152        } else if (ExpansionIntoFixedList) {
3153          // We have expanded a pack into a fixed list.
3154          *ExpansionIntoFixedList = true;
3155        }
3156
3157        return false;
3158      }
3159
3160      continue;
3161    }
3162
3163    // If we're checking a partial template argument list, we're done.
3164    if (PartialTemplateArgs) {
3165      if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
3166        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3167                                                         ArgumentPack.data(),
3168                                                         ArgumentPack.size()));
3169
3170      return false;
3171    }
3172
3173    // If we have a template parameter pack with no more corresponding
3174    // arguments, just break out now and we'll fill in the argument pack below.
3175    if ((*Param)->isTemplateParameterPack()) {
3176      assert(!getExpandedPackSize(*Param) &&
3177             "Should have dealt with this already");
3178
3179      // A non-expanded parameter pack before the end of the parameter list
3180      // only occurs for an ill-formed template parameter list, unless we've
3181      // got a partial argument list for a function template, so just bail out.
3182      if (Param + 1 != ParamEnd)
3183        return true;
3184
3185      Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3186                                                       ArgumentPack.data(),
3187                                                       ArgumentPack.size()));
3188      ArgumentPack.clear();
3189
3190      ++Param;
3191      continue;
3192    }
3193
3194    // Check whether we have a default argument.
3195    TemplateArgumentLoc Arg;
3196
3197    // Retrieve the default template argument from the template
3198    // parameter. For each kind of template parameter, we substitute the
3199    // template arguments provided thus far and any "outer" template arguments
3200    // (when the template parameter was part of a nested template) into
3201    // the default argument.
3202    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
3203      if (!TTP->hasDefaultArgument())
3204        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3205                                     TemplateArgs);
3206
3207      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
3208                                                             Template,
3209                                                             TemplateLoc,
3210                                                             RAngleLoc,
3211                                                             TTP,
3212                                                             Converted);
3213      if (!ArgType)
3214        return true;
3215
3216      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
3217                                ArgType);
3218    } else if (NonTypeTemplateParmDecl *NTTP
3219                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3220      if (!NTTP->hasDefaultArgument())
3221        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3222                                     TemplateArgs);
3223
3224      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
3225                                                              TemplateLoc,
3226                                                              RAngleLoc,
3227                                                              NTTP,
3228                                                              Converted);
3229      if (E.isInvalid())
3230        return true;
3231
3232      Expr *Ex = E.takeAs<Expr>();
3233      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
3234    } else {
3235      TemplateTemplateParmDecl *TempParm
3236        = cast<TemplateTemplateParmDecl>(*Param);
3237
3238      if (!TempParm->hasDefaultArgument())
3239        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3240                                     TemplateArgs);
3241
3242      NestedNameSpecifierLoc QualifierLoc;
3243      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3244                                                       TemplateLoc,
3245                                                       RAngleLoc,
3246                                                       TempParm,
3247                                                       Converted,
3248                                                       QualifierLoc);
3249      if (Name.isNull())
3250        return true;
3251
3252      Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3253                           TempParm->getDefaultArgument().getTemplateNameLoc());
3254    }
3255
3256    // Introduce an instantiation record that describes where we are using
3257    // the default template argument.
3258    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template,
3259                                        *Param, Converted,
3260                                        SourceRange(TemplateLoc, RAngleLoc));
3261    if (Instantiating)
3262      return true;
3263
3264    // Check the default template argument.
3265    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3266                              RAngleLoc, 0, Converted))
3267      return true;
3268
3269    // Core issue 150 (assumed resolution): if this is a template template
3270    // parameter, keep track of the default template arguments from the
3271    // template definition.
3272    if (isTemplateTemplateParameter)
3273      TemplateArgs.addArgument(Arg);
3274
3275    // Move to the next template parameter and argument.
3276    ++Param;
3277    ++ArgIdx;
3278  }
3279
3280  // If we have any leftover arguments, then there were too many arguments.
3281  // Complain and fail.
3282  if (ArgIdx < NumArgs)
3283    return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3284
3285  return false;
3286}
3287
3288namespace {
3289  class UnnamedLocalNoLinkageFinder
3290    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3291  {
3292    Sema &S;
3293    SourceRange SR;
3294
3295    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3296
3297  public:
3298    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3299
3300    bool Visit(QualType T) {
3301      return inherited::Visit(T.getTypePtr());
3302    }
3303
3304#define TYPE(Class, Parent) \
3305    bool Visit##Class##Type(const Class##Type *);
3306#define ABSTRACT_TYPE(Class, Parent) \
3307    bool Visit##Class##Type(const Class##Type *) { return false; }
3308#define NON_CANONICAL_TYPE(Class, Parent) \
3309    bool Visit##Class##Type(const Class##Type *) { return false; }
3310#include "clang/AST/TypeNodes.def"
3311
3312    bool VisitTagDecl(const TagDecl *Tag);
3313    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3314  };
3315}
3316
3317bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3318  return false;
3319}
3320
3321bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3322  return Visit(T->getElementType());
3323}
3324
3325bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3326  return Visit(T->getPointeeType());
3327}
3328
3329bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3330                                                    const BlockPointerType* T) {
3331  return Visit(T->getPointeeType());
3332}
3333
3334bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3335                                                const LValueReferenceType* T) {
3336  return Visit(T->getPointeeType());
3337}
3338
3339bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3340                                                const RValueReferenceType* T) {
3341  return Visit(T->getPointeeType());
3342}
3343
3344bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3345                                                  const MemberPointerType* T) {
3346  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3347}
3348
3349bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3350                                                  const ConstantArrayType* T) {
3351  return Visit(T->getElementType());
3352}
3353
3354bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3355                                                 const IncompleteArrayType* T) {
3356  return Visit(T->getElementType());
3357}
3358
3359bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3360                                                   const VariableArrayType* T) {
3361  return Visit(T->getElementType());
3362}
3363
3364bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3365                                            const DependentSizedArrayType* T) {
3366  return Visit(T->getElementType());
3367}
3368
3369bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3370                                         const DependentSizedExtVectorType* T) {
3371  return Visit(T->getElementType());
3372}
3373
3374bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3375  return Visit(T->getElementType());
3376}
3377
3378bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3379  return Visit(T->getElementType());
3380}
3381
3382bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3383                                                  const FunctionProtoType* T) {
3384  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
3385                                         AEnd = T->arg_type_end();
3386       A != AEnd; ++A) {
3387    if (Visit(*A))
3388      return true;
3389  }
3390
3391  return Visit(T->getResultType());
3392}
3393
3394bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3395                                               const FunctionNoProtoType* T) {
3396  return Visit(T->getResultType());
3397}
3398
3399bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
3400                                                  const UnresolvedUsingType*) {
3401  return false;
3402}
3403
3404bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
3405  return false;
3406}
3407
3408bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
3409  return Visit(T->getUnderlyingType());
3410}
3411
3412bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
3413  return false;
3414}
3415
3416bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
3417                                                    const UnaryTransformType*) {
3418  return false;
3419}
3420
3421bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
3422  return Visit(T->getDeducedType());
3423}
3424
3425bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
3426  return VisitTagDecl(T->getDecl());
3427}
3428
3429bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
3430  return VisitTagDecl(T->getDecl());
3431}
3432
3433bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
3434                                                 const TemplateTypeParmType*) {
3435  return false;
3436}
3437
3438bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
3439                                        const SubstTemplateTypeParmPackType *) {
3440  return false;
3441}
3442
3443bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
3444                                            const TemplateSpecializationType*) {
3445  return false;
3446}
3447
3448bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
3449                                              const InjectedClassNameType* T) {
3450  return VisitTagDecl(T->getDecl());
3451}
3452
3453bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
3454                                                   const DependentNameType* T) {
3455  return VisitNestedNameSpecifier(T->getQualifier());
3456}
3457
3458bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
3459                                 const DependentTemplateSpecializationType* T) {
3460  return VisitNestedNameSpecifier(T->getQualifier());
3461}
3462
3463bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
3464                                                   const PackExpansionType* T) {
3465  return Visit(T->getPattern());
3466}
3467
3468bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
3469  return false;
3470}
3471
3472bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
3473                                                   const ObjCInterfaceType *) {
3474  return false;
3475}
3476
3477bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
3478                                                const ObjCObjectPointerType *) {
3479  return false;
3480}
3481
3482bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
3483  return Visit(T->getValueType());
3484}
3485
3486bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
3487  if (Tag->getDeclContext()->isFunctionOrMethod()) {
3488    S.Diag(SR.getBegin(),
3489           S.getLangOpts().CPlusPlus0x ?
3490             diag::warn_cxx98_compat_template_arg_local_type :
3491             diag::ext_template_arg_local_type)
3492      << S.Context.getTypeDeclType(Tag) << SR;
3493    return true;
3494  }
3495
3496  if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) {
3497    S.Diag(SR.getBegin(),
3498           S.getLangOpts().CPlusPlus0x ?
3499             diag::warn_cxx98_compat_template_arg_unnamed_type :
3500             diag::ext_template_arg_unnamed_type) << SR;
3501    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
3502    return true;
3503  }
3504
3505  return false;
3506}
3507
3508bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
3509                                                    NestedNameSpecifier *NNS) {
3510  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
3511    return true;
3512
3513  switch (NNS->getKind()) {
3514  case NestedNameSpecifier::Identifier:
3515  case NestedNameSpecifier::Namespace:
3516  case NestedNameSpecifier::NamespaceAlias:
3517  case NestedNameSpecifier::Global:
3518    return false;
3519
3520  case NestedNameSpecifier::TypeSpec:
3521  case NestedNameSpecifier::TypeSpecWithTemplate:
3522    return Visit(QualType(NNS->getAsType(), 0));
3523  }
3524  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3525}
3526
3527
3528/// \brief Check a template argument against its corresponding
3529/// template type parameter.
3530///
3531/// This routine implements the semantics of C++ [temp.arg.type]. It
3532/// returns true if an error occurred, and false otherwise.
3533bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
3534                                 TypeSourceInfo *ArgInfo) {
3535  assert(ArgInfo && "invalid TypeSourceInfo");
3536  QualType Arg = ArgInfo->getType();
3537  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
3538
3539  if (Arg->isVariablyModifiedType()) {
3540    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
3541  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
3542    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
3543  }
3544
3545  // C++03 [temp.arg.type]p2:
3546  //   A local type, a type with no linkage, an unnamed type or a type
3547  //   compounded from any of these types shall not be used as a
3548  //   template-argument for a template type-parameter.
3549  //
3550  // C++11 allows these, and even in C++03 we allow them as an extension with
3551  // a warning.
3552  if (LangOpts.CPlusPlus0x ?
3553     Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type,
3554                              SR.getBegin()) != DiagnosticsEngine::Ignored ||
3555      Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type,
3556                               SR.getBegin()) != DiagnosticsEngine::Ignored :
3557      Arg->hasUnnamedOrLocalType()) {
3558    UnnamedLocalNoLinkageFinder Finder(*this, SR);
3559    (void)Finder.Visit(Context.getCanonicalType(Arg));
3560  }
3561
3562  return false;
3563}
3564
3565enum NullPointerValueKind {
3566  NPV_NotNullPointer,
3567  NPV_NullPointer,
3568  NPV_Error
3569};
3570
3571/// \brief Determine whether the given template argument is a null pointer
3572/// value of the appropriate type.
3573static NullPointerValueKind
3574isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
3575                                   QualType ParamType, Expr *Arg) {
3576  if (Arg->isValueDependent() || Arg->isTypeDependent())
3577    return NPV_NotNullPointer;
3578
3579  if (!S.getLangOpts().CPlusPlus0x)
3580    return NPV_NotNullPointer;
3581
3582  // Determine whether we have a constant expression.
3583  ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
3584  if (ArgRV.isInvalid())
3585    return NPV_Error;
3586  Arg = ArgRV.take();
3587
3588  Expr::EvalResult EvalResult;
3589  llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
3590  EvalResult.Diag = &Notes;
3591  if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
3592      EvalResult.HasSideEffects) {
3593    SourceLocation DiagLoc = Arg->getExprLoc();
3594
3595    // If our only note is the usual "invalid subexpression" note, just point
3596    // the caret at its location rather than producing an essentially
3597    // redundant note.
3598    if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
3599        diag::note_invalid_subexpr_in_const_expr) {
3600      DiagLoc = Notes[0].first;
3601      Notes.clear();
3602    }
3603
3604    S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
3605      << Arg->getType() << Arg->getSourceRange();
3606    for (unsigned I = 0, N = Notes.size(); I != N; ++I)
3607      S.Diag(Notes[I].first, Notes[I].second);
3608
3609    S.Diag(Param->getLocation(), diag::note_template_param_here);
3610    return NPV_Error;
3611  }
3612
3613  // C++11 [temp.arg.nontype]p1:
3614  //   - an address constant expression of type std::nullptr_t
3615  if (Arg->getType()->isNullPtrType())
3616    return NPV_NullPointer;
3617
3618  //   - a constant expression that evaluates to a null pointer value (4.10); or
3619  //   - a constant expression that evaluates to a null member pointer value
3620  //     (4.11); or
3621  if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
3622      (EvalResult.Val.isMemberPointer() &&
3623       !EvalResult.Val.getMemberPointerDecl())) {
3624    // If our expression has an appropriate type, we've succeeded.
3625    bool ObjCLifetimeConversion;
3626    if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
3627        S.IsQualificationConversion(Arg->getType(), ParamType, false,
3628                                     ObjCLifetimeConversion))
3629      return NPV_NullPointer;
3630
3631    // The types didn't match, but we know we got a null pointer; complain,
3632    // then recover as if the types were correct.
3633    S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
3634      << Arg->getType() << ParamType << Arg->getSourceRange();
3635    S.Diag(Param->getLocation(), diag::note_template_param_here);
3636    return NPV_NullPointer;
3637  }
3638
3639  // If we don't have a null pointer value, but we do have a NULL pointer
3640  // constant, suggest a cast to the appropriate type.
3641  if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
3642    std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
3643    S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
3644      << ParamType
3645      << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
3646      << FixItHint::CreateInsertion(S.PP.getLocForEndOfToken(Arg->getLocEnd()),
3647                                    ")");
3648    S.Diag(Param->getLocation(), diag::note_template_param_here);
3649    return NPV_NullPointer;
3650  }
3651
3652  // FIXME: If we ever want to support general, address-constant expressions
3653  // as non-type template arguments, we should return the ExprResult here to
3654  // be interpreted by the caller.
3655  return NPV_NotNullPointer;
3656}
3657
3658/// \brief Checks whether the given template argument is the address
3659/// of an object or function according to C++ [temp.arg.nontype]p1.
3660static bool
3661CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
3662                                               NonTypeTemplateParmDecl *Param,
3663                                               QualType ParamType,
3664                                               Expr *ArgIn,
3665                                               TemplateArgument &Converted) {
3666  bool Invalid = false;
3667  Expr *Arg = ArgIn;
3668  QualType ArgType = Arg->getType();
3669
3670  // If our parameter has pointer type, check for a null template value.
3671  if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
3672    switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
3673    case NPV_NullPointer:
3674      S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
3675      Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
3676      return false;
3677
3678    case NPV_Error:
3679      return true;
3680
3681    case NPV_NotNullPointer:
3682      break;
3683    }
3684  }
3685
3686  // See through any implicit casts we added to fix the type.
3687  Arg = Arg->IgnoreImpCasts();
3688
3689  // C++ [temp.arg.nontype]p1:
3690  //
3691  //   A template-argument for a non-type, non-template
3692  //   template-parameter shall be one of: [...]
3693  //
3694  //     -- the address of an object or function with external
3695  //        linkage, including function templates and function
3696  //        template-ids but excluding non-static class members,
3697  //        expressed as & id-expression where the & is optional if
3698  //        the name refers to a function or array, or if the
3699  //        corresponding template-parameter is a reference; or
3700
3701  // In C++98/03 mode, give an extension warning on any extra parentheses.
3702  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3703  bool ExtraParens = false;
3704  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3705    if (!Invalid && !ExtraParens) {
3706      S.Diag(Arg->getLocStart(),
3707             S.getLangOpts().CPlusPlus0x ?
3708               diag::warn_cxx98_compat_template_arg_extra_parens :
3709               diag::ext_template_arg_extra_parens)
3710        << Arg->getSourceRange();
3711      ExtraParens = true;
3712    }
3713
3714    Arg = Parens->getSubExpr();
3715  }
3716
3717  while (SubstNonTypeTemplateParmExpr *subst =
3718           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3719    Arg = subst->getReplacement()->IgnoreImpCasts();
3720
3721  bool AddressTaken = false;
3722  SourceLocation AddrOpLoc;
3723  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3724    if (UnOp->getOpcode() == UO_AddrOf) {
3725      Arg = UnOp->getSubExpr();
3726      AddressTaken = true;
3727      AddrOpLoc = UnOp->getOperatorLoc();
3728    }
3729  }
3730
3731  if (S.getLangOpts().MicrosoftExt && isa<CXXUuidofExpr>(Arg)) {
3732    Converted = TemplateArgument(ArgIn);
3733    return false;
3734  }
3735
3736  while (SubstNonTypeTemplateParmExpr *subst =
3737           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3738    Arg = subst->getReplacement()->IgnoreImpCasts();
3739
3740  // Stop checking the precise nature of the argument if it is value dependent,
3741  // it should be checked when instantiated.
3742  if (Arg->isValueDependent()) {
3743    Converted = TemplateArgument(ArgIn);
3744    return false;
3745  }
3746
3747  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
3748  if (!DRE) {
3749    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
3750    << Arg->getSourceRange();
3751    S.Diag(Param->getLocation(), diag::note_template_param_here);
3752    return true;
3753  }
3754
3755  if (!isa<ValueDecl>(DRE->getDecl())) {
3756    S.Diag(Arg->getLocStart(),
3757           diag::err_template_arg_not_object_or_func_form)
3758      << Arg->getSourceRange();
3759    S.Diag(Param->getLocation(), diag::note_template_param_here);
3760    return true;
3761  }
3762
3763  ValueDecl *Entity = DRE->getDecl();
3764
3765  // Cannot refer to non-static data members
3766  if (FieldDecl *Field = dyn_cast<FieldDecl>(Entity)) {
3767    S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
3768      << Field << Arg->getSourceRange();
3769    S.Diag(Param->getLocation(), diag::note_template_param_here);
3770    return true;
3771  }
3772
3773  // Cannot refer to non-static member functions
3774  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
3775    if (!Method->isStatic()) {
3776      S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
3777        << Method << Arg->getSourceRange();
3778      S.Diag(Param->getLocation(), diag::note_template_param_here);
3779      return true;
3780    }
3781  }
3782
3783  FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
3784  VarDecl *Var = dyn_cast<VarDecl>(Entity);
3785
3786  // A non-type template argument must refer to an object or function.
3787  if (!Func && !Var) {
3788    // We found something, but we don't know specifically what it is.
3789    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
3790      << Arg->getSourceRange();
3791    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3792    return true;
3793  }
3794
3795  // Address / reference template args must have external linkage in C++98.
3796  if (Entity->getLinkage() == InternalLinkage) {
3797    S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus0x ?
3798             diag::warn_cxx98_compat_template_arg_object_internal :
3799             diag::ext_template_arg_object_internal)
3800      << !Func << Entity << Arg->getSourceRange();
3801    S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
3802      << !Func;
3803  } else if (Entity->getLinkage() == NoLinkage) {
3804    S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
3805      << !Func << Entity << Arg->getSourceRange();
3806    S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
3807      << !Func;
3808    return true;
3809  }
3810
3811  if (Func) {
3812    // If the template parameter has pointer type, the function decays.
3813    if (ParamType->isPointerType() && !AddressTaken)
3814      ArgType = S.Context.getPointerType(Func->getType());
3815    else if (AddressTaken && ParamType->isReferenceType()) {
3816      // If we originally had an address-of operator, but the
3817      // parameter has reference type, complain and (if things look
3818      // like they will work) drop the address-of operator.
3819      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
3820                                            ParamType.getNonReferenceType())) {
3821        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3822          << ParamType;
3823        S.Diag(Param->getLocation(), diag::note_template_param_here);
3824        return true;
3825      }
3826
3827      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3828        << ParamType
3829        << FixItHint::CreateRemoval(AddrOpLoc);
3830      S.Diag(Param->getLocation(), diag::note_template_param_here);
3831
3832      ArgType = Func->getType();
3833    }
3834  } else {
3835    // A value of reference type is not an object.
3836    if (Var->getType()->isReferenceType()) {
3837      S.Diag(Arg->getLocStart(),
3838             diag::err_template_arg_reference_var)
3839        << Var->getType() << Arg->getSourceRange();
3840      S.Diag(Param->getLocation(), diag::note_template_param_here);
3841      return true;
3842    }
3843
3844    // A template argument must have static storage duration.
3845    // FIXME: Ensure this works for thread_local as well as __thread.
3846    if (Var->isThreadSpecified()) {
3847      S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
3848        << Arg->getSourceRange();
3849      S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
3850      return true;
3851    }
3852
3853    // If the template parameter has pointer type, we must have taken
3854    // the address of this object.
3855    if (ParamType->isReferenceType()) {
3856      if (AddressTaken) {
3857        // If we originally had an address-of operator, but the
3858        // parameter has reference type, complain and (if things look
3859        // like they will work) drop the address-of operator.
3860        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
3861                                            ParamType.getNonReferenceType())) {
3862          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3863            << ParamType;
3864          S.Diag(Param->getLocation(), diag::note_template_param_here);
3865          return true;
3866        }
3867
3868        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3869          << ParamType
3870          << FixItHint::CreateRemoval(AddrOpLoc);
3871        S.Diag(Param->getLocation(), diag::note_template_param_here);
3872
3873        ArgType = Var->getType();
3874      }
3875    } else if (!AddressTaken && ParamType->isPointerType()) {
3876      if (Var->getType()->isArrayType()) {
3877        // Array-to-pointer decay.
3878        ArgType = S.Context.getArrayDecayedType(Var->getType());
3879      } else {
3880        // If the template parameter has pointer type but the address of
3881        // this object was not taken, complain and (possibly) recover by
3882        // taking the address of the entity.
3883        ArgType = S.Context.getPointerType(Var->getType());
3884        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3885          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3886            << ParamType;
3887          S.Diag(Param->getLocation(), diag::note_template_param_here);
3888          return true;
3889        }
3890
3891        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3892          << ParamType
3893          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3894
3895        S.Diag(Param->getLocation(), diag::note_template_param_here);
3896      }
3897    }
3898  }
3899
3900  bool ObjCLifetimeConversion;
3901  if (ParamType->isPointerType() &&
3902      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3903      S.IsQualificationConversion(ArgType, ParamType, false,
3904                                  ObjCLifetimeConversion)) {
3905    // For pointer-to-object types, qualification conversions are
3906    // permitted.
3907  } else {
3908    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3909      if (!ParamRef->getPointeeType()->isFunctionType()) {
3910        // C++ [temp.arg.nontype]p5b3:
3911        //   For a non-type template-parameter of type reference to
3912        //   object, no conversions apply. The type referred to by the
3913        //   reference may be more cv-qualified than the (otherwise
3914        //   identical) type of the template- argument. The
3915        //   template-parameter is bound directly to the
3916        //   template-argument, which shall be an lvalue.
3917
3918        // FIXME: Other qualifiers?
3919        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3920        unsigned ArgQuals = ArgType.getCVRQualifiers();
3921
3922        if ((ParamQuals | ArgQuals) != ParamQuals) {
3923          S.Diag(Arg->getLocStart(),
3924                 diag::err_template_arg_ref_bind_ignores_quals)
3925            << ParamType << Arg->getType()
3926            << Arg->getSourceRange();
3927          S.Diag(Param->getLocation(), diag::note_template_param_here);
3928          return true;
3929        }
3930      }
3931    }
3932
3933    // At this point, the template argument refers to an object or
3934    // function with external linkage. We now need to check whether the
3935    // argument and parameter types are compatible.
3936    if (!S.Context.hasSameUnqualifiedType(ArgType,
3937                                          ParamType.getNonReferenceType())) {
3938      // We can't perform this conversion or binding.
3939      if (ParamType->isReferenceType())
3940        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3941          << ParamType << ArgIn->getType() << Arg->getSourceRange();
3942      else
3943        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
3944          << ArgIn->getType() << ParamType << Arg->getSourceRange();
3945      S.Diag(Param->getLocation(), diag::note_template_param_here);
3946      return true;
3947    }
3948  }
3949
3950  // Create the template argument.
3951  Converted = TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()),
3952                               ParamType->isReferenceType());
3953  S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity);
3954  return false;
3955}
3956
3957/// \brief Checks whether the given template argument is a pointer to
3958/// member constant according to C++ [temp.arg.nontype]p1.
3959static bool CheckTemplateArgumentPointerToMember(Sema &S,
3960                                                 NonTypeTemplateParmDecl *Param,
3961                                                 QualType ParamType,
3962                                                 Expr *&ResultArg,
3963                                                 TemplateArgument &Converted) {
3964  bool Invalid = false;
3965
3966  // Check for a null pointer value.
3967  Expr *Arg = ResultArg;
3968  switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
3969  case NPV_Error:
3970    return true;
3971  case NPV_NullPointer:
3972    S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
3973    Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
3974    return false;
3975  case NPV_NotNullPointer:
3976    break;
3977  }
3978
3979  bool ObjCLifetimeConversion;
3980  if (S.IsQualificationConversion(Arg->getType(),
3981                                  ParamType.getNonReferenceType(),
3982                                  false, ObjCLifetimeConversion)) {
3983    Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
3984                              Arg->getValueKind()).take();
3985    ResultArg = Arg;
3986  } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
3987                ParamType.getNonReferenceType())) {
3988    // We can't perform this conversion.
3989    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
3990      << Arg->getType() << ParamType << Arg->getSourceRange();
3991    S.Diag(Param->getLocation(), diag::note_template_param_here);
3992    return true;
3993  }
3994
3995  // See through any implicit casts we added to fix the type.
3996  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3997    Arg = Cast->getSubExpr();
3998
3999  // C++ [temp.arg.nontype]p1:
4000  //
4001  //   A template-argument for a non-type, non-template
4002  //   template-parameter shall be one of: [...]
4003  //
4004  //     -- a pointer to member expressed as described in 5.3.1.
4005  DeclRefExpr *DRE = 0;
4006
4007  // In C++98/03 mode, give an extension warning on any extra parentheses.
4008  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4009  bool ExtraParens = false;
4010  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4011    if (!Invalid && !ExtraParens) {
4012      S.Diag(Arg->getLocStart(),
4013             S.getLangOpts().CPlusPlus0x ?
4014               diag::warn_cxx98_compat_template_arg_extra_parens :
4015               diag::ext_template_arg_extra_parens)
4016        << Arg->getSourceRange();
4017      ExtraParens = true;
4018    }
4019
4020    Arg = Parens->getSubExpr();
4021  }
4022
4023  while (SubstNonTypeTemplateParmExpr *subst =
4024           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4025    Arg = subst->getReplacement()->IgnoreImpCasts();
4026
4027  // A pointer-to-member constant written &Class::member.
4028  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4029    if (UnOp->getOpcode() == UO_AddrOf) {
4030      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
4031      if (DRE && !DRE->getQualifier())
4032        DRE = 0;
4033    }
4034  }
4035  // A constant of pointer-to-member type.
4036  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
4037    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
4038      if (VD->getType()->isMemberPointerType()) {
4039        if (isa<NonTypeTemplateParmDecl>(VD) ||
4040            (isa<VarDecl>(VD) &&
4041             S.Context.getCanonicalType(VD->getType()).isConstQualified())) {
4042          if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4043            Converted = TemplateArgument(Arg);
4044          } else {
4045            VD = cast<ValueDecl>(VD->getCanonicalDecl());
4046            Converted = TemplateArgument(VD, /*isReferenceParam*/false);
4047          }
4048          return Invalid;
4049        }
4050      }
4051    }
4052
4053    DRE = 0;
4054  }
4055
4056  if (!DRE)
4057    return S.Diag(Arg->getLocStart(),
4058                  diag::err_template_arg_not_pointer_to_member_form)
4059      << Arg->getSourceRange();
4060
4061  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
4062    assert((isa<FieldDecl>(DRE->getDecl()) ||
4063            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
4064           "Only non-static member pointers can make it here");
4065
4066    // Okay: this is the address of a non-static member, and therefore
4067    // a member pointer constant.
4068    if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4069      Converted = TemplateArgument(Arg);
4070    } else {
4071      ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
4072      Converted = TemplateArgument(D, /*isReferenceParam*/false);
4073    }
4074    return Invalid;
4075  }
4076
4077  // We found something else, but we don't know specifically what it is.
4078  S.Diag(Arg->getLocStart(),
4079         diag::err_template_arg_not_pointer_to_member_form)
4080    << Arg->getSourceRange();
4081  S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4082  return true;
4083}
4084
4085/// \brief Check a template argument against its corresponding
4086/// non-type template parameter.
4087///
4088/// This routine implements the semantics of C++ [temp.arg.nontype].
4089/// If an error occurred, it returns ExprError(); otherwise, it
4090/// returns the converted template argument. \p
4091/// InstantiatedParamType is the type of the non-type template
4092/// parameter after it has been instantiated.
4093ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
4094                                       QualType InstantiatedParamType, Expr *Arg,
4095                                       TemplateArgument &Converted,
4096                                       CheckTemplateArgumentKind CTAK) {
4097  SourceLocation StartLoc = Arg->getLocStart();
4098
4099  // If either the parameter has a dependent type or the argument is
4100  // type-dependent, there's nothing we can check now.
4101  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
4102    // FIXME: Produce a cloned, canonical expression?
4103    Converted = TemplateArgument(Arg);
4104    return Owned(Arg);
4105  }
4106
4107  // C++ [temp.arg.nontype]p5:
4108  //   The following conversions are performed on each expression used
4109  //   as a non-type template-argument. If a non-type
4110  //   template-argument cannot be converted to the type of the
4111  //   corresponding template-parameter then the program is
4112  //   ill-formed.
4113  QualType ParamType = InstantiatedParamType;
4114  if (ParamType->isIntegralOrEnumerationType()) {
4115    // C++11:
4116    //   -- for a non-type template-parameter of integral or
4117    //      enumeration type, conversions permitted in a converted
4118    //      constant expression are applied.
4119    //
4120    // C++98:
4121    //   -- for a non-type template-parameter of integral or
4122    //      enumeration type, integral promotions (4.5) and integral
4123    //      conversions (4.7) are applied.
4124
4125    if (CTAK == CTAK_Deduced &&
4126        !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
4127      // C++ [temp.deduct.type]p17:
4128      //   If, in the declaration of a function template with a non-type
4129      //   template-parameter, the non-type template-parameter is used
4130      //   in an expression in the function parameter-list and, if the
4131      //   corresponding template-argument is deduced, the
4132      //   template-argument type shall match the type of the
4133      //   template-parameter exactly, except that a template-argument
4134      //   deduced from an array bound may be of any integral type.
4135      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
4136        << Arg->getType().getUnqualifiedType()
4137        << ParamType.getUnqualifiedType();
4138      Diag(Param->getLocation(), diag::note_template_param_here);
4139      return ExprError();
4140    }
4141
4142    if (getLangOpts().CPlusPlus0x) {
4143      // We can't check arbitrary value-dependent arguments.
4144      // FIXME: If there's no viable conversion to the template parameter type,
4145      // we should be able to diagnose that prior to instantiation.
4146      if (Arg->isValueDependent()) {
4147        Converted = TemplateArgument(Arg);
4148        return Owned(Arg);
4149      }
4150
4151      // C++ [temp.arg.nontype]p1:
4152      //   A template-argument for a non-type, non-template template-parameter
4153      //   shall be one of:
4154      //
4155      //     -- for a non-type template-parameter of integral or enumeration
4156      //        type, a converted constant expression of the type of the
4157      //        template-parameter; or
4158      llvm::APSInt Value;
4159      ExprResult ArgResult =
4160        CheckConvertedConstantExpression(Arg, ParamType, Value,
4161                                         CCEK_TemplateArg);
4162      if (ArgResult.isInvalid())
4163        return ExprError();
4164
4165      // Widen the argument value to sizeof(parameter type). This is almost
4166      // always a no-op, except when the parameter type is bool. In
4167      // that case, this may extend the argument from 1 bit to 8 bits.
4168      QualType IntegerType = ParamType;
4169      if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4170        IntegerType = Enum->getDecl()->getIntegerType();
4171      Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
4172
4173      Converted = TemplateArgument(Context, Value,
4174                                   Context.getCanonicalType(ParamType));
4175      return ArgResult;
4176    }
4177
4178    ExprResult ArgResult = DefaultLvalueConversion(Arg);
4179    if (ArgResult.isInvalid())
4180      return ExprError();
4181    Arg = ArgResult.take();
4182
4183    QualType ArgType = Arg->getType();
4184
4185    // C++ [temp.arg.nontype]p1:
4186    //   A template-argument for a non-type, non-template
4187    //   template-parameter shall be one of:
4188    //
4189    //     -- an integral constant-expression of integral or enumeration
4190    //        type; or
4191    //     -- the name of a non-type template-parameter; or
4192    SourceLocation NonConstantLoc;
4193    llvm::APSInt Value;
4194    if (!ArgType->isIntegralOrEnumerationType()) {
4195      Diag(Arg->getLocStart(),
4196           diag::err_template_arg_not_integral_or_enumeral)
4197        << ArgType << Arg->getSourceRange();
4198      Diag(Param->getLocation(), diag::note_template_param_here);
4199      return ExprError();
4200    } else if (!Arg->isValueDependent()) {
4201      class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
4202        QualType T;
4203
4204      public:
4205        TmplArgICEDiagnoser(QualType T) : T(T) { }
4206
4207        virtual void diagnoseNotICE(Sema &S, SourceLocation Loc,
4208                                    SourceRange SR) {
4209          S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
4210        }
4211      } Diagnoser(ArgType);
4212
4213      Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
4214                                            false).take();
4215      if (!Arg)
4216        return ExprError();
4217    }
4218
4219    // From here on out, all we care about are the unqualified forms
4220    // of the parameter and argument types.
4221    ParamType = ParamType.getUnqualifiedType();
4222    ArgType = ArgType.getUnqualifiedType();
4223
4224    // Try to convert the argument to the parameter's type.
4225    if (Context.hasSameType(ParamType, ArgType)) {
4226      // Okay: no conversion necessary
4227    } else if (ParamType->isBooleanType()) {
4228      // This is an integral-to-boolean conversion.
4229      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
4230    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
4231               !ParamType->isEnumeralType()) {
4232      // This is an integral promotion or conversion.
4233      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
4234    } else {
4235      // We can't perform this conversion.
4236      Diag(Arg->getLocStart(),
4237           diag::err_template_arg_not_convertible)
4238        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
4239      Diag(Param->getLocation(), diag::note_template_param_here);
4240      return ExprError();
4241    }
4242
4243    // Add the value of this argument to the list of converted
4244    // arguments. We use the bitwidth and signedness of the template
4245    // parameter.
4246    if (Arg->isValueDependent()) {
4247      // The argument is value-dependent. Create a new
4248      // TemplateArgument with the converted expression.
4249      Converted = TemplateArgument(Arg);
4250      return Owned(Arg);
4251    }
4252
4253    QualType IntegerType = Context.getCanonicalType(ParamType);
4254    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4255      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
4256
4257    if (ParamType->isBooleanType()) {
4258      // Value must be zero or one.
4259      Value = Value != 0;
4260      unsigned AllowedBits = Context.getTypeSize(IntegerType);
4261      if (Value.getBitWidth() != AllowedBits)
4262        Value = Value.extOrTrunc(AllowedBits);
4263      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4264    } else {
4265      llvm::APSInt OldValue = Value;
4266
4267      // Coerce the template argument's value to the value it will have
4268      // based on the template parameter's type.
4269      unsigned AllowedBits = Context.getTypeSize(IntegerType);
4270      if (Value.getBitWidth() != AllowedBits)
4271        Value = Value.extOrTrunc(AllowedBits);
4272      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4273
4274      // Complain if an unsigned parameter received a negative value.
4275      if (IntegerType->isUnsignedIntegerOrEnumerationType()
4276               && (OldValue.isSigned() && OldValue.isNegative())) {
4277        Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
4278          << OldValue.toString(10) << Value.toString(10) << Param->getType()
4279          << Arg->getSourceRange();
4280        Diag(Param->getLocation(), diag::note_template_param_here);
4281      }
4282
4283      // Complain if we overflowed the template parameter's type.
4284      unsigned RequiredBits;
4285      if (IntegerType->isUnsignedIntegerOrEnumerationType())
4286        RequiredBits = OldValue.getActiveBits();
4287      else if (OldValue.isUnsigned())
4288        RequiredBits = OldValue.getActiveBits() + 1;
4289      else
4290        RequiredBits = OldValue.getMinSignedBits();
4291      if (RequiredBits > AllowedBits) {
4292        Diag(Arg->getLocStart(),
4293             diag::warn_template_arg_too_large)
4294          << OldValue.toString(10) << Value.toString(10) << Param->getType()
4295          << Arg->getSourceRange();
4296        Diag(Param->getLocation(), diag::note_template_param_here);
4297      }
4298    }
4299
4300    Converted = TemplateArgument(Context, Value,
4301                                 ParamType->isEnumeralType()
4302                                   ? Context.getCanonicalType(ParamType)
4303                                   : IntegerType);
4304    return Owned(Arg);
4305  }
4306
4307  QualType ArgType = Arg->getType();
4308  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
4309
4310  // Handle pointer-to-function, reference-to-function, and
4311  // pointer-to-member-function all in (roughly) the same way.
4312  if (// -- For a non-type template-parameter of type pointer to
4313      //    function, only the function-to-pointer conversion (4.3) is
4314      //    applied. If the template-argument represents a set of
4315      //    overloaded functions (or a pointer to such), the matching
4316      //    function is selected from the set (13.4).
4317      (ParamType->isPointerType() &&
4318       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
4319      // -- For a non-type template-parameter of type reference to
4320      //    function, no conversions apply. If the template-argument
4321      //    represents a set of overloaded functions, the matching
4322      //    function is selected from the set (13.4).
4323      (ParamType->isReferenceType() &&
4324       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
4325      // -- For a non-type template-parameter of type pointer to
4326      //    member function, no conversions apply. If the
4327      //    template-argument represents a set of overloaded member
4328      //    functions, the matching member function is selected from
4329      //    the set (13.4).
4330      (ParamType->isMemberPointerType() &&
4331       ParamType->getAs<MemberPointerType>()->getPointeeType()
4332         ->isFunctionType())) {
4333
4334    if (Arg->getType() == Context.OverloadTy) {
4335      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
4336                                                                true,
4337                                                                FoundResult)) {
4338        if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4339          return ExprError();
4340
4341        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4342        ArgType = Arg->getType();
4343      } else
4344        return ExprError();
4345    }
4346
4347    if (!ParamType->isMemberPointerType()) {
4348      if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4349                                                         ParamType,
4350                                                         Arg, Converted))
4351        return ExprError();
4352      return Owned(Arg);
4353    }
4354
4355    if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4356                                             Converted))
4357      return ExprError();
4358    return Owned(Arg);
4359  }
4360
4361  if (ParamType->isPointerType()) {
4362    //   -- for a non-type template-parameter of type pointer to
4363    //      object, qualification conversions (4.4) and the
4364    //      array-to-pointer conversion (4.2) are applied.
4365    // C++0x also allows a value of std::nullptr_t.
4366    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
4367           "Only object pointers allowed here");
4368
4369    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4370                                                       ParamType,
4371                                                       Arg, Converted))
4372      return ExprError();
4373    return Owned(Arg);
4374  }
4375
4376  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
4377    //   -- For a non-type template-parameter of type reference to
4378    //      object, no conversions apply. The type referred to by the
4379    //      reference may be more cv-qualified than the (otherwise
4380    //      identical) type of the template-argument. The
4381    //      template-parameter is bound directly to the
4382    //      template-argument, which must be an lvalue.
4383    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
4384           "Only object references allowed here");
4385
4386    if (Arg->getType() == Context.OverloadTy) {
4387      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
4388                                                 ParamRefType->getPointeeType(),
4389                                                                true,
4390                                                                FoundResult)) {
4391        if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4392          return ExprError();
4393
4394        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4395        ArgType = Arg->getType();
4396      } else
4397        return ExprError();
4398    }
4399
4400    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4401                                                       ParamType,
4402                                                       Arg, Converted))
4403      return ExprError();
4404    return Owned(Arg);
4405  }
4406
4407  // Deal with parameters of type std::nullptr_t.
4408  if (ParamType->isNullPtrType()) {
4409    if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4410      Converted = TemplateArgument(Arg);
4411      return Owned(Arg);
4412    }
4413
4414    switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
4415    case NPV_NotNullPointer:
4416      Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
4417        << Arg->getType() << ParamType;
4418      Diag(Param->getLocation(), diag::note_template_param_here);
4419      return ExprError();
4420
4421    case NPV_Error:
4422      return ExprError();
4423
4424    case NPV_NullPointer:
4425      Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4426      Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
4427      return Owned(Arg);
4428    }
4429  }
4430
4431  //     -- For a non-type template-parameter of type pointer to data
4432  //        member, qualification conversions (4.4) are applied.
4433  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
4434
4435  if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4436                                           Converted))
4437    return ExprError();
4438  return Owned(Arg);
4439}
4440
4441/// \brief Check a template argument against its corresponding
4442/// template template parameter.
4443///
4444/// This routine implements the semantics of C++ [temp.arg.template].
4445/// It returns true if an error occurred, and false otherwise.
4446bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
4447                                 const TemplateArgumentLoc &Arg,
4448                                 unsigned ArgumentPackIndex) {
4449  TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
4450  TemplateDecl *Template = Name.getAsTemplateDecl();
4451  if (!Template) {
4452    // Any dependent template name is fine.
4453    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
4454    return false;
4455  }
4456
4457  // C++0x [temp.arg.template]p1:
4458  //   A template-argument for a template template-parameter shall be
4459  //   the name of a class template or an alias template, expressed as an
4460  //   id-expression. When the template-argument names a class template, only
4461  //   primary class templates are considered when matching the
4462  //   template template argument with the corresponding parameter;
4463  //   partial specializations are not considered even if their
4464  //   parameter lists match that of the template template parameter.
4465  //
4466  // Note that we also allow template template parameters here, which
4467  // will happen when we are dealing with, e.g., class template
4468  // partial specializations.
4469  if (!isa<ClassTemplateDecl>(Template) &&
4470      !isa<TemplateTemplateParmDecl>(Template) &&
4471      !isa<TypeAliasTemplateDecl>(Template)) {
4472    assert(isa<FunctionTemplateDecl>(Template) &&
4473           "Only function templates are possible here");
4474    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
4475    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
4476      << Template;
4477  }
4478
4479  TemplateParameterList *Params = Param->getTemplateParameters();
4480  if (Param->isExpandedParameterPack())
4481    Params = Param->getExpansionTemplateParameters(ArgumentPackIndex);
4482
4483  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
4484                                         Params,
4485                                         true,
4486                                         TPL_TemplateTemplateArgumentMatch,
4487                                         Arg.getLocation());
4488}
4489
4490/// \brief Given a non-type template argument that refers to a
4491/// declaration and the type of its corresponding non-type template
4492/// parameter, produce an expression that properly refers to that
4493/// declaration.
4494ExprResult
4495Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
4496                                              QualType ParamType,
4497                                              SourceLocation Loc) {
4498  // For a NULL non-type template argument, return nullptr casted to the
4499  // parameter's type.
4500  if (Arg.getKind() == TemplateArgument::NullPtr) {
4501    return ImpCastExprToType(
4502             new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
4503                             ParamType,
4504                             ParamType->getAs<MemberPointerType>()
4505                               ? CK_NullToMemberPointer
4506                               : CK_NullToPointer);
4507  }
4508  assert(Arg.getKind() == TemplateArgument::Declaration &&
4509         "Only declaration template arguments permitted here");
4510
4511  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
4512
4513  if (VD->getDeclContext()->isRecord() &&
4514      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
4515    // If the value is a class member, we might have a pointer-to-member.
4516    // Determine whether the non-type template template parameter is of
4517    // pointer-to-member type. If so, we need to build an appropriate
4518    // expression for a pointer-to-member, since a "normal" DeclRefExpr
4519    // would refer to the member itself.
4520    if (ParamType->isMemberPointerType()) {
4521      QualType ClassType
4522        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
4523      NestedNameSpecifier *Qualifier
4524        = NestedNameSpecifier::Create(Context, 0, false,
4525                                      ClassType.getTypePtr());
4526      CXXScopeSpec SS;
4527      SS.MakeTrivial(Context, Qualifier, Loc);
4528
4529      // The actual value-ness of this is unimportant, but for
4530      // internal consistency's sake, references to instance methods
4531      // are r-values.
4532      ExprValueKind VK = VK_LValue;
4533      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
4534        VK = VK_RValue;
4535
4536      ExprResult RefExpr = BuildDeclRefExpr(VD,
4537                                            VD->getType().getNonReferenceType(),
4538                                            VK,
4539                                            Loc,
4540                                            &SS);
4541      if (RefExpr.isInvalid())
4542        return ExprError();
4543
4544      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4545
4546      // We might need to perform a trailing qualification conversion, since
4547      // the element type on the parameter could be more qualified than the
4548      // element type in the expression we constructed.
4549      bool ObjCLifetimeConversion;
4550      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
4551                                    ParamType.getUnqualifiedType(), false,
4552                                    ObjCLifetimeConversion))
4553        RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
4554
4555      assert(!RefExpr.isInvalid() &&
4556             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
4557                                 ParamType.getUnqualifiedType()));
4558      return RefExpr;
4559    }
4560  }
4561
4562  QualType T = VD->getType().getNonReferenceType();
4563  if (ParamType->isPointerType()) {
4564    // When the non-type template parameter is a pointer, take the
4565    // address of the declaration.
4566    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
4567    if (RefExpr.isInvalid())
4568      return ExprError();
4569
4570    if (T->isFunctionType() || T->isArrayType()) {
4571      // Decay functions and arrays.
4572      RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
4573      if (RefExpr.isInvalid())
4574        return ExprError();
4575
4576      return RefExpr;
4577    }
4578
4579    // Take the address of everything else
4580    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4581  }
4582
4583  ExprValueKind VK = VK_RValue;
4584
4585  // If the non-type template parameter has reference type, qualify the
4586  // resulting declaration reference with the extra qualifiers on the
4587  // type that the reference refers to.
4588  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
4589    VK = VK_LValue;
4590    T = Context.getQualifiedType(T,
4591                              TargetRef->getPointeeType().getQualifiers());
4592  }
4593
4594  return BuildDeclRefExpr(VD, T, VK, Loc);
4595}
4596
4597/// \brief Construct a new expression that refers to the given
4598/// integral template argument with the given source-location
4599/// information.
4600///
4601/// This routine takes care of the mapping from an integral template
4602/// argument (which may have any integral type) to the appropriate
4603/// literal value.
4604ExprResult
4605Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
4606                                                  SourceLocation Loc) {
4607  assert(Arg.getKind() == TemplateArgument::Integral &&
4608         "Operation is only valid for integral template arguments");
4609  QualType T = Arg.getIntegralType();
4610  if (T->isAnyCharacterType()) {
4611    CharacterLiteral::CharacterKind Kind;
4612    if (T->isWideCharType())
4613      Kind = CharacterLiteral::Wide;
4614    else if (T->isChar16Type())
4615      Kind = CharacterLiteral::UTF16;
4616    else if (T->isChar32Type())
4617      Kind = CharacterLiteral::UTF32;
4618    else
4619      Kind = CharacterLiteral::Ascii;
4620
4621    return Owned(new (Context) CharacterLiteral(
4622                                            Arg.getAsIntegral().getZExtValue(),
4623                                            Kind, T, Loc));
4624  }
4625
4626  if (T->isBooleanType())
4627    return Owned(new (Context) CXXBoolLiteralExpr(
4628                                            Arg.getAsIntegral().getBoolValue(),
4629                                            T, Loc));
4630
4631  if (T->isNullPtrType())
4632    return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
4633
4634  // If this is an enum type that we're instantiating, we need to use an integer
4635  // type the same size as the enumerator.  We don't want to build an
4636  // IntegerLiteral with enum type.
4637  QualType BT;
4638  if (const EnumType *ET = T->getAs<EnumType>())
4639    BT = ET->getDecl()->getIntegerType();
4640  else
4641    BT = T;
4642
4643  Expr *E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), BT, Loc);
4644  if (T->isEnumeralType()) {
4645    // FIXME: This is a hack. We need a better way to handle substituted
4646    // non-type template parameters.
4647    E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0,
4648                               Context.getTrivialTypeSourceInfo(T, Loc),
4649                               Loc, Loc);
4650  }
4651
4652  return Owned(E);
4653}
4654
4655/// \brief Match two template parameters within template parameter lists.
4656static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
4657                                       bool Complain,
4658                                     Sema::TemplateParameterListEqualKind Kind,
4659                                       SourceLocation TemplateArgLoc) {
4660  // Check the actual kind (type, non-type, template).
4661  if (Old->getKind() != New->getKind()) {
4662    if (Complain) {
4663      unsigned NextDiag = diag::err_template_param_different_kind;
4664      if (TemplateArgLoc.isValid()) {
4665        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4666        NextDiag = diag::note_template_param_different_kind;
4667      }
4668      S.Diag(New->getLocation(), NextDiag)
4669        << (Kind != Sema::TPL_TemplateMatch);
4670      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
4671        << (Kind != Sema::TPL_TemplateMatch);
4672    }
4673
4674    return false;
4675  }
4676
4677  // Check that both are parameter packs are neither are parameter packs.
4678  // However, if we are matching a template template argument to a
4679  // template template parameter, the template template parameter can have
4680  // a parameter pack where the template template argument does not.
4681  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
4682      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4683        Old->isTemplateParameterPack())) {
4684    if (Complain) {
4685      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
4686      if (TemplateArgLoc.isValid()) {
4687        S.Diag(TemplateArgLoc,
4688             diag::err_template_arg_template_params_mismatch);
4689        NextDiag = diag::note_template_parameter_pack_non_pack;
4690      }
4691
4692      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
4693                      : isa<NonTypeTemplateParmDecl>(New)? 1
4694                      : 2;
4695      S.Diag(New->getLocation(), NextDiag)
4696        << ParamKind << New->isParameterPack();
4697      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
4698        << ParamKind << Old->isParameterPack();
4699    }
4700
4701    return false;
4702  }
4703
4704  // For non-type template parameters, check the type of the parameter.
4705  if (NonTypeTemplateParmDecl *OldNTTP
4706                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
4707    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
4708
4709    // If we are matching a template template argument to a template
4710    // template parameter and one of the non-type template parameter types
4711    // is dependent, then we must wait until template instantiation time
4712    // to actually compare the arguments.
4713    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4714        (OldNTTP->getType()->isDependentType() ||
4715         NewNTTP->getType()->isDependentType()))
4716      return true;
4717
4718    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
4719      if (Complain) {
4720        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
4721        if (TemplateArgLoc.isValid()) {
4722          S.Diag(TemplateArgLoc,
4723                 diag::err_template_arg_template_params_mismatch);
4724          NextDiag = diag::note_template_nontype_parm_different_type;
4725        }
4726        S.Diag(NewNTTP->getLocation(), NextDiag)
4727          << NewNTTP->getType()
4728          << (Kind != Sema::TPL_TemplateMatch);
4729        S.Diag(OldNTTP->getLocation(),
4730               diag::note_template_nontype_parm_prev_declaration)
4731          << OldNTTP->getType();
4732      }
4733
4734      return false;
4735    }
4736
4737    return true;
4738  }
4739
4740  // For template template parameters, check the template parameter types.
4741  // The template parameter lists of template template
4742  // parameters must agree.
4743  if (TemplateTemplateParmDecl *OldTTP
4744                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
4745    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
4746    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
4747                                            OldTTP->getTemplateParameters(),
4748                                            Complain,
4749                                        (Kind == Sema::TPL_TemplateMatch
4750                                           ? Sema::TPL_TemplateTemplateParmMatch
4751                                           : Kind),
4752                                            TemplateArgLoc);
4753  }
4754
4755  return true;
4756}
4757
4758/// \brief Diagnose a known arity mismatch when comparing template argument
4759/// lists.
4760static
4761void DiagnoseTemplateParameterListArityMismatch(Sema &S,
4762                                                TemplateParameterList *New,
4763                                                TemplateParameterList *Old,
4764                                      Sema::TemplateParameterListEqualKind Kind,
4765                                                SourceLocation TemplateArgLoc) {
4766  unsigned NextDiag = diag::err_template_param_list_different_arity;
4767  if (TemplateArgLoc.isValid()) {
4768    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4769    NextDiag = diag::note_template_param_list_different_arity;
4770  }
4771  S.Diag(New->getTemplateLoc(), NextDiag)
4772    << (New->size() > Old->size())
4773    << (Kind != Sema::TPL_TemplateMatch)
4774    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
4775  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
4776    << (Kind != Sema::TPL_TemplateMatch)
4777    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
4778}
4779
4780/// \brief Determine whether the given template parameter lists are
4781/// equivalent.
4782///
4783/// \param New  The new template parameter list, typically written in the
4784/// source code as part of a new template declaration.
4785///
4786/// \param Old  The old template parameter list, typically found via
4787/// name lookup of the template declared with this template parameter
4788/// list.
4789///
4790/// \param Complain  If true, this routine will produce a diagnostic if
4791/// the template parameter lists are not equivalent.
4792///
4793/// \param Kind describes how we are to match the template parameter lists.
4794///
4795/// \param TemplateArgLoc If this source location is valid, then we
4796/// are actually checking the template parameter list of a template
4797/// argument (New) against the template parameter list of its
4798/// corresponding template template parameter (Old). We produce
4799/// slightly different diagnostics in this scenario.
4800///
4801/// \returns True if the template parameter lists are equal, false
4802/// otherwise.
4803bool
4804Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
4805                                     TemplateParameterList *Old,
4806                                     bool Complain,
4807                                     TemplateParameterListEqualKind Kind,
4808                                     SourceLocation TemplateArgLoc) {
4809  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
4810    if (Complain)
4811      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4812                                                 TemplateArgLoc);
4813
4814    return false;
4815  }
4816
4817  // C++0x [temp.arg.template]p3:
4818  //   A template-argument matches a template template-parameter (call it P)
4819  //   when each of the template parameters in the template-parameter-list of
4820  //   the template-argument's corresponding class template or alias template
4821  //   (call it A) matches the corresponding template parameter in the
4822  //   template-parameter-list of P. [...]
4823  TemplateParameterList::iterator NewParm = New->begin();
4824  TemplateParameterList::iterator NewParmEnd = New->end();
4825  for (TemplateParameterList::iterator OldParm = Old->begin(),
4826                                    OldParmEnd = Old->end();
4827       OldParm != OldParmEnd; ++OldParm) {
4828    if (Kind != TPL_TemplateTemplateArgumentMatch ||
4829        !(*OldParm)->isTemplateParameterPack()) {
4830      if (NewParm == NewParmEnd) {
4831        if (Complain)
4832          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4833                                                     TemplateArgLoc);
4834
4835        return false;
4836      }
4837
4838      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4839                                      Kind, TemplateArgLoc))
4840        return false;
4841
4842      ++NewParm;
4843      continue;
4844    }
4845
4846    // C++0x [temp.arg.template]p3:
4847    //   [...] When P's template- parameter-list contains a template parameter
4848    //   pack (14.5.3), the template parameter pack will match zero or more
4849    //   template parameters or template parameter packs in the
4850    //   template-parameter-list of A with the same type and form as the
4851    //   template parameter pack in P (ignoring whether those template
4852    //   parameters are template parameter packs).
4853    for (; NewParm != NewParmEnd; ++NewParm) {
4854      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4855                                      Kind, TemplateArgLoc))
4856        return false;
4857    }
4858  }
4859
4860  // Make sure we exhausted all of the arguments.
4861  if (NewParm != NewParmEnd) {
4862    if (Complain)
4863      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4864                                                 TemplateArgLoc);
4865
4866    return false;
4867  }
4868
4869  return true;
4870}
4871
4872/// \brief Check whether a template can be declared within this scope.
4873///
4874/// If the template declaration is valid in this scope, returns
4875/// false. Otherwise, issues a diagnostic and returns true.
4876bool
4877Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
4878  if (!S)
4879    return false;
4880
4881  // Find the nearest enclosing declaration scope.
4882  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4883         (S->getFlags() & Scope::TemplateParamScope) != 0)
4884    S = S->getParent();
4885
4886  // C++ [temp]p2:
4887  //   A template-declaration can appear only as a namespace scope or
4888  //   class scope declaration.
4889  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
4890  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
4891      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
4892    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
4893             << TemplateParams->getSourceRange();
4894
4895  while (Ctx && isa<LinkageSpecDecl>(Ctx))
4896    Ctx = Ctx->getParent();
4897
4898  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
4899    return false;
4900
4901  return Diag(TemplateParams->getTemplateLoc(),
4902              diag::err_template_outside_namespace_or_class_scope)
4903    << TemplateParams->getSourceRange();
4904}
4905
4906/// \brief Determine what kind of template specialization the given declaration
4907/// is.
4908static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
4909  if (!D)
4910    return TSK_Undeclared;
4911
4912  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
4913    return Record->getTemplateSpecializationKind();
4914  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
4915    return Function->getTemplateSpecializationKind();
4916  if (VarDecl *Var = dyn_cast<VarDecl>(D))
4917    return Var->getTemplateSpecializationKind();
4918
4919  return TSK_Undeclared;
4920}
4921
4922/// \brief Check whether a specialization is well-formed in the current
4923/// context.
4924///
4925/// This routine determines whether a template specialization can be declared
4926/// in the current context (C++ [temp.expl.spec]p2).
4927///
4928/// \param S the semantic analysis object for which this check is being
4929/// performed.
4930///
4931/// \param Specialized the entity being specialized or instantiated, which
4932/// may be a kind of template (class template, function template, etc.) or
4933/// a member of a class template (member function, static data member,
4934/// member class).
4935///
4936/// \param PrevDecl the previous declaration of this entity, if any.
4937///
4938/// \param Loc the location of the explicit specialization or instantiation of
4939/// this entity.
4940///
4941/// \param IsPartialSpecialization whether this is a partial specialization of
4942/// a class template.
4943///
4944/// \returns true if there was an error that we cannot recover from, false
4945/// otherwise.
4946static bool CheckTemplateSpecializationScope(Sema &S,
4947                                             NamedDecl *Specialized,
4948                                             NamedDecl *PrevDecl,
4949                                             SourceLocation Loc,
4950                                             bool IsPartialSpecialization) {
4951  // Keep these "kind" numbers in sync with the %select statements in the
4952  // various diagnostics emitted by this routine.
4953  int EntityKind = 0;
4954  if (isa<ClassTemplateDecl>(Specialized))
4955    EntityKind = IsPartialSpecialization? 1 : 0;
4956  else if (isa<FunctionTemplateDecl>(Specialized))
4957    EntityKind = 2;
4958  else if (isa<CXXMethodDecl>(Specialized))
4959    EntityKind = 3;
4960  else if (isa<VarDecl>(Specialized))
4961    EntityKind = 4;
4962  else if (isa<RecordDecl>(Specialized))
4963    EntityKind = 5;
4964  else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus0x)
4965    EntityKind = 6;
4966  else {
4967    S.Diag(Loc, diag::err_template_spec_unknown_kind)
4968      << S.getLangOpts().CPlusPlus0x;
4969    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4970    return true;
4971  }
4972
4973  // C++ [temp.expl.spec]p2:
4974  //   An explicit specialization shall be declared in the namespace
4975  //   of which the template is a member, or, for member templates, in
4976  //   the namespace of which the enclosing class or enclosing class
4977  //   template is a member. An explicit specialization of a member
4978  //   function, member class or static data member of a class
4979  //   template shall be declared in the namespace of which the class
4980  //   template is a member. Such a declaration may also be a
4981  //   definition. If the declaration is not a definition, the
4982  //   specialization may be defined later in the name- space in which
4983  //   the explicit specialization was declared, or in a namespace
4984  //   that encloses the one in which the explicit specialization was
4985  //   declared.
4986  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4987    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
4988      << Specialized;
4989    return true;
4990  }
4991
4992  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
4993    if (S.getLangOpts().MicrosoftExt) {
4994      // Do not warn for class scope explicit specialization during
4995      // instantiation, warning was already emitted during pattern
4996      // semantic analysis.
4997      if (!S.ActiveTemplateInstantiations.size())
4998        S.Diag(Loc, diag::ext_function_specialization_in_class)
4999          << Specialized;
5000    } else {
5001      S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5002        << Specialized;
5003      return true;
5004    }
5005  }
5006
5007  if (S.CurContext->isRecord() &&
5008      !S.CurContext->Equals(Specialized->getDeclContext())) {
5009    // Make sure that we're specializing in the right record context.
5010    // Otherwise, things can go horribly wrong.
5011    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5012      << Specialized;
5013    return true;
5014  }
5015
5016  // C++ [temp.class.spec]p6:
5017  //   A class template partial specialization may be declared or redeclared
5018  //   in any namespace scope in which its definition may be defined (14.5.1
5019  //   and 14.5.2).
5020  bool ComplainedAboutScope = false;
5021  DeclContext *SpecializedContext
5022    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
5023  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
5024  if ((!PrevDecl ||
5025       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
5026       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
5027    // C++ [temp.exp.spec]p2:
5028    //   An explicit specialization shall be declared in the namespace of which
5029    //   the template is a member, or, for member templates, in the namespace
5030    //   of which the enclosing class or enclosing class template is a member.
5031    //   An explicit specialization of a member function, member class or
5032    //   static data member of a class template shall be declared in the
5033    //   namespace of which the class template is a member.
5034    //
5035    // C++0x [temp.expl.spec]p2:
5036    //   An explicit specialization shall be declared in a namespace enclosing
5037    //   the specialized template.
5038    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
5039      bool IsCPlusPlus0xExtension = DC->Encloses(SpecializedContext);
5040      if (isa<TranslationUnitDecl>(SpecializedContext)) {
5041        assert(!IsCPlusPlus0xExtension &&
5042               "DC encloses TU but isn't in enclosing namespace set");
5043        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
5044          << EntityKind << Specialized;
5045      } else if (isa<NamespaceDecl>(SpecializedContext)) {
5046        int Diag;
5047        if (!IsCPlusPlus0xExtension)
5048          Diag = diag::err_template_spec_decl_out_of_scope;
5049        else if (!S.getLangOpts().CPlusPlus0x)
5050          Diag = diag::ext_template_spec_decl_out_of_scope;
5051        else
5052          Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
5053        S.Diag(Loc, Diag)
5054          << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
5055      }
5056
5057      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5058      ComplainedAboutScope =
5059        !(IsCPlusPlus0xExtension && S.getLangOpts().CPlusPlus0x);
5060    }
5061  }
5062
5063  // Make sure that this redeclaration (or definition) occurs in an enclosing
5064  // namespace.
5065  // Note that HandleDeclarator() performs this check for explicit
5066  // specializations of function templates, static data members, and member
5067  // functions, so we skip the check here for those kinds of entities.
5068  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
5069  // Should we refactor that check, so that it occurs later?
5070  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
5071      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
5072        isa<FunctionDecl>(Specialized))) {
5073    if (isa<TranslationUnitDecl>(SpecializedContext))
5074      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
5075        << EntityKind << Specialized;
5076    else if (isa<NamespaceDecl>(SpecializedContext))
5077      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
5078        << EntityKind << Specialized
5079        << cast<NamedDecl>(SpecializedContext);
5080
5081    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5082  }
5083
5084  // FIXME: check for specialization-after-instantiation errors and such.
5085
5086  return false;
5087}
5088
5089/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
5090/// that checks non-type template partial specialization arguments.
5091static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
5092                                                NonTypeTemplateParmDecl *Param,
5093                                                  const TemplateArgument *Args,
5094                                                        unsigned NumArgs) {
5095  for (unsigned I = 0; I != NumArgs; ++I) {
5096    if (Args[I].getKind() == TemplateArgument::Pack) {
5097      if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
5098                                                           Args[I].pack_begin(),
5099                                                           Args[I].pack_size()))
5100        return true;
5101
5102      continue;
5103    }
5104
5105    if (Args[I].getKind() != TemplateArgument::Expression)
5106      continue;
5107
5108    Expr *ArgExpr = Args[I].getAsExpr();
5109
5110    // We can have a pack expansion of any of the bullets below.
5111    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
5112      ArgExpr = Expansion->getPattern();
5113
5114    // Strip off any implicit casts we added as part of type checking.
5115    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
5116      ArgExpr = ICE->getSubExpr();
5117
5118    // C++ [temp.class.spec]p8:
5119    //   A non-type argument is non-specialized if it is the name of a
5120    //   non-type parameter. All other non-type arguments are
5121    //   specialized.
5122    //
5123    // Below, we check the two conditions that only apply to
5124    // specialized non-type arguments, so skip any non-specialized
5125    // arguments.
5126    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
5127      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
5128        continue;
5129
5130    // C++ [temp.class.spec]p9:
5131    //   Within the argument list of a class template partial
5132    //   specialization, the following restrictions apply:
5133    //     -- A partially specialized non-type argument expression
5134    //        shall not involve a template parameter of the partial
5135    //        specialization except when the argument expression is a
5136    //        simple identifier.
5137    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
5138      S.Diag(ArgExpr->getLocStart(),
5139           diag::err_dependent_non_type_arg_in_partial_spec)
5140        << ArgExpr->getSourceRange();
5141      return true;
5142    }
5143
5144    //     -- The type of a template parameter corresponding to a
5145    //        specialized non-type argument shall not be dependent on a
5146    //        parameter of the specialization.
5147    if (Param->getType()->isDependentType()) {
5148      S.Diag(ArgExpr->getLocStart(),
5149           diag::err_dependent_typed_non_type_arg_in_partial_spec)
5150        << Param->getType()
5151        << ArgExpr->getSourceRange();
5152      S.Diag(Param->getLocation(), diag::note_template_param_here);
5153      return true;
5154    }
5155  }
5156
5157  return false;
5158}
5159
5160/// \brief Check the non-type template arguments of a class template
5161/// partial specialization according to C++ [temp.class.spec]p9.
5162///
5163/// \param TemplateParams the template parameters of the primary class
5164/// template.
5165///
5166/// \param TemplateArgs the template arguments of the class template
5167/// partial specialization.
5168///
5169/// \returns true if there was an error, false otherwise.
5170static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
5171                                        TemplateParameterList *TemplateParams,
5172                       SmallVectorImpl<TemplateArgument> &TemplateArgs) {
5173  const TemplateArgument *ArgList = TemplateArgs.data();
5174
5175  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5176    NonTypeTemplateParmDecl *Param
5177      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
5178    if (!Param)
5179      continue;
5180
5181    if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
5182                                                           &ArgList[I], 1))
5183      return true;
5184  }
5185
5186  return false;
5187}
5188
5189DeclResult
5190Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
5191                                       TagUseKind TUK,
5192                                       SourceLocation KWLoc,
5193                                       SourceLocation ModulePrivateLoc,
5194                                       CXXScopeSpec &SS,
5195                                       TemplateTy TemplateD,
5196                                       SourceLocation TemplateNameLoc,
5197                                       SourceLocation LAngleLoc,
5198                                       ASTTemplateArgsPtr TemplateArgsIn,
5199                                       SourceLocation RAngleLoc,
5200                                       AttributeList *Attr,
5201                               MultiTemplateParamsArg TemplateParameterLists) {
5202  assert(TUK != TUK_Reference && "References are not specializations");
5203
5204  // NOTE: KWLoc is the location of the tag keyword. This will instead
5205  // store the location of the outermost template keyword in the declaration.
5206  SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
5207    ? TemplateParameterLists[0]->getTemplateLoc() : SourceLocation();
5208
5209  // Find the class template we're specializing
5210  TemplateName Name = TemplateD.getAsVal<TemplateName>();
5211  ClassTemplateDecl *ClassTemplate
5212    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
5213
5214  if (!ClassTemplate) {
5215    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
5216      << (Name.getAsTemplateDecl() &&
5217          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
5218    return true;
5219  }
5220
5221  bool isExplicitSpecialization = false;
5222  bool isPartialSpecialization = false;
5223
5224  // Check the validity of the template headers that introduce this
5225  // template.
5226  // FIXME: We probably shouldn't complain about these headers for
5227  // friend declarations.
5228  bool Invalid = false;
5229  TemplateParameterList *TemplateParams
5230    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc,
5231                                              TemplateNameLoc,
5232                                              SS,
5233                                              TemplateParameterLists.data(),
5234                                              TemplateParameterLists.size(),
5235                                              TUK == TUK_Friend,
5236                                              isExplicitSpecialization,
5237                                              Invalid);
5238  if (Invalid)
5239    return true;
5240
5241  if (TemplateParams && TemplateParams->size() > 0) {
5242    isPartialSpecialization = true;
5243
5244    if (TUK == TUK_Friend) {
5245      Diag(KWLoc, diag::err_partial_specialization_friend)
5246        << SourceRange(LAngleLoc, RAngleLoc);
5247      return true;
5248    }
5249
5250    // C++ [temp.class.spec]p10:
5251    //   The template parameter list of a specialization shall not
5252    //   contain default template argument values.
5253    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5254      Decl *Param = TemplateParams->getParam(I);
5255      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
5256        if (TTP->hasDefaultArgument()) {
5257          Diag(TTP->getDefaultArgumentLoc(),
5258               diag::err_default_arg_in_partial_spec);
5259          TTP->removeDefaultArgument();
5260        }
5261      } else if (NonTypeTemplateParmDecl *NTTP
5262                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5263        if (Expr *DefArg = NTTP->getDefaultArgument()) {
5264          Diag(NTTP->getDefaultArgumentLoc(),
5265               diag::err_default_arg_in_partial_spec)
5266            << DefArg->getSourceRange();
5267          NTTP->removeDefaultArgument();
5268        }
5269      } else {
5270        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
5271        if (TTP->hasDefaultArgument()) {
5272          Diag(TTP->getDefaultArgument().getLocation(),
5273               diag::err_default_arg_in_partial_spec)
5274            << TTP->getDefaultArgument().getSourceRange();
5275          TTP->removeDefaultArgument();
5276        }
5277      }
5278    }
5279  } else if (TemplateParams) {
5280    if (TUK == TUK_Friend)
5281      Diag(KWLoc, diag::err_template_spec_friend)
5282        << FixItHint::CreateRemoval(
5283                                SourceRange(TemplateParams->getTemplateLoc(),
5284                                            TemplateParams->getRAngleLoc()))
5285        << SourceRange(LAngleLoc, RAngleLoc);
5286    else
5287      isExplicitSpecialization = true;
5288  } else if (TUK != TUK_Friend) {
5289    Diag(KWLoc, diag::err_template_spec_needs_header)
5290      << FixItHint::CreateInsertion(KWLoc, "template<> ");
5291    isExplicitSpecialization = true;
5292  }
5293
5294  // Check that the specialization uses the same tag kind as the
5295  // original template.
5296  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5297  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
5298  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5299                                    Kind, TUK == TUK_Definition, KWLoc,
5300                                    *ClassTemplate->getIdentifier())) {
5301    Diag(KWLoc, diag::err_use_with_wrong_tag)
5302      << ClassTemplate
5303      << FixItHint::CreateReplacement(KWLoc,
5304                            ClassTemplate->getTemplatedDecl()->getKindName());
5305    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5306         diag::note_previous_use);
5307    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5308  }
5309
5310  // Translate the parser's template argument list in our AST format.
5311  TemplateArgumentListInfo TemplateArgs;
5312  TemplateArgs.setLAngleLoc(LAngleLoc);
5313  TemplateArgs.setRAngleLoc(RAngleLoc);
5314  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5315
5316  // Check for unexpanded parameter packs in any of the template arguments.
5317  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
5318    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
5319                                        UPPC_PartialSpecialization))
5320      return true;
5321
5322  // Check that the template argument list is well-formed for this
5323  // template.
5324  SmallVector<TemplateArgument, 4> Converted;
5325  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5326                                TemplateArgs, false, Converted))
5327    return true;
5328
5329  // Find the class template (partial) specialization declaration that
5330  // corresponds to these arguments.
5331  if (isPartialSpecialization) {
5332    if (CheckClassTemplatePartialSpecializationArgs(*this,
5333                                         ClassTemplate->getTemplateParameters(),
5334                                         Converted))
5335      return true;
5336
5337    bool InstantiationDependent;
5338    if (!Name.isDependent() &&
5339        !TemplateSpecializationType::anyDependentTemplateArguments(
5340                                             TemplateArgs.getArgumentArray(),
5341                                                         TemplateArgs.size(),
5342                                                     InstantiationDependent)) {
5343      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
5344        << ClassTemplate->getDeclName();
5345      isPartialSpecialization = false;
5346    }
5347  }
5348
5349  void *InsertPos = 0;
5350  ClassTemplateSpecializationDecl *PrevDecl = 0;
5351
5352  if (isPartialSpecialization)
5353    // FIXME: Template parameter list matters, too
5354    PrevDecl
5355      = ClassTemplate->findPartialSpecialization(Converted.data(),
5356                                                 Converted.size(),
5357                                                 InsertPos);
5358  else
5359    PrevDecl
5360      = ClassTemplate->findSpecialization(Converted.data(),
5361                                          Converted.size(), InsertPos);
5362
5363  ClassTemplateSpecializationDecl *Specialization = 0;
5364
5365  // Check whether we can declare a class template specialization in
5366  // the current scope.
5367  if (TUK != TUK_Friend &&
5368      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
5369                                       TemplateNameLoc,
5370                                       isPartialSpecialization))
5371    return true;
5372
5373  // The canonical type
5374  QualType CanonType;
5375  if (PrevDecl &&
5376      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
5377               TUK == TUK_Friend)) {
5378    // Since the only prior class template specialization with these
5379    // arguments was referenced but not declared, or we're only
5380    // referencing this specialization as a friend, reuse that
5381    // declaration node as our own, updating its source location and
5382    // the list of outer template parameters to reflect our new declaration.
5383    Specialization = PrevDecl;
5384    Specialization->setLocation(TemplateNameLoc);
5385    if (TemplateParameterLists.size() > 0) {
5386      Specialization->setTemplateParameterListsInfo(Context,
5387                                              TemplateParameterLists.size(),
5388                                              TemplateParameterLists.data());
5389    }
5390    PrevDecl = 0;
5391    CanonType = Context.getTypeDeclType(Specialization);
5392  } else if (isPartialSpecialization) {
5393    // Build the canonical type that describes the converted template
5394    // arguments of the class template partial specialization.
5395    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
5396    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
5397                                                      Converted.data(),
5398                                                      Converted.size());
5399
5400    if (Context.hasSameType(CanonType,
5401                        ClassTemplate->getInjectedClassNameSpecialization())) {
5402      // C++ [temp.class.spec]p9b3:
5403      //
5404      //   -- The argument list of the specialization shall not be identical
5405      //      to the implicit argument list of the primary template.
5406      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
5407        << (TUK == TUK_Definition)
5408        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
5409      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
5410                                ClassTemplate->getIdentifier(),
5411                                TemplateNameLoc,
5412                                Attr,
5413                                TemplateParams,
5414                                AS_none, /*ModulePrivateLoc=*/SourceLocation(),
5415                                TemplateParameterLists.size() - 1,
5416                                TemplateParameterLists.data());
5417    }
5418
5419    // Create a new class template partial specialization declaration node.
5420    ClassTemplatePartialSpecializationDecl *PrevPartial
5421      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
5422    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
5423                            : ClassTemplate->getNextPartialSpecSequenceNumber();
5424    ClassTemplatePartialSpecializationDecl *Partial
5425      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
5426                                             ClassTemplate->getDeclContext(),
5427                                                       KWLoc, TemplateNameLoc,
5428                                                       TemplateParams,
5429                                                       ClassTemplate,
5430                                                       Converted.data(),
5431                                                       Converted.size(),
5432                                                       TemplateArgs,
5433                                                       CanonType,
5434                                                       PrevPartial,
5435                                                       SequenceNumber);
5436    SetNestedNameSpecifier(Partial, SS);
5437    if (TemplateParameterLists.size() > 1 && SS.isSet()) {
5438      Partial->setTemplateParameterListsInfo(Context,
5439                                             TemplateParameterLists.size() - 1,
5440                                             TemplateParameterLists.data());
5441    }
5442
5443    if (!PrevPartial)
5444      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
5445    Specialization = Partial;
5446
5447    // If we are providing an explicit specialization of a member class
5448    // template specialization, make a note of that.
5449    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
5450      PrevPartial->setMemberSpecialization();
5451
5452    // Check that all of the template parameters of the class template
5453    // partial specialization are deducible from the template
5454    // arguments. If not, this class template partial specialization
5455    // will never be used.
5456    llvm::SmallBitVector DeducibleParams(TemplateParams->size());
5457    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
5458                               TemplateParams->getDepth(),
5459                               DeducibleParams);
5460
5461    if (!DeducibleParams.all()) {
5462      unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
5463      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
5464        << (NumNonDeducible > 1)
5465        << SourceRange(TemplateNameLoc, RAngleLoc);
5466      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
5467        if (!DeducibleParams[I]) {
5468          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
5469          if (Param->getDeclName())
5470            Diag(Param->getLocation(),
5471                 diag::note_partial_spec_unused_parameter)
5472              << Param->getDeclName();
5473          else
5474            Diag(Param->getLocation(),
5475                 diag::note_partial_spec_unused_parameter)
5476              << "<anonymous>";
5477        }
5478      }
5479    }
5480  } else {
5481    // Create a new class template specialization declaration node for
5482    // this explicit specialization or friend declaration.
5483    Specialization
5484      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5485                                             ClassTemplate->getDeclContext(),
5486                                                KWLoc, TemplateNameLoc,
5487                                                ClassTemplate,
5488                                                Converted.data(),
5489                                                Converted.size(),
5490                                                PrevDecl);
5491    SetNestedNameSpecifier(Specialization, SS);
5492    if (TemplateParameterLists.size() > 0) {
5493      Specialization->setTemplateParameterListsInfo(Context,
5494                                              TemplateParameterLists.size(),
5495                                              TemplateParameterLists.data());
5496    }
5497
5498    if (!PrevDecl)
5499      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5500
5501    CanonType = Context.getTypeDeclType(Specialization);
5502  }
5503
5504  // C++ [temp.expl.spec]p6:
5505  //   If a template, a member template or the member of a class template is
5506  //   explicitly specialized then that specialization shall be declared
5507  //   before the first use of that specialization that would cause an implicit
5508  //   instantiation to take place, in every translation unit in which such a
5509  //   use occurs; no diagnostic is required.
5510  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
5511    bool Okay = false;
5512    for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5513      // Is there any previous explicit specialization declaration?
5514      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5515        Okay = true;
5516        break;
5517      }
5518    }
5519
5520    if (!Okay) {
5521      SourceRange Range(TemplateNameLoc, RAngleLoc);
5522      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
5523        << Context.getTypeDeclType(Specialization) << Range;
5524
5525      Diag(PrevDecl->getPointOfInstantiation(),
5526           diag::note_instantiation_required_here)
5527        << (PrevDecl->getTemplateSpecializationKind()
5528                                                != TSK_ImplicitInstantiation);
5529      return true;
5530    }
5531  }
5532
5533  // If this is not a friend, note that this is an explicit specialization.
5534  if (TUK != TUK_Friend)
5535    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
5536
5537  // Check that this isn't a redefinition of this specialization.
5538  if (TUK == TUK_Definition) {
5539    if (RecordDecl *Def = Specialization->getDefinition()) {
5540      SourceRange Range(TemplateNameLoc, RAngleLoc);
5541      Diag(TemplateNameLoc, diag::err_redefinition)
5542        << Context.getTypeDeclType(Specialization) << Range;
5543      Diag(Def->getLocation(), diag::note_previous_definition);
5544      Specialization->setInvalidDecl();
5545      return true;
5546    }
5547  }
5548
5549  if (Attr)
5550    ProcessDeclAttributeList(S, Specialization, Attr);
5551
5552  // Add alignment attributes if necessary; these attributes are checked when
5553  // the ASTContext lays out the structure.
5554  if (TUK == TUK_Definition) {
5555    AddAlignmentAttributesForRecord(Specialization);
5556    AddMsStructLayoutForRecord(Specialization);
5557  }
5558
5559  if (ModulePrivateLoc.isValid())
5560    Diag(Specialization->getLocation(), diag::err_module_private_specialization)
5561      << (isPartialSpecialization? 1 : 0)
5562      << FixItHint::CreateRemoval(ModulePrivateLoc);
5563
5564  // Build the fully-sugared type for this class template
5565  // specialization as the user wrote in the specialization
5566  // itself. This means that we'll pretty-print the type retrieved
5567  // from the specialization's declaration the way that the user
5568  // actually wrote the specialization, rather than formatting the
5569  // name based on the "canonical" representation used to store the
5570  // template arguments in the specialization.
5571  TypeSourceInfo *WrittenTy
5572    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5573                                                TemplateArgs, CanonType);
5574  if (TUK != TUK_Friend) {
5575    Specialization->setTypeAsWritten(WrittenTy);
5576    Specialization->setTemplateKeywordLoc(TemplateKWLoc);
5577  }
5578
5579  // C++ [temp.expl.spec]p9:
5580  //   A template explicit specialization is in the scope of the
5581  //   namespace in which the template was defined.
5582  //
5583  // We actually implement this paragraph where we set the semantic
5584  // context (in the creation of the ClassTemplateSpecializationDecl),
5585  // but we also maintain the lexical context where the actual
5586  // definition occurs.
5587  Specialization->setLexicalDeclContext(CurContext);
5588
5589  // We may be starting the definition of this specialization.
5590  if (TUK == TUK_Definition)
5591    Specialization->startDefinition();
5592
5593  if (TUK == TUK_Friend) {
5594    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
5595                                            TemplateNameLoc,
5596                                            WrittenTy,
5597                                            /*FIXME:*/KWLoc);
5598    Friend->setAccess(AS_public);
5599    CurContext->addDecl(Friend);
5600  } else {
5601    // Add the specialization into its lexical context, so that it can
5602    // be seen when iterating through the list of declarations in that
5603    // context. However, specializations are not found by name lookup.
5604    CurContext->addDecl(Specialization);
5605  }
5606  return Specialization;
5607}
5608
5609Decl *Sema::ActOnTemplateDeclarator(Scope *S,
5610                              MultiTemplateParamsArg TemplateParameterLists,
5611                                    Declarator &D) {
5612  Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
5613  ActOnDocumentableDecl(NewDecl);
5614  return NewDecl;
5615}
5616
5617Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
5618                               MultiTemplateParamsArg TemplateParameterLists,
5619                                            Declarator &D) {
5620  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5621  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5622
5623  if (FTI.hasPrototype) {
5624    // FIXME: Diagnose arguments without names in C.
5625  }
5626
5627  Scope *ParentScope = FnBodyScope->getParent();
5628
5629  D.setFunctionDefinitionKind(FDK_Definition);
5630  Decl *DP = HandleDeclarator(ParentScope, D,
5631                              TemplateParameterLists);
5632  if (FunctionTemplateDecl *FunctionTemplate
5633        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
5634    return ActOnStartOfFunctionDef(FnBodyScope,
5635                                   FunctionTemplate->getTemplatedDecl());
5636  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
5637    return ActOnStartOfFunctionDef(FnBodyScope, Function);
5638  return 0;
5639}
5640
5641/// \brief Strips various properties off an implicit instantiation
5642/// that has just been explicitly specialized.
5643static void StripImplicitInstantiation(NamedDecl *D) {
5644  // FIXME: "make check" is clean if the call to dropAttrs() is commented out.
5645  D->dropAttrs();
5646
5647  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5648    FD->setInlineSpecified(false);
5649  }
5650}
5651
5652/// \brief Compute the diagnostic location for an explicit instantiation
5653//  declaration or definition.
5654static SourceLocation DiagLocForExplicitInstantiation(
5655    NamedDecl* D, SourceLocation PointOfInstantiation) {
5656  // Explicit instantiations following a specialization have no effect and
5657  // hence no PointOfInstantiation. In that case, walk decl backwards
5658  // until a valid name loc is found.
5659  SourceLocation PrevDiagLoc = PointOfInstantiation;
5660  for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
5661       Prev = Prev->getPreviousDecl()) {
5662    PrevDiagLoc = Prev->getLocation();
5663  }
5664  assert(PrevDiagLoc.isValid() &&
5665         "Explicit instantiation without point of instantiation?");
5666  return PrevDiagLoc;
5667}
5668
5669/// \brief Diagnose cases where we have an explicit template specialization
5670/// before/after an explicit template instantiation, producing diagnostics
5671/// for those cases where they are required and determining whether the
5672/// new specialization/instantiation will have any effect.
5673///
5674/// \param NewLoc the location of the new explicit specialization or
5675/// instantiation.
5676///
5677/// \param NewTSK the kind of the new explicit specialization or instantiation.
5678///
5679/// \param PrevDecl the previous declaration of the entity.
5680///
5681/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
5682///
5683/// \param PrevPointOfInstantiation if valid, indicates where the previus
5684/// declaration was instantiated (either implicitly or explicitly).
5685///
5686/// \param HasNoEffect will be set to true to indicate that the new
5687/// specialization or instantiation has no effect and should be ignored.
5688///
5689/// \returns true if there was an error that should prevent the introduction of
5690/// the new declaration into the AST, false otherwise.
5691bool
5692Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
5693                                             TemplateSpecializationKind NewTSK,
5694                                             NamedDecl *PrevDecl,
5695                                             TemplateSpecializationKind PrevTSK,
5696                                        SourceLocation PrevPointOfInstantiation,
5697                                             bool &HasNoEffect) {
5698  HasNoEffect = false;
5699
5700  switch (NewTSK) {
5701  case TSK_Undeclared:
5702  case TSK_ImplicitInstantiation:
5703    llvm_unreachable("Don't check implicit instantiations here");
5704
5705  case TSK_ExplicitSpecialization:
5706    switch (PrevTSK) {
5707    case TSK_Undeclared:
5708    case TSK_ExplicitSpecialization:
5709      // Okay, we're just specializing something that is either already
5710      // explicitly specialized or has merely been mentioned without any
5711      // instantiation.
5712      return false;
5713
5714    case TSK_ImplicitInstantiation:
5715      if (PrevPointOfInstantiation.isInvalid()) {
5716        // The declaration itself has not actually been instantiated, so it is
5717        // still okay to specialize it.
5718        StripImplicitInstantiation(PrevDecl);
5719        return false;
5720      }
5721      // Fall through
5722
5723    case TSK_ExplicitInstantiationDeclaration:
5724    case TSK_ExplicitInstantiationDefinition:
5725      assert((PrevTSK == TSK_ImplicitInstantiation ||
5726              PrevPointOfInstantiation.isValid()) &&
5727             "Explicit instantiation without point of instantiation?");
5728
5729      // C++ [temp.expl.spec]p6:
5730      //   If a template, a member template or the member of a class template
5731      //   is explicitly specialized then that specialization shall be declared
5732      //   before the first use of that specialization that would cause an
5733      //   implicit instantiation to take place, in every translation unit in
5734      //   which such a use occurs; no diagnostic is required.
5735      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5736        // Is there any previous explicit specialization declaration?
5737        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
5738          return false;
5739      }
5740
5741      Diag(NewLoc, diag::err_specialization_after_instantiation)
5742        << PrevDecl;
5743      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
5744        << (PrevTSK != TSK_ImplicitInstantiation);
5745
5746      return true;
5747    }
5748
5749  case TSK_ExplicitInstantiationDeclaration:
5750    switch (PrevTSK) {
5751    case TSK_ExplicitInstantiationDeclaration:
5752      // This explicit instantiation declaration is redundant (that's okay).
5753      HasNoEffect = true;
5754      return false;
5755
5756    case TSK_Undeclared:
5757    case TSK_ImplicitInstantiation:
5758      // We're explicitly instantiating something that may have already been
5759      // implicitly instantiated; that's fine.
5760      return false;
5761
5762    case TSK_ExplicitSpecialization:
5763      // C++0x [temp.explicit]p4:
5764      //   For a given set of template parameters, if an explicit instantiation
5765      //   of a template appears after a declaration of an explicit
5766      //   specialization for that template, the explicit instantiation has no
5767      //   effect.
5768      HasNoEffect = true;
5769      return false;
5770
5771    case TSK_ExplicitInstantiationDefinition:
5772      // C++0x [temp.explicit]p10:
5773      //   If an entity is the subject of both an explicit instantiation
5774      //   declaration and an explicit instantiation definition in the same
5775      //   translation unit, the definition shall follow the declaration.
5776      Diag(NewLoc,
5777           diag::err_explicit_instantiation_declaration_after_definition);
5778
5779      // Explicit instantiations following a specialization have no effect and
5780      // hence no PrevPointOfInstantiation. In that case, walk decl backwards
5781      // until a valid name loc is found.
5782      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
5783           diag::note_explicit_instantiation_definition_here);
5784      HasNoEffect = true;
5785      return false;
5786    }
5787
5788  case TSK_ExplicitInstantiationDefinition:
5789    switch (PrevTSK) {
5790    case TSK_Undeclared:
5791    case TSK_ImplicitInstantiation:
5792      // We're explicitly instantiating something that may have already been
5793      // implicitly instantiated; that's fine.
5794      return false;
5795
5796    case TSK_ExplicitSpecialization:
5797      // C++ DR 259, C++0x [temp.explicit]p4:
5798      //   For a given set of template parameters, if an explicit
5799      //   instantiation of a template appears after a declaration of
5800      //   an explicit specialization for that template, the explicit
5801      //   instantiation has no effect.
5802      //
5803      // In C++98/03 mode, we only give an extension warning here, because it
5804      // is not harmful to try to explicitly instantiate something that
5805      // has been explicitly specialized.
5806      Diag(NewLoc, getLangOpts().CPlusPlus0x ?
5807           diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
5808           diag::ext_explicit_instantiation_after_specialization)
5809        << PrevDecl;
5810      Diag(PrevDecl->getLocation(),
5811           diag::note_previous_template_specialization);
5812      HasNoEffect = true;
5813      return false;
5814
5815    case TSK_ExplicitInstantiationDeclaration:
5816      // We're explicity instantiating a definition for something for which we
5817      // were previously asked to suppress instantiations. That's fine.
5818
5819      // C++0x [temp.explicit]p4:
5820      //   For a given set of template parameters, if an explicit instantiation
5821      //   of a template appears after a declaration of an explicit
5822      //   specialization for that template, the explicit instantiation has no
5823      //   effect.
5824      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5825        // Is there any previous explicit specialization declaration?
5826        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5827          HasNoEffect = true;
5828          break;
5829        }
5830      }
5831
5832      return false;
5833
5834    case TSK_ExplicitInstantiationDefinition:
5835      // C++0x [temp.spec]p5:
5836      //   For a given template and a given set of template-arguments,
5837      //     - an explicit instantiation definition shall appear at most once
5838      //       in a program,
5839      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
5840        << PrevDecl;
5841      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
5842           diag::note_previous_explicit_instantiation);
5843      HasNoEffect = true;
5844      return false;
5845    }
5846  }
5847
5848  llvm_unreachable("Missing specialization/instantiation case?");
5849}
5850
5851/// \brief Perform semantic analysis for the given dependent function
5852/// template specialization.
5853///
5854/// The only possible way to get a dependent function template specialization
5855/// is with a friend declaration, like so:
5856///
5857/// \code
5858///   template \<class T> void foo(T);
5859///   template \<class T> class A {
5860///     friend void foo<>(T);
5861///   };
5862/// \endcode
5863///
5864/// There really isn't any useful analysis we can do here, so we
5865/// just store the information.
5866bool
5867Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
5868                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
5869                                                   LookupResult &Previous) {
5870  // Remove anything from Previous that isn't a function template in
5871  // the correct context.
5872  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5873  LookupResult::Filter F = Previous.makeFilter();
5874  while (F.hasNext()) {
5875    NamedDecl *D = F.next()->getUnderlyingDecl();
5876    if (!isa<FunctionTemplateDecl>(D) ||
5877        !FDLookupContext->InEnclosingNamespaceSetOf(
5878                              D->getDeclContext()->getRedeclContext()))
5879      F.erase();
5880  }
5881  F.done();
5882
5883  // Should this be diagnosed here?
5884  if (Previous.empty()) return true;
5885
5886  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
5887                                         ExplicitTemplateArgs);
5888  return false;
5889}
5890
5891/// \brief Perform semantic analysis for the given function template
5892/// specialization.
5893///
5894/// This routine performs all of the semantic analysis required for an
5895/// explicit function template specialization. On successful completion,
5896/// the function declaration \p FD will become a function template
5897/// specialization.
5898///
5899/// \param FD the function declaration, which will be updated to become a
5900/// function template specialization.
5901///
5902/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
5903/// if any. Note that this may be valid info even when 0 arguments are
5904/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
5905/// as it anyway contains info on the angle brackets locations.
5906///
5907/// \param Previous the set of declarations that may be specialized by
5908/// this function specialization.
5909bool
5910Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
5911                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5912                                          LookupResult &Previous) {
5913  // The set of function template specializations that could match this
5914  // explicit function template specialization.
5915  UnresolvedSet<8> Candidates;
5916
5917  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5918  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5919         I != E; ++I) {
5920    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
5921    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
5922      // Only consider templates found within the same semantic lookup scope as
5923      // FD.
5924      if (!FDLookupContext->InEnclosingNamespaceSetOf(
5925                                Ovl->getDeclContext()->getRedeclContext()))
5926        continue;
5927
5928      // C++ [temp.expl.spec]p11:
5929      //   A trailing template-argument can be left unspecified in the
5930      //   template-id naming an explicit function template specialization
5931      //   provided it can be deduced from the function argument type.
5932      // Perform template argument deduction to determine whether we may be
5933      // specializing this template.
5934      // FIXME: It is somewhat wasteful to build
5935      TemplateDeductionInfo Info(FD->getLocation());
5936      FunctionDecl *Specialization = 0;
5937      if (TemplateDeductionResult TDK
5938            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
5939                                      FD->getType(),
5940                                      Specialization,
5941                                      Info)) {
5942        // FIXME: Template argument deduction failed; record why it failed, so
5943        // that we can provide nifty diagnostics.
5944        (void)TDK;
5945        continue;
5946      }
5947
5948      // Record this candidate.
5949      Candidates.addDecl(Specialization, I.getAccess());
5950    }
5951  }
5952
5953  // Find the most specialized function template.
5954  UnresolvedSetIterator Result
5955    = getMostSpecialized(Candidates.begin(), Candidates.end(),
5956                         TPOC_Other, 0, FD->getLocation(),
5957                  PDiag(diag::err_function_template_spec_no_match)
5958                    << FD->getDeclName(),
5959                  PDiag(diag::err_function_template_spec_ambiguous)
5960                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
5961                  PDiag(diag::note_function_template_spec_matched));
5962  if (Result == Candidates.end())
5963    return true;
5964
5965  // Ignore access information;  it doesn't figure into redeclaration checking.
5966  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5967
5968  FunctionTemplateSpecializationInfo *SpecInfo
5969    = Specialization->getTemplateSpecializationInfo();
5970  assert(SpecInfo && "Function template specialization info missing?");
5971
5972  // Note: do not overwrite location info if previous template
5973  // specialization kind was explicit.
5974  TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
5975  if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
5976    Specialization->setLocation(FD->getLocation());
5977    // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
5978    // function can differ from the template declaration with respect to
5979    // the constexpr specifier.
5980    Specialization->setConstexpr(FD->isConstexpr());
5981  }
5982
5983  // FIXME: Check if the prior specialization has a point of instantiation.
5984  // If so, we have run afoul of .
5985
5986  // If this is a friend declaration, then we're not really declaring
5987  // an explicit specialization.
5988  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
5989
5990  // Check the scope of this explicit specialization.
5991  if (!isFriend &&
5992      CheckTemplateSpecializationScope(*this,
5993                                       Specialization->getPrimaryTemplate(),
5994                                       Specialization, FD->getLocation(),
5995                                       false))
5996    return true;
5997
5998  // C++ [temp.expl.spec]p6:
5999  //   If a template, a member template or the member of a class template is
6000  //   explicitly specialized then that specialization shall be declared
6001  //   before the first use of that specialization that would cause an implicit
6002  //   instantiation to take place, in every translation unit in which such a
6003  //   use occurs; no diagnostic is required.
6004  bool HasNoEffect = false;
6005  if (!isFriend &&
6006      CheckSpecializationInstantiationRedecl(FD->getLocation(),
6007                                             TSK_ExplicitSpecialization,
6008                                             Specialization,
6009                                   SpecInfo->getTemplateSpecializationKind(),
6010                                         SpecInfo->getPointOfInstantiation(),
6011                                             HasNoEffect))
6012    return true;
6013
6014  // Mark the prior declaration as an explicit specialization, so that later
6015  // clients know that this is an explicit specialization.
6016  if (!isFriend) {
6017    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
6018    MarkUnusedFileScopedDecl(Specialization);
6019  }
6020
6021  // Turn the given function declaration into a function template
6022  // specialization, with the template arguments from the previous
6023  // specialization.
6024  // Take copies of (semantic and syntactic) template argument lists.
6025  const TemplateArgumentList* TemplArgs = new (Context)
6026    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
6027  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
6028                                        TemplArgs, /*InsertPos=*/0,
6029                                    SpecInfo->getTemplateSpecializationKind(),
6030                                        ExplicitTemplateArgs);
6031  FD->setStorageClass(Specialization->getStorageClass());
6032
6033  // The "previous declaration" for this function template specialization is
6034  // the prior function template specialization.
6035  Previous.clear();
6036  Previous.addDecl(Specialization);
6037  return false;
6038}
6039
6040/// \brief Perform semantic analysis for the given non-template member
6041/// specialization.
6042///
6043/// This routine performs all of the semantic analysis required for an
6044/// explicit member function specialization. On successful completion,
6045/// the function declaration \p FD will become a member function
6046/// specialization.
6047///
6048/// \param Member the member declaration, which will be updated to become a
6049/// specialization.
6050///
6051/// \param Previous the set of declarations, one of which may be specialized
6052/// by this function specialization;  the set will be modified to contain the
6053/// redeclared member.
6054bool
6055Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
6056  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
6057
6058  // Try to find the member we are instantiating.
6059  NamedDecl *Instantiation = 0;
6060  NamedDecl *InstantiatedFrom = 0;
6061  MemberSpecializationInfo *MSInfo = 0;
6062
6063  if (Previous.empty()) {
6064    // Nowhere to look anyway.
6065  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
6066    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6067           I != E; ++I) {
6068      NamedDecl *D = (*I)->getUnderlyingDecl();
6069      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
6070        if (Context.hasSameType(Function->getType(), Method->getType())) {
6071          Instantiation = Method;
6072          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
6073          MSInfo = Method->getMemberSpecializationInfo();
6074          break;
6075        }
6076      }
6077    }
6078  } else if (isa<VarDecl>(Member)) {
6079    VarDecl *PrevVar;
6080    if (Previous.isSingleResult() &&
6081        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
6082      if (PrevVar->isStaticDataMember()) {
6083        Instantiation = PrevVar;
6084        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
6085        MSInfo = PrevVar->getMemberSpecializationInfo();
6086      }
6087  } else if (isa<RecordDecl>(Member)) {
6088    CXXRecordDecl *PrevRecord;
6089    if (Previous.isSingleResult() &&
6090        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
6091      Instantiation = PrevRecord;
6092      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
6093      MSInfo = PrevRecord->getMemberSpecializationInfo();
6094    }
6095  } else if (isa<EnumDecl>(Member)) {
6096    EnumDecl *PrevEnum;
6097    if (Previous.isSingleResult() &&
6098        (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
6099      Instantiation = PrevEnum;
6100      InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
6101      MSInfo = PrevEnum->getMemberSpecializationInfo();
6102    }
6103  }
6104
6105  if (!Instantiation) {
6106    // There is no previous declaration that matches. Since member
6107    // specializations are always out-of-line, the caller will complain about
6108    // this mismatch later.
6109    return false;
6110  }
6111
6112  // If this is a friend, just bail out here before we start turning
6113  // things into explicit specializations.
6114  if (Member->getFriendObjectKind() != Decl::FOK_None) {
6115    // Preserve instantiation information.
6116    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
6117      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
6118                                      cast<CXXMethodDecl>(InstantiatedFrom),
6119        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
6120    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
6121      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6122                                      cast<CXXRecordDecl>(InstantiatedFrom),
6123        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
6124    }
6125
6126    Previous.clear();
6127    Previous.addDecl(Instantiation);
6128    return false;
6129  }
6130
6131  // Make sure that this is a specialization of a member.
6132  if (!InstantiatedFrom) {
6133    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
6134      << Member;
6135    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
6136    return true;
6137  }
6138
6139  // C++ [temp.expl.spec]p6:
6140  //   If a template, a member template or the member of a class template is
6141  //   explicitly specialized then that specialization shall be declared
6142  //   before the first use of that specialization that would cause an implicit
6143  //   instantiation to take place, in every translation unit in which such a
6144  //   use occurs; no diagnostic is required.
6145  assert(MSInfo && "Member specialization info missing?");
6146
6147  bool HasNoEffect = false;
6148  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
6149                                             TSK_ExplicitSpecialization,
6150                                             Instantiation,
6151                                     MSInfo->getTemplateSpecializationKind(),
6152                                           MSInfo->getPointOfInstantiation(),
6153                                             HasNoEffect))
6154    return true;
6155
6156  // Check the scope of this explicit specialization.
6157  if (CheckTemplateSpecializationScope(*this,
6158                                       InstantiatedFrom,
6159                                       Instantiation, Member->getLocation(),
6160                                       false))
6161    return true;
6162
6163  // Note that this is an explicit instantiation of a member.
6164  // the original declaration to note that it is an explicit specialization
6165  // (if it was previously an implicit instantiation). This latter step
6166  // makes bookkeeping easier.
6167  if (isa<FunctionDecl>(Member)) {
6168    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
6169    if (InstantiationFunction->getTemplateSpecializationKind() ==
6170          TSK_ImplicitInstantiation) {
6171      InstantiationFunction->setTemplateSpecializationKind(
6172                                                  TSK_ExplicitSpecialization);
6173      InstantiationFunction->setLocation(Member->getLocation());
6174    }
6175
6176    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
6177                                        cast<CXXMethodDecl>(InstantiatedFrom),
6178                                                  TSK_ExplicitSpecialization);
6179    MarkUnusedFileScopedDecl(InstantiationFunction);
6180  } else if (isa<VarDecl>(Member)) {
6181    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
6182    if (InstantiationVar->getTemplateSpecializationKind() ==
6183          TSK_ImplicitInstantiation) {
6184      InstantiationVar->setTemplateSpecializationKind(
6185                                                  TSK_ExplicitSpecialization);
6186      InstantiationVar->setLocation(Member->getLocation());
6187    }
6188
6189    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
6190                                                cast<VarDecl>(InstantiatedFrom),
6191                                                TSK_ExplicitSpecialization);
6192    MarkUnusedFileScopedDecl(InstantiationVar);
6193  } else if (isa<CXXRecordDecl>(Member)) {
6194    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
6195    if (InstantiationClass->getTemplateSpecializationKind() ==
6196          TSK_ImplicitInstantiation) {
6197      InstantiationClass->setTemplateSpecializationKind(
6198                                                   TSK_ExplicitSpecialization);
6199      InstantiationClass->setLocation(Member->getLocation());
6200    }
6201
6202    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6203                                        cast<CXXRecordDecl>(InstantiatedFrom),
6204                                                   TSK_ExplicitSpecialization);
6205  } else {
6206    assert(isa<EnumDecl>(Member) && "Only member enums remain");
6207    EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
6208    if (InstantiationEnum->getTemplateSpecializationKind() ==
6209          TSK_ImplicitInstantiation) {
6210      InstantiationEnum->setTemplateSpecializationKind(
6211                                                   TSK_ExplicitSpecialization);
6212      InstantiationEnum->setLocation(Member->getLocation());
6213    }
6214
6215    cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
6216        cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
6217  }
6218
6219  // Save the caller the trouble of having to figure out which declaration
6220  // this specialization matches.
6221  Previous.clear();
6222  Previous.addDecl(Instantiation);
6223  return false;
6224}
6225
6226/// \brief Check the scope of an explicit instantiation.
6227///
6228/// \returns true if a serious error occurs, false otherwise.
6229static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
6230                                            SourceLocation InstLoc,
6231                                            bool WasQualifiedName) {
6232  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
6233  DeclContext *CurContext = S.CurContext->getRedeclContext();
6234
6235  if (CurContext->isRecord()) {
6236    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
6237      << D;
6238    return true;
6239  }
6240
6241  // C++11 [temp.explicit]p3:
6242  //   An explicit instantiation shall appear in an enclosing namespace of its
6243  //   template. If the name declared in the explicit instantiation is an
6244  //   unqualified name, the explicit instantiation shall appear in the
6245  //   namespace where its template is declared or, if that namespace is inline
6246  //   (7.3.1), any namespace from its enclosing namespace set.
6247  //
6248  // This is DR275, which we do not retroactively apply to C++98/03.
6249  if (WasQualifiedName) {
6250    if (CurContext->Encloses(OrigContext))
6251      return false;
6252  } else {
6253    if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
6254      return false;
6255  }
6256
6257  if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
6258    if (WasQualifiedName)
6259      S.Diag(InstLoc,
6260             S.getLangOpts().CPlusPlus0x?
6261               diag::err_explicit_instantiation_out_of_scope :
6262               diag::warn_explicit_instantiation_out_of_scope_0x)
6263        << D << NS;
6264    else
6265      S.Diag(InstLoc,
6266             S.getLangOpts().CPlusPlus0x?
6267               diag::err_explicit_instantiation_unqualified_wrong_namespace :
6268               diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
6269        << D << NS;
6270  } else
6271    S.Diag(InstLoc,
6272           S.getLangOpts().CPlusPlus0x?
6273             diag::err_explicit_instantiation_must_be_global :
6274             diag::warn_explicit_instantiation_must_be_global_0x)
6275      << D;
6276  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
6277  return false;
6278}
6279
6280/// \brief Determine whether the given scope specifier has a template-id in it.
6281static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
6282  if (!SS.isSet())
6283    return false;
6284
6285  // C++11 [temp.explicit]p3:
6286  //   If the explicit instantiation is for a member function, a member class
6287  //   or a static data member of a class template specialization, the name of
6288  //   the class template specialization in the qualified-id for the member
6289  //   name shall be a simple-template-id.
6290  //
6291  // C++98 has the same restriction, just worded differently.
6292  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
6293       NNS; NNS = NNS->getPrefix())
6294    if (const Type *T = NNS->getAsType())
6295      if (isa<TemplateSpecializationType>(T))
6296        return true;
6297
6298  return false;
6299}
6300
6301// Explicit instantiation of a class template specialization
6302DeclResult
6303Sema::ActOnExplicitInstantiation(Scope *S,
6304                                 SourceLocation ExternLoc,
6305                                 SourceLocation TemplateLoc,
6306                                 unsigned TagSpec,
6307                                 SourceLocation KWLoc,
6308                                 const CXXScopeSpec &SS,
6309                                 TemplateTy TemplateD,
6310                                 SourceLocation TemplateNameLoc,
6311                                 SourceLocation LAngleLoc,
6312                                 ASTTemplateArgsPtr TemplateArgsIn,
6313                                 SourceLocation RAngleLoc,
6314                                 AttributeList *Attr) {
6315  // Find the class template we're specializing
6316  TemplateName Name = TemplateD.getAsVal<TemplateName>();
6317  ClassTemplateDecl *ClassTemplate
6318    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
6319
6320  // Check that the specialization uses the same tag kind as the
6321  // original template.
6322  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6323  assert(Kind != TTK_Enum &&
6324         "Invalid enum tag in class template explicit instantiation!");
6325  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
6326                                    Kind, /*isDefinition*/false, KWLoc,
6327                                    *ClassTemplate->getIdentifier())) {
6328    Diag(KWLoc, diag::err_use_with_wrong_tag)
6329      << ClassTemplate
6330      << FixItHint::CreateReplacement(KWLoc,
6331                            ClassTemplate->getTemplatedDecl()->getKindName());
6332    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
6333         diag::note_previous_use);
6334    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
6335  }
6336
6337  // C++0x [temp.explicit]p2:
6338  //   There are two forms of explicit instantiation: an explicit instantiation
6339  //   definition and an explicit instantiation declaration. An explicit
6340  //   instantiation declaration begins with the extern keyword. [...]
6341  TemplateSpecializationKind TSK
6342    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6343                           : TSK_ExplicitInstantiationDeclaration;
6344
6345  // Translate the parser's template argument list in our AST format.
6346  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6347  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6348
6349  // Check that the template argument list is well-formed for this
6350  // template.
6351  SmallVector<TemplateArgument, 4> Converted;
6352  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
6353                                TemplateArgs, false, Converted))
6354    return true;
6355
6356  // Find the class template specialization declaration that
6357  // corresponds to these arguments.
6358  void *InsertPos = 0;
6359  ClassTemplateSpecializationDecl *PrevDecl
6360    = ClassTemplate->findSpecialization(Converted.data(),
6361                                        Converted.size(), InsertPos);
6362
6363  TemplateSpecializationKind PrevDecl_TSK
6364    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
6365
6366  // C++0x [temp.explicit]p2:
6367  //   [...] An explicit instantiation shall appear in an enclosing
6368  //   namespace of its template. [...]
6369  //
6370  // This is C++ DR 275.
6371  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
6372                                      SS.isSet()))
6373    return true;
6374
6375  ClassTemplateSpecializationDecl *Specialization = 0;
6376
6377  bool HasNoEffect = false;
6378  if (PrevDecl) {
6379    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
6380                                               PrevDecl, PrevDecl_TSK,
6381                                            PrevDecl->getPointOfInstantiation(),
6382                                               HasNoEffect))
6383      return PrevDecl;
6384
6385    // Even though HasNoEffect == true means that this explicit instantiation
6386    // has no effect on semantics, we go on to put its syntax in the AST.
6387
6388    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
6389        PrevDecl_TSK == TSK_Undeclared) {
6390      // Since the only prior class template specialization with these
6391      // arguments was referenced but not declared, reuse that
6392      // declaration node as our own, updating the source location
6393      // for the template name to reflect our new declaration.
6394      // (Other source locations will be updated later.)
6395      Specialization = PrevDecl;
6396      Specialization->setLocation(TemplateNameLoc);
6397      PrevDecl = 0;
6398    }
6399  }
6400
6401  if (!Specialization) {
6402    // Create a new class template specialization declaration node for
6403    // this explicit specialization.
6404    Specialization
6405      = ClassTemplateSpecializationDecl::Create(Context, Kind,
6406                                             ClassTemplate->getDeclContext(),
6407                                                KWLoc, TemplateNameLoc,
6408                                                ClassTemplate,
6409                                                Converted.data(),
6410                                                Converted.size(),
6411                                                PrevDecl);
6412    SetNestedNameSpecifier(Specialization, SS);
6413
6414    if (!HasNoEffect && !PrevDecl) {
6415      // Insert the new specialization.
6416      ClassTemplate->AddSpecialization(Specialization, InsertPos);
6417    }
6418  }
6419
6420  // Build the fully-sugared type for this explicit instantiation as
6421  // the user wrote in the explicit instantiation itself. This means
6422  // that we'll pretty-print the type retrieved from the
6423  // specialization's declaration the way that the user actually wrote
6424  // the explicit instantiation, rather than formatting the name based
6425  // on the "canonical" representation used to store the template
6426  // arguments in the specialization.
6427  TypeSourceInfo *WrittenTy
6428    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6429                                                TemplateArgs,
6430                                  Context.getTypeDeclType(Specialization));
6431  Specialization->setTypeAsWritten(WrittenTy);
6432
6433  // Set source locations for keywords.
6434  Specialization->setExternLoc(ExternLoc);
6435  Specialization->setTemplateKeywordLoc(TemplateLoc);
6436
6437  if (Attr)
6438    ProcessDeclAttributeList(S, Specialization, Attr);
6439
6440  // Add the explicit instantiation into its lexical context. However,
6441  // since explicit instantiations are never found by name lookup, we
6442  // just put it into the declaration context directly.
6443  Specialization->setLexicalDeclContext(CurContext);
6444  CurContext->addDecl(Specialization);
6445
6446  // Syntax is now OK, so return if it has no other effect on semantics.
6447  if (HasNoEffect) {
6448    // Set the template specialization kind.
6449    Specialization->setTemplateSpecializationKind(TSK);
6450    return Specialization;
6451  }
6452
6453  // C++ [temp.explicit]p3:
6454  //   A definition of a class template or class member template
6455  //   shall be in scope at the point of the explicit instantiation of
6456  //   the class template or class member template.
6457  //
6458  // This check comes when we actually try to perform the
6459  // instantiation.
6460  ClassTemplateSpecializationDecl *Def
6461    = cast_or_null<ClassTemplateSpecializationDecl>(
6462                                              Specialization->getDefinition());
6463  if (!Def)
6464    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
6465  else if (TSK == TSK_ExplicitInstantiationDefinition) {
6466    MarkVTableUsed(TemplateNameLoc, Specialization, true);
6467    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
6468  }
6469
6470  // Instantiate the members of this class template specialization.
6471  Def = cast_or_null<ClassTemplateSpecializationDecl>(
6472                                       Specialization->getDefinition());
6473  if (Def) {
6474    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
6475
6476    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
6477    // TSK_ExplicitInstantiationDefinition
6478    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
6479        TSK == TSK_ExplicitInstantiationDefinition)
6480      Def->setTemplateSpecializationKind(TSK);
6481
6482    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
6483  }
6484
6485  // Set the template specialization kind.
6486  Specialization->setTemplateSpecializationKind(TSK);
6487  return Specialization;
6488}
6489
6490// Explicit instantiation of a member class of a class template.
6491DeclResult
6492Sema::ActOnExplicitInstantiation(Scope *S,
6493                                 SourceLocation ExternLoc,
6494                                 SourceLocation TemplateLoc,
6495                                 unsigned TagSpec,
6496                                 SourceLocation KWLoc,
6497                                 CXXScopeSpec &SS,
6498                                 IdentifierInfo *Name,
6499                                 SourceLocation NameLoc,
6500                                 AttributeList *Attr) {
6501
6502  bool Owned = false;
6503  bool IsDependent = false;
6504  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
6505                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
6506                        /*ModulePrivateLoc=*/SourceLocation(),
6507                        MultiTemplateParamsArg(), Owned, IsDependent,
6508                        SourceLocation(), false, TypeResult());
6509  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
6510
6511  if (!TagD)
6512    return true;
6513
6514  TagDecl *Tag = cast<TagDecl>(TagD);
6515  assert(!Tag->isEnum() && "shouldn't see enumerations here");
6516
6517  if (Tag->isInvalidDecl())
6518    return true;
6519
6520  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
6521  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
6522  if (!Pattern) {
6523    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
6524      << Context.getTypeDeclType(Record);
6525    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
6526    return true;
6527  }
6528
6529  // C++0x [temp.explicit]p2:
6530  //   If the explicit instantiation is for a class or member class, the
6531  //   elaborated-type-specifier in the declaration shall include a
6532  //   simple-template-id.
6533  //
6534  // C++98 has the same restriction, just worded differently.
6535  if (!ScopeSpecifierHasTemplateId(SS))
6536    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
6537      << Record << SS.getRange();
6538
6539  // C++0x [temp.explicit]p2:
6540  //   There are two forms of explicit instantiation: an explicit instantiation
6541  //   definition and an explicit instantiation declaration. An explicit
6542  //   instantiation declaration begins with the extern keyword. [...]
6543  TemplateSpecializationKind TSK
6544    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6545                           : TSK_ExplicitInstantiationDeclaration;
6546
6547  // C++0x [temp.explicit]p2:
6548  //   [...] An explicit instantiation shall appear in an enclosing
6549  //   namespace of its template. [...]
6550  //
6551  // This is C++ DR 275.
6552  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
6553
6554  // Verify that it is okay to explicitly instantiate here.
6555  CXXRecordDecl *PrevDecl
6556    = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
6557  if (!PrevDecl && Record->getDefinition())
6558    PrevDecl = Record;
6559  if (PrevDecl) {
6560    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
6561    bool HasNoEffect = false;
6562    assert(MSInfo && "No member specialization information?");
6563    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
6564                                               PrevDecl,
6565                                        MSInfo->getTemplateSpecializationKind(),
6566                                             MSInfo->getPointOfInstantiation(),
6567                                               HasNoEffect))
6568      return true;
6569    if (HasNoEffect)
6570      return TagD;
6571  }
6572
6573  CXXRecordDecl *RecordDef
6574    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6575  if (!RecordDef) {
6576    // C++ [temp.explicit]p3:
6577    //   A definition of a member class of a class template shall be in scope
6578    //   at the point of an explicit instantiation of the member class.
6579    CXXRecordDecl *Def
6580      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
6581    if (!Def) {
6582      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
6583        << 0 << Record->getDeclName() << Record->getDeclContext();
6584      Diag(Pattern->getLocation(), diag::note_forward_declaration)
6585        << Pattern;
6586      return true;
6587    } else {
6588      if (InstantiateClass(NameLoc, Record, Def,
6589                           getTemplateInstantiationArgs(Record),
6590                           TSK))
6591        return true;
6592
6593      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6594      if (!RecordDef)
6595        return true;
6596    }
6597  }
6598
6599  // Instantiate all of the members of the class.
6600  InstantiateClassMembers(NameLoc, RecordDef,
6601                          getTemplateInstantiationArgs(Record), TSK);
6602
6603  if (TSK == TSK_ExplicitInstantiationDefinition)
6604    MarkVTableUsed(NameLoc, RecordDef, true);
6605
6606  // FIXME: We don't have any representation for explicit instantiations of
6607  // member classes. Such a representation is not needed for compilation, but it
6608  // should be available for clients that want to see all of the declarations in
6609  // the source code.
6610  return TagD;
6611}
6612
6613DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
6614                                            SourceLocation ExternLoc,
6615                                            SourceLocation TemplateLoc,
6616                                            Declarator &D) {
6617  // Explicit instantiations always require a name.
6618  // TODO: check if/when DNInfo should replace Name.
6619  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6620  DeclarationName Name = NameInfo.getName();
6621  if (!Name) {
6622    if (!D.isInvalidType())
6623      Diag(D.getDeclSpec().getLocStart(),
6624           diag::err_explicit_instantiation_requires_name)
6625        << D.getDeclSpec().getSourceRange()
6626        << D.getSourceRange();
6627
6628    return true;
6629  }
6630
6631  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6632  // we find one that is.
6633  while ((S->getFlags() & Scope::DeclScope) == 0 ||
6634         (S->getFlags() & Scope::TemplateParamScope) != 0)
6635    S = S->getParent();
6636
6637  // Determine the type of the declaration.
6638  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
6639  QualType R = T->getType();
6640  if (R.isNull())
6641    return true;
6642
6643  // C++ [dcl.stc]p1:
6644  //   A storage-class-specifier shall not be specified in [...] an explicit
6645  //   instantiation (14.7.2) directive.
6646  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
6647    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
6648      << Name;
6649    return true;
6650  } else if (D.getDeclSpec().getStorageClassSpec()
6651                                                != DeclSpec::SCS_unspecified) {
6652    // Complain about then remove the storage class specifier.
6653    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
6654      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6655
6656    D.getMutableDeclSpec().ClearStorageClassSpecs();
6657  }
6658
6659  // C++0x [temp.explicit]p1:
6660  //   [...] An explicit instantiation of a function template shall not use the
6661  //   inline or constexpr specifiers.
6662  // Presumably, this also applies to member functions of class templates as
6663  // well.
6664  if (D.getDeclSpec().isInlineSpecified())
6665    Diag(D.getDeclSpec().getInlineSpecLoc(),
6666         getLangOpts().CPlusPlus0x ?
6667           diag::err_explicit_instantiation_inline :
6668           diag::warn_explicit_instantiation_inline_0x)
6669      << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6670  if (D.getDeclSpec().isConstexprSpecified())
6671    // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
6672    // not already specified.
6673    Diag(D.getDeclSpec().getConstexprSpecLoc(),
6674         diag::err_explicit_instantiation_constexpr);
6675
6676  // C++0x [temp.explicit]p2:
6677  //   There are two forms of explicit instantiation: an explicit instantiation
6678  //   definition and an explicit instantiation declaration. An explicit
6679  //   instantiation declaration begins with the extern keyword. [...]
6680  TemplateSpecializationKind TSK
6681    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6682                           : TSK_ExplicitInstantiationDeclaration;
6683
6684  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
6685  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
6686
6687  if (!R->isFunctionType()) {
6688    // C++ [temp.explicit]p1:
6689    //   A [...] static data member of a class template can be explicitly
6690    //   instantiated from the member definition associated with its class
6691    //   template.
6692    if (Previous.isAmbiguous())
6693      return true;
6694
6695    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
6696    if (!Prev || !Prev->isStaticDataMember()) {
6697      // We expect to see a data data member here.
6698      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
6699        << Name;
6700      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6701           P != PEnd; ++P)
6702        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
6703      return true;
6704    }
6705
6706    if (!Prev->getInstantiatedFromStaticDataMember()) {
6707      // FIXME: Check for explicit specialization?
6708      Diag(D.getIdentifierLoc(),
6709           diag::err_explicit_instantiation_data_member_not_instantiated)
6710        << Prev;
6711      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
6712      // FIXME: Can we provide a note showing where this was declared?
6713      return true;
6714    }
6715
6716    // C++0x [temp.explicit]p2:
6717    //   If the explicit instantiation is for a member function, a member class
6718    //   or a static data member of a class template specialization, the name of
6719    //   the class template specialization in the qualified-id for the member
6720    //   name shall be a simple-template-id.
6721    //
6722    // C++98 has the same restriction, just worded differently.
6723    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6724      Diag(D.getIdentifierLoc(),
6725           diag::ext_explicit_instantiation_without_qualified_id)
6726        << Prev << D.getCXXScopeSpec().getRange();
6727
6728    // Check the scope of this explicit instantiation.
6729    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
6730
6731    // Verify that it is okay to explicitly instantiate here.
6732    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
6733    assert(MSInfo && "Missing static data member specialization info?");
6734    bool HasNoEffect = false;
6735    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
6736                                        MSInfo->getTemplateSpecializationKind(),
6737                                              MSInfo->getPointOfInstantiation(),
6738                                               HasNoEffect))
6739      return true;
6740    if (HasNoEffect)
6741      return (Decl*) 0;
6742
6743    // Instantiate static data member.
6744    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6745    if (TSK == TSK_ExplicitInstantiationDefinition)
6746      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
6747
6748    // FIXME: Create an ExplicitInstantiation node?
6749    return (Decl*) 0;
6750  }
6751
6752  // If the declarator is a template-id, translate the parser's template
6753  // argument list into our AST format.
6754  bool HasExplicitTemplateArgs = false;
6755  TemplateArgumentListInfo TemplateArgs;
6756  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6757    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6758    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6759    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6760    ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6761                                       TemplateId->NumArgs);
6762    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
6763    HasExplicitTemplateArgs = true;
6764  }
6765
6766  // C++ [temp.explicit]p1:
6767  //   A [...] function [...] can be explicitly instantiated from its template.
6768  //   A member function [...] of a class template can be explicitly
6769  //  instantiated from the member definition associated with its class
6770  //  template.
6771  UnresolvedSet<8> Matches;
6772  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6773       P != PEnd; ++P) {
6774    NamedDecl *Prev = *P;
6775    if (!HasExplicitTemplateArgs) {
6776      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
6777        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
6778          Matches.clear();
6779
6780          Matches.addDecl(Method, P.getAccess());
6781          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
6782            break;
6783        }
6784      }
6785    }
6786
6787    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
6788    if (!FunTmpl)
6789      continue;
6790
6791    TemplateDeductionInfo Info(D.getIdentifierLoc());
6792    FunctionDecl *Specialization = 0;
6793    if (TemplateDeductionResult TDK
6794          = DeduceTemplateArguments(FunTmpl,
6795                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6796                                    R, Specialization, Info)) {
6797      // FIXME: Keep track of almost-matches?
6798      (void)TDK;
6799      continue;
6800    }
6801
6802    Matches.addDecl(Specialization, P.getAccess());
6803  }
6804
6805  // Find the most specialized function template specialization.
6806  UnresolvedSetIterator Result
6807    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
6808                         D.getIdentifierLoc(),
6809                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
6810                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
6811                         PDiag(diag::note_explicit_instantiation_candidate));
6812
6813  if (Result == Matches.end())
6814    return true;
6815
6816  // Ignore access control bits, we don't need them for redeclaration checking.
6817  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6818
6819  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
6820    Diag(D.getIdentifierLoc(),
6821         diag::err_explicit_instantiation_member_function_not_instantiated)
6822      << Specialization
6823      << (Specialization->getTemplateSpecializationKind() ==
6824          TSK_ExplicitSpecialization);
6825    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
6826    return true;
6827  }
6828
6829  FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
6830  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
6831    PrevDecl = Specialization;
6832
6833  if (PrevDecl) {
6834    bool HasNoEffect = false;
6835    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
6836                                               PrevDecl,
6837                                     PrevDecl->getTemplateSpecializationKind(),
6838                                          PrevDecl->getPointOfInstantiation(),
6839                                               HasNoEffect))
6840      return true;
6841
6842    // FIXME: We may still want to build some representation of this
6843    // explicit specialization.
6844    if (HasNoEffect)
6845      return (Decl*) 0;
6846  }
6847
6848  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6849  AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
6850  if (Attr)
6851    ProcessDeclAttributeList(S, Specialization, Attr);
6852
6853  if (TSK == TSK_ExplicitInstantiationDefinition)
6854    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
6855
6856  // C++0x [temp.explicit]p2:
6857  //   If the explicit instantiation is for a member function, a member class
6858  //   or a static data member of a class template specialization, the name of
6859  //   the class template specialization in the qualified-id for the member
6860  //   name shall be a simple-template-id.
6861  //
6862  // C++98 has the same restriction, just worded differently.
6863  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
6864  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
6865      D.getCXXScopeSpec().isSet() &&
6866      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6867    Diag(D.getIdentifierLoc(),
6868         diag::ext_explicit_instantiation_without_qualified_id)
6869    << Specialization << D.getCXXScopeSpec().getRange();
6870
6871  CheckExplicitInstantiationScope(*this,
6872                   FunTmpl? (NamedDecl *)FunTmpl
6873                          : Specialization->getInstantiatedFromMemberFunction(),
6874                                  D.getIdentifierLoc(),
6875                                  D.getCXXScopeSpec().isSet());
6876
6877  // FIXME: Create some kind of ExplicitInstantiationDecl here.
6878  return (Decl*) 0;
6879}
6880
6881TypeResult
6882Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6883                        const CXXScopeSpec &SS, IdentifierInfo *Name,
6884                        SourceLocation TagLoc, SourceLocation NameLoc) {
6885  // This has to hold, because SS is expected to be defined.
6886  assert(Name && "Expected a name in a dependent tag");
6887
6888  NestedNameSpecifier *NNS
6889    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6890  if (!NNS)
6891    return true;
6892
6893  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6894
6895  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
6896    Diag(NameLoc, diag::err_dependent_tag_decl)
6897      << (TUK == TUK_Definition) << Kind << SS.getRange();
6898    return true;
6899  }
6900
6901  // Create the resulting type.
6902  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6903  QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
6904
6905  // Create type-source location information for this type.
6906  TypeLocBuilder TLB;
6907  DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
6908  TL.setElaboratedKeywordLoc(TagLoc);
6909  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6910  TL.setNameLoc(NameLoc);
6911  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
6912}
6913
6914TypeResult
6915Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6916                        const CXXScopeSpec &SS, const IdentifierInfo &II,
6917                        SourceLocation IdLoc) {
6918  if (SS.isInvalid())
6919    return true;
6920
6921  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6922    Diag(TypenameLoc,
6923         getLangOpts().CPlusPlus0x ?
6924           diag::warn_cxx98_compat_typename_outside_of_template :
6925           diag::ext_typename_outside_of_template)
6926      << FixItHint::CreateRemoval(TypenameLoc);
6927
6928  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6929  QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
6930                                 TypenameLoc, QualifierLoc, II, IdLoc);
6931  if (T.isNull())
6932    return true;
6933
6934  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6935  if (isa<DependentNameType>(T)) {
6936    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6937    TL.setElaboratedKeywordLoc(TypenameLoc);
6938    TL.setQualifierLoc(QualifierLoc);
6939    TL.setNameLoc(IdLoc);
6940  } else {
6941    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6942    TL.setElaboratedKeywordLoc(TypenameLoc);
6943    TL.setQualifierLoc(QualifierLoc);
6944    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
6945  }
6946
6947  return CreateParsedType(T, TSI);
6948}
6949
6950TypeResult
6951Sema::ActOnTypenameType(Scope *S,
6952                        SourceLocation TypenameLoc,
6953                        const CXXScopeSpec &SS,
6954                        SourceLocation TemplateKWLoc,
6955                        TemplateTy TemplateIn,
6956                        SourceLocation TemplateNameLoc,
6957                        SourceLocation LAngleLoc,
6958                        ASTTemplateArgsPtr TemplateArgsIn,
6959                        SourceLocation RAngleLoc) {
6960  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6961    Diag(TypenameLoc,
6962         getLangOpts().CPlusPlus0x ?
6963           diag::warn_cxx98_compat_typename_outside_of_template :
6964           diag::ext_typename_outside_of_template)
6965      << FixItHint::CreateRemoval(TypenameLoc);
6966
6967  // Translate the parser's template argument list in our AST format.
6968  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6969  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6970
6971  TemplateName Template = TemplateIn.get();
6972  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
6973    // Construct a dependent template specialization type.
6974    assert(DTN && "dependent template has non-dependent name?");
6975    assert(DTN->getQualifier()
6976           == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
6977    QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
6978                                                          DTN->getQualifier(),
6979                                                          DTN->getIdentifier(),
6980                                                                TemplateArgs);
6981
6982    // Create source-location information for this type.
6983    TypeLocBuilder Builder;
6984    DependentTemplateSpecializationTypeLoc SpecTL
6985    = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
6986    SpecTL.setElaboratedKeywordLoc(TypenameLoc);
6987    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
6988    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
6989    SpecTL.setTemplateNameLoc(TemplateNameLoc);
6990    SpecTL.setLAngleLoc(LAngleLoc);
6991    SpecTL.setRAngleLoc(RAngleLoc);
6992    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6993      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6994    return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
6995  }
6996
6997  QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
6998  if (T.isNull())
6999    return true;
7000
7001  // Provide source-location information for the template specialization type.
7002  TypeLocBuilder Builder;
7003  TemplateSpecializationTypeLoc SpecTL
7004    = Builder.push<TemplateSpecializationTypeLoc>(T);
7005  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
7006  SpecTL.setTemplateNameLoc(TemplateNameLoc);
7007  SpecTL.setLAngleLoc(LAngleLoc);
7008  SpecTL.setRAngleLoc(RAngleLoc);
7009  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7010    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
7011
7012  T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
7013  ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
7014  TL.setElaboratedKeywordLoc(TypenameLoc);
7015  TL.setQualifierLoc(SS.getWithLocInContext(Context));
7016
7017  TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
7018  return CreateParsedType(T, TSI);
7019}
7020
7021
7022/// Determine whether this failed name lookup should be treated as being
7023/// disabled by a usage of std::enable_if.
7024static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
7025                       SourceRange &CondRange) {
7026  // We must be looking for a ::type...
7027  if (!II.isStr("type"))
7028    return false;
7029
7030  // ... within an explicitly-written template specialization...
7031  if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
7032    return false;
7033  TypeLoc EnableIfTy = NNS.getTypeLoc();
7034  TemplateSpecializationTypeLoc *EnableIfTSTLoc =
7035    dyn_cast<TemplateSpecializationTypeLoc>(&EnableIfTy);
7036  if (!EnableIfTSTLoc || EnableIfTSTLoc->getNumArgs() == 0)
7037    return false;
7038  const TemplateSpecializationType *EnableIfTST =
7039    cast<TemplateSpecializationType>(EnableIfTSTLoc->getTypePtr());
7040
7041  // ... which names a complete class template declaration...
7042  const TemplateDecl *EnableIfDecl =
7043    EnableIfTST->getTemplateName().getAsTemplateDecl();
7044  if (!EnableIfDecl || EnableIfTST->isIncompleteType())
7045    return false;
7046
7047  // ... called "enable_if".
7048  const IdentifierInfo *EnableIfII =
7049    EnableIfDecl->getDeclName().getAsIdentifierInfo();
7050  if (!EnableIfII || !EnableIfII->isStr("enable_if"))
7051    return false;
7052
7053  // Assume the first template argument is the condition.
7054  CondRange = EnableIfTSTLoc->getArgLoc(0).getSourceRange();
7055  return true;
7056}
7057
7058/// \brief Build the type that describes a C++ typename specifier,
7059/// e.g., "typename T::type".
7060QualType
7061Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
7062                        SourceLocation KeywordLoc,
7063                        NestedNameSpecifierLoc QualifierLoc,
7064                        const IdentifierInfo &II,
7065                        SourceLocation IILoc) {
7066  CXXScopeSpec SS;
7067  SS.Adopt(QualifierLoc);
7068
7069  DeclContext *Ctx = computeDeclContext(SS);
7070  if (!Ctx) {
7071    // If the nested-name-specifier is dependent and couldn't be
7072    // resolved to a type, build a typename type.
7073    assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
7074    return Context.getDependentNameType(Keyword,
7075                                        QualifierLoc.getNestedNameSpecifier(),
7076                                        &II);
7077  }
7078
7079  // If the nested-name-specifier refers to the current instantiation,
7080  // the "typename" keyword itself is superfluous. In C++03, the
7081  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
7082  // allows such extraneous "typename" keywords, and we retroactively
7083  // apply this DR to C++03 code with only a warning. In any case we continue.
7084
7085  if (RequireCompleteDeclContext(SS, Ctx))
7086    return QualType();
7087
7088  DeclarationName Name(&II);
7089  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
7090  LookupQualifiedName(Result, Ctx);
7091  unsigned DiagID = 0;
7092  Decl *Referenced = 0;
7093  switch (Result.getResultKind()) {
7094  case LookupResult::NotFound: {
7095    // If we're looking up 'type' within a template named 'enable_if', produce
7096    // a more specific diagnostic.
7097    SourceRange CondRange;
7098    if (isEnableIf(QualifierLoc, II, CondRange)) {
7099      Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
7100        << Ctx << CondRange;
7101      return QualType();
7102    }
7103
7104    DiagID = diag::err_typename_nested_not_found;
7105    break;
7106  }
7107
7108  case LookupResult::FoundUnresolvedValue: {
7109    // We found a using declaration that is a value. Most likely, the using
7110    // declaration itself is meant to have the 'typename' keyword.
7111    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7112                          IILoc);
7113    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
7114      << Name << Ctx << FullRange;
7115    if (UnresolvedUsingValueDecl *Using
7116          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
7117      SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
7118      Diag(Loc, diag::note_using_value_decl_missing_typename)
7119        << FixItHint::CreateInsertion(Loc, "typename ");
7120    }
7121  }
7122  // Fall through to create a dependent typename type, from which we can recover
7123  // better.
7124
7125  case LookupResult::NotFoundInCurrentInstantiation:
7126    // Okay, it's a member of an unknown instantiation.
7127    return Context.getDependentNameType(Keyword,
7128                                        QualifierLoc.getNestedNameSpecifier(),
7129                                        &II);
7130
7131  case LookupResult::Found:
7132    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
7133      // We found a type. Build an ElaboratedType, since the
7134      // typename-specifier was just sugar.
7135      return Context.getElaboratedType(ETK_Typename,
7136                                       QualifierLoc.getNestedNameSpecifier(),
7137                                       Context.getTypeDeclType(Type));
7138    }
7139
7140    DiagID = diag::err_typename_nested_not_type;
7141    Referenced = Result.getFoundDecl();
7142    break;
7143
7144  case LookupResult::FoundOverloaded:
7145    DiagID = diag::err_typename_nested_not_type;
7146    Referenced = *Result.begin();
7147    break;
7148
7149  case LookupResult::Ambiguous:
7150    return QualType();
7151  }
7152
7153  // If we get here, it's because name lookup did not find a
7154  // type. Emit an appropriate diagnostic and return an error.
7155  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7156                        IILoc);
7157  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
7158  if (Referenced)
7159    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
7160      << Name;
7161  return QualType();
7162}
7163
7164namespace {
7165  // See Sema::RebuildTypeInCurrentInstantiation
7166  class CurrentInstantiationRebuilder
7167    : public TreeTransform<CurrentInstantiationRebuilder> {
7168    SourceLocation Loc;
7169    DeclarationName Entity;
7170
7171  public:
7172    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
7173
7174    CurrentInstantiationRebuilder(Sema &SemaRef,
7175                                  SourceLocation Loc,
7176                                  DeclarationName Entity)
7177    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
7178      Loc(Loc), Entity(Entity) { }
7179
7180    /// \brief Determine whether the given type \p T has already been
7181    /// transformed.
7182    ///
7183    /// For the purposes of type reconstruction, a type has already been
7184    /// transformed if it is NULL or if it is not dependent.
7185    bool AlreadyTransformed(QualType T) {
7186      return T.isNull() || !T->isDependentType();
7187    }
7188
7189    /// \brief Returns the location of the entity whose type is being
7190    /// rebuilt.
7191    SourceLocation getBaseLocation() { return Loc; }
7192
7193    /// \brief Returns the name of the entity whose type is being rebuilt.
7194    DeclarationName getBaseEntity() { return Entity; }
7195
7196    /// \brief Sets the "base" location and entity when that
7197    /// information is known based on another transformation.
7198    void setBase(SourceLocation Loc, DeclarationName Entity) {
7199      this->Loc = Loc;
7200      this->Entity = Entity;
7201    }
7202
7203    ExprResult TransformLambdaExpr(LambdaExpr *E) {
7204      // Lambdas never need to be transformed.
7205      return E;
7206    }
7207  };
7208}
7209
7210/// \brief Rebuilds a type within the context of the current instantiation.
7211///
7212/// The type \p T is part of the type of an out-of-line member definition of
7213/// a class template (or class template partial specialization) that was parsed
7214/// and constructed before we entered the scope of the class template (or
7215/// partial specialization thereof). This routine will rebuild that type now
7216/// that we have entered the declarator's scope, which may produce different
7217/// canonical types, e.g.,
7218///
7219/// \code
7220/// template<typename T>
7221/// struct X {
7222///   typedef T* pointer;
7223///   pointer data();
7224/// };
7225///
7226/// template<typename T>
7227/// typename X<T>::pointer X<T>::data() { ... }
7228/// \endcode
7229///
7230/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
7231/// since we do not know that we can look into X<T> when we parsed the type.
7232/// This function will rebuild the type, performing the lookup of "pointer"
7233/// in X<T> and returning an ElaboratedType whose canonical type is the same
7234/// as the canonical type of T*, allowing the return types of the out-of-line
7235/// definition and the declaration to match.
7236TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
7237                                                        SourceLocation Loc,
7238                                                        DeclarationName Name) {
7239  if (!T || !T->getType()->isDependentType())
7240    return T;
7241
7242  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
7243  return Rebuilder.TransformType(T);
7244}
7245
7246ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
7247  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
7248                                          DeclarationName());
7249  return Rebuilder.TransformExpr(E);
7250}
7251
7252bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
7253  if (SS.isInvalid())
7254    return true;
7255
7256  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7257  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
7258                                          DeclarationName());
7259  NestedNameSpecifierLoc Rebuilt
7260    = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
7261  if (!Rebuilt)
7262    return true;
7263
7264  SS.Adopt(Rebuilt);
7265  return false;
7266}
7267
7268/// \brief Rebuild the template parameters now that we know we're in a current
7269/// instantiation.
7270bool Sema::RebuildTemplateParamsInCurrentInstantiation(
7271                                               TemplateParameterList *Params) {
7272  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7273    Decl *Param = Params->getParam(I);
7274
7275    // There is nothing to rebuild in a type parameter.
7276    if (isa<TemplateTypeParmDecl>(Param))
7277      continue;
7278
7279    // Rebuild the template parameter list of a template template parameter.
7280    if (TemplateTemplateParmDecl *TTP
7281        = dyn_cast<TemplateTemplateParmDecl>(Param)) {
7282      if (RebuildTemplateParamsInCurrentInstantiation(
7283            TTP->getTemplateParameters()))
7284        return true;
7285
7286      continue;
7287    }
7288
7289    // Rebuild the type of a non-type template parameter.
7290    NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
7291    TypeSourceInfo *NewTSI
7292      = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
7293                                          NTTP->getLocation(),
7294                                          NTTP->getDeclName());
7295    if (!NewTSI)
7296      return true;
7297
7298    if (NewTSI != NTTP->getTypeSourceInfo()) {
7299      NTTP->setTypeSourceInfo(NewTSI);
7300      NTTP->setType(NewTSI->getType());
7301    }
7302  }
7303
7304  return false;
7305}
7306
7307/// \brief Produces a formatted string that describes the binding of
7308/// template parameters to template arguments.
7309std::string
7310Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7311                                      const TemplateArgumentList &Args) {
7312  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
7313}
7314
7315std::string
7316Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7317                                      const TemplateArgument *Args,
7318                                      unsigned NumArgs) {
7319  SmallString<128> Str;
7320  llvm::raw_svector_ostream Out(Str);
7321
7322  if (!Params || Params->size() == 0 || NumArgs == 0)
7323    return std::string();
7324
7325  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7326    if (I >= NumArgs)
7327      break;
7328
7329    if (I == 0)
7330      Out << "[with ";
7331    else
7332      Out << ", ";
7333
7334    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
7335      Out << Id->getName();
7336    } else {
7337      Out << '$' << I;
7338    }
7339
7340    Out << " = ";
7341    Args[I].print(getPrintingPolicy(), Out);
7342  }
7343
7344  Out << ']';
7345  return Out.str();
7346}
7347
7348void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) {
7349  if (!FD)
7350    return;
7351  FD->setLateTemplateParsed(Flag);
7352}
7353
7354bool Sema::IsInsideALocalClassWithinATemplateFunction() {
7355  DeclContext *DC = CurContext;
7356
7357  while (DC) {
7358    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
7359      const FunctionDecl *FD = RD->isLocalClass();
7360      return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
7361    } else if (DC->isTranslationUnit() || DC->isNamespace())
7362      return false;
7363
7364    DC = DC->getParent();
7365  }
7366  return false;
7367}
7368