SemaTemplate.cpp revision db88d8ad74097e2601d81ee863ce46a8a48a7034
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "Sema.h"
13#include "Lookup.h"
14#include "TreeTransform.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/DeclFriend.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Parse/Template.h"
22#include "clang/Basic/LangOptions.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "llvm/ADT/StringExtras.h"
25using namespace clang;
26
27/// \brief Determine whether the declaration found is acceptable as the name
28/// of a template and, if so, return that template declaration. Otherwise,
29/// returns NULL.
30static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) {
31  if (!D)
32    return 0;
33
34  if (isa<TemplateDecl>(D))
35    return D;
36
37  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
38    // C++ [temp.local]p1:
39    //   Like normal (non-template) classes, class templates have an
40    //   injected-class-name (Clause 9). The injected-class-name
41    //   can be used with or without a template-argument-list. When
42    //   it is used without a template-argument-list, it is
43    //   equivalent to the injected-class-name followed by the
44    //   template-parameters of the class template enclosed in
45    //   <>. When it is used with a template-argument-list, it
46    //   refers to the specified class template specialization,
47    //   which could be the current specialization or another
48    //   specialization.
49    if (Record->isInjectedClassName()) {
50      Record = cast<CXXRecordDecl>(Record->getDeclContext());
51      if (Record->getDescribedClassTemplate())
52        return Record->getDescribedClassTemplate();
53
54      if (ClassTemplateSpecializationDecl *Spec
55            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
56        return Spec->getSpecializedTemplate();
57    }
58
59    return 0;
60  }
61
62  return 0;
63}
64
65static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
66  LookupResult::Filter filter = R.makeFilter();
67  while (filter.hasNext()) {
68    NamedDecl *Orig = filter.next();
69    NamedDecl *Repl = isAcceptableTemplateName(C, Orig->getUnderlyingDecl());
70    if (!Repl)
71      filter.erase();
72    else if (Repl != Orig)
73      filter.replace(Repl);
74  }
75  filter.done();
76}
77
78TemplateNameKind Sema::isTemplateName(Scope *S,
79                                      const CXXScopeSpec &SS,
80                                      UnqualifiedId &Name,
81                                      TypeTy *ObjectTypePtr,
82                                      bool EnteringContext,
83                                      TemplateTy &TemplateResult) {
84  assert(getLangOptions().CPlusPlus && "No template names in C!");
85
86  DeclarationName TName;
87
88  switch (Name.getKind()) {
89  case UnqualifiedId::IK_Identifier:
90    TName = DeclarationName(Name.Identifier);
91    break;
92
93  case UnqualifiedId::IK_OperatorFunctionId:
94    TName = Context.DeclarationNames.getCXXOperatorName(
95                                              Name.OperatorFunctionId.Operator);
96    break;
97
98  case UnqualifiedId::IK_LiteralOperatorId:
99    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
100    break;
101
102  default:
103    return TNK_Non_template;
104  }
105
106  QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
107
108  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
109                 LookupOrdinaryName);
110  R.suppressDiagnostics();
111  LookupTemplateName(R, S, SS, ObjectType, EnteringContext);
112  if (R.empty())
113    return TNK_Non_template;
114
115  TemplateName Template;
116  TemplateNameKind TemplateKind;
117
118  unsigned ResultCount = R.end() - R.begin();
119  if (ResultCount > 1) {
120    // We assume that we'll preserve the qualifier from a function
121    // template name in other ways.
122    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
123    TemplateKind = TNK_Function_template;
124  } else {
125    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
126
127    if (SS.isSet() && !SS.isInvalid()) {
128      NestedNameSpecifier *Qualifier
129        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
130      Template = Context.getQualifiedTemplateName(Qualifier, false, TD);
131    } else {
132      Template = TemplateName(TD);
133    }
134
135    if (isa<FunctionTemplateDecl>(TD))
136      TemplateKind = TNK_Function_template;
137    else {
138      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
139      TemplateKind = TNK_Type_template;
140    }
141  }
142
143  TemplateResult = TemplateTy::make(Template);
144  return TemplateKind;
145}
146
147bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
148                                       SourceLocation IILoc,
149                                       Scope *S,
150                                       const CXXScopeSpec *SS,
151                                       TemplateTy &SuggestedTemplate,
152                                       TemplateNameKind &SuggestedKind) {
153  // We can't recover unless there's a dependent scope specifier preceding the
154  // template name.
155  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
156      computeDeclContext(*SS))
157    return false;
158
159  // The code is missing a 'template' keyword prior to the dependent template
160  // name.
161  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
162  Diag(IILoc, diag::err_template_kw_missing)
163    << Qualifier << II.getName()
164    << FixItHint::CreateInsertion(IILoc, "template ");
165  SuggestedTemplate
166    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
167  SuggestedKind = TNK_Dependent_template_name;
168  return true;
169}
170
171void Sema::LookupTemplateName(LookupResult &Found,
172                              Scope *S, const CXXScopeSpec &SS,
173                              QualType ObjectType,
174                              bool EnteringContext) {
175  // Determine where to perform name lookup
176  DeclContext *LookupCtx = 0;
177  bool isDependent = false;
178  if (!ObjectType.isNull()) {
179    // This nested-name-specifier occurs in a member access expression, e.g.,
180    // x->B::f, and we are looking into the type of the object.
181    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
182    LookupCtx = computeDeclContext(ObjectType);
183    isDependent = ObjectType->isDependentType();
184    assert((isDependent || !ObjectType->isIncompleteType()) &&
185           "Caller should have completed object type");
186  } else if (SS.isSet()) {
187    // This nested-name-specifier occurs after another nested-name-specifier,
188    // so long into the context associated with the prior nested-name-specifier.
189    LookupCtx = computeDeclContext(SS, EnteringContext);
190    isDependent = isDependentScopeSpecifier(SS);
191
192    // The declaration context must be complete.
193    if (LookupCtx && RequireCompleteDeclContext(SS))
194      return;
195  }
196
197  bool ObjectTypeSearchedInScope = false;
198  if (LookupCtx) {
199    // Perform "qualified" name lookup into the declaration context we
200    // computed, which is either the type of the base of a member access
201    // expression or the declaration context associated with a prior
202    // nested-name-specifier.
203    LookupQualifiedName(Found, LookupCtx);
204
205    if (!ObjectType.isNull() && Found.empty()) {
206      // C++ [basic.lookup.classref]p1:
207      //   In a class member access expression (5.2.5), if the . or -> token is
208      //   immediately followed by an identifier followed by a <, the
209      //   identifier must be looked up to determine whether the < is the
210      //   beginning of a template argument list (14.2) or a less-than operator.
211      //   The identifier is first looked up in the class of the object
212      //   expression. If the identifier is not found, it is then looked up in
213      //   the context of the entire postfix-expression and shall name a class
214      //   or function template.
215      //
216      // FIXME: When we're instantiating a template, do we actually have to
217      // look in the scope of the template? Seems fishy...
218      if (S) LookupName(Found, S);
219      ObjectTypeSearchedInScope = true;
220    }
221  } else if (isDependent) {
222    // We cannot look into a dependent object type or nested nme
223    // specifier.
224    return;
225  } else {
226    // Perform unqualified name lookup in the current scope.
227    LookupName(Found, S);
228  }
229
230  // FIXME: Cope with ambiguous name-lookup results.
231  assert(!Found.isAmbiguous() &&
232         "Cannot handle template name-lookup ambiguities");
233
234  if (Found.empty() && !isDependent) {
235    // If we did not find any names, attempt to correct any typos.
236    DeclarationName Name = Found.getLookupName();
237    if (CorrectTypo(Found, S, &SS, LookupCtx)) {
238      FilterAcceptableTemplateNames(Context, Found);
239      if (!Found.empty() && isa<TemplateDecl>(*Found.begin())) {
240        if (LookupCtx)
241          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
242            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
243            << FixItHint::CreateReplacement(Found.getNameLoc(),
244                                          Found.getLookupName().getAsString());
245        else
246          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
247            << Name << Found.getLookupName()
248            << FixItHint::CreateReplacement(Found.getNameLoc(),
249                                          Found.getLookupName().getAsString());
250        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
251          Diag(Template->getLocation(), diag::note_previous_decl)
252            << Template->getDeclName();
253      } else
254        Found.clear();
255    } else {
256      Found.clear();
257    }
258  }
259
260  FilterAcceptableTemplateNames(Context, Found);
261  if (Found.empty())
262    return;
263
264  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
265    // C++ [basic.lookup.classref]p1:
266    //   [...] If the lookup in the class of the object expression finds a
267    //   template, the name is also looked up in the context of the entire
268    //   postfix-expression and [...]
269    //
270    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
271                            LookupOrdinaryName);
272    LookupName(FoundOuter, S);
273    FilterAcceptableTemplateNames(Context, FoundOuter);
274    // FIXME: Handle ambiguities in this lookup better
275
276    if (FoundOuter.empty()) {
277      //   - if the name is not found, the name found in the class of the
278      //     object expression is used, otherwise
279    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
280      //   - if the name is found in the context of the entire
281      //     postfix-expression and does not name a class template, the name
282      //     found in the class of the object expression is used, otherwise
283    } else {
284      //   - if the name found is a class template, it must refer to the same
285      //     entity as the one found in the class of the object expression,
286      //     otherwise the program is ill-formed.
287      if (!Found.isSingleResult() ||
288          Found.getFoundDecl()->getCanonicalDecl()
289            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
290        Diag(Found.getNameLoc(),
291             diag::err_nested_name_member_ref_lookup_ambiguous)
292          << Found.getLookupName();
293        Diag(Found.getRepresentativeDecl()->getLocation(),
294             diag::note_ambig_member_ref_object_type)
295          << ObjectType;
296        Diag(FoundOuter.getFoundDecl()->getLocation(),
297             diag::note_ambig_member_ref_scope);
298
299        // Recover by taking the template that we found in the object
300        // expression's type.
301      }
302    }
303  }
304}
305
306/// ActOnDependentIdExpression - Handle a dependent id-expression that
307/// was just parsed.  This is only possible with an explicit scope
308/// specifier naming a dependent type.
309Sema::OwningExprResult
310Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
311                                 DeclarationName Name,
312                                 SourceLocation NameLoc,
313                                 bool isAddressOfOperand,
314                           const TemplateArgumentListInfo *TemplateArgs) {
315  NestedNameSpecifier *Qualifier
316    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
317
318  if (!isAddressOfOperand &&
319      isa<CXXMethodDecl>(CurContext) &&
320      cast<CXXMethodDecl>(CurContext)->isInstance()) {
321    QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context);
322
323    // Since the 'this' expression is synthesized, we don't need to
324    // perform the double-lookup check.
325    NamedDecl *FirstQualifierInScope = 0;
326
327    return Owned(CXXDependentScopeMemberExpr::Create(Context,
328                                                     /*This*/ 0, ThisType,
329                                                     /*IsArrow*/ true,
330                                                     /*Op*/ SourceLocation(),
331                                                     Qualifier, SS.getRange(),
332                                                     FirstQualifierInScope,
333                                                     Name, NameLoc,
334                                                     TemplateArgs));
335  }
336
337  return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs);
338}
339
340Sema::OwningExprResult
341Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
342                                DeclarationName Name,
343                                SourceLocation NameLoc,
344                                const TemplateArgumentListInfo *TemplateArgs) {
345  return Owned(DependentScopeDeclRefExpr::Create(Context,
346               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
347                                                 SS.getRange(),
348                                                 Name, NameLoc,
349                                                 TemplateArgs));
350}
351
352/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
353/// that the template parameter 'PrevDecl' is being shadowed by a new
354/// declaration at location Loc. Returns true to indicate that this is
355/// an error, and false otherwise.
356bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
357  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
358
359  // Microsoft Visual C++ permits template parameters to be shadowed.
360  if (getLangOptions().Microsoft)
361    return false;
362
363  // C++ [temp.local]p4:
364  //   A template-parameter shall not be redeclared within its
365  //   scope (including nested scopes).
366  Diag(Loc, diag::err_template_param_shadow)
367    << cast<NamedDecl>(PrevDecl)->getDeclName();
368  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
369  return true;
370}
371
372/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
373/// the parameter D to reference the templated declaration and return a pointer
374/// to the template declaration. Otherwise, do nothing to D and return null.
375TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
376  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) {
377    D = DeclPtrTy::make(Temp->getTemplatedDecl());
378    return Temp;
379  }
380  return 0;
381}
382
383static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
384                                            const ParsedTemplateArgument &Arg) {
385
386  switch (Arg.getKind()) {
387  case ParsedTemplateArgument::Type: {
388    TypeSourceInfo *DI;
389    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
390    if (!DI)
391      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
392    return TemplateArgumentLoc(TemplateArgument(T), DI);
393  }
394
395  case ParsedTemplateArgument::NonType: {
396    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
397    return TemplateArgumentLoc(TemplateArgument(E), E);
398  }
399
400  case ParsedTemplateArgument::Template: {
401    TemplateName Template
402      = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get());
403    return TemplateArgumentLoc(TemplateArgument(Template),
404                               Arg.getScopeSpec().getRange(),
405                               Arg.getLocation());
406  }
407  }
408
409  llvm_unreachable("Unhandled parsed template argument");
410  return TemplateArgumentLoc();
411}
412
413/// \brief Translates template arguments as provided by the parser
414/// into template arguments used by semantic analysis.
415void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
416                                      TemplateArgumentListInfo &TemplateArgs) {
417 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
418   TemplateArgs.addArgument(translateTemplateArgument(*this,
419                                                      TemplateArgsIn[I]));
420}
421
422/// ActOnTypeParameter - Called when a C++ template type parameter
423/// (e.g., "typename T") has been parsed. Typename specifies whether
424/// the keyword "typename" was used to declare the type parameter
425/// (otherwise, "class" was used), and KeyLoc is the location of the
426/// "class" or "typename" keyword. ParamName is the name of the
427/// parameter (NULL indicates an unnamed template parameter) and
428/// ParamName is the location of the parameter name (if any).
429/// If the type parameter has a default argument, it will be added
430/// later via ActOnTypeParameterDefault.
431Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
432                                         SourceLocation EllipsisLoc,
433                                         SourceLocation KeyLoc,
434                                         IdentifierInfo *ParamName,
435                                         SourceLocation ParamNameLoc,
436                                         unsigned Depth, unsigned Position) {
437  assert(S->isTemplateParamScope() &&
438         "Template type parameter not in template parameter scope!");
439  bool Invalid = false;
440
441  if (ParamName) {
442    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
443    if (PrevDecl && PrevDecl->isTemplateParameter())
444      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
445                                                           PrevDecl);
446  }
447
448  SourceLocation Loc = ParamNameLoc;
449  if (!ParamName)
450    Loc = KeyLoc;
451
452  TemplateTypeParmDecl *Param
453    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
454                                   Loc, Depth, Position, ParamName, Typename,
455                                   Ellipsis);
456  if (Invalid)
457    Param->setInvalidDecl();
458
459  if (ParamName) {
460    // Add the template parameter into the current scope.
461    S->AddDecl(DeclPtrTy::make(Param));
462    IdResolver.AddDecl(Param);
463  }
464
465  return DeclPtrTy::make(Param);
466}
467
468/// ActOnTypeParameterDefault - Adds a default argument (the type
469/// Default) to the given template type parameter (TypeParam).
470void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
471                                     SourceLocation EqualLoc,
472                                     SourceLocation DefaultLoc,
473                                     TypeTy *DefaultT) {
474  TemplateTypeParmDecl *Parm
475    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
476
477  TypeSourceInfo *DefaultTInfo;
478  GetTypeFromParser(DefaultT, &DefaultTInfo);
479
480  assert(DefaultTInfo && "expected source information for type");
481
482  // C++0x [temp.param]p9:
483  // A default template-argument may be specified for any kind of
484  // template-parameter that is not a template parameter pack.
485  if (Parm->isParameterPack()) {
486    Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
487    return;
488  }
489
490  // C++ [temp.param]p14:
491  //   A template-parameter shall not be used in its own default argument.
492  // FIXME: Implement this check! Needs a recursive walk over the types.
493
494  // Check the template argument itself.
495  if (CheckTemplateArgument(Parm, DefaultTInfo)) {
496    Parm->setInvalidDecl();
497    return;
498  }
499
500  Parm->setDefaultArgument(DefaultTInfo, false);
501}
502
503/// \brief Check that the type of a non-type template parameter is
504/// well-formed.
505///
506/// \returns the (possibly-promoted) parameter type if valid;
507/// otherwise, produces a diagnostic and returns a NULL type.
508QualType
509Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
510  // C++ [temp.param]p4:
511  //
512  // A non-type template-parameter shall have one of the following
513  // (optionally cv-qualified) types:
514  //
515  //       -- integral or enumeration type,
516  if (T->isIntegralType() || T->isEnumeralType() ||
517      //   -- pointer to object or pointer to function,
518      (T->isPointerType() &&
519       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
520        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
521      //   -- reference to object or reference to function,
522      T->isReferenceType() ||
523      //   -- pointer to member.
524      T->isMemberPointerType() ||
525      // If T is a dependent type, we can't do the check now, so we
526      // assume that it is well-formed.
527      T->isDependentType())
528    return T;
529  // C++ [temp.param]p8:
530  //
531  //   A non-type template-parameter of type "array of T" or
532  //   "function returning T" is adjusted to be of type "pointer to
533  //   T" or "pointer to function returning T", respectively.
534  else if (T->isArrayType())
535    // FIXME: Keep the type prior to promotion?
536    return Context.getArrayDecayedType(T);
537  else if (T->isFunctionType())
538    // FIXME: Keep the type prior to promotion?
539    return Context.getPointerType(T);
540
541  Diag(Loc, diag::err_template_nontype_parm_bad_type)
542    << T;
543
544  return QualType();
545}
546
547/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
548/// template parameter (e.g., "int Size" in "template<int Size>
549/// class Array") has been parsed. S is the current scope and D is
550/// the parsed declarator.
551Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
552                                                    unsigned Depth,
553                                                    unsigned Position) {
554  TypeSourceInfo *TInfo = 0;
555  QualType T = GetTypeForDeclarator(D, S, &TInfo);
556
557  assert(S->isTemplateParamScope() &&
558         "Non-type template parameter not in template parameter scope!");
559  bool Invalid = false;
560
561  IdentifierInfo *ParamName = D.getIdentifier();
562  if (ParamName) {
563    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
564    if (PrevDecl && PrevDecl->isTemplateParameter())
565      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
566                                                           PrevDecl);
567  }
568
569  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
570  if (T.isNull()) {
571    T = Context.IntTy; // Recover with an 'int' type.
572    Invalid = true;
573  }
574
575  NonTypeTemplateParmDecl *Param
576    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
577                                      D.getIdentifierLoc(),
578                                      Depth, Position, ParamName, T, TInfo);
579  if (Invalid)
580    Param->setInvalidDecl();
581
582  if (D.getIdentifier()) {
583    // Add the template parameter into the current scope.
584    S->AddDecl(DeclPtrTy::make(Param));
585    IdResolver.AddDecl(Param);
586  }
587  return DeclPtrTy::make(Param);
588}
589
590/// \brief Adds a default argument to the given non-type template
591/// parameter.
592void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
593                                                SourceLocation EqualLoc,
594                                                ExprArg DefaultE) {
595  NonTypeTemplateParmDecl *TemplateParm
596    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
597  Expr *Default = static_cast<Expr *>(DefaultE.get());
598
599  // C++ [temp.param]p14:
600  //   A template-parameter shall not be used in its own default argument.
601  // FIXME: Implement this check! Needs a recursive walk over the types.
602
603  // Check the well-formedness of the default template argument.
604  TemplateArgument Converted;
605  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
606                            Converted)) {
607    TemplateParm->setInvalidDecl();
608    return;
609  }
610
611  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
612}
613
614
615/// ActOnTemplateTemplateParameter - Called when a C++ template template
616/// parameter (e.g. T in template <template <typename> class T> class array)
617/// has been parsed. S is the current scope.
618Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
619                                                     SourceLocation TmpLoc,
620                                                     TemplateParamsTy *Params,
621                                                     IdentifierInfo *Name,
622                                                     SourceLocation NameLoc,
623                                                     unsigned Depth,
624                                                     unsigned Position) {
625  assert(S->isTemplateParamScope() &&
626         "Template template parameter not in template parameter scope!");
627
628  // Construct the parameter object.
629  TemplateTemplateParmDecl *Param =
630    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
631                                     TmpLoc, Depth, Position, Name,
632                                     (TemplateParameterList*)Params);
633
634  // Make sure the parameter is valid.
635  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
636  // do anything yet. However, if the template parameter list or (eventual)
637  // default value is ever invalidated, that will propagate here.
638  bool Invalid = false;
639  if (Invalid) {
640    Param->setInvalidDecl();
641  }
642
643  // If the tt-param has a name, then link the identifier into the scope
644  // and lookup mechanisms.
645  if (Name) {
646    S->AddDecl(DeclPtrTy::make(Param));
647    IdResolver.AddDecl(Param);
648  }
649
650  return DeclPtrTy::make(Param);
651}
652
653/// \brief Adds a default argument to the given template template
654/// parameter.
655void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
656                                                 SourceLocation EqualLoc,
657                                        const ParsedTemplateArgument &Default) {
658  TemplateTemplateParmDecl *TemplateParm
659    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
660
661  // C++ [temp.param]p14:
662  //   A template-parameter shall not be used in its own default argument.
663  // FIXME: Implement this check! Needs a recursive walk over the types.
664
665  // Check only that we have a template template argument. We don't want to
666  // try to check well-formedness now, because our template template parameter
667  // might have dependent types in its template parameters, which we wouldn't
668  // be able to match now.
669  //
670  // If none of the template template parameter's template arguments mention
671  // other template parameters, we could actually perform more checking here.
672  // However, it isn't worth doing.
673  TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
674  if (DefaultArg.getArgument().getAsTemplate().isNull()) {
675    Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
676      << DefaultArg.getSourceRange();
677    return;
678  }
679
680  TemplateParm->setDefaultArgument(DefaultArg);
681}
682
683/// ActOnTemplateParameterList - Builds a TemplateParameterList that
684/// contains the template parameters in Params/NumParams.
685Sema::TemplateParamsTy *
686Sema::ActOnTemplateParameterList(unsigned Depth,
687                                 SourceLocation ExportLoc,
688                                 SourceLocation TemplateLoc,
689                                 SourceLocation LAngleLoc,
690                                 DeclPtrTy *Params, unsigned NumParams,
691                                 SourceLocation RAngleLoc) {
692  if (ExportLoc.isValid())
693    Diag(ExportLoc, diag::warn_template_export_unsupported);
694
695  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
696                                       (NamedDecl**)Params, NumParams,
697                                       RAngleLoc);
698}
699
700static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
701  if (SS.isSet())
702    T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
703                        SS.getRange());
704}
705
706Sema::DeclResult
707Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
708                         SourceLocation KWLoc, const CXXScopeSpec &SS,
709                         IdentifierInfo *Name, SourceLocation NameLoc,
710                         AttributeList *Attr,
711                         TemplateParameterList *TemplateParams,
712                         AccessSpecifier AS) {
713  assert(TemplateParams && TemplateParams->size() > 0 &&
714         "No template parameters");
715  assert(TUK != TUK_Reference && "Can only declare or define class templates");
716  bool Invalid = false;
717
718  // Check that we can declare a template here.
719  if (CheckTemplateDeclScope(S, TemplateParams))
720    return true;
721
722  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
723  assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type");
724
725  // There is no such thing as an unnamed class template.
726  if (!Name) {
727    Diag(KWLoc, diag::err_template_unnamed_class);
728    return true;
729  }
730
731  // Find any previous declaration with this name.
732  DeclContext *SemanticContext;
733  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
734                        ForRedeclaration);
735  if (SS.isNotEmpty() && !SS.isInvalid()) {
736    if (RequireCompleteDeclContext(SS))
737      return true;
738
739    SemanticContext = computeDeclContext(SS, true);
740    if (!SemanticContext) {
741      // FIXME: Produce a reasonable diagnostic here
742      return true;
743    }
744
745    LookupQualifiedName(Previous, SemanticContext);
746  } else {
747    SemanticContext = CurContext;
748    LookupName(Previous, S);
749  }
750
751  assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
752  NamedDecl *PrevDecl = 0;
753  if (Previous.begin() != Previous.end())
754    PrevDecl = *Previous.begin();
755
756  // If there is a previous declaration with the same name, check
757  // whether this is a valid redeclaration.
758  ClassTemplateDecl *PrevClassTemplate
759    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
760
761  // We may have found the injected-class-name of a class template,
762  // class template partial specialization, or class template specialization.
763  // In these cases, grab the template that is being defined or specialized.
764  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
765      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
766    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
767    PrevClassTemplate
768      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
769    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
770      PrevClassTemplate
771        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
772            ->getSpecializedTemplate();
773    }
774  }
775
776  if (TUK == TUK_Friend) {
777    // C++ [namespace.memdef]p3:
778    //   [...] When looking for a prior declaration of a class or a function
779    //   declared as a friend, and when the name of the friend class or
780    //   function is neither a qualified name nor a template-id, scopes outside
781    //   the innermost enclosing namespace scope are not considered.
782    DeclContext *OutermostContext = CurContext;
783    while (!OutermostContext->isFileContext())
784      OutermostContext = OutermostContext->getLookupParent();
785
786    if (PrevDecl &&
787        (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
788         OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
789      SemanticContext = PrevDecl->getDeclContext();
790    } else {
791      // Declarations in outer scopes don't matter. However, the outermost
792      // context we computed is the semantic context for our new
793      // declaration.
794      PrevDecl = PrevClassTemplate = 0;
795      SemanticContext = OutermostContext;
796    }
797
798    if (CurContext->isDependentContext()) {
799      // If this is a dependent context, we don't want to link the friend
800      // class template to the template in scope, because that would perform
801      // checking of the template parameter lists that can't be performed
802      // until the outer context is instantiated.
803      PrevDecl = PrevClassTemplate = 0;
804    }
805  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
806    PrevDecl = PrevClassTemplate = 0;
807
808  if (PrevClassTemplate) {
809    // Ensure that the template parameter lists are compatible.
810    if (!TemplateParameterListsAreEqual(TemplateParams,
811                                   PrevClassTemplate->getTemplateParameters(),
812                                        /*Complain=*/true,
813                                        TPL_TemplateMatch))
814      return true;
815
816    // C++ [temp.class]p4:
817    //   In a redeclaration, partial specialization, explicit
818    //   specialization or explicit instantiation of a class template,
819    //   the class-key shall agree in kind with the original class
820    //   template declaration (7.1.5.3).
821    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
822    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
823      Diag(KWLoc, diag::err_use_with_wrong_tag)
824        << Name
825        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
826      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
827      Kind = PrevRecordDecl->getTagKind();
828    }
829
830    // Check for redefinition of this class template.
831    if (TUK == TUK_Definition) {
832      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
833        Diag(NameLoc, diag::err_redefinition) << Name;
834        Diag(Def->getLocation(), diag::note_previous_definition);
835        // FIXME: Would it make sense to try to "forget" the previous
836        // definition, as part of error recovery?
837        return true;
838      }
839    }
840  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
841    // Maybe we will complain about the shadowed template parameter.
842    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
843    // Just pretend that we didn't see the previous declaration.
844    PrevDecl = 0;
845  } else if (PrevDecl) {
846    // C++ [temp]p5:
847    //   A class template shall not have the same name as any other
848    //   template, class, function, object, enumeration, enumerator,
849    //   namespace, or type in the same scope (3.3), except as specified
850    //   in (14.5.4).
851    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
852    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
853    return true;
854  }
855
856  // Check the template parameter list of this declaration, possibly
857  // merging in the template parameter list from the previous class
858  // template declaration.
859  if (CheckTemplateParameterList(TemplateParams,
860            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
861                                 TPC_ClassTemplate))
862    Invalid = true;
863
864  // FIXME: If we had a scope specifier, we better have a previous template
865  // declaration!
866
867  CXXRecordDecl *NewClass =
868    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
869                          PrevClassTemplate?
870                            PrevClassTemplate->getTemplatedDecl() : 0,
871                          /*DelayTypeCreation=*/true);
872  SetNestedNameSpecifier(NewClass, SS);
873
874  ClassTemplateDecl *NewTemplate
875    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
876                                DeclarationName(Name), TemplateParams,
877                                NewClass, PrevClassTemplate);
878  NewClass->setDescribedClassTemplate(NewTemplate);
879
880  // Build the type for the class template declaration now.
881  QualType T = NewTemplate->getInjectedClassNameSpecialization(Context);
882  T = Context.getInjectedClassNameType(NewClass, T);
883  assert(T->isDependentType() && "Class template type is not dependent?");
884  (void)T;
885
886  // If we are providing an explicit specialization of a member that is a
887  // class template, make a note of that.
888  if (PrevClassTemplate &&
889      PrevClassTemplate->getInstantiatedFromMemberTemplate())
890    PrevClassTemplate->setMemberSpecialization();
891
892  // Set the access specifier.
893  if (!Invalid && TUK != TUK_Friend)
894    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
895
896  // Set the lexical context of these templates
897  NewClass->setLexicalDeclContext(CurContext);
898  NewTemplate->setLexicalDeclContext(CurContext);
899
900  if (TUK == TUK_Definition)
901    NewClass->startDefinition();
902
903  if (Attr)
904    ProcessDeclAttributeList(S, NewClass, Attr);
905
906  if (TUK != TUK_Friend)
907    PushOnScopeChains(NewTemplate, S);
908  else {
909    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
910      NewTemplate->setAccess(PrevClassTemplate->getAccess());
911      NewClass->setAccess(PrevClassTemplate->getAccess());
912    }
913
914    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
915                                       PrevClassTemplate != NULL);
916
917    // Friend templates are visible in fairly strange ways.
918    if (!CurContext->isDependentContext()) {
919      DeclContext *DC = SemanticContext->getLookupContext();
920      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
921      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
922        PushOnScopeChains(NewTemplate, EnclosingScope,
923                          /* AddToContext = */ false);
924    }
925
926    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
927                                            NewClass->getLocation(),
928                                            NewTemplate,
929                                    /*FIXME:*/NewClass->getLocation());
930    Friend->setAccess(AS_public);
931    CurContext->addDecl(Friend);
932  }
933
934  if (Invalid) {
935    NewTemplate->setInvalidDecl();
936    NewClass->setInvalidDecl();
937  }
938  return DeclPtrTy::make(NewTemplate);
939}
940
941/// \brief Diagnose the presence of a default template argument on a
942/// template parameter, which is ill-formed in certain contexts.
943///
944/// \returns true if the default template argument should be dropped.
945static bool DiagnoseDefaultTemplateArgument(Sema &S,
946                                            Sema::TemplateParamListContext TPC,
947                                            SourceLocation ParamLoc,
948                                            SourceRange DefArgRange) {
949  switch (TPC) {
950  case Sema::TPC_ClassTemplate:
951    return false;
952
953  case Sema::TPC_FunctionTemplate:
954    // C++ [temp.param]p9:
955    //   A default template-argument shall not be specified in a
956    //   function template declaration or a function template
957    //   definition [...]
958    // (This sentence is not in C++0x, per DR226).
959    if (!S.getLangOptions().CPlusPlus0x)
960      S.Diag(ParamLoc,
961             diag::err_template_parameter_default_in_function_template)
962        << DefArgRange;
963    return false;
964
965  case Sema::TPC_ClassTemplateMember:
966    // C++0x [temp.param]p9:
967    //   A default template-argument shall not be specified in the
968    //   template-parameter-lists of the definition of a member of a
969    //   class template that appears outside of the member's class.
970    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
971      << DefArgRange;
972    return true;
973
974  case Sema::TPC_FriendFunctionTemplate:
975    // C++ [temp.param]p9:
976    //   A default template-argument shall not be specified in a
977    //   friend template declaration.
978    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
979      << DefArgRange;
980    return true;
981
982    // FIXME: C++0x [temp.param]p9 allows default template-arguments
983    // for friend function templates if there is only a single
984    // declaration (and it is a definition). Strange!
985  }
986
987  return false;
988}
989
990/// \brief Checks the validity of a template parameter list, possibly
991/// considering the template parameter list from a previous
992/// declaration.
993///
994/// If an "old" template parameter list is provided, it must be
995/// equivalent (per TemplateParameterListsAreEqual) to the "new"
996/// template parameter list.
997///
998/// \param NewParams Template parameter list for a new template
999/// declaration. This template parameter list will be updated with any
1000/// default arguments that are carried through from the previous
1001/// template parameter list.
1002///
1003/// \param OldParams If provided, template parameter list from a
1004/// previous declaration of the same template. Default template
1005/// arguments will be merged from the old template parameter list to
1006/// the new template parameter list.
1007///
1008/// \param TPC Describes the context in which we are checking the given
1009/// template parameter list.
1010///
1011/// \returns true if an error occurred, false otherwise.
1012bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1013                                      TemplateParameterList *OldParams,
1014                                      TemplateParamListContext TPC) {
1015  bool Invalid = false;
1016
1017  // C++ [temp.param]p10:
1018  //   The set of default template-arguments available for use with a
1019  //   template declaration or definition is obtained by merging the
1020  //   default arguments from the definition (if in scope) and all
1021  //   declarations in scope in the same way default function
1022  //   arguments are (8.3.6).
1023  bool SawDefaultArgument = false;
1024  SourceLocation PreviousDefaultArgLoc;
1025
1026  bool SawParameterPack = false;
1027  SourceLocation ParameterPackLoc;
1028
1029  // Dummy initialization to avoid warnings.
1030  TemplateParameterList::iterator OldParam = NewParams->end();
1031  if (OldParams)
1032    OldParam = OldParams->begin();
1033
1034  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1035                                    NewParamEnd = NewParams->end();
1036       NewParam != NewParamEnd; ++NewParam) {
1037    // Variables used to diagnose redundant default arguments
1038    bool RedundantDefaultArg = false;
1039    SourceLocation OldDefaultLoc;
1040    SourceLocation NewDefaultLoc;
1041
1042    // Variables used to diagnose missing default arguments
1043    bool MissingDefaultArg = false;
1044
1045    // C++0x [temp.param]p11:
1046    // If a template parameter of a class template is a template parameter pack,
1047    // it must be the last template parameter.
1048    if (SawParameterPack) {
1049      Diag(ParameterPackLoc,
1050           diag::err_template_param_pack_must_be_last_template_parameter);
1051      Invalid = true;
1052    }
1053
1054    if (TemplateTypeParmDecl *NewTypeParm
1055          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1056      // Check the presence of a default argument here.
1057      if (NewTypeParm->hasDefaultArgument() &&
1058          DiagnoseDefaultTemplateArgument(*this, TPC,
1059                                          NewTypeParm->getLocation(),
1060               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1061                                                       .getFullSourceRange()))
1062        NewTypeParm->removeDefaultArgument();
1063
1064      // Merge default arguments for template type parameters.
1065      TemplateTypeParmDecl *OldTypeParm
1066          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1067
1068      if (NewTypeParm->isParameterPack()) {
1069        assert(!NewTypeParm->hasDefaultArgument() &&
1070               "Parameter packs can't have a default argument!");
1071        SawParameterPack = true;
1072        ParameterPackLoc = NewTypeParm->getLocation();
1073      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1074                 NewTypeParm->hasDefaultArgument()) {
1075        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1076        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1077        SawDefaultArgument = true;
1078        RedundantDefaultArg = true;
1079        PreviousDefaultArgLoc = NewDefaultLoc;
1080      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1081        // Merge the default argument from the old declaration to the
1082        // new declaration.
1083        SawDefaultArgument = true;
1084        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1085                                        true);
1086        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1087      } else if (NewTypeParm->hasDefaultArgument()) {
1088        SawDefaultArgument = true;
1089        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1090      } else if (SawDefaultArgument)
1091        MissingDefaultArg = true;
1092    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1093               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1094      // Check the presence of a default argument here.
1095      if (NewNonTypeParm->hasDefaultArgument() &&
1096          DiagnoseDefaultTemplateArgument(*this, TPC,
1097                                          NewNonTypeParm->getLocation(),
1098                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1099        NewNonTypeParm->getDefaultArgument()->Destroy(Context);
1100        NewNonTypeParm->setDefaultArgument(0);
1101      }
1102
1103      // Merge default arguments for non-type template parameters
1104      NonTypeTemplateParmDecl *OldNonTypeParm
1105        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1106      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1107          NewNonTypeParm->hasDefaultArgument()) {
1108        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1109        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1110        SawDefaultArgument = true;
1111        RedundantDefaultArg = true;
1112        PreviousDefaultArgLoc = NewDefaultLoc;
1113      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1114        // Merge the default argument from the old declaration to the
1115        // new declaration.
1116        SawDefaultArgument = true;
1117        // FIXME: We need to create a new kind of "default argument"
1118        // expression that points to a previous template template
1119        // parameter.
1120        NewNonTypeParm->setDefaultArgument(
1121                                        OldNonTypeParm->getDefaultArgument());
1122        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1123      } else if (NewNonTypeParm->hasDefaultArgument()) {
1124        SawDefaultArgument = true;
1125        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1126      } else if (SawDefaultArgument)
1127        MissingDefaultArg = true;
1128    } else {
1129      // Check the presence of a default argument here.
1130      TemplateTemplateParmDecl *NewTemplateParm
1131        = cast<TemplateTemplateParmDecl>(*NewParam);
1132      if (NewTemplateParm->hasDefaultArgument() &&
1133          DiagnoseDefaultTemplateArgument(*this, TPC,
1134                                          NewTemplateParm->getLocation(),
1135                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1136        NewTemplateParm->setDefaultArgument(TemplateArgumentLoc());
1137
1138      // Merge default arguments for template template parameters
1139      TemplateTemplateParmDecl *OldTemplateParm
1140        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1141      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1142          NewTemplateParm->hasDefaultArgument()) {
1143        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1144        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1145        SawDefaultArgument = true;
1146        RedundantDefaultArg = true;
1147        PreviousDefaultArgLoc = NewDefaultLoc;
1148      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1149        // Merge the default argument from the old declaration to the
1150        // new declaration.
1151        SawDefaultArgument = true;
1152        // FIXME: We need to create a new kind of "default argument" expression
1153        // that points to a previous template template parameter.
1154        NewTemplateParm->setDefaultArgument(
1155                                        OldTemplateParm->getDefaultArgument());
1156        PreviousDefaultArgLoc
1157          = OldTemplateParm->getDefaultArgument().getLocation();
1158      } else if (NewTemplateParm->hasDefaultArgument()) {
1159        SawDefaultArgument = true;
1160        PreviousDefaultArgLoc
1161          = NewTemplateParm->getDefaultArgument().getLocation();
1162      } else if (SawDefaultArgument)
1163        MissingDefaultArg = true;
1164    }
1165
1166    if (RedundantDefaultArg) {
1167      // C++ [temp.param]p12:
1168      //   A template-parameter shall not be given default arguments
1169      //   by two different declarations in the same scope.
1170      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1171      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1172      Invalid = true;
1173    } else if (MissingDefaultArg) {
1174      // C++ [temp.param]p11:
1175      //   If a template-parameter has a default template-argument,
1176      //   all subsequent template-parameters shall have a default
1177      //   template-argument supplied.
1178      Diag((*NewParam)->getLocation(),
1179           diag::err_template_param_default_arg_missing);
1180      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1181      Invalid = true;
1182    }
1183
1184    // If we have an old template parameter list that we're merging
1185    // in, move on to the next parameter.
1186    if (OldParams)
1187      ++OldParam;
1188  }
1189
1190  return Invalid;
1191}
1192
1193/// \brief Match the given template parameter lists to the given scope
1194/// specifier, returning the template parameter list that applies to the
1195/// name.
1196///
1197/// \param DeclStartLoc the start of the declaration that has a scope
1198/// specifier or a template parameter list.
1199///
1200/// \param SS the scope specifier that will be matched to the given template
1201/// parameter lists. This scope specifier precedes a qualified name that is
1202/// being declared.
1203///
1204/// \param ParamLists the template parameter lists, from the outermost to the
1205/// innermost template parameter lists.
1206///
1207/// \param NumParamLists the number of template parameter lists in ParamLists.
1208///
1209/// \param IsExplicitSpecialization will be set true if the entity being
1210/// declared is an explicit specialization, false otherwise.
1211///
1212/// \returns the template parameter list, if any, that corresponds to the
1213/// name that is preceded by the scope specifier @p SS. This template
1214/// parameter list may be have template parameters (if we're declaring a
1215/// template) or may have no template parameters (if we're declaring a
1216/// template specialization), or may be NULL (if we were's declaring isn't
1217/// itself a template).
1218TemplateParameterList *
1219Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1220                                              const CXXScopeSpec &SS,
1221                                          TemplateParameterList **ParamLists,
1222                                              unsigned NumParamLists,
1223                                              bool &IsExplicitSpecialization) {
1224  IsExplicitSpecialization = false;
1225
1226  // Find the template-ids that occur within the nested-name-specifier. These
1227  // template-ids will match up with the template parameter lists.
1228  llvm::SmallVector<const TemplateSpecializationType *, 4>
1229    TemplateIdsInSpecifier;
1230  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1231    ExplicitSpecializationsInSpecifier;
1232  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1233       NNS; NNS = NNS->getPrefix()) {
1234    const Type *T = NNS->getAsType();
1235    if (!T) break;
1236
1237    // C++0x [temp.expl.spec]p17:
1238    //   A member or a member template may be nested within many
1239    //   enclosing class templates. In an explicit specialization for
1240    //   such a member, the member declaration shall be preceded by a
1241    //   template<> for each enclosing class template that is
1242    //   explicitly specialized.
1243    //
1244    // Following the existing practice of GNU and EDG, we allow a typedef of a
1245    // template specialization type.
1246    if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1247      T = TT->LookThroughTypedefs().getTypePtr();
1248
1249    if (const TemplateSpecializationType *SpecType
1250                                  = dyn_cast<TemplateSpecializationType>(T)) {
1251      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1252      if (!Template)
1253        continue; // FIXME: should this be an error? probably...
1254
1255      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1256        ClassTemplateSpecializationDecl *SpecDecl
1257          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1258        // If the nested name specifier refers to an explicit specialization,
1259        // we don't need a template<> header.
1260        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1261          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1262          continue;
1263        }
1264      }
1265
1266      TemplateIdsInSpecifier.push_back(SpecType);
1267    }
1268  }
1269
1270  // Reverse the list of template-ids in the scope specifier, so that we can
1271  // more easily match up the template-ids and the template parameter lists.
1272  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1273
1274  SourceLocation FirstTemplateLoc = DeclStartLoc;
1275  if (NumParamLists)
1276    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1277
1278  // Match the template-ids found in the specifier to the template parameter
1279  // lists.
1280  unsigned Idx = 0;
1281  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1282       Idx != NumTemplateIds; ++Idx) {
1283    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
1284    bool DependentTemplateId = TemplateId->isDependentType();
1285    if (Idx >= NumParamLists) {
1286      // We have a template-id without a corresponding template parameter
1287      // list.
1288      if (DependentTemplateId) {
1289        // FIXME: the location information here isn't great.
1290        Diag(SS.getRange().getBegin(),
1291             diag::err_template_spec_needs_template_parameters)
1292          << TemplateId
1293          << SS.getRange();
1294      } else {
1295        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1296          << SS.getRange()
1297          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1298        IsExplicitSpecialization = true;
1299      }
1300      return 0;
1301    }
1302
1303    // Check the template parameter list against its corresponding template-id.
1304    if (DependentTemplateId) {
1305      TemplateDecl *Template
1306        = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl();
1307
1308      if (ClassTemplateDecl *ClassTemplate
1309            = dyn_cast<ClassTemplateDecl>(Template)) {
1310        TemplateParameterList *ExpectedTemplateParams = 0;
1311        // Is this template-id naming the primary template?
1312        if (Context.hasSameType(TemplateId,
1313                 ClassTemplate->getInjectedClassNameSpecialization(Context)))
1314          ExpectedTemplateParams = ClassTemplate->getTemplateParameters();
1315        // ... or a partial specialization?
1316        else if (ClassTemplatePartialSpecializationDecl *PartialSpec
1317                   = ClassTemplate->findPartialSpecialization(TemplateId))
1318          ExpectedTemplateParams = PartialSpec->getTemplateParameters();
1319
1320        if (ExpectedTemplateParams)
1321          TemplateParameterListsAreEqual(ParamLists[Idx],
1322                                         ExpectedTemplateParams,
1323                                         true, TPL_TemplateMatch);
1324      }
1325
1326      CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember);
1327    } else if (ParamLists[Idx]->size() > 0)
1328      Diag(ParamLists[Idx]->getTemplateLoc(),
1329           diag::err_template_param_list_matches_nontemplate)
1330        << TemplateId
1331        << ParamLists[Idx]->getSourceRange();
1332    else
1333      IsExplicitSpecialization = true;
1334  }
1335
1336  // If there were at least as many template-ids as there were template
1337  // parameter lists, then there are no template parameter lists remaining for
1338  // the declaration itself.
1339  if (Idx >= NumParamLists)
1340    return 0;
1341
1342  // If there were too many template parameter lists, complain about that now.
1343  if (Idx != NumParamLists - 1) {
1344    while (Idx < NumParamLists - 1) {
1345      bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0;
1346      Diag(ParamLists[Idx]->getTemplateLoc(),
1347           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1348                               : diag::err_template_spec_extra_headers)
1349        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1350                       ParamLists[Idx]->getRAngleLoc());
1351
1352      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1353        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1354             diag::note_explicit_template_spec_does_not_need_header)
1355          << ExplicitSpecializationsInSpecifier.back();
1356        ExplicitSpecializationsInSpecifier.pop_back();
1357      }
1358
1359      ++Idx;
1360    }
1361  }
1362
1363  // Return the last template parameter list, which corresponds to the
1364  // entity being declared.
1365  return ParamLists[NumParamLists - 1];
1366}
1367
1368QualType Sema::CheckTemplateIdType(TemplateName Name,
1369                                   SourceLocation TemplateLoc,
1370                              const TemplateArgumentListInfo &TemplateArgs) {
1371  TemplateDecl *Template = Name.getAsTemplateDecl();
1372  if (!Template) {
1373    // The template name does not resolve to a template, so we just
1374    // build a dependent template-id type.
1375    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1376  }
1377
1378  // Check that the template argument list is well-formed for this
1379  // template.
1380  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1381                                        TemplateArgs.size());
1382  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1383                                false, Converted))
1384    return QualType();
1385
1386  assert((Converted.structuredSize() ==
1387            Template->getTemplateParameters()->size()) &&
1388         "Converted template argument list is too short!");
1389
1390  QualType CanonType;
1391
1392  if (Name.isDependent() ||
1393      TemplateSpecializationType::anyDependentTemplateArguments(
1394                                                      TemplateArgs)) {
1395    // This class template specialization is a dependent
1396    // type. Therefore, its canonical type is another class template
1397    // specialization type that contains all of the converted
1398    // arguments in canonical form. This ensures that, e.g., A<T> and
1399    // A<T, T> have identical types when A is declared as:
1400    //
1401    //   template<typename T, typename U = T> struct A;
1402    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1403    CanonType = Context.getTemplateSpecializationType(CanonName,
1404                                                   Converted.getFlatArguments(),
1405                                                   Converted.flatSize());
1406
1407    // FIXME: CanonType is not actually the canonical type, and unfortunately
1408    // it is a TemplateSpecializationType that we will never use again.
1409    // In the future, we need to teach getTemplateSpecializationType to only
1410    // build the canonical type and return that to us.
1411    CanonType = Context.getCanonicalType(CanonType);
1412  } else if (ClassTemplateDecl *ClassTemplate
1413               = dyn_cast<ClassTemplateDecl>(Template)) {
1414    // Find the class template specialization declaration that
1415    // corresponds to these arguments.
1416    llvm::FoldingSetNodeID ID;
1417    ClassTemplateSpecializationDecl::Profile(ID,
1418                                             Converted.getFlatArguments(),
1419                                             Converted.flatSize(),
1420                                             Context);
1421    void *InsertPos = 0;
1422    ClassTemplateSpecializationDecl *Decl
1423      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
1424    if (!Decl) {
1425      // This is the first time we have referenced this class template
1426      // specialization. Create the canonical declaration and add it to
1427      // the set of specializations.
1428      Decl = ClassTemplateSpecializationDecl::Create(Context,
1429                                    ClassTemplate->getDeclContext(),
1430                                    ClassTemplate->getLocation(),
1431                                    ClassTemplate,
1432                                    Converted, 0);
1433      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
1434      Decl->setLexicalDeclContext(CurContext);
1435    }
1436
1437    CanonType = Context.getTypeDeclType(Decl);
1438    assert(isa<RecordType>(CanonType) &&
1439           "type of non-dependent specialization is not a RecordType");
1440  }
1441
1442  // Build the fully-sugared type for this class template
1443  // specialization, which refers back to the class template
1444  // specialization we created or found.
1445  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1446}
1447
1448Action::TypeResult
1449Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1450                          SourceLocation LAngleLoc,
1451                          ASTTemplateArgsPtr TemplateArgsIn,
1452                          SourceLocation RAngleLoc) {
1453  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1454
1455  // Translate the parser's template argument list in our AST format.
1456  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1457  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1458
1459  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1460  TemplateArgsIn.release();
1461
1462  if (Result.isNull())
1463    return true;
1464
1465  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1466  TemplateSpecializationTypeLoc TL
1467    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1468  TL.setTemplateNameLoc(TemplateLoc);
1469  TL.setLAngleLoc(LAngleLoc);
1470  TL.setRAngleLoc(RAngleLoc);
1471  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1472    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1473
1474  return CreateLocInfoType(Result, DI).getAsOpaquePtr();
1475}
1476
1477Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1478                                              TagUseKind TUK,
1479                                              DeclSpec::TST TagSpec,
1480                                              SourceLocation TagLoc) {
1481  if (TypeResult.isInvalid())
1482    return Sema::TypeResult();
1483
1484  // FIXME: preserve source info, ideally without copying the DI.
1485  TypeSourceInfo *DI;
1486  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1487
1488  // Verify the tag specifier.
1489  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
1490
1491  if (const RecordType *RT = Type->getAs<RecordType>()) {
1492    RecordDecl *D = RT->getDecl();
1493
1494    IdentifierInfo *Id = D->getIdentifier();
1495    assert(Id && "templated class must have an identifier");
1496
1497    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1498      Diag(TagLoc, diag::err_use_with_wrong_tag)
1499        << Type
1500        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1501      Diag(D->getLocation(), diag::note_previous_use);
1502    }
1503  }
1504
1505  QualType ElabType = Context.getElaboratedType(Type, TagKind);
1506
1507  return ElabType.getAsOpaquePtr();
1508}
1509
1510Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1511                                                 LookupResult &R,
1512                                                 bool RequiresADL,
1513                                 const TemplateArgumentListInfo &TemplateArgs) {
1514  // FIXME: Can we do any checking at this point? I guess we could check the
1515  // template arguments that we have against the template name, if the template
1516  // name refers to a single template. That's not a terribly common case,
1517  // though.
1518
1519  // These should be filtered out by our callers.
1520  assert(!R.empty() && "empty lookup results when building templateid");
1521  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1522
1523  NestedNameSpecifier *Qualifier = 0;
1524  SourceRange QualifierRange;
1525  if (SS.isSet()) {
1526    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1527    QualifierRange = SS.getRange();
1528  }
1529
1530  // We don't want lookup warnings at this point.
1531  R.suppressDiagnostics();
1532
1533  bool Dependent
1534    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(),
1535                                              &TemplateArgs);
1536  UnresolvedLookupExpr *ULE
1537    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1538                                   Qualifier, QualifierRange,
1539                                   R.getLookupName(), R.getNameLoc(),
1540                                   RequiresADL, TemplateArgs);
1541  ULE->addDecls(R.begin(), R.end());
1542
1543  return Owned(ULE);
1544}
1545
1546// We actually only call this from template instantiation.
1547Sema::OwningExprResult
1548Sema::BuildQualifiedTemplateIdExpr(const CXXScopeSpec &SS,
1549                                   DeclarationName Name,
1550                                   SourceLocation NameLoc,
1551                             const TemplateArgumentListInfo &TemplateArgs) {
1552  DeclContext *DC;
1553  if (!(DC = computeDeclContext(SS, false)) ||
1554      DC->isDependentContext() ||
1555      RequireCompleteDeclContext(SS))
1556    return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs);
1557
1558  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1559  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false);
1560
1561  if (R.isAmbiguous())
1562    return ExprError();
1563
1564  if (R.empty()) {
1565    Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
1566      << Name << SS.getRange();
1567    return ExprError();
1568  }
1569
1570  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1571    Diag(NameLoc, diag::err_template_kw_refers_to_class_template)
1572      << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange();
1573    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1574    return ExprError();
1575  }
1576
1577  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1578}
1579
1580/// \brief Form a dependent template name.
1581///
1582/// This action forms a dependent template name given the template
1583/// name and its (presumably dependent) scope specifier. For
1584/// example, given "MetaFun::template apply", the scope specifier \p
1585/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1586/// of the "template" keyword, and "apply" is the \p Name.
1587Sema::TemplateTy
1588Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
1589                                 const CXXScopeSpec &SS,
1590                                 UnqualifiedId &Name,
1591                                 TypeTy *ObjectType,
1592                                 bool EnteringContext) {
1593  DeclContext *LookupCtx = 0;
1594  if (SS.isSet())
1595    LookupCtx = computeDeclContext(SS, EnteringContext);
1596  if (!LookupCtx && ObjectType)
1597    LookupCtx = computeDeclContext(QualType::getFromOpaquePtr(ObjectType));
1598  if (LookupCtx) {
1599    // C++0x [temp.names]p5:
1600    //   If a name prefixed by the keyword template is not the name of
1601    //   a template, the program is ill-formed. [Note: the keyword
1602    //   template may not be applied to non-template members of class
1603    //   templates. -end note ] [ Note: as is the case with the
1604    //   typename prefix, the template prefix is allowed in cases
1605    //   where it is not strictly necessary; i.e., when the
1606    //   nested-name-specifier or the expression on the left of the ->
1607    //   or . is not dependent on a template-parameter, or the use
1608    //   does not appear in the scope of a template. -end note]
1609    //
1610    // Note: C++03 was more strict here, because it banned the use of
1611    // the "template" keyword prior to a template-name that was not a
1612    // dependent name. C++ DR468 relaxed this requirement (the
1613    // "template" keyword is now permitted). We follow the C++0x
1614    // rules, even in C++03 mode, retroactively applying the DR.
1615    TemplateTy Template;
1616    TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType,
1617                                          EnteringContext, Template);
1618    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1619        isa<CXXRecordDecl>(LookupCtx) &&
1620        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1621      // This is a dependent template.
1622    } else if (TNK == TNK_Non_template) {
1623      Diag(Name.getSourceRange().getBegin(),
1624           diag::err_template_kw_refers_to_non_template)
1625        << GetNameFromUnqualifiedId(Name)
1626        << Name.getSourceRange();
1627      return TemplateTy();
1628    } else {
1629      // We found something; return it.
1630      return Template;
1631    }
1632  }
1633
1634  NestedNameSpecifier *Qualifier
1635    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1636
1637  switch (Name.getKind()) {
1638  case UnqualifiedId::IK_Identifier:
1639    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1640                                                             Name.Identifier));
1641
1642  case UnqualifiedId::IK_OperatorFunctionId:
1643    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1644                                             Name.OperatorFunctionId.Operator));
1645
1646  case UnqualifiedId::IK_LiteralOperatorId:
1647    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1648
1649  default:
1650    break;
1651  }
1652
1653  Diag(Name.getSourceRange().getBegin(),
1654       diag::err_template_kw_refers_to_non_template)
1655    << GetNameFromUnqualifiedId(Name)
1656    << Name.getSourceRange();
1657  return TemplateTy();
1658}
1659
1660bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1661                                     const TemplateArgumentLoc &AL,
1662                                     TemplateArgumentListBuilder &Converted) {
1663  const TemplateArgument &Arg = AL.getArgument();
1664
1665  // Check template type parameter.
1666  switch(Arg.getKind()) {
1667  case TemplateArgument::Type:
1668    // C++ [temp.arg.type]p1:
1669    //   A template-argument for a template-parameter which is a
1670    //   type shall be a type-id.
1671    break;
1672  case TemplateArgument::Template: {
1673    // We have a template type parameter but the template argument
1674    // is a template without any arguments.
1675    SourceRange SR = AL.getSourceRange();
1676    TemplateName Name = Arg.getAsTemplate();
1677    Diag(SR.getBegin(), diag::err_template_missing_args)
1678      << Name << SR;
1679    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
1680      Diag(Decl->getLocation(), diag::note_template_decl_here);
1681
1682    return true;
1683  }
1684  default: {
1685    // We have a template type parameter but the template argument
1686    // is not a type.
1687    SourceRange SR = AL.getSourceRange();
1688    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1689    Diag(Param->getLocation(), diag::note_template_param_here);
1690
1691    return true;
1692  }
1693  }
1694
1695  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1696    return true;
1697
1698  // Add the converted template type argument.
1699  Converted.Append(
1700                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1701  return false;
1702}
1703
1704/// \brief Substitute template arguments into the default template argument for
1705/// the given template type parameter.
1706///
1707/// \param SemaRef the semantic analysis object for which we are performing
1708/// the substitution.
1709///
1710/// \param Template the template that we are synthesizing template arguments
1711/// for.
1712///
1713/// \param TemplateLoc the location of the template name that started the
1714/// template-id we are checking.
1715///
1716/// \param RAngleLoc the location of the right angle bracket ('>') that
1717/// terminates the template-id.
1718///
1719/// \param Param the template template parameter whose default we are
1720/// substituting into.
1721///
1722/// \param Converted the list of template arguments provided for template
1723/// parameters that precede \p Param in the template parameter list.
1724///
1725/// \returns the substituted template argument, or NULL if an error occurred.
1726static TypeSourceInfo *
1727SubstDefaultTemplateArgument(Sema &SemaRef,
1728                             TemplateDecl *Template,
1729                             SourceLocation TemplateLoc,
1730                             SourceLocation RAngleLoc,
1731                             TemplateTypeParmDecl *Param,
1732                             TemplateArgumentListBuilder &Converted) {
1733  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
1734
1735  // If the argument type is dependent, instantiate it now based
1736  // on the previously-computed template arguments.
1737  if (ArgType->getType()->isDependentType()) {
1738    TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1739                                      /*TakeArgs=*/false);
1740
1741    MultiLevelTemplateArgumentList AllTemplateArgs
1742      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1743
1744    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1745                                     Template, Converted.getFlatArguments(),
1746                                     Converted.flatSize(),
1747                                     SourceRange(TemplateLoc, RAngleLoc));
1748
1749    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1750                                Param->getDefaultArgumentLoc(),
1751                                Param->getDeclName());
1752  }
1753
1754  return ArgType;
1755}
1756
1757/// \brief Substitute template arguments into the default template argument for
1758/// the given non-type template parameter.
1759///
1760/// \param SemaRef the semantic analysis object for which we are performing
1761/// the substitution.
1762///
1763/// \param Template the template that we are synthesizing template arguments
1764/// for.
1765///
1766/// \param TemplateLoc the location of the template name that started the
1767/// template-id we are checking.
1768///
1769/// \param RAngleLoc the location of the right angle bracket ('>') that
1770/// terminates the template-id.
1771///
1772/// \param Param the non-type template parameter whose default we are
1773/// substituting into.
1774///
1775/// \param Converted the list of template arguments provided for template
1776/// parameters that precede \p Param in the template parameter list.
1777///
1778/// \returns the substituted template argument, or NULL if an error occurred.
1779static Sema::OwningExprResult
1780SubstDefaultTemplateArgument(Sema &SemaRef,
1781                             TemplateDecl *Template,
1782                             SourceLocation TemplateLoc,
1783                             SourceLocation RAngleLoc,
1784                             NonTypeTemplateParmDecl *Param,
1785                             TemplateArgumentListBuilder &Converted) {
1786  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1787                                    /*TakeArgs=*/false);
1788
1789  MultiLevelTemplateArgumentList AllTemplateArgs
1790    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1791
1792  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1793                                   Template, Converted.getFlatArguments(),
1794                                   Converted.flatSize(),
1795                                   SourceRange(TemplateLoc, RAngleLoc));
1796
1797  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1798}
1799
1800/// \brief Substitute template arguments into the default template argument for
1801/// the given template template parameter.
1802///
1803/// \param SemaRef the semantic analysis object for which we are performing
1804/// the substitution.
1805///
1806/// \param Template the template that we are synthesizing template arguments
1807/// for.
1808///
1809/// \param TemplateLoc the location of the template name that started the
1810/// template-id we are checking.
1811///
1812/// \param RAngleLoc the location of the right angle bracket ('>') that
1813/// terminates the template-id.
1814///
1815/// \param Param the template template parameter whose default we are
1816/// substituting into.
1817///
1818/// \param Converted the list of template arguments provided for template
1819/// parameters that precede \p Param in the template parameter list.
1820///
1821/// \returns the substituted template argument, or NULL if an error occurred.
1822static TemplateName
1823SubstDefaultTemplateArgument(Sema &SemaRef,
1824                             TemplateDecl *Template,
1825                             SourceLocation TemplateLoc,
1826                             SourceLocation RAngleLoc,
1827                             TemplateTemplateParmDecl *Param,
1828                             TemplateArgumentListBuilder &Converted) {
1829  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1830                                    /*TakeArgs=*/false);
1831
1832  MultiLevelTemplateArgumentList AllTemplateArgs
1833    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1834
1835  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1836                                   Template, Converted.getFlatArguments(),
1837                                   Converted.flatSize(),
1838                                   SourceRange(TemplateLoc, RAngleLoc));
1839
1840  return SemaRef.SubstTemplateName(
1841                      Param->getDefaultArgument().getArgument().getAsTemplate(),
1842                              Param->getDefaultArgument().getTemplateNameLoc(),
1843                                   AllTemplateArgs);
1844}
1845
1846/// \brief If the given template parameter has a default template
1847/// argument, substitute into that default template argument and
1848/// return the corresponding template argument.
1849TemplateArgumentLoc
1850Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
1851                                              SourceLocation TemplateLoc,
1852                                              SourceLocation RAngleLoc,
1853                                              Decl *Param,
1854                                     TemplateArgumentListBuilder &Converted) {
1855  if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
1856    if (!TypeParm->hasDefaultArgument())
1857      return TemplateArgumentLoc();
1858
1859    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
1860                                                      TemplateLoc,
1861                                                      RAngleLoc,
1862                                                      TypeParm,
1863                                                      Converted);
1864    if (DI)
1865      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
1866
1867    return TemplateArgumentLoc();
1868  }
1869
1870  if (NonTypeTemplateParmDecl *NonTypeParm
1871        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1872    if (!NonTypeParm->hasDefaultArgument())
1873      return TemplateArgumentLoc();
1874
1875    OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
1876                                                        TemplateLoc,
1877                                                        RAngleLoc,
1878                                                        NonTypeParm,
1879                                                        Converted);
1880    if (Arg.isInvalid())
1881      return TemplateArgumentLoc();
1882
1883    Expr *ArgE = Arg.takeAs<Expr>();
1884    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
1885  }
1886
1887  TemplateTemplateParmDecl *TempTempParm
1888    = cast<TemplateTemplateParmDecl>(Param);
1889  if (!TempTempParm->hasDefaultArgument())
1890    return TemplateArgumentLoc();
1891
1892  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
1893                                                    TemplateLoc,
1894                                                    RAngleLoc,
1895                                                    TempTempParm,
1896                                                    Converted);
1897  if (TName.isNull())
1898    return TemplateArgumentLoc();
1899
1900  return TemplateArgumentLoc(TemplateArgument(TName),
1901                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
1902                TempTempParm->getDefaultArgument().getTemplateNameLoc());
1903}
1904
1905/// \brief Check that the given template argument corresponds to the given
1906/// template parameter.
1907bool Sema::CheckTemplateArgument(NamedDecl *Param,
1908                                 const TemplateArgumentLoc &Arg,
1909                                 TemplateDecl *Template,
1910                                 SourceLocation TemplateLoc,
1911                                 SourceLocation RAngleLoc,
1912                                 TemplateArgumentListBuilder &Converted,
1913                                 CheckTemplateArgumentKind CTAK) {
1914  // Check template type parameters.
1915  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
1916    return CheckTemplateTypeArgument(TTP, Arg, Converted);
1917
1918  // Check non-type template parameters.
1919  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1920    // Do substitution on the type of the non-type template parameter
1921    // with the template arguments we've seen thus far.
1922    QualType NTTPType = NTTP->getType();
1923    if (NTTPType->isDependentType()) {
1924      // Do substitution on the type of the non-type template parameter.
1925      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
1926                                 NTTP, Converted.getFlatArguments(),
1927                                 Converted.flatSize(),
1928                                 SourceRange(TemplateLoc, RAngleLoc));
1929
1930      TemplateArgumentList TemplateArgs(Context, Converted,
1931                                        /*TakeArgs=*/false);
1932      NTTPType = SubstType(NTTPType,
1933                           MultiLevelTemplateArgumentList(TemplateArgs),
1934                           NTTP->getLocation(),
1935                           NTTP->getDeclName());
1936      // If that worked, check the non-type template parameter type
1937      // for validity.
1938      if (!NTTPType.isNull())
1939        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
1940                                                     NTTP->getLocation());
1941      if (NTTPType.isNull())
1942        return true;
1943    }
1944
1945    switch (Arg.getArgument().getKind()) {
1946    case TemplateArgument::Null:
1947      assert(false && "Should never see a NULL template argument here");
1948      return true;
1949
1950    case TemplateArgument::Expression: {
1951      Expr *E = Arg.getArgument().getAsExpr();
1952      TemplateArgument Result;
1953      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
1954        return true;
1955
1956      Converted.Append(Result);
1957      break;
1958    }
1959
1960    case TemplateArgument::Declaration:
1961    case TemplateArgument::Integral:
1962      // We've already checked this template argument, so just copy
1963      // it to the list of converted arguments.
1964      Converted.Append(Arg.getArgument());
1965      break;
1966
1967    case TemplateArgument::Template:
1968      // We were given a template template argument. It may not be ill-formed;
1969      // see below.
1970      if (DependentTemplateName *DTN
1971            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
1972        // We have a template argument such as \c T::template X, which we
1973        // parsed as a template template argument. However, since we now
1974        // know that we need a non-type template argument, convert this
1975        // template name into an expression.
1976        Expr *E = DependentScopeDeclRefExpr::Create(Context,
1977                                                    DTN->getQualifier(),
1978                                               Arg.getTemplateQualifierRange(),
1979                                                    DTN->getIdentifier(),
1980                                                    Arg.getTemplateNameLoc());
1981
1982        TemplateArgument Result;
1983        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1984          return true;
1985
1986        Converted.Append(Result);
1987        break;
1988      }
1989
1990      // We have a template argument that actually does refer to a class
1991      // template, template alias, or template template parameter, and
1992      // therefore cannot be a non-type template argument.
1993      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
1994        << Arg.getSourceRange();
1995
1996      Diag(Param->getLocation(), diag::note_template_param_here);
1997      return true;
1998
1999    case TemplateArgument::Type: {
2000      // We have a non-type template parameter but the template
2001      // argument is a type.
2002
2003      // C++ [temp.arg]p2:
2004      //   In a template-argument, an ambiguity between a type-id and
2005      //   an expression is resolved to a type-id, regardless of the
2006      //   form of the corresponding template-parameter.
2007      //
2008      // We warn specifically about this case, since it can be rather
2009      // confusing for users.
2010      QualType T = Arg.getArgument().getAsType();
2011      SourceRange SR = Arg.getSourceRange();
2012      if (T->isFunctionType())
2013        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2014      else
2015        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2016      Diag(Param->getLocation(), diag::note_template_param_here);
2017      return true;
2018    }
2019
2020    case TemplateArgument::Pack:
2021      llvm_unreachable("Caller must expand template argument packs");
2022      break;
2023    }
2024
2025    return false;
2026  }
2027
2028
2029  // Check template template parameters.
2030  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2031
2032  // Substitute into the template parameter list of the template
2033  // template parameter, since previously-supplied template arguments
2034  // may appear within the template template parameter.
2035  {
2036    // Set up a template instantiation context.
2037    LocalInstantiationScope Scope(*this);
2038    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2039                               TempParm, Converted.getFlatArguments(),
2040                               Converted.flatSize(),
2041                               SourceRange(TemplateLoc, RAngleLoc));
2042
2043    TemplateArgumentList TemplateArgs(Context, Converted,
2044                                      /*TakeArgs=*/false);
2045    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2046                      SubstDecl(TempParm, CurContext,
2047                                MultiLevelTemplateArgumentList(TemplateArgs)));
2048    if (!TempParm)
2049      return true;
2050
2051    // FIXME: TempParam is leaked.
2052  }
2053
2054  switch (Arg.getArgument().getKind()) {
2055  case TemplateArgument::Null:
2056    assert(false && "Should never see a NULL template argument here");
2057    return true;
2058
2059  case TemplateArgument::Template:
2060    if (CheckTemplateArgument(TempParm, Arg))
2061      return true;
2062
2063    Converted.Append(Arg.getArgument());
2064    break;
2065
2066  case TemplateArgument::Expression:
2067  case TemplateArgument::Type:
2068    // We have a template template parameter but the template
2069    // argument does not refer to a template.
2070    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2071    return true;
2072
2073  case TemplateArgument::Declaration:
2074    llvm_unreachable(
2075                       "Declaration argument with template template parameter");
2076    break;
2077  case TemplateArgument::Integral:
2078    llvm_unreachable(
2079                          "Integral argument with template template parameter");
2080    break;
2081
2082  case TemplateArgument::Pack:
2083    llvm_unreachable("Caller must expand template argument packs");
2084    break;
2085  }
2086
2087  return false;
2088}
2089
2090/// \brief Check that the given template argument list is well-formed
2091/// for specializing the given template.
2092bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2093                                     SourceLocation TemplateLoc,
2094                                const TemplateArgumentListInfo &TemplateArgs,
2095                                     bool PartialTemplateArgs,
2096                                     TemplateArgumentListBuilder &Converted) {
2097  TemplateParameterList *Params = Template->getTemplateParameters();
2098  unsigned NumParams = Params->size();
2099  unsigned NumArgs = TemplateArgs.size();
2100  bool Invalid = false;
2101
2102  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2103
2104  bool HasParameterPack =
2105    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2106
2107  if ((NumArgs > NumParams && !HasParameterPack) ||
2108      (NumArgs < Params->getMinRequiredArguments() &&
2109       !PartialTemplateArgs)) {
2110    // FIXME: point at either the first arg beyond what we can handle,
2111    // or the '>', depending on whether we have too many or too few
2112    // arguments.
2113    SourceRange Range;
2114    if (NumArgs > NumParams)
2115      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2116    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2117      << (NumArgs > NumParams)
2118      << (isa<ClassTemplateDecl>(Template)? 0 :
2119          isa<FunctionTemplateDecl>(Template)? 1 :
2120          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2121      << Template << Range;
2122    Diag(Template->getLocation(), diag::note_template_decl_here)
2123      << Params->getSourceRange();
2124    Invalid = true;
2125  }
2126
2127  // C++ [temp.arg]p1:
2128  //   [...] The type and form of each template-argument specified in
2129  //   a template-id shall match the type and form specified for the
2130  //   corresponding parameter declared by the template in its
2131  //   template-parameter-list.
2132  unsigned ArgIdx = 0;
2133  for (TemplateParameterList::iterator Param = Params->begin(),
2134                                       ParamEnd = Params->end();
2135       Param != ParamEnd; ++Param, ++ArgIdx) {
2136    if (ArgIdx > NumArgs && PartialTemplateArgs)
2137      break;
2138
2139    // If we have a template parameter pack, check every remaining template
2140    // argument against that template parameter pack.
2141    if ((*Param)->isTemplateParameterPack()) {
2142      Converted.BeginPack();
2143      for (; ArgIdx < NumArgs; ++ArgIdx) {
2144        if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2145                                  TemplateLoc, RAngleLoc, Converted)) {
2146          Invalid = true;
2147          break;
2148        }
2149      }
2150      Converted.EndPack();
2151      continue;
2152    }
2153
2154    if (ArgIdx < NumArgs) {
2155      // Check the template argument we were given.
2156      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2157                                TemplateLoc, RAngleLoc, Converted))
2158        return true;
2159
2160      continue;
2161    }
2162
2163    // We have a default template argument that we will use.
2164    TemplateArgumentLoc Arg;
2165
2166    // Retrieve the default template argument from the template
2167    // parameter. For each kind of template parameter, we substitute the
2168    // template arguments provided thus far and any "outer" template arguments
2169    // (when the template parameter was part of a nested template) into
2170    // the default argument.
2171    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2172      if (!TTP->hasDefaultArgument()) {
2173        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2174        break;
2175      }
2176
2177      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2178                                                             Template,
2179                                                             TemplateLoc,
2180                                                             RAngleLoc,
2181                                                             TTP,
2182                                                             Converted);
2183      if (!ArgType)
2184        return true;
2185
2186      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2187                                ArgType);
2188    } else if (NonTypeTemplateParmDecl *NTTP
2189                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2190      if (!NTTP->hasDefaultArgument()) {
2191        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2192        break;
2193      }
2194
2195      Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template,
2196                                                              TemplateLoc,
2197                                                              RAngleLoc,
2198                                                              NTTP,
2199                                                              Converted);
2200      if (E.isInvalid())
2201        return true;
2202
2203      Expr *Ex = E.takeAs<Expr>();
2204      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2205    } else {
2206      TemplateTemplateParmDecl *TempParm
2207        = cast<TemplateTemplateParmDecl>(*Param);
2208
2209      if (!TempParm->hasDefaultArgument()) {
2210        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2211        break;
2212      }
2213
2214      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2215                                                       TemplateLoc,
2216                                                       RAngleLoc,
2217                                                       TempParm,
2218                                                       Converted);
2219      if (Name.isNull())
2220        return true;
2221
2222      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2223                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2224                  TempParm->getDefaultArgument().getTemplateNameLoc());
2225    }
2226
2227    // Introduce an instantiation record that describes where we are using
2228    // the default template argument.
2229    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2230                                        Converted.getFlatArguments(),
2231                                        Converted.flatSize(),
2232                                        SourceRange(TemplateLoc, RAngleLoc));
2233
2234    // Check the default template argument.
2235    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2236                              RAngleLoc, Converted))
2237      return true;
2238  }
2239
2240  return Invalid;
2241}
2242
2243/// \brief Check a template argument against its corresponding
2244/// template type parameter.
2245///
2246/// This routine implements the semantics of C++ [temp.arg.type]. It
2247/// returns true if an error occurred, and false otherwise.
2248bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2249                                 TypeSourceInfo *ArgInfo) {
2250  assert(ArgInfo && "invalid TypeSourceInfo");
2251  QualType Arg = ArgInfo->getType();
2252
2253  // C++ [temp.arg.type]p2:
2254  //   A local type, a type with no linkage, an unnamed type or a type
2255  //   compounded from any of these types shall not be used as a
2256  //   template-argument for a template type-parameter.
2257  //
2258  // FIXME: Perform the recursive and no-linkage type checks.
2259  const TagType *Tag = 0;
2260  if (const EnumType *EnumT = Arg->getAs<EnumType>())
2261    Tag = EnumT;
2262  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
2263    Tag = RecordT;
2264  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
2265    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2266    return Diag(SR.getBegin(), diag::err_template_arg_local_type)
2267      << QualType(Tag, 0) << SR;
2268  } else if (Tag && !Tag->getDecl()->getDeclName() &&
2269           !Tag->getDecl()->getTypedefForAnonDecl()) {
2270    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2271    Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR;
2272    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
2273    return true;
2274  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2275    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2276    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2277  }
2278
2279  return false;
2280}
2281
2282/// \brief Checks whether the given template argument is the address
2283/// of an object or function according to C++ [temp.arg.nontype]p1.
2284static bool
2285CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2286                                               NonTypeTemplateParmDecl *Param,
2287                                               QualType ParamType,
2288                                               Expr *ArgIn,
2289                                               TemplateArgument &Converted) {
2290  bool Invalid = false;
2291  Expr *Arg = ArgIn;
2292  QualType ArgType = Arg->getType();
2293
2294  // See through any implicit casts we added to fix the type.
2295  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2296    Arg = Cast->getSubExpr();
2297
2298  // C++ [temp.arg.nontype]p1:
2299  //
2300  //   A template-argument for a non-type, non-template
2301  //   template-parameter shall be one of: [...]
2302  //
2303  //     -- the address of an object or function with external
2304  //        linkage, including function templates and function
2305  //        template-ids but excluding non-static class members,
2306  //        expressed as & id-expression where the & is optional if
2307  //        the name refers to a function or array, or if the
2308  //        corresponding template-parameter is a reference; or
2309  DeclRefExpr *DRE = 0;
2310
2311  // Ignore (and complain about) any excess parentheses.
2312  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2313    if (!Invalid) {
2314      S.Diag(Arg->getSourceRange().getBegin(),
2315             diag::err_template_arg_extra_parens)
2316        << Arg->getSourceRange();
2317      Invalid = true;
2318    }
2319
2320    Arg = Parens->getSubExpr();
2321  }
2322
2323  bool AddressTaken = false;
2324  SourceLocation AddrOpLoc;
2325  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2326    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2327      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2328      AddressTaken = true;
2329      AddrOpLoc = UnOp->getOperatorLoc();
2330    }
2331  } else
2332    DRE = dyn_cast<DeclRefExpr>(Arg);
2333
2334  if (!DRE) {
2335    if (S.Context.hasSameUnqualifiedType(ArgType, S.Context.OverloadTy)) {
2336      S.Diag(Arg->getLocStart(),
2337             diag::err_template_arg_unresolved_overloaded_function)
2338        << ParamType << Arg->getSourceRange();
2339    } else {
2340      S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2341        << Arg->getSourceRange();
2342    }
2343    S.Diag(Param->getLocation(), diag::note_template_param_here);
2344    return true;
2345  }
2346
2347  // Stop checking the precise nature of the argument if it is value dependent,
2348  // it should be checked when instantiated.
2349  if (Arg->isValueDependent()) {
2350    Converted = TemplateArgument(ArgIn->Retain());
2351    return false;
2352  }
2353
2354  if (!isa<ValueDecl>(DRE->getDecl())) {
2355    S.Diag(Arg->getSourceRange().getBegin(),
2356           diag::err_template_arg_not_object_or_func_form)
2357      << Arg->getSourceRange();
2358    S.Diag(Param->getLocation(), diag::note_template_param_here);
2359    return true;
2360  }
2361
2362  NamedDecl *Entity = 0;
2363
2364  // Cannot refer to non-static data members
2365  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
2366    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2367      << Field << Arg->getSourceRange();
2368    S.Diag(Param->getLocation(), diag::note_template_param_here);
2369    return true;
2370  }
2371
2372  // Cannot refer to non-static member functions
2373  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2374    if (!Method->isStatic()) {
2375      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
2376        << Method << Arg->getSourceRange();
2377      S.Diag(Param->getLocation(), diag::note_template_param_here);
2378      return true;
2379    }
2380
2381  // Functions must have external linkage.
2382  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2383    if (!isExternalLinkage(Func->getLinkage())) {
2384      S.Diag(Arg->getSourceRange().getBegin(),
2385             diag::err_template_arg_function_not_extern)
2386        << Func << Arg->getSourceRange();
2387      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2388        << true;
2389      return true;
2390    }
2391
2392    // Okay: we've named a function with external linkage.
2393    Entity = Func;
2394
2395    // If the template parameter has pointer type, the function decays.
2396    if (ParamType->isPointerType() && !AddressTaken)
2397      ArgType = S.Context.getPointerType(Func->getType());
2398    else if (AddressTaken && ParamType->isReferenceType()) {
2399      // If we originally had an address-of operator, but the
2400      // parameter has reference type, complain and (if things look
2401      // like they will work) drop the address-of operator.
2402      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
2403                                            ParamType.getNonReferenceType())) {
2404        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2405          << ParamType;
2406        S.Diag(Param->getLocation(), diag::note_template_param_here);
2407        return true;
2408      }
2409
2410      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2411        << ParamType
2412        << FixItHint::CreateRemoval(AddrOpLoc);
2413      S.Diag(Param->getLocation(), diag::note_template_param_here);
2414
2415      ArgType = Func->getType();
2416    }
2417  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2418    if (!isExternalLinkage(Var->getLinkage())) {
2419      S.Diag(Arg->getSourceRange().getBegin(),
2420             diag::err_template_arg_object_not_extern)
2421        << Var << Arg->getSourceRange();
2422      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2423        << true;
2424      return true;
2425    }
2426
2427    // A value of reference type is not an object.
2428    if (Var->getType()->isReferenceType()) {
2429      S.Diag(Arg->getSourceRange().getBegin(),
2430             diag::err_template_arg_reference_var)
2431        << Var->getType() << Arg->getSourceRange();
2432      S.Diag(Param->getLocation(), diag::note_template_param_here);
2433      return true;
2434    }
2435
2436    // Okay: we've named an object with external linkage
2437    Entity = Var;
2438
2439    // If the template parameter has pointer type, we must have taken
2440    // the address of this object.
2441    if (ParamType->isReferenceType()) {
2442      if (AddressTaken) {
2443        // If we originally had an address-of operator, but the
2444        // parameter has reference type, complain and (if things look
2445        // like they will work) drop the address-of operator.
2446        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
2447                                            ParamType.getNonReferenceType())) {
2448          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2449            << ParamType;
2450          S.Diag(Param->getLocation(), diag::note_template_param_here);
2451          return true;
2452        }
2453
2454        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2455          << ParamType
2456          << FixItHint::CreateRemoval(AddrOpLoc);
2457        S.Diag(Param->getLocation(), diag::note_template_param_here);
2458
2459        ArgType = Var->getType();
2460      }
2461    } else if (!AddressTaken && ParamType->isPointerType()) {
2462      if (Var->getType()->isArrayType()) {
2463        // Array-to-pointer decay.
2464        ArgType = S.Context.getArrayDecayedType(Var->getType());
2465      } else {
2466        // If the template parameter has pointer type but the address of
2467        // this object was not taken, complain and (possibly) recover by
2468        // taking the address of the entity.
2469        ArgType = S.Context.getPointerType(Var->getType());
2470        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2471          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2472            << ParamType;
2473          S.Diag(Param->getLocation(), diag::note_template_param_here);
2474          return true;
2475        }
2476
2477        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2478          << ParamType
2479          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
2480
2481        S.Diag(Param->getLocation(), diag::note_template_param_here);
2482      }
2483    }
2484  } else {
2485    // We found something else, but we don't know specifically what it is.
2486    S.Diag(Arg->getSourceRange().getBegin(),
2487           diag::err_template_arg_not_object_or_func)
2488      << Arg->getSourceRange();
2489    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
2490    return true;
2491  }
2492
2493  if (ParamType->isPointerType() &&
2494      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
2495      S.IsQualificationConversion(ArgType, ParamType)) {
2496    // For pointer-to-object types, qualification conversions are
2497    // permitted.
2498  } else {
2499    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
2500      if (!ParamRef->getPointeeType()->isFunctionType()) {
2501        // C++ [temp.arg.nontype]p5b3:
2502        //   For a non-type template-parameter of type reference to
2503        //   object, no conversions apply. The type referred to by the
2504        //   reference may be more cv-qualified than the (otherwise
2505        //   identical) type of the template- argument. The
2506        //   template-parameter is bound directly to the
2507        //   template-argument, which shall be an lvalue.
2508
2509        // FIXME: Other qualifiers?
2510        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
2511        unsigned ArgQuals = ArgType.getCVRQualifiers();
2512
2513        if ((ParamQuals | ArgQuals) != ParamQuals) {
2514          S.Diag(Arg->getSourceRange().getBegin(),
2515                 diag::err_template_arg_ref_bind_ignores_quals)
2516            << ParamType << Arg->getType()
2517            << Arg->getSourceRange();
2518          S.Diag(Param->getLocation(), diag::note_template_param_here);
2519          return true;
2520        }
2521      }
2522    }
2523
2524    // At this point, the template argument refers to an object or
2525    // function with external linkage. We now need to check whether the
2526    // argument and parameter types are compatible.
2527    if (!S.Context.hasSameUnqualifiedType(ArgType,
2528                                          ParamType.getNonReferenceType())) {
2529      // We can't perform this conversion or binding.
2530      if (ParamType->isReferenceType())
2531        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
2532          << ParamType << Arg->getType() << Arg->getSourceRange();
2533      else
2534        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
2535          << Arg->getType() << ParamType << Arg->getSourceRange();
2536      S.Diag(Param->getLocation(), diag::note_template_param_here);
2537      return true;
2538    }
2539  }
2540
2541  // Create the template argument.
2542  Converted = TemplateArgument(Entity->getCanonicalDecl());
2543  return false;
2544}
2545
2546/// \brief Checks whether the given template argument is a pointer to
2547/// member constant according to C++ [temp.arg.nontype]p1.
2548bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2549                                                TemplateArgument &Converted) {
2550  bool Invalid = false;
2551
2552  // See through any implicit casts we added to fix the type.
2553  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2554    Arg = Cast->getSubExpr();
2555
2556  // C++ [temp.arg.nontype]p1:
2557  //
2558  //   A template-argument for a non-type, non-template
2559  //   template-parameter shall be one of: [...]
2560  //
2561  //     -- a pointer to member expressed as described in 5.3.1.
2562  DeclRefExpr *DRE = 0;
2563
2564  // Ignore (and complain about) any excess parentheses.
2565  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2566    if (!Invalid) {
2567      Diag(Arg->getSourceRange().getBegin(),
2568           diag::err_template_arg_extra_parens)
2569        << Arg->getSourceRange();
2570      Invalid = true;
2571    }
2572
2573    Arg = Parens->getSubExpr();
2574  }
2575
2576  // A pointer-to-member constant written &Class::member.
2577  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2578    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2579      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2580      if (DRE && !DRE->getQualifier())
2581        DRE = 0;
2582    }
2583  }
2584  // A constant of pointer-to-member type.
2585  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2586    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2587      if (VD->getType()->isMemberPointerType()) {
2588        if (isa<NonTypeTemplateParmDecl>(VD) ||
2589            (isa<VarDecl>(VD) &&
2590             Context.getCanonicalType(VD->getType()).isConstQualified())) {
2591          if (Arg->isTypeDependent() || Arg->isValueDependent())
2592            Converted = TemplateArgument(Arg->Retain());
2593          else
2594            Converted = TemplateArgument(VD->getCanonicalDecl());
2595          return Invalid;
2596        }
2597      }
2598    }
2599
2600    DRE = 0;
2601  }
2602
2603  if (!DRE)
2604    return Diag(Arg->getSourceRange().getBegin(),
2605                diag::err_template_arg_not_pointer_to_member_form)
2606      << Arg->getSourceRange();
2607
2608  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2609    assert((isa<FieldDecl>(DRE->getDecl()) ||
2610            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2611           "Only non-static member pointers can make it here");
2612
2613    // Okay: this is the address of a non-static member, and therefore
2614    // a member pointer constant.
2615    if (Arg->isTypeDependent() || Arg->isValueDependent())
2616      Converted = TemplateArgument(Arg->Retain());
2617    else
2618      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
2619    return Invalid;
2620  }
2621
2622  // We found something else, but we don't know specifically what it is.
2623  Diag(Arg->getSourceRange().getBegin(),
2624       diag::err_template_arg_not_pointer_to_member_form)
2625      << Arg->getSourceRange();
2626  Diag(DRE->getDecl()->getLocation(),
2627       diag::note_template_arg_refers_here);
2628  return true;
2629}
2630
2631/// \brief Check a template argument against its corresponding
2632/// non-type template parameter.
2633///
2634/// This routine implements the semantics of C++ [temp.arg.nontype].
2635/// It returns true if an error occurred, and false otherwise. \p
2636/// InstantiatedParamType is the type of the non-type template
2637/// parameter after it has been instantiated.
2638///
2639/// If no error was detected, Converted receives the converted template argument.
2640bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
2641                                 QualType InstantiatedParamType, Expr *&Arg,
2642                                 TemplateArgument &Converted,
2643                                 CheckTemplateArgumentKind CTAK) {
2644  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
2645
2646  // If either the parameter has a dependent type or the argument is
2647  // type-dependent, there's nothing we can check now.
2648  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
2649    // FIXME: Produce a cloned, canonical expression?
2650    Converted = TemplateArgument(Arg);
2651    return false;
2652  }
2653
2654  // C++ [temp.arg.nontype]p5:
2655  //   The following conversions are performed on each expression used
2656  //   as a non-type template-argument. If a non-type
2657  //   template-argument cannot be converted to the type of the
2658  //   corresponding template-parameter then the program is
2659  //   ill-formed.
2660  //
2661  //     -- for a non-type template-parameter of integral or
2662  //        enumeration type, integral promotions (4.5) and integral
2663  //        conversions (4.7) are applied.
2664  QualType ParamType = InstantiatedParamType;
2665  QualType ArgType = Arg->getType();
2666  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
2667    // C++ [temp.arg.nontype]p1:
2668    //   A template-argument for a non-type, non-template
2669    //   template-parameter shall be one of:
2670    //
2671    //     -- an integral constant-expression of integral or enumeration
2672    //        type; or
2673    //     -- the name of a non-type template-parameter; or
2674    SourceLocation NonConstantLoc;
2675    llvm::APSInt Value;
2676    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
2677      Diag(Arg->getSourceRange().getBegin(),
2678           diag::err_template_arg_not_integral_or_enumeral)
2679        << ArgType << Arg->getSourceRange();
2680      Diag(Param->getLocation(), diag::note_template_param_here);
2681      return true;
2682    } else if (!Arg->isValueDependent() &&
2683               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
2684      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
2685        << ArgType << Arg->getSourceRange();
2686      return true;
2687    }
2688
2689    // From here on out, all we care about are the unqualified forms
2690    // of the parameter and argument types.
2691    ParamType = ParamType.getUnqualifiedType();
2692    ArgType = ArgType.getUnqualifiedType();
2693
2694    // Try to convert the argument to the parameter's type.
2695    if (Context.hasSameType(ParamType, ArgType)) {
2696      // Okay: no conversion necessary
2697    } else if (CTAK == CTAK_Deduced) {
2698      // C++ [temp.deduct.type]p17:
2699      //   If, in the declaration of a function template with a non-type
2700      //   template-parameter, the non-type template- parameter is used
2701      //   in an expression in the function parameter-list and, if the
2702      //   corresponding template-argument is deduced, the
2703      //   template-argument type shall match the type of the
2704      //   template-parameter exactly, except that a template-argument
2705      //   deduced from an array bound may be of any integral type.
2706      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
2707        << ArgType << ParamType;
2708      Diag(Param->getLocation(), diag::note_template_param_here);
2709      return true;
2710    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
2711               !ParamType->isEnumeralType()) {
2712      // This is an integral promotion or conversion.
2713      ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast);
2714    } else {
2715      // We can't perform this conversion.
2716      Diag(Arg->getSourceRange().getBegin(),
2717           diag::err_template_arg_not_convertible)
2718        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2719      Diag(Param->getLocation(), diag::note_template_param_here);
2720      return true;
2721    }
2722
2723    QualType IntegerType = Context.getCanonicalType(ParamType);
2724    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
2725      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
2726
2727    if (!Arg->isValueDependent()) {
2728      llvm::APSInt OldValue = Value;
2729
2730      // Coerce the template argument's value to the value it will have
2731      // based on the template parameter's type.
2732      unsigned AllowedBits = Context.getTypeSize(IntegerType);
2733      if (Value.getBitWidth() != AllowedBits)
2734        Value.extOrTrunc(AllowedBits);
2735      Value.setIsSigned(IntegerType->isSignedIntegerType());
2736
2737      // Complain if an unsigned parameter received a negative value.
2738      if (IntegerType->isUnsignedIntegerType()
2739          && (OldValue.isSigned() && OldValue.isNegative())) {
2740        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
2741          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2742          << Arg->getSourceRange();
2743        Diag(Param->getLocation(), diag::note_template_param_here);
2744      }
2745
2746      // Complain if we overflowed the template parameter's type.
2747      unsigned RequiredBits;
2748      if (IntegerType->isUnsignedIntegerType())
2749        RequiredBits = OldValue.getActiveBits();
2750      else if (OldValue.isUnsigned())
2751        RequiredBits = OldValue.getActiveBits() + 1;
2752      else
2753        RequiredBits = OldValue.getMinSignedBits();
2754      if (RequiredBits > AllowedBits) {
2755        Diag(Arg->getSourceRange().getBegin(),
2756             diag::warn_template_arg_too_large)
2757          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2758          << Arg->getSourceRange();
2759        Diag(Param->getLocation(), diag::note_template_param_here);
2760      }
2761    }
2762
2763    // Add the value of this argument to the list of converted
2764    // arguments. We use the bitwidth and signedness of the template
2765    // parameter.
2766    if (Arg->isValueDependent()) {
2767      // The argument is value-dependent. Create a new
2768      // TemplateArgument with the converted expression.
2769      Converted = TemplateArgument(Arg);
2770      return false;
2771    }
2772
2773    Converted = TemplateArgument(Value,
2774                                 ParamType->isEnumeralType() ? ParamType
2775                                                             : IntegerType);
2776    return false;
2777  }
2778
2779  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
2780
2781  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
2782  // from a template argument of type std::nullptr_t to a non-type
2783  // template parameter of type pointer to object, pointer to
2784  // function, or pointer-to-member, respectively.
2785  if (ArgType->isNullPtrType() &&
2786      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
2787    Converted = TemplateArgument((NamedDecl *)0);
2788    return false;
2789  }
2790
2791  // Handle pointer-to-function, reference-to-function, and
2792  // pointer-to-member-function all in (roughly) the same way.
2793  if (// -- For a non-type template-parameter of type pointer to
2794      //    function, only the function-to-pointer conversion (4.3) is
2795      //    applied. If the template-argument represents a set of
2796      //    overloaded functions (or a pointer to such), the matching
2797      //    function is selected from the set (13.4).
2798      (ParamType->isPointerType() &&
2799       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
2800      // -- For a non-type template-parameter of type reference to
2801      //    function, no conversions apply. If the template-argument
2802      //    represents a set of overloaded functions, the matching
2803      //    function is selected from the set (13.4).
2804      (ParamType->isReferenceType() &&
2805       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
2806      // -- For a non-type template-parameter of type pointer to
2807      //    member function, no conversions apply. If the
2808      //    template-argument represents a set of overloaded member
2809      //    functions, the matching member function is selected from
2810      //    the set (13.4).
2811      (ParamType->isMemberPointerType() &&
2812       ParamType->getAs<MemberPointerType>()->getPointeeType()
2813         ->isFunctionType())) {
2814
2815    if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
2816                                                              true,
2817                                                              FoundResult)) {
2818      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2819        return true;
2820
2821      Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2822      ArgType = Arg->getType();
2823    }
2824
2825    if (!ParamType->isMemberPointerType())
2826      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2827                                                            ParamType,
2828                                                            Arg, Converted);
2829
2830    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) {
2831      ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp,
2832                        Arg->isLvalue(Context) == Expr::LV_Valid);
2833    } else if (!Context.hasSameUnqualifiedType(ArgType,
2834                                           ParamType.getNonReferenceType())) {
2835      // We can't perform this conversion.
2836      Diag(Arg->getSourceRange().getBegin(),
2837           diag::err_template_arg_not_convertible)
2838        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2839      Diag(Param->getLocation(), diag::note_template_param_here);
2840      return true;
2841    }
2842
2843    return CheckTemplateArgumentPointerToMember(Arg, Converted);
2844  }
2845
2846  if (ParamType->isPointerType()) {
2847    //   -- for a non-type template-parameter of type pointer to
2848    //      object, qualification conversions (4.4) and the
2849    //      array-to-pointer conversion (4.2) are applied.
2850    // C++0x also allows a value of std::nullptr_t.
2851    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
2852           "Only object pointers allowed here");
2853
2854    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2855                                                          ParamType,
2856                                                          Arg, Converted);
2857  }
2858
2859  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2860    //   -- For a non-type template-parameter of type reference to
2861    //      object, no conversions apply. The type referred to by the
2862    //      reference may be more cv-qualified than the (otherwise
2863    //      identical) type of the template-argument. The
2864    //      template-parameter is bound directly to the
2865    //      template-argument, which must be an lvalue.
2866    assert(ParamRefType->getPointeeType()->isObjectType() &&
2867           "Only object references allowed here");
2868
2869    if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
2870                                               ParamRefType->getPointeeType(),
2871                                                              true,
2872                                                              FoundResult)) {
2873      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2874        return true;
2875
2876      Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2877      ArgType = Arg->getType();
2878    }
2879
2880    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2881                                                          ParamType,
2882                                                          Arg, Converted);
2883  }
2884
2885  //     -- For a non-type template-parameter of type pointer to data
2886  //        member, qualification conversions (4.4) are applied.
2887  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
2888
2889  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
2890    // Types match exactly: nothing more to do here.
2891  } else if (IsQualificationConversion(ArgType, ParamType)) {
2892    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp,
2893                      Arg->isLvalue(Context) == Expr::LV_Valid);
2894  } else {
2895    // We can't perform this conversion.
2896    Diag(Arg->getSourceRange().getBegin(),
2897         diag::err_template_arg_not_convertible)
2898      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2899    Diag(Param->getLocation(), diag::note_template_param_here);
2900    return true;
2901  }
2902
2903  return CheckTemplateArgumentPointerToMember(Arg, Converted);
2904}
2905
2906/// \brief Check a template argument against its corresponding
2907/// template template parameter.
2908///
2909/// This routine implements the semantics of C++ [temp.arg.template].
2910/// It returns true if an error occurred, and false otherwise.
2911bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
2912                                 const TemplateArgumentLoc &Arg) {
2913  TemplateName Name = Arg.getArgument().getAsTemplate();
2914  TemplateDecl *Template = Name.getAsTemplateDecl();
2915  if (!Template) {
2916    // Any dependent template name is fine.
2917    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
2918    return false;
2919  }
2920
2921  // C++ [temp.arg.template]p1:
2922  //   A template-argument for a template template-parameter shall be
2923  //   the name of a class template, expressed as id-expression. Only
2924  //   primary class templates are considered when matching the
2925  //   template template argument with the corresponding parameter;
2926  //   partial specializations are not considered even if their
2927  //   parameter lists match that of the template template parameter.
2928  //
2929  // Note that we also allow template template parameters here, which
2930  // will happen when we are dealing with, e.g., class template
2931  // partial specializations.
2932  if (!isa<ClassTemplateDecl>(Template) &&
2933      !isa<TemplateTemplateParmDecl>(Template)) {
2934    assert(isa<FunctionTemplateDecl>(Template) &&
2935           "Only function templates are possible here");
2936    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
2937    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
2938      << Template;
2939  }
2940
2941  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
2942                                         Param->getTemplateParameters(),
2943                                         true,
2944                                         TPL_TemplateTemplateArgumentMatch,
2945                                         Arg.getLocation());
2946}
2947
2948/// \brief Given a non-type template argument that refers to a
2949/// declaration and the type of its corresponding non-type template
2950/// parameter, produce an expression that properly refers to that
2951/// declaration.
2952Sema::OwningExprResult
2953Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
2954                                              QualType ParamType,
2955                                              SourceLocation Loc) {
2956  assert(Arg.getKind() == TemplateArgument::Declaration &&
2957         "Only declaration template arguments permitted here");
2958  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
2959
2960  if (VD->getDeclContext()->isRecord() &&
2961      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
2962    // If the value is a class member, we might have a pointer-to-member.
2963    // Determine whether the non-type template template parameter is of
2964    // pointer-to-member type. If so, we need to build an appropriate
2965    // expression for a pointer-to-member, since a "normal" DeclRefExpr
2966    // would refer to the member itself.
2967    if (ParamType->isMemberPointerType()) {
2968      QualType ClassType
2969        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
2970      NestedNameSpecifier *Qualifier
2971        = NestedNameSpecifier::Create(Context, 0, false, ClassType.getTypePtr());
2972      CXXScopeSpec SS;
2973      SS.setScopeRep(Qualifier);
2974      OwningExprResult RefExpr = BuildDeclRefExpr(VD,
2975                                           VD->getType().getNonReferenceType(),
2976                                                  Loc,
2977                                                  &SS);
2978      if (RefExpr.isInvalid())
2979        return ExprError();
2980
2981      RefExpr = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr));
2982      assert(!RefExpr.isInvalid() &&
2983             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
2984                                 ParamType));
2985      return move(RefExpr);
2986    }
2987  }
2988
2989  QualType T = VD->getType().getNonReferenceType();
2990  if (ParamType->isPointerType()) {
2991    // When the non-type template parameter is a pointer, take the
2992    // address of the declaration.
2993    OwningExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc);
2994    if (RefExpr.isInvalid())
2995      return ExprError();
2996
2997    if (T->isFunctionType() || T->isArrayType()) {
2998      // Decay functions and arrays.
2999      Expr *RefE = (Expr *)RefExpr.get();
3000      DefaultFunctionArrayConversion(RefE);
3001      if (RefE != RefExpr.get()) {
3002        RefExpr.release();
3003        RefExpr = Owned(RefE);
3004      }
3005
3006      return move(RefExpr);
3007    }
3008
3009    // Take the address of everything else
3010    return CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr));
3011  }
3012
3013  // If the non-type template parameter has reference type, qualify the
3014  // resulting declaration reference with the extra qualifiers on the
3015  // type that the reference refers to.
3016  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>())
3017    T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers());
3018
3019  return BuildDeclRefExpr(VD, T, Loc);
3020}
3021
3022/// \brief Construct a new expression that refers to the given
3023/// integral template argument with the given source-location
3024/// information.
3025///
3026/// This routine takes care of the mapping from an integral template
3027/// argument (which may have any integral type) to the appropriate
3028/// literal value.
3029Sema::OwningExprResult
3030Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3031                                                  SourceLocation Loc) {
3032  assert(Arg.getKind() == TemplateArgument::Integral &&
3033         "Operation is only value for integral template arguments");
3034  QualType T = Arg.getIntegralType();
3035  if (T->isCharType() || T->isWideCharType())
3036    return Owned(new (Context) CharacterLiteral(
3037                                             Arg.getAsIntegral()->getZExtValue(),
3038                                             T->isWideCharType(),
3039                                             T,
3040                                             Loc));
3041  if (T->isBooleanType())
3042    return Owned(new (Context) CXXBoolLiteralExpr(
3043                                            Arg.getAsIntegral()->getBoolValue(),
3044                                            T,
3045                                            Loc));
3046
3047  return Owned(new (Context) IntegerLiteral(*Arg.getAsIntegral(), T, Loc));
3048}
3049
3050
3051/// \brief Determine whether the given template parameter lists are
3052/// equivalent.
3053///
3054/// \param New  The new template parameter list, typically written in the
3055/// source code as part of a new template declaration.
3056///
3057/// \param Old  The old template parameter list, typically found via
3058/// name lookup of the template declared with this template parameter
3059/// list.
3060///
3061/// \param Complain  If true, this routine will produce a diagnostic if
3062/// the template parameter lists are not equivalent.
3063///
3064/// \param Kind describes how we are to match the template parameter lists.
3065///
3066/// \param TemplateArgLoc If this source location is valid, then we
3067/// are actually checking the template parameter list of a template
3068/// argument (New) against the template parameter list of its
3069/// corresponding template template parameter (Old). We produce
3070/// slightly different diagnostics in this scenario.
3071///
3072/// \returns True if the template parameter lists are equal, false
3073/// otherwise.
3074bool
3075Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3076                                     TemplateParameterList *Old,
3077                                     bool Complain,
3078                                     TemplateParameterListEqualKind Kind,
3079                                     SourceLocation TemplateArgLoc) {
3080  if (Old->size() != New->size()) {
3081    if (Complain) {
3082      unsigned NextDiag = diag::err_template_param_list_different_arity;
3083      if (TemplateArgLoc.isValid()) {
3084        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3085        NextDiag = diag::note_template_param_list_different_arity;
3086      }
3087      Diag(New->getTemplateLoc(), NextDiag)
3088          << (New->size() > Old->size())
3089          << (Kind != TPL_TemplateMatch)
3090          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3091      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3092        << (Kind != TPL_TemplateMatch)
3093        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3094    }
3095
3096    return false;
3097  }
3098
3099  for (TemplateParameterList::iterator OldParm = Old->begin(),
3100         OldParmEnd = Old->end(), NewParm = New->begin();
3101       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
3102    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
3103      if (Complain) {
3104        unsigned NextDiag = diag::err_template_param_different_kind;
3105        if (TemplateArgLoc.isValid()) {
3106          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3107          NextDiag = diag::note_template_param_different_kind;
3108        }
3109        Diag((*NewParm)->getLocation(), NextDiag)
3110          << (Kind != TPL_TemplateMatch);
3111        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
3112          << (Kind != TPL_TemplateMatch);
3113      }
3114      return false;
3115    }
3116
3117    if (isa<TemplateTypeParmDecl>(*OldParm)) {
3118      // Okay; all template type parameters are equivalent (since we
3119      // know we're at the same index).
3120    } else if (NonTypeTemplateParmDecl *OldNTTP
3121                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
3122      // The types of non-type template parameters must agree.
3123      NonTypeTemplateParmDecl *NewNTTP
3124        = cast<NonTypeTemplateParmDecl>(*NewParm);
3125
3126      // If we are matching a template template argument to a template
3127      // template parameter and one of the non-type template parameter types
3128      // is dependent, then we must wait until template instantiation time
3129      // to actually compare the arguments.
3130      if (Kind == TPL_TemplateTemplateArgumentMatch &&
3131          (OldNTTP->getType()->isDependentType() ||
3132           NewNTTP->getType()->isDependentType()))
3133        continue;
3134
3135      if (Context.getCanonicalType(OldNTTP->getType()) !=
3136            Context.getCanonicalType(NewNTTP->getType())) {
3137        if (Complain) {
3138          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3139          if (TemplateArgLoc.isValid()) {
3140            Diag(TemplateArgLoc,
3141                 diag::err_template_arg_template_params_mismatch);
3142            NextDiag = diag::note_template_nontype_parm_different_type;
3143          }
3144          Diag(NewNTTP->getLocation(), NextDiag)
3145            << NewNTTP->getType()
3146            << (Kind != TPL_TemplateMatch);
3147          Diag(OldNTTP->getLocation(),
3148               diag::note_template_nontype_parm_prev_declaration)
3149            << OldNTTP->getType();
3150        }
3151        return false;
3152      }
3153    } else {
3154      // The template parameter lists of template template
3155      // parameters must agree.
3156      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
3157             "Only template template parameters handled here");
3158      TemplateTemplateParmDecl *OldTTP
3159        = cast<TemplateTemplateParmDecl>(*OldParm);
3160      TemplateTemplateParmDecl *NewTTP
3161        = cast<TemplateTemplateParmDecl>(*NewParm);
3162      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3163                                          OldTTP->getTemplateParameters(),
3164                                          Complain,
3165              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
3166                                          TemplateArgLoc))
3167        return false;
3168    }
3169  }
3170
3171  return true;
3172}
3173
3174/// \brief Check whether a template can be declared within this scope.
3175///
3176/// If the template declaration is valid in this scope, returns
3177/// false. Otherwise, issues a diagnostic and returns true.
3178bool
3179Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3180  // Find the nearest enclosing declaration scope.
3181  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3182         (S->getFlags() & Scope::TemplateParamScope) != 0)
3183    S = S->getParent();
3184
3185  // C++ [temp]p2:
3186  //   A template-declaration can appear only as a namespace scope or
3187  //   class scope declaration.
3188  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3189  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3190      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3191    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3192             << TemplateParams->getSourceRange();
3193
3194  while (Ctx && isa<LinkageSpecDecl>(Ctx))
3195    Ctx = Ctx->getParent();
3196
3197  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3198    return false;
3199
3200  return Diag(TemplateParams->getTemplateLoc(),
3201              diag::err_template_outside_namespace_or_class_scope)
3202    << TemplateParams->getSourceRange();
3203}
3204
3205/// \brief Determine what kind of template specialization the given declaration
3206/// is.
3207static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3208  if (!D)
3209    return TSK_Undeclared;
3210
3211  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3212    return Record->getTemplateSpecializationKind();
3213  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3214    return Function->getTemplateSpecializationKind();
3215  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3216    return Var->getTemplateSpecializationKind();
3217
3218  return TSK_Undeclared;
3219}
3220
3221/// \brief Check whether a specialization is well-formed in the current
3222/// context.
3223///
3224/// This routine determines whether a template specialization can be declared
3225/// in the current context (C++ [temp.expl.spec]p2).
3226///
3227/// \param S the semantic analysis object for which this check is being
3228/// performed.
3229///
3230/// \param Specialized the entity being specialized or instantiated, which
3231/// may be a kind of template (class template, function template, etc.) or
3232/// a member of a class template (member function, static data member,
3233/// member class).
3234///
3235/// \param PrevDecl the previous declaration of this entity, if any.
3236///
3237/// \param Loc the location of the explicit specialization or instantiation of
3238/// this entity.
3239///
3240/// \param IsPartialSpecialization whether this is a partial specialization of
3241/// a class template.
3242///
3243/// \returns true if there was an error that we cannot recover from, false
3244/// otherwise.
3245static bool CheckTemplateSpecializationScope(Sema &S,
3246                                             NamedDecl *Specialized,
3247                                             NamedDecl *PrevDecl,
3248                                             SourceLocation Loc,
3249                                             bool IsPartialSpecialization) {
3250  // Keep these "kind" numbers in sync with the %select statements in the
3251  // various diagnostics emitted by this routine.
3252  int EntityKind = 0;
3253  bool isTemplateSpecialization = false;
3254  if (isa<ClassTemplateDecl>(Specialized)) {
3255    EntityKind = IsPartialSpecialization? 1 : 0;
3256    isTemplateSpecialization = true;
3257  } else if (isa<FunctionTemplateDecl>(Specialized)) {
3258    EntityKind = 2;
3259    isTemplateSpecialization = true;
3260  } else if (isa<CXXMethodDecl>(Specialized))
3261    EntityKind = 3;
3262  else if (isa<VarDecl>(Specialized))
3263    EntityKind = 4;
3264  else if (isa<RecordDecl>(Specialized))
3265    EntityKind = 5;
3266  else {
3267    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3268    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3269    return true;
3270  }
3271
3272  // C++ [temp.expl.spec]p2:
3273  //   An explicit specialization shall be declared in the namespace
3274  //   of which the template is a member, or, for member templates, in
3275  //   the namespace of which the enclosing class or enclosing class
3276  //   template is a member. An explicit specialization of a member
3277  //   function, member class or static data member of a class
3278  //   template shall be declared in the namespace of which the class
3279  //   template is a member. Such a declaration may also be a
3280  //   definition. If the declaration is not a definition, the
3281  //   specialization may be defined later in the name- space in which
3282  //   the explicit specialization was declared, or in a namespace
3283  //   that encloses the one in which the explicit specialization was
3284  //   declared.
3285  if (S.CurContext->getLookupContext()->isFunctionOrMethod()) {
3286    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3287      << Specialized;
3288    return true;
3289  }
3290
3291  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3292    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3293      << Specialized;
3294    return true;
3295  }
3296
3297  // C++ [temp.class.spec]p6:
3298  //   A class template partial specialization may be declared or redeclared
3299  //   in any namespace scope in which its definition may be defined (14.5.1
3300  //   and 14.5.2).
3301  bool ComplainedAboutScope = false;
3302  DeclContext *SpecializedContext
3303    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3304  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3305  if ((!PrevDecl ||
3306       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3307       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3308    // There is no prior declaration of this entity, so this
3309    // specialization must be in the same context as the template
3310    // itself.
3311    if (!DC->Equals(SpecializedContext)) {
3312      if (isa<TranslationUnitDecl>(SpecializedContext))
3313        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
3314        << EntityKind << Specialized;
3315      else if (isa<NamespaceDecl>(SpecializedContext))
3316        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope)
3317        << EntityKind << Specialized
3318        << cast<NamedDecl>(SpecializedContext);
3319
3320      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3321      ComplainedAboutScope = true;
3322    }
3323  }
3324
3325  // Make sure that this redeclaration (or definition) occurs in an enclosing
3326  // namespace.
3327  // Note that HandleDeclarator() performs this check for explicit
3328  // specializations of function templates, static data members, and member
3329  // functions, so we skip the check here for those kinds of entities.
3330  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3331  // Should we refactor that check, so that it occurs later?
3332  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3333      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3334        isa<FunctionDecl>(Specialized))) {
3335    if (isa<TranslationUnitDecl>(SpecializedContext))
3336      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3337        << EntityKind << Specialized;
3338    else if (isa<NamespaceDecl>(SpecializedContext))
3339      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3340        << EntityKind << Specialized
3341        << cast<NamedDecl>(SpecializedContext);
3342
3343    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3344  }
3345
3346  // FIXME: check for specialization-after-instantiation errors and such.
3347
3348  return false;
3349}
3350
3351/// \brief Check the non-type template arguments of a class template
3352/// partial specialization according to C++ [temp.class.spec]p9.
3353///
3354/// \param TemplateParams the template parameters of the primary class
3355/// template.
3356///
3357/// \param TemplateArg the template arguments of the class template
3358/// partial specialization.
3359///
3360/// \param MirrorsPrimaryTemplate will be set true if the class
3361/// template partial specialization arguments are identical to the
3362/// implicit template arguments of the primary template. This is not
3363/// necessarily an error (C++0x), and it is left to the caller to diagnose
3364/// this condition when it is an error.
3365///
3366/// \returns true if there was an error, false otherwise.
3367bool Sema::CheckClassTemplatePartialSpecializationArgs(
3368                                        TemplateParameterList *TemplateParams,
3369                             const TemplateArgumentListBuilder &TemplateArgs,
3370                                        bool &MirrorsPrimaryTemplate) {
3371  // FIXME: the interface to this function will have to change to
3372  // accommodate variadic templates.
3373  MirrorsPrimaryTemplate = true;
3374
3375  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
3376
3377  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3378    // Determine whether the template argument list of the partial
3379    // specialization is identical to the implicit argument list of
3380    // the primary template. The caller may need to diagnostic this as
3381    // an error per C++ [temp.class.spec]p9b3.
3382    if (MirrorsPrimaryTemplate) {
3383      if (TemplateTypeParmDecl *TTP
3384            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3385        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3386              Context.getCanonicalType(ArgList[I].getAsType()))
3387          MirrorsPrimaryTemplate = false;
3388      } else if (TemplateTemplateParmDecl *TTP
3389                   = dyn_cast<TemplateTemplateParmDecl>(
3390                                                 TemplateParams->getParam(I))) {
3391        TemplateName Name = ArgList[I].getAsTemplate();
3392        TemplateTemplateParmDecl *ArgDecl
3393          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3394        if (!ArgDecl ||
3395            ArgDecl->getIndex() != TTP->getIndex() ||
3396            ArgDecl->getDepth() != TTP->getDepth())
3397          MirrorsPrimaryTemplate = false;
3398      }
3399    }
3400
3401    NonTypeTemplateParmDecl *Param
3402      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3403    if (!Param) {
3404      continue;
3405    }
3406
3407    Expr *ArgExpr = ArgList[I].getAsExpr();
3408    if (!ArgExpr) {
3409      MirrorsPrimaryTemplate = false;
3410      continue;
3411    }
3412
3413    // C++ [temp.class.spec]p8:
3414    //   A non-type argument is non-specialized if it is the name of a
3415    //   non-type parameter. All other non-type arguments are
3416    //   specialized.
3417    //
3418    // Below, we check the two conditions that only apply to
3419    // specialized non-type arguments, so skip any non-specialized
3420    // arguments.
3421    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3422      if (NonTypeTemplateParmDecl *NTTP
3423            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3424        if (MirrorsPrimaryTemplate &&
3425            (Param->getIndex() != NTTP->getIndex() ||
3426             Param->getDepth() != NTTP->getDepth()))
3427          MirrorsPrimaryTemplate = false;
3428
3429        continue;
3430      }
3431
3432    // C++ [temp.class.spec]p9:
3433    //   Within the argument list of a class template partial
3434    //   specialization, the following restrictions apply:
3435    //     -- A partially specialized non-type argument expression
3436    //        shall not involve a template parameter of the partial
3437    //        specialization except when the argument expression is a
3438    //        simple identifier.
3439    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3440      Diag(ArgExpr->getLocStart(),
3441           diag::err_dependent_non_type_arg_in_partial_spec)
3442        << ArgExpr->getSourceRange();
3443      return true;
3444    }
3445
3446    //     -- The type of a template parameter corresponding to a
3447    //        specialized non-type argument shall not be dependent on a
3448    //        parameter of the specialization.
3449    if (Param->getType()->isDependentType()) {
3450      Diag(ArgExpr->getLocStart(),
3451           diag::err_dependent_typed_non_type_arg_in_partial_spec)
3452        << Param->getType()
3453        << ArgExpr->getSourceRange();
3454      Diag(Param->getLocation(), diag::note_template_param_here);
3455      return true;
3456    }
3457
3458    MirrorsPrimaryTemplate = false;
3459  }
3460
3461  return false;
3462}
3463
3464/// \brief Retrieve the previous declaration of the given declaration.
3465static NamedDecl *getPreviousDecl(NamedDecl *ND) {
3466  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
3467    return VD->getPreviousDeclaration();
3468  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
3469    return FD->getPreviousDeclaration();
3470  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
3471    return TD->getPreviousDeclaration();
3472  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
3473    return TD->getPreviousDeclaration();
3474  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
3475    return FTD->getPreviousDeclaration();
3476  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
3477    return CTD->getPreviousDeclaration();
3478  return 0;
3479}
3480
3481Sema::DeclResult
3482Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
3483                                       TagUseKind TUK,
3484                                       SourceLocation KWLoc,
3485                                       const CXXScopeSpec &SS,
3486                                       TemplateTy TemplateD,
3487                                       SourceLocation TemplateNameLoc,
3488                                       SourceLocation LAngleLoc,
3489                                       ASTTemplateArgsPtr TemplateArgsIn,
3490                                       SourceLocation RAngleLoc,
3491                                       AttributeList *Attr,
3492                               MultiTemplateParamsArg TemplateParameterLists) {
3493  assert(TUK != TUK_Reference && "References are not specializations");
3494
3495  // Find the class template we're specializing
3496  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3497  ClassTemplateDecl *ClassTemplate
3498    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
3499
3500  if (!ClassTemplate) {
3501    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
3502      << (Name.getAsTemplateDecl() &&
3503          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
3504    return true;
3505  }
3506
3507  bool isExplicitSpecialization = false;
3508  bool isPartialSpecialization = false;
3509
3510  // Check the validity of the template headers that introduce this
3511  // template.
3512  // FIXME: We probably shouldn't complain about these headers for
3513  // friend declarations.
3514  TemplateParameterList *TemplateParams
3515    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
3516                        (TemplateParameterList**)TemplateParameterLists.get(),
3517                                              TemplateParameterLists.size(),
3518                                              isExplicitSpecialization);
3519  if (TemplateParams && TemplateParams->size() > 0) {
3520    isPartialSpecialization = true;
3521
3522    // C++ [temp.class.spec]p10:
3523    //   The template parameter list of a specialization shall not
3524    //   contain default template argument values.
3525    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3526      Decl *Param = TemplateParams->getParam(I);
3527      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
3528        if (TTP->hasDefaultArgument()) {
3529          Diag(TTP->getDefaultArgumentLoc(),
3530               diag::err_default_arg_in_partial_spec);
3531          TTP->removeDefaultArgument();
3532        }
3533      } else if (NonTypeTemplateParmDecl *NTTP
3534                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3535        if (Expr *DefArg = NTTP->getDefaultArgument()) {
3536          Diag(NTTP->getDefaultArgumentLoc(),
3537               diag::err_default_arg_in_partial_spec)
3538            << DefArg->getSourceRange();
3539          NTTP->setDefaultArgument(0);
3540          DefArg->Destroy(Context);
3541        }
3542      } else {
3543        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
3544        if (TTP->hasDefaultArgument()) {
3545          Diag(TTP->getDefaultArgument().getLocation(),
3546               diag::err_default_arg_in_partial_spec)
3547            << TTP->getDefaultArgument().getSourceRange();
3548          TTP->setDefaultArgument(TemplateArgumentLoc());
3549        }
3550      }
3551    }
3552  } else if (TemplateParams) {
3553    if (TUK == TUK_Friend)
3554      Diag(KWLoc, diag::err_template_spec_friend)
3555        << FixItHint::CreateRemoval(
3556                                SourceRange(TemplateParams->getTemplateLoc(),
3557                                            TemplateParams->getRAngleLoc()))
3558        << SourceRange(LAngleLoc, RAngleLoc);
3559    else
3560      isExplicitSpecialization = true;
3561  } else if (TUK != TUK_Friend) {
3562    Diag(KWLoc, diag::err_template_spec_needs_header)
3563      << FixItHint::CreateInsertion(KWLoc, "template<> ");
3564    isExplicitSpecialization = true;
3565  }
3566
3567  // Check that the specialization uses the same tag kind as the
3568  // original template.
3569  TagDecl::TagKind Kind;
3570  switch (TagSpec) {
3571  default: assert(0 && "Unknown tag type!");
3572  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3573  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3574  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3575  }
3576  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3577                                    Kind, KWLoc,
3578                                    *ClassTemplate->getIdentifier())) {
3579    Diag(KWLoc, diag::err_use_with_wrong_tag)
3580      << ClassTemplate
3581      << FixItHint::CreateReplacement(KWLoc,
3582                            ClassTemplate->getTemplatedDecl()->getKindName());
3583    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3584         diag::note_previous_use);
3585    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3586  }
3587
3588  // Translate the parser's template argument list in our AST format.
3589  TemplateArgumentListInfo TemplateArgs;
3590  TemplateArgs.setLAngleLoc(LAngleLoc);
3591  TemplateArgs.setRAngleLoc(RAngleLoc);
3592  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3593
3594  // Check that the template argument list is well-formed for this
3595  // template.
3596  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3597                                        TemplateArgs.size());
3598  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
3599                                TemplateArgs, false, Converted))
3600    return true;
3601
3602  assert((Converted.structuredSize() ==
3603            ClassTemplate->getTemplateParameters()->size()) &&
3604         "Converted template argument list is too short!");
3605
3606  // Find the class template (partial) specialization declaration that
3607  // corresponds to these arguments.
3608  llvm::FoldingSetNodeID ID;
3609  if (isPartialSpecialization) {
3610    bool MirrorsPrimaryTemplate;
3611    if (CheckClassTemplatePartialSpecializationArgs(
3612                                         ClassTemplate->getTemplateParameters(),
3613                                         Converted, MirrorsPrimaryTemplate))
3614      return true;
3615
3616    if (MirrorsPrimaryTemplate) {
3617      // C++ [temp.class.spec]p9b3:
3618      //
3619      //   -- The argument list of the specialization shall not be identical
3620      //      to the implicit argument list of the primary template.
3621      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3622        << (TUK == TUK_Definition)
3623        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
3624      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
3625                                ClassTemplate->getIdentifier(),
3626                                TemplateNameLoc,
3627                                Attr,
3628                                TemplateParams,
3629                                AS_none);
3630    }
3631
3632    // FIXME: Diagnose friend partial specializations
3633
3634    if (!Name.isDependent() &&
3635        !TemplateSpecializationType::anyDependentTemplateArguments(
3636                                             TemplateArgs.getArgumentArray(),
3637                                                         TemplateArgs.size())) {
3638      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
3639        << ClassTemplate->getDeclName();
3640      isPartialSpecialization = false;
3641    } else {
3642      // FIXME: Template parameter list matters, too
3643      ClassTemplatePartialSpecializationDecl::Profile(ID,
3644                                                  Converted.getFlatArguments(),
3645                                                      Converted.flatSize(),
3646                                                      Context);
3647    }
3648  }
3649
3650  if (!isPartialSpecialization)
3651    ClassTemplateSpecializationDecl::Profile(ID,
3652                                             Converted.getFlatArguments(),
3653                                             Converted.flatSize(),
3654                                             Context);
3655  void *InsertPos = 0;
3656  ClassTemplateSpecializationDecl *PrevDecl = 0;
3657
3658  if (isPartialSpecialization)
3659    PrevDecl
3660      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
3661                                                                    InsertPos);
3662  else
3663    PrevDecl
3664      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3665
3666  ClassTemplateSpecializationDecl *Specialization = 0;
3667
3668  // Check whether we can declare a class template specialization in
3669  // the current scope.
3670  if (TUK != TUK_Friend &&
3671      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
3672                                       TemplateNameLoc,
3673                                       isPartialSpecialization))
3674    return true;
3675
3676  // The canonical type
3677  QualType CanonType;
3678  if (PrevDecl &&
3679      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
3680               TUK == TUK_Friend)) {
3681    // Since the only prior class template specialization with these
3682    // arguments was referenced but not declared, or we're only
3683    // referencing this specialization as a friend, reuse that
3684    // declaration node as our own, updating its source location to
3685    // reflect our new declaration.
3686    Specialization = PrevDecl;
3687    Specialization->setLocation(TemplateNameLoc);
3688    PrevDecl = 0;
3689    CanonType = Context.getTypeDeclType(Specialization);
3690  } else if (isPartialSpecialization) {
3691    // Build the canonical type that describes the converted template
3692    // arguments of the class template partial specialization.
3693    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
3694    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
3695                                                  Converted.getFlatArguments(),
3696                                                  Converted.flatSize());
3697
3698    // Create a new class template partial specialization declaration node.
3699    ClassTemplatePartialSpecializationDecl *PrevPartial
3700      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
3701    ClassTemplatePartialSpecializationDecl *Partial
3702      = ClassTemplatePartialSpecializationDecl::Create(Context,
3703                                             ClassTemplate->getDeclContext(),
3704                                                       TemplateNameLoc,
3705                                                       TemplateParams,
3706                                                       ClassTemplate,
3707                                                       Converted,
3708                                                       TemplateArgs,
3709                                                       CanonType,
3710                                                       PrevPartial);
3711    SetNestedNameSpecifier(Partial, SS);
3712
3713    if (PrevPartial) {
3714      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
3715      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
3716    } else {
3717      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
3718    }
3719    Specialization = Partial;
3720
3721    // If we are providing an explicit specialization of a member class
3722    // template specialization, make a note of that.
3723    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3724      PrevPartial->setMemberSpecialization();
3725
3726    // Check that all of the template parameters of the class template
3727    // partial specialization are deducible from the template
3728    // arguments. If not, this class template partial specialization
3729    // will never be used.
3730    llvm::SmallVector<bool, 8> DeducibleParams;
3731    DeducibleParams.resize(TemplateParams->size());
3732    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3733                               TemplateParams->getDepth(),
3734                               DeducibleParams);
3735    unsigned NumNonDeducible = 0;
3736    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
3737      if (!DeducibleParams[I])
3738        ++NumNonDeducible;
3739
3740    if (NumNonDeducible) {
3741      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
3742        << (NumNonDeducible > 1)
3743        << SourceRange(TemplateNameLoc, RAngleLoc);
3744      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3745        if (!DeducibleParams[I]) {
3746          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3747          if (Param->getDeclName())
3748            Diag(Param->getLocation(),
3749                 diag::note_partial_spec_unused_parameter)
3750              << Param->getDeclName();
3751          else
3752            Diag(Param->getLocation(),
3753                 diag::note_partial_spec_unused_parameter)
3754              << std::string("<anonymous>");
3755        }
3756      }
3757    }
3758  } else {
3759    // Create a new class template specialization declaration node for
3760    // this explicit specialization or friend declaration.
3761    Specialization
3762      = ClassTemplateSpecializationDecl::Create(Context,
3763                                             ClassTemplate->getDeclContext(),
3764                                                TemplateNameLoc,
3765                                                ClassTemplate,
3766                                                Converted,
3767                                                PrevDecl);
3768    SetNestedNameSpecifier(Specialization, SS);
3769
3770    if (PrevDecl) {
3771      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
3772      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
3773    } else {
3774      ClassTemplate->getSpecializations().InsertNode(Specialization,
3775                                                     InsertPos);
3776    }
3777
3778    CanonType = Context.getTypeDeclType(Specialization);
3779  }
3780
3781  // C++ [temp.expl.spec]p6:
3782  //   If a template, a member template or the member of a class template is
3783  //   explicitly specialized then that specialization shall be declared
3784  //   before the first use of that specialization that would cause an implicit
3785  //   instantiation to take place, in every translation unit in which such a
3786  //   use occurs; no diagnostic is required.
3787  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3788    bool Okay = false;
3789    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
3790      // Is there any previous explicit specialization declaration?
3791      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
3792        Okay = true;
3793        break;
3794      }
3795    }
3796
3797    if (!Okay) {
3798      SourceRange Range(TemplateNameLoc, RAngleLoc);
3799      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3800        << Context.getTypeDeclType(Specialization) << Range;
3801
3802      Diag(PrevDecl->getPointOfInstantiation(),
3803           diag::note_instantiation_required_here)
3804        << (PrevDecl->getTemplateSpecializationKind()
3805                                                != TSK_ImplicitInstantiation);
3806      return true;
3807    }
3808  }
3809
3810  // If this is not a friend, note that this is an explicit specialization.
3811  if (TUK != TUK_Friend)
3812    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3813
3814  // Check that this isn't a redefinition of this specialization.
3815  if (TUK == TUK_Definition) {
3816    if (RecordDecl *Def = Specialization->getDefinition()) {
3817      SourceRange Range(TemplateNameLoc, RAngleLoc);
3818      Diag(TemplateNameLoc, diag::err_redefinition)
3819        << Context.getTypeDeclType(Specialization) << Range;
3820      Diag(Def->getLocation(), diag::note_previous_definition);
3821      Specialization->setInvalidDecl();
3822      return true;
3823    }
3824  }
3825
3826  // Build the fully-sugared type for this class template
3827  // specialization as the user wrote in the specialization
3828  // itself. This means that we'll pretty-print the type retrieved
3829  // from the specialization's declaration the way that the user
3830  // actually wrote the specialization, rather than formatting the
3831  // name based on the "canonical" representation used to store the
3832  // template arguments in the specialization.
3833  TypeSourceInfo *WrittenTy
3834    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
3835                                                TemplateArgs, CanonType);
3836  if (TUK != TUK_Friend)
3837    Specialization->setTypeAsWritten(WrittenTy);
3838  TemplateArgsIn.release();
3839
3840  // C++ [temp.expl.spec]p9:
3841  //   A template explicit specialization is in the scope of the
3842  //   namespace in which the template was defined.
3843  //
3844  // We actually implement this paragraph where we set the semantic
3845  // context (in the creation of the ClassTemplateSpecializationDecl),
3846  // but we also maintain the lexical context where the actual
3847  // definition occurs.
3848  Specialization->setLexicalDeclContext(CurContext);
3849
3850  // We may be starting the definition of this specialization.
3851  if (TUK == TUK_Definition)
3852    Specialization->startDefinition();
3853
3854  if (TUK == TUK_Friend) {
3855    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
3856                                            TemplateNameLoc,
3857                                            WrittenTy,
3858                                            /*FIXME:*/KWLoc);
3859    Friend->setAccess(AS_public);
3860    CurContext->addDecl(Friend);
3861  } else {
3862    // Add the specialization into its lexical context, so that it can
3863    // be seen when iterating through the list of declarations in that
3864    // context. However, specializations are not found by name lookup.
3865    CurContext->addDecl(Specialization);
3866  }
3867  return DeclPtrTy::make(Specialization);
3868}
3869
3870Sema::DeclPtrTy
3871Sema::ActOnTemplateDeclarator(Scope *S,
3872                              MultiTemplateParamsArg TemplateParameterLists,
3873                              Declarator &D) {
3874  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
3875}
3876
3877Sema::DeclPtrTy
3878Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
3879                               MultiTemplateParamsArg TemplateParameterLists,
3880                                      Declarator &D) {
3881  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3882  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3883         "Not a function declarator!");
3884  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3885
3886  if (FTI.hasPrototype) {
3887    // FIXME: Diagnose arguments without names in C.
3888  }
3889
3890  Scope *ParentScope = FnBodyScope->getParent();
3891
3892  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3893                                  move(TemplateParameterLists),
3894                                  /*IsFunctionDefinition=*/true);
3895  if (FunctionTemplateDecl *FunctionTemplate
3896        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
3897    return ActOnStartOfFunctionDef(FnBodyScope,
3898                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
3899  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
3900    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
3901  return DeclPtrTy();
3902}
3903
3904/// \brief Strips various properties off an implicit instantiation
3905/// that has just been explicitly specialized.
3906static void StripImplicitInstantiation(NamedDecl *D) {
3907  D->invalidateAttrs();
3908
3909  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3910    FD->setInlineSpecified(false);
3911  }
3912}
3913
3914/// \brief Diagnose cases where we have an explicit template specialization
3915/// before/after an explicit template instantiation, producing diagnostics
3916/// for those cases where they are required and determining whether the
3917/// new specialization/instantiation will have any effect.
3918///
3919/// \param NewLoc the location of the new explicit specialization or
3920/// instantiation.
3921///
3922/// \param NewTSK the kind of the new explicit specialization or instantiation.
3923///
3924/// \param PrevDecl the previous declaration of the entity.
3925///
3926/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
3927///
3928/// \param PrevPointOfInstantiation if valid, indicates where the previus
3929/// declaration was instantiated (either implicitly or explicitly).
3930///
3931/// \param SuppressNew will be set to true to indicate that the new
3932/// specialization or instantiation has no effect and should be ignored.
3933///
3934/// \returns true if there was an error that should prevent the introduction of
3935/// the new declaration into the AST, false otherwise.
3936bool
3937Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
3938                                             TemplateSpecializationKind NewTSK,
3939                                             NamedDecl *PrevDecl,
3940                                             TemplateSpecializationKind PrevTSK,
3941                                        SourceLocation PrevPointOfInstantiation,
3942                                             bool &SuppressNew) {
3943  SuppressNew = false;
3944
3945  switch (NewTSK) {
3946  case TSK_Undeclared:
3947  case TSK_ImplicitInstantiation:
3948    assert(false && "Don't check implicit instantiations here");
3949    return false;
3950
3951  case TSK_ExplicitSpecialization:
3952    switch (PrevTSK) {
3953    case TSK_Undeclared:
3954    case TSK_ExplicitSpecialization:
3955      // Okay, we're just specializing something that is either already
3956      // explicitly specialized or has merely been mentioned without any
3957      // instantiation.
3958      return false;
3959
3960    case TSK_ImplicitInstantiation:
3961      if (PrevPointOfInstantiation.isInvalid()) {
3962        // The declaration itself has not actually been instantiated, so it is
3963        // still okay to specialize it.
3964        StripImplicitInstantiation(PrevDecl);
3965        return false;
3966      }
3967      // Fall through
3968
3969    case TSK_ExplicitInstantiationDeclaration:
3970    case TSK_ExplicitInstantiationDefinition:
3971      assert((PrevTSK == TSK_ImplicitInstantiation ||
3972              PrevPointOfInstantiation.isValid()) &&
3973             "Explicit instantiation without point of instantiation?");
3974
3975      // C++ [temp.expl.spec]p6:
3976      //   If a template, a member template or the member of a class template
3977      //   is explicitly specialized then that specialization shall be declared
3978      //   before the first use of that specialization that would cause an
3979      //   implicit instantiation to take place, in every translation unit in
3980      //   which such a use occurs; no diagnostic is required.
3981      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
3982        // Is there any previous explicit specialization declaration?
3983        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
3984          return false;
3985      }
3986
3987      Diag(NewLoc, diag::err_specialization_after_instantiation)
3988        << PrevDecl;
3989      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
3990        << (PrevTSK != TSK_ImplicitInstantiation);
3991
3992      return true;
3993    }
3994    break;
3995
3996  case TSK_ExplicitInstantiationDeclaration:
3997    switch (PrevTSK) {
3998    case TSK_ExplicitInstantiationDeclaration:
3999      // This explicit instantiation declaration is redundant (that's okay).
4000      SuppressNew = true;
4001      return false;
4002
4003    case TSK_Undeclared:
4004    case TSK_ImplicitInstantiation:
4005      // We're explicitly instantiating something that may have already been
4006      // implicitly instantiated; that's fine.
4007      return false;
4008
4009    case TSK_ExplicitSpecialization:
4010      // C++0x [temp.explicit]p4:
4011      //   For a given set of template parameters, if an explicit instantiation
4012      //   of a template appears after a declaration of an explicit
4013      //   specialization for that template, the explicit instantiation has no
4014      //   effect.
4015      SuppressNew = true;
4016      return false;
4017
4018    case TSK_ExplicitInstantiationDefinition:
4019      // C++0x [temp.explicit]p10:
4020      //   If an entity is the subject of both an explicit instantiation
4021      //   declaration and an explicit instantiation definition in the same
4022      //   translation unit, the definition shall follow the declaration.
4023      Diag(NewLoc,
4024           diag::err_explicit_instantiation_declaration_after_definition);
4025      Diag(PrevPointOfInstantiation,
4026           diag::note_explicit_instantiation_definition_here);
4027      assert(PrevPointOfInstantiation.isValid() &&
4028             "Explicit instantiation without point of instantiation?");
4029      SuppressNew = true;
4030      return false;
4031    }
4032    break;
4033
4034  case TSK_ExplicitInstantiationDefinition:
4035    switch (PrevTSK) {
4036    case TSK_Undeclared:
4037    case TSK_ImplicitInstantiation:
4038      // We're explicitly instantiating something that may have already been
4039      // implicitly instantiated; that's fine.
4040      return false;
4041
4042    case TSK_ExplicitSpecialization:
4043      // C++ DR 259, C++0x [temp.explicit]p4:
4044      //   For a given set of template parameters, if an explicit
4045      //   instantiation of a template appears after a declaration of
4046      //   an explicit specialization for that template, the explicit
4047      //   instantiation has no effect.
4048      //
4049      // In C++98/03 mode, we only give an extension warning here, because it
4050      // is not not harmful to try to explicitly instantiate something that
4051      // has been explicitly specialized.
4052      if (!getLangOptions().CPlusPlus0x) {
4053        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4054          << PrevDecl;
4055        Diag(PrevDecl->getLocation(),
4056             diag::note_previous_template_specialization);
4057      }
4058      SuppressNew = true;
4059      return false;
4060
4061    case TSK_ExplicitInstantiationDeclaration:
4062      // We're explicity instantiating a definition for something for which we
4063      // were previously asked to suppress instantiations. That's fine.
4064      return false;
4065
4066    case TSK_ExplicitInstantiationDefinition:
4067      // C++0x [temp.spec]p5:
4068      //   For a given template and a given set of template-arguments,
4069      //     - an explicit instantiation definition shall appear at most once
4070      //       in a program,
4071      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4072        << PrevDecl;
4073      Diag(PrevPointOfInstantiation,
4074           diag::note_previous_explicit_instantiation);
4075      SuppressNew = true;
4076      return false;
4077    }
4078    break;
4079  }
4080
4081  assert(false && "Missing specialization/instantiation case?");
4082
4083  return false;
4084}
4085
4086/// \brief Perform semantic analysis for the given function template
4087/// specialization.
4088///
4089/// This routine performs all of the semantic analysis required for an
4090/// explicit function template specialization. On successful completion,
4091/// the function declaration \p FD will become a function template
4092/// specialization.
4093///
4094/// \param FD the function declaration, which will be updated to become a
4095/// function template specialization.
4096///
4097/// \param HasExplicitTemplateArgs whether any template arguments were
4098/// explicitly provided.
4099///
4100/// \param LAngleLoc the location of the left angle bracket ('<'), if
4101/// template arguments were explicitly provided.
4102///
4103/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4104/// if any.
4105///
4106/// \param NumExplicitTemplateArgs the number of explicitly-provided template
4107/// arguments. This number may be zero even when HasExplicitTemplateArgs is
4108/// true as in, e.g., \c void sort<>(char*, char*);
4109///
4110/// \param RAngleLoc the location of the right angle bracket ('>'), if
4111/// template arguments were explicitly provided.
4112///
4113/// \param PrevDecl the set of declarations that
4114bool
4115Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4116                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
4117                                          LookupResult &Previous) {
4118  // The set of function template specializations that could match this
4119  // explicit function template specialization.
4120  UnresolvedSet<8> Candidates;
4121
4122  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
4123  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4124         I != E; ++I) {
4125    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4126    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4127      // Only consider templates found within the same semantic lookup scope as
4128      // FD.
4129      if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext()))
4130        continue;
4131
4132      // C++ [temp.expl.spec]p11:
4133      //   A trailing template-argument can be left unspecified in the
4134      //   template-id naming an explicit function template specialization
4135      //   provided it can be deduced from the function argument type.
4136      // Perform template argument deduction to determine whether we may be
4137      // specializing this template.
4138      // FIXME: It is somewhat wasteful to build
4139      TemplateDeductionInfo Info(Context, FD->getLocation());
4140      FunctionDecl *Specialization = 0;
4141      if (TemplateDeductionResult TDK
4142            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4143                                      FD->getType(),
4144                                      Specialization,
4145                                      Info)) {
4146        // FIXME: Template argument deduction failed; record why it failed, so
4147        // that we can provide nifty diagnostics.
4148        (void)TDK;
4149        continue;
4150      }
4151
4152      // Record this candidate.
4153      Candidates.addDecl(Specialization, I.getAccess());
4154    }
4155  }
4156
4157  // Find the most specialized function template.
4158  UnresolvedSetIterator Result
4159    = getMostSpecialized(Candidates.begin(), Candidates.end(),
4160                         TPOC_Other, FD->getLocation(),
4161                  PDiag(diag::err_function_template_spec_no_match)
4162                    << FD->getDeclName(),
4163                  PDiag(diag::err_function_template_spec_ambiguous)
4164                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4165                  PDiag(diag::note_function_template_spec_matched));
4166  if (Result == Candidates.end())
4167    return true;
4168
4169  // Ignore access information;  it doesn't figure into redeclaration checking.
4170  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4171
4172  // FIXME: Check if the prior specialization has a point of instantiation.
4173  // If so, we have run afoul of .
4174
4175  // If this is a friend declaration, then we're not really declaring
4176  // an explicit specialization.
4177  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4178
4179  // Check the scope of this explicit specialization.
4180  if (!isFriend &&
4181      CheckTemplateSpecializationScope(*this,
4182                                       Specialization->getPrimaryTemplate(),
4183                                       Specialization, FD->getLocation(),
4184                                       false))
4185    return true;
4186
4187  // C++ [temp.expl.spec]p6:
4188  //   If a template, a member template or the member of a class template is
4189  //   explicitly specialized then that specialization shall be declared
4190  //   before the first use of that specialization that would cause an implicit
4191  //   instantiation to take place, in every translation unit in which such a
4192  //   use occurs; no diagnostic is required.
4193  FunctionTemplateSpecializationInfo *SpecInfo
4194    = Specialization->getTemplateSpecializationInfo();
4195  assert(SpecInfo && "Function template specialization info missing?");
4196
4197  bool SuppressNew = false;
4198  if (!isFriend &&
4199      CheckSpecializationInstantiationRedecl(FD->getLocation(),
4200                                             TSK_ExplicitSpecialization,
4201                                             Specialization,
4202                                   SpecInfo->getTemplateSpecializationKind(),
4203                                         SpecInfo->getPointOfInstantiation(),
4204                                             SuppressNew))
4205    return true;
4206
4207  // Mark the prior declaration as an explicit specialization, so that later
4208  // clients know that this is an explicit specialization.
4209  if (!isFriend)
4210    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
4211
4212  // Turn the given function declaration into a function template
4213  // specialization, with the template arguments from the previous
4214  // specialization.
4215  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
4216                         new (Context) TemplateArgumentList(
4217                             *Specialization->getTemplateSpecializationArgs()),
4218                                        /*InsertPos=*/0,
4219                                    SpecInfo->getTemplateSpecializationKind());
4220
4221  // The "previous declaration" for this function template specialization is
4222  // the prior function template specialization.
4223  Previous.clear();
4224  Previous.addDecl(Specialization);
4225  return false;
4226}
4227
4228/// \brief Perform semantic analysis for the given non-template member
4229/// specialization.
4230///
4231/// This routine performs all of the semantic analysis required for an
4232/// explicit member function specialization. On successful completion,
4233/// the function declaration \p FD will become a member function
4234/// specialization.
4235///
4236/// \param Member the member declaration, which will be updated to become a
4237/// specialization.
4238///
4239/// \param Previous the set of declarations, one of which may be specialized
4240/// by this function specialization;  the set will be modified to contain the
4241/// redeclared member.
4242bool
4243Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
4244  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
4245
4246  // Try to find the member we are instantiating.
4247  NamedDecl *Instantiation = 0;
4248  NamedDecl *InstantiatedFrom = 0;
4249  MemberSpecializationInfo *MSInfo = 0;
4250
4251  if (Previous.empty()) {
4252    // Nowhere to look anyway.
4253  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
4254    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4255           I != E; ++I) {
4256      NamedDecl *D = (*I)->getUnderlyingDecl();
4257      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4258        if (Context.hasSameType(Function->getType(), Method->getType())) {
4259          Instantiation = Method;
4260          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
4261          MSInfo = Method->getMemberSpecializationInfo();
4262          break;
4263        }
4264      }
4265    }
4266  } else if (isa<VarDecl>(Member)) {
4267    VarDecl *PrevVar;
4268    if (Previous.isSingleResult() &&
4269        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4270      if (PrevVar->isStaticDataMember()) {
4271        Instantiation = PrevVar;
4272        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4273        MSInfo = PrevVar->getMemberSpecializationInfo();
4274      }
4275  } else if (isa<RecordDecl>(Member)) {
4276    CXXRecordDecl *PrevRecord;
4277    if (Previous.isSingleResult() &&
4278        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4279      Instantiation = PrevRecord;
4280      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4281      MSInfo = PrevRecord->getMemberSpecializationInfo();
4282    }
4283  }
4284
4285  if (!Instantiation) {
4286    // There is no previous declaration that matches. Since member
4287    // specializations are always out-of-line, the caller will complain about
4288    // this mismatch later.
4289    return false;
4290  }
4291
4292  // Make sure that this is a specialization of a member.
4293  if (!InstantiatedFrom) {
4294    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
4295      << Member;
4296    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
4297    return true;
4298  }
4299
4300  // C++ [temp.expl.spec]p6:
4301  //   If a template, a member template or the member of a class template is
4302  //   explicitly specialized then that spe- cialization shall be declared
4303  //   before the first use of that specialization that would cause an implicit
4304  //   instantiation to take place, in every translation unit in which such a
4305  //   use occurs; no diagnostic is required.
4306  assert(MSInfo && "Member specialization info missing?");
4307
4308  bool SuppressNew = false;
4309  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
4310                                             TSK_ExplicitSpecialization,
4311                                             Instantiation,
4312                                     MSInfo->getTemplateSpecializationKind(),
4313                                           MSInfo->getPointOfInstantiation(),
4314                                             SuppressNew))
4315    return true;
4316
4317  // Check the scope of this explicit specialization.
4318  if (CheckTemplateSpecializationScope(*this,
4319                                       InstantiatedFrom,
4320                                       Instantiation, Member->getLocation(),
4321                                       false))
4322    return true;
4323
4324  // Note that this is an explicit instantiation of a member.
4325  // the original declaration to note that it is an explicit specialization
4326  // (if it was previously an implicit instantiation). This latter step
4327  // makes bookkeeping easier.
4328  if (isa<FunctionDecl>(Member)) {
4329    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4330    if (InstantiationFunction->getTemplateSpecializationKind() ==
4331          TSK_ImplicitInstantiation) {
4332      InstantiationFunction->setTemplateSpecializationKind(
4333                                                  TSK_ExplicitSpecialization);
4334      InstantiationFunction->setLocation(Member->getLocation());
4335    }
4336
4337    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4338                                        cast<CXXMethodDecl>(InstantiatedFrom),
4339                                                  TSK_ExplicitSpecialization);
4340  } else if (isa<VarDecl>(Member)) {
4341    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4342    if (InstantiationVar->getTemplateSpecializationKind() ==
4343          TSK_ImplicitInstantiation) {
4344      InstantiationVar->setTemplateSpecializationKind(
4345                                                  TSK_ExplicitSpecialization);
4346      InstantiationVar->setLocation(Member->getLocation());
4347    }
4348
4349    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4350                                                cast<VarDecl>(InstantiatedFrom),
4351                                                TSK_ExplicitSpecialization);
4352  } else {
4353    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4354    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4355    if (InstantiationClass->getTemplateSpecializationKind() ==
4356          TSK_ImplicitInstantiation) {
4357      InstantiationClass->setTemplateSpecializationKind(
4358                                                   TSK_ExplicitSpecialization);
4359      InstantiationClass->setLocation(Member->getLocation());
4360    }
4361
4362    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4363                                        cast<CXXRecordDecl>(InstantiatedFrom),
4364                                                   TSK_ExplicitSpecialization);
4365  }
4366
4367  // Save the caller the trouble of having to figure out which declaration
4368  // this specialization matches.
4369  Previous.clear();
4370  Previous.addDecl(Instantiation);
4371  return false;
4372}
4373
4374/// \brief Check the scope of an explicit instantiation.
4375static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4376                                            SourceLocation InstLoc,
4377                                            bool WasQualifiedName) {
4378  DeclContext *ExpectedContext
4379    = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext();
4380  DeclContext *CurContext = S.CurContext->getLookupContext();
4381
4382  // C++0x [temp.explicit]p2:
4383  //   An explicit instantiation shall appear in an enclosing namespace of its
4384  //   template.
4385  //
4386  // This is DR275, which we do not retroactively apply to C++98/03.
4387  if (S.getLangOptions().CPlusPlus0x &&
4388      !CurContext->Encloses(ExpectedContext)) {
4389    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext))
4390      S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope)
4391        << D << NS;
4392    else
4393      S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global)
4394        << D;
4395    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4396    return;
4397  }
4398
4399  // C++0x [temp.explicit]p2:
4400  //   If the name declared in the explicit instantiation is an unqualified
4401  //   name, the explicit instantiation shall appear in the namespace where
4402  //   its template is declared or, if that namespace is inline (7.3.1), any
4403  //   namespace from its enclosing namespace set.
4404  if (WasQualifiedName)
4405    return;
4406
4407  if (CurContext->Equals(ExpectedContext))
4408    return;
4409
4410  S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace)
4411    << D << ExpectedContext;
4412  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4413}
4414
4415/// \brief Determine whether the given scope specifier has a template-id in it.
4416static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
4417  if (!SS.isSet())
4418    return false;
4419
4420  // C++0x [temp.explicit]p2:
4421  //   If the explicit instantiation is for a member function, a member class
4422  //   or a static data member of a class template specialization, the name of
4423  //   the class template specialization in the qualified-id for the member
4424  //   name shall be a simple-template-id.
4425  //
4426  // C++98 has the same restriction, just worded differently.
4427  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
4428       NNS; NNS = NNS->getPrefix())
4429    if (Type *T = NNS->getAsType())
4430      if (isa<TemplateSpecializationType>(T))
4431        return true;
4432
4433  return false;
4434}
4435
4436// Explicit instantiation of a class template specialization
4437// FIXME: Implement extern template semantics
4438Sema::DeclResult
4439Sema::ActOnExplicitInstantiation(Scope *S,
4440                                 SourceLocation ExternLoc,
4441                                 SourceLocation TemplateLoc,
4442                                 unsigned TagSpec,
4443                                 SourceLocation KWLoc,
4444                                 const CXXScopeSpec &SS,
4445                                 TemplateTy TemplateD,
4446                                 SourceLocation TemplateNameLoc,
4447                                 SourceLocation LAngleLoc,
4448                                 ASTTemplateArgsPtr TemplateArgsIn,
4449                                 SourceLocation RAngleLoc,
4450                                 AttributeList *Attr) {
4451  // Find the class template we're specializing
4452  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4453  ClassTemplateDecl *ClassTemplate
4454    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
4455
4456  // Check that the specialization uses the same tag kind as the
4457  // original template.
4458  TagDecl::TagKind Kind;
4459  switch (TagSpec) {
4460  default: assert(0 && "Unknown tag type!");
4461  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
4462  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
4463  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
4464  }
4465  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4466                                    Kind, KWLoc,
4467                                    *ClassTemplate->getIdentifier())) {
4468    Diag(KWLoc, diag::err_use_with_wrong_tag)
4469      << ClassTemplate
4470      << FixItHint::CreateReplacement(KWLoc,
4471                            ClassTemplate->getTemplatedDecl()->getKindName());
4472    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4473         diag::note_previous_use);
4474    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4475  }
4476
4477  // C++0x [temp.explicit]p2:
4478  //   There are two forms of explicit instantiation: an explicit instantiation
4479  //   definition and an explicit instantiation declaration. An explicit
4480  //   instantiation declaration begins with the extern keyword. [...]
4481  TemplateSpecializationKind TSK
4482    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4483                           : TSK_ExplicitInstantiationDeclaration;
4484
4485  // Translate the parser's template argument list in our AST format.
4486  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4487  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4488
4489  // Check that the template argument list is well-formed for this
4490  // template.
4491  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
4492                                        TemplateArgs.size());
4493  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4494                                TemplateArgs, false, Converted))
4495    return true;
4496
4497  assert((Converted.structuredSize() ==
4498            ClassTemplate->getTemplateParameters()->size()) &&
4499         "Converted template argument list is too short!");
4500
4501  // Find the class template specialization declaration that
4502  // corresponds to these arguments.
4503  llvm::FoldingSetNodeID ID;
4504  ClassTemplateSpecializationDecl::Profile(ID,
4505                                           Converted.getFlatArguments(),
4506                                           Converted.flatSize(),
4507                                           Context);
4508  void *InsertPos = 0;
4509  ClassTemplateSpecializationDecl *PrevDecl
4510    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4511
4512  // C++0x [temp.explicit]p2:
4513  //   [...] An explicit instantiation shall appear in an enclosing
4514  //   namespace of its template. [...]
4515  //
4516  // This is C++ DR 275.
4517  CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
4518                                  SS.isSet());
4519
4520  ClassTemplateSpecializationDecl *Specialization = 0;
4521
4522  bool ReusedDecl = false;
4523  if (PrevDecl) {
4524    bool SuppressNew = false;
4525    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
4526                                               PrevDecl,
4527                                              PrevDecl->getSpecializationKind(),
4528                                            PrevDecl->getPointOfInstantiation(),
4529                                               SuppressNew))
4530      return DeclPtrTy::make(PrevDecl);
4531
4532    if (SuppressNew)
4533      return DeclPtrTy::make(PrevDecl);
4534
4535    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation ||
4536        PrevDecl->getSpecializationKind() == TSK_Undeclared) {
4537      // Since the only prior class template specialization with these
4538      // arguments was referenced but not declared, reuse that
4539      // declaration node as our own, updating its source location to
4540      // reflect our new declaration.
4541      Specialization = PrevDecl;
4542      Specialization->setLocation(TemplateNameLoc);
4543      PrevDecl = 0;
4544      ReusedDecl = true;
4545    }
4546  }
4547
4548  if (!Specialization) {
4549    // Create a new class template specialization declaration node for
4550    // this explicit specialization.
4551    Specialization
4552      = ClassTemplateSpecializationDecl::Create(Context,
4553                                             ClassTemplate->getDeclContext(),
4554                                                TemplateNameLoc,
4555                                                ClassTemplate,
4556                                                Converted, PrevDecl);
4557    SetNestedNameSpecifier(Specialization, SS);
4558
4559    if (PrevDecl) {
4560      // Remove the previous declaration from the folding set, since we want
4561      // to introduce a new declaration.
4562      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
4563      ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4564    }
4565
4566    // Insert the new specialization.
4567    ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos);
4568  }
4569
4570  // Build the fully-sugared type for this explicit instantiation as
4571  // the user wrote in the explicit instantiation itself. This means
4572  // that we'll pretty-print the type retrieved from the
4573  // specialization's declaration the way that the user actually wrote
4574  // the explicit instantiation, rather than formatting the name based
4575  // on the "canonical" representation used to store the template
4576  // arguments in the specialization.
4577  TypeSourceInfo *WrittenTy
4578    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4579                                                TemplateArgs,
4580                                  Context.getTypeDeclType(Specialization));
4581  Specialization->setTypeAsWritten(WrittenTy);
4582  TemplateArgsIn.release();
4583
4584  if (!ReusedDecl) {
4585    // Add the explicit instantiation into its lexical context. However,
4586    // since explicit instantiations are never found by name lookup, we
4587    // just put it into the declaration context directly.
4588    Specialization->setLexicalDeclContext(CurContext);
4589    CurContext->addDecl(Specialization);
4590  }
4591
4592  // C++ [temp.explicit]p3:
4593  //   A definition of a class template or class member template
4594  //   shall be in scope at the point of the explicit instantiation of
4595  //   the class template or class member template.
4596  //
4597  // This check comes when we actually try to perform the
4598  // instantiation.
4599  ClassTemplateSpecializationDecl *Def
4600    = cast_or_null<ClassTemplateSpecializationDecl>(
4601                                              Specialization->getDefinition());
4602  if (!Def)
4603    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
4604
4605  // Instantiate the members of this class template specialization.
4606  Def = cast_or_null<ClassTemplateSpecializationDecl>(
4607                                       Specialization->getDefinition());
4608  if (Def) {
4609    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
4610
4611    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
4612    // TSK_ExplicitInstantiationDefinition
4613    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
4614        TSK == TSK_ExplicitInstantiationDefinition)
4615      Def->setTemplateSpecializationKind(TSK);
4616
4617    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
4618  }
4619
4620  return DeclPtrTy::make(Specialization);
4621}
4622
4623// Explicit instantiation of a member class of a class template.
4624Sema::DeclResult
4625Sema::ActOnExplicitInstantiation(Scope *S,
4626                                 SourceLocation ExternLoc,
4627                                 SourceLocation TemplateLoc,
4628                                 unsigned TagSpec,
4629                                 SourceLocation KWLoc,
4630                                 const CXXScopeSpec &SS,
4631                                 IdentifierInfo *Name,
4632                                 SourceLocation NameLoc,
4633                                 AttributeList *Attr) {
4634
4635  bool Owned = false;
4636  bool IsDependent = false;
4637  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
4638                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
4639                            MultiTemplateParamsArg(*this, 0, 0),
4640                            Owned, IsDependent);
4641  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
4642
4643  if (!TagD)
4644    return true;
4645
4646  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4647  if (Tag->isEnum()) {
4648    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
4649      << Context.getTypeDeclType(Tag);
4650    return true;
4651  }
4652
4653  if (Tag->isInvalidDecl())
4654    return true;
4655
4656  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
4657  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
4658  if (!Pattern) {
4659    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
4660      << Context.getTypeDeclType(Record);
4661    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
4662    return true;
4663  }
4664
4665  // C++0x [temp.explicit]p2:
4666  //   If the explicit instantiation is for a class or member class, the
4667  //   elaborated-type-specifier in the declaration shall include a
4668  //   simple-template-id.
4669  //
4670  // C++98 has the same restriction, just worded differently.
4671  if (!ScopeSpecifierHasTemplateId(SS))
4672    Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id)
4673      << Record << SS.getRange();
4674
4675  // C++0x [temp.explicit]p2:
4676  //   There are two forms of explicit instantiation: an explicit instantiation
4677  //   definition and an explicit instantiation declaration. An explicit
4678  //   instantiation declaration begins with the extern keyword. [...]
4679  TemplateSpecializationKind TSK
4680    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4681                           : TSK_ExplicitInstantiationDeclaration;
4682
4683  // C++0x [temp.explicit]p2:
4684  //   [...] An explicit instantiation shall appear in an enclosing
4685  //   namespace of its template. [...]
4686  //
4687  // This is C++ DR 275.
4688  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
4689
4690  // Verify that it is okay to explicitly instantiate here.
4691  CXXRecordDecl *PrevDecl
4692    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
4693  if (!PrevDecl && Record->getDefinition())
4694    PrevDecl = Record;
4695  if (PrevDecl) {
4696    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
4697    bool SuppressNew = false;
4698    assert(MSInfo && "No member specialization information?");
4699    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
4700                                               PrevDecl,
4701                                        MSInfo->getTemplateSpecializationKind(),
4702                                             MSInfo->getPointOfInstantiation(),
4703                                               SuppressNew))
4704      return true;
4705    if (SuppressNew)
4706      return TagD;
4707  }
4708
4709  CXXRecordDecl *RecordDef
4710    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4711  if (!RecordDef) {
4712    // C++ [temp.explicit]p3:
4713    //   A definition of a member class of a class template shall be in scope
4714    //   at the point of an explicit instantiation of the member class.
4715    CXXRecordDecl *Def
4716      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
4717    if (!Def) {
4718      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
4719        << 0 << Record->getDeclName() << Record->getDeclContext();
4720      Diag(Pattern->getLocation(), diag::note_forward_declaration)
4721        << Pattern;
4722      return true;
4723    } else {
4724      if (InstantiateClass(NameLoc, Record, Def,
4725                           getTemplateInstantiationArgs(Record),
4726                           TSK))
4727        return true;
4728
4729      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4730      if (!RecordDef)
4731        return true;
4732    }
4733  }
4734
4735  // Instantiate all of the members of the class.
4736  InstantiateClassMembers(NameLoc, RecordDef,
4737                          getTemplateInstantiationArgs(Record), TSK);
4738
4739  // FIXME: We don't have any representation for explicit instantiations of
4740  // member classes. Such a representation is not needed for compilation, but it
4741  // should be available for clients that want to see all of the declarations in
4742  // the source code.
4743  return TagD;
4744}
4745
4746Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
4747                                                  SourceLocation ExternLoc,
4748                                                  SourceLocation TemplateLoc,
4749                                                  Declarator &D) {
4750  // Explicit instantiations always require a name.
4751  DeclarationName Name = GetNameForDeclarator(D);
4752  if (!Name) {
4753    if (!D.isInvalidType())
4754      Diag(D.getDeclSpec().getSourceRange().getBegin(),
4755           diag::err_explicit_instantiation_requires_name)
4756        << D.getDeclSpec().getSourceRange()
4757        << D.getSourceRange();
4758
4759    return true;
4760  }
4761
4762  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4763  // we find one that is.
4764  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4765         (S->getFlags() & Scope::TemplateParamScope) != 0)
4766    S = S->getParent();
4767
4768  // Determine the type of the declaration.
4769  QualType R = GetTypeForDeclarator(D, S, 0);
4770  if (R.isNull())
4771    return true;
4772
4773  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4774    // Cannot explicitly instantiate a typedef.
4775    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
4776      << Name;
4777    return true;
4778  }
4779
4780  // C++0x [temp.explicit]p1:
4781  //   [...] An explicit instantiation of a function template shall not use the
4782  //   inline or constexpr specifiers.
4783  // Presumably, this also applies to member functions of class templates as
4784  // well.
4785  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
4786    Diag(D.getDeclSpec().getInlineSpecLoc(),
4787         diag::err_explicit_instantiation_inline)
4788      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4789
4790  // FIXME: check for constexpr specifier.
4791
4792  // C++0x [temp.explicit]p2:
4793  //   There are two forms of explicit instantiation: an explicit instantiation
4794  //   definition and an explicit instantiation declaration. An explicit
4795  //   instantiation declaration begins with the extern keyword. [...]
4796  TemplateSpecializationKind TSK
4797    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4798                           : TSK_ExplicitInstantiationDeclaration;
4799
4800  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName);
4801  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
4802
4803  if (!R->isFunctionType()) {
4804    // C++ [temp.explicit]p1:
4805    //   A [...] static data member of a class template can be explicitly
4806    //   instantiated from the member definition associated with its class
4807    //   template.
4808    if (Previous.isAmbiguous())
4809      return true;
4810
4811    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
4812    if (!Prev || !Prev->isStaticDataMember()) {
4813      // We expect to see a data data member here.
4814      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
4815        << Name;
4816      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4817           P != PEnd; ++P)
4818        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
4819      return true;
4820    }
4821
4822    if (!Prev->getInstantiatedFromStaticDataMember()) {
4823      // FIXME: Check for explicit specialization?
4824      Diag(D.getIdentifierLoc(),
4825           diag::err_explicit_instantiation_data_member_not_instantiated)
4826        << Prev;
4827      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
4828      // FIXME: Can we provide a note showing where this was declared?
4829      return true;
4830    }
4831
4832    // C++0x [temp.explicit]p2:
4833    //   If the explicit instantiation is for a member function, a member class
4834    //   or a static data member of a class template specialization, the name of
4835    //   the class template specialization in the qualified-id for the member
4836    //   name shall be a simple-template-id.
4837    //
4838    // C++98 has the same restriction, just worded differently.
4839    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4840      Diag(D.getIdentifierLoc(),
4841           diag::err_explicit_instantiation_without_qualified_id)
4842        << Prev << D.getCXXScopeSpec().getRange();
4843
4844    // Check the scope of this explicit instantiation.
4845    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
4846
4847    // Verify that it is okay to explicitly instantiate here.
4848    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
4849    assert(MSInfo && "Missing static data member specialization info?");
4850    bool SuppressNew = false;
4851    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
4852                                        MSInfo->getTemplateSpecializationKind(),
4853                                              MSInfo->getPointOfInstantiation(),
4854                                               SuppressNew))
4855      return true;
4856    if (SuppressNew)
4857      return DeclPtrTy();
4858
4859    // Instantiate static data member.
4860    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4861    if (TSK == TSK_ExplicitInstantiationDefinition)
4862      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false,
4863                                            /*DefinitionRequired=*/true);
4864
4865    // FIXME: Create an ExplicitInstantiation node?
4866    return DeclPtrTy();
4867  }
4868
4869  // If the declarator is a template-id, translate the parser's template
4870  // argument list into our AST format.
4871  bool HasExplicitTemplateArgs = false;
4872  TemplateArgumentListInfo TemplateArgs;
4873  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4874    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4875    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4876    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4877    ASTTemplateArgsPtr TemplateArgsPtr(*this,
4878                                       TemplateId->getTemplateArgs(),
4879                                       TemplateId->NumArgs);
4880    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
4881    HasExplicitTemplateArgs = true;
4882    TemplateArgsPtr.release();
4883  }
4884
4885  // C++ [temp.explicit]p1:
4886  //   A [...] function [...] can be explicitly instantiated from its template.
4887  //   A member function [...] of a class template can be explicitly
4888  //  instantiated from the member definition associated with its class
4889  //  template.
4890  UnresolvedSet<8> Matches;
4891  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4892       P != PEnd; ++P) {
4893    NamedDecl *Prev = *P;
4894    if (!HasExplicitTemplateArgs) {
4895      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
4896        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
4897          Matches.clear();
4898
4899          Matches.addDecl(Method, P.getAccess());
4900          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
4901            break;
4902        }
4903      }
4904    }
4905
4906    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
4907    if (!FunTmpl)
4908      continue;
4909
4910    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
4911    FunctionDecl *Specialization = 0;
4912    if (TemplateDeductionResult TDK
4913          = DeduceTemplateArguments(FunTmpl,
4914                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4915                                    R, Specialization, Info)) {
4916      // FIXME: Keep track of almost-matches?
4917      (void)TDK;
4918      continue;
4919    }
4920
4921    Matches.addDecl(Specialization, P.getAccess());
4922  }
4923
4924  // Find the most specialized function template specialization.
4925  UnresolvedSetIterator Result
4926    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other,
4927                         D.getIdentifierLoc(),
4928                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
4929                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
4930                         PDiag(diag::note_explicit_instantiation_candidate));
4931
4932  if (Result == Matches.end())
4933    return true;
4934
4935  // Ignore access control bits, we don't need them for redeclaration checking.
4936  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4937
4938  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
4939    Diag(D.getIdentifierLoc(),
4940         diag::err_explicit_instantiation_member_function_not_instantiated)
4941      << Specialization
4942      << (Specialization->getTemplateSpecializationKind() ==
4943          TSK_ExplicitSpecialization);
4944    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
4945    return true;
4946  }
4947
4948  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
4949  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
4950    PrevDecl = Specialization;
4951
4952  if (PrevDecl) {
4953    bool SuppressNew = false;
4954    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
4955                                               PrevDecl,
4956                                     PrevDecl->getTemplateSpecializationKind(),
4957                                          PrevDecl->getPointOfInstantiation(),
4958                                               SuppressNew))
4959      return true;
4960
4961    // FIXME: We may still want to build some representation of this
4962    // explicit specialization.
4963    if (SuppressNew)
4964      return DeclPtrTy();
4965  }
4966
4967  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4968
4969  if (TSK == TSK_ExplicitInstantiationDefinition)
4970    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization,
4971                                  false, /*DefinitionRequired=*/true);
4972
4973  // C++0x [temp.explicit]p2:
4974  //   If the explicit instantiation is for a member function, a member class
4975  //   or a static data member of a class template specialization, the name of
4976  //   the class template specialization in the qualified-id for the member
4977  //   name shall be a simple-template-id.
4978  //
4979  // C++98 has the same restriction, just worded differently.
4980  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
4981  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
4982      D.getCXXScopeSpec().isSet() &&
4983      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4984    Diag(D.getIdentifierLoc(),
4985         diag::err_explicit_instantiation_without_qualified_id)
4986    << Specialization << D.getCXXScopeSpec().getRange();
4987
4988  CheckExplicitInstantiationScope(*this,
4989                   FunTmpl? (NamedDecl *)FunTmpl
4990                          : Specialization->getInstantiatedFromMemberFunction(),
4991                                  D.getIdentifierLoc(),
4992                                  D.getCXXScopeSpec().isSet());
4993
4994  // FIXME: Create some kind of ExplicitInstantiationDecl here.
4995  return DeclPtrTy();
4996}
4997
4998Sema::TypeResult
4999Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5000                        const CXXScopeSpec &SS, IdentifierInfo *Name,
5001                        SourceLocation TagLoc, SourceLocation NameLoc) {
5002  // This has to hold, because SS is expected to be defined.
5003  assert(Name && "Expected a name in a dependent tag");
5004
5005  NestedNameSpecifier *NNS
5006    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5007  if (!NNS)
5008    return true;
5009
5010  ElaboratedTypeKeyword Keyword = ETK_None;
5011  switch (TagDecl::getTagKindForTypeSpec(TagSpec)) {
5012  case TagDecl::TK_struct: Keyword = ETK_Struct; break;
5013  case TagDecl::TK_class: Keyword = ETK_Class; break;
5014  case TagDecl::TK_union: Keyword = ETK_Union; break;
5015  case TagDecl::TK_enum: Keyword = ETK_Enum; break;
5016  }
5017  assert(Keyword != ETK_None && "Invalid tag kind!");
5018
5019  return Context.getDependentNameType(Keyword, NNS, Name).getAsOpaquePtr();
5020}
5021
5022Sema::TypeResult
5023Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
5024                        const IdentifierInfo &II, SourceLocation IdLoc) {
5025  NestedNameSpecifier *NNS
5026    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5027  if (!NNS)
5028    return true;
5029
5030  QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
5031  if (T.isNull())
5032    return true;
5033  return T.getAsOpaquePtr();
5034}
5035
5036Sema::TypeResult
5037Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
5038                        SourceLocation TemplateLoc, TypeTy *Ty) {
5039  QualType T = GetTypeFromParser(Ty);
5040  NestedNameSpecifier *NNS
5041    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5042  const TemplateSpecializationType *TemplateId
5043    = T->getAs<TemplateSpecializationType>();
5044  assert(TemplateId && "Expected a template specialization type");
5045
5046  if (computeDeclContext(SS, false)) {
5047    // If we can compute a declaration context, then the "typename"
5048    // keyword was superfluous. Just build a QualifiedNameType to keep
5049    // track of the nested-name-specifier.
5050
5051    // FIXME: Note that the QualifiedNameType had the "typename" keyword!
5052    return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
5053  }
5054
5055  return Context.getDependentNameType(ETK_Typename, NNS, TemplateId)
5056                                                            .getAsOpaquePtr();
5057}
5058
5059/// \brief Build the type that describes a C++ typename specifier,
5060/// e.g., "typename T::type".
5061QualType
5062Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
5063                        SourceRange Range) {
5064  CXXRecordDecl *CurrentInstantiation = 0;
5065  if (NNS->isDependent()) {
5066    CurrentInstantiation = getCurrentInstantiationOf(NNS);
5067
5068    // If the nested-name-specifier does not refer to the current
5069    // instantiation, then build a typename type.
5070    if (!CurrentInstantiation)
5071      return Context.getDependentNameType(ETK_Typename, NNS, &II);
5072
5073    // The nested-name-specifier refers to the current instantiation, so the
5074    // "typename" keyword itself is superfluous. In C++03, the program is
5075    // actually ill-formed. However, DR 382 (in C++0x CD1) allows such
5076    // extraneous "typename" keywords, and we retroactively apply this DR to
5077    // C++03 code.
5078  }
5079
5080  DeclContext *Ctx = 0;
5081
5082  if (CurrentInstantiation)
5083    Ctx = CurrentInstantiation;
5084  else {
5085    CXXScopeSpec SS;
5086    SS.setScopeRep(NNS);
5087    SS.setRange(Range);
5088    if (RequireCompleteDeclContext(SS))
5089      return QualType();
5090
5091    Ctx = computeDeclContext(SS);
5092  }
5093  assert(Ctx && "No declaration context?");
5094
5095  DeclarationName Name(&II);
5096  LookupResult Result(*this, Name, Range.getEnd(), LookupOrdinaryName);
5097  LookupQualifiedName(Result, Ctx);
5098  unsigned DiagID = 0;
5099  Decl *Referenced = 0;
5100  switch (Result.getResultKind()) {
5101  case LookupResult::NotFound:
5102    DiagID = diag::err_typename_nested_not_found;
5103    break;
5104
5105  case LookupResult::NotFoundInCurrentInstantiation:
5106    // Okay, it's a member of an unknown instantiation.
5107    return Context.getDependentNameType(ETK_Typename, NNS, &II);
5108
5109  case LookupResult::Found:
5110    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
5111      // We found a type. Build a QualifiedNameType, since the
5112      // typename-specifier was just sugar. FIXME: Tell
5113      // QualifiedNameType that it has a "typename" prefix.
5114      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
5115    }
5116
5117    DiagID = diag::err_typename_nested_not_type;
5118    Referenced = Result.getFoundDecl();
5119    break;
5120
5121  case LookupResult::FoundUnresolvedValue:
5122    llvm_unreachable("unresolved using decl in non-dependent context");
5123    return QualType();
5124
5125  case LookupResult::FoundOverloaded:
5126    DiagID = diag::err_typename_nested_not_type;
5127    Referenced = *Result.begin();
5128    break;
5129
5130  case LookupResult::Ambiguous:
5131    return QualType();
5132  }
5133
5134  // If we get here, it's because name lookup did not find a
5135  // type. Emit an appropriate diagnostic and return an error.
5136  Diag(Range.getEnd(), DiagID) << Range << Name << Ctx;
5137  if (Referenced)
5138    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
5139      << Name;
5140  return QualType();
5141}
5142
5143namespace {
5144  // See Sema::RebuildTypeInCurrentInstantiation
5145  class CurrentInstantiationRebuilder
5146    : public TreeTransform<CurrentInstantiationRebuilder> {
5147    SourceLocation Loc;
5148    DeclarationName Entity;
5149
5150  public:
5151    CurrentInstantiationRebuilder(Sema &SemaRef,
5152                                  SourceLocation Loc,
5153                                  DeclarationName Entity)
5154    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
5155      Loc(Loc), Entity(Entity) { }
5156
5157    /// \brief Determine whether the given type \p T has already been
5158    /// transformed.
5159    ///
5160    /// For the purposes of type reconstruction, a type has already been
5161    /// transformed if it is NULL or if it is not dependent.
5162    bool AlreadyTransformed(QualType T) {
5163      return T.isNull() || !T->isDependentType();
5164    }
5165
5166    /// \brief Returns the location of the entity whose type is being
5167    /// rebuilt.
5168    SourceLocation getBaseLocation() { return Loc; }
5169
5170    /// \brief Returns the name of the entity whose type is being rebuilt.
5171    DeclarationName getBaseEntity() { return Entity; }
5172
5173    /// \brief Sets the "base" location and entity when that
5174    /// information is known based on another transformation.
5175    void setBase(SourceLocation Loc, DeclarationName Entity) {
5176      this->Loc = Loc;
5177      this->Entity = Entity;
5178    }
5179
5180    /// \brief Transforms an expression by returning the expression itself
5181    /// (an identity function).
5182    ///
5183    /// FIXME: This is completely unsafe; we will need to actually clone the
5184    /// expressions.
5185    Sema::OwningExprResult TransformExpr(Expr *E) {
5186      return getSema().Owned(E);
5187    }
5188
5189    /// \brief Transforms a typename type by determining whether the type now
5190    /// refers to a member of the current instantiation, and then
5191    /// type-checking and building a QualifiedNameType (when possible).
5192    QualType TransformDependentNameType(TypeLocBuilder &TLB, DependentNameTypeLoc TL,
5193                                   QualType ObjectType);
5194  };
5195}
5196
5197QualType
5198CurrentInstantiationRebuilder::TransformDependentNameType(TypeLocBuilder &TLB,
5199                                                     DependentNameTypeLoc TL,
5200                                                     QualType ObjectType) {
5201  DependentNameType *T = TL.getTypePtr();
5202
5203  NestedNameSpecifier *NNS
5204    = TransformNestedNameSpecifier(T->getQualifier(),
5205                                   /*FIXME:*/SourceRange(getBaseLocation()),
5206                                   ObjectType);
5207  if (!NNS)
5208    return QualType();
5209
5210  // If the nested-name-specifier did not change, and we cannot compute the
5211  // context corresponding to the nested-name-specifier, then this
5212  // typename type will not change; exit early.
5213  CXXScopeSpec SS;
5214  SS.setRange(SourceRange(getBaseLocation()));
5215  SS.setScopeRep(NNS);
5216
5217  QualType Result;
5218  if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0)
5219    Result = QualType(T, 0);
5220
5221  // Rebuild the typename type, which will probably turn into a
5222  // QualifiedNameType.
5223  else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) {
5224    QualType NewTemplateId
5225      = TransformType(QualType(TemplateId, 0));
5226    if (NewTemplateId.isNull())
5227      return QualType();
5228
5229    if (NNS == T->getQualifier() &&
5230        NewTemplateId == QualType(TemplateId, 0))
5231      Result = QualType(T, 0);
5232    else
5233      Result = getDerived().RebuildDependentNameType(T->getKeyword(),
5234                                                     NNS, NewTemplateId);
5235  } else
5236    Result = getDerived().RebuildDependentNameType(T->getKeyword(),
5237                                                   NNS, T->getIdentifier(),
5238                                                  SourceRange(TL.getNameLoc()));
5239
5240  if (Result.isNull())
5241    return QualType();
5242
5243  DependentNameTypeLoc NewTL = TLB.push<DependentNameTypeLoc>(Result);
5244  NewTL.setNameLoc(TL.getNameLoc());
5245  return Result;
5246}
5247
5248/// \brief Rebuilds a type within the context of the current instantiation.
5249///
5250/// The type \p T is part of the type of an out-of-line member definition of
5251/// a class template (or class template partial specialization) that was parsed
5252/// and constructed before we entered the scope of the class template (or
5253/// partial specialization thereof). This routine will rebuild that type now
5254/// that we have entered the declarator's scope, which may produce different
5255/// canonical types, e.g.,
5256///
5257/// \code
5258/// template<typename T>
5259/// struct X {
5260///   typedef T* pointer;
5261///   pointer data();
5262/// };
5263///
5264/// template<typename T>
5265/// typename X<T>::pointer X<T>::data() { ... }
5266/// \endcode
5267///
5268/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
5269/// since we do not know that we can look into X<T> when we parsed the type.
5270/// This function will rebuild the type, performing the lookup of "pointer"
5271/// in X<T> and returning a QualifiedNameType whose canonical type is the same
5272/// as the canonical type of T*, allowing the return types of the out-of-line
5273/// definition and the declaration to match.
5274QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc,
5275                                                 DeclarationName Name) {
5276  if (T.isNull() || !T->isDependentType())
5277    return T;
5278
5279  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
5280  return Rebuilder.TransformType(T);
5281}
5282
5283/// \brief Produces a formatted string that describes the binding of
5284/// template parameters to template arguments.
5285std::string
5286Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5287                                      const TemplateArgumentList &Args) {
5288  // FIXME: For variadic templates, we'll need to get the structured list.
5289  return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
5290                                         Args.flat_size());
5291}
5292
5293std::string
5294Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5295                                      const TemplateArgument *Args,
5296                                      unsigned NumArgs) {
5297  std::string Result;
5298
5299  if (!Params || Params->size() == 0 || NumArgs == 0)
5300    return Result;
5301
5302  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
5303    if (I >= NumArgs)
5304      break;
5305
5306    if (I == 0)
5307      Result += "[with ";
5308    else
5309      Result += ", ";
5310
5311    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
5312      Result += Id->getName();
5313    } else {
5314      Result += '$';
5315      Result += llvm::utostr(I);
5316    }
5317
5318    Result += " = ";
5319
5320    switch (Args[I].getKind()) {
5321      case TemplateArgument::Null:
5322        Result += "<no value>";
5323        break;
5324
5325      case TemplateArgument::Type: {
5326        std::string TypeStr;
5327        Args[I].getAsType().getAsStringInternal(TypeStr,
5328                                                Context.PrintingPolicy);
5329        Result += TypeStr;
5330        break;
5331      }
5332
5333      case TemplateArgument::Declaration: {
5334        bool Unnamed = true;
5335        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
5336          if (ND->getDeclName()) {
5337            Unnamed = false;
5338            Result += ND->getNameAsString();
5339          }
5340        }
5341
5342        if (Unnamed) {
5343          Result += "<anonymous>";
5344        }
5345        break;
5346      }
5347
5348      case TemplateArgument::Template: {
5349        std::string Str;
5350        llvm::raw_string_ostream OS(Str);
5351        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
5352        Result += OS.str();
5353        break;
5354      }
5355
5356      case TemplateArgument::Integral: {
5357        Result += Args[I].getAsIntegral()->toString(10);
5358        break;
5359      }
5360
5361      case TemplateArgument::Expression: {
5362        assert(false && "No expressions in deduced template arguments!");
5363        Result += "<expression>";
5364        break;
5365      }
5366
5367      case TemplateArgument::Pack:
5368        // FIXME: Format template argument packs
5369        Result += "<template argument pack>";
5370        break;
5371    }
5372  }
5373
5374  Result += ']';
5375  return Result;
5376}
5377