SemaTemplate.cpp revision db88d8ad74097e2601d81ee863ce46a8a48a7034
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "Sema.h" 13#include "Lookup.h" 14#include "TreeTransform.h" 15#include "clang/AST/ASTContext.h" 16#include "clang/AST/Expr.h" 17#include "clang/AST/ExprCXX.h" 18#include "clang/AST/DeclFriend.h" 19#include "clang/AST/DeclTemplate.h" 20#include "clang/Parse/DeclSpec.h" 21#include "clang/Parse/Template.h" 22#include "clang/Basic/LangOptions.h" 23#include "clang/Basic/PartialDiagnostic.h" 24#include "llvm/ADT/StringExtras.h" 25using namespace clang; 26 27/// \brief Determine whether the declaration found is acceptable as the name 28/// of a template and, if so, return that template declaration. Otherwise, 29/// returns NULL. 30static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) { 31 if (!D) 32 return 0; 33 34 if (isa<TemplateDecl>(D)) 35 return D; 36 37 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 38 // C++ [temp.local]p1: 39 // Like normal (non-template) classes, class templates have an 40 // injected-class-name (Clause 9). The injected-class-name 41 // can be used with or without a template-argument-list. When 42 // it is used without a template-argument-list, it is 43 // equivalent to the injected-class-name followed by the 44 // template-parameters of the class template enclosed in 45 // <>. When it is used with a template-argument-list, it 46 // refers to the specified class template specialization, 47 // which could be the current specialization or another 48 // specialization. 49 if (Record->isInjectedClassName()) { 50 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 51 if (Record->getDescribedClassTemplate()) 52 return Record->getDescribedClassTemplate(); 53 54 if (ClassTemplateSpecializationDecl *Spec 55 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 56 return Spec->getSpecializedTemplate(); 57 } 58 59 return 0; 60 } 61 62 return 0; 63} 64 65static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) { 66 LookupResult::Filter filter = R.makeFilter(); 67 while (filter.hasNext()) { 68 NamedDecl *Orig = filter.next(); 69 NamedDecl *Repl = isAcceptableTemplateName(C, Orig->getUnderlyingDecl()); 70 if (!Repl) 71 filter.erase(); 72 else if (Repl != Orig) 73 filter.replace(Repl); 74 } 75 filter.done(); 76} 77 78TemplateNameKind Sema::isTemplateName(Scope *S, 79 const CXXScopeSpec &SS, 80 UnqualifiedId &Name, 81 TypeTy *ObjectTypePtr, 82 bool EnteringContext, 83 TemplateTy &TemplateResult) { 84 assert(getLangOptions().CPlusPlus && "No template names in C!"); 85 86 DeclarationName TName; 87 88 switch (Name.getKind()) { 89 case UnqualifiedId::IK_Identifier: 90 TName = DeclarationName(Name.Identifier); 91 break; 92 93 case UnqualifiedId::IK_OperatorFunctionId: 94 TName = Context.DeclarationNames.getCXXOperatorName( 95 Name.OperatorFunctionId.Operator); 96 break; 97 98 case UnqualifiedId::IK_LiteralOperatorId: 99 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 100 break; 101 102 default: 103 return TNK_Non_template; 104 } 105 106 QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr); 107 108 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 109 LookupOrdinaryName); 110 R.suppressDiagnostics(); 111 LookupTemplateName(R, S, SS, ObjectType, EnteringContext); 112 if (R.empty()) 113 return TNK_Non_template; 114 115 TemplateName Template; 116 TemplateNameKind TemplateKind; 117 118 unsigned ResultCount = R.end() - R.begin(); 119 if (ResultCount > 1) { 120 // We assume that we'll preserve the qualifier from a function 121 // template name in other ways. 122 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 123 TemplateKind = TNK_Function_template; 124 } else { 125 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 126 127 if (SS.isSet() && !SS.isInvalid()) { 128 NestedNameSpecifier *Qualifier 129 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 130 Template = Context.getQualifiedTemplateName(Qualifier, false, TD); 131 } else { 132 Template = TemplateName(TD); 133 } 134 135 if (isa<FunctionTemplateDecl>(TD)) 136 TemplateKind = TNK_Function_template; 137 else { 138 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD)); 139 TemplateKind = TNK_Type_template; 140 } 141 } 142 143 TemplateResult = TemplateTy::make(Template); 144 return TemplateKind; 145} 146 147bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 148 SourceLocation IILoc, 149 Scope *S, 150 const CXXScopeSpec *SS, 151 TemplateTy &SuggestedTemplate, 152 TemplateNameKind &SuggestedKind) { 153 // We can't recover unless there's a dependent scope specifier preceding the 154 // template name. 155 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 156 computeDeclContext(*SS)) 157 return false; 158 159 // The code is missing a 'template' keyword prior to the dependent template 160 // name. 161 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 162 Diag(IILoc, diag::err_template_kw_missing) 163 << Qualifier << II.getName() 164 << FixItHint::CreateInsertion(IILoc, "template "); 165 SuggestedTemplate 166 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 167 SuggestedKind = TNK_Dependent_template_name; 168 return true; 169} 170 171void Sema::LookupTemplateName(LookupResult &Found, 172 Scope *S, const CXXScopeSpec &SS, 173 QualType ObjectType, 174 bool EnteringContext) { 175 // Determine where to perform name lookup 176 DeclContext *LookupCtx = 0; 177 bool isDependent = false; 178 if (!ObjectType.isNull()) { 179 // This nested-name-specifier occurs in a member access expression, e.g., 180 // x->B::f, and we are looking into the type of the object. 181 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 182 LookupCtx = computeDeclContext(ObjectType); 183 isDependent = ObjectType->isDependentType(); 184 assert((isDependent || !ObjectType->isIncompleteType()) && 185 "Caller should have completed object type"); 186 } else if (SS.isSet()) { 187 // This nested-name-specifier occurs after another nested-name-specifier, 188 // so long into the context associated with the prior nested-name-specifier. 189 LookupCtx = computeDeclContext(SS, EnteringContext); 190 isDependent = isDependentScopeSpecifier(SS); 191 192 // The declaration context must be complete. 193 if (LookupCtx && RequireCompleteDeclContext(SS)) 194 return; 195 } 196 197 bool ObjectTypeSearchedInScope = false; 198 if (LookupCtx) { 199 // Perform "qualified" name lookup into the declaration context we 200 // computed, which is either the type of the base of a member access 201 // expression or the declaration context associated with a prior 202 // nested-name-specifier. 203 LookupQualifiedName(Found, LookupCtx); 204 205 if (!ObjectType.isNull() && Found.empty()) { 206 // C++ [basic.lookup.classref]p1: 207 // In a class member access expression (5.2.5), if the . or -> token is 208 // immediately followed by an identifier followed by a <, the 209 // identifier must be looked up to determine whether the < is the 210 // beginning of a template argument list (14.2) or a less-than operator. 211 // The identifier is first looked up in the class of the object 212 // expression. If the identifier is not found, it is then looked up in 213 // the context of the entire postfix-expression and shall name a class 214 // or function template. 215 // 216 // FIXME: When we're instantiating a template, do we actually have to 217 // look in the scope of the template? Seems fishy... 218 if (S) LookupName(Found, S); 219 ObjectTypeSearchedInScope = true; 220 } 221 } else if (isDependent) { 222 // We cannot look into a dependent object type or nested nme 223 // specifier. 224 return; 225 } else { 226 // Perform unqualified name lookup in the current scope. 227 LookupName(Found, S); 228 } 229 230 // FIXME: Cope with ambiguous name-lookup results. 231 assert(!Found.isAmbiguous() && 232 "Cannot handle template name-lookup ambiguities"); 233 234 if (Found.empty() && !isDependent) { 235 // If we did not find any names, attempt to correct any typos. 236 DeclarationName Name = Found.getLookupName(); 237 if (CorrectTypo(Found, S, &SS, LookupCtx)) { 238 FilterAcceptableTemplateNames(Context, Found); 239 if (!Found.empty() && isa<TemplateDecl>(*Found.begin())) { 240 if (LookupCtx) 241 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 242 << Name << LookupCtx << Found.getLookupName() << SS.getRange() 243 << FixItHint::CreateReplacement(Found.getNameLoc(), 244 Found.getLookupName().getAsString()); 245 else 246 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 247 << Name << Found.getLookupName() 248 << FixItHint::CreateReplacement(Found.getNameLoc(), 249 Found.getLookupName().getAsString()); 250 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 251 Diag(Template->getLocation(), diag::note_previous_decl) 252 << Template->getDeclName(); 253 } else 254 Found.clear(); 255 } else { 256 Found.clear(); 257 } 258 } 259 260 FilterAcceptableTemplateNames(Context, Found); 261 if (Found.empty()) 262 return; 263 264 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 265 // C++ [basic.lookup.classref]p1: 266 // [...] If the lookup in the class of the object expression finds a 267 // template, the name is also looked up in the context of the entire 268 // postfix-expression and [...] 269 // 270 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 271 LookupOrdinaryName); 272 LookupName(FoundOuter, S); 273 FilterAcceptableTemplateNames(Context, FoundOuter); 274 // FIXME: Handle ambiguities in this lookup better 275 276 if (FoundOuter.empty()) { 277 // - if the name is not found, the name found in the class of the 278 // object expression is used, otherwise 279 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 280 // - if the name is found in the context of the entire 281 // postfix-expression and does not name a class template, the name 282 // found in the class of the object expression is used, otherwise 283 } else { 284 // - if the name found is a class template, it must refer to the same 285 // entity as the one found in the class of the object expression, 286 // otherwise the program is ill-formed. 287 if (!Found.isSingleResult() || 288 Found.getFoundDecl()->getCanonicalDecl() 289 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 290 Diag(Found.getNameLoc(), 291 diag::err_nested_name_member_ref_lookup_ambiguous) 292 << Found.getLookupName(); 293 Diag(Found.getRepresentativeDecl()->getLocation(), 294 diag::note_ambig_member_ref_object_type) 295 << ObjectType; 296 Diag(FoundOuter.getFoundDecl()->getLocation(), 297 diag::note_ambig_member_ref_scope); 298 299 // Recover by taking the template that we found in the object 300 // expression's type. 301 } 302 } 303 } 304} 305 306/// ActOnDependentIdExpression - Handle a dependent id-expression that 307/// was just parsed. This is only possible with an explicit scope 308/// specifier naming a dependent type. 309Sema::OwningExprResult 310Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 311 DeclarationName Name, 312 SourceLocation NameLoc, 313 bool isAddressOfOperand, 314 const TemplateArgumentListInfo *TemplateArgs) { 315 NestedNameSpecifier *Qualifier 316 = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 317 318 if (!isAddressOfOperand && 319 isa<CXXMethodDecl>(CurContext) && 320 cast<CXXMethodDecl>(CurContext)->isInstance()) { 321 QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context); 322 323 // Since the 'this' expression is synthesized, we don't need to 324 // perform the double-lookup check. 325 NamedDecl *FirstQualifierInScope = 0; 326 327 return Owned(CXXDependentScopeMemberExpr::Create(Context, 328 /*This*/ 0, ThisType, 329 /*IsArrow*/ true, 330 /*Op*/ SourceLocation(), 331 Qualifier, SS.getRange(), 332 FirstQualifierInScope, 333 Name, NameLoc, 334 TemplateArgs)); 335 } 336 337 return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs); 338} 339 340Sema::OwningExprResult 341Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 342 DeclarationName Name, 343 SourceLocation NameLoc, 344 const TemplateArgumentListInfo *TemplateArgs) { 345 return Owned(DependentScopeDeclRefExpr::Create(Context, 346 static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 347 SS.getRange(), 348 Name, NameLoc, 349 TemplateArgs)); 350} 351 352/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 353/// that the template parameter 'PrevDecl' is being shadowed by a new 354/// declaration at location Loc. Returns true to indicate that this is 355/// an error, and false otherwise. 356bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 357 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 358 359 // Microsoft Visual C++ permits template parameters to be shadowed. 360 if (getLangOptions().Microsoft) 361 return false; 362 363 // C++ [temp.local]p4: 364 // A template-parameter shall not be redeclared within its 365 // scope (including nested scopes). 366 Diag(Loc, diag::err_template_param_shadow) 367 << cast<NamedDecl>(PrevDecl)->getDeclName(); 368 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 369 return true; 370} 371 372/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 373/// the parameter D to reference the templated declaration and return a pointer 374/// to the template declaration. Otherwise, do nothing to D and return null. 375TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) { 376 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) { 377 D = DeclPtrTy::make(Temp->getTemplatedDecl()); 378 return Temp; 379 } 380 return 0; 381} 382 383static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 384 const ParsedTemplateArgument &Arg) { 385 386 switch (Arg.getKind()) { 387 case ParsedTemplateArgument::Type: { 388 TypeSourceInfo *DI; 389 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 390 if (!DI) 391 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 392 return TemplateArgumentLoc(TemplateArgument(T), DI); 393 } 394 395 case ParsedTemplateArgument::NonType: { 396 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 397 return TemplateArgumentLoc(TemplateArgument(E), E); 398 } 399 400 case ParsedTemplateArgument::Template: { 401 TemplateName Template 402 = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get()); 403 return TemplateArgumentLoc(TemplateArgument(Template), 404 Arg.getScopeSpec().getRange(), 405 Arg.getLocation()); 406 } 407 } 408 409 llvm_unreachable("Unhandled parsed template argument"); 410 return TemplateArgumentLoc(); 411} 412 413/// \brief Translates template arguments as provided by the parser 414/// into template arguments used by semantic analysis. 415void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 416 TemplateArgumentListInfo &TemplateArgs) { 417 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 418 TemplateArgs.addArgument(translateTemplateArgument(*this, 419 TemplateArgsIn[I])); 420} 421 422/// ActOnTypeParameter - Called when a C++ template type parameter 423/// (e.g., "typename T") has been parsed. Typename specifies whether 424/// the keyword "typename" was used to declare the type parameter 425/// (otherwise, "class" was used), and KeyLoc is the location of the 426/// "class" or "typename" keyword. ParamName is the name of the 427/// parameter (NULL indicates an unnamed template parameter) and 428/// ParamName is the location of the parameter name (if any). 429/// If the type parameter has a default argument, it will be added 430/// later via ActOnTypeParameterDefault. 431Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 432 SourceLocation EllipsisLoc, 433 SourceLocation KeyLoc, 434 IdentifierInfo *ParamName, 435 SourceLocation ParamNameLoc, 436 unsigned Depth, unsigned Position) { 437 assert(S->isTemplateParamScope() && 438 "Template type parameter not in template parameter scope!"); 439 bool Invalid = false; 440 441 if (ParamName) { 442 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName); 443 if (PrevDecl && PrevDecl->isTemplateParameter()) 444 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 445 PrevDecl); 446 } 447 448 SourceLocation Loc = ParamNameLoc; 449 if (!ParamName) 450 Loc = KeyLoc; 451 452 TemplateTypeParmDecl *Param 453 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 454 Loc, Depth, Position, ParamName, Typename, 455 Ellipsis); 456 if (Invalid) 457 Param->setInvalidDecl(); 458 459 if (ParamName) { 460 // Add the template parameter into the current scope. 461 S->AddDecl(DeclPtrTy::make(Param)); 462 IdResolver.AddDecl(Param); 463 } 464 465 return DeclPtrTy::make(Param); 466} 467 468/// ActOnTypeParameterDefault - Adds a default argument (the type 469/// Default) to the given template type parameter (TypeParam). 470void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam, 471 SourceLocation EqualLoc, 472 SourceLocation DefaultLoc, 473 TypeTy *DefaultT) { 474 TemplateTypeParmDecl *Parm 475 = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>()); 476 477 TypeSourceInfo *DefaultTInfo; 478 GetTypeFromParser(DefaultT, &DefaultTInfo); 479 480 assert(DefaultTInfo && "expected source information for type"); 481 482 // C++0x [temp.param]p9: 483 // A default template-argument may be specified for any kind of 484 // template-parameter that is not a template parameter pack. 485 if (Parm->isParameterPack()) { 486 Diag(DefaultLoc, diag::err_template_param_pack_default_arg); 487 return; 488 } 489 490 // C++ [temp.param]p14: 491 // A template-parameter shall not be used in its own default argument. 492 // FIXME: Implement this check! Needs a recursive walk over the types. 493 494 // Check the template argument itself. 495 if (CheckTemplateArgument(Parm, DefaultTInfo)) { 496 Parm->setInvalidDecl(); 497 return; 498 } 499 500 Parm->setDefaultArgument(DefaultTInfo, false); 501} 502 503/// \brief Check that the type of a non-type template parameter is 504/// well-formed. 505/// 506/// \returns the (possibly-promoted) parameter type if valid; 507/// otherwise, produces a diagnostic and returns a NULL type. 508QualType 509Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 510 // C++ [temp.param]p4: 511 // 512 // A non-type template-parameter shall have one of the following 513 // (optionally cv-qualified) types: 514 // 515 // -- integral or enumeration type, 516 if (T->isIntegralType() || T->isEnumeralType() || 517 // -- pointer to object or pointer to function, 518 (T->isPointerType() && 519 (T->getAs<PointerType>()->getPointeeType()->isObjectType() || 520 T->getAs<PointerType>()->getPointeeType()->isFunctionType())) || 521 // -- reference to object or reference to function, 522 T->isReferenceType() || 523 // -- pointer to member. 524 T->isMemberPointerType() || 525 // If T is a dependent type, we can't do the check now, so we 526 // assume that it is well-formed. 527 T->isDependentType()) 528 return T; 529 // C++ [temp.param]p8: 530 // 531 // A non-type template-parameter of type "array of T" or 532 // "function returning T" is adjusted to be of type "pointer to 533 // T" or "pointer to function returning T", respectively. 534 else if (T->isArrayType()) 535 // FIXME: Keep the type prior to promotion? 536 return Context.getArrayDecayedType(T); 537 else if (T->isFunctionType()) 538 // FIXME: Keep the type prior to promotion? 539 return Context.getPointerType(T); 540 541 Diag(Loc, diag::err_template_nontype_parm_bad_type) 542 << T; 543 544 return QualType(); 545} 546 547/// ActOnNonTypeTemplateParameter - Called when a C++ non-type 548/// template parameter (e.g., "int Size" in "template<int Size> 549/// class Array") has been parsed. S is the current scope and D is 550/// the parsed declarator. 551Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 552 unsigned Depth, 553 unsigned Position) { 554 TypeSourceInfo *TInfo = 0; 555 QualType T = GetTypeForDeclarator(D, S, &TInfo); 556 557 assert(S->isTemplateParamScope() && 558 "Non-type template parameter not in template parameter scope!"); 559 bool Invalid = false; 560 561 IdentifierInfo *ParamName = D.getIdentifier(); 562 if (ParamName) { 563 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName); 564 if (PrevDecl && PrevDecl->isTemplateParameter()) 565 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 566 PrevDecl); 567 } 568 569 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 570 if (T.isNull()) { 571 T = Context.IntTy; // Recover with an 'int' type. 572 Invalid = true; 573 } 574 575 NonTypeTemplateParmDecl *Param 576 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 577 D.getIdentifierLoc(), 578 Depth, Position, ParamName, T, TInfo); 579 if (Invalid) 580 Param->setInvalidDecl(); 581 582 if (D.getIdentifier()) { 583 // Add the template parameter into the current scope. 584 S->AddDecl(DeclPtrTy::make(Param)); 585 IdResolver.AddDecl(Param); 586 } 587 return DeclPtrTy::make(Param); 588} 589 590/// \brief Adds a default argument to the given non-type template 591/// parameter. 592void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD, 593 SourceLocation EqualLoc, 594 ExprArg DefaultE) { 595 NonTypeTemplateParmDecl *TemplateParm 596 = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 597 Expr *Default = static_cast<Expr *>(DefaultE.get()); 598 599 // C++ [temp.param]p14: 600 // A template-parameter shall not be used in its own default argument. 601 // FIXME: Implement this check! Needs a recursive walk over the types. 602 603 // Check the well-formedness of the default template argument. 604 TemplateArgument Converted; 605 if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default, 606 Converted)) { 607 TemplateParm->setInvalidDecl(); 608 return; 609 } 610 611 TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>()); 612} 613 614 615/// ActOnTemplateTemplateParameter - Called when a C++ template template 616/// parameter (e.g. T in template <template <typename> class T> class array) 617/// has been parsed. S is the current scope. 618Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S, 619 SourceLocation TmpLoc, 620 TemplateParamsTy *Params, 621 IdentifierInfo *Name, 622 SourceLocation NameLoc, 623 unsigned Depth, 624 unsigned Position) { 625 assert(S->isTemplateParamScope() && 626 "Template template parameter not in template parameter scope!"); 627 628 // Construct the parameter object. 629 TemplateTemplateParmDecl *Param = 630 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 631 TmpLoc, Depth, Position, Name, 632 (TemplateParameterList*)Params); 633 634 // Make sure the parameter is valid. 635 // FIXME: Decl object is not currently invalidated anywhere so this doesn't 636 // do anything yet. However, if the template parameter list or (eventual) 637 // default value is ever invalidated, that will propagate here. 638 bool Invalid = false; 639 if (Invalid) { 640 Param->setInvalidDecl(); 641 } 642 643 // If the tt-param has a name, then link the identifier into the scope 644 // and lookup mechanisms. 645 if (Name) { 646 S->AddDecl(DeclPtrTy::make(Param)); 647 IdResolver.AddDecl(Param); 648 } 649 650 return DeclPtrTy::make(Param); 651} 652 653/// \brief Adds a default argument to the given template template 654/// parameter. 655void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD, 656 SourceLocation EqualLoc, 657 const ParsedTemplateArgument &Default) { 658 TemplateTemplateParmDecl *TemplateParm 659 = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 660 661 // C++ [temp.param]p14: 662 // A template-parameter shall not be used in its own default argument. 663 // FIXME: Implement this check! Needs a recursive walk over the types. 664 665 // Check only that we have a template template argument. We don't want to 666 // try to check well-formedness now, because our template template parameter 667 // might have dependent types in its template parameters, which we wouldn't 668 // be able to match now. 669 // 670 // If none of the template template parameter's template arguments mention 671 // other template parameters, we could actually perform more checking here. 672 // However, it isn't worth doing. 673 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 674 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 675 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 676 << DefaultArg.getSourceRange(); 677 return; 678 } 679 680 TemplateParm->setDefaultArgument(DefaultArg); 681} 682 683/// ActOnTemplateParameterList - Builds a TemplateParameterList that 684/// contains the template parameters in Params/NumParams. 685Sema::TemplateParamsTy * 686Sema::ActOnTemplateParameterList(unsigned Depth, 687 SourceLocation ExportLoc, 688 SourceLocation TemplateLoc, 689 SourceLocation LAngleLoc, 690 DeclPtrTy *Params, unsigned NumParams, 691 SourceLocation RAngleLoc) { 692 if (ExportLoc.isValid()) 693 Diag(ExportLoc, diag::warn_template_export_unsupported); 694 695 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 696 (NamedDecl**)Params, NumParams, 697 RAngleLoc); 698} 699 700static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 701 if (SS.isSet()) 702 T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 703 SS.getRange()); 704} 705 706Sema::DeclResult 707Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 708 SourceLocation KWLoc, const CXXScopeSpec &SS, 709 IdentifierInfo *Name, SourceLocation NameLoc, 710 AttributeList *Attr, 711 TemplateParameterList *TemplateParams, 712 AccessSpecifier AS) { 713 assert(TemplateParams && TemplateParams->size() > 0 && 714 "No template parameters"); 715 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 716 bool Invalid = false; 717 718 // Check that we can declare a template here. 719 if (CheckTemplateDeclScope(S, TemplateParams)) 720 return true; 721 722 TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec); 723 assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type"); 724 725 // There is no such thing as an unnamed class template. 726 if (!Name) { 727 Diag(KWLoc, diag::err_template_unnamed_class); 728 return true; 729 } 730 731 // Find any previous declaration with this name. 732 DeclContext *SemanticContext; 733 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 734 ForRedeclaration); 735 if (SS.isNotEmpty() && !SS.isInvalid()) { 736 if (RequireCompleteDeclContext(SS)) 737 return true; 738 739 SemanticContext = computeDeclContext(SS, true); 740 if (!SemanticContext) { 741 // FIXME: Produce a reasonable diagnostic here 742 return true; 743 } 744 745 LookupQualifiedName(Previous, SemanticContext); 746 } else { 747 SemanticContext = CurContext; 748 LookupName(Previous, S); 749 } 750 751 assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?"); 752 NamedDecl *PrevDecl = 0; 753 if (Previous.begin() != Previous.end()) 754 PrevDecl = *Previous.begin(); 755 756 // If there is a previous declaration with the same name, check 757 // whether this is a valid redeclaration. 758 ClassTemplateDecl *PrevClassTemplate 759 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 760 761 // We may have found the injected-class-name of a class template, 762 // class template partial specialization, or class template specialization. 763 // In these cases, grab the template that is being defined or specialized. 764 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 765 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 766 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 767 PrevClassTemplate 768 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 769 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 770 PrevClassTemplate 771 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 772 ->getSpecializedTemplate(); 773 } 774 } 775 776 if (TUK == TUK_Friend) { 777 // C++ [namespace.memdef]p3: 778 // [...] When looking for a prior declaration of a class or a function 779 // declared as a friend, and when the name of the friend class or 780 // function is neither a qualified name nor a template-id, scopes outside 781 // the innermost enclosing namespace scope are not considered. 782 DeclContext *OutermostContext = CurContext; 783 while (!OutermostContext->isFileContext()) 784 OutermostContext = OutermostContext->getLookupParent(); 785 786 if (PrevDecl && 787 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 788 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 789 SemanticContext = PrevDecl->getDeclContext(); 790 } else { 791 // Declarations in outer scopes don't matter. However, the outermost 792 // context we computed is the semantic context for our new 793 // declaration. 794 PrevDecl = PrevClassTemplate = 0; 795 SemanticContext = OutermostContext; 796 } 797 798 if (CurContext->isDependentContext()) { 799 // If this is a dependent context, we don't want to link the friend 800 // class template to the template in scope, because that would perform 801 // checking of the template parameter lists that can't be performed 802 // until the outer context is instantiated. 803 PrevDecl = PrevClassTemplate = 0; 804 } 805 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 806 PrevDecl = PrevClassTemplate = 0; 807 808 if (PrevClassTemplate) { 809 // Ensure that the template parameter lists are compatible. 810 if (!TemplateParameterListsAreEqual(TemplateParams, 811 PrevClassTemplate->getTemplateParameters(), 812 /*Complain=*/true, 813 TPL_TemplateMatch)) 814 return true; 815 816 // C++ [temp.class]p4: 817 // In a redeclaration, partial specialization, explicit 818 // specialization or explicit instantiation of a class template, 819 // the class-key shall agree in kind with the original class 820 // template declaration (7.1.5.3). 821 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 822 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 823 Diag(KWLoc, diag::err_use_with_wrong_tag) 824 << Name 825 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 826 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 827 Kind = PrevRecordDecl->getTagKind(); 828 } 829 830 // Check for redefinition of this class template. 831 if (TUK == TUK_Definition) { 832 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 833 Diag(NameLoc, diag::err_redefinition) << Name; 834 Diag(Def->getLocation(), diag::note_previous_definition); 835 // FIXME: Would it make sense to try to "forget" the previous 836 // definition, as part of error recovery? 837 return true; 838 } 839 } 840 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 841 // Maybe we will complain about the shadowed template parameter. 842 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 843 // Just pretend that we didn't see the previous declaration. 844 PrevDecl = 0; 845 } else if (PrevDecl) { 846 // C++ [temp]p5: 847 // A class template shall not have the same name as any other 848 // template, class, function, object, enumeration, enumerator, 849 // namespace, or type in the same scope (3.3), except as specified 850 // in (14.5.4). 851 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 852 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 853 return true; 854 } 855 856 // Check the template parameter list of this declaration, possibly 857 // merging in the template parameter list from the previous class 858 // template declaration. 859 if (CheckTemplateParameterList(TemplateParams, 860 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 861 TPC_ClassTemplate)) 862 Invalid = true; 863 864 // FIXME: If we had a scope specifier, we better have a previous template 865 // declaration! 866 867 CXXRecordDecl *NewClass = 868 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 869 PrevClassTemplate? 870 PrevClassTemplate->getTemplatedDecl() : 0, 871 /*DelayTypeCreation=*/true); 872 SetNestedNameSpecifier(NewClass, SS); 873 874 ClassTemplateDecl *NewTemplate 875 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 876 DeclarationName(Name), TemplateParams, 877 NewClass, PrevClassTemplate); 878 NewClass->setDescribedClassTemplate(NewTemplate); 879 880 // Build the type for the class template declaration now. 881 QualType T = NewTemplate->getInjectedClassNameSpecialization(Context); 882 T = Context.getInjectedClassNameType(NewClass, T); 883 assert(T->isDependentType() && "Class template type is not dependent?"); 884 (void)T; 885 886 // If we are providing an explicit specialization of a member that is a 887 // class template, make a note of that. 888 if (PrevClassTemplate && 889 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 890 PrevClassTemplate->setMemberSpecialization(); 891 892 // Set the access specifier. 893 if (!Invalid && TUK != TUK_Friend) 894 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 895 896 // Set the lexical context of these templates 897 NewClass->setLexicalDeclContext(CurContext); 898 NewTemplate->setLexicalDeclContext(CurContext); 899 900 if (TUK == TUK_Definition) 901 NewClass->startDefinition(); 902 903 if (Attr) 904 ProcessDeclAttributeList(S, NewClass, Attr); 905 906 if (TUK != TUK_Friend) 907 PushOnScopeChains(NewTemplate, S); 908 else { 909 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 910 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 911 NewClass->setAccess(PrevClassTemplate->getAccess()); 912 } 913 914 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 915 PrevClassTemplate != NULL); 916 917 // Friend templates are visible in fairly strange ways. 918 if (!CurContext->isDependentContext()) { 919 DeclContext *DC = SemanticContext->getLookupContext(); 920 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 921 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 922 PushOnScopeChains(NewTemplate, EnclosingScope, 923 /* AddToContext = */ false); 924 } 925 926 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 927 NewClass->getLocation(), 928 NewTemplate, 929 /*FIXME:*/NewClass->getLocation()); 930 Friend->setAccess(AS_public); 931 CurContext->addDecl(Friend); 932 } 933 934 if (Invalid) { 935 NewTemplate->setInvalidDecl(); 936 NewClass->setInvalidDecl(); 937 } 938 return DeclPtrTy::make(NewTemplate); 939} 940 941/// \brief Diagnose the presence of a default template argument on a 942/// template parameter, which is ill-formed in certain contexts. 943/// 944/// \returns true if the default template argument should be dropped. 945static bool DiagnoseDefaultTemplateArgument(Sema &S, 946 Sema::TemplateParamListContext TPC, 947 SourceLocation ParamLoc, 948 SourceRange DefArgRange) { 949 switch (TPC) { 950 case Sema::TPC_ClassTemplate: 951 return false; 952 953 case Sema::TPC_FunctionTemplate: 954 // C++ [temp.param]p9: 955 // A default template-argument shall not be specified in a 956 // function template declaration or a function template 957 // definition [...] 958 // (This sentence is not in C++0x, per DR226). 959 if (!S.getLangOptions().CPlusPlus0x) 960 S.Diag(ParamLoc, 961 diag::err_template_parameter_default_in_function_template) 962 << DefArgRange; 963 return false; 964 965 case Sema::TPC_ClassTemplateMember: 966 // C++0x [temp.param]p9: 967 // A default template-argument shall not be specified in the 968 // template-parameter-lists of the definition of a member of a 969 // class template that appears outside of the member's class. 970 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 971 << DefArgRange; 972 return true; 973 974 case Sema::TPC_FriendFunctionTemplate: 975 // C++ [temp.param]p9: 976 // A default template-argument shall not be specified in a 977 // friend template declaration. 978 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 979 << DefArgRange; 980 return true; 981 982 // FIXME: C++0x [temp.param]p9 allows default template-arguments 983 // for friend function templates if there is only a single 984 // declaration (and it is a definition). Strange! 985 } 986 987 return false; 988} 989 990/// \brief Checks the validity of a template parameter list, possibly 991/// considering the template parameter list from a previous 992/// declaration. 993/// 994/// If an "old" template parameter list is provided, it must be 995/// equivalent (per TemplateParameterListsAreEqual) to the "new" 996/// template parameter list. 997/// 998/// \param NewParams Template parameter list for a new template 999/// declaration. This template parameter list will be updated with any 1000/// default arguments that are carried through from the previous 1001/// template parameter list. 1002/// 1003/// \param OldParams If provided, template parameter list from a 1004/// previous declaration of the same template. Default template 1005/// arguments will be merged from the old template parameter list to 1006/// the new template parameter list. 1007/// 1008/// \param TPC Describes the context in which we are checking the given 1009/// template parameter list. 1010/// 1011/// \returns true if an error occurred, false otherwise. 1012bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1013 TemplateParameterList *OldParams, 1014 TemplateParamListContext TPC) { 1015 bool Invalid = false; 1016 1017 // C++ [temp.param]p10: 1018 // The set of default template-arguments available for use with a 1019 // template declaration or definition is obtained by merging the 1020 // default arguments from the definition (if in scope) and all 1021 // declarations in scope in the same way default function 1022 // arguments are (8.3.6). 1023 bool SawDefaultArgument = false; 1024 SourceLocation PreviousDefaultArgLoc; 1025 1026 bool SawParameterPack = false; 1027 SourceLocation ParameterPackLoc; 1028 1029 // Dummy initialization to avoid warnings. 1030 TemplateParameterList::iterator OldParam = NewParams->end(); 1031 if (OldParams) 1032 OldParam = OldParams->begin(); 1033 1034 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1035 NewParamEnd = NewParams->end(); 1036 NewParam != NewParamEnd; ++NewParam) { 1037 // Variables used to diagnose redundant default arguments 1038 bool RedundantDefaultArg = false; 1039 SourceLocation OldDefaultLoc; 1040 SourceLocation NewDefaultLoc; 1041 1042 // Variables used to diagnose missing default arguments 1043 bool MissingDefaultArg = false; 1044 1045 // C++0x [temp.param]p11: 1046 // If a template parameter of a class template is a template parameter pack, 1047 // it must be the last template parameter. 1048 if (SawParameterPack) { 1049 Diag(ParameterPackLoc, 1050 diag::err_template_param_pack_must_be_last_template_parameter); 1051 Invalid = true; 1052 } 1053 1054 if (TemplateTypeParmDecl *NewTypeParm 1055 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1056 // Check the presence of a default argument here. 1057 if (NewTypeParm->hasDefaultArgument() && 1058 DiagnoseDefaultTemplateArgument(*this, TPC, 1059 NewTypeParm->getLocation(), 1060 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1061 .getFullSourceRange())) 1062 NewTypeParm->removeDefaultArgument(); 1063 1064 // Merge default arguments for template type parameters. 1065 TemplateTypeParmDecl *OldTypeParm 1066 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1067 1068 if (NewTypeParm->isParameterPack()) { 1069 assert(!NewTypeParm->hasDefaultArgument() && 1070 "Parameter packs can't have a default argument!"); 1071 SawParameterPack = true; 1072 ParameterPackLoc = NewTypeParm->getLocation(); 1073 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1074 NewTypeParm->hasDefaultArgument()) { 1075 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1076 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1077 SawDefaultArgument = true; 1078 RedundantDefaultArg = true; 1079 PreviousDefaultArgLoc = NewDefaultLoc; 1080 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1081 // Merge the default argument from the old declaration to the 1082 // new declaration. 1083 SawDefaultArgument = true; 1084 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1085 true); 1086 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1087 } else if (NewTypeParm->hasDefaultArgument()) { 1088 SawDefaultArgument = true; 1089 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1090 } else if (SawDefaultArgument) 1091 MissingDefaultArg = true; 1092 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1093 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1094 // Check the presence of a default argument here. 1095 if (NewNonTypeParm->hasDefaultArgument() && 1096 DiagnoseDefaultTemplateArgument(*this, TPC, 1097 NewNonTypeParm->getLocation(), 1098 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1099 NewNonTypeParm->getDefaultArgument()->Destroy(Context); 1100 NewNonTypeParm->setDefaultArgument(0); 1101 } 1102 1103 // Merge default arguments for non-type template parameters 1104 NonTypeTemplateParmDecl *OldNonTypeParm 1105 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1106 if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1107 NewNonTypeParm->hasDefaultArgument()) { 1108 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1109 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1110 SawDefaultArgument = true; 1111 RedundantDefaultArg = true; 1112 PreviousDefaultArgLoc = NewDefaultLoc; 1113 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1114 // Merge the default argument from the old declaration to the 1115 // new declaration. 1116 SawDefaultArgument = true; 1117 // FIXME: We need to create a new kind of "default argument" 1118 // expression that points to a previous template template 1119 // parameter. 1120 NewNonTypeParm->setDefaultArgument( 1121 OldNonTypeParm->getDefaultArgument()); 1122 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1123 } else if (NewNonTypeParm->hasDefaultArgument()) { 1124 SawDefaultArgument = true; 1125 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1126 } else if (SawDefaultArgument) 1127 MissingDefaultArg = true; 1128 } else { 1129 // Check the presence of a default argument here. 1130 TemplateTemplateParmDecl *NewTemplateParm 1131 = cast<TemplateTemplateParmDecl>(*NewParam); 1132 if (NewTemplateParm->hasDefaultArgument() && 1133 DiagnoseDefaultTemplateArgument(*this, TPC, 1134 NewTemplateParm->getLocation(), 1135 NewTemplateParm->getDefaultArgument().getSourceRange())) 1136 NewTemplateParm->setDefaultArgument(TemplateArgumentLoc()); 1137 1138 // Merge default arguments for template template parameters 1139 TemplateTemplateParmDecl *OldTemplateParm 1140 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1141 if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1142 NewTemplateParm->hasDefaultArgument()) { 1143 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1144 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1145 SawDefaultArgument = true; 1146 RedundantDefaultArg = true; 1147 PreviousDefaultArgLoc = NewDefaultLoc; 1148 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1149 // Merge the default argument from the old declaration to the 1150 // new declaration. 1151 SawDefaultArgument = true; 1152 // FIXME: We need to create a new kind of "default argument" expression 1153 // that points to a previous template template parameter. 1154 NewTemplateParm->setDefaultArgument( 1155 OldTemplateParm->getDefaultArgument()); 1156 PreviousDefaultArgLoc 1157 = OldTemplateParm->getDefaultArgument().getLocation(); 1158 } else if (NewTemplateParm->hasDefaultArgument()) { 1159 SawDefaultArgument = true; 1160 PreviousDefaultArgLoc 1161 = NewTemplateParm->getDefaultArgument().getLocation(); 1162 } else if (SawDefaultArgument) 1163 MissingDefaultArg = true; 1164 } 1165 1166 if (RedundantDefaultArg) { 1167 // C++ [temp.param]p12: 1168 // A template-parameter shall not be given default arguments 1169 // by two different declarations in the same scope. 1170 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1171 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1172 Invalid = true; 1173 } else if (MissingDefaultArg) { 1174 // C++ [temp.param]p11: 1175 // If a template-parameter has a default template-argument, 1176 // all subsequent template-parameters shall have a default 1177 // template-argument supplied. 1178 Diag((*NewParam)->getLocation(), 1179 diag::err_template_param_default_arg_missing); 1180 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1181 Invalid = true; 1182 } 1183 1184 // If we have an old template parameter list that we're merging 1185 // in, move on to the next parameter. 1186 if (OldParams) 1187 ++OldParam; 1188 } 1189 1190 return Invalid; 1191} 1192 1193/// \brief Match the given template parameter lists to the given scope 1194/// specifier, returning the template parameter list that applies to the 1195/// name. 1196/// 1197/// \param DeclStartLoc the start of the declaration that has a scope 1198/// specifier or a template parameter list. 1199/// 1200/// \param SS the scope specifier that will be matched to the given template 1201/// parameter lists. This scope specifier precedes a qualified name that is 1202/// being declared. 1203/// 1204/// \param ParamLists the template parameter lists, from the outermost to the 1205/// innermost template parameter lists. 1206/// 1207/// \param NumParamLists the number of template parameter lists in ParamLists. 1208/// 1209/// \param IsExplicitSpecialization will be set true if the entity being 1210/// declared is an explicit specialization, false otherwise. 1211/// 1212/// \returns the template parameter list, if any, that corresponds to the 1213/// name that is preceded by the scope specifier @p SS. This template 1214/// parameter list may be have template parameters (if we're declaring a 1215/// template) or may have no template parameters (if we're declaring a 1216/// template specialization), or may be NULL (if we were's declaring isn't 1217/// itself a template). 1218TemplateParameterList * 1219Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1220 const CXXScopeSpec &SS, 1221 TemplateParameterList **ParamLists, 1222 unsigned NumParamLists, 1223 bool &IsExplicitSpecialization) { 1224 IsExplicitSpecialization = false; 1225 1226 // Find the template-ids that occur within the nested-name-specifier. These 1227 // template-ids will match up with the template parameter lists. 1228 llvm::SmallVector<const TemplateSpecializationType *, 4> 1229 TemplateIdsInSpecifier; 1230 llvm::SmallVector<ClassTemplateSpecializationDecl *, 4> 1231 ExplicitSpecializationsInSpecifier; 1232 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 1233 NNS; NNS = NNS->getPrefix()) { 1234 const Type *T = NNS->getAsType(); 1235 if (!T) break; 1236 1237 // C++0x [temp.expl.spec]p17: 1238 // A member or a member template may be nested within many 1239 // enclosing class templates. In an explicit specialization for 1240 // such a member, the member declaration shall be preceded by a 1241 // template<> for each enclosing class template that is 1242 // explicitly specialized. 1243 // 1244 // Following the existing practice of GNU and EDG, we allow a typedef of a 1245 // template specialization type. 1246 if (const TypedefType *TT = dyn_cast<TypedefType>(T)) 1247 T = TT->LookThroughTypedefs().getTypePtr(); 1248 1249 if (const TemplateSpecializationType *SpecType 1250 = dyn_cast<TemplateSpecializationType>(T)) { 1251 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 1252 if (!Template) 1253 continue; // FIXME: should this be an error? probably... 1254 1255 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 1256 ClassTemplateSpecializationDecl *SpecDecl 1257 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 1258 // If the nested name specifier refers to an explicit specialization, 1259 // we don't need a template<> header. 1260 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) { 1261 ExplicitSpecializationsInSpecifier.push_back(SpecDecl); 1262 continue; 1263 } 1264 } 1265 1266 TemplateIdsInSpecifier.push_back(SpecType); 1267 } 1268 } 1269 1270 // Reverse the list of template-ids in the scope specifier, so that we can 1271 // more easily match up the template-ids and the template parameter lists. 1272 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 1273 1274 SourceLocation FirstTemplateLoc = DeclStartLoc; 1275 if (NumParamLists) 1276 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 1277 1278 // Match the template-ids found in the specifier to the template parameter 1279 // lists. 1280 unsigned Idx = 0; 1281 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 1282 Idx != NumTemplateIds; ++Idx) { 1283 QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0); 1284 bool DependentTemplateId = TemplateId->isDependentType(); 1285 if (Idx >= NumParamLists) { 1286 // We have a template-id without a corresponding template parameter 1287 // list. 1288 if (DependentTemplateId) { 1289 // FIXME: the location information here isn't great. 1290 Diag(SS.getRange().getBegin(), 1291 diag::err_template_spec_needs_template_parameters) 1292 << TemplateId 1293 << SS.getRange(); 1294 } else { 1295 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 1296 << SS.getRange() 1297 << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> "); 1298 IsExplicitSpecialization = true; 1299 } 1300 return 0; 1301 } 1302 1303 // Check the template parameter list against its corresponding template-id. 1304 if (DependentTemplateId) { 1305 TemplateDecl *Template 1306 = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl(); 1307 1308 if (ClassTemplateDecl *ClassTemplate 1309 = dyn_cast<ClassTemplateDecl>(Template)) { 1310 TemplateParameterList *ExpectedTemplateParams = 0; 1311 // Is this template-id naming the primary template? 1312 if (Context.hasSameType(TemplateId, 1313 ClassTemplate->getInjectedClassNameSpecialization(Context))) 1314 ExpectedTemplateParams = ClassTemplate->getTemplateParameters(); 1315 // ... or a partial specialization? 1316 else if (ClassTemplatePartialSpecializationDecl *PartialSpec 1317 = ClassTemplate->findPartialSpecialization(TemplateId)) 1318 ExpectedTemplateParams = PartialSpec->getTemplateParameters(); 1319 1320 if (ExpectedTemplateParams) 1321 TemplateParameterListsAreEqual(ParamLists[Idx], 1322 ExpectedTemplateParams, 1323 true, TPL_TemplateMatch); 1324 } 1325 1326 CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember); 1327 } else if (ParamLists[Idx]->size() > 0) 1328 Diag(ParamLists[Idx]->getTemplateLoc(), 1329 diag::err_template_param_list_matches_nontemplate) 1330 << TemplateId 1331 << ParamLists[Idx]->getSourceRange(); 1332 else 1333 IsExplicitSpecialization = true; 1334 } 1335 1336 // If there were at least as many template-ids as there were template 1337 // parameter lists, then there are no template parameter lists remaining for 1338 // the declaration itself. 1339 if (Idx >= NumParamLists) 1340 return 0; 1341 1342 // If there were too many template parameter lists, complain about that now. 1343 if (Idx != NumParamLists - 1) { 1344 while (Idx < NumParamLists - 1) { 1345 bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0; 1346 Diag(ParamLists[Idx]->getTemplateLoc(), 1347 isExplicitSpecHeader? diag::warn_template_spec_extra_headers 1348 : diag::err_template_spec_extra_headers) 1349 << SourceRange(ParamLists[Idx]->getTemplateLoc(), 1350 ParamLists[Idx]->getRAngleLoc()); 1351 1352 if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) { 1353 Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(), 1354 diag::note_explicit_template_spec_does_not_need_header) 1355 << ExplicitSpecializationsInSpecifier.back(); 1356 ExplicitSpecializationsInSpecifier.pop_back(); 1357 } 1358 1359 ++Idx; 1360 } 1361 } 1362 1363 // Return the last template parameter list, which corresponds to the 1364 // entity being declared. 1365 return ParamLists[NumParamLists - 1]; 1366} 1367 1368QualType Sema::CheckTemplateIdType(TemplateName Name, 1369 SourceLocation TemplateLoc, 1370 const TemplateArgumentListInfo &TemplateArgs) { 1371 TemplateDecl *Template = Name.getAsTemplateDecl(); 1372 if (!Template) { 1373 // The template name does not resolve to a template, so we just 1374 // build a dependent template-id type. 1375 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1376 } 1377 1378 // Check that the template argument list is well-formed for this 1379 // template. 1380 TemplateArgumentListBuilder Converted(Template->getTemplateParameters(), 1381 TemplateArgs.size()); 1382 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1383 false, Converted)) 1384 return QualType(); 1385 1386 assert((Converted.structuredSize() == 1387 Template->getTemplateParameters()->size()) && 1388 "Converted template argument list is too short!"); 1389 1390 QualType CanonType; 1391 1392 if (Name.isDependent() || 1393 TemplateSpecializationType::anyDependentTemplateArguments( 1394 TemplateArgs)) { 1395 // This class template specialization is a dependent 1396 // type. Therefore, its canonical type is another class template 1397 // specialization type that contains all of the converted 1398 // arguments in canonical form. This ensures that, e.g., A<T> and 1399 // A<T, T> have identical types when A is declared as: 1400 // 1401 // template<typename T, typename U = T> struct A; 1402 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1403 CanonType = Context.getTemplateSpecializationType(CanonName, 1404 Converted.getFlatArguments(), 1405 Converted.flatSize()); 1406 1407 // FIXME: CanonType is not actually the canonical type, and unfortunately 1408 // it is a TemplateSpecializationType that we will never use again. 1409 // In the future, we need to teach getTemplateSpecializationType to only 1410 // build the canonical type and return that to us. 1411 CanonType = Context.getCanonicalType(CanonType); 1412 } else if (ClassTemplateDecl *ClassTemplate 1413 = dyn_cast<ClassTemplateDecl>(Template)) { 1414 // Find the class template specialization declaration that 1415 // corresponds to these arguments. 1416 llvm::FoldingSetNodeID ID; 1417 ClassTemplateSpecializationDecl::Profile(ID, 1418 Converted.getFlatArguments(), 1419 Converted.flatSize(), 1420 Context); 1421 void *InsertPos = 0; 1422 ClassTemplateSpecializationDecl *Decl 1423 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 1424 if (!Decl) { 1425 // This is the first time we have referenced this class template 1426 // specialization. Create the canonical declaration and add it to 1427 // the set of specializations. 1428 Decl = ClassTemplateSpecializationDecl::Create(Context, 1429 ClassTemplate->getDeclContext(), 1430 ClassTemplate->getLocation(), 1431 ClassTemplate, 1432 Converted, 0); 1433 ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos); 1434 Decl->setLexicalDeclContext(CurContext); 1435 } 1436 1437 CanonType = Context.getTypeDeclType(Decl); 1438 assert(isa<RecordType>(CanonType) && 1439 "type of non-dependent specialization is not a RecordType"); 1440 } 1441 1442 // Build the fully-sugared type for this class template 1443 // specialization, which refers back to the class template 1444 // specialization we created or found. 1445 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 1446} 1447 1448Action::TypeResult 1449Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1450 SourceLocation LAngleLoc, 1451 ASTTemplateArgsPtr TemplateArgsIn, 1452 SourceLocation RAngleLoc) { 1453 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1454 1455 // Translate the parser's template argument list in our AST format. 1456 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 1457 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 1458 1459 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 1460 TemplateArgsIn.release(); 1461 1462 if (Result.isNull()) 1463 return true; 1464 1465 TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result); 1466 TemplateSpecializationTypeLoc TL 1467 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc()); 1468 TL.setTemplateNameLoc(TemplateLoc); 1469 TL.setLAngleLoc(LAngleLoc); 1470 TL.setRAngleLoc(RAngleLoc); 1471 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 1472 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 1473 1474 return CreateLocInfoType(Result, DI).getAsOpaquePtr(); 1475} 1476 1477Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult, 1478 TagUseKind TUK, 1479 DeclSpec::TST TagSpec, 1480 SourceLocation TagLoc) { 1481 if (TypeResult.isInvalid()) 1482 return Sema::TypeResult(); 1483 1484 // FIXME: preserve source info, ideally without copying the DI. 1485 TypeSourceInfo *DI; 1486 QualType Type = GetTypeFromParser(TypeResult.get(), &DI); 1487 1488 // Verify the tag specifier. 1489 TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec); 1490 1491 if (const RecordType *RT = Type->getAs<RecordType>()) { 1492 RecordDecl *D = RT->getDecl(); 1493 1494 IdentifierInfo *Id = D->getIdentifier(); 1495 assert(Id && "templated class must have an identifier"); 1496 1497 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 1498 Diag(TagLoc, diag::err_use_with_wrong_tag) 1499 << Type 1500 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 1501 Diag(D->getLocation(), diag::note_previous_use); 1502 } 1503 } 1504 1505 QualType ElabType = Context.getElaboratedType(Type, TagKind); 1506 1507 return ElabType.getAsOpaquePtr(); 1508} 1509 1510Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 1511 LookupResult &R, 1512 bool RequiresADL, 1513 const TemplateArgumentListInfo &TemplateArgs) { 1514 // FIXME: Can we do any checking at this point? I guess we could check the 1515 // template arguments that we have against the template name, if the template 1516 // name refers to a single template. That's not a terribly common case, 1517 // though. 1518 1519 // These should be filtered out by our callers. 1520 assert(!R.empty() && "empty lookup results when building templateid"); 1521 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 1522 1523 NestedNameSpecifier *Qualifier = 0; 1524 SourceRange QualifierRange; 1525 if (SS.isSet()) { 1526 Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 1527 QualifierRange = SS.getRange(); 1528 } 1529 1530 // We don't want lookup warnings at this point. 1531 R.suppressDiagnostics(); 1532 1533 bool Dependent 1534 = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 1535 &TemplateArgs); 1536 UnresolvedLookupExpr *ULE 1537 = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(), 1538 Qualifier, QualifierRange, 1539 R.getLookupName(), R.getNameLoc(), 1540 RequiresADL, TemplateArgs); 1541 ULE->addDecls(R.begin(), R.end()); 1542 1543 return Owned(ULE); 1544} 1545 1546// We actually only call this from template instantiation. 1547Sema::OwningExprResult 1548Sema::BuildQualifiedTemplateIdExpr(const CXXScopeSpec &SS, 1549 DeclarationName Name, 1550 SourceLocation NameLoc, 1551 const TemplateArgumentListInfo &TemplateArgs) { 1552 DeclContext *DC; 1553 if (!(DC = computeDeclContext(SS, false)) || 1554 DC->isDependentContext() || 1555 RequireCompleteDeclContext(SS)) 1556 return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs); 1557 1558 LookupResult R(*this, Name, NameLoc, LookupOrdinaryName); 1559 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false); 1560 1561 if (R.isAmbiguous()) 1562 return ExprError(); 1563 1564 if (R.empty()) { 1565 Diag(NameLoc, diag::err_template_kw_refers_to_non_template) 1566 << Name << SS.getRange(); 1567 return ExprError(); 1568 } 1569 1570 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 1571 Diag(NameLoc, diag::err_template_kw_refers_to_class_template) 1572 << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange(); 1573 Diag(Temp->getLocation(), diag::note_referenced_class_template); 1574 return ExprError(); 1575 } 1576 1577 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 1578} 1579 1580/// \brief Form a dependent template name. 1581/// 1582/// This action forms a dependent template name given the template 1583/// name and its (presumably dependent) scope specifier. For 1584/// example, given "MetaFun::template apply", the scope specifier \p 1585/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1586/// of the "template" keyword, and "apply" is the \p Name. 1587Sema::TemplateTy 1588Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc, 1589 const CXXScopeSpec &SS, 1590 UnqualifiedId &Name, 1591 TypeTy *ObjectType, 1592 bool EnteringContext) { 1593 DeclContext *LookupCtx = 0; 1594 if (SS.isSet()) 1595 LookupCtx = computeDeclContext(SS, EnteringContext); 1596 if (!LookupCtx && ObjectType) 1597 LookupCtx = computeDeclContext(QualType::getFromOpaquePtr(ObjectType)); 1598 if (LookupCtx) { 1599 // C++0x [temp.names]p5: 1600 // If a name prefixed by the keyword template is not the name of 1601 // a template, the program is ill-formed. [Note: the keyword 1602 // template may not be applied to non-template members of class 1603 // templates. -end note ] [ Note: as is the case with the 1604 // typename prefix, the template prefix is allowed in cases 1605 // where it is not strictly necessary; i.e., when the 1606 // nested-name-specifier or the expression on the left of the -> 1607 // or . is not dependent on a template-parameter, or the use 1608 // does not appear in the scope of a template. -end note] 1609 // 1610 // Note: C++03 was more strict here, because it banned the use of 1611 // the "template" keyword prior to a template-name that was not a 1612 // dependent name. C++ DR468 relaxed this requirement (the 1613 // "template" keyword is now permitted). We follow the C++0x 1614 // rules, even in C++03 mode, retroactively applying the DR. 1615 TemplateTy Template; 1616 TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType, 1617 EnteringContext, Template); 1618 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 1619 isa<CXXRecordDecl>(LookupCtx) && 1620 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) { 1621 // This is a dependent template. 1622 } else if (TNK == TNK_Non_template) { 1623 Diag(Name.getSourceRange().getBegin(), 1624 diag::err_template_kw_refers_to_non_template) 1625 << GetNameFromUnqualifiedId(Name) 1626 << Name.getSourceRange(); 1627 return TemplateTy(); 1628 } else { 1629 // We found something; return it. 1630 return Template; 1631 } 1632 } 1633 1634 NestedNameSpecifier *Qualifier 1635 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1636 1637 switch (Name.getKind()) { 1638 case UnqualifiedId::IK_Identifier: 1639 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1640 Name.Identifier)); 1641 1642 case UnqualifiedId::IK_OperatorFunctionId: 1643 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1644 Name.OperatorFunctionId.Operator)); 1645 1646 case UnqualifiedId::IK_LiteralOperatorId: 1647 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 1648 1649 default: 1650 break; 1651 } 1652 1653 Diag(Name.getSourceRange().getBegin(), 1654 diag::err_template_kw_refers_to_non_template) 1655 << GetNameFromUnqualifiedId(Name) 1656 << Name.getSourceRange(); 1657 return TemplateTy(); 1658} 1659 1660bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1661 const TemplateArgumentLoc &AL, 1662 TemplateArgumentListBuilder &Converted) { 1663 const TemplateArgument &Arg = AL.getArgument(); 1664 1665 // Check template type parameter. 1666 switch(Arg.getKind()) { 1667 case TemplateArgument::Type: 1668 // C++ [temp.arg.type]p1: 1669 // A template-argument for a template-parameter which is a 1670 // type shall be a type-id. 1671 break; 1672 case TemplateArgument::Template: { 1673 // We have a template type parameter but the template argument 1674 // is a template without any arguments. 1675 SourceRange SR = AL.getSourceRange(); 1676 TemplateName Name = Arg.getAsTemplate(); 1677 Diag(SR.getBegin(), diag::err_template_missing_args) 1678 << Name << SR; 1679 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 1680 Diag(Decl->getLocation(), diag::note_template_decl_here); 1681 1682 return true; 1683 } 1684 default: { 1685 // We have a template type parameter but the template argument 1686 // is not a type. 1687 SourceRange SR = AL.getSourceRange(); 1688 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 1689 Diag(Param->getLocation(), diag::note_template_param_here); 1690 1691 return true; 1692 } 1693 } 1694 1695 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 1696 return true; 1697 1698 // Add the converted template type argument. 1699 Converted.Append( 1700 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 1701 return false; 1702} 1703 1704/// \brief Substitute template arguments into the default template argument for 1705/// the given template type parameter. 1706/// 1707/// \param SemaRef the semantic analysis object for which we are performing 1708/// the substitution. 1709/// 1710/// \param Template the template that we are synthesizing template arguments 1711/// for. 1712/// 1713/// \param TemplateLoc the location of the template name that started the 1714/// template-id we are checking. 1715/// 1716/// \param RAngleLoc the location of the right angle bracket ('>') that 1717/// terminates the template-id. 1718/// 1719/// \param Param the template template parameter whose default we are 1720/// substituting into. 1721/// 1722/// \param Converted the list of template arguments provided for template 1723/// parameters that precede \p Param in the template parameter list. 1724/// 1725/// \returns the substituted template argument, or NULL if an error occurred. 1726static TypeSourceInfo * 1727SubstDefaultTemplateArgument(Sema &SemaRef, 1728 TemplateDecl *Template, 1729 SourceLocation TemplateLoc, 1730 SourceLocation RAngleLoc, 1731 TemplateTypeParmDecl *Param, 1732 TemplateArgumentListBuilder &Converted) { 1733 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 1734 1735 // If the argument type is dependent, instantiate it now based 1736 // on the previously-computed template arguments. 1737 if (ArgType->getType()->isDependentType()) { 1738 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1739 /*TakeArgs=*/false); 1740 1741 MultiLevelTemplateArgumentList AllTemplateArgs 1742 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1743 1744 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1745 Template, Converted.getFlatArguments(), 1746 Converted.flatSize(), 1747 SourceRange(TemplateLoc, RAngleLoc)); 1748 1749 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 1750 Param->getDefaultArgumentLoc(), 1751 Param->getDeclName()); 1752 } 1753 1754 return ArgType; 1755} 1756 1757/// \brief Substitute template arguments into the default template argument for 1758/// the given non-type template parameter. 1759/// 1760/// \param SemaRef the semantic analysis object for which we are performing 1761/// the substitution. 1762/// 1763/// \param Template the template that we are synthesizing template arguments 1764/// for. 1765/// 1766/// \param TemplateLoc the location of the template name that started the 1767/// template-id we are checking. 1768/// 1769/// \param RAngleLoc the location of the right angle bracket ('>') that 1770/// terminates the template-id. 1771/// 1772/// \param Param the non-type template parameter whose default we are 1773/// substituting into. 1774/// 1775/// \param Converted the list of template arguments provided for template 1776/// parameters that precede \p Param in the template parameter list. 1777/// 1778/// \returns the substituted template argument, or NULL if an error occurred. 1779static Sema::OwningExprResult 1780SubstDefaultTemplateArgument(Sema &SemaRef, 1781 TemplateDecl *Template, 1782 SourceLocation TemplateLoc, 1783 SourceLocation RAngleLoc, 1784 NonTypeTemplateParmDecl *Param, 1785 TemplateArgumentListBuilder &Converted) { 1786 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1787 /*TakeArgs=*/false); 1788 1789 MultiLevelTemplateArgumentList AllTemplateArgs 1790 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1791 1792 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1793 Template, Converted.getFlatArguments(), 1794 Converted.flatSize(), 1795 SourceRange(TemplateLoc, RAngleLoc)); 1796 1797 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 1798} 1799 1800/// \brief Substitute template arguments into the default template argument for 1801/// the given template template parameter. 1802/// 1803/// \param SemaRef the semantic analysis object for which we are performing 1804/// the substitution. 1805/// 1806/// \param Template the template that we are synthesizing template arguments 1807/// for. 1808/// 1809/// \param TemplateLoc the location of the template name that started the 1810/// template-id we are checking. 1811/// 1812/// \param RAngleLoc the location of the right angle bracket ('>') that 1813/// terminates the template-id. 1814/// 1815/// \param Param the template template parameter whose default we are 1816/// substituting into. 1817/// 1818/// \param Converted the list of template arguments provided for template 1819/// parameters that precede \p Param in the template parameter list. 1820/// 1821/// \returns the substituted template argument, or NULL if an error occurred. 1822static TemplateName 1823SubstDefaultTemplateArgument(Sema &SemaRef, 1824 TemplateDecl *Template, 1825 SourceLocation TemplateLoc, 1826 SourceLocation RAngleLoc, 1827 TemplateTemplateParmDecl *Param, 1828 TemplateArgumentListBuilder &Converted) { 1829 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1830 /*TakeArgs=*/false); 1831 1832 MultiLevelTemplateArgumentList AllTemplateArgs 1833 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1834 1835 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1836 Template, Converted.getFlatArguments(), 1837 Converted.flatSize(), 1838 SourceRange(TemplateLoc, RAngleLoc)); 1839 1840 return SemaRef.SubstTemplateName( 1841 Param->getDefaultArgument().getArgument().getAsTemplate(), 1842 Param->getDefaultArgument().getTemplateNameLoc(), 1843 AllTemplateArgs); 1844} 1845 1846/// \brief If the given template parameter has a default template 1847/// argument, substitute into that default template argument and 1848/// return the corresponding template argument. 1849TemplateArgumentLoc 1850Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 1851 SourceLocation TemplateLoc, 1852 SourceLocation RAngleLoc, 1853 Decl *Param, 1854 TemplateArgumentListBuilder &Converted) { 1855 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 1856 if (!TypeParm->hasDefaultArgument()) 1857 return TemplateArgumentLoc(); 1858 1859 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 1860 TemplateLoc, 1861 RAngleLoc, 1862 TypeParm, 1863 Converted); 1864 if (DI) 1865 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 1866 1867 return TemplateArgumentLoc(); 1868 } 1869 1870 if (NonTypeTemplateParmDecl *NonTypeParm 1871 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 1872 if (!NonTypeParm->hasDefaultArgument()) 1873 return TemplateArgumentLoc(); 1874 1875 OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 1876 TemplateLoc, 1877 RAngleLoc, 1878 NonTypeParm, 1879 Converted); 1880 if (Arg.isInvalid()) 1881 return TemplateArgumentLoc(); 1882 1883 Expr *ArgE = Arg.takeAs<Expr>(); 1884 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 1885 } 1886 1887 TemplateTemplateParmDecl *TempTempParm 1888 = cast<TemplateTemplateParmDecl>(Param); 1889 if (!TempTempParm->hasDefaultArgument()) 1890 return TemplateArgumentLoc(); 1891 1892 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 1893 TemplateLoc, 1894 RAngleLoc, 1895 TempTempParm, 1896 Converted); 1897 if (TName.isNull()) 1898 return TemplateArgumentLoc(); 1899 1900 return TemplateArgumentLoc(TemplateArgument(TName), 1901 TempTempParm->getDefaultArgument().getTemplateQualifierRange(), 1902 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 1903} 1904 1905/// \brief Check that the given template argument corresponds to the given 1906/// template parameter. 1907bool Sema::CheckTemplateArgument(NamedDecl *Param, 1908 const TemplateArgumentLoc &Arg, 1909 TemplateDecl *Template, 1910 SourceLocation TemplateLoc, 1911 SourceLocation RAngleLoc, 1912 TemplateArgumentListBuilder &Converted, 1913 CheckTemplateArgumentKind CTAK) { 1914 // Check template type parameters. 1915 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 1916 return CheckTemplateTypeArgument(TTP, Arg, Converted); 1917 1918 // Check non-type template parameters. 1919 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 1920 // Do substitution on the type of the non-type template parameter 1921 // with the template arguments we've seen thus far. 1922 QualType NTTPType = NTTP->getType(); 1923 if (NTTPType->isDependentType()) { 1924 // Do substitution on the type of the non-type template parameter. 1925 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 1926 NTTP, Converted.getFlatArguments(), 1927 Converted.flatSize(), 1928 SourceRange(TemplateLoc, RAngleLoc)); 1929 1930 TemplateArgumentList TemplateArgs(Context, Converted, 1931 /*TakeArgs=*/false); 1932 NTTPType = SubstType(NTTPType, 1933 MultiLevelTemplateArgumentList(TemplateArgs), 1934 NTTP->getLocation(), 1935 NTTP->getDeclName()); 1936 // If that worked, check the non-type template parameter type 1937 // for validity. 1938 if (!NTTPType.isNull()) 1939 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 1940 NTTP->getLocation()); 1941 if (NTTPType.isNull()) 1942 return true; 1943 } 1944 1945 switch (Arg.getArgument().getKind()) { 1946 case TemplateArgument::Null: 1947 assert(false && "Should never see a NULL template argument here"); 1948 return true; 1949 1950 case TemplateArgument::Expression: { 1951 Expr *E = Arg.getArgument().getAsExpr(); 1952 TemplateArgument Result; 1953 if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK)) 1954 return true; 1955 1956 Converted.Append(Result); 1957 break; 1958 } 1959 1960 case TemplateArgument::Declaration: 1961 case TemplateArgument::Integral: 1962 // We've already checked this template argument, so just copy 1963 // it to the list of converted arguments. 1964 Converted.Append(Arg.getArgument()); 1965 break; 1966 1967 case TemplateArgument::Template: 1968 // We were given a template template argument. It may not be ill-formed; 1969 // see below. 1970 if (DependentTemplateName *DTN 1971 = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) { 1972 // We have a template argument such as \c T::template X, which we 1973 // parsed as a template template argument. However, since we now 1974 // know that we need a non-type template argument, convert this 1975 // template name into an expression. 1976 Expr *E = DependentScopeDeclRefExpr::Create(Context, 1977 DTN->getQualifier(), 1978 Arg.getTemplateQualifierRange(), 1979 DTN->getIdentifier(), 1980 Arg.getTemplateNameLoc()); 1981 1982 TemplateArgument Result; 1983 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 1984 return true; 1985 1986 Converted.Append(Result); 1987 break; 1988 } 1989 1990 // We have a template argument that actually does refer to a class 1991 // template, template alias, or template template parameter, and 1992 // therefore cannot be a non-type template argument. 1993 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 1994 << Arg.getSourceRange(); 1995 1996 Diag(Param->getLocation(), diag::note_template_param_here); 1997 return true; 1998 1999 case TemplateArgument::Type: { 2000 // We have a non-type template parameter but the template 2001 // argument is a type. 2002 2003 // C++ [temp.arg]p2: 2004 // In a template-argument, an ambiguity between a type-id and 2005 // an expression is resolved to a type-id, regardless of the 2006 // form of the corresponding template-parameter. 2007 // 2008 // We warn specifically about this case, since it can be rather 2009 // confusing for users. 2010 QualType T = Arg.getArgument().getAsType(); 2011 SourceRange SR = Arg.getSourceRange(); 2012 if (T->isFunctionType()) 2013 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2014 else 2015 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2016 Diag(Param->getLocation(), diag::note_template_param_here); 2017 return true; 2018 } 2019 2020 case TemplateArgument::Pack: 2021 llvm_unreachable("Caller must expand template argument packs"); 2022 break; 2023 } 2024 2025 return false; 2026 } 2027 2028 2029 // Check template template parameters. 2030 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2031 2032 // Substitute into the template parameter list of the template 2033 // template parameter, since previously-supplied template arguments 2034 // may appear within the template template parameter. 2035 { 2036 // Set up a template instantiation context. 2037 LocalInstantiationScope Scope(*this); 2038 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2039 TempParm, Converted.getFlatArguments(), 2040 Converted.flatSize(), 2041 SourceRange(TemplateLoc, RAngleLoc)); 2042 2043 TemplateArgumentList TemplateArgs(Context, Converted, 2044 /*TakeArgs=*/false); 2045 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2046 SubstDecl(TempParm, CurContext, 2047 MultiLevelTemplateArgumentList(TemplateArgs))); 2048 if (!TempParm) 2049 return true; 2050 2051 // FIXME: TempParam is leaked. 2052 } 2053 2054 switch (Arg.getArgument().getKind()) { 2055 case TemplateArgument::Null: 2056 assert(false && "Should never see a NULL template argument here"); 2057 return true; 2058 2059 case TemplateArgument::Template: 2060 if (CheckTemplateArgument(TempParm, Arg)) 2061 return true; 2062 2063 Converted.Append(Arg.getArgument()); 2064 break; 2065 2066 case TemplateArgument::Expression: 2067 case TemplateArgument::Type: 2068 // We have a template template parameter but the template 2069 // argument does not refer to a template. 2070 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 2071 return true; 2072 2073 case TemplateArgument::Declaration: 2074 llvm_unreachable( 2075 "Declaration argument with template template parameter"); 2076 break; 2077 case TemplateArgument::Integral: 2078 llvm_unreachable( 2079 "Integral argument with template template parameter"); 2080 break; 2081 2082 case TemplateArgument::Pack: 2083 llvm_unreachable("Caller must expand template argument packs"); 2084 break; 2085 } 2086 2087 return false; 2088} 2089 2090/// \brief Check that the given template argument list is well-formed 2091/// for specializing the given template. 2092bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2093 SourceLocation TemplateLoc, 2094 const TemplateArgumentListInfo &TemplateArgs, 2095 bool PartialTemplateArgs, 2096 TemplateArgumentListBuilder &Converted) { 2097 TemplateParameterList *Params = Template->getTemplateParameters(); 2098 unsigned NumParams = Params->size(); 2099 unsigned NumArgs = TemplateArgs.size(); 2100 bool Invalid = false; 2101 2102 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2103 2104 bool HasParameterPack = 2105 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2106 2107 if ((NumArgs > NumParams && !HasParameterPack) || 2108 (NumArgs < Params->getMinRequiredArguments() && 2109 !PartialTemplateArgs)) { 2110 // FIXME: point at either the first arg beyond what we can handle, 2111 // or the '>', depending on whether we have too many or too few 2112 // arguments. 2113 SourceRange Range; 2114 if (NumArgs > NumParams) 2115 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2116 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2117 << (NumArgs > NumParams) 2118 << (isa<ClassTemplateDecl>(Template)? 0 : 2119 isa<FunctionTemplateDecl>(Template)? 1 : 2120 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2121 << Template << Range; 2122 Diag(Template->getLocation(), diag::note_template_decl_here) 2123 << Params->getSourceRange(); 2124 Invalid = true; 2125 } 2126 2127 // C++ [temp.arg]p1: 2128 // [...] The type and form of each template-argument specified in 2129 // a template-id shall match the type and form specified for the 2130 // corresponding parameter declared by the template in its 2131 // template-parameter-list. 2132 unsigned ArgIdx = 0; 2133 for (TemplateParameterList::iterator Param = Params->begin(), 2134 ParamEnd = Params->end(); 2135 Param != ParamEnd; ++Param, ++ArgIdx) { 2136 if (ArgIdx > NumArgs && PartialTemplateArgs) 2137 break; 2138 2139 // If we have a template parameter pack, check every remaining template 2140 // argument against that template parameter pack. 2141 if ((*Param)->isTemplateParameterPack()) { 2142 Converted.BeginPack(); 2143 for (; ArgIdx < NumArgs; ++ArgIdx) { 2144 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2145 TemplateLoc, RAngleLoc, Converted)) { 2146 Invalid = true; 2147 break; 2148 } 2149 } 2150 Converted.EndPack(); 2151 continue; 2152 } 2153 2154 if (ArgIdx < NumArgs) { 2155 // Check the template argument we were given. 2156 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2157 TemplateLoc, RAngleLoc, Converted)) 2158 return true; 2159 2160 continue; 2161 } 2162 2163 // We have a default template argument that we will use. 2164 TemplateArgumentLoc Arg; 2165 2166 // Retrieve the default template argument from the template 2167 // parameter. For each kind of template parameter, we substitute the 2168 // template arguments provided thus far and any "outer" template arguments 2169 // (when the template parameter was part of a nested template) into 2170 // the default argument. 2171 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2172 if (!TTP->hasDefaultArgument()) { 2173 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2174 break; 2175 } 2176 2177 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2178 Template, 2179 TemplateLoc, 2180 RAngleLoc, 2181 TTP, 2182 Converted); 2183 if (!ArgType) 2184 return true; 2185 2186 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2187 ArgType); 2188 } else if (NonTypeTemplateParmDecl *NTTP 2189 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2190 if (!NTTP->hasDefaultArgument()) { 2191 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2192 break; 2193 } 2194 2195 Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template, 2196 TemplateLoc, 2197 RAngleLoc, 2198 NTTP, 2199 Converted); 2200 if (E.isInvalid()) 2201 return true; 2202 2203 Expr *Ex = E.takeAs<Expr>(); 2204 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2205 } else { 2206 TemplateTemplateParmDecl *TempParm 2207 = cast<TemplateTemplateParmDecl>(*Param); 2208 2209 if (!TempParm->hasDefaultArgument()) { 2210 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2211 break; 2212 } 2213 2214 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2215 TemplateLoc, 2216 RAngleLoc, 2217 TempParm, 2218 Converted); 2219 if (Name.isNull()) 2220 return true; 2221 2222 Arg = TemplateArgumentLoc(TemplateArgument(Name), 2223 TempParm->getDefaultArgument().getTemplateQualifierRange(), 2224 TempParm->getDefaultArgument().getTemplateNameLoc()); 2225 } 2226 2227 // Introduce an instantiation record that describes where we are using 2228 // the default template argument. 2229 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 2230 Converted.getFlatArguments(), 2231 Converted.flatSize(), 2232 SourceRange(TemplateLoc, RAngleLoc)); 2233 2234 // Check the default template argument. 2235 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 2236 RAngleLoc, Converted)) 2237 return true; 2238 } 2239 2240 return Invalid; 2241} 2242 2243/// \brief Check a template argument against its corresponding 2244/// template type parameter. 2245/// 2246/// This routine implements the semantics of C++ [temp.arg.type]. It 2247/// returns true if an error occurred, and false otherwise. 2248bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 2249 TypeSourceInfo *ArgInfo) { 2250 assert(ArgInfo && "invalid TypeSourceInfo"); 2251 QualType Arg = ArgInfo->getType(); 2252 2253 // C++ [temp.arg.type]p2: 2254 // A local type, a type with no linkage, an unnamed type or a type 2255 // compounded from any of these types shall not be used as a 2256 // template-argument for a template type-parameter. 2257 // 2258 // FIXME: Perform the recursive and no-linkage type checks. 2259 const TagType *Tag = 0; 2260 if (const EnumType *EnumT = Arg->getAs<EnumType>()) 2261 Tag = EnumT; 2262 else if (const RecordType *RecordT = Arg->getAs<RecordType>()) 2263 Tag = RecordT; 2264 if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) { 2265 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2266 return Diag(SR.getBegin(), diag::err_template_arg_local_type) 2267 << QualType(Tag, 0) << SR; 2268 } else if (Tag && !Tag->getDecl()->getDeclName() && 2269 !Tag->getDecl()->getTypedefForAnonDecl()) { 2270 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2271 Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR; 2272 Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here); 2273 return true; 2274 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 2275 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2276 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 2277 } 2278 2279 return false; 2280} 2281 2282/// \brief Checks whether the given template argument is the address 2283/// of an object or function according to C++ [temp.arg.nontype]p1. 2284static bool 2285CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 2286 NonTypeTemplateParmDecl *Param, 2287 QualType ParamType, 2288 Expr *ArgIn, 2289 TemplateArgument &Converted) { 2290 bool Invalid = false; 2291 Expr *Arg = ArgIn; 2292 QualType ArgType = Arg->getType(); 2293 2294 // See through any implicit casts we added to fix the type. 2295 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2296 Arg = Cast->getSubExpr(); 2297 2298 // C++ [temp.arg.nontype]p1: 2299 // 2300 // A template-argument for a non-type, non-template 2301 // template-parameter shall be one of: [...] 2302 // 2303 // -- the address of an object or function with external 2304 // linkage, including function templates and function 2305 // template-ids but excluding non-static class members, 2306 // expressed as & id-expression where the & is optional if 2307 // the name refers to a function or array, or if the 2308 // corresponding template-parameter is a reference; or 2309 DeclRefExpr *DRE = 0; 2310 2311 // Ignore (and complain about) any excess parentheses. 2312 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2313 if (!Invalid) { 2314 S.Diag(Arg->getSourceRange().getBegin(), 2315 diag::err_template_arg_extra_parens) 2316 << Arg->getSourceRange(); 2317 Invalid = true; 2318 } 2319 2320 Arg = Parens->getSubExpr(); 2321 } 2322 2323 bool AddressTaken = false; 2324 SourceLocation AddrOpLoc; 2325 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2326 if (UnOp->getOpcode() == UnaryOperator::AddrOf) { 2327 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2328 AddressTaken = true; 2329 AddrOpLoc = UnOp->getOperatorLoc(); 2330 } 2331 } else 2332 DRE = dyn_cast<DeclRefExpr>(Arg); 2333 2334 if (!DRE) { 2335 if (S.Context.hasSameUnqualifiedType(ArgType, S.Context.OverloadTy)) { 2336 S.Diag(Arg->getLocStart(), 2337 diag::err_template_arg_unresolved_overloaded_function) 2338 << ParamType << Arg->getSourceRange(); 2339 } else { 2340 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 2341 << Arg->getSourceRange(); 2342 } 2343 S.Diag(Param->getLocation(), diag::note_template_param_here); 2344 return true; 2345 } 2346 2347 // Stop checking the precise nature of the argument if it is value dependent, 2348 // it should be checked when instantiated. 2349 if (Arg->isValueDependent()) { 2350 Converted = TemplateArgument(ArgIn->Retain()); 2351 return false; 2352 } 2353 2354 if (!isa<ValueDecl>(DRE->getDecl())) { 2355 S.Diag(Arg->getSourceRange().getBegin(), 2356 diag::err_template_arg_not_object_or_func_form) 2357 << Arg->getSourceRange(); 2358 S.Diag(Param->getLocation(), diag::note_template_param_here); 2359 return true; 2360 } 2361 2362 NamedDecl *Entity = 0; 2363 2364 // Cannot refer to non-static data members 2365 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) { 2366 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 2367 << Field << Arg->getSourceRange(); 2368 S.Diag(Param->getLocation(), diag::note_template_param_here); 2369 return true; 2370 } 2371 2372 // Cannot refer to non-static member functions 2373 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 2374 if (!Method->isStatic()) { 2375 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method) 2376 << Method << Arg->getSourceRange(); 2377 S.Diag(Param->getLocation(), diag::note_template_param_here); 2378 return true; 2379 } 2380 2381 // Functions must have external linkage. 2382 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 2383 if (!isExternalLinkage(Func->getLinkage())) { 2384 S.Diag(Arg->getSourceRange().getBegin(), 2385 diag::err_template_arg_function_not_extern) 2386 << Func << Arg->getSourceRange(); 2387 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object) 2388 << true; 2389 return true; 2390 } 2391 2392 // Okay: we've named a function with external linkage. 2393 Entity = Func; 2394 2395 // If the template parameter has pointer type, the function decays. 2396 if (ParamType->isPointerType() && !AddressTaken) 2397 ArgType = S.Context.getPointerType(Func->getType()); 2398 else if (AddressTaken && ParamType->isReferenceType()) { 2399 // If we originally had an address-of operator, but the 2400 // parameter has reference type, complain and (if things look 2401 // like they will work) drop the address-of operator. 2402 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 2403 ParamType.getNonReferenceType())) { 2404 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2405 << ParamType; 2406 S.Diag(Param->getLocation(), diag::note_template_param_here); 2407 return true; 2408 } 2409 2410 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2411 << ParamType 2412 << FixItHint::CreateRemoval(AddrOpLoc); 2413 S.Diag(Param->getLocation(), diag::note_template_param_here); 2414 2415 ArgType = Func->getType(); 2416 } 2417 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 2418 if (!isExternalLinkage(Var->getLinkage())) { 2419 S.Diag(Arg->getSourceRange().getBegin(), 2420 diag::err_template_arg_object_not_extern) 2421 << Var << Arg->getSourceRange(); 2422 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object) 2423 << true; 2424 return true; 2425 } 2426 2427 // A value of reference type is not an object. 2428 if (Var->getType()->isReferenceType()) { 2429 S.Diag(Arg->getSourceRange().getBegin(), 2430 diag::err_template_arg_reference_var) 2431 << Var->getType() << Arg->getSourceRange(); 2432 S.Diag(Param->getLocation(), diag::note_template_param_here); 2433 return true; 2434 } 2435 2436 // Okay: we've named an object with external linkage 2437 Entity = Var; 2438 2439 // If the template parameter has pointer type, we must have taken 2440 // the address of this object. 2441 if (ParamType->isReferenceType()) { 2442 if (AddressTaken) { 2443 // If we originally had an address-of operator, but the 2444 // parameter has reference type, complain and (if things look 2445 // like they will work) drop the address-of operator. 2446 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 2447 ParamType.getNonReferenceType())) { 2448 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2449 << ParamType; 2450 S.Diag(Param->getLocation(), diag::note_template_param_here); 2451 return true; 2452 } 2453 2454 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2455 << ParamType 2456 << FixItHint::CreateRemoval(AddrOpLoc); 2457 S.Diag(Param->getLocation(), diag::note_template_param_here); 2458 2459 ArgType = Var->getType(); 2460 } 2461 } else if (!AddressTaken && ParamType->isPointerType()) { 2462 if (Var->getType()->isArrayType()) { 2463 // Array-to-pointer decay. 2464 ArgType = S.Context.getArrayDecayedType(Var->getType()); 2465 } else { 2466 // If the template parameter has pointer type but the address of 2467 // this object was not taken, complain and (possibly) recover by 2468 // taking the address of the entity. 2469 ArgType = S.Context.getPointerType(Var->getType()); 2470 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 2471 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 2472 << ParamType; 2473 S.Diag(Param->getLocation(), diag::note_template_param_here); 2474 return true; 2475 } 2476 2477 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 2478 << ParamType 2479 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 2480 2481 S.Diag(Param->getLocation(), diag::note_template_param_here); 2482 } 2483 } 2484 } else { 2485 // We found something else, but we don't know specifically what it is. 2486 S.Diag(Arg->getSourceRange().getBegin(), 2487 diag::err_template_arg_not_object_or_func) 2488 << Arg->getSourceRange(); 2489 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 2490 return true; 2491 } 2492 2493 if (ParamType->isPointerType() && 2494 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 2495 S.IsQualificationConversion(ArgType, ParamType)) { 2496 // For pointer-to-object types, qualification conversions are 2497 // permitted. 2498 } else { 2499 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 2500 if (!ParamRef->getPointeeType()->isFunctionType()) { 2501 // C++ [temp.arg.nontype]p5b3: 2502 // For a non-type template-parameter of type reference to 2503 // object, no conversions apply. The type referred to by the 2504 // reference may be more cv-qualified than the (otherwise 2505 // identical) type of the template- argument. The 2506 // template-parameter is bound directly to the 2507 // template-argument, which shall be an lvalue. 2508 2509 // FIXME: Other qualifiers? 2510 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 2511 unsigned ArgQuals = ArgType.getCVRQualifiers(); 2512 2513 if ((ParamQuals | ArgQuals) != ParamQuals) { 2514 S.Diag(Arg->getSourceRange().getBegin(), 2515 diag::err_template_arg_ref_bind_ignores_quals) 2516 << ParamType << Arg->getType() 2517 << Arg->getSourceRange(); 2518 S.Diag(Param->getLocation(), diag::note_template_param_here); 2519 return true; 2520 } 2521 } 2522 } 2523 2524 // At this point, the template argument refers to an object or 2525 // function with external linkage. We now need to check whether the 2526 // argument and parameter types are compatible. 2527 if (!S.Context.hasSameUnqualifiedType(ArgType, 2528 ParamType.getNonReferenceType())) { 2529 // We can't perform this conversion or binding. 2530 if (ParamType->isReferenceType()) 2531 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 2532 << ParamType << Arg->getType() << Arg->getSourceRange(); 2533 else 2534 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 2535 << Arg->getType() << ParamType << Arg->getSourceRange(); 2536 S.Diag(Param->getLocation(), diag::note_template_param_here); 2537 return true; 2538 } 2539 } 2540 2541 // Create the template argument. 2542 Converted = TemplateArgument(Entity->getCanonicalDecl()); 2543 return false; 2544} 2545 2546/// \brief Checks whether the given template argument is a pointer to 2547/// member constant according to C++ [temp.arg.nontype]p1. 2548bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 2549 TemplateArgument &Converted) { 2550 bool Invalid = false; 2551 2552 // See through any implicit casts we added to fix the type. 2553 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2554 Arg = Cast->getSubExpr(); 2555 2556 // C++ [temp.arg.nontype]p1: 2557 // 2558 // A template-argument for a non-type, non-template 2559 // template-parameter shall be one of: [...] 2560 // 2561 // -- a pointer to member expressed as described in 5.3.1. 2562 DeclRefExpr *DRE = 0; 2563 2564 // Ignore (and complain about) any excess parentheses. 2565 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2566 if (!Invalid) { 2567 Diag(Arg->getSourceRange().getBegin(), 2568 diag::err_template_arg_extra_parens) 2569 << Arg->getSourceRange(); 2570 Invalid = true; 2571 } 2572 2573 Arg = Parens->getSubExpr(); 2574 } 2575 2576 // A pointer-to-member constant written &Class::member. 2577 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2578 if (UnOp->getOpcode() == UnaryOperator::AddrOf) { 2579 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2580 if (DRE && !DRE->getQualifier()) 2581 DRE = 0; 2582 } 2583 } 2584 // A constant of pointer-to-member type. 2585 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 2586 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 2587 if (VD->getType()->isMemberPointerType()) { 2588 if (isa<NonTypeTemplateParmDecl>(VD) || 2589 (isa<VarDecl>(VD) && 2590 Context.getCanonicalType(VD->getType()).isConstQualified())) { 2591 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2592 Converted = TemplateArgument(Arg->Retain()); 2593 else 2594 Converted = TemplateArgument(VD->getCanonicalDecl()); 2595 return Invalid; 2596 } 2597 } 2598 } 2599 2600 DRE = 0; 2601 } 2602 2603 if (!DRE) 2604 return Diag(Arg->getSourceRange().getBegin(), 2605 diag::err_template_arg_not_pointer_to_member_form) 2606 << Arg->getSourceRange(); 2607 2608 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 2609 assert((isa<FieldDecl>(DRE->getDecl()) || 2610 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 2611 "Only non-static member pointers can make it here"); 2612 2613 // Okay: this is the address of a non-static member, and therefore 2614 // a member pointer constant. 2615 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2616 Converted = TemplateArgument(Arg->Retain()); 2617 else 2618 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 2619 return Invalid; 2620 } 2621 2622 // We found something else, but we don't know specifically what it is. 2623 Diag(Arg->getSourceRange().getBegin(), 2624 diag::err_template_arg_not_pointer_to_member_form) 2625 << Arg->getSourceRange(); 2626 Diag(DRE->getDecl()->getLocation(), 2627 diag::note_template_arg_refers_here); 2628 return true; 2629} 2630 2631/// \brief Check a template argument against its corresponding 2632/// non-type template parameter. 2633/// 2634/// This routine implements the semantics of C++ [temp.arg.nontype]. 2635/// It returns true if an error occurred, and false otherwise. \p 2636/// InstantiatedParamType is the type of the non-type template 2637/// parameter after it has been instantiated. 2638/// 2639/// If no error was detected, Converted receives the converted template argument. 2640bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 2641 QualType InstantiatedParamType, Expr *&Arg, 2642 TemplateArgument &Converted, 2643 CheckTemplateArgumentKind CTAK) { 2644 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 2645 2646 // If either the parameter has a dependent type or the argument is 2647 // type-dependent, there's nothing we can check now. 2648 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 2649 // FIXME: Produce a cloned, canonical expression? 2650 Converted = TemplateArgument(Arg); 2651 return false; 2652 } 2653 2654 // C++ [temp.arg.nontype]p5: 2655 // The following conversions are performed on each expression used 2656 // as a non-type template-argument. If a non-type 2657 // template-argument cannot be converted to the type of the 2658 // corresponding template-parameter then the program is 2659 // ill-formed. 2660 // 2661 // -- for a non-type template-parameter of integral or 2662 // enumeration type, integral promotions (4.5) and integral 2663 // conversions (4.7) are applied. 2664 QualType ParamType = InstantiatedParamType; 2665 QualType ArgType = Arg->getType(); 2666 if (ParamType->isIntegralType() || ParamType->isEnumeralType()) { 2667 // C++ [temp.arg.nontype]p1: 2668 // A template-argument for a non-type, non-template 2669 // template-parameter shall be one of: 2670 // 2671 // -- an integral constant-expression of integral or enumeration 2672 // type; or 2673 // -- the name of a non-type template-parameter; or 2674 SourceLocation NonConstantLoc; 2675 llvm::APSInt Value; 2676 if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) { 2677 Diag(Arg->getSourceRange().getBegin(), 2678 diag::err_template_arg_not_integral_or_enumeral) 2679 << ArgType << Arg->getSourceRange(); 2680 Diag(Param->getLocation(), diag::note_template_param_here); 2681 return true; 2682 } else if (!Arg->isValueDependent() && 2683 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 2684 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 2685 << ArgType << Arg->getSourceRange(); 2686 return true; 2687 } 2688 2689 // From here on out, all we care about are the unqualified forms 2690 // of the parameter and argument types. 2691 ParamType = ParamType.getUnqualifiedType(); 2692 ArgType = ArgType.getUnqualifiedType(); 2693 2694 // Try to convert the argument to the parameter's type. 2695 if (Context.hasSameType(ParamType, ArgType)) { 2696 // Okay: no conversion necessary 2697 } else if (CTAK == CTAK_Deduced) { 2698 // C++ [temp.deduct.type]p17: 2699 // If, in the declaration of a function template with a non-type 2700 // template-parameter, the non-type template- parameter is used 2701 // in an expression in the function parameter-list and, if the 2702 // corresponding template-argument is deduced, the 2703 // template-argument type shall match the type of the 2704 // template-parameter exactly, except that a template-argument 2705 // deduced from an array bound may be of any integral type. 2706 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 2707 << ArgType << ParamType; 2708 Diag(Param->getLocation(), diag::note_template_param_here); 2709 return true; 2710 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 2711 !ParamType->isEnumeralType()) { 2712 // This is an integral promotion or conversion. 2713 ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast); 2714 } else { 2715 // We can't perform this conversion. 2716 Diag(Arg->getSourceRange().getBegin(), 2717 diag::err_template_arg_not_convertible) 2718 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2719 Diag(Param->getLocation(), diag::note_template_param_here); 2720 return true; 2721 } 2722 2723 QualType IntegerType = Context.getCanonicalType(ParamType); 2724 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 2725 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 2726 2727 if (!Arg->isValueDependent()) { 2728 llvm::APSInt OldValue = Value; 2729 2730 // Coerce the template argument's value to the value it will have 2731 // based on the template parameter's type. 2732 unsigned AllowedBits = Context.getTypeSize(IntegerType); 2733 if (Value.getBitWidth() != AllowedBits) 2734 Value.extOrTrunc(AllowedBits); 2735 Value.setIsSigned(IntegerType->isSignedIntegerType()); 2736 2737 // Complain if an unsigned parameter received a negative value. 2738 if (IntegerType->isUnsignedIntegerType() 2739 && (OldValue.isSigned() && OldValue.isNegative())) { 2740 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative) 2741 << OldValue.toString(10) << Value.toString(10) << Param->getType() 2742 << Arg->getSourceRange(); 2743 Diag(Param->getLocation(), diag::note_template_param_here); 2744 } 2745 2746 // Complain if we overflowed the template parameter's type. 2747 unsigned RequiredBits; 2748 if (IntegerType->isUnsignedIntegerType()) 2749 RequiredBits = OldValue.getActiveBits(); 2750 else if (OldValue.isUnsigned()) 2751 RequiredBits = OldValue.getActiveBits() + 1; 2752 else 2753 RequiredBits = OldValue.getMinSignedBits(); 2754 if (RequiredBits > AllowedBits) { 2755 Diag(Arg->getSourceRange().getBegin(), 2756 diag::warn_template_arg_too_large) 2757 << OldValue.toString(10) << Value.toString(10) << Param->getType() 2758 << Arg->getSourceRange(); 2759 Diag(Param->getLocation(), diag::note_template_param_here); 2760 } 2761 } 2762 2763 // Add the value of this argument to the list of converted 2764 // arguments. We use the bitwidth and signedness of the template 2765 // parameter. 2766 if (Arg->isValueDependent()) { 2767 // The argument is value-dependent. Create a new 2768 // TemplateArgument with the converted expression. 2769 Converted = TemplateArgument(Arg); 2770 return false; 2771 } 2772 2773 Converted = TemplateArgument(Value, 2774 ParamType->isEnumeralType() ? ParamType 2775 : IntegerType); 2776 return false; 2777 } 2778 2779 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 2780 2781 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion 2782 // from a template argument of type std::nullptr_t to a non-type 2783 // template parameter of type pointer to object, pointer to 2784 // function, or pointer-to-member, respectively. 2785 if (ArgType->isNullPtrType() && 2786 (ParamType->isPointerType() || ParamType->isMemberPointerType())) { 2787 Converted = TemplateArgument((NamedDecl *)0); 2788 return false; 2789 } 2790 2791 // Handle pointer-to-function, reference-to-function, and 2792 // pointer-to-member-function all in (roughly) the same way. 2793 if (// -- For a non-type template-parameter of type pointer to 2794 // function, only the function-to-pointer conversion (4.3) is 2795 // applied. If the template-argument represents a set of 2796 // overloaded functions (or a pointer to such), the matching 2797 // function is selected from the set (13.4). 2798 (ParamType->isPointerType() && 2799 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 2800 // -- For a non-type template-parameter of type reference to 2801 // function, no conversions apply. If the template-argument 2802 // represents a set of overloaded functions, the matching 2803 // function is selected from the set (13.4). 2804 (ParamType->isReferenceType() && 2805 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 2806 // -- For a non-type template-parameter of type pointer to 2807 // member function, no conversions apply. If the 2808 // template-argument represents a set of overloaded member 2809 // functions, the matching member function is selected from 2810 // the set (13.4). 2811 (ParamType->isMemberPointerType() && 2812 ParamType->getAs<MemberPointerType>()->getPointeeType() 2813 ->isFunctionType())) { 2814 2815 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 2816 true, 2817 FoundResult)) { 2818 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2819 return true; 2820 2821 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 2822 ArgType = Arg->getType(); 2823 } 2824 2825 if (!ParamType->isMemberPointerType()) 2826 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 2827 ParamType, 2828 Arg, Converted); 2829 2830 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) { 2831 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp, 2832 Arg->isLvalue(Context) == Expr::LV_Valid); 2833 } else if (!Context.hasSameUnqualifiedType(ArgType, 2834 ParamType.getNonReferenceType())) { 2835 // We can't perform this conversion. 2836 Diag(Arg->getSourceRange().getBegin(), 2837 diag::err_template_arg_not_convertible) 2838 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2839 Diag(Param->getLocation(), diag::note_template_param_here); 2840 return true; 2841 } 2842 2843 return CheckTemplateArgumentPointerToMember(Arg, Converted); 2844 } 2845 2846 if (ParamType->isPointerType()) { 2847 // -- for a non-type template-parameter of type pointer to 2848 // object, qualification conversions (4.4) and the 2849 // array-to-pointer conversion (4.2) are applied. 2850 // C++0x also allows a value of std::nullptr_t. 2851 assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() && 2852 "Only object pointers allowed here"); 2853 2854 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 2855 ParamType, 2856 Arg, Converted); 2857 } 2858 2859 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 2860 // -- For a non-type template-parameter of type reference to 2861 // object, no conversions apply. The type referred to by the 2862 // reference may be more cv-qualified than the (otherwise 2863 // identical) type of the template-argument. The 2864 // template-parameter is bound directly to the 2865 // template-argument, which must be an lvalue. 2866 assert(ParamRefType->getPointeeType()->isObjectType() && 2867 "Only object references allowed here"); 2868 2869 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 2870 ParamRefType->getPointeeType(), 2871 true, 2872 FoundResult)) { 2873 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2874 return true; 2875 2876 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 2877 ArgType = Arg->getType(); 2878 } 2879 2880 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 2881 ParamType, 2882 Arg, Converted); 2883 } 2884 2885 // -- For a non-type template-parameter of type pointer to data 2886 // member, qualification conversions (4.4) are applied. 2887 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 2888 2889 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 2890 // Types match exactly: nothing more to do here. 2891 } else if (IsQualificationConversion(ArgType, ParamType)) { 2892 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp, 2893 Arg->isLvalue(Context) == Expr::LV_Valid); 2894 } else { 2895 // We can't perform this conversion. 2896 Diag(Arg->getSourceRange().getBegin(), 2897 diag::err_template_arg_not_convertible) 2898 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2899 Diag(Param->getLocation(), diag::note_template_param_here); 2900 return true; 2901 } 2902 2903 return CheckTemplateArgumentPointerToMember(Arg, Converted); 2904} 2905 2906/// \brief Check a template argument against its corresponding 2907/// template template parameter. 2908/// 2909/// This routine implements the semantics of C++ [temp.arg.template]. 2910/// It returns true if an error occurred, and false otherwise. 2911bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 2912 const TemplateArgumentLoc &Arg) { 2913 TemplateName Name = Arg.getArgument().getAsTemplate(); 2914 TemplateDecl *Template = Name.getAsTemplateDecl(); 2915 if (!Template) { 2916 // Any dependent template name is fine. 2917 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 2918 return false; 2919 } 2920 2921 // C++ [temp.arg.template]p1: 2922 // A template-argument for a template template-parameter shall be 2923 // the name of a class template, expressed as id-expression. Only 2924 // primary class templates are considered when matching the 2925 // template template argument with the corresponding parameter; 2926 // partial specializations are not considered even if their 2927 // parameter lists match that of the template template parameter. 2928 // 2929 // Note that we also allow template template parameters here, which 2930 // will happen when we are dealing with, e.g., class template 2931 // partial specializations. 2932 if (!isa<ClassTemplateDecl>(Template) && 2933 !isa<TemplateTemplateParmDecl>(Template)) { 2934 assert(isa<FunctionTemplateDecl>(Template) && 2935 "Only function templates are possible here"); 2936 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 2937 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 2938 << Template; 2939 } 2940 2941 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 2942 Param->getTemplateParameters(), 2943 true, 2944 TPL_TemplateTemplateArgumentMatch, 2945 Arg.getLocation()); 2946} 2947 2948/// \brief Given a non-type template argument that refers to a 2949/// declaration and the type of its corresponding non-type template 2950/// parameter, produce an expression that properly refers to that 2951/// declaration. 2952Sema::OwningExprResult 2953Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 2954 QualType ParamType, 2955 SourceLocation Loc) { 2956 assert(Arg.getKind() == TemplateArgument::Declaration && 2957 "Only declaration template arguments permitted here"); 2958 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 2959 2960 if (VD->getDeclContext()->isRecord() && 2961 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 2962 // If the value is a class member, we might have a pointer-to-member. 2963 // Determine whether the non-type template template parameter is of 2964 // pointer-to-member type. If so, we need to build an appropriate 2965 // expression for a pointer-to-member, since a "normal" DeclRefExpr 2966 // would refer to the member itself. 2967 if (ParamType->isMemberPointerType()) { 2968 QualType ClassType 2969 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 2970 NestedNameSpecifier *Qualifier 2971 = NestedNameSpecifier::Create(Context, 0, false, ClassType.getTypePtr()); 2972 CXXScopeSpec SS; 2973 SS.setScopeRep(Qualifier); 2974 OwningExprResult RefExpr = BuildDeclRefExpr(VD, 2975 VD->getType().getNonReferenceType(), 2976 Loc, 2977 &SS); 2978 if (RefExpr.isInvalid()) 2979 return ExprError(); 2980 2981 RefExpr = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr)); 2982 assert(!RefExpr.isInvalid() && 2983 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 2984 ParamType)); 2985 return move(RefExpr); 2986 } 2987 } 2988 2989 QualType T = VD->getType().getNonReferenceType(); 2990 if (ParamType->isPointerType()) { 2991 // When the non-type template parameter is a pointer, take the 2992 // address of the declaration. 2993 OwningExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc); 2994 if (RefExpr.isInvalid()) 2995 return ExprError(); 2996 2997 if (T->isFunctionType() || T->isArrayType()) { 2998 // Decay functions and arrays. 2999 Expr *RefE = (Expr *)RefExpr.get(); 3000 DefaultFunctionArrayConversion(RefE); 3001 if (RefE != RefExpr.get()) { 3002 RefExpr.release(); 3003 RefExpr = Owned(RefE); 3004 } 3005 3006 return move(RefExpr); 3007 } 3008 3009 // Take the address of everything else 3010 return CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr)); 3011 } 3012 3013 // If the non-type template parameter has reference type, qualify the 3014 // resulting declaration reference with the extra qualifiers on the 3015 // type that the reference refers to. 3016 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) 3017 T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers()); 3018 3019 return BuildDeclRefExpr(VD, T, Loc); 3020} 3021 3022/// \brief Construct a new expression that refers to the given 3023/// integral template argument with the given source-location 3024/// information. 3025/// 3026/// This routine takes care of the mapping from an integral template 3027/// argument (which may have any integral type) to the appropriate 3028/// literal value. 3029Sema::OwningExprResult 3030Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 3031 SourceLocation Loc) { 3032 assert(Arg.getKind() == TemplateArgument::Integral && 3033 "Operation is only value for integral template arguments"); 3034 QualType T = Arg.getIntegralType(); 3035 if (T->isCharType() || T->isWideCharType()) 3036 return Owned(new (Context) CharacterLiteral( 3037 Arg.getAsIntegral()->getZExtValue(), 3038 T->isWideCharType(), 3039 T, 3040 Loc)); 3041 if (T->isBooleanType()) 3042 return Owned(new (Context) CXXBoolLiteralExpr( 3043 Arg.getAsIntegral()->getBoolValue(), 3044 T, 3045 Loc)); 3046 3047 return Owned(new (Context) IntegerLiteral(*Arg.getAsIntegral(), T, Loc)); 3048} 3049 3050 3051/// \brief Determine whether the given template parameter lists are 3052/// equivalent. 3053/// 3054/// \param New The new template parameter list, typically written in the 3055/// source code as part of a new template declaration. 3056/// 3057/// \param Old The old template parameter list, typically found via 3058/// name lookup of the template declared with this template parameter 3059/// list. 3060/// 3061/// \param Complain If true, this routine will produce a diagnostic if 3062/// the template parameter lists are not equivalent. 3063/// 3064/// \param Kind describes how we are to match the template parameter lists. 3065/// 3066/// \param TemplateArgLoc If this source location is valid, then we 3067/// are actually checking the template parameter list of a template 3068/// argument (New) against the template parameter list of its 3069/// corresponding template template parameter (Old). We produce 3070/// slightly different diagnostics in this scenario. 3071/// 3072/// \returns True if the template parameter lists are equal, false 3073/// otherwise. 3074bool 3075Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 3076 TemplateParameterList *Old, 3077 bool Complain, 3078 TemplateParameterListEqualKind Kind, 3079 SourceLocation TemplateArgLoc) { 3080 if (Old->size() != New->size()) { 3081 if (Complain) { 3082 unsigned NextDiag = diag::err_template_param_list_different_arity; 3083 if (TemplateArgLoc.isValid()) { 3084 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3085 NextDiag = diag::note_template_param_list_different_arity; 3086 } 3087 Diag(New->getTemplateLoc(), NextDiag) 3088 << (New->size() > Old->size()) 3089 << (Kind != TPL_TemplateMatch) 3090 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 3091 Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 3092 << (Kind != TPL_TemplateMatch) 3093 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 3094 } 3095 3096 return false; 3097 } 3098 3099 for (TemplateParameterList::iterator OldParm = Old->begin(), 3100 OldParmEnd = Old->end(), NewParm = New->begin(); 3101 OldParm != OldParmEnd; ++OldParm, ++NewParm) { 3102 if ((*OldParm)->getKind() != (*NewParm)->getKind()) { 3103 if (Complain) { 3104 unsigned NextDiag = diag::err_template_param_different_kind; 3105 if (TemplateArgLoc.isValid()) { 3106 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3107 NextDiag = diag::note_template_param_different_kind; 3108 } 3109 Diag((*NewParm)->getLocation(), NextDiag) 3110 << (Kind != TPL_TemplateMatch); 3111 Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration) 3112 << (Kind != TPL_TemplateMatch); 3113 } 3114 return false; 3115 } 3116 3117 if (isa<TemplateTypeParmDecl>(*OldParm)) { 3118 // Okay; all template type parameters are equivalent (since we 3119 // know we're at the same index). 3120 } else if (NonTypeTemplateParmDecl *OldNTTP 3121 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) { 3122 // The types of non-type template parameters must agree. 3123 NonTypeTemplateParmDecl *NewNTTP 3124 = cast<NonTypeTemplateParmDecl>(*NewParm); 3125 3126 // If we are matching a template template argument to a template 3127 // template parameter and one of the non-type template parameter types 3128 // is dependent, then we must wait until template instantiation time 3129 // to actually compare the arguments. 3130 if (Kind == TPL_TemplateTemplateArgumentMatch && 3131 (OldNTTP->getType()->isDependentType() || 3132 NewNTTP->getType()->isDependentType())) 3133 continue; 3134 3135 if (Context.getCanonicalType(OldNTTP->getType()) != 3136 Context.getCanonicalType(NewNTTP->getType())) { 3137 if (Complain) { 3138 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 3139 if (TemplateArgLoc.isValid()) { 3140 Diag(TemplateArgLoc, 3141 diag::err_template_arg_template_params_mismatch); 3142 NextDiag = diag::note_template_nontype_parm_different_type; 3143 } 3144 Diag(NewNTTP->getLocation(), NextDiag) 3145 << NewNTTP->getType() 3146 << (Kind != TPL_TemplateMatch); 3147 Diag(OldNTTP->getLocation(), 3148 diag::note_template_nontype_parm_prev_declaration) 3149 << OldNTTP->getType(); 3150 } 3151 return false; 3152 } 3153 } else { 3154 // The template parameter lists of template template 3155 // parameters must agree. 3156 assert(isa<TemplateTemplateParmDecl>(*OldParm) && 3157 "Only template template parameters handled here"); 3158 TemplateTemplateParmDecl *OldTTP 3159 = cast<TemplateTemplateParmDecl>(*OldParm); 3160 TemplateTemplateParmDecl *NewTTP 3161 = cast<TemplateTemplateParmDecl>(*NewParm); 3162 if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 3163 OldTTP->getTemplateParameters(), 3164 Complain, 3165 (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind), 3166 TemplateArgLoc)) 3167 return false; 3168 } 3169 } 3170 3171 return true; 3172} 3173 3174/// \brief Check whether a template can be declared within this scope. 3175/// 3176/// If the template declaration is valid in this scope, returns 3177/// false. Otherwise, issues a diagnostic and returns true. 3178bool 3179Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 3180 // Find the nearest enclosing declaration scope. 3181 while ((S->getFlags() & Scope::DeclScope) == 0 || 3182 (S->getFlags() & Scope::TemplateParamScope) != 0) 3183 S = S->getParent(); 3184 3185 // C++ [temp]p2: 3186 // A template-declaration can appear only as a namespace scope or 3187 // class scope declaration. 3188 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 3189 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 3190 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 3191 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 3192 << TemplateParams->getSourceRange(); 3193 3194 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 3195 Ctx = Ctx->getParent(); 3196 3197 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 3198 return false; 3199 3200 return Diag(TemplateParams->getTemplateLoc(), 3201 diag::err_template_outside_namespace_or_class_scope) 3202 << TemplateParams->getSourceRange(); 3203} 3204 3205/// \brief Determine what kind of template specialization the given declaration 3206/// is. 3207static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 3208 if (!D) 3209 return TSK_Undeclared; 3210 3211 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 3212 return Record->getTemplateSpecializationKind(); 3213 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 3214 return Function->getTemplateSpecializationKind(); 3215 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 3216 return Var->getTemplateSpecializationKind(); 3217 3218 return TSK_Undeclared; 3219} 3220 3221/// \brief Check whether a specialization is well-formed in the current 3222/// context. 3223/// 3224/// This routine determines whether a template specialization can be declared 3225/// in the current context (C++ [temp.expl.spec]p2). 3226/// 3227/// \param S the semantic analysis object for which this check is being 3228/// performed. 3229/// 3230/// \param Specialized the entity being specialized or instantiated, which 3231/// may be a kind of template (class template, function template, etc.) or 3232/// a member of a class template (member function, static data member, 3233/// member class). 3234/// 3235/// \param PrevDecl the previous declaration of this entity, if any. 3236/// 3237/// \param Loc the location of the explicit specialization or instantiation of 3238/// this entity. 3239/// 3240/// \param IsPartialSpecialization whether this is a partial specialization of 3241/// a class template. 3242/// 3243/// \returns true if there was an error that we cannot recover from, false 3244/// otherwise. 3245static bool CheckTemplateSpecializationScope(Sema &S, 3246 NamedDecl *Specialized, 3247 NamedDecl *PrevDecl, 3248 SourceLocation Loc, 3249 bool IsPartialSpecialization) { 3250 // Keep these "kind" numbers in sync with the %select statements in the 3251 // various diagnostics emitted by this routine. 3252 int EntityKind = 0; 3253 bool isTemplateSpecialization = false; 3254 if (isa<ClassTemplateDecl>(Specialized)) { 3255 EntityKind = IsPartialSpecialization? 1 : 0; 3256 isTemplateSpecialization = true; 3257 } else if (isa<FunctionTemplateDecl>(Specialized)) { 3258 EntityKind = 2; 3259 isTemplateSpecialization = true; 3260 } else if (isa<CXXMethodDecl>(Specialized)) 3261 EntityKind = 3; 3262 else if (isa<VarDecl>(Specialized)) 3263 EntityKind = 4; 3264 else if (isa<RecordDecl>(Specialized)) 3265 EntityKind = 5; 3266 else { 3267 S.Diag(Loc, diag::err_template_spec_unknown_kind); 3268 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3269 return true; 3270 } 3271 3272 // C++ [temp.expl.spec]p2: 3273 // An explicit specialization shall be declared in the namespace 3274 // of which the template is a member, or, for member templates, in 3275 // the namespace of which the enclosing class or enclosing class 3276 // template is a member. An explicit specialization of a member 3277 // function, member class or static data member of a class 3278 // template shall be declared in the namespace of which the class 3279 // template is a member. Such a declaration may also be a 3280 // definition. If the declaration is not a definition, the 3281 // specialization may be defined later in the name- space in which 3282 // the explicit specialization was declared, or in a namespace 3283 // that encloses the one in which the explicit specialization was 3284 // declared. 3285 if (S.CurContext->getLookupContext()->isFunctionOrMethod()) { 3286 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 3287 << Specialized; 3288 return true; 3289 } 3290 3291 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 3292 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 3293 << Specialized; 3294 return true; 3295 } 3296 3297 // C++ [temp.class.spec]p6: 3298 // A class template partial specialization may be declared or redeclared 3299 // in any namespace scope in which its definition may be defined (14.5.1 3300 // and 14.5.2). 3301 bool ComplainedAboutScope = false; 3302 DeclContext *SpecializedContext 3303 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 3304 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 3305 if ((!PrevDecl || 3306 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 3307 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 3308 // There is no prior declaration of this entity, so this 3309 // specialization must be in the same context as the template 3310 // itself. 3311 if (!DC->Equals(SpecializedContext)) { 3312 if (isa<TranslationUnitDecl>(SpecializedContext)) 3313 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 3314 << EntityKind << Specialized; 3315 else if (isa<NamespaceDecl>(SpecializedContext)) 3316 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope) 3317 << EntityKind << Specialized 3318 << cast<NamedDecl>(SpecializedContext); 3319 3320 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3321 ComplainedAboutScope = true; 3322 } 3323 } 3324 3325 // Make sure that this redeclaration (or definition) occurs in an enclosing 3326 // namespace. 3327 // Note that HandleDeclarator() performs this check for explicit 3328 // specializations of function templates, static data members, and member 3329 // functions, so we skip the check here for those kinds of entities. 3330 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 3331 // Should we refactor that check, so that it occurs later? 3332 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 3333 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 3334 isa<FunctionDecl>(Specialized))) { 3335 if (isa<TranslationUnitDecl>(SpecializedContext)) 3336 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 3337 << EntityKind << Specialized; 3338 else if (isa<NamespaceDecl>(SpecializedContext)) 3339 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 3340 << EntityKind << Specialized 3341 << cast<NamedDecl>(SpecializedContext); 3342 3343 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3344 } 3345 3346 // FIXME: check for specialization-after-instantiation errors and such. 3347 3348 return false; 3349} 3350 3351/// \brief Check the non-type template arguments of a class template 3352/// partial specialization according to C++ [temp.class.spec]p9. 3353/// 3354/// \param TemplateParams the template parameters of the primary class 3355/// template. 3356/// 3357/// \param TemplateArg the template arguments of the class template 3358/// partial specialization. 3359/// 3360/// \param MirrorsPrimaryTemplate will be set true if the class 3361/// template partial specialization arguments are identical to the 3362/// implicit template arguments of the primary template. This is not 3363/// necessarily an error (C++0x), and it is left to the caller to diagnose 3364/// this condition when it is an error. 3365/// 3366/// \returns true if there was an error, false otherwise. 3367bool Sema::CheckClassTemplatePartialSpecializationArgs( 3368 TemplateParameterList *TemplateParams, 3369 const TemplateArgumentListBuilder &TemplateArgs, 3370 bool &MirrorsPrimaryTemplate) { 3371 // FIXME: the interface to this function will have to change to 3372 // accommodate variadic templates. 3373 MirrorsPrimaryTemplate = true; 3374 3375 const TemplateArgument *ArgList = TemplateArgs.getFlatArguments(); 3376 3377 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3378 // Determine whether the template argument list of the partial 3379 // specialization is identical to the implicit argument list of 3380 // the primary template. The caller may need to diagnostic this as 3381 // an error per C++ [temp.class.spec]p9b3. 3382 if (MirrorsPrimaryTemplate) { 3383 if (TemplateTypeParmDecl *TTP 3384 = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) { 3385 if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) != 3386 Context.getCanonicalType(ArgList[I].getAsType())) 3387 MirrorsPrimaryTemplate = false; 3388 } else if (TemplateTemplateParmDecl *TTP 3389 = dyn_cast<TemplateTemplateParmDecl>( 3390 TemplateParams->getParam(I))) { 3391 TemplateName Name = ArgList[I].getAsTemplate(); 3392 TemplateTemplateParmDecl *ArgDecl 3393 = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()); 3394 if (!ArgDecl || 3395 ArgDecl->getIndex() != TTP->getIndex() || 3396 ArgDecl->getDepth() != TTP->getDepth()) 3397 MirrorsPrimaryTemplate = false; 3398 } 3399 } 3400 3401 NonTypeTemplateParmDecl *Param 3402 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 3403 if (!Param) { 3404 continue; 3405 } 3406 3407 Expr *ArgExpr = ArgList[I].getAsExpr(); 3408 if (!ArgExpr) { 3409 MirrorsPrimaryTemplate = false; 3410 continue; 3411 } 3412 3413 // C++ [temp.class.spec]p8: 3414 // A non-type argument is non-specialized if it is the name of a 3415 // non-type parameter. All other non-type arguments are 3416 // specialized. 3417 // 3418 // Below, we check the two conditions that only apply to 3419 // specialized non-type arguments, so skip any non-specialized 3420 // arguments. 3421 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 3422 if (NonTypeTemplateParmDecl *NTTP 3423 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) { 3424 if (MirrorsPrimaryTemplate && 3425 (Param->getIndex() != NTTP->getIndex() || 3426 Param->getDepth() != NTTP->getDepth())) 3427 MirrorsPrimaryTemplate = false; 3428 3429 continue; 3430 } 3431 3432 // C++ [temp.class.spec]p9: 3433 // Within the argument list of a class template partial 3434 // specialization, the following restrictions apply: 3435 // -- A partially specialized non-type argument expression 3436 // shall not involve a template parameter of the partial 3437 // specialization except when the argument expression is a 3438 // simple identifier. 3439 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 3440 Diag(ArgExpr->getLocStart(), 3441 diag::err_dependent_non_type_arg_in_partial_spec) 3442 << ArgExpr->getSourceRange(); 3443 return true; 3444 } 3445 3446 // -- The type of a template parameter corresponding to a 3447 // specialized non-type argument shall not be dependent on a 3448 // parameter of the specialization. 3449 if (Param->getType()->isDependentType()) { 3450 Diag(ArgExpr->getLocStart(), 3451 diag::err_dependent_typed_non_type_arg_in_partial_spec) 3452 << Param->getType() 3453 << ArgExpr->getSourceRange(); 3454 Diag(Param->getLocation(), diag::note_template_param_here); 3455 return true; 3456 } 3457 3458 MirrorsPrimaryTemplate = false; 3459 } 3460 3461 return false; 3462} 3463 3464/// \brief Retrieve the previous declaration of the given declaration. 3465static NamedDecl *getPreviousDecl(NamedDecl *ND) { 3466 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 3467 return VD->getPreviousDeclaration(); 3468 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 3469 return FD->getPreviousDeclaration(); 3470 if (TagDecl *TD = dyn_cast<TagDecl>(ND)) 3471 return TD->getPreviousDeclaration(); 3472 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND)) 3473 return TD->getPreviousDeclaration(); 3474 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 3475 return FTD->getPreviousDeclaration(); 3476 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND)) 3477 return CTD->getPreviousDeclaration(); 3478 return 0; 3479} 3480 3481Sema::DeclResult 3482Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 3483 TagUseKind TUK, 3484 SourceLocation KWLoc, 3485 const CXXScopeSpec &SS, 3486 TemplateTy TemplateD, 3487 SourceLocation TemplateNameLoc, 3488 SourceLocation LAngleLoc, 3489 ASTTemplateArgsPtr TemplateArgsIn, 3490 SourceLocation RAngleLoc, 3491 AttributeList *Attr, 3492 MultiTemplateParamsArg TemplateParameterLists) { 3493 assert(TUK != TUK_Reference && "References are not specializations"); 3494 3495 // Find the class template we're specializing 3496 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 3497 ClassTemplateDecl *ClassTemplate 3498 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 3499 3500 if (!ClassTemplate) { 3501 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 3502 << (Name.getAsTemplateDecl() && 3503 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 3504 return true; 3505 } 3506 3507 bool isExplicitSpecialization = false; 3508 bool isPartialSpecialization = false; 3509 3510 // Check the validity of the template headers that introduce this 3511 // template. 3512 // FIXME: We probably shouldn't complain about these headers for 3513 // friend declarations. 3514 TemplateParameterList *TemplateParams 3515 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 3516 (TemplateParameterList**)TemplateParameterLists.get(), 3517 TemplateParameterLists.size(), 3518 isExplicitSpecialization); 3519 if (TemplateParams && TemplateParams->size() > 0) { 3520 isPartialSpecialization = true; 3521 3522 // C++ [temp.class.spec]p10: 3523 // The template parameter list of a specialization shall not 3524 // contain default template argument values. 3525 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3526 Decl *Param = TemplateParams->getParam(I); 3527 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 3528 if (TTP->hasDefaultArgument()) { 3529 Diag(TTP->getDefaultArgumentLoc(), 3530 diag::err_default_arg_in_partial_spec); 3531 TTP->removeDefaultArgument(); 3532 } 3533 } else if (NonTypeTemplateParmDecl *NTTP 3534 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3535 if (Expr *DefArg = NTTP->getDefaultArgument()) { 3536 Diag(NTTP->getDefaultArgumentLoc(), 3537 diag::err_default_arg_in_partial_spec) 3538 << DefArg->getSourceRange(); 3539 NTTP->setDefaultArgument(0); 3540 DefArg->Destroy(Context); 3541 } 3542 } else { 3543 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 3544 if (TTP->hasDefaultArgument()) { 3545 Diag(TTP->getDefaultArgument().getLocation(), 3546 diag::err_default_arg_in_partial_spec) 3547 << TTP->getDefaultArgument().getSourceRange(); 3548 TTP->setDefaultArgument(TemplateArgumentLoc()); 3549 } 3550 } 3551 } 3552 } else if (TemplateParams) { 3553 if (TUK == TUK_Friend) 3554 Diag(KWLoc, diag::err_template_spec_friend) 3555 << FixItHint::CreateRemoval( 3556 SourceRange(TemplateParams->getTemplateLoc(), 3557 TemplateParams->getRAngleLoc())) 3558 << SourceRange(LAngleLoc, RAngleLoc); 3559 else 3560 isExplicitSpecialization = true; 3561 } else if (TUK != TUK_Friend) { 3562 Diag(KWLoc, diag::err_template_spec_needs_header) 3563 << FixItHint::CreateInsertion(KWLoc, "template<> "); 3564 isExplicitSpecialization = true; 3565 } 3566 3567 // Check that the specialization uses the same tag kind as the 3568 // original template. 3569 TagDecl::TagKind Kind; 3570 switch (TagSpec) { 3571 default: assert(0 && "Unknown tag type!"); 3572 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 3573 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 3574 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 3575 } 3576 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 3577 Kind, KWLoc, 3578 *ClassTemplate->getIdentifier())) { 3579 Diag(KWLoc, diag::err_use_with_wrong_tag) 3580 << ClassTemplate 3581 << FixItHint::CreateReplacement(KWLoc, 3582 ClassTemplate->getTemplatedDecl()->getKindName()); 3583 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 3584 diag::note_previous_use); 3585 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 3586 } 3587 3588 // Translate the parser's template argument list in our AST format. 3589 TemplateArgumentListInfo TemplateArgs; 3590 TemplateArgs.setLAngleLoc(LAngleLoc); 3591 TemplateArgs.setRAngleLoc(RAngleLoc); 3592 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3593 3594 // Check that the template argument list is well-formed for this 3595 // template. 3596 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 3597 TemplateArgs.size()); 3598 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 3599 TemplateArgs, false, Converted)) 3600 return true; 3601 3602 assert((Converted.structuredSize() == 3603 ClassTemplate->getTemplateParameters()->size()) && 3604 "Converted template argument list is too short!"); 3605 3606 // Find the class template (partial) specialization declaration that 3607 // corresponds to these arguments. 3608 llvm::FoldingSetNodeID ID; 3609 if (isPartialSpecialization) { 3610 bool MirrorsPrimaryTemplate; 3611 if (CheckClassTemplatePartialSpecializationArgs( 3612 ClassTemplate->getTemplateParameters(), 3613 Converted, MirrorsPrimaryTemplate)) 3614 return true; 3615 3616 if (MirrorsPrimaryTemplate) { 3617 // C++ [temp.class.spec]p9b3: 3618 // 3619 // -- The argument list of the specialization shall not be identical 3620 // to the implicit argument list of the primary template. 3621 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 3622 << (TUK == TUK_Definition) 3623 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 3624 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 3625 ClassTemplate->getIdentifier(), 3626 TemplateNameLoc, 3627 Attr, 3628 TemplateParams, 3629 AS_none); 3630 } 3631 3632 // FIXME: Diagnose friend partial specializations 3633 3634 if (!Name.isDependent() && 3635 !TemplateSpecializationType::anyDependentTemplateArguments( 3636 TemplateArgs.getArgumentArray(), 3637 TemplateArgs.size())) { 3638 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 3639 << ClassTemplate->getDeclName(); 3640 isPartialSpecialization = false; 3641 } else { 3642 // FIXME: Template parameter list matters, too 3643 ClassTemplatePartialSpecializationDecl::Profile(ID, 3644 Converted.getFlatArguments(), 3645 Converted.flatSize(), 3646 Context); 3647 } 3648 } 3649 3650 if (!isPartialSpecialization) 3651 ClassTemplateSpecializationDecl::Profile(ID, 3652 Converted.getFlatArguments(), 3653 Converted.flatSize(), 3654 Context); 3655 void *InsertPos = 0; 3656 ClassTemplateSpecializationDecl *PrevDecl = 0; 3657 3658 if (isPartialSpecialization) 3659 PrevDecl 3660 = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID, 3661 InsertPos); 3662 else 3663 PrevDecl 3664 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 3665 3666 ClassTemplateSpecializationDecl *Specialization = 0; 3667 3668 // Check whether we can declare a class template specialization in 3669 // the current scope. 3670 if (TUK != TUK_Friend && 3671 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 3672 TemplateNameLoc, 3673 isPartialSpecialization)) 3674 return true; 3675 3676 // The canonical type 3677 QualType CanonType; 3678 if (PrevDecl && 3679 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 3680 TUK == TUK_Friend)) { 3681 // Since the only prior class template specialization with these 3682 // arguments was referenced but not declared, or we're only 3683 // referencing this specialization as a friend, reuse that 3684 // declaration node as our own, updating its source location to 3685 // reflect our new declaration. 3686 Specialization = PrevDecl; 3687 Specialization->setLocation(TemplateNameLoc); 3688 PrevDecl = 0; 3689 CanonType = Context.getTypeDeclType(Specialization); 3690 } else if (isPartialSpecialization) { 3691 // Build the canonical type that describes the converted template 3692 // arguments of the class template partial specialization. 3693 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 3694 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 3695 Converted.getFlatArguments(), 3696 Converted.flatSize()); 3697 3698 // Create a new class template partial specialization declaration node. 3699 ClassTemplatePartialSpecializationDecl *PrevPartial 3700 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 3701 ClassTemplatePartialSpecializationDecl *Partial 3702 = ClassTemplatePartialSpecializationDecl::Create(Context, 3703 ClassTemplate->getDeclContext(), 3704 TemplateNameLoc, 3705 TemplateParams, 3706 ClassTemplate, 3707 Converted, 3708 TemplateArgs, 3709 CanonType, 3710 PrevPartial); 3711 SetNestedNameSpecifier(Partial, SS); 3712 3713 if (PrevPartial) { 3714 ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial); 3715 ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial); 3716 } else { 3717 ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos); 3718 } 3719 Specialization = Partial; 3720 3721 // If we are providing an explicit specialization of a member class 3722 // template specialization, make a note of that. 3723 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 3724 PrevPartial->setMemberSpecialization(); 3725 3726 // Check that all of the template parameters of the class template 3727 // partial specialization are deducible from the template 3728 // arguments. If not, this class template partial specialization 3729 // will never be used. 3730 llvm::SmallVector<bool, 8> DeducibleParams; 3731 DeducibleParams.resize(TemplateParams->size()); 3732 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 3733 TemplateParams->getDepth(), 3734 DeducibleParams); 3735 unsigned NumNonDeducible = 0; 3736 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 3737 if (!DeducibleParams[I]) 3738 ++NumNonDeducible; 3739 3740 if (NumNonDeducible) { 3741 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 3742 << (NumNonDeducible > 1) 3743 << SourceRange(TemplateNameLoc, RAngleLoc); 3744 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 3745 if (!DeducibleParams[I]) { 3746 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 3747 if (Param->getDeclName()) 3748 Diag(Param->getLocation(), 3749 diag::note_partial_spec_unused_parameter) 3750 << Param->getDeclName(); 3751 else 3752 Diag(Param->getLocation(), 3753 diag::note_partial_spec_unused_parameter) 3754 << std::string("<anonymous>"); 3755 } 3756 } 3757 } 3758 } else { 3759 // Create a new class template specialization declaration node for 3760 // this explicit specialization or friend declaration. 3761 Specialization 3762 = ClassTemplateSpecializationDecl::Create(Context, 3763 ClassTemplate->getDeclContext(), 3764 TemplateNameLoc, 3765 ClassTemplate, 3766 Converted, 3767 PrevDecl); 3768 SetNestedNameSpecifier(Specialization, SS); 3769 3770 if (PrevDecl) { 3771 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 3772 ClassTemplate->getSpecializations().GetOrInsertNode(Specialization); 3773 } else { 3774 ClassTemplate->getSpecializations().InsertNode(Specialization, 3775 InsertPos); 3776 } 3777 3778 CanonType = Context.getTypeDeclType(Specialization); 3779 } 3780 3781 // C++ [temp.expl.spec]p6: 3782 // If a template, a member template or the member of a class template is 3783 // explicitly specialized then that specialization shall be declared 3784 // before the first use of that specialization that would cause an implicit 3785 // instantiation to take place, in every translation unit in which such a 3786 // use occurs; no diagnostic is required. 3787 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 3788 bool Okay = false; 3789 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 3790 // Is there any previous explicit specialization declaration? 3791 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 3792 Okay = true; 3793 break; 3794 } 3795 } 3796 3797 if (!Okay) { 3798 SourceRange Range(TemplateNameLoc, RAngleLoc); 3799 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 3800 << Context.getTypeDeclType(Specialization) << Range; 3801 3802 Diag(PrevDecl->getPointOfInstantiation(), 3803 diag::note_instantiation_required_here) 3804 << (PrevDecl->getTemplateSpecializationKind() 3805 != TSK_ImplicitInstantiation); 3806 return true; 3807 } 3808 } 3809 3810 // If this is not a friend, note that this is an explicit specialization. 3811 if (TUK != TUK_Friend) 3812 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 3813 3814 // Check that this isn't a redefinition of this specialization. 3815 if (TUK == TUK_Definition) { 3816 if (RecordDecl *Def = Specialization->getDefinition()) { 3817 SourceRange Range(TemplateNameLoc, RAngleLoc); 3818 Diag(TemplateNameLoc, diag::err_redefinition) 3819 << Context.getTypeDeclType(Specialization) << Range; 3820 Diag(Def->getLocation(), diag::note_previous_definition); 3821 Specialization->setInvalidDecl(); 3822 return true; 3823 } 3824 } 3825 3826 // Build the fully-sugared type for this class template 3827 // specialization as the user wrote in the specialization 3828 // itself. This means that we'll pretty-print the type retrieved 3829 // from the specialization's declaration the way that the user 3830 // actually wrote the specialization, rather than formatting the 3831 // name based on the "canonical" representation used to store the 3832 // template arguments in the specialization. 3833 TypeSourceInfo *WrittenTy 3834 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 3835 TemplateArgs, CanonType); 3836 if (TUK != TUK_Friend) 3837 Specialization->setTypeAsWritten(WrittenTy); 3838 TemplateArgsIn.release(); 3839 3840 // C++ [temp.expl.spec]p9: 3841 // A template explicit specialization is in the scope of the 3842 // namespace in which the template was defined. 3843 // 3844 // We actually implement this paragraph where we set the semantic 3845 // context (in the creation of the ClassTemplateSpecializationDecl), 3846 // but we also maintain the lexical context where the actual 3847 // definition occurs. 3848 Specialization->setLexicalDeclContext(CurContext); 3849 3850 // We may be starting the definition of this specialization. 3851 if (TUK == TUK_Definition) 3852 Specialization->startDefinition(); 3853 3854 if (TUK == TUK_Friend) { 3855 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 3856 TemplateNameLoc, 3857 WrittenTy, 3858 /*FIXME:*/KWLoc); 3859 Friend->setAccess(AS_public); 3860 CurContext->addDecl(Friend); 3861 } else { 3862 // Add the specialization into its lexical context, so that it can 3863 // be seen when iterating through the list of declarations in that 3864 // context. However, specializations are not found by name lookup. 3865 CurContext->addDecl(Specialization); 3866 } 3867 return DeclPtrTy::make(Specialization); 3868} 3869 3870Sema::DeclPtrTy 3871Sema::ActOnTemplateDeclarator(Scope *S, 3872 MultiTemplateParamsArg TemplateParameterLists, 3873 Declarator &D) { 3874 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 3875} 3876 3877Sema::DeclPtrTy 3878Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 3879 MultiTemplateParamsArg TemplateParameterLists, 3880 Declarator &D) { 3881 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 3882 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && 3883 "Not a function declarator!"); 3884 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; 3885 3886 if (FTI.hasPrototype) { 3887 // FIXME: Diagnose arguments without names in C. 3888 } 3889 3890 Scope *ParentScope = FnBodyScope->getParent(); 3891 3892 DeclPtrTy DP = HandleDeclarator(ParentScope, D, 3893 move(TemplateParameterLists), 3894 /*IsFunctionDefinition=*/true); 3895 if (FunctionTemplateDecl *FunctionTemplate 3896 = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>())) 3897 return ActOnStartOfFunctionDef(FnBodyScope, 3898 DeclPtrTy::make(FunctionTemplate->getTemplatedDecl())); 3899 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>())) 3900 return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function)); 3901 return DeclPtrTy(); 3902} 3903 3904/// \brief Strips various properties off an implicit instantiation 3905/// that has just been explicitly specialized. 3906static void StripImplicitInstantiation(NamedDecl *D) { 3907 D->invalidateAttrs(); 3908 3909 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 3910 FD->setInlineSpecified(false); 3911 } 3912} 3913 3914/// \brief Diagnose cases where we have an explicit template specialization 3915/// before/after an explicit template instantiation, producing diagnostics 3916/// for those cases where they are required and determining whether the 3917/// new specialization/instantiation will have any effect. 3918/// 3919/// \param NewLoc the location of the new explicit specialization or 3920/// instantiation. 3921/// 3922/// \param NewTSK the kind of the new explicit specialization or instantiation. 3923/// 3924/// \param PrevDecl the previous declaration of the entity. 3925/// 3926/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 3927/// 3928/// \param PrevPointOfInstantiation if valid, indicates where the previus 3929/// declaration was instantiated (either implicitly or explicitly). 3930/// 3931/// \param SuppressNew will be set to true to indicate that the new 3932/// specialization or instantiation has no effect and should be ignored. 3933/// 3934/// \returns true if there was an error that should prevent the introduction of 3935/// the new declaration into the AST, false otherwise. 3936bool 3937Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 3938 TemplateSpecializationKind NewTSK, 3939 NamedDecl *PrevDecl, 3940 TemplateSpecializationKind PrevTSK, 3941 SourceLocation PrevPointOfInstantiation, 3942 bool &SuppressNew) { 3943 SuppressNew = false; 3944 3945 switch (NewTSK) { 3946 case TSK_Undeclared: 3947 case TSK_ImplicitInstantiation: 3948 assert(false && "Don't check implicit instantiations here"); 3949 return false; 3950 3951 case TSK_ExplicitSpecialization: 3952 switch (PrevTSK) { 3953 case TSK_Undeclared: 3954 case TSK_ExplicitSpecialization: 3955 // Okay, we're just specializing something that is either already 3956 // explicitly specialized or has merely been mentioned without any 3957 // instantiation. 3958 return false; 3959 3960 case TSK_ImplicitInstantiation: 3961 if (PrevPointOfInstantiation.isInvalid()) { 3962 // The declaration itself has not actually been instantiated, so it is 3963 // still okay to specialize it. 3964 StripImplicitInstantiation(PrevDecl); 3965 return false; 3966 } 3967 // Fall through 3968 3969 case TSK_ExplicitInstantiationDeclaration: 3970 case TSK_ExplicitInstantiationDefinition: 3971 assert((PrevTSK == TSK_ImplicitInstantiation || 3972 PrevPointOfInstantiation.isValid()) && 3973 "Explicit instantiation without point of instantiation?"); 3974 3975 // C++ [temp.expl.spec]p6: 3976 // If a template, a member template or the member of a class template 3977 // is explicitly specialized then that specialization shall be declared 3978 // before the first use of that specialization that would cause an 3979 // implicit instantiation to take place, in every translation unit in 3980 // which such a use occurs; no diagnostic is required. 3981 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 3982 // Is there any previous explicit specialization declaration? 3983 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 3984 return false; 3985 } 3986 3987 Diag(NewLoc, diag::err_specialization_after_instantiation) 3988 << PrevDecl; 3989 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 3990 << (PrevTSK != TSK_ImplicitInstantiation); 3991 3992 return true; 3993 } 3994 break; 3995 3996 case TSK_ExplicitInstantiationDeclaration: 3997 switch (PrevTSK) { 3998 case TSK_ExplicitInstantiationDeclaration: 3999 // This explicit instantiation declaration is redundant (that's okay). 4000 SuppressNew = true; 4001 return false; 4002 4003 case TSK_Undeclared: 4004 case TSK_ImplicitInstantiation: 4005 // We're explicitly instantiating something that may have already been 4006 // implicitly instantiated; that's fine. 4007 return false; 4008 4009 case TSK_ExplicitSpecialization: 4010 // C++0x [temp.explicit]p4: 4011 // For a given set of template parameters, if an explicit instantiation 4012 // of a template appears after a declaration of an explicit 4013 // specialization for that template, the explicit instantiation has no 4014 // effect. 4015 SuppressNew = true; 4016 return false; 4017 4018 case TSK_ExplicitInstantiationDefinition: 4019 // C++0x [temp.explicit]p10: 4020 // If an entity is the subject of both an explicit instantiation 4021 // declaration and an explicit instantiation definition in the same 4022 // translation unit, the definition shall follow the declaration. 4023 Diag(NewLoc, 4024 diag::err_explicit_instantiation_declaration_after_definition); 4025 Diag(PrevPointOfInstantiation, 4026 diag::note_explicit_instantiation_definition_here); 4027 assert(PrevPointOfInstantiation.isValid() && 4028 "Explicit instantiation without point of instantiation?"); 4029 SuppressNew = true; 4030 return false; 4031 } 4032 break; 4033 4034 case TSK_ExplicitInstantiationDefinition: 4035 switch (PrevTSK) { 4036 case TSK_Undeclared: 4037 case TSK_ImplicitInstantiation: 4038 // We're explicitly instantiating something that may have already been 4039 // implicitly instantiated; that's fine. 4040 return false; 4041 4042 case TSK_ExplicitSpecialization: 4043 // C++ DR 259, C++0x [temp.explicit]p4: 4044 // For a given set of template parameters, if an explicit 4045 // instantiation of a template appears after a declaration of 4046 // an explicit specialization for that template, the explicit 4047 // instantiation has no effect. 4048 // 4049 // In C++98/03 mode, we only give an extension warning here, because it 4050 // is not not harmful to try to explicitly instantiate something that 4051 // has been explicitly specialized. 4052 if (!getLangOptions().CPlusPlus0x) { 4053 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 4054 << PrevDecl; 4055 Diag(PrevDecl->getLocation(), 4056 diag::note_previous_template_specialization); 4057 } 4058 SuppressNew = true; 4059 return false; 4060 4061 case TSK_ExplicitInstantiationDeclaration: 4062 // We're explicity instantiating a definition for something for which we 4063 // were previously asked to suppress instantiations. That's fine. 4064 return false; 4065 4066 case TSK_ExplicitInstantiationDefinition: 4067 // C++0x [temp.spec]p5: 4068 // For a given template and a given set of template-arguments, 4069 // - an explicit instantiation definition shall appear at most once 4070 // in a program, 4071 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 4072 << PrevDecl; 4073 Diag(PrevPointOfInstantiation, 4074 diag::note_previous_explicit_instantiation); 4075 SuppressNew = true; 4076 return false; 4077 } 4078 break; 4079 } 4080 4081 assert(false && "Missing specialization/instantiation case?"); 4082 4083 return false; 4084} 4085 4086/// \brief Perform semantic analysis for the given function template 4087/// specialization. 4088/// 4089/// This routine performs all of the semantic analysis required for an 4090/// explicit function template specialization. On successful completion, 4091/// the function declaration \p FD will become a function template 4092/// specialization. 4093/// 4094/// \param FD the function declaration, which will be updated to become a 4095/// function template specialization. 4096/// 4097/// \param HasExplicitTemplateArgs whether any template arguments were 4098/// explicitly provided. 4099/// 4100/// \param LAngleLoc the location of the left angle bracket ('<'), if 4101/// template arguments were explicitly provided. 4102/// 4103/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 4104/// if any. 4105/// 4106/// \param NumExplicitTemplateArgs the number of explicitly-provided template 4107/// arguments. This number may be zero even when HasExplicitTemplateArgs is 4108/// true as in, e.g., \c void sort<>(char*, char*); 4109/// 4110/// \param RAngleLoc the location of the right angle bracket ('>'), if 4111/// template arguments were explicitly provided. 4112/// 4113/// \param PrevDecl the set of declarations that 4114bool 4115Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 4116 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4117 LookupResult &Previous) { 4118 // The set of function template specializations that could match this 4119 // explicit function template specialization. 4120 UnresolvedSet<8> Candidates; 4121 4122 DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext(); 4123 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4124 I != E; ++I) { 4125 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 4126 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 4127 // Only consider templates found within the same semantic lookup scope as 4128 // FD. 4129 if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext())) 4130 continue; 4131 4132 // C++ [temp.expl.spec]p11: 4133 // A trailing template-argument can be left unspecified in the 4134 // template-id naming an explicit function template specialization 4135 // provided it can be deduced from the function argument type. 4136 // Perform template argument deduction to determine whether we may be 4137 // specializing this template. 4138 // FIXME: It is somewhat wasteful to build 4139 TemplateDeductionInfo Info(Context, FD->getLocation()); 4140 FunctionDecl *Specialization = 0; 4141 if (TemplateDeductionResult TDK 4142 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 4143 FD->getType(), 4144 Specialization, 4145 Info)) { 4146 // FIXME: Template argument deduction failed; record why it failed, so 4147 // that we can provide nifty diagnostics. 4148 (void)TDK; 4149 continue; 4150 } 4151 4152 // Record this candidate. 4153 Candidates.addDecl(Specialization, I.getAccess()); 4154 } 4155 } 4156 4157 // Find the most specialized function template. 4158 UnresolvedSetIterator Result 4159 = getMostSpecialized(Candidates.begin(), Candidates.end(), 4160 TPOC_Other, FD->getLocation(), 4161 PDiag(diag::err_function_template_spec_no_match) 4162 << FD->getDeclName(), 4163 PDiag(diag::err_function_template_spec_ambiguous) 4164 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 4165 PDiag(diag::note_function_template_spec_matched)); 4166 if (Result == Candidates.end()) 4167 return true; 4168 4169 // Ignore access information; it doesn't figure into redeclaration checking. 4170 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 4171 4172 // FIXME: Check if the prior specialization has a point of instantiation. 4173 // If so, we have run afoul of . 4174 4175 // If this is a friend declaration, then we're not really declaring 4176 // an explicit specialization. 4177 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 4178 4179 // Check the scope of this explicit specialization. 4180 if (!isFriend && 4181 CheckTemplateSpecializationScope(*this, 4182 Specialization->getPrimaryTemplate(), 4183 Specialization, FD->getLocation(), 4184 false)) 4185 return true; 4186 4187 // C++ [temp.expl.spec]p6: 4188 // If a template, a member template or the member of a class template is 4189 // explicitly specialized then that specialization shall be declared 4190 // before the first use of that specialization that would cause an implicit 4191 // instantiation to take place, in every translation unit in which such a 4192 // use occurs; no diagnostic is required. 4193 FunctionTemplateSpecializationInfo *SpecInfo 4194 = Specialization->getTemplateSpecializationInfo(); 4195 assert(SpecInfo && "Function template specialization info missing?"); 4196 4197 bool SuppressNew = false; 4198 if (!isFriend && 4199 CheckSpecializationInstantiationRedecl(FD->getLocation(), 4200 TSK_ExplicitSpecialization, 4201 Specialization, 4202 SpecInfo->getTemplateSpecializationKind(), 4203 SpecInfo->getPointOfInstantiation(), 4204 SuppressNew)) 4205 return true; 4206 4207 // Mark the prior declaration as an explicit specialization, so that later 4208 // clients know that this is an explicit specialization. 4209 if (!isFriend) 4210 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 4211 4212 // Turn the given function declaration into a function template 4213 // specialization, with the template arguments from the previous 4214 // specialization. 4215 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 4216 new (Context) TemplateArgumentList( 4217 *Specialization->getTemplateSpecializationArgs()), 4218 /*InsertPos=*/0, 4219 SpecInfo->getTemplateSpecializationKind()); 4220 4221 // The "previous declaration" for this function template specialization is 4222 // the prior function template specialization. 4223 Previous.clear(); 4224 Previous.addDecl(Specialization); 4225 return false; 4226} 4227 4228/// \brief Perform semantic analysis for the given non-template member 4229/// specialization. 4230/// 4231/// This routine performs all of the semantic analysis required for an 4232/// explicit member function specialization. On successful completion, 4233/// the function declaration \p FD will become a member function 4234/// specialization. 4235/// 4236/// \param Member the member declaration, which will be updated to become a 4237/// specialization. 4238/// 4239/// \param Previous the set of declarations, one of which may be specialized 4240/// by this function specialization; the set will be modified to contain the 4241/// redeclared member. 4242bool 4243Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 4244 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 4245 4246 // Try to find the member we are instantiating. 4247 NamedDecl *Instantiation = 0; 4248 NamedDecl *InstantiatedFrom = 0; 4249 MemberSpecializationInfo *MSInfo = 0; 4250 4251 if (Previous.empty()) { 4252 // Nowhere to look anyway. 4253 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 4254 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4255 I != E; ++I) { 4256 NamedDecl *D = (*I)->getUnderlyingDecl(); 4257 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 4258 if (Context.hasSameType(Function->getType(), Method->getType())) { 4259 Instantiation = Method; 4260 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 4261 MSInfo = Method->getMemberSpecializationInfo(); 4262 break; 4263 } 4264 } 4265 } 4266 } else if (isa<VarDecl>(Member)) { 4267 VarDecl *PrevVar; 4268 if (Previous.isSingleResult() && 4269 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 4270 if (PrevVar->isStaticDataMember()) { 4271 Instantiation = PrevVar; 4272 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 4273 MSInfo = PrevVar->getMemberSpecializationInfo(); 4274 } 4275 } else if (isa<RecordDecl>(Member)) { 4276 CXXRecordDecl *PrevRecord; 4277 if (Previous.isSingleResult() && 4278 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 4279 Instantiation = PrevRecord; 4280 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 4281 MSInfo = PrevRecord->getMemberSpecializationInfo(); 4282 } 4283 } 4284 4285 if (!Instantiation) { 4286 // There is no previous declaration that matches. Since member 4287 // specializations are always out-of-line, the caller will complain about 4288 // this mismatch later. 4289 return false; 4290 } 4291 4292 // Make sure that this is a specialization of a member. 4293 if (!InstantiatedFrom) { 4294 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 4295 << Member; 4296 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 4297 return true; 4298 } 4299 4300 // C++ [temp.expl.spec]p6: 4301 // If a template, a member template or the member of a class template is 4302 // explicitly specialized then that spe- cialization shall be declared 4303 // before the first use of that specialization that would cause an implicit 4304 // instantiation to take place, in every translation unit in which such a 4305 // use occurs; no diagnostic is required. 4306 assert(MSInfo && "Member specialization info missing?"); 4307 4308 bool SuppressNew = false; 4309 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 4310 TSK_ExplicitSpecialization, 4311 Instantiation, 4312 MSInfo->getTemplateSpecializationKind(), 4313 MSInfo->getPointOfInstantiation(), 4314 SuppressNew)) 4315 return true; 4316 4317 // Check the scope of this explicit specialization. 4318 if (CheckTemplateSpecializationScope(*this, 4319 InstantiatedFrom, 4320 Instantiation, Member->getLocation(), 4321 false)) 4322 return true; 4323 4324 // Note that this is an explicit instantiation of a member. 4325 // the original declaration to note that it is an explicit specialization 4326 // (if it was previously an implicit instantiation). This latter step 4327 // makes bookkeeping easier. 4328 if (isa<FunctionDecl>(Member)) { 4329 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 4330 if (InstantiationFunction->getTemplateSpecializationKind() == 4331 TSK_ImplicitInstantiation) { 4332 InstantiationFunction->setTemplateSpecializationKind( 4333 TSK_ExplicitSpecialization); 4334 InstantiationFunction->setLocation(Member->getLocation()); 4335 } 4336 4337 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 4338 cast<CXXMethodDecl>(InstantiatedFrom), 4339 TSK_ExplicitSpecialization); 4340 } else if (isa<VarDecl>(Member)) { 4341 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 4342 if (InstantiationVar->getTemplateSpecializationKind() == 4343 TSK_ImplicitInstantiation) { 4344 InstantiationVar->setTemplateSpecializationKind( 4345 TSK_ExplicitSpecialization); 4346 InstantiationVar->setLocation(Member->getLocation()); 4347 } 4348 4349 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 4350 cast<VarDecl>(InstantiatedFrom), 4351 TSK_ExplicitSpecialization); 4352 } else { 4353 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 4354 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 4355 if (InstantiationClass->getTemplateSpecializationKind() == 4356 TSK_ImplicitInstantiation) { 4357 InstantiationClass->setTemplateSpecializationKind( 4358 TSK_ExplicitSpecialization); 4359 InstantiationClass->setLocation(Member->getLocation()); 4360 } 4361 4362 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 4363 cast<CXXRecordDecl>(InstantiatedFrom), 4364 TSK_ExplicitSpecialization); 4365 } 4366 4367 // Save the caller the trouble of having to figure out which declaration 4368 // this specialization matches. 4369 Previous.clear(); 4370 Previous.addDecl(Instantiation); 4371 return false; 4372} 4373 4374/// \brief Check the scope of an explicit instantiation. 4375static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 4376 SourceLocation InstLoc, 4377 bool WasQualifiedName) { 4378 DeclContext *ExpectedContext 4379 = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext(); 4380 DeclContext *CurContext = S.CurContext->getLookupContext(); 4381 4382 // C++0x [temp.explicit]p2: 4383 // An explicit instantiation shall appear in an enclosing namespace of its 4384 // template. 4385 // 4386 // This is DR275, which we do not retroactively apply to C++98/03. 4387 if (S.getLangOptions().CPlusPlus0x && 4388 !CurContext->Encloses(ExpectedContext)) { 4389 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext)) 4390 S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope) 4391 << D << NS; 4392 else 4393 S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global) 4394 << D; 4395 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4396 return; 4397 } 4398 4399 // C++0x [temp.explicit]p2: 4400 // If the name declared in the explicit instantiation is an unqualified 4401 // name, the explicit instantiation shall appear in the namespace where 4402 // its template is declared or, if that namespace is inline (7.3.1), any 4403 // namespace from its enclosing namespace set. 4404 if (WasQualifiedName) 4405 return; 4406 4407 if (CurContext->Equals(ExpectedContext)) 4408 return; 4409 4410 S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace) 4411 << D << ExpectedContext; 4412 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4413} 4414 4415/// \brief Determine whether the given scope specifier has a template-id in it. 4416static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 4417 if (!SS.isSet()) 4418 return false; 4419 4420 // C++0x [temp.explicit]p2: 4421 // If the explicit instantiation is for a member function, a member class 4422 // or a static data member of a class template specialization, the name of 4423 // the class template specialization in the qualified-id for the member 4424 // name shall be a simple-template-id. 4425 // 4426 // C++98 has the same restriction, just worded differently. 4427 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 4428 NNS; NNS = NNS->getPrefix()) 4429 if (Type *T = NNS->getAsType()) 4430 if (isa<TemplateSpecializationType>(T)) 4431 return true; 4432 4433 return false; 4434} 4435 4436// Explicit instantiation of a class template specialization 4437// FIXME: Implement extern template semantics 4438Sema::DeclResult 4439Sema::ActOnExplicitInstantiation(Scope *S, 4440 SourceLocation ExternLoc, 4441 SourceLocation TemplateLoc, 4442 unsigned TagSpec, 4443 SourceLocation KWLoc, 4444 const CXXScopeSpec &SS, 4445 TemplateTy TemplateD, 4446 SourceLocation TemplateNameLoc, 4447 SourceLocation LAngleLoc, 4448 ASTTemplateArgsPtr TemplateArgsIn, 4449 SourceLocation RAngleLoc, 4450 AttributeList *Attr) { 4451 // Find the class template we're specializing 4452 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4453 ClassTemplateDecl *ClassTemplate 4454 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4455 4456 // Check that the specialization uses the same tag kind as the 4457 // original template. 4458 TagDecl::TagKind Kind; 4459 switch (TagSpec) { 4460 default: assert(0 && "Unknown tag type!"); 4461 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 4462 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 4463 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 4464 } 4465 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4466 Kind, KWLoc, 4467 *ClassTemplate->getIdentifier())) { 4468 Diag(KWLoc, diag::err_use_with_wrong_tag) 4469 << ClassTemplate 4470 << FixItHint::CreateReplacement(KWLoc, 4471 ClassTemplate->getTemplatedDecl()->getKindName()); 4472 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4473 diag::note_previous_use); 4474 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4475 } 4476 4477 // C++0x [temp.explicit]p2: 4478 // There are two forms of explicit instantiation: an explicit instantiation 4479 // definition and an explicit instantiation declaration. An explicit 4480 // instantiation declaration begins with the extern keyword. [...] 4481 TemplateSpecializationKind TSK 4482 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4483 : TSK_ExplicitInstantiationDeclaration; 4484 4485 // Translate the parser's template argument list in our AST format. 4486 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 4487 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4488 4489 // Check that the template argument list is well-formed for this 4490 // template. 4491 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 4492 TemplateArgs.size()); 4493 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4494 TemplateArgs, false, Converted)) 4495 return true; 4496 4497 assert((Converted.structuredSize() == 4498 ClassTemplate->getTemplateParameters()->size()) && 4499 "Converted template argument list is too short!"); 4500 4501 // Find the class template specialization declaration that 4502 // corresponds to these arguments. 4503 llvm::FoldingSetNodeID ID; 4504 ClassTemplateSpecializationDecl::Profile(ID, 4505 Converted.getFlatArguments(), 4506 Converted.flatSize(), 4507 Context); 4508 void *InsertPos = 0; 4509 ClassTemplateSpecializationDecl *PrevDecl 4510 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 4511 4512 // C++0x [temp.explicit]p2: 4513 // [...] An explicit instantiation shall appear in an enclosing 4514 // namespace of its template. [...] 4515 // 4516 // This is C++ DR 275. 4517 CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 4518 SS.isSet()); 4519 4520 ClassTemplateSpecializationDecl *Specialization = 0; 4521 4522 bool ReusedDecl = false; 4523 if (PrevDecl) { 4524 bool SuppressNew = false; 4525 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 4526 PrevDecl, 4527 PrevDecl->getSpecializationKind(), 4528 PrevDecl->getPointOfInstantiation(), 4529 SuppressNew)) 4530 return DeclPtrTy::make(PrevDecl); 4531 4532 if (SuppressNew) 4533 return DeclPtrTy::make(PrevDecl); 4534 4535 if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation || 4536 PrevDecl->getSpecializationKind() == TSK_Undeclared) { 4537 // Since the only prior class template specialization with these 4538 // arguments was referenced but not declared, reuse that 4539 // declaration node as our own, updating its source location to 4540 // reflect our new declaration. 4541 Specialization = PrevDecl; 4542 Specialization->setLocation(TemplateNameLoc); 4543 PrevDecl = 0; 4544 ReusedDecl = true; 4545 } 4546 } 4547 4548 if (!Specialization) { 4549 // Create a new class template specialization declaration node for 4550 // this explicit specialization. 4551 Specialization 4552 = ClassTemplateSpecializationDecl::Create(Context, 4553 ClassTemplate->getDeclContext(), 4554 TemplateNameLoc, 4555 ClassTemplate, 4556 Converted, PrevDecl); 4557 SetNestedNameSpecifier(Specialization, SS); 4558 4559 if (PrevDecl) { 4560 // Remove the previous declaration from the folding set, since we want 4561 // to introduce a new declaration. 4562 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 4563 ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 4564 } 4565 4566 // Insert the new specialization. 4567 ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos); 4568 } 4569 4570 // Build the fully-sugared type for this explicit instantiation as 4571 // the user wrote in the explicit instantiation itself. This means 4572 // that we'll pretty-print the type retrieved from the 4573 // specialization's declaration the way that the user actually wrote 4574 // the explicit instantiation, rather than formatting the name based 4575 // on the "canonical" representation used to store the template 4576 // arguments in the specialization. 4577 TypeSourceInfo *WrittenTy 4578 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 4579 TemplateArgs, 4580 Context.getTypeDeclType(Specialization)); 4581 Specialization->setTypeAsWritten(WrittenTy); 4582 TemplateArgsIn.release(); 4583 4584 if (!ReusedDecl) { 4585 // Add the explicit instantiation into its lexical context. However, 4586 // since explicit instantiations are never found by name lookup, we 4587 // just put it into the declaration context directly. 4588 Specialization->setLexicalDeclContext(CurContext); 4589 CurContext->addDecl(Specialization); 4590 } 4591 4592 // C++ [temp.explicit]p3: 4593 // A definition of a class template or class member template 4594 // shall be in scope at the point of the explicit instantiation of 4595 // the class template or class member template. 4596 // 4597 // This check comes when we actually try to perform the 4598 // instantiation. 4599 ClassTemplateSpecializationDecl *Def 4600 = cast_or_null<ClassTemplateSpecializationDecl>( 4601 Specialization->getDefinition()); 4602 if (!Def) 4603 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 4604 4605 // Instantiate the members of this class template specialization. 4606 Def = cast_or_null<ClassTemplateSpecializationDecl>( 4607 Specialization->getDefinition()); 4608 if (Def) { 4609 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 4610 4611 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 4612 // TSK_ExplicitInstantiationDefinition 4613 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 4614 TSK == TSK_ExplicitInstantiationDefinition) 4615 Def->setTemplateSpecializationKind(TSK); 4616 4617 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 4618 } 4619 4620 return DeclPtrTy::make(Specialization); 4621} 4622 4623// Explicit instantiation of a member class of a class template. 4624Sema::DeclResult 4625Sema::ActOnExplicitInstantiation(Scope *S, 4626 SourceLocation ExternLoc, 4627 SourceLocation TemplateLoc, 4628 unsigned TagSpec, 4629 SourceLocation KWLoc, 4630 const CXXScopeSpec &SS, 4631 IdentifierInfo *Name, 4632 SourceLocation NameLoc, 4633 AttributeList *Attr) { 4634 4635 bool Owned = false; 4636 bool IsDependent = false; 4637 DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference, 4638 KWLoc, SS, Name, NameLoc, Attr, AS_none, 4639 MultiTemplateParamsArg(*this, 0, 0), 4640 Owned, IsDependent); 4641 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 4642 4643 if (!TagD) 4644 return true; 4645 4646 TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>()); 4647 if (Tag->isEnum()) { 4648 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 4649 << Context.getTypeDeclType(Tag); 4650 return true; 4651 } 4652 4653 if (Tag->isInvalidDecl()) 4654 return true; 4655 4656 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 4657 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 4658 if (!Pattern) { 4659 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 4660 << Context.getTypeDeclType(Record); 4661 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 4662 return true; 4663 } 4664 4665 // C++0x [temp.explicit]p2: 4666 // If the explicit instantiation is for a class or member class, the 4667 // elaborated-type-specifier in the declaration shall include a 4668 // simple-template-id. 4669 // 4670 // C++98 has the same restriction, just worded differently. 4671 if (!ScopeSpecifierHasTemplateId(SS)) 4672 Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id) 4673 << Record << SS.getRange(); 4674 4675 // C++0x [temp.explicit]p2: 4676 // There are two forms of explicit instantiation: an explicit instantiation 4677 // definition and an explicit instantiation declaration. An explicit 4678 // instantiation declaration begins with the extern keyword. [...] 4679 TemplateSpecializationKind TSK 4680 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4681 : TSK_ExplicitInstantiationDeclaration; 4682 4683 // C++0x [temp.explicit]p2: 4684 // [...] An explicit instantiation shall appear in an enclosing 4685 // namespace of its template. [...] 4686 // 4687 // This is C++ DR 275. 4688 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 4689 4690 // Verify that it is okay to explicitly instantiate here. 4691 CXXRecordDecl *PrevDecl 4692 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 4693 if (!PrevDecl && Record->getDefinition()) 4694 PrevDecl = Record; 4695 if (PrevDecl) { 4696 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 4697 bool SuppressNew = false; 4698 assert(MSInfo && "No member specialization information?"); 4699 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 4700 PrevDecl, 4701 MSInfo->getTemplateSpecializationKind(), 4702 MSInfo->getPointOfInstantiation(), 4703 SuppressNew)) 4704 return true; 4705 if (SuppressNew) 4706 return TagD; 4707 } 4708 4709 CXXRecordDecl *RecordDef 4710 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 4711 if (!RecordDef) { 4712 // C++ [temp.explicit]p3: 4713 // A definition of a member class of a class template shall be in scope 4714 // at the point of an explicit instantiation of the member class. 4715 CXXRecordDecl *Def 4716 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 4717 if (!Def) { 4718 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 4719 << 0 << Record->getDeclName() << Record->getDeclContext(); 4720 Diag(Pattern->getLocation(), diag::note_forward_declaration) 4721 << Pattern; 4722 return true; 4723 } else { 4724 if (InstantiateClass(NameLoc, Record, Def, 4725 getTemplateInstantiationArgs(Record), 4726 TSK)) 4727 return true; 4728 4729 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 4730 if (!RecordDef) 4731 return true; 4732 } 4733 } 4734 4735 // Instantiate all of the members of the class. 4736 InstantiateClassMembers(NameLoc, RecordDef, 4737 getTemplateInstantiationArgs(Record), TSK); 4738 4739 // FIXME: We don't have any representation for explicit instantiations of 4740 // member classes. Such a representation is not needed for compilation, but it 4741 // should be available for clients that want to see all of the declarations in 4742 // the source code. 4743 return TagD; 4744} 4745 4746Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 4747 SourceLocation ExternLoc, 4748 SourceLocation TemplateLoc, 4749 Declarator &D) { 4750 // Explicit instantiations always require a name. 4751 DeclarationName Name = GetNameForDeclarator(D); 4752 if (!Name) { 4753 if (!D.isInvalidType()) 4754 Diag(D.getDeclSpec().getSourceRange().getBegin(), 4755 diag::err_explicit_instantiation_requires_name) 4756 << D.getDeclSpec().getSourceRange() 4757 << D.getSourceRange(); 4758 4759 return true; 4760 } 4761 4762 // The scope passed in may not be a decl scope. Zip up the scope tree until 4763 // we find one that is. 4764 while ((S->getFlags() & Scope::DeclScope) == 0 || 4765 (S->getFlags() & Scope::TemplateParamScope) != 0) 4766 S = S->getParent(); 4767 4768 // Determine the type of the declaration. 4769 QualType R = GetTypeForDeclarator(D, S, 0); 4770 if (R.isNull()) 4771 return true; 4772 4773 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 4774 // Cannot explicitly instantiate a typedef. 4775 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 4776 << Name; 4777 return true; 4778 } 4779 4780 // C++0x [temp.explicit]p1: 4781 // [...] An explicit instantiation of a function template shall not use the 4782 // inline or constexpr specifiers. 4783 // Presumably, this also applies to member functions of class templates as 4784 // well. 4785 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 4786 Diag(D.getDeclSpec().getInlineSpecLoc(), 4787 diag::err_explicit_instantiation_inline) 4788 <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 4789 4790 // FIXME: check for constexpr specifier. 4791 4792 // C++0x [temp.explicit]p2: 4793 // There are two forms of explicit instantiation: an explicit instantiation 4794 // definition and an explicit instantiation declaration. An explicit 4795 // instantiation declaration begins with the extern keyword. [...] 4796 TemplateSpecializationKind TSK 4797 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4798 : TSK_ExplicitInstantiationDeclaration; 4799 4800 LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName); 4801 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 4802 4803 if (!R->isFunctionType()) { 4804 // C++ [temp.explicit]p1: 4805 // A [...] static data member of a class template can be explicitly 4806 // instantiated from the member definition associated with its class 4807 // template. 4808 if (Previous.isAmbiguous()) 4809 return true; 4810 4811 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 4812 if (!Prev || !Prev->isStaticDataMember()) { 4813 // We expect to see a data data member here. 4814 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 4815 << Name; 4816 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 4817 P != PEnd; ++P) 4818 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 4819 return true; 4820 } 4821 4822 if (!Prev->getInstantiatedFromStaticDataMember()) { 4823 // FIXME: Check for explicit specialization? 4824 Diag(D.getIdentifierLoc(), 4825 diag::err_explicit_instantiation_data_member_not_instantiated) 4826 << Prev; 4827 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 4828 // FIXME: Can we provide a note showing where this was declared? 4829 return true; 4830 } 4831 4832 // C++0x [temp.explicit]p2: 4833 // If the explicit instantiation is for a member function, a member class 4834 // or a static data member of a class template specialization, the name of 4835 // the class template specialization in the qualified-id for the member 4836 // name shall be a simple-template-id. 4837 // 4838 // C++98 has the same restriction, just worded differently. 4839 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 4840 Diag(D.getIdentifierLoc(), 4841 diag::err_explicit_instantiation_without_qualified_id) 4842 << Prev << D.getCXXScopeSpec().getRange(); 4843 4844 // Check the scope of this explicit instantiation. 4845 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 4846 4847 // Verify that it is okay to explicitly instantiate here. 4848 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 4849 assert(MSInfo && "Missing static data member specialization info?"); 4850 bool SuppressNew = false; 4851 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 4852 MSInfo->getTemplateSpecializationKind(), 4853 MSInfo->getPointOfInstantiation(), 4854 SuppressNew)) 4855 return true; 4856 if (SuppressNew) 4857 return DeclPtrTy(); 4858 4859 // Instantiate static data member. 4860 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 4861 if (TSK == TSK_ExplicitInstantiationDefinition) 4862 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false, 4863 /*DefinitionRequired=*/true); 4864 4865 // FIXME: Create an ExplicitInstantiation node? 4866 return DeclPtrTy(); 4867 } 4868 4869 // If the declarator is a template-id, translate the parser's template 4870 // argument list into our AST format. 4871 bool HasExplicitTemplateArgs = false; 4872 TemplateArgumentListInfo TemplateArgs; 4873 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 4874 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 4875 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 4876 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 4877 ASTTemplateArgsPtr TemplateArgsPtr(*this, 4878 TemplateId->getTemplateArgs(), 4879 TemplateId->NumArgs); 4880 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 4881 HasExplicitTemplateArgs = true; 4882 TemplateArgsPtr.release(); 4883 } 4884 4885 // C++ [temp.explicit]p1: 4886 // A [...] function [...] can be explicitly instantiated from its template. 4887 // A member function [...] of a class template can be explicitly 4888 // instantiated from the member definition associated with its class 4889 // template. 4890 UnresolvedSet<8> Matches; 4891 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 4892 P != PEnd; ++P) { 4893 NamedDecl *Prev = *P; 4894 if (!HasExplicitTemplateArgs) { 4895 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 4896 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 4897 Matches.clear(); 4898 4899 Matches.addDecl(Method, P.getAccess()); 4900 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 4901 break; 4902 } 4903 } 4904 } 4905 4906 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 4907 if (!FunTmpl) 4908 continue; 4909 4910 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 4911 FunctionDecl *Specialization = 0; 4912 if (TemplateDeductionResult TDK 4913 = DeduceTemplateArguments(FunTmpl, 4914 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 4915 R, Specialization, Info)) { 4916 // FIXME: Keep track of almost-matches? 4917 (void)TDK; 4918 continue; 4919 } 4920 4921 Matches.addDecl(Specialization, P.getAccess()); 4922 } 4923 4924 // Find the most specialized function template specialization. 4925 UnresolvedSetIterator Result 4926 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 4927 D.getIdentifierLoc(), 4928 PDiag(diag::err_explicit_instantiation_not_known) << Name, 4929 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 4930 PDiag(diag::note_explicit_instantiation_candidate)); 4931 4932 if (Result == Matches.end()) 4933 return true; 4934 4935 // Ignore access control bits, we don't need them for redeclaration checking. 4936 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 4937 4938 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 4939 Diag(D.getIdentifierLoc(), 4940 diag::err_explicit_instantiation_member_function_not_instantiated) 4941 << Specialization 4942 << (Specialization->getTemplateSpecializationKind() == 4943 TSK_ExplicitSpecialization); 4944 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 4945 return true; 4946 } 4947 4948 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 4949 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 4950 PrevDecl = Specialization; 4951 4952 if (PrevDecl) { 4953 bool SuppressNew = false; 4954 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 4955 PrevDecl, 4956 PrevDecl->getTemplateSpecializationKind(), 4957 PrevDecl->getPointOfInstantiation(), 4958 SuppressNew)) 4959 return true; 4960 4961 // FIXME: We may still want to build some representation of this 4962 // explicit specialization. 4963 if (SuppressNew) 4964 return DeclPtrTy(); 4965 } 4966 4967 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 4968 4969 if (TSK == TSK_ExplicitInstantiationDefinition) 4970 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization, 4971 false, /*DefinitionRequired=*/true); 4972 4973 // C++0x [temp.explicit]p2: 4974 // If the explicit instantiation is for a member function, a member class 4975 // or a static data member of a class template specialization, the name of 4976 // the class template specialization in the qualified-id for the member 4977 // name shall be a simple-template-id. 4978 // 4979 // C++98 has the same restriction, just worded differently. 4980 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 4981 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 4982 D.getCXXScopeSpec().isSet() && 4983 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 4984 Diag(D.getIdentifierLoc(), 4985 diag::err_explicit_instantiation_without_qualified_id) 4986 << Specialization << D.getCXXScopeSpec().getRange(); 4987 4988 CheckExplicitInstantiationScope(*this, 4989 FunTmpl? (NamedDecl *)FunTmpl 4990 : Specialization->getInstantiatedFromMemberFunction(), 4991 D.getIdentifierLoc(), 4992 D.getCXXScopeSpec().isSet()); 4993 4994 // FIXME: Create some kind of ExplicitInstantiationDecl here. 4995 return DeclPtrTy(); 4996} 4997 4998Sema::TypeResult 4999Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 5000 const CXXScopeSpec &SS, IdentifierInfo *Name, 5001 SourceLocation TagLoc, SourceLocation NameLoc) { 5002 // This has to hold, because SS is expected to be defined. 5003 assert(Name && "Expected a name in a dependent tag"); 5004 5005 NestedNameSpecifier *NNS 5006 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5007 if (!NNS) 5008 return true; 5009 5010 ElaboratedTypeKeyword Keyword = ETK_None; 5011 switch (TagDecl::getTagKindForTypeSpec(TagSpec)) { 5012 case TagDecl::TK_struct: Keyword = ETK_Struct; break; 5013 case TagDecl::TK_class: Keyword = ETK_Class; break; 5014 case TagDecl::TK_union: Keyword = ETK_Union; break; 5015 case TagDecl::TK_enum: Keyword = ETK_Enum; break; 5016 } 5017 assert(Keyword != ETK_None && "Invalid tag kind!"); 5018 5019 return Context.getDependentNameType(Keyword, NNS, Name).getAsOpaquePtr(); 5020} 5021 5022Sema::TypeResult 5023Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 5024 const IdentifierInfo &II, SourceLocation IdLoc) { 5025 NestedNameSpecifier *NNS 5026 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5027 if (!NNS) 5028 return true; 5029 5030 QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc)); 5031 if (T.isNull()) 5032 return true; 5033 return T.getAsOpaquePtr(); 5034} 5035 5036Sema::TypeResult 5037Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 5038 SourceLocation TemplateLoc, TypeTy *Ty) { 5039 QualType T = GetTypeFromParser(Ty); 5040 NestedNameSpecifier *NNS 5041 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5042 const TemplateSpecializationType *TemplateId 5043 = T->getAs<TemplateSpecializationType>(); 5044 assert(TemplateId && "Expected a template specialization type"); 5045 5046 if (computeDeclContext(SS, false)) { 5047 // If we can compute a declaration context, then the "typename" 5048 // keyword was superfluous. Just build a QualifiedNameType to keep 5049 // track of the nested-name-specifier. 5050 5051 // FIXME: Note that the QualifiedNameType had the "typename" keyword! 5052 return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr(); 5053 } 5054 5055 return Context.getDependentNameType(ETK_Typename, NNS, TemplateId) 5056 .getAsOpaquePtr(); 5057} 5058 5059/// \brief Build the type that describes a C++ typename specifier, 5060/// e.g., "typename T::type". 5061QualType 5062Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II, 5063 SourceRange Range) { 5064 CXXRecordDecl *CurrentInstantiation = 0; 5065 if (NNS->isDependent()) { 5066 CurrentInstantiation = getCurrentInstantiationOf(NNS); 5067 5068 // If the nested-name-specifier does not refer to the current 5069 // instantiation, then build a typename type. 5070 if (!CurrentInstantiation) 5071 return Context.getDependentNameType(ETK_Typename, NNS, &II); 5072 5073 // The nested-name-specifier refers to the current instantiation, so the 5074 // "typename" keyword itself is superfluous. In C++03, the program is 5075 // actually ill-formed. However, DR 382 (in C++0x CD1) allows such 5076 // extraneous "typename" keywords, and we retroactively apply this DR to 5077 // C++03 code. 5078 } 5079 5080 DeclContext *Ctx = 0; 5081 5082 if (CurrentInstantiation) 5083 Ctx = CurrentInstantiation; 5084 else { 5085 CXXScopeSpec SS; 5086 SS.setScopeRep(NNS); 5087 SS.setRange(Range); 5088 if (RequireCompleteDeclContext(SS)) 5089 return QualType(); 5090 5091 Ctx = computeDeclContext(SS); 5092 } 5093 assert(Ctx && "No declaration context?"); 5094 5095 DeclarationName Name(&II); 5096 LookupResult Result(*this, Name, Range.getEnd(), LookupOrdinaryName); 5097 LookupQualifiedName(Result, Ctx); 5098 unsigned DiagID = 0; 5099 Decl *Referenced = 0; 5100 switch (Result.getResultKind()) { 5101 case LookupResult::NotFound: 5102 DiagID = diag::err_typename_nested_not_found; 5103 break; 5104 5105 case LookupResult::NotFoundInCurrentInstantiation: 5106 // Okay, it's a member of an unknown instantiation. 5107 return Context.getDependentNameType(ETK_Typename, NNS, &II); 5108 5109 case LookupResult::Found: 5110 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 5111 // We found a type. Build a QualifiedNameType, since the 5112 // typename-specifier was just sugar. FIXME: Tell 5113 // QualifiedNameType that it has a "typename" prefix. 5114 return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type)); 5115 } 5116 5117 DiagID = diag::err_typename_nested_not_type; 5118 Referenced = Result.getFoundDecl(); 5119 break; 5120 5121 case LookupResult::FoundUnresolvedValue: 5122 llvm_unreachable("unresolved using decl in non-dependent context"); 5123 return QualType(); 5124 5125 case LookupResult::FoundOverloaded: 5126 DiagID = diag::err_typename_nested_not_type; 5127 Referenced = *Result.begin(); 5128 break; 5129 5130 case LookupResult::Ambiguous: 5131 return QualType(); 5132 } 5133 5134 // If we get here, it's because name lookup did not find a 5135 // type. Emit an appropriate diagnostic and return an error. 5136 Diag(Range.getEnd(), DiagID) << Range << Name << Ctx; 5137 if (Referenced) 5138 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 5139 << Name; 5140 return QualType(); 5141} 5142 5143namespace { 5144 // See Sema::RebuildTypeInCurrentInstantiation 5145 class CurrentInstantiationRebuilder 5146 : public TreeTransform<CurrentInstantiationRebuilder> { 5147 SourceLocation Loc; 5148 DeclarationName Entity; 5149 5150 public: 5151 CurrentInstantiationRebuilder(Sema &SemaRef, 5152 SourceLocation Loc, 5153 DeclarationName Entity) 5154 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 5155 Loc(Loc), Entity(Entity) { } 5156 5157 /// \brief Determine whether the given type \p T has already been 5158 /// transformed. 5159 /// 5160 /// For the purposes of type reconstruction, a type has already been 5161 /// transformed if it is NULL or if it is not dependent. 5162 bool AlreadyTransformed(QualType T) { 5163 return T.isNull() || !T->isDependentType(); 5164 } 5165 5166 /// \brief Returns the location of the entity whose type is being 5167 /// rebuilt. 5168 SourceLocation getBaseLocation() { return Loc; } 5169 5170 /// \brief Returns the name of the entity whose type is being rebuilt. 5171 DeclarationName getBaseEntity() { return Entity; } 5172 5173 /// \brief Sets the "base" location and entity when that 5174 /// information is known based on another transformation. 5175 void setBase(SourceLocation Loc, DeclarationName Entity) { 5176 this->Loc = Loc; 5177 this->Entity = Entity; 5178 } 5179 5180 /// \brief Transforms an expression by returning the expression itself 5181 /// (an identity function). 5182 /// 5183 /// FIXME: This is completely unsafe; we will need to actually clone the 5184 /// expressions. 5185 Sema::OwningExprResult TransformExpr(Expr *E) { 5186 return getSema().Owned(E); 5187 } 5188 5189 /// \brief Transforms a typename type by determining whether the type now 5190 /// refers to a member of the current instantiation, and then 5191 /// type-checking and building a QualifiedNameType (when possible). 5192 QualType TransformDependentNameType(TypeLocBuilder &TLB, DependentNameTypeLoc TL, 5193 QualType ObjectType); 5194 }; 5195} 5196 5197QualType 5198CurrentInstantiationRebuilder::TransformDependentNameType(TypeLocBuilder &TLB, 5199 DependentNameTypeLoc TL, 5200 QualType ObjectType) { 5201 DependentNameType *T = TL.getTypePtr(); 5202 5203 NestedNameSpecifier *NNS 5204 = TransformNestedNameSpecifier(T->getQualifier(), 5205 /*FIXME:*/SourceRange(getBaseLocation()), 5206 ObjectType); 5207 if (!NNS) 5208 return QualType(); 5209 5210 // If the nested-name-specifier did not change, and we cannot compute the 5211 // context corresponding to the nested-name-specifier, then this 5212 // typename type will not change; exit early. 5213 CXXScopeSpec SS; 5214 SS.setRange(SourceRange(getBaseLocation())); 5215 SS.setScopeRep(NNS); 5216 5217 QualType Result; 5218 if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0) 5219 Result = QualType(T, 0); 5220 5221 // Rebuild the typename type, which will probably turn into a 5222 // QualifiedNameType. 5223 else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) { 5224 QualType NewTemplateId 5225 = TransformType(QualType(TemplateId, 0)); 5226 if (NewTemplateId.isNull()) 5227 return QualType(); 5228 5229 if (NNS == T->getQualifier() && 5230 NewTemplateId == QualType(TemplateId, 0)) 5231 Result = QualType(T, 0); 5232 else 5233 Result = getDerived().RebuildDependentNameType(T->getKeyword(), 5234 NNS, NewTemplateId); 5235 } else 5236 Result = getDerived().RebuildDependentNameType(T->getKeyword(), 5237 NNS, T->getIdentifier(), 5238 SourceRange(TL.getNameLoc())); 5239 5240 if (Result.isNull()) 5241 return QualType(); 5242 5243 DependentNameTypeLoc NewTL = TLB.push<DependentNameTypeLoc>(Result); 5244 NewTL.setNameLoc(TL.getNameLoc()); 5245 return Result; 5246} 5247 5248/// \brief Rebuilds a type within the context of the current instantiation. 5249/// 5250/// The type \p T is part of the type of an out-of-line member definition of 5251/// a class template (or class template partial specialization) that was parsed 5252/// and constructed before we entered the scope of the class template (or 5253/// partial specialization thereof). This routine will rebuild that type now 5254/// that we have entered the declarator's scope, which may produce different 5255/// canonical types, e.g., 5256/// 5257/// \code 5258/// template<typename T> 5259/// struct X { 5260/// typedef T* pointer; 5261/// pointer data(); 5262/// }; 5263/// 5264/// template<typename T> 5265/// typename X<T>::pointer X<T>::data() { ... } 5266/// \endcode 5267/// 5268/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 5269/// since we do not know that we can look into X<T> when we parsed the type. 5270/// This function will rebuild the type, performing the lookup of "pointer" 5271/// in X<T> and returning a QualifiedNameType whose canonical type is the same 5272/// as the canonical type of T*, allowing the return types of the out-of-line 5273/// definition and the declaration to match. 5274QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc, 5275 DeclarationName Name) { 5276 if (T.isNull() || !T->isDependentType()) 5277 return T; 5278 5279 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 5280 return Rebuilder.TransformType(T); 5281} 5282 5283/// \brief Produces a formatted string that describes the binding of 5284/// template parameters to template arguments. 5285std::string 5286Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 5287 const TemplateArgumentList &Args) { 5288 // FIXME: For variadic templates, we'll need to get the structured list. 5289 return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(), 5290 Args.flat_size()); 5291} 5292 5293std::string 5294Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 5295 const TemplateArgument *Args, 5296 unsigned NumArgs) { 5297 std::string Result; 5298 5299 if (!Params || Params->size() == 0 || NumArgs == 0) 5300 return Result; 5301 5302 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 5303 if (I >= NumArgs) 5304 break; 5305 5306 if (I == 0) 5307 Result += "[with "; 5308 else 5309 Result += ", "; 5310 5311 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 5312 Result += Id->getName(); 5313 } else { 5314 Result += '$'; 5315 Result += llvm::utostr(I); 5316 } 5317 5318 Result += " = "; 5319 5320 switch (Args[I].getKind()) { 5321 case TemplateArgument::Null: 5322 Result += "<no value>"; 5323 break; 5324 5325 case TemplateArgument::Type: { 5326 std::string TypeStr; 5327 Args[I].getAsType().getAsStringInternal(TypeStr, 5328 Context.PrintingPolicy); 5329 Result += TypeStr; 5330 break; 5331 } 5332 5333 case TemplateArgument::Declaration: { 5334 bool Unnamed = true; 5335 if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) { 5336 if (ND->getDeclName()) { 5337 Unnamed = false; 5338 Result += ND->getNameAsString(); 5339 } 5340 } 5341 5342 if (Unnamed) { 5343 Result += "<anonymous>"; 5344 } 5345 break; 5346 } 5347 5348 case TemplateArgument::Template: { 5349 std::string Str; 5350 llvm::raw_string_ostream OS(Str); 5351 Args[I].getAsTemplate().print(OS, Context.PrintingPolicy); 5352 Result += OS.str(); 5353 break; 5354 } 5355 5356 case TemplateArgument::Integral: { 5357 Result += Args[I].getAsIntegral()->toString(10); 5358 break; 5359 } 5360 5361 case TemplateArgument::Expression: { 5362 assert(false && "No expressions in deduced template arguments!"); 5363 Result += "<expression>"; 5364 break; 5365 } 5366 5367 case TemplateArgument::Pack: 5368 // FIXME: Format template argument packs 5369 Result += "<template argument pack>"; 5370 break; 5371 } 5372 } 5373 5374 Result += ']'; 5375 return Result; 5376} 5377