SemaTemplate.cpp revision e4b92761b43ced611c417ae478568610f1ad7b1e
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/StringExtras.h"
30using namespace clang;
31using namespace sema;
32
33// Exported for use by Parser.
34SourceRange
35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
36                              unsigned N) {
37  if (!N) return SourceRange();
38  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
39}
40
41/// \brief Determine whether the declaration found is acceptable as the name
42/// of a template and, if so, return that template declaration. Otherwise,
43/// returns NULL.
44static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
45                                           NamedDecl *Orig) {
46  NamedDecl *D = Orig->getUnderlyingDecl();
47
48  if (isa<TemplateDecl>(D))
49    return Orig;
50
51  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
52    // C++ [temp.local]p1:
53    //   Like normal (non-template) classes, class templates have an
54    //   injected-class-name (Clause 9). The injected-class-name
55    //   can be used with or without a template-argument-list. When
56    //   it is used without a template-argument-list, it is
57    //   equivalent to the injected-class-name followed by the
58    //   template-parameters of the class template enclosed in
59    //   <>. When it is used with a template-argument-list, it
60    //   refers to the specified class template specialization,
61    //   which could be the current specialization or another
62    //   specialization.
63    if (Record->isInjectedClassName()) {
64      Record = cast<CXXRecordDecl>(Record->getDeclContext());
65      if (Record->getDescribedClassTemplate())
66        return Record->getDescribedClassTemplate();
67
68      if (ClassTemplateSpecializationDecl *Spec
69            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
70        return Spec->getSpecializedTemplate();
71    }
72
73    return 0;
74  }
75
76  return 0;
77}
78
79void Sema::FilterAcceptableTemplateNames(LookupResult &R) {
80  // The set of class templates we've already seen.
81  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
82  LookupResult::Filter filter = R.makeFilter();
83  while (filter.hasNext()) {
84    NamedDecl *Orig = filter.next();
85    NamedDecl *Repl = isAcceptableTemplateName(Context, Orig);
86    if (!Repl)
87      filter.erase();
88    else if (Repl != Orig) {
89
90      // C++ [temp.local]p3:
91      //   A lookup that finds an injected-class-name (10.2) can result in an
92      //   ambiguity in certain cases (for example, if it is found in more than
93      //   one base class). If all of the injected-class-names that are found
94      //   refer to specializations of the same class template, and if the name
95      //   is used as a template-name, the reference refers to the class
96      //   template itself and not a specialization thereof, and is not
97      //   ambiguous.
98      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
99        if (!ClassTemplates.insert(ClassTmpl)) {
100          filter.erase();
101          continue;
102        }
103
104      // FIXME: we promote access to public here as a workaround to
105      // the fact that LookupResult doesn't let us remember that we
106      // found this template through a particular injected class name,
107      // which means we end up doing nasty things to the invariants.
108      // Pretending that access is public is *much* safer.
109      filter.replace(Repl, AS_public);
110    }
111  }
112  filter.done();
113}
114
115bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R) {
116  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
117    if (isAcceptableTemplateName(Context, *I))
118      return true;
119
120  return false;
121}
122
123TemplateNameKind Sema::isTemplateName(Scope *S,
124                                      CXXScopeSpec &SS,
125                                      bool hasTemplateKeyword,
126                                      UnqualifiedId &Name,
127                                      ParsedType ObjectTypePtr,
128                                      bool EnteringContext,
129                                      TemplateTy &TemplateResult,
130                                      bool &MemberOfUnknownSpecialization) {
131  assert(getLangOptions().CPlusPlus && "No template names in C!");
132
133  DeclarationName TName;
134  MemberOfUnknownSpecialization = false;
135
136  switch (Name.getKind()) {
137  case UnqualifiedId::IK_Identifier:
138    TName = DeclarationName(Name.Identifier);
139    break;
140
141  case UnqualifiedId::IK_OperatorFunctionId:
142    TName = Context.DeclarationNames.getCXXOperatorName(
143                                              Name.OperatorFunctionId.Operator);
144    break;
145
146  case UnqualifiedId::IK_LiteralOperatorId:
147    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
148    break;
149
150  default:
151    return TNK_Non_template;
152  }
153
154  QualType ObjectType = ObjectTypePtr.get();
155
156  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
157                 LookupOrdinaryName);
158  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
159                     MemberOfUnknownSpecialization);
160  if (R.empty()) return TNK_Non_template;
161  if (R.isAmbiguous()) {
162    // Suppress diagnostics;  we'll redo this lookup later.
163    R.suppressDiagnostics();
164
165    // FIXME: we might have ambiguous templates, in which case we
166    // should at least parse them properly!
167    return TNK_Non_template;
168  }
169
170  TemplateName Template;
171  TemplateNameKind TemplateKind;
172
173  unsigned ResultCount = R.end() - R.begin();
174  if (ResultCount > 1) {
175    // We assume that we'll preserve the qualifier from a function
176    // template name in other ways.
177    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
178    TemplateKind = TNK_Function_template;
179
180    // We'll do this lookup again later.
181    R.suppressDiagnostics();
182  } else {
183    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
184
185    if (SS.isSet() && !SS.isInvalid()) {
186      NestedNameSpecifier *Qualifier
187        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
188      Template = Context.getQualifiedTemplateName(Qualifier,
189                                                  hasTemplateKeyword, TD);
190    } else {
191      Template = TemplateName(TD);
192    }
193
194    if (isa<FunctionTemplateDecl>(TD)) {
195      TemplateKind = TNK_Function_template;
196
197      // We'll do this lookup again later.
198      R.suppressDiagnostics();
199    } else {
200      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
201             isa<TypeAliasTemplateDecl>(TD));
202      TemplateKind = TNK_Type_template;
203    }
204  }
205
206  TemplateResult = TemplateTy::make(Template);
207  return TemplateKind;
208}
209
210bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
211                                       SourceLocation IILoc,
212                                       Scope *S,
213                                       const CXXScopeSpec *SS,
214                                       TemplateTy &SuggestedTemplate,
215                                       TemplateNameKind &SuggestedKind) {
216  // We can't recover unless there's a dependent scope specifier preceding the
217  // template name.
218  // FIXME: Typo correction?
219  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
220      computeDeclContext(*SS))
221    return false;
222
223  // The code is missing a 'template' keyword prior to the dependent template
224  // name.
225  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
226  Diag(IILoc, diag::err_template_kw_missing)
227    << Qualifier << II.getName()
228    << FixItHint::CreateInsertion(IILoc, "template ");
229  SuggestedTemplate
230    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
231  SuggestedKind = TNK_Dependent_template_name;
232  return true;
233}
234
235void Sema::LookupTemplateName(LookupResult &Found,
236                              Scope *S, CXXScopeSpec &SS,
237                              QualType ObjectType,
238                              bool EnteringContext,
239                              bool &MemberOfUnknownSpecialization) {
240  // Determine where to perform name lookup
241  MemberOfUnknownSpecialization = false;
242  DeclContext *LookupCtx = 0;
243  bool isDependent = false;
244  if (!ObjectType.isNull()) {
245    // This nested-name-specifier occurs in a member access expression, e.g.,
246    // x->B::f, and we are looking into the type of the object.
247    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
248    LookupCtx = computeDeclContext(ObjectType);
249    isDependent = ObjectType->isDependentType();
250    assert((isDependent || !ObjectType->isIncompleteType()) &&
251           "Caller should have completed object type");
252
253    // Template names cannot appear inside an Objective-C class or object type.
254    if (ObjectType->isObjCObjectOrInterfaceType()) {
255      Found.clear();
256      return;
257    }
258  } else if (SS.isSet()) {
259    // This nested-name-specifier occurs after another nested-name-specifier,
260    // so long into the context associated with the prior nested-name-specifier.
261    LookupCtx = computeDeclContext(SS, EnteringContext);
262    isDependent = isDependentScopeSpecifier(SS);
263
264    // The declaration context must be complete.
265    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
266      return;
267  }
268
269  bool ObjectTypeSearchedInScope = false;
270  if (LookupCtx) {
271    // Perform "qualified" name lookup into the declaration context we
272    // computed, which is either the type of the base of a member access
273    // expression or the declaration context associated with a prior
274    // nested-name-specifier.
275    LookupQualifiedName(Found, LookupCtx);
276
277    if (!ObjectType.isNull() && Found.empty()) {
278      // C++ [basic.lookup.classref]p1:
279      //   In a class member access expression (5.2.5), if the . or -> token is
280      //   immediately followed by an identifier followed by a <, the
281      //   identifier must be looked up to determine whether the < is the
282      //   beginning of a template argument list (14.2) or a less-than operator.
283      //   The identifier is first looked up in the class of the object
284      //   expression. If the identifier is not found, it is then looked up in
285      //   the context of the entire postfix-expression and shall name a class
286      //   or function template.
287      if (S) LookupName(Found, S);
288      ObjectTypeSearchedInScope = true;
289    }
290  } else if (isDependent && (!S || ObjectType.isNull())) {
291    // We cannot look into a dependent object type or nested nme
292    // specifier.
293    MemberOfUnknownSpecialization = true;
294    return;
295  } else {
296    // Perform unqualified name lookup in the current scope.
297    LookupName(Found, S);
298  }
299
300  if (Found.empty() && !isDependent) {
301    // If we did not find any names, attempt to correct any typos.
302    DeclarationName Name = Found.getLookupName();
303    Found.clear();
304    // Simple filter callback that, for keywords, only accepts the C++ *_cast
305    CorrectionCandidateCallback FilterCCC;
306    FilterCCC.WantTypeSpecifiers = false;
307    FilterCCC.WantExpressionKeywords = false;
308    FilterCCC.WantRemainingKeywords = false;
309    FilterCCC.WantCXXNamedCasts = true;
310    if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
311                                               Found.getLookupKind(), S, &SS,
312                                               &FilterCCC, LookupCtx)) {
313      Found.setLookupName(Corrected.getCorrection());
314      if (Corrected.getCorrectionDecl())
315        Found.addDecl(Corrected.getCorrectionDecl());
316      FilterAcceptableTemplateNames(Found);
317      if (!Found.empty()) {
318        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
319        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
320        if (LookupCtx)
321          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
322            << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
323            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
324        else
325          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
326            << Name << CorrectedQuotedStr
327            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
328        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
329          Diag(Template->getLocation(), diag::note_previous_decl)
330            << CorrectedQuotedStr;
331      }
332    } else {
333      Found.setLookupName(Name);
334    }
335  }
336
337  FilterAcceptableTemplateNames(Found);
338  if (Found.empty()) {
339    if (isDependent)
340      MemberOfUnknownSpecialization = true;
341    return;
342  }
343
344  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
345    // C++ [basic.lookup.classref]p1:
346    //   [...] If the lookup in the class of the object expression finds a
347    //   template, the name is also looked up in the context of the entire
348    //   postfix-expression and [...]
349    //
350    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
351                            LookupOrdinaryName);
352    LookupName(FoundOuter, S);
353    FilterAcceptableTemplateNames(FoundOuter);
354
355    if (FoundOuter.empty()) {
356      //   - if the name is not found, the name found in the class of the
357      //     object expression is used, otherwise
358    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
359               FoundOuter.isAmbiguous()) {
360      //   - if the name is found in the context of the entire
361      //     postfix-expression and does not name a class template, the name
362      //     found in the class of the object expression is used, otherwise
363      FoundOuter.clear();
364    } else if (!Found.isSuppressingDiagnostics()) {
365      //   - if the name found is a class template, it must refer to the same
366      //     entity as the one found in the class of the object expression,
367      //     otherwise the program is ill-formed.
368      if (!Found.isSingleResult() ||
369          Found.getFoundDecl()->getCanonicalDecl()
370            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
371        Diag(Found.getNameLoc(),
372             diag::ext_nested_name_member_ref_lookup_ambiguous)
373          << Found.getLookupName()
374          << ObjectType;
375        Diag(Found.getRepresentativeDecl()->getLocation(),
376             diag::note_ambig_member_ref_object_type)
377          << ObjectType;
378        Diag(FoundOuter.getFoundDecl()->getLocation(),
379             diag::note_ambig_member_ref_scope);
380
381        // Recover by taking the template that we found in the object
382        // expression's type.
383      }
384    }
385  }
386}
387
388/// ActOnDependentIdExpression - Handle a dependent id-expression that
389/// was just parsed.  This is only possible with an explicit scope
390/// specifier naming a dependent type.
391ExprResult
392Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
393                                 SourceLocation TemplateKWLoc,
394                                 const DeclarationNameInfo &NameInfo,
395                                 bool isAddressOfOperand,
396                           const TemplateArgumentListInfo *TemplateArgs) {
397  DeclContext *DC = getFunctionLevelDeclContext();
398
399  if (!isAddressOfOperand &&
400      isa<CXXMethodDecl>(DC) &&
401      cast<CXXMethodDecl>(DC)->isInstance()) {
402    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
403
404    // Since the 'this' expression is synthesized, we don't need to
405    // perform the double-lookup check.
406    NamedDecl *FirstQualifierInScope = 0;
407
408    return Owned(CXXDependentScopeMemberExpr::Create(Context,
409                                                     /*This*/ 0, ThisType,
410                                                     /*IsArrow*/ true,
411                                                     /*Op*/ SourceLocation(),
412                                               SS.getWithLocInContext(Context),
413                                                     TemplateKWLoc,
414                                                     FirstQualifierInScope,
415                                                     NameInfo,
416                                                     TemplateArgs));
417  }
418
419  return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
420}
421
422ExprResult
423Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
424                                SourceLocation TemplateKWLoc,
425                                const DeclarationNameInfo &NameInfo,
426                                const TemplateArgumentListInfo *TemplateArgs) {
427  return Owned(DependentScopeDeclRefExpr::Create(Context,
428                                               SS.getWithLocInContext(Context),
429                                                 TemplateKWLoc,
430                                                 NameInfo,
431                                                 TemplateArgs));
432}
433
434/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
435/// that the template parameter 'PrevDecl' is being shadowed by a new
436/// declaration at location Loc. Returns true to indicate that this is
437/// an error, and false otherwise.
438void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
439  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
440
441  // Microsoft Visual C++ permits template parameters to be shadowed.
442  if (getLangOptions().MicrosoftExt)
443    return;
444
445  // C++ [temp.local]p4:
446  //   A template-parameter shall not be redeclared within its
447  //   scope (including nested scopes).
448  Diag(Loc, diag::err_template_param_shadow)
449    << cast<NamedDecl>(PrevDecl)->getDeclName();
450  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
451  return;
452}
453
454/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
455/// the parameter D to reference the templated declaration and return a pointer
456/// to the template declaration. Otherwise, do nothing to D and return null.
457TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
458  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
459    D = Temp->getTemplatedDecl();
460    return Temp;
461  }
462  return 0;
463}
464
465ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
466                                             SourceLocation EllipsisLoc) const {
467  assert(Kind == Template &&
468         "Only template template arguments can be pack expansions here");
469  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
470         "Template template argument pack expansion without packs");
471  ParsedTemplateArgument Result(*this);
472  Result.EllipsisLoc = EllipsisLoc;
473  return Result;
474}
475
476static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
477                                            const ParsedTemplateArgument &Arg) {
478
479  switch (Arg.getKind()) {
480  case ParsedTemplateArgument::Type: {
481    TypeSourceInfo *DI;
482    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
483    if (!DI)
484      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
485    return TemplateArgumentLoc(TemplateArgument(T), DI);
486  }
487
488  case ParsedTemplateArgument::NonType: {
489    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
490    return TemplateArgumentLoc(TemplateArgument(E), E);
491  }
492
493  case ParsedTemplateArgument::Template: {
494    TemplateName Template = Arg.getAsTemplate().get();
495    TemplateArgument TArg;
496    if (Arg.getEllipsisLoc().isValid())
497      TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
498    else
499      TArg = Template;
500    return TemplateArgumentLoc(TArg,
501                               Arg.getScopeSpec().getWithLocInContext(
502                                                              SemaRef.Context),
503                               Arg.getLocation(),
504                               Arg.getEllipsisLoc());
505  }
506  }
507
508  llvm_unreachable("Unhandled parsed template argument");
509}
510
511/// \brief Translates template arguments as provided by the parser
512/// into template arguments used by semantic analysis.
513void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
514                                      TemplateArgumentListInfo &TemplateArgs) {
515 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
516   TemplateArgs.addArgument(translateTemplateArgument(*this,
517                                                      TemplateArgsIn[I]));
518}
519
520/// ActOnTypeParameter - Called when a C++ template type parameter
521/// (e.g., "typename T") has been parsed. Typename specifies whether
522/// the keyword "typename" was used to declare the type parameter
523/// (otherwise, "class" was used), and KeyLoc is the location of the
524/// "class" or "typename" keyword. ParamName is the name of the
525/// parameter (NULL indicates an unnamed template parameter) and
526/// ParamNameLoc is the location of the parameter name (if any).
527/// If the type parameter has a default argument, it will be added
528/// later via ActOnTypeParameterDefault.
529Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
530                               SourceLocation EllipsisLoc,
531                               SourceLocation KeyLoc,
532                               IdentifierInfo *ParamName,
533                               SourceLocation ParamNameLoc,
534                               unsigned Depth, unsigned Position,
535                               SourceLocation EqualLoc,
536                               ParsedType DefaultArg) {
537  assert(S->isTemplateParamScope() &&
538         "Template type parameter not in template parameter scope!");
539  bool Invalid = false;
540
541  if (ParamName) {
542    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
543                                           LookupOrdinaryName,
544                                           ForRedeclaration);
545    if (PrevDecl && PrevDecl->isTemplateParameter()) {
546      DiagnoseTemplateParameterShadow(ParamNameLoc, PrevDecl);
547      PrevDecl = 0;
548    }
549  }
550
551  SourceLocation Loc = ParamNameLoc;
552  if (!ParamName)
553    Loc = KeyLoc;
554
555  TemplateTypeParmDecl *Param
556    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
557                                   KeyLoc, Loc, Depth, Position, ParamName,
558                                   Typename, Ellipsis);
559  Param->setAccess(AS_public);
560  if (Invalid)
561    Param->setInvalidDecl();
562
563  if (ParamName) {
564    // Add the template parameter into the current scope.
565    S->AddDecl(Param);
566    IdResolver.AddDecl(Param);
567  }
568
569  // C++0x [temp.param]p9:
570  //   A default template-argument may be specified for any kind of
571  //   template-parameter that is not a template parameter pack.
572  if (DefaultArg && Ellipsis) {
573    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
574    DefaultArg = ParsedType();
575  }
576
577  // Handle the default argument, if provided.
578  if (DefaultArg) {
579    TypeSourceInfo *DefaultTInfo;
580    GetTypeFromParser(DefaultArg, &DefaultTInfo);
581
582    assert(DefaultTInfo && "expected source information for type");
583
584    // Check for unexpanded parameter packs.
585    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
586                                        UPPC_DefaultArgument))
587      return Param;
588
589    // Check the template argument itself.
590    if (CheckTemplateArgument(Param, DefaultTInfo)) {
591      Param->setInvalidDecl();
592      return Param;
593    }
594
595    Param->setDefaultArgument(DefaultTInfo, false);
596  }
597
598  return Param;
599}
600
601/// \brief Check that the type of a non-type template parameter is
602/// well-formed.
603///
604/// \returns the (possibly-promoted) parameter type if valid;
605/// otherwise, produces a diagnostic and returns a NULL type.
606QualType
607Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
608  // We don't allow variably-modified types as the type of non-type template
609  // parameters.
610  if (T->isVariablyModifiedType()) {
611    Diag(Loc, diag::err_variably_modified_nontype_template_param)
612      << T;
613    return QualType();
614  }
615
616  // C++ [temp.param]p4:
617  //
618  // A non-type template-parameter shall have one of the following
619  // (optionally cv-qualified) types:
620  //
621  //       -- integral or enumeration type,
622  if (T->isIntegralOrEnumerationType() ||
623      //   -- pointer to object or pointer to function,
624      T->isPointerType() ||
625      //   -- reference to object or reference to function,
626      T->isReferenceType() ||
627      //   -- pointer to member,
628      T->isMemberPointerType() ||
629      //   -- std::nullptr_t.
630      T->isNullPtrType() ||
631      // If T is a dependent type, we can't do the check now, so we
632      // assume that it is well-formed.
633      T->isDependentType())
634    return T;
635  // C++ [temp.param]p8:
636  //
637  //   A non-type template-parameter of type "array of T" or
638  //   "function returning T" is adjusted to be of type "pointer to
639  //   T" or "pointer to function returning T", respectively.
640  else if (T->isArrayType())
641    // FIXME: Keep the type prior to promotion?
642    return Context.getArrayDecayedType(T);
643  else if (T->isFunctionType())
644    // FIXME: Keep the type prior to promotion?
645    return Context.getPointerType(T);
646
647  Diag(Loc, diag::err_template_nontype_parm_bad_type)
648    << T;
649
650  return QualType();
651}
652
653Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
654                                          unsigned Depth,
655                                          unsigned Position,
656                                          SourceLocation EqualLoc,
657                                          Expr *Default) {
658  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
659  QualType T = TInfo->getType();
660
661  assert(S->isTemplateParamScope() &&
662         "Non-type template parameter not in template parameter scope!");
663  bool Invalid = false;
664
665  IdentifierInfo *ParamName = D.getIdentifier();
666  if (ParamName) {
667    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
668                                           LookupOrdinaryName,
669                                           ForRedeclaration);
670    if (PrevDecl && PrevDecl->isTemplateParameter()) {
671      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
672      PrevDecl = 0;
673    }
674  }
675
676  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
677  if (T.isNull()) {
678    T = Context.IntTy; // Recover with an 'int' type.
679    Invalid = true;
680  }
681
682  bool IsParameterPack = D.hasEllipsis();
683  NonTypeTemplateParmDecl *Param
684    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
685                                      D.getSourceRange().getBegin(),
686                                      D.getIdentifierLoc(),
687                                      Depth, Position, ParamName, T,
688                                      IsParameterPack, TInfo);
689  Param->setAccess(AS_public);
690
691  if (Invalid)
692    Param->setInvalidDecl();
693
694  if (D.getIdentifier()) {
695    // Add the template parameter into the current scope.
696    S->AddDecl(Param);
697    IdResolver.AddDecl(Param);
698  }
699
700  // C++0x [temp.param]p9:
701  //   A default template-argument may be specified for any kind of
702  //   template-parameter that is not a template parameter pack.
703  if (Default && IsParameterPack) {
704    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
705    Default = 0;
706  }
707
708  // Check the well-formedness of the default template argument, if provided.
709  if (Default) {
710    // Check for unexpanded parameter packs.
711    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
712      return Param;
713
714    TemplateArgument Converted;
715    ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
716    if (DefaultRes.isInvalid()) {
717      Param->setInvalidDecl();
718      return Param;
719    }
720    Default = DefaultRes.take();
721
722    Param->setDefaultArgument(Default, false);
723  }
724
725  return Param;
726}
727
728/// ActOnTemplateTemplateParameter - Called when a C++ template template
729/// parameter (e.g. T in template <template <typename> class T> class array)
730/// has been parsed. S is the current scope.
731Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
732                                           SourceLocation TmpLoc,
733                                           TemplateParameterList *Params,
734                                           SourceLocation EllipsisLoc,
735                                           IdentifierInfo *Name,
736                                           SourceLocation NameLoc,
737                                           unsigned Depth,
738                                           unsigned Position,
739                                           SourceLocation EqualLoc,
740                                           ParsedTemplateArgument Default) {
741  assert(S->isTemplateParamScope() &&
742         "Template template parameter not in template parameter scope!");
743
744  // Construct the parameter object.
745  bool IsParameterPack = EllipsisLoc.isValid();
746  TemplateTemplateParmDecl *Param =
747    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
748                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
749                                     Depth, Position, IsParameterPack,
750                                     Name, Params);
751  Param->setAccess(AS_public);
752
753  // If the template template parameter has a name, then link the identifier
754  // into the scope and lookup mechanisms.
755  if (Name) {
756    S->AddDecl(Param);
757    IdResolver.AddDecl(Param);
758  }
759
760  if (Params->size() == 0) {
761    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
762    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
763    Param->setInvalidDecl();
764  }
765
766  // C++0x [temp.param]p9:
767  //   A default template-argument may be specified for any kind of
768  //   template-parameter that is not a template parameter pack.
769  if (IsParameterPack && !Default.isInvalid()) {
770    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
771    Default = ParsedTemplateArgument();
772  }
773
774  if (!Default.isInvalid()) {
775    // Check only that we have a template template argument. We don't want to
776    // try to check well-formedness now, because our template template parameter
777    // might have dependent types in its template parameters, which we wouldn't
778    // be able to match now.
779    //
780    // If none of the template template parameter's template arguments mention
781    // other template parameters, we could actually perform more checking here.
782    // However, it isn't worth doing.
783    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
784    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
785      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
786        << DefaultArg.getSourceRange();
787      return Param;
788    }
789
790    // Check for unexpanded parameter packs.
791    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
792                                        DefaultArg.getArgument().getAsTemplate(),
793                                        UPPC_DefaultArgument))
794      return Param;
795
796    Param->setDefaultArgument(DefaultArg, false);
797  }
798
799  return Param;
800}
801
802/// ActOnTemplateParameterList - Builds a TemplateParameterList that
803/// contains the template parameters in Params/NumParams.
804TemplateParameterList *
805Sema::ActOnTemplateParameterList(unsigned Depth,
806                                 SourceLocation ExportLoc,
807                                 SourceLocation TemplateLoc,
808                                 SourceLocation LAngleLoc,
809                                 Decl **Params, unsigned NumParams,
810                                 SourceLocation RAngleLoc) {
811  if (ExportLoc.isValid())
812    Diag(ExportLoc, diag::warn_template_export_unsupported);
813
814  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
815                                       (NamedDecl**)Params, NumParams,
816                                       RAngleLoc);
817}
818
819static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
820  if (SS.isSet())
821    T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
822}
823
824DeclResult
825Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
826                         SourceLocation KWLoc, CXXScopeSpec &SS,
827                         IdentifierInfo *Name, SourceLocation NameLoc,
828                         AttributeList *Attr,
829                         TemplateParameterList *TemplateParams,
830                         AccessSpecifier AS, SourceLocation ModulePrivateLoc,
831                         unsigned NumOuterTemplateParamLists,
832                         TemplateParameterList** OuterTemplateParamLists) {
833  assert(TemplateParams && TemplateParams->size() > 0 &&
834         "No template parameters");
835  assert(TUK != TUK_Reference && "Can only declare or define class templates");
836  bool Invalid = false;
837
838  // Check that we can declare a template here.
839  if (CheckTemplateDeclScope(S, TemplateParams))
840    return true;
841
842  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
843  assert(Kind != TTK_Enum && "can't build template of enumerated type");
844
845  // There is no such thing as an unnamed class template.
846  if (!Name) {
847    Diag(KWLoc, diag::err_template_unnamed_class);
848    return true;
849  }
850
851  // Find any previous declaration with this name.
852  DeclContext *SemanticContext;
853  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
854                        ForRedeclaration);
855  if (SS.isNotEmpty() && !SS.isInvalid()) {
856    SemanticContext = computeDeclContext(SS, true);
857    if (!SemanticContext) {
858      // FIXME: Produce a reasonable diagnostic here
859      return true;
860    }
861
862    if (RequireCompleteDeclContext(SS, SemanticContext))
863      return true;
864
865    // If we're adding a template to a dependent context, we may need to
866    // rebuilding some of the types used within the template parameter list,
867    // now that we know what the current instantiation is.
868    if (SemanticContext->isDependentContext()) {
869      ContextRAII SavedContext(*this, SemanticContext);
870      if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
871        Invalid = true;
872    }
873
874    LookupQualifiedName(Previous, SemanticContext);
875  } else {
876    SemanticContext = CurContext;
877    LookupName(Previous, S);
878  }
879
880  if (Previous.isAmbiguous())
881    return true;
882
883  NamedDecl *PrevDecl = 0;
884  if (Previous.begin() != Previous.end())
885    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
886
887  // If there is a previous declaration with the same name, check
888  // whether this is a valid redeclaration.
889  ClassTemplateDecl *PrevClassTemplate
890    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
891
892  // We may have found the injected-class-name of a class template,
893  // class template partial specialization, or class template specialization.
894  // In these cases, grab the template that is being defined or specialized.
895  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
896      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
897    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
898    PrevClassTemplate
899      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
900    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
901      PrevClassTemplate
902        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
903            ->getSpecializedTemplate();
904    }
905  }
906
907  if (TUK == TUK_Friend) {
908    // C++ [namespace.memdef]p3:
909    //   [...] When looking for a prior declaration of a class or a function
910    //   declared as a friend, and when the name of the friend class or
911    //   function is neither a qualified name nor a template-id, scopes outside
912    //   the innermost enclosing namespace scope are not considered.
913    if (!SS.isSet()) {
914      DeclContext *OutermostContext = CurContext;
915      while (!OutermostContext->isFileContext())
916        OutermostContext = OutermostContext->getLookupParent();
917
918      if (PrevDecl &&
919          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
920           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
921        SemanticContext = PrevDecl->getDeclContext();
922      } else {
923        // Declarations in outer scopes don't matter. However, the outermost
924        // context we computed is the semantic context for our new
925        // declaration.
926        PrevDecl = PrevClassTemplate = 0;
927        SemanticContext = OutermostContext;
928      }
929    }
930
931    if (CurContext->isDependentContext()) {
932      // If this is a dependent context, we don't want to link the friend
933      // class template to the template in scope, because that would perform
934      // checking of the template parameter lists that can't be performed
935      // until the outer context is instantiated.
936      PrevDecl = PrevClassTemplate = 0;
937    }
938  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
939    PrevDecl = PrevClassTemplate = 0;
940
941  if (PrevClassTemplate) {
942    // Ensure that the template parameter lists are compatible.
943    if (!TemplateParameterListsAreEqual(TemplateParams,
944                                   PrevClassTemplate->getTemplateParameters(),
945                                        /*Complain=*/true,
946                                        TPL_TemplateMatch))
947      return true;
948
949    // C++ [temp.class]p4:
950    //   In a redeclaration, partial specialization, explicit
951    //   specialization or explicit instantiation of a class template,
952    //   the class-key shall agree in kind with the original class
953    //   template declaration (7.1.5.3).
954    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
955    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
956                                      TUK == TUK_Definition,  KWLoc, *Name)) {
957      Diag(KWLoc, diag::err_use_with_wrong_tag)
958        << Name
959        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
960      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
961      Kind = PrevRecordDecl->getTagKind();
962    }
963
964    // Check for redefinition of this class template.
965    if (TUK == TUK_Definition) {
966      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
967        Diag(NameLoc, diag::err_redefinition) << Name;
968        Diag(Def->getLocation(), diag::note_previous_definition);
969        // FIXME: Would it make sense to try to "forget" the previous
970        // definition, as part of error recovery?
971        return true;
972      }
973    }
974  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
975    // Maybe we will complain about the shadowed template parameter.
976    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
977    // Just pretend that we didn't see the previous declaration.
978    PrevDecl = 0;
979  } else if (PrevDecl) {
980    // C++ [temp]p5:
981    //   A class template shall not have the same name as any other
982    //   template, class, function, object, enumeration, enumerator,
983    //   namespace, or type in the same scope (3.3), except as specified
984    //   in (14.5.4).
985    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
986    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
987    return true;
988  }
989
990  // Check the template parameter list of this declaration, possibly
991  // merging in the template parameter list from the previous class
992  // template declaration.
993  if (CheckTemplateParameterList(TemplateParams,
994            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
995                                 (SS.isSet() && SemanticContext &&
996                                  SemanticContext->isRecord() &&
997                                  SemanticContext->isDependentContext())
998                                   ? TPC_ClassTemplateMember
999                                   : TPC_ClassTemplate))
1000    Invalid = true;
1001
1002  if (SS.isSet()) {
1003    // If the name of the template was qualified, we must be defining the
1004    // template out-of-line.
1005    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
1006        !(TUK == TUK_Friend && CurContext->isDependentContext())) {
1007      Diag(NameLoc, diag::err_member_def_does_not_match)
1008        << Name << SemanticContext << SS.getRange();
1009      Invalid = true;
1010    }
1011  }
1012
1013  CXXRecordDecl *NewClass =
1014    CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1015                          PrevClassTemplate?
1016                            PrevClassTemplate->getTemplatedDecl() : 0,
1017                          /*DelayTypeCreation=*/true);
1018  SetNestedNameSpecifier(NewClass, SS);
1019  if (NumOuterTemplateParamLists > 0)
1020    NewClass->setTemplateParameterListsInfo(Context,
1021                                            NumOuterTemplateParamLists,
1022                                            OuterTemplateParamLists);
1023
1024  ClassTemplateDecl *NewTemplate
1025    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1026                                DeclarationName(Name), TemplateParams,
1027                                NewClass, PrevClassTemplate);
1028  NewClass->setDescribedClassTemplate(NewTemplate);
1029
1030  if (ModulePrivateLoc.isValid())
1031    NewTemplate->setModulePrivate();
1032
1033  // Build the type for the class template declaration now.
1034  QualType T = NewTemplate->getInjectedClassNameSpecialization();
1035  T = Context.getInjectedClassNameType(NewClass, T);
1036  assert(T->isDependentType() && "Class template type is not dependent?");
1037  (void)T;
1038
1039  // If we are providing an explicit specialization of a member that is a
1040  // class template, make a note of that.
1041  if (PrevClassTemplate &&
1042      PrevClassTemplate->getInstantiatedFromMemberTemplate())
1043    PrevClassTemplate->setMemberSpecialization();
1044
1045  // Set the access specifier.
1046  if (!Invalid && TUK != TUK_Friend)
1047    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1048
1049  // Set the lexical context of these templates
1050  NewClass->setLexicalDeclContext(CurContext);
1051  NewTemplate->setLexicalDeclContext(CurContext);
1052
1053  if (TUK == TUK_Definition)
1054    NewClass->startDefinition();
1055
1056  if (Attr)
1057    ProcessDeclAttributeList(S, NewClass, Attr);
1058
1059  if (TUK != TUK_Friend)
1060    PushOnScopeChains(NewTemplate, S);
1061  else {
1062    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1063      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1064      NewClass->setAccess(PrevClassTemplate->getAccess());
1065    }
1066
1067    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1068                                       PrevClassTemplate != NULL);
1069
1070    // Friend templates are visible in fairly strange ways.
1071    if (!CurContext->isDependentContext()) {
1072      DeclContext *DC = SemanticContext->getRedeclContext();
1073      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
1074      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1075        PushOnScopeChains(NewTemplate, EnclosingScope,
1076                          /* AddToContext = */ false);
1077    }
1078
1079    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1080                                            NewClass->getLocation(),
1081                                            NewTemplate,
1082                                    /*FIXME:*/NewClass->getLocation());
1083    Friend->setAccess(AS_public);
1084    CurContext->addDecl(Friend);
1085  }
1086
1087  if (Invalid) {
1088    NewTemplate->setInvalidDecl();
1089    NewClass->setInvalidDecl();
1090  }
1091  return NewTemplate;
1092}
1093
1094/// \brief Diagnose the presence of a default template argument on a
1095/// template parameter, which is ill-formed in certain contexts.
1096///
1097/// \returns true if the default template argument should be dropped.
1098static bool DiagnoseDefaultTemplateArgument(Sema &S,
1099                                            Sema::TemplateParamListContext TPC,
1100                                            SourceLocation ParamLoc,
1101                                            SourceRange DefArgRange) {
1102  switch (TPC) {
1103  case Sema::TPC_ClassTemplate:
1104  case Sema::TPC_TypeAliasTemplate:
1105    return false;
1106
1107  case Sema::TPC_FunctionTemplate:
1108  case Sema::TPC_FriendFunctionTemplateDefinition:
1109    // C++ [temp.param]p9:
1110    //   A default template-argument shall not be specified in a
1111    //   function template declaration or a function template
1112    //   definition [...]
1113    //   If a friend function template declaration specifies a default
1114    //   template-argument, that declaration shall be a definition and shall be
1115    //   the only declaration of the function template in the translation unit.
1116    // (C++98/03 doesn't have this wording; see DR226).
1117    S.Diag(ParamLoc, S.getLangOptions().CPlusPlus0x ?
1118         diag::warn_cxx98_compat_template_parameter_default_in_function_template
1119           : diag::ext_template_parameter_default_in_function_template)
1120      << DefArgRange;
1121    return false;
1122
1123  case Sema::TPC_ClassTemplateMember:
1124    // C++0x [temp.param]p9:
1125    //   A default template-argument shall not be specified in the
1126    //   template-parameter-lists of the definition of a member of a
1127    //   class template that appears outside of the member's class.
1128    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1129      << DefArgRange;
1130    return true;
1131
1132  case Sema::TPC_FriendFunctionTemplate:
1133    // C++ [temp.param]p9:
1134    //   A default template-argument shall not be specified in a
1135    //   friend template declaration.
1136    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1137      << DefArgRange;
1138    return true;
1139
1140    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1141    // for friend function templates if there is only a single
1142    // declaration (and it is a definition). Strange!
1143  }
1144
1145  llvm_unreachable("Invalid TemplateParamListContext!");
1146}
1147
1148/// \brief Check for unexpanded parameter packs within the template parameters
1149/// of a template template parameter, recursively.
1150static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1151                                             TemplateTemplateParmDecl *TTP) {
1152  TemplateParameterList *Params = TTP->getTemplateParameters();
1153  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1154    NamedDecl *P = Params->getParam(I);
1155    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1156      if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1157                                            NTTP->getTypeSourceInfo(),
1158                                      Sema::UPPC_NonTypeTemplateParameterType))
1159        return true;
1160
1161      continue;
1162    }
1163
1164    if (TemplateTemplateParmDecl *InnerTTP
1165                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1166      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1167        return true;
1168  }
1169
1170  return false;
1171}
1172
1173/// \brief Checks the validity of a template parameter list, possibly
1174/// considering the template parameter list from a previous
1175/// declaration.
1176///
1177/// If an "old" template parameter list is provided, it must be
1178/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1179/// template parameter list.
1180///
1181/// \param NewParams Template parameter list for a new template
1182/// declaration. This template parameter list will be updated with any
1183/// default arguments that are carried through from the previous
1184/// template parameter list.
1185///
1186/// \param OldParams If provided, template parameter list from a
1187/// previous declaration of the same template. Default template
1188/// arguments will be merged from the old template parameter list to
1189/// the new template parameter list.
1190///
1191/// \param TPC Describes the context in which we are checking the given
1192/// template parameter list.
1193///
1194/// \returns true if an error occurred, false otherwise.
1195bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1196                                      TemplateParameterList *OldParams,
1197                                      TemplateParamListContext TPC) {
1198  bool Invalid = false;
1199
1200  // C++ [temp.param]p10:
1201  //   The set of default template-arguments available for use with a
1202  //   template declaration or definition is obtained by merging the
1203  //   default arguments from the definition (if in scope) and all
1204  //   declarations in scope in the same way default function
1205  //   arguments are (8.3.6).
1206  bool SawDefaultArgument = false;
1207  SourceLocation PreviousDefaultArgLoc;
1208
1209  // Dummy initialization to avoid warnings.
1210  TemplateParameterList::iterator OldParam = NewParams->end();
1211  if (OldParams)
1212    OldParam = OldParams->begin();
1213
1214  bool RemoveDefaultArguments = false;
1215  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1216                                    NewParamEnd = NewParams->end();
1217       NewParam != NewParamEnd; ++NewParam) {
1218    // Variables used to diagnose redundant default arguments
1219    bool RedundantDefaultArg = false;
1220    SourceLocation OldDefaultLoc;
1221    SourceLocation NewDefaultLoc;
1222
1223    // Variable used to diagnose missing default arguments
1224    bool MissingDefaultArg = false;
1225
1226    // Variable used to diagnose non-final parameter packs
1227    bool SawParameterPack = false;
1228
1229    if (TemplateTypeParmDecl *NewTypeParm
1230          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1231      // Check the presence of a default argument here.
1232      if (NewTypeParm->hasDefaultArgument() &&
1233          DiagnoseDefaultTemplateArgument(*this, TPC,
1234                                          NewTypeParm->getLocation(),
1235               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1236                                                       .getSourceRange()))
1237        NewTypeParm->removeDefaultArgument();
1238
1239      // Merge default arguments for template type parameters.
1240      TemplateTypeParmDecl *OldTypeParm
1241          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1242
1243      if (NewTypeParm->isParameterPack()) {
1244        assert(!NewTypeParm->hasDefaultArgument() &&
1245               "Parameter packs can't have a default argument!");
1246        SawParameterPack = true;
1247      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1248                 NewTypeParm->hasDefaultArgument()) {
1249        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1250        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1251        SawDefaultArgument = true;
1252        RedundantDefaultArg = true;
1253        PreviousDefaultArgLoc = NewDefaultLoc;
1254      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1255        // Merge the default argument from the old declaration to the
1256        // new declaration.
1257        SawDefaultArgument = true;
1258        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1259                                        true);
1260        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1261      } else if (NewTypeParm->hasDefaultArgument()) {
1262        SawDefaultArgument = true;
1263        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1264      } else if (SawDefaultArgument)
1265        MissingDefaultArg = true;
1266    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1267               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1268      // Check for unexpanded parameter packs.
1269      if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1270                                          NewNonTypeParm->getTypeSourceInfo(),
1271                                          UPPC_NonTypeTemplateParameterType)) {
1272        Invalid = true;
1273        continue;
1274      }
1275
1276      // Check the presence of a default argument here.
1277      if (NewNonTypeParm->hasDefaultArgument() &&
1278          DiagnoseDefaultTemplateArgument(*this, TPC,
1279                                          NewNonTypeParm->getLocation(),
1280                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1281        NewNonTypeParm->removeDefaultArgument();
1282      }
1283
1284      // Merge default arguments for non-type template parameters
1285      NonTypeTemplateParmDecl *OldNonTypeParm
1286        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1287      if (NewNonTypeParm->isParameterPack()) {
1288        assert(!NewNonTypeParm->hasDefaultArgument() &&
1289               "Parameter packs can't have a default argument!");
1290        SawParameterPack = true;
1291      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1292          NewNonTypeParm->hasDefaultArgument()) {
1293        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1294        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1295        SawDefaultArgument = true;
1296        RedundantDefaultArg = true;
1297        PreviousDefaultArgLoc = NewDefaultLoc;
1298      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1299        // Merge the default argument from the old declaration to the
1300        // new declaration.
1301        SawDefaultArgument = true;
1302        // FIXME: We need to create a new kind of "default argument"
1303        // expression that points to a previous non-type template
1304        // parameter.
1305        NewNonTypeParm->setDefaultArgument(
1306                                         OldNonTypeParm->getDefaultArgument(),
1307                                         /*Inherited=*/ true);
1308        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1309      } else if (NewNonTypeParm->hasDefaultArgument()) {
1310        SawDefaultArgument = true;
1311        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1312      } else if (SawDefaultArgument)
1313        MissingDefaultArg = true;
1314    } else {
1315      TemplateTemplateParmDecl *NewTemplateParm
1316        = cast<TemplateTemplateParmDecl>(*NewParam);
1317
1318      // Check for unexpanded parameter packs, recursively.
1319      if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1320        Invalid = true;
1321        continue;
1322      }
1323
1324      // Check the presence of a default argument here.
1325      if (NewTemplateParm->hasDefaultArgument() &&
1326          DiagnoseDefaultTemplateArgument(*this, TPC,
1327                                          NewTemplateParm->getLocation(),
1328                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1329        NewTemplateParm->removeDefaultArgument();
1330
1331      // Merge default arguments for template template parameters
1332      TemplateTemplateParmDecl *OldTemplateParm
1333        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1334      if (NewTemplateParm->isParameterPack()) {
1335        assert(!NewTemplateParm->hasDefaultArgument() &&
1336               "Parameter packs can't have a default argument!");
1337        SawParameterPack = true;
1338      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1339          NewTemplateParm->hasDefaultArgument()) {
1340        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1341        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1342        SawDefaultArgument = true;
1343        RedundantDefaultArg = true;
1344        PreviousDefaultArgLoc = NewDefaultLoc;
1345      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1346        // Merge the default argument from the old declaration to the
1347        // new declaration.
1348        SawDefaultArgument = true;
1349        // FIXME: We need to create a new kind of "default argument" expression
1350        // that points to a previous template template parameter.
1351        NewTemplateParm->setDefaultArgument(
1352                                          OldTemplateParm->getDefaultArgument(),
1353                                          /*Inherited=*/ true);
1354        PreviousDefaultArgLoc
1355          = OldTemplateParm->getDefaultArgument().getLocation();
1356      } else if (NewTemplateParm->hasDefaultArgument()) {
1357        SawDefaultArgument = true;
1358        PreviousDefaultArgLoc
1359          = NewTemplateParm->getDefaultArgument().getLocation();
1360      } else if (SawDefaultArgument)
1361        MissingDefaultArg = true;
1362    }
1363
1364    // C++0x [temp.param]p11:
1365    //   If a template parameter of a primary class template or alias template
1366    //   is a template parameter pack, it shall be the last template parameter.
1367    if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1368        (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) {
1369      Diag((*NewParam)->getLocation(),
1370           diag::err_template_param_pack_must_be_last_template_parameter);
1371      Invalid = true;
1372    }
1373
1374    if (RedundantDefaultArg) {
1375      // C++ [temp.param]p12:
1376      //   A template-parameter shall not be given default arguments
1377      //   by two different declarations in the same scope.
1378      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1379      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1380      Invalid = true;
1381    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1382      // C++ [temp.param]p11:
1383      //   If a template-parameter of a class template has a default
1384      //   template-argument, each subsequent template-parameter shall either
1385      //   have a default template-argument supplied or be a template parameter
1386      //   pack.
1387      Diag((*NewParam)->getLocation(),
1388           diag::err_template_param_default_arg_missing);
1389      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1390      Invalid = true;
1391      RemoveDefaultArguments = true;
1392    }
1393
1394    // If we have an old template parameter list that we're merging
1395    // in, move on to the next parameter.
1396    if (OldParams)
1397      ++OldParam;
1398  }
1399
1400  // We were missing some default arguments at the end of the list, so remove
1401  // all of the default arguments.
1402  if (RemoveDefaultArguments) {
1403    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1404                                      NewParamEnd = NewParams->end();
1405         NewParam != NewParamEnd; ++NewParam) {
1406      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1407        TTP->removeDefaultArgument();
1408      else if (NonTypeTemplateParmDecl *NTTP
1409                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1410        NTTP->removeDefaultArgument();
1411      else
1412        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1413    }
1414  }
1415
1416  return Invalid;
1417}
1418
1419namespace {
1420
1421/// A class which looks for a use of a certain level of template
1422/// parameter.
1423struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1424  typedef RecursiveASTVisitor<DependencyChecker> super;
1425
1426  unsigned Depth;
1427  bool Match;
1428
1429  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1430    NamedDecl *ND = Params->getParam(0);
1431    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1432      Depth = PD->getDepth();
1433    } else if (NonTypeTemplateParmDecl *PD =
1434                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1435      Depth = PD->getDepth();
1436    } else {
1437      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1438    }
1439  }
1440
1441  bool Matches(unsigned ParmDepth) {
1442    if (ParmDepth >= Depth) {
1443      Match = true;
1444      return true;
1445    }
1446    return false;
1447  }
1448
1449  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1450    return !Matches(T->getDepth());
1451  }
1452
1453  bool TraverseTemplateName(TemplateName N) {
1454    if (TemplateTemplateParmDecl *PD =
1455          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1456      if (Matches(PD->getDepth())) return false;
1457    return super::TraverseTemplateName(N);
1458  }
1459
1460  bool VisitDeclRefExpr(DeclRefExpr *E) {
1461    if (NonTypeTemplateParmDecl *PD =
1462          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1463      if (PD->getDepth() == Depth) {
1464        Match = true;
1465        return false;
1466      }
1467    }
1468    return super::VisitDeclRefExpr(E);
1469  }
1470
1471  bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1472    return TraverseType(T->getInjectedSpecializationType());
1473  }
1474};
1475}
1476
1477/// Determines whether a given type depends on the given parameter
1478/// list.
1479static bool
1480DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1481  DependencyChecker Checker(Params);
1482  Checker.TraverseType(T);
1483  return Checker.Match;
1484}
1485
1486// Find the source range corresponding to the named type in the given
1487// nested-name-specifier, if any.
1488static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1489                                                       QualType T,
1490                                                       const CXXScopeSpec &SS) {
1491  NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1492  while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1493    if (const Type *CurType = NNS->getAsType()) {
1494      if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1495        return NNSLoc.getTypeLoc().getSourceRange();
1496    } else
1497      break;
1498
1499    NNSLoc = NNSLoc.getPrefix();
1500  }
1501
1502  return SourceRange();
1503}
1504
1505/// \brief Match the given template parameter lists to the given scope
1506/// specifier, returning the template parameter list that applies to the
1507/// name.
1508///
1509/// \param DeclStartLoc the start of the declaration that has a scope
1510/// specifier or a template parameter list.
1511///
1512/// \param DeclLoc The location of the declaration itself.
1513///
1514/// \param SS the scope specifier that will be matched to the given template
1515/// parameter lists. This scope specifier precedes a qualified name that is
1516/// being declared.
1517///
1518/// \param ParamLists the template parameter lists, from the outermost to the
1519/// innermost template parameter lists.
1520///
1521/// \param NumParamLists the number of template parameter lists in ParamLists.
1522///
1523/// \param IsFriend Whether to apply the slightly different rules for
1524/// matching template parameters to scope specifiers in friend
1525/// declarations.
1526///
1527/// \param IsExplicitSpecialization will be set true if the entity being
1528/// declared is an explicit specialization, false otherwise.
1529///
1530/// \returns the template parameter list, if any, that corresponds to the
1531/// name that is preceded by the scope specifier @p SS. This template
1532/// parameter list may have template parameters (if we're declaring a
1533/// template) or may have no template parameters (if we're declaring a
1534/// template specialization), or may be NULL (if what we're declaring isn't
1535/// itself a template).
1536TemplateParameterList *
1537Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1538                                              SourceLocation DeclLoc,
1539                                              const CXXScopeSpec &SS,
1540                                          TemplateParameterList **ParamLists,
1541                                              unsigned NumParamLists,
1542                                              bool IsFriend,
1543                                              bool &IsExplicitSpecialization,
1544                                              bool &Invalid) {
1545  IsExplicitSpecialization = false;
1546  Invalid = false;
1547
1548  // The sequence of nested types to which we will match up the template
1549  // parameter lists. We first build this list by starting with the type named
1550  // by the nested-name-specifier and walking out until we run out of types.
1551  SmallVector<QualType, 4> NestedTypes;
1552  QualType T;
1553  if (SS.getScopeRep()) {
1554    if (CXXRecordDecl *Record
1555              = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1556      T = Context.getTypeDeclType(Record);
1557    else
1558      T = QualType(SS.getScopeRep()->getAsType(), 0);
1559  }
1560
1561  // If we found an explicit specialization that prevents us from needing
1562  // 'template<>' headers, this will be set to the location of that
1563  // explicit specialization.
1564  SourceLocation ExplicitSpecLoc;
1565
1566  while (!T.isNull()) {
1567    NestedTypes.push_back(T);
1568
1569    // Retrieve the parent of a record type.
1570    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1571      // If this type is an explicit specialization, we're done.
1572      if (ClassTemplateSpecializationDecl *Spec
1573          = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1574        if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1575            Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1576          ExplicitSpecLoc = Spec->getLocation();
1577          break;
1578        }
1579      } else if (Record->getTemplateSpecializationKind()
1580                                                == TSK_ExplicitSpecialization) {
1581        ExplicitSpecLoc = Record->getLocation();
1582        break;
1583      }
1584
1585      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1586        T = Context.getTypeDeclType(Parent);
1587      else
1588        T = QualType();
1589      continue;
1590    }
1591
1592    if (const TemplateSpecializationType *TST
1593                                     = T->getAs<TemplateSpecializationType>()) {
1594      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1595        if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1596          T = Context.getTypeDeclType(Parent);
1597        else
1598          T = QualType();
1599        continue;
1600      }
1601    }
1602
1603    // Look one step prior in a dependent template specialization type.
1604    if (const DependentTemplateSpecializationType *DependentTST
1605                          = T->getAs<DependentTemplateSpecializationType>()) {
1606      if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1607        T = QualType(NNS->getAsType(), 0);
1608      else
1609        T = QualType();
1610      continue;
1611    }
1612
1613    // Look one step prior in a dependent name type.
1614    if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1615      if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1616        T = QualType(NNS->getAsType(), 0);
1617      else
1618        T = QualType();
1619      continue;
1620    }
1621
1622    // Retrieve the parent of an enumeration type.
1623    if (const EnumType *EnumT = T->getAs<EnumType>()) {
1624      // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1625      // check here.
1626      EnumDecl *Enum = EnumT->getDecl();
1627
1628      // Get to the parent type.
1629      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1630        T = Context.getTypeDeclType(Parent);
1631      else
1632        T = QualType();
1633      continue;
1634    }
1635
1636    T = QualType();
1637  }
1638  // Reverse the nested types list, since we want to traverse from the outermost
1639  // to the innermost while checking template-parameter-lists.
1640  std::reverse(NestedTypes.begin(), NestedTypes.end());
1641
1642  // C++0x [temp.expl.spec]p17:
1643  //   A member or a member template may be nested within many
1644  //   enclosing class templates. In an explicit specialization for
1645  //   such a member, the member declaration shall be preceded by a
1646  //   template<> for each enclosing class template that is
1647  //   explicitly specialized.
1648  bool SawNonEmptyTemplateParameterList = false;
1649  unsigned ParamIdx = 0;
1650  for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1651       ++TypeIdx) {
1652    T = NestedTypes[TypeIdx];
1653
1654    // Whether we expect a 'template<>' header.
1655    bool NeedEmptyTemplateHeader = false;
1656
1657    // Whether we expect a template header with parameters.
1658    bool NeedNonemptyTemplateHeader = false;
1659
1660    // For a dependent type, the set of template parameters that we
1661    // expect to see.
1662    TemplateParameterList *ExpectedTemplateParams = 0;
1663
1664    // C++0x [temp.expl.spec]p15:
1665    //   A member or a member template may be nested within many enclosing
1666    //   class templates. In an explicit specialization for such a member, the
1667    //   member declaration shall be preceded by a template<> for each
1668    //   enclosing class template that is explicitly specialized.
1669    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1670      if (ClassTemplatePartialSpecializationDecl *Partial
1671            = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1672        ExpectedTemplateParams = Partial->getTemplateParameters();
1673        NeedNonemptyTemplateHeader = true;
1674      } else if (Record->isDependentType()) {
1675        if (Record->getDescribedClassTemplate()) {
1676          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1677                                                      ->getTemplateParameters();
1678          NeedNonemptyTemplateHeader = true;
1679        }
1680      } else if (ClassTemplateSpecializationDecl *Spec
1681                     = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1682        // C++0x [temp.expl.spec]p4:
1683        //   Members of an explicitly specialized class template are defined
1684        //   in the same manner as members of normal classes, and not using
1685        //   the template<> syntax.
1686        if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1687          NeedEmptyTemplateHeader = true;
1688        else
1689          continue;
1690      } else if (Record->getTemplateSpecializationKind()) {
1691        if (Record->getTemplateSpecializationKind()
1692                                                != TSK_ExplicitSpecialization &&
1693            TypeIdx == NumTypes - 1)
1694          IsExplicitSpecialization = true;
1695
1696        continue;
1697      }
1698    } else if (const TemplateSpecializationType *TST
1699                                     = T->getAs<TemplateSpecializationType>()) {
1700      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1701        ExpectedTemplateParams = Template->getTemplateParameters();
1702        NeedNonemptyTemplateHeader = true;
1703      }
1704    } else if (T->getAs<DependentTemplateSpecializationType>()) {
1705      // FIXME:  We actually could/should check the template arguments here
1706      // against the corresponding template parameter list.
1707      NeedNonemptyTemplateHeader = false;
1708    }
1709
1710    // C++ [temp.expl.spec]p16:
1711    //   In an explicit specialization declaration for a member of a class
1712    //   template or a member template that ap- pears in namespace scope, the
1713    //   member template and some of its enclosing class templates may remain
1714    //   unspecialized, except that the declaration shall not explicitly
1715    //   specialize a class member template if its en- closing class templates
1716    //   are not explicitly specialized as well.
1717    if (ParamIdx < NumParamLists) {
1718      if (ParamLists[ParamIdx]->size() == 0) {
1719        if (SawNonEmptyTemplateParameterList) {
1720          Diag(DeclLoc, diag::err_specialize_member_of_template)
1721            << ParamLists[ParamIdx]->getSourceRange();
1722          Invalid = true;
1723          IsExplicitSpecialization = false;
1724          return 0;
1725        }
1726      } else
1727        SawNonEmptyTemplateParameterList = true;
1728    }
1729
1730    if (NeedEmptyTemplateHeader) {
1731      // If we're on the last of the types, and we need a 'template<>' header
1732      // here, then it's an explicit specialization.
1733      if (TypeIdx == NumTypes - 1)
1734        IsExplicitSpecialization = true;
1735
1736      if (ParamIdx < NumParamLists) {
1737        if (ParamLists[ParamIdx]->size() > 0) {
1738          // The header has template parameters when it shouldn't. Complain.
1739          Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1740               diag::err_template_param_list_matches_nontemplate)
1741            << T
1742            << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1743                           ParamLists[ParamIdx]->getRAngleLoc())
1744            << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1745          Invalid = true;
1746          return 0;
1747        }
1748
1749        // Consume this template header.
1750        ++ParamIdx;
1751        continue;
1752      }
1753
1754      if (!IsFriend) {
1755        // We don't have a template header, but we should.
1756        SourceLocation ExpectedTemplateLoc;
1757        if (NumParamLists > 0)
1758          ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1759        else
1760          ExpectedTemplateLoc = DeclStartLoc;
1761
1762        Diag(DeclLoc, diag::err_template_spec_needs_header)
1763          << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
1764          << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1765      }
1766
1767      continue;
1768    }
1769
1770    if (NeedNonemptyTemplateHeader) {
1771      // In friend declarations we can have template-ids which don't
1772      // depend on the corresponding template parameter lists.  But
1773      // assume that empty parameter lists are supposed to match this
1774      // template-id.
1775      if (IsFriend && T->isDependentType()) {
1776        if (ParamIdx < NumParamLists &&
1777            DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1778          ExpectedTemplateParams = 0;
1779        else
1780          continue;
1781      }
1782
1783      if (ParamIdx < NumParamLists) {
1784        // Check the template parameter list, if we can.
1785        if (ExpectedTemplateParams &&
1786            !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1787                                            ExpectedTemplateParams,
1788                                            true, TPL_TemplateMatch))
1789          Invalid = true;
1790
1791        if (!Invalid &&
1792            CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1793                                       TPC_ClassTemplateMember))
1794          Invalid = true;
1795
1796        ++ParamIdx;
1797        continue;
1798      }
1799
1800      Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1801        << T
1802        << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1803      Invalid = true;
1804      continue;
1805    }
1806  }
1807
1808  // If there were at least as many template-ids as there were template
1809  // parameter lists, then there are no template parameter lists remaining for
1810  // the declaration itself.
1811  if (ParamIdx >= NumParamLists)
1812    return 0;
1813
1814  // If there were too many template parameter lists, complain about that now.
1815  if (ParamIdx < NumParamLists - 1) {
1816    bool HasAnyExplicitSpecHeader = false;
1817    bool AllExplicitSpecHeaders = true;
1818    for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) {
1819      if (ParamLists[I]->size() == 0)
1820        HasAnyExplicitSpecHeader = true;
1821      else
1822        AllExplicitSpecHeaders = false;
1823    }
1824
1825    Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1826         AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers
1827                               : diag::err_template_spec_extra_headers)
1828      << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1829                     ParamLists[NumParamLists - 2]->getRAngleLoc());
1830
1831    // If there was a specialization somewhere, such that 'template<>' is
1832    // not required, and there were any 'template<>' headers, note where the
1833    // specialization occurred.
1834    if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1835      Diag(ExplicitSpecLoc,
1836           diag::note_explicit_template_spec_does_not_need_header)
1837        << NestedTypes.back();
1838
1839    // We have a template parameter list with no corresponding scope, which
1840    // means that the resulting template declaration can't be instantiated
1841    // properly (we'll end up with dependent nodes when we shouldn't).
1842    if (!AllExplicitSpecHeaders)
1843      Invalid = true;
1844  }
1845
1846  // C++ [temp.expl.spec]p16:
1847  //   In an explicit specialization declaration for a member of a class
1848  //   template or a member template that ap- pears in namespace scope, the
1849  //   member template and some of its enclosing class templates may remain
1850  //   unspecialized, except that the declaration shall not explicitly
1851  //   specialize a class member template if its en- closing class templates
1852  //   are not explicitly specialized as well.
1853  if (ParamLists[NumParamLists - 1]->size() == 0 &&
1854      SawNonEmptyTemplateParameterList) {
1855    Diag(DeclLoc, diag::err_specialize_member_of_template)
1856      << ParamLists[ParamIdx]->getSourceRange();
1857    Invalid = true;
1858    IsExplicitSpecialization = false;
1859    return 0;
1860  }
1861
1862  // Return the last template parameter list, which corresponds to the
1863  // entity being declared.
1864  return ParamLists[NumParamLists - 1];
1865}
1866
1867void Sema::NoteAllFoundTemplates(TemplateName Name) {
1868  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1869    Diag(Template->getLocation(), diag::note_template_declared_here)
1870      << (isa<FunctionTemplateDecl>(Template)? 0
1871          : isa<ClassTemplateDecl>(Template)? 1
1872          : isa<TypeAliasTemplateDecl>(Template)? 2
1873          : 3)
1874      << Template->getDeclName();
1875    return;
1876  }
1877
1878  if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1879    for (OverloadedTemplateStorage::iterator I = OST->begin(),
1880                                          IEnd = OST->end();
1881         I != IEnd; ++I)
1882      Diag((*I)->getLocation(), diag::note_template_declared_here)
1883        << 0 << (*I)->getDeclName();
1884
1885    return;
1886  }
1887}
1888
1889
1890QualType Sema::CheckTemplateIdType(TemplateName Name,
1891                                   SourceLocation TemplateLoc,
1892                                   TemplateArgumentListInfo &TemplateArgs) {
1893  DependentTemplateName *DTN
1894    = Name.getUnderlying().getAsDependentTemplateName();
1895  if (DTN && DTN->isIdentifier())
1896    // When building a template-id where the template-name is dependent,
1897    // assume the template is a type template. Either our assumption is
1898    // correct, or the code is ill-formed and will be diagnosed when the
1899    // dependent name is substituted.
1900    return Context.getDependentTemplateSpecializationType(ETK_None,
1901                                                          DTN->getQualifier(),
1902                                                          DTN->getIdentifier(),
1903                                                          TemplateArgs);
1904
1905  TemplateDecl *Template = Name.getAsTemplateDecl();
1906  if (!Template || isa<FunctionTemplateDecl>(Template)) {
1907    // We might have a substituted template template parameter pack. If so,
1908    // build a template specialization type for it.
1909    if (Name.getAsSubstTemplateTemplateParmPack())
1910      return Context.getTemplateSpecializationType(Name, TemplateArgs);
1911
1912    Diag(TemplateLoc, diag::err_template_id_not_a_type)
1913      << Name;
1914    NoteAllFoundTemplates(Name);
1915    return QualType();
1916  }
1917
1918  // Check that the template argument list is well-formed for this
1919  // template.
1920  SmallVector<TemplateArgument, 4> Converted;
1921  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1922                                false, Converted))
1923    return QualType();
1924
1925  assert((Converted.size() == Template->getTemplateParameters()->size()) &&
1926         "Converted template argument list is too short!");
1927
1928  QualType CanonType;
1929
1930  bool InstantiationDependent = false;
1931  if (TypeAliasTemplateDecl *AliasTemplate
1932        = dyn_cast<TypeAliasTemplateDecl>(Template)) {
1933    // Find the canonical type for this type alias template specialization.
1934    TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
1935    if (Pattern->isInvalidDecl())
1936      return QualType();
1937
1938    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1939                                      Converted.data(), Converted.size());
1940
1941    // Only substitute for the innermost template argument list.
1942    MultiLevelTemplateArgumentList TemplateArgLists;
1943    TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
1944    unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
1945    for (unsigned I = 0; I < Depth; ++I)
1946      TemplateArgLists.addOuterTemplateArguments(0, 0);
1947
1948    InstantiatingTemplate Inst(*this, TemplateLoc, Template);
1949    CanonType = SubstType(Pattern->getUnderlyingType(),
1950                          TemplateArgLists, AliasTemplate->getLocation(),
1951                          AliasTemplate->getDeclName());
1952    if (CanonType.isNull())
1953      return QualType();
1954  } else if (Name.isDependent() ||
1955             TemplateSpecializationType::anyDependentTemplateArguments(
1956               TemplateArgs, InstantiationDependent)) {
1957    // This class template specialization is a dependent
1958    // type. Therefore, its canonical type is another class template
1959    // specialization type that contains all of the converted
1960    // arguments in canonical form. This ensures that, e.g., A<T> and
1961    // A<T, T> have identical types when A is declared as:
1962    //
1963    //   template<typename T, typename U = T> struct A;
1964    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1965    CanonType = Context.getTemplateSpecializationType(CanonName,
1966                                                      Converted.data(),
1967                                                      Converted.size());
1968
1969    // FIXME: CanonType is not actually the canonical type, and unfortunately
1970    // it is a TemplateSpecializationType that we will never use again.
1971    // In the future, we need to teach getTemplateSpecializationType to only
1972    // build the canonical type and return that to us.
1973    CanonType = Context.getCanonicalType(CanonType);
1974
1975    // This might work out to be a current instantiation, in which
1976    // case the canonical type needs to be the InjectedClassNameType.
1977    //
1978    // TODO: in theory this could be a simple hashtable lookup; most
1979    // changes to CurContext don't change the set of current
1980    // instantiations.
1981    if (isa<ClassTemplateDecl>(Template)) {
1982      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1983        // If we get out to a namespace, we're done.
1984        if (Ctx->isFileContext()) break;
1985
1986        // If this isn't a record, keep looking.
1987        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1988        if (!Record) continue;
1989
1990        // Look for one of the two cases with InjectedClassNameTypes
1991        // and check whether it's the same template.
1992        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1993            !Record->getDescribedClassTemplate())
1994          continue;
1995
1996        // Fetch the injected class name type and check whether its
1997        // injected type is equal to the type we just built.
1998        QualType ICNT = Context.getTypeDeclType(Record);
1999        QualType Injected = cast<InjectedClassNameType>(ICNT)
2000          ->getInjectedSpecializationType();
2001
2002        if (CanonType != Injected->getCanonicalTypeInternal())
2003          continue;
2004
2005        // If so, the canonical type of this TST is the injected
2006        // class name type of the record we just found.
2007        assert(ICNT.isCanonical());
2008        CanonType = ICNT;
2009        break;
2010      }
2011    }
2012  } else if (ClassTemplateDecl *ClassTemplate
2013               = dyn_cast<ClassTemplateDecl>(Template)) {
2014    // Find the class template specialization declaration that
2015    // corresponds to these arguments.
2016    void *InsertPos = 0;
2017    ClassTemplateSpecializationDecl *Decl
2018      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
2019                                          InsertPos);
2020    if (!Decl) {
2021      // This is the first time we have referenced this class template
2022      // specialization. Create the canonical declaration and add it to
2023      // the set of specializations.
2024      Decl = ClassTemplateSpecializationDecl::Create(Context,
2025                            ClassTemplate->getTemplatedDecl()->getTagKind(),
2026                                                ClassTemplate->getDeclContext(),
2027                            ClassTemplate->getTemplatedDecl()->getLocStart(),
2028                                                ClassTemplate->getLocation(),
2029                                                     ClassTemplate,
2030                                                     Converted.data(),
2031                                                     Converted.size(), 0);
2032      ClassTemplate->AddSpecialization(Decl, InsertPos);
2033      Decl->setLexicalDeclContext(CurContext);
2034    }
2035
2036    CanonType = Context.getTypeDeclType(Decl);
2037    assert(isa<RecordType>(CanonType) &&
2038           "type of non-dependent specialization is not a RecordType");
2039  }
2040
2041  // Build the fully-sugared type for this class template
2042  // specialization, which refers back to the class template
2043  // specialization we created or found.
2044  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2045}
2046
2047TypeResult
2048Sema::ActOnTemplateIdType(CXXScopeSpec &SS,
2049                          TemplateTy TemplateD, SourceLocation TemplateLoc,
2050                          SourceLocation LAngleLoc,
2051                          ASTTemplateArgsPtr TemplateArgsIn,
2052                          SourceLocation RAngleLoc,
2053                          bool IsCtorOrDtorName) {
2054  if (SS.isInvalid())
2055    return true;
2056
2057  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2058
2059  // Translate the parser's template argument list in our AST format.
2060  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2061  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2062
2063  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2064    QualType T
2065      = Context.getDependentTemplateSpecializationType(ETK_None,
2066                                                       DTN->getQualifier(),
2067                                                       DTN->getIdentifier(),
2068                                                       TemplateArgs);
2069    // Build type-source information.
2070    TypeLocBuilder TLB;
2071    DependentTemplateSpecializationTypeLoc SpecTL
2072      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2073    SpecTL.setKeywordLoc(SourceLocation());
2074    SpecTL.setNameLoc(TemplateLoc);
2075    SpecTL.setLAngleLoc(LAngleLoc);
2076    SpecTL.setRAngleLoc(RAngleLoc);
2077    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2078    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2079      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2080    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2081  }
2082
2083  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2084  TemplateArgsIn.release();
2085
2086  if (Result.isNull())
2087    return true;
2088
2089  // Build type-source information.
2090  TypeLocBuilder TLB;
2091  TemplateSpecializationTypeLoc SpecTL
2092    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2093  SpecTL.setTemplateNameLoc(TemplateLoc);
2094  SpecTL.setLAngleLoc(LAngleLoc);
2095  SpecTL.setRAngleLoc(RAngleLoc);
2096  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2097    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2098
2099  // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2100  // constructor or destructor name (in such a case, the scope specifier
2101  // will be attached to the enclosing Decl or Expr node).
2102  if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2103    // Create an elaborated-type-specifier containing the nested-name-specifier.
2104    Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2105    ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2106    ElabTL.setKeywordLoc(SourceLocation());
2107    ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2108  }
2109
2110  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2111}
2112
2113TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2114                                        TypeSpecifierType TagSpec,
2115                                        SourceLocation TagLoc,
2116                                        CXXScopeSpec &SS,
2117                                        TemplateTy TemplateD,
2118                                        SourceLocation TemplateLoc,
2119                                        SourceLocation LAngleLoc,
2120                                        ASTTemplateArgsPtr TemplateArgsIn,
2121                                        SourceLocation RAngleLoc) {
2122  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2123
2124  // Translate the parser's template argument list in our AST format.
2125  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2126  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2127
2128  // Determine the tag kind
2129  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2130  ElaboratedTypeKeyword Keyword
2131    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2132
2133  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2134    QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2135                                                          DTN->getQualifier(),
2136                                                          DTN->getIdentifier(),
2137                                                                TemplateArgs);
2138
2139    // Build type-source information.
2140    TypeLocBuilder TLB;
2141    DependentTemplateSpecializationTypeLoc SpecTL
2142    = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2143    SpecTL.setKeywordLoc(TagLoc);
2144    SpecTL.setNameLoc(TemplateLoc);
2145    SpecTL.setLAngleLoc(LAngleLoc);
2146    SpecTL.setRAngleLoc(RAngleLoc);
2147    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2148    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2149      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2150    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2151  }
2152
2153  if (TypeAliasTemplateDecl *TAT =
2154        dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2155    // C++0x [dcl.type.elab]p2:
2156    //   If the identifier resolves to a typedef-name or the simple-template-id
2157    //   resolves to an alias template specialization, the
2158    //   elaborated-type-specifier is ill-formed.
2159    Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2160    Diag(TAT->getLocation(), diag::note_declared_at);
2161  }
2162
2163  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2164  if (Result.isNull())
2165    return TypeResult(true);
2166
2167  // Check the tag kind
2168  if (const RecordType *RT = Result->getAs<RecordType>()) {
2169    RecordDecl *D = RT->getDecl();
2170
2171    IdentifierInfo *Id = D->getIdentifier();
2172    assert(Id && "templated class must have an identifier");
2173
2174    if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2175                                      TagLoc, *Id)) {
2176      Diag(TagLoc, diag::err_use_with_wrong_tag)
2177        << Result
2178        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2179      Diag(D->getLocation(), diag::note_previous_use);
2180    }
2181  }
2182
2183  // Provide source-location information for the template specialization.
2184  TypeLocBuilder TLB;
2185  TemplateSpecializationTypeLoc SpecTL
2186    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2187  SpecTL.setTemplateNameLoc(TemplateLoc);
2188  SpecTL.setLAngleLoc(LAngleLoc);
2189  SpecTL.setRAngleLoc(RAngleLoc);
2190  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2191    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2192
2193  // Construct an elaborated type containing the nested-name-specifier (if any)
2194  // and keyword.
2195  Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2196  ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2197  ElabTL.setKeywordLoc(TagLoc);
2198  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2199  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2200}
2201
2202ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2203                                     SourceLocation TemplateKWLoc,
2204                                     LookupResult &R,
2205                                     bool RequiresADL,
2206                                 const TemplateArgumentListInfo &TemplateArgs) {
2207  // FIXME: Can we do any checking at this point? I guess we could check the
2208  // template arguments that we have against the template name, if the template
2209  // name refers to a single template. That's not a terribly common case,
2210  // though.
2211  // foo<int> could identify a single function unambiguously
2212  // This approach does NOT work, since f<int>(1);
2213  // gets resolved prior to resorting to overload resolution
2214  // i.e., template<class T> void f(double);
2215  //       vs template<class T, class U> void f(U);
2216
2217  // These should be filtered out by our callers.
2218  assert(!R.empty() && "empty lookup results when building templateid");
2219  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2220
2221  // We don't want lookup warnings at this point.
2222  R.suppressDiagnostics();
2223
2224  UnresolvedLookupExpr *ULE
2225    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2226                                   SS.getWithLocInContext(Context),
2227                                   TemplateKWLoc,
2228                                   R.getLookupNameInfo(),
2229                                   RequiresADL, TemplateArgs,
2230                                   R.begin(), R.end());
2231
2232  return Owned(ULE);
2233}
2234
2235// We actually only call this from template instantiation.
2236ExprResult
2237Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2238                                   SourceLocation TemplateKWLoc,
2239                                   const DeclarationNameInfo &NameInfo,
2240                             const TemplateArgumentListInfo &TemplateArgs) {
2241  DeclContext *DC;
2242  if (!(DC = computeDeclContext(SS, false)) ||
2243      DC->isDependentContext() ||
2244      RequireCompleteDeclContext(SS, DC))
2245    return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo,
2246                                     &TemplateArgs);
2247
2248  bool MemberOfUnknownSpecialization;
2249  LookupResult R(*this, NameInfo, LookupOrdinaryName);
2250  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
2251                     MemberOfUnknownSpecialization);
2252
2253  if (R.isAmbiguous())
2254    return ExprError();
2255
2256  if (R.empty()) {
2257    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2258      << NameInfo.getName() << SS.getRange();
2259    return ExprError();
2260  }
2261
2262  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2263    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2264      << (NestedNameSpecifier*) SS.getScopeRep()
2265      << NameInfo.getName() << SS.getRange();
2266    Diag(Temp->getLocation(), diag::note_referenced_class_template);
2267    return ExprError();
2268  }
2269
2270  return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
2271}
2272
2273/// \brief Form a dependent template name.
2274///
2275/// This action forms a dependent template name given the template
2276/// name and its (presumably dependent) scope specifier. For
2277/// example, given "MetaFun::template apply", the scope specifier \p
2278/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2279/// of the "template" keyword, and "apply" is the \p Name.
2280TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2281                                                  CXXScopeSpec &SS,
2282                                                  SourceLocation TemplateKWLoc,
2283                                                  UnqualifiedId &Name,
2284                                                  ParsedType ObjectType,
2285                                                  bool EnteringContext,
2286                                                  TemplateTy &Result) {
2287  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
2288    Diag(TemplateKWLoc,
2289         getLangOptions().CPlusPlus0x ?
2290           diag::warn_cxx98_compat_template_outside_of_template :
2291           diag::ext_template_outside_of_template)
2292      << FixItHint::CreateRemoval(TemplateKWLoc);
2293
2294  DeclContext *LookupCtx = 0;
2295  if (SS.isSet())
2296    LookupCtx = computeDeclContext(SS, EnteringContext);
2297  if (!LookupCtx && ObjectType)
2298    LookupCtx = computeDeclContext(ObjectType.get());
2299  if (LookupCtx) {
2300    // C++0x [temp.names]p5:
2301    //   If a name prefixed by the keyword template is not the name of
2302    //   a template, the program is ill-formed. [Note: the keyword
2303    //   template may not be applied to non-template members of class
2304    //   templates. -end note ] [ Note: as is the case with the
2305    //   typename prefix, the template prefix is allowed in cases
2306    //   where it is not strictly necessary; i.e., when the
2307    //   nested-name-specifier or the expression on the left of the ->
2308    //   or . is not dependent on a template-parameter, or the use
2309    //   does not appear in the scope of a template. -end note]
2310    //
2311    // Note: C++03 was more strict here, because it banned the use of
2312    // the "template" keyword prior to a template-name that was not a
2313    // dependent name. C++ DR468 relaxed this requirement (the
2314    // "template" keyword is now permitted). We follow the C++0x
2315    // rules, even in C++03 mode with a warning, retroactively applying the DR.
2316    bool MemberOfUnknownSpecialization;
2317    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
2318                                          ObjectType, EnteringContext, Result,
2319                                          MemberOfUnknownSpecialization);
2320    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2321        isa<CXXRecordDecl>(LookupCtx) &&
2322        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2323         cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2324      // This is a dependent template. Handle it below.
2325    } else if (TNK == TNK_Non_template) {
2326      Diag(Name.getSourceRange().getBegin(),
2327           diag::err_template_kw_refers_to_non_template)
2328        << GetNameFromUnqualifiedId(Name).getName()
2329        << Name.getSourceRange()
2330        << TemplateKWLoc;
2331      return TNK_Non_template;
2332    } else {
2333      // We found something; return it.
2334      return TNK;
2335    }
2336  }
2337
2338  NestedNameSpecifier *Qualifier
2339    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2340
2341  switch (Name.getKind()) {
2342  case UnqualifiedId::IK_Identifier:
2343    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2344                                                              Name.Identifier));
2345    return TNK_Dependent_template_name;
2346
2347  case UnqualifiedId::IK_OperatorFunctionId:
2348    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2349                                             Name.OperatorFunctionId.Operator));
2350    return TNK_Dependent_template_name;
2351
2352  case UnqualifiedId::IK_LiteralOperatorId:
2353    llvm_unreachable(
2354            "We don't support these; Parse shouldn't have allowed propagation");
2355
2356  default:
2357    break;
2358  }
2359
2360  Diag(Name.getSourceRange().getBegin(),
2361       diag::err_template_kw_refers_to_non_template)
2362    << GetNameFromUnqualifiedId(Name).getName()
2363    << Name.getSourceRange()
2364    << TemplateKWLoc;
2365  return TNK_Non_template;
2366}
2367
2368bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2369                                     const TemplateArgumentLoc &AL,
2370                          SmallVectorImpl<TemplateArgument> &Converted) {
2371  const TemplateArgument &Arg = AL.getArgument();
2372
2373  // Check template type parameter.
2374  switch(Arg.getKind()) {
2375  case TemplateArgument::Type:
2376    // C++ [temp.arg.type]p1:
2377    //   A template-argument for a template-parameter which is a
2378    //   type shall be a type-id.
2379    break;
2380  case TemplateArgument::Template: {
2381    // We have a template type parameter but the template argument
2382    // is a template without any arguments.
2383    SourceRange SR = AL.getSourceRange();
2384    TemplateName Name = Arg.getAsTemplate();
2385    Diag(SR.getBegin(), diag::err_template_missing_args)
2386      << Name << SR;
2387    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2388      Diag(Decl->getLocation(), diag::note_template_decl_here);
2389
2390    return true;
2391  }
2392  default: {
2393    // We have a template type parameter but the template argument
2394    // is not a type.
2395    SourceRange SR = AL.getSourceRange();
2396    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2397    Diag(Param->getLocation(), diag::note_template_param_here);
2398
2399    return true;
2400  }
2401  }
2402
2403  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2404    return true;
2405
2406  // Add the converted template type argument.
2407  QualType ArgType = Context.getCanonicalType(Arg.getAsType());
2408
2409  // Objective-C ARC:
2410  //   If an explicitly-specified template argument type is a lifetime type
2411  //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
2412  if (getLangOptions().ObjCAutoRefCount &&
2413      ArgType->isObjCLifetimeType() &&
2414      !ArgType.getObjCLifetime()) {
2415    Qualifiers Qs;
2416    Qs.setObjCLifetime(Qualifiers::OCL_Strong);
2417    ArgType = Context.getQualifiedType(ArgType, Qs);
2418  }
2419
2420  Converted.push_back(TemplateArgument(ArgType));
2421  return false;
2422}
2423
2424/// \brief Substitute template arguments into the default template argument for
2425/// the given template type parameter.
2426///
2427/// \param SemaRef the semantic analysis object for which we are performing
2428/// the substitution.
2429///
2430/// \param Template the template that we are synthesizing template arguments
2431/// for.
2432///
2433/// \param TemplateLoc the location of the template name that started the
2434/// template-id we are checking.
2435///
2436/// \param RAngleLoc the location of the right angle bracket ('>') that
2437/// terminates the template-id.
2438///
2439/// \param Param the template template parameter whose default we are
2440/// substituting into.
2441///
2442/// \param Converted the list of template arguments provided for template
2443/// parameters that precede \p Param in the template parameter list.
2444/// \returns the substituted template argument, or NULL if an error occurred.
2445static TypeSourceInfo *
2446SubstDefaultTemplateArgument(Sema &SemaRef,
2447                             TemplateDecl *Template,
2448                             SourceLocation TemplateLoc,
2449                             SourceLocation RAngleLoc,
2450                             TemplateTypeParmDecl *Param,
2451                         SmallVectorImpl<TemplateArgument> &Converted) {
2452  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2453
2454  // If the argument type is dependent, instantiate it now based
2455  // on the previously-computed template arguments.
2456  if (ArgType->getType()->isDependentType()) {
2457    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2458                                      Converted.data(), Converted.size());
2459
2460    MultiLevelTemplateArgumentList AllTemplateArgs
2461      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2462
2463    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2464                                     Template, Converted.data(),
2465                                     Converted.size(),
2466                                     SourceRange(TemplateLoc, RAngleLoc));
2467
2468    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2469                                Param->getDefaultArgumentLoc(),
2470                                Param->getDeclName());
2471  }
2472
2473  return ArgType;
2474}
2475
2476/// \brief Substitute template arguments into the default template argument for
2477/// the given non-type template parameter.
2478///
2479/// \param SemaRef the semantic analysis object for which we are performing
2480/// the substitution.
2481///
2482/// \param Template the template that we are synthesizing template arguments
2483/// for.
2484///
2485/// \param TemplateLoc the location of the template name that started the
2486/// template-id we are checking.
2487///
2488/// \param RAngleLoc the location of the right angle bracket ('>') that
2489/// terminates the template-id.
2490///
2491/// \param Param the non-type template parameter whose default we are
2492/// substituting into.
2493///
2494/// \param Converted the list of template arguments provided for template
2495/// parameters that precede \p Param in the template parameter list.
2496///
2497/// \returns the substituted template argument, or NULL if an error occurred.
2498static ExprResult
2499SubstDefaultTemplateArgument(Sema &SemaRef,
2500                             TemplateDecl *Template,
2501                             SourceLocation TemplateLoc,
2502                             SourceLocation RAngleLoc,
2503                             NonTypeTemplateParmDecl *Param,
2504                        SmallVectorImpl<TemplateArgument> &Converted) {
2505  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2506                                    Converted.data(), Converted.size());
2507
2508  MultiLevelTemplateArgumentList AllTemplateArgs
2509    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2510
2511  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2512                                   Template, Converted.data(),
2513                                   Converted.size(),
2514                                   SourceRange(TemplateLoc, RAngleLoc));
2515
2516  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2517}
2518
2519/// \brief Substitute template arguments into the default template argument for
2520/// the given template template parameter.
2521///
2522/// \param SemaRef the semantic analysis object for which we are performing
2523/// the substitution.
2524///
2525/// \param Template the template that we are synthesizing template arguments
2526/// for.
2527///
2528/// \param TemplateLoc the location of the template name that started the
2529/// template-id we are checking.
2530///
2531/// \param RAngleLoc the location of the right angle bracket ('>') that
2532/// terminates the template-id.
2533///
2534/// \param Param the template template parameter whose default we are
2535/// substituting into.
2536///
2537/// \param Converted the list of template arguments provided for template
2538/// parameters that precede \p Param in the template parameter list.
2539///
2540/// \param QualifierLoc Will be set to the nested-name-specifier (with
2541/// source-location information) that precedes the template name.
2542///
2543/// \returns the substituted template argument, or NULL if an error occurred.
2544static TemplateName
2545SubstDefaultTemplateArgument(Sema &SemaRef,
2546                             TemplateDecl *Template,
2547                             SourceLocation TemplateLoc,
2548                             SourceLocation RAngleLoc,
2549                             TemplateTemplateParmDecl *Param,
2550                       SmallVectorImpl<TemplateArgument> &Converted,
2551                             NestedNameSpecifierLoc &QualifierLoc) {
2552  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2553                                    Converted.data(), Converted.size());
2554
2555  MultiLevelTemplateArgumentList AllTemplateArgs
2556    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2557
2558  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2559                                   Template, Converted.data(),
2560                                   Converted.size(),
2561                                   SourceRange(TemplateLoc, RAngleLoc));
2562
2563  // Substitute into the nested-name-specifier first,
2564  QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
2565  if (QualifierLoc) {
2566    QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2567                                                       AllTemplateArgs);
2568    if (!QualifierLoc)
2569      return TemplateName();
2570  }
2571
2572  return SemaRef.SubstTemplateName(QualifierLoc,
2573                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2574                              Param->getDefaultArgument().getTemplateNameLoc(),
2575                                   AllTemplateArgs);
2576}
2577
2578/// \brief If the given template parameter has a default template
2579/// argument, substitute into that default template argument and
2580/// return the corresponding template argument.
2581TemplateArgumentLoc
2582Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2583                                              SourceLocation TemplateLoc,
2584                                              SourceLocation RAngleLoc,
2585                                              Decl *Param,
2586                      SmallVectorImpl<TemplateArgument> &Converted) {
2587   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2588    if (!TypeParm->hasDefaultArgument())
2589      return TemplateArgumentLoc();
2590
2591    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2592                                                      TemplateLoc,
2593                                                      RAngleLoc,
2594                                                      TypeParm,
2595                                                      Converted);
2596    if (DI)
2597      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2598
2599    return TemplateArgumentLoc();
2600  }
2601
2602  if (NonTypeTemplateParmDecl *NonTypeParm
2603        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2604    if (!NonTypeParm->hasDefaultArgument())
2605      return TemplateArgumentLoc();
2606
2607    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2608                                                  TemplateLoc,
2609                                                  RAngleLoc,
2610                                                  NonTypeParm,
2611                                                  Converted);
2612    if (Arg.isInvalid())
2613      return TemplateArgumentLoc();
2614
2615    Expr *ArgE = Arg.takeAs<Expr>();
2616    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2617  }
2618
2619  TemplateTemplateParmDecl *TempTempParm
2620    = cast<TemplateTemplateParmDecl>(Param);
2621  if (!TempTempParm->hasDefaultArgument())
2622    return TemplateArgumentLoc();
2623
2624
2625  NestedNameSpecifierLoc QualifierLoc;
2626  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2627                                                    TemplateLoc,
2628                                                    RAngleLoc,
2629                                                    TempTempParm,
2630                                                    Converted,
2631                                                    QualifierLoc);
2632  if (TName.isNull())
2633    return TemplateArgumentLoc();
2634
2635  return TemplateArgumentLoc(TemplateArgument(TName),
2636                TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
2637                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2638}
2639
2640/// \brief Check that the given template argument corresponds to the given
2641/// template parameter.
2642///
2643/// \param Param The template parameter against which the argument will be
2644/// checked.
2645///
2646/// \param Arg The template argument.
2647///
2648/// \param Template The template in which the template argument resides.
2649///
2650/// \param TemplateLoc The location of the template name for the template
2651/// whose argument list we're matching.
2652///
2653/// \param RAngleLoc The location of the right angle bracket ('>') that closes
2654/// the template argument list.
2655///
2656/// \param ArgumentPackIndex The index into the argument pack where this
2657/// argument will be placed. Only valid if the parameter is a parameter pack.
2658///
2659/// \param Converted The checked, converted argument will be added to the
2660/// end of this small vector.
2661///
2662/// \param CTAK Describes how we arrived at this particular template argument:
2663/// explicitly written, deduced, etc.
2664///
2665/// \returns true on error, false otherwise.
2666bool Sema::CheckTemplateArgument(NamedDecl *Param,
2667                                 const TemplateArgumentLoc &Arg,
2668                                 NamedDecl *Template,
2669                                 SourceLocation TemplateLoc,
2670                                 SourceLocation RAngleLoc,
2671                                 unsigned ArgumentPackIndex,
2672                            SmallVectorImpl<TemplateArgument> &Converted,
2673                                 CheckTemplateArgumentKind CTAK) {
2674  // Check template type parameters.
2675  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2676    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2677
2678  // Check non-type template parameters.
2679  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2680    // Do substitution on the type of the non-type template parameter
2681    // with the template arguments we've seen thus far.  But if the
2682    // template has a dependent context then we cannot substitute yet.
2683    QualType NTTPType = NTTP->getType();
2684    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
2685      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
2686
2687    if (NTTPType->isDependentType() &&
2688        !isa<TemplateTemplateParmDecl>(Template) &&
2689        !Template->getDeclContext()->isDependentContext()) {
2690      // Do substitution on the type of the non-type template parameter.
2691      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2692                                 NTTP, Converted.data(), Converted.size(),
2693                                 SourceRange(TemplateLoc, RAngleLoc));
2694
2695      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2696                                        Converted.data(), Converted.size());
2697      NTTPType = SubstType(NTTPType,
2698                           MultiLevelTemplateArgumentList(TemplateArgs),
2699                           NTTP->getLocation(),
2700                           NTTP->getDeclName());
2701      // If that worked, check the non-type template parameter type
2702      // for validity.
2703      if (!NTTPType.isNull())
2704        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2705                                                     NTTP->getLocation());
2706      if (NTTPType.isNull())
2707        return true;
2708    }
2709
2710    switch (Arg.getArgument().getKind()) {
2711    case TemplateArgument::Null:
2712      llvm_unreachable("Should never see a NULL template argument here");
2713
2714    case TemplateArgument::Expression: {
2715      TemplateArgument Result;
2716      ExprResult Res =
2717        CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
2718                              Result, CTAK);
2719      if (Res.isInvalid())
2720        return true;
2721
2722      Converted.push_back(Result);
2723      break;
2724    }
2725
2726    case TemplateArgument::Declaration:
2727    case TemplateArgument::Integral:
2728      // We've already checked this template argument, so just copy
2729      // it to the list of converted arguments.
2730      Converted.push_back(Arg.getArgument());
2731      break;
2732
2733    case TemplateArgument::Template:
2734    case TemplateArgument::TemplateExpansion:
2735      // We were given a template template argument. It may not be ill-formed;
2736      // see below.
2737      if (DependentTemplateName *DTN
2738            = Arg.getArgument().getAsTemplateOrTemplatePattern()
2739                                              .getAsDependentTemplateName()) {
2740        // We have a template argument such as \c T::template X, which we
2741        // parsed as a template template argument. However, since we now
2742        // know that we need a non-type template argument, convert this
2743        // template name into an expression.
2744
2745        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2746                                     Arg.getTemplateNameLoc());
2747
2748        CXXScopeSpec SS;
2749        SS.Adopt(Arg.getTemplateQualifierLoc());
2750        // FIXME: the template-template arg was a DependentTemplateName,
2751        // so it was provided with a template keyword. However, its source
2752        // location is not stored in the template argument structure.
2753        SourceLocation TemplateKWLoc;
2754        ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
2755                                                SS.getWithLocInContext(Context),
2756                                                               TemplateKWLoc,
2757                                                               NameInfo, 0));
2758
2759        // If we parsed the template argument as a pack expansion, create a
2760        // pack expansion expression.
2761        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2762          E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
2763          if (E.isInvalid())
2764            return true;
2765        }
2766
2767        TemplateArgument Result;
2768        E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
2769        if (E.isInvalid())
2770          return true;
2771
2772        Converted.push_back(Result);
2773        break;
2774      }
2775
2776      // We have a template argument that actually does refer to a class
2777      // template, alias template, or template template parameter, and
2778      // therefore cannot be a non-type template argument.
2779      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2780        << Arg.getSourceRange();
2781
2782      Diag(Param->getLocation(), diag::note_template_param_here);
2783      return true;
2784
2785    case TemplateArgument::Type: {
2786      // We have a non-type template parameter but the template
2787      // argument is a type.
2788
2789      // C++ [temp.arg]p2:
2790      //   In a template-argument, an ambiguity between a type-id and
2791      //   an expression is resolved to a type-id, regardless of the
2792      //   form of the corresponding template-parameter.
2793      //
2794      // We warn specifically about this case, since it can be rather
2795      // confusing for users.
2796      QualType T = Arg.getArgument().getAsType();
2797      SourceRange SR = Arg.getSourceRange();
2798      if (T->isFunctionType())
2799        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2800      else
2801        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2802      Diag(Param->getLocation(), diag::note_template_param_here);
2803      return true;
2804    }
2805
2806    case TemplateArgument::Pack:
2807      llvm_unreachable("Caller must expand template argument packs");
2808    }
2809
2810    return false;
2811  }
2812
2813
2814  // Check template template parameters.
2815  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2816
2817  // Substitute into the template parameter list of the template
2818  // template parameter, since previously-supplied template arguments
2819  // may appear within the template template parameter.
2820  {
2821    // Set up a template instantiation context.
2822    LocalInstantiationScope Scope(*this);
2823    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2824                               TempParm, Converted.data(), Converted.size(),
2825                               SourceRange(TemplateLoc, RAngleLoc));
2826
2827    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2828                                      Converted.data(), Converted.size());
2829    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2830                      SubstDecl(TempParm, CurContext,
2831                                MultiLevelTemplateArgumentList(TemplateArgs)));
2832    if (!TempParm)
2833      return true;
2834  }
2835
2836  switch (Arg.getArgument().getKind()) {
2837  case TemplateArgument::Null:
2838    llvm_unreachable("Should never see a NULL template argument here");
2839
2840  case TemplateArgument::Template:
2841  case TemplateArgument::TemplateExpansion:
2842    if (CheckTemplateArgument(TempParm, Arg))
2843      return true;
2844
2845    Converted.push_back(Arg.getArgument());
2846    break;
2847
2848  case TemplateArgument::Expression:
2849  case TemplateArgument::Type:
2850    // We have a template template parameter but the template
2851    // argument does not refer to a template.
2852    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
2853      << getLangOptions().CPlusPlus0x;
2854    return true;
2855
2856  case TemplateArgument::Declaration:
2857    llvm_unreachable("Declaration argument with template template parameter");
2858  case TemplateArgument::Integral:
2859    llvm_unreachable("Integral argument with template template parameter");
2860
2861  case TemplateArgument::Pack:
2862    llvm_unreachable("Caller must expand template argument packs");
2863  }
2864
2865  return false;
2866}
2867
2868/// \brief Check that the given template argument list is well-formed
2869/// for specializing the given template.
2870bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2871                                     SourceLocation TemplateLoc,
2872                                     TemplateArgumentListInfo &TemplateArgs,
2873                                     bool PartialTemplateArgs,
2874                          SmallVectorImpl<TemplateArgument> &Converted) {
2875  TemplateParameterList *Params = Template->getTemplateParameters();
2876  unsigned NumParams = Params->size();
2877  unsigned NumArgs = TemplateArgs.size();
2878  bool Invalid = false;
2879
2880  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2881
2882  bool HasParameterPack =
2883    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2884
2885  if ((NumArgs > NumParams && !HasParameterPack) ||
2886      (NumArgs < Params->getMinRequiredArguments() &&
2887       !PartialTemplateArgs)) {
2888    // FIXME: point at either the first arg beyond what we can handle,
2889    // or the '>', depending on whether we have too many or too few
2890    // arguments.
2891    SourceRange Range;
2892    if (NumArgs > NumParams)
2893      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2894    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2895      << (NumArgs > NumParams)
2896      << (isa<ClassTemplateDecl>(Template)? 0 :
2897          isa<FunctionTemplateDecl>(Template)? 1 :
2898          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2899      << Template << Range;
2900    Diag(Template->getLocation(), diag::note_template_decl_here)
2901      << Params->getSourceRange();
2902    Invalid = true;
2903  }
2904
2905  // C++ [temp.arg]p1:
2906  //   [...] The type and form of each template-argument specified in
2907  //   a template-id shall match the type and form specified for the
2908  //   corresponding parameter declared by the template in its
2909  //   template-parameter-list.
2910  bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
2911  SmallVector<TemplateArgument, 2> ArgumentPack;
2912  TemplateParameterList::iterator Param = Params->begin(),
2913                               ParamEnd = Params->end();
2914  unsigned ArgIdx = 0;
2915  LocalInstantiationScope InstScope(*this, true);
2916  while (Param != ParamEnd) {
2917    if (ArgIdx < NumArgs) {
2918      // If we have an expanded parameter pack, make sure we don't have too
2919      // many arguments.
2920      if (NonTypeTemplateParmDecl *NTTP
2921                                = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2922        if (NTTP->isExpandedParameterPack() &&
2923            ArgumentPack.size() >= NTTP->getNumExpansionTypes()) {
2924          Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2925            << true
2926            << (isa<ClassTemplateDecl>(Template)? 0 :
2927                isa<FunctionTemplateDecl>(Template)? 1 :
2928                isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2929            << Template;
2930          Diag(Template->getLocation(), diag::note_template_decl_here)
2931            << Params->getSourceRange();
2932          return true;
2933        }
2934      }
2935
2936      // Check the template argument we were given.
2937      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2938                                TemplateLoc, RAngleLoc,
2939                                ArgumentPack.size(), Converted))
2940        return true;
2941
2942      if ((*Param)->isTemplateParameterPack()) {
2943        // The template parameter was a template parameter pack, so take the
2944        // deduced argument and place it on the argument pack. Note that we
2945        // stay on the same template parameter so that we can deduce more
2946        // arguments.
2947        ArgumentPack.push_back(Converted.back());
2948        Converted.pop_back();
2949      } else {
2950        // Move to the next template parameter.
2951        ++Param;
2952      }
2953      ++ArgIdx;
2954      continue;
2955    }
2956
2957    // If we're checking a partial template argument list, we're done.
2958    if (PartialTemplateArgs) {
2959      if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
2960        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
2961                                                         ArgumentPack.data(),
2962                                                         ArgumentPack.size()));
2963
2964      return Invalid;
2965    }
2966
2967    // If we have a template parameter pack with no more corresponding
2968    // arguments, just break out now and we'll fill in the argument pack below.
2969    if ((*Param)->isTemplateParameterPack())
2970      break;
2971
2972    // We have a default template argument that we will use.
2973    TemplateArgumentLoc Arg;
2974
2975    // Retrieve the default template argument from the template
2976    // parameter. For each kind of template parameter, we substitute the
2977    // template arguments provided thus far and any "outer" template arguments
2978    // (when the template parameter was part of a nested template) into
2979    // the default argument.
2980    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2981      if (!TTP->hasDefaultArgument()) {
2982        assert(Invalid && "Missing default argument");
2983        break;
2984      }
2985
2986      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2987                                                             Template,
2988                                                             TemplateLoc,
2989                                                             RAngleLoc,
2990                                                             TTP,
2991                                                             Converted);
2992      if (!ArgType)
2993        return true;
2994
2995      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2996                                ArgType);
2997    } else if (NonTypeTemplateParmDecl *NTTP
2998                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2999      if (!NTTP->hasDefaultArgument()) {
3000        assert(Invalid && "Missing default argument");
3001        break;
3002      }
3003
3004      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
3005                                                              TemplateLoc,
3006                                                              RAngleLoc,
3007                                                              NTTP,
3008                                                              Converted);
3009      if (E.isInvalid())
3010        return true;
3011
3012      Expr *Ex = E.takeAs<Expr>();
3013      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
3014    } else {
3015      TemplateTemplateParmDecl *TempParm
3016        = cast<TemplateTemplateParmDecl>(*Param);
3017
3018      if (!TempParm->hasDefaultArgument()) {
3019        assert(Invalid && "Missing default argument");
3020        break;
3021      }
3022
3023      NestedNameSpecifierLoc QualifierLoc;
3024      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3025                                                       TemplateLoc,
3026                                                       RAngleLoc,
3027                                                       TempParm,
3028                                                       Converted,
3029                                                       QualifierLoc);
3030      if (Name.isNull())
3031        return true;
3032
3033      Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3034                           TempParm->getDefaultArgument().getTemplateNameLoc());
3035    }
3036
3037    // Introduce an instantiation record that describes where we are using
3038    // the default template argument.
3039    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
3040                                        Converted.data(), Converted.size(),
3041                                        SourceRange(TemplateLoc, RAngleLoc));
3042
3043    // Check the default template argument.
3044    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3045                              RAngleLoc, 0, Converted))
3046      return true;
3047
3048    // Core issue 150 (assumed resolution): if this is a template template
3049    // parameter, keep track of the default template arguments from the
3050    // template definition.
3051    if (isTemplateTemplateParameter)
3052      TemplateArgs.addArgument(Arg);
3053
3054    // Move to the next template parameter and argument.
3055    ++Param;
3056    ++ArgIdx;
3057  }
3058
3059  // Form argument packs for each of the parameter packs remaining.
3060  while (Param != ParamEnd) {
3061    // If we're checking a partial list of template arguments, don't fill
3062    // in arguments for non-template parameter packs.
3063
3064    if ((*Param)->isTemplateParameterPack()) {
3065      if (!HasParameterPack)
3066        return true;
3067      if (ArgumentPack.empty())
3068        Converted.push_back(TemplateArgument(0, 0));
3069      else {
3070        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3071                                                          ArgumentPack.data(),
3072                                                         ArgumentPack.size()));
3073        ArgumentPack.clear();
3074      }
3075    }
3076
3077    ++Param;
3078  }
3079
3080  return Invalid;
3081}
3082
3083namespace {
3084  class UnnamedLocalNoLinkageFinder
3085    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3086  {
3087    Sema &S;
3088    SourceRange SR;
3089
3090    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3091
3092  public:
3093    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3094
3095    bool Visit(QualType T) {
3096      return inherited::Visit(T.getTypePtr());
3097    }
3098
3099#define TYPE(Class, Parent) \
3100    bool Visit##Class##Type(const Class##Type *);
3101#define ABSTRACT_TYPE(Class, Parent) \
3102    bool Visit##Class##Type(const Class##Type *) { return false; }
3103#define NON_CANONICAL_TYPE(Class, Parent) \
3104    bool Visit##Class##Type(const Class##Type *) { return false; }
3105#include "clang/AST/TypeNodes.def"
3106
3107    bool VisitTagDecl(const TagDecl *Tag);
3108    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3109  };
3110}
3111
3112bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3113  return false;
3114}
3115
3116bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3117  return Visit(T->getElementType());
3118}
3119
3120bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3121  return Visit(T->getPointeeType());
3122}
3123
3124bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3125                                                    const BlockPointerType* T) {
3126  return Visit(T->getPointeeType());
3127}
3128
3129bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3130                                                const LValueReferenceType* T) {
3131  return Visit(T->getPointeeType());
3132}
3133
3134bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3135                                                const RValueReferenceType* T) {
3136  return Visit(T->getPointeeType());
3137}
3138
3139bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3140                                                  const MemberPointerType* T) {
3141  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3142}
3143
3144bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3145                                                  const ConstantArrayType* T) {
3146  return Visit(T->getElementType());
3147}
3148
3149bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3150                                                 const IncompleteArrayType* T) {
3151  return Visit(T->getElementType());
3152}
3153
3154bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3155                                                   const VariableArrayType* T) {
3156  return Visit(T->getElementType());
3157}
3158
3159bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3160                                            const DependentSizedArrayType* T) {
3161  return Visit(T->getElementType());
3162}
3163
3164bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3165                                         const DependentSizedExtVectorType* T) {
3166  return Visit(T->getElementType());
3167}
3168
3169bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3170  return Visit(T->getElementType());
3171}
3172
3173bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3174  return Visit(T->getElementType());
3175}
3176
3177bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3178                                                  const FunctionProtoType* T) {
3179  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
3180                                         AEnd = T->arg_type_end();
3181       A != AEnd; ++A) {
3182    if (Visit(*A))
3183      return true;
3184  }
3185
3186  return Visit(T->getResultType());
3187}
3188
3189bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3190                                               const FunctionNoProtoType* T) {
3191  return Visit(T->getResultType());
3192}
3193
3194bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
3195                                                  const UnresolvedUsingType*) {
3196  return false;
3197}
3198
3199bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
3200  return false;
3201}
3202
3203bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
3204  return Visit(T->getUnderlyingType());
3205}
3206
3207bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
3208  return false;
3209}
3210
3211bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
3212                                                    const UnaryTransformType*) {
3213  return false;
3214}
3215
3216bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
3217  return Visit(T->getDeducedType());
3218}
3219
3220bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
3221  return VisitTagDecl(T->getDecl());
3222}
3223
3224bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
3225  return VisitTagDecl(T->getDecl());
3226}
3227
3228bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
3229                                                 const TemplateTypeParmType*) {
3230  return false;
3231}
3232
3233bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
3234                                        const SubstTemplateTypeParmPackType *) {
3235  return false;
3236}
3237
3238bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
3239                                            const TemplateSpecializationType*) {
3240  return false;
3241}
3242
3243bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
3244                                              const InjectedClassNameType* T) {
3245  return VisitTagDecl(T->getDecl());
3246}
3247
3248bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
3249                                                   const DependentNameType* T) {
3250  return VisitNestedNameSpecifier(T->getQualifier());
3251}
3252
3253bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
3254                                 const DependentTemplateSpecializationType* T) {
3255  return VisitNestedNameSpecifier(T->getQualifier());
3256}
3257
3258bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
3259                                                   const PackExpansionType* T) {
3260  return Visit(T->getPattern());
3261}
3262
3263bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
3264  return false;
3265}
3266
3267bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
3268                                                   const ObjCInterfaceType *) {
3269  return false;
3270}
3271
3272bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
3273                                                const ObjCObjectPointerType *) {
3274  return false;
3275}
3276
3277bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
3278  return Visit(T->getValueType());
3279}
3280
3281bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
3282  if (Tag->getDeclContext()->isFunctionOrMethod()) {
3283    S.Diag(SR.getBegin(),
3284           S.getLangOptions().CPlusPlus0x ?
3285             diag::warn_cxx98_compat_template_arg_local_type :
3286             diag::ext_template_arg_local_type)
3287      << S.Context.getTypeDeclType(Tag) << SR;
3288    return true;
3289  }
3290
3291  if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) {
3292    S.Diag(SR.getBegin(),
3293           S.getLangOptions().CPlusPlus0x ?
3294             diag::warn_cxx98_compat_template_arg_unnamed_type :
3295             diag::ext_template_arg_unnamed_type) << SR;
3296    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
3297    return true;
3298  }
3299
3300  return false;
3301}
3302
3303bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
3304                                                    NestedNameSpecifier *NNS) {
3305  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
3306    return true;
3307
3308  switch (NNS->getKind()) {
3309  case NestedNameSpecifier::Identifier:
3310  case NestedNameSpecifier::Namespace:
3311  case NestedNameSpecifier::NamespaceAlias:
3312  case NestedNameSpecifier::Global:
3313    return false;
3314
3315  case NestedNameSpecifier::TypeSpec:
3316  case NestedNameSpecifier::TypeSpecWithTemplate:
3317    return Visit(QualType(NNS->getAsType(), 0));
3318  }
3319  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3320}
3321
3322
3323/// \brief Check a template argument against its corresponding
3324/// template type parameter.
3325///
3326/// This routine implements the semantics of C++ [temp.arg.type]. It
3327/// returns true if an error occurred, and false otherwise.
3328bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
3329                                 TypeSourceInfo *ArgInfo) {
3330  assert(ArgInfo && "invalid TypeSourceInfo");
3331  QualType Arg = ArgInfo->getType();
3332  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
3333
3334  if (Arg->isVariablyModifiedType()) {
3335    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
3336  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
3337    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
3338  }
3339
3340  // C++03 [temp.arg.type]p2:
3341  //   A local type, a type with no linkage, an unnamed type or a type
3342  //   compounded from any of these types shall not be used as a
3343  //   template-argument for a template type-parameter.
3344  //
3345  // C++11 allows these, and even in C++03 we allow them as an extension with
3346  // a warning.
3347  if (LangOpts.CPlusPlus0x ?
3348     Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type,
3349                              SR.getBegin()) != DiagnosticsEngine::Ignored ||
3350      Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type,
3351                               SR.getBegin()) != DiagnosticsEngine::Ignored :
3352      Arg->hasUnnamedOrLocalType()) {
3353    UnnamedLocalNoLinkageFinder Finder(*this, SR);
3354    (void)Finder.Visit(Context.getCanonicalType(Arg));
3355  }
3356
3357  return false;
3358}
3359
3360/// \brief Checks whether the given template argument is the address
3361/// of an object or function according to C++ [temp.arg.nontype]p1.
3362static bool
3363CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
3364                                               NonTypeTemplateParmDecl *Param,
3365                                               QualType ParamType,
3366                                               Expr *ArgIn,
3367                                               TemplateArgument &Converted) {
3368  bool Invalid = false;
3369  Expr *Arg = ArgIn;
3370  QualType ArgType = Arg->getType();
3371
3372  // See through any implicit casts we added to fix the type.
3373  Arg = Arg->IgnoreImpCasts();
3374
3375  // C++ [temp.arg.nontype]p1:
3376  //
3377  //   A template-argument for a non-type, non-template
3378  //   template-parameter shall be one of: [...]
3379  //
3380  //     -- the address of an object or function with external
3381  //        linkage, including function templates and function
3382  //        template-ids but excluding non-static class members,
3383  //        expressed as & id-expression where the & is optional if
3384  //        the name refers to a function or array, or if the
3385  //        corresponding template-parameter is a reference; or
3386
3387  // In C++98/03 mode, give an extension warning on any extra parentheses.
3388  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3389  bool ExtraParens = false;
3390  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3391    if (!Invalid && !ExtraParens) {
3392      S.Diag(Arg->getSourceRange().getBegin(),
3393             S.getLangOptions().CPlusPlus0x ?
3394               diag::warn_cxx98_compat_template_arg_extra_parens :
3395               diag::ext_template_arg_extra_parens)
3396        << Arg->getSourceRange();
3397      ExtraParens = true;
3398    }
3399
3400    Arg = Parens->getSubExpr();
3401  }
3402
3403  while (SubstNonTypeTemplateParmExpr *subst =
3404           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3405    Arg = subst->getReplacement()->IgnoreImpCasts();
3406
3407  bool AddressTaken = false;
3408  SourceLocation AddrOpLoc;
3409  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3410    if (UnOp->getOpcode() == UO_AddrOf) {
3411      Arg = UnOp->getSubExpr();
3412      AddressTaken = true;
3413      AddrOpLoc = UnOp->getOperatorLoc();
3414    }
3415  }
3416
3417  if (S.getLangOptions().MicrosoftExt && isa<CXXUuidofExpr>(Arg)) {
3418    Converted = TemplateArgument(ArgIn);
3419    return false;
3420  }
3421
3422  while (SubstNonTypeTemplateParmExpr *subst =
3423           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3424    Arg = subst->getReplacement()->IgnoreImpCasts();
3425
3426  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
3427  if (!DRE) {
3428    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
3429      << Arg->getSourceRange();
3430    S.Diag(Param->getLocation(), diag::note_template_param_here);
3431    return true;
3432  }
3433
3434  // Stop checking the precise nature of the argument if it is value dependent,
3435  // it should be checked when instantiated.
3436  if (Arg->isValueDependent()) {
3437    Converted = TemplateArgument(ArgIn);
3438    return false;
3439  }
3440
3441  if (!isa<ValueDecl>(DRE->getDecl())) {
3442    S.Diag(Arg->getSourceRange().getBegin(),
3443           diag::err_template_arg_not_object_or_func_form)
3444      << Arg->getSourceRange();
3445    S.Diag(Param->getLocation(), diag::note_template_param_here);
3446    return true;
3447  }
3448
3449  NamedDecl *Entity = 0;
3450
3451  // Cannot refer to non-static data members
3452  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
3453    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
3454      << Field << Arg->getSourceRange();
3455    S.Diag(Param->getLocation(), diag::note_template_param_here);
3456    return true;
3457  }
3458
3459  // Cannot refer to non-static member functions
3460  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
3461    if (!Method->isStatic()) {
3462      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
3463        << Method << Arg->getSourceRange();
3464      S.Diag(Param->getLocation(), diag::note_template_param_here);
3465      return true;
3466    }
3467
3468  // Functions must have external linkage.
3469  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
3470    if (!isExternalLinkage(Func->getLinkage())) {
3471      S.Diag(Arg->getSourceRange().getBegin(),
3472             diag::err_template_arg_function_not_extern)
3473        << Func << Arg->getSourceRange();
3474      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
3475        << true;
3476      return true;
3477    }
3478
3479    // Okay: we've named a function with external linkage.
3480    Entity = Func;
3481
3482    // If the template parameter has pointer type, the function decays.
3483    if (ParamType->isPointerType() && !AddressTaken)
3484      ArgType = S.Context.getPointerType(Func->getType());
3485    else if (AddressTaken && ParamType->isReferenceType()) {
3486      // If we originally had an address-of operator, but the
3487      // parameter has reference type, complain and (if things look
3488      // like they will work) drop the address-of operator.
3489      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
3490                                            ParamType.getNonReferenceType())) {
3491        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3492          << ParamType;
3493        S.Diag(Param->getLocation(), diag::note_template_param_here);
3494        return true;
3495      }
3496
3497      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3498        << ParamType
3499        << FixItHint::CreateRemoval(AddrOpLoc);
3500      S.Diag(Param->getLocation(), diag::note_template_param_here);
3501
3502      ArgType = Func->getType();
3503    }
3504  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
3505    if (!isExternalLinkage(Var->getLinkage())) {
3506      S.Diag(Arg->getSourceRange().getBegin(),
3507             diag::err_template_arg_object_not_extern)
3508        << Var << Arg->getSourceRange();
3509      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
3510        << true;
3511      return true;
3512    }
3513
3514    // A value of reference type is not an object.
3515    if (Var->getType()->isReferenceType()) {
3516      S.Diag(Arg->getSourceRange().getBegin(),
3517             diag::err_template_arg_reference_var)
3518        << Var->getType() << Arg->getSourceRange();
3519      S.Diag(Param->getLocation(), diag::note_template_param_here);
3520      return true;
3521    }
3522
3523    // Okay: we've named an object with external linkage
3524    Entity = Var;
3525
3526    // If the template parameter has pointer type, we must have taken
3527    // the address of this object.
3528    if (ParamType->isReferenceType()) {
3529      if (AddressTaken) {
3530        // If we originally had an address-of operator, but the
3531        // parameter has reference type, complain and (if things look
3532        // like they will work) drop the address-of operator.
3533        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
3534                                            ParamType.getNonReferenceType())) {
3535          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3536            << ParamType;
3537          S.Diag(Param->getLocation(), diag::note_template_param_here);
3538          return true;
3539        }
3540
3541        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3542          << ParamType
3543          << FixItHint::CreateRemoval(AddrOpLoc);
3544        S.Diag(Param->getLocation(), diag::note_template_param_here);
3545
3546        ArgType = Var->getType();
3547      }
3548    } else if (!AddressTaken && ParamType->isPointerType()) {
3549      if (Var->getType()->isArrayType()) {
3550        // Array-to-pointer decay.
3551        ArgType = S.Context.getArrayDecayedType(Var->getType());
3552      } else {
3553        // If the template parameter has pointer type but the address of
3554        // this object was not taken, complain and (possibly) recover by
3555        // taking the address of the entity.
3556        ArgType = S.Context.getPointerType(Var->getType());
3557        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3558          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3559            << ParamType;
3560          S.Diag(Param->getLocation(), diag::note_template_param_here);
3561          return true;
3562        }
3563
3564        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3565          << ParamType
3566          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3567
3568        S.Diag(Param->getLocation(), diag::note_template_param_here);
3569      }
3570    }
3571  } else {
3572    // We found something else, but we don't know specifically what it is.
3573    S.Diag(Arg->getSourceRange().getBegin(),
3574           diag::err_template_arg_not_object_or_func)
3575      << Arg->getSourceRange();
3576    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3577    return true;
3578  }
3579
3580  bool ObjCLifetimeConversion;
3581  if (ParamType->isPointerType() &&
3582      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3583      S.IsQualificationConversion(ArgType, ParamType, false,
3584                                  ObjCLifetimeConversion)) {
3585    // For pointer-to-object types, qualification conversions are
3586    // permitted.
3587  } else {
3588    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3589      if (!ParamRef->getPointeeType()->isFunctionType()) {
3590        // C++ [temp.arg.nontype]p5b3:
3591        //   For a non-type template-parameter of type reference to
3592        //   object, no conversions apply. The type referred to by the
3593        //   reference may be more cv-qualified than the (otherwise
3594        //   identical) type of the template- argument. The
3595        //   template-parameter is bound directly to the
3596        //   template-argument, which shall be an lvalue.
3597
3598        // FIXME: Other qualifiers?
3599        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3600        unsigned ArgQuals = ArgType.getCVRQualifiers();
3601
3602        if ((ParamQuals | ArgQuals) != ParamQuals) {
3603          S.Diag(Arg->getSourceRange().getBegin(),
3604                 diag::err_template_arg_ref_bind_ignores_quals)
3605            << ParamType << Arg->getType()
3606            << Arg->getSourceRange();
3607          S.Diag(Param->getLocation(), diag::note_template_param_here);
3608          return true;
3609        }
3610      }
3611    }
3612
3613    // At this point, the template argument refers to an object or
3614    // function with external linkage. We now need to check whether the
3615    // argument and parameter types are compatible.
3616    if (!S.Context.hasSameUnqualifiedType(ArgType,
3617                                          ParamType.getNonReferenceType())) {
3618      // We can't perform this conversion or binding.
3619      if (ParamType->isReferenceType())
3620        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3621          << ParamType << ArgIn->getType() << Arg->getSourceRange();
3622      else
3623        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
3624          << ArgIn->getType() << ParamType << Arg->getSourceRange();
3625      S.Diag(Param->getLocation(), diag::note_template_param_here);
3626      return true;
3627    }
3628  }
3629
3630  // Create the template argument.
3631  Converted = TemplateArgument(Entity->getCanonicalDecl());
3632  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
3633  return false;
3634}
3635
3636/// \brief Checks whether the given template argument is a pointer to
3637/// member constant according to C++ [temp.arg.nontype]p1.
3638bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
3639                                                TemplateArgument &Converted) {
3640  bool Invalid = false;
3641
3642  // See through any implicit casts we added to fix the type.
3643  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3644    Arg = Cast->getSubExpr();
3645
3646  // C++ [temp.arg.nontype]p1:
3647  //
3648  //   A template-argument for a non-type, non-template
3649  //   template-parameter shall be one of: [...]
3650  //
3651  //     -- a pointer to member expressed as described in 5.3.1.
3652  DeclRefExpr *DRE = 0;
3653
3654  // In C++98/03 mode, give an extension warning on any extra parentheses.
3655  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3656  bool ExtraParens = false;
3657  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3658    if (!Invalid && !ExtraParens) {
3659      Diag(Arg->getSourceRange().getBegin(),
3660           getLangOptions().CPlusPlus0x ?
3661             diag::warn_cxx98_compat_template_arg_extra_parens :
3662             diag::ext_template_arg_extra_parens)
3663        << Arg->getSourceRange();
3664      ExtraParens = true;
3665    }
3666
3667    Arg = Parens->getSubExpr();
3668  }
3669
3670  while (SubstNonTypeTemplateParmExpr *subst =
3671           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3672    Arg = subst->getReplacement()->IgnoreImpCasts();
3673
3674  // A pointer-to-member constant written &Class::member.
3675  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3676    if (UnOp->getOpcode() == UO_AddrOf) {
3677      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3678      if (DRE && !DRE->getQualifier())
3679        DRE = 0;
3680    }
3681  }
3682  // A constant of pointer-to-member type.
3683  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
3684    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
3685      if (VD->getType()->isMemberPointerType()) {
3686        if (isa<NonTypeTemplateParmDecl>(VD) ||
3687            (isa<VarDecl>(VD) &&
3688             Context.getCanonicalType(VD->getType()).isConstQualified())) {
3689          if (Arg->isTypeDependent() || Arg->isValueDependent())
3690            Converted = TemplateArgument(Arg);
3691          else
3692            Converted = TemplateArgument(VD->getCanonicalDecl());
3693          return Invalid;
3694        }
3695      }
3696    }
3697
3698    DRE = 0;
3699  }
3700
3701  if (!DRE)
3702    return Diag(Arg->getSourceRange().getBegin(),
3703                diag::err_template_arg_not_pointer_to_member_form)
3704      << Arg->getSourceRange();
3705
3706  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
3707    assert((isa<FieldDecl>(DRE->getDecl()) ||
3708            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
3709           "Only non-static member pointers can make it here");
3710
3711    // Okay: this is the address of a non-static member, and therefore
3712    // a member pointer constant.
3713    if (Arg->isTypeDependent() || Arg->isValueDependent())
3714      Converted = TemplateArgument(Arg);
3715    else
3716      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3717    return Invalid;
3718  }
3719
3720  // We found something else, but we don't know specifically what it is.
3721  Diag(Arg->getSourceRange().getBegin(),
3722       diag::err_template_arg_not_pointer_to_member_form)
3723      << Arg->getSourceRange();
3724  Diag(DRE->getDecl()->getLocation(),
3725       diag::note_template_arg_refers_here);
3726  return true;
3727}
3728
3729/// \brief Check a template argument against its corresponding
3730/// non-type template parameter.
3731///
3732/// This routine implements the semantics of C++ [temp.arg.nontype].
3733/// If an error occurred, it returns ExprError(); otherwise, it
3734/// returns the converted template argument. \p
3735/// InstantiatedParamType is the type of the non-type template
3736/// parameter after it has been instantiated.
3737ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3738                                       QualType InstantiatedParamType, Expr *Arg,
3739                                       TemplateArgument &Converted,
3740                                       CheckTemplateArgumentKind CTAK) {
3741  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
3742
3743  // If either the parameter has a dependent type or the argument is
3744  // type-dependent, there's nothing we can check now.
3745  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3746    // FIXME: Produce a cloned, canonical expression?
3747    Converted = TemplateArgument(Arg);
3748    return Owned(Arg);
3749  }
3750
3751  // C++ [temp.arg.nontype]p5:
3752  //   The following conversions are performed on each expression used
3753  //   as a non-type template-argument. If a non-type
3754  //   template-argument cannot be converted to the type of the
3755  //   corresponding template-parameter then the program is
3756  //   ill-formed.
3757  QualType ParamType = InstantiatedParamType;
3758  if (ParamType->isIntegralOrEnumerationType()) {
3759    // C++11:
3760    //   -- for a non-type template-parameter of integral or
3761    //      enumeration type, conversions permitted in a converted
3762    //      constant expression are applied.
3763    //
3764    // C++98:
3765    //   -- for a non-type template-parameter of integral or
3766    //      enumeration type, integral promotions (4.5) and integral
3767    //      conversions (4.7) are applied.
3768
3769    if (CTAK == CTAK_Deduced &&
3770        !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
3771      // C++ [temp.deduct.type]p17:
3772      //   If, in the declaration of a function template with a non-type
3773      //   template-parameter, the non-type template-parameter is used
3774      //   in an expression in the function parameter-list and, if the
3775      //   corresponding template-argument is deduced, the
3776      //   template-argument type shall match the type of the
3777      //   template-parameter exactly, except that a template-argument
3778      //   deduced from an array bound may be of any integral type.
3779      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
3780        << Arg->getType().getUnqualifiedType()
3781        << ParamType.getUnqualifiedType();
3782      Diag(Param->getLocation(), diag::note_template_param_here);
3783      return ExprError();
3784    }
3785
3786    if (getLangOptions().CPlusPlus0x) {
3787      // We can't check arbitrary value-dependent arguments.
3788      // FIXME: If there's no viable conversion to the template parameter type,
3789      // we should be able to diagnose that prior to instantiation.
3790      if (Arg->isValueDependent()) {
3791        Converted = TemplateArgument(Arg);
3792        return Owned(Arg);
3793      }
3794
3795      // C++ [temp.arg.nontype]p1:
3796      //   A template-argument for a non-type, non-template template-parameter
3797      //   shall be one of:
3798      //
3799      //     -- for a non-type template-parameter of integral or enumeration
3800      //        type, a converted constant expression of the type of the
3801      //        template-parameter; or
3802      llvm::APSInt Value;
3803      ExprResult ArgResult =
3804        CheckConvertedConstantExpression(Arg, ParamType, Value,
3805                                         CCEK_TemplateArg);
3806      if (ArgResult.isInvalid())
3807        return ExprError();
3808
3809      // Widen the argument value to sizeof(parameter type). This is almost
3810      // always a no-op, except when the parameter type is bool. In
3811      // that case, this may extend the argument from 1 bit to 8 bits.
3812      QualType IntegerType = ParamType;
3813      if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3814        IntegerType = Enum->getDecl()->getIntegerType();
3815      Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
3816
3817      Converted = TemplateArgument(Value, Context.getCanonicalType(ParamType));
3818      return ArgResult;
3819    }
3820
3821    ExprResult ArgResult = DefaultLvalueConversion(Arg);
3822    if (ArgResult.isInvalid())
3823      return ExprError();
3824    Arg = ArgResult.take();
3825
3826    QualType ArgType = Arg->getType();
3827
3828    // C++ [temp.arg.nontype]p1:
3829    //   A template-argument for a non-type, non-template
3830    //   template-parameter shall be one of:
3831    //
3832    //     -- an integral constant-expression of integral or enumeration
3833    //        type; or
3834    //     -- the name of a non-type template-parameter; or
3835    SourceLocation NonConstantLoc;
3836    llvm::APSInt Value;
3837    if (!ArgType->isIntegralOrEnumerationType()) {
3838      Diag(Arg->getSourceRange().getBegin(),
3839           diag::err_template_arg_not_integral_or_enumeral)
3840        << ArgType << Arg->getSourceRange();
3841      Diag(Param->getLocation(), diag::note_template_param_here);
3842      return ExprError();
3843    } else if (!Arg->isValueDependent() &&
3844               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
3845      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
3846        << ArgType << Arg->getSourceRange();
3847      return ExprError();
3848    }
3849
3850    // From here on out, all we care about are the unqualified forms
3851    // of the parameter and argument types.
3852    ParamType = ParamType.getUnqualifiedType();
3853    ArgType = ArgType.getUnqualifiedType();
3854
3855    // Try to convert the argument to the parameter's type.
3856    if (Context.hasSameType(ParamType, ArgType)) {
3857      // Okay: no conversion necessary
3858    } else if (ParamType->isBooleanType()) {
3859      // This is an integral-to-boolean conversion.
3860      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
3861    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
3862               !ParamType->isEnumeralType()) {
3863      // This is an integral promotion or conversion.
3864      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
3865    } else {
3866      // We can't perform this conversion.
3867      Diag(Arg->getSourceRange().getBegin(),
3868           diag::err_template_arg_not_convertible)
3869        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3870      Diag(Param->getLocation(), diag::note_template_param_here);
3871      return ExprError();
3872    }
3873
3874    // Add the value of this argument to the list of converted
3875    // arguments. We use the bitwidth and signedness of the template
3876    // parameter.
3877    if (Arg->isValueDependent()) {
3878      // The argument is value-dependent. Create a new
3879      // TemplateArgument with the converted expression.
3880      Converted = TemplateArgument(Arg);
3881      return Owned(Arg);
3882    }
3883
3884    QualType IntegerType = Context.getCanonicalType(ParamType);
3885    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3886      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
3887
3888    if (ParamType->isBooleanType()) {
3889      // Value must be zero or one.
3890      Value = Value != 0;
3891      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3892      if (Value.getBitWidth() != AllowedBits)
3893        Value = Value.extOrTrunc(AllowedBits);
3894      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
3895    } else {
3896      llvm::APSInt OldValue = Value;
3897
3898      // Coerce the template argument's value to the value it will have
3899      // based on the template parameter's type.
3900      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3901      if (Value.getBitWidth() != AllowedBits)
3902        Value = Value.extOrTrunc(AllowedBits);
3903      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
3904
3905      // Complain if an unsigned parameter received a negative value.
3906      if (IntegerType->isUnsignedIntegerOrEnumerationType()
3907               && (OldValue.isSigned() && OldValue.isNegative())) {
3908        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
3909          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3910          << Arg->getSourceRange();
3911        Diag(Param->getLocation(), diag::note_template_param_here);
3912      }
3913
3914      // Complain if we overflowed the template parameter's type.
3915      unsigned RequiredBits;
3916      if (IntegerType->isUnsignedIntegerOrEnumerationType())
3917        RequiredBits = OldValue.getActiveBits();
3918      else if (OldValue.isUnsigned())
3919        RequiredBits = OldValue.getActiveBits() + 1;
3920      else
3921        RequiredBits = OldValue.getMinSignedBits();
3922      if (RequiredBits > AllowedBits) {
3923        Diag(Arg->getSourceRange().getBegin(),
3924             diag::warn_template_arg_too_large)
3925          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3926          << Arg->getSourceRange();
3927        Diag(Param->getLocation(), diag::note_template_param_here);
3928      }
3929    }
3930
3931    Converted = TemplateArgument(Value,
3932                                 ParamType->isEnumeralType()
3933                                   ? Context.getCanonicalType(ParamType)
3934                                   : IntegerType);
3935    return Owned(Arg);
3936  }
3937
3938  QualType ArgType = Arg->getType();
3939  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
3940
3941  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
3942  // from a template argument of type std::nullptr_t to a non-type
3943  // template parameter of type pointer to object, pointer to
3944  // function, or pointer-to-member, respectively.
3945  if (ArgType->isNullPtrType()) {
3946    if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
3947      Converted = TemplateArgument((NamedDecl *)0);
3948      return Owned(Arg);
3949    }
3950
3951    if (ParamType->isNullPtrType()) {
3952      llvm::APSInt Zero(Context.getTypeSize(Context.NullPtrTy), true);
3953      Converted = TemplateArgument(Zero, Context.NullPtrTy);
3954      return Owned(Arg);
3955    }
3956  }
3957
3958  // Handle pointer-to-function, reference-to-function, and
3959  // pointer-to-member-function all in (roughly) the same way.
3960  if (// -- For a non-type template-parameter of type pointer to
3961      //    function, only the function-to-pointer conversion (4.3) is
3962      //    applied. If the template-argument represents a set of
3963      //    overloaded functions (or a pointer to such), the matching
3964      //    function is selected from the set (13.4).
3965      (ParamType->isPointerType() &&
3966       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
3967      // -- For a non-type template-parameter of type reference to
3968      //    function, no conversions apply. If the template-argument
3969      //    represents a set of overloaded functions, the matching
3970      //    function is selected from the set (13.4).
3971      (ParamType->isReferenceType() &&
3972       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
3973      // -- For a non-type template-parameter of type pointer to
3974      //    member function, no conversions apply. If the
3975      //    template-argument represents a set of overloaded member
3976      //    functions, the matching member function is selected from
3977      //    the set (13.4).
3978      (ParamType->isMemberPointerType() &&
3979       ParamType->getAs<MemberPointerType>()->getPointeeType()
3980         ->isFunctionType())) {
3981
3982    if (Arg->getType() == Context.OverloadTy) {
3983      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
3984                                                                true,
3985                                                                FoundResult)) {
3986        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3987          return ExprError();
3988
3989        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3990        ArgType = Arg->getType();
3991      } else
3992        return ExprError();
3993    }
3994
3995    if (!ParamType->isMemberPointerType()) {
3996      if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3997                                                         ParamType,
3998                                                         Arg, Converted))
3999        return ExprError();
4000      return Owned(Arg);
4001    }
4002
4003    bool ObjCLifetimeConversion;
4004    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(),
4005                                  false, ObjCLifetimeConversion)) {
4006      Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp,
4007                              Arg->getValueKind()).take();
4008    } else if (!Context.hasSameUnqualifiedType(ArgType,
4009                                           ParamType.getNonReferenceType())) {
4010      // We can't perform this conversion.
4011      Diag(Arg->getSourceRange().getBegin(),
4012           diag::err_template_arg_not_convertible)
4013        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
4014      Diag(Param->getLocation(), diag::note_template_param_here);
4015      return ExprError();
4016    }
4017
4018    if (CheckTemplateArgumentPointerToMember(Arg, Converted))
4019      return ExprError();
4020    return Owned(Arg);
4021  }
4022
4023  if (ParamType->isPointerType()) {
4024    //   -- for a non-type template-parameter of type pointer to
4025    //      object, qualification conversions (4.4) and the
4026    //      array-to-pointer conversion (4.2) are applied.
4027    // C++0x also allows a value of std::nullptr_t.
4028    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
4029           "Only object pointers allowed here");
4030
4031    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4032                                                       ParamType,
4033                                                       Arg, Converted))
4034      return ExprError();
4035    return Owned(Arg);
4036  }
4037
4038  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
4039    //   -- For a non-type template-parameter of type reference to
4040    //      object, no conversions apply. The type referred to by the
4041    //      reference may be more cv-qualified than the (otherwise
4042    //      identical) type of the template-argument. The
4043    //      template-parameter is bound directly to the
4044    //      template-argument, which must be an lvalue.
4045    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
4046           "Only object references allowed here");
4047
4048    if (Arg->getType() == Context.OverloadTy) {
4049      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
4050                                                 ParamRefType->getPointeeType(),
4051                                                                true,
4052                                                                FoundResult)) {
4053        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
4054          return ExprError();
4055
4056        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4057        ArgType = Arg->getType();
4058      } else
4059        return ExprError();
4060    }
4061
4062    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4063                                                       ParamType,
4064                                                       Arg, Converted))
4065      return ExprError();
4066    return Owned(Arg);
4067  }
4068
4069  //     -- For a non-type template-parameter of type pointer to data
4070  //        member, qualification conversions (4.4) are applied.
4071  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
4072
4073  bool ObjCLifetimeConversion;
4074  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
4075    // Types match exactly: nothing more to do here.
4076  } else if (IsQualificationConversion(ArgType, ParamType, false,
4077                                       ObjCLifetimeConversion)) {
4078    Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp,
4079                            Arg->getValueKind()).take();
4080  } else {
4081    // We can't perform this conversion.
4082    Diag(Arg->getSourceRange().getBegin(),
4083         diag::err_template_arg_not_convertible)
4084      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
4085    Diag(Param->getLocation(), diag::note_template_param_here);
4086    return ExprError();
4087  }
4088
4089  if (CheckTemplateArgumentPointerToMember(Arg, Converted))
4090    return ExprError();
4091  return Owned(Arg);
4092}
4093
4094/// \brief Check a template argument against its corresponding
4095/// template template parameter.
4096///
4097/// This routine implements the semantics of C++ [temp.arg.template].
4098/// It returns true if an error occurred, and false otherwise.
4099bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
4100                                 const TemplateArgumentLoc &Arg) {
4101  TemplateName Name = Arg.getArgument().getAsTemplate();
4102  TemplateDecl *Template = Name.getAsTemplateDecl();
4103  if (!Template) {
4104    // Any dependent template name is fine.
4105    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
4106    return false;
4107  }
4108
4109  // C++0x [temp.arg.template]p1:
4110  //   A template-argument for a template template-parameter shall be
4111  //   the name of a class template or an alias template, expressed as an
4112  //   id-expression. When the template-argument names a class template, only
4113  //   primary class templates are considered when matching the
4114  //   template template argument with the corresponding parameter;
4115  //   partial specializations are not considered even if their
4116  //   parameter lists match that of the template template parameter.
4117  //
4118  // Note that we also allow template template parameters here, which
4119  // will happen when we are dealing with, e.g., class template
4120  // partial specializations.
4121  if (!isa<ClassTemplateDecl>(Template) &&
4122      !isa<TemplateTemplateParmDecl>(Template) &&
4123      !isa<TypeAliasTemplateDecl>(Template)) {
4124    assert(isa<FunctionTemplateDecl>(Template) &&
4125           "Only function templates are possible here");
4126    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
4127    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
4128      << Template;
4129  }
4130
4131  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
4132                                         Param->getTemplateParameters(),
4133                                         true,
4134                                         TPL_TemplateTemplateArgumentMatch,
4135                                         Arg.getLocation());
4136}
4137
4138/// \brief Given a non-type template argument that refers to a
4139/// declaration and the type of its corresponding non-type template
4140/// parameter, produce an expression that properly refers to that
4141/// declaration.
4142ExprResult
4143Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
4144                                              QualType ParamType,
4145                                              SourceLocation Loc) {
4146  assert(Arg.getKind() == TemplateArgument::Declaration &&
4147         "Only declaration template arguments permitted here");
4148  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
4149
4150  if (VD->getDeclContext()->isRecord() &&
4151      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
4152    // If the value is a class member, we might have a pointer-to-member.
4153    // Determine whether the non-type template template parameter is of
4154    // pointer-to-member type. If so, we need to build an appropriate
4155    // expression for a pointer-to-member, since a "normal" DeclRefExpr
4156    // would refer to the member itself.
4157    if (ParamType->isMemberPointerType()) {
4158      QualType ClassType
4159        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
4160      NestedNameSpecifier *Qualifier
4161        = NestedNameSpecifier::Create(Context, 0, false,
4162                                      ClassType.getTypePtr());
4163      CXXScopeSpec SS;
4164      SS.MakeTrivial(Context, Qualifier, Loc);
4165
4166      // The actual value-ness of this is unimportant, but for
4167      // internal consistency's sake, references to instance methods
4168      // are r-values.
4169      ExprValueKind VK = VK_LValue;
4170      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
4171        VK = VK_RValue;
4172
4173      ExprResult RefExpr = BuildDeclRefExpr(VD,
4174                                            VD->getType().getNonReferenceType(),
4175                                            VK,
4176                                            Loc,
4177                                            &SS);
4178      if (RefExpr.isInvalid())
4179        return ExprError();
4180
4181      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4182
4183      // We might need to perform a trailing qualification conversion, since
4184      // the element type on the parameter could be more qualified than the
4185      // element type in the expression we constructed.
4186      bool ObjCLifetimeConversion;
4187      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
4188                                    ParamType.getUnqualifiedType(), false,
4189                                    ObjCLifetimeConversion))
4190        RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
4191
4192      assert(!RefExpr.isInvalid() &&
4193             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
4194                                 ParamType.getUnqualifiedType()));
4195      return move(RefExpr);
4196    }
4197  }
4198
4199  QualType T = VD->getType().getNonReferenceType();
4200  if (ParamType->isPointerType()) {
4201    // When the non-type template parameter is a pointer, take the
4202    // address of the declaration.
4203    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
4204    if (RefExpr.isInvalid())
4205      return ExprError();
4206
4207    if (T->isFunctionType() || T->isArrayType()) {
4208      // Decay functions and arrays.
4209      RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
4210      if (RefExpr.isInvalid())
4211        return ExprError();
4212
4213      return move(RefExpr);
4214    }
4215
4216    // Take the address of everything else
4217    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4218  }
4219
4220  ExprValueKind VK = VK_RValue;
4221
4222  // If the non-type template parameter has reference type, qualify the
4223  // resulting declaration reference with the extra qualifiers on the
4224  // type that the reference refers to.
4225  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
4226    VK = VK_LValue;
4227    T = Context.getQualifiedType(T,
4228                              TargetRef->getPointeeType().getQualifiers());
4229  }
4230
4231  return BuildDeclRefExpr(VD, T, VK, Loc);
4232}
4233
4234/// \brief Construct a new expression that refers to the given
4235/// integral template argument with the given source-location
4236/// information.
4237///
4238/// This routine takes care of the mapping from an integral template
4239/// argument (which may have any integral type) to the appropriate
4240/// literal value.
4241ExprResult
4242Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
4243                                                  SourceLocation Loc) {
4244  assert(Arg.getKind() == TemplateArgument::Integral &&
4245         "Operation is only valid for integral template arguments");
4246  QualType T = Arg.getIntegralType();
4247  if (T->isAnyCharacterType()) {
4248    CharacterLiteral::CharacterKind Kind;
4249    if (T->isWideCharType())
4250      Kind = CharacterLiteral::Wide;
4251    else if (T->isChar16Type())
4252      Kind = CharacterLiteral::UTF16;
4253    else if (T->isChar32Type())
4254      Kind = CharacterLiteral::UTF32;
4255    else
4256      Kind = CharacterLiteral::Ascii;
4257
4258    return Owned(new (Context) CharacterLiteral(
4259                                            Arg.getAsIntegral()->getZExtValue(),
4260                                            Kind, T, Loc));
4261  }
4262
4263  if (T->isBooleanType())
4264    return Owned(new (Context) CXXBoolLiteralExpr(
4265                                            Arg.getAsIntegral()->getBoolValue(),
4266                                            T, Loc));
4267
4268  if (T->isNullPtrType())
4269    return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
4270
4271  // If this is an enum type that we're instantiating, we need to use an integer
4272  // type the same size as the enumerator.  We don't want to build an
4273  // IntegerLiteral with enum type.
4274  QualType BT;
4275  if (const EnumType *ET = T->getAs<EnumType>())
4276    BT = ET->getDecl()->getIntegerType();
4277  else
4278    BT = T;
4279
4280  Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
4281  if (T->isEnumeralType()) {
4282    // FIXME: This is a hack. We need a better way to handle substituted
4283    // non-type template parameters.
4284    E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0,
4285                               Context.getTrivialTypeSourceInfo(T, Loc),
4286                               Loc, Loc);
4287  }
4288
4289  return Owned(E);
4290}
4291
4292/// \brief Match two template parameters within template parameter lists.
4293static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
4294                                       bool Complain,
4295                                     Sema::TemplateParameterListEqualKind Kind,
4296                                       SourceLocation TemplateArgLoc) {
4297  // Check the actual kind (type, non-type, template).
4298  if (Old->getKind() != New->getKind()) {
4299    if (Complain) {
4300      unsigned NextDiag = diag::err_template_param_different_kind;
4301      if (TemplateArgLoc.isValid()) {
4302        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4303        NextDiag = diag::note_template_param_different_kind;
4304      }
4305      S.Diag(New->getLocation(), NextDiag)
4306        << (Kind != Sema::TPL_TemplateMatch);
4307      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
4308        << (Kind != Sema::TPL_TemplateMatch);
4309    }
4310
4311    return false;
4312  }
4313
4314  // Check that both are parameter packs are neither are parameter packs.
4315  // However, if we are matching a template template argument to a
4316  // template template parameter, the template template parameter can have
4317  // a parameter pack where the template template argument does not.
4318  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
4319      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4320        Old->isTemplateParameterPack())) {
4321    if (Complain) {
4322      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
4323      if (TemplateArgLoc.isValid()) {
4324        S.Diag(TemplateArgLoc,
4325             diag::err_template_arg_template_params_mismatch);
4326        NextDiag = diag::note_template_parameter_pack_non_pack;
4327      }
4328
4329      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
4330                      : isa<NonTypeTemplateParmDecl>(New)? 1
4331                      : 2;
4332      S.Diag(New->getLocation(), NextDiag)
4333        << ParamKind << New->isParameterPack();
4334      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
4335        << ParamKind << Old->isParameterPack();
4336    }
4337
4338    return false;
4339  }
4340
4341  // For non-type template parameters, check the type of the parameter.
4342  if (NonTypeTemplateParmDecl *OldNTTP
4343                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
4344    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
4345
4346    // If we are matching a template template argument to a template
4347    // template parameter and one of the non-type template parameter types
4348    // is dependent, then we must wait until template instantiation time
4349    // to actually compare the arguments.
4350    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4351        (OldNTTP->getType()->isDependentType() ||
4352         NewNTTP->getType()->isDependentType()))
4353      return true;
4354
4355    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
4356      if (Complain) {
4357        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
4358        if (TemplateArgLoc.isValid()) {
4359          S.Diag(TemplateArgLoc,
4360                 diag::err_template_arg_template_params_mismatch);
4361          NextDiag = diag::note_template_nontype_parm_different_type;
4362        }
4363        S.Diag(NewNTTP->getLocation(), NextDiag)
4364          << NewNTTP->getType()
4365          << (Kind != Sema::TPL_TemplateMatch);
4366        S.Diag(OldNTTP->getLocation(),
4367               diag::note_template_nontype_parm_prev_declaration)
4368          << OldNTTP->getType();
4369      }
4370
4371      return false;
4372    }
4373
4374    return true;
4375  }
4376
4377  // For template template parameters, check the template parameter types.
4378  // The template parameter lists of template template
4379  // parameters must agree.
4380  if (TemplateTemplateParmDecl *OldTTP
4381                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
4382    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
4383    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
4384                                            OldTTP->getTemplateParameters(),
4385                                            Complain,
4386                                        (Kind == Sema::TPL_TemplateMatch
4387                                           ? Sema::TPL_TemplateTemplateParmMatch
4388                                           : Kind),
4389                                            TemplateArgLoc);
4390  }
4391
4392  return true;
4393}
4394
4395/// \brief Diagnose a known arity mismatch when comparing template argument
4396/// lists.
4397static
4398void DiagnoseTemplateParameterListArityMismatch(Sema &S,
4399                                                TemplateParameterList *New,
4400                                                TemplateParameterList *Old,
4401                                      Sema::TemplateParameterListEqualKind Kind,
4402                                                SourceLocation TemplateArgLoc) {
4403  unsigned NextDiag = diag::err_template_param_list_different_arity;
4404  if (TemplateArgLoc.isValid()) {
4405    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4406    NextDiag = diag::note_template_param_list_different_arity;
4407  }
4408  S.Diag(New->getTemplateLoc(), NextDiag)
4409    << (New->size() > Old->size())
4410    << (Kind != Sema::TPL_TemplateMatch)
4411    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
4412  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
4413    << (Kind != Sema::TPL_TemplateMatch)
4414    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
4415}
4416
4417/// \brief Determine whether the given template parameter lists are
4418/// equivalent.
4419///
4420/// \param New  The new template parameter list, typically written in the
4421/// source code as part of a new template declaration.
4422///
4423/// \param Old  The old template parameter list, typically found via
4424/// name lookup of the template declared with this template parameter
4425/// list.
4426///
4427/// \param Complain  If true, this routine will produce a diagnostic if
4428/// the template parameter lists are not equivalent.
4429///
4430/// \param Kind describes how we are to match the template parameter lists.
4431///
4432/// \param TemplateArgLoc If this source location is valid, then we
4433/// are actually checking the template parameter list of a template
4434/// argument (New) against the template parameter list of its
4435/// corresponding template template parameter (Old). We produce
4436/// slightly different diagnostics in this scenario.
4437///
4438/// \returns True if the template parameter lists are equal, false
4439/// otherwise.
4440bool
4441Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
4442                                     TemplateParameterList *Old,
4443                                     bool Complain,
4444                                     TemplateParameterListEqualKind Kind,
4445                                     SourceLocation TemplateArgLoc) {
4446  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
4447    if (Complain)
4448      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4449                                                 TemplateArgLoc);
4450
4451    return false;
4452  }
4453
4454  // C++0x [temp.arg.template]p3:
4455  //   A template-argument matches a template template-parameter (call it P)
4456  //   when each of the template parameters in the template-parameter-list of
4457  //   the template-argument's corresponding class template or alias template
4458  //   (call it A) matches the corresponding template parameter in the
4459  //   template-parameter-list of P. [...]
4460  TemplateParameterList::iterator NewParm = New->begin();
4461  TemplateParameterList::iterator NewParmEnd = New->end();
4462  for (TemplateParameterList::iterator OldParm = Old->begin(),
4463                                    OldParmEnd = Old->end();
4464       OldParm != OldParmEnd; ++OldParm) {
4465    if (Kind != TPL_TemplateTemplateArgumentMatch ||
4466        !(*OldParm)->isTemplateParameterPack()) {
4467      if (NewParm == NewParmEnd) {
4468        if (Complain)
4469          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4470                                                     TemplateArgLoc);
4471
4472        return false;
4473      }
4474
4475      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4476                                      Kind, TemplateArgLoc))
4477        return false;
4478
4479      ++NewParm;
4480      continue;
4481    }
4482
4483    // C++0x [temp.arg.template]p3:
4484    //   [...] When P's template- parameter-list contains a template parameter
4485    //   pack (14.5.3), the template parameter pack will match zero or more
4486    //   template parameters or template parameter packs in the
4487    //   template-parameter-list of A with the same type and form as the
4488    //   template parameter pack in P (ignoring whether those template
4489    //   parameters are template parameter packs).
4490    for (; NewParm != NewParmEnd; ++NewParm) {
4491      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4492                                      Kind, TemplateArgLoc))
4493        return false;
4494    }
4495  }
4496
4497  // Make sure we exhausted all of the arguments.
4498  if (NewParm != NewParmEnd) {
4499    if (Complain)
4500      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4501                                                 TemplateArgLoc);
4502
4503    return false;
4504  }
4505
4506  return true;
4507}
4508
4509/// \brief Check whether a template can be declared within this scope.
4510///
4511/// If the template declaration is valid in this scope, returns
4512/// false. Otherwise, issues a diagnostic and returns true.
4513bool
4514Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
4515  if (!S)
4516    return false;
4517
4518  // Find the nearest enclosing declaration scope.
4519  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4520         (S->getFlags() & Scope::TemplateParamScope) != 0)
4521    S = S->getParent();
4522
4523  // C++ [temp]p2:
4524  //   A template-declaration can appear only as a namespace scope or
4525  //   class scope declaration.
4526  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
4527  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
4528      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
4529    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
4530             << TemplateParams->getSourceRange();
4531
4532  while (Ctx && isa<LinkageSpecDecl>(Ctx))
4533    Ctx = Ctx->getParent();
4534
4535  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
4536    return false;
4537
4538  return Diag(TemplateParams->getTemplateLoc(),
4539              diag::err_template_outside_namespace_or_class_scope)
4540    << TemplateParams->getSourceRange();
4541}
4542
4543/// \brief Determine what kind of template specialization the given declaration
4544/// is.
4545static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
4546  if (!D)
4547    return TSK_Undeclared;
4548
4549  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
4550    return Record->getTemplateSpecializationKind();
4551  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
4552    return Function->getTemplateSpecializationKind();
4553  if (VarDecl *Var = dyn_cast<VarDecl>(D))
4554    return Var->getTemplateSpecializationKind();
4555
4556  return TSK_Undeclared;
4557}
4558
4559/// \brief Check whether a specialization is well-formed in the current
4560/// context.
4561///
4562/// This routine determines whether a template specialization can be declared
4563/// in the current context (C++ [temp.expl.spec]p2).
4564///
4565/// \param S the semantic analysis object for which this check is being
4566/// performed.
4567///
4568/// \param Specialized the entity being specialized or instantiated, which
4569/// may be a kind of template (class template, function template, etc.) or
4570/// a member of a class template (member function, static data member,
4571/// member class).
4572///
4573/// \param PrevDecl the previous declaration of this entity, if any.
4574///
4575/// \param Loc the location of the explicit specialization or instantiation of
4576/// this entity.
4577///
4578/// \param IsPartialSpecialization whether this is a partial specialization of
4579/// a class template.
4580///
4581/// \returns true if there was an error that we cannot recover from, false
4582/// otherwise.
4583static bool CheckTemplateSpecializationScope(Sema &S,
4584                                             NamedDecl *Specialized,
4585                                             NamedDecl *PrevDecl,
4586                                             SourceLocation Loc,
4587                                             bool IsPartialSpecialization) {
4588  // Keep these "kind" numbers in sync with the %select statements in the
4589  // various diagnostics emitted by this routine.
4590  int EntityKind = 0;
4591  if (isa<ClassTemplateDecl>(Specialized))
4592    EntityKind = IsPartialSpecialization? 1 : 0;
4593  else if (isa<FunctionTemplateDecl>(Specialized))
4594    EntityKind = 2;
4595  else if (isa<CXXMethodDecl>(Specialized))
4596    EntityKind = 3;
4597  else if (isa<VarDecl>(Specialized))
4598    EntityKind = 4;
4599  else if (isa<RecordDecl>(Specialized))
4600    EntityKind = 5;
4601  else {
4602    S.Diag(Loc, diag::err_template_spec_unknown_kind);
4603    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4604    return true;
4605  }
4606
4607  // C++ [temp.expl.spec]p2:
4608  //   An explicit specialization shall be declared in the namespace
4609  //   of which the template is a member, or, for member templates, in
4610  //   the namespace of which the enclosing class or enclosing class
4611  //   template is a member. An explicit specialization of a member
4612  //   function, member class or static data member of a class
4613  //   template shall be declared in the namespace of which the class
4614  //   template is a member. Such a declaration may also be a
4615  //   definition. If the declaration is not a definition, the
4616  //   specialization may be defined later in the name- space in which
4617  //   the explicit specialization was declared, or in a namespace
4618  //   that encloses the one in which the explicit specialization was
4619  //   declared.
4620  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4621    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
4622      << Specialized;
4623    return true;
4624  }
4625
4626  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
4627    if (S.getLangOptions().MicrosoftExt) {
4628      // Do not warn for class scope explicit specialization during
4629      // instantiation, warning was already emitted during pattern
4630      // semantic analysis.
4631      if (!S.ActiveTemplateInstantiations.size())
4632        S.Diag(Loc, diag::ext_function_specialization_in_class)
4633          << Specialized;
4634    } else {
4635      S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4636        << Specialized;
4637      return true;
4638    }
4639  }
4640
4641  if (S.CurContext->isRecord() &&
4642      !S.CurContext->Equals(Specialized->getDeclContext())) {
4643    // Make sure that we're specializing in the right record context.
4644    // Otherwise, things can go horribly wrong.
4645    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4646      << Specialized;
4647    return true;
4648  }
4649
4650  // C++ [temp.class.spec]p6:
4651  //   A class template partial specialization may be declared or redeclared
4652  //   in any namespace scope in which its definition may be defined (14.5.1
4653  //   and 14.5.2).
4654  bool ComplainedAboutScope = false;
4655  DeclContext *SpecializedContext
4656    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
4657  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
4658  if ((!PrevDecl ||
4659       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
4660       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
4661    // C++ [temp.exp.spec]p2:
4662    //   An explicit specialization shall be declared in the namespace of which
4663    //   the template is a member, or, for member templates, in the namespace
4664    //   of which the enclosing class or enclosing class template is a member.
4665    //   An explicit specialization of a member function, member class or
4666    //   static data member of a class template shall be declared in the
4667    //   namespace of which the class template is a member.
4668    //
4669    // C++0x [temp.expl.spec]p2:
4670    //   An explicit specialization shall be declared in a namespace enclosing
4671    //   the specialized template.
4672    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
4673      bool IsCPlusPlus0xExtension = DC->Encloses(SpecializedContext);
4674      if (isa<TranslationUnitDecl>(SpecializedContext)) {
4675        assert(!IsCPlusPlus0xExtension &&
4676               "DC encloses TU but isn't in enclosing namespace set");
4677        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
4678          << EntityKind << Specialized;
4679      } else if (isa<NamespaceDecl>(SpecializedContext)) {
4680        int Diag;
4681        if (!IsCPlusPlus0xExtension)
4682          Diag = diag::err_template_spec_decl_out_of_scope;
4683        else if (!S.getLangOptions().CPlusPlus0x)
4684          Diag = diag::ext_template_spec_decl_out_of_scope;
4685        else
4686          Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
4687        S.Diag(Loc, Diag)
4688          << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
4689      }
4690
4691      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4692      ComplainedAboutScope =
4693        !(IsCPlusPlus0xExtension && S.getLangOptions().CPlusPlus0x);
4694    }
4695  }
4696
4697  // Make sure that this redeclaration (or definition) occurs in an enclosing
4698  // namespace.
4699  // Note that HandleDeclarator() performs this check for explicit
4700  // specializations of function templates, static data members, and member
4701  // functions, so we skip the check here for those kinds of entities.
4702  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
4703  // Should we refactor that check, so that it occurs later?
4704  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
4705      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
4706        isa<FunctionDecl>(Specialized))) {
4707    if (isa<TranslationUnitDecl>(SpecializedContext))
4708      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
4709        << EntityKind << Specialized;
4710    else if (isa<NamespaceDecl>(SpecializedContext))
4711      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
4712        << EntityKind << Specialized
4713        << cast<NamedDecl>(SpecializedContext);
4714
4715    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4716  }
4717
4718  // FIXME: check for specialization-after-instantiation errors and such.
4719
4720  return false;
4721}
4722
4723/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
4724/// that checks non-type template partial specialization arguments.
4725static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
4726                                                NonTypeTemplateParmDecl *Param,
4727                                                  const TemplateArgument *Args,
4728                                                        unsigned NumArgs) {
4729  for (unsigned I = 0; I != NumArgs; ++I) {
4730    if (Args[I].getKind() == TemplateArgument::Pack) {
4731      if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4732                                                           Args[I].pack_begin(),
4733                                                           Args[I].pack_size()))
4734        return true;
4735
4736      continue;
4737    }
4738
4739    Expr *ArgExpr = Args[I].getAsExpr();
4740    if (!ArgExpr) {
4741      continue;
4742    }
4743
4744    // We can have a pack expansion of any of the bullets below.
4745    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
4746      ArgExpr = Expansion->getPattern();
4747
4748    // Strip off any implicit casts we added as part of type checking.
4749    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
4750      ArgExpr = ICE->getSubExpr();
4751
4752    // C++ [temp.class.spec]p8:
4753    //   A non-type argument is non-specialized if it is the name of a
4754    //   non-type parameter. All other non-type arguments are
4755    //   specialized.
4756    //
4757    // Below, we check the two conditions that only apply to
4758    // specialized non-type arguments, so skip any non-specialized
4759    // arguments.
4760    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
4761      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
4762        continue;
4763
4764    // C++ [temp.class.spec]p9:
4765    //   Within the argument list of a class template partial
4766    //   specialization, the following restrictions apply:
4767    //     -- A partially specialized non-type argument expression
4768    //        shall not involve a template parameter of the partial
4769    //        specialization except when the argument expression is a
4770    //        simple identifier.
4771    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
4772      S.Diag(ArgExpr->getLocStart(),
4773           diag::err_dependent_non_type_arg_in_partial_spec)
4774        << ArgExpr->getSourceRange();
4775      return true;
4776    }
4777
4778    //     -- The type of a template parameter corresponding to a
4779    //        specialized non-type argument shall not be dependent on a
4780    //        parameter of the specialization.
4781    if (Param->getType()->isDependentType()) {
4782      S.Diag(ArgExpr->getLocStart(),
4783           diag::err_dependent_typed_non_type_arg_in_partial_spec)
4784        << Param->getType()
4785        << ArgExpr->getSourceRange();
4786      S.Diag(Param->getLocation(), diag::note_template_param_here);
4787      return true;
4788    }
4789  }
4790
4791  return false;
4792}
4793
4794/// \brief Check the non-type template arguments of a class template
4795/// partial specialization according to C++ [temp.class.spec]p9.
4796///
4797/// \param TemplateParams the template parameters of the primary class
4798/// template.
4799///
4800/// \param TemplateArg the template arguments of the class template
4801/// partial specialization.
4802///
4803/// \returns true if there was an error, false otherwise.
4804static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
4805                                        TemplateParameterList *TemplateParams,
4806                       SmallVectorImpl<TemplateArgument> &TemplateArgs) {
4807  const TemplateArgument *ArgList = TemplateArgs.data();
4808
4809  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4810    NonTypeTemplateParmDecl *Param
4811      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
4812    if (!Param)
4813      continue;
4814
4815    if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4816                                                           &ArgList[I], 1))
4817      return true;
4818  }
4819
4820  return false;
4821}
4822
4823DeclResult
4824Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
4825                                       TagUseKind TUK,
4826                                       SourceLocation KWLoc,
4827                                       SourceLocation ModulePrivateLoc,
4828                                       CXXScopeSpec &SS,
4829                                       TemplateTy TemplateD,
4830                                       SourceLocation TemplateNameLoc,
4831                                       SourceLocation LAngleLoc,
4832                                       ASTTemplateArgsPtr TemplateArgsIn,
4833                                       SourceLocation RAngleLoc,
4834                                       AttributeList *Attr,
4835                               MultiTemplateParamsArg TemplateParameterLists) {
4836  assert(TUK != TUK_Reference && "References are not specializations");
4837
4838  // NOTE: KWLoc is the location of the tag keyword. This will instead
4839  // store the location of the outermost template keyword in the declaration.
4840  SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
4841    ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation();
4842
4843  // Find the class template we're specializing
4844  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4845  ClassTemplateDecl *ClassTemplate
4846    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
4847
4848  if (!ClassTemplate) {
4849    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
4850      << (Name.getAsTemplateDecl() &&
4851          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
4852    return true;
4853  }
4854
4855  bool isExplicitSpecialization = false;
4856  bool isPartialSpecialization = false;
4857
4858  // Check the validity of the template headers that introduce this
4859  // template.
4860  // FIXME: We probably shouldn't complain about these headers for
4861  // friend declarations.
4862  bool Invalid = false;
4863  TemplateParameterList *TemplateParams
4864    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc,
4865                                              TemplateNameLoc,
4866                                              SS,
4867                        (TemplateParameterList**)TemplateParameterLists.get(),
4868                                              TemplateParameterLists.size(),
4869                                              TUK == TUK_Friend,
4870                                              isExplicitSpecialization,
4871                                              Invalid);
4872  if (Invalid)
4873    return true;
4874
4875  if (TemplateParams && TemplateParams->size() > 0) {
4876    isPartialSpecialization = true;
4877
4878    if (TUK == TUK_Friend) {
4879      Diag(KWLoc, diag::err_partial_specialization_friend)
4880        << SourceRange(LAngleLoc, RAngleLoc);
4881      return true;
4882    }
4883
4884    // C++ [temp.class.spec]p10:
4885    //   The template parameter list of a specialization shall not
4886    //   contain default template argument values.
4887    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4888      Decl *Param = TemplateParams->getParam(I);
4889      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4890        if (TTP->hasDefaultArgument()) {
4891          Diag(TTP->getDefaultArgumentLoc(),
4892               diag::err_default_arg_in_partial_spec);
4893          TTP->removeDefaultArgument();
4894        }
4895      } else if (NonTypeTemplateParmDecl *NTTP
4896                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4897        if (Expr *DefArg = NTTP->getDefaultArgument()) {
4898          Diag(NTTP->getDefaultArgumentLoc(),
4899               diag::err_default_arg_in_partial_spec)
4900            << DefArg->getSourceRange();
4901          NTTP->removeDefaultArgument();
4902        }
4903      } else {
4904        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
4905        if (TTP->hasDefaultArgument()) {
4906          Diag(TTP->getDefaultArgument().getLocation(),
4907               diag::err_default_arg_in_partial_spec)
4908            << TTP->getDefaultArgument().getSourceRange();
4909          TTP->removeDefaultArgument();
4910        }
4911      }
4912    }
4913  } else if (TemplateParams) {
4914    if (TUK == TUK_Friend)
4915      Diag(KWLoc, diag::err_template_spec_friend)
4916        << FixItHint::CreateRemoval(
4917                                SourceRange(TemplateParams->getTemplateLoc(),
4918                                            TemplateParams->getRAngleLoc()))
4919        << SourceRange(LAngleLoc, RAngleLoc);
4920    else
4921      isExplicitSpecialization = true;
4922  } else if (TUK != TUK_Friend) {
4923    Diag(KWLoc, diag::err_template_spec_needs_header)
4924      << FixItHint::CreateInsertion(KWLoc, "template<> ");
4925    isExplicitSpecialization = true;
4926  }
4927
4928  // Check that the specialization uses the same tag kind as the
4929  // original template.
4930  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4931  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
4932  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4933                                    Kind, TUK == TUK_Definition, KWLoc,
4934                                    *ClassTemplate->getIdentifier())) {
4935    Diag(KWLoc, diag::err_use_with_wrong_tag)
4936      << ClassTemplate
4937      << FixItHint::CreateReplacement(KWLoc,
4938                            ClassTemplate->getTemplatedDecl()->getKindName());
4939    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4940         diag::note_previous_use);
4941    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4942  }
4943
4944  // Translate the parser's template argument list in our AST format.
4945  TemplateArgumentListInfo TemplateArgs;
4946  TemplateArgs.setLAngleLoc(LAngleLoc);
4947  TemplateArgs.setRAngleLoc(RAngleLoc);
4948  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4949
4950  // Check for unexpanded parameter packs in any of the template arguments.
4951  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4952    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4953                                        UPPC_PartialSpecialization))
4954      return true;
4955
4956  // Check that the template argument list is well-formed for this
4957  // template.
4958  SmallVector<TemplateArgument, 4> Converted;
4959  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4960                                TemplateArgs, false, Converted))
4961    return true;
4962
4963  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
4964         "Converted template argument list is too short!");
4965
4966  // Find the class template (partial) specialization declaration that
4967  // corresponds to these arguments.
4968  if (isPartialSpecialization) {
4969    if (CheckClassTemplatePartialSpecializationArgs(*this,
4970                                         ClassTemplate->getTemplateParameters(),
4971                                         Converted))
4972      return true;
4973
4974    bool InstantiationDependent;
4975    if (!Name.isDependent() &&
4976        !TemplateSpecializationType::anyDependentTemplateArguments(
4977                                             TemplateArgs.getArgumentArray(),
4978                                                         TemplateArgs.size(),
4979                                                     InstantiationDependent)) {
4980      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4981        << ClassTemplate->getDeclName();
4982      isPartialSpecialization = false;
4983    }
4984  }
4985
4986  void *InsertPos = 0;
4987  ClassTemplateSpecializationDecl *PrevDecl = 0;
4988
4989  if (isPartialSpecialization)
4990    // FIXME: Template parameter list matters, too
4991    PrevDecl
4992      = ClassTemplate->findPartialSpecialization(Converted.data(),
4993                                                 Converted.size(),
4994                                                 InsertPos);
4995  else
4996    PrevDecl
4997      = ClassTemplate->findSpecialization(Converted.data(),
4998                                          Converted.size(), InsertPos);
4999
5000  ClassTemplateSpecializationDecl *Specialization = 0;
5001
5002  // Check whether we can declare a class template specialization in
5003  // the current scope.
5004  if (TUK != TUK_Friend &&
5005      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
5006                                       TemplateNameLoc,
5007                                       isPartialSpecialization))
5008    return true;
5009
5010  // The canonical type
5011  QualType CanonType;
5012  if (PrevDecl &&
5013      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
5014               TUK == TUK_Friend)) {
5015    // Since the only prior class template specialization with these
5016    // arguments was referenced but not declared, or we're only
5017    // referencing this specialization as a friend, reuse that
5018    // declaration node as our own, updating its source location and
5019    // the list of outer template parameters to reflect our new declaration.
5020    Specialization = PrevDecl;
5021    Specialization->setLocation(TemplateNameLoc);
5022    if (TemplateParameterLists.size() > 0) {
5023      Specialization->setTemplateParameterListsInfo(Context,
5024                                              TemplateParameterLists.size(),
5025                    (TemplateParameterList**) TemplateParameterLists.release());
5026    }
5027    PrevDecl = 0;
5028    CanonType = Context.getTypeDeclType(Specialization);
5029  } else if (isPartialSpecialization) {
5030    // Build the canonical type that describes the converted template
5031    // arguments of the class template partial specialization.
5032    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
5033    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
5034                                                      Converted.data(),
5035                                                      Converted.size());
5036
5037    if (Context.hasSameType(CanonType,
5038                        ClassTemplate->getInjectedClassNameSpecialization())) {
5039      // C++ [temp.class.spec]p9b3:
5040      //
5041      //   -- The argument list of the specialization shall not be identical
5042      //      to the implicit argument list of the primary template.
5043      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
5044        << (TUK == TUK_Definition)
5045        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
5046      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
5047                                ClassTemplate->getIdentifier(),
5048                                TemplateNameLoc,
5049                                Attr,
5050                                TemplateParams,
5051                                AS_none, /*ModulePrivateLoc=*/SourceLocation(),
5052                                TemplateParameterLists.size() - 1,
5053                  (TemplateParameterList**) TemplateParameterLists.release());
5054    }
5055
5056    // Create a new class template partial specialization declaration node.
5057    ClassTemplatePartialSpecializationDecl *PrevPartial
5058      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
5059    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
5060                            : ClassTemplate->getNextPartialSpecSequenceNumber();
5061    ClassTemplatePartialSpecializationDecl *Partial
5062      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
5063                                             ClassTemplate->getDeclContext(),
5064                                                       KWLoc, TemplateNameLoc,
5065                                                       TemplateParams,
5066                                                       ClassTemplate,
5067                                                       Converted.data(),
5068                                                       Converted.size(),
5069                                                       TemplateArgs,
5070                                                       CanonType,
5071                                                       PrevPartial,
5072                                                       SequenceNumber);
5073    SetNestedNameSpecifier(Partial, SS);
5074    if (TemplateParameterLists.size() > 1 && SS.isSet()) {
5075      Partial->setTemplateParameterListsInfo(Context,
5076                                             TemplateParameterLists.size() - 1,
5077                    (TemplateParameterList**) TemplateParameterLists.release());
5078    }
5079
5080    if (!PrevPartial)
5081      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
5082    Specialization = Partial;
5083
5084    // If we are providing an explicit specialization of a member class
5085    // template specialization, make a note of that.
5086    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
5087      PrevPartial->setMemberSpecialization();
5088
5089    // Check that all of the template parameters of the class template
5090    // partial specialization are deducible from the template
5091    // arguments. If not, this class template partial specialization
5092    // will never be used.
5093    SmallVector<bool, 8> DeducibleParams;
5094    DeducibleParams.resize(TemplateParams->size());
5095    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
5096                               TemplateParams->getDepth(),
5097                               DeducibleParams);
5098    unsigned NumNonDeducible = 0;
5099    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
5100      if (!DeducibleParams[I])
5101        ++NumNonDeducible;
5102
5103    if (NumNonDeducible) {
5104      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
5105        << (NumNonDeducible > 1)
5106        << SourceRange(TemplateNameLoc, RAngleLoc);
5107      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
5108        if (!DeducibleParams[I]) {
5109          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
5110          if (Param->getDeclName())
5111            Diag(Param->getLocation(),
5112                 diag::note_partial_spec_unused_parameter)
5113              << Param->getDeclName();
5114          else
5115            Diag(Param->getLocation(),
5116                 diag::note_partial_spec_unused_parameter)
5117              << "<anonymous>";
5118        }
5119      }
5120    }
5121  } else {
5122    // Create a new class template specialization declaration node for
5123    // this explicit specialization or friend declaration.
5124    Specialization
5125      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5126                                             ClassTemplate->getDeclContext(),
5127                                                KWLoc, TemplateNameLoc,
5128                                                ClassTemplate,
5129                                                Converted.data(),
5130                                                Converted.size(),
5131                                                PrevDecl);
5132    SetNestedNameSpecifier(Specialization, SS);
5133    if (TemplateParameterLists.size() > 0) {
5134      Specialization->setTemplateParameterListsInfo(Context,
5135                                              TemplateParameterLists.size(),
5136                    (TemplateParameterList**) TemplateParameterLists.release());
5137    }
5138
5139    if (!PrevDecl)
5140      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5141
5142    CanonType = Context.getTypeDeclType(Specialization);
5143  }
5144
5145  // C++ [temp.expl.spec]p6:
5146  //   If a template, a member template or the member of a class template is
5147  //   explicitly specialized then that specialization shall be declared
5148  //   before the first use of that specialization that would cause an implicit
5149  //   instantiation to take place, in every translation unit in which such a
5150  //   use occurs; no diagnostic is required.
5151  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
5152    bool Okay = false;
5153    for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5154      // Is there any previous explicit specialization declaration?
5155      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5156        Okay = true;
5157        break;
5158      }
5159    }
5160
5161    if (!Okay) {
5162      SourceRange Range(TemplateNameLoc, RAngleLoc);
5163      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
5164        << Context.getTypeDeclType(Specialization) << Range;
5165
5166      Diag(PrevDecl->getPointOfInstantiation(),
5167           diag::note_instantiation_required_here)
5168        << (PrevDecl->getTemplateSpecializationKind()
5169                                                != TSK_ImplicitInstantiation);
5170      return true;
5171    }
5172  }
5173
5174  // If this is not a friend, note that this is an explicit specialization.
5175  if (TUK != TUK_Friend)
5176    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
5177
5178  // Check that this isn't a redefinition of this specialization.
5179  if (TUK == TUK_Definition) {
5180    if (RecordDecl *Def = Specialization->getDefinition()) {
5181      SourceRange Range(TemplateNameLoc, RAngleLoc);
5182      Diag(TemplateNameLoc, diag::err_redefinition)
5183        << Context.getTypeDeclType(Specialization) << Range;
5184      Diag(Def->getLocation(), diag::note_previous_definition);
5185      Specialization->setInvalidDecl();
5186      return true;
5187    }
5188  }
5189
5190  if (Attr)
5191    ProcessDeclAttributeList(S, Specialization, Attr);
5192
5193  if (ModulePrivateLoc.isValid())
5194    Diag(Specialization->getLocation(), diag::err_module_private_specialization)
5195      << (isPartialSpecialization? 1 : 0)
5196      << FixItHint::CreateRemoval(ModulePrivateLoc);
5197
5198  // Build the fully-sugared type for this class template
5199  // specialization as the user wrote in the specialization
5200  // itself. This means that we'll pretty-print the type retrieved
5201  // from the specialization's declaration the way that the user
5202  // actually wrote the specialization, rather than formatting the
5203  // name based on the "canonical" representation used to store the
5204  // template arguments in the specialization.
5205  TypeSourceInfo *WrittenTy
5206    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5207                                                TemplateArgs, CanonType);
5208  if (TUK != TUK_Friend) {
5209    Specialization->setTypeAsWritten(WrittenTy);
5210    Specialization->setTemplateKeywordLoc(TemplateKWLoc);
5211  }
5212  TemplateArgsIn.release();
5213
5214  // C++ [temp.expl.spec]p9:
5215  //   A template explicit specialization is in the scope of the
5216  //   namespace in which the template was defined.
5217  //
5218  // We actually implement this paragraph where we set the semantic
5219  // context (in the creation of the ClassTemplateSpecializationDecl),
5220  // but we also maintain the lexical context where the actual
5221  // definition occurs.
5222  Specialization->setLexicalDeclContext(CurContext);
5223
5224  // We may be starting the definition of this specialization.
5225  if (TUK == TUK_Definition)
5226    Specialization->startDefinition();
5227
5228  if (TUK == TUK_Friend) {
5229    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
5230                                            TemplateNameLoc,
5231                                            WrittenTy,
5232                                            /*FIXME:*/KWLoc);
5233    Friend->setAccess(AS_public);
5234    CurContext->addDecl(Friend);
5235  } else {
5236    // Add the specialization into its lexical context, so that it can
5237    // be seen when iterating through the list of declarations in that
5238    // context. However, specializations are not found by name lookup.
5239    CurContext->addDecl(Specialization);
5240  }
5241  return Specialization;
5242}
5243
5244Decl *Sema::ActOnTemplateDeclarator(Scope *S,
5245                              MultiTemplateParamsArg TemplateParameterLists,
5246                                    Declarator &D) {
5247  return HandleDeclarator(S, D, move(TemplateParameterLists));
5248}
5249
5250Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
5251                               MultiTemplateParamsArg TemplateParameterLists,
5252                                            Declarator &D) {
5253  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5254  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5255
5256  if (FTI.hasPrototype) {
5257    // FIXME: Diagnose arguments without names in C.
5258  }
5259
5260  Scope *ParentScope = FnBodyScope->getParent();
5261
5262  D.setFunctionDefinitionKind(FDK_Definition);
5263  Decl *DP = HandleDeclarator(ParentScope, D,
5264                              move(TemplateParameterLists));
5265  if (FunctionTemplateDecl *FunctionTemplate
5266        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
5267    return ActOnStartOfFunctionDef(FnBodyScope,
5268                                   FunctionTemplate->getTemplatedDecl());
5269  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
5270    return ActOnStartOfFunctionDef(FnBodyScope, Function);
5271  return 0;
5272}
5273
5274/// \brief Strips various properties off an implicit instantiation
5275/// that has just been explicitly specialized.
5276static void StripImplicitInstantiation(NamedDecl *D) {
5277  D->dropAttrs();
5278
5279  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5280    FD->setInlineSpecified(false);
5281  }
5282}
5283
5284/// \brief Compute the diagnostic location for an explicit instantiation
5285//  declaration or definition.
5286static SourceLocation DiagLocForExplicitInstantiation(
5287    NamedDecl* D, SourceLocation PointOfInstantiation) {
5288  // Explicit instantiations following a specialization have no effect and
5289  // hence no PointOfInstantiation. In that case, walk decl backwards
5290  // until a valid name loc is found.
5291  SourceLocation PrevDiagLoc = PointOfInstantiation;
5292  for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
5293       Prev = Prev->getPreviousDecl()) {
5294    PrevDiagLoc = Prev->getLocation();
5295  }
5296  assert(PrevDiagLoc.isValid() &&
5297         "Explicit instantiation without point of instantiation?");
5298  return PrevDiagLoc;
5299}
5300
5301/// \brief Diagnose cases where we have an explicit template specialization
5302/// before/after an explicit template instantiation, producing diagnostics
5303/// for those cases where they are required and determining whether the
5304/// new specialization/instantiation will have any effect.
5305///
5306/// \param NewLoc the location of the new explicit specialization or
5307/// instantiation.
5308///
5309/// \param NewTSK the kind of the new explicit specialization or instantiation.
5310///
5311/// \param PrevDecl the previous declaration of the entity.
5312///
5313/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
5314///
5315/// \param PrevPointOfInstantiation if valid, indicates where the previus
5316/// declaration was instantiated (either implicitly or explicitly).
5317///
5318/// \param HasNoEffect will be set to true to indicate that the new
5319/// specialization or instantiation has no effect and should be ignored.
5320///
5321/// \returns true if there was an error that should prevent the introduction of
5322/// the new declaration into the AST, false otherwise.
5323bool
5324Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
5325                                             TemplateSpecializationKind NewTSK,
5326                                             NamedDecl *PrevDecl,
5327                                             TemplateSpecializationKind PrevTSK,
5328                                        SourceLocation PrevPointOfInstantiation,
5329                                             bool &HasNoEffect) {
5330  HasNoEffect = false;
5331
5332  switch (NewTSK) {
5333  case TSK_Undeclared:
5334  case TSK_ImplicitInstantiation:
5335    llvm_unreachable("Don't check implicit instantiations here");
5336
5337  case TSK_ExplicitSpecialization:
5338    switch (PrevTSK) {
5339    case TSK_Undeclared:
5340    case TSK_ExplicitSpecialization:
5341      // Okay, we're just specializing something that is either already
5342      // explicitly specialized or has merely been mentioned without any
5343      // instantiation.
5344      return false;
5345
5346    case TSK_ImplicitInstantiation:
5347      if (PrevPointOfInstantiation.isInvalid()) {
5348        // The declaration itself has not actually been instantiated, so it is
5349        // still okay to specialize it.
5350        StripImplicitInstantiation(PrevDecl);
5351        return false;
5352      }
5353      // Fall through
5354
5355    case TSK_ExplicitInstantiationDeclaration:
5356    case TSK_ExplicitInstantiationDefinition:
5357      assert((PrevTSK == TSK_ImplicitInstantiation ||
5358              PrevPointOfInstantiation.isValid()) &&
5359             "Explicit instantiation without point of instantiation?");
5360
5361      // C++ [temp.expl.spec]p6:
5362      //   If a template, a member template or the member of a class template
5363      //   is explicitly specialized then that specialization shall be declared
5364      //   before the first use of that specialization that would cause an
5365      //   implicit instantiation to take place, in every translation unit in
5366      //   which such a use occurs; no diagnostic is required.
5367      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5368        // Is there any previous explicit specialization declaration?
5369        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
5370          return false;
5371      }
5372
5373      Diag(NewLoc, diag::err_specialization_after_instantiation)
5374        << PrevDecl;
5375      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
5376        << (PrevTSK != TSK_ImplicitInstantiation);
5377
5378      return true;
5379    }
5380
5381  case TSK_ExplicitInstantiationDeclaration:
5382    switch (PrevTSK) {
5383    case TSK_ExplicitInstantiationDeclaration:
5384      // This explicit instantiation declaration is redundant (that's okay).
5385      HasNoEffect = true;
5386      return false;
5387
5388    case TSK_Undeclared:
5389    case TSK_ImplicitInstantiation:
5390      // We're explicitly instantiating something that may have already been
5391      // implicitly instantiated; that's fine.
5392      return false;
5393
5394    case TSK_ExplicitSpecialization:
5395      // C++0x [temp.explicit]p4:
5396      //   For a given set of template parameters, if an explicit instantiation
5397      //   of a template appears after a declaration of an explicit
5398      //   specialization for that template, the explicit instantiation has no
5399      //   effect.
5400      HasNoEffect = true;
5401      return false;
5402
5403    case TSK_ExplicitInstantiationDefinition:
5404      // C++0x [temp.explicit]p10:
5405      //   If an entity is the subject of both an explicit instantiation
5406      //   declaration and an explicit instantiation definition in the same
5407      //   translation unit, the definition shall follow the declaration.
5408      Diag(NewLoc,
5409           diag::err_explicit_instantiation_declaration_after_definition);
5410
5411      // Explicit instantiations following a specialization have no effect and
5412      // hence no PrevPointOfInstantiation. In that case, walk decl backwards
5413      // until a valid name loc is found.
5414      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
5415           diag::note_explicit_instantiation_definition_here);
5416      HasNoEffect = true;
5417      return false;
5418    }
5419
5420  case TSK_ExplicitInstantiationDefinition:
5421    switch (PrevTSK) {
5422    case TSK_Undeclared:
5423    case TSK_ImplicitInstantiation:
5424      // We're explicitly instantiating something that may have already been
5425      // implicitly instantiated; that's fine.
5426      return false;
5427
5428    case TSK_ExplicitSpecialization:
5429      // C++ DR 259, C++0x [temp.explicit]p4:
5430      //   For a given set of template parameters, if an explicit
5431      //   instantiation of a template appears after a declaration of
5432      //   an explicit specialization for that template, the explicit
5433      //   instantiation has no effect.
5434      //
5435      // In C++98/03 mode, we only give an extension warning here, because it
5436      // is not harmful to try to explicitly instantiate something that
5437      // has been explicitly specialized.
5438      Diag(NewLoc, getLangOptions().CPlusPlus0x ?
5439           diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
5440           diag::ext_explicit_instantiation_after_specialization)
5441        << PrevDecl;
5442      Diag(PrevDecl->getLocation(),
5443           diag::note_previous_template_specialization);
5444      HasNoEffect = true;
5445      return false;
5446
5447    case TSK_ExplicitInstantiationDeclaration:
5448      // We're explicity instantiating a definition for something for which we
5449      // were previously asked to suppress instantiations. That's fine.
5450
5451      // C++0x [temp.explicit]p4:
5452      //   For a given set of template parameters, if an explicit instantiation
5453      //   of a template appears after a declaration of an explicit
5454      //   specialization for that template, the explicit instantiation has no
5455      //   effect.
5456      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5457        // Is there any previous explicit specialization declaration?
5458        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5459          HasNoEffect = true;
5460          break;
5461        }
5462      }
5463
5464      return false;
5465
5466    case TSK_ExplicitInstantiationDefinition:
5467      // C++0x [temp.spec]p5:
5468      //   For a given template and a given set of template-arguments,
5469      //     - an explicit instantiation definition shall appear at most once
5470      //       in a program,
5471      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
5472        << PrevDecl;
5473      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
5474           diag::note_previous_explicit_instantiation);
5475      HasNoEffect = true;
5476      return false;
5477    }
5478  }
5479
5480  llvm_unreachable("Missing specialization/instantiation case?");
5481}
5482
5483/// \brief Perform semantic analysis for the given dependent function
5484/// template specialization.  The only possible way to get a dependent
5485/// function template specialization is with a friend declaration,
5486/// like so:
5487///
5488///   template <class T> void foo(T);
5489///   template <class T> class A {
5490///     friend void foo<>(T);
5491///   };
5492///
5493/// There really isn't any useful analysis we can do here, so we
5494/// just store the information.
5495bool
5496Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
5497                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
5498                                                   LookupResult &Previous) {
5499  // Remove anything from Previous that isn't a function template in
5500  // the correct context.
5501  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5502  LookupResult::Filter F = Previous.makeFilter();
5503  while (F.hasNext()) {
5504    NamedDecl *D = F.next()->getUnderlyingDecl();
5505    if (!isa<FunctionTemplateDecl>(D) ||
5506        !FDLookupContext->InEnclosingNamespaceSetOf(
5507                              D->getDeclContext()->getRedeclContext()))
5508      F.erase();
5509  }
5510  F.done();
5511
5512  // Should this be diagnosed here?
5513  if (Previous.empty()) return true;
5514
5515  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
5516                                         ExplicitTemplateArgs);
5517  return false;
5518}
5519
5520/// \brief Perform semantic analysis for the given function template
5521/// specialization.
5522///
5523/// This routine performs all of the semantic analysis required for an
5524/// explicit function template specialization. On successful completion,
5525/// the function declaration \p FD will become a function template
5526/// specialization.
5527///
5528/// \param FD the function declaration, which will be updated to become a
5529/// function template specialization.
5530///
5531/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
5532/// if any. Note that this may be valid info even when 0 arguments are
5533/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
5534/// as it anyway contains info on the angle brackets locations.
5535///
5536/// \param Previous the set of declarations that may be specialized by
5537/// this function specialization.
5538bool
5539Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
5540                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5541                                          LookupResult &Previous) {
5542  // The set of function template specializations that could match this
5543  // explicit function template specialization.
5544  UnresolvedSet<8> Candidates;
5545
5546  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5547  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5548         I != E; ++I) {
5549    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
5550    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
5551      // Only consider templates found within the same semantic lookup scope as
5552      // FD.
5553      if (!FDLookupContext->InEnclosingNamespaceSetOf(
5554                                Ovl->getDeclContext()->getRedeclContext()))
5555        continue;
5556
5557      // C++ [temp.expl.spec]p11:
5558      //   A trailing template-argument can be left unspecified in the
5559      //   template-id naming an explicit function template specialization
5560      //   provided it can be deduced from the function argument type.
5561      // Perform template argument deduction to determine whether we may be
5562      // specializing this template.
5563      // FIXME: It is somewhat wasteful to build
5564      TemplateDeductionInfo Info(Context, FD->getLocation());
5565      FunctionDecl *Specialization = 0;
5566      if (TemplateDeductionResult TDK
5567            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
5568                                      FD->getType(),
5569                                      Specialization,
5570                                      Info)) {
5571        // FIXME: Template argument deduction failed; record why it failed, so
5572        // that we can provide nifty diagnostics.
5573        (void)TDK;
5574        continue;
5575      }
5576
5577      // Record this candidate.
5578      Candidates.addDecl(Specialization, I.getAccess());
5579    }
5580  }
5581
5582  // Find the most specialized function template.
5583  UnresolvedSetIterator Result
5584    = getMostSpecialized(Candidates.begin(), Candidates.end(),
5585                         TPOC_Other, 0, FD->getLocation(),
5586                  PDiag(diag::err_function_template_spec_no_match)
5587                    << FD->getDeclName(),
5588                  PDiag(diag::err_function_template_spec_ambiguous)
5589                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
5590                  PDiag(diag::note_function_template_spec_matched));
5591  if (Result == Candidates.end())
5592    return true;
5593
5594  // Ignore access information;  it doesn't figure into redeclaration checking.
5595  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5596
5597  FunctionTemplateSpecializationInfo *SpecInfo
5598    = Specialization->getTemplateSpecializationInfo();
5599  assert(SpecInfo && "Function template specialization info missing?");
5600
5601  // Note: do not overwrite location info if previous template
5602  // specialization kind was explicit.
5603  TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
5604  if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation)
5605    Specialization->setLocation(FD->getLocation());
5606
5607  // FIXME: Check if the prior specialization has a point of instantiation.
5608  // If so, we have run afoul of .
5609
5610  // If this is a friend declaration, then we're not really declaring
5611  // an explicit specialization.
5612  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
5613
5614  // Check the scope of this explicit specialization.
5615  if (!isFriend &&
5616      CheckTemplateSpecializationScope(*this,
5617                                       Specialization->getPrimaryTemplate(),
5618                                       Specialization, FD->getLocation(),
5619                                       false))
5620    return true;
5621
5622  // C++ [temp.expl.spec]p6:
5623  //   If a template, a member template or the member of a class template is
5624  //   explicitly specialized then that specialization shall be declared
5625  //   before the first use of that specialization that would cause an implicit
5626  //   instantiation to take place, in every translation unit in which such a
5627  //   use occurs; no diagnostic is required.
5628  bool HasNoEffect = false;
5629  if (!isFriend &&
5630      CheckSpecializationInstantiationRedecl(FD->getLocation(),
5631                                             TSK_ExplicitSpecialization,
5632                                             Specialization,
5633                                   SpecInfo->getTemplateSpecializationKind(),
5634                                         SpecInfo->getPointOfInstantiation(),
5635                                             HasNoEffect))
5636    return true;
5637
5638  // Mark the prior declaration as an explicit specialization, so that later
5639  // clients know that this is an explicit specialization.
5640  if (!isFriend) {
5641    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
5642    MarkUnusedFileScopedDecl(Specialization);
5643  }
5644
5645  // Turn the given function declaration into a function template
5646  // specialization, with the template arguments from the previous
5647  // specialization.
5648  // Take copies of (semantic and syntactic) template argument lists.
5649  const TemplateArgumentList* TemplArgs = new (Context)
5650    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
5651  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
5652                                        TemplArgs, /*InsertPos=*/0,
5653                                    SpecInfo->getTemplateSpecializationKind(),
5654                                        ExplicitTemplateArgs);
5655  FD->setStorageClass(Specialization->getStorageClass());
5656
5657  // The "previous declaration" for this function template specialization is
5658  // the prior function template specialization.
5659  Previous.clear();
5660  Previous.addDecl(Specialization);
5661  return false;
5662}
5663
5664/// \brief Perform semantic analysis for the given non-template member
5665/// specialization.
5666///
5667/// This routine performs all of the semantic analysis required for an
5668/// explicit member function specialization. On successful completion,
5669/// the function declaration \p FD will become a member function
5670/// specialization.
5671///
5672/// \param Member the member declaration, which will be updated to become a
5673/// specialization.
5674///
5675/// \param Previous the set of declarations, one of which may be specialized
5676/// by this function specialization;  the set will be modified to contain the
5677/// redeclared member.
5678bool
5679Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
5680  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
5681
5682  // Try to find the member we are instantiating.
5683  NamedDecl *Instantiation = 0;
5684  NamedDecl *InstantiatedFrom = 0;
5685  MemberSpecializationInfo *MSInfo = 0;
5686
5687  if (Previous.empty()) {
5688    // Nowhere to look anyway.
5689  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
5690    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5691           I != E; ++I) {
5692      NamedDecl *D = (*I)->getUnderlyingDecl();
5693      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5694        if (Context.hasSameType(Function->getType(), Method->getType())) {
5695          Instantiation = Method;
5696          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
5697          MSInfo = Method->getMemberSpecializationInfo();
5698          break;
5699        }
5700      }
5701    }
5702  } else if (isa<VarDecl>(Member)) {
5703    VarDecl *PrevVar;
5704    if (Previous.isSingleResult() &&
5705        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
5706      if (PrevVar->isStaticDataMember()) {
5707        Instantiation = PrevVar;
5708        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
5709        MSInfo = PrevVar->getMemberSpecializationInfo();
5710      }
5711  } else if (isa<RecordDecl>(Member)) {
5712    CXXRecordDecl *PrevRecord;
5713    if (Previous.isSingleResult() &&
5714        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
5715      Instantiation = PrevRecord;
5716      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
5717      MSInfo = PrevRecord->getMemberSpecializationInfo();
5718    }
5719  }
5720
5721  if (!Instantiation) {
5722    // There is no previous declaration that matches. Since member
5723    // specializations are always out-of-line, the caller will complain about
5724    // this mismatch later.
5725    return false;
5726  }
5727
5728  // If this is a friend, just bail out here before we start turning
5729  // things into explicit specializations.
5730  if (Member->getFriendObjectKind() != Decl::FOK_None) {
5731    // Preserve instantiation information.
5732    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
5733      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
5734                                      cast<CXXMethodDecl>(InstantiatedFrom),
5735        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
5736    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
5737      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5738                                      cast<CXXRecordDecl>(InstantiatedFrom),
5739        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
5740    }
5741
5742    Previous.clear();
5743    Previous.addDecl(Instantiation);
5744    return false;
5745  }
5746
5747  // Make sure that this is a specialization of a member.
5748  if (!InstantiatedFrom) {
5749    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
5750      << Member;
5751    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
5752    return true;
5753  }
5754
5755  // C++ [temp.expl.spec]p6:
5756  //   If a template, a member template or the member of a class template is
5757  //   explicitly specialized then that specialization shall be declared
5758  //   before the first use of that specialization that would cause an implicit
5759  //   instantiation to take place, in every translation unit in which such a
5760  //   use occurs; no diagnostic is required.
5761  assert(MSInfo && "Member specialization info missing?");
5762
5763  bool HasNoEffect = false;
5764  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
5765                                             TSK_ExplicitSpecialization,
5766                                             Instantiation,
5767                                     MSInfo->getTemplateSpecializationKind(),
5768                                           MSInfo->getPointOfInstantiation(),
5769                                             HasNoEffect))
5770    return true;
5771
5772  // Check the scope of this explicit specialization.
5773  if (CheckTemplateSpecializationScope(*this,
5774                                       InstantiatedFrom,
5775                                       Instantiation, Member->getLocation(),
5776                                       false))
5777    return true;
5778
5779  // Note that this is an explicit instantiation of a member.
5780  // the original declaration to note that it is an explicit specialization
5781  // (if it was previously an implicit instantiation). This latter step
5782  // makes bookkeeping easier.
5783  if (isa<FunctionDecl>(Member)) {
5784    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
5785    if (InstantiationFunction->getTemplateSpecializationKind() ==
5786          TSK_ImplicitInstantiation) {
5787      InstantiationFunction->setTemplateSpecializationKind(
5788                                                  TSK_ExplicitSpecialization);
5789      InstantiationFunction->setLocation(Member->getLocation());
5790    }
5791
5792    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
5793                                        cast<CXXMethodDecl>(InstantiatedFrom),
5794                                                  TSK_ExplicitSpecialization);
5795    MarkUnusedFileScopedDecl(InstantiationFunction);
5796  } else if (isa<VarDecl>(Member)) {
5797    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
5798    if (InstantiationVar->getTemplateSpecializationKind() ==
5799          TSK_ImplicitInstantiation) {
5800      InstantiationVar->setTemplateSpecializationKind(
5801                                                  TSK_ExplicitSpecialization);
5802      InstantiationVar->setLocation(Member->getLocation());
5803    }
5804
5805    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
5806                                                cast<VarDecl>(InstantiatedFrom),
5807                                                TSK_ExplicitSpecialization);
5808    MarkUnusedFileScopedDecl(InstantiationVar);
5809  } else {
5810    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
5811    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
5812    if (InstantiationClass->getTemplateSpecializationKind() ==
5813          TSK_ImplicitInstantiation) {
5814      InstantiationClass->setTemplateSpecializationKind(
5815                                                   TSK_ExplicitSpecialization);
5816      InstantiationClass->setLocation(Member->getLocation());
5817    }
5818
5819    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5820                                        cast<CXXRecordDecl>(InstantiatedFrom),
5821                                                   TSK_ExplicitSpecialization);
5822  }
5823
5824  // Save the caller the trouble of having to figure out which declaration
5825  // this specialization matches.
5826  Previous.clear();
5827  Previous.addDecl(Instantiation);
5828  return false;
5829}
5830
5831/// \brief Check the scope of an explicit instantiation.
5832///
5833/// \returns true if a serious error occurs, false otherwise.
5834static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
5835                                            SourceLocation InstLoc,
5836                                            bool WasQualifiedName) {
5837  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
5838  DeclContext *CurContext = S.CurContext->getRedeclContext();
5839
5840  if (CurContext->isRecord()) {
5841    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
5842      << D;
5843    return true;
5844  }
5845
5846  // C++11 [temp.explicit]p3:
5847  //   An explicit instantiation shall appear in an enclosing namespace of its
5848  //   template. If the name declared in the explicit instantiation is an
5849  //   unqualified name, the explicit instantiation shall appear in the
5850  //   namespace where its template is declared or, if that namespace is inline
5851  //   (7.3.1), any namespace from its enclosing namespace set.
5852  //
5853  // This is DR275, which we do not retroactively apply to C++98/03.
5854  if (WasQualifiedName) {
5855    if (CurContext->Encloses(OrigContext))
5856      return false;
5857  } else {
5858    if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
5859      return false;
5860  }
5861
5862  if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
5863    if (WasQualifiedName)
5864      S.Diag(InstLoc,
5865             S.getLangOptions().CPlusPlus0x?
5866               diag::err_explicit_instantiation_out_of_scope :
5867               diag::warn_explicit_instantiation_out_of_scope_0x)
5868        << D << NS;
5869    else
5870      S.Diag(InstLoc,
5871             S.getLangOptions().CPlusPlus0x?
5872               diag::err_explicit_instantiation_unqualified_wrong_namespace :
5873               diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
5874        << D << NS;
5875  } else
5876    S.Diag(InstLoc,
5877           S.getLangOptions().CPlusPlus0x?
5878             diag::err_explicit_instantiation_must_be_global :
5879             diag::warn_explicit_instantiation_must_be_global_0x)
5880      << D;
5881  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5882  return false;
5883}
5884
5885/// \brief Determine whether the given scope specifier has a template-id in it.
5886static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
5887  if (!SS.isSet())
5888    return false;
5889
5890  // C++11 [temp.explicit]p3:
5891  //   If the explicit instantiation is for a member function, a member class
5892  //   or a static data member of a class template specialization, the name of
5893  //   the class template specialization in the qualified-id for the member
5894  //   name shall be a simple-template-id.
5895  //
5896  // C++98 has the same restriction, just worded differently.
5897  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
5898       NNS; NNS = NNS->getPrefix())
5899    if (const Type *T = NNS->getAsType())
5900      if (isa<TemplateSpecializationType>(T))
5901        return true;
5902
5903  return false;
5904}
5905
5906// Explicit instantiation of a class template specialization
5907DeclResult
5908Sema::ActOnExplicitInstantiation(Scope *S,
5909                                 SourceLocation ExternLoc,
5910                                 SourceLocation TemplateLoc,
5911                                 unsigned TagSpec,
5912                                 SourceLocation KWLoc,
5913                                 const CXXScopeSpec &SS,
5914                                 TemplateTy TemplateD,
5915                                 SourceLocation TemplateNameLoc,
5916                                 SourceLocation LAngleLoc,
5917                                 ASTTemplateArgsPtr TemplateArgsIn,
5918                                 SourceLocation RAngleLoc,
5919                                 AttributeList *Attr) {
5920  // Find the class template we're specializing
5921  TemplateName Name = TemplateD.getAsVal<TemplateName>();
5922  ClassTemplateDecl *ClassTemplate
5923    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
5924
5925  // Check that the specialization uses the same tag kind as the
5926  // original template.
5927  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5928  assert(Kind != TTK_Enum &&
5929         "Invalid enum tag in class template explicit instantiation!");
5930  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5931                                    Kind, /*isDefinition*/false, KWLoc,
5932                                    *ClassTemplate->getIdentifier())) {
5933    Diag(KWLoc, diag::err_use_with_wrong_tag)
5934      << ClassTemplate
5935      << FixItHint::CreateReplacement(KWLoc,
5936                            ClassTemplate->getTemplatedDecl()->getKindName());
5937    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5938         diag::note_previous_use);
5939    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5940  }
5941
5942  // C++0x [temp.explicit]p2:
5943  //   There are two forms of explicit instantiation: an explicit instantiation
5944  //   definition and an explicit instantiation declaration. An explicit
5945  //   instantiation declaration begins with the extern keyword. [...]
5946  TemplateSpecializationKind TSK
5947    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5948                           : TSK_ExplicitInstantiationDeclaration;
5949
5950  // Translate the parser's template argument list in our AST format.
5951  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
5952  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5953
5954  // Check that the template argument list is well-formed for this
5955  // template.
5956  SmallVector<TemplateArgument, 4> Converted;
5957  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5958                                TemplateArgs, false, Converted))
5959    return true;
5960
5961  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
5962         "Converted template argument list is too short!");
5963
5964  // Find the class template specialization declaration that
5965  // corresponds to these arguments.
5966  void *InsertPos = 0;
5967  ClassTemplateSpecializationDecl *PrevDecl
5968    = ClassTemplate->findSpecialization(Converted.data(),
5969                                        Converted.size(), InsertPos);
5970
5971  TemplateSpecializationKind PrevDecl_TSK
5972    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
5973
5974  // C++0x [temp.explicit]p2:
5975  //   [...] An explicit instantiation shall appear in an enclosing
5976  //   namespace of its template. [...]
5977  //
5978  // This is C++ DR 275.
5979  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
5980                                      SS.isSet()))
5981    return true;
5982
5983  ClassTemplateSpecializationDecl *Specialization = 0;
5984
5985  bool HasNoEffect = false;
5986  if (PrevDecl) {
5987    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
5988                                               PrevDecl, PrevDecl_TSK,
5989                                            PrevDecl->getPointOfInstantiation(),
5990                                               HasNoEffect))
5991      return PrevDecl;
5992
5993    // Even though HasNoEffect == true means that this explicit instantiation
5994    // has no effect on semantics, we go on to put its syntax in the AST.
5995
5996    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
5997        PrevDecl_TSK == TSK_Undeclared) {
5998      // Since the only prior class template specialization with these
5999      // arguments was referenced but not declared, reuse that
6000      // declaration node as our own, updating the source location
6001      // for the template name to reflect our new declaration.
6002      // (Other source locations will be updated later.)
6003      Specialization = PrevDecl;
6004      Specialization->setLocation(TemplateNameLoc);
6005      PrevDecl = 0;
6006    }
6007  }
6008
6009  if (!Specialization) {
6010    // Create a new class template specialization declaration node for
6011    // this explicit specialization.
6012    Specialization
6013      = ClassTemplateSpecializationDecl::Create(Context, Kind,
6014                                             ClassTemplate->getDeclContext(),
6015                                                KWLoc, TemplateNameLoc,
6016                                                ClassTemplate,
6017                                                Converted.data(),
6018                                                Converted.size(),
6019                                                PrevDecl);
6020    SetNestedNameSpecifier(Specialization, SS);
6021
6022    if (!HasNoEffect && !PrevDecl) {
6023      // Insert the new specialization.
6024      ClassTemplate->AddSpecialization(Specialization, InsertPos);
6025    }
6026  }
6027
6028  // Build the fully-sugared type for this explicit instantiation as
6029  // the user wrote in the explicit instantiation itself. This means
6030  // that we'll pretty-print the type retrieved from the
6031  // specialization's declaration the way that the user actually wrote
6032  // the explicit instantiation, rather than formatting the name based
6033  // on the "canonical" representation used to store the template
6034  // arguments in the specialization.
6035  TypeSourceInfo *WrittenTy
6036    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6037                                                TemplateArgs,
6038                                  Context.getTypeDeclType(Specialization));
6039  Specialization->setTypeAsWritten(WrittenTy);
6040  TemplateArgsIn.release();
6041
6042  // Set source locations for keywords.
6043  Specialization->setExternLoc(ExternLoc);
6044  Specialization->setTemplateKeywordLoc(TemplateLoc);
6045
6046  if (Attr)
6047    ProcessDeclAttributeList(S, Specialization, Attr);
6048
6049  // Add the explicit instantiation into its lexical context. However,
6050  // since explicit instantiations are never found by name lookup, we
6051  // just put it into the declaration context directly.
6052  Specialization->setLexicalDeclContext(CurContext);
6053  CurContext->addDecl(Specialization);
6054
6055  // Syntax is now OK, so return if it has no other effect on semantics.
6056  if (HasNoEffect) {
6057    // Set the template specialization kind.
6058    Specialization->setTemplateSpecializationKind(TSK);
6059    return Specialization;
6060  }
6061
6062  // C++ [temp.explicit]p3:
6063  //   A definition of a class template or class member template
6064  //   shall be in scope at the point of the explicit instantiation of
6065  //   the class template or class member template.
6066  //
6067  // This check comes when we actually try to perform the
6068  // instantiation.
6069  ClassTemplateSpecializationDecl *Def
6070    = cast_or_null<ClassTemplateSpecializationDecl>(
6071                                              Specialization->getDefinition());
6072  if (!Def)
6073    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
6074  else if (TSK == TSK_ExplicitInstantiationDefinition) {
6075    MarkVTableUsed(TemplateNameLoc, Specialization, true);
6076    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
6077  }
6078
6079  // Instantiate the members of this class template specialization.
6080  Def = cast_or_null<ClassTemplateSpecializationDecl>(
6081                                       Specialization->getDefinition());
6082  if (Def) {
6083    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
6084
6085    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
6086    // TSK_ExplicitInstantiationDefinition
6087    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
6088        TSK == TSK_ExplicitInstantiationDefinition)
6089      Def->setTemplateSpecializationKind(TSK);
6090
6091    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
6092  }
6093
6094  // Set the template specialization kind.
6095  Specialization->setTemplateSpecializationKind(TSK);
6096  return Specialization;
6097}
6098
6099// Explicit instantiation of a member class of a class template.
6100DeclResult
6101Sema::ActOnExplicitInstantiation(Scope *S,
6102                                 SourceLocation ExternLoc,
6103                                 SourceLocation TemplateLoc,
6104                                 unsigned TagSpec,
6105                                 SourceLocation KWLoc,
6106                                 CXXScopeSpec &SS,
6107                                 IdentifierInfo *Name,
6108                                 SourceLocation NameLoc,
6109                                 AttributeList *Attr) {
6110
6111  bool Owned = false;
6112  bool IsDependent = false;
6113  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
6114                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
6115                        /*ModulePrivateLoc=*/SourceLocation(),
6116                        MultiTemplateParamsArg(*this, 0, 0),
6117                        Owned, IsDependent, SourceLocation(), false,
6118                        TypeResult());
6119  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
6120
6121  if (!TagD)
6122    return true;
6123
6124  TagDecl *Tag = cast<TagDecl>(TagD);
6125  if (Tag->isEnum()) {
6126    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
6127      << Context.getTypeDeclType(Tag);
6128    return true;
6129  }
6130
6131  if (Tag->isInvalidDecl())
6132    return true;
6133
6134  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
6135  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
6136  if (!Pattern) {
6137    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
6138      << Context.getTypeDeclType(Record);
6139    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
6140    return true;
6141  }
6142
6143  // C++0x [temp.explicit]p2:
6144  //   If the explicit instantiation is for a class or member class, the
6145  //   elaborated-type-specifier in the declaration shall include a
6146  //   simple-template-id.
6147  //
6148  // C++98 has the same restriction, just worded differently.
6149  if (!ScopeSpecifierHasTemplateId(SS))
6150    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
6151      << Record << SS.getRange();
6152
6153  // C++0x [temp.explicit]p2:
6154  //   There are two forms of explicit instantiation: an explicit instantiation
6155  //   definition and an explicit instantiation declaration. An explicit
6156  //   instantiation declaration begins with the extern keyword. [...]
6157  TemplateSpecializationKind TSK
6158    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6159                           : TSK_ExplicitInstantiationDeclaration;
6160
6161  // C++0x [temp.explicit]p2:
6162  //   [...] An explicit instantiation shall appear in an enclosing
6163  //   namespace of its template. [...]
6164  //
6165  // This is C++ DR 275.
6166  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
6167
6168  // Verify that it is okay to explicitly instantiate here.
6169  CXXRecordDecl *PrevDecl
6170    = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
6171  if (!PrevDecl && Record->getDefinition())
6172    PrevDecl = Record;
6173  if (PrevDecl) {
6174    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
6175    bool HasNoEffect = false;
6176    assert(MSInfo && "No member specialization information?");
6177    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
6178                                               PrevDecl,
6179                                        MSInfo->getTemplateSpecializationKind(),
6180                                             MSInfo->getPointOfInstantiation(),
6181                                               HasNoEffect))
6182      return true;
6183    if (HasNoEffect)
6184      return TagD;
6185  }
6186
6187  CXXRecordDecl *RecordDef
6188    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6189  if (!RecordDef) {
6190    // C++ [temp.explicit]p3:
6191    //   A definition of a member class of a class template shall be in scope
6192    //   at the point of an explicit instantiation of the member class.
6193    CXXRecordDecl *Def
6194      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
6195    if (!Def) {
6196      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
6197        << 0 << Record->getDeclName() << Record->getDeclContext();
6198      Diag(Pattern->getLocation(), diag::note_forward_declaration)
6199        << Pattern;
6200      return true;
6201    } else {
6202      if (InstantiateClass(NameLoc, Record, Def,
6203                           getTemplateInstantiationArgs(Record),
6204                           TSK))
6205        return true;
6206
6207      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6208      if (!RecordDef)
6209        return true;
6210    }
6211  }
6212
6213  // Instantiate all of the members of the class.
6214  InstantiateClassMembers(NameLoc, RecordDef,
6215                          getTemplateInstantiationArgs(Record), TSK);
6216
6217  if (TSK == TSK_ExplicitInstantiationDefinition)
6218    MarkVTableUsed(NameLoc, RecordDef, true);
6219
6220  // FIXME: We don't have any representation for explicit instantiations of
6221  // member classes. Such a representation is not needed for compilation, but it
6222  // should be available for clients that want to see all of the declarations in
6223  // the source code.
6224  return TagD;
6225}
6226
6227DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
6228                                            SourceLocation ExternLoc,
6229                                            SourceLocation TemplateLoc,
6230                                            Declarator &D) {
6231  // Explicit instantiations always require a name.
6232  // TODO: check if/when DNInfo should replace Name.
6233  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6234  DeclarationName Name = NameInfo.getName();
6235  if (!Name) {
6236    if (!D.isInvalidType())
6237      Diag(D.getDeclSpec().getSourceRange().getBegin(),
6238           diag::err_explicit_instantiation_requires_name)
6239        << D.getDeclSpec().getSourceRange()
6240        << D.getSourceRange();
6241
6242    return true;
6243  }
6244
6245  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6246  // we find one that is.
6247  while ((S->getFlags() & Scope::DeclScope) == 0 ||
6248         (S->getFlags() & Scope::TemplateParamScope) != 0)
6249    S = S->getParent();
6250
6251  // Determine the type of the declaration.
6252  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
6253  QualType R = T->getType();
6254  if (R.isNull())
6255    return true;
6256
6257  // C++ [dcl.stc]p1:
6258  //   A storage-class-specifier shall not be specified in [...] an explicit
6259  //   instantiation (14.7.2) directive.
6260  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
6261    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
6262      << Name;
6263    return true;
6264  } else if (D.getDeclSpec().getStorageClassSpec()
6265                                                != DeclSpec::SCS_unspecified) {
6266    // Complain about then remove the storage class specifier.
6267    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
6268      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6269
6270    D.getMutableDeclSpec().ClearStorageClassSpecs();
6271  }
6272
6273  // C++0x [temp.explicit]p1:
6274  //   [...] An explicit instantiation of a function template shall not use the
6275  //   inline or constexpr specifiers.
6276  // Presumably, this also applies to member functions of class templates as
6277  // well.
6278  if (D.getDeclSpec().isInlineSpecified())
6279    Diag(D.getDeclSpec().getInlineSpecLoc(),
6280         getLangOptions().CPlusPlus0x ?
6281           diag::err_explicit_instantiation_inline :
6282           diag::warn_explicit_instantiation_inline_0x)
6283      << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6284  if (D.getDeclSpec().isConstexprSpecified())
6285    // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
6286    // not already specified.
6287    Diag(D.getDeclSpec().getConstexprSpecLoc(),
6288         diag::err_explicit_instantiation_constexpr);
6289
6290  // C++0x [temp.explicit]p2:
6291  //   There are two forms of explicit instantiation: an explicit instantiation
6292  //   definition and an explicit instantiation declaration. An explicit
6293  //   instantiation declaration begins with the extern keyword. [...]
6294  TemplateSpecializationKind TSK
6295    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6296                           : TSK_ExplicitInstantiationDeclaration;
6297
6298  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
6299  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
6300
6301  if (!R->isFunctionType()) {
6302    // C++ [temp.explicit]p1:
6303    //   A [...] static data member of a class template can be explicitly
6304    //   instantiated from the member definition associated with its class
6305    //   template.
6306    if (Previous.isAmbiguous())
6307      return true;
6308
6309    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
6310    if (!Prev || !Prev->isStaticDataMember()) {
6311      // We expect to see a data data member here.
6312      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
6313        << Name;
6314      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6315           P != PEnd; ++P)
6316        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
6317      return true;
6318    }
6319
6320    if (!Prev->getInstantiatedFromStaticDataMember()) {
6321      // FIXME: Check for explicit specialization?
6322      Diag(D.getIdentifierLoc(),
6323           diag::err_explicit_instantiation_data_member_not_instantiated)
6324        << Prev;
6325      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
6326      // FIXME: Can we provide a note showing where this was declared?
6327      return true;
6328    }
6329
6330    // C++0x [temp.explicit]p2:
6331    //   If the explicit instantiation is for a member function, a member class
6332    //   or a static data member of a class template specialization, the name of
6333    //   the class template specialization in the qualified-id for the member
6334    //   name shall be a simple-template-id.
6335    //
6336    // C++98 has the same restriction, just worded differently.
6337    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6338      Diag(D.getIdentifierLoc(),
6339           diag::ext_explicit_instantiation_without_qualified_id)
6340        << Prev << D.getCXXScopeSpec().getRange();
6341
6342    // Check the scope of this explicit instantiation.
6343    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
6344
6345    // Verify that it is okay to explicitly instantiate here.
6346    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
6347    assert(MSInfo && "Missing static data member specialization info?");
6348    bool HasNoEffect = false;
6349    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
6350                                        MSInfo->getTemplateSpecializationKind(),
6351                                              MSInfo->getPointOfInstantiation(),
6352                                               HasNoEffect))
6353      return true;
6354    if (HasNoEffect)
6355      return (Decl*) 0;
6356
6357    // Instantiate static data member.
6358    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6359    if (TSK == TSK_ExplicitInstantiationDefinition)
6360      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
6361
6362    // FIXME: Create an ExplicitInstantiation node?
6363    return (Decl*) 0;
6364  }
6365
6366  // If the declarator is a template-id, translate the parser's template
6367  // argument list into our AST format.
6368  bool HasExplicitTemplateArgs = false;
6369  TemplateArgumentListInfo TemplateArgs;
6370  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6371    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6372    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6373    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6374    ASTTemplateArgsPtr TemplateArgsPtr(*this,
6375                                       TemplateId->getTemplateArgs(),
6376                                       TemplateId->NumArgs);
6377    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
6378    HasExplicitTemplateArgs = true;
6379    TemplateArgsPtr.release();
6380  }
6381
6382  // C++ [temp.explicit]p1:
6383  //   A [...] function [...] can be explicitly instantiated from its template.
6384  //   A member function [...] of a class template can be explicitly
6385  //  instantiated from the member definition associated with its class
6386  //  template.
6387  UnresolvedSet<8> Matches;
6388  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6389       P != PEnd; ++P) {
6390    NamedDecl *Prev = *P;
6391    if (!HasExplicitTemplateArgs) {
6392      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
6393        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
6394          Matches.clear();
6395
6396          Matches.addDecl(Method, P.getAccess());
6397          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
6398            break;
6399        }
6400      }
6401    }
6402
6403    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
6404    if (!FunTmpl)
6405      continue;
6406
6407    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
6408    FunctionDecl *Specialization = 0;
6409    if (TemplateDeductionResult TDK
6410          = DeduceTemplateArguments(FunTmpl,
6411                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6412                                    R, Specialization, Info)) {
6413      // FIXME: Keep track of almost-matches?
6414      (void)TDK;
6415      continue;
6416    }
6417
6418    Matches.addDecl(Specialization, P.getAccess());
6419  }
6420
6421  // Find the most specialized function template specialization.
6422  UnresolvedSetIterator Result
6423    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
6424                         D.getIdentifierLoc(),
6425                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
6426                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
6427                         PDiag(diag::note_explicit_instantiation_candidate));
6428
6429  if (Result == Matches.end())
6430    return true;
6431
6432  // Ignore access control bits, we don't need them for redeclaration checking.
6433  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6434
6435  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
6436    Diag(D.getIdentifierLoc(),
6437         diag::err_explicit_instantiation_member_function_not_instantiated)
6438      << Specialization
6439      << (Specialization->getTemplateSpecializationKind() ==
6440          TSK_ExplicitSpecialization);
6441    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
6442    return true;
6443  }
6444
6445  FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
6446  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
6447    PrevDecl = Specialization;
6448
6449  if (PrevDecl) {
6450    bool HasNoEffect = false;
6451    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
6452                                               PrevDecl,
6453                                     PrevDecl->getTemplateSpecializationKind(),
6454                                          PrevDecl->getPointOfInstantiation(),
6455                                               HasNoEffect))
6456      return true;
6457
6458    // FIXME: We may still want to build some representation of this
6459    // explicit specialization.
6460    if (HasNoEffect)
6461      return (Decl*) 0;
6462  }
6463
6464  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6465  AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
6466  if (Attr)
6467    ProcessDeclAttributeList(S, Specialization, Attr);
6468
6469  if (TSK == TSK_ExplicitInstantiationDefinition)
6470    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
6471
6472  // C++0x [temp.explicit]p2:
6473  //   If the explicit instantiation is for a member function, a member class
6474  //   or a static data member of a class template specialization, the name of
6475  //   the class template specialization in the qualified-id for the member
6476  //   name shall be a simple-template-id.
6477  //
6478  // C++98 has the same restriction, just worded differently.
6479  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
6480  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
6481      D.getCXXScopeSpec().isSet() &&
6482      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6483    Diag(D.getIdentifierLoc(),
6484         diag::ext_explicit_instantiation_without_qualified_id)
6485    << Specialization << D.getCXXScopeSpec().getRange();
6486
6487  CheckExplicitInstantiationScope(*this,
6488                   FunTmpl? (NamedDecl *)FunTmpl
6489                          : Specialization->getInstantiatedFromMemberFunction(),
6490                                  D.getIdentifierLoc(),
6491                                  D.getCXXScopeSpec().isSet());
6492
6493  // FIXME: Create some kind of ExplicitInstantiationDecl here.
6494  return (Decl*) 0;
6495}
6496
6497TypeResult
6498Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6499                        const CXXScopeSpec &SS, IdentifierInfo *Name,
6500                        SourceLocation TagLoc, SourceLocation NameLoc) {
6501  // This has to hold, because SS is expected to be defined.
6502  assert(Name && "Expected a name in a dependent tag");
6503
6504  NestedNameSpecifier *NNS
6505    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6506  if (!NNS)
6507    return true;
6508
6509  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6510
6511  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
6512    Diag(NameLoc, diag::err_dependent_tag_decl)
6513      << (TUK == TUK_Definition) << Kind << SS.getRange();
6514    return true;
6515  }
6516
6517  // Create the resulting type.
6518  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6519  QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
6520
6521  // Create type-source location information for this type.
6522  TypeLocBuilder TLB;
6523  DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
6524  TL.setKeywordLoc(TagLoc);
6525  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6526  TL.setNameLoc(NameLoc);
6527  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
6528}
6529
6530TypeResult
6531Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6532                        const CXXScopeSpec &SS, const IdentifierInfo &II,
6533                        SourceLocation IdLoc) {
6534  if (SS.isInvalid())
6535    return true;
6536
6537  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6538    Diag(TypenameLoc,
6539         getLangOptions().CPlusPlus0x ?
6540           diag::warn_cxx98_compat_typename_outside_of_template :
6541           diag::ext_typename_outside_of_template)
6542      << FixItHint::CreateRemoval(TypenameLoc);
6543
6544  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6545  QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
6546                                 TypenameLoc, QualifierLoc, II, IdLoc);
6547  if (T.isNull())
6548    return true;
6549
6550  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6551  if (isa<DependentNameType>(T)) {
6552    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6553    TL.setKeywordLoc(TypenameLoc);
6554    TL.setQualifierLoc(QualifierLoc);
6555    TL.setNameLoc(IdLoc);
6556  } else {
6557    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6558    TL.setKeywordLoc(TypenameLoc);
6559    TL.setQualifierLoc(QualifierLoc);
6560    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
6561  }
6562
6563  return CreateParsedType(T, TSI);
6564}
6565
6566TypeResult
6567Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6568                        const CXXScopeSpec &SS,
6569                        SourceLocation TemplateLoc,
6570                        TemplateTy TemplateIn,
6571                        SourceLocation TemplateNameLoc,
6572                        SourceLocation LAngleLoc,
6573                        ASTTemplateArgsPtr TemplateArgsIn,
6574                        SourceLocation RAngleLoc) {
6575  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6576    Diag(TypenameLoc,
6577         getLangOptions().CPlusPlus0x ?
6578           diag::warn_cxx98_compat_typename_outside_of_template :
6579           diag::ext_typename_outside_of_template)
6580      << FixItHint::CreateRemoval(TypenameLoc);
6581
6582  // Translate the parser's template argument list in our AST format.
6583  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6584  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6585
6586  TemplateName Template = TemplateIn.get();
6587  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
6588    // Construct a dependent template specialization type.
6589    assert(DTN && "dependent template has non-dependent name?");
6590    assert(DTN->getQualifier()
6591           == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
6592    QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
6593                                                          DTN->getQualifier(),
6594                                                          DTN->getIdentifier(),
6595                                                                TemplateArgs);
6596
6597    // Create source-location information for this type.
6598    TypeLocBuilder Builder;
6599    DependentTemplateSpecializationTypeLoc SpecTL
6600    = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
6601    SpecTL.setLAngleLoc(LAngleLoc);
6602    SpecTL.setRAngleLoc(RAngleLoc);
6603    SpecTL.setKeywordLoc(TypenameLoc);
6604    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
6605    SpecTL.setNameLoc(TemplateNameLoc);
6606    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6607      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6608    return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
6609  }
6610
6611  QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
6612  if (T.isNull())
6613    return true;
6614
6615  // Provide source-location information for the template specialization
6616  // type.
6617  TypeLocBuilder Builder;
6618  TemplateSpecializationTypeLoc SpecTL
6619    = Builder.push<TemplateSpecializationTypeLoc>(T);
6620
6621  // FIXME: No place to set the location of the 'template' keyword!
6622  SpecTL.setLAngleLoc(LAngleLoc);
6623  SpecTL.setRAngleLoc(RAngleLoc);
6624  SpecTL.setTemplateNameLoc(TemplateNameLoc);
6625  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6626    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6627
6628  T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
6629  ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
6630  TL.setKeywordLoc(TypenameLoc);
6631  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6632
6633  TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
6634  return CreateParsedType(T, TSI);
6635}
6636
6637
6638/// \brief Build the type that describes a C++ typename specifier,
6639/// e.g., "typename T::type".
6640QualType
6641Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
6642                        SourceLocation KeywordLoc,
6643                        NestedNameSpecifierLoc QualifierLoc,
6644                        const IdentifierInfo &II,
6645                        SourceLocation IILoc) {
6646  CXXScopeSpec SS;
6647  SS.Adopt(QualifierLoc);
6648
6649  DeclContext *Ctx = computeDeclContext(SS);
6650  if (!Ctx) {
6651    // If the nested-name-specifier is dependent and couldn't be
6652    // resolved to a type, build a typename type.
6653    assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
6654    return Context.getDependentNameType(Keyword,
6655                                        QualifierLoc.getNestedNameSpecifier(),
6656                                        &II);
6657  }
6658
6659  // If the nested-name-specifier refers to the current instantiation,
6660  // the "typename" keyword itself is superfluous. In C++03, the
6661  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
6662  // allows such extraneous "typename" keywords, and we retroactively
6663  // apply this DR to C++03 code with only a warning. In any case we continue.
6664
6665  if (RequireCompleteDeclContext(SS, Ctx))
6666    return QualType();
6667
6668  DeclarationName Name(&II);
6669  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
6670  LookupQualifiedName(Result, Ctx);
6671  unsigned DiagID = 0;
6672  Decl *Referenced = 0;
6673  switch (Result.getResultKind()) {
6674  case LookupResult::NotFound:
6675    DiagID = diag::err_typename_nested_not_found;
6676    break;
6677
6678  case LookupResult::FoundUnresolvedValue: {
6679    // We found a using declaration that is a value. Most likely, the using
6680    // declaration itself is meant to have the 'typename' keyword.
6681    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6682                          IILoc);
6683    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
6684      << Name << Ctx << FullRange;
6685    if (UnresolvedUsingValueDecl *Using
6686          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
6687      SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
6688      Diag(Loc, diag::note_using_value_decl_missing_typename)
6689        << FixItHint::CreateInsertion(Loc, "typename ");
6690    }
6691  }
6692  // Fall through to create a dependent typename type, from which we can recover
6693  // better.
6694
6695  case LookupResult::NotFoundInCurrentInstantiation:
6696    // Okay, it's a member of an unknown instantiation.
6697    return Context.getDependentNameType(Keyword,
6698                                        QualifierLoc.getNestedNameSpecifier(),
6699                                        &II);
6700
6701  case LookupResult::Found:
6702    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
6703      // We found a type. Build an ElaboratedType, since the
6704      // typename-specifier was just sugar.
6705      return Context.getElaboratedType(ETK_Typename,
6706                                       QualifierLoc.getNestedNameSpecifier(),
6707                                       Context.getTypeDeclType(Type));
6708    }
6709
6710    DiagID = diag::err_typename_nested_not_type;
6711    Referenced = Result.getFoundDecl();
6712    break;
6713
6714  case LookupResult::FoundOverloaded:
6715    DiagID = diag::err_typename_nested_not_type;
6716    Referenced = *Result.begin();
6717    break;
6718
6719  case LookupResult::Ambiguous:
6720    return QualType();
6721  }
6722
6723  // If we get here, it's because name lookup did not find a
6724  // type. Emit an appropriate diagnostic and return an error.
6725  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6726                        IILoc);
6727  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
6728  if (Referenced)
6729    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
6730      << Name;
6731  return QualType();
6732}
6733
6734namespace {
6735  // See Sema::RebuildTypeInCurrentInstantiation
6736  class CurrentInstantiationRebuilder
6737    : public TreeTransform<CurrentInstantiationRebuilder> {
6738    SourceLocation Loc;
6739    DeclarationName Entity;
6740
6741  public:
6742    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
6743
6744    CurrentInstantiationRebuilder(Sema &SemaRef,
6745                                  SourceLocation Loc,
6746                                  DeclarationName Entity)
6747    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
6748      Loc(Loc), Entity(Entity) { }
6749
6750    /// \brief Determine whether the given type \p T has already been
6751    /// transformed.
6752    ///
6753    /// For the purposes of type reconstruction, a type has already been
6754    /// transformed if it is NULL or if it is not dependent.
6755    bool AlreadyTransformed(QualType T) {
6756      return T.isNull() || !T->isDependentType();
6757    }
6758
6759    /// \brief Returns the location of the entity whose type is being
6760    /// rebuilt.
6761    SourceLocation getBaseLocation() { return Loc; }
6762
6763    /// \brief Returns the name of the entity whose type is being rebuilt.
6764    DeclarationName getBaseEntity() { return Entity; }
6765
6766    /// \brief Sets the "base" location and entity when that
6767    /// information is known based on another transformation.
6768    void setBase(SourceLocation Loc, DeclarationName Entity) {
6769      this->Loc = Loc;
6770      this->Entity = Entity;
6771    }
6772  };
6773}
6774
6775/// \brief Rebuilds a type within the context of the current instantiation.
6776///
6777/// The type \p T is part of the type of an out-of-line member definition of
6778/// a class template (or class template partial specialization) that was parsed
6779/// and constructed before we entered the scope of the class template (or
6780/// partial specialization thereof). This routine will rebuild that type now
6781/// that we have entered the declarator's scope, which may produce different
6782/// canonical types, e.g.,
6783///
6784/// \code
6785/// template<typename T>
6786/// struct X {
6787///   typedef T* pointer;
6788///   pointer data();
6789/// };
6790///
6791/// template<typename T>
6792/// typename X<T>::pointer X<T>::data() { ... }
6793/// \endcode
6794///
6795/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
6796/// since we do not know that we can look into X<T> when we parsed the type.
6797/// This function will rebuild the type, performing the lookup of "pointer"
6798/// in X<T> and returning an ElaboratedType whose canonical type is the same
6799/// as the canonical type of T*, allowing the return types of the out-of-line
6800/// definition and the declaration to match.
6801TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
6802                                                        SourceLocation Loc,
6803                                                        DeclarationName Name) {
6804  if (!T || !T->getType()->isDependentType())
6805    return T;
6806
6807  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
6808  return Rebuilder.TransformType(T);
6809}
6810
6811ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
6812  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
6813                                          DeclarationName());
6814  return Rebuilder.TransformExpr(E);
6815}
6816
6817bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
6818  if (SS.isInvalid())
6819    return true;
6820
6821  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6822  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
6823                                          DeclarationName());
6824  NestedNameSpecifierLoc Rebuilt
6825    = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
6826  if (!Rebuilt)
6827    return true;
6828
6829  SS.Adopt(Rebuilt);
6830  return false;
6831}
6832
6833/// \brief Rebuild the template parameters now that we know we're in a current
6834/// instantiation.
6835bool Sema::RebuildTemplateParamsInCurrentInstantiation(
6836                                               TemplateParameterList *Params) {
6837  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
6838    Decl *Param = Params->getParam(I);
6839
6840    // There is nothing to rebuild in a type parameter.
6841    if (isa<TemplateTypeParmDecl>(Param))
6842      continue;
6843
6844    // Rebuild the template parameter list of a template template parameter.
6845    if (TemplateTemplateParmDecl *TTP
6846        = dyn_cast<TemplateTemplateParmDecl>(Param)) {
6847      if (RebuildTemplateParamsInCurrentInstantiation(
6848            TTP->getTemplateParameters()))
6849        return true;
6850
6851      continue;
6852    }
6853
6854    // Rebuild the type of a non-type template parameter.
6855    NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
6856    TypeSourceInfo *NewTSI
6857      = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
6858                                          NTTP->getLocation(),
6859                                          NTTP->getDeclName());
6860    if (!NewTSI)
6861      return true;
6862
6863    if (NewTSI != NTTP->getTypeSourceInfo()) {
6864      NTTP->setTypeSourceInfo(NewTSI);
6865      NTTP->setType(NewTSI->getType());
6866    }
6867  }
6868
6869  return false;
6870}
6871
6872/// \brief Produces a formatted string that describes the binding of
6873/// template parameters to template arguments.
6874std::string
6875Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6876                                      const TemplateArgumentList &Args) {
6877  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
6878}
6879
6880std::string
6881Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6882                                      const TemplateArgument *Args,
6883                                      unsigned NumArgs) {
6884  llvm::SmallString<128> Str;
6885  llvm::raw_svector_ostream Out(Str);
6886
6887  if (!Params || Params->size() == 0 || NumArgs == 0)
6888    return std::string();
6889
6890  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
6891    if (I >= NumArgs)
6892      break;
6893
6894    if (I == 0)
6895      Out << "[with ";
6896    else
6897      Out << ", ";
6898
6899    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
6900      Out << Id->getName();
6901    } else {
6902      Out << '$' << I;
6903    }
6904
6905    Out << " = ";
6906    Args[I].print(getPrintingPolicy(), Out);
6907  }
6908
6909  Out << ']';
6910  return Out.str();
6911}
6912
6913void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) {
6914  if (!FD)
6915    return;
6916  FD->setLateTemplateParsed(Flag);
6917}
6918
6919bool Sema::IsInsideALocalClassWithinATemplateFunction() {
6920  DeclContext *DC = CurContext;
6921
6922  while (DC) {
6923    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
6924      const FunctionDecl *FD = RD->isLocalClass();
6925      return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
6926    } else if (DC->isTranslationUnit() || DC->isNamespace())
6927      return false;
6928
6929    DC = DC->getParent();
6930  }
6931  return false;
6932}
6933