SemaTemplate.cpp revision e4da7a034a2fcf4b14d0bcc28d05de0878159061
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "Sema.h" 13#include "Lookup.h" 14#include "TreeTransform.h" 15#include "clang/AST/ASTContext.h" 16#include "clang/AST/Expr.h" 17#include "clang/AST/ExprCXX.h" 18#include "clang/AST/DeclFriend.h" 19#include "clang/AST/DeclTemplate.h" 20#include "clang/Parse/DeclSpec.h" 21#include "clang/Parse/Template.h" 22#include "clang/Basic/LangOptions.h" 23#include "clang/Basic/PartialDiagnostic.h" 24#include "llvm/ADT/StringExtras.h" 25using namespace clang; 26 27/// \brief Determine whether the declaration found is acceptable as the name 28/// of a template and, if so, return that template declaration. Otherwise, 29/// returns NULL. 30static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) { 31 if (!D) 32 return 0; 33 34 if (isa<TemplateDecl>(D)) 35 return D; 36 37 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 38 // C++ [temp.local]p1: 39 // Like normal (non-template) classes, class templates have an 40 // injected-class-name (Clause 9). The injected-class-name 41 // can be used with or without a template-argument-list. When 42 // it is used without a template-argument-list, it is 43 // equivalent to the injected-class-name followed by the 44 // template-parameters of the class template enclosed in 45 // <>. When it is used with a template-argument-list, it 46 // refers to the specified class template specialization, 47 // which could be the current specialization or another 48 // specialization. 49 if (Record->isInjectedClassName()) { 50 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 51 if (Record->getDescribedClassTemplate()) 52 return Record->getDescribedClassTemplate(); 53 54 if (ClassTemplateSpecializationDecl *Spec 55 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 56 return Spec->getSpecializedTemplate(); 57 } 58 59 return 0; 60 } 61 62 return 0; 63} 64 65static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) { 66 // The set of class templates we've already seen. 67 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 68 LookupResult::Filter filter = R.makeFilter(); 69 while (filter.hasNext()) { 70 NamedDecl *Orig = filter.next(); 71 NamedDecl *Repl = isAcceptableTemplateName(C, Orig->getUnderlyingDecl()); 72 if (!Repl) 73 filter.erase(); 74 else if (Repl != Orig) { 75 76 // C++ [temp.local]p3: 77 // A lookup that finds an injected-class-name (10.2) can result in an 78 // ambiguity in certain cases (for example, if it is found in more than 79 // one base class). If all of the injected-class-names that are found 80 // refer to specializations of the same class template, and if the name 81 // is followed by a template-argument-list, the reference refers to the 82 // class template itself and not a specialization thereof, and is not 83 // ambiguous. 84 // 85 // FIXME: Will we eventually have to do the same for alias templates? 86 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 87 if (!ClassTemplates.insert(ClassTmpl)) { 88 filter.erase(); 89 continue; 90 } 91 92 filter.replace(Repl); 93 } 94 } 95 filter.done(); 96} 97 98TemplateNameKind Sema::isTemplateName(Scope *S, 99 CXXScopeSpec &SS, 100 UnqualifiedId &Name, 101 TypeTy *ObjectTypePtr, 102 bool EnteringContext, 103 TemplateTy &TemplateResult) { 104 assert(getLangOptions().CPlusPlus && "No template names in C!"); 105 106 DeclarationName TName; 107 108 switch (Name.getKind()) { 109 case UnqualifiedId::IK_Identifier: 110 TName = DeclarationName(Name.Identifier); 111 break; 112 113 case UnqualifiedId::IK_OperatorFunctionId: 114 TName = Context.DeclarationNames.getCXXOperatorName( 115 Name.OperatorFunctionId.Operator); 116 break; 117 118 case UnqualifiedId::IK_LiteralOperatorId: 119 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 120 break; 121 122 default: 123 return TNK_Non_template; 124 } 125 126 QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr); 127 128 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 129 LookupOrdinaryName); 130 R.suppressDiagnostics(); 131 LookupTemplateName(R, S, SS, ObjectType, EnteringContext); 132 if (R.empty() || R.isAmbiguous()) 133 return TNK_Non_template; 134 135 TemplateName Template; 136 TemplateNameKind TemplateKind; 137 138 unsigned ResultCount = R.end() - R.begin(); 139 if (ResultCount > 1) { 140 // We assume that we'll preserve the qualifier from a function 141 // template name in other ways. 142 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 143 TemplateKind = TNK_Function_template; 144 } else { 145 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 146 147 if (SS.isSet() && !SS.isInvalid()) { 148 NestedNameSpecifier *Qualifier 149 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 150 Template = Context.getQualifiedTemplateName(Qualifier, false, TD); 151 } else { 152 Template = TemplateName(TD); 153 } 154 155 if (isa<FunctionTemplateDecl>(TD)) 156 TemplateKind = TNK_Function_template; 157 else { 158 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD)); 159 TemplateKind = TNK_Type_template; 160 } 161 } 162 163 TemplateResult = TemplateTy::make(Template); 164 return TemplateKind; 165} 166 167bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 168 SourceLocation IILoc, 169 Scope *S, 170 const CXXScopeSpec *SS, 171 TemplateTy &SuggestedTemplate, 172 TemplateNameKind &SuggestedKind) { 173 // We can't recover unless there's a dependent scope specifier preceding the 174 // template name. 175 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 176 computeDeclContext(*SS)) 177 return false; 178 179 // The code is missing a 'template' keyword prior to the dependent template 180 // name. 181 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 182 Diag(IILoc, diag::err_template_kw_missing) 183 << Qualifier << II.getName() 184 << FixItHint::CreateInsertion(IILoc, "template "); 185 SuggestedTemplate 186 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 187 SuggestedKind = TNK_Dependent_template_name; 188 return true; 189} 190 191void Sema::LookupTemplateName(LookupResult &Found, 192 Scope *S, CXXScopeSpec &SS, 193 QualType ObjectType, 194 bool EnteringContext) { 195 // Determine where to perform name lookup 196 DeclContext *LookupCtx = 0; 197 bool isDependent = false; 198 if (!ObjectType.isNull()) { 199 // This nested-name-specifier occurs in a member access expression, e.g., 200 // x->B::f, and we are looking into the type of the object. 201 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 202 LookupCtx = computeDeclContext(ObjectType); 203 isDependent = ObjectType->isDependentType(); 204 assert((isDependent || !ObjectType->isIncompleteType()) && 205 "Caller should have completed object type"); 206 } else if (SS.isSet()) { 207 // This nested-name-specifier occurs after another nested-name-specifier, 208 // so long into the context associated with the prior nested-name-specifier. 209 LookupCtx = computeDeclContext(SS, EnteringContext); 210 isDependent = isDependentScopeSpecifier(SS); 211 212 // The declaration context must be complete. 213 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 214 return; 215 } 216 217 bool ObjectTypeSearchedInScope = false; 218 if (LookupCtx) { 219 // Perform "qualified" name lookup into the declaration context we 220 // computed, which is either the type of the base of a member access 221 // expression or the declaration context associated with a prior 222 // nested-name-specifier. 223 LookupQualifiedName(Found, LookupCtx); 224 225 if (!ObjectType.isNull() && Found.empty()) { 226 // C++ [basic.lookup.classref]p1: 227 // In a class member access expression (5.2.5), if the . or -> token is 228 // immediately followed by an identifier followed by a <, the 229 // identifier must be looked up to determine whether the < is the 230 // beginning of a template argument list (14.2) or a less-than operator. 231 // The identifier is first looked up in the class of the object 232 // expression. If the identifier is not found, it is then looked up in 233 // the context of the entire postfix-expression and shall name a class 234 // or function template. 235 // 236 // FIXME: When we're instantiating a template, do we actually have to 237 // look in the scope of the template? Seems fishy... 238 if (S) LookupName(Found, S); 239 ObjectTypeSearchedInScope = true; 240 } 241 } else if (isDependent) { 242 // We cannot look into a dependent object type or nested nme 243 // specifier. 244 return; 245 } else { 246 // Perform unqualified name lookup in the current scope. 247 LookupName(Found, S); 248 } 249 250 if (Found.empty() && !isDependent) { 251 // If we did not find any names, attempt to correct any typos. 252 DeclarationName Name = Found.getLookupName(); 253 if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx, 254 false, CTC_CXXCasts)) { 255 FilterAcceptableTemplateNames(Context, Found); 256 if (!Found.empty() && isa<TemplateDecl>(*Found.begin())) { 257 if (LookupCtx) 258 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 259 << Name << LookupCtx << Found.getLookupName() << SS.getRange() 260 << FixItHint::CreateReplacement(Found.getNameLoc(), 261 Found.getLookupName().getAsString()); 262 else 263 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 264 << Name << Found.getLookupName() 265 << FixItHint::CreateReplacement(Found.getNameLoc(), 266 Found.getLookupName().getAsString()); 267 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 268 Diag(Template->getLocation(), diag::note_previous_decl) 269 << Template->getDeclName(); 270 } else 271 Found.clear(); 272 } else { 273 Found.clear(); 274 } 275 } 276 277 FilterAcceptableTemplateNames(Context, Found); 278 if (Found.empty()) 279 return; 280 281 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 282 // C++ [basic.lookup.classref]p1: 283 // [...] If the lookup in the class of the object expression finds a 284 // template, the name is also looked up in the context of the entire 285 // postfix-expression and [...] 286 // 287 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 288 LookupOrdinaryName); 289 LookupName(FoundOuter, S); 290 FilterAcceptableTemplateNames(Context, FoundOuter); 291 292 if (FoundOuter.empty()) { 293 // - if the name is not found, the name found in the class of the 294 // object expression is used, otherwise 295 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 296 // - if the name is found in the context of the entire 297 // postfix-expression and does not name a class template, the name 298 // found in the class of the object expression is used, otherwise 299 } else { 300 // - if the name found is a class template, it must refer to the same 301 // entity as the one found in the class of the object expression, 302 // otherwise the program is ill-formed. 303 if (!Found.isSingleResult() || 304 Found.getFoundDecl()->getCanonicalDecl() 305 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 306 Diag(Found.getNameLoc(), 307 diag::err_nested_name_member_ref_lookup_ambiguous) 308 << Found.getLookupName(); 309 Diag(Found.getRepresentativeDecl()->getLocation(), 310 diag::note_ambig_member_ref_object_type) 311 << ObjectType; 312 Diag(FoundOuter.getFoundDecl()->getLocation(), 313 diag::note_ambig_member_ref_scope); 314 315 // Recover by taking the template that we found in the object 316 // expression's type. 317 } 318 } 319 } 320} 321 322/// ActOnDependentIdExpression - Handle a dependent id-expression that 323/// was just parsed. This is only possible with an explicit scope 324/// specifier naming a dependent type. 325Sema::OwningExprResult 326Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 327 DeclarationName Name, 328 SourceLocation NameLoc, 329 bool isAddressOfOperand, 330 const TemplateArgumentListInfo *TemplateArgs) { 331 NestedNameSpecifier *Qualifier 332 = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 333 334 if (!isAddressOfOperand && 335 isa<CXXMethodDecl>(CurContext) && 336 cast<CXXMethodDecl>(CurContext)->isInstance()) { 337 QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context); 338 339 // Since the 'this' expression is synthesized, we don't need to 340 // perform the double-lookup check. 341 NamedDecl *FirstQualifierInScope = 0; 342 343 return Owned(CXXDependentScopeMemberExpr::Create(Context, 344 /*This*/ 0, ThisType, 345 /*IsArrow*/ true, 346 /*Op*/ SourceLocation(), 347 Qualifier, SS.getRange(), 348 FirstQualifierInScope, 349 Name, NameLoc, 350 TemplateArgs)); 351 } 352 353 return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs); 354} 355 356Sema::OwningExprResult 357Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 358 DeclarationName Name, 359 SourceLocation NameLoc, 360 const TemplateArgumentListInfo *TemplateArgs) { 361 return Owned(DependentScopeDeclRefExpr::Create(Context, 362 static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 363 SS.getRange(), 364 Name, NameLoc, 365 TemplateArgs)); 366} 367 368/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 369/// that the template parameter 'PrevDecl' is being shadowed by a new 370/// declaration at location Loc. Returns true to indicate that this is 371/// an error, and false otherwise. 372bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 373 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 374 375 // Microsoft Visual C++ permits template parameters to be shadowed. 376 if (getLangOptions().Microsoft) 377 return false; 378 379 // C++ [temp.local]p4: 380 // A template-parameter shall not be redeclared within its 381 // scope (including nested scopes). 382 Diag(Loc, diag::err_template_param_shadow) 383 << cast<NamedDecl>(PrevDecl)->getDeclName(); 384 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 385 return true; 386} 387 388/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 389/// the parameter D to reference the templated declaration and return a pointer 390/// to the template declaration. Otherwise, do nothing to D and return null. 391TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) { 392 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) { 393 D = DeclPtrTy::make(Temp->getTemplatedDecl()); 394 return Temp; 395 } 396 return 0; 397} 398 399static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 400 const ParsedTemplateArgument &Arg) { 401 402 switch (Arg.getKind()) { 403 case ParsedTemplateArgument::Type: { 404 TypeSourceInfo *DI; 405 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 406 if (!DI) 407 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 408 return TemplateArgumentLoc(TemplateArgument(T), DI); 409 } 410 411 case ParsedTemplateArgument::NonType: { 412 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 413 return TemplateArgumentLoc(TemplateArgument(E), E); 414 } 415 416 case ParsedTemplateArgument::Template: { 417 TemplateName Template 418 = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get()); 419 return TemplateArgumentLoc(TemplateArgument(Template), 420 Arg.getScopeSpec().getRange(), 421 Arg.getLocation()); 422 } 423 } 424 425 llvm_unreachable("Unhandled parsed template argument"); 426 return TemplateArgumentLoc(); 427} 428 429/// \brief Translates template arguments as provided by the parser 430/// into template arguments used by semantic analysis. 431void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 432 TemplateArgumentListInfo &TemplateArgs) { 433 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 434 TemplateArgs.addArgument(translateTemplateArgument(*this, 435 TemplateArgsIn[I])); 436} 437 438/// ActOnTypeParameter - Called when a C++ template type parameter 439/// (e.g., "typename T") has been parsed. Typename specifies whether 440/// the keyword "typename" was used to declare the type parameter 441/// (otherwise, "class" was used), and KeyLoc is the location of the 442/// "class" or "typename" keyword. ParamName is the name of the 443/// parameter (NULL indicates an unnamed template parameter) and 444/// ParamName is the location of the parameter name (if any). 445/// If the type parameter has a default argument, it will be added 446/// later via ActOnTypeParameterDefault. 447Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 448 SourceLocation EllipsisLoc, 449 SourceLocation KeyLoc, 450 IdentifierInfo *ParamName, 451 SourceLocation ParamNameLoc, 452 unsigned Depth, unsigned Position) { 453 assert(S->isTemplateParamScope() && 454 "Template type parameter not in template parameter scope!"); 455 bool Invalid = false; 456 457 if (ParamName) { 458 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 459 LookupOrdinaryName, 460 ForRedeclaration); 461 if (PrevDecl && PrevDecl->isTemplateParameter()) 462 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 463 PrevDecl); 464 } 465 466 SourceLocation Loc = ParamNameLoc; 467 if (!ParamName) 468 Loc = KeyLoc; 469 470 TemplateTypeParmDecl *Param 471 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 472 Loc, Depth, Position, ParamName, Typename, 473 Ellipsis); 474 if (Invalid) 475 Param->setInvalidDecl(); 476 477 if (ParamName) { 478 // Add the template parameter into the current scope. 479 S->AddDecl(DeclPtrTy::make(Param)); 480 IdResolver.AddDecl(Param); 481 } 482 483 return DeclPtrTy::make(Param); 484} 485 486/// ActOnTypeParameterDefault - Adds a default argument (the type 487/// Default) to the given template type parameter (TypeParam). 488void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam, 489 SourceLocation EqualLoc, 490 SourceLocation DefaultLoc, 491 TypeTy *DefaultT) { 492 TemplateTypeParmDecl *Parm 493 = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>()); 494 495 TypeSourceInfo *DefaultTInfo; 496 GetTypeFromParser(DefaultT, &DefaultTInfo); 497 498 assert(DefaultTInfo && "expected source information for type"); 499 500 // C++0x [temp.param]p9: 501 // A default template-argument may be specified for any kind of 502 // template-parameter that is not a template parameter pack. 503 if (Parm->isParameterPack()) { 504 Diag(DefaultLoc, diag::err_template_param_pack_default_arg); 505 return; 506 } 507 508 // C++ [temp.param]p14: 509 // A template-parameter shall not be used in its own default argument. 510 // FIXME: Implement this check! Needs a recursive walk over the types. 511 512 // Check the template argument itself. 513 if (CheckTemplateArgument(Parm, DefaultTInfo)) { 514 Parm->setInvalidDecl(); 515 return; 516 } 517 518 Parm->setDefaultArgument(DefaultTInfo, false); 519} 520 521/// \brief Check that the type of a non-type template parameter is 522/// well-formed. 523/// 524/// \returns the (possibly-promoted) parameter type if valid; 525/// otherwise, produces a diagnostic and returns a NULL type. 526QualType 527Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 528 // C++ [temp.param]p4: 529 // 530 // A non-type template-parameter shall have one of the following 531 // (optionally cv-qualified) types: 532 // 533 // -- integral or enumeration type, 534 if (T->isIntegralType() || T->isEnumeralType() || 535 // -- pointer to object or pointer to function, 536 (T->isPointerType() && 537 (T->getAs<PointerType>()->getPointeeType()->isObjectType() || 538 T->getAs<PointerType>()->getPointeeType()->isFunctionType())) || 539 // -- reference to object or reference to function, 540 T->isReferenceType() || 541 // -- pointer to member. 542 T->isMemberPointerType() || 543 // If T is a dependent type, we can't do the check now, so we 544 // assume that it is well-formed. 545 T->isDependentType()) 546 return T; 547 // C++ [temp.param]p8: 548 // 549 // A non-type template-parameter of type "array of T" or 550 // "function returning T" is adjusted to be of type "pointer to 551 // T" or "pointer to function returning T", respectively. 552 else if (T->isArrayType()) 553 // FIXME: Keep the type prior to promotion? 554 return Context.getArrayDecayedType(T); 555 else if (T->isFunctionType()) 556 // FIXME: Keep the type prior to promotion? 557 return Context.getPointerType(T); 558 559 Diag(Loc, diag::err_template_nontype_parm_bad_type) 560 << T; 561 562 return QualType(); 563} 564 565/// ActOnNonTypeTemplateParameter - Called when a C++ non-type 566/// template parameter (e.g., "int Size" in "template<int Size> 567/// class Array") has been parsed. S is the current scope and D is 568/// the parsed declarator. 569Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 570 unsigned Depth, 571 unsigned Position) { 572 TypeSourceInfo *TInfo = 0; 573 QualType T = GetTypeForDeclarator(D, S, &TInfo); 574 575 assert(S->isTemplateParamScope() && 576 "Non-type template parameter not in template parameter scope!"); 577 bool Invalid = false; 578 579 IdentifierInfo *ParamName = D.getIdentifier(); 580 if (ParamName) { 581 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 582 LookupOrdinaryName, 583 ForRedeclaration); 584 if (PrevDecl && PrevDecl->isTemplateParameter()) 585 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 586 PrevDecl); 587 } 588 589 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 590 if (T.isNull()) { 591 T = Context.IntTy; // Recover with an 'int' type. 592 Invalid = true; 593 } 594 595 NonTypeTemplateParmDecl *Param 596 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 597 D.getIdentifierLoc(), 598 Depth, Position, ParamName, T, TInfo); 599 if (Invalid) 600 Param->setInvalidDecl(); 601 602 if (D.getIdentifier()) { 603 // Add the template parameter into the current scope. 604 S->AddDecl(DeclPtrTy::make(Param)); 605 IdResolver.AddDecl(Param); 606 } 607 return DeclPtrTy::make(Param); 608} 609 610/// \brief Adds a default argument to the given non-type template 611/// parameter. 612void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD, 613 SourceLocation EqualLoc, 614 ExprArg DefaultE) { 615 NonTypeTemplateParmDecl *TemplateParm 616 = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 617 Expr *Default = static_cast<Expr *>(DefaultE.get()); 618 619 // C++ [temp.param]p14: 620 // A template-parameter shall not be used in its own default argument. 621 // FIXME: Implement this check! Needs a recursive walk over the types. 622 623 // Check the well-formedness of the default template argument. 624 TemplateArgument Converted; 625 if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default, 626 Converted)) { 627 TemplateParm->setInvalidDecl(); 628 return; 629 } 630 631 TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>()); 632} 633 634 635/// ActOnTemplateTemplateParameter - Called when a C++ template template 636/// parameter (e.g. T in template <template <typename> class T> class array) 637/// has been parsed. S is the current scope. 638Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S, 639 SourceLocation TmpLoc, 640 TemplateParamsTy *Params, 641 IdentifierInfo *Name, 642 SourceLocation NameLoc, 643 unsigned Depth, 644 unsigned Position) { 645 assert(S->isTemplateParamScope() && 646 "Template template parameter not in template parameter scope!"); 647 648 // Construct the parameter object. 649 TemplateTemplateParmDecl *Param = 650 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 651 TmpLoc, Depth, Position, Name, 652 (TemplateParameterList*)Params); 653 654 // Make sure the parameter is valid. 655 // FIXME: Decl object is not currently invalidated anywhere so this doesn't 656 // do anything yet. However, if the template parameter list or (eventual) 657 // default value is ever invalidated, that will propagate here. 658 bool Invalid = false; 659 if (Invalid) { 660 Param->setInvalidDecl(); 661 } 662 663 // If the tt-param has a name, then link the identifier into the scope 664 // and lookup mechanisms. 665 if (Name) { 666 S->AddDecl(DeclPtrTy::make(Param)); 667 IdResolver.AddDecl(Param); 668 } 669 670 return DeclPtrTy::make(Param); 671} 672 673/// \brief Adds a default argument to the given template template 674/// parameter. 675void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD, 676 SourceLocation EqualLoc, 677 const ParsedTemplateArgument &Default) { 678 TemplateTemplateParmDecl *TemplateParm 679 = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 680 681 // C++ [temp.param]p14: 682 // A template-parameter shall not be used in its own default argument. 683 // FIXME: Implement this check! Needs a recursive walk over the types. 684 685 // Check only that we have a template template argument. We don't want to 686 // try to check well-formedness now, because our template template parameter 687 // might have dependent types in its template parameters, which we wouldn't 688 // be able to match now. 689 // 690 // If none of the template template parameter's template arguments mention 691 // other template parameters, we could actually perform more checking here. 692 // However, it isn't worth doing. 693 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 694 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 695 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 696 << DefaultArg.getSourceRange(); 697 return; 698 } 699 700 TemplateParm->setDefaultArgument(DefaultArg); 701} 702 703/// ActOnTemplateParameterList - Builds a TemplateParameterList that 704/// contains the template parameters in Params/NumParams. 705Sema::TemplateParamsTy * 706Sema::ActOnTemplateParameterList(unsigned Depth, 707 SourceLocation ExportLoc, 708 SourceLocation TemplateLoc, 709 SourceLocation LAngleLoc, 710 DeclPtrTy *Params, unsigned NumParams, 711 SourceLocation RAngleLoc) { 712 if (ExportLoc.isValid()) 713 Diag(ExportLoc, diag::warn_template_export_unsupported); 714 715 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 716 (NamedDecl**)Params, NumParams, 717 RAngleLoc); 718} 719 720static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 721 if (SS.isSet()) 722 T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 723 SS.getRange()); 724} 725 726Sema::DeclResult 727Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 728 SourceLocation KWLoc, CXXScopeSpec &SS, 729 IdentifierInfo *Name, SourceLocation NameLoc, 730 AttributeList *Attr, 731 TemplateParameterList *TemplateParams, 732 AccessSpecifier AS) { 733 assert(TemplateParams && TemplateParams->size() > 0 && 734 "No template parameters"); 735 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 736 bool Invalid = false; 737 738 // Check that we can declare a template here. 739 if (CheckTemplateDeclScope(S, TemplateParams)) 740 return true; 741 742 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 743 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 744 745 // There is no such thing as an unnamed class template. 746 if (!Name) { 747 Diag(KWLoc, diag::err_template_unnamed_class); 748 return true; 749 } 750 751 // Find any previous declaration with this name. 752 DeclContext *SemanticContext; 753 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 754 ForRedeclaration); 755 if (SS.isNotEmpty() && !SS.isInvalid()) { 756 SemanticContext = computeDeclContext(SS, true); 757 if (!SemanticContext) { 758 // FIXME: Produce a reasonable diagnostic here 759 return true; 760 } 761 762 if (RequireCompleteDeclContext(SS, SemanticContext)) 763 return true; 764 765 LookupQualifiedName(Previous, SemanticContext); 766 } else { 767 SemanticContext = CurContext; 768 LookupName(Previous, S); 769 } 770 771 if (Previous.isAmbiguous()) 772 return true; 773 774 NamedDecl *PrevDecl = 0; 775 if (Previous.begin() != Previous.end()) 776 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 777 778 // If there is a previous declaration with the same name, check 779 // whether this is a valid redeclaration. 780 ClassTemplateDecl *PrevClassTemplate 781 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 782 783 // We may have found the injected-class-name of a class template, 784 // class template partial specialization, or class template specialization. 785 // In these cases, grab the template that is being defined or specialized. 786 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 787 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 788 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 789 PrevClassTemplate 790 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 791 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 792 PrevClassTemplate 793 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 794 ->getSpecializedTemplate(); 795 } 796 } 797 798 if (TUK == TUK_Friend) { 799 // C++ [namespace.memdef]p3: 800 // [...] When looking for a prior declaration of a class or a function 801 // declared as a friend, and when the name of the friend class or 802 // function is neither a qualified name nor a template-id, scopes outside 803 // the innermost enclosing namespace scope are not considered. 804 if (!SS.isSet()) { 805 DeclContext *OutermostContext = CurContext; 806 while (!OutermostContext->isFileContext()) 807 OutermostContext = OutermostContext->getLookupParent(); 808 809 if (PrevDecl && 810 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 811 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 812 SemanticContext = PrevDecl->getDeclContext(); 813 } else { 814 // Declarations in outer scopes don't matter. However, the outermost 815 // context we computed is the semantic context for our new 816 // declaration. 817 PrevDecl = PrevClassTemplate = 0; 818 SemanticContext = OutermostContext; 819 } 820 } 821 822 if (CurContext->isDependentContext()) { 823 // If this is a dependent context, we don't want to link the friend 824 // class template to the template in scope, because that would perform 825 // checking of the template parameter lists that can't be performed 826 // until the outer context is instantiated. 827 PrevDecl = PrevClassTemplate = 0; 828 } 829 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 830 PrevDecl = PrevClassTemplate = 0; 831 832 if (PrevClassTemplate) { 833 // Ensure that the template parameter lists are compatible. 834 if (!TemplateParameterListsAreEqual(TemplateParams, 835 PrevClassTemplate->getTemplateParameters(), 836 /*Complain=*/true, 837 TPL_TemplateMatch)) 838 return true; 839 840 // C++ [temp.class]p4: 841 // In a redeclaration, partial specialization, explicit 842 // specialization or explicit instantiation of a class template, 843 // the class-key shall agree in kind with the original class 844 // template declaration (7.1.5.3). 845 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 846 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 847 Diag(KWLoc, diag::err_use_with_wrong_tag) 848 << Name 849 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 850 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 851 Kind = PrevRecordDecl->getTagKind(); 852 } 853 854 // Check for redefinition of this class template. 855 if (TUK == TUK_Definition) { 856 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 857 Diag(NameLoc, diag::err_redefinition) << Name; 858 Diag(Def->getLocation(), diag::note_previous_definition); 859 // FIXME: Would it make sense to try to "forget" the previous 860 // definition, as part of error recovery? 861 return true; 862 } 863 } 864 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 865 // Maybe we will complain about the shadowed template parameter. 866 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 867 // Just pretend that we didn't see the previous declaration. 868 PrevDecl = 0; 869 } else if (PrevDecl) { 870 // C++ [temp]p5: 871 // A class template shall not have the same name as any other 872 // template, class, function, object, enumeration, enumerator, 873 // namespace, or type in the same scope (3.3), except as specified 874 // in (14.5.4). 875 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 876 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 877 return true; 878 } 879 880 // Check the template parameter list of this declaration, possibly 881 // merging in the template parameter list from the previous class 882 // template declaration. 883 if (CheckTemplateParameterList(TemplateParams, 884 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 885 TPC_ClassTemplate)) 886 Invalid = true; 887 888 if (SS.isSet()) { 889 // If the name of the template was qualified, we must be defining the 890 // template out-of-line. 891 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate && 892 !(TUK == TUK_Friend && CurContext->isDependentContext())) 893 Diag(NameLoc, diag::err_member_def_does_not_match) 894 << Name << SemanticContext << SS.getRange(); 895 } 896 897 CXXRecordDecl *NewClass = 898 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 899 PrevClassTemplate? 900 PrevClassTemplate->getTemplatedDecl() : 0, 901 /*DelayTypeCreation=*/true); 902 SetNestedNameSpecifier(NewClass, SS); 903 904 ClassTemplateDecl *NewTemplate 905 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 906 DeclarationName(Name), TemplateParams, 907 NewClass, PrevClassTemplate); 908 NewClass->setDescribedClassTemplate(NewTemplate); 909 910 // Build the type for the class template declaration now. 911 QualType T = NewTemplate->getInjectedClassNameSpecialization(Context); 912 T = Context.getInjectedClassNameType(NewClass, T); 913 assert(T->isDependentType() && "Class template type is not dependent?"); 914 (void)T; 915 916 // If we are providing an explicit specialization of a member that is a 917 // class template, make a note of that. 918 if (PrevClassTemplate && 919 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 920 PrevClassTemplate->setMemberSpecialization(); 921 922 // Set the access specifier. 923 if (!Invalid && TUK != TUK_Friend) 924 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 925 926 // Set the lexical context of these templates 927 NewClass->setLexicalDeclContext(CurContext); 928 NewTemplate->setLexicalDeclContext(CurContext); 929 930 if (TUK == TUK_Definition) 931 NewClass->startDefinition(); 932 933 if (Attr) 934 ProcessDeclAttributeList(S, NewClass, Attr); 935 936 if (TUK != TUK_Friend) 937 PushOnScopeChains(NewTemplate, S); 938 else { 939 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 940 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 941 NewClass->setAccess(PrevClassTemplate->getAccess()); 942 } 943 944 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 945 PrevClassTemplate != NULL); 946 947 // Friend templates are visible in fairly strange ways. 948 if (!CurContext->isDependentContext()) { 949 DeclContext *DC = SemanticContext->getLookupContext(); 950 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 951 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 952 PushOnScopeChains(NewTemplate, EnclosingScope, 953 /* AddToContext = */ false); 954 } 955 956 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 957 NewClass->getLocation(), 958 NewTemplate, 959 /*FIXME:*/NewClass->getLocation()); 960 Friend->setAccess(AS_public); 961 CurContext->addDecl(Friend); 962 } 963 964 if (Invalid) { 965 NewTemplate->setInvalidDecl(); 966 NewClass->setInvalidDecl(); 967 } 968 return DeclPtrTy::make(NewTemplate); 969} 970 971/// \brief Diagnose the presence of a default template argument on a 972/// template parameter, which is ill-formed in certain contexts. 973/// 974/// \returns true if the default template argument should be dropped. 975static bool DiagnoseDefaultTemplateArgument(Sema &S, 976 Sema::TemplateParamListContext TPC, 977 SourceLocation ParamLoc, 978 SourceRange DefArgRange) { 979 switch (TPC) { 980 case Sema::TPC_ClassTemplate: 981 return false; 982 983 case Sema::TPC_FunctionTemplate: 984 // C++ [temp.param]p9: 985 // A default template-argument shall not be specified in a 986 // function template declaration or a function template 987 // definition [...] 988 // (This sentence is not in C++0x, per DR226). 989 if (!S.getLangOptions().CPlusPlus0x) 990 S.Diag(ParamLoc, 991 diag::err_template_parameter_default_in_function_template) 992 << DefArgRange; 993 return false; 994 995 case Sema::TPC_ClassTemplateMember: 996 // C++0x [temp.param]p9: 997 // A default template-argument shall not be specified in the 998 // template-parameter-lists of the definition of a member of a 999 // class template that appears outside of the member's class. 1000 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1001 << DefArgRange; 1002 return true; 1003 1004 case Sema::TPC_FriendFunctionTemplate: 1005 // C++ [temp.param]p9: 1006 // A default template-argument shall not be specified in a 1007 // friend template declaration. 1008 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1009 << DefArgRange; 1010 return true; 1011 1012 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1013 // for friend function templates if there is only a single 1014 // declaration (and it is a definition). Strange! 1015 } 1016 1017 return false; 1018} 1019 1020/// \brief Checks the validity of a template parameter list, possibly 1021/// considering the template parameter list from a previous 1022/// declaration. 1023/// 1024/// If an "old" template parameter list is provided, it must be 1025/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1026/// template parameter list. 1027/// 1028/// \param NewParams Template parameter list for a new template 1029/// declaration. This template parameter list will be updated with any 1030/// default arguments that are carried through from the previous 1031/// template parameter list. 1032/// 1033/// \param OldParams If provided, template parameter list from a 1034/// previous declaration of the same template. Default template 1035/// arguments will be merged from the old template parameter list to 1036/// the new template parameter list. 1037/// 1038/// \param TPC Describes the context in which we are checking the given 1039/// template parameter list. 1040/// 1041/// \returns true if an error occurred, false otherwise. 1042bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1043 TemplateParameterList *OldParams, 1044 TemplateParamListContext TPC) { 1045 bool Invalid = false; 1046 1047 // C++ [temp.param]p10: 1048 // The set of default template-arguments available for use with a 1049 // template declaration or definition is obtained by merging the 1050 // default arguments from the definition (if in scope) and all 1051 // declarations in scope in the same way default function 1052 // arguments are (8.3.6). 1053 bool SawDefaultArgument = false; 1054 SourceLocation PreviousDefaultArgLoc; 1055 1056 bool SawParameterPack = false; 1057 SourceLocation ParameterPackLoc; 1058 1059 // Dummy initialization to avoid warnings. 1060 TemplateParameterList::iterator OldParam = NewParams->end(); 1061 if (OldParams) 1062 OldParam = OldParams->begin(); 1063 1064 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1065 NewParamEnd = NewParams->end(); 1066 NewParam != NewParamEnd; ++NewParam) { 1067 // Variables used to diagnose redundant default arguments 1068 bool RedundantDefaultArg = false; 1069 SourceLocation OldDefaultLoc; 1070 SourceLocation NewDefaultLoc; 1071 1072 // Variables used to diagnose missing default arguments 1073 bool MissingDefaultArg = false; 1074 1075 // C++0x [temp.param]p11: 1076 // If a template parameter of a class template is a template parameter pack, 1077 // it must be the last template parameter. 1078 if (SawParameterPack) { 1079 Diag(ParameterPackLoc, 1080 diag::err_template_param_pack_must_be_last_template_parameter); 1081 Invalid = true; 1082 } 1083 1084 if (TemplateTypeParmDecl *NewTypeParm 1085 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1086 // Check the presence of a default argument here. 1087 if (NewTypeParm->hasDefaultArgument() && 1088 DiagnoseDefaultTemplateArgument(*this, TPC, 1089 NewTypeParm->getLocation(), 1090 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1091 .getFullSourceRange())) 1092 NewTypeParm->removeDefaultArgument(); 1093 1094 // Merge default arguments for template type parameters. 1095 TemplateTypeParmDecl *OldTypeParm 1096 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1097 1098 if (NewTypeParm->isParameterPack()) { 1099 assert(!NewTypeParm->hasDefaultArgument() && 1100 "Parameter packs can't have a default argument!"); 1101 SawParameterPack = true; 1102 ParameterPackLoc = NewTypeParm->getLocation(); 1103 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1104 NewTypeParm->hasDefaultArgument()) { 1105 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1106 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1107 SawDefaultArgument = true; 1108 RedundantDefaultArg = true; 1109 PreviousDefaultArgLoc = NewDefaultLoc; 1110 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1111 // Merge the default argument from the old declaration to the 1112 // new declaration. 1113 SawDefaultArgument = true; 1114 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1115 true); 1116 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1117 } else if (NewTypeParm->hasDefaultArgument()) { 1118 SawDefaultArgument = true; 1119 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1120 } else if (SawDefaultArgument) 1121 MissingDefaultArg = true; 1122 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1123 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1124 // Check the presence of a default argument here. 1125 if (NewNonTypeParm->hasDefaultArgument() && 1126 DiagnoseDefaultTemplateArgument(*this, TPC, 1127 NewNonTypeParm->getLocation(), 1128 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1129 NewNonTypeParm->getDefaultArgument()->Destroy(Context); 1130 NewNonTypeParm->setDefaultArgument(0); 1131 } 1132 1133 // Merge default arguments for non-type template parameters 1134 NonTypeTemplateParmDecl *OldNonTypeParm 1135 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1136 if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1137 NewNonTypeParm->hasDefaultArgument()) { 1138 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1139 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1140 SawDefaultArgument = true; 1141 RedundantDefaultArg = true; 1142 PreviousDefaultArgLoc = NewDefaultLoc; 1143 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1144 // Merge the default argument from the old declaration to the 1145 // new declaration. 1146 SawDefaultArgument = true; 1147 // FIXME: We need to create a new kind of "default argument" 1148 // expression that points to a previous template template 1149 // parameter. 1150 NewNonTypeParm->setDefaultArgument( 1151 OldNonTypeParm->getDefaultArgument()); 1152 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1153 } else if (NewNonTypeParm->hasDefaultArgument()) { 1154 SawDefaultArgument = true; 1155 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1156 } else if (SawDefaultArgument) 1157 MissingDefaultArg = true; 1158 } else { 1159 // Check the presence of a default argument here. 1160 TemplateTemplateParmDecl *NewTemplateParm 1161 = cast<TemplateTemplateParmDecl>(*NewParam); 1162 if (NewTemplateParm->hasDefaultArgument() && 1163 DiagnoseDefaultTemplateArgument(*this, TPC, 1164 NewTemplateParm->getLocation(), 1165 NewTemplateParm->getDefaultArgument().getSourceRange())) 1166 NewTemplateParm->setDefaultArgument(TemplateArgumentLoc()); 1167 1168 // Merge default arguments for template template parameters 1169 TemplateTemplateParmDecl *OldTemplateParm 1170 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1171 if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1172 NewTemplateParm->hasDefaultArgument()) { 1173 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1174 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1175 SawDefaultArgument = true; 1176 RedundantDefaultArg = true; 1177 PreviousDefaultArgLoc = NewDefaultLoc; 1178 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1179 // Merge the default argument from the old declaration to the 1180 // new declaration. 1181 SawDefaultArgument = true; 1182 // FIXME: We need to create a new kind of "default argument" expression 1183 // that points to a previous template template parameter. 1184 NewTemplateParm->setDefaultArgument( 1185 OldTemplateParm->getDefaultArgument()); 1186 PreviousDefaultArgLoc 1187 = OldTemplateParm->getDefaultArgument().getLocation(); 1188 } else if (NewTemplateParm->hasDefaultArgument()) { 1189 SawDefaultArgument = true; 1190 PreviousDefaultArgLoc 1191 = NewTemplateParm->getDefaultArgument().getLocation(); 1192 } else if (SawDefaultArgument) 1193 MissingDefaultArg = true; 1194 } 1195 1196 if (RedundantDefaultArg) { 1197 // C++ [temp.param]p12: 1198 // A template-parameter shall not be given default arguments 1199 // by two different declarations in the same scope. 1200 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1201 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1202 Invalid = true; 1203 } else if (MissingDefaultArg) { 1204 // C++ [temp.param]p11: 1205 // If a template-parameter has a default template-argument, 1206 // all subsequent template-parameters shall have a default 1207 // template-argument supplied. 1208 Diag((*NewParam)->getLocation(), 1209 diag::err_template_param_default_arg_missing); 1210 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1211 Invalid = true; 1212 } 1213 1214 // If we have an old template parameter list that we're merging 1215 // in, move on to the next parameter. 1216 if (OldParams) 1217 ++OldParam; 1218 } 1219 1220 return Invalid; 1221} 1222 1223/// \brief Match the given template parameter lists to the given scope 1224/// specifier, returning the template parameter list that applies to the 1225/// name. 1226/// 1227/// \param DeclStartLoc the start of the declaration that has a scope 1228/// specifier or a template parameter list. 1229/// 1230/// \param SS the scope specifier that will be matched to the given template 1231/// parameter lists. This scope specifier precedes a qualified name that is 1232/// being declared. 1233/// 1234/// \param ParamLists the template parameter lists, from the outermost to the 1235/// innermost template parameter lists. 1236/// 1237/// \param NumParamLists the number of template parameter lists in ParamLists. 1238/// 1239/// \param IsFriend Whether to apply the slightly different rules for 1240/// matching template parameters to scope specifiers in friend 1241/// declarations. 1242/// 1243/// \param IsExplicitSpecialization will be set true if the entity being 1244/// declared is an explicit specialization, false otherwise. 1245/// 1246/// \returns the template parameter list, if any, that corresponds to the 1247/// name that is preceded by the scope specifier @p SS. This template 1248/// parameter list may be have template parameters (if we're declaring a 1249/// template) or may have no template parameters (if we're declaring a 1250/// template specialization), or may be NULL (if we were's declaring isn't 1251/// itself a template). 1252TemplateParameterList * 1253Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1254 const CXXScopeSpec &SS, 1255 TemplateParameterList **ParamLists, 1256 unsigned NumParamLists, 1257 bool IsFriend, 1258 bool &IsExplicitSpecialization) { 1259 IsExplicitSpecialization = false; 1260 1261 // Find the template-ids that occur within the nested-name-specifier. These 1262 // template-ids will match up with the template parameter lists. 1263 llvm::SmallVector<const TemplateSpecializationType *, 4> 1264 TemplateIdsInSpecifier; 1265 llvm::SmallVector<ClassTemplateSpecializationDecl *, 4> 1266 ExplicitSpecializationsInSpecifier; 1267 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 1268 NNS; NNS = NNS->getPrefix()) { 1269 const Type *T = NNS->getAsType(); 1270 if (!T) break; 1271 1272 // C++0x [temp.expl.spec]p17: 1273 // A member or a member template may be nested within many 1274 // enclosing class templates. In an explicit specialization for 1275 // such a member, the member declaration shall be preceded by a 1276 // template<> for each enclosing class template that is 1277 // explicitly specialized. 1278 // 1279 // Following the existing practice of GNU and EDG, we allow a typedef of a 1280 // template specialization type. 1281 if (const TypedefType *TT = dyn_cast<TypedefType>(T)) 1282 T = TT->LookThroughTypedefs().getTypePtr(); 1283 1284 if (const TemplateSpecializationType *SpecType 1285 = dyn_cast<TemplateSpecializationType>(T)) { 1286 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 1287 if (!Template) 1288 continue; // FIXME: should this be an error? probably... 1289 1290 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 1291 ClassTemplateSpecializationDecl *SpecDecl 1292 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 1293 // If the nested name specifier refers to an explicit specialization, 1294 // we don't need a template<> header. 1295 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) { 1296 ExplicitSpecializationsInSpecifier.push_back(SpecDecl); 1297 continue; 1298 } 1299 } 1300 1301 TemplateIdsInSpecifier.push_back(SpecType); 1302 } 1303 } 1304 1305 // Reverse the list of template-ids in the scope specifier, so that we can 1306 // more easily match up the template-ids and the template parameter lists. 1307 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 1308 1309 SourceLocation FirstTemplateLoc = DeclStartLoc; 1310 if (NumParamLists) 1311 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 1312 1313 // Match the template-ids found in the specifier to the template parameter 1314 // lists. 1315 unsigned Idx = 0; 1316 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 1317 Idx != NumTemplateIds; ++Idx) { 1318 QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0); 1319 bool DependentTemplateId = TemplateId->isDependentType(); 1320 if (Idx >= NumParamLists) { 1321 // We have a template-id without a corresponding template parameter 1322 // list. 1323 1324 // ...which is fine if this is a friend declaration. 1325 if (IsFriend) { 1326 IsExplicitSpecialization = true; 1327 break; 1328 } 1329 1330 if (DependentTemplateId) { 1331 // FIXME: the location information here isn't great. 1332 Diag(SS.getRange().getBegin(), 1333 diag::err_template_spec_needs_template_parameters) 1334 << TemplateId 1335 << SS.getRange(); 1336 } else { 1337 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 1338 << SS.getRange() 1339 << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> "); 1340 IsExplicitSpecialization = true; 1341 } 1342 return 0; 1343 } 1344 1345 // Check the template parameter list against its corresponding template-id. 1346 if (DependentTemplateId) { 1347 TemplateParameterList *ExpectedTemplateParams = 0; 1348 1349 // Are there cases in (e.g.) friends where this won't match? 1350 if (const InjectedClassNameType *Injected 1351 = TemplateId->getAs<InjectedClassNameType>()) { 1352 CXXRecordDecl *Record = Injected->getDecl(); 1353 if (ClassTemplatePartialSpecializationDecl *Partial = 1354 dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) 1355 ExpectedTemplateParams = Partial->getTemplateParameters(); 1356 else 1357 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1358 ->getTemplateParameters(); 1359 } 1360 1361 if (ExpectedTemplateParams) 1362 TemplateParameterListsAreEqual(ParamLists[Idx], 1363 ExpectedTemplateParams, 1364 true, TPL_TemplateMatch); 1365 1366 CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember); 1367 } else if (ParamLists[Idx]->size() > 0) 1368 Diag(ParamLists[Idx]->getTemplateLoc(), 1369 diag::err_template_param_list_matches_nontemplate) 1370 << TemplateId 1371 << ParamLists[Idx]->getSourceRange(); 1372 else 1373 IsExplicitSpecialization = true; 1374 } 1375 1376 // If there were at least as many template-ids as there were template 1377 // parameter lists, then there are no template parameter lists remaining for 1378 // the declaration itself. 1379 if (Idx >= NumParamLists) 1380 return 0; 1381 1382 // If there were too many template parameter lists, complain about that now. 1383 if (Idx != NumParamLists - 1) { 1384 while (Idx < NumParamLists - 1) { 1385 bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0; 1386 Diag(ParamLists[Idx]->getTemplateLoc(), 1387 isExplicitSpecHeader? diag::warn_template_spec_extra_headers 1388 : diag::err_template_spec_extra_headers) 1389 << SourceRange(ParamLists[Idx]->getTemplateLoc(), 1390 ParamLists[Idx]->getRAngleLoc()); 1391 1392 if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) { 1393 Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(), 1394 diag::note_explicit_template_spec_does_not_need_header) 1395 << ExplicitSpecializationsInSpecifier.back(); 1396 ExplicitSpecializationsInSpecifier.pop_back(); 1397 } 1398 1399 ++Idx; 1400 } 1401 } 1402 1403 // Return the last template parameter list, which corresponds to the 1404 // entity being declared. 1405 return ParamLists[NumParamLists - 1]; 1406} 1407 1408QualType Sema::CheckTemplateIdType(TemplateName Name, 1409 SourceLocation TemplateLoc, 1410 const TemplateArgumentListInfo &TemplateArgs) { 1411 TemplateDecl *Template = Name.getAsTemplateDecl(); 1412 if (!Template) { 1413 // The template name does not resolve to a template, so we just 1414 // build a dependent template-id type. 1415 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1416 } 1417 1418 // Check that the template argument list is well-formed for this 1419 // template. 1420 TemplateArgumentListBuilder Converted(Template->getTemplateParameters(), 1421 TemplateArgs.size()); 1422 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1423 false, Converted)) 1424 return QualType(); 1425 1426 assert((Converted.structuredSize() == 1427 Template->getTemplateParameters()->size()) && 1428 "Converted template argument list is too short!"); 1429 1430 QualType CanonType; 1431 bool IsCurrentInstantiation = false; 1432 1433 if (Name.isDependent() || 1434 TemplateSpecializationType::anyDependentTemplateArguments( 1435 TemplateArgs)) { 1436 // This class template specialization is a dependent 1437 // type. Therefore, its canonical type is another class template 1438 // specialization type that contains all of the converted 1439 // arguments in canonical form. This ensures that, e.g., A<T> and 1440 // A<T, T> have identical types when A is declared as: 1441 // 1442 // template<typename T, typename U = T> struct A; 1443 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1444 CanonType = Context.getTemplateSpecializationType(CanonName, 1445 Converted.getFlatArguments(), 1446 Converted.flatSize()); 1447 1448 // FIXME: CanonType is not actually the canonical type, and unfortunately 1449 // it is a TemplateSpecializationType that we will never use again. 1450 // In the future, we need to teach getTemplateSpecializationType to only 1451 // build the canonical type and return that to us. 1452 CanonType = Context.getCanonicalType(CanonType); 1453 1454 // This might work out to be a current instantiation, in which 1455 // case the canonical type needs to be the InjectedClassNameType. 1456 // 1457 // TODO: in theory this could be a simple hashtable lookup; most 1458 // changes to CurContext don't change the set of current 1459 // instantiations. 1460 if (isa<ClassTemplateDecl>(Template)) { 1461 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 1462 // If we get out to a namespace, we're done. 1463 if (Ctx->isFileContext()) break; 1464 1465 // If this isn't a record, keep looking. 1466 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 1467 if (!Record) continue; 1468 1469 // Look for one of the two cases with InjectedClassNameTypes 1470 // and check whether it's the same template. 1471 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 1472 !Record->getDescribedClassTemplate()) 1473 continue; 1474 1475 // Fetch the injected class name type and check whether its 1476 // injected type is equal to the type we just built. 1477 QualType ICNT = Context.getTypeDeclType(Record); 1478 QualType Injected = cast<InjectedClassNameType>(ICNT) 1479 ->getInjectedSpecializationType(); 1480 1481 if (CanonType != Injected->getCanonicalTypeInternal()) 1482 continue; 1483 1484 // If so, the canonical type of this TST is the injected 1485 // class name type of the record we just found. 1486 assert(ICNT.isCanonical()); 1487 CanonType = ICNT; 1488 IsCurrentInstantiation = true; 1489 break; 1490 } 1491 } 1492 } else if (ClassTemplateDecl *ClassTemplate 1493 = dyn_cast<ClassTemplateDecl>(Template)) { 1494 // Find the class template specialization declaration that 1495 // corresponds to these arguments. 1496 llvm::FoldingSetNodeID ID; 1497 ClassTemplateSpecializationDecl::Profile(ID, 1498 Converted.getFlatArguments(), 1499 Converted.flatSize(), 1500 Context); 1501 void *InsertPos = 0; 1502 ClassTemplateSpecializationDecl *Decl 1503 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 1504 if (!Decl) { 1505 // This is the first time we have referenced this class template 1506 // specialization. Create the canonical declaration and add it to 1507 // the set of specializations. 1508 Decl = ClassTemplateSpecializationDecl::Create(Context, 1509 ClassTemplate->getTemplatedDecl()->getTagKind(), 1510 ClassTemplate->getDeclContext(), 1511 ClassTemplate->getLocation(), 1512 ClassTemplate, 1513 Converted, 0); 1514 ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos); 1515 Decl->setLexicalDeclContext(CurContext); 1516 } 1517 1518 CanonType = Context.getTypeDeclType(Decl); 1519 assert(isa<RecordType>(CanonType) && 1520 "type of non-dependent specialization is not a RecordType"); 1521 } 1522 1523 // Build the fully-sugared type for this class template 1524 // specialization, which refers back to the class template 1525 // specialization we created or found. 1526 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType, 1527 IsCurrentInstantiation); 1528} 1529 1530Action::TypeResult 1531Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1532 SourceLocation LAngleLoc, 1533 ASTTemplateArgsPtr TemplateArgsIn, 1534 SourceLocation RAngleLoc) { 1535 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1536 1537 // Translate the parser's template argument list in our AST format. 1538 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 1539 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 1540 1541 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 1542 TemplateArgsIn.release(); 1543 1544 if (Result.isNull()) 1545 return true; 1546 1547 TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result); 1548 TemplateSpecializationTypeLoc TL 1549 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc()); 1550 TL.setTemplateNameLoc(TemplateLoc); 1551 TL.setLAngleLoc(LAngleLoc); 1552 TL.setRAngleLoc(RAngleLoc); 1553 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 1554 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 1555 1556 return CreateLocInfoType(Result, DI).getAsOpaquePtr(); 1557} 1558 1559Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult, 1560 TagUseKind TUK, 1561 DeclSpec::TST TagSpec, 1562 SourceLocation TagLoc) { 1563 if (TypeResult.isInvalid()) 1564 return Sema::TypeResult(); 1565 1566 // FIXME: preserve source info, ideally without copying the DI. 1567 TypeSourceInfo *DI; 1568 QualType Type = GetTypeFromParser(TypeResult.get(), &DI); 1569 1570 // Verify the tag specifier. 1571 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 1572 1573 if (const RecordType *RT = Type->getAs<RecordType>()) { 1574 RecordDecl *D = RT->getDecl(); 1575 1576 IdentifierInfo *Id = D->getIdentifier(); 1577 assert(Id && "templated class must have an identifier"); 1578 1579 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 1580 Diag(TagLoc, diag::err_use_with_wrong_tag) 1581 << Type 1582 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 1583 Diag(D->getLocation(), diag::note_previous_use); 1584 } 1585 } 1586 1587 ElaboratedTypeKeyword Keyword 1588 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 1589 QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type); 1590 1591 return ElabType.getAsOpaquePtr(); 1592} 1593 1594Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 1595 LookupResult &R, 1596 bool RequiresADL, 1597 const TemplateArgumentListInfo &TemplateArgs) { 1598 // FIXME: Can we do any checking at this point? I guess we could check the 1599 // template arguments that we have against the template name, if the template 1600 // name refers to a single template. That's not a terribly common case, 1601 // though. 1602 1603 // These should be filtered out by our callers. 1604 assert(!R.empty() && "empty lookup results when building templateid"); 1605 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 1606 1607 NestedNameSpecifier *Qualifier = 0; 1608 SourceRange QualifierRange; 1609 if (SS.isSet()) { 1610 Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 1611 QualifierRange = SS.getRange(); 1612 } 1613 1614 // We don't want lookup warnings at this point. 1615 R.suppressDiagnostics(); 1616 1617 bool Dependent 1618 = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 1619 &TemplateArgs); 1620 UnresolvedLookupExpr *ULE 1621 = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(), 1622 Qualifier, QualifierRange, 1623 R.getLookupName(), R.getNameLoc(), 1624 RequiresADL, TemplateArgs); 1625 ULE->addDecls(R.begin(), R.end()); 1626 1627 return Owned(ULE); 1628} 1629 1630// We actually only call this from template instantiation. 1631Sema::OwningExprResult 1632Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 1633 DeclarationName Name, 1634 SourceLocation NameLoc, 1635 const TemplateArgumentListInfo &TemplateArgs) { 1636 DeclContext *DC; 1637 if (!(DC = computeDeclContext(SS, false)) || 1638 DC->isDependentContext() || 1639 RequireCompleteDeclContext(SS, DC)) 1640 return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs); 1641 1642 LookupResult R(*this, Name, NameLoc, LookupOrdinaryName); 1643 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false); 1644 1645 if (R.isAmbiguous()) 1646 return ExprError(); 1647 1648 if (R.empty()) { 1649 Diag(NameLoc, diag::err_template_kw_refers_to_non_template) 1650 << Name << SS.getRange(); 1651 return ExprError(); 1652 } 1653 1654 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 1655 Diag(NameLoc, diag::err_template_kw_refers_to_class_template) 1656 << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange(); 1657 Diag(Temp->getLocation(), diag::note_referenced_class_template); 1658 return ExprError(); 1659 } 1660 1661 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 1662} 1663 1664/// \brief Form a dependent template name. 1665/// 1666/// This action forms a dependent template name given the template 1667/// name and its (presumably dependent) scope specifier. For 1668/// example, given "MetaFun::template apply", the scope specifier \p 1669/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1670/// of the "template" keyword, and "apply" is the \p Name. 1671Sema::TemplateTy 1672Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc, 1673 CXXScopeSpec &SS, 1674 UnqualifiedId &Name, 1675 TypeTy *ObjectType, 1676 bool EnteringContext) { 1677 DeclContext *LookupCtx = 0; 1678 if (SS.isSet()) 1679 LookupCtx = computeDeclContext(SS, EnteringContext); 1680 if (!LookupCtx && ObjectType) 1681 LookupCtx = computeDeclContext(QualType::getFromOpaquePtr(ObjectType)); 1682 if (LookupCtx) { 1683 // C++0x [temp.names]p5: 1684 // If a name prefixed by the keyword template is not the name of 1685 // a template, the program is ill-formed. [Note: the keyword 1686 // template may not be applied to non-template members of class 1687 // templates. -end note ] [ Note: as is the case with the 1688 // typename prefix, the template prefix is allowed in cases 1689 // where it is not strictly necessary; i.e., when the 1690 // nested-name-specifier or the expression on the left of the -> 1691 // or . is not dependent on a template-parameter, or the use 1692 // does not appear in the scope of a template. -end note] 1693 // 1694 // Note: C++03 was more strict here, because it banned the use of 1695 // the "template" keyword prior to a template-name that was not a 1696 // dependent name. C++ DR468 relaxed this requirement (the 1697 // "template" keyword is now permitted). We follow the C++0x 1698 // rules, even in C++03 mode, retroactively applying the DR. 1699 TemplateTy Template; 1700 TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType, 1701 EnteringContext, Template); 1702 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 1703 isa<CXXRecordDecl>(LookupCtx) && 1704 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) { 1705 // This is a dependent template. 1706 } else if (TNK == TNK_Non_template) { 1707 Diag(Name.getSourceRange().getBegin(), 1708 diag::err_template_kw_refers_to_non_template) 1709 << GetNameFromUnqualifiedId(Name) 1710 << Name.getSourceRange() 1711 << TemplateKWLoc; 1712 return TemplateTy(); 1713 } else { 1714 // We found something; return it. 1715 return Template; 1716 } 1717 } 1718 1719 NestedNameSpecifier *Qualifier 1720 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1721 1722 switch (Name.getKind()) { 1723 case UnqualifiedId::IK_Identifier: 1724 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1725 Name.Identifier)); 1726 1727 case UnqualifiedId::IK_OperatorFunctionId: 1728 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1729 Name.OperatorFunctionId.Operator)); 1730 1731 case UnqualifiedId::IK_LiteralOperatorId: 1732 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 1733 1734 default: 1735 break; 1736 } 1737 1738 Diag(Name.getSourceRange().getBegin(), 1739 diag::err_template_kw_refers_to_non_template) 1740 << GetNameFromUnqualifiedId(Name) 1741 << Name.getSourceRange() 1742 << TemplateKWLoc; 1743 return TemplateTy(); 1744} 1745 1746bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1747 const TemplateArgumentLoc &AL, 1748 TemplateArgumentListBuilder &Converted) { 1749 const TemplateArgument &Arg = AL.getArgument(); 1750 1751 // Check template type parameter. 1752 switch(Arg.getKind()) { 1753 case TemplateArgument::Type: 1754 // C++ [temp.arg.type]p1: 1755 // A template-argument for a template-parameter which is a 1756 // type shall be a type-id. 1757 break; 1758 case TemplateArgument::Template: { 1759 // We have a template type parameter but the template argument 1760 // is a template without any arguments. 1761 SourceRange SR = AL.getSourceRange(); 1762 TemplateName Name = Arg.getAsTemplate(); 1763 Diag(SR.getBegin(), diag::err_template_missing_args) 1764 << Name << SR; 1765 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 1766 Diag(Decl->getLocation(), diag::note_template_decl_here); 1767 1768 return true; 1769 } 1770 default: { 1771 // We have a template type parameter but the template argument 1772 // is not a type. 1773 SourceRange SR = AL.getSourceRange(); 1774 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 1775 Diag(Param->getLocation(), diag::note_template_param_here); 1776 1777 return true; 1778 } 1779 } 1780 1781 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 1782 return true; 1783 1784 // Add the converted template type argument. 1785 Converted.Append( 1786 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 1787 return false; 1788} 1789 1790/// \brief Substitute template arguments into the default template argument for 1791/// the given template type parameter. 1792/// 1793/// \param SemaRef the semantic analysis object for which we are performing 1794/// the substitution. 1795/// 1796/// \param Template the template that we are synthesizing template arguments 1797/// for. 1798/// 1799/// \param TemplateLoc the location of the template name that started the 1800/// template-id we are checking. 1801/// 1802/// \param RAngleLoc the location of the right angle bracket ('>') that 1803/// terminates the template-id. 1804/// 1805/// \param Param the template template parameter whose default we are 1806/// substituting into. 1807/// 1808/// \param Converted the list of template arguments provided for template 1809/// parameters that precede \p Param in the template parameter list. 1810/// 1811/// \returns the substituted template argument, or NULL if an error occurred. 1812static TypeSourceInfo * 1813SubstDefaultTemplateArgument(Sema &SemaRef, 1814 TemplateDecl *Template, 1815 SourceLocation TemplateLoc, 1816 SourceLocation RAngleLoc, 1817 TemplateTypeParmDecl *Param, 1818 TemplateArgumentListBuilder &Converted) { 1819 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 1820 1821 // If the argument type is dependent, instantiate it now based 1822 // on the previously-computed template arguments. 1823 if (ArgType->getType()->isDependentType()) { 1824 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1825 /*TakeArgs=*/false); 1826 1827 MultiLevelTemplateArgumentList AllTemplateArgs 1828 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1829 1830 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1831 Template, Converted.getFlatArguments(), 1832 Converted.flatSize(), 1833 SourceRange(TemplateLoc, RAngleLoc)); 1834 1835 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 1836 Param->getDefaultArgumentLoc(), 1837 Param->getDeclName()); 1838 } 1839 1840 return ArgType; 1841} 1842 1843/// \brief Substitute template arguments into the default template argument for 1844/// the given non-type template parameter. 1845/// 1846/// \param SemaRef the semantic analysis object for which we are performing 1847/// the substitution. 1848/// 1849/// \param Template the template that we are synthesizing template arguments 1850/// for. 1851/// 1852/// \param TemplateLoc the location of the template name that started the 1853/// template-id we are checking. 1854/// 1855/// \param RAngleLoc the location of the right angle bracket ('>') that 1856/// terminates the template-id. 1857/// 1858/// \param Param the non-type template parameter whose default we are 1859/// substituting into. 1860/// 1861/// \param Converted the list of template arguments provided for template 1862/// parameters that precede \p Param in the template parameter list. 1863/// 1864/// \returns the substituted template argument, or NULL if an error occurred. 1865static Sema::OwningExprResult 1866SubstDefaultTemplateArgument(Sema &SemaRef, 1867 TemplateDecl *Template, 1868 SourceLocation TemplateLoc, 1869 SourceLocation RAngleLoc, 1870 NonTypeTemplateParmDecl *Param, 1871 TemplateArgumentListBuilder &Converted) { 1872 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1873 /*TakeArgs=*/false); 1874 1875 MultiLevelTemplateArgumentList AllTemplateArgs 1876 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1877 1878 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1879 Template, Converted.getFlatArguments(), 1880 Converted.flatSize(), 1881 SourceRange(TemplateLoc, RAngleLoc)); 1882 1883 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 1884} 1885 1886/// \brief Substitute template arguments into the default template argument for 1887/// the given template template parameter. 1888/// 1889/// \param SemaRef the semantic analysis object for which we are performing 1890/// the substitution. 1891/// 1892/// \param Template the template that we are synthesizing template arguments 1893/// for. 1894/// 1895/// \param TemplateLoc the location of the template name that started the 1896/// template-id we are checking. 1897/// 1898/// \param RAngleLoc the location of the right angle bracket ('>') that 1899/// terminates the template-id. 1900/// 1901/// \param Param the template template parameter whose default we are 1902/// substituting into. 1903/// 1904/// \param Converted the list of template arguments provided for template 1905/// parameters that precede \p Param in the template parameter list. 1906/// 1907/// \returns the substituted template argument, or NULL if an error occurred. 1908static TemplateName 1909SubstDefaultTemplateArgument(Sema &SemaRef, 1910 TemplateDecl *Template, 1911 SourceLocation TemplateLoc, 1912 SourceLocation RAngleLoc, 1913 TemplateTemplateParmDecl *Param, 1914 TemplateArgumentListBuilder &Converted) { 1915 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1916 /*TakeArgs=*/false); 1917 1918 MultiLevelTemplateArgumentList AllTemplateArgs 1919 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1920 1921 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1922 Template, Converted.getFlatArguments(), 1923 Converted.flatSize(), 1924 SourceRange(TemplateLoc, RAngleLoc)); 1925 1926 return SemaRef.SubstTemplateName( 1927 Param->getDefaultArgument().getArgument().getAsTemplate(), 1928 Param->getDefaultArgument().getTemplateNameLoc(), 1929 AllTemplateArgs); 1930} 1931 1932/// \brief If the given template parameter has a default template 1933/// argument, substitute into that default template argument and 1934/// return the corresponding template argument. 1935TemplateArgumentLoc 1936Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 1937 SourceLocation TemplateLoc, 1938 SourceLocation RAngleLoc, 1939 Decl *Param, 1940 TemplateArgumentListBuilder &Converted) { 1941 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 1942 if (!TypeParm->hasDefaultArgument()) 1943 return TemplateArgumentLoc(); 1944 1945 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 1946 TemplateLoc, 1947 RAngleLoc, 1948 TypeParm, 1949 Converted); 1950 if (DI) 1951 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 1952 1953 return TemplateArgumentLoc(); 1954 } 1955 1956 if (NonTypeTemplateParmDecl *NonTypeParm 1957 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 1958 if (!NonTypeParm->hasDefaultArgument()) 1959 return TemplateArgumentLoc(); 1960 1961 OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 1962 TemplateLoc, 1963 RAngleLoc, 1964 NonTypeParm, 1965 Converted); 1966 if (Arg.isInvalid()) 1967 return TemplateArgumentLoc(); 1968 1969 Expr *ArgE = Arg.takeAs<Expr>(); 1970 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 1971 } 1972 1973 TemplateTemplateParmDecl *TempTempParm 1974 = cast<TemplateTemplateParmDecl>(Param); 1975 if (!TempTempParm->hasDefaultArgument()) 1976 return TemplateArgumentLoc(); 1977 1978 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 1979 TemplateLoc, 1980 RAngleLoc, 1981 TempTempParm, 1982 Converted); 1983 if (TName.isNull()) 1984 return TemplateArgumentLoc(); 1985 1986 return TemplateArgumentLoc(TemplateArgument(TName), 1987 TempTempParm->getDefaultArgument().getTemplateQualifierRange(), 1988 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 1989} 1990 1991/// \brief Check that the given template argument corresponds to the given 1992/// template parameter. 1993bool Sema::CheckTemplateArgument(NamedDecl *Param, 1994 const TemplateArgumentLoc &Arg, 1995 TemplateDecl *Template, 1996 SourceLocation TemplateLoc, 1997 SourceLocation RAngleLoc, 1998 TemplateArgumentListBuilder &Converted, 1999 CheckTemplateArgumentKind CTAK) { 2000 // Check template type parameters. 2001 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2002 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2003 2004 // Check non-type template parameters. 2005 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2006 // Do substitution on the type of the non-type template parameter 2007 // with the template arguments we've seen thus far. 2008 QualType NTTPType = NTTP->getType(); 2009 if (NTTPType->isDependentType()) { 2010 // Do substitution on the type of the non-type template parameter. 2011 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2012 NTTP, Converted.getFlatArguments(), 2013 Converted.flatSize(), 2014 SourceRange(TemplateLoc, RAngleLoc)); 2015 2016 TemplateArgumentList TemplateArgs(Context, Converted, 2017 /*TakeArgs=*/false); 2018 NTTPType = SubstType(NTTPType, 2019 MultiLevelTemplateArgumentList(TemplateArgs), 2020 NTTP->getLocation(), 2021 NTTP->getDeclName()); 2022 // If that worked, check the non-type template parameter type 2023 // for validity. 2024 if (!NTTPType.isNull()) 2025 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2026 NTTP->getLocation()); 2027 if (NTTPType.isNull()) 2028 return true; 2029 } 2030 2031 switch (Arg.getArgument().getKind()) { 2032 case TemplateArgument::Null: 2033 assert(false && "Should never see a NULL template argument here"); 2034 return true; 2035 2036 case TemplateArgument::Expression: { 2037 Expr *E = Arg.getArgument().getAsExpr(); 2038 TemplateArgument Result; 2039 if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK)) 2040 return true; 2041 2042 Converted.Append(Result); 2043 break; 2044 } 2045 2046 case TemplateArgument::Declaration: 2047 case TemplateArgument::Integral: 2048 // We've already checked this template argument, so just copy 2049 // it to the list of converted arguments. 2050 Converted.Append(Arg.getArgument()); 2051 break; 2052 2053 case TemplateArgument::Template: 2054 // We were given a template template argument. It may not be ill-formed; 2055 // see below. 2056 if (DependentTemplateName *DTN 2057 = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) { 2058 // We have a template argument such as \c T::template X, which we 2059 // parsed as a template template argument. However, since we now 2060 // know that we need a non-type template argument, convert this 2061 // template name into an expression. 2062 Expr *E = DependentScopeDeclRefExpr::Create(Context, 2063 DTN->getQualifier(), 2064 Arg.getTemplateQualifierRange(), 2065 DTN->getIdentifier(), 2066 Arg.getTemplateNameLoc()); 2067 2068 TemplateArgument Result; 2069 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 2070 return true; 2071 2072 Converted.Append(Result); 2073 break; 2074 } 2075 2076 // We have a template argument that actually does refer to a class 2077 // template, template alias, or template template parameter, and 2078 // therefore cannot be a non-type template argument. 2079 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2080 << Arg.getSourceRange(); 2081 2082 Diag(Param->getLocation(), diag::note_template_param_here); 2083 return true; 2084 2085 case TemplateArgument::Type: { 2086 // We have a non-type template parameter but the template 2087 // argument is a type. 2088 2089 // C++ [temp.arg]p2: 2090 // In a template-argument, an ambiguity between a type-id and 2091 // an expression is resolved to a type-id, regardless of the 2092 // form of the corresponding template-parameter. 2093 // 2094 // We warn specifically about this case, since it can be rather 2095 // confusing for users. 2096 QualType T = Arg.getArgument().getAsType(); 2097 SourceRange SR = Arg.getSourceRange(); 2098 if (T->isFunctionType()) 2099 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2100 else 2101 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2102 Diag(Param->getLocation(), diag::note_template_param_here); 2103 return true; 2104 } 2105 2106 case TemplateArgument::Pack: 2107 llvm_unreachable("Caller must expand template argument packs"); 2108 break; 2109 } 2110 2111 return false; 2112 } 2113 2114 2115 // Check template template parameters. 2116 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2117 2118 // Substitute into the template parameter list of the template 2119 // template parameter, since previously-supplied template arguments 2120 // may appear within the template template parameter. 2121 { 2122 // Set up a template instantiation context. 2123 LocalInstantiationScope Scope(*this); 2124 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2125 TempParm, Converted.getFlatArguments(), 2126 Converted.flatSize(), 2127 SourceRange(TemplateLoc, RAngleLoc)); 2128 2129 TemplateArgumentList TemplateArgs(Context, Converted, 2130 /*TakeArgs=*/false); 2131 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2132 SubstDecl(TempParm, CurContext, 2133 MultiLevelTemplateArgumentList(TemplateArgs))); 2134 if (!TempParm) 2135 return true; 2136 2137 // FIXME: TempParam is leaked. 2138 } 2139 2140 switch (Arg.getArgument().getKind()) { 2141 case TemplateArgument::Null: 2142 assert(false && "Should never see a NULL template argument here"); 2143 return true; 2144 2145 case TemplateArgument::Template: 2146 if (CheckTemplateArgument(TempParm, Arg)) 2147 return true; 2148 2149 Converted.Append(Arg.getArgument()); 2150 break; 2151 2152 case TemplateArgument::Expression: 2153 case TemplateArgument::Type: 2154 // We have a template template parameter but the template 2155 // argument does not refer to a template. 2156 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 2157 return true; 2158 2159 case TemplateArgument::Declaration: 2160 llvm_unreachable( 2161 "Declaration argument with template template parameter"); 2162 break; 2163 case TemplateArgument::Integral: 2164 llvm_unreachable( 2165 "Integral argument with template template parameter"); 2166 break; 2167 2168 case TemplateArgument::Pack: 2169 llvm_unreachable("Caller must expand template argument packs"); 2170 break; 2171 } 2172 2173 return false; 2174} 2175 2176/// \brief Check that the given template argument list is well-formed 2177/// for specializing the given template. 2178bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2179 SourceLocation TemplateLoc, 2180 const TemplateArgumentListInfo &TemplateArgs, 2181 bool PartialTemplateArgs, 2182 TemplateArgumentListBuilder &Converted) { 2183 TemplateParameterList *Params = Template->getTemplateParameters(); 2184 unsigned NumParams = Params->size(); 2185 unsigned NumArgs = TemplateArgs.size(); 2186 bool Invalid = false; 2187 2188 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2189 2190 bool HasParameterPack = 2191 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2192 2193 if ((NumArgs > NumParams && !HasParameterPack) || 2194 (NumArgs < Params->getMinRequiredArguments() && 2195 !PartialTemplateArgs)) { 2196 // FIXME: point at either the first arg beyond what we can handle, 2197 // or the '>', depending on whether we have too many or too few 2198 // arguments. 2199 SourceRange Range; 2200 if (NumArgs > NumParams) 2201 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2202 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2203 << (NumArgs > NumParams) 2204 << (isa<ClassTemplateDecl>(Template)? 0 : 2205 isa<FunctionTemplateDecl>(Template)? 1 : 2206 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2207 << Template << Range; 2208 Diag(Template->getLocation(), diag::note_template_decl_here) 2209 << Params->getSourceRange(); 2210 Invalid = true; 2211 } 2212 2213 // C++ [temp.arg]p1: 2214 // [...] The type and form of each template-argument specified in 2215 // a template-id shall match the type and form specified for the 2216 // corresponding parameter declared by the template in its 2217 // template-parameter-list. 2218 unsigned ArgIdx = 0; 2219 for (TemplateParameterList::iterator Param = Params->begin(), 2220 ParamEnd = Params->end(); 2221 Param != ParamEnd; ++Param, ++ArgIdx) { 2222 if (ArgIdx > NumArgs && PartialTemplateArgs) 2223 break; 2224 2225 // If we have a template parameter pack, check every remaining template 2226 // argument against that template parameter pack. 2227 if ((*Param)->isTemplateParameterPack()) { 2228 Converted.BeginPack(); 2229 for (; ArgIdx < NumArgs; ++ArgIdx) { 2230 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2231 TemplateLoc, RAngleLoc, Converted)) { 2232 Invalid = true; 2233 break; 2234 } 2235 } 2236 Converted.EndPack(); 2237 continue; 2238 } 2239 2240 if (ArgIdx < NumArgs) { 2241 // Check the template argument we were given. 2242 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2243 TemplateLoc, RAngleLoc, Converted)) 2244 return true; 2245 2246 continue; 2247 } 2248 2249 // We have a default template argument that we will use. 2250 TemplateArgumentLoc Arg; 2251 2252 // Retrieve the default template argument from the template 2253 // parameter. For each kind of template parameter, we substitute the 2254 // template arguments provided thus far and any "outer" template arguments 2255 // (when the template parameter was part of a nested template) into 2256 // the default argument. 2257 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2258 if (!TTP->hasDefaultArgument()) { 2259 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2260 break; 2261 } 2262 2263 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2264 Template, 2265 TemplateLoc, 2266 RAngleLoc, 2267 TTP, 2268 Converted); 2269 if (!ArgType) 2270 return true; 2271 2272 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2273 ArgType); 2274 } else if (NonTypeTemplateParmDecl *NTTP 2275 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2276 if (!NTTP->hasDefaultArgument()) { 2277 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2278 break; 2279 } 2280 2281 Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template, 2282 TemplateLoc, 2283 RAngleLoc, 2284 NTTP, 2285 Converted); 2286 if (E.isInvalid()) 2287 return true; 2288 2289 Expr *Ex = E.takeAs<Expr>(); 2290 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2291 } else { 2292 TemplateTemplateParmDecl *TempParm 2293 = cast<TemplateTemplateParmDecl>(*Param); 2294 2295 if (!TempParm->hasDefaultArgument()) { 2296 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2297 break; 2298 } 2299 2300 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2301 TemplateLoc, 2302 RAngleLoc, 2303 TempParm, 2304 Converted); 2305 if (Name.isNull()) 2306 return true; 2307 2308 Arg = TemplateArgumentLoc(TemplateArgument(Name), 2309 TempParm->getDefaultArgument().getTemplateQualifierRange(), 2310 TempParm->getDefaultArgument().getTemplateNameLoc()); 2311 } 2312 2313 // Introduce an instantiation record that describes where we are using 2314 // the default template argument. 2315 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 2316 Converted.getFlatArguments(), 2317 Converted.flatSize(), 2318 SourceRange(TemplateLoc, RAngleLoc)); 2319 2320 // Check the default template argument. 2321 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 2322 RAngleLoc, Converted)) 2323 return true; 2324 } 2325 2326 return Invalid; 2327} 2328 2329/// \brief Check a template argument against its corresponding 2330/// template type parameter. 2331/// 2332/// This routine implements the semantics of C++ [temp.arg.type]. It 2333/// returns true if an error occurred, and false otherwise. 2334bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 2335 TypeSourceInfo *ArgInfo) { 2336 assert(ArgInfo && "invalid TypeSourceInfo"); 2337 QualType Arg = ArgInfo->getType(); 2338 2339 // C++ [temp.arg.type]p2: 2340 // A local type, a type with no linkage, an unnamed type or a type 2341 // compounded from any of these types shall not be used as a 2342 // template-argument for a template type-parameter. 2343 // 2344 // FIXME: Perform the recursive and no-linkage type checks. 2345 const TagType *Tag = 0; 2346 if (const EnumType *EnumT = Arg->getAs<EnumType>()) 2347 Tag = EnumT; 2348 else if (const RecordType *RecordT = Arg->getAs<RecordType>()) 2349 Tag = RecordT; 2350 if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) { 2351 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2352 return Diag(SR.getBegin(), diag::err_template_arg_local_type) 2353 << QualType(Tag, 0) << SR; 2354 } else if (Tag && !Tag->getDecl()->getDeclName() && 2355 !Tag->getDecl()->getTypedefForAnonDecl()) { 2356 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2357 Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR; 2358 Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here); 2359 return true; 2360 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 2361 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2362 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 2363 } 2364 2365 return false; 2366} 2367 2368/// \brief Checks whether the given template argument is the address 2369/// of an object or function according to C++ [temp.arg.nontype]p1. 2370static bool 2371CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 2372 NonTypeTemplateParmDecl *Param, 2373 QualType ParamType, 2374 Expr *ArgIn, 2375 TemplateArgument &Converted) { 2376 bool Invalid = false; 2377 Expr *Arg = ArgIn; 2378 QualType ArgType = Arg->getType(); 2379 2380 // See through any implicit casts we added to fix the type. 2381 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2382 Arg = Cast->getSubExpr(); 2383 2384 // C++ [temp.arg.nontype]p1: 2385 // 2386 // A template-argument for a non-type, non-template 2387 // template-parameter shall be one of: [...] 2388 // 2389 // -- the address of an object or function with external 2390 // linkage, including function templates and function 2391 // template-ids but excluding non-static class members, 2392 // expressed as & id-expression where the & is optional if 2393 // the name refers to a function or array, or if the 2394 // corresponding template-parameter is a reference; or 2395 DeclRefExpr *DRE = 0; 2396 2397 // Ignore (and complain about) any excess parentheses. 2398 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2399 if (!Invalid) { 2400 S.Diag(Arg->getSourceRange().getBegin(), 2401 diag::err_template_arg_extra_parens) 2402 << Arg->getSourceRange(); 2403 Invalid = true; 2404 } 2405 2406 Arg = Parens->getSubExpr(); 2407 } 2408 2409 bool AddressTaken = false; 2410 SourceLocation AddrOpLoc; 2411 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2412 if (UnOp->getOpcode() == UnaryOperator::AddrOf) { 2413 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2414 AddressTaken = true; 2415 AddrOpLoc = UnOp->getOperatorLoc(); 2416 } 2417 } else 2418 DRE = dyn_cast<DeclRefExpr>(Arg); 2419 2420 if (!DRE) { 2421 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 2422 << Arg->getSourceRange(); 2423 S.Diag(Param->getLocation(), diag::note_template_param_here); 2424 return true; 2425 } 2426 2427 // Stop checking the precise nature of the argument if it is value dependent, 2428 // it should be checked when instantiated. 2429 if (Arg->isValueDependent()) { 2430 Converted = TemplateArgument(ArgIn->Retain()); 2431 return false; 2432 } 2433 2434 if (!isa<ValueDecl>(DRE->getDecl())) { 2435 S.Diag(Arg->getSourceRange().getBegin(), 2436 diag::err_template_arg_not_object_or_func_form) 2437 << Arg->getSourceRange(); 2438 S.Diag(Param->getLocation(), diag::note_template_param_here); 2439 return true; 2440 } 2441 2442 NamedDecl *Entity = 0; 2443 2444 // Cannot refer to non-static data members 2445 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) { 2446 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 2447 << Field << Arg->getSourceRange(); 2448 S.Diag(Param->getLocation(), diag::note_template_param_here); 2449 return true; 2450 } 2451 2452 // Cannot refer to non-static member functions 2453 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 2454 if (!Method->isStatic()) { 2455 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method) 2456 << Method << Arg->getSourceRange(); 2457 S.Diag(Param->getLocation(), diag::note_template_param_here); 2458 return true; 2459 } 2460 2461 // Functions must have external linkage. 2462 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 2463 if (!isExternalLinkage(Func->getLinkage())) { 2464 S.Diag(Arg->getSourceRange().getBegin(), 2465 diag::err_template_arg_function_not_extern) 2466 << Func << Arg->getSourceRange(); 2467 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object) 2468 << true; 2469 return true; 2470 } 2471 2472 // Okay: we've named a function with external linkage. 2473 Entity = Func; 2474 2475 // If the template parameter has pointer type, the function decays. 2476 if (ParamType->isPointerType() && !AddressTaken) 2477 ArgType = S.Context.getPointerType(Func->getType()); 2478 else if (AddressTaken && ParamType->isReferenceType()) { 2479 // If we originally had an address-of operator, but the 2480 // parameter has reference type, complain and (if things look 2481 // like they will work) drop the address-of operator. 2482 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 2483 ParamType.getNonReferenceType())) { 2484 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2485 << ParamType; 2486 S.Diag(Param->getLocation(), diag::note_template_param_here); 2487 return true; 2488 } 2489 2490 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2491 << ParamType 2492 << FixItHint::CreateRemoval(AddrOpLoc); 2493 S.Diag(Param->getLocation(), diag::note_template_param_here); 2494 2495 ArgType = Func->getType(); 2496 } 2497 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 2498 if (!isExternalLinkage(Var->getLinkage())) { 2499 S.Diag(Arg->getSourceRange().getBegin(), 2500 diag::err_template_arg_object_not_extern) 2501 << Var << Arg->getSourceRange(); 2502 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object) 2503 << true; 2504 return true; 2505 } 2506 2507 // A value of reference type is not an object. 2508 if (Var->getType()->isReferenceType()) { 2509 S.Diag(Arg->getSourceRange().getBegin(), 2510 diag::err_template_arg_reference_var) 2511 << Var->getType() << Arg->getSourceRange(); 2512 S.Diag(Param->getLocation(), diag::note_template_param_here); 2513 return true; 2514 } 2515 2516 // Okay: we've named an object with external linkage 2517 Entity = Var; 2518 2519 // If the template parameter has pointer type, we must have taken 2520 // the address of this object. 2521 if (ParamType->isReferenceType()) { 2522 if (AddressTaken) { 2523 // If we originally had an address-of operator, but the 2524 // parameter has reference type, complain and (if things look 2525 // like they will work) drop the address-of operator. 2526 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 2527 ParamType.getNonReferenceType())) { 2528 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2529 << ParamType; 2530 S.Diag(Param->getLocation(), diag::note_template_param_here); 2531 return true; 2532 } 2533 2534 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2535 << ParamType 2536 << FixItHint::CreateRemoval(AddrOpLoc); 2537 S.Diag(Param->getLocation(), diag::note_template_param_here); 2538 2539 ArgType = Var->getType(); 2540 } 2541 } else if (!AddressTaken && ParamType->isPointerType()) { 2542 if (Var->getType()->isArrayType()) { 2543 // Array-to-pointer decay. 2544 ArgType = S.Context.getArrayDecayedType(Var->getType()); 2545 } else { 2546 // If the template parameter has pointer type but the address of 2547 // this object was not taken, complain and (possibly) recover by 2548 // taking the address of the entity. 2549 ArgType = S.Context.getPointerType(Var->getType()); 2550 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 2551 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 2552 << ParamType; 2553 S.Diag(Param->getLocation(), diag::note_template_param_here); 2554 return true; 2555 } 2556 2557 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 2558 << ParamType 2559 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 2560 2561 S.Diag(Param->getLocation(), diag::note_template_param_here); 2562 } 2563 } 2564 } else { 2565 // We found something else, but we don't know specifically what it is. 2566 S.Diag(Arg->getSourceRange().getBegin(), 2567 diag::err_template_arg_not_object_or_func) 2568 << Arg->getSourceRange(); 2569 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 2570 return true; 2571 } 2572 2573 if (ParamType->isPointerType() && 2574 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 2575 S.IsQualificationConversion(ArgType, ParamType)) { 2576 // For pointer-to-object types, qualification conversions are 2577 // permitted. 2578 } else { 2579 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 2580 if (!ParamRef->getPointeeType()->isFunctionType()) { 2581 // C++ [temp.arg.nontype]p5b3: 2582 // For a non-type template-parameter of type reference to 2583 // object, no conversions apply. The type referred to by the 2584 // reference may be more cv-qualified than the (otherwise 2585 // identical) type of the template- argument. The 2586 // template-parameter is bound directly to the 2587 // template-argument, which shall be an lvalue. 2588 2589 // FIXME: Other qualifiers? 2590 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 2591 unsigned ArgQuals = ArgType.getCVRQualifiers(); 2592 2593 if ((ParamQuals | ArgQuals) != ParamQuals) { 2594 S.Diag(Arg->getSourceRange().getBegin(), 2595 diag::err_template_arg_ref_bind_ignores_quals) 2596 << ParamType << Arg->getType() 2597 << Arg->getSourceRange(); 2598 S.Diag(Param->getLocation(), diag::note_template_param_here); 2599 return true; 2600 } 2601 } 2602 } 2603 2604 // At this point, the template argument refers to an object or 2605 // function with external linkage. We now need to check whether the 2606 // argument and parameter types are compatible. 2607 if (!S.Context.hasSameUnqualifiedType(ArgType, 2608 ParamType.getNonReferenceType())) { 2609 // We can't perform this conversion or binding. 2610 if (ParamType->isReferenceType()) 2611 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 2612 << ParamType << Arg->getType() << Arg->getSourceRange(); 2613 else 2614 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 2615 << Arg->getType() << ParamType << Arg->getSourceRange(); 2616 S.Diag(Param->getLocation(), diag::note_template_param_here); 2617 return true; 2618 } 2619 } 2620 2621 // Create the template argument. 2622 Converted = TemplateArgument(Entity->getCanonicalDecl()); 2623 S.MarkDeclarationReferenced(Arg->getLocStart(), Entity); 2624 return false; 2625} 2626 2627/// \brief Checks whether the given template argument is a pointer to 2628/// member constant according to C++ [temp.arg.nontype]p1. 2629bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 2630 TemplateArgument &Converted) { 2631 bool Invalid = false; 2632 2633 // See through any implicit casts we added to fix the type. 2634 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2635 Arg = Cast->getSubExpr(); 2636 2637 // C++ [temp.arg.nontype]p1: 2638 // 2639 // A template-argument for a non-type, non-template 2640 // template-parameter shall be one of: [...] 2641 // 2642 // -- a pointer to member expressed as described in 5.3.1. 2643 DeclRefExpr *DRE = 0; 2644 2645 // Ignore (and complain about) any excess parentheses. 2646 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2647 if (!Invalid) { 2648 Diag(Arg->getSourceRange().getBegin(), 2649 diag::err_template_arg_extra_parens) 2650 << Arg->getSourceRange(); 2651 Invalid = true; 2652 } 2653 2654 Arg = Parens->getSubExpr(); 2655 } 2656 2657 // A pointer-to-member constant written &Class::member. 2658 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2659 if (UnOp->getOpcode() == UnaryOperator::AddrOf) { 2660 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2661 if (DRE && !DRE->getQualifier()) 2662 DRE = 0; 2663 } 2664 } 2665 // A constant of pointer-to-member type. 2666 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 2667 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 2668 if (VD->getType()->isMemberPointerType()) { 2669 if (isa<NonTypeTemplateParmDecl>(VD) || 2670 (isa<VarDecl>(VD) && 2671 Context.getCanonicalType(VD->getType()).isConstQualified())) { 2672 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2673 Converted = TemplateArgument(Arg->Retain()); 2674 else 2675 Converted = TemplateArgument(VD->getCanonicalDecl()); 2676 return Invalid; 2677 } 2678 } 2679 } 2680 2681 DRE = 0; 2682 } 2683 2684 if (!DRE) 2685 return Diag(Arg->getSourceRange().getBegin(), 2686 diag::err_template_arg_not_pointer_to_member_form) 2687 << Arg->getSourceRange(); 2688 2689 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 2690 assert((isa<FieldDecl>(DRE->getDecl()) || 2691 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 2692 "Only non-static member pointers can make it here"); 2693 2694 // Okay: this is the address of a non-static member, and therefore 2695 // a member pointer constant. 2696 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2697 Converted = TemplateArgument(Arg->Retain()); 2698 else 2699 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 2700 return Invalid; 2701 } 2702 2703 // We found something else, but we don't know specifically what it is. 2704 Diag(Arg->getSourceRange().getBegin(), 2705 diag::err_template_arg_not_pointer_to_member_form) 2706 << Arg->getSourceRange(); 2707 Diag(DRE->getDecl()->getLocation(), 2708 diag::note_template_arg_refers_here); 2709 return true; 2710} 2711 2712/// \brief Check a template argument against its corresponding 2713/// non-type template parameter. 2714/// 2715/// This routine implements the semantics of C++ [temp.arg.nontype]. 2716/// It returns true if an error occurred, and false otherwise. \p 2717/// InstantiatedParamType is the type of the non-type template 2718/// parameter after it has been instantiated. 2719/// 2720/// If no error was detected, Converted receives the converted template argument. 2721bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 2722 QualType InstantiatedParamType, Expr *&Arg, 2723 TemplateArgument &Converted, 2724 CheckTemplateArgumentKind CTAK) { 2725 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 2726 2727 // If either the parameter has a dependent type or the argument is 2728 // type-dependent, there's nothing we can check now. 2729 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 2730 // FIXME: Produce a cloned, canonical expression? 2731 Converted = TemplateArgument(Arg); 2732 return false; 2733 } 2734 2735 // C++ [temp.arg.nontype]p5: 2736 // The following conversions are performed on each expression used 2737 // as a non-type template-argument. If a non-type 2738 // template-argument cannot be converted to the type of the 2739 // corresponding template-parameter then the program is 2740 // ill-formed. 2741 // 2742 // -- for a non-type template-parameter of integral or 2743 // enumeration type, integral promotions (4.5) and integral 2744 // conversions (4.7) are applied. 2745 QualType ParamType = InstantiatedParamType; 2746 QualType ArgType = Arg->getType(); 2747 if (ParamType->isIntegralType() || ParamType->isEnumeralType()) { 2748 // C++ [temp.arg.nontype]p1: 2749 // A template-argument for a non-type, non-template 2750 // template-parameter shall be one of: 2751 // 2752 // -- an integral constant-expression of integral or enumeration 2753 // type; or 2754 // -- the name of a non-type template-parameter; or 2755 SourceLocation NonConstantLoc; 2756 llvm::APSInt Value; 2757 if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) { 2758 Diag(Arg->getSourceRange().getBegin(), 2759 diag::err_template_arg_not_integral_or_enumeral) 2760 << ArgType << Arg->getSourceRange(); 2761 Diag(Param->getLocation(), diag::note_template_param_here); 2762 return true; 2763 } else if (!Arg->isValueDependent() && 2764 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 2765 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 2766 << ArgType << Arg->getSourceRange(); 2767 return true; 2768 } 2769 2770 // From here on out, all we care about are the unqualified forms 2771 // of the parameter and argument types. 2772 ParamType = ParamType.getUnqualifiedType(); 2773 ArgType = ArgType.getUnqualifiedType(); 2774 2775 // Try to convert the argument to the parameter's type. 2776 if (Context.hasSameType(ParamType, ArgType)) { 2777 // Okay: no conversion necessary 2778 } else if (CTAK == CTAK_Deduced) { 2779 // C++ [temp.deduct.type]p17: 2780 // If, in the declaration of a function template with a non-type 2781 // template-parameter, the non-type template- parameter is used 2782 // in an expression in the function parameter-list and, if the 2783 // corresponding template-argument is deduced, the 2784 // template-argument type shall match the type of the 2785 // template-parameter exactly, except that a template-argument 2786 // deduced from an array bound may be of any integral type. 2787 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 2788 << ArgType << ParamType; 2789 Diag(Param->getLocation(), diag::note_template_param_here); 2790 return true; 2791 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 2792 !ParamType->isEnumeralType()) { 2793 // This is an integral promotion or conversion. 2794 ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast); 2795 } else { 2796 // We can't perform this conversion. 2797 Diag(Arg->getSourceRange().getBegin(), 2798 diag::err_template_arg_not_convertible) 2799 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2800 Diag(Param->getLocation(), diag::note_template_param_here); 2801 return true; 2802 } 2803 2804 QualType IntegerType = Context.getCanonicalType(ParamType); 2805 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 2806 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 2807 2808 if (!Arg->isValueDependent()) { 2809 llvm::APSInt OldValue = Value; 2810 2811 // Coerce the template argument's value to the value it will have 2812 // based on the template parameter's type. 2813 unsigned AllowedBits = Context.getTypeSize(IntegerType); 2814 if (Value.getBitWidth() != AllowedBits) 2815 Value.extOrTrunc(AllowedBits); 2816 Value.setIsSigned(IntegerType->isSignedIntegerType()); 2817 2818 // Complain if an unsigned parameter received a negative value. 2819 if (IntegerType->isUnsignedIntegerType() 2820 && (OldValue.isSigned() && OldValue.isNegative())) { 2821 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative) 2822 << OldValue.toString(10) << Value.toString(10) << Param->getType() 2823 << Arg->getSourceRange(); 2824 Diag(Param->getLocation(), diag::note_template_param_here); 2825 } 2826 2827 // Complain if we overflowed the template parameter's type. 2828 unsigned RequiredBits; 2829 if (IntegerType->isUnsignedIntegerType()) 2830 RequiredBits = OldValue.getActiveBits(); 2831 else if (OldValue.isUnsigned()) 2832 RequiredBits = OldValue.getActiveBits() + 1; 2833 else 2834 RequiredBits = OldValue.getMinSignedBits(); 2835 if (RequiredBits > AllowedBits) { 2836 Diag(Arg->getSourceRange().getBegin(), 2837 diag::warn_template_arg_too_large) 2838 << OldValue.toString(10) << Value.toString(10) << Param->getType() 2839 << Arg->getSourceRange(); 2840 Diag(Param->getLocation(), diag::note_template_param_here); 2841 } 2842 } 2843 2844 // Add the value of this argument to the list of converted 2845 // arguments. We use the bitwidth and signedness of the template 2846 // parameter. 2847 if (Arg->isValueDependent()) { 2848 // The argument is value-dependent. Create a new 2849 // TemplateArgument with the converted expression. 2850 Converted = TemplateArgument(Arg); 2851 return false; 2852 } 2853 2854 Converted = TemplateArgument(Value, 2855 ParamType->isEnumeralType() ? ParamType 2856 : IntegerType); 2857 return false; 2858 } 2859 2860 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 2861 2862 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion 2863 // from a template argument of type std::nullptr_t to a non-type 2864 // template parameter of type pointer to object, pointer to 2865 // function, or pointer-to-member, respectively. 2866 if (ArgType->isNullPtrType() && 2867 (ParamType->isPointerType() || ParamType->isMemberPointerType())) { 2868 Converted = TemplateArgument((NamedDecl *)0); 2869 return false; 2870 } 2871 2872 // Handle pointer-to-function, reference-to-function, and 2873 // pointer-to-member-function all in (roughly) the same way. 2874 if (// -- For a non-type template-parameter of type pointer to 2875 // function, only the function-to-pointer conversion (4.3) is 2876 // applied. If the template-argument represents a set of 2877 // overloaded functions (or a pointer to such), the matching 2878 // function is selected from the set (13.4). 2879 (ParamType->isPointerType() && 2880 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 2881 // -- For a non-type template-parameter of type reference to 2882 // function, no conversions apply. If the template-argument 2883 // represents a set of overloaded functions, the matching 2884 // function is selected from the set (13.4). 2885 (ParamType->isReferenceType() && 2886 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 2887 // -- For a non-type template-parameter of type pointer to 2888 // member function, no conversions apply. If the 2889 // template-argument represents a set of overloaded member 2890 // functions, the matching member function is selected from 2891 // the set (13.4). 2892 (ParamType->isMemberPointerType() && 2893 ParamType->getAs<MemberPointerType>()->getPointeeType() 2894 ->isFunctionType())) { 2895 2896 if (Arg->getType() == Context.OverloadTy) { 2897 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 2898 true, 2899 FoundResult)) { 2900 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2901 return true; 2902 2903 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 2904 ArgType = Arg->getType(); 2905 } else 2906 return true; 2907 } 2908 2909 if (!ParamType->isMemberPointerType()) 2910 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 2911 ParamType, 2912 Arg, Converted); 2913 2914 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) { 2915 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp, 2916 Arg->isLvalue(Context) == Expr::LV_Valid); 2917 } else if (!Context.hasSameUnqualifiedType(ArgType, 2918 ParamType.getNonReferenceType())) { 2919 // We can't perform this conversion. 2920 Diag(Arg->getSourceRange().getBegin(), 2921 diag::err_template_arg_not_convertible) 2922 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2923 Diag(Param->getLocation(), diag::note_template_param_here); 2924 return true; 2925 } 2926 2927 return CheckTemplateArgumentPointerToMember(Arg, Converted); 2928 } 2929 2930 if (ParamType->isPointerType()) { 2931 // -- for a non-type template-parameter of type pointer to 2932 // object, qualification conversions (4.4) and the 2933 // array-to-pointer conversion (4.2) are applied. 2934 // C++0x also allows a value of std::nullptr_t. 2935 assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() && 2936 "Only object pointers allowed here"); 2937 2938 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 2939 ParamType, 2940 Arg, Converted); 2941 } 2942 2943 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 2944 // -- For a non-type template-parameter of type reference to 2945 // object, no conversions apply. The type referred to by the 2946 // reference may be more cv-qualified than the (otherwise 2947 // identical) type of the template-argument. The 2948 // template-parameter is bound directly to the 2949 // template-argument, which must be an lvalue. 2950 assert(ParamRefType->getPointeeType()->isObjectType() && 2951 "Only object references allowed here"); 2952 2953 if (Arg->getType() == Context.OverloadTy) { 2954 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 2955 ParamRefType->getPointeeType(), 2956 true, 2957 FoundResult)) { 2958 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2959 return true; 2960 2961 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 2962 ArgType = Arg->getType(); 2963 } else 2964 return true; 2965 } 2966 2967 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 2968 ParamType, 2969 Arg, Converted); 2970 } 2971 2972 // -- For a non-type template-parameter of type pointer to data 2973 // member, qualification conversions (4.4) are applied. 2974 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 2975 2976 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 2977 // Types match exactly: nothing more to do here. 2978 } else if (IsQualificationConversion(ArgType, ParamType)) { 2979 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp, 2980 Arg->isLvalue(Context) == Expr::LV_Valid); 2981 } else { 2982 // We can't perform this conversion. 2983 Diag(Arg->getSourceRange().getBegin(), 2984 diag::err_template_arg_not_convertible) 2985 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2986 Diag(Param->getLocation(), diag::note_template_param_here); 2987 return true; 2988 } 2989 2990 return CheckTemplateArgumentPointerToMember(Arg, Converted); 2991} 2992 2993/// \brief Check a template argument against its corresponding 2994/// template template parameter. 2995/// 2996/// This routine implements the semantics of C++ [temp.arg.template]. 2997/// It returns true if an error occurred, and false otherwise. 2998bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 2999 const TemplateArgumentLoc &Arg) { 3000 TemplateName Name = Arg.getArgument().getAsTemplate(); 3001 TemplateDecl *Template = Name.getAsTemplateDecl(); 3002 if (!Template) { 3003 // Any dependent template name is fine. 3004 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 3005 return false; 3006 } 3007 3008 // C++ [temp.arg.template]p1: 3009 // A template-argument for a template template-parameter shall be 3010 // the name of a class template, expressed as id-expression. Only 3011 // primary class templates are considered when matching the 3012 // template template argument with the corresponding parameter; 3013 // partial specializations are not considered even if their 3014 // parameter lists match that of the template template parameter. 3015 // 3016 // Note that we also allow template template parameters here, which 3017 // will happen when we are dealing with, e.g., class template 3018 // partial specializations. 3019 if (!isa<ClassTemplateDecl>(Template) && 3020 !isa<TemplateTemplateParmDecl>(Template)) { 3021 assert(isa<FunctionTemplateDecl>(Template) && 3022 "Only function templates are possible here"); 3023 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 3024 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 3025 << Template; 3026 } 3027 3028 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 3029 Param->getTemplateParameters(), 3030 true, 3031 TPL_TemplateTemplateArgumentMatch, 3032 Arg.getLocation()); 3033} 3034 3035/// \brief Given a non-type template argument that refers to a 3036/// declaration and the type of its corresponding non-type template 3037/// parameter, produce an expression that properly refers to that 3038/// declaration. 3039Sema::OwningExprResult 3040Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 3041 QualType ParamType, 3042 SourceLocation Loc) { 3043 assert(Arg.getKind() == TemplateArgument::Declaration && 3044 "Only declaration template arguments permitted here"); 3045 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 3046 3047 if (VD->getDeclContext()->isRecord() && 3048 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 3049 // If the value is a class member, we might have a pointer-to-member. 3050 // Determine whether the non-type template template parameter is of 3051 // pointer-to-member type. If so, we need to build an appropriate 3052 // expression for a pointer-to-member, since a "normal" DeclRefExpr 3053 // would refer to the member itself. 3054 if (ParamType->isMemberPointerType()) { 3055 QualType ClassType 3056 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 3057 NestedNameSpecifier *Qualifier 3058 = NestedNameSpecifier::Create(Context, 0, false, ClassType.getTypePtr()); 3059 CXXScopeSpec SS; 3060 SS.setScopeRep(Qualifier); 3061 OwningExprResult RefExpr = BuildDeclRefExpr(VD, 3062 VD->getType().getNonReferenceType(), 3063 Loc, 3064 &SS); 3065 if (RefExpr.isInvalid()) 3066 return ExprError(); 3067 3068 RefExpr = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr)); 3069 3070 // We might need to perform a trailing qualification conversion, since 3071 // the element type on the parameter could be more qualified than the 3072 // element type in the expression we constructed. 3073 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 3074 ParamType.getUnqualifiedType())) { 3075 Expr *RefE = RefExpr.takeAs<Expr>(); 3076 ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), 3077 CastExpr::CK_NoOp); 3078 RefExpr = Owned(RefE); 3079 } 3080 3081 assert(!RefExpr.isInvalid() && 3082 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 3083 ParamType.getUnqualifiedType())); 3084 return move(RefExpr); 3085 } 3086 } 3087 3088 QualType T = VD->getType().getNonReferenceType(); 3089 if (ParamType->isPointerType()) { 3090 // When the non-type template parameter is a pointer, take the 3091 // address of the declaration. 3092 OwningExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc); 3093 if (RefExpr.isInvalid()) 3094 return ExprError(); 3095 3096 if (T->isFunctionType() || T->isArrayType()) { 3097 // Decay functions and arrays. 3098 Expr *RefE = (Expr *)RefExpr.get(); 3099 DefaultFunctionArrayConversion(RefE); 3100 if (RefE != RefExpr.get()) { 3101 RefExpr.release(); 3102 RefExpr = Owned(RefE); 3103 } 3104 3105 return move(RefExpr); 3106 } 3107 3108 // Take the address of everything else 3109 return CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr)); 3110 } 3111 3112 // If the non-type template parameter has reference type, qualify the 3113 // resulting declaration reference with the extra qualifiers on the 3114 // type that the reference refers to. 3115 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) 3116 T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers()); 3117 3118 return BuildDeclRefExpr(VD, T, Loc); 3119} 3120 3121/// \brief Construct a new expression that refers to the given 3122/// integral template argument with the given source-location 3123/// information. 3124/// 3125/// This routine takes care of the mapping from an integral template 3126/// argument (which may have any integral type) to the appropriate 3127/// literal value. 3128Sema::OwningExprResult 3129Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 3130 SourceLocation Loc) { 3131 assert(Arg.getKind() == TemplateArgument::Integral && 3132 "Operation is only value for integral template arguments"); 3133 QualType T = Arg.getIntegralType(); 3134 if (T->isCharType() || T->isWideCharType()) 3135 return Owned(new (Context) CharacterLiteral( 3136 Arg.getAsIntegral()->getZExtValue(), 3137 T->isWideCharType(), 3138 T, 3139 Loc)); 3140 if (T->isBooleanType()) 3141 return Owned(new (Context) CXXBoolLiteralExpr( 3142 Arg.getAsIntegral()->getBoolValue(), 3143 T, 3144 Loc)); 3145 3146 return Owned(new (Context) IntegerLiteral(*Arg.getAsIntegral(), T, Loc)); 3147} 3148 3149 3150/// \brief Determine whether the given template parameter lists are 3151/// equivalent. 3152/// 3153/// \param New The new template parameter list, typically written in the 3154/// source code as part of a new template declaration. 3155/// 3156/// \param Old The old template parameter list, typically found via 3157/// name lookup of the template declared with this template parameter 3158/// list. 3159/// 3160/// \param Complain If true, this routine will produce a diagnostic if 3161/// the template parameter lists are not equivalent. 3162/// 3163/// \param Kind describes how we are to match the template parameter lists. 3164/// 3165/// \param TemplateArgLoc If this source location is valid, then we 3166/// are actually checking the template parameter list of a template 3167/// argument (New) against the template parameter list of its 3168/// corresponding template template parameter (Old). We produce 3169/// slightly different diagnostics in this scenario. 3170/// 3171/// \returns True if the template parameter lists are equal, false 3172/// otherwise. 3173bool 3174Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 3175 TemplateParameterList *Old, 3176 bool Complain, 3177 TemplateParameterListEqualKind Kind, 3178 SourceLocation TemplateArgLoc) { 3179 if (Old->size() != New->size()) { 3180 if (Complain) { 3181 unsigned NextDiag = diag::err_template_param_list_different_arity; 3182 if (TemplateArgLoc.isValid()) { 3183 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3184 NextDiag = diag::note_template_param_list_different_arity; 3185 } 3186 Diag(New->getTemplateLoc(), NextDiag) 3187 << (New->size() > Old->size()) 3188 << (Kind != TPL_TemplateMatch) 3189 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 3190 Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 3191 << (Kind != TPL_TemplateMatch) 3192 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 3193 } 3194 3195 return false; 3196 } 3197 3198 for (TemplateParameterList::iterator OldParm = Old->begin(), 3199 OldParmEnd = Old->end(), NewParm = New->begin(); 3200 OldParm != OldParmEnd; ++OldParm, ++NewParm) { 3201 if ((*OldParm)->getKind() != (*NewParm)->getKind()) { 3202 if (Complain) { 3203 unsigned NextDiag = diag::err_template_param_different_kind; 3204 if (TemplateArgLoc.isValid()) { 3205 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3206 NextDiag = diag::note_template_param_different_kind; 3207 } 3208 Diag((*NewParm)->getLocation(), NextDiag) 3209 << (Kind != TPL_TemplateMatch); 3210 Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration) 3211 << (Kind != TPL_TemplateMatch); 3212 } 3213 return false; 3214 } 3215 3216 if (isa<TemplateTypeParmDecl>(*OldParm)) { 3217 // Okay; all template type parameters are equivalent (since we 3218 // know we're at the same index). 3219 } else if (NonTypeTemplateParmDecl *OldNTTP 3220 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) { 3221 // The types of non-type template parameters must agree. 3222 NonTypeTemplateParmDecl *NewNTTP 3223 = cast<NonTypeTemplateParmDecl>(*NewParm); 3224 3225 // If we are matching a template template argument to a template 3226 // template parameter and one of the non-type template parameter types 3227 // is dependent, then we must wait until template instantiation time 3228 // to actually compare the arguments. 3229 if (Kind == TPL_TemplateTemplateArgumentMatch && 3230 (OldNTTP->getType()->isDependentType() || 3231 NewNTTP->getType()->isDependentType())) 3232 continue; 3233 3234 if (Context.getCanonicalType(OldNTTP->getType()) != 3235 Context.getCanonicalType(NewNTTP->getType())) { 3236 if (Complain) { 3237 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 3238 if (TemplateArgLoc.isValid()) { 3239 Diag(TemplateArgLoc, 3240 diag::err_template_arg_template_params_mismatch); 3241 NextDiag = diag::note_template_nontype_parm_different_type; 3242 } 3243 Diag(NewNTTP->getLocation(), NextDiag) 3244 << NewNTTP->getType() 3245 << (Kind != TPL_TemplateMatch); 3246 Diag(OldNTTP->getLocation(), 3247 diag::note_template_nontype_parm_prev_declaration) 3248 << OldNTTP->getType(); 3249 } 3250 return false; 3251 } 3252 } else { 3253 // The template parameter lists of template template 3254 // parameters must agree. 3255 assert(isa<TemplateTemplateParmDecl>(*OldParm) && 3256 "Only template template parameters handled here"); 3257 TemplateTemplateParmDecl *OldTTP 3258 = cast<TemplateTemplateParmDecl>(*OldParm); 3259 TemplateTemplateParmDecl *NewTTP 3260 = cast<TemplateTemplateParmDecl>(*NewParm); 3261 if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 3262 OldTTP->getTemplateParameters(), 3263 Complain, 3264 (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind), 3265 TemplateArgLoc)) 3266 return false; 3267 } 3268 } 3269 3270 return true; 3271} 3272 3273/// \brief Check whether a template can be declared within this scope. 3274/// 3275/// If the template declaration is valid in this scope, returns 3276/// false. Otherwise, issues a diagnostic and returns true. 3277bool 3278Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 3279 // Find the nearest enclosing declaration scope. 3280 while ((S->getFlags() & Scope::DeclScope) == 0 || 3281 (S->getFlags() & Scope::TemplateParamScope) != 0) 3282 S = S->getParent(); 3283 3284 // C++ [temp]p2: 3285 // A template-declaration can appear only as a namespace scope or 3286 // class scope declaration. 3287 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 3288 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 3289 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 3290 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 3291 << TemplateParams->getSourceRange(); 3292 3293 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 3294 Ctx = Ctx->getParent(); 3295 3296 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 3297 return false; 3298 3299 return Diag(TemplateParams->getTemplateLoc(), 3300 diag::err_template_outside_namespace_or_class_scope) 3301 << TemplateParams->getSourceRange(); 3302} 3303 3304/// \brief Determine what kind of template specialization the given declaration 3305/// is. 3306static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 3307 if (!D) 3308 return TSK_Undeclared; 3309 3310 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 3311 return Record->getTemplateSpecializationKind(); 3312 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 3313 return Function->getTemplateSpecializationKind(); 3314 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 3315 return Var->getTemplateSpecializationKind(); 3316 3317 return TSK_Undeclared; 3318} 3319 3320/// \brief Check whether a specialization is well-formed in the current 3321/// context. 3322/// 3323/// This routine determines whether a template specialization can be declared 3324/// in the current context (C++ [temp.expl.spec]p2). 3325/// 3326/// \param S the semantic analysis object for which this check is being 3327/// performed. 3328/// 3329/// \param Specialized the entity being specialized or instantiated, which 3330/// may be a kind of template (class template, function template, etc.) or 3331/// a member of a class template (member function, static data member, 3332/// member class). 3333/// 3334/// \param PrevDecl the previous declaration of this entity, if any. 3335/// 3336/// \param Loc the location of the explicit specialization or instantiation of 3337/// this entity. 3338/// 3339/// \param IsPartialSpecialization whether this is a partial specialization of 3340/// a class template. 3341/// 3342/// \returns true if there was an error that we cannot recover from, false 3343/// otherwise. 3344static bool CheckTemplateSpecializationScope(Sema &S, 3345 NamedDecl *Specialized, 3346 NamedDecl *PrevDecl, 3347 SourceLocation Loc, 3348 bool IsPartialSpecialization) { 3349 // Keep these "kind" numbers in sync with the %select statements in the 3350 // various diagnostics emitted by this routine. 3351 int EntityKind = 0; 3352 bool isTemplateSpecialization = false; 3353 if (isa<ClassTemplateDecl>(Specialized)) { 3354 EntityKind = IsPartialSpecialization? 1 : 0; 3355 isTemplateSpecialization = true; 3356 } else if (isa<FunctionTemplateDecl>(Specialized)) { 3357 EntityKind = 2; 3358 isTemplateSpecialization = true; 3359 } else if (isa<CXXMethodDecl>(Specialized)) 3360 EntityKind = 3; 3361 else if (isa<VarDecl>(Specialized)) 3362 EntityKind = 4; 3363 else if (isa<RecordDecl>(Specialized)) 3364 EntityKind = 5; 3365 else { 3366 S.Diag(Loc, diag::err_template_spec_unknown_kind); 3367 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3368 return true; 3369 } 3370 3371 // C++ [temp.expl.spec]p2: 3372 // An explicit specialization shall be declared in the namespace 3373 // of which the template is a member, or, for member templates, in 3374 // the namespace of which the enclosing class or enclosing class 3375 // template is a member. An explicit specialization of a member 3376 // function, member class or static data member of a class 3377 // template shall be declared in the namespace of which the class 3378 // template is a member. Such a declaration may also be a 3379 // definition. If the declaration is not a definition, the 3380 // specialization may be defined later in the name- space in which 3381 // the explicit specialization was declared, or in a namespace 3382 // that encloses the one in which the explicit specialization was 3383 // declared. 3384 if (S.CurContext->getLookupContext()->isFunctionOrMethod()) { 3385 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 3386 << Specialized; 3387 return true; 3388 } 3389 3390 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 3391 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 3392 << Specialized; 3393 return true; 3394 } 3395 3396 // C++ [temp.class.spec]p6: 3397 // A class template partial specialization may be declared or redeclared 3398 // in any namespace scope in which its definition may be defined (14.5.1 3399 // and 14.5.2). 3400 bool ComplainedAboutScope = false; 3401 DeclContext *SpecializedContext 3402 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 3403 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 3404 if ((!PrevDecl || 3405 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 3406 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 3407 // There is no prior declaration of this entity, so this 3408 // specialization must be in the same context as the template 3409 // itself. 3410 if (!DC->Equals(SpecializedContext)) { 3411 if (isa<TranslationUnitDecl>(SpecializedContext)) 3412 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 3413 << EntityKind << Specialized; 3414 else if (isa<NamespaceDecl>(SpecializedContext)) 3415 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope) 3416 << EntityKind << Specialized 3417 << cast<NamedDecl>(SpecializedContext); 3418 3419 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3420 ComplainedAboutScope = true; 3421 } 3422 } 3423 3424 // Make sure that this redeclaration (or definition) occurs in an enclosing 3425 // namespace. 3426 // Note that HandleDeclarator() performs this check for explicit 3427 // specializations of function templates, static data members, and member 3428 // functions, so we skip the check here for those kinds of entities. 3429 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 3430 // Should we refactor that check, so that it occurs later? 3431 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 3432 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 3433 isa<FunctionDecl>(Specialized))) { 3434 if (isa<TranslationUnitDecl>(SpecializedContext)) 3435 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 3436 << EntityKind << Specialized; 3437 else if (isa<NamespaceDecl>(SpecializedContext)) 3438 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 3439 << EntityKind << Specialized 3440 << cast<NamedDecl>(SpecializedContext); 3441 3442 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3443 } 3444 3445 // FIXME: check for specialization-after-instantiation errors and such. 3446 3447 return false; 3448} 3449 3450/// \brief Check the non-type template arguments of a class template 3451/// partial specialization according to C++ [temp.class.spec]p9. 3452/// 3453/// \param TemplateParams the template parameters of the primary class 3454/// template. 3455/// 3456/// \param TemplateArg the template arguments of the class template 3457/// partial specialization. 3458/// 3459/// \param MirrorsPrimaryTemplate will be set true if the class 3460/// template partial specialization arguments are identical to the 3461/// implicit template arguments of the primary template. This is not 3462/// necessarily an error (C++0x), and it is left to the caller to diagnose 3463/// this condition when it is an error. 3464/// 3465/// \returns true if there was an error, false otherwise. 3466bool Sema::CheckClassTemplatePartialSpecializationArgs( 3467 TemplateParameterList *TemplateParams, 3468 const TemplateArgumentListBuilder &TemplateArgs, 3469 bool &MirrorsPrimaryTemplate) { 3470 // FIXME: the interface to this function will have to change to 3471 // accommodate variadic templates. 3472 MirrorsPrimaryTemplate = true; 3473 3474 const TemplateArgument *ArgList = TemplateArgs.getFlatArguments(); 3475 3476 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3477 // Determine whether the template argument list of the partial 3478 // specialization is identical to the implicit argument list of 3479 // the primary template. The caller may need to diagnostic this as 3480 // an error per C++ [temp.class.spec]p9b3. 3481 if (MirrorsPrimaryTemplate) { 3482 if (TemplateTypeParmDecl *TTP 3483 = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) { 3484 if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) != 3485 Context.getCanonicalType(ArgList[I].getAsType())) 3486 MirrorsPrimaryTemplate = false; 3487 } else if (TemplateTemplateParmDecl *TTP 3488 = dyn_cast<TemplateTemplateParmDecl>( 3489 TemplateParams->getParam(I))) { 3490 TemplateName Name = ArgList[I].getAsTemplate(); 3491 TemplateTemplateParmDecl *ArgDecl 3492 = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()); 3493 if (!ArgDecl || 3494 ArgDecl->getIndex() != TTP->getIndex() || 3495 ArgDecl->getDepth() != TTP->getDepth()) 3496 MirrorsPrimaryTemplate = false; 3497 } 3498 } 3499 3500 NonTypeTemplateParmDecl *Param 3501 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 3502 if (!Param) { 3503 continue; 3504 } 3505 3506 Expr *ArgExpr = ArgList[I].getAsExpr(); 3507 if (!ArgExpr) { 3508 MirrorsPrimaryTemplate = false; 3509 continue; 3510 } 3511 3512 // C++ [temp.class.spec]p8: 3513 // A non-type argument is non-specialized if it is the name of a 3514 // non-type parameter. All other non-type arguments are 3515 // specialized. 3516 // 3517 // Below, we check the two conditions that only apply to 3518 // specialized non-type arguments, so skip any non-specialized 3519 // arguments. 3520 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 3521 if (NonTypeTemplateParmDecl *NTTP 3522 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) { 3523 if (MirrorsPrimaryTemplate && 3524 (Param->getIndex() != NTTP->getIndex() || 3525 Param->getDepth() != NTTP->getDepth())) 3526 MirrorsPrimaryTemplate = false; 3527 3528 continue; 3529 } 3530 3531 // C++ [temp.class.spec]p9: 3532 // Within the argument list of a class template partial 3533 // specialization, the following restrictions apply: 3534 // -- A partially specialized non-type argument expression 3535 // shall not involve a template parameter of the partial 3536 // specialization except when the argument expression is a 3537 // simple identifier. 3538 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 3539 Diag(ArgExpr->getLocStart(), 3540 diag::err_dependent_non_type_arg_in_partial_spec) 3541 << ArgExpr->getSourceRange(); 3542 return true; 3543 } 3544 3545 // -- The type of a template parameter corresponding to a 3546 // specialized non-type argument shall not be dependent on a 3547 // parameter of the specialization. 3548 if (Param->getType()->isDependentType()) { 3549 Diag(ArgExpr->getLocStart(), 3550 diag::err_dependent_typed_non_type_arg_in_partial_spec) 3551 << Param->getType() 3552 << ArgExpr->getSourceRange(); 3553 Diag(Param->getLocation(), diag::note_template_param_here); 3554 return true; 3555 } 3556 3557 MirrorsPrimaryTemplate = false; 3558 } 3559 3560 return false; 3561} 3562 3563/// \brief Retrieve the previous declaration of the given declaration. 3564static NamedDecl *getPreviousDecl(NamedDecl *ND) { 3565 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 3566 return VD->getPreviousDeclaration(); 3567 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 3568 return FD->getPreviousDeclaration(); 3569 if (TagDecl *TD = dyn_cast<TagDecl>(ND)) 3570 return TD->getPreviousDeclaration(); 3571 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND)) 3572 return TD->getPreviousDeclaration(); 3573 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 3574 return FTD->getPreviousDeclaration(); 3575 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND)) 3576 return CTD->getPreviousDeclaration(); 3577 return 0; 3578} 3579 3580Sema::DeclResult 3581Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 3582 TagUseKind TUK, 3583 SourceLocation KWLoc, 3584 CXXScopeSpec &SS, 3585 TemplateTy TemplateD, 3586 SourceLocation TemplateNameLoc, 3587 SourceLocation LAngleLoc, 3588 ASTTemplateArgsPtr TemplateArgsIn, 3589 SourceLocation RAngleLoc, 3590 AttributeList *Attr, 3591 MultiTemplateParamsArg TemplateParameterLists) { 3592 assert(TUK != TUK_Reference && "References are not specializations"); 3593 3594 // Find the class template we're specializing 3595 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 3596 ClassTemplateDecl *ClassTemplate 3597 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 3598 3599 if (!ClassTemplate) { 3600 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 3601 << (Name.getAsTemplateDecl() && 3602 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 3603 return true; 3604 } 3605 3606 bool isExplicitSpecialization = false; 3607 bool isPartialSpecialization = false; 3608 3609 // Check the validity of the template headers that introduce this 3610 // template. 3611 // FIXME: We probably shouldn't complain about these headers for 3612 // friend declarations. 3613 TemplateParameterList *TemplateParams 3614 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 3615 (TemplateParameterList**)TemplateParameterLists.get(), 3616 TemplateParameterLists.size(), 3617 TUK == TUK_Friend, 3618 isExplicitSpecialization); 3619 if (TemplateParams && TemplateParams->size() > 0) { 3620 isPartialSpecialization = true; 3621 3622 // C++ [temp.class.spec]p10: 3623 // The template parameter list of a specialization shall not 3624 // contain default template argument values. 3625 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3626 Decl *Param = TemplateParams->getParam(I); 3627 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 3628 if (TTP->hasDefaultArgument()) { 3629 Diag(TTP->getDefaultArgumentLoc(), 3630 diag::err_default_arg_in_partial_spec); 3631 TTP->removeDefaultArgument(); 3632 } 3633 } else if (NonTypeTemplateParmDecl *NTTP 3634 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3635 if (Expr *DefArg = NTTP->getDefaultArgument()) { 3636 Diag(NTTP->getDefaultArgumentLoc(), 3637 diag::err_default_arg_in_partial_spec) 3638 << DefArg->getSourceRange(); 3639 NTTP->setDefaultArgument(0); 3640 DefArg->Destroy(Context); 3641 } 3642 } else { 3643 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 3644 if (TTP->hasDefaultArgument()) { 3645 Diag(TTP->getDefaultArgument().getLocation(), 3646 diag::err_default_arg_in_partial_spec) 3647 << TTP->getDefaultArgument().getSourceRange(); 3648 TTP->setDefaultArgument(TemplateArgumentLoc()); 3649 } 3650 } 3651 } 3652 } else if (TemplateParams) { 3653 if (TUK == TUK_Friend) 3654 Diag(KWLoc, diag::err_template_spec_friend) 3655 << FixItHint::CreateRemoval( 3656 SourceRange(TemplateParams->getTemplateLoc(), 3657 TemplateParams->getRAngleLoc())) 3658 << SourceRange(LAngleLoc, RAngleLoc); 3659 else 3660 isExplicitSpecialization = true; 3661 } else if (TUK != TUK_Friend) { 3662 Diag(KWLoc, diag::err_template_spec_needs_header) 3663 << FixItHint::CreateInsertion(KWLoc, "template<> "); 3664 isExplicitSpecialization = true; 3665 } 3666 3667 // Check that the specialization uses the same tag kind as the 3668 // original template. 3669 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 3670 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 3671 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 3672 Kind, KWLoc, 3673 *ClassTemplate->getIdentifier())) { 3674 Diag(KWLoc, diag::err_use_with_wrong_tag) 3675 << ClassTemplate 3676 << FixItHint::CreateReplacement(KWLoc, 3677 ClassTemplate->getTemplatedDecl()->getKindName()); 3678 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 3679 diag::note_previous_use); 3680 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 3681 } 3682 3683 // Translate the parser's template argument list in our AST format. 3684 TemplateArgumentListInfo TemplateArgs; 3685 TemplateArgs.setLAngleLoc(LAngleLoc); 3686 TemplateArgs.setRAngleLoc(RAngleLoc); 3687 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3688 3689 // Check that the template argument list is well-formed for this 3690 // template. 3691 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 3692 TemplateArgs.size()); 3693 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 3694 TemplateArgs, false, Converted)) 3695 return true; 3696 3697 assert((Converted.structuredSize() == 3698 ClassTemplate->getTemplateParameters()->size()) && 3699 "Converted template argument list is too short!"); 3700 3701 // Find the class template (partial) specialization declaration that 3702 // corresponds to these arguments. 3703 llvm::FoldingSetNodeID ID; 3704 if (isPartialSpecialization) { 3705 bool MirrorsPrimaryTemplate; 3706 if (CheckClassTemplatePartialSpecializationArgs( 3707 ClassTemplate->getTemplateParameters(), 3708 Converted, MirrorsPrimaryTemplate)) 3709 return true; 3710 3711 if (MirrorsPrimaryTemplate) { 3712 // C++ [temp.class.spec]p9b3: 3713 // 3714 // -- The argument list of the specialization shall not be identical 3715 // to the implicit argument list of the primary template. 3716 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 3717 << (TUK == TUK_Definition) 3718 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 3719 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 3720 ClassTemplate->getIdentifier(), 3721 TemplateNameLoc, 3722 Attr, 3723 TemplateParams, 3724 AS_none); 3725 } 3726 3727 // FIXME: Diagnose friend partial specializations 3728 3729 if (!Name.isDependent() && 3730 !TemplateSpecializationType::anyDependentTemplateArguments( 3731 TemplateArgs.getArgumentArray(), 3732 TemplateArgs.size())) { 3733 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 3734 << ClassTemplate->getDeclName(); 3735 isPartialSpecialization = false; 3736 } else { 3737 // FIXME: Template parameter list matters, too 3738 ClassTemplatePartialSpecializationDecl::Profile(ID, 3739 Converted.getFlatArguments(), 3740 Converted.flatSize(), 3741 Context); 3742 } 3743 } 3744 3745 if (!isPartialSpecialization) 3746 ClassTemplateSpecializationDecl::Profile(ID, 3747 Converted.getFlatArguments(), 3748 Converted.flatSize(), 3749 Context); 3750 void *InsertPos = 0; 3751 ClassTemplateSpecializationDecl *PrevDecl = 0; 3752 3753 if (isPartialSpecialization) 3754 PrevDecl 3755 = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID, 3756 InsertPos); 3757 else 3758 PrevDecl 3759 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 3760 3761 ClassTemplateSpecializationDecl *Specialization = 0; 3762 3763 // Check whether we can declare a class template specialization in 3764 // the current scope. 3765 if (TUK != TUK_Friend && 3766 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 3767 TemplateNameLoc, 3768 isPartialSpecialization)) 3769 return true; 3770 3771 // The canonical type 3772 QualType CanonType; 3773 if (PrevDecl && 3774 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 3775 TUK == TUK_Friend)) { 3776 // Since the only prior class template specialization with these 3777 // arguments was referenced but not declared, or we're only 3778 // referencing this specialization as a friend, reuse that 3779 // declaration node as our own, updating its source location to 3780 // reflect our new declaration. 3781 Specialization = PrevDecl; 3782 Specialization->setLocation(TemplateNameLoc); 3783 PrevDecl = 0; 3784 CanonType = Context.getTypeDeclType(Specialization); 3785 } else if (isPartialSpecialization) { 3786 // Build the canonical type that describes the converted template 3787 // arguments of the class template partial specialization. 3788 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 3789 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 3790 Converted.getFlatArguments(), 3791 Converted.flatSize()); 3792 3793 // Create a new class template partial specialization declaration node. 3794 ClassTemplatePartialSpecializationDecl *PrevPartial 3795 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 3796 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 3797 : ClassTemplate->getPartialSpecializations().size(); 3798 ClassTemplatePartialSpecializationDecl *Partial 3799 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 3800 ClassTemplate->getDeclContext(), 3801 TemplateNameLoc, 3802 TemplateParams, 3803 ClassTemplate, 3804 Converted, 3805 TemplateArgs, 3806 CanonType, 3807 PrevPartial, 3808 SequenceNumber); 3809 SetNestedNameSpecifier(Partial, SS); 3810 3811 if (PrevPartial) { 3812 ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial); 3813 ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial); 3814 } else { 3815 ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos); 3816 } 3817 Specialization = Partial; 3818 3819 // If we are providing an explicit specialization of a member class 3820 // template specialization, make a note of that. 3821 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 3822 PrevPartial->setMemberSpecialization(); 3823 3824 // Check that all of the template parameters of the class template 3825 // partial specialization are deducible from the template 3826 // arguments. If not, this class template partial specialization 3827 // will never be used. 3828 llvm::SmallVector<bool, 8> DeducibleParams; 3829 DeducibleParams.resize(TemplateParams->size()); 3830 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 3831 TemplateParams->getDepth(), 3832 DeducibleParams); 3833 unsigned NumNonDeducible = 0; 3834 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 3835 if (!DeducibleParams[I]) 3836 ++NumNonDeducible; 3837 3838 if (NumNonDeducible) { 3839 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 3840 << (NumNonDeducible > 1) 3841 << SourceRange(TemplateNameLoc, RAngleLoc); 3842 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 3843 if (!DeducibleParams[I]) { 3844 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 3845 if (Param->getDeclName()) 3846 Diag(Param->getLocation(), 3847 diag::note_partial_spec_unused_parameter) 3848 << Param->getDeclName(); 3849 else 3850 Diag(Param->getLocation(), 3851 diag::note_partial_spec_unused_parameter) 3852 << std::string("<anonymous>"); 3853 } 3854 } 3855 } 3856 } else { 3857 // Create a new class template specialization declaration node for 3858 // this explicit specialization or friend declaration. 3859 Specialization 3860 = ClassTemplateSpecializationDecl::Create(Context, Kind, 3861 ClassTemplate->getDeclContext(), 3862 TemplateNameLoc, 3863 ClassTemplate, 3864 Converted, 3865 PrevDecl); 3866 SetNestedNameSpecifier(Specialization, SS); 3867 3868 if (PrevDecl) { 3869 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 3870 ClassTemplate->getSpecializations().GetOrInsertNode(Specialization); 3871 } else { 3872 ClassTemplate->getSpecializations().InsertNode(Specialization, 3873 InsertPos); 3874 } 3875 3876 CanonType = Context.getTypeDeclType(Specialization); 3877 } 3878 3879 // C++ [temp.expl.spec]p6: 3880 // If a template, a member template or the member of a class template is 3881 // explicitly specialized then that specialization shall be declared 3882 // before the first use of that specialization that would cause an implicit 3883 // instantiation to take place, in every translation unit in which such a 3884 // use occurs; no diagnostic is required. 3885 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 3886 bool Okay = false; 3887 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 3888 // Is there any previous explicit specialization declaration? 3889 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 3890 Okay = true; 3891 break; 3892 } 3893 } 3894 3895 if (!Okay) { 3896 SourceRange Range(TemplateNameLoc, RAngleLoc); 3897 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 3898 << Context.getTypeDeclType(Specialization) << Range; 3899 3900 Diag(PrevDecl->getPointOfInstantiation(), 3901 diag::note_instantiation_required_here) 3902 << (PrevDecl->getTemplateSpecializationKind() 3903 != TSK_ImplicitInstantiation); 3904 return true; 3905 } 3906 } 3907 3908 // If this is not a friend, note that this is an explicit specialization. 3909 if (TUK != TUK_Friend) 3910 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 3911 3912 // Check that this isn't a redefinition of this specialization. 3913 if (TUK == TUK_Definition) { 3914 if (RecordDecl *Def = Specialization->getDefinition()) { 3915 SourceRange Range(TemplateNameLoc, RAngleLoc); 3916 Diag(TemplateNameLoc, diag::err_redefinition) 3917 << Context.getTypeDeclType(Specialization) << Range; 3918 Diag(Def->getLocation(), diag::note_previous_definition); 3919 Specialization->setInvalidDecl(); 3920 return true; 3921 } 3922 } 3923 3924 // Build the fully-sugared type for this class template 3925 // specialization as the user wrote in the specialization 3926 // itself. This means that we'll pretty-print the type retrieved 3927 // from the specialization's declaration the way that the user 3928 // actually wrote the specialization, rather than formatting the 3929 // name based on the "canonical" representation used to store the 3930 // template arguments in the specialization. 3931 TypeSourceInfo *WrittenTy 3932 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 3933 TemplateArgs, CanonType); 3934 if (TUK != TUK_Friend) 3935 Specialization->setTypeAsWritten(WrittenTy); 3936 TemplateArgsIn.release(); 3937 3938 // C++ [temp.expl.spec]p9: 3939 // A template explicit specialization is in the scope of the 3940 // namespace in which the template was defined. 3941 // 3942 // We actually implement this paragraph where we set the semantic 3943 // context (in the creation of the ClassTemplateSpecializationDecl), 3944 // but we also maintain the lexical context where the actual 3945 // definition occurs. 3946 Specialization->setLexicalDeclContext(CurContext); 3947 3948 // We may be starting the definition of this specialization. 3949 if (TUK == TUK_Definition) 3950 Specialization->startDefinition(); 3951 3952 if (TUK == TUK_Friend) { 3953 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 3954 TemplateNameLoc, 3955 WrittenTy, 3956 /*FIXME:*/KWLoc); 3957 Friend->setAccess(AS_public); 3958 CurContext->addDecl(Friend); 3959 } else { 3960 // Add the specialization into its lexical context, so that it can 3961 // be seen when iterating through the list of declarations in that 3962 // context. However, specializations are not found by name lookup. 3963 CurContext->addDecl(Specialization); 3964 } 3965 return DeclPtrTy::make(Specialization); 3966} 3967 3968Sema::DeclPtrTy 3969Sema::ActOnTemplateDeclarator(Scope *S, 3970 MultiTemplateParamsArg TemplateParameterLists, 3971 Declarator &D) { 3972 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 3973} 3974 3975Sema::DeclPtrTy 3976Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 3977 MultiTemplateParamsArg TemplateParameterLists, 3978 Declarator &D) { 3979 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 3980 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && 3981 "Not a function declarator!"); 3982 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; 3983 3984 if (FTI.hasPrototype) { 3985 // FIXME: Diagnose arguments without names in C. 3986 } 3987 3988 Scope *ParentScope = FnBodyScope->getParent(); 3989 3990 DeclPtrTy DP = HandleDeclarator(ParentScope, D, 3991 move(TemplateParameterLists), 3992 /*IsFunctionDefinition=*/true); 3993 if (FunctionTemplateDecl *FunctionTemplate 3994 = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>())) 3995 return ActOnStartOfFunctionDef(FnBodyScope, 3996 DeclPtrTy::make(FunctionTemplate->getTemplatedDecl())); 3997 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>())) 3998 return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function)); 3999 return DeclPtrTy(); 4000} 4001 4002/// \brief Strips various properties off an implicit instantiation 4003/// that has just been explicitly specialized. 4004static void StripImplicitInstantiation(NamedDecl *D) { 4005 D->invalidateAttrs(); 4006 4007 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 4008 FD->setInlineSpecified(false); 4009 } 4010} 4011 4012/// \brief Diagnose cases where we have an explicit template specialization 4013/// before/after an explicit template instantiation, producing diagnostics 4014/// for those cases where they are required and determining whether the 4015/// new specialization/instantiation will have any effect. 4016/// 4017/// \param NewLoc the location of the new explicit specialization or 4018/// instantiation. 4019/// 4020/// \param NewTSK the kind of the new explicit specialization or instantiation. 4021/// 4022/// \param PrevDecl the previous declaration of the entity. 4023/// 4024/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 4025/// 4026/// \param PrevPointOfInstantiation if valid, indicates where the previus 4027/// declaration was instantiated (either implicitly or explicitly). 4028/// 4029/// \param SuppressNew will be set to true to indicate that the new 4030/// specialization or instantiation has no effect and should be ignored. 4031/// 4032/// \returns true if there was an error that should prevent the introduction of 4033/// the new declaration into the AST, false otherwise. 4034bool 4035Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 4036 TemplateSpecializationKind NewTSK, 4037 NamedDecl *PrevDecl, 4038 TemplateSpecializationKind PrevTSK, 4039 SourceLocation PrevPointOfInstantiation, 4040 bool &SuppressNew) { 4041 SuppressNew = false; 4042 4043 switch (NewTSK) { 4044 case TSK_Undeclared: 4045 case TSK_ImplicitInstantiation: 4046 assert(false && "Don't check implicit instantiations here"); 4047 return false; 4048 4049 case TSK_ExplicitSpecialization: 4050 switch (PrevTSK) { 4051 case TSK_Undeclared: 4052 case TSK_ExplicitSpecialization: 4053 // Okay, we're just specializing something that is either already 4054 // explicitly specialized or has merely been mentioned without any 4055 // instantiation. 4056 return false; 4057 4058 case TSK_ImplicitInstantiation: 4059 if (PrevPointOfInstantiation.isInvalid()) { 4060 // The declaration itself has not actually been instantiated, so it is 4061 // still okay to specialize it. 4062 StripImplicitInstantiation(PrevDecl); 4063 return false; 4064 } 4065 // Fall through 4066 4067 case TSK_ExplicitInstantiationDeclaration: 4068 case TSK_ExplicitInstantiationDefinition: 4069 assert((PrevTSK == TSK_ImplicitInstantiation || 4070 PrevPointOfInstantiation.isValid()) && 4071 "Explicit instantiation without point of instantiation?"); 4072 4073 // C++ [temp.expl.spec]p6: 4074 // If a template, a member template or the member of a class template 4075 // is explicitly specialized then that specialization shall be declared 4076 // before the first use of that specialization that would cause an 4077 // implicit instantiation to take place, in every translation unit in 4078 // which such a use occurs; no diagnostic is required. 4079 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 4080 // Is there any previous explicit specialization declaration? 4081 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 4082 return false; 4083 } 4084 4085 Diag(NewLoc, diag::err_specialization_after_instantiation) 4086 << PrevDecl; 4087 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 4088 << (PrevTSK != TSK_ImplicitInstantiation); 4089 4090 return true; 4091 } 4092 break; 4093 4094 case TSK_ExplicitInstantiationDeclaration: 4095 switch (PrevTSK) { 4096 case TSK_ExplicitInstantiationDeclaration: 4097 // This explicit instantiation declaration is redundant (that's okay). 4098 SuppressNew = true; 4099 return false; 4100 4101 case TSK_Undeclared: 4102 case TSK_ImplicitInstantiation: 4103 // We're explicitly instantiating something that may have already been 4104 // implicitly instantiated; that's fine. 4105 return false; 4106 4107 case TSK_ExplicitSpecialization: 4108 // C++0x [temp.explicit]p4: 4109 // For a given set of template parameters, if an explicit instantiation 4110 // of a template appears after a declaration of an explicit 4111 // specialization for that template, the explicit instantiation has no 4112 // effect. 4113 SuppressNew = true; 4114 return false; 4115 4116 case TSK_ExplicitInstantiationDefinition: 4117 // C++0x [temp.explicit]p10: 4118 // If an entity is the subject of both an explicit instantiation 4119 // declaration and an explicit instantiation definition in the same 4120 // translation unit, the definition shall follow the declaration. 4121 Diag(NewLoc, 4122 diag::err_explicit_instantiation_declaration_after_definition); 4123 Diag(PrevPointOfInstantiation, 4124 diag::note_explicit_instantiation_definition_here); 4125 assert(PrevPointOfInstantiation.isValid() && 4126 "Explicit instantiation without point of instantiation?"); 4127 SuppressNew = true; 4128 return false; 4129 } 4130 break; 4131 4132 case TSK_ExplicitInstantiationDefinition: 4133 switch (PrevTSK) { 4134 case TSK_Undeclared: 4135 case TSK_ImplicitInstantiation: 4136 // We're explicitly instantiating something that may have already been 4137 // implicitly instantiated; that's fine. 4138 return false; 4139 4140 case TSK_ExplicitSpecialization: 4141 // C++ DR 259, C++0x [temp.explicit]p4: 4142 // For a given set of template parameters, if an explicit 4143 // instantiation of a template appears after a declaration of 4144 // an explicit specialization for that template, the explicit 4145 // instantiation has no effect. 4146 // 4147 // In C++98/03 mode, we only give an extension warning here, because it 4148 // is not harmful to try to explicitly instantiate something that 4149 // has been explicitly specialized. 4150 if (!getLangOptions().CPlusPlus0x) { 4151 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 4152 << PrevDecl; 4153 Diag(PrevDecl->getLocation(), 4154 diag::note_previous_template_specialization); 4155 } 4156 SuppressNew = true; 4157 return false; 4158 4159 case TSK_ExplicitInstantiationDeclaration: 4160 // We're explicity instantiating a definition for something for which we 4161 // were previously asked to suppress instantiations. That's fine. 4162 return false; 4163 4164 case TSK_ExplicitInstantiationDefinition: 4165 // C++0x [temp.spec]p5: 4166 // For a given template and a given set of template-arguments, 4167 // - an explicit instantiation definition shall appear at most once 4168 // in a program, 4169 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 4170 << PrevDecl; 4171 Diag(PrevPointOfInstantiation, 4172 diag::note_previous_explicit_instantiation); 4173 SuppressNew = true; 4174 return false; 4175 } 4176 break; 4177 } 4178 4179 assert(false && "Missing specialization/instantiation case?"); 4180 4181 return false; 4182} 4183 4184/// \brief Perform semantic analysis for the given dependent function 4185/// template specialization. The only possible way to get a dependent 4186/// function template specialization is with a friend declaration, 4187/// like so: 4188/// 4189/// template <class T> void foo(T); 4190/// template <class T> class A { 4191/// friend void foo<>(T); 4192/// }; 4193/// 4194/// There really isn't any useful analysis we can do here, so we 4195/// just store the information. 4196bool 4197Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 4198 const TemplateArgumentListInfo &ExplicitTemplateArgs, 4199 LookupResult &Previous) { 4200 // Remove anything from Previous that isn't a function template in 4201 // the correct context. 4202 DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext(); 4203 LookupResult::Filter F = Previous.makeFilter(); 4204 while (F.hasNext()) { 4205 NamedDecl *D = F.next()->getUnderlyingDecl(); 4206 if (!isa<FunctionTemplateDecl>(D) || 4207 !FDLookupContext->Equals(D->getDeclContext()->getLookupContext())) 4208 F.erase(); 4209 } 4210 F.done(); 4211 4212 // Should this be diagnosed here? 4213 if (Previous.empty()) return true; 4214 4215 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 4216 ExplicitTemplateArgs); 4217 return false; 4218} 4219 4220/// \brief Perform semantic analysis for the given function template 4221/// specialization. 4222/// 4223/// This routine performs all of the semantic analysis required for an 4224/// explicit function template specialization. On successful completion, 4225/// the function declaration \p FD will become a function template 4226/// specialization. 4227/// 4228/// \param FD the function declaration, which will be updated to become a 4229/// function template specialization. 4230/// 4231/// \param HasExplicitTemplateArgs whether any template arguments were 4232/// explicitly provided. 4233/// 4234/// \param LAngleLoc the location of the left angle bracket ('<'), if 4235/// template arguments were explicitly provided. 4236/// 4237/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 4238/// if any. 4239/// 4240/// \param NumExplicitTemplateArgs the number of explicitly-provided template 4241/// arguments. This number may be zero even when HasExplicitTemplateArgs is 4242/// true as in, e.g., \c void sort<>(char*, char*); 4243/// 4244/// \param RAngleLoc the location of the right angle bracket ('>'), if 4245/// template arguments were explicitly provided. 4246/// 4247/// \param PrevDecl the set of declarations that 4248bool 4249Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 4250 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4251 LookupResult &Previous) { 4252 // The set of function template specializations that could match this 4253 // explicit function template specialization. 4254 UnresolvedSet<8> Candidates; 4255 4256 DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext(); 4257 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4258 I != E; ++I) { 4259 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 4260 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 4261 // Only consider templates found within the same semantic lookup scope as 4262 // FD. 4263 if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext())) 4264 continue; 4265 4266 // C++ [temp.expl.spec]p11: 4267 // A trailing template-argument can be left unspecified in the 4268 // template-id naming an explicit function template specialization 4269 // provided it can be deduced from the function argument type. 4270 // Perform template argument deduction to determine whether we may be 4271 // specializing this template. 4272 // FIXME: It is somewhat wasteful to build 4273 TemplateDeductionInfo Info(Context, FD->getLocation()); 4274 FunctionDecl *Specialization = 0; 4275 if (TemplateDeductionResult TDK 4276 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 4277 FD->getType(), 4278 Specialization, 4279 Info)) { 4280 // FIXME: Template argument deduction failed; record why it failed, so 4281 // that we can provide nifty diagnostics. 4282 (void)TDK; 4283 continue; 4284 } 4285 4286 // Record this candidate. 4287 Candidates.addDecl(Specialization, I.getAccess()); 4288 } 4289 } 4290 4291 // Find the most specialized function template. 4292 UnresolvedSetIterator Result 4293 = getMostSpecialized(Candidates.begin(), Candidates.end(), 4294 TPOC_Other, FD->getLocation(), 4295 PDiag(diag::err_function_template_spec_no_match) 4296 << FD->getDeclName(), 4297 PDiag(diag::err_function_template_spec_ambiguous) 4298 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 4299 PDiag(diag::note_function_template_spec_matched)); 4300 if (Result == Candidates.end()) 4301 return true; 4302 4303 // Ignore access information; it doesn't figure into redeclaration checking. 4304 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 4305 Specialization->setLocation(FD->getLocation()); 4306 4307 // FIXME: Check if the prior specialization has a point of instantiation. 4308 // If so, we have run afoul of . 4309 4310 // If this is a friend declaration, then we're not really declaring 4311 // an explicit specialization. 4312 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 4313 4314 // Check the scope of this explicit specialization. 4315 if (!isFriend && 4316 CheckTemplateSpecializationScope(*this, 4317 Specialization->getPrimaryTemplate(), 4318 Specialization, FD->getLocation(), 4319 false)) 4320 return true; 4321 4322 // C++ [temp.expl.spec]p6: 4323 // If a template, a member template or the member of a class template is 4324 // explicitly specialized then that specialization shall be declared 4325 // before the first use of that specialization that would cause an implicit 4326 // instantiation to take place, in every translation unit in which such a 4327 // use occurs; no diagnostic is required. 4328 FunctionTemplateSpecializationInfo *SpecInfo 4329 = Specialization->getTemplateSpecializationInfo(); 4330 assert(SpecInfo && "Function template specialization info missing?"); 4331 4332 bool SuppressNew = false; 4333 if (!isFriend && 4334 CheckSpecializationInstantiationRedecl(FD->getLocation(), 4335 TSK_ExplicitSpecialization, 4336 Specialization, 4337 SpecInfo->getTemplateSpecializationKind(), 4338 SpecInfo->getPointOfInstantiation(), 4339 SuppressNew)) 4340 return true; 4341 4342 // Mark the prior declaration as an explicit specialization, so that later 4343 // clients know that this is an explicit specialization. 4344 if (!isFriend) 4345 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 4346 4347 // Turn the given function declaration into a function template 4348 // specialization, with the template arguments from the previous 4349 // specialization. 4350 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 4351 new (Context) TemplateArgumentList( 4352 *Specialization->getTemplateSpecializationArgs()), 4353 /*InsertPos=*/0, 4354 SpecInfo->getTemplateSpecializationKind()); 4355 4356 // The "previous declaration" for this function template specialization is 4357 // the prior function template specialization. 4358 Previous.clear(); 4359 Previous.addDecl(Specialization); 4360 return false; 4361} 4362 4363/// \brief Perform semantic analysis for the given non-template member 4364/// specialization. 4365/// 4366/// This routine performs all of the semantic analysis required for an 4367/// explicit member function specialization. On successful completion, 4368/// the function declaration \p FD will become a member function 4369/// specialization. 4370/// 4371/// \param Member the member declaration, which will be updated to become a 4372/// specialization. 4373/// 4374/// \param Previous the set of declarations, one of which may be specialized 4375/// by this function specialization; the set will be modified to contain the 4376/// redeclared member. 4377bool 4378Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 4379 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 4380 4381 // Try to find the member we are instantiating. 4382 NamedDecl *Instantiation = 0; 4383 NamedDecl *InstantiatedFrom = 0; 4384 MemberSpecializationInfo *MSInfo = 0; 4385 4386 if (Previous.empty()) { 4387 // Nowhere to look anyway. 4388 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 4389 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4390 I != E; ++I) { 4391 NamedDecl *D = (*I)->getUnderlyingDecl(); 4392 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 4393 if (Context.hasSameType(Function->getType(), Method->getType())) { 4394 Instantiation = Method; 4395 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 4396 MSInfo = Method->getMemberSpecializationInfo(); 4397 break; 4398 } 4399 } 4400 } 4401 } else if (isa<VarDecl>(Member)) { 4402 VarDecl *PrevVar; 4403 if (Previous.isSingleResult() && 4404 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 4405 if (PrevVar->isStaticDataMember()) { 4406 Instantiation = PrevVar; 4407 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 4408 MSInfo = PrevVar->getMemberSpecializationInfo(); 4409 } 4410 } else if (isa<RecordDecl>(Member)) { 4411 CXXRecordDecl *PrevRecord; 4412 if (Previous.isSingleResult() && 4413 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 4414 Instantiation = PrevRecord; 4415 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 4416 MSInfo = PrevRecord->getMemberSpecializationInfo(); 4417 } 4418 } 4419 4420 if (!Instantiation) { 4421 // There is no previous declaration that matches. Since member 4422 // specializations are always out-of-line, the caller will complain about 4423 // this mismatch later. 4424 return false; 4425 } 4426 4427 // If this is a friend, just bail out here before we start turning 4428 // things into explicit specializations. 4429 if (Member->getFriendObjectKind() != Decl::FOK_None) { 4430 // Preserve instantiation information. 4431 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 4432 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 4433 cast<CXXMethodDecl>(InstantiatedFrom), 4434 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 4435 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 4436 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 4437 cast<CXXRecordDecl>(InstantiatedFrom), 4438 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 4439 } 4440 4441 Previous.clear(); 4442 Previous.addDecl(Instantiation); 4443 return false; 4444 } 4445 4446 // Make sure that this is a specialization of a member. 4447 if (!InstantiatedFrom) { 4448 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 4449 << Member; 4450 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 4451 return true; 4452 } 4453 4454 // C++ [temp.expl.spec]p6: 4455 // If a template, a member template or the member of a class template is 4456 // explicitly specialized then that spe- cialization shall be declared 4457 // before the first use of that specialization that would cause an implicit 4458 // instantiation to take place, in every translation unit in which such a 4459 // use occurs; no diagnostic is required. 4460 assert(MSInfo && "Member specialization info missing?"); 4461 4462 bool SuppressNew = false; 4463 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 4464 TSK_ExplicitSpecialization, 4465 Instantiation, 4466 MSInfo->getTemplateSpecializationKind(), 4467 MSInfo->getPointOfInstantiation(), 4468 SuppressNew)) 4469 return true; 4470 4471 // Check the scope of this explicit specialization. 4472 if (CheckTemplateSpecializationScope(*this, 4473 InstantiatedFrom, 4474 Instantiation, Member->getLocation(), 4475 false)) 4476 return true; 4477 4478 // Note that this is an explicit instantiation of a member. 4479 // the original declaration to note that it is an explicit specialization 4480 // (if it was previously an implicit instantiation). This latter step 4481 // makes bookkeeping easier. 4482 if (isa<FunctionDecl>(Member)) { 4483 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 4484 if (InstantiationFunction->getTemplateSpecializationKind() == 4485 TSK_ImplicitInstantiation) { 4486 InstantiationFunction->setTemplateSpecializationKind( 4487 TSK_ExplicitSpecialization); 4488 InstantiationFunction->setLocation(Member->getLocation()); 4489 } 4490 4491 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 4492 cast<CXXMethodDecl>(InstantiatedFrom), 4493 TSK_ExplicitSpecialization); 4494 } else if (isa<VarDecl>(Member)) { 4495 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 4496 if (InstantiationVar->getTemplateSpecializationKind() == 4497 TSK_ImplicitInstantiation) { 4498 InstantiationVar->setTemplateSpecializationKind( 4499 TSK_ExplicitSpecialization); 4500 InstantiationVar->setLocation(Member->getLocation()); 4501 } 4502 4503 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 4504 cast<VarDecl>(InstantiatedFrom), 4505 TSK_ExplicitSpecialization); 4506 } else { 4507 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 4508 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 4509 if (InstantiationClass->getTemplateSpecializationKind() == 4510 TSK_ImplicitInstantiation) { 4511 InstantiationClass->setTemplateSpecializationKind( 4512 TSK_ExplicitSpecialization); 4513 InstantiationClass->setLocation(Member->getLocation()); 4514 } 4515 4516 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 4517 cast<CXXRecordDecl>(InstantiatedFrom), 4518 TSK_ExplicitSpecialization); 4519 } 4520 4521 // Save the caller the trouble of having to figure out which declaration 4522 // this specialization matches. 4523 Previous.clear(); 4524 Previous.addDecl(Instantiation); 4525 return false; 4526} 4527 4528/// \brief Check the scope of an explicit instantiation. 4529static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 4530 SourceLocation InstLoc, 4531 bool WasQualifiedName) { 4532 DeclContext *ExpectedContext 4533 = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext(); 4534 DeclContext *CurContext = S.CurContext->getLookupContext(); 4535 4536 // C++0x [temp.explicit]p2: 4537 // An explicit instantiation shall appear in an enclosing namespace of its 4538 // template. 4539 // 4540 // This is DR275, which we do not retroactively apply to C++98/03. 4541 if (S.getLangOptions().CPlusPlus0x && 4542 !CurContext->Encloses(ExpectedContext)) { 4543 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext)) 4544 S.Diag(InstLoc, 4545 S.getLangOptions().CPlusPlus0x? 4546 diag::err_explicit_instantiation_out_of_scope 4547 : diag::warn_explicit_instantiation_out_of_scope_0x) 4548 << D << NS; 4549 else 4550 S.Diag(InstLoc, 4551 S.getLangOptions().CPlusPlus0x? 4552 diag::err_explicit_instantiation_must_be_global 4553 : diag::warn_explicit_instantiation_out_of_scope_0x) 4554 << D; 4555 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4556 return; 4557 } 4558 4559 // C++0x [temp.explicit]p2: 4560 // If the name declared in the explicit instantiation is an unqualified 4561 // name, the explicit instantiation shall appear in the namespace where 4562 // its template is declared or, if that namespace is inline (7.3.1), any 4563 // namespace from its enclosing namespace set. 4564 if (WasQualifiedName) 4565 return; 4566 4567 if (CurContext->Equals(ExpectedContext)) 4568 return; 4569 4570 S.Diag(InstLoc, 4571 S.getLangOptions().CPlusPlus0x? 4572 diag::err_explicit_instantiation_unqualified_wrong_namespace 4573 : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 4574 << D << ExpectedContext; 4575 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4576} 4577 4578/// \brief Determine whether the given scope specifier has a template-id in it. 4579static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 4580 if (!SS.isSet()) 4581 return false; 4582 4583 // C++0x [temp.explicit]p2: 4584 // If the explicit instantiation is for a member function, a member class 4585 // or a static data member of a class template specialization, the name of 4586 // the class template specialization in the qualified-id for the member 4587 // name shall be a simple-template-id. 4588 // 4589 // C++98 has the same restriction, just worded differently. 4590 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 4591 NNS; NNS = NNS->getPrefix()) 4592 if (Type *T = NNS->getAsType()) 4593 if (isa<TemplateSpecializationType>(T)) 4594 return true; 4595 4596 return false; 4597} 4598 4599// Explicit instantiation of a class template specialization 4600Sema::DeclResult 4601Sema::ActOnExplicitInstantiation(Scope *S, 4602 SourceLocation ExternLoc, 4603 SourceLocation TemplateLoc, 4604 unsigned TagSpec, 4605 SourceLocation KWLoc, 4606 const CXXScopeSpec &SS, 4607 TemplateTy TemplateD, 4608 SourceLocation TemplateNameLoc, 4609 SourceLocation LAngleLoc, 4610 ASTTemplateArgsPtr TemplateArgsIn, 4611 SourceLocation RAngleLoc, 4612 AttributeList *Attr) { 4613 // Find the class template we're specializing 4614 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4615 ClassTemplateDecl *ClassTemplate 4616 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4617 4618 // Check that the specialization uses the same tag kind as the 4619 // original template. 4620 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4621 assert(Kind != TTK_Enum && 4622 "Invalid enum tag in class template explicit instantiation!"); 4623 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4624 Kind, KWLoc, 4625 *ClassTemplate->getIdentifier())) { 4626 Diag(KWLoc, diag::err_use_with_wrong_tag) 4627 << ClassTemplate 4628 << FixItHint::CreateReplacement(KWLoc, 4629 ClassTemplate->getTemplatedDecl()->getKindName()); 4630 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4631 diag::note_previous_use); 4632 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4633 } 4634 4635 // C++0x [temp.explicit]p2: 4636 // There are two forms of explicit instantiation: an explicit instantiation 4637 // definition and an explicit instantiation declaration. An explicit 4638 // instantiation declaration begins with the extern keyword. [...] 4639 TemplateSpecializationKind TSK 4640 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4641 : TSK_ExplicitInstantiationDeclaration; 4642 4643 // Translate the parser's template argument list in our AST format. 4644 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 4645 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4646 4647 // Check that the template argument list is well-formed for this 4648 // template. 4649 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 4650 TemplateArgs.size()); 4651 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4652 TemplateArgs, false, Converted)) 4653 return true; 4654 4655 assert((Converted.structuredSize() == 4656 ClassTemplate->getTemplateParameters()->size()) && 4657 "Converted template argument list is too short!"); 4658 4659 // Find the class template specialization declaration that 4660 // corresponds to these arguments. 4661 llvm::FoldingSetNodeID ID; 4662 ClassTemplateSpecializationDecl::Profile(ID, 4663 Converted.getFlatArguments(), 4664 Converted.flatSize(), 4665 Context); 4666 void *InsertPos = 0; 4667 ClassTemplateSpecializationDecl *PrevDecl 4668 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 4669 4670 // C++0x [temp.explicit]p2: 4671 // [...] An explicit instantiation shall appear in an enclosing 4672 // namespace of its template. [...] 4673 // 4674 // This is C++ DR 275. 4675 CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 4676 SS.isSet()); 4677 4678 ClassTemplateSpecializationDecl *Specialization = 0; 4679 4680 bool ReusedDecl = false; 4681 if (PrevDecl) { 4682 bool SuppressNew = false; 4683 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 4684 PrevDecl, 4685 PrevDecl->getSpecializationKind(), 4686 PrevDecl->getPointOfInstantiation(), 4687 SuppressNew)) 4688 return DeclPtrTy::make(PrevDecl); 4689 4690 if (SuppressNew) 4691 return DeclPtrTy::make(PrevDecl); 4692 4693 if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation || 4694 PrevDecl->getSpecializationKind() == TSK_Undeclared) { 4695 // Since the only prior class template specialization with these 4696 // arguments was referenced but not declared, reuse that 4697 // declaration node as our own, updating its source location to 4698 // reflect our new declaration. 4699 Specialization = PrevDecl; 4700 Specialization->setLocation(TemplateNameLoc); 4701 PrevDecl = 0; 4702 ReusedDecl = true; 4703 } 4704 } 4705 4706 if (!Specialization) { 4707 // Create a new class template specialization declaration node for 4708 // this explicit specialization. 4709 Specialization 4710 = ClassTemplateSpecializationDecl::Create(Context, Kind, 4711 ClassTemplate->getDeclContext(), 4712 TemplateNameLoc, 4713 ClassTemplate, 4714 Converted, PrevDecl); 4715 SetNestedNameSpecifier(Specialization, SS); 4716 4717 if (PrevDecl) { 4718 // Remove the previous declaration from the folding set, since we want 4719 // to introduce a new declaration. 4720 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 4721 ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 4722 } 4723 4724 // Insert the new specialization. 4725 ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos); 4726 } 4727 4728 // Build the fully-sugared type for this explicit instantiation as 4729 // the user wrote in the explicit instantiation itself. This means 4730 // that we'll pretty-print the type retrieved from the 4731 // specialization's declaration the way that the user actually wrote 4732 // the explicit instantiation, rather than formatting the name based 4733 // on the "canonical" representation used to store the template 4734 // arguments in the specialization. 4735 TypeSourceInfo *WrittenTy 4736 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 4737 TemplateArgs, 4738 Context.getTypeDeclType(Specialization)); 4739 Specialization->setTypeAsWritten(WrittenTy); 4740 TemplateArgsIn.release(); 4741 4742 if (!ReusedDecl) { 4743 // Add the explicit instantiation into its lexical context. However, 4744 // since explicit instantiations are never found by name lookup, we 4745 // just put it into the declaration context directly. 4746 Specialization->setLexicalDeclContext(CurContext); 4747 CurContext->addDecl(Specialization); 4748 } 4749 4750 // C++ [temp.explicit]p3: 4751 // A definition of a class template or class member template 4752 // shall be in scope at the point of the explicit instantiation of 4753 // the class template or class member template. 4754 // 4755 // This check comes when we actually try to perform the 4756 // instantiation. 4757 ClassTemplateSpecializationDecl *Def 4758 = cast_or_null<ClassTemplateSpecializationDecl>( 4759 Specialization->getDefinition()); 4760 if (!Def) 4761 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 4762 else if (TSK == TSK_ExplicitInstantiationDefinition) 4763 MarkVTableUsed(TemplateNameLoc, Specialization, true); 4764 4765 // Instantiate the members of this class template specialization. 4766 Def = cast_or_null<ClassTemplateSpecializationDecl>( 4767 Specialization->getDefinition()); 4768 if (Def) { 4769 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 4770 4771 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 4772 // TSK_ExplicitInstantiationDefinition 4773 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 4774 TSK == TSK_ExplicitInstantiationDefinition) 4775 Def->setTemplateSpecializationKind(TSK); 4776 4777 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 4778 } 4779 4780 return DeclPtrTy::make(Specialization); 4781} 4782 4783// Explicit instantiation of a member class of a class template. 4784Sema::DeclResult 4785Sema::ActOnExplicitInstantiation(Scope *S, 4786 SourceLocation ExternLoc, 4787 SourceLocation TemplateLoc, 4788 unsigned TagSpec, 4789 SourceLocation KWLoc, 4790 CXXScopeSpec &SS, 4791 IdentifierInfo *Name, 4792 SourceLocation NameLoc, 4793 AttributeList *Attr) { 4794 4795 bool Owned = false; 4796 bool IsDependent = false; 4797 DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference, 4798 KWLoc, SS, Name, NameLoc, Attr, AS_none, 4799 MultiTemplateParamsArg(*this, 0, 0), 4800 Owned, IsDependent); 4801 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 4802 4803 if (!TagD) 4804 return true; 4805 4806 TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>()); 4807 if (Tag->isEnum()) { 4808 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 4809 << Context.getTypeDeclType(Tag); 4810 return true; 4811 } 4812 4813 if (Tag->isInvalidDecl()) 4814 return true; 4815 4816 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 4817 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 4818 if (!Pattern) { 4819 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 4820 << Context.getTypeDeclType(Record); 4821 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 4822 return true; 4823 } 4824 4825 // C++0x [temp.explicit]p2: 4826 // If the explicit instantiation is for a class or member class, the 4827 // elaborated-type-specifier in the declaration shall include a 4828 // simple-template-id. 4829 // 4830 // C++98 has the same restriction, just worded differently. 4831 if (!ScopeSpecifierHasTemplateId(SS)) 4832 Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id) 4833 << Record << SS.getRange(); 4834 4835 // C++0x [temp.explicit]p2: 4836 // There are two forms of explicit instantiation: an explicit instantiation 4837 // definition and an explicit instantiation declaration. An explicit 4838 // instantiation declaration begins with the extern keyword. [...] 4839 TemplateSpecializationKind TSK 4840 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4841 : TSK_ExplicitInstantiationDeclaration; 4842 4843 // C++0x [temp.explicit]p2: 4844 // [...] An explicit instantiation shall appear in an enclosing 4845 // namespace of its template. [...] 4846 // 4847 // This is C++ DR 275. 4848 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 4849 4850 // Verify that it is okay to explicitly instantiate here. 4851 CXXRecordDecl *PrevDecl 4852 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 4853 if (!PrevDecl && Record->getDefinition()) 4854 PrevDecl = Record; 4855 if (PrevDecl) { 4856 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 4857 bool SuppressNew = false; 4858 assert(MSInfo && "No member specialization information?"); 4859 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 4860 PrevDecl, 4861 MSInfo->getTemplateSpecializationKind(), 4862 MSInfo->getPointOfInstantiation(), 4863 SuppressNew)) 4864 return true; 4865 if (SuppressNew) 4866 return TagD; 4867 } 4868 4869 CXXRecordDecl *RecordDef 4870 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 4871 if (!RecordDef) { 4872 // C++ [temp.explicit]p3: 4873 // A definition of a member class of a class template shall be in scope 4874 // at the point of an explicit instantiation of the member class. 4875 CXXRecordDecl *Def 4876 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 4877 if (!Def) { 4878 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 4879 << 0 << Record->getDeclName() << Record->getDeclContext(); 4880 Diag(Pattern->getLocation(), diag::note_forward_declaration) 4881 << Pattern; 4882 return true; 4883 } else { 4884 if (InstantiateClass(NameLoc, Record, Def, 4885 getTemplateInstantiationArgs(Record), 4886 TSK)) 4887 return true; 4888 4889 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 4890 if (!RecordDef) 4891 return true; 4892 } 4893 } 4894 4895 // Instantiate all of the members of the class. 4896 InstantiateClassMembers(NameLoc, RecordDef, 4897 getTemplateInstantiationArgs(Record), TSK); 4898 4899 if (TSK == TSK_ExplicitInstantiationDefinition) 4900 MarkVTableUsed(NameLoc, RecordDef, true); 4901 4902 // FIXME: We don't have any representation for explicit instantiations of 4903 // member classes. Such a representation is not needed for compilation, but it 4904 // should be available for clients that want to see all of the declarations in 4905 // the source code. 4906 return TagD; 4907} 4908 4909Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 4910 SourceLocation ExternLoc, 4911 SourceLocation TemplateLoc, 4912 Declarator &D) { 4913 // Explicit instantiations always require a name. 4914 DeclarationName Name = GetNameForDeclarator(D); 4915 if (!Name) { 4916 if (!D.isInvalidType()) 4917 Diag(D.getDeclSpec().getSourceRange().getBegin(), 4918 diag::err_explicit_instantiation_requires_name) 4919 << D.getDeclSpec().getSourceRange() 4920 << D.getSourceRange(); 4921 4922 return true; 4923 } 4924 4925 // The scope passed in may not be a decl scope. Zip up the scope tree until 4926 // we find one that is. 4927 while ((S->getFlags() & Scope::DeclScope) == 0 || 4928 (S->getFlags() & Scope::TemplateParamScope) != 0) 4929 S = S->getParent(); 4930 4931 // Determine the type of the declaration. 4932 QualType R = GetTypeForDeclarator(D, S, 0); 4933 if (R.isNull()) 4934 return true; 4935 4936 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 4937 // Cannot explicitly instantiate a typedef. 4938 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 4939 << Name; 4940 return true; 4941 } 4942 4943 // C++0x [temp.explicit]p1: 4944 // [...] An explicit instantiation of a function template shall not use the 4945 // inline or constexpr specifiers. 4946 // Presumably, this also applies to member functions of class templates as 4947 // well. 4948 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 4949 Diag(D.getDeclSpec().getInlineSpecLoc(), 4950 diag::err_explicit_instantiation_inline) 4951 <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 4952 4953 // FIXME: check for constexpr specifier. 4954 4955 // C++0x [temp.explicit]p2: 4956 // There are two forms of explicit instantiation: an explicit instantiation 4957 // definition and an explicit instantiation declaration. An explicit 4958 // instantiation declaration begins with the extern keyword. [...] 4959 TemplateSpecializationKind TSK 4960 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4961 : TSK_ExplicitInstantiationDeclaration; 4962 4963 LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName); 4964 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 4965 4966 if (!R->isFunctionType()) { 4967 // C++ [temp.explicit]p1: 4968 // A [...] static data member of a class template can be explicitly 4969 // instantiated from the member definition associated with its class 4970 // template. 4971 if (Previous.isAmbiguous()) 4972 return true; 4973 4974 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 4975 if (!Prev || !Prev->isStaticDataMember()) { 4976 // We expect to see a data data member here. 4977 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 4978 << Name; 4979 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 4980 P != PEnd; ++P) 4981 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 4982 return true; 4983 } 4984 4985 if (!Prev->getInstantiatedFromStaticDataMember()) { 4986 // FIXME: Check for explicit specialization? 4987 Diag(D.getIdentifierLoc(), 4988 diag::err_explicit_instantiation_data_member_not_instantiated) 4989 << Prev; 4990 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 4991 // FIXME: Can we provide a note showing where this was declared? 4992 return true; 4993 } 4994 4995 // C++0x [temp.explicit]p2: 4996 // If the explicit instantiation is for a member function, a member class 4997 // or a static data member of a class template specialization, the name of 4998 // the class template specialization in the qualified-id for the member 4999 // name shall be a simple-template-id. 5000 // 5001 // C++98 has the same restriction, just worded differently. 5002 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5003 Diag(D.getIdentifierLoc(), 5004 diag::err_explicit_instantiation_without_qualified_id) 5005 << Prev << D.getCXXScopeSpec().getRange(); 5006 5007 // Check the scope of this explicit instantiation. 5008 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 5009 5010 // Verify that it is okay to explicitly instantiate here. 5011 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 5012 assert(MSInfo && "Missing static data member specialization info?"); 5013 bool SuppressNew = false; 5014 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 5015 MSInfo->getTemplateSpecializationKind(), 5016 MSInfo->getPointOfInstantiation(), 5017 SuppressNew)) 5018 return true; 5019 if (SuppressNew) 5020 return DeclPtrTy(); 5021 5022 // Instantiate static data member. 5023 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5024 if (TSK == TSK_ExplicitInstantiationDefinition) 5025 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false, 5026 /*DefinitionRequired=*/true); 5027 5028 // FIXME: Create an ExplicitInstantiation node? 5029 return DeclPtrTy(); 5030 } 5031 5032 // If the declarator is a template-id, translate the parser's template 5033 // argument list into our AST format. 5034 bool HasExplicitTemplateArgs = false; 5035 TemplateArgumentListInfo TemplateArgs; 5036 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 5037 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 5038 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 5039 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 5040 ASTTemplateArgsPtr TemplateArgsPtr(*this, 5041 TemplateId->getTemplateArgs(), 5042 TemplateId->NumArgs); 5043 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 5044 HasExplicitTemplateArgs = true; 5045 TemplateArgsPtr.release(); 5046 } 5047 5048 // C++ [temp.explicit]p1: 5049 // A [...] function [...] can be explicitly instantiated from its template. 5050 // A member function [...] of a class template can be explicitly 5051 // instantiated from the member definition associated with its class 5052 // template. 5053 UnresolvedSet<8> Matches; 5054 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 5055 P != PEnd; ++P) { 5056 NamedDecl *Prev = *P; 5057 if (!HasExplicitTemplateArgs) { 5058 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 5059 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 5060 Matches.clear(); 5061 5062 Matches.addDecl(Method, P.getAccess()); 5063 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 5064 break; 5065 } 5066 } 5067 } 5068 5069 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 5070 if (!FunTmpl) 5071 continue; 5072 5073 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 5074 FunctionDecl *Specialization = 0; 5075 if (TemplateDeductionResult TDK 5076 = DeduceTemplateArguments(FunTmpl, 5077 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 5078 R, Specialization, Info)) { 5079 // FIXME: Keep track of almost-matches? 5080 (void)TDK; 5081 continue; 5082 } 5083 5084 Matches.addDecl(Specialization, P.getAccess()); 5085 } 5086 5087 // Find the most specialized function template specialization. 5088 UnresolvedSetIterator Result 5089 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 5090 D.getIdentifierLoc(), 5091 PDiag(diag::err_explicit_instantiation_not_known) << Name, 5092 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 5093 PDiag(diag::note_explicit_instantiation_candidate)); 5094 5095 if (Result == Matches.end()) 5096 return true; 5097 5098 // Ignore access control bits, we don't need them for redeclaration checking. 5099 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5100 5101 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 5102 Diag(D.getIdentifierLoc(), 5103 diag::err_explicit_instantiation_member_function_not_instantiated) 5104 << Specialization 5105 << (Specialization->getTemplateSpecializationKind() == 5106 TSK_ExplicitSpecialization); 5107 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 5108 return true; 5109 } 5110 5111 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 5112 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 5113 PrevDecl = Specialization; 5114 5115 if (PrevDecl) { 5116 bool SuppressNew = false; 5117 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 5118 PrevDecl, 5119 PrevDecl->getTemplateSpecializationKind(), 5120 PrevDecl->getPointOfInstantiation(), 5121 SuppressNew)) 5122 return true; 5123 5124 // FIXME: We may still want to build some representation of this 5125 // explicit specialization. 5126 if (SuppressNew) 5127 return DeclPtrTy(); 5128 } 5129 5130 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5131 5132 if (TSK == TSK_ExplicitInstantiationDefinition) 5133 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization, 5134 false, /*DefinitionRequired=*/true); 5135 5136 // C++0x [temp.explicit]p2: 5137 // If the explicit instantiation is for a member function, a member class 5138 // or a static data member of a class template specialization, the name of 5139 // the class template specialization in the qualified-id for the member 5140 // name shall be a simple-template-id. 5141 // 5142 // C++98 has the same restriction, just worded differently. 5143 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 5144 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 5145 D.getCXXScopeSpec().isSet() && 5146 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5147 Diag(D.getIdentifierLoc(), 5148 diag::err_explicit_instantiation_without_qualified_id) 5149 << Specialization << D.getCXXScopeSpec().getRange(); 5150 5151 CheckExplicitInstantiationScope(*this, 5152 FunTmpl? (NamedDecl *)FunTmpl 5153 : Specialization->getInstantiatedFromMemberFunction(), 5154 D.getIdentifierLoc(), 5155 D.getCXXScopeSpec().isSet()); 5156 5157 // FIXME: Create some kind of ExplicitInstantiationDecl here. 5158 return DeclPtrTy(); 5159} 5160 5161Sema::TypeResult 5162Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 5163 const CXXScopeSpec &SS, IdentifierInfo *Name, 5164 SourceLocation TagLoc, SourceLocation NameLoc) { 5165 // This has to hold, because SS is expected to be defined. 5166 assert(Name && "Expected a name in a dependent tag"); 5167 5168 NestedNameSpecifier *NNS 5169 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5170 if (!NNS) 5171 return true; 5172 5173 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5174 5175 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 5176 Diag(NameLoc, diag::err_dependent_tag_decl) 5177 << (TUK == TUK_Definition) << Kind << SS.getRange(); 5178 return true; 5179 } 5180 5181 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 5182 return Context.getDependentNameType(Kwd, NNS, Name).getAsOpaquePtr(); 5183} 5184 5185static void FillTypeLoc(DependentNameTypeLoc TL, 5186 SourceLocation TypenameLoc, 5187 SourceRange QualifierRange, 5188 SourceLocation NameLoc) { 5189 TL.setKeywordLoc(TypenameLoc); 5190 TL.setQualifierRange(QualifierRange); 5191 TL.setNameLoc(NameLoc); 5192} 5193 5194static void FillTypeLoc(ElaboratedTypeLoc TL, 5195 SourceLocation TypenameLoc, 5196 SourceRange QualifierRange) { 5197 // FIXME: inner locations. 5198 TL.setKeywordLoc(TypenameLoc); 5199 TL.setQualifierRange(QualifierRange); 5200} 5201 5202Sema::TypeResult 5203Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 5204 const IdentifierInfo &II, SourceLocation IdLoc) { 5205 NestedNameSpecifier *NNS 5206 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5207 if (!NNS) 5208 return true; 5209 5210 QualType T = CheckTypenameType(ETK_Typename, NNS, II, 5211 TypenameLoc, SS.getRange(), IdLoc); 5212 if (T.isNull()) 5213 return true; 5214 5215 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5216 if (isa<DependentNameType>(T)) { 5217 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 5218 // FIXME: fill inner type loc 5219 FillTypeLoc(TL, TypenameLoc, SS.getRange(), IdLoc); 5220 } else { 5221 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 5222 // FIXME: fill inner type loc 5223 FillTypeLoc(TL, TypenameLoc, SS.getRange()); 5224 } 5225 5226 return CreateLocInfoType(T, TSI).getAsOpaquePtr(); 5227} 5228 5229Sema::TypeResult 5230Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 5231 SourceLocation TemplateLoc, TypeTy *Ty) { 5232 QualType T = GetTypeFromParser(Ty); 5233 NestedNameSpecifier *NNS 5234 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5235 const TemplateSpecializationType *TemplateId 5236 = T->getAs<TemplateSpecializationType>(); 5237 assert(TemplateId && "Expected a template specialization type"); 5238 5239 if (computeDeclContext(SS, false)) { 5240 // If we can compute a declaration context, then the "typename" 5241 // keyword was superfluous. Just build an ElaboratedType to keep 5242 // track of the nested-name-specifier. 5243 T = Context.getElaboratedType(ETK_Typename, NNS, T); 5244 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5245 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 5246 // FIXME: fill inner type loc 5247 FillTypeLoc(TL, TypenameLoc, SS.getRange()); 5248 return CreateLocInfoType(T, TSI).getAsOpaquePtr(); 5249 } 5250 5251 T = Context.getDependentNameType(ETK_Typename, NNS, TemplateId); 5252 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5253 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 5254 // FIXME: fill inner type loc 5255 FillTypeLoc(TL, TypenameLoc, SS.getRange(), TemplateLoc); 5256 return CreateLocInfoType(T, TSI).getAsOpaquePtr(); 5257} 5258 5259/// \brief Build the type that describes a C++ typename specifier, 5260/// e.g., "typename T::type". 5261QualType 5262Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 5263 NestedNameSpecifier *NNS, const IdentifierInfo &II, 5264 SourceLocation KeywordLoc, SourceRange NNSRange, 5265 SourceLocation IILoc) { 5266 CXXScopeSpec SS; 5267 SS.setScopeRep(NNS); 5268 SS.setRange(NNSRange); 5269 5270 DeclContext *Ctx = computeDeclContext(SS); 5271 if (!Ctx) { 5272 // If the nested-name-specifier is dependent and couldn't be 5273 // resolved to a type, build a typename type. 5274 assert(NNS->isDependent()); 5275 return Context.getDependentNameType(Keyword, NNS, &II); 5276 } 5277 5278 // If the nested-name-specifier refers to the current instantiation, 5279 // the "typename" keyword itself is superfluous. In C++03, the 5280 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 5281 // allows such extraneous "typename" keywords, and we retroactively 5282 // apply this DR to C++03 code. In any case we continue. 5283 5284 if (RequireCompleteDeclContext(SS, Ctx)) 5285 return QualType(); 5286 5287 DeclarationName Name(&II); 5288 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 5289 LookupQualifiedName(Result, Ctx); 5290 unsigned DiagID = 0; 5291 Decl *Referenced = 0; 5292 switch (Result.getResultKind()) { 5293 case LookupResult::NotFound: 5294 DiagID = diag::err_typename_nested_not_found; 5295 break; 5296 5297 case LookupResult::NotFoundInCurrentInstantiation: 5298 // Okay, it's a member of an unknown instantiation. 5299 return Context.getDependentNameType(Keyword, NNS, &II); 5300 5301 case LookupResult::Found: 5302 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 5303 // We found a type. Build an ElaboratedType, since the 5304 // typename-specifier was just sugar. 5305 return Context.getElaboratedType(ETK_Typename, NNS, 5306 Context.getTypeDeclType(Type)); 5307 } 5308 5309 DiagID = diag::err_typename_nested_not_type; 5310 Referenced = Result.getFoundDecl(); 5311 break; 5312 5313 case LookupResult::FoundUnresolvedValue: 5314 llvm_unreachable("unresolved using decl in non-dependent context"); 5315 return QualType(); 5316 5317 case LookupResult::FoundOverloaded: 5318 DiagID = diag::err_typename_nested_not_type; 5319 Referenced = *Result.begin(); 5320 break; 5321 5322 case LookupResult::Ambiguous: 5323 return QualType(); 5324 } 5325 5326 // If we get here, it's because name lookup did not find a 5327 // type. Emit an appropriate diagnostic and return an error. 5328 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(), 5329 IILoc); 5330 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 5331 if (Referenced) 5332 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 5333 << Name; 5334 return QualType(); 5335} 5336 5337namespace { 5338 // See Sema::RebuildTypeInCurrentInstantiation 5339 class CurrentInstantiationRebuilder 5340 : public TreeTransform<CurrentInstantiationRebuilder> { 5341 SourceLocation Loc; 5342 DeclarationName Entity; 5343 5344 public: 5345 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 5346 5347 CurrentInstantiationRebuilder(Sema &SemaRef, 5348 SourceLocation Loc, 5349 DeclarationName Entity) 5350 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 5351 Loc(Loc), Entity(Entity) { } 5352 5353 /// \brief Determine whether the given type \p T has already been 5354 /// transformed. 5355 /// 5356 /// For the purposes of type reconstruction, a type has already been 5357 /// transformed if it is NULL or if it is not dependent. 5358 bool AlreadyTransformed(QualType T) { 5359 return T.isNull() || !T->isDependentType(); 5360 } 5361 5362 /// \brief Returns the location of the entity whose type is being 5363 /// rebuilt. 5364 SourceLocation getBaseLocation() { return Loc; } 5365 5366 /// \brief Returns the name of the entity whose type is being rebuilt. 5367 DeclarationName getBaseEntity() { return Entity; } 5368 5369 /// \brief Sets the "base" location and entity when that 5370 /// information is known based on another transformation. 5371 void setBase(SourceLocation Loc, DeclarationName Entity) { 5372 this->Loc = Loc; 5373 this->Entity = Entity; 5374 } 5375 5376 /// \brief Transforms an expression by returning the expression itself 5377 /// (an identity function). 5378 /// 5379 /// FIXME: This is completely unsafe; we will need to actually clone the 5380 /// expressions. 5381 Sema::OwningExprResult TransformExpr(Expr *E) { 5382 return getSema().Owned(E->Retain()); 5383 } 5384 5385 /// \brief Transforms a typename type by determining whether the type now 5386 /// refers to a member of the current instantiation, and then 5387 /// type-checking and building an ElaboratedType (when possible). 5388 QualType TransformDependentNameType(TypeLocBuilder &TLB, 5389 DependentNameTypeLoc TL, 5390 QualType ObjectType); 5391 }; 5392} 5393 5394QualType 5395CurrentInstantiationRebuilder::TransformDependentNameType(TypeLocBuilder &TLB, 5396 DependentNameTypeLoc TL, 5397 QualType ObjectType) { 5398 DependentNameType *T = TL.getTypePtr(); 5399 5400 NestedNameSpecifier *NNS 5401 = TransformNestedNameSpecifier(T->getQualifier(), 5402 TL.getQualifierRange(), 5403 ObjectType); 5404 if (!NNS) 5405 return QualType(); 5406 5407 // If the nested-name-specifier did not change, and we cannot compute the 5408 // context corresponding to the nested-name-specifier, then this 5409 // typename type will not change; exit early. 5410 CXXScopeSpec SS; 5411 SS.setRange(TL.getQualifierRange()); 5412 SS.setScopeRep(NNS); 5413 5414 QualType Result; 5415 if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0) 5416 Result = QualType(T, 0); 5417 5418 // Rebuild the typename type, which will probably turn into a 5419 // ElaboratedType. 5420 else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) { 5421 QualType NewTemplateId 5422 = TransformType(QualType(TemplateId, 0)); 5423 if (NewTemplateId.isNull()) 5424 return QualType(); 5425 5426 if (NNS == T->getQualifier() && 5427 NewTemplateId == QualType(TemplateId, 0)) 5428 Result = QualType(T, 0); 5429 else 5430 Result = getDerived().RebuildDependentNameType(T->getKeyword(), 5431 NNS, NewTemplateId); 5432 } else 5433 Result = getDerived().RebuildDependentNameType(T->getKeyword(), NNS, 5434 T->getIdentifier(), 5435 TL.getKeywordLoc(), 5436 TL.getQualifierRange(), 5437 TL.getNameLoc()); 5438 5439 if (Result.isNull()) 5440 return QualType(); 5441 5442 if (const ElaboratedType* ElabT = Result->getAs<ElaboratedType>()) { 5443 QualType NamedT = ElabT->getNamedType(); 5444 if (isa<TemplateSpecializationType>(NamedT)) { 5445 TemplateSpecializationTypeLoc NamedTLoc 5446 = TLB.push<TemplateSpecializationTypeLoc>(NamedT); 5447 // FIXME: fill locations 5448 NamedTLoc.initializeLocal(TL.getNameLoc()); 5449 } else { 5450 TLB.pushTypeSpec(NamedT).setNameLoc(TL.getNameLoc()); 5451 } 5452 ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result); 5453 NewTL.setKeywordLoc(TL.getKeywordLoc()); 5454 NewTL.setQualifierRange(TL.getQualifierRange()); 5455 } 5456 else { 5457 DependentNameTypeLoc NewTL = TLB.push<DependentNameTypeLoc>(Result); 5458 NewTL.setKeywordLoc(TL.getKeywordLoc()); 5459 NewTL.setQualifierRange(TL.getQualifierRange()); 5460 NewTL.setNameLoc(TL.getNameLoc()); 5461 } 5462 return Result; 5463} 5464 5465/// \brief Rebuilds a type within the context of the current instantiation. 5466/// 5467/// The type \p T is part of the type of an out-of-line member definition of 5468/// a class template (or class template partial specialization) that was parsed 5469/// and constructed before we entered the scope of the class template (or 5470/// partial specialization thereof). This routine will rebuild that type now 5471/// that we have entered the declarator's scope, which may produce different 5472/// canonical types, e.g., 5473/// 5474/// \code 5475/// template<typename T> 5476/// struct X { 5477/// typedef T* pointer; 5478/// pointer data(); 5479/// }; 5480/// 5481/// template<typename T> 5482/// typename X<T>::pointer X<T>::data() { ... } 5483/// \endcode 5484/// 5485/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 5486/// since we do not know that we can look into X<T> when we parsed the type. 5487/// This function will rebuild the type, performing the lookup of "pointer" 5488/// in X<T> and returning an ElaboratedType whose canonical type is the same 5489/// as the canonical type of T*, allowing the return types of the out-of-line 5490/// definition and the declaration to match. 5491TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 5492 SourceLocation Loc, 5493 DeclarationName Name) { 5494 if (!T || !T->getType()->isDependentType()) 5495 return T; 5496 5497 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 5498 return Rebuilder.TransformType(T); 5499} 5500 5501bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 5502 if (SS.isInvalid()) return true; 5503 5504 NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 5505 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 5506 DeclarationName()); 5507 NestedNameSpecifier *Rebuilt = 5508 Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange()); 5509 if (!Rebuilt) return true; 5510 5511 SS.setScopeRep(Rebuilt); 5512 return false; 5513} 5514 5515/// \brief Produces a formatted string that describes the binding of 5516/// template parameters to template arguments. 5517std::string 5518Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 5519 const TemplateArgumentList &Args) { 5520 // FIXME: For variadic templates, we'll need to get the structured list. 5521 return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(), 5522 Args.flat_size()); 5523} 5524 5525std::string 5526Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 5527 const TemplateArgument *Args, 5528 unsigned NumArgs) { 5529 std::string Result; 5530 5531 if (!Params || Params->size() == 0 || NumArgs == 0) 5532 return Result; 5533 5534 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 5535 if (I >= NumArgs) 5536 break; 5537 5538 if (I == 0) 5539 Result += "[with "; 5540 else 5541 Result += ", "; 5542 5543 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 5544 Result += Id->getName(); 5545 } else { 5546 Result += '$'; 5547 Result += llvm::utostr(I); 5548 } 5549 5550 Result += " = "; 5551 5552 switch (Args[I].getKind()) { 5553 case TemplateArgument::Null: 5554 Result += "<no value>"; 5555 break; 5556 5557 case TemplateArgument::Type: { 5558 std::string TypeStr; 5559 Args[I].getAsType().getAsStringInternal(TypeStr, 5560 Context.PrintingPolicy); 5561 Result += TypeStr; 5562 break; 5563 } 5564 5565 case TemplateArgument::Declaration: { 5566 bool Unnamed = true; 5567 if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) { 5568 if (ND->getDeclName()) { 5569 Unnamed = false; 5570 Result += ND->getNameAsString(); 5571 } 5572 } 5573 5574 if (Unnamed) { 5575 Result += "<anonymous>"; 5576 } 5577 break; 5578 } 5579 5580 case TemplateArgument::Template: { 5581 std::string Str; 5582 llvm::raw_string_ostream OS(Str); 5583 Args[I].getAsTemplate().print(OS, Context.PrintingPolicy); 5584 Result += OS.str(); 5585 break; 5586 } 5587 5588 case TemplateArgument::Integral: { 5589 Result += Args[I].getAsIntegral()->toString(10); 5590 break; 5591 } 5592 5593 case TemplateArgument::Expression: { 5594 // FIXME: This is non-optimal, since we're regurgitating the 5595 // expression we were given. 5596 std::string Str; 5597 { 5598 llvm::raw_string_ostream OS(Str); 5599 Args[I].getAsExpr()->printPretty(OS, Context, 0, 5600 Context.PrintingPolicy); 5601 } 5602 Result += Str; 5603 break; 5604 } 5605 5606 case TemplateArgument::Pack: 5607 // FIXME: Format template argument packs 5608 Result += "<template argument pack>"; 5609 break; 5610 } 5611 } 5612 5613 Result += ']'; 5614 return Result; 5615} 5616