SemaTemplate.cpp revision e8661906d49ef6c9694a9cc845ca62a85dbc016d
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "Sema.h"
13#include "TreeTransform.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/Expr.h"
16#include "clang/AST/ExprCXX.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/Parse/DeclSpec.h"
19#include "clang/Basic/LangOptions.h"
20#include "llvm/Support/Compiler.h"
21
22using namespace clang;
23
24/// isTemplateName - Determines whether the identifier II is a
25/// template name in the current scope, and returns the template
26/// declaration if II names a template. An optional CXXScope can be
27/// passed to indicate the C++ scope in which the identifier will be
28/// found.
29TemplateNameKind Sema::isTemplateName(const IdentifierInfo &II, Scope *S,
30                                      TemplateTy &TemplateResult,
31                                      const CXXScopeSpec *SS) {
32  NamedDecl *IIDecl = LookupParsedName(S, SS, &II, LookupOrdinaryName);
33
34  TemplateNameKind TNK = TNK_Non_template;
35  TemplateDecl *Template = 0;
36
37  if (IIDecl) {
38    if ((Template = dyn_cast<TemplateDecl>(IIDecl))) {
39      if (isa<FunctionTemplateDecl>(IIDecl))
40        TNK = TNK_Function_template;
41      else if (isa<ClassTemplateDecl>(IIDecl) ||
42               isa<TemplateTemplateParmDecl>(IIDecl))
43        TNK = TNK_Type_template;
44      else
45        assert(false && "Unknown template declaration kind");
46    } else if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(IIDecl)) {
47      // C++ [temp.local]p1:
48      //   Like normal (non-template) classes, class templates have an
49      //   injected-class-name (Clause 9). The injected-class-name
50      //   can be used with or without a template-argument-list. When
51      //   it is used without a template-argument-list, it is
52      //   equivalent to the injected-class-name followed by the
53      //   template-parameters of the class template enclosed in
54      //   <>. When it is used with a template-argument-list, it
55      //   refers to the specified class template specialization,
56      //   which could be the current specialization or another
57      //   specialization.
58      if (Record->isInjectedClassName()) {
59        Record = cast<CXXRecordDecl>(Record->getCanonicalDecl());
60        if ((Template = Record->getDescribedClassTemplate()))
61          TNK = TNK_Type_template;
62        else if (ClassTemplateSpecializationDecl *Spec
63                   = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
64          Template = Spec->getSpecializedTemplate();
65          TNK = TNK_Type_template;
66        }
67      }
68    } else if (OverloadedFunctionDecl *Ovl
69                 = dyn_cast<OverloadedFunctionDecl>(IIDecl)) {
70      for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
71                                                  FEnd = Ovl->function_end();
72           F != FEnd; ++F) {
73        if (FunctionTemplateDecl *FuncTmpl
74              = dyn_cast<FunctionTemplateDecl>(*F)) {
75          // We've found a function template. Determine whether there are
76          // any other function templates we need to bundle together in an
77          // OverloadedFunctionDecl
78          for (++F; F != FEnd; ++F) {
79            if (isa<FunctionTemplateDecl>(*F))
80              break;
81          }
82
83          if (F != FEnd) {
84            // Build an overloaded function decl containing only the
85            // function templates in Ovl.
86            OverloadedFunctionDecl *OvlTemplate
87              = OverloadedFunctionDecl::Create(Context,
88                                               Ovl->getDeclContext(),
89                                               Ovl->getDeclName());
90            OvlTemplate->addOverload(FuncTmpl);
91            OvlTemplate->addOverload(*F);
92            for (++F; F != FEnd; ++F) {
93              if (isa<FunctionTemplateDecl>(*F))
94                OvlTemplate->addOverload(*F);
95            }
96
97            // Form the resulting TemplateName
98            if (SS && SS->isSet() && !SS->isInvalid()) {
99              NestedNameSpecifier *Qualifier
100                = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
101              TemplateResult
102                = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier,
103                                                                    false,
104                                                                  OvlTemplate));
105            } else {
106              TemplateResult = TemplateTy::make(TemplateName(OvlTemplate));
107            }
108            return TNK_Function_template;
109          }
110
111          TNK = TNK_Function_template;
112          Template = FuncTmpl;
113          break;
114        }
115      }
116    }
117
118    if (TNK != TNK_Non_template) {
119      if (SS && SS->isSet() && !SS->isInvalid()) {
120        NestedNameSpecifier *Qualifier
121          = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
122        TemplateResult
123          = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier,
124                                                              false,
125                                                              Template));
126      } else
127        TemplateResult = TemplateTy::make(TemplateName(Template));
128    }
129  }
130  return TNK;
131}
132
133/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
134/// that the template parameter 'PrevDecl' is being shadowed by a new
135/// declaration at location Loc. Returns true to indicate that this is
136/// an error, and false otherwise.
137bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
138  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
139
140  // Microsoft Visual C++ permits template parameters to be shadowed.
141  if (getLangOptions().Microsoft)
142    return false;
143
144  // C++ [temp.local]p4:
145  //   A template-parameter shall not be redeclared within its
146  //   scope (including nested scopes).
147  Diag(Loc, diag::err_template_param_shadow)
148    << cast<NamedDecl>(PrevDecl)->getDeclName();
149  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
150  return true;
151}
152
153/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
154/// the parameter D to reference the templated declaration and return a pointer
155/// to the template declaration. Otherwise, do nothing to D and return null.
156TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
157  if (TemplateDecl *Temp = dyn_cast<TemplateDecl>(D.getAs<Decl>())) {
158    D = DeclPtrTy::make(Temp->getTemplatedDecl());
159    return Temp;
160  }
161  return 0;
162}
163
164/// ActOnTypeParameter - Called when a C++ template type parameter
165/// (e.g., "typename T") has been parsed. Typename specifies whether
166/// the keyword "typename" was used to declare the type parameter
167/// (otherwise, "class" was used), and KeyLoc is the location of the
168/// "class" or "typename" keyword. ParamName is the name of the
169/// parameter (NULL indicates an unnamed template parameter) and
170/// ParamName is the location of the parameter name (if any).
171/// If the type parameter has a default argument, it will be added
172/// later via ActOnTypeParameterDefault.
173Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
174                                         SourceLocation EllipsisLoc,
175                                         SourceLocation KeyLoc,
176                                         IdentifierInfo *ParamName,
177                                         SourceLocation ParamNameLoc,
178                                         unsigned Depth, unsigned Position) {
179  assert(S->isTemplateParamScope() &&
180	 "Template type parameter not in template parameter scope!");
181  bool Invalid = false;
182
183  if (ParamName) {
184    NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
185    if (PrevDecl && PrevDecl->isTemplateParameter())
186      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
187							   PrevDecl);
188  }
189
190  SourceLocation Loc = ParamNameLoc;
191  if (!ParamName)
192    Loc = KeyLoc;
193
194  TemplateTypeParmDecl *Param
195    = TemplateTypeParmDecl::Create(Context, CurContext, Loc,
196                                   Depth, Position, ParamName, Typename,
197                                   Ellipsis);
198  if (Invalid)
199    Param->setInvalidDecl();
200
201  if (ParamName) {
202    // Add the template parameter into the current scope.
203    S->AddDecl(DeclPtrTy::make(Param));
204    IdResolver.AddDecl(Param);
205  }
206
207  return DeclPtrTy::make(Param);
208}
209
210/// ActOnTypeParameterDefault - Adds a default argument (the type
211/// Default) to the given template type parameter (TypeParam).
212void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
213                                     SourceLocation EqualLoc,
214                                     SourceLocation DefaultLoc,
215                                     TypeTy *DefaultT) {
216  TemplateTypeParmDecl *Parm
217    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
218  // FIXME: Preserve type source info.
219  QualType Default = GetTypeFromParser(DefaultT);
220
221  // C++0x [temp.param]p9:
222  // A default template-argument may be specified for any kind of
223  // template-parameter that is not a template parameter pack.
224  if (Parm->isParameterPack()) {
225    Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
226    return;
227  }
228
229  // C++ [temp.param]p14:
230  //   A template-parameter shall not be used in its own default argument.
231  // FIXME: Implement this check! Needs a recursive walk over the types.
232
233  // Check the template argument itself.
234  if (CheckTemplateArgument(Parm, Default, DefaultLoc)) {
235    Parm->setInvalidDecl();
236    return;
237  }
238
239  Parm->setDefaultArgument(Default, DefaultLoc, false);
240}
241
242/// \brief Check that the type of a non-type template parameter is
243/// well-formed.
244///
245/// \returns the (possibly-promoted) parameter type if valid;
246/// otherwise, produces a diagnostic and returns a NULL type.
247QualType
248Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
249  // C++ [temp.param]p4:
250  //
251  // A non-type template-parameter shall have one of the following
252  // (optionally cv-qualified) types:
253  //
254  //       -- integral or enumeration type,
255  if (T->isIntegralType() || T->isEnumeralType() ||
256      //   -- pointer to object or pointer to function,
257      (T->isPointerType() &&
258       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
259        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
260      //   -- reference to object or reference to function,
261      T->isReferenceType() ||
262      //   -- pointer to member.
263      T->isMemberPointerType() ||
264      // If T is a dependent type, we can't do the check now, so we
265      // assume that it is well-formed.
266      T->isDependentType())
267    return T;
268  // C++ [temp.param]p8:
269  //
270  //   A non-type template-parameter of type "array of T" or
271  //   "function returning T" is adjusted to be of type "pointer to
272  //   T" or "pointer to function returning T", respectively.
273  else if (T->isArrayType())
274    // FIXME: Keep the type prior to promotion?
275    return Context.getArrayDecayedType(T);
276  else if (T->isFunctionType())
277    // FIXME: Keep the type prior to promotion?
278    return Context.getPointerType(T);
279
280  Diag(Loc, diag::err_template_nontype_parm_bad_type)
281    << T;
282
283  return QualType();
284}
285
286/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
287/// template parameter (e.g., "int Size" in "template<int Size>
288/// class Array") has been parsed. S is the current scope and D is
289/// the parsed declarator.
290Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
291                                                    unsigned Depth,
292                                                    unsigned Position) {
293  DeclaratorInfo *DInfo = 0;
294  QualType T = GetTypeForDeclarator(D, S, &DInfo);
295
296  assert(S->isTemplateParamScope() &&
297         "Non-type template parameter not in template parameter scope!");
298  bool Invalid = false;
299
300  IdentifierInfo *ParamName = D.getIdentifier();
301  if (ParamName) {
302    NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
303    if (PrevDecl && PrevDecl->isTemplateParameter())
304      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
305                                                           PrevDecl);
306  }
307
308  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
309  if (T.isNull()) {
310    T = Context.IntTy; // Recover with an 'int' type.
311    Invalid = true;
312  }
313
314  NonTypeTemplateParmDecl *Param
315    = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(),
316                                      Depth, Position, ParamName, T, DInfo);
317  if (Invalid)
318    Param->setInvalidDecl();
319
320  if (D.getIdentifier()) {
321    // Add the template parameter into the current scope.
322    S->AddDecl(DeclPtrTy::make(Param));
323    IdResolver.AddDecl(Param);
324  }
325  return DeclPtrTy::make(Param);
326}
327
328/// \brief Adds a default argument to the given non-type template
329/// parameter.
330void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
331                                                SourceLocation EqualLoc,
332                                                ExprArg DefaultE) {
333  NonTypeTemplateParmDecl *TemplateParm
334    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
335  Expr *Default = static_cast<Expr *>(DefaultE.get());
336
337  // C++ [temp.param]p14:
338  //   A template-parameter shall not be used in its own default argument.
339  // FIXME: Implement this check! Needs a recursive walk over the types.
340
341  // Check the well-formedness of the default template argument.
342  TemplateArgument Converted;
343  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
344                            Converted)) {
345    TemplateParm->setInvalidDecl();
346    return;
347  }
348
349  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
350}
351
352
353/// ActOnTemplateTemplateParameter - Called when a C++ template template
354/// parameter (e.g. T in template <template <typename> class T> class array)
355/// has been parsed. S is the current scope.
356Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
357                                                     SourceLocation TmpLoc,
358                                                     TemplateParamsTy *Params,
359                                                     IdentifierInfo *Name,
360                                                     SourceLocation NameLoc,
361                                                     unsigned Depth,
362                                                     unsigned Position)
363{
364  assert(S->isTemplateParamScope() &&
365         "Template template parameter not in template parameter scope!");
366
367  // Construct the parameter object.
368  TemplateTemplateParmDecl *Param =
369    TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth,
370                                     Position, Name,
371                                     (TemplateParameterList*)Params);
372
373  // Make sure the parameter is valid.
374  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
375  // do anything yet. However, if the template parameter list or (eventual)
376  // default value is ever invalidated, that will propagate here.
377  bool Invalid = false;
378  if (Invalid) {
379    Param->setInvalidDecl();
380  }
381
382  // If the tt-param has a name, then link the identifier into the scope
383  // and lookup mechanisms.
384  if (Name) {
385    S->AddDecl(DeclPtrTy::make(Param));
386    IdResolver.AddDecl(Param);
387  }
388
389  return DeclPtrTy::make(Param);
390}
391
392/// \brief Adds a default argument to the given template template
393/// parameter.
394void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
395                                                 SourceLocation EqualLoc,
396                                                 ExprArg DefaultE) {
397  TemplateTemplateParmDecl *TemplateParm
398    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
399
400  // Since a template-template parameter's default argument is an
401  // id-expression, it must be a DeclRefExpr.
402  DeclRefExpr *Default
403    = cast<DeclRefExpr>(static_cast<Expr *>(DefaultE.get()));
404
405  // C++ [temp.param]p14:
406  //   A template-parameter shall not be used in its own default argument.
407  // FIXME: Implement this check! Needs a recursive walk over the types.
408
409  // Check the well-formedness of the template argument.
410  if (!isa<TemplateDecl>(Default->getDecl())) {
411    Diag(Default->getSourceRange().getBegin(),
412         diag::err_template_arg_must_be_template)
413      << Default->getSourceRange();
414    TemplateParm->setInvalidDecl();
415    return;
416  }
417  if (CheckTemplateArgument(TemplateParm, Default)) {
418    TemplateParm->setInvalidDecl();
419    return;
420  }
421
422  DefaultE.release();
423  TemplateParm->setDefaultArgument(Default);
424}
425
426/// ActOnTemplateParameterList - Builds a TemplateParameterList that
427/// contains the template parameters in Params/NumParams.
428Sema::TemplateParamsTy *
429Sema::ActOnTemplateParameterList(unsigned Depth,
430                                 SourceLocation ExportLoc,
431                                 SourceLocation TemplateLoc,
432                                 SourceLocation LAngleLoc,
433                                 DeclPtrTy *Params, unsigned NumParams,
434                                 SourceLocation RAngleLoc) {
435  if (ExportLoc.isValid())
436    Diag(ExportLoc, diag::note_template_export_unsupported);
437
438  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
439                                       (Decl**)Params, NumParams, RAngleLoc);
440}
441
442Sema::DeclResult
443Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
444                         SourceLocation KWLoc, const CXXScopeSpec &SS,
445                         IdentifierInfo *Name, SourceLocation NameLoc,
446                         AttributeList *Attr,
447                         MultiTemplateParamsArg TemplateParameterLists,
448                         AccessSpecifier AS) {
449  assert(TemplateParameterLists.size() > 0 && "No template parameter lists?");
450  assert(TUK != TUK_Reference && "Can only declare or define class templates");
451  bool Invalid = false;
452
453  // Check that we can declare a template here.
454  if (CheckTemplateDeclScope(S, TemplateParameterLists))
455    return true;
456
457  TagDecl::TagKind Kind;
458  switch (TagSpec) {
459  default: assert(0 && "Unknown tag type!");
460  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
461  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
462  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
463  }
464
465  // There is no such thing as an unnamed class template.
466  if (!Name) {
467    Diag(KWLoc, diag::err_template_unnamed_class);
468    return true;
469  }
470
471  // Find any previous declaration with this name.
472  LookupResult Previous = LookupParsedName(S, &SS, Name, LookupOrdinaryName,
473                                           true);
474  assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
475  NamedDecl *PrevDecl = 0;
476  if (Previous.begin() != Previous.end())
477    PrevDecl = *Previous.begin();
478
479  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
480    PrevDecl = 0;
481
482  DeclContext *SemanticContext = CurContext;
483  if (SS.isNotEmpty() && !SS.isInvalid()) {
484    SemanticContext = computeDeclContext(SS);
485
486    // FIXME: need to match up several levels of template parameter lists here.
487  }
488
489  // FIXME: member templates!
490  TemplateParameterList *TemplateParams
491    = static_cast<TemplateParameterList *>(*TemplateParameterLists.release());
492
493  // If there is a previous declaration with the same name, check
494  // whether this is a valid redeclaration.
495  ClassTemplateDecl *PrevClassTemplate
496    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
497  if (PrevClassTemplate) {
498    // Ensure that the template parameter lists are compatible.
499    if (!TemplateParameterListsAreEqual(TemplateParams,
500                                   PrevClassTemplate->getTemplateParameters(),
501                                        /*Complain=*/true))
502      return true;
503
504    // C++ [temp.class]p4:
505    //   In a redeclaration, partial specialization, explicit
506    //   specialization or explicit instantiation of a class template,
507    //   the class-key shall agree in kind with the original class
508    //   template declaration (7.1.5.3).
509    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
510    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
511      Diag(KWLoc, diag::err_use_with_wrong_tag)
512        << Name
513        << CodeModificationHint::CreateReplacement(KWLoc,
514                            PrevRecordDecl->getKindName());
515      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
516      Kind = PrevRecordDecl->getTagKind();
517    }
518
519    // Check for redefinition of this class template.
520    if (TUK == TUK_Definition) {
521      if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) {
522        Diag(NameLoc, diag::err_redefinition) << Name;
523        Diag(Def->getLocation(), diag::note_previous_definition);
524        // FIXME: Would it make sense to try to "forget" the previous
525        // definition, as part of error recovery?
526        return true;
527      }
528    }
529  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
530    // Maybe we will complain about the shadowed template parameter.
531    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
532    // Just pretend that we didn't see the previous declaration.
533    PrevDecl = 0;
534  } else if (PrevDecl) {
535    // C++ [temp]p5:
536    //   A class template shall not have the same name as any other
537    //   template, class, function, object, enumeration, enumerator,
538    //   namespace, or type in the same scope (3.3), except as specified
539    //   in (14.5.4).
540    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
541    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
542    return true;
543  }
544
545  // Check the template parameter list of this declaration, possibly
546  // merging in the template parameter list from the previous class
547  // template declaration.
548  if (CheckTemplateParameterList(TemplateParams,
549            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0))
550    Invalid = true;
551
552  // FIXME: If we had a scope specifier, we better have a previous template
553  // declaration!
554
555  CXXRecordDecl *NewClass =
556    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
557                          PrevClassTemplate?
558                            PrevClassTemplate->getTemplatedDecl() : 0,
559                          /*DelayTypeCreation=*/true);
560
561  ClassTemplateDecl *NewTemplate
562    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
563                                DeclarationName(Name), TemplateParams,
564                                NewClass, PrevClassTemplate);
565  NewClass->setDescribedClassTemplate(NewTemplate);
566
567  // Build the type for the class template declaration now.
568  QualType T =
569    Context.getTypeDeclType(NewClass,
570                            PrevClassTemplate?
571                              PrevClassTemplate->getTemplatedDecl() : 0);
572  assert(T->isDependentType() && "Class template type is not dependent?");
573  (void)T;
574
575  // Set the access specifier.
576  SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
577
578  // Set the lexical context of these templates
579  NewClass->setLexicalDeclContext(CurContext);
580  NewTemplate->setLexicalDeclContext(CurContext);
581
582  if (TUK == TUK_Definition)
583    NewClass->startDefinition();
584
585  if (Attr)
586    ProcessDeclAttributeList(S, NewClass, Attr);
587
588  PushOnScopeChains(NewTemplate, S);
589
590  if (Invalid) {
591    NewTemplate->setInvalidDecl();
592    NewClass->setInvalidDecl();
593  }
594  return DeclPtrTy::make(NewTemplate);
595}
596
597/// \brief Checks the validity of a template parameter list, possibly
598/// considering the template parameter list from a previous
599/// declaration.
600///
601/// If an "old" template parameter list is provided, it must be
602/// equivalent (per TemplateParameterListsAreEqual) to the "new"
603/// template parameter list.
604///
605/// \param NewParams Template parameter list for a new template
606/// declaration. This template parameter list will be updated with any
607/// default arguments that are carried through from the previous
608/// template parameter list.
609///
610/// \param OldParams If provided, template parameter list from a
611/// previous declaration of the same template. Default template
612/// arguments will be merged from the old template parameter list to
613/// the new template parameter list.
614///
615/// \returns true if an error occurred, false otherwise.
616bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
617                                      TemplateParameterList *OldParams) {
618  bool Invalid = false;
619
620  // C++ [temp.param]p10:
621  //   The set of default template-arguments available for use with a
622  //   template declaration or definition is obtained by merging the
623  //   default arguments from the definition (if in scope) and all
624  //   declarations in scope in the same way default function
625  //   arguments are (8.3.6).
626  bool SawDefaultArgument = false;
627  SourceLocation PreviousDefaultArgLoc;
628
629  bool SawParameterPack = false;
630  SourceLocation ParameterPackLoc;
631
632  // Dummy initialization to avoid warnings.
633  TemplateParameterList::iterator OldParam = NewParams->end();
634  if (OldParams)
635    OldParam = OldParams->begin();
636
637  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
638                                    NewParamEnd = NewParams->end();
639       NewParam != NewParamEnd; ++NewParam) {
640    // Variables used to diagnose redundant default arguments
641    bool RedundantDefaultArg = false;
642    SourceLocation OldDefaultLoc;
643    SourceLocation NewDefaultLoc;
644
645    // Variables used to diagnose missing default arguments
646    bool MissingDefaultArg = false;
647
648    // C++0x [temp.param]p11:
649    // If a template parameter of a class template is a template parameter pack,
650    // it must be the last template parameter.
651    if (SawParameterPack) {
652      Diag(ParameterPackLoc,
653           diag::err_template_param_pack_must_be_last_template_parameter);
654      Invalid = true;
655    }
656
657    // Merge default arguments for template type parameters.
658    if (TemplateTypeParmDecl *NewTypeParm
659          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
660      TemplateTypeParmDecl *OldTypeParm
661          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
662
663      if (NewTypeParm->isParameterPack()) {
664        assert(!NewTypeParm->hasDefaultArgument() &&
665               "Parameter packs can't have a default argument!");
666        SawParameterPack = true;
667        ParameterPackLoc = NewTypeParm->getLocation();
668      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
669          NewTypeParm->hasDefaultArgument()) {
670        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
671        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
672        SawDefaultArgument = true;
673        RedundantDefaultArg = true;
674        PreviousDefaultArgLoc = NewDefaultLoc;
675      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
676        // Merge the default argument from the old declaration to the
677        // new declaration.
678        SawDefaultArgument = true;
679        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgument(),
680                                        OldTypeParm->getDefaultArgumentLoc(),
681                                        true);
682        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
683      } else if (NewTypeParm->hasDefaultArgument()) {
684        SawDefaultArgument = true;
685        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
686      } else if (SawDefaultArgument)
687        MissingDefaultArg = true;
688    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
689               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
690      // Merge default arguments for non-type template parameters
691      NonTypeTemplateParmDecl *OldNonTypeParm
692        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
693      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
694          NewNonTypeParm->hasDefaultArgument()) {
695        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
696        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
697        SawDefaultArgument = true;
698        RedundantDefaultArg = true;
699        PreviousDefaultArgLoc = NewDefaultLoc;
700      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
701        // Merge the default argument from the old declaration to the
702        // new declaration.
703        SawDefaultArgument = true;
704        // FIXME: We need to create a new kind of "default argument"
705        // expression that points to a previous template template
706        // parameter.
707        NewNonTypeParm->setDefaultArgument(
708                                        OldNonTypeParm->getDefaultArgument());
709        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
710      } else if (NewNonTypeParm->hasDefaultArgument()) {
711        SawDefaultArgument = true;
712        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
713      } else if (SawDefaultArgument)
714        MissingDefaultArg = true;
715    } else {
716    // Merge default arguments for template template parameters
717      TemplateTemplateParmDecl *NewTemplateParm
718        = cast<TemplateTemplateParmDecl>(*NewParam);
719      TemplateTemplateParmDecl *OldTemplateParm
720        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
721      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
722          NewTemplateParm->hasDefaultArgument()) {
723        OldDefaultLoc = OldTemplateParm->getDefaultArgumentLoc();
724        NewDefaultLoc = NewTemplateParm->getDefaultArgumentLoc();
725        SawDefaultArgument = true;
726        RedundantDefaultArg = true;
727        PreviousDefaultArgLoc = NewDefaultLoc;
728      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
729        // Merge the default argument from the old declaration to the
730        // new declaration.
731        SawDefaultArgument = true;
732        // FIXME: We need to create a new kind of "default argument" expression
733        // that points to a previous template template parameter.
734        NewTemplateParm->setDefaultArgument(
735                                        OldTemplateParm->getDefaultArgument());
736        PreviousDefaultArgLoc = OldTemplateParm->getDefaultArgumentLoc();
737      } else if (NewTemplateParm->hasDefaultArgument()) {
738        SawDefaultArgument = true;
739        PreviousDefaultArgLoc = NewTemplateParm->getDefaultArgumentLoc();
740      } else if (SawDefaultArgument)
741        MissingDefaultArg = true;
742    }
743
744    if (RedundantDefaultArg) {
745      // C++ [temp.param]p12:
746      //   A template-parameter shall not be given default arguments
747      //   by two different declarations in the same scope.
748      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
749      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
750      Invalid = true;
751    } else if (MissingDefaultArg) {
752      // C++ [temp.param]p11:
753      //   If a template-parameter has a default template-argument,
754      //   all subsequent template-parameters shall have a default
755      //   template-argument supplied.
756      Diag((*NewParam)->getLocation(),
757           diag::err_template_param_default_arg_missing);
758      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
759      Invalid = true;
760    }
761
762    // If we have an old template parameter list that we're merging
763    // in, move on to the next parameter.
764    if (OldParams)
765      ++OldParam;
766  }
767
768  return Invalid;
769}
770
771/// \brief Match the given template parameter lists to the given scope
772/// specifier, returning the template parameter list that applies to the
773/// name.
774///
775/// \param DeclStartLoc the start of the declaration that has a scope
776/// specifier or a template parameter list.
777///
778/// \param SS the scope specifier that will be matched to the given template
779/// parameter lists. This scope specifier precedes a qualified name that is
780/// being declared.
781///
782/// \param ParamLists the template parameter lists, from the outermost to the
783/// innermost template parameter lists.
784///
785/// \param NumParamLists the number of template parameter lists in ParamLists.
786///
787/// \returns the template parameter list, if any, that corresponds to the
788/// name that is preceded by the scope specifier @p SS. This template
789/// parameter list may be have template parameters (if we're declaring a
790/// template) or may have no template parameters (if we're declaring a
791/// template specialization), or may be NULL (if we were's declaring isn't
792/// itself a template).
793TemplateParameterList *
794Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
795                                              const CXXScopeSpec &SS,
796                                          TemplateParameterList **ParamLists,
797                                              unsigned NumParamLists) {
798  // FIXME: This routine will need a lot more testing once we have support for
799  // member templates.
800
801  // Find the template-ids that occur within the nested-name-specifier. These
802  // template-ids will match up with the template parameter lists.
803  llvm::SmallVector<const TemplateSpecializationType *, 4>
804    TemplateIdsInSpecifier;
805  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
806       NNS; NNS = NNS->getPrefix()) {
807    if (const TemplateSpecializationType *SpecType
808          = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) {
809      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
810      if (!Template)
811        continue; // FIXME: should this be an error? probably...
812
813      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
814        ClassTemplateSpecializationDecl *SpecDecl
815          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
816        // If the nested name specifier refers to an explicit specialization,
817        // we don't need a template<> header.
818        // FIXME: revisit this approach once we cope with specialization
819        // properly.
820        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization)
821          continue;
822      }
823
824      TemplateIdsInSpecifier.push_back(SpecType);
825    }
826  }
827
828  // Reverse the list of template-ids in the scope specifier, so that we can
829  // more easily match up the template-ids and the template parameter lists.
830  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
831
832  SourceLocation FirstTemplateLoc = DeclStartLoc;
833  if (NumParamLists)
834    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
835
836  // Match the template-ids found in the specifier to the template parameter
837  // lists.
838  unsigned Idx = 0;
839  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
840       Idx != NumTemplateIds; ++Idx) {
841    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
842    bool DependentTemplateId = TemplateId->isDependentType();
843    if (Idx >= NumParamLists) {
844      // We have a template-id without a corresponding template parameter
845      // list.
846      if (DependentTemplateId) {
847        // FIXME: the location information here isn't great.
848        Diag(SS.getRange().getBegin(),
849             diag::err_template_spec_needs_template_parameters)
850          << TemplateId
851          << SS.getRange();
852      } else {
853        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
854          << SS.getRange()
855          << CodeModificationHint::CreateInsertion(FirstTemplateLoc,
856                                                   "template<> ");
857      }
858      return 0;
859    }
860
861    // Check the template parameter list against its corresponding template-id.
862    if (DependentTemplateId) {
863      TemplateDecl *Template
864        = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl();
865
866      if (ClassTemplateDecl *ClassTemplate
867            = dyn_cast<ClassTemplateDecl>(Template)) {
868        TemplateParameterList *ExpectedTemplateParams = 0;
869        // Is this template-id naming the primary template?
870        if (Context.hasSameType(TemplateId,
871                             ClassTemplate->getInjectedClassNameType(Context)))
872          ExpectedTemplateParams = ClassTemplate->getTemplateParameters();
873        // ... or a partial specialization?
874        else if (ClassTemplatePartialSpecializationDecl *PartialSpec
875                   = ClassTemplate->findPartialSpecialization(TemplateId))
876          ExpectedTemplateParams = PartialSpec->getTemplateParameters();
877
878        if (ExpectedTemplateParams)
879          TemplateParameterListsAreEqual(ParamLists[Idx],
880                                         ExpectedTemplateParams,
881                                         true);
882      }
883    } else if (ParamLists[Idx]->size() > 0)
884      Diag(ParamLists[Idx]->getTemplateLoc(),
885           diag::err_template_param_list_matches_nontemplate)
886        << TemplateId
887        << ParamLists[Idx]->getSourceRange();
888  }
889
890  // If there were at least as many template-ids as there were template
891  // parameter lists, then there are no template parameter lists remaining for
892  // the declaration itself.
893  if (Idx >= NumParamLists)
894    return 0;
895
896  // If there were too many template parameter lists, complain about that now.
897  if (Idx != NumParamLists - 1) {
898    while (Idx < NumParamLists - 1) {
899      Diag(ParamLists[Idx]->getTemplateLoc(),
900           diag::err_template_spec_extra_headers)
901        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
902                       ParamLists[Idx]->getRAngleLoc());
903      ++Idx;
904    }
905  }
906
907  // Return the last template parameter list, which corresponds to the
908  // entity being declared.
909  return ParamLists[NumParamLists - 1];
910}
911
912/// \brief Translates template arguments as provided by the parser
913/// into template arguments used by semantic analysis.
914static void
915translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn,
916                           SourceLocation *TemplateArgLocs,
917                     llvm::SmallVector<TemplateArgument, 16> &TemplateArgs) {
918  TemplateArgs.reserve(TemplateArgsIn.size());
919
920  void **Args = TemplateArgsIn.getArgs();
921  bool *ArgIsType = TemplateArgsIn.getArgIsType();
922  for (unsigned Arg = 0, Last = TemplateArgsIn.size(); Arg != Last; ++Arg) {
923    TemplateArgs.push_back(
924      ArgIsType[Arg]? TemplateArgument(TemplateArgLocs[Arg],
925                                       //FIXME: Preserve type source info.
926                                       Sema::GetTypeFromParser(Args[Arg]))
927                    : TemplateArgument(reinterpret_cast<Expr *>(Args[Arg])));
928  }
929}
930
931QualType Sema::CheckTemplateIdType(TemplateName Name,
932                                   SourceLocation TemplateLoc,
933                                   SourceLocation LAngleLoc,
934                                   const TemplateArgument *TemplateArgs,
935                                   unsigned NumTemplateArgs,
936                                   SourceLocation RAngleLoc) {
937  TemplateDecl *Template = Name.getAsTemplateDecl();
938  if (!Template) {
939    // The template name does not resolve to a template, so we just
940    // build a dependent template-id type.
941    return Context.getTemplateSpecializationType(Name, TemplateArgs,
942                                                 NumTemplateArgs);
943  }
944
945  // Check that the template argument list is well-formed for this
946  // template.
947  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
948                                        NumTemplateArgs);
949  if (CheckTemplateArgumentList(Template, TemplateLoc, LAngleLoc,
950                                TemplateArgs, NumTemplateArgs, RAngleLoc,
951                                false, Converted))
952    return QualType();
953
954  assert((Converted.structuredSize() ==
955            Template->getTemplateParameters()->size()) &&
956         "Converted template argument list is too short!");
957
958  QualType CanonType;
959
960  if (TemplateSpecializationType::anyDependentTemplateArguments(
961                                                      TemplateArgs,
962                                                      NumTemplateArgs)) {
963    // This class template specialization is a dependent
964    // type. Therefore, its canonical type is another class template
965    // specialization type that contains all of the converted
966    // arguments in canonical form. This ensures that, e.g., A<T> and
967    // A<T, T> have identical types when A is declared as:
968    //
969    //   template<typename T, typename U = T> struct A;
970    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
971    CanonType = Context.getTemplateSpecializationType(CanonName,
972                                                   Converted.getFlatArguments(),
973                                                   Converted.flatSize());
974
975    // FIXME: CanonType is not actually the canonical type, and unfortunately
976    // it is a TemplateTypeSpecializationType that we will never use again.
977    // In the future, we need to teach getTemplateSpecializationType to only
978    // build the canonical type and return that to us.
979    CanonType = Context.getCanonicalType(CanonType);
980  } else if (ClassTemplateDecl *ClassTemplate
981               = dyn_cast<ClassTemplateDecl>(Template)) {
982    // Find the class template specialization declaration that
983    // corresponds to these arguments.
984    llvm::FoldingSetNodeID ID;
985    ClassTemplateSpecializationDecl::Profile(ID,
986                                             Converted.getFlatArguments(),
987                                             Converted.flatSize(),
988                                             Context);
989    void *InsertPos = 0;
990    ClassTemplateSpecializationDecl *Decl
991      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
992    if (!Decl) {
993      // This is the first time we have referenced this class template
994      // specialization. Create the canonical declaration and add it to
995      // the set of specializations.
996      Decl = ClassTemplateSpecializationDecl::Create(Context,
997                                    ClassTemplate->getDeclContext(),
998                                    TemplateLoc,
999                                    ClassTemplate,
1000                                    Converted, 0);
1001      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
1002      Decl->setLexicalDeclContext(CurContext);
1003    }
1004
1005    CanonType = Context.getTypeDeclType(Decl);
1006  }
1007
1008  // Build the fully-sugared type for this class template
1009  // specialization, which refers back to the class template
1010  // specialization we created or found.
1011  //FIXME: Preserve type source info.
1012  return Context.getTemplateSpecializationType(Name, TemplateArgs,
1013                                               NumTemplateArgs, CanonType);
1014}
1015
1016Action::TypeResult
1017Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1018                          SourceLocation LAngleLoc,
1019                          ASTTemplateArgsPtr TemplateArgsIn,
1020                          SourceLocation *TemplateArgLocs,
1021                          SourceLocation RAngleLoc) {
1022  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1023
1024  // Translate the parser's template argument list in our AST format.
1025  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
1026  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
1027
1028  QualType Result = CheckTemplateIdType(Template, TemplateLoc, LAngleLoc,
1029                                        TemplateArgs.data(),
1030                                        TemplateArgs.size(),
1031                                        RAngleLoc);
1032  TemplateArgsIn.release();
1033
1034  if (Result.isNull())
1035    return true;
1036
1037  return Result.getAsOpaquePtr();
1038}
1039
1040Sema::OwningExprResult Sema::BuildTemplateIdExpr(TemplateName Template,
1041                                                 SourceLocation TemplateNameLoc,
1042                                                 SourceLocation LAngleLoc,
1043                                           const TemplateArgument *TemplateArgs,
1044                                                 unsigned NumTemplateArgs,
1045                                                 SourceLocation RAngleLoc) {
1046  // FIXME: Can we do any checking at this point? I guess we could check the
1047  // template arguments that we have against the template name, if the template
1048  // name refers to a single template. That's not a terribly common case,
1049  // though.
1050  return Owned(TemplateIdRefExpr::Create(Context,
1051                                         /*FIXME: New type?*/Context.OverloadTy,
1052                                         /*FIXME: Necessary?*/0,
1053                                         /*FIXME: Necessary?*/SourceRange(),
1054                                         Template, TemplateNameLoc, LAngleLoc,
1055                                         TemplateArgs,
1056                                         NumTemplateArgs, RAngleLoc));
1057}
1058
1059Sema::OwningExprResult Sema::ActOnTemplateIdExpr(TemplateTy TemplateD,
1060                                                 SourceLocation TemplateNameLoc,
1061                                                 SourceLocation LAngleLoc,
1062                                              ASTTemplateArgsPtr TemplateArgsIn,
1063                                                SourceLocation *TemplateArgLocs,
1064                                                 SourceLocation RAngleLoc) {
1065  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1066
1067  // Translate the parser's template argument list in our AST format.
1068  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
1069  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
1070  TemplateArgsIn.release();
1071
1072  return BuildTemplateIdExpr(Template, TemplateNameLoc, LAngleLoc,
1073                             TemplateArgs.data(), TemplateArgs.size(),
1074                             RAngleLoc);
1075}
1076
1077/// \brief Form a dependent template name.
1078///
1079/// This action forms a dependent template name given the template
1080/// name and its (presumably dependent) scope specifier. For
1081/// example, given "MetaFun::template apply", the scope specifier \p
1082/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1083/// of the "template" keyword, and "apply" is the \p Name.
1084Sema::TemplateTy
1085Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
1086                                 const IdentifierInfo &Name,
1087                                 SourceLocation NameLoc,
1088                                 const CXXScopeSpec &SS) {
1089  if (!SS.isSet() || SS.isInvalid())
1090    return TemplateTy();
1091
1092  NestedNameSpecifier *Qualifier
1093    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1094
1095  // FIXME: member of the current instantiation
1096
1097  if (!Qualifier->isDependent()) {
1098    // C++0x [temp.names]p5:
1099    //   If a name prefixed by the keyword template is not the name of
1100    //   a template, the program is ill-formed. [Note: the keyword
1101    //   template may not be applied to non-template members of class
1102    //   templates. -end note ] [ Note: as is the case with the
1103    //   typename prefix, the template prefix is allowed in cases
1104    //   where it is not strictly necessary; i.e., when the
1105    //   nested-name-specifier or the expression on the left of the ->
1106    //   or . is not dependent on a template-parameter, or the use
1107    //   does not appear in the scope of a template. -end note]
1108    //
1109    // Note: C++03 was more strict here, because it banned the use of
1110    // the "template" keyword prior to a template-name that was not a
1111    // dependent name. C++ DR468 relaxed this requirement (the
1112    // "template" keyword is now permitted). We follow the C++0x
1113    // rules, even in C++03 mode, retroactively applying the DR.
1114    TemplateTy Template;
1115    TemplateNameKind TNK = isTemplateName(Name, 0, Template, &SS);
1116    if (TNK == TNK_Non_template) {
1117      Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
1118        << &Name;
1119      return TemplateTy();
1120    }
1121
1122    return Template;
1123  }
1124
1125  return TemplateTy::make(Context.getDependentTemplateName(Qualifier, &Name));
1126}
1127
1128bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1129                                     const TemplateArgument &Arg,
1130                                     TemplateArgumentListBuilder &Converted) {
1131  // Check template type parameter.
1132  if (Arg.getKind() != TemplateArgument::Type) {
1133    // C++ [temp.arg.type]p1:
1134    //   A template-argument for a template-parameter which is a
1135    //   type shall be a type-id.
1136
1137    // We have a template type parameter but the template argument
1138    // is not a type.
1139    Diag(Arg.getLocation(), diag::err_template_arg_must_be_type);
1140    Diag(Param->getLocation(), diag::note_template_param_here);
1141
1142    return true;
1143  }
1144
1145  if (CheckTemplateArgument(Param, Arg.getAsType(), Arg.getLocation()))
1146    return true;
1147
1148  // Add the converted template type argument.
1149  Converted.Append(
1150                 TemplateArgument(Arg.getLocation(),
1151                                  Context.getCanonicalType(Arg.getAsType())));
1152  return false;
1153}
1154
1155/// \brief Check that the given template argument list is well-formed
1156/// for specializing the given template.
1157bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
1158                                     SourceLocation TemplateLoc,
1159                                     SourceLocation LAngleLoc,
1160                                     const TemplateArgument *TemplateArgs,
1161                                     unsigned NumTemplateArgs,
1162                                     SourceLocation RAngleLoc,
1163                                     bool PartialTemplateArgs,
1164                                     TemplateArgumentListBuilder &Converted) {
1165  TemplateParameterList *Params = Template->getTemplateParameters();
1166  unsigned NumParams = Params->size();
1167  unsigned NumArgs = NumTemplateArgs;
1168  bool Invalid = false;
1169
1170  bool HasParameterPack =
1171    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
1172
1173  if ((NumArgs > NumParams && !HasParameterPack) ||
1174      (NumArgs < Params->getMinRequiredArguments() &&
1175       !PartialTemplateArgs)) {
1176    // FIXME: point at either the first arg beyond what we can handle,
1177    // or the '>', depending on whether we have too many or too few
1178    // arguments.
1179    SourceRange Range;
1180    if (NumArgs > NumParams)
1181      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
1182    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
1183      << (NumArgs > NumParams)
1184      << (isa<ClassTemplateDecl>(Template)? 0 :
1185          isa<FunctionTemplateDecl>(Template)? 1 :
1186          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
1187      << Template << Range;
1188    Diag(Template->getLocation(), diag::note_template_decl_here)
1189      << Params->getSourceRange();
1190    Invalid = true;
1191  }
1192
1193  // C++ [temp.arg]p1:
1194  //   [...] The type and form of each template-argument specified in
1195  //   a template-id shall match the type and form specified for the
1196  //   corresponding parameter declared by the template in its
1197  //   template-parameter-list.
1198  unsigned ArgIdx = 0;
1199  for (TemplateParameterList::iterator Param = Params->begin(),
1200                                       ParamEnd = Params->end();
1201       Param != ParamEnd; ++Param, ++ArgIdx) {
1202    if (ArgIdx > NumArgs && PartialTemplateArgs)
1203      break;
1204
1205    // Decode the template argument
1206    TemplateArgument Arg;
1207    if (ArgIdx >= NumArgs) {
1208      // Retrieve the default template argument from the template
1209      // parameter.
1210      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
1211        if (TTP->isParameterPack()) {
1212          // We have an empty argument pack.
1213          Converted.BeginPack();
1214          Converted.EndPack();
1215          break;
1216        }
1217
1218        if (!TTP->hasDefaultArgument())
1219          break;
1220
1221        QualType ArgType = TTP->getDefaultArgument();
1222
1223        // If the argument type is dependent, instantiate it now based
1224        // on the previously-computed template arguments.
1225        if (ArgType->isDependentType()) {
1226          InstantiatingTemplate Inst(*this, TemplateLoc,
1227                                     Template, Converted.getFlatArguments(),
1228                                     Converted.flatSize(),
1229                                     SourceRange(TemplateLoc, RAngleLoc));
1230
1231          TemplateArgumentList TemplateArgs(Context, Converted,
1232                                            /*TakeArgs=*/false);
1233          ArgType = InstantiateType(ArgType, TemplateArgs,
1234                                    TTP->getDefaultArgumentLoc(),
1235                                    TTP->getDeclName());
1236        }
1237
1238        if (ArgType.isNull())
1239          return true;
1240
1241        Arg = TemplateArgument(TTP->getLocation(), ArgType);
1242      } else if (NonTypeTemplateParmDecl *NTTP
1243                   = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1244        if (!NTTP->hasDefaultArgument())
1245          break;
1246
1247        InstantiatingTemplate Inst(*this, TemplateLoc,
1248                                   Template, Converted.getFlatArguments(),
1249                                   Converted.flatSize(),
1250                                   SourceRange(TemplateLoc, RAngleLoc));
1251
1252        TemplateArgumentList TemplateArgs(Context, Converted,
1253                                          /*TakeArgs=*/false);
1254
1255        Sema::OwningExprResult E = InstantiateExpr(NTTP->getDefaultArgument(),
1256                                                   TemplateArgs);
1257        if (E.isInvalid())
1258          return true;
1259
1260        Arg = TemplateArgument(E.takeAs<Expr>());
1261      } else {
1262        TemplateTemplateParmDecl *TempParm
1263          = cast<TemplateTemplateParmDecl>(*Param);
1264
1265        if (!TempParm->hasDefaultArgument())
1266          break;
1267
1268        // FIXME: Instantiate default argument
1269        Arg = TemplateArgument(TempParm->getDefaultArgument());
1270      }
1271    } else {
1272      // Retrieve the template argument produced by the user.
1273      Arg = TemplateArgs[ArgIdx];
1274    }
1275
1276
1277    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
1278      if (TTP->isParameterPack()) {
1279        Converted.BeginPack();
1280        // Check all the remaining arguments (if any).
1281        for (; ArgIdx < NumArgs; ++ArgIdx) {
1282          if (CheckTemplateTypeArgument(TTP, TemplateArgs[ArgIdx], Converted))
1283            Invalid = true;
1284        }
1285
1286        Converted.EndPack();
1287      } else {
1288        if (CheckTemplateTypeArgument(TTP, Arg, Converted))
1289          Invalid = true;
1290      }
1291    } else if (NonTypeTemplateParmDecl *NTTP
1292                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1293      // Check non-type template parameters.
1294
1295      // Instantiate the type of the non-type template parameter with
1296      // the template arguments we've seen thus far.
1297      QualType NTTPType = NTTP->getType();
1298      if (NTTPType->isDependentType()) {
1299        // Instantiate the type of the non-type template parameter.
1300        InstantiatingTemplate Inst(*this, TemplateLoc,
1301                                   Template, Converted.getFlatArguments(),
1302                                   Converted.flatSize(),
1303                                   SourceRange(TemplateLoc, RAngleLoc));
1304
1305        TemplateArgumentList TemplateArgs(Context, Converted,
1306                                          /*TakeArgs=*/false);
1307        NTTPType = InstantiateType(NTTPType, TemplateArgs,
1308                                   NTTP->getLocation(),
1309                                   NTTP->getDeclName());
1310        // If that worked, check the non-type template parameter type
1311        // for validity.
1312        if (!NTTPType.isNull())
1313          NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
1314                                                       NTTP->getLocation());
1315        if (NTTPType.isNull()) {
1316          Invalid = true;
1317          break;
1318        }
1319      }
1320
1321      switch (Arg.getKind()) {
1322      case TemplateArgument::Null:
1323        assert(false && "Should never see a NULL template argument here");
1324        break;
1325
1326      case TemplateArgument::Expression: {
1327        Expr *E = Arg.getAsExpr();
1328        TemplateArgument Result;
1329        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1330          Invalid = true;
1331        else
1332          Converted.Append(Result);
1333        break;
1334      }
1335
1336      case TemplateArgument::Declaration:
1337      case TemplateArgument::Integral:
1338        // We've already checked this template argument, so just copy
1339        // it to the list of converted arguments.
1340        Converted.Append(Arg);
1341        break;
1342
1343      case TemplateArgument::Type:
1344        // We have a non-type template parameter but the template
1345        // argument is a type.
1346
1347        // C++ [temp.arg]p2:
1348        //   In a template-argument, an ambiguity between a type-id and
1349        //   an expression is resolved to a type-id, regardless of the
1350        //   form of the corresponding template-parameter.
1351        //
1352        // We warn specifically about this case, since it can be rather
1353        // confusing for users.
1354        if (Arg.getAsType()->isFunctionType())
1355          Diag(Arg.getLocation(), diag::err_template_arg_nontype_ambig)
1356            << Arg.getAsType();
1357        else
1358          Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr);
1359        Diag((*Param)->getLocation(), diag::note_template_param_here);
1360        Invalid = true;
1361        break;
1362
1363      case TemplateArgument::Pack:
1364        assert(0 && "FIXME: Implement!");
1365        break;
1366      }
1367    } else {
1368      // Check template template parameters.
1369      TemplateTemplateParmDecl *TempParm
1370        = cast<TemplateTemplateParmDecl>(*Param);
1371
1372      switch (Arg.getKind()) {
1373      case TemplateArgument::Null:
1374        assert(false && "Should never see a NULL template argument here");
1375        break;
1376
1377      case TemplateArgument::Expression: {
1378        Expr *ArgExpr = Arg.getAsExpr();
1379        if (ArgExpr && isa<DeclRefExpr>(ArgExpr) &&
1380            isa<TemplateDecl>(cast<DeclRefExpr>(ArgExpr)->getDecl())) {
1381          if (CheckTemplateArgument(TempParm, cast<DeclRefExpr>(ArgExpr)))
1382            Invalid = true;
1383
1384          // Add the converted template argument.
1385          Decl *D
1386            = cast<DeclRefExpr>(ArgExpr)->getDecl()->getCanonicalDecl();
1387          Converted.Append(TemplateArgument(Arg.getLocation(), D));
1388          continue;
1389        }
1390      }
1391        // fall through
1392
1393      case TemplateArgument::Type: {
1394        // We have a template template parameter but the template
1395        // argument does not refer to a template.
1396        Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
1397        Invalid = true;
1398        break;
1399      }
1400
1401      case TemplateArgument::Declaration:
1402        // We've already checked this template argument, so just copy
1403        // it to the list of converted arguments.
1404        Converted.Append(Arg);
1405        break;
1406
1407      case TemplateArgument::Integral:
1408        assert(false && "Integral argument with template template parameter");
1409        break;
1410
1411      case TemplateArgument::Pack:
1412        assert(0 && "FIXME: Implement!");
1413        break;
1414      }
1415    }
1416  }
1417
1418  return Invalid;
1419}
1420
1421/// \brief Check a template argument against its corresponding
1422/// template type parameter.
1423///
1424/// This routine implements the semantics of C++ [temp.arg.type]. It
1425/// returns true if an error occurred, and false otherwise.
1426bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
1427                                 QualType Arg, SourceLocation ArgLoc) {
1428  // C++ [temp.arg.type]p2:
1429  //   A local type, a type with no linkage, an unnamed type or a type
1430  //   compounded from any of these types shall not be used as a
1431  //   template-argument for a template type-parameter.
1432  //
1433  // FIXME: Perform the recursive and no-linkage type checks.
1434  const TagType *Tag = 0;
1435  if (const EnumType *EnumT = Arg->getAsEnumType())
1436    Tag = EnumT;
1437  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
1438    Tag = RecordT;
1439  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod())
1440    return Diag(ArgLoc, diag::err_template_arg_local_type)
1441      << QualType(Tag, 0);
1442  else if (Tag && !Tag->getDecl()->getDeclName() &&
1443           !Tag->getDecl()->getTypedefForAnonDecl()) {
1444    Diag(ArgLoc, diag::err_template_arg_unnamed_type);
1445    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
1446    return true;
1447  }
1448
1449  return false;
1450}
1451
1452/// \brief Checks whether the given template argument is the address
1453/// of an object or function according to C++ [temp.arg.nontype]p1.
1454bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
1455                                                          NamedDecl *&Entity) {
1456  bool Invalid = false;
1457
1458  // See through any implicit casts we added to fix the type.
1459  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1460    Arg = Cast->getSubExpr();
1461
1462  // C++0x allows nullptr, and there's no further checking to be done for that.
1463  if (Arg->getType()->isNullPtrType())
1464    return false;
1465
1466  // C++ [temp.arg.nontype]p1:
1467  //
1468  //   A template-argument for a non-type, non-template
1469  //   template-parameter shall be one of: [...]
1470  //
1471  //     -- the address of an object or function with external
1472  //        linkage, including function templates and function
1473  //        template-ids but excluding non-static class members,
1474  //        expressed as & id-expression where the & is optional if
1475  //        the name refers to a function or array, or if the
1476  //        corresponding template-parameter is a reference; or
1477  DeclRefExpr *DRE = 0;
1478
1479  // Ignore (and complain about) any excess parentheses.
1480  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
1481    if (!Invalid) {
1482      Diag(Arg->getSourceRange().getBegin(),
1483           diag::err_template_arg_extra_parens)
1484        << Arg->getSourceRange();
1485      Invalid = true;
1486    }
1487
1488    Arg = Parens->getSubExpr();
1489  }
1490
1491  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
1492    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
1493      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
1494  } else
1495    DRE = dyn_cast<DeclRefExpr>(Arg);
1496
1497  if (!DRE || !isa<ValueDecl>(DRE->getDecl()))
1498    return Diag(Arg->getSourceRange().getBegin(),
1499                diag::err_template_arg_not_object_or_func_form)
1500      << Arg->getSourceRange();
1501
1502  // Cannot refer to non-static data members
1503  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
1504    return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
1505      << Field << Arg->getSourceRange();
1506
1507  // Cannot refer to non-static member functions
1508  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
1509    if (!Method->isStatic())
1510      return Diag(Arg->getSourceRange().getBegin(),
1511                  diag::err_template_arg_method)
1512        << Method << Arg->getSourceRange();
1513
1514  // Functions must have external linkage.
1515  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1516    if (Func->getStorageClass() == FunctionDecl::Static) {
1517      Diag(Arg->getSourceRange().getBegin(),
1518           diag::err_template_arg_function_not_extern)
1519        << Func << Arg->getSourceRange();
1520      Diag(Func->getLocation(), diag::note_template_arg_internal_object)
1521        << true;
1522      return true;
1523    }
1524
1525    // Okay: we've named a function with external linkage.
1526    Entity = Func;
1527    return Invalid;
1528  }
1529
1530  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
1531    if (!Var->hasGlobalStorage()) {
1532      Diag(Arg->getSourceRange().getBegin(),
1533           diag::err_template_arg_object_not_extern)
1534        << Var << Arg->getSourceRange();
1535      Diag(Var->getLocation(), diag::note_template_arg_internal_object)
1536        << true;
1537      return true;
1538    }
1539
1540    // Okay: we've named an object with external linkage
1541    Entity = Var;
1542    return Invalid;
1543  }
1544
1545  // We found something else, but we don't know specifically what it is.
1546  Diag(Arg->getSourceRange().getBegin(),
1547       diag::err_template_arg_not_object_or_func)
1548      << Arg->getSourceRange();
1549  Diag(DRE->getDecl()->getLocation(),
1550       diag::note_template_arg_refers_here);
1551  return true;
1552}
1553
1554/// \brief Checks whether the given template argument is a pointer to
1555/// member constant according to C++ [temp.arg.nontype]p1.
1556bool
1557Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member) {
1558  bool Invalid = false;
1559
1560  // See through any implicit casts we added to fix the type.
1561  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1562    Arg = Cast->getSubExpr();
1563
1564  // C++0x allows nullptr, and there's no further checking to be done for that.
1565  if (Arg->getType()->isNullPtrType())
1566    return false;
1567
1568  // C++ [temp.arg.nontype]p1:
1569  //
1570  //   A template-argument for a non-type, non-template
1571  //   template-parameter shall be one of: [...]
1572  //
1573  //     -- a pointer to member expressed as described in 5.3.1.
1574  QualifiedDeclRefExpr *DRE = 0;
1575
1576  // Ignore (and complain about) any excess parentheses.
1577  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
1578    if (!Invalid) {
1579      Diag(Arg->getSourceRange().getBegin(),
1580           diag::err_template_arg_extra_parens)
1581        << Arg->getSourceRange();
1582      Invalid = true;
1583    }
1584
1585    Arg = Parens->getSubExpr();
1586  }
1587
1588  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg))
1589    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
1590      DRE = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr());
1591
1592  if (!DRE)
1593    return Diag(Arg->getSourceRange().getBegin(),
1594                diag::err_template_arg_not_pointer_to_member_form)
1595      << Arg->getSourceRange();
1596
1597  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
1598    assert((isa<FieldDecl>(DRE->getDecl()) ||
1599            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
1600           "Only non-static member pointers can make it here");
1601
1602    // Okay: this is the address of a non-static member, and therefore
1603    // a member pointer constant.
1604    Member = DRE->getDecl();
1605    return Invalid;
1606  }
1607
1608  // We found something else, but we don't know specifically what it is.
1609  Diag(Arg->getSourceRange().getBegin(),
1610       diag::err_template_arg_not_pointer_to_member_form)
1611      << Arg->getSourceRange();
1612  Diag(DRE->getDecl()->getLocation(),
1613       diag::note_template_arg_refers_here);
1614  return true;
1615}
1616
1617/// \brief Check a template argument against its corresponding
1618/// non-type template parameter.
1619///
1620/// This routine implements the semantics of C++ [temp.arg.nontype].
1621/// It returns true if an error occurred, and false otherwise. \p
1622/// InstantiatedParamType is the type of the non-type template
1623/// parameter after it has been instantiated.
1624///
1625/// If no error was detected, Converted receives the converted template argument.
1626bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
1627                                 QualType InstantiatedParamType, Expr *&Arg,
1628                                 TemplateArgument &Converted) {
1629  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
1630
1631  // If either the parameter has a dependent type or the argument is
1632  // type-dependent, there's nothing we can check now.
1633  // FIXME: Add template argument to Converted!
1634  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
1635    // FIXME: Produce a cloned, canonical expression?
1636    Converted = TemplateArgument(Arg);
1637    return false;
1638  }
1639
1640  // C++ [temp.arg.nontype]p5:
1641  //   The following conversions are performed on each expression used
1642  //   as a non-type template-argument. If a non-type
1643  //   template-argument cannot be converted to the type of the
1644  //   corresponding template-parameter then the program is
1645  //   ill-formed.
1646  //
1647  //     -- for a non-type template-parameter of integral or
1648  //        enumeration type, integral promotions (4.5) and integral
1649  //        conversions (4.7) are applied.
1650  QualType ParamType = InstantiatedParamType;
1651  QualType ArgType = Arg->getType();
1652  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
1653    // C++ [temp.arg.nontype]p1:
1654    //   A template-argument for a non-type, non-template
1655    //   template-parameter shall be one of:
1656    //
1657    //     -- an integral constant-expression of integral or enumeration
1658    //        type; or
1659    //     -- the name of a non-type template-parameter; or
1660    SourceLocation NonConstantLoc;
1661    llvm::APSInt Value;
1662    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
1663      Diag(Arg->getSourceRange().getBegin(),
1664           diag::err_template_arg_not_integral_or_enumeral)
1665        << ArgType << Arg->getSourceRange();
1666      Diag(Param->getLocation(), diag::note_template_param_here);
1667      return true;
1668    } else if (!Arg->isValueDependent() &&
1669               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
1670      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
1671        << ArgType << Arg->getSourceRange();
1672      return true;
1673    }
1674
1675    // FIXME: We need some way to more easily get the unqualified form
1676    // of the types without going all the way to the
1677    // canonical type.
1678    if (Context.getCanonicalType(ParamType).getCVRQualifiers())
1679      ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType();
1680    if (Context.getCanonicalType(ArgType).getCVRQualifiers())
1681      ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType();
1682
1683    // Try to convert the argument to the parameter's type.
1684    if (ParamType == ArgType) {
1685      // Okay: no conversion necessary
1686    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
1687               !ParamType->isEnumeralType()) {
1688      // This is an integral promotion or conversion.
1689      ImpCastExprToType(Arg, ParamType);
1690    } else {
1691      // We can't perform this conversion.
1692      Diag(Arg->getSourceRange().getBegin(),
1693           diag::err_template_arg_not_convertible)
1694        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1695      Diag(Param->getLocation(), diag::note_template_param_here);
1696      return true;
1697    }
1698
1699    QualType IntegerType = Context.getCanonicalType(ParamType);
1700    if (const EnumType *Enum = IntegerType->getAsEnumType())
1701      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
1702
1703    if (!Arg->isValueDependent()) {
1704      // Check that an unsigned parameter does not receive a negative
1705      // value.
1706      if (IntegerType->isUnsignedIntegerType()
1707          && (Value.isSigned() && Value.isNegative())) {
1708        Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative)
1709          << Value.toString(10) << Param->getType()
1710          << Arg->getSourceRange();
1711        Diag(Param->getLocation(), diag::note_template_param_here);
1712        return true;
1713      }
1714
1715      // Check that we don't overflow the template parameter type.
1716      unsigned AllowedBits = Context.getTypeSize(IntegerType);
1717      if (Value.getActiveBits() > AllowedBits) {
1718        Diag(Arg->getSourceRange().getBegin(),
1719             diag::err_template_arg_too_large)
1720          << Value.toString(10) << Param->getType()
1721          << Arg->getSourceRange();
1722        Diag(Param->getLocation(), diag::note_template_param_here);
1723        return true;
1724      }
1725
1726      if (Value.getBitWidth() != AllowedBits)
1727        Value.extOrTrunc(AllowedBits);
1728      Value.setIsSigned(IntegerType->isSignedIntegerType());
1729    }
1730
1731    // Add the value of this argument to the list of converted
1732    // arguments. We use the bitwidth and signedness of the template
1733    // parameter.
1734    if (Arg->isValueDependent()) {
1735      // The argument is value-dependent. Create a new
1736      // TemplateArgument with the converted expression.
1737      Converted = TemplateArgument(Arg);
1738      return false;
1739    }
1740
1741    Converted = TemplateArgument(StartLoc, Value,
1742                                 ParamType->isEnumeralType() ? ParamType
1743                                                             : IntegerType);
1744    return false;
1745  }
1746
1747  // Handle pointer-to-function, reference-to-function, and
1748  // pointer-to-member-function all in (roughly) the same way.
1749  if (// -- For a non-type template-parameter of type pointer to
1750      //    function, only the function-to-pointer conversion (4.3) is
1751      //    applied. If the template-argument represents a set of
1752      //    overloaded functions (or a pointer to such), the matching
1753      //    function is selected from the set (13.4).
1754      // In C++0x, any std::nullptr_t value can be converted.
1755      (ParamType->isPointerType() &&
1756       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
1757      // -- For a non-type template-parameter of type reference to
1758      //    function, no conversions apply. If the template-argument
1759      //    represents a set of overloaded functions, the matching
1760      //    function is selected from the set (13.4).
1761      (ParamType->isReferenceType() &&
1762       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
1763      // -- For a non-type template-parameter of type pointer to
1764      //    member function, no conversions apply. If the
1765      //    template-argument represents a set of overloaded member
1766      //    functions, the matching member function is selected from
1767      //    the set (13.4).
1768      // Again, C++0x allows a std::nullptr_t value.
1769      (ParamType->isMemberPointerType() &&
1770       ParamType->getAs<MemberPointerType>()->getPointeeType()
1771         ->isFunctionType())) {
1772    if (Context.hasSameUnqualifiedType(ArgType,
1773                                       ParamType.getNonReferenceType())) {
1774      // We don't have to do anything: the types already match.
1775    } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() ||
1776                 ParamType->isMemberPointerType())) {
1777      ArgType = ParamType;
1778      ImpCastExprToType(Arg, ParamType);
1779    } else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
1780      ArgType = Context.getPointerType(ArgType);
1781      ImpCastExprToType(Arg, ArgType);
1782    } else if (FunctionDecl *Fn
1783                 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) {
1784      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
1785        return true;
1786
1787      FixOverloadedFunctionReference(Arg, Fn);
1788      ArgType = Arg->getType();
1789      if (ArgType->isFunctionType() && ParamType->isPointerType()) {
1790        ArgType = Context.getPointerType(Arg->getType());
1791        ImpCastExprToType(Arg, ArgType);
1792      }
1793    }
1794
1795    if (!Context.hasSameUnqualifiedType(ArgType,
1796                                        ParamType.getNonReferenceType())) {
1797      // We can't perform this conversion.
1798      Diag(Arg->getSourceRange().getBegin(),
1799           diag::err_template_arg_not_convertible)
1800        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1801      Diag(Param->getLocation(), diag::note_template_param_here);
1802      return true;
1803    }
1804
1805    if (ParamType->isMemberPointerType()) {
1806      NamedDecl *Member = 0;
1807      if (CheckTemplateArgumentPointerToMember(Arg, Member))
1808        return true;
1809
1810      if (Member)
1811        Member = cast<NamedDecl>(Member->getCanonicalDecl());
1812      Converted = TemplateArgument(StartLoc, Member);
1813      return false;
1814    }
1815
1816    NamedDecl *Entity = 0;
1817    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
1818      return true;
1819
1820    if (Entity)
1821      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
1822    Converted = TemplateArgument(StartLoc, Entity);
1823    return false;
1824  }
1825
1826  if (ParamType->isPointerType()) {
1827    //   -- for a non-type template-parameter of type pointer to
1828    //      object, qualification conversions (4.4) and the
1829    //      array-to-pointer conversion (4.2) are applied.
1830    // C++0x also allows a value of std::nullptr_t.
1831    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
1832           "Only object pointers allowed here");
1833
1834    if (ArgType->isNullPtrType()) {
1835      ArgType = ParamType;
1836      ImpCastExprToType(Arg, ParamType);
1837    } else if (ArgType->isArrayType()) {
1838      ArgType = Context.getArrayDecayedType(ArgType);
1839      ImpCastExprToType(Arg, ArgType);
1840    }
1841
1842    if (IsQualificationConversion(ArgType, ParamType)) {
1843      ArgType = ParamType;
1844      ImpCastExprToType(Arg, ParamType);
1845    }
1846
1847    if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
1848      // We can't perform this conversion.
1849      Diag(Arg->getSourceRange().getBegin(),
1850           diag::err_template_arg_not_convertible)
1851        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1852      Diag(Param->getLocation(), diag::note_template_param_here);
1853      return true;
1854    }
1855
1856    NamedDecl *Entity = 0;
1857    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
1858      return true;
1859
1860    if (Entity)
1861      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
1862    Converted = TemplateArgument(StartLoc, Entity);
1863    return false;
1864  }
1865
1866  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
1867    //   -- For a non-type template-parameter of type reference to
1868    //      object, no conversions apply. The type referred to by the
1869    //      reference may be more cv-qualified than the (otherwise
1870    //      identical) type of the template-argument. The
1871    //      template-parameter is bound directly to the
1872    //      template-argument, which must be an lvalue.
1873    assert(ParamRefType->getPointeeType()->isObjectType() &&
1874           "Only object references allowed here");
1875
1876    if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) {
1877      Diag(Arg->getSourceRange().getBegin(),
1878           diag::err_template_arg_no_ref_bind)
1879        << InstantiatedParamType << Arg->getType()
1880        << Arg->getSourceRange();
1881      Diag(Param->getLocation(), diag::note_template_param_here);
1882      return true;
1883    }
1884
1885    unsigned ParamQuals
1886      = Context.getCanonicalType(ParamType).getCVRQualifiers();
1887    unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
1888
1889    if ((ParamQuals | ArgQuals) != ParamQuals) {
1890      Diag(Arg->getSourceRange().getBegin(),
1891           diag::err_template_arg_ref_bind_ignores_quals)
1892        << InstantiatedParamType << Arg->getType()
1893        << Arg->getSourceRange();
1894      Diag(Param->getLocation(), diag::note_template_param_here);
1895      return true;
1896    }
1897
1898    NamedDecl *Entity = 0;
1899    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
1900      return true;
1901
1902    Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
1903    Converted = TemplateArgument(StartLoc, Entity);
1904    return false;
1905  }
1906
1907  //     -- For a non-type template-parameter of type pointer to data
1908  //        member, qualification conversions (4.4) are applied.
1909  // C++0x allows std::nullptr_t values.
1910  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
1911
1912  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
1913    // Types match exactly: nothing more to do here.
1914  } else if (ArgType->isNullPtrType()) {
1915    ImpCastExprToType(Arg, ParamType);
1916  } else if (IsQualificationConversion(ArgType, ParamType)) {
1917    ImpCastExprToType(Arg, ParamType);
1918  } else {
1919    // We can't perform this conversion.
1920    Diag(Arg->getSourceRange().getBegin(),
1921         diag::err_template_arg_not_convertible)
1922      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1923    Diag(Param->getLocation(), diag::note_template_param_here);
1924    return true;
1925  }
1926
1927  NamedDecl *Member = 0;
1928  if (CheckTemplateArgumentPointerToMember(Arg, Member))
1929    return true;
1930
1931  if (Member)
1932    Member = cast<NamedDecl>(Member->getCanonicalDecl());
1933  Converted = TemplateArgument(StartLoc, Member);
1934  return false;
1935}
1936
1937/// \brief Check a template argument against its corresponding
1938/// template template parameter.
1939///
1940/// This routine implements the semantics of C++ [temp.arg.template].
1941/// It returns true if an error occurred, and false otherwise.
1942bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
1943                                 DeclRefExpr *Arg) {
1944  assert(isa<TemplateDecl>(Arg->getDecl()) && "Only template decls allowed");
1945  TemplateDecl *Template = cast<TemplateDecl>(Arg->getDecl());
1946
1947  // C++ [temp.arg.template]p1:
1948  //   A template-argument for a template template-parameter shall be
1949  //   the name of a class template, expressed as id-expression. Only
1950  //   primary class templates are considered when matching the
1951  //   template template argument with the corresponding parameter;
1952  //   partial specializations are not considered even if their
1953  //   parameter lists match that of the template template parameter.
1954  //
1955  // Note that we also allow template template parameters here, which
1956  // will happen when we are dealing with, e.g., class template
1957  // partial specializations.
1958  if (!isa<ClassTemplateDecl>(Template) &&
1959      !isa<TemplateTemplateParmDecl>(Template)) {
1960    assert(isa<FunctionTemplateDecl>(Template) &&
1961           "Only function templates are possible here");
1962    Diag(Arg->getLocStart(), diag::err_template_arg_not_class_template);
1963    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
1964      << Template;
1965  }
1966
1967  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
1968                                         Param->getTemplateParameters(),
1969                                         true, true,
1970                                         Arg->getSourceRange().getBegin());
1971}
1972
1973/// \brief Determine whether the given template parameter lists are
1974/// equivalent.
1975///
1976/// \param New  The new template parameter list, typically written in the
1977/// source code as part of a new template declaration.
1978///
1979/// \param Old  The old template parameter list, typically found via
1980/// name lookup of the template declared with this template parameter
1981/// list.
1982///
1983/// \param Complain  If true, this routine will produce a diagnostic if
1984/// the template parameter lists are not equivalent.
1985///
1986/// \param IsTemplateTemplateParm  If true, this routine is being
1987/// called to compare the template parameter lists of a template
1988/// template parameter.
1989///
1990/// \param TemplateArgLoc If this source location is valid, then we
1991/// are actually checking the template parameter list of a template
1992/// argument (New) against the template parameter list of its
1993/// corresponding template template parameter (Old). We produce
1994/// slightly different diagnostics in this scenario.
1995///
1996/// \returns True if the template parameter lists are equal, false
1997/// otherwise.
1998bool
1999Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
2000                                     TemplateParameterList *Old,
2001                                     bool Complain,
2002                                     bool IsTemplateTemplateParm,
2003                                     SourceLocation TemplateArgLoc) {
2004  if (Old->size() != New->size()) {
2005    if (Complain) {
2006      unsigned NextDiag = diag::err_template_param_list_different_arity;
2007      if (TemplateArgLoc.isValid()) {
2008        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2009        NextDiag = diag::note_template_param_list_different_arity;
2010      }
2011      Diag(New->getTemplateLoc(), NextDiag)
2012          << (New->size() > Old->size())
2013          << IsTemplateTemplateParm
2014          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
2015      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
2016        << IsTemplateTemplateParm
2017        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
2018    }
2019
2020    return false;
2021  }
2022
2023  for (TemplateParameterList::iterator OldParm = Old->begin(),
2024         OldParmEnd = Old->end(), NewParm = New->begin();
2025       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
2026    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
2027      if (Complain) {
2028        unsigned NextDiag = diag::err_template_param_different_kind;
2029        if (TemplateArgLoc.isValid()) {
2030          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2031          NextDiag = diag::note_template_param_different_kind;
2032        }
2033        Diag((*NewParm)->getLocation(), NextDiag)
2034        << IsTemplateTemplateParm;
2035        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
2036        << IsTemplateTemplateParm;
2037      }
2038      return false;
2039    }
2040
2041    if (isa<TemplateTypeParmDecl>(*OldParm)) {
2042      // Okay; all template type parameters are equivalent (since we
2043      // know we're at the same index).
2044#if 0
2045      // FIXME: Enable this code in debug mode *after* we properly go through
2046      // and "instantiate" the template parameter lists of template template
2047      // parameters. It's only after this instantiation that (1) any dependent
2048      // types within the template parameter list of the template template
2049      // parameter can be checked, and (2) the template type parameter depths
2050      // will match up.
2051      QualType OldParmType
2052        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*OldParm));
2053      QualType NewParmType
2054        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*NewParm));
2055      assert(Context.getCanonicalType(OldParmType) ==
2056             Context.getCanonicalType(NewParmType) &&
2057             "type parameter mismatch?");
2058#endif
2059    } else if (NonTypeTemplateParmDecl *OldNTTP
2060                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
2061      // The types of non-type template parameters must agree.
2062      NonTypeTemplateParmDecl *NewNTTP
2063        = cast<NonTypeTemplateParmDecl>(*NewParm);
2064      if (Context.getCanonicalType(OldNTTP->getType()) !=
2065            Context.getCanonicalType(NewNTTP->getType())) {
2066        if (Complain) {
2067          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
2068          if (TemplateArgLoc.isValid()) {
2069            Diag(TemplateArgLoc,
2070                 diag::err_template_arg_template_params_mismatch);
2071            NextDiag = diag::note_template_nontype_parm_different_type;
2072          }
2073          Diag(NewNTTP->getLocation(), NextDiag)
2074            << NewNTTP->getType()
2075            << IsTemplateTemplateParm;
2076          Diag(OldNTTP->getLocation(),
2077               diag::note_template_nontype_parm_prev_declaration)
2078            << OldNTTP->getType();
2079        }
2080        return false;
2081      }
2082    } else {
2083      // The template parameter lists of template template
2084      // parameters must agree.
2085      // FIXME: Could we perform a faster "type" comparison here?
2086      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
2087             "Only template template parameters handled here");
2088      TemplateTemplateParmDecl *OldTTP
2089        = cast<TemplateTemplateParmDecl>(*OldParm);
2090      TemplateTemplateParmDecl *NewTTP
2091        = cast<TemplateTemplateParmDecl>(*NewParm);
2092      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
2093                                          OldTTP->getTemplateParameters(),
2094                                          Complain,
2095                                          /*IsTemplateTemplateParm=*/true,
2096                                          TemplateArgLoc))
2097        return false;
2098    }
2099  }
2100
2101  return true;
2102}
2103
2104/// \brief Check whether a template can be declared within this scope.
2105///
2106/// If the template declaration is valid in this scope, returns
2107/// false. Otherwise, issues a diagnostic and returns true.
2108bool
2109Sema::CheckTemplateDeclScope(Scope *S,
2110                             MultiTemplateParamsArg &TemplateParameterLists) {
2111  assert(TemplateParameterLists.size() > 0 && "Not a template");
2112
2113  // Find the nearest enclosing declaration scope.
2114  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2115         (S->getFlags() & Scope::TemplateParamScope) != 0)
2116    S = S->getParent();
2117
2118  TemplateParameterList *TemplateParams =
2119    static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
2120  SourceLocation TemplateLoc = TemplateParams->getTemplateLoc();
2121  SourceRange TemplateRange
2122    = SourceRange(TemplateLoc, TemplateParams->getRAngleLoc());
2123
2124  // C++ [temp]p2:
2125  //   A template-declaration can appear only as a namespace scope or
2126  //   class scope declaration.
2127  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
2128  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
2129      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
2130    return Diag(TemplateLoc, diag::err_template_linkage) << TemplateRange;
2131
2132  while (Ctx && isa<LinkageSpecDecl>(Ctx))
2133    Ctx = Ctx->getParent();
2134
2135  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
2136    return false;
2137
2138  return Diag(TemplateLoc, diag::err_template_outside_namespace_or_class_scope)
2139    << TemplateRange;
2140}
2141
2142/// \brief Check whether a class template specialization or explicit
2143/// instantiation in the current context is well-formed.
2144///
2145/// This routine determines whether a class template specialization or
2146/// explicit instantiation can be declared in the current context
2147/// (C++ [temp.expl.spec]p2, C++0x [temp.explicit]p2) and emits
2148/// appropriate diagnostics if there was an error. It returns true if
2149// there was an error that we cannot recover from, and false otherwise.
2150bool
2151Sema::CheckClassTemplateSpecializationScope(ClassTemplateDecl *ClassTemplate,
2152                                   ClassTemplateSpecializationDecl *PrevDecl,
2153                                            SourceLocation TemplateNameLoc,
2154                                            SourceRange ScopeSpecifierRange,
2155                                            bool PartialSpecialization,
2156                                            bool ExplicitInstantiation) {
2157  // C++ [temp.expl.spec]p2:
2158  //   An explicit specialization shall be declared in the namespace
2159  //   of which the template is a member, or, for member templates, in
2160  //   the namespace of which the enclosing class or enclosing class
2161  //   template is a member. An explicit specialization of a member
2162  //   function, member class or static data member of a class
2163  //   template shall be declared in the namespace of which the class
2164  //   template is a member. Such a declaration may also be a
2165  //   definition. If the declaration is not a definition, the
2166  //   specialization may be defined later in the name- space in which
2167  //   the explicit specialization was declared, or in a namespace
2168  //   that encloses the one in which the explicit specialization was
2169  //   declared.
2170  if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2171    int Kind = ExplicitInstantiation? 2 : PartialSpecialization? 1 : 0;
2172    Diag(TemplateNameLoc, diag::err_template_spec_decl_function_scope)
2173      << Kind << ClassTemplate;
2174    return true;
2175  }
2176
2177  DeclContext *DC = CurContext->getEnclosingNamespaceContext();
2178  DeclContext *TemplateContext
2179    = ClassTemplate->getDeclContext()->getEnclosingNamespaceContext();
2180  if ((!PrevDecl || PrevDecl->getSpecializationKind() == TSK_Undeclared) &&
2181      !ExplicitInstantiation) {
2182    // There is no prior declaration of this entity, so this
2183    // specialization must be in the same context as the template
2184    // itself.
2185    if (DC != TemplateContext) {
2186      if (isa<TranslationUnitDecl>(TemplateContext))
2187        Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope_global)
2188          << PartialSpecialization
2189          << ClassTemplate << ScopeSpecifierRange;
2190      else if (isa<NamespaceDecl>(TemplateContext))
2191        Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope)
2192          << PartialSpecialization << ClassTemplate
2193          << cast<NamedDecl>(TemplateContext) << ScopeSpecifierRange;
2194
2195      Diag(ClassTemplate->getLocation(), diag::note_template_decl_here);
2196    }
2197
2198    return false;
2199  }
2200
2201  // We have a previous declaration of this entity. Make sure that
2202  // this redeclaration (or definition) occurs in an enclosing namespace.
2203  if (!CurContext->Encloses(TemplateContext)) {
2204    // FIXME:  In C++98,  we  would like  to  turn these  errors into  warnings,
2205    // dependent on a -Wc++0x flag.
2206    bool SuppressedDiag = false;
2207    int Kind = ExplicitInstantiation? 2 : PartialSpecialization? 1 : 0;
2208    if (isa<TranslationUnitDecl>(TemplateContext)) {
2209      if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x)
2210        Diag(TemplateNameLoc, diag::err_template_spec_redecl_global_scope)
2211          << Kind << ClassTemplate << ScopeSpecifierRange;
2212      else
2213        SuppressedDiag = true;
2214    } else if (isa<NamespaceDecl>(TemplateContext)) {
2215      if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x)
2216        Diag(TemplateNameLoc, diag::err_template_spec_redecl_out_of_scope)
2217          << Kind << ClassTemplate
2218          << cast<NamedDecl>(TemplateContext) << ScopeSpecifierRange;
2219      else
2220        SuppressedDiag = true;
2221    }
2222
2223    if (!SuppressedDiag)
2224      Diag(ClassTemplate->getLocation(), diag::note_template_decl_here);
2225  }
2226
2227  return false;
2228}
2229
2230/// \brief Check the non-type template arguments of a class template
2231/// partial specialization according to C++ [temp.class.spec]p9.
2232///
2233/// \param TemplateParams the template parameters of the primary class
2234/// template.
2235///
2236/// \param TemplateArg the template arguments of the class template
2237/// partial specialization.
2238///
2239/// \param MirrorsPrimaryTemplate will be set true if the class
2240/// template partial specialization arguments are identical to the
2241/// implicit template arguments of the primary template. This is not
2242/// necessarily an error (C++0x), and it is left to the caller to diagnose
2243/// this condition when it is an error.
2244///
2245/// \returns true if there was an error, false otherwise.
2246bool Sema::CheckClassTemplatePartialSpecializationArgs(
2247                                        TemplateParameterList *TemplateParams,
2248                             const TemplateArgumentListBuilder &TemplateArgs,
2249                                        bool &MirrorsPrimaryTemplate) {
2250  // FIXME: the interface to this function will have to change to
2251  // accommodate variadic templates.
2252  MirrorsPrimaryTemplate = true;
2253
2254  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
2255
2256  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2257    // Determine whether the template argument list of the partial
2258    // specialization is identical to the implicit argument list of
2259    // the primary template. The caller may need to diagnostic this as
2260    // an error per C++ [temp.class.spec]p9b3.
2261    if (MirrorsPrimaryTemplate) {
2262      if (TemplateTypeParmDecl *TTP
2263            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
2264        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
2265              Context.getCanonicalType(ArgList[I].getAsType()))
2266          MirrorsPrimaryTemplate = false;
2267      } else if (TemplateTemplateParmDecl *TTP
2268                   = dyn_cast<TemplateTemplateParmDecl>(
2269                                                 TemplateParams->getParam(I))) {
2270        // FIXME: We should settle on either Declaration storage or
2271        // Expression storage for template template parameters.
2272        TemplateTemplateParmDecl *ArgDecl
2273          = dyn_cast_or_null<TemplateTemplateParmDecl>(
2274                                                  ArgList[I].getAsDecl());
2275        if (!ArgDecl)
2276          if (DeclRefExpr *DRE
2277                = dyn_cast_or_null<DeclRefExpr>(ArgList[I].getAsExpr()))
2278            ArgDecl = dyn_cast<TemplateTemplateParmDecl>(DRE->getDecl());
2279
2280        if (!ArgDecl ||
2281            ArgDecl->getIndex() != TTP->getIndex() ||
2282            ArgDecl->getDepth() != TTP->getDepth())
2283          MirrorsPrimaryTemplate = false;
2284      }
2285    }
2286
2287    NonTypeTemplateParmDecl *Param
2288      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
2289    if (!Param) {
2290      continue;
2291    }
2292
2293    Expr *ArgExpr = ArgList[I].getAsExpr();
2294    if (!ArgExpr) {
2295      MirrorsPrimaryTemplate = false;
2296      continue;
2297    }
2298
2299    // C++ [temp.class.spec]p8:
2300    //   A non-type argument is non-specialized if it is the name of a
2301    //   non-type parameter. All other non-type arguments are
2302    //   specialized.
2303    //
2304    // Below, we check the two conditions that only apply to
2305    // specialized non-type arguments, so skip any non-specialized
2306    // arguments.
2307    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
2308      if (NonTypeTemplateParmDecl *NTTP
2309            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
2310        if (MirrorsPrimaryTemplate &&
2311            (Param->getIndex() != NTTP->getIndex() ||
2312             Param->getDepth() != NTTP->getDepth()))
2313          MirrorsPrimaryTemplate = false;
2314
2315        continue;
2316      }
2317
2318    // C++ [temp.class.spec]p9:
2319    //   Within the argument list of a class template partial
2320    //   specialization, the following restrictions apply:
2321    //     -- A partially specialized non-type argument expression
2322    //        shall not involve a template parameter of the partial
2323    //        specialization except when the argument expression is a
2324    //        simple identifier.
2325    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
2326      Diag(ArgExpr->getLocStart(),
2327           diag::err_dependent_non_type_arg_in_partial_spec)
2328        << ArgExpr->getSourceRange();
2329      return true;
2330    }
2331
2332    //     -- The type of a template parameter corresponding to a
2333    //        specialized non-type argument shall not be dependent on a
2334    //        parameter of the specialization.
2335    if (Param->getType()->isDependentType()) {
2336      Diag(ArgExpr->getLocStart(),
2337           diag::err_dependent_typed_non_type_arg_in_partial_spec)
2338        << Param->getType()
2339        << ArgExpr->getSourceRange();
2340      Diag(Param->getLocation(), diag::note_template_param_here);
2341      return true;
2342    }
2343
2344    MirrorsPrimaryTemplate = false;
2345  }
2346
2347  return false;
2348}
2349
2350Sema::DeclResult
2351Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
2352                                       TagUseKind TUK,
2353                                       SourceLocation KWLoc,
2354                                       const CXXScopeSpec &SS,
2355                                       TemplateTy TemplateD,
2356                                       SourceLocation TemplateNameLoc,
2357                                       SourceLocation LAngleLoc,
2358                                       ASTTemplateArgsPtr TemplateArgsIn,
2359                                       SourceLocation *TemplateArgLocs,
2360                                       SourceLocation RAngleLoc,
2361                                       AttributeList *Attr,
2362                               MultiTemplateParamsArg TemplateParameterLists) {
2363  // Find the class template we're specializing
2364  TemplateName Name = TemplateD.getAsVal<TemplateName>();
2365  ClassTemplateDecl *ClassTemplate
2366    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
2367
2368  bool isPartialSpecialization = false;
2369
2370  // Check the validity of the template headers that introduce this
2371  // template.
2372  // FIXME: Once we have member templates, we'll need to check
2373  // C++ [temp.expl.spec]p17-18, where we could have multiple levels of
2374  // template<> headers.
2375  if (TemplateParameterLists.size() == 0)
2376    Diag(KWLoc, diag::err_template_spec_needs_header)
2377      << CodeModificationHint::CreateInsertion(KWLoc, "template<> ");
2378  else {
2379    TemplateParameterList *TemplateParams
2380      = static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
2381    if (TemplateParameterLists.size() > 1) {
2382      Diag(TemplateParams->getTemplateLoc(),
2383           diag::err_template_spec_extra_headers);
2384      return true;
2385    }
2386
2387    if (TemplateParams->size() > 0) {
2388      isPartialSpecialization = true;
2389
2390      // C++ [temp.class.spec]p10:
2391      //   The template parameter list of a specialization shall not
2392      //   contain default template argument values.
2393      for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2394        Decl *Param = TemplateParams->getParam(I);
2395        if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
2396          if (TTP->hasDefaultArgument()) {
2397            Diag(TTP->getDefaultArgumentLoc(),
2398                 diag::err_default_arg_in_partial_spec);
2399            TTP->setDefaultArgument(QualType(), SourceLocation(), false);
2400          }
2401        } else if (NonTypeTemplateParmDecl *NTTP
2402                     = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2403          if (Expr *DefArg = NTTP->getDefaultArgument()) {
2404            Diag(NTTP->getDefaultArgumentLoc(),
2405                 diag::err_default_arg_in_partial_spec)
2406              << DefArg->getSourceRange();
2407            NTTP->setDefaultArgument(0);
2408            DefArg->Destroy(Context);
2409          }
2410        } else {
2411          TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
2412          if (Expr *DefArg = TTP->getDefaultArgument()) {
2413            Diag(TTP->getDefaultArgumentLoc(),
2414                 diag::err_default_arg_in_partial_spec)
2415              << DefArg->getSourceRange();
2416            TTP->setDefaultArgument(0);
2417            DefArg->Destroy(Context);
2418          }
2419        }
2420      }
2421    }
2422  }
2423
2424  // Check that the specialization uses the same tag kind as the
2425  // original template.
2426  TagDecl::TagKind Kind;
2427  switch (TagSpec) {
2428  default: assert(0 && "Unknown tag type!");
2429  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2430  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2431  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2432  }
2433  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
2434                                    Kind, KWLoc,
2435                                    *ClassTemplate->getIdentifier())) {
2436    Diag(KWLoc, diag::err_use_with_wrong_tag)
2437      << ClassTemplate
2438      << CodeModificationHint::CreateReplacement(KWLoc,
2439                            ClassTemplate->getTemplatedDecl()->getKindName());
2440    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
2441         diag::note_previous_use);
2442    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
2443  }
2444
2445  // Translate the parser's template argument list in our AST format.
2446  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2447  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
2448
2449  // Check that the template argument list is well-formed for this
2450  // template.
2451  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
2452                                        TemplateArgs.size());
2453  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
2454                                TemplateArgs.data(), TemplateArgs.size(),
2455                                RAngleLoc, false, Converted))
2456    return true;
2457
2458  assert((Converted.structuredSize() ==
2459            ClassTemplate->getTemplateParameters()->size()) &&
2460         "Converted template argument list is too short!");
2461
2462  // Find the class template (partial) specialization declaration that
2463  // corresponds to these arguments.
2464  llvm::FoldingSetNodeID ID;
2465  if (isPartialSpecialization) {
2466    bool MirrorsPrimaryTemplate;
2467    if (CheckClassTemplatePartialSpecializationArgs(
2468                                         ClassTemplate->getTemplateParameters(),
2469                                         Converted, MirrorsPrimaryTemplate))
2470      return true;
2471
2472    if (MirrorsPrimaryTemplate) {
2473      // C++ [temp.class.spec]p9b3:
2474      //
2475      //   -- The argument list of the specialization shall not be identical
2476      //      to the implicit argument list of the primary template.
2477      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
2478        << (TUK == TUK_Definition)
2479        << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc,
2480                                                           RAngleLoc));
2481      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
2482                                ClassTemplate->getIdentifier(),
2483                                TemplateNameLoc,
2484                                Attr,
2485                                move(TemplateParameterLists),
2486                                AS_none);
2487    }
2488
2489    // FIXME: Template parameter list matters, too
2490    ClassTemplatePartialSpecializationDecl::Profile(ID,
2491                                                   Converted.getFlatArguments(),
2492                                                   Converted.flatSize(),
2493                                                    Context);
2494  } else
2495    ClassTemplateSpecializationDecl::Profile(ID,
2496                                             Converted.getFlatArguments(),
2497                                             Converted.flatSize(),
2498                                             Context);
2499  void *InsertPos = 0;
2500  ClassTemplateSpecializationDecl *PrevDecl = 0;
2501
2502  if (isPartialSpecialization)
2503    PrevDecl
2504      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
2505                                                                    InsertPos);
2506  else
2507    PrevDecl
2508      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
2509
2510  ClassTemplateSpecializationDecl *Specialization = 0;
2511
2512  // Check whether we can declare a class template specialization in
2513  // the current scope.
2514  if (CheckClassTemplateSpecializationScope(ClassTemplate, PrevDecl,
2515                                            TemplateNameLoc,
2516                                            SS.getRange(),
2517                                            isPartialSpecialization,
2518                                            /*ExplicitInstantiation=*/false))
2519    return true;
2520
2521  // The canonical type
2522  QualType CanonType;
2523  if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
2524    // Since the only prior class template specialization with these
2525    // arguments was referenced but not declared, reuse that
2526    // declaration node as our own, updating its source location to
2527    // reflect our new declaration.
2528    Specialization = PrevDecl;
2529    Specialization->setLocation(TemplateNameLoc);
2530    PrevDecl = 0;
2531    CanonType = Context.getTypeDeclType(Specialization);
2532  } else if (isPartialSpecialization) {
2533    // Build the canonical type that describes the converted template
2534    // arguments of the class template partial specialization.
2535    CanonType = Context.getTemplateSpecializationType(
2536                                                  TemplateName(ClassTemplate),
2537                                                  Converted.getFlatArguments(),
2538                                                  Converted.flatSize());
2539
2540    // Create a new class template partial specialization declaration node.
2541    TemplateParameterList *TemplateParams
2542      = static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
2543    ClassTemplatePartialSpecializationDecl *PrevPartial
2544      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
2545    ClassTemplatePartialSpecializationDecl *Partial
2546      = ClassTemplatePartialSpecializationDecl::Create(Context,
2547                                             ClassTemplate->getDeclContext(),
2548                                                       TemplateNameLoc,
2549                                                       TemplateParams,
2550                                                       ClassTemplate,
2551                                                       Converted,
2552                                                       PrevPartial);
2553
2554    if (PrevPartial) {
2555      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
2556      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
2557    } else {
2558      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
2559    }
2560    Specialization = Partial;
2561
2562    // Check that all of the template parameters of the class template
2563    // partial specialization are deducible from the template
2564    // arguments. If not, this class template partial specialization
2565    // will never be used.
2566    llvm::SmallVector<bool, 8> DeducibleParams;
2567    DeducibleParams.resize(TemplateParams->size());
2568    MarkDeducedTemplateParameters(Partial->getTemplateArgs(), DeducibleParams);
2569    unsigned NumNonDeducible = 0;
2570    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
2571      if (!DeducibleParams[I])
2572        ++NumNonDeducible;
2573
2574    if (NumNonDeducible) {
2575      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
2576        << (NumNonDeducible > 1)
2577        << SourceRange(TemplateNameLoc, RAngleLoc);
2578      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
2579        if (!DeducibleParams[I]) {
2580          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
2581          if (Param->getDeclName())
2582            Diag(Param->getLocation(),
2583                 diag::note_partial_spec_unused_parameter)
2584              << Param->getDeclName();
2585          else
2586            Diag(Param->getLocation(),
2587                 diag::note_partial_spec_unused_parameter)
2588              << std::string("<anonymous>");
2589        }
2590      }
2591    }
2592  } else {
2593    // Create a new class template specialization declaration node for
2594    // this explicit specialization.
2595    Specialization
2596      = ClassTemplateSpecializationDecl::Create(Context,
2597                                             ClassTemplate->getDeclContext(),
2598                                                TemplateNameLoc,
2599                                                ClassTemplate,
2600                                                Converted,
2601                                                PrevDecl);
2602
2603    if (PrevDecl) {
2604      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
2605      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
2606    } else {
2607      ClassTemplate->getSpecializations().InsertNode(Specialization,
2608                                                     InsertPos);
2609    }
2610
2611    CanonType = Context.getTypeDeclType(Specialization);
2612  }
2613
2614  // Note that this is an explicit specialization.
2615  Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
2616
2617  // Check that this isn't a redefinition of this specialization.
2618  if (TUK == TUK_Definition) {
2619    if (RecordDecl *Def = Specialization->getDefinition(Context)) {
2620      // FIXME: Should also handle explicit specialization after implicit
2621      // instantiation with a special diagnostic.
2622      SourceRange Range(TemplateNameLoc, RAngleLoc);
2623      Diag(TemplateNameLoc, diag::err_redefinition)
2624        << Context.getTypeDeclType(Specialization) << Range;
2625      Diag(Def->getLocation(), diag::note_previous_definition);
2626      Specialization->setInvalidDecl();
2627      return true;
2628    }
2629  }
2630
2631  // Build the fully-sugared type for this class template
2632  // specialization as the user wrote in the specialization
2633  // itself. This means that we'll pretty-print the type retrieved
2634  // from the specialization's declaration the way that the user
2635  // actually wrote the specialization, rather than formatting the
2636  // name based on the "canonical" representation used to store the
2637  // template arguments in the specialization.
2638  QualType WrittenTy
2639    = Context.getTemplateSpecializationType(Name,
2640                                            TemplateArgs.data(),
2641                                            TemplateArgs.size(),
2642                                            CanonType);
2643  Specialization->setTypeAsWritten(WrittenTy);
2644  TemplateArgsIn.release();
2645
2646  // C++ [temp.expl.spec]p9:
2647  //   A template explicit specialization is in the scope of the
2648  //   namespace in which the template was defined.
2649  //
2650  // We actually implement this paragraph where we set the semantic
2651  // context (in the creation of the ClassTemplateSpecializationDecl),
2652  // but we also maintain the lexical context where the actual
2653  // definition occurs.
2654  Specialization->setLexicalDeclContext(CurContext);
2655
2656  // We may be starting the definition of this specialization.
2657  if (TUK == TUK_Definition)
2658    Specialization->startDefinition();
2659
2660  // Add the specialization into its lexical context, so that it can
2661  // be seen when iterating through the list of declarations in that
2662  // context. However, specializations are not found by name lookup.
2663  CurContext->addDecl(Specialization);
2664  return DeclPtrTy::make(Specialization);
2665}
2666
2667Sema::DeclPtrTy
2668Sema::ActOnTemplateDeclarator(Scope *S,
2669                              MultiTemplateParamsArg TemplateParameterLists,
2670                              Declarator &D) {
2671  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
2672}
2673
2674Sema::DeclPtrTy
2675Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
2676                               MultiTemplateParamsArg TemplateParameterLists,
2677                                      Declarator &D) {
2678  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2679  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2680         "Not a function declarator!");
2681  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2682
2683  if (FTI.hasPrototype) {
2684    // FIXME: Diagnose arguments without names in C.
2685  }
2686
2687  Scope *ParentScope = FnBodyScope->getParent();
2688
2689  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
2690                                  move(TemplateParameterLists),
2691                                  /*IsFunctionDefinition=*/true);
2692  if (FunctionTemplateDecl *FunctionTemplate
2693        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
2694    return ActOnStartOfFunctionDef(FnBodyScope,
2695                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
2696  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
2697    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
2698  return DeclPtrTy();
2699}
2700
2701// Explicit instantiation of a class template specialization
2702Sema::DeclResult
2703Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc,
2704                                 unsigned TagSpec,
2705                                 SourceLocation KWLoc,
2706                                 const CXXScopeSpec &SS,
2707                                 TemplateTy TemplateD,
2708                                 SourceLocation TemplateNameLoc,
2709                                 SourceLocation LAngleLoc,
2710                                 ASTTemplateArgsPtr TemplateArgsIn,
2711                                 SourceLocation *TemplateArgLocs,
2712                                 SourceLocation RAngleLoc,
2713                                 AttributeList *Attr) {
2714  // Find the class template we're specializing
2715  TemplateName Name = TemplateD.getAsVal<TemplateName>();
2716  ClassTemplateDecl *ClassTemplate
2717    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
2718
2719  // Check that the specialization uses the same tag kind as the
2720  // original template.
2721  TagDecl::TagKind Kind;
2722  switch (TagSpec) {
2723  default: assert(0 && "Unknown tag type!");
2724  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2725  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2726  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2727  }
2728  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
2729                                    Kind, KWLoc,
2730                                    *ClassTemplate->getIdentifier())) {
2731    Diag(KWLoc, diag::err_use_with_wrong_tag)
2732      << ClassTemplate
2733      << CodeModificationHint::CreateReplacement(KWLoc,
2734                            ClassTemplate->getTemplatedDecl()->getKindName());
2735    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
2736         diag::note_previous_use);
2737    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
2738  }
2739
2740  // C++0x [temp.explicit]p2:
2741  //   [...] An explicit instantiation shall appear in an enclosing
2742  //   namespace of its template. [...]
2743  //
2744  // This is C++ DR 275.
2745  if (CheckClassTemplateSpecializationScope(ClassTemplate, 0,
2746                                            TemplateNameLoc,
2747                                            SS.getRange(),
2748                                            /*PartialSpecialization=*/false,
2749                                            /*ExplicitInstantiation=*/true))
2750    return true;
2751
2752  // Translate the parser's template argument list in our AST format.
2753  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2754  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
2755
2756  // Check that the template argument list is well-formed for this
2757  // template.
2758  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
2759                                        TemplateArgs.size());
2760  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
2761                                TemplateArgs.data(), TemplateArgs.size(),
2762                                RAngleLoc, false, Converted))
2763    return true;
2764
2765  assert((Converted.structuredSize() ==
2766            ClassTemplate->getTemplateParameters()->size()) &&
2767         "Converted template argument list is too short!");
2768
2769  // Find the class template specialization declaration that
2770  // corresponds to these arguments.
2771  llvm::FoldingSetNodeID ID;
2772  ClassTemplateSpecializationDecl::Profile(ID,
2773                                           Converted.getFlatArguments(),
2774                                           Converted.flatSize(),
2775                                           Context);
2776  void *InsertPos = 0;
2777  ClassTemplateSpecializationDecl *PrevDecl
2778    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
2779
2780  ClassTemplateSpecializationDecl *Specialization = 0;
2781
2782  bool SpecializationRequiresInstantiation = true;
2783  if (PrevDecl) {
2784    if (PrevDecl->getSpecializationKind() == TSK_ExplicitInstantiation) {
2785      // This particular specialization has already been declared or
2786      // instantiated. We cannot explicitly instantiate it.
2787      Diag(TemplateNameLoc, diag::err_explicit_instantiation_duplicate)
2788        << Context.getTypeDeclType(PrevDecl);
2789      Diag(PrevDecl->getLocation(),
2790           diag::note_previous_explicit_instantiation);
2791      return DeclPtrTy::make(PrevDecl);
2792    }
2793
2794    if (PrevDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
2795      // C++ DR 259, C++0x [temp.explicit]p4:
2796      //   For a given set of template parameters, if an explicit
2797      //   instantiation of a template appears after a declaration of
2798      //   an explicit specialization for that template, the explicit
2799      //   instantiation has no effect.
2800      if (!getLangOptions().CPlusPlus0x) {
2801        Diag(TemplateNameLoc,
2802             diag::ext_explicit_instantiation_after_specialization)
2803          << Context.getTypeDeclType(PrevDecl);
2804        Diag(PrevDecl->getLocation(),
2805             diag::note_previous_template_specialization);
2806      }
2807
2808      // Create a new class template specialization declaration node
2809      // for this explicit specialization. This node is only used to
2810      // record the existence of this explicit instantiation for
2811      // accurate reproduction of the source code; we don't actually
2812      // use it for anything, since it is semantically irrelevant.
2813      Specialization
2814        = ClassTemplateSpecializationDecl::Create(Context,
2815                                             ClassTemplate->getDeclContext(),
2816                                                  TemplateNameLoc,
2817                                                  ClassTemplate,
2818                                                  Converted, 0);
2819      Specialization->setLexicalDeclContext(CurContext);
2820      CurContext->addDecl(Specialization);
2821      return DeclPtrTy::make(Specialization);
2822    }
2823
2824    // If we have already (implicitly) instantiated this
2825    // specialization, there is less work to do.
2826    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation)
2827      SpecializationRequiresInstantiation = false;
2828
2829    // Since the only prior class template specialization with these
2830    // arguments was referenced but not declared, reuse that
2831    // declaration node as our own, updating its source location to
2832    // reflect our new declaration.
2833    Specialization = PrevDecl;
2834    Specialization->setLocation(TemplateNameLoc);
2835    PrevDecl = 0;
2836  } else {
2837    // Create a new class template specialization declaration node for
2838    // this explicit specialization.
2839    Specialization
2840      = ClassTemplateSpecializationDecl::Create(Context,
2841                                             ClassTemplate->getDeclContext(),
2842                                                TemplateNameLoc,
2843                                                ClassTemplate,
2844                                                Converted, 0);
2845
2846    ClassTemplate->getSpecializations().InsertNode(Specialization,
2847                                                   InsertPos);
2848  }
2849
2850  // Build the fully-sugared type for this explicit instantiation as
2851  // the user wrote in the explicit instantiation itself. This means
2852  // that we'll pretty-print the type retrieved from the
2853  // specialization's declaration the way that the user actually wrote
2854  // the explicit instantiation, rather than formatting the name based
2855  // on the "canonical" representation used to store the template
2856  // arguments in the specialization.
2857  QualType WrittenTy
2858    = Context.getTemplateSpecializationType(Name,
2859                                            TemplateArgs.data(),
2860                                            TemplateArgs.size(),
2861                                  Context.getTypeDeclType(Specialization));
2862  Specialization->setTypeAsWritten(WrittenTy);
2863  TemplateArgsIn.release();
2864
2865  // Add the explicit instantiation into its lexical context. However,
2866  // since explicit instantiations are never found by name lookup, we
2867  // just put it into the declaration context directly.
2868  Specialization->setLexicalDeclContext(CurContext);
2869  CurContext->addDecl(Specialization);
2870
2871  // C++ [temp.explicit]p3:
2872  //   A definition of a class template or class member template
2873  //   shall be in scope at the point of the explicit instantiation of
2874  //   the class template or class member template.
2875  //
2876  // This check comes when we actually try to perform the
2877  // instantiation.
2878  if (SpecializationRequiresInstantiation)
2879    InstantiateClassTemplateSpecialization(Specialization, true);
2880  else // Instantiate the members of this class template specialization.
2881    InstantiateClassTemplateSpecializationMembers(TemplateLoc, Specialization);
2882
2883  return DeclPtrTy::make(Specialization);
2884}
2885
2886// Explicit instantiation of a member class of a class template.
2887Sema::DeclResult
2888Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc,
2889                                 unsigned TagSpec,
2890                                 SourceLocation KWLoc,
2891                                 const CXXScopeSpec &SS,
2892                                 IdentifierInfo *Name,
2893                                 SourceLocation NameLoc,
2894                                 AttributeList *Attr) {
2895
2896  bool Owned = false;
2897  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
2898                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
2899                            MultiTemplateParamsArg(*this, 0, 0), Owned);
2900  if (!TagD)
2901    return true;
2902
2903  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
2904  if (Tag->isEnum()) {
2905    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
2906      << Context.getTypeDeclType(Tag);
2907    return true;
2908  }
2909
2910  if (Tag->isInvalidDecl())
2911    return true;
2912
2913  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
2914  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
2915  if (!Pattern) {
2916    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
2917      << Context.getTypeDeclType(Record);
2918    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
2919    return true;
2920  }
2921
2922  // C++0x [temp.explicit]p2:
2923  //   [...] An explicit instantiation shall appear in an enclosing
2924  //   namespace of its template. [...]
2925  //
2926  // This is C++ DR 275.
2927  if (getLangOptions().CPlusPlus0x) {
2928    // FIXME: In C++98, we would like to turn these errors into warnings,
2929    // dependent on a -Wc++0x flag.
2930    DeclContext *PatternContext
2931      = Pattern->getDeclContext()->getEnclosingNamespaceContext();
2932    if (!CurContext->Encloses(PatternContext)) {
2933      Diag(TemplateLoc, diag::err_explicit_instantiation_out_of_scope)
2934        << Record << cast<NamedDecl>(PatternContext) << SS.getRange();
2935      Diag(Pattern->getLocation(), diag::note_previous_declaration);
2936    }
2937  }
2938
2939  if (!Record->getDefinition(Context)) {
2940    // If the class has a definition, instantiate it (and all of its
2941    // members, recursively).
2942    Pattern = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context));
2943    if (Pattern && InstantiateClass(TemplateLoc, Record, Pattern,
2944                                    getTemplateInstantiationArgs(Record),
2945                                    /*ExplicitInstantiation=*/true))
2946      return true;
2947  } else // Instantiate all of the members of class.
2948    InstantiateClassMembers(TemplateLoc, Record,
2949                            getTemplateInstantiationArgs(Record));
2950
2951  // FIXME: We don't have any representation for explicit instantiations of
2952  // member classes. Such a representation is not needed for compilation, but it
2953  // should be available for clients that want to see all of the declarations in
2954  // the source code.
2955  return TagD;
2956}
2957
2958Sema::TypeResult
2959Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
2960                        const IdentifierInfo &II, SourceLocation IdLoc) {
2961  NestedNameSpecifier *NNS
2962    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2963  if (!NNS)
2964    return true;
2965
2966  QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
2967  if (T.isNull())
2968    return true;
2969  return T.getAsOpaquePtr();
2970}
2971
2972Sema::TypeResult
2973Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
2974                        SourceLocation TemplateLoc, TypeTy *Ty) {
2975  QualType T = GetTypeFromParser(Ty);
2976  NestedNameSpecifier *NNS
2977    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2978  const TemplateSpecializationType *TemplateId
2979    = T->getAsTemplateSpecializationType();
2980  assert(TemplateId && "Expected a template specialization type");
2981
2982  if (NNS->isDependent())
2983    return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr();
2984
2985  return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
2986}
2987
2988/// \brief Build the type that describes a C++ typename specifier,
2989/// e.g., "typename T::type".
2990QualType
2991Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
2992                        SourceRange Range) {
2993  CXXRecordDecl *CurrentInstantiation = 0;
2994  if (NNS->isDependent()) {
2995    CurrentInstantiation = getCurrentInstantiationOf(NNS);
2996
2997    // If the nested-name-specifier does not refer to the current
2998    // instantiation, then build a typename type.
2999    if (!CurrentInstantiation)
3000      return Context.getTypenameType(NNS, &II);
3001  }
3002
3003  DeclContext *Ctx = 0;
3004
3005  if (CurrentInstantiation)
3006    Ctx = CurrentInstantiation;
3007  else {
3008    CXXScopeSpec SS;
3009    SS.setScopeRep(NNS);
3010    SS.setRange(Range);
3011    if (RequireCompleteDeclContext(SS))
3012      return QualType();
3013
3014    Ctx = computeDeclContext(SS);
3015  }
3016  assert(Ctx && "No declaration context?");
3017
3018  DeclarationName Name(&II);
3019  LookupResult Result = LookupQualifiedName(Ctx, Name, LookupOrdinaryName,
3020                                            false);
3021  unsigned DiagID = 0;
3022  Decl *Referenced = 0;
3023  switch (Result.getKind()) {
3024  case LookupResult::NotFound:
3025    if (Ctx->isTranslationUnit())
3026      DiagID = diag::err_typename_nested_not_found_global;
3027    else
3028      DiagID = diag::err_typename_nested_not_found;
3029    break;
3030
3031  case LookupResult::Found:
3032    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getAsDecl())) {
3033      // We found a type. Build a QualifiedNameType, since the
3034      // typename-specifier was just sugar. FIXME: Tell
3035      // QualifiedNameType that it has a "typename" prefix.
3036      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
3037    }
3038
3039    DiagID = diag::err_typename_nested_not_type;
3040    Referenced = Result.getAsDecl();
3041    break;
3042
3043  case LookupResult::FoundOverloaded:
3044    DiagID = diag::err_typename_nested_not_type;
3045    Referenced = *Result.begin();
3046    break;
3047
3048  case LookupResult::AmbiguousBaseSubobjectTypes:
3049  case LookupResult::AmbiguousBaseSubobjects:
3050  case LookupResult::AmbiguousReference:
3051    DiagnoseAmbiguousLookup(Result, Name, Range.getEnd(), Range);
3052    return QualType();
3053  }
3054
3055  // If we get here, it's because name lookup did not find a
3056  // type. Emit an appropriate diagnostic and return an error.
3057  if (NamedDecl *NamedCtx = dyn_cast<NamedDecl>(Ctx))
3058    Diag(Range.getEnd(), DiagID) << Range << Name << NamedCtx;
3059  else
3060    Diag(Range.getEnd(), DiagID) << Range << Name;
3061  if (Referenced)
3062    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
3063      << Name;
3064  return QualType();
3065}
3066
3067namespace {
3068  // See Sema::RebuildTypeInCurrentInstantiation
3069  class VISIBILITY_HIDDEN CurrentInstantiationRebuilder
3070    : public TreeTransform<CurrentInstantiationRebuilder>
3071  {
3072    SourceLocation Loc;
3073    DeclarationName Entity;
3074
3075  public:
3076    CurrentInstantiationRebuilder(Sema &SemaRef,
3077                                  SourceLocation Loc,
3078                                  DeclarationName Entity)
3079    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
3080      Loc(Loc), Entity(Entity) { }
3081
3082    /// \brief Determine whether the given type \p T has already been
3083    /// transformed.
3084    ///
3085    /// For the purposes of type reconstruction, a type has already been
3086    /// transformed if it is NULL or if it is not dependent.
3087    bool AlreadyTransformed(QualType T) {
3088      return T.isNull() || !T->isDependentType();
3089    }
3090
3091    /// \brief Returns the location of the entity whose type is being
3092    /// rebuilt.
3093    SourceLocation getBaseLocation() { return Loc; }
3094
3095    /// \brief Returns the name of the entity whose type is being rebuilt.
3096    DeclarationName getBaseEntity() { return Entity; }
3097
3098    /// \brief Transforms an expression by returning the expression itself
3099    /// (an identity function).
3100    ///
3101    /// FIXME: This is completely unsafe; we will need to actually clone the
3102    /// expressions.
3103    Sema::OwningExprResult TransformExpr(Expr *E) {
3104      return getSema().Owned(E);
3105    }
3106
3107    /// \brief Transforms a typename type by determining whether the type now
3108    /// refers to a member of the current instantiation, and then
3109    /// type-checking and building a QualifiedNameType (when possible).
3110    QualType TransformTypenameType(const TypenameType *T);
3111  };
3112}
3113
3114QualType
3115CurrentInstantiationRebuilder::TransformTypenameType(const TypenameType *T) {
3116  NestedNameSpecifier *NNS
3117    = TransformNestedNameSpecifier(T->getQualifier(),
3118                              /*FIXME:*/SourceRange(getBaseLocation()));
3119  if (!NNS)
3120    return QualType();
3121
3122  // If the nested-name-specifier did not change, and we cannot compute the
3123  // context corresponding to the nested-name-specifier, then this
3124  // typename type will not change; exit early.
3125  CXXScopeSpec SS;
3126  SS.setRange(SourceRange(getBaseLocation()));
3127  SS.setScopeRep(NNS);
3128  if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0)
3129    return QualType(T, 0);
3130
3131  // Rebuild the typename type, which will probably turn into a
3132  // QualifiedNameType.
3133  if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) {
3134    QualType NewTemplateId
3135      = TransformType(QualType(TemplateId, 0));
3136    if (NewTemplateId.isNull())
3137      return QualType();
3138
3139    if (NNS == T->getQualifier() &&
3140        NewTemplateId == QualType(TemplateId, 0))
3141      return QualType(T, 0);
3142
3143    return getDerived().RebuildTypenameType(NNS, NewTemplateId);
3144  }
3145
3146  return getDerived().RebuildTypenameType(NNS, T->getIdentifier());
3147}
3148
3149/// \brief Rebuilds a type within the context of the current instantiation.
3150///
3151/// The type \p T is part of the type of an out-of-line member definition of
3152/// a class template (or class template partial specialization) that was parsed
3153/// and constructed before we entered the scope of the class template (or
3154/// partial specialization thereof). This routine will rebuild that type now
3155/// that we have entered the declarator's scope, which may produce different
3156/// canonical types, e.g.,
3157///
3158/// \code
3159/// template<typename T>
3160/// struct X {
3161///   typedef T* pointer;
3162///   pointer data();
3163/// };
3164///
3165/// template<typename T>
3166/// typename X<T>::pointer X<T>::data() { ... }
3167/// \endcode
3168///
3169/// Here, the type "typename X<T>::pointer" will be created as a TypenameType,
3170/// since we do not know that we can look into X<T> when we parsed the type.
3171/// This function will rebuild the type, performing the lookup of "pointer"
3172/// in X<T> and returning a QualifiedNameType whose canonical type is the same
3173/// as the canonical type of T*, allowing the return types of the out-of-line
3174/// definition and the declaration to match.
3175QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc,
3176                                                 DeclarationName Name) {
3177  if (T.isNull() || !T->isDependentType())
3178    return T;
3179
3180  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
3181  return Rebuilder.TransformType(T);
3182}
3183