SemaTemplate.cpp revision e8bcd4c8e5a867c52bef3837731e44b88eba6a36
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "TreeTransform.h" 13#include "clang/AST/ASTContext.h" 14#include "clang/AST/ASTConsumer.h" 15#include "clang/AST/DeclFriend.h" 16#include "clang/AST/DeclTemplate.h" 17#include "clang/AST/Expr.h" 18#include "clang/AST/ExprCXX.h" 19#include "clang/AST/RecursiveASTVisitor.h" 20#include "clang/AST/TypeVisitor.h" 21#include "clang/Basic/LangOptions.h" 22#include "clang/Basic/PartialDiagnostic.h" 23#include "clang/Sema/DeclSpec.h" 24#include "clang/Sema/Lookup.h" 25#include "clang/Sema/ParsedTemplate.h" 26#include "clang/Sema/Scope.h" 27#include "clang/Sema/SemaInternal.h" 28#include "clang/Sema/Template.h" 29#include "clang/Sema/TemplateDeduction.h" 30#include "llvm/ADT/SmallBitVector.h" 31#include "llvm/ADT/SmallString.h" 32#include "llvm/ADT/StringExtras.h" 33using namespace clang; 34using namespace sema; 35 36// Exported for use by Parser. 37SourceRange 38clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 39 unsigned N) { 40 if (!N) return SourceRange(); 41 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 42} 43 44/// \brief Determine whether the declaration found is acceptable as the name 45/// of a template and, if so, return that template declaration. Otherwise, 46/// returns NULL. 47static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 48 NamedDecl *Orig, 49 bool AllowFunctionTemplates) { 50 NamedDecl *D = Orig->getUnderlyingDecl(); 51 52 if (isa<TemplateDecl>(D)) { 53 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D)) 54 return 0; 55 56 return Orig; 57 } 58 59 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 60 // C++ [temp.local]p1: 61 // Like normal (non-template) classes, class templates have an 62 // injected-class-name (Clause 9). The injected-class-name 63 // can be used with or without a template-argument-list. When 64 // it is used without a template-argument-list, it is 65 // equivalent to the injected-class-name followed by the 66 // template-parameters of the class template enclosed in 67 // <>. When it is used with a template-argument-list, it 68 // refers to the specified class template specialization, 69 // which could be the current specialization or another 70 // specialization. 71 if (Record->isInjectedClassName()) { 72 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 73 if (Record->getDescribedClassTemplate()) 74 return Record->getDescribedClassTemplate(); 75 76 if (ClassTemplateSpecializationDecl *Spec 77 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 78 return Spec->getSpecializedTemplate(); 79 } 80 81 return 0; 82 } 83 84 return 0; 85} 86 87void Sema::FilterAcceptableTemplateNames(LookupResult &R, 88 bool AllowFunctionTemplates) { 89 // The set of class templates we've already seen. 90 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 91 LookupResult::Filter filter = R.makeFilter(); 92 while (filter.hasNext()) { 93 NamedDecl *Orig = filter.next(); 94 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig, 95 AllowFunctionTemplates); 96 if (!Repl) 97 filter.erase(); 98 else if (Repl != Orig) { 99 100 // C++ [temp.local]p3: 101 // A lookup that finds an injected-class-name (10.2) can result in an 102 // ambiguity in certain cases (for example, if it is found in more than 103 // one base class). If all of the injected-class-names that are found 104 // refer to specializations of the same class template, and if the name 105 // is used as a template-name, the reference refers to the class 106 // template itself and not a specialization thereof, and is not 107 // ambiguous. 108 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 109 if (!ClassTemplates.insert(ClassTmpl)) { 110 filter.erase(); 111 continue; 112 } 113 114 // FIXME: we promote access to public here as a workaround to 115 // the fact that LookupResult doesn't let us remember that we 116 // found this template through a particular injected class name, 117 // which means we end up doing nasty things to the invariants. 118 // Pretending that access is public is *much* safer. 119 filter.replace(Repl, AS_public); 120 } 121 } 122 filter.done(); 123} 124 125bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, 126 bool AllowFunctionTemplates) { 127 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) 128 if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates)) 129 return true; 130 131 return false; 132} 133 134TemplateNameKind Sema::isTemplateName(Scope *S, 135 CXXScopeSpec &SS, 136 bool hasTemplateKeyword, 137 UnqualifiedId &Name, 138 ParsedType ObjectTypePtr, 139 bool EnteringContext, 140 TemplateTy &TemplateResult, 141 bool &MemberOfUnknownSpecialization) { 142 assert(getLangOpts().CPlusPlus && "No template names in C!"); 143 144 DeclarationName TName; 145 MemberOfUnknownSpecialization = false; 146 147 switch (Name.getKind()) { 148 case UnqualifiedId::IK_Identifier: 149 TName = DeclarationName(Name.Identifier); 150 break; 151 152 case UnqualifiedId::IK_OperatorFunctionId: 153 TName = Context.DeclarationNames.getCXXOperatorName( 154 Name.OperatorFunctionId.Operator); 155 break; 156 157 case UnqualifiedId::IK_LiteralOperatorId: 158 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 159 break; 160 161 default: 162 return TNK_Non_template; 163 } 164 165 QualType ObjectType = ObjectTypePtr.get(); 166 167 LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName); 168 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 169 MemberOfUnknownSpecialization); 170 if (R.empty()) return TNK_Non_template; 171 if (R.isAmbiguous()) { 172 // Suppress diagnostics; we'll redo this lookup later. 173 R.suppressDiagnostics(); 174 175 // FIXME: we might have ambiguous templates, in which case we 176 // should at least parse them properly! 177 return TNK_Non_template; 178 } 179 180 TemplateName Template; 181 TemplateNameKind TemplateKind; 182 183 unsigned ResultCount = R.end() - R.begin(); 184 if (ResultCount > 1) { 185 // We assume that we'll preserve the qualifier from a function 186 // template name in other ways. 187 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 188 TemplateKind = TNK_Function_template; 189 190 // We'll do this lookup again later. 191 R.suppressDiagnostics(); 192 } else { 193 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 194 195 if (SS.isSet() && !SS.isInvalid()) { 196 NestedNameSpecifier *Qualifier 197 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 198 Template = Context.getQualifiedTemplateName(Qualifier, 199 hasTemplateKeyword, TD); 200 } else { 201 Template = TemplateName(TD); 202 } 203 204 if (isa<FunctionTemplateDecl>(TD)) { 205 TemplateKind = TNK_Function_template; 206 207 // We'll do this lookup again later. 208 R.suppressDiagnostics(); 209 } else { 210 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 211 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD)); 212 TemplateKind = 213 isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template; 214 } 215 } 216 217 TemplateResult = TemplateTy::make(Template); 218 return TemplateKind; 219} 220 221bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 222 SourceLocation IILoc, 223 Scope *S, 224 const CXXScopeSpec *SS, 225 TemplateTy &SuggestedTemplate, 226 TemplateNameKind &SuggestedKind) { 227 // We can't recover unless there's a dependent scope specifier preceding the 228 // template name. 229 // FIXME: Typo correction? 230 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 231 computeDeclContext(*SS)) 232 return false; 233 234 // The code is missing a 'template' keyword prior to the dependent template 235 // name. 236 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 237 Diag(IILoc, diag::err_template_kw_missing) 238 << Qualifier << II.getName() 239 << FixItHint::CreateInsertion(IILoc, "template "); 240 SuggestedTemplate 241 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 242 SuggestedKind = TNK_Dependent_template_name; 243 return true; 244} 245 246void Sema::LookupTemplateName(LookupResult &Found, 247 Scope *S, CXXScopeSpec &SS, 248 QualType ObjectType, 249 bool EnteringContext, 250 bool &MemberOfUnknownSpecialization) { 251 // Determine where to perform name lookup 252 MemberOfUnknownSpecialization = false; 253 DeclContext *LookupCtx = 0; 254 bool isDependent = false; 255 if (!ObjectType.isNull()) { 256 // This nested-name-specifier occurs in a member access expression, e.g., 257 // x->B::f, and we are looking into the type of the object. 258 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 259 LookupCtx = computeDeclContext(ObjectType); 260 isDependent = ObjectType->isDependentType(); 261 assert((isDependent || !ObjectType->isIncompleteType() || 262 ObjectType->castAs<TagType>()->isBeingDefined()) && 263 "Caller should have completed object type"); 264 265 // Template names cannot appear inside an Objective-C class or object type. 266 if (ObjectType->isObjCObjectOrInterfaceType()) { 267 Found.clear(); 268 return; 269 } 270 } else if (SS.isSet()) { 271 // This nested-name-specifier occurs after another nested-name-specifier, 272 // so long into the context associated with the prior nested-name-specifier. 273 LookupCtx = computeDeclContext(SS, EnteringContext); 274 isDependent = isDependentScopeSpecifier(SS); 275 276 // The declaration context must be complete. 277 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 278 return; 279 } 280 281 bool ObjectTypeSearchedInScope = false; 282 bool AllowFunctionTemplatesInLookup = true; 283 if (LookupCtx) { 284 // Perform "qualified" name lookup into the declaration context we 285 // computed, which is either the type of the base of a member access 286 // expression or the declaration context associated with a prior 287 // nested-name-specifier. 288 LookupQualifiedName(Found, LookupCtx); 289 if (!ObjectType.isNull() && Found.empty()) { 290 // C++ [basic.lookup.classref]p1: 291 // In a class member access expression (5.2.5), if the . or -> token is 292 // immediately followed by an identifier followed by a <, the 293 // identifier must be looked up to determine whether the < is the 294 // beginning of a template argument list (14.2) or a less-than operator. 295 // The identifier is first looked up in the class of the object 296 // expression. If the identifier is not found, it is then looked up in 297 // the context of the entire postfix-expression and shall name a class 298 // or function template. 299 if (S) LookupName(Found, S); 300 ObjectTypeSearchedInScope = true; 301 AllowFunctionTemplatesInLookup = false; 302 } 303 } else if (isDependent && (!S || ObjectType.isNull())) { 304 // We cannot look into a dependent object type or nested nme 305 // specifier. 306 MemberOfUnknownSpecialization = true; 307 return; 308 } else { 309 // Perform unqualified name lookup in the current scope. 310 LookupName(Found, S); 311 312 if (!ObjectType.isNull()) 313 AllowFunctionTemplatesInLookup = false; 314 } 315 316 if (Found.empty() && !isDependent) { 317 // If we did not find any names, attempt to correct any typos. 318 DeclarationName Name = Found.getLookupName(); 319 Found.clear(); 320 // Simple filter callback that, for keywords, only accepts the C++ *_cast 321 CorrectionCandidateCallback FilterCCC; 322 FilterCCC.WantTypeSpecifiers = false; 323 FilterCCC.WantExpressionKeywords = false; 324 FilterCCC.WantRemainingKeywords = false; 325 FilterCCC.WantCXXNamedCasts = true; 326 if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(), 327 Found.getLookupKind(), S, &SS, 328 FilterCCC, LookupCtx)) { 329 Found.setLookupName(Corrected.getCorrection()); 330 if (Corrected.getCorrectionDecl()) 331 Found.addDecl(Corrected.getCorrectionDecl()); 332 FilterAcceptableTemplateNames(Found); 333 if (!Found.empty()) { 334 if (LookupCtx) { 335 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 336 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 337 Name.getAsString() == CorrectedStr; 338 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest) 339 << Name << LookupCtx << DroppedSpecifier 340 << SS.getRange()); 341 } else { 342 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name); 343 } 344 } 345 } else { 346 Found.setLookupName(Name); 347 } 348 } 349 350 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup); 351 if (Found.empty()) { 352 if (isDependent) 353 MemberOfUnknownSpecialization = true; 354 return; 355 } 356 357 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope && 358 !getLangOpts().CPlusPlus11) { 359 // C++03 [basic.lookup.classref]p1: 360 // [...] If the lookup in the class of the object expression finds a 361 // template, the name is also looked up in the context of the entire 362 // postfix-expression and [...] 363 // 364 // Note: C++11 does not perform this second lookup. 365 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 366 LookupOrdinaryName); 367 LookupName(FoundOuter, S); 368 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false); 369 370 if (FoundOuter.empty()) { 371 // - if the name is not found, the name found in the class of the 372 // object expression is used, otherwise 373 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() || 374 FoundOuter.isAmbiguous()) { 375 // - if the name is found in the context of the entire 376 // postfix-expression and does not name a class template, the name 377 // found in the class of the object expression is used, otherwise 378 FoundOuter.clear(); 379 } else if (!Found.isSuppressingDiagnostics()) { 380 // - if the name found is a class template, it must refer to the same 381 // entity as the one found in the class of the object expression, 382 // otherwise the program is ill-formed. 383 if (!Found.isSingleResult() || 384 Found.getFoundDecl()->getCanonicalDecl() 385 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 386 Diag(Found.getNameLoc(), 387 diag::ext_nested_name_member_ref_lookup_ambiguous) 388 << Found.getLookupName() 389 << ObjectType; 390 Diag(Found.getRepresentativeDecl()->getLocation(), 391 diag::note_ambig_member_ref_object_type) 392 << ObjectType; 393 Diag(FoundOuter.getFoundDecl()->getLocation(), 394 diag::note_ambig_member_ref_scope); 395 396 // Recover by taking the template that we found in the object 397 // expression's type. 398 } 399 } 400 } 401} 402 403/// ActOnDependentIdExpression - Handle a dependent id-expression that 404/// was just parsed. This is only possible with an explicit scope 405/// specifier naming a dependent type. 406ExprResult 407Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 408 SourceLocation TemplateKWLoc, 409 const DeclarationNameInfo &NameInfo, 410 bool isAddressOfOperand, 411 const TemplateArgumentListInfo *TemplateArgs) { 412 DeclContext *DC = getFunctionLevelDeclContext(); 413 414 if (!isAddressOfOperand && 415 isa<CXXMethodDecl>(DC) && 416 cast<CXXMethodDecl>(DC)->isInstance()) { 417 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 418 419 // Since the 'this' expression is synthesized, we don't need to 420 // perform the double-lookup check. 421 NamedDecl *FirstQualifierInScope = 0; 422 423 return Owned(CXXDependentScopeMemberExpr::Create(Context, 424 /*This*/ 0, ThisType, 425 /*IsArrow*/ true, 426 /*Op*/ SourceLocation(), 427 SS.getWithLocInContext(Context), 428 TemplateKWLoc, 429 FirstQualifierInScope, 430 NameInfo, 431 TemplateArgs)); 432 } 433 434 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 435} 436 437ExprResult 438Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 439 SourceLocation TemplateKWLoc, 440 const DeclarationNameInfo &NameInfo, 441 const TemplateArgumentListInfo *TemplateArgs) { 442 return Owned(DependentScopeDeclRefExpr::Create(Context, 443 SS.getWithLocInContext(Context), 444 TemplateKWLoc, 445 NameInfo, 446 TemplateArgs)); 447} 448 449/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 450/// that the template parameter 'PrevDecl' is being shadowed by a new 451/// declaration at location Loc. Returns true to indicate that this is 452/// an error, and false otherwise. 453void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 454 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 455 456 // Microsoft Visual C++ permits template parameters to be shadowed. 457 if (getLangOpts().MicrosoftExt) 458 return; 459 460 // C++ [temp.local]p4: 461 // A template-parameter shall not be redeclared within its 462 // scope (including nested scopes). 463 Diag(Loc, diag::err_template_param_shadow) 464 << cast<NamedDecl>(PrevDecl)->getDeclName(); 465 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 466 return; 467} 468 469/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 470/// the parameter D to reference the templated declaration and return a pointer 471/// to the template declaration. Otherwise, do nothing to D and return null. 472TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 473 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 474 D = Temp->getTemplatedDecl(); 475 return Temp; 476 } 477 return 0; 478} 479 480ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 481 SourceLocation EllipsisLoc) const { 482 assert(Kind == Template && 483 "Only template template arguments can be pack expansions here"); 484 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 485 "Template template argument pack expansion without packs"); 486 ParsedTemplateArgument Result(*this); 487 Result.EllipsisLoc = EllipsisLoc; 488 return Result; 489} 490 491static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 492 const ParsedTemplateArgument &Arg) { 493 494 switch (Arg.getKind()) { 495 case ParsedTemplateArgument::Type: { 496 TypeSourceInfo *DI; 497 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 498 if (!DI) 499 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 500 return TemplateArgumentLoc(TemplateArgument(T), DI); 501 } 502 503 case ParsedTemplateArgument::NonType: { 504 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 505 return TemplateArgumentLoc(TemplateArgument(E), E); 506 } 507 508 case ParsedTemplateArgument::Template: { 509 TemplateName Template = Arg.getAsTemplate().get(); 510 TemplateArgument TArg; 511 if (Arg.getEllipsisLoc().isValid()) 512 TArg = TemplateArgument(Template, Optional<unsigned int>()); 513 else 514 TArg = Template; 515 return TemplateArgumentLoc(TArg, 516 Arg.getScopeSpec().getWithLocInContext( 517 SemaRef.Context), 518 Arg.getLocation(), 519 Arg.getEllipsisLoc()); 520 } 521 } 522 523 llvm_unreachable("Unhandled parsed template argument"); 524} 525 526/// \brief Translates template arguments as provided by the parser 527/// into template arguments used by semantic analysis. 528void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 529 TemplateArgumentListInfo &TemplateArgs) { 530 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 531 TemplateArgs.addArgument(translateTemplateArgument(*this, 532 TemplateArgsIn[I])); 533} 534 535static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S, 536 SourceLocation Loc, 537 IdentifierInfo *Name) { 538 NamedDecl *PrevDecl = SemaRef.LookupSingleName( 539 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForRedeclaration); 540 if (PrevDecl && PrevDecl->isTemplateParameter()) 541 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl); 542} 543 544/// ActOnTypeParameter - Called when a C++ template type parameter 545/// (e.g., "typename T") has been parsed. Typename specifies whether 546/// the keyword "typename" was used to declare the type parameter 547/// (otherwise, "class" was used), and KeyLoc is the location of the 548/// "class" or "typename" keyword. ParamName is the name of the 549/// parameter (NULL indicates an unnamed template parameter) and 550/// ParamNameLoc is the location of the parameter name (if any). 551/// If the type parameter has a default argument, it will be added 552/// later via ActOnTypeParameterDefault. 553Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 554 SourceLocation EllipsisLoc, 555 SourceLocation KeyLoc, 556 IdentifierInfo *ParamName, 557 SourceLocation ParamNameLoc, 558 unsigned Depth, unsigned Position, 559 SourceLocation EqualLoc, 560 ParsedType DefaultArg) { 561 assert(S->isTemplateParamScope() && 562 "Template type parameter not in template parameter scope!"); 563 bool Invalid = false; 564 565 SourceLocation Loc = ParamNameLoc; 566 if (!ParamName) 567 Loc = KeyLoc; 568 569 TemplateTypeParmDecl *Param 570 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 571 KeyLoc, Loc, Depth, Position, ParamName, 572 Typename, Ellipsis); 573 Param->setAccess(AS_public); 574 if (Invalid) 575 Param->setInvalidDecl(); 576 577 if (ParamName) { 578 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName); 579 580 // Add the template parameter into the current scope. 581 S->AddDecl(Param); 582 IdResolver.AddDecl(Param); 583 } 584 585 // C++0x [temp.param]p9: 586 // A default template-argument may be specified for any kind of 587 // template-parameter that is not a template parameter pack. 588 if (DefaultArg && Ellipsis) { 589 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 590 DefaultArg = ParsedType(); 591 } 592 593 // Handle the default argument, if provided. 594 if (DefaultArg) { 595 TypeSourceInfo *DefaultTInfo; 596 GetTypeFromParser(DefaultArg, &DefaultTInfo); 597 598 assert(DefaultTInfo && "expected source information for type"); 599 600 // Check for unexpanded parameter packs. 601 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, 602 UPPC_DefaultArgument)) 603 return Param; 604 605 // Check the template argument itself. 606 if (CheckTemplateArgument(Param, DefaultTInfo)) { 607 Param->setInvalidDecl(); 608 return Param; 609 } 610 611 Param->setDefaultArgument(DefaultTInfo, false); 612 } 613 614 return Param; 615} 616 617/// \brief Check that the type of a non-type template parameter is 618/// well-formed. 619/// 620/// \returns the (possibly-promoted) parameter type if valid; 621/// otherwise, produces a diagnostic and returns a NULL type. 622QualType 623Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 624 // We don't allow variably-modified types as the type of non-type template 625 // parameters. 626 if (T->isVariablyModifiedType()) { 627 Diag(Loc, diag::err_variably_modified_nontype_template_param) 628 << T; 629 return QualType(); 630 } 631 632 // C++ [temp.param]p4: 633 // 634 // A non-type template-parameter shall have one of the following 635 // (optionally cv-qualified) types: 636 // 637 // -- integral or enumeration type, 638 if (T->isIntegralOrEnumerationType() || 639 // -- pointer to object or pointer to function, 640 T->isPointerType() || 641 // -- reference to object or reference to function, 642 T->isReferenceType() || 643 // -- pointer to member, 644 T->isMemberPointerType() || 645 // -- std::nullptr_t. 646 T->isNullPtrType() || 647 // If T is a dependent type, we can't do the check now, so we 648 // assume that it is well-formed. 649 T->isDependentType()) { 650 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter 651 // are ignored when determining its type. 652 return T.getUnqualifiedType(); 653 } 654 655 // C++ [temp.param]p8: 656 // 657 // A non-type template-parameter of type "array of T" or 658 // "function returning T" is adjusted to be of type "pointer to 659 // T" or "pointer to function returning T", respectively. 660 else if (T->isArrayType()) 661 // FIXME: Keep the type prior to promotion? 662 return Context.getArrayDecayedType(T); 663 else if (T->isFunctionType()) 664 // FIXME: Keep the type prior to promotion? 665 return Context.getPointerType(T); 666 667 Diag(Loc, diag::err_template_nontype_parm_bad_type) 668 << T; 669 670 return QualType(); 671} 672 673Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 674 unsigned Depth, 675 unsigned Position, 676 SourceLocation EqualLoc, 677 Expr *Default) { 678 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 679 QualType T = TInfo->getType(); 680 681 assert(S->isTemplateParamScope() && 682 "Non-type template parameter not in template parameter scope!"); 683 bool Invalid = false; 684 685 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 686 if (T.isNull()) { 687 T = Context.IntTy; // Recover with an 'int' type. 688 Invalid = true; 689 } 690 691 IdentifierInfo *ParamName = D.getIdentifier(); 692 bool IsParameterPack = D.hasEllipsis(); 693 NonTypeTemplateParmDecl *Param 694 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 695 D.getLocStart(), 696 D.getIdentifierLoc(), 697 Depth, Position, ParamName, T, 698 IsParameterPack, TInfo); 699 Param->setAccess(AS_public); 700 701 if (Invalid) 702 Param->setInvalidDecl(); 703 704 if (ParamName) { 705 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(), 706 ParamName); 707 708 // Add the template parameter into the current scope. 709 S->AddDecl(Param); 710 IdResolver.AddDecl(Param); 711 } 712 713 // C++0x [temp.param]p9: 714 // A default template-argument may be specified for any kind of 715 // template-parameter that is not a template parameter pack. 716 if (Default && IsParameterPack) { 717 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 718 Default = 0; 719 } 720 721 // Check the well-formedness of the default template argument, if provided. 722 if (Default) { 723 // Check for unexpanded parameter packs. 724 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 725 return Param; 726 727 TemplateArgument Converted; 728 ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted); 729 if (DefaultRes.isInvalid()) { 730 Param->setInvalidDecl(); 731 return Param; 732 } 733 Default = DefaultRes.take(); 734 735 Param->setDefaultArgument(Default, false); 736 } 737 738 return Param; 739} 740 741/// ActOnTemplateTemplateParameter - Called when a C++ template template 742/// parameter (e.g. T in template <template \<typename> class T> class array) 743/// has been parsed. S is the current scope. 744Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 745 SourceLocation TmpLoc, 746 TemplateParameterList *Params, 747 SourceLocation EllipsisLoc, 748 IdentifierInfo *Name, 749 SourceLocation NameLoc, 750 unsigned Depth, 751 unsigned Position, 752 SourceLocation EqualLoc, 753 ParsedTemplateArgument Default) { 754 assert(S->isTemplateParamScope() && 755 "Template template parameter not in template parameter scope!"); 756 757 // Construct the parameter object. 758 bool IsParameterPack = EllipsisLoc.isValid(); 759 TemplateTemplateParmDecl *Param = 760 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 761 NameLoc.isInvalid()? TmpLoc : NameLoc, 762 Depth, Position, IsParameterPack, 763 Name, Params); 764 Param->setAccess(AS_public); 765 766 // If the template template parameter has a name, then link the identifier 767 // into the scope and lookup mechanisms. 768 if (Name) { 769 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name); 770 771 S->AddDecl(Param); 772 IdResolver.AddDecl(Param); 773 } 774 775 if (Params->size() == 0) { 776 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 777 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 778 Param->setInvalidDecl(); 779 } 780 781 // C++0x [temp.param]p9: 782 // A default template-argument may be specified for any kind of 783 // template-parameter that is not a template parameter pack. 784 if (IsParameterPack && !Default.isInvalid()) { 785 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 786 Default = ParsedTemplateArgument(); 787 } 788 789 if (!Default.isInvalid()) { 790 // Check only that we have a template template argument. We don't want to 791 // try to check well-formedness now, because our template template parameter 792 // might have dependent types in its template parameters, which we wouldn't 793 // be able to match now. 794 // 795 // If none of the template template parameter's template arguments mention 796 // other template parameters, we could actually perform more checking here. 797 // However, it isn't worth doing. 798 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 799 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 800 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 801 << DefaultArg.getSourceRange(); 802 return Param; 803 } 804 805 // Check for unexpanded parameter packs. 806 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 807 DefaultArg.getArgument().getAsTemplate(), 808 UPPC_DefaultArgument)) 809 return Param; 810 811 Param->setDefaultArgument(DefaultArg, false); 812 } 813 814 return Param; 815} 816 817/// ActOnTemplateParameterList - Builds a TemplateParameterList that 818/// contains the template parameters in Params/NumParams. 819TemplateParameterList * 820Sema::ActOnTemplateParameterList(unsigned Depth, 821 SourceLocation ExportLoc, 822 SourceLocation TemplateLoc, 823 SourceLocation LAngleLoc, 824 Decl **Params, unsigned NumParams, 825 SourceLocation RAngleLoc) { 826 if (ExportLoc.isValid()) 827 Diag(ExportLoc, diag::warn_template_export_unsupported); 828 829 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 830 (NamedDecl**)Params, NumParams, 831 RAngleLoc); 832} 833 834static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 835 if (SS.isSet()) 836 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext())); 837} 838 839DeclResult 840Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 841 SourceLocation KWLoc, CXXScopeSpec &SS, 842 IdentifierInfo *Name, SourceLocation NameLoc, 843 AttributeList *Attr, 844 TemplateParameterList *TemplateParams, 845 AccessSpecifier AS, SourceLocation ModulePrivateLoc, 846 unsigned NumOuterTemplateParamLists, 847 TemplateParameterList** OuterTemplateParamLists) { 848 assert(TemplateParams && TemplateParams->size() > 0 && 849 "No template parameters"); 850 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 851 bool Invalid = false; 852 853 // Check that we can declare a template here. 854 if (CheckTemplateDeclScope(S, TemplateParams)) 855 return true; 856 857 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 858 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 859 860 // There is no such thing as an unnamed class template. 861 if (!Name) { 862 Diag(KWLoc, diag::err_template_unnamed_class); 863 return true; 864 } 865 866 // Find any previous declaration with this name. For a friend with no 867 // scope explicitly specified, we only look for tag declarations (per 868 // C++11 [basic.lookup.elab]p2). 869 DeclContext *SemanticContext; 870 LookupResult Previous(*this, Name, NameLoc, 871 (SS.isEmpty() && TUK == TUK_Friend) 872 ? LookupTagName : LookupOrdinaryName, 873 ForRedeclaration); 874 if (SS.isNotEmpty() && !SS.isInvalid()) { 875 SemanticContext = computeDeclContext(SS, true); 876 if (!SemanticContext) { 877 // FIXME: Horrible, horrible hack! We can't currently represent this 878 // in the AST, and historically we have just ignored such friend 879 // class templates, so don't complain here. 880 if (TUK != TUK_Friend) 881 Diag(NameLoc, diag::err_template_qualified_declarator_no_match) 882 << SS.getScopeRep() << SS.getRange(); 883 return true; 884 } 885 886 if (RequireCompleteDeclContext(SS, SemanticContext)) 887 return true; 888 889 // If we're adding a template to a dependent context, we may need to 890 // rebuilding some of the types used within the template parameter list, 891 // now that we know what the current instantiation is. 892 if (SemanticContext->isDependentContext()) { 893 ContextRAII SavedContext(*this, SemanticContext); 894 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 895 Invalid = true; 896 } else if (TUK != TUK_Friend && TUK != TUK_Reference) 897 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc); 898 899 LookupQualifiedName(Previous, SemanticContext); 900 } else { 901 SemanticContext = CurContext; 902 LookupName(Previous, S); 903 } 904 905 if (Previous.isAmbiguous()) 906 return true; 907 908 NamedDecl *PrevDecl = 0; 909 if (Previous.begin() != Previous.end()) 910 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 911 912 // If there is a previous declaration with the same name, check 913 // whether this is a valid redeclaration. 914 ClassTemplateDecl *PrevClassTemplate 915 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 916 917 // We may have found the injected-class-name of a class template, 918 // class template partial specialization, or class template specialization. 919 // In these cases, grab the template that is being defined or specialized. 920 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 921 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 922 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 923 PrevClassTemplate 924 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 925 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 926 PrevClassTemplate 927 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 928 ->getSpecializedTemplate(); 929 } 930 } 931 932 if (TUK == TUK_Friend) { 933 // C++ [namespace.memdef]p3: 934 // [...] When looking for a prior declaration of a class or a function 935 // declared as a friend, and when the name of the friend class or 936 // function is neither a qualified name nor a template-id, scopes outside 937 // the innermost enclosing namespace scope are not considered. 938 if (!SS.isSet()) { 939 DeclContext *OutermostContext = CurContext; 940 while (!OutermostContext->isFileContext()) 941 OutermostContext = OutermostContext->getLookupParent(); 942 943 if (PrevDecl && 944 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 945 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 946 SemanticContext = PrevDecl->getDeclContext(); 947 } else { 948 // Declarations in outer scopes don't matter. However, the outermost 949 // context we computed is the semantic context for our new 950 // declaration. 951 PrevDecl = PrevClassTemplate = 0; 952 SemanticContext = OutermostContext; 953 954 // Check that the chosen semantic context doesn't already contain a 955 // declaration of this name as a non-tag type. 956 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 957 ForRedeclaration); 958 DeclContext *LookupContext = SemanticContext; 959 while (LookupContext->isTransparentContext()) 960 LookupContext = LookupContext->getLookupParent(); 961 LookupQualifiedName(Previous, LookupContext); 962 963 if (Previous.isAmbiguous()) 964 return true; 965 966 if (Previous.begin() != Previous.end()) 967 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 968 } 969 } 970 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 971 PrevDecl = PrevClassTemplate = 0; 972 973 if (PrevClassTemplate) { 974 // Ensure that the template parameter lists are compatible. Skip this check 975 // for a friend in a dependent context: the template parameter list itself 976 // could be dependent. 977 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 978 !TemplateParameterListsAreEqual(TemplateParams, 979 PrevClassTemplate->getTemplateParameters(), 980 /*Complain=*/true, 981 TPL_TemplateMatch)) 982 return true; 983 984 // C++ [temp.class]p4: 985 // In a redeclaration, partial specialization, explicit 986 // specialization or explicit instantiation of a class template, 987 // the class-key shall agree in kind with the original class 988 // template declaration (7.1.5.3). 989 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 990 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, 991 TUK == TUK_Definition, KWLoc, *Name)) { 992 Diag(KWLoc, diag::err_use_with_wrong_tag) 993 << Name 994 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 995 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 996 Kind = PrevRecordDecl->getTagKind(); 997 } 998 999 // Check for redefinition of this class template. 1000 if (TUK == TUK_Definition) { 1001 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 1002 Diag(NameLoc, diag::err_redefinition) << Name; 1003 Diag(Def->getLocation(), diag::note_previous_definition); 1004 // FIXME: Would it make sense to try to "forget" the previous 1005 // definition, as part of error recovery? 1006 return true; 1007 } 1008 } 1009 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 1010 // Maybe we will complain about the shadowed template parameter. 1011 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 1012 // Just pretend that we didn't see the previous declaration. 1013 PrevDecl = 0; 1014 } else if (PrevDecl) { 1015 // C++ [temp]p5: 1016 // A class template shall not have the same name as any other 1017 // template, class, function, object, enumeration, enumerator, 1018 // namespace, or type in the same scope (3.3), except as specified 1019 // in (14.5.4). 1020 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 1021 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1022 return true; 1023 } 1024 1025 // Check the template parameter list of this declaration, possibly 1026 // merging in the template parameter list from the previous class 1027 // template declaration. Skip this check for a friend in a dependent 1028 // context, because the template parameter list might be dependent. 1029 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 1030 CheckTemplateParameterList( 1031 TemplateParams, 1032 PrevClassTemplate ? PrevClassTemplate->getTemplateParameters() : 0, 1033 (SS.isSet() && SemanticContext && SemanticContext->isRecord() && 1034 SemanticContext->isDependentContext()) 1035 ? TPC_ClassTemplateMember 1036 : TUK == TUK_Friend ? TPC_FriendClassTemplate 1037 : TPC_ClassTemplate)) 1038 Invalid = true; 1039 1040 if (SS.isSet()) { 1041 // If the name of the template was qualified, we must be defining the 1042 // template out-of-line. 1043 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) { 1044 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match 1045 : diag::err_member_decl_does_not_match) 1046 << Name << SemanticContext << /*IsDefinition*/true << SS.getRange(); 1047 Invalid = true; 1048 } 1049 } 1050 1051 CXXRecordDecl *NewClass = 1052 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 1053 PrevClassTemplate? 1054 PrevClassTemplate->getTemplatedDecl() : 0, 1055 /*DelayTypeCreation=*/true); 1056 SetNestedNameSpecifier(NewClass, SS); 1057 if (NumOuterTemplateParamLists > 0) 1058 NewClass->setTemplateParameterListsInfo(Context, 1059 NumOuterTemplateParamLists, 1060 OuterTemplateParamLists); 1061 1062 // Add alignment attributes if necessary; these attributes are checked when 1063 // the ASTContext lays out the structure. 1064 if (TUK == TUK_Definition) { 1065 AddAlignmentAttributesForRecord(NewClass); 1066 AddMsStructLayoutForRecord(NewClass); 1067 } 1068 1069 ClassTemplateDecl *NewTemplate 1070 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 1071 DeclarationName(Name), TemplateParams, 1072 NewClass, PrevClassTemplate); 1073 NewClass->setDescribedClassTemplate(NewTemplate); 1074 1075 if (ModulePrivateLoc.isValid()) 1076 NewTemplate->setModulePrivate(); 1077 1078 // Build the type for the class template declaration now. 1079 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 1080 T = Context.getInjectedClassNameType(NewClass, T); 1081 assert(T->isDependentType() && "Class template type is not dependent?"); 1082 (void)T; 1083 1084 // If we are providing an explicit specialization of a member that is a 1085 // class template, make a note of that. 1086 if (PrevClassTemplate && 1087 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 1088 PrevClassTemplate->setMemberSpecialization(); 1089 1090 // Set the access specifier. 1091 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord()) 1092 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 1093 1094 // Set the lexical context of these templates 1095 NewClass->setLexicalDeclContext(CurContext); 1096 NewTemplate->setLexicalDeclContext(CurContext); 1097 1098 if (TUK == TUK_Definition) 1099 NewClass->startDefinition(); 1100 1101 if (Attr) 1102 ProcessDeclAttributeList(S, NewClass, Attr); 1103 1104 if (PrevClassTemplate) 1105 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl()); 1106 1107 AddPushedVisibilityAttribute(NewClass); 1108 1109 if (TUK != TUK_Friend) 1110 PushOnScopeChains(NewTemplate, S); 1111 else { 1112 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1113 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1114 NewClass->setAccess(PrevClassTemplate->getAccess()); 1115 } 1116 1117 NewTemplate->setObjectOfFriendDecl(); 1118 1119 // Friend templates are visible in fairly strange ways. 1120 if (!CurContext->isDependentContext()) { 1121 DeclContext *DC = SemanticContext->getRedeclContext(); 1122 DC->makeDeclVisibleInContext(NewTemplate); 1123 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1124 PushOnScopeChains(NewTemplate, EnclosingScope, 1125 /* AddToContext = */ false); 1126 } 1127 1128 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 1129 NewClass->getLocation(), 1130 NewTemplate, 1131 /*FIXME:*/NewClass->getLocation()); 1132 Friend->setAccess(AS_public); 1133 CurContext->addDecl(Friend); 1134 } 1135 1136 if (Invalid) { 1137 NewTemplate->setInvalidDecl(); 1138 NewClass->setInvalidDecl(); 1139 } 1140 1141 ActOnDocumentableDecl(NewTemplate); 1142 1143 return NewTemplate; 1144} 1145 1146/// \brief Diagnose the presence of a default template argument on a 1147/// template parameter, which is ill-formed in certain contexts. 1148/// 1149/// \returns true if the default template argument should be dropped. 1150static bool DiagnoseDefaultTemplateArgument(Sema &S, 1151 Sema::TemplateParamListContext TPC, 1152 SourceLocation ParamLoc, 1153 SourceRange DefArgRange) { 1154 switch (TPC) { 1155 case Sema::TPC_ClassTemplate: 1156 case Sema::TPC_VarTemplate: 1157 case Sema::TPC_TypeAliasTemplate: 1158 return false; 1159 1160 case Sema::TPC_FunctionTemplate: 1161 case Sema::TPC_FriendFunctionTemplateDefinition: 1162 // C++ [temp.param]p9: 1163 // A default template-argument shall not be specified in a 1164 // function template declaration or a function template 1165 // definition [...] 1166 // If a friend function template declaration specifies a default 1167 // template-argument, that declaration shall be a definition and shall be 1168 // the only declaration of the function template in the translation unit. 1169 // (C++98/03 doesn't have this wording; see DR226). 1170 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ? 1171 diag::warn_cxx98_compat_template_parameter_default_in_function_template 1172 : diag::ext_template_parameter_default_in_function_template) 1173 << DefArgRange; 1174 return false; 1175 1176 case Sema::TPC_ClassTemplateMember: 1177 // C++0x [temp.param]p9: 1178 // A default template-argument shall not be specified in the 1179 // template-parameter-lists of the definition of a member of a 1180 // class template that appears outside of the member's class. 1181 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1182 << DefArgRange; 1183 return true; 1184 1185 case Sema::TPC_FriendClassTemplate: 1186 case Sema::TPC_FriendFunctionTemplate: 1187 // C++ [temp.param]p9: 1188 // A default template-argument shall not be specified in a 1189 // friend template declaration. 1190 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1191 << DefArgRange; 1192 return true; 1193 1194 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1195 // for friend function templates if there is only a single 1196 // declaration (and it is a definition). Strange! 1197 } 1198 1199 llvm_unreachable("Invalid TemplateParamListContext!"); 1200} 1201 1202/// \brief Check for unexpanded parameter packs within the template parameters 1203/// of a template template parameter, recursively. 1204static bool DiagnoseUnexpandedParameterPacks(Sema &S, 1205 TemplateTemplateParmDecl *TTP) { 1206 // A template template parameter which is a parameter pack is also a pack 1207 // expansion. 1208 if (TTP->isParameterPack()) 1209 return false; 1210 1211 TemplateParameterList *Params = TTP->getTemplateParameters(); 1212 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 1213 NamedDecl *P = Params->getParam(I); 1214 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 1215 if (!NTTP->isParameterPack() && 1216 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 1217 NTTP->getTypeSourceInfo(), 1218 Sema::UPPC_NonTypeTemplateParameterType)) 1219 return true; 1220 1221 continue; 1222 } 1223 1224 if (TemplateTemplateParmDecl *InnerTTP 1225 = dyn_cast<TemplateTemplateParmDecl>(P)) 1226 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 1227 return true; 1228 } 1229 1230 return false; 1231} 1232 1233/// \brief Checks the validity of a template parameter list, possibly 1234/// considering the template parameter list from a previous 1235/// declaration. 1236/// 1237/// If an "old" template parameter list is provided, it must be 1238/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1239/// template parameter list. 1240/// 1241/// \param NewParams Template parameter list for a new template 1242/// declaration. This template parameter list will be updated with any 1243/// default arguments that are carried through from the previous 1244/// template parameter list. 1245/// 1246/// \param OldParams If provided, template parameter list from a 1247/// previous declaration of the same template. Default template 1248/// arguments will be merged from the old template parameter list to 1249/// the new template parameter list. 1250/// 1251/// \param TPC Describes the context in which we are checking the given 1252/// template parameter list. 1253/// 1254/// \returns true if an error occurred, false otherwise. 1255bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1256 TemplateParameterList *OldParams, 1257 TemplateParamListContext TPC) { 1258 bool Invalid = false; 1259 1260 // C++ [temp.param]p10: 1261 // The set of default template-arguments available for use with a 1262 // template declaration or definition is obtained by merging the 1263 // default arguments from the definition (if in scope) and all 1264 // declarations in scope in the same way default function 1265 // arguments are (8.3.6). 1266 bool SawDefaultArgument = false; 1267 SourceLocation PreviousDefaultArgLoc; 1268 1269 // Dummy initialization to avoid warnings. 1270 TemplateParameterList::iterator OldParam = NewParams->end(); 1271 if (OldParams) 1272 OldParam = OldParams->begin(); 1273 1274 bool RemoveDefaultArguments = false; 1275 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1276 NewParamEnd = NewParams->end(); 1277 NewParam != NewParamEnd; ++NewParam) { 1278 // Variables used to diagnose redundant default arguments 1279 bool RedundantDefaultArg = false; 1280 SourceLocation OldDefaultLoc; 1281 SourceLocation NewDefaultLoc; 1282 1283 // Variable used to diagnose missing default arguments 1284 bool MissingDefaultArg = false; 1285 1286 // Variable used to diagnose non-final parameter packs 1287 bool SawParameterPack = false; 1288 1289 if (TemplateTypeParmDecl *NewTypeParm 1290 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1291 // Check the presence of a default argument here. 1292 if (NewTypeParm->hasDefaultArgument() && 1293 DiagnoseDefaultTemplateArgument(*this, TPC, 1294 NewTypeParm->getLocation(), 1295 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1296 .getSourceRange())) 1297 NewTypeParm->removeDefaultArgument(); 1298 1299 // Merge default arguments for template type parameters. 1300 TemplateTypeParmDecl *OldTypeParm 1301 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1302 1303 if (NewTypeParm->isParameterPack()) { 1304 assert(!NewTypeParm->hasDefaultArgument() && 1305 "Parameter packs can't have a default argument!"); 1306 SawParameterPack = true; 1307 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1308 NewTypeParm->hasDefaultArgument()) { 1309 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1310 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1311 SawDefaultArgument = true; 1312 RedundantDefaultArg = true; 1313 PreviousDefaultArgLoc = NewDefaultLoc; 1314 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1315 // Merge the default argument from the old declaration to the 1316 // new declaration. 1317 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1318 true); 1319 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1320 } else if (NewTypeParm->hasDefaultArgument()) { 1321 SawDefaultArgument = true; 1322 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1323 } else if (SawDefaultArgument) 1324 MissingDefaultArg = true; 1325 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1326 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1327 // Check for unexpanded parameter packs. 1328 if (!NewNonTypeParm->isParameterPack() && 1329 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 1330 NewNonTypeParm->getTypeSourceInfo(), 1331 UPPC_NonTypeTemplateParameterType)) { 1332 Invalid = true; 1333 continue; 1334 } 1335 1336 // Check the presence of a default argument here. 1337 if (NewNonTypeParm->hasDefaultArgument() && 1338 DiagnoseDefaultTemplateArgument(*this, TPC, 1339 NewNonTypeParm->getLocation(), 1340 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1341 NewNonTypeParm->removeDefaultArgument(); 1342 } 1343 1344 // Merge default arguments for non-type template parameters 1345 NonTypeTemplateParmDecl *OldNonTypeParm 1346 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1347 if (NewNonTypeParm->isParameterPack()) { 1348 assert(!NewNonTypeParm->hasDefaultArgument() && 1349 "Parameter packs can't have a default argument!"); 1350 if (!NewNonTypeParm->isPackExpansion()) 1351 SawParameterPack = true; 1352 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1353 NewNonTypeParm->hasDefaultArgument()) { 1354 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1355 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1356 SawDefaultArgument = true; 1357 RedundantDefaultArg = true; 1358 PreviousDefaultArgLoc = NewDefaultLoc; 1359 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1360 // Merge the default argument from the old declaration to the 1361 // new declaration. 1362 // FIXME: We need to create a new kind of "default argument" 1363 // expression that points to a previous non-type template 1364 // parameter. 1365 NewNonTypeParm->setDefaultArgument( 1366 OldNonTypeParm->getDefaultArgument(), 1367 /*Inherited=*/ true); 1368 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1369 } else if (NewNonTypeParm->hasDefaultArgument()) { 1370 SawDefaultArgument = true; 1371 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1372 } else if (SawDefaultArgument) 1373 MissingDefaultArg = true; 1374 } else { 1375 TemplateTemplateParmDecl *NewTemplateParm 1376 = cast<TemplateTemplateParmDecl>(*NewParam); 1377 1378 // Check for unexpanded parameter packs, recursively. 1379 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 1380 Invalid = true; 1381 continue; 1382 } 1383 1384 // Check the presence of a default argument here. 1385 if (NewTemplateParm->hasDefaultArgument() && 1386 DiagnoseDefaultTemplateArgument(*this, TPC, 1387 NewTemplateParm->getLocation(), 1388 NewTemplateParm->getDefaultArgument().getSourceRange())) 1389 NewTemplateParm->removeDefaultArgument(); 1390 1391 // Merge default arguments for template template parameters 1392 TemplateTemplateParmDecl *OldTemplateParm 1393 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1394 if (NewTemplateParm->isParameterPack()) { 1395 assert(!NewTemplateParm->hasDefaultArgument() && 1396 "Parameter packs can't have a default argument!"); 1397 if (!NewTemplateParm->isPackExpansion()) 1398 SawParameterPack = true; 1399 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1400 NewTemplateParm->hasDefaultArgument()) { 1401 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1402 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1403 SawDefaultArgument = true; 1404 RedundantDefaultArg = true; 1405 PreviousDefaultArgLoc = NewDefaultLoc; 1406 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1407 // Merge the default argument from the old declaration to the 1408 // new declaration. 1409 // FIXME: We need to create a new kind of "default argument" expression 1410 // that points to a previous template template parameter. 1411 NewTemplateParm->setDefaultArgument( 1412 OldTemplateParm->getDefaultArgument(), 1413 /*Inherited=*/ true); 1414 PreviousDefaultArgLoc 1415 = OldTemplateParm->getDefaultArgument().getLocation(); 1416 } else if (NewTemplateParm->hasDefaultArgument()) { 1417 SawDefaultArgument = true; 1418 PreviousDefaultArgLoc 1419 = NewTemplateParm->getDefaultArgument().getLocation(); 1420 } else if (SawDefaultArgument) 1421 MissingDefaultArg = true; 1422 } 1423 1424 // C++11 [temp.param]p11: 1425 // If a template parameter of a primary class template or alias template 1426 // is a template parameter pack, it shall be the last template parameter. 1427 if (SawParameterPack && (NewParam + 1) != NewParamEnd && 1428 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate || 1429 TPC == TPC_TypeAliasTemplate)) { 1430 Diag((*NewParam)->getLocation(), 1431 diag::err_template_param_pack_must_be_last_template_parameter); 1432 Invalid = true; 1433 } 1434 1435 if (RedundantDefaultArg) { 1436 // C++ [temp.param]p12: 1437 // A template-parameter shall not be given default arguments 1438 // by two different declarations in the same scope. 1439 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1440 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1441 Invalid = true; 1442 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 1443 // C++ [temp.param]p11: 1444 // If a template-parameter of a class template has a default 1445 // template-argument, each subsequent template-parameter shall either 1446 // have a default template-argument supplied or be a template parameter 1447 // pack. 1448 Diag((*NewParam)->getLocation(), 1449 diag::err_template_param_default_arg_missing); 1450 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1451 Invalid = true; 1452 RemoveDefaultArguments = true; 1453 } 1454 1455 // If we have an old template parameter list that we're merging 1456 // in, move on to the next parameter. 1457 if (OldParams) 1458 ++OldParam; 1459 } 1460 1461 // We were missing some default arguments at the end of the list, so remove 1462 // all of the default arguments. 1463 if (RemoveDefaultArguments) { 1464 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1465 NewParamEnd = NewParams->end(); 1466 NewParam != NewParamEnd; ++NewParam) { 1467 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 1468 TTP->removeDefaultArgument(); 1469 else if (NonTypeTemplateParmDecl *NTTP 1470 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 1471 NTTP->removeDefaultArgument(); 1472 else 1473 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 1474 } 1475 } 1476 1477 return Invalid; 1478} 1479 1480namespace { 1481 1482/// A class which looks for a use of a certain level of template 1483/// parameter. 1484struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 1485 typedef RecursiveASTVisitor<DependencyChecker> super; 1486 1487 unsigned Depth; 1488 bool Match; 1489 1490 DependencyChecker(TemplateParameterList *Params) : Match(false) { 1491 NamedDecl *ND = Params->getParam(0); 1492 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 1493 Depth = PD->getDepth(); 1494 } else if (NonTypeTemplateParmDecl *PD = 1495 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 1496 Depth = PD->getDepth(); 1497 } else { 1498 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 1499 } 1500 } 1501 1502 bool Matches(unsigned ParmDepth) { 1503 if (ParmDepth >= Depth) { 1504 Match = true; 1505 return true; 1506 } 1507 return false; 1508 } 1509 1510 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 1511 return !Matches(T->getDepth()); 1512 } 1513 1514 bool TraverseTemplateName(TemplateName N) { 1515 if (TemplateTemplateParmDecl *PD = 1516 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 1517 if (Matches(PD->getDepth())) return false; 1518 return super::TraverseTemplateName(N); 1519 } 1520 1521 bool VisitDeclRefExpr(DeclRefExpr *E) { 1522 if (NonTypeTemplateParmDecl *PD = 1523 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) { 1524 if (PD->getDepth() == Depth) { 1525 Match = true; 1526 return false; 1527 } 1528 } 1529 return super::VisitDeclRefExpr(E); 1530 } 1531 1532 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 1533 return TraverseType(T->getInjectedSpecializationType()); 1534 } 1535}; 1536} 1537 1538/// Determines whether a given type depends on the given parameter 1539/// list. 1540static bool 1541DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 1542 DependencyChecker Checker(Params); 1543 Checker.TraverseType(T); 1544 return Checker.Match; 1545} 1546 1547// Find the source range corresponding to the named type in the given 1548// nested-name-specifier, if any. 1549static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 1550 QualType T, 1551 const CXXScopeSpec &SS) { 1552 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 1553 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 1554 if (const Type *CurType = NNS->getAsType()) { 1555 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 1556 return NNSLoc.getTypeLoc().getSourceRange(); 1557 } else 1558 break; 1559 1560 NNSLoc = NNSLoc.getPrefix(); 1561 } 1562 1563 return SourceRange(); 1564} 1565 1566/// \brief Match the given template parameter lists to the given scope 1567/// specifier, returning the template parameter list that applies to the 1568/// name. 1569/// 1570/// \param DeclStartLoc the start of the declaration that has a scope 1571/// specifier or a template parameter list. 1572/// 1573/// \param DeclLoc The location of the declaration itself. 1574/// 1575/// \param SS the scope specifier that will be matched to the given template 1576/// parameter lists. This scope specifier precedes a qualified name that is 1577/// being declared. 1578/// 1579/// \param ParamLists the template parameter lists, from the outermost to the 1580/// innermost template parameter lists. 1581/// 1582/// \param IsFriend Whether to apply the slightly different rules for 1583/// matching template parameters to scope specifiers in friend 1584/// declarations. 1585/// 1586/// \param IsExplicitSpecialization will be set true if the entity being 1587/// declared is an explicit specialization, false otherwise. 1588/// 1589/// \returns the template parameter list, if any, that corresponds to the 1590/// name that is preceded by the scope specifier @p SS. This template 1591/// parameter list may have template parameters (if we're declaring a 1592/// template) or may have no template parameters (if we're declaring a 1593/// template specialization), or may be NULL (if what we're declaring isn't 1594/// itself a template). 1595TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier( 1596 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS, 1597 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend, 1598 bool &IsExplicitSpecialization, bool &Invalid) { 1599 IsExplicitSpecialization = false; 1600 Invalid = false; 1601 1602 // The sequence of nested types to which we will match up the template 1603 // parameter lists. We first build this list by starting with the type named 1604 // by the nested-name-specifier and walking out until we run out of types. 1605 SmallVector<QualType, 4> NestedTypes; 1606 QualType T; 1607 if (SS.getScopeRep()) { 1608 if (CXXRecordDecl *Record 1609 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 1610 T = Context.getTypeDeclType(Record); 1611 else 1612 T = QualType(SS.getScopeRep()->getAsType(), 0); 1613 } 1614 1615 // If we found an explicit specialization that prevents us from needing 1616 // 'template<>' headers, this will be set to the location of that 1617 // explicit specialization. 1618 SourceLocation ExplicitSpecLoc; 1619 1620 while (!T.isNull()) { 1621 NestedTypes.push_back(T); 1622 1623 // Retrieve the parent of a record type. 1624 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1625 // If this type is an explicit specialization, we're done. 1626 if (ClassTemplateSpecializationDecl *Spec 1627 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1628 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 1629 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 1630 ExplicitSpecLoc = Spec->getLocation(); 1631 break; 1632 } 1633 } else if (Record->getTemplateSpecializationKind() 1634 == TSK_ExplicitSpecialization) { 1635 ExplicitSpecLoc = Record->getLocation(); 1636 break; 1637 } 1638 1639 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 1640 T = Context.getTypeDeclType(Parent); 1641 else 1642 T = QualType(); 1643 continue; 1644 } 1645 1646 if (const TemplateSpecializationType *TST 1647 = T->getAs<TemplateSpecializationType>()) { 1648 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1649 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 1650 T = Context.getTypeDeclType(Parent); 1651 else 1652 T = QualType(); 1653 continue; 1654 } 1655 } 1656 1657 // Look one step prior in a dependent template specialization type. 1658 if (const DependentTemplateSpecializationType *DependentTST 1659 = T->getAs<DependentTemplateSpecializationType>()) { 1660 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 1661 T = QualType(NNS->getAsType(), 0); 1662 else 1663 T = QualType(); 1664 continue; 1665 } 1666 1667 // Look one step prior in a dependent name type. 1668 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 1669 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 1670 T = QualType(NNS->getAsType(), 0); 1671 else 1672 T = QualType(); 1673 continue; 1674 } 1675 1676 // Retrieve the parent of an enumeration type. 1677 if (const EnumType *EnumT = T->getAs<EnumType>()) { 1678 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 1679 // check here. 1680 EnumDecl *Enum = EnumT->getDecl(); 1681 1682 // Get to the parent type. 1683 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 1684 T = Context.getTypeDeclType(Parent); 1685 else 1686 T = QualType(); 1687 continue; 1688 } 1689 1690 T = QualType(); 1691 } 1692 // Reverse the nested types list, since we want to traverse from the outermost 1693 // to the innermost while checking template-parameter-lists. 1694 std::reverse(NestedTypes.begin(), NestedTypes.end()); 1695 1696 // C++0x [temp.expl.spec]p17: 1697 // A member or a member template may be nested within many 1698 // enclosing class templates. In an explicit specialization for 1699 // such a member, the member declaration shall be preceded by a 1700 // template<> for each enclosing class template that is 1701 // explicitly specialized. 1702 bool SawNonEmptyTemplateParameterList = false; 1703 unsigned ParamIdx = 0; 1704 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 1705 ++TypeIdx) { 1706 T = NestedTypes[TypeIdx]; 1707 1708 // Whether we expect a 'template<>' header. 1709 bool NeedEmptyTemplateHeader = false; 1710 1711 // Whether we expect a template header with parameters. 1712 bool NeedNonemptyTemplateHeader = false; 1713 1714 // For a dependent type, the set of template parameters that we 1715 // expect to see. 1716 TemplateParameterList *ExpectedTemplateParams = 0; 1717 1718 // C++0x [temp.expl.spec]p15: 1719 // A member or a member template may be nested within many enclosing 1720 // class templates. In an explicit specialization for such a member, the 1721 // member declaration shall be preceded by a template<> for each 1722 // enclosing class template that is explicitly specialized. 1723 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1724 if (ClassTemplatePartialSpecializationDecl *Partial 1725 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 1726 ExpectedTemplateParams = Partial->getTemplateParameters(); 1727 NeedNonemptyTemplateHeader = true; 1728 } else if (Record->isDependentType()) { 1729 if (Record->getDescribedClassTemplate()) { 1730 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1731 ->getTemplateParameters(); 1732 NeedNonemptyTemplateHeader = true; 1733 } 1734 } else if (ClassTemplateSpecializationDecl *Spec 1735 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1736 // C++0x [temp.expl.spec]p4: 1737 // Members of an explicitly specialized class template are defined 1738 // in the same manner as members of normal classes, and not using 1739 // the template<> syntax. 1740 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 1741 NeedEmptyTemplateHeader = true; 1742 else 1743 continue; 1744 } else if (Record->getTemplateSpecializationKind()) { 1745 if (Record->getTemplateSpecializationKind() 1746 != TSK_ExplicitSpecialization && 1747 TypeIdx == NumTypes - 1) 1748 IsExplicitSpecialization = true; 1749 1750 continue; 1751 } 1752 } else if (const TemplateSpecializationType *TST 1753 = T->getAs<TemplateSpecializationType>()) { 1754 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1755 ExpectedTemplateParams = Template->getTemplateParameters(); 1756 NeedNonemptyTemplateHeader = true; 1757 } 1758 } else if (T->getAs<DependentTemplateSpecializationType>()) { 1759 // FIXME: We actually could/should check the template arguments here 1760 // against the corresponding template parameter list. 1761 NeedNonemptyTemplateHeader = false; 1762 } 1763 1764 // C++ [temp.expl.spec]p16: 1765 // In an explicit specialization declaration for a member of a class 1766 // template or a member template that ap- pears in namespace scope, the 1767 // member template and some of its enclosing class templates may remain 1768 // unspecialized, except that the declaration shall not explicitly 1769 // specialize a class member template if its en- closing class templates 1770 // are not explicitly specialized as well. 1771 if (ParamIdx < ParamLists.size()) { 1772 if (ParamLists[ParamIdx]->size() == 0) { 1773 if (SawNonEmptyTemplateParameterList) { 1774 Diag(DeclLoc, diag::err_specialize_member_of_template) 1775 << ParamLists[ParamIdx]->getSourceRange(); 1776 Invalid = true; 1777 IsExplicitSpecialization = false; 1778 return 0; 1779 } 1780 } else 1781 SawNonEmptyTemplateParameterList = true; 1782 } 1783 1784 if (NeedEmptyTemplateHeader) { 1785 // If we're on the last of the types, and we need a 'template<>' header 1786 // here, then it's an explicit specialization. 1787 if (TypeIdx == NumTypes - 1) 1788 IsExplicitSpecialization = true; 1789 1790 if (ParamIdx < ParamLists.size()) { 1791 if (ParamLists[ParamIdx]->size() > 0) { 1792 // The header has template parameters when it shouldn't. Complain. 1793 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1794 diag::err_template_param_list_matches_nontemplate) 1795 << T 1796 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 1797 ParamLists[ParamIdx]->getRAngleLoc()) 1798 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1799 Invalid = true; 1800 return 0; 1801 } 1802 1803 // Consume this template header. 1804 ++ParamIdx; 1805 continue; 1806 } 1807 1808 if (!IsFriend) { 1809 // We don't have a template header, but we should. 1810 SourceLocation ExpectedTemplateLoc; 1811 if (!ParamLists.empty()) 1812 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 1813 else 1814 ExpectedTemplateLoc = DeclStartLoc; 1815 1816 Diag(DeclLoc, diag::err_template_spec_needs_header) 1817 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS) 1818 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 1819 } 1820 1821 continue; 1822 } 1823 1824 if (NeedNonemptyTemplateHeader) { 1825 // In friend declarations we can have template-ids which don't 1826 // depend on the corresponding template parameter lists. But 1827 // assume that empty parameter lists are supposed to match this 1828 // template-id. 1829 if (IsFriend && T->isDependentType()) { 1830 if (ParamIdx < ParamLists.size() && 1831 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 1832 ExpectedTemplateParams = 0; 1833 else 1834 continue; 1835 } 1836 1837 if (ParamIdx < ParamLists.size()) { 1838 // Check the template parameter list, if we can. 1839 if (ExpectedTemplateParams && 1840 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 1841 ExpectedTemplateParams, 1842 true, TPL_TemplateMatch)) 1843 Invalid = true; 1844 1845 if (!Invalid && 1846 CheckTemplateParameterList(ParamLists[ParamIdx], 0, 1847 TPC_ClassTemplateMember)) 1848 Invalid = true; 1849 1850 ++ParamIdx; 1851 continue; 1852 } 1853 1854 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 1855 << T 1856 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1857 Invalid = true; 1858 continue; 1859 } 1860 } 1861 1862 // If there were at least as many template-ids as there were template 1863 // parameter lists, then there are no template parameter lists remaining for 1864 // the declaration itself. 1865 if (ParamIdx >= ParamLists.size()) 1866 return 0; 1867 1868 // If there were too many template parameter lists, complain about that now. 1869 if (ParamIdx < ParamLists.size() - 1) { 1870 bool HasAnyExplicitSpecHeader = false; 1871 bool AllExplicitSpecHeaders = true; 1872 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) { 1873 if (ParamLists[I]->size() == 0) 1874 HasAnyExplicitSpecHeader = true; 1875 else 1876 AllExplicitSpecHeaders = false; 1877 } 1878 1879 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1880 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers 1881 : diag::err_template_spec_extra_headers) 1882 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 1883 ParamLists[ParamLists.size() - 2]->getRAngleLoc()); 1884 1885 // If there was a specialization somewhere, such that 'template<>' is 1886 // not required, and there were any 'template<>' headers, note where the 1887 // specialization occurred. 1888 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader) 1889 Diag(ExplicitSpecLoc, 1890 diag::note_explicit_template_spec_does_not_need_header) 1891 << NestedTypes.back(); 1892 1893 // We have a template parameter list with no corresponding scope, which 1894 // means that the resulting template declaration can't be instantiated 1895 // properly (we'll end up with dependent nodes when we shouldn't). 1896 if (!AllExplicitSpecHeaders) 1897 Invalid = true; 1898 } 1899 1900 // C++ [temp.expl.spec]p16: 1901 // In an explicit specialization declaration for a member of a class 1902 // template or a member template that ap- pears in namespace scope, the 1903 // member template and some of its enclosing class templates may remain 1904 // unspecialized, except that the declaration shall not explicitly 1905 // specialize a class member template if its en- closing class templates 1906 // are not explicitly specialized as well. 1907 if (ParamLists.back()->size() == 0 && SawNonEmptyTemplateParameterList) { 1908 Diag(DeclLoc, diag::err_specialize_member_of_template) 1909 << ParamLists[ParamIdx]->getSourceRange(); 1910 Invalid = true; 1911 IsExplicitSpecialization = false; 1912 return 0; 1913 } 1914 1915 // Return the last template parameter list, which corresponds to the 1916 // entity being declared. 1917 return ParamLists.back(); 1918} 1919 1920void Sema::NoteAllFoundTemplates(TemplateName Name) { 1921 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 1922 Diag(Template->getLocation(), diag::note_template_declared_here) 1923 << (isa<FunctionTemplateDecl>(Template) 1924 ? 0 1925 : isa<ClassTemplateDecl>(Template) 1926 ? 1 1927 : isa<VarTemplateDecl>(Template) 1928 ? 2 1929 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4) 1930 << Template->getDeclName(); 1931 return; 1932 } 1933 1934 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 1935 for (OverloadedTemplateStorage::iterator I = OST->begin(), 1936 IEnd = OST->end(); 1937 I != IEnd; ++I) 1938 Diag((*I)->getLocation(), diag::note_template_declared_here) 1939 << 0 << (*I)->getDeclName(); 1940 1941 return; 1942 } 1943} 1944 1945QualType Sema::CheckTemplateIdType(TemplateName Name, 1946 SourceLocation TemplateLoc, 1947 TemplateArgumentListInfo &TemplateArgs) { 1948 DependentTemplateName *DTN 1949 = Name.getUnderlying().getAsDependentTemplateName(); 1950 if (DTN && DTN->isIdentifier()) 1951 // When building a template-id where the template-name is dependent, 1952 // assume the template is a type template. Either our assumption is 1953 // correct, or the code is ill-formed and will be diagnosed when the 1954 // dependent name is substituted. 1955 return Context.getDependentTemplateSpecializationType(ETK_None, 1956 DTN->getQualifier(), 1957 DTN->getIdentifier(), 1958 TemplateArgs); 1959 1960 TemplateDecl *Template = Name.getAsTemplateDecl(); 1961 if (!Template || isa<FunctionTemplateDecl>(Template)) { 1962 // We might have a substituted template template parameter pack. If so, 1963 // build a template specialization type for it. 1964 if (Name.getAsSubstTemplateTemplateParmPack()) 1965 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1966 1967 Diag(TemplateLoc, diag::err_template_id_not_a_type) 1968 << Name; 1969 NoteAllFoundTemplates(Name); 1970 return QualType(); 1971 } 1972 1973 // Check that the template argument list is well-formed for this 1974 // template. 1975 SmallVector<TemplateArgument, 4> Converted; 1976 bool ExpansionIntoFixedList = false; 1977 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1978 false, Converted, &ExpansionIntoFixedList)) 1979 return QualType(); 1980 1981 QualType CanonType; 1982 1983 bool InstantiationDependent = false; 1984 TypeAliasTemplateDecl *AliasTemplate = 0; 1985 if (!ExpansionIntoFixedList && 1986 (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) { 1987 // Find the canonical type for this type alias template specialization. 1988 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 1989 if (Pattern->isInvalidDecl()) 1990 return QualType(); 1991 1992 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 1993 Converted.data(), Converted.size()); 1994 1995 // Only substitute for the innermost template argument list. 1996 MultiLevelTemplateArgumentList TemplateArgLists; 1997 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 1998 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth(); 1999 for (unsigned I = 0; I < Depth; ++I) 2000 TemplateArgLists.addOuterTemplateArguments(None); 2001 2002 LocalInstantiationScope Scope(*this); 2003 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 2004 if (Inst) 2005 return QualType(); 2006 2007 CanonType = SubstType(Pattern->getUnderlyingType(), 2008 TemplateArgLists, AliasTemplate->getLocation(), 2009 AliasTemplate->getDeclName()); 2010 if (CanonType.isNull()) 2011 return QualType(); 2012 } else if (Name.isDependent() || 2013 TemplateSpecializationType::anyDependentTemplateArguments( 2014 TemplateArgs, InstantiationDependent)) { 2015 // This class template specialization is a dependent 2016 // type. Therefore, its canonical type is another class template 2017 // specialization type that contains all of the converted 2018 // arguments in canonical form. This ensures that, e.g., A<T> and 2019 // A<T, T> have identical types when A is declared as: 2020 // 2021 // template<typename T, typename U = T> struct A; 2022 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 2023 CanonType = Context.getTemplateSpecializationType(CanonName, 2024 Converted.data(), 2025 Converted.size()); 2026 2027 // FIXME: CanonType is not actually the canonical type, and unfortunately 2028 // it is a TemplateSpecializationType that we will never use again. 2029 // In the future, we need to teach getTemplateSpecializationType to only 2030 // build the canonical type and return that to us. 2031 CanonType = Context.getCanonicalType(CanonType); 2032 2033 // This might work out to be a current instantiation, in which 2034 // case the canonical type needs to be the InjectedClassNameType. 2035 // 2036 // TODO: in theory this could be a simple hashtable lookup; most 2037 // changes to CurContext don't change the set of current 2038 // instantiations. 2039 if (isa<ClassTemplateDecl>(Template)) { 2040 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 2041 // If we get out to a namespace, we're done. 2042 if (Ctx->isFileContext()) break; 2043 2044 // If this isn't a record, keep looking. 2045 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 2046 if (!Record) continue; 2047 2048 // Look for one of the two cases with InjectedClassNameTypes 2049 // and check whether it's the same template. 2050 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 2051 !Record->getDescribedClassTemplate()) 2052 continue; 2053 2054 // Fetch the injected class name type and check whether its 2055 // injected type is equal to the type we just built. 2056 QualType ICNT = Context.getTypeDeclType(Record); 2057 QualType Injected = cast<InjectedClassNameType>(ICNT) 2058 ->getInjectedSpecializationType(); 2059 2060 if (CanonType != Injected->getCanonicalTypeInternal()) 2061 continue; 2062 2063 // If so, the canonical type of this TST is the injected 2064 // class name type of the record we just found. 2065 assert(ICNT.isCanonical()); 2066 CanonType = ICNT; 2067 break; 2068 } 2069 } 2070 } else if (ClassTemplateDecl *ClassTemplate 2071 = dyn_cast<ClassTemplateDecl>(Template)) { 2072 // Find the class template specialization declaration that 2073 // corresponds to these arguments. 2074 void *InsertPos = 0; 2075 ClassTemplateSpecializationDecl *Decl 2076 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(), 2077 InsertPos); 2078 if (!Decl) { 2079 // This is the first time we have referenced this class template 2080 // specialization. Create the canonical declaration and add it to 2081 // the set of specializations. 2082 Decl = ClassTemplateSpecializationDecl::Create(Context, 2083 ClassTemplate->getTemplatedDecl()->getTagKind(), 2084 ClassTemplate->getDeclContext(), 2085 ClassTemplate->getTemplatedDecl()->getLocStart(), 2086 ClassTemplate->getLocation(), 2087 ClassTemplate, 2088 Converted.data(), 2089 Converted.size(), 0); 2090 ClassTemplate->AddSpecialization(Decl, InsertPos); 2091 if (ClassTemplate->isOutOfLine()) 2092 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext()); 2093 } 2094 2095 CanonType = Context.getTypeDeclType(Decl); 2096 assert(isa<RecordType>(CanonType) && 2097 "type of non-dependent specialization is not a RecordType"); 2098 } 2099 2100 // Build the fully-sugared type for this class template 2101 // specialization, which refers back to the class template 2102 // specialization we created or found. 2103 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 2104} 2105 2106TypeResult 2107Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc, 2108 TemplateTy TemplateD, SourceLocation TemplateLoc, 2109 SourceLocation LAngleLoc, 2110 ASTTemplateArgsPtr TemplateArgsIn, 2111 SourceLocation RAngleLoc, 2112 bool IsCtorOrDtorName) { 2113 if (SS.isInvalid()) 2114 return true; 2115 2116 TemplateName Template = TemplateD.get(); 2117 2118 // Translate the parser's template argument list in our AST format. 2119 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2120 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2121 2122 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2123 QualType T 2124 = Context.getDependentTemplateSpecializationType(ETK_None, 2125 DTN->getQualifier(), 2126 DTN->getIdentifier(), 2127 TemplateArgs); 2128 // Build type-source information. 2129 TypeLocBuilder TLB; 2130 DependentTemplateSpecializationTypeLoc SpecTL 2131 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2132 SpecTL.setElaboratedKeywordLoc(SourceLocation()); 2133 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2134 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2135 SpecTL.setTemplateNameLoc(TemplateLoc); 2136 SpecTL.setLAngleLoc(LAngleLoc); 2137 SpecTL.setRAngleLoc(RAngleLoc); 2138 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2139 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2140 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2141 } 2142 2143 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2144 2145 if (Result.isNull()) 2146 return true; 2147 2148 // Build type-source information. 2149 TypeLocBuilder TLB; 2150 TemplateSpecializationTypeLoc SpecTL 2151 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2152 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2153 SpecTL.setTemplateNameLoc(TemplateLoc); 2154 SpecTL.setLAngleLoc(LAngleLoc); 2155 SpecTL.setRAngleLoc(RAngleLoc); 2156 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2157 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2158 2159 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a 2160 // constructor or destructor name (in such a case, the scope specifier 2161 // will be attached to the enclosing Decl or Expr node). 2162 if (SS.isNotEmpty() && !IsCtorOrDtorName) { 2163 // Create an elaborated-type-specifier containing the nested-name-specifier. 2164 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); 2165 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2166 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 2167 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2168 } 2169 2170 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2171} 2172 2173TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 2174 TypeSpecifierType TagSpec, 2175 SourceLocation TagLoc, 2176 CXXScopeSpec &SS, 2177 SourceLocation TemplateKWLoc, 2178 TemplateTy TemplateD, 2179 SourceLocation TemplateLoc, 2180 SourceLocation LAngleLoc, 2181 ASTTemplateArgsPtr TemplateArgsIn, 2182 SourceLocation RAngleLoc) { 2183 TemplateName Template = TemplateD.get(); 2184 2185 // Translate the parser's template argument list in our AST format. 2186 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2187 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2188 2189 // Determine the tag kind 2190 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 2191 ElaboratedTypeKeyword Keyword 2192 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 2193 2194 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2195 QualType T = Context.getDependentTemplateSpecializationType(Keyword, 2196 DTN->getQualifier(), 2197 DTN->getIdentifier(), 2198 TemplateArgs); 2199 2200 // Build type-source information. 2201 TypeLocBuilder TLB; 2202 DependentTemplateSpecializationTypeLoc SpecTL 2203 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2204 SpecTL.setElaboratedKeywordLoc(TagLoc); 2205 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2206 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2207 SpecTL.setTemplateNameLoc(TemplateLoc); 2208 SpecTL.setLAngleLoc(LAngleLoc); 2209 SpecTL.setRAngleLoc(RAngleLoc); 2210 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2211 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2212 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2213 } 2214 2215 if (TypeAliasTemplateDecl *TAT = 2216 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 2217 // C++0x [dcl.type.elab]p2: 2218 // If the identifier resolves to a typedef-name or the simple-template-id 2219 // resolves to an alias template specialization, the 2220 // elaborated-type-specifier is ill-formed. 2221 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4; 2222 Diag(TAT->getLocation(), diag::note_declared_at); 2223 } 2224 2225 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2226 if (Result.isNull()) 2227 return TypeResult(true); 2228 2229 // Check the tag kind 2230 if (const RecordType *RT = Result->getAs<RecordType>()) { 2231 RecordDecl *D = RT->getDecl(); 2232 2233 IdentifierInfo *Id = D->getIdentifier(); 2234 assert(Id && "templated class must have an identifier"); 2235 2236 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, 2237 TagLoc, *Id)) { 2238 Diag(TagLoc, diag::err_use_with_wrong_tag) 2239 << Result 2240 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 2241 Diag(D->getLocation(), diag::note_previous_use); 2242 } 2243 } 2244 2245 // Provide source-location information for the template specialization. 2246 TypeLocBuilder TLB; 2247 TemplateSpecializationTypeLoc SpecTL 2248 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2249 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2250 SpecTL.setTemplateNameLoc(TemplateLoc); 2251 SpecTL.setLAngleLoc(LAngleLoc); 2252 SpecTL.setRAngleLoc(RAngleLoc); 2253 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2254 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2255 2256 // Construct an elaborated type containing the nested-name-specifier (if any) 2257 // and tag keyword. 2258 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 2259 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2260 ElabTL.setElaboratedKeywordLoc(TagLoc); 2261 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2262 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2263} 2264 2265static bool CheckTemplatePartialSpecializationArgs( 2266 Sema &S, TemplateParameterList *TemplateParams, 2267 SmallVectorImpl<TemplateArgument> &TemplateArgs); 2268 2269static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized, 2270 NamedDecl *PrevDecl, 2271 SourceLocation Loc, 2272 bool IsPartialSpecialization); 2273 2274static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D); 2275 2276DeclResult Sema::ActOnVarTemplateSpecialization( 2277 Scope *S, VarTemplateDecl *VarTemplate, Declarator &D, TypeSourceInfo *DI, 2278 SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams, 2279 VarDecl::StorageClass SC, bool IsPartialSpecialization) { 2280 assert(VarTemplate && "A variable template id without template?"); 2281 2282 // D must be variable template id. 2283 assert(D.getName().getKind() == UnqualifiedId::IK_TemplateId && 2284 "Variable template specialization is declared with a template it."); 2285 2286 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 2287 SourceLocation TemplateNameLoc = D.getIdentifierLoc(); 2288 SourceLocation LAngleLoc = TemplateId->LAngleLoc; 2289 SourceLocation RAngleLoc = TemplateId->RAngleLoc; 2290 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 2291 TemplateId->NumArgs); 2292 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2293 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 2294 TemplateName Name(VarTemplate); 2295 2296 // Check for unexpanded parameter packs in any of the template arguments. 2297 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 2298 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 2299 UPPC_PartialSpecialization)) 2300 return true; 2301 2302 // Check that the template argument list is well-formed for this 2303 // template. 2304 SmallVector<TemplateArgument, 4> Converted; 2305 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs, 2306 false, Converted)) 2307 return true; 2308 2309 // Check that the type of this variable template specialization 2310 // matches the expected type. 2311 TypeSourceInfo *ExpectedDI; 2312 { 2313 // Do substitution on the type of the declaration 2314 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack, 2315 Converted.data(), Converted.size()); 2316 InstantiatingTemplate Inst(*this, TemplateKWLoc, VarTemplate); 2317 if (Inst) 2318 return true; 2319 VarDecl *Templated = VarTemplate->getTemplatedDecl(); 2320 ExpectedDI = 2321 SubstType(Templated->getTypeSourceInfo(), 2322 MultiLevelTemplateArgumentList(TemplateArgList), 2323 Templated->getTypeSpecStartLoc(), Templated->getDeclName()); 2324 } 2325 if (!ExpectedDI) 2326 return true; 2327 2328 // Find the variable template (partial) specialization declaration that 2329 // corresponds to these arguments. 2330 if (IsPartialSpecialization) { 2331 if (CheckTemplatePartialSpecializationArgs( 2332 *this, VarTemplate->getTemplateParameters(), Converted)) 2333 return true; 2334 2335 bool InstantiationDependent; 2336 if (!Name.isDependent() && 2337 !TemplateSpecializationType::anyDependentTemplateArguments( 2338 TemplateArgs.getArgumentArray(), TemplateArgs.size(), 2339 InstantiationDependent)) { 2340 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 2341 << VarTemplate->getDeclName(); 2342 IsPartialSpecialization = false; 2343 } 2344 } 2345 2346 void *InsertPos = 0; 2347 VarTemplateSpecializationDecl *PrevDecl = 0; 2348 2349 if (IsPartialSpecialization) 2350 // FIXME: Template parameter list matters too 2351 PrevDecl = VarTemplate->findPartialSpecialization( 2352 Converted.data(), Converted.size(), InsertPos); 2353 else 2354 PrevDecl = VarTemplate->findSpecialization(Converted.data(), 2355 Converted.size(), InsertPos); 2356 2357 VarTemplateSpecializationDecl *Specialization = 0; 2358 2359 // Check whether we can declare a variable template specialization in 2360 // the current scope. 2361 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl, 2362 TemplateNameLoc, 2363 IsPartialSpecialization)) 2364 return true; 2365 2366 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) { 2367 // Since the only prior variable template specialization with these 2368 // arguments was referenced but not declared, reuse that 2369 // declaration node as our own, updating its source location and 2370 // the list of outer template parameters to reflect our new declaration. 2371 Specialization = PrevDecl; 2372 Specialization->setLocation(TemplateNameLoc); 2373 PrevDecl = 0; 2374 } else if (IsPartialSpecialization) { 2375 // Create a new class template partial specialization declaration node. 2376 VarTemplatePartialSpecializationDecl *PrevPartial = 2377 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl); 2378 VarTemplatePartialSpecializationDecl *Partial = 2379 VarTemplatePartialSpecializationDecl::Create( 2380 Context, VarTemplate->getDeclContext(), TemplateKWLoc, 2381 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC, 2382 Converted.data(), Converted.size(), TemplateArgs); 2383 2384 if (!PrevPartial) 2385 VarTemplate->AddPartialSpecialization(Partial, InsertPos); 2386 Specialization = Partial; 2387 2388 // If we are providing an explicit specialization of a member variable 2389 // template specialization, make a note of that. 2390 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 2391 PrevPartial->setMemberSpecialization(); 2392 2393 // Check that all of the template parameters of the variable template 2394 // partial specialization are deducible from the template 2395 // arguments. If not, this variable template partial specialization 2396 // will never be used. 2397 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 2398 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 2399 TemplateParams->getDepth(), DeducibleParams); 2400 2401 if (!DeducibleParams.all()) { 2402 unsigned NumNonDeducible = 2403 DeducibleParams.size() - DeducibleParams.count(); 2404 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 2405 << (NumNonDeducible > 1) << SourceRange(TemplateNameLoc, RAngleLoc); 2406 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 2407 if (!DeducibleParams[I]) { 2408 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 2409 if (Param->getDeclName()) 2410 Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter) 2411 << Param->getDeclName(); 2412 else 2413 Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter) 2414 << "<anonymous>"; 2415 } 2416 } 2417 } 2418 } else { 2419 // Create a new class template specialization declaration node for 2420 // this explicit specialization or friend declaration. 2421 Specialization = VarTemplateSpecializationDecl::Create( 2422 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc, 2423 VarTemplate, DI->getType(), DI, SC, Converted.data(), Converted.size()); 2424 Specialization->setTemplateArgsInfo(TemplateArgs); 2425 2426 if (!PrevDecl) 2427 VarTemplate->AddSpecialization(Specialization, InsertPos); 2428 } 2429 2430 // C++ [temp.expl.spec]p6: 2431 // If a template, a member template or the member of a class template is 2432 // explicitly specialized then that specialization shall be declared 2433 // before the first use of that specialization that would cause an implicit 2434 // instantiation to take place, in every translation unit in which such a 2435 // use occurs; no diagnostic is required. 2436 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 2437 bool Okay = false; 2438 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 2439 // Is there any previous explicit specialization declaration? 2440 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 2441 Okay = true; 2442 break; 2443 } 2444 } 2445 2446 if (!Okay) { 2447 SourceRange Range(TemplateNameLoc, RAngleLoc); 2448 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 2449 << Name << Range; 2450 2451 Diag(PrevDecl->getPointOfInstantiation(), 2452 diag::note_instantiation_required_here) 2453 << (PrevDecl->getTemplateSpecializationKind() != 2454 TSK_ImplicitInstantiation); 2455 return true; 2456 } 2457 } 2458 2459 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 2460 Specialization->setLexicalDeclContext(CurContext); 2461 2462 // Add the specialization into its lexical context, so that it can 2463 // be seen when iterating through the list of declarations in that 2464 // context. However, specializations are not found by name lookup. 2465 CurContext->addDecl(Specialization); 2466 2467 // Note that this is an explicit specialization. 2468 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 2469 2470 if (PrevDecl) { 2471 // Check that this isn't a redefinition of this specialization, 2472 // merging with previous declarations. 2473 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName, 2474 ForRedeclaration); 2475 PrevSpec.addDecl(PrevDecl); 2476 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec)); 2477 } else if (Specialization->isStaticDataMember() && 2478 Specialization->isOutOfLine()) { 2479 Specialization->setAccess(VarTemplate->getAccess()); 2480 } 2481 2482 // Link instantiations of static data members back to the template from 2483 // which they were instantiated. 2484 if (Specialization->isStaticDataMember()) 2485 Specialization->setInstantiationOfStaticDataMember( 2486 VarTemplate->getTemplatedDecl(), 2487 Specialization->getSpecializationKind()); 2488 2489 return Specialization; 2490} 2491 2492namespace { 2493/// \brief A partial specialization whose template arguments have matched 2494/// a given template-id. 2495struct PartialSpecMatchResult { 2496 VarTemplatePartialSpecializationDecl *Partial; 2497 TemplateArgumentList *Args; 2498}; 2499} 2500 2501DeclResult 2502Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc, 2503 SourceLocation TemplateNameLoc, 2504 const TemplateArgumentListInfo &TemplateArgs) { 2505 assert(Template && "A variable template id without template?"); 2506 2507 // Check that the template argument list is well-formed for this template. 2508 SmallVector<TemplateArgument, 4> Converted; 2509 bool ExpansionIntoFixedList = false; 2510 if (CheckTemplateArgumentList( 2511 Template, TemplateNameLoc, 2512 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false, 2513 Converted, &ExpansionIntoFixedList)) 2514 return true; 2515 2516 // Find the variable template specialization declaration that 2517 // corresponds to these arguments. 2518 void *InsertPos = 0; 2519 if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization( 2520 Converted.data(), Converted.size(), InsertPos)) 2521 // If we already have a variable template specialization, return it. 2522 return Spec; 2523 2524 // This is the first time we have referenced this variable template 2525 // specialization. Create the canonical declaration and add it to 2526 // the set of specializations, based on the closest partial specialization 2527 // that it represents. That is, 2528 VarDecl *InstantiationPattern = Template->getTemplatedDecl(); 2529 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack, 2530 Converted.data(), Converted.size()); 2531 TemplateArgumentList *InstantiationArgs = &TemplateArgList; 2532 bool AmbiguousPartialSpec = false; 2533 typedef PartialSpecMatchResult MatchResult; 2534 SmallVector<MatchResult, 4> Matched; 2535 SourceLocation PointOfInstantiation = TemplateNameLoc; 2536 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation); 2537 2538 // 1. Attempt to find the closest partial specialization that this 2539 // specializes, if any. 2540 // If any of the template arguments is dependent, then this is probably 2541 // a placeholder for an incomplete declarative context; which must be 2542 // complete by instantiation time. Thus, do not search through the partial 2543 // specializations yet. 2544 // TODO: Unify with InstantiateClassTemplateSpecialization()? 2545 // Perhaps better after unification of DeduceTemplateArguments() and 2546 // getMoreSpecializedPartialSpecialization(). 2547 bool InstantiationDependent = false; 2548 if (!TemplateSpecializationType::anyDependentTemplateArguments( 2549 TemplateArgs, InstantiationDependent)) { 2550 2551 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; 2552 Template->getPartialSpecializations(PartialSpecs); 2553 2554 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) { 2555 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I]; 2556 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 2557 2558 if (TemplateDeductionResult Result = 2559 DeduceTemplateArguments(Partial, TemplateArgList, Info)) { 2560 // Store the failed-deduction information for use in diagnostics, later. 2561 // TODO: Actually use the failed-deduction info? 2562 FailedCandidates.addCandidate() 2563 .set(Partial, MakeDeductionFailureInfo(Context, Result, Info)); 2564 (void)Result; 2565 } else { 2566 Matched.push_back(PartialSpecMatchResult()); 2567 Matched.back().Partial = Partial; 2568 Matched.back().Args = Info.take(); 2569 } 2570 } 2571 2572 // If we're dealing with a member template where the template parameters 2573 // have been instantiated, this provides the original template parameters 2574 // from which the member template's parameters were instantiated. 2575 SmallVector<const NamedDecl *, 4> InstantiatedTemplateParameters; 2576 2577 if (Matched.size() >= 1) { 2578 SmallVector<MatchResult, 4>::iterator Best = Matched.begin(); 2579 if (Matched.size() == 1) { 2580 // -- If exactly one matching specialization is found, the 2581 // instantiation is generated from that specialization. 2582 // We don't need to do anything for this. 2583 } else { 2584 // -- If more than one matching specialization is found, the 2585 // partial order rules (14.5.4.2) are used to determine 2586 // whether one of the specializations is more specialized 2587 // than the others. If none of the specializations is more 2588 // specialized than all of the other matching 2589 // specializations, then the use of the variable template is 2590 // ambiguous and the program is ill-formed. 2591 for (SmallVector<MatchResult, 4>::iterator P = Best + 1, 2592 PEnd = Matched.end(); 2593 P != PEnd; ++P) { 2594 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial, 2595 PointOfInstantiation) == 2596 P->Partial) 2597 Best = P; 2598 } 2599 2600 // Determine if the best partial specialization is more specialized than 2601 // the others. 2602 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(), 2603 PEnd = Matched.end(); 2604 P != PEnd; ++P) { 2605 if (P != Best && getMoreSpecializedPartialSpecialization( 2606 P->Partial, Best->Partial, 2607 PointOfInstantiation) != Best->Partial) { 2608 AmbiguousPartialSpec = true; 2609 break; 2610 } 2611 } 2612 } 2613 2614 // Instantiate using the best variable template partial specialization. 2615 InstantiationPattern = Best->Partial; 2616 InstantiationArgs = Best->Args; 2617 } else { 2618 // -- If no match is found, the instantiation is generated 2619 // from the primary template. 2620 // InstantiationPattern = Template->getTemplatedDecl(); 2621 } 2622 } 2623 2624 // 2. Create the canonical declaration. 2625 // Note that we do not instantiate the variable just yet, since 2626 // instantiation is handled in DoMarkVarDeclReferenced(). 2627 // FIXME: LateAttrs et al.? 2628 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation( 2629 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs, 2630 Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/); 2631 if (!Decl) 2632 return true; 2633 2634 if (AmbiguousPartialSpec) { 2635 // Partial ordering did not produce a clear winner. Complain. 2636 Decl->setInvalidDecl(); 2637 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous) 2638 << Decl; 2639 2640 // Print the matching partial specializations. 2641 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(), 2642 PEnd = Matched.end(); 2643 P != PEnd; ++P) 2644 Diag(P->Partial->getLocation(), diag::note_partial_spec_match) 2645 << getTemplateArgumentBindingsText( 2646 P->Partial->getTemplateParameters(), *P->Args); 2647 return true; 2648 } 2649 2650 if (VarTemplatePartialSpecializationDecl *D = 2651 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern)) 2652 Decl->setInstantiationOf(D, InstantiationArgs); 2653 2654 assert(Decl && "No variable template specialization?"); 2655 return Decl; 2656} 2657 2658ExprResult 2659Sema::CheckVarTemplateId(const CXXScopeSpec &SS, 2660 const DeclarationNameInfo &NameInfo, 2661 VarTemplateDecl *Template, SourceLocation TemplateLoc, 2662 const TemplateArgumentListInfo *TemplateArgs) { 2663 2664 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(), 2665 *TemplateArgs); 2666 if (Decl.isInvalid()) 2667 return ExprError(); 2668 2669 VarDecl *Var = cast<VarDecl>(Decl.get()); 2670 if (!Var->getTemplateSpecializationKind()) 2671 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, 2672 NameInfo.getLoc()); 2673 2674 // Build an ordinary singleton decl ref. 2675 return BuildDeclarationNameExpr(SS, NameInfo, Var, 2676 /*FoundD=*/0, TemplateArgs); 2677} 2678 2679ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 2680 SourceLocation TemplateKWLoc, 2681 LookupResult &R, 2682 bool RequiresADL, 2683 const TemplateArgumentListInfo *TemplateArgs) { 2684 // FIXME: Can we do any checking at this point? I guess we could check the 2685 // template arguments that we have against the template name, if the template 2686 // name refers to a single template. That's not a terribly common case, 2687 // though. 2688 // foo<int> could identify a single function unambiguously 2689 // This approach does NOT work, since f<int>(1); 2690 // gets resolved prior to resorting to overload resolution 2691 // i.e., template<class T> void f(double); 2692 // vs template<class T, class U> void f(U); 2693 2694 // These should be filtered out by our callers. 2695 assert(!R.empty() && "empty lookup results when building templateid"); 2696 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 2697 2698 // In C++1y, check variable template ids. 2699 if (R.getAsSingle<VarTemplateDecl>()) { 2700 return Owned(CheckVarTemplateId(SS, R.getLookupNameInfo(), 2701 R.getAsSingle<VarTemplateDecl>(), 2702 TemplateKWLoc, TemplateArgs)); 2703 } 2704 2705 // We don't want lookup warnings at this point. 2706 R.suppressDiagnostics(); 2707 2708 UnresolvedLookupExpr *ULE 2709 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 2710 SS.getWithLocInContext(Context), 2711 TemplateKWLoc, 2712 R.getLookupNameInfo(), 2713 RequiresADL, TemplateArgs, 2714 R.begin(), R.end()); 2715 2716 return Owned(ULE); 2717} 2718 2719// We actually only call this from template instantiation. 2720ExprResult 2721Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 2722 SourceLocation TemplateKWLoc, 2723 const DeclarationNameInfo &NameInfo, 2724 const TemplateArgumentListInfo *TemplateArgs) { 2725 2726 assert(TemplateArgs || TemplateKWLoc.isValid()); 2727 DeclContext *DC; 2728 if (!(DC = computeDeclContext(SS, false)) || 2729 DC->isDependentContext() || 2730 RequireCompleteDeclContext(SS, DC)) 2731 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 2732 2733 bool MemberOfUnknownSpecialization; 2734 LookupResult R(*this, NameInfo, LookupOrdinaryName); 2735 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 2736 MemberOfUnknownSpecialization); 2737 2738 if (R.isAmbiguous()) 2739 return ExprError(); 2740 2741 if (R.empty()) { 2742 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 2743 << NameInfo.getName() << SS.getRange(); 2744 return ExprError(); 2745 } 2746 2747 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 2748 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 2749 << (NestedNameSpecifier*) SS.getScopeRep() 2750 << NameInfo.getName() << SS.getRange(); 2751 Diag(Temp->getLocation(), diag::note_referenced_class_template); 2752 return ExprError(); 2753 } 2754 2755 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs); 2756} 2757 2758/// \brief Form a dependent template name. 2759/// 2760/// This action forms a dependent template name given the template 2761/// name and its (presumably dependent) scope specifier. For 2762/// example, given "MetaFun::template apply", the scope specifier \p 2763/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 2764/// of the "template" keyword, and "apply" is the \p Name. 2765TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 2766 CXXScopeSpec &SS, 2767 SourceLocation TemplateKWLoc, 2768 UnqualifiedId &Name, 2769 ParsedType ObjectType, 2770 bool EnteringContext, 2771 TemplateTy &Result) { 2772 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) 2773 Diag(TemplateKWLoc, 2774 getLangOpts().CPlusPlus11 ? 2775 diag::warn_cxx98_compat_template_outside_of_template : 2776 diag::ext_template_outside_of_template) 2777 << FixItHint::CreateRemoval(TemplateKWLoc); 2778 2779 DeclContext *LookupCtx = 0; 2780 if (SS.isSet()) 2781 LookupCtx = computeDeclContext(SS, EnteringContext); 2782 if (!LookupCtx && ObjectType) 2783 LookupCtx = computeDeclContext(ObjectType.get()); 2784 if (LookupCtx) { 2785 // C++0x [temp.names]p5: 2786 // If a name prefixed by the keyword template is not the name of 2787 // a template, the program is ill-formed. [Note: the keyword 2788 // template may not be applied to non-template members of class 2789 // templates. -end note ] [ Note: as is the case with the 2790 // typename prefix, the template prefix is allowed in cases 2791 // where it is not strictly necessary; i.e., when the 2792 // nested-name-specifier or the expression on the left of the -> 2793 // or . is not dependent on a template-parameter, or the use 2794 // does not appear in the scope of a template. -end note] 2795 // 2796 // Note: C++03 was more strict here, because it banned the use of 2797 // the "template" keyword prior to a template-name that was not a 2798 // dependent name. C++ DR468 relaxed this requirement (the 2799 // "template" keyword is now permitted). We follow the C++0x 2800 // rules, even in C++03 mode with a warning, retroactively applying the DR. 2801 bool MemberOfUnknownSpecialization; 2802 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name, 2803 ObjectType, EnteringContext, Result, 2804 MemberOfUnknownSpecialization); 2805 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 2806 isa<CXXRecordDecl>(LookupCtx) && 2807 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() || 2808 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) { 2809 // This is a dependent template. Handle it below. 2810 } else if (TNK == TNK_Non_template) { 2811 Diag(Name.getLocStart(), 2812 diag::err_template_kw_refers_to_non_template) 2813 << GetNameFromUnqualifiedId(Name).getName() 2814 << Name.getSourceRange() 2815 << TemplateKWLoc; 2816 return TNK_Non_template; 2817 } else { 2818 // We found something; return it. 2819 return TNK; 2820 } 2821 } 2822 2823 NestedNameSpecifier *Qualifier 2824 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 2825 2826 switch (Name.getKind()) { 2827 case UnqualifiedId::IK_Identifier: 2828 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2829 Name.Identifier)); 2830 return TNK_Dependent_template_name; 2831 2832 case UnqualifiedId::IK_OperatorFunctionId: 2833 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2834 Name.OperatorFunctionId.Operator)); 2835 return TNK_Dependent_template_name; 2836 2837 case UnqualifiedId::IK_LiteralOperatorId: 2838 llvm_unreachable( 2839 "We don't support these; Parse shouldn't have allowed propagation"); 2840 2841 default: 2842 break; 2843 } 2844 2845 Diag(Name.getLocStart(), 2846 diag::err_template_kw_refers_to_non_template) 2847 << GetNameFromUnqualifiedId(Name).getName() 2848 << Name.getSourceRange() 2849 << TemplateKWLoc; 2850 return TNK_Non_template; 2851} 2852 2853bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 2854 const TemplateArgumentLoc &AL, 2855 SmallVectorImpl<TemplateArgument> &Converted) { 2856 const TemplateArgument &Arg = AL.getArgument(); 2857 2858 // Check template type parameter. 2859 switch(Arg.getKind()) { 2860 case TemplateArgument::Type: 2861 // C++ [temp.arg.type]p1: 2862 // A template-argument for a template-parameter which is a 2863 // type shall be a type-id. 2864 break; 2865 case TemplateArgument::Template: { 2866 // We have a template type parameter but the template argument 2867 // is a template without any arguments. 2868 SourceRange SR = AL.getSourceRange(); 2869 TemplateName Name = Arg.getAsTemplate(); 2870 Diag(SR.getBegin(), diag::err_template_missing_args) 2871 << Name << SR; 2872 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 2873 Diag(Decl->getLocation(), diag::note_template_decl_here); 2874 2875 return true; 2876 } 2877 case TemplateArgument::Expression: { 2878 // We have a template type parameter but the template argument is an 2879 // expression; see if maybe it is missing the "typename" keyword. 2880 CXXScopeSpec SS; 2881 DeclarationNameInfo NameInfo; 2882 2883 if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) { 2884 SS.Adopt(ArgExpr->getQualifierLoc()); 2885 NameInfo = ArgExpr->getNameInfo(); 2886 } else if (DependentScopeDeclRefExpr *ArgExpr = 2887 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) { 2888 SS.Adopt(ArgExpr->getQualifierLoc()); 2889 NameInfo = ArgExpr->getNameInfo(); 2890 } else if (CXXDependentScopeMemberExpr *ArgExpr = 2891 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) { 2892 if (ArgExpr->isImplicitAccess()) { 2893 SS.Adopt(ArgExpr->getQualifierLoc()); 2894 NameInfo = ArgExpr->getMemberNameInfo(); 2895 } 2896 } 2897 2898 if (NameInfo.getName().isIdentifier()) { 2899 LookupResult Result(*this, NameInfo, LookupOrdinaryName); 2900 LookupParsedName(Result, CurScope, &SS); 2901 2902 if (Result.getAsSingle<TypeDecl>() || 2903 Result.getResultKind() == 2904 LookupResult::NotFoundInCurrentInstantiation) { 2905 // FIXME: Add a FixIt and fix up the template argument for recovery. 2906 SourceLocation Loc = AL.getSourceRange().getBegin(); 2907 Diag(Loc, diag::err_template_arg_must_be_type_suggest); 2908 Diag(Param->getLocation(), diag::note_template_param_here); 2909 return true; 2910 } 2911 } 2912 // fallthrough 2913 } 2914 default: { 2915 // We have a template type parameter but the template argument 2916 // is not a type. 2917 SourceRange SR = AL.getSourceRange(); 2918 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 2919 Diag(Param->getLocation(), diag::note_template_param_here); 2920 2921 return true; 2922 } 2923 } 2924 2925 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 2926 return true; 2927 2928 // Add the converted template type argument. 2929 QualType ArgType = Context.getCanonicalType(Arg.getAsType()); 2930 2931 // Objective-C ARC: 2932 // If an explicitly-specified template argument type is a lifetime type 2933 // with no lifetime qualifier, the __strong lifetime qualifier is inferred. 2934 if (getLangOpts().ObjCAutoRefCount && 2935 ArgType->isObjCLifetimeType() && 2936 !ArgType.getObjCLifetime()) { 2937 Qualifiers Qs; 2938 Qs.setObjCLifetime(Qualifiers::OCL_Strong); 2939 ArgType = Context.getQualifiedType(ArgType, Qs); 2940 } 2941 2942 Converted.push_back(TemplateArgument(ArgType)); 2943 return false; 2944} 2945 2946/// \brief Substitute template arguments into the default template argument for 2947/// the given template type parameter. 2948/// 2949/// \param SemaRef the semantic analysis object for which we are performing 2950/// the substitution. 2951/// 2952/// \param Template the template that we are synthesizing template arguments 2953/// for. 2954/// 2955/// \param TemplateLoc the location of the template name that started the 2956/// template-id we are checking. 2957/// 2958/// \param RAngleLoc the location of the right angle bracket ('>') that 2959/// terminates the template-id. 2960/// 2961/// \param Param the template template parameter whose default we are 2962/// substituting into. 2963/// 2964/// \param Converted the list of template arguments provided for template 2965/// parameters that precede \p Param in the template parameter list. 2966/// \returns the substituted template argument, or NULL if an error occurred. 2967static TypeSourceInfo * 2968SubstDefaultTemplateArgument(Sema &SemaRef, 2969 TemplateDecl *Template, 2970 SourceLocation TemplateLoc, 2971 SourceLocation RAngleLoc, 2972 TemplateTypeParmDecl *Param, 2973 SmallVectorImpl<TemplateArgument> &Converted) { 2974 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 2975 2976 // If the argument type is dependent, instantiate it now based 2977 // on the previously-computed template arguments. 2978 if (ArgType->getType()->isDependentType()) { 2979 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2980 Template, Converted, 2981 SourceRange(TemplateLoc, RAngleLoc)); 2982 if (Inst) 2983 return 0; 2984 2985 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2986 Converted.data(), Converted.size()); 2987 2988 // Only substitute for the innermost template argument list. 2989 MultiLevelTemplateArgumentList TemplateArgLists; 2990 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 2991 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 2992 TemplateArgLists.addOuterTemplateArguments(None); 2993 2994 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 2995 ArgType = 2996 SemaRef.SubstType(ArgType, TemplateArgLists, 2997 Param->getDefaultArgumentLoc(), Param->getDeclName()); 2998 } 2999 3000 return ArgType; 3001} 3002 3003/// \brief Substitute template arguments into the default template argument for 3004/// the given non-type template parameter. 3005/// 3006/// \param SemaRef the semantic analysis object for which we are performing 3007/// the substitution. 3008/// 3009/// \param Template the template that we are synthesizing template arguments 3010/// for. 3011/// 3012/// \param TemplateLoc the location of the template name that started the 3013/// template-id we are checking. 3014/// 3015/// \param RAngleLoc the location of the right angle bracket ('>') that 3016/// terminates the template-id. 3017/// 3018/// \param Param the non-type template parameter whose default we are 3019/// substituting into. 3020/// 3021/// \param Converted the list of template arguments provided for template 3022/// parameters that precede \p Param in the template parameter list. 3023/// 3024/// \returns the substituted template argument, or NULL if an error occurred. 3025static ExprResult 3026SubstDefaultTemplateArgument(Sema &SemaRef, 3027 TemplateDecl *Template, 3028 SourceLocation TemplateLoc, 3029 SourceLocation RAngleLoc, 3030 NonTypeTemplateParmDecl *Param, 3031 SmallVectorImpl<TemplateArgument> &Converted) { 3032 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 3033 Template, Converted, 3034 SourceRange(TemplateLoc, RAngleLoc)); 3035 if (Inst) 3036 return ExprError(); 3037 3038 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 3039 Converted.data(), Converted.size()); 3040 3041 // Only substitute for the innermost template argument list. 3042 MultiLevelTemplateArgumentList TemplateArgLists; 3043 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 3044 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 3045 TemplateArgLists.addOuterTemplateArguments(None); 3046 3047 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 3048 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated); 3049 return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists); 3050} 3051 3052/// \brief Substitute template arguments into the default template argument for 3053/// the given template template parameter. 3054/// 3055/// \param SemaRef the semantic analysis object for which we are performing 3056/// the substitution. 3057/// 3058/// \param Template the template that we are synthesizing template arguments 3059/// for. 3060/// 3061/// \param TemplateLoc the location of the template name that started the 3062/// template-id we are checking. 3063/// 3064/// \param RAngleLoc the location of the right angle bracket ('>') that 3065/// terminates the template-id. 3066/// 3067/// \param Param the template template parameter whose default we are 3068/// substituting into. 3069/// 3070/// \param Converted the list of template arguments provided for template 3071/// parameters that precede \p Param in the template parameter list. 3072/// 3073/// \param QualifierLoc Will be set to the nested-name-specifier (with 3074/// source-location information) that precedes the template name. 3075/// 3076/// \returns the substituted template argument, or NULL if an error occurred. 3077static TemplateName 3078SubstDefaultTemplateArgument(Sema &SemaRef, 3079 TemplateDecl *Template, 3080 SourceLocation TemplateLoc, 3081 SourceLocation RAngleLoc, 3082 TemplateTemplateParmDecl *Param, 3083 SmallVectorImpl<TemplateArgument> &Converted, 3084 NestedNameSpecifierLoc &QualifierLoc) { 3085 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Template, Converted, 3086 SourceRange(TemplateLoc, RAngleLoc)); 3087 if (Inst) 3088 return TemplateName(); 3089 3090 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 3091 Converted.data(), Converted.size()); 3092 3093 // Only substitute for the innermost template argument list. 3094 MultiLevelTemplateArgumentList TemplateArgLists; 3095 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 3096 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 3097 TemplateArgLists.addOuterTemplateArguments(None); 3098 3099 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 3100 // Substitute into the nested-name-specifier first, 3101 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 3102 if (QualifierLoc) { 3103 QualifierLoc = 3104 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists); 3105 if (!QualifierLoc) 3106 return TemplateName(); 3107 } 3108 3109 return SemaRef.SubstTemplateName( 3110 QualifierLoc, 3111 Param->getDefaultArgument().getArgument().getAsTemplate(), 3112 Param->getDefaultArgument().getTemplateNameLoc(), 3113 TemplateArgLists); 3114} 3115 3116/// \brief If the given template parameter has a default template 3117/// argument, substitute into that default template argument and 3118/// return the corresponding template argument. 3119TemplateArgumentLoc 3120Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 3121 SourceLocation TemplateLoc, 3122 SourceLocation RAngleLoc, 3123 Decl *Param, 3124 SmallVectorImpl<TemplateArgument> 3125 &Converted, 3126 bool &HasDefaultArg) { 3127 HasDefaultArg = false; 3128 3129 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 3130 if (!TypeParm->hasDefaultArgument()) 3131 return TemplateArgumentLoc(); 3132 3133 HasDefaultArg = true; 3134 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 3135 TemplateLoc, 3136 RAngleLoc, 3137 TypeParm, 3138 Converted); 3139 if (DI) 3140 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 3141 3142 return TemplateArgumentLoc(); 3143 } 3144 3145 if (NonTypeTemplateParmDecl *NonTypeParm 3146 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3147 if (!NonTypeParm->hasDefaultArgument()) 3148 return TemplateArgumentLoc(); 3149 3150 HasDefaultArg = true; 3151 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 3152 TemplateLoc, 3153 RAngleLoc, 3154 NonTypeParm, 3155 Converted); 3156 if (Arg.isInvalid()) 3157 return TemplateArgumentLoc(); 3158 3159 Expr *ArgE = Arg.takeAs<Expr>(); 3160 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 3161 } 3162 3163 TemplateTemplateParmDecl *TempTempParm 3164 = cast<TemplateTemplateParmDecl>(Param); 3165 if (!TempTempParm->hasDefaultArgument()) 3166 return TemplateArgumentLoc(); 3167 3168 HasDefaultArg = true; 3169 NestedNameSpecifierLoc QualifierLoc; 3170 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 3171 TemplateLoc, 3172 RAngleLoc, 3173 TempTempParm, 3174 Converted, 3175 QualifierLoc); 3176 if (TName.isNull()) 3177 return TemplateArgumentLoc(); 3178 3179 return TemplateArgumentLoc(TemplateArgument(TName), 3180 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 3181 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 3182} 3183 3184/// \brief Check that the given template argument corresponds to the given 3185/// template parameter. 3186/// 3187/// \param Param The template parameter against which the argument will be 3188/// checked. 3189/// 3190/// \param Arg The template argument. 3191/// 3192/// \param Template The template in which the template argument resides. 3193/// 3194/// \param TemplateLoc The location of the template name for the template 3195/// whose argument list we're matching. 3196/// 3197/// \param RAngleLoc The location of the right angle bracket ('>') that closes 3198/// the template argument list. 3199/// 3200/// \param ArgumentPackIndex The index into the argument pack where this 3201/// argument will be placed. Only valid if the parameter is a parameter pack. 3202/// 3203/// \param Converted The checked, converted argument will be added to the 3204/// end of this small vector. 3205/// 3206/// \param CTAK Describes how we arrived at this particular template argument: 3207/// explicitly written, deduced, etc. 3208/// 3209/// \returns true on error, false otherwise. 3210bool Sema::CheckTemplateArgument(NamedDecl *Param, 3211 const TemplateArgumentLoc &Arg, 3212 NamedDecl *Template, 3213 SourceLocation TemplateLoc, 3214 SourceLocation RAngleLoc, 3215 unsigned ArgumentPackIndex, 3216 SmallVectorImpl<TemplateArgument> &Converted, 3217 CheckTemplateArgumentKind CTAK) { 3218 // Check template type parameters. 3219 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 3220 return CheckTemplateTypeArgument(TTP, Arg, Converted); 3221 3222 // Check non-type template parameters. 3223 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3224 // Do substitution on the type of the non-type template parameter 3225 // with the template arguments we've seen thus far. But if the 3226 // template has a dependent context then we cannot substitute yet. 3227 QualType NTTPType = NTTP->getType(); 3228 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 3229 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 3230 3231 if (NTTPType->isDependentType() && 3232 !isa<TemplateTemplateParmDecl>(Template) && 3233 !Template->getDeclContext()->isDependentContext()) { 3234 // Do substitution on the type of the non-type template parameter. 3235 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 3236 NTTP, Converted, 3237 SourceRange(TemplateLoc, RAngleLoc)); 3238 if (Inst) 3239 return true; 3240 3241 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 3242 Converted.data(), Converted.size()); 3243 NTTPType = SubstType(NTTPType, 3244 MultiLevelTemplateArgumentList(TemplateArgs), 3245 NTTP->getLocation(), 3246 NTTP->getDeclName()); 3247 // If that worked, check the non-type template parameter type 3248 // for validity. 3249 if (!NTTPType.isNull()) 3250 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 3251 NTTP->getLocation()); 3252 if (NTTPType.isNull()) 3253 return true; 3254 } 3255 3256 switch (Arg.getArgument().getKind()) { 3257 case TemplateArgument::Null: 3258 llvm_unreachable("Should never see a NULL template argument here"); 3259 3260 case TemplateArgument::Expression: { 3261 TemplateArgument Result; 3262 ExprResult Res = 3263 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), 3264 Result, CTAK); 3265 if (Res.isInvalid()) 3266 return true; 3267 3268 Converted.push_back(Result); 3269 break; 3270 } 3271 3272 case TemplateArgument::Declaration: 3273 case TemplateArgument::Integral: 3274 case TemplateArgument::NullPtr: 3275 // We've already checked this template argument, so just copy 3276 // it to the list of converted arguments. 3277 Converted.push_back(Arg.getArgument()); 3278 break; 3279 3280 case TemplateArgument::Template: 3281 case TemplateArgument::TemplateExpansion: 3282 // We were given a template template argument. It may not be ill-formed; 3283 // see below. 3284 if (DependentTemplateName *DTN 3285 = Arg.getArgument().getAsTemplateOrTemplatePattern() 3286 .getAsDependentTemplateName()) { 3287 // We have a template argument such as \c T::template X, which we 3288 // parsed as a template template argument. However, since we now 3289 // know that we need a non-type template argument, convert this 3290 // template name into an expression. 3291 3292 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 3293 Arg.getTemplateNameLoc()); 3294 3295 CXXScopeSpec SS; 3296 SS.Adopt(Arg.getTemplateQualifierLoc()); 3297 // FIXME: the template-template arg was a DependentTemplateName, 3298 // so it was provided with a template keyword. However, its source 3299 // location is not stored in the template argument structure. 3300 SourceLocation TemplateKWLoc; 3301 ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context, 3302 SS.getWithLocInContext(Context), 3303 TemplateKWLoc, 3304 NameInfo, 0)); 3305 3306 // If we parsed the template argument as a pack expansion, create a 3307 // pack expansion expression. 3308 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 3309 E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc()); 3310 if (E.isInvalid()) 3311 return true; 3312 } 3313 3314 TemplateArgument Result; 3315 E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result); 3316 if (E.isInvalid()) 3317 return true; 3318 3319 Converted.push_back(Result); 3320 break; 3321 } 3322 3323 // We have a template argument that actually does refer to a class 3324 // template, alias template, or template template parameter, and 3325 // therefore cannot be a non-type template argument. 3326 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 3327 << Arg.getSourceRange(); 3328 3329 Diag(Param->getLocation(), diag::note_template_param_here); 3330 return true; 3331 3332 case TemplateArgument::Type: { 3333 // We have a non-type template parameter but the template 3334 // argument is a type. 3335 3336 // C++ [temp.arg]p2: 3337 // In a template-argument, an ambiguity between a type-id and 3338 // an expression is resolved to a type-id, regardless of the 3339 // form of the corresponding template-parameter. 3340 // 3341 // We warn specifically about this case, since it can be rather 3342 // confusing for users. 3343 QualType T = Arg.getArgument().getAsType(); 3344 SourceRange SR = Arg.getSourceRange(); 3345 if (T->isFunctionType()) 3346 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 3347 else 3348 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 3349 Diag(Param->getLocation(), diag::note_template_param_here); 3350 return true; 3351 } 3352 3353 case TemplateArgument::Pack: 3354 llvm_unreachable("Caller must expand template argument packs"); 3355 } 3356 3357 return false; 3358 } 3359 3360 3361 // Check template template parameters. 3362 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 3363 3364 // Substitute into the template parameter list of the template 3365 // template parameter, since previously-supplied template arguments 3366 // may appear within the template template parameter. 3367 { 3368 // Set up a template instantiation context. 3369 LocalInstantiationScope Scope(*this); 3370 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 3371 TempParm, Converted, 3372 SourceRange(TemplateLoc, RAngleLoc)); 3373 if (Inst) 3374 return true; 3375 3376 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 3377 Converted.data(), Converted.size()); 3378 TempParm = cast_or_null<TemplateTemplateParmDecl>( 3379 SubstDecl(TempParm, CurContext, 3380 MultiLevelTemplateArgumentList(TemplateArgs))); 3381 if (!TempParm) 3382 return true; 3383 } 3384 3385 switch (Arg.getArgument().getKind()) { 3386 case TemplateArgument::Null: 3387 llvm_unreachable("Should never see a NULL template argument here"); 3388 3389 case TemplateArgument::Template: 3390 case TemplateArgument::TemplateExpansion: 3391 if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex)) 3392 return true; 3393 3394 Converted.push_back(Arg.getArgument()); 3395 break; 3396 3397 case TemplateArgument::Expression: 3398 case TemplateArgument::Type: 3399 // We have a template template parameter but the template 3400 // argument does not refer to a template. 3401 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 3402 << getLangOpts().CPlusPlus11; 3403 return true; 3404 3405 case TemplateArgument::Declaration: 3406 llvm_unreachable("Declaration argument with template template parameter"); 3407 case TemplateArgument::Integral: 3408 llvm_unreachable("Integral argument with template template parameter"); 3409 case TemplateArgument::NullPtr: 3410 llvm_unreachable("Null pointer argument with template template parameter"); 3411 3412 case TemplateArgument::Pack: 3413 llvm_unreachable("Caller must expand template argument packs"); 3414 } 3415 3416 return false; 3417} 3418 3419/// \brief Diagnose an arity mismatch in the 3420static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template, 3421 SourceLocation TemplateLoc, 3422 TemplateArgumentListInfo &TemplateArgs) { 3423 TemplateParameterList *Params = Template->getTemplateParameters(); 3424 unsigned NumParams = Params->size(); 3425 unsigned NumArgs = TemplateArgs.size(); 3426 3427 SourceRange Range; 3428 if (NumArgs > NumParams) 3429 Range = SourceRange(TemplateArgs[NumParams].getLocation(), 3430 TemplateArgs.getRAngleLoc()); 3431 S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 3432 << (NumArgs > NumParams) 3433 << (isa<ClassTemplateDecl>(Template)? 0 : 3434 isa<FunctionTemplateDecl>(Template)? 1 : 3435 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 3436 << Template << Range; 3437 S.Diag(Template->getLocation(), diag::note_template_decl_here) 3438 << Params->getSourceRange(); 3439 return true; 3440} 3441 3442/// \brief Check whether the template parameter is a pack expansion, and if so, 3443/// determine the number of parameters produced by that expansion. For instance: 3444/// 3445/// \code 3446/// template<typename ...Ts> struct A { 3447/// template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B; 3448/// }; 3449/// \endcode 3450/// 3451/// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us 3452/// is not a pack expansion, so returns an empty Optional. 3453static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) { 3454 if (NonTypeTemplateParmDecl *NTTP 3455 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3456 if (NTTP->isExpandedParameterPack()) 3457 return NTTP->getNumExpansionTypes(); 3458 } 3459 3460 if (TemplateTemplateParmDecl *TTP 3461 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 3462 if (TTP->isExpandedParameterPack()) 3463 return TTP->getNumExpansionTemplateParameters(); 3464 } 3465 3466 return None; 3467} 3468 3469/// \brief Check that the given template argument list is well-formed 3470/// for specializing the given template. 3471bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 3472 SourceLocation TemplateLoc, 3473 TemplateArgumentListInfo &TemplateArgs, 3474 bool PartialTemplateArgs, 3475 SmallVectorImpl<TemplateArgument> &Converted, 3476 bool *ExpansionIntoFixedList) { 3477 if (ExpansionIntoFixedList) 3478 *ExpansionIntoFixedList = false; 3479 3480 TemplateParameterList *Params = Template->getTemplateParameters(); 3481 3482 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 3483 3484 // C++ [temp.arg]p1: 3485 // [...] The type and form of each template-argument specified in 3486 // a template-id shall match the type and form specified for the 3487 // corresponding parameter declared by the template in its 3488 // template-parameter-list. 3489 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 3490 SmallVector<TemplateArgument, 2> ArgumentPack; 3491 unsigned ArgIdx = 0, NumArgs = TemplateArgs.size(); 3492 LocalInstantiationScope InstScope(*this, true); 3493 for (TemplateParameterList::iterator Param = Params->begin(), 3494 ParamEnd = Params->end(); 3495 Param != ParamEnd; /* increment in loop */) { 3496 // If we have an expanded parameter pack, make sure we don't have too 3497 // many arguments. 3498 if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) { 3499 if (*Expansions == ArgumentPack.size()) { 3500 // We're done with this parameter pack. Pack up its arguments and add 3501 // them to the list. 3502 Converted.push_back( 3503 TemplateArgument::CreatePackCopy(Context, 3504 ArgumentPack.data(), 3505 ArgumentPack.size())); 3506 ArgumentPack.clear(); 3507 3508 // This argument is assigned to the next parameter. 3509 ++Param; 3510 continue; 3511 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) { 3512 // Not enough arguments for this parameter pack. 3513 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 3514 << false 3515 << (isa<ClassTemplateDecl>(Template)? 0 : 3516 isa<FunctionTemplateDecl>(Template)? 1 : 3517 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 3518 << Template; 3519 Diag(Template->getLocation(), diag::note_template_decl_here) 3520 << Params->getSourceRange(); 3521 return true; 3522 } 3523 } 3524 3525 if (ArgIdx < NumArgs) { 3526 // Check the template argument we were given. 3527 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 3528 TemplateLoc, RAngleLoc, 3529 ArgumentPack.size(), Converted)) 3530 return true; 3531 3532 // We're now done with this argument. 3533 ++ArgIdx; 3534 3535 if ((*Param)->isTemplateParameterPack()) { 3536 // The template parameter was a template parameter pack, so take the 3537 // deduced argument and place it on the argument pack. Note that we 3538 // stay on the same template parameter so that we can deduce more 3539 // arguments. 3540 ArgumentPack.push_back(Converted.pop_back_val()); 3541 } else { 3542 // Move to the next template parameter. 3543 ++Param; 3544 } 3545 3546 // If we just saw a pack expansion, then directly convert the remaining 3547 // arguments, because we don't know what parameters they'll match up 3548 // with. 3549 if (TemplateArgs[ArgIdx-1].getArgument().isPackExpansion()) { 3550 bool InFinalParameterPack = Param != ParamEnd && 3551 Param + 1 == ParamEnd && 3552 (*Param)->isTemplateParameterPack() && 3553 !getExpandedPackSize(*Param); 3554 3555 if (!InFinalParameterPack && !ArgumentPack.empty()) { 3556 // If we were part way through filling in an expanded parameter pack, 3557 // fall back to just producing individual arguments. 3558 Converted.insert(Converted.end(), 3559 ArgumentPack.begin(), ArgumentPack.end()); 3560 ArgumentPack.clear(); 3561 } 3562 3563 while (ArgIdx < NumArgs) { 3564 if (InFinalParameterPack) 3565 ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument()); 3566 else 3567 Converted.push_back(TemplateArgs[ArgIdx].getArgument()); 3568 ++ArgIdx; 3569 } 3570 3571 // Push the argument pack onto the list of converted arguments. 3572 if (InFinalParameterPack) { 3573 Converted.push_back( 3574 TemplateArgument::CreatePackCopy(Context, 3575 ArgumentPack.data(), 3576 ArgumentPack.size())); 3577 ArgumentPack.clear(); 3578 } else if (ExpansionIntoFixedList) { 3579 // We have expanded a pack into a fixed list. 3580 *ExpansionIntoFixedList = true; 3581 } 3582 3583 return false; 3584 } 3585 3586 continue; 3587 } 3588 3589 // If we're checking a partial template argument list, we're done. 3590 if (PartialTemplateArgs) { 3591 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty()) 3592 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 3593 ArgumentPack.data(), 3594 ArgumentPack.size())); 3595 3596 return false; 3597 } 3598 3599 // If we have a template parameter pack with no more corresponding 3600 // arguments, just break out now and we'll fill in the argument pack below. 3601 if ((*Param)->isTemplateParameterPack()) { 3602 assert(!getExpandedPackSize(*Param) && 3603 "Should have dealt with this already"); 3604 3605 // A non-expanded parameter pack before the end of the parameter list 3606 // only occurs for an ill-formed template parameter list, unless we've 3607 // got a partial argument list for a function template, so just bail out. 3608 if (Param + 1 != ParamEnd) 3609 return true; 3610 3611 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 3612 ArgumentPack.data(), 3613 ArgumentPack.size())); 3614 ArgumentPack.clear(); 3615 3616 ++Param; 3617 continue; 3618 } 3619 3620 // Check whether we have a default argument. 3621 TemplateArgumentLoc Arg; 3622 3623 // Retrieve the default template argument from the template 3624 // parameter. For each kind of template parameter, we substitute the 3625 // template arguments provided thus far and any "outer" template arguments 3626 // (when the template parameter was part of a nested template) into 3627 // the default argument. 3628 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 3629 if (!TTP->hasDefaultArgument()) 3630 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3631 TemplateArgs); 3632 3633 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 3634 Template, 3635 TemplateLoc, 3636 RAngleLoc, 3637 TTP, 3638 Converted); 3639 if (!ArgType) 3640 return true; 3641 3642 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 3643 ArgType); 3644 } else if (NonTypeTemplateParmDecl *NTTP 3645 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 3646 if (!NTTP->hasDefaultArgument()) 3647 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3648 TemplateArgs); 3649 3650 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 3651 TemplateLoc, 3652 RAngleLoc, 3653 NTTP, 3654 Converted); 3655 if (E.isInvalid()) 3656 return true; 3657 3658 Expr *Ex = E.takeAs<Expr>(); 3659 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 3660 } else { 3661 TemplateTemplateParmDecl *TempParm 3662 = cast<TemplateTemplateParmDecl>(*Param); 3663 3664 if (!TempParm->hasDefaultArgument()) 3665 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3666 TemplateArgs); 3667 3668 NestedNameSpecifierLoc QualifierLoc; 3669 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 3670 TemplateLoc, 3671 RAngleLoc, 3672 TempParm, 3673 Converted, 3674 QualifierLoc); 3675 if (Name.isNull()) 3676 return true; 3677 3678 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc, 3679 TempParm->getDefaultArgument().getTemplateNameLoc()); 3680 } 3681 3682 // Introduce an instantiation record that describes where we are using 3683 // the default template argument. 3684 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, 3685 *Param, Converted, 3686 SourceRange(TemplateLoc, RAngleLoc)); 3687 if (Instantiating) 3688 return true; 3689 3690 // Check the default template argument. 3691 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 3692 RAngleLoc, 0, Converted)) 3693 return true; 3694 3695 // Core issue 150 (assumed resolution): if this is a template template 3696 // parameter, keep track of the default template arguments from the 3697 // template definition. 3698 if (isTemplateTemplateParameter) 3699 TemplateArgs.addArgument(Arg); 3700 3701 // Move to the next template parameter and argument. 3702 ++Param; 3703 ++ArgIdx; 3704 } 3705 3706 // If we have any leftover arguments, then there were too many arguments. 3707 // Complain and fail. 3708 if (ArgIdx < NumArgs) 3709 return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs); 3710 3711 return false; 3712} 3713 3714namespace { 3715 class UnnamedLocalNoLinkageFinder 3716 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 3717 { 3718 Sema &S; 3719 SourceRange SR; 3720 3721 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 3722 3723 public: 3724 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 3725 3726 bool Visit(QualType T) { 3727 return inherited::Visit(T.getTypePtr()); 3728 } 3729 3730#define TYPE(Class, Parent) \ 3731 bool Visit##Class##Type(const Class##Type *); 3732#define ABSTRACT_TYPE(Class, Parent) \ 3733 bool Visit##Class##Type(const Class##Type *) { return false; } 3734#define NON_CANONICAL_TYPE(Class, Parent) \ 3735 bool Visit##Class##Type(const Class##Type *) { return false; } 3736#include "clang/AST/TypeNodes.def" 3737 3738 bool VisitTagDecl(const TagDecl *Tag); 3739 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 3740 }; 3741} 3742 3743bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 3744 return false; 3745} 3746 3747bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 3748 return Visit(T->getElementType()); 3749} 3750 3751bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 3752 return Visit(T->getPointeeType()); 3753} 3754 3755bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 3756 const BlockPointerType* T) { 3757 return Visit(T->getPointeeType()); 3758} 3759 3760bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 3761 const LValueReferenceType* T) { 3762 return Visit(T->getPointeeType()); 3763} 3764 3765bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 3766 const RValueReferenceType* T) { 3767 return Visit(T->getPointeeType()); 3768} 3769 3770bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 3771 const MemberPointerType* T) { 3772 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 3773} 3774 3775bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 3776 const ConstantArrayType* T) { 3777 return Visit(T->getElementType()); 3778} 3779 3780bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 3781 const IncompleteArrayType* T) { 3782 return Visit(T->getElementType()); 3783} 3784 3785bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 3786 const VariableArrayType* T) { 3787 return Visit(T->getElementType()); 3788} 3789 3790bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 3791 const DependentSizedArrayType* T) { 3792 return Visit(T->getElementType()); 3793} 3794 3795bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 3796 const DependentSizedExtVectorType* T) { 3797 return Visit(T->getElementType()); 3798} 3799 3800bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 3801 return Visit(T->getElementType()); 3802} 3803 3804bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 3805 return Visit(T->getElementType()); 3806} 3807 3808bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 3809 const FunctionProtoType* T) { 3810 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), 3811 AEnd = T->arg_type_end(); 3812 A != AEnd; ++A) { 3813 if (Visit(*A)) 3814 return true; 3815 } 3816 3817 return Visit(T->getResultType()); 3818} 3819 3820bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 3821 const FunctionNoProtoType* T) { 3822 return Visit(T->getResultType()); 3823} 3824 3825bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 3826 const UnresolvedUsingType*) { 3827 return false; 3828} 3829 3830bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 3831 return false; 3832} 3833 3834bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 3835 return Visit(T->getUnderlyingType()); 3836} 3837 3838bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 3839 return false; 3840} 3841 3842bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 3843 const UnaryTransformType*) { 3844 return false; 3845} 3846 3847bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 3848 return Visit(T->getDeducedType()); 3849} 3850 3851bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 3852 return VisitTagDecl(T->getDecl()); 3853} 3854 3855bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 3856 return VisitTagDecl(T->getDecl()); 3857} 3858 3859bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 3860 const TemplateTypeParmType*) { 3861 return false; 3862} 3863 3864bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 3865 const SubstTemplateTypeParmPackType *) { 3866 return false; 3867} 3868 3869bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 3870 const TemplateSpecializationType*) { 3871 return false; 3872} 3873 3874bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 3875 const InjectedClassNameType* T) { 3876 return VisitTagDecl(T->getDecl()); 3877} 3878 3879bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 3880 const DependentNameType* T) { 3881 return VisitNestedNameSpecifier(T->getQualifier()); 3882} 3883 3884bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 3885 const DependentTemplateSpecializationType* T) { 3886 return VisitNestedNameSpecifier(T->getQualifier()); 3887} 3888 3889bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 3890 const PackExpansionType* T) { 3891 return Visit(T->getPattern()); 3892} 3893 3894bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 3895 return false; 3896} 3897 3898bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 3899 const ObjCInterfaceType *) { 3900 return false; 3901} 3902 3903bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 3904 const ObjCObjectPointerType *) { 3905 return false; 3906} 3907 3908bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { 3909 return Visit(T->getValueType()); 3910} 3911 3912bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 3913 if (Tag->getDeclContext()->isFunctionOrMethod()) { 3914 S.Diag(SR.getBegin(), 3915 S.getLangOpts().CPlusPlus11 ? 3916 diag::warn_cxx98_compat_template_arg_local_type : 3917 diag::ext_template_arg_local_type) 3918 << S.Context.getTypeDeclType(Tag) << SR; 3919 return true; 3920 } 3921 3922 if (!Tag->hasNameForLinkage()) { 3923 S.Diag(SR.getBegin(), 3924 S.getLangOpts().CPlusPlus11 ? 3925 diag::warn_cxx98_compat_template_arg_unnamed_type : 3926 diag::ext_template_arg_unnamed_type) << SR; 3927 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 3928 return true; 3929 } 3930 3931 return false; 3932} 3933 3934bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 3935 NestedNameSpecifier *NNS) { 3936 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 3937 return true; 3938 3939 switch (NNS->getKind()) { 3940 case NestedNameSpecifier::Identifier: 3941 case NestedNameSpecifier::Namespace: 3942 case NestedNameSpecifier::NamespaceAlias: 3943 case NestedNameSpecifier::Global: 3944 return false; 3945 3946 case NestedNameSpecifier::TypeSpec: 3947 case NestedNameSpecifier::TypeSpecWithTemplate: 3948 return Visit(QualType(NNS->getAsType(), 0)); 3949 } 3950 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 3951} 3952 3953 3954/// \brief Check a template argument against its corresponding 3955/// template type parameter. 3956/// 3957/// This routine implements the semantics of C++ [temp.arg.type]. It 3958/// returns true if an error occurred, and false otherwise. 3959bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 3960 TypeSourceInfo *ArgInfo) { 3961 assert(ArgInfo && "invalid TypeSourceInfo"); 3962 QualType Arg = ArgInfo->getType(); 3963 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 3964 3965 if (Arg->isVariablyModifiedType()) { 3966 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 3967 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 3968 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 3969 } 3970 3971 // C++03 [temp.arg.type]p2: 3972 // A local type, a type with no linkage, an unnamed type or a type 3973 // compounded from any of these types shall not be used as a 3974 // template-argument for a template type-parameter. 3975 // 3976 // C++11 allows these, and even in C++03 we allow them as an extension with 3977 // a warning. 3978 if (LangOpts.CPlusPlus11 ? 3979 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type, 3980 SR.getBegin()) != DiagnosticsEngine::Ignored || 3981 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type, 3982 SR.getBegin()) != DiagnosticsEngine::Ignored : 3983 Arg->hasUnnamedOrLocalType()) { 3984 UnnamedLocalNoLinkageFinder Finder(*this, SR); 3985 (void)Finder.Visit(Context.getCanonicalType(Arg)); 3986 } 3987 3988 return false; 3989} 3990 3991enum NullPointerValueKind { 3992 NPV_NotNullPointer, 3993 NPV_NullPointer, 3994 NPV_Error 3995}; 3996 3997/// \brief Determine whether the given template argument is a null pointer 3998/// value of the appropriate type. 3999static NullPointerValueKind 4000isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param, 4001 QualType ParamType, Expr *Arg) { 4002 if (Arg->isValueDependent() || Arg->isTypeDependent()) 4003 return NPV_NotNullPointer; 4004 4005 if (!S.getLangOpts().CPlusPlus11) 4006 return NPV_NotNullPointer; 4007 4008 // Determine whether we have a constant expression. 4009 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg); 4010 if (ArgRV.isInvalid()) 4011 return NPV_Error; 4012 Arg = ArgRV.take(); 4013 4014 Expr::EvalResult EvalResult; 4015 SmallVector<PartialDiagnosticAt, 8> Notes; 4016 EvalResult.Diag = &Notes; 4017 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) || 4018 EvalResult.HasSideEffects) { 4019 SourceLocation DiagLoc = Arg->getExprLoc(); 4020 4021 // If our only note is the usual "invalid subexpression" note, just point 4022 // the caret at its location rather than producing an essentially 4023 // redundant note. 4024 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 4025 diag::note_invalid_subexpr_in_const_expr) { 4026 DiagLoc = Notes[0].first; 4027 Notes.clear(); 4028 } 4029 4030 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant) 4031 << Arg->getType() << Arg->getSourceRange(); 4032 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 4033 S.Diag(Notes[I].first, Notes[I].second); 4034 4035 S.Diag(Param->getLocation(), diag::note_template_param_here); 4036 return NPV_Error; 4037 } 4038 4039 // C++11 [temp.arg.nontype]p1: 4040 // - an address constant expression of type std::nullptr_t 4041 if (Arg->getType()->isNullPtrType()) 4042 return NPV_NullPointer; 4043 4044 // - a constant expression that evaluates to a null pointer value (4.10); or 4045 // - a constant expression that evaluates to a null member pointer value 4046 // (4.11); or 4047 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) || 4048 (EvalResult.Val.isMemberPointer() && 4049 !EvalResult.Val.getMemberPointerDecl())) { 4050 // If our expression has an appropriate type, we've succeeded. 4051 bool ObjCLifetimeConversion; 4052 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) || 4053 S.IsQualificationConversion(Arg->getType(), ParamType, false, 4054 ObjCLifetimeConversion)) 4055 return NPV_NullPointer; 4056 4057 // The types didn't match, but we know we got a null pointer; complain, 4058 // then recover as if the types were correct. 4059 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant) 4060 << Arg->getType() << ParamType << Arg->getSourceRange(); 4061 S.Diag(Param->getLocation(), diag::note_template_param_here); 4062 return NPV_NullPointer; 4063 } 4064 4065 // If we don't have a null pointer value, but we do have a NULL pointer 4066 // constant, suggest a cast to the appropriate type. 4067 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) { 4068 std::string Code = "static_cast<" + ParamType.getAsString() + ">("; 4069 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant) 4070 << ParamType 4071 << FixItHint::CreateInsertion(Arg->getLocStart(), Code) 4072 << FixItHint::CreateInsertion(S.PP.getLocForEndOfToken(Arg->getLocEnd()), 4073 ")"); 4074 S.Diag(Param->getLocation(), diag::note_template_param_here); 4075 return NPV_NullPointer; 4076 } 4077 4078 // FIXME: If we ever want to support general, address-constant expressions 4079 // as non-type template arguments, we should return the ExprResult here to 4080 // be interpreted by the caller. 4081 return NPV_NotNullPointer; 4082} 4083 4084/// \brief Checks whether the given template argument is compatible with its 4085/// template parameter. 4086static bool CheckTemplateArgumentIsCompatibleWithParameter( 4087 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn, 4088 Expr *Arg, QualType ArgType) { 4089 bool ObjCLifetimeConversion; 4090 if (ParamType->isPointerType() && 4091 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 4092 S.IsQualificationConversion(ArgType, ParamType, false, 4093 ObjCLifetimeConversion)) { 4094 // For pointer-to-object types, qualification conversions are 4095 // permitted. 4096 } else { 4097 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 4098 if (!ParamRef->getPointeeType()->isFunctionType()) { 4099 // C++ [temp.arg.nontype]p5b3: 4100 // For a non-type template-parameter of type reference to 4101 // object, no conversions apply. The type referred to by the 4102 // reference may be more cv-qualified than the (otherwise 4103 // identical) type of the template- argument. The 4104 // template-parameter is bound directly to the 4105 // template-argument, which shall be an lvalue. 4106 4107 // FIXME: Other qualifiers? 4108 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 4109 unsigned ArgQuals = ArgType.getCVRQualifiers(); 4110 4111 if ((ParamQuals | ArgQuals) != ParamQuals) { 4112 S.Diag(Arg->getLocStart(), 4113 diag::err_template_arg_ref_bind_ignores_quals) 4114 << ParamType << Arg->getType() << Arg->getSourceRange(); 4115 S.Diag(Param->getLocation(), diag::note_template_param_here); 4116 return true; 4117 } 4118 } 4119 } 4120 4121 // At this point, the template argument refers to an object or 4122 // function with external linkage. We now need to check whether the 4123 // argument and parameter types are compatible. 4124 if (!S.Context.hasSameUnqualifiedType(ArgType, 4125 ParamType.getNonReferenceType())) { 4126 // We can't perform this conversion or binding. 4127 if (ParamType->isReferenceType()) 4128 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 4129 << ParamType << ArgIn->getType() << Arg->getSourceRange(); 4130 else 4131 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 4132 << ArgIn->getType() << ParamType << Arg->getSourceRange(); 4133 S.Diag(Param->getLocation(), diag::note_template_param_here); 4134 return true; 4135 } 4136 } 4137 4138 return false; 4139} 4140 4141/// \brief Checks whether the given template argument is the address 4142/// of an object or function according to C++ [temp.arg.nontype]p1. 4143static bool 4144CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 4145 NonTypeTemplateParmDecl *Param, 4146 QualType ParamType, 4147 Expr *ArgIn, 4148 TemplateArgument &Converted) { 4149 bool Invalid = false; 4150 Expr *Arg = ArgIn; 4151 QualType ArgType = Arg->getType(); 4152 4153 // If our parameter has pointer type, check for a null template value. 4154 if (ParamType->isPointerType() || ParamType->isNullPtrType()) { 4155 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) { 4156 case NPV_NullPointer: 4157 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 4158 Converted = TemplateArgument(ParamType, /*isNullPtr*/true); 4159 return false; 4160 4161 case NPV_Error: 4162 return true; 4163 4164 case NPV_NotNullPointer: 4165 break; 4166 } 4167 } 4168 4169 bool AddressTaken = false; 4170 SourceLocation AddrOpLoc; 4171 if (S.getLangOpts().MicrosoftExt) { 4172 // Microsoft Visual C++ strips all casts, allows an arbitrary number of 4173 // dereference and address-of operators. 4174 Arg = Arg->IgnoreParenCasts(); 4175 4176 bool ExtWarnMSTemplateArg = false; 4177 UnaryOperatorKind FirstOpKind; 4178 SourceLocation FirstOpLoc; 4179 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 4180 UnaryOperatorKind UnOpKind = UnOp->getOpcode(); 4181 if (UnOpKind == UO_Deref) 4182 ExtWarnMSTemplateArg = true; 4183 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) { 4184 Arg = UnOp->getSubExpr()->IgnoreParenCasts(); 4185 if (!AddrOpLoc.isValid()) { 4186 FirstOpKind = UnOpKind; 4187 FirstOpLoc = UnOp->getOperatorLoc(); 4188 } 4189 } else 4190 break; 4191 } 4192 if (FirstOpLoc.isValid()) { 4193 if (ExtWarnMSTemplateArg) 4194 S.Diag(ArgIn->getLocStart(), diag::ext_ms_deref_template_argument) 4195 << ArgIn->getSourceRange(); 4196 4197 if (FirstOpKind == UO_AddrOf) 4198 AddressTaken = true; 4199 else if (Arg->getType()->isPointerType()) { 4200 // We cannot let pointers get dereferenced here, that is obviously not a 4201 // constant expression. 4202 assert(FirstOpKind == UO_Deref); 4203 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 4204 << Arg->getSourceRange(); 4205 } 4206 } 4207 } else { 4208 // See through any implicit casts we added to fix the type. 4209 Arg = Arg->IgnoreImpCasts(); 4210 4211 // C++ [temp.arg.nontype]p1: 4212 // 4213 // A template-argument for a non-type, non-template 4214 // template-parameter shall be one of: [...] 4215 // 4216 // -- the address of an object or function with external 4217 // linkage, including function templates and function 4218 // template-ids but excluding non-static class members, 4219 // expressed as & id-expression where the & is optional if 4220 // the name refers to a function or array, or if the 4221 // corresponding template-parameter is a reference; or 4222 4223 // In C++98/03 mode, give an extension warning on any extra parentheses. 4224 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 4225 bool ExtraParens = false; 4226 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 4227 if (!Invalid && !ExtraParens) { 4228 S.Diag(Arg->getLocStart(), 4229 S.getLangOpts().CPlusPlus11 4230 ? diag::warn_cxx98_compat_template_arg_extra_parens 4231 : diag::ext_template_arg_extra_parens) 4232 << Arg->getSourceRange(); 4233 ExtraParens = true; 4234 } 4235 4236 Arg = Parens->getSubExpr(); 4237 } 4238 4239 while (SubstNonTypeTemplateParmExpr *subst = 4240 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 4241 Arg = subst->getReplacement()->IgnoreImpCasts(); 4242 4243 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 4244 if (UnOp->getOpcode() == UO_AddrOf) { 4245 Arg = UnOp->getSubExpr(); 4246 AddressTaken = true; 4247 AddrOpLoc = UnOp->getOperatorLoc(); 4248 } 4249 } 4250 4251 while (SubstNonTypeTemplateParmExpr *subst = 4252 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 4253 Arg = subst->getReplacement()->IgnoreImpCasts(); 4254 } 4255 4256 // Stop checking the precise nature of the argument if it is value dependent, 4257 // it should be checked when instantiated. 4258 if (Arg->isValueDependent()) { 4259 Converted = TemplateArgument(ArgIn); 4260 return false; 4261 } 4262 4263 if (isa<CXXUuidofExpr>(Arg)) { 4264 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, 4265 ArgIn, Arg, ArgType)) 4266 return true; 4267 4268 Converted = TemplateArgument(ArgIn); 4269 return false; 4270 } 4271 4272 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg); 4273 if (!DRE) { 4274 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 4275 << Arg->getSourceRange(); 4276 S.Diag(Param->getLocation(), diag::note_template_param_here); 4277 return true; 4278 } 4279 4280 ValueDecl *Entity = DRE->getDecl(); 4281 4282 // Cannot refer to non-static data members 4283 if (FieldDecl *Field = dyn_cast<FieldDecl>(Entity)) { 4284 S.Diag(Arg->getLocStart(), diag::err_template_arg_field) 4285 << Field << Arg->getSourceRange(); 4286 S.Diag(Param->getLocation(), diag::note_template_param_here); 4287 return true; 4288 } 4289 4290 // Cannot refer to non-static member functions 4291 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) { 4292 if (!Method->isStatic()) { 4293 S.Diag(Arg->getLocStart(), diag::err_template_arg_method) 4294 << Method << Arg->getSourceRange(); 4295 S.Diag(Param->getLocation(), diag::note_template_param_here); 4296 return true; 4297 } 4298 } 4299 4300 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity); 4301 VarDecl *Var = dyn_cast<VarDecl>(Entity); 4302 4303 // A non-type template argument must refer to an object or function. 4304 if (!Func && !Var) { 4305 // We found something, but we don't know specifically what it is. 4306 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func) 4307 << Arg->getSourceRange(); 4308 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 4309 return true; 4310 } 4311 4312 // Address / reference template args must have external linkage in C++98. 4313 if (Entity->getFormalLinkage() == InternalLinkage) { 4314 S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ? 4315 diag::warn_cxx98_compat_template_arg_object_internal : 4316 diag::ext_template_arg_object_internal) 4317 << !Func << Entity << Arg->getSourceRange(); 4318 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 4319 << !Func; 4320 } else if (!Entity->hasLinkage()) { 4321 S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage) 4322 << !Func << Entity << Arg->getSourceRange(); 4323 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 4324 << !Func; 4325 return true; 4326 } 4327 4328 if (Func) { 4329 // If the template parameter has pointer type, the function decays. 4330 if (ParamType->isPointerType() && !AddressTaken) 4331 ArgType = S.Context.getPointerType(Func->getType()); 4332 else if (AddressTaken && ParamType->isReferenceType()) { 4333 // If we originally had an address-of operator, but the 4334 // parameter has reference type, complain and (if things look 4335 // like they will work) drop the address-of operator. 4336 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 4337 ParamType.getNonReferenceType())) { 4338 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 4339 << ParamType; 4340 S.Diag(Param->getLocation(), diag::note_template_param_here); 4341 return true; 4342 } 4343 4344 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 4345 << ParamType 4346 << FixItHint::CreateRemoval(AddrOpLoc); 4347 S.Diag(Param->getLocation(), diag::note_template_param_here); 4348 4349 ArgType = Func->getType(); 4350 } 4351 } else { 4352 // A value of reference type is not an object. 4353 if (Var->getType()->isReferenceType()) { 4354 S.Diag(Arg->getLocStart(), 4355 diag::err_template_arg_reference_var) 4356 << Var->getType() << Arg->getSourceRange(); 4357 S.Diag(Param->getLocation(), diag::note_template_param_here); 4358 return true; 4359 } 4360 4361 // A template argument must have static storage duration. 4362 if (Var->getTLSKind()) { 4363 S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local) 4364 << Arg->getSourceRange(); 4365 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here); 4366 return true; 4367 } 4368 4369 // If the template parameter has pointer type, we must have taken 4370 // the address of this object. 4371 if (ParamType->isReferenceType()) { 4372 if (AddressTaken) { 4373 // If we originally had an address-of operator, but the 4374 // parameter has reference type, complain and (if things look 4375 // like they will work) drop the address-of operator. 4376 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 4377 ParamType.getNonReferenceType())) { 4378 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 4379 << ParamType; 4380 S.Diag(Param->getLocation(), diag::note_template_param_here); 4381 return true; 4382 } 4383 4384 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 4385 << ParamType 4386 << FixItHint::CreateRemoval(AddrOpLoc); 4387 S.Diag(Param->getLocation(), diag::note_template_param_here); 4388 4389 ArgType = Var->getType(); 4390 } 4391 } else if (!AddressTaken && ParamType->isPointerType()) { 4392 if (Var->getType()->isArrayType()) { 4393 // Array-to-pointer decay. 4394 ArgType = S.Context.getArrayDecayedType(Var->getType()); 4395 } else { 4396 // If the template parameter has pointer type but the address of 4397 // this object was not taken, complain and (possibly) recover by 4398 // taking the address of the entity. 4399 ArgType = S.Context.getPointerType(Var->getType()); 4400 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 4401 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 4402 << ParamType; 4403 S.Diag(Param->getLocation(), diag::note_template_param_here); 4404 return true; 4405 } 4406 4407 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 4408 << ParamType 4409 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 4410 4411 S.Diag(Param->getLocation(), diag::note_template_param_here); 4412 } 4413 } 4414 } 4415 4416 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn, 4417 Arg, ArgType)) 4418 return true; 4419 4420 // Create the template argument. 4421 Converted = TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), 4422 ParamType->isReferenceType()); 4423 S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false); 4424 return false; 4425} 4426 4427/// \brief Checks whether the given template argument is a pointer to 4428/// member constant according to C++ [temp.arg.nontype]p1. 4429static bool CheckTemplateArgumentPointerToMember(Sema &S, 4430 NonTypeTemplateParmDecl *Param, 4431 QualType ParamType, 4432 Expr *&ResultArg, 4433 TemplateArgument &Converted) { 4434 bool Invalid = false; 4435 4436 // Check for a null pointer value. 4437 Expr *Arg = ResultArg; 4438 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) { 4439 case NPV_Error: 4440 return true; 4441 case NPV_NullPointer: 4442 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 4443 Converted = TemplateArgument(ParamType, /*isNullPtr*/true); 4444 return false; 4445 case NPV_NotNullPointer: 4446 break; 4447 } 4448 4449 bool ObjCLifetimeConversion; 4450 if (S.IsQualificationConversion(Arg->getType(), 4451 ParamType.getNonReferenceType(), 4452 false, ObjCLifetimeConversion)) { 4453 Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp, 4454 Arg->getValueKind()).take(); 4455 ResultArg = Arg; 4456 } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(), 4457 ParamType.getNonReferenceType())) { 4458 // We can't perform this conversion. 4459 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 4460 << Arg->getType() << ParamType << Arg->getSourceRange(); 4461 S.Diag(Param->getLocation(), diag::note_template_param_here); 4462 return true; 4463 } 4464 4465 // See through any implicit casts we added to fix the type. 4466 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 4467 Arg = Cast->getSubExpr(); 4468 4469 // C++ [temp.arg.nontype]p1: 4470 // 4471 // A template-argument for a non-type, non-template 4472 // template-parameter shall be one of: [...] 4473 // 4474 // -- a pointer to member expressed as described in 5.3.1. 4475 DeclRefExpr *DRE = 0; 4476 4477 // In C++98/03 mode, give an extension warning on any extra parentheses. 4478 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 4479 bool ExtraParens = false; 4480 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 4481 if (!Invalid && !ExtraParens) { 4482 S.Diag(Arg->getLocStart(), 4483 S.getLangOpts().CPlusPlus11 ? 4484 diag::warn_cxx98_compat_template_arg_extra_parens : 4485 diag::ext_template_arg_extra_parens) 4486 << Arg->getSourceRange(); 4487 ExtraParens = true; 4488 } 4489 4490 Arg = Parens->getSubExpr(); 4491 } 4492 4493 while (SubstNonTypeTemplateParmExpr *subst = 4494 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 4495 Arg = subst->getReplacement()->IgnoreImpCasts(); 4496 4497 // A pointer-to-member constant written &Class::member. 4498 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 4499 if (UnOp->getOpcode() == UO_AddrOf) { 4500 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 4501 if (DRE && !DRE->getQualifier()) 4502 DRE = 0; 4503 } 4504 } 4505 // A constant of pointer-to-member type. 4506 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 4507 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 4508 if (VD->getType()->isMemberPointerType()) { 4509 if (isa<NonTypeTemplateParmDecl>(VD) || 4510 (isa<VarDecl>(VD) && 4511 S.Context.getCanonicalType(VD->getType()).isConstQualified())) { 4512 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 4513 Converted = TemplateArgument(Arg); 4514 } else { 4515 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 4516 Converted = TemplateArgument(VD, /*isReferenceParam*/false); 4517 } 4518 return Invalid; 4519 } 4520 } 4521 } 4522 4523 DRE = 0; 4524 } 4525 4526 if (!DRE) 4527 return S.Diag(Arg->getLocStart(), 4528 diag::err_template_arg_not_pointer_to_member_form) 4529 << Arg->getSourceRange(); 4530 4531 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 4532 assert((isa<FieldDecl>(DRE->getDecl()) || 4533 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 4534 "Only non-static member pointers can make it here"); 4535 4536 // Okay: this is the address of a non-static member, and therefore 4537 // a member pointer constant. 4538 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 4539 Converted = TemplateArgument(Arg); 4540 } else { 4541 ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); 4542 Converted = TemplateArgument(D, /*isReferenceParam*/false); 4543 } 4544 return Invalid; 4545 } 4546 4547 // We found something else, but we don't know specifically what it is. 4548 S.Diag(Arg->getLocStart(), 4549 diag::err_template_arg_not_pointer_to_member_form) 4550 << Arg->getSourceRange(); 4551 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 4552 return true; 4553} 4554 4555/// \brief Check a template argument against its corresponding 4556/// non-type template parameter. 4557/// 4558/// This routine implements the semantics of C++ [temp.arg.nontype]. 4559/// If an error occurred, it returns ExprError(); otherwise, it 4560/// returns the converted template argument. \p 4561/// InstantiatedParamType is the type of the non-type template 4562/// parameter after it has been instantiated. 4563ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 4564 QualType InstantiatedParamType, Expr *Arg, 4565 TemplateArgument &Converted, 4566 CheckTemplateArgumentKind CTAK) { 4567 SourceLocation StartLoc = Arg->getLocStart(); 4568 4569 // If either the parameter has a dependent type or the argument is 4570 // type-dependent, there's nothing we can check now. 4571 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 4572 // FIXME: Produce a cloned, canonical expression? 4573 Converted = TemplateArgument(Arg); 4574 return Owned(Arg); 4575 } 4576 4577 // C++ [temp.arg.nontype]p5: 4578 // The following conversions are performed on each expression used 4579 // as a non-type template-argument. If a non-type 4580 // template-argument cannot be converted to the type of the 4581 // corresponding template-parameter then the program is 4582 // ill-formed. 4583 QualType ParamType = InstantiatedParamType; 4584 if (ParamType->isIntegralOrEnumerationType()) { 4585 // C++11: 4586 // -- for a non-type template-parameter of integral or 4587 // enumeration type, conversions permitted in a converted 4588 // constant expression are applied. 4589 // 4590 // C++98: 4591 // -- for a non-type template-parameter of integral or 4592 // enumeration type, integral promotions (4.5) and integral 4593 // conversions (4.7) are applied. 4594 4595 if (CTAK == CTAK_Deduced && 4596 !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) { 4597 // C++ [temp.deduct.type]p17: 4598 // If, in the declaration of a function template with a non-type 4599 // template-parameter, the non-type template-parameter is used 4600 // in an expression in the function parameter-list and, if the 4601 // corresponding template-argument is deduced, the 4602 // template-argument type shall match the type of the 4603 // template-parameter exactly, except that a template-argument 4604 // deduced from an array bound may be of any integral type. 4605 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 4606 << Arg->getType().getUnqualifiedType() 4607 << ParamType.getUnqualifiedType(); 4608 Diag(Param->getLocation(), diag::note_template_param_here); 4609 return ExprError(); 4610 } 4611 4612 if (getLangOpts().CPlusPlus11) { 4613 // We can't check arbitrary value-dependent arguments. 4614 // FIXME: If there's no viable conversion to the template parameter type, 4615 // we should be able to diagnose that prior to instantiation. 4616 if (Arg->isValueDependent()) { 4617 Converted = TemplateArgument(Arg); 4618 return Owned(Arg); 4619 } 4620 4621 // C++ [temp.arg.nontype]p1: 4622 // A template-argument for a non-type, non-template template-parameter 4623 // shall be one of: 4624 // 4625 // -- for a non-type template-parameter of integral or enumeration 4626 // type, a converted constant expression of the type of the 4627 // template-parameter; or 4628 llvm::APSInt Value; 4629 ExprResult ArgResult = 4630 CheckConvertedConstantExpression(Arg, ParamType, Value, 4631 CCEK_TemplateArg); 4632 if (ArgResult.isInvalid()) 4633 return ExprError(); 4634 4635 // Widen the argument value to sizeof(parameter type). This is almost 4636 // always a no-op, except when the parameter type is bool. In 4637 // that case, this may extend the argument from 1 bit to 8 bits. 4638 QualType IntegerType = ParamType; 4639 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 4640 IntegerType = Enum->getDecl()->getIntegerType(); 4641 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType)); 4642 4643 Converted = TemplateArgument(Context, Value, 4644 Context.getCanonicalType(ParamType)); 4645 return ArgResult; 4646 } 4647 4648 ExprResult ArgResult = DefaultLvalueConversion(Arg); 4649 if (ArgResult.isInvalid()) 4650 return ExprError(); 4651 Arg = ArgResult.take(); 4652 4653 QualType ArgType = Arg->getType(); 4654 4655 // C++ [temp.arg.nontype]p1: 4656 // A template-argument for a non-type, non-template 4657 // template-parameter shall be one of: 4658 // 4659 // -- an integral constant-expression of integral or enumeration 4660 // type; or 4661 // -- the name of a non-type template-parameter; or 4662 SourceLocation NonConstantLoc; 4663 llvm::APSInt Value; 4664 if (!ArgType->isIntegralOrEnumerationType()) { 4665 Diag(Arg->getLocStart(), 4666 diag::err_template_arg_not_integral_or_enumeral) 4667 << ArgType << Arg->getSourceRange(); 4668 Diag(Param->getLocation(), diag::note_template_param_here); 4669 return ExprError(); 4670 } else if (!Arg->isValueDependent()) { 4671 class TmplArgICEDiagnoser : public VerifyICEDiagnoser { 4672 QualType T; 4673 4674 public: 4675 TmplArgICEDiagnoser(QualType T) : T(T) { } 4676 4677 virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, 4678 SourceRange SR) { 4679 S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR; 4680 } 4681 } Diagnoser(ArgType); 4682 4683 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser, 4684 false).take(); 4685 if (!Arg) 4686 return ExprError(); 4687 } 4688 4689 // From here on out, all we care about are the unqualified forms 4690 // of the parameter and argument types. 4691 ParamType = ParamType.getUnqualifiedType(); 4692 ArgType = ArgType.getUnqualifiedType(); 4693 4694 // Try to convert the argument to the parameter's type. 4695 if (Context.hasSameType(ParamType, ArgType)) { 4696 // Okay: no conversion necessary 4697 } else if (ParamType->isBooleanType()) { 4698 // This is an integral-to-boolean conversion. 4699 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take(); 4700 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 4701 !ParamType->isEnumeralType()) { 4702 // This is an integral promotion or conversion. 4703 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take(); 4704 } else { 4705 // We can't perform this conversion. 4706 Diag(Arg->getLocStart(), 4707 diag::err_template_arg_not_convertible) 4708 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 4709 Diag(Param->getLocation(), diag::note_template_param_here); 4710 return ExprError(); 4711 } 4712 4713 // Add the value of this argument to the list of converted 4714 // arguments. We use the bitwidth and signedness of the template 4715 // parameter. 4716 if (Arg->isValueDependent()) { 4717 // The argument is value-dependent. Create a new 4718 // TemplateArgument with the converted expression. 4719 Converted = TemplateArgument(Arg); 4720 return Owned(Arg); 4721 } 4722 4723 QualType IntegerType = Context.getCanonicalType(ParamType); 4724 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 4725 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 4726 4727 if (ParamType->isBooleanType()) { 4728 // Value must be zero or one. 4729 Value = Value != 0; 4730 unsigned AllowedBits = Context.getTypeSize(IntegerType); 4731 if (Value.getBitWidth() != AllowedBits) 4732 Value = Value.extOrTrunc(AllowedBits); 4733 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 4734 } else { 4735 llvm::APSInt OldValue = Value; 4736 4737 // Coerce the template argument's value to the value it will have 4738 // based on the template parameter's type. 4739 unsigned AllowedBits = Context.getTypeSize(IntegerType); 4740 if (Value.getBitWidth() != AllowedBits) 4741 Value = Value.extOrTrunc(AllowedBits); 4742 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 4743 4744 // Complain if an unsigned parameter received a negative value. 4745 if (IntegerType->isUnsignedIntegerOrEnumerationType() 4746 && (OldValue.isSigned() && OldValue.isNegative())) { 4747 Diag(Arg->getLocStart(), diag::warn_template_arg_negative) 4748 << OldValue.toString(10) << Value.toString(10) << Param->getType() 4749 << Arg->getSourceRange(); 4750 Diag(Param->getLocation(), diag::note_template_param_here); 4751 } 4752 4753 // Complain if we overflowed the template parameter's type. 4754 unsigned RequiredBits; 4755 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 4756 RequiredBits = OldValue.getActiveBits(); 4757 else if (OldValue.isUnsigned()) 4758 RequiredBits = OldValue.getActiveBits() + 1; 4759 else 4760 RequiredBits = OldValue.getMinSignedBits(); 4761 if (RequiredBits > AllowedBits) { 4762 Diag(Arg->getLocStart(), 4763 diag::warn_template_arg_too_large) 4764 << OldValue.toString(10) << Value.toString(10) << Param->getType() 4765 << Arg->getSourceRange(); 4766 Diag(Param->getLocation(), diag::note_template_param_here); 4767 } 4768 } 4769 4770 Converted = TemplateArgument(Context, Value, 4771 ParamType->isEnumeralType() 4772 ? Context.getCanonicalType(ParamType) 4773 : IntegerType); 4774 return Owned(Arg); 4775 } 4776 4777 QualType ArgType = Arg->getType(); 4778 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 4779 4780 // Handle pointer-to-function, reference-to-function, and 4781 // pointer-to-member-function all in (roughly) the same way. 4782 if (// -- For a non-type template-parameter of type pointer to 4783 // function, only the function-to-pointer conversion (4.3) is 4784 // applied. If the template-argument represents a set of 4785 // overloaded functions (or a pointer to such), the matching 4786 // function is selected from the set (13.4). 4787 (ParamType->isPointerType() && 4788 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 4789 // -- For a non-type template-parameter of type reference to 4790 // function, no conversions apply. If the template-argument 4791 // represents a set of overloaded functions, the matching 4792 // function is selected from the set (13.4). 4793 (ParamType->isReferenceType() && 4794 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 4795 // -- For a non-type template-parameter of type pointer to 4796 // member function, no conversions apply. If the 4797 // template-argument represents a set of overloaded member 4798 // functions, the matching member function is selected from 4799 // the set (13.4). 4800 (ParamType->isMemberPointerType() && 4801 ParamType->getAs<MemberPointerType>()->getPointeeType() 4802 ->isFunctionType())) { 4803 4804 if (Arg->getType() == Context.OverloadTy) { 4805 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 4806 true, 4807 FoundResult)) { 4808 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart())) 4809 return ExprError(); 4810 4811 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 4812 ArgType = Arg->getType(); 4813 } else 4814 return ExprError(); 4815 } 4816 4817 if (!ParamType->isMemberPointerType()) { 4818 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4819 ParamType, 4820 Arg, Converted)) 4821 return ExprError(); 4822 return Owned(Arg); 4823 } 4824 4825 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 4826 Converted)) 4827 return ExprError(); 4828 return Owned(Arg); 4829 } 4830 4831 if (ParamType->isPointerType()) { 4832 // -- for a non-type template-parameter of type pointer to 4833 // object, qualification conversions (4.4) and the 4834 // array-to-pointer conversion (4.2) are applied. 4835 // C++0x also allows a value of std::nullptr_t. 4836 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 4837 "Only object pointers allowed here"); 4838 4839 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4840 ParamType, 4841 Arg, Converted)) 4842 return ExprError(); 4843 return Owned(Arg); 4844 } 4845 4846 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 4847 // -- For a non-type template-parameter of type reference to 4848 // object, no conversions apply. The type referred to by the 4849 // reference may be more cv-qualified than the (otherwise 4850 // identical) type of the template-argument. The 4851 // template-parameter is bound directly to the 4852 // template-argument, which must be an lvalue. 4853 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 4854 "Only object references allowed here"); 4855 4856 if (Arg->getType() == Context.OverloadTy) { 4857 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 4858 ParamRefType->getPointeeType(), 4859 true, 4860 FoundResult)) { 4861 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart())) 4862 return ExprError(); 4863 4864 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 4865 ArgType = Arg->getType(); 4866 } else 4867 return ExprError(); 4868 } 4869 4870 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4871 ParamType, 4872 Arg, Converted)) 4873 return ExprError(); 4874 return Owned(Arg); 4875 } 4876 4877 // Deal with parameters of type std::nullptr_t. 4878 if (ParamType->isNullPtrType()) { 4879 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 4880 Converted = TemplateArgument(Arg); 4881 return Owned(Arg); 4882 } 4883 4884 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) { 4885 case NPV_NotNullPointer: 4886 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible) 4887 << Arg->getType() << ParamType; 4888 Diag(Param->getLocation(), diag::note_template_param_here); 4889 return ExprError(); 4890 4891 case NPV_Error: 4892 return ExprError(); 4893 4894 case NPV_NullPointer: 4895 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 4896 Converted = TemplateArgument(ParamType, /*isNullPtr*/true); 4897 return Owned(Arg); 4898 } 4899 } 4900 4901 // -- For a non-type template-parameter of type pointer to data 4902 // member, qualification conversions (4.4) are applied. 4903 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 4904 4905 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 4906 Converted)) 4907 return ExprError(); 4908 return Owned(Arg); 4909} 4910 4911/// \brief Check a template argument against its corresponding 4912/// template template parameter. 4913/// 4914/// This routine implements the semantics of C++ [temp.arg.template]. 4915/// It returns true if an error occurred, and false otherwise. 4916bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 4917 const TemplateArgumentLoc &Arg, 4918 unsigned ArgumentPackIndex) { 4919 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern(); 4920 TemplateDecl *Template = Name.getAsTemplateDecl(); 4921 if (!Template) { 4922 // Any dependent template name is fine. 4923 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 4924 return false; 4925 } 4926 4927 // C++0x [temp.arg.template]p1: 4928 // A template-argument for a template template-parameter shall be 4929 // the name of a class template or an alias template, expressed as an 4930 // id-expression. When the template-argument names a class template, only 4931 // primary class templates are considered when matching the 4932 // template template argument with the corresponding parameter; 4933 // partial specializations are not considered even if their 4934 // parameter lists match that of the template template parameter. 4935 // 4936 // Note that we also allow template template parameters here, which 4937 // will happen when we are dealing with, e.g., class template 4938 // partial specializations. 4939 if (!isa<ClassTemplateDecl>(Template) && 4940 !isa<TemplateTemplateParmDecl>(Template) && 4941 !isa<TypeAliasTemplateDecl>(Template)) { 4942 assert(isa<FunctionTemplateDecl>(Template) && 4943 "Only function templates are possible here"); 4944 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 4945 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 4946 << Template; 4947 } 4948 4949 TemplateParameterList *Params = Param->getTemplateParameters(); 4950 if (Param->isExpandedParameterPack()) 4951 Params = Param->getExpansionTemplateParameters(ArgumentPackIndex); 4952 4953 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 4954 Params, 4955 true, 4956 TPL_TemplateTemplateArgumentMatch, 4957 Arg.getLocation()); 4958} 4959 4960/// \brief Given a non-type template argument that refers to a 4961/// declaration and the type of its corresponding non-type template 4962/// parameter, produce an expression that properly refers to that 4963/// declaration. 4964ExprResult 4965Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 4966 QualType ParamType, 4967 SourceLocation Loc) { 4968 // C++ [temp.param]p8: 4969 // 4970 // A non-type template-parameter of type "array of T" or 4971 // "function returning T" is adjusted to be of type "pointer to 4972 // T" or "pointer to function returning T", respectively. 4973 if (ParamType->isArrayType()) 4974 ParamType = Context.getArrayDecayedType(ParamType); 4975 else if (ParamType->isFunctionType()) 4976 ParamType = Context.getPointerType(ParamType); 4977 4978 // For a NULL non-type template argument, return nullptr casted to the 4979 // parameter's type. 4980 if (Arg.getKind() == TemplateArgument::NullPtr) { 4981 return ImpCastExprToType( 4982 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc), 4983 ParamType, 4984 ParamType->getAs<MemberPointerType>() 4985 ? CK_NullToMemberPointer 4986 : CK_NullToPointer); 4987 } 4988 assert(Arg.getKind() == TemplateArgument::Declaration && 4989 "Only declaration template arguments permitted here"); 4990 4991 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 4992 4993 if (VD->getDeclContext()->isRecord() && 4994 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 4995 // If the value is a class member, we might have a pointer-to-member. 4996 // Determine whether the non-type template template parameter is of 4997 // pointer-to-member type. If so, we need to build an appropriate 4998 // expression for a pointer-to-member, since a "normal" DeclRefExpr 4999 // would refer to the member itself. 5000 if (ParamType->isMemberPointerType()) { 5001 QualType ClassType 5002 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 5003 NestedNameSpecifier *Qualifier 5004 = NestedNameSpecifier::Create(Context, 0, false, 5005 ClassType.getTypePtr()); 5006 CXXScopeSpec SS; 5007 SS.MakeTrivial(Context, Qualifier, Loc); 5008 5009 // The actual value-ness of this is unimportant, but for 5010 // internal consistency's sake, references to instance methods 5011 // are r-values. 5012 ExprValueKind VK = VK_LValue; 5013 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 5014 VK = VK_RValue; 5015 5016 ExprResult RefExpr = BuildDeclRefExpr(VD, 5017 VD->getType().getNonReferenceType(), 5018 VK, 5019 Loc, 5020 &SS); 5021 if (RefExpr.isInvalid()) 5022 return ExprError(); 5023 5024 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 5025 5026 // We might need to perform a trailing qualification conversion, since 5027 // the element type on the parameter could be more qualified than the 5028 // element type in the expression we constructed. 5029 bool ObjCLifetimeConversion; 5030 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 5031 ParamType.getUnqualifiedType(), false, 5032 ObjCLifetimeConversion)) 5033 RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp); 5034 5035 assert(!RefExpr.isInvalid() && 5036 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 5037 ParamType.getUnqualifiedType())); 5038 return RefExpr; 5039 } 5040 } 5041 5042 QualType T = VD->getType().getNonReferenceType(); 5043 5044 if (ParamType->isPointerType()) { 5045 // When the non-type template parameter is a pointer, take the 5046 // address of the declaration. 5047 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 5048 if (RefExpr.isInvalid()) 5049 return ExprError(); 5050 5051 if (T->isFunctionType() || T->isArrayType()) { 5052 // Decay functions and arrays. 5053 RefExpr = DefaultFunctionArrayConversion(RefExpr.take()); 5054 if (RefExpr.isInvalid()) 5055 return ExprError(); 5056 5057 return RefExpr; 5058 } 5059 5060 // Take the address of everything else 5061 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 5062 } 5063 5064 ExprValueKind VK = VK_RValue; 5065 5066 // If the non-type template parameter has reference type, qualify the 5067 // resulting declaration reference with the extra qualifiers on the 5068 // type that the reference refers to. 5069 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 5070 VK = VK_LValue; 5071 T = Context.getQualifiedType(T, 5072 TargetRef->getPointeeType().getQualifiers()); 5073 } else if (isa<FunctionDecl>(VD)) { 5074 // References to functions are always lvalues. 5075 VK = VK_LValue; 5076 } 5077 5078 return BuildDeclRefExpr(VD, T, VK, Loc); 5079} 5080 5081/// \brief Construct a new expression that refers to the given 5082/// integral template argument with the given source-location 5083/// information. 5084/// 5085/// This routine takes care of the mapping from an integral template 5086/// argument (which may have any integral type) to the appropriate 5087/// literal value. 5088ExprResult 5089Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 5090 SourceLocation Loc) { 5091 assert(Arg.getKind() == TemplateArgument::Integral && 5092 "Operation is only valid for integral template arguments"); 5093 QualType OrigT = Arg.getIntegralType(); 5094 5095 // If this is an enum type that we're instantiating, we need to use an integer 5096 // type the same size as the enumerator. We don't want to build an 5097 // IntegerLiteral with enum type. The integer type of an enum type can be of 5098 // any integral type with C++11 enum classes, make sure we create the right 5099 // type of literal for it. 5100 QualType T = OrigT; 5101 if (const EnumType *ET = OrigT->getAs<EnumType>()) 5102 T = ET->getDecl()->getIntegerType(); 5103 5104 Expr *E; 5105 if (T->isAnyCharacterType()) { 5106 CharacterLiteral::CharacterKind Kind; 5107 if (T->isWideCharType()) 5108 Kind = CharacterLiteral::Wide; 5109 else if (T->isChar16Type()) 5110 Kind = CharacterLiteral::UTF16; 5111 else if (T->isChar32Type()) 5112 Kind = CharacterLiteral::UTF32; 5113 else 5114 Kind = CharacterLiteral::Ascii; 5115 5116 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(), 5117 Kind, T, Loc); 5118 } else if (T->isBooleanType()) { 5119 E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(), 5120 T, Loc); 5121 } else if (T->isNullPtrType()) { 5122 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 5123 } else { 5124 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc); 5125 } 5126 5127 if (OrigT->isEnumeralType()) { 5128 // FIXME: This is a hack. We need a better way to handle substituted 5129 // non-type template parameters. 5130 E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E, 0, 5131 Context.getTrivialTypeSourceInfo(OrigT, Loc), 5132 Loc, Loc); 5133 } 5134 5135 return Owned(E); 5136} 5137 5138/// \brief Match two template parameters within template parameter lists. 5139static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 5140 bool Complain, 5141 Sema::TemplateParameterListEqualKind Kind, 5142 SourceLocation TemplateArgLoc) { 5143 // Check the actual kind (type, non-type, template). 5144 if (Old->getKind() != New->getKind()) { 5145 if (Complain) { 5146 unsigned NextDiag = diag::err_template_param_different_kind; 5147 if (TemplateArgLoc.isValid()) { 5148 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 5149 NextDiag = diag::note_template_param_different_kind; 5150 } 5151 S.Diag(New->getLocation(), NextDiag) 5152 << (Kind != Sema::TPL_TemplateMatch); 5153 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 5154 << (Kind != Sema::TPL_TemplateMatch); 5155 } 5156 5157 return false; 5158 } 5159 5160 // Check that both are parameter packs are neither are parameter packs. 5161 // However, if we are matching a template template argument to a 5162 // template template parameter, the template template parameter can have 5163 // a parameter pack where the template template argument does not. 5164 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 5165 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 5166 Old->isTemplateParameterPack())) { 5167 if (Complain) { 5168 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 5169 if (TemplateArgLoc.isValid()) { 5170 S.Diag(TemplateArgLoc, 5171 diag::err_template_arg_template_params_mismatch); 5172 NextDiag = diag::note_template_parameter_pack_non_pack; 5173 } 5174 5175 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 5176 : isa<NonTypeTemplateParmDecl>(New)? 1 5177 : 2; 5178 S.Diag(New->getLocation(), NextDiag) 5179 << ParamKind << New->isParameterPack(); 5180 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 5181 << ParamKind << Old->isParameterPack(); 5182 } 5183 5184 return false; 5185 } 5186 5187 // For non-type template parameters, check the type of the parameter. 5188 if (NonTypeTemplateParmDecl *OldNTTP 5189 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 5190 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 5191 5192 // If we are matching a template template argument to a template 5193 // template parameter and one of the non-type template parameter types 5194 // is dependent, then we must wait until template instantiation time 5195 // to actually compare the arguments. 5196 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && 5197 (OldNTTP->getType()->isDependentType() || 5198 NewNTTP->getType()->isDependentType())) 5199 return true; 5200 5201 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 5202 if (Complain) { 5203 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 5204 if (TemplateArgLoc.isValid()) { 5205 S.Diag(TemplateArgLoc, 5206 diag::err_template_arg_template_params_mismatch); 5207 NextDiag = diag::note_template_nontype_parm_different_type; 5208 } 5209 S.Diag(NewNTTP->getLocation(), NextDiag) 5210 << NewNTTP->getType() 5211 << (Kind != Sema::TPL_TemplateMatch); 5212 S.Diag(OldNTTP->getLocation(), 5213 diag::note_template_nontype_parm_prev_declaration) 5214 << OldNTTP->getType(); 5215 } 5216 5217 return false; 5218 } 5219 5220 return true; 5221 } 5222 5223 // For template template parameters, check the template parameter types. 5224 // The template parameter lists of template template 5225 // parameters must agree. 5226 if (TemplateTemplateParmDecl *OldTTP 5227 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 5228 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 5229 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 5230 OldTTP->getTemplateParameters(), 5231 Complain, 5232 (Kind == Sema::TPL_TemplateMatch 5233 ? Sema::TPL_TemplateTemplateParmMatch 5234 : Kind), 5235 TemplateArgLoc); 5236 } 5237 5238 return true; 5239} 5240 5241/// \brief Diagnose a known arity mismatch when comparing template argument 5242/// lists. 5243static 5244void DiagnoseTemplateParameterListArityMismatch(Sema &S, 5245 TemplateParameterList *New, 5246 TemplateParameterList *Old, 5247 Sema::TemplateParameterListEqualKind Kind, 5248 SourceLocation TemplateArgLoc) { 5249 unsigned NextDiag = diag::err_template_param_list_different_arity; 5250 if (TemplateArgLoc.isValid()) { 5251 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 5252 NextDiag = diag::note_template_param_list_different_arity; 5253 } 5254 S.Diag(New->getTemplateLoc(), NextDiag) 5255 << (New->size() > Old->size()) 5256 << (Kind != Sema::TPL_TemplateMatch) 5257 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 5258 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 5259 << (Kind != Sema::TPL_TemplateMatch) 5260 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 5261} 5262 5263/// \brief Determine whether the given template parameter lists are 5264/// equivalent. 5265/// 5266/// \param New The new template parameter list, typically written in the 5267/// source code as part of a new template declaration. 5268/// 5269/// \param Old The old template parameter list, typically found via 5270/// name lookup of the template declared with this template parameter 5271/// list. 5272/// 5273/// \param Complain If true, this routine will produce a diagnostic if 5274/// the template parameter lists are not equivalent. 5275/// 5276/// \param Kind describes how we are to match the template parameter lists. 5277/// 5278/// \param TemplateArgLoc If this source location is valid, then we 5279/// are actually checking the template parameter list of a template 5280/// argument (New) against the template parameter list of its 5281/// corresponding template template parameter (Old). We produce 5282/// slightly different diagnostics in this scenario. 5283/// 5284/// \returns True if the template parameter lists are equal, false 5285/// otherwise. 5286bool 5287Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 5288 TemplateParameterList *Old, 5289 bool Complain, 5290 TemplateParameterListEqualKind Kind, 5291 SourceLocation TemplateArgLoc) { 5292 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 5293 if (Complain) 5294 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 5295 TemplateArgLoc); 5296 5297 return false; 5298 } 5299 5300 // C++0x [temp.arg.template]p3: 5301 // A template-argument matches a template template-parameter (call it P) 5302 // when each of the template parameters in the template-parameter-list of 5303 // the template-argument's corresponding class template or alias template 5304 // (call it A) matches the corresponding template parameter in the 5305 // template-parameter-list of P. [...] 5306 TemplateParameterList::iterator NewParm = New->begin(); 5307 TemplateParameterList::iterator NewParmEnd = New->end(); 5308 for (TemplateParameterList::iterator OldParm = Old->begin(), 5309 OldParmEnd = Old->end(); 5310 OldParm != OldParmEnd; ++OldParm) { 5311 if (Kind != TPL_TemplateTemplateArgumentMatch || 5312 !(*OldParm)->isTemplateParameterPack()) { 5313 if (NewParm == NewParmEnd) { 5314 if (Complain) 5315 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 5316 TemplateArgLoc); 5317 5318 return false; 5319 } 5320 5321 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 5322 Kind, TemplateArgLoc)) 5323 return false; 5324 5325 ++NewParm; 5326 continue; 5327 } 5328 5329 // C++0x [temp.arg.template]p3: 5330 // [...] When P's template- parameter-list contains a template parameter 5331 // pack (14.5.3), the template parameter pack will match zero or more 5332 // template parameters or template parameter packs in the 5333 // template-parameter-list of A with the same type and form as the 5334 // template parameter pack in P (ignoring whether those template 5335 // parameters are template parameter packs). 5336 for (; NewParm != NewParmEnd; ++NewParm) { 5337 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 5338 Kind, TemplateArgLoc)) 5339 return false; 5340 } 5341 } 5342 5343 // Make sure we exhausted all of the arguments. 5344 if (NewParm != NewParmEnd) { 5345 if (Complain) 5346 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 5347 TemplateArgLoc); 5348 5349 return false; 5350 } 5351 5352 return true; 5353} 5354 5355/// \brief Check whether a template can be declared within this scope. 5356/// 5357/// If the template declaration is valid in this scope, returns 5358/// false. Otherwise, issues a diagnostic and returns true. 5359bool 5360Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 5361 if (!S) 5362 return false; 5363 5364 // Find the nearest enclosing declaration scope. 5365 while ((S->getFlags() & Scope::DeclScope) == 0 || 5366 (S->getFlags() & Scope::TemplateParamScope) != 0) 5367 S = S->getParent(); 5368 5369 // C++ [temp]p2: 5370 // A template-declaration can appear only as a namespace scope or 5371 // class scope declaration. 5372 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 5373 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 5374 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 5375 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 5376 << TemplateParams->getSourceRange(); 5377 5378 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 5379 Ctx = Ctx->getParent(); 5380 5381 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 5382 return false; 5383 5384 return Diag(TemplateParams->getTemplateLoc(), 5385 diag::err_template_outside_namespace_or_class_scope) 5386 << TemplateParams->getSourceRange(); 5387} 5388 5389/// \brief Determine what kind of template specialization the given declaration 5390/// is. 5391static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { 5392 if (!D) 5393 return TSK_Undeclared; 5394 5395 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 5396 return Record->getTemplateSpecializationKind(); 5397 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 5398 return Function->getTemplateSpecializationKind(); 5399 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 5400 return Var->getTemplateSpecializationKind(); 5401 5402 return TSK_Undeclared; 5403} 5404 5405/// \brief Check whether a specialization is well-formed in the current 5406/// context. 5407/// 5408/// This routine determines whether a template specialization can be declared 5409/// in the current context (C++ [temp.expl.spec]p2). 5410/// 5411/// \param S the semantic analysis object for which this check is being 5412/// performed. 5413/// 5414/// \param Specialized the entity being specialized or instantiated, which 5415/// may be a kind of template (class template, function template, etc.) or 5416/// a member of a class template (member function, static data member, 5417/// member class). 5418/// 5419/// \param PrevDecl the previous declaration of this entity, if any. 5420/// 5421/// \param Loc the location of the explicit specialization or instantiation of 5422/// this entity. 5423/// 5424/// \param IsPartialSpecialization whether this is a partial specialization of 5425/// a class template. 5426/// 5427/// \returns true if there was an error that we cannot recover from, false 5428/// otherwise. 5429static bool CheckTemplateSpecializationScope(Sema &S, 5430 NamedDecl *Specialized, 5431 NamedDecl *PrevDecl, 5432 SourceLocation Loc, 5433 bool IsPartialSpecialization) { 5434 // Keep these "kind" numbers in sync with the %select statements in the 5435 // various diagnostics emitted by this routine. 5436 int EntityKind = 0; 5437 if (isa<ClassTemplateDecl>(Specialized)) 5438 EntityKind = IsPartialSpecialization? 1 : 0; 5439 else if (isa<VarTemplateDecl>(Specialized)) 5440 EntityKind = IsPartialSpecialization ? 3 : 2; 5441 else if (isa<FunctionTemplateDecl>(Specialized)) 5442 EntityKind = 4; 5443 else if (isa<CXXMethodDecl>(Specialized)) 5444 EntityKind = 5; 5445 else if (isa<VarDecl>(Specialized)) 5446 EntityKind = 6; 5447 else if (isa<RecordDecl>(Specialized)) 5448 EntityKind = 7; 5449 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11) 5450 EntityKind = 8; 5451 else { 5452 S.Diag(Loc, diag::err_template_spec_unknown_kind) 5453 << S.getLangOpts().CPlusPlus11; 5454 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 5455 return true; 5456 } 5457 5458 // C++ [temp.expl.spec]p2: 5459 // An explicit specialization shall be declared in the namespace 5460 // of which the template is a member, or, for member templates, in 5461 // the namespace of which the enclosing class or enclosing class 5462 // template is a member. An explicit specialization of a member 5463 // function, member class or static data member of a class 5464 // template shall be declared in the namespace of which the class 5465 // template is a member. Such a declaration may also be a 5466 // definition. If the declaration is not a definition, the 5467 // specialization may be defined later in the name- space in which 5468 // the explicit specialization was declared, or in a namespace 5469 // that encloses the one in which the explicit specialization was 5470 // declared. 5471 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 5472 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 5473 << Specialized; 5474 return true; 5475 } 5476 5477 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 5478 if (S.getLangOpts().MicrosoftExt) { 5479 // Do not warn for class scope explicit specialization during 5480 // instantiation, warning was already emitted during pattern 5481 // semantic analysis. 5482 if (!S.ActiveTemplateInstantiations.size()) 5483 S.Diag(Loc, diag::ext_function_specialization_in_class) 5484 << Specialized; 5485 } else { 5486 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 5487 << Specialized; 5488 return true; 5489 } 5490 } 5491 5492 if (S.CurContext->isRecord() && 5493 !S.CurContext->Equals(Specialized->getDeclContext())) { 5494 // Make sure that we're specializing in the right record context. 5495 // Otherwise, things can go horribly wrong. 5496 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 5497 << Specialized; 5498 return true; 5499 } 5500 5501 // C++ [temp.class.spec]p6: 5502 // A class template partial specialization may be declared or redeclared 5503 // in any namespace scope in which its definition may be defined (14.5.1 5504 // and 14.5.2). 5505 bool ComplainedAboutScope = false; 5506 DeclContext *SpecializedContext 5507 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 5508 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 5509 if ((!PrevDecl || 5510 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 5511 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 5512 // C++ [temp.exp.spec]p2: 5513 // An explicit specialization shall be declared in the namespace of which 5514 // the template is a member, or, for member templates, in the namespace 5515 // of which the enclosing class or enclosing class template is a member. 5516 // An explicit specialization of a member function, member class or 5517 // static data member of a class template shall be declared in the 5518 // namespace of which the class template is a member. 5519 // 5520 // C++0x [temp.expl.spec]p2: 5521 // An explicit specialization shall be declared in a namespace enclosing 5522 // the specialized template. 5523 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) { 5524 bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext); 5525 if (isa<TranslationUnitDecl>(SpecializedContext)) { 5526 assert(!IsCPlusPlus11Extension && 5527 "DC encloses TU but isn't in enclosing namespace set"); 5528 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 5529 << EntityKind << Specialized; 5530 } else if (isa<NamespaceDecl>(SpecializedContext)) { 5531 int Diag; 5532 if (!IsCPlusPlus11Extension) 5533 Diag = diag::err_template_spec_decl_out_of_scope; 5534 else if (!S.getLangOpts().CPlusPlus11) 5535 Diag = diag::ext_template_spec_decl_out_of_scope; 5536 else 5537 Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope; 5538 S.Diag(Loc, Diag) 5539 << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext); 5540 } 5541 5542 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 5543 ComplainedAboutScope = 5544 !(IsCPlusPlus11Extension && S.getLangOpts().CPlusPlus11); 5545 } 5546 } 5547 5548 // Make sure that this redeclaration (or definition) occurs in an enclosing 5549 // namespace. 5550 // Note that HandleDeclarator() performs this check for explicit 5551 // specializations of function templates, static data members, and member 5552 // functions, so we skip the check here for those kinds of entities. 5553 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 5554 // Should we refactor that check, so that it occurs later? 5555 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 5556 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 5557 isa<FunctionDecl>(Specialized))) { 5558 if (isa<TranslationUnitDecl>(SpecializedContext)) 5559 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 5560 << EntityKind << Specialized; 5561 else if (isa<NamespaceDecl>(SpecializedContext)) 5562 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 5563 << EntityKind << Specialized 5564 << cast<NamedDecl>(SpecializedContext); 5565 5566 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 5567 } 5568 5569 // FIXME: check for specialization-after-instantiation errors and such. 5570 5571 return false; 5572} 5573 5574/// \brief Subroutine of Sema::CheckTemplatePartialSpecializationArgs 5575/// that checks non-type template partial specialization arguments. 5576static bool CheckNonTypeTemplatePartialSpecializationArgs( 5577 Sema &S, NonTypeTemplateParmDecl *Param, const TemplateArgument *Args, 5578 unsigned NumArgs) { 5579 for (unsigned I = 0; I != NumArgs; ++I) { 5580 if (Args[I].getKind() == TemplateArgument::Pack) { 5581 if (CheckNonTypeTemplatePartialSpecializationArgs( 5582 S, Param, Args[I].pack_begin(), Args[I].pack_size())) 5583 return true; 5584 5585 continue; 5586 } 5587 5588 if (Args[I].getKind() != TemplateArgument::Expression) 5589 continue; 5590 5591 Expr *ArgExpr = Args[I].getAsExpr(); 5592 5593 // We can have a pack expansion of any of the bullets below. 5594 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 5595 ArgExpr = Expansion->getPattern(); 5596 5597 // Strip off any implicit casts we added as part of type checking. 5598 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 5599 ArgExpr = ICE->getSubExpr(); 5600 5601 // C++ [temp.class.spec]p8: 5602 // A non-type argument is non-specialized if it is the name of a 5603 // non-type parameter. All other non-type arguments are 5604 // specialized. 5605 // 5606 // Below, we check the two conditions that only apply to 5607 // specialized non-type arguments, so skip any non-specialized 5608 // arguments. 5609 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 5610 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 5611 continue; 5612 5613 // C++ [temp.class.spec]p9: 5614 // Within the argument list of a class template partial 5615 // specialization, the following restrictions apply: 5616 // -- A partially specialized non-type argument expression 5617 // shall not involve a template parameter of the partial 5618 // specialization except when the argument expression is a 5619 // simple identifier. 5620 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 5621 S.Diag(ArgExpr->getLocStart(), 5622 diag::err_dependent_non_type_arg_in_partial_spec) 5623 << ArgExpr->getSourceRange(); 5624 return true; 5625 } 5626 5627 // -- The type of a template parameter corresponding to a 5628 // specialized non-type argument shall not be dependent on a 5629 // parameter of the specialization. 5630 if (Param->getType()->isDependentType()) { 5631 S.Diag(ArgExpr->getLocStart(), 5632 diag::err_dependent_typed_non_type_arg_in_partial_spec) 5633 << Param->getType() 5634 << ArgExpr->getSourceRange(); 5635 S.Diag(Param->getLocation(), diag::note_template_param_here); 5636 return true; 5637 } 5638 } 5639 5640 return false; 5641} 5642 5643/// \brief Check the non-type template arguments of a class template 5644/// partial specialization according to C++ [temp.class.spec]p9. 5645/// 5646/// \param TemplateParams the template parameters of the primary class 5647/// template. 5648/// 5649/// \param TemplateArgs the template arguments of the class template 5650/// partial specialization. 5651/// 5652/// \returns true if there was an error, false otherwise. 5653static bool CheckTemplatePartialSpecializationArgs( 5654 Sema &S, TemplateParameterList *TemplateParams, 5655 SmallVectorImpl<TemplateArgument> &TemplateArgs) { 5656 const TemplateArgument *ArgList = TemplateArgs.data(); 5657 5658 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 5659 NonTypeTemplateParmDecl *Param 5660 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 5661 if (!Param) 5662 continue; 5663 5664 if (CheckNonTypeTemplatePartialSpecializationArgs(S, Param, &ArgList[I], 1)) 5665 return true; 5666 } 5667 5668 return false; 5669} 5670 5671DeclResult 5672Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 5673 TagUseKind TUK, 5674 SourceLocation KWLoc, 5675 SourceLocation ModulePrivateLoc, 5676 CXXScopeSpec &SS, 5677 TemplateTy TemplateD, 5678 SourceLocation TemplateNameLoc, 5679 SourceLocation LAngleLoc, 5680 ASTTemplateArgsPtr TemplateArgsIn, 5681 SourceLocation RAngleLoc, 5682 AttributeList *Attr, 5683 MultiTemplateParamsArg TemplateParameterLists) { 5684 assert(TUK != TUK_Reference && "References are not specializations"); 5685 5686 // NOTE: KWLoc is the location of the tag keyword. This will instead 5687 // store the location of the outermost template keyword in the declaration. 5688 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 5689 ? TemplateParameterLists[0]->getTemplateLoc() : SourceLocation(); 5690 5691 // Find the class template we're specializing 5692 TemplateName Name = TemplateD.get(); 5693 ClassTemplateDecl *ClassTemplate 5694 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 5695 5696 if (!ClassTemplate) { 5697 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 5698 << (Name.getAsTemplateDecl() && 5699 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 5700 return true; 5701 } 5702 5703 bool isExplicitSpecialization = false; 5704 bool isPartialSpecialization = false; 5705 5706 // Check the validity of the template headers that introduce this 5707 // template. 5708 // FIXME: We probably shouldn't complain about these headers for 5709 // friend declarations. 5710 bool Invalid = false; 5711 TemplateParameterList *TemplateParams = 5712 MatchTemplateParametersToScopeSpecifier( 5713 TemplateNameLoc, TemplateNameLoc, SS, TemplateParameterLists, 5714 TUK == TUK_Friend, isExplicitSpecialization, Invalid); 5715 if (Invalid) 5716 return true; 5717 5718 if (TemplateParams && TemplateParams->size() > 0) { 5719 isPartialSpecialization = true; 5720 5721 if (TUK == TUK_Friend) { 5722 Diag(KWLoc, diag::err_partial_specialization_friend) 5723 << SourceRange(LAngleLoc, RAngleLoc); 5724 return true; 5725 } 5726 5727 // C++ [temp.class.spec]p10: 5728 // The template parameter list of a specialization shall not 5729 // contain default template argument values. 5730 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 5731 Decl *Param = TemplateParams->getParam(I); 5732 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 5733 if (TTP->hasDefaultArgument()) { 5734 Diag(TTP->getDefaultArgumentLoc(), 5735 diag::err_default_arg_in_partial_spec); 5736 TTP->removeDefaultArgument(); 5737 } 5738 } else if (NonTypeTemplateParmDecl *NTTP 5739 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5740 if (Expr *DefArg = NTTP->getDefaultArgument()) { 5741 Diag(NTTP->getDefaultArgumentLoc(), 5742 diag::err_default_arg_in_partial_spec) 5743 << DefArg->getSourceRange(); 5744 NTTP->removeDefaultArgument(); 5745 } 5746 } else { 5747 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 5748 if (TTP->hasDefaultArgument()) { 5749 Diag(TTP->getDefaultArgument().getLocation(), 5750 diag::err_default_arg_in_partial_spec) 5751 << TTP->getDefaultArgument().getSourceRange(); 5752 TTP->removeDefaultArgument(); 5753 } 5754 } 5755 } 5756 } else if (TemplateParams) { 5757 if (TUK == TUK_Friend) 5758 Diag(KWLoc, diag::err_template_spec_friend) 5759 << FixItHint::CreateRemoval( 5760 SourceRange(TemplateParams->getTemplateLoc(), 5761 TemplateParams->getRAngleLoc())) 5762 << SourceRange(LAngleLoc, RAngleLoc); 5763 else 5764 isExplicitSpecialization = true; 5765 } else if (TUK != TUK_Friend) { 5766 Diag(KWLoc, diag::err_template_spec_needs_header) 5767 << FixItHint::CreateInsertion(KWLoc, "template<> "); 5768 TemplateKWLoc = KWLoc; 5769 isExplicitSpecialization = true; 5770 } 5771 5772 // Check that the specialization uses the same tag kind as the 5773 // original template. 5774 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5775 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 5776 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 5777 Kind, TUK == TUK_Definition, KWLoc, 5778 *ClassTemplate->getIdentifier())) { 5779 Diag(KWLoc, diag::err_use_with_wrong_tag) 5780 << ClassTemplate 5781 << FixItHint::CreateReplacement(KWLoc, 5782 ClassTemplate->getTemplatedDecl()->getKindName()); 5783 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 5784 diag::note_previous_use); 5785 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 5786 } 5787 5788 // Translate the parser's template argument list in our AST format. 5789 TemplateArgumentListInfo TemplateArgs; 5790 TemplateArgs.setLAngleLoc(LAngleLoc); 5791 TemplateArgs.setRAngleLoc(RAngleLoc); 5792 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 5793 5794 // Check for unexpanded parameter packs in any of the template arguments. 5795 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 5796 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 5797 UPPC_PartialSpecialization)) 5798 return true; 5799 5800 // Check that the template argument list is well-formed for this 5801 // template. 5802 SmallVector<TemplateArgument, 4> Converted; 5803 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 5804 TemplateArgs, false, Converted)) 5805 return true; 5806 5807 // Find the class template (partial) specialization declaration that 5808 // corresponds to these arguments. 5809 if (isPartialSpecialization) { 5810 if (CheckTemplatePartialSpecializationArgs( 5811 *this, ClassTemplate->getTemplateParameters(), Converted)) 5812 return true; 5813 5814 bool InstantiationDependent; 5815 if (!Name.isDependent() && 5816 !TemplateSpecializationType::anyDependentTemplateArguments( 5817 TemplateArgs.getArgumentArray(), 5818 TemplateArgs.size(), 5819 InstantiationDependent)) { 5820 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 5821 << ClassTemplate->getDeclName(); 5822 isPartialSpecialization = false; 5823 } 5824 } 5825 5826 void *InsertPos = 0; 5827 ClassTemplateSpecializationDecl *PrevDecl = 0; 5828 5829 if (isPartialSpecialization) 5830 // FIXME: Template parameter list matters, too 5831 PrevDecl 5832 = ClassTemplate->findPartialSpecialization(Converted.data(), 5833 Converted.size(), 5834 InsertPos); 5835 else 5836 PrevDecl 5837 = ClassTemplate->findSpecialization(Converted.data(), 5838 Converted.size(), InsertPos); 5839 5840 ClassTemplateSpecializationDecl *Specialization = 0; 5841 5842 // Check whether we can declare a class template specialization in 5843 // the current scope. 5844 if (TUK != TUK_Friend && 5845 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 5846 TemplateNameLoc, 5847 isPartialSpecialization)) 5848 return true; 5849 5850 // The canonical type 5851 QualType CanonType; 5852 if (PrevDecl && 5853 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 5854 TUK == TUK_Friend)) { 5855 // Since the only prior class template specialization with these 5856 // arguments was referenced but not declared, or we're only 5857 // referencing this specialization as a friend, reuse that 5858 // declaration node as our own, updating its source location and 5859 // the list of outer template parameters to reflect our new declaration. 5860 Specialization = PrevDecl; 5861 Specialization->setLocation(TemplateNameLoc); 5862 if (TemplateParameterLists.size() > 0) { 5863 Specialization->setTemplateParameterListsInfo(Context, 5864 TemplateParameterLists.size(), 5865 TemplateParameterLists.data()); 5866 } 5867 PrevDecl = 0; 5868 CanonType = Context.getTypeDeclType(Specialization); 5869 } else if (isPartialSpecialization) { 5870 // Build the canonical type that describes the converted template 5871 // arguments of the class template partial specialization. 5872 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 5873 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 5874 Converted.data(), 5875 Converted.size()); 5876 5877 if (Context.hasSameType(CanonType, 5878 ClassTemplate->getInjectedClassNameSpecialization())) { 5879 // C++ [temp.class.spec]p9b3: 5880 // 5881 // -- The argument list of the specialization shall not be identical 5882 // to the implicit argument list of the primary template. 5883 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 5884 << (TUK == TUK_Definition) 5885 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 5886 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 5887 ClassTemplate->getIdentifier(), 5888 TemplateNameLoc, 5889 Attr, 5890 TemplateParams, 5891 AS_none, /*ModulePrivateLoc=*/SourceLocation(), 5892 TemplateParameterLists.size() - 1, 5893 TemplateParameterLists.data()); 5894 } 5895 5896 // Create a new class template partial specialization declaration node. 5897 ClassTemplatePartialSpecializationDecl *PrevPartial 5898 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 5899 ClassTemplatePartialSpecializationDecl *Partial 5900 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 5901 ClassTemplate->getDeclContext(), 5902 KWLoc, TemplateNameLoc, 5903 TemplateParams, 5904 ClassTemplate, 5905 Converted.data(), 5906 Converted.size(), 5907 TemplateArgs, 5908 CanonType, 5909 PrevPartial); 5910 SetNestedNameSpecifier(Partial, SS); 5911 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 5912 Partial->setTemplateParameterListsInfo(Context, 5913 TemplateParameterLists.size() - 1, 5914 TemplateParameterLists.data()); 5915 } 5916 5917 if (!PrevPartial) 5918 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 5919 Specialization = Partial; 5920 5921 // If we are providing an explicit specialization of a member class 5922 // template specialization, make a note of that. 5923 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 5924 PrevPartial->setMemberSpecialization(); 5925 5926 // Check that all of the template parameters of the class template 5927 // partial specialization are deducible from the template 5928 // arguments. If not, this class template partial specialization 5929 // will never be used. 5930 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 5931 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 5932 TemplateParams->getDepth(), 5933 DeducibleParams); 5934 5935 if (!DeducibleParams.all()) { 5936 unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count(); 5937 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 5938 << (NumNonDeducible > 1) 5939 << SourceRange(TemplateNameLoc, RAngleLoc); 5940 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 5941 if (!DeducibleParams[I]) { 5942 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 5943 if (Param->getDeclName()) 5944 Diag(Param->getLocation(), 5945 diag::note_partial_spec_unused_parameter) 5946 << Param->getDeclName(); 5947 else 5948 Diag(Param->getLocation(), 5949 diag::note_partial_spec_unused_parameter) 5950 << "<anonymous>"; 5951 } 5952 } 5953 } 5954 } else { 5955 // Create a new class template specialization declaration node for 5956 // this explicit specialization or friend declaration. 5957 Specialization 5958 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5959 ClassTemplate->getDeclContext(), 5960 KWLoc, TemplateNameLoc, 5961 ClassTemplate, 5962 Converted.data(), 5963 Converted.size(), 5964 PrevDecl); 5965 SetNestedNameSpecifier(Specialization, SS); 5966 if (TemplateParameterLists.size() > 0) { 5967 Specialization->setTemplateParameterListsInfo(Context, 5968 TemplateParameterLists.size(), 5969 TemplateParameterLists.data()); 5970 } 5971 5972 if (!PrevDecl) 5973 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5974 5975 CanonType = Context.getTypeDeclType(Specialization); 5976 } 5977 5978 // C++ [temp.expl.spec]p6: 5979 // If a template, a member template or the member of a class template is 5980 // explicitly specialized then that specialization shall be declared 5981 // before the first use of that specialization that would cause an implicit 5982 // instantiation to take place, in every translation unit in which such a 5983 // use occurs; no diagnostic is required. 5984 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 5985 bool Okay = false; 5986 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5987 // Is there any previous explicit specialization declaration? 5988 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 5989 Okay = true; 5990 break; 5991 } 5992 } 5993 5994 if (!Okay) { 5995 SourceRange Range(TemplateNameLoc, RAngleLoc); 5996 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 5997 << Context.getTypeDeclType(Specialization) << Range; 5998 5999 Diag(PrevDecl->getPointOfInstantiation(), 6000 diag::note_instantiation_required_here) 6001 << (PrevDecl->getTemplateSpecializationKind() 6002 != TSK_ImplicitInstantiation); 6003 return true; 6004 } 6005 } 6006 6007 // If this is not a friend, note that this is an explicit specialization. 6008 if (TUK != TUK_Friend) 6009 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 6010 6011 // Check that this isn't a redefinition of this specialization. 6012 if (TUK == TUK_Definition) { 6013 if (RecordDecl *Def = Specialization->getDefinition()) { 6014 SourceRange Range(TemplateNameLoc, RAngleLoc); 6015 Diag(TemplateNameLoc, diag::err_redefinition) 6016 << Context.getTypeDeclType(Specialization) << Range; 6017 Diag(Def->getLocation(), diag::note_previous_definition); 6018 Specialization->setInvalidDecl(); 6019 return true; 6020 } 6021 } 6022 6023 if (Attr) 6024 ProcessDeclAttributeList(S, Specialization, Attr); 6025 6026 // Add alignment attributes if necessary; these attributes are checked when 6027 // the ASTContext lays out the structure. 6028 if (TUK == TUK_Definition) { 6029 AddAlignmentAttributesForRecord(Specialization); 6030 AddMsStructLayoutForRecord(Specialization); 6031 } 6032 6033 if (ModulePrivateLoc.isValid()) 6034 Diag(Specialization->getLocation(), diag::err_module_private_specialization) 6035 << (isPartialSpecialization? 1 : 0) 6036 << FixItHint::CreateRemoval(ModulePrivateLoc); 6037 6038 // Build the fully-sugared type for this class template 6039 // specialization as the user wrote in the specialization 6040 // itself. This means that we'll pretty-print the type retrieved 6041 // from the specialization's declaration the way that the user 6042 // actually wrote the specialization, rather than formatting the 6043 // name based on the "canonical" representation used to store the 6044 // template arguments in the specialization. 6045 TypeSourceInfo *WrittenTy 6046 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 6047 TemplateArgs, CanonType); 6048 if (TUK != TUK_Friend) { 6049 Specialization->setTypeAsWritten(WrittenTy); 6050 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 6051 } 6052 6053 // C++ [temp.expl.spec]p9: 6054 // A template explicit specialization is in the scope of the 6055 // namespace in which the template was defined. 6056 // 6057 // We actually implement this paragraph where we set the semantic 6058 // context (in the creation of the ClassTemplateSpecializationDecl), 6059 // but we also maintain the lexical context where the actual 6060 // definition occurs. 6061 Specialization->setLexicalDeclContext(CurContext); 6062 6063 // We may be starting the definition of this specialization. 6064 if (TUK == TUK_Definition) 6065 Specialization->startDefinition(); 6066 6067 if (TUK == TUK_Friend) { 6068 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 6069 TemplateNameLoc, 6070 WrittenTy, 6071 /*FIXME:*/KWLoc); 6072 Friend->setAccess(AS_public); 6073 CurContext->addDecl(Friend); 6074 } else { 6075 // Add the specialization into its lexical context, so that it can 6076 // be seen when iterating through the list of declarations in that 6077 // context. However, specializations are not found by name lookup. 6078 CurContext->addDecl(Specialization); 6079 } 6080 return Specialization; 6081} 6082 6083Decl *Sema::ActOnTemplateDeclarator(Scope *S, 6084 MultiTemplateParamsArg TemplateParameterLists, 6085 Declarator &D) { 6086 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists); 6087 ActOnDocumentableDecl(NewDecl); 6088 return NewDecl; 6089} 6090 6091Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 6092 MultiTemplateParamsArg TemplateParameterLists, 6093 Declarator &D) { 6094 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 6095 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 6096 6097 if (FTI.hasPrototype) { 6098 // FIXME: Diagnose arguments without names in C. 6099 } 6100 6101 Scope *ParentScope = FnBodyScope->getParent(); 6102 6103 D.setFunctionDefinitionKind(FDK_Definition); 6104 Decl *DP = HandleDeclarator(ParentScope, D, 6105 TemplateParameterLists); 6106 return ActOnStartOfFunctionDef(FnBodyScope, DP); 6107} 6108 6109/// \brief Strips various properties off an implicit instantiation 6110/// that has just been explicitly specialized. 6111static void StripImplicitInstantiation(NamedDecl *D) { 6112 D->dropAttrs(); 6113 6114 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 6115 FD->setInlineSpecified(false); 6116 6117 for (FunctionDecl::param_iterator I = FD->param_begin(), 6118 E = FD->param_end(); 6119 I != E; ++I) 6120 (*I)->dropAttrs(); 6121 } 6122} 6123 6124/// \brief Compute the diagnostic location for an explicit instantiation 6125// declaration or definition. 6126static SourceLocation DiagLocForExplicitInstantiation( 6127 NamedDecl* D, SourceLocation PointOfInstantiation) { 6128 // Explicit instantiations following a specialization have no effect and 6129 // hence no PointOfInstantiation. In that case, walk decl backwards 6130 // until a valid name loc is found. 6131 SourceLocation PrevDiagLoc = PointOfInstantiation; 6132 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); 6133 Prev = Prev->getPreviousDecl()) { 6134 PrevDiagLoc = Prev->getLocation(); 6135 } 6136 assert(PrevDiagLoc.isValid() && 6137 "Explicit instantiation without point of instantiation?"); 6138 return PrevDiagLoc; 6139} 6140 6141/// \brief Diagnose cases where we have an explicit template specialization 6142/// before/after an explicit template instantiation, producing diagnostics 6143/// for those cases where they are required and determining whether the 6144/// new specialization/instantiation will have any effect. 6145/// 6146/// \param NewLoc the location of the new explicit specialization or 6147/// instantiation. 6148/// 6149/// \param NewTSK the kind of the new explicit specialization or instantiation. 6150/// 6151/// \param PrevDecl the previous declaration of the entity. 6152/// 6153/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 6154/// 6155/// \param PrevPointOfInstantiation if valid, indicates where the previus 6156/// declaration was instantiated (either implicitly or explicitly). 6157/// 6158/// \param HasNoEffect will be set to true to indicate that the new 6159/// specialization or instantiation has no effect and should be ignored. 6160/// 6161/// \returns true if there was an error that should prevent the introduction of 6162/// the new declaration into the AST, false otherwise. 6163bool 6164Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 6165 TemplateSpecializationKind NewTSK, 6166 NamedDecl *PrevDecl, 6167 TemplateSpecializationKind PrevTSK, 6168 SourceLocation PrevPointOfInstantiation, 6169 bool &HasNoEffect) { 6170 HasNoEffect = false; 6171 6172 switch (NewTSK) { 6173 case TSK_Undeclared: 6174 case TSK_ImplicitInstantiation: 6175 llvm_unreachable("Don't check implicit instantiations here"); 6176 6177 case TSK_ExplicitSpecialization: 6178 switch (PrevTSK) { 6179 case TSK_Undeclared: 6180 case TSK_ExplicitSpecialization: 6181 // Okay, we're just specializing something that is either already 6182 // explicitly specialized or has merely been mentioned without any 6183 // instantiation. 6184 return false; 6185 6186 case TSK_ImplicitInstantiation: 6187 if (PrevPointOfInstantiation.isInvalid()) { 6188 // The declaration itself has not actually been instantiated, so it is 6189 // still okay to specialize it. 6190 StripImplicitInstantiation(PrevDecl); 6191 return false; 6192 } 6193 // Fall through 6194 6195 case TSK_ExplicitInstantiationDeclaration: 6196 case TSK_ExplicitInstantiationDefinition: 6197 assert((PrevTSK == TSK_ImplicitInstantiation || 6198 PrevPointOfInstantiation.isValid()) && 6199 "Explicit instantiation without point of instantiation?"); 6200 6201 // C++ [temp.expl.spec]p6: 6202 // If a template, a member template or the member of a class template 6203 // is explicitly specialized then that specialization shall be declared 6204 // before the first use of that specialization that would cause an 6205 // implicit instantiation to take place, in every translation unit in 6206 // which such a use occurs; no diagnostic is required. 6207 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 6208 // Is there any previous explicit specialization declaration? 6209 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 6210 return false; 6211 } 6212 6213 Diag(NewLoc, diag::err_specialization_after_instantiation) 6214 << PrevDecl; 6215 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 6216 << (PrevTSK != TSK_ImplicitInstantiation); 6217 6218 return true; 6219 } 6220 6221 case TSK_ExplicitInstantiationDeclaration: 6222 switch (PrevTSK) { 6223 case TSK_ExplicitInstantiationDeclaration: 6224 // This explicit instantiation declaration is redundant (that's okay). 6225 HasNoEffect = true; 6226 return false; 6227 6228 case TSK_Undeclared: 6229 case TSK_ImplicitInstantiation: 6230 // We're explicitly instantiating something that may have already been 6231 // implicitly instantiated; that's fine. 6232 return false; 6233 6234 case TSK_ExplicitSpecialization: 6235 // C++0x [temp.explicit]p4: 6236 // For a given set of template parameters, if an explicit instantiation 6237 // of a template appears after a declaration of an explicit 6238 // specialization for that template, the explicit instantiation has no 6239 // effect. 6240 HasNoEffect = true; 6241 return false; 6242 6243 case TSK_ExplicitInstantiationDefinition: 6244 // C++0x [temp.explicit]p10: 6245 // If an entity is the subject of both an explicit instantiation 6246 // declaration and an explicit instantiation definition in the same 6247 // translation unit, the definition shall follow the declaration. 6248 Diag(NewLoc, 6249 diag::err_explicit_instantiation_declaration_after_definition); 6250 6251 // Explicit instantiations following a specialization have no effect and 6252 // hence no PrevPointOfInstantiation. In that case, walk decl backwards 6253 // until a valid name loc is found. 6254 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 6255 diag::note_explicit_instantiation_definition_here); 6256 HasNoEffect = true; 6257 return false; 6258 } 6259 6260 case TSK_ExplicitInstantiationDefinition: 6261 switch (PrevTSK) { 6262 case TSK_Undeclared: 6263 case TSK_ImplicitInstantiation: 6264 // We're explicitly instantiating something that may have already been 6265 // implicitly instantiated; that's fine. 6266 return false; 6267 6268 case TSK_ExplicitSpecialization: 6269 // C++ DR 259, C++0x [temp.explicit]p4: 6270 // For a given set of template parameters, if an explicit 6271 // instantiation of a template appears after a declaration of 6272 // an explicit specialization for that template, the explicit 6273 // instantiation has no effect. 6274 // 6275 // In C++98/03 mode, we only give an extension warning here, because it 6276 // is not harmful to try to explicitly instantiate something that 6277 // has been explicitly specialized. 6278 Diag(NewLoc, getLangOpts().CPlusPlus11 ? 6279 diag::warn_cxx98_compat_explicit_instantiation_after_specialization : 6280 diag::ext_explicit_instantiation_after_specialization) 6281 << PrevDecl; 6282 Diag(PrevDecl->getLocation(), 6283 diag::note_previous_template_specialization); 6284 HasNoEffect = true; 6285 return false; 6286 6287 case TSK_ExplicitInstantiationDeclaration: 6288 // We're explicity instantiating a definition for something for which we 6289 // were previously asked to suppress instantiations. That's fine. 6290 6291 // C++0x [temp.explicit]p4: 6292 // For a given set of template parameters, if an explicit instantiation 6293 // of a template appears after a declaration of an explicit 6294 // specialization for that template, the explicit instantiation has no 6295 // effect. 6296 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 6297 // Is there any previous explicit specialization declaration? 6298 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 6299 HasNoEffect = true; 6300 break; 6301 } 6302 } 6303 6304 return false; 6305 6306 case TSK_ExplicitInstantiationDefinition: 6307 // C++0x [temp.spec]p5: 6308 // For a given template and a given set of template-arguments, 6309 // - an explicit instantiation definition shall appear at most once 6310 // in a program, 6311 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 6312 << PrevDecl; 6313 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 6314 diag::note_previous_explicit_instantiation); 6315 HasNoEffect = true; 6316 return false; 6317 } 6318 } 6319 6320 llvm_unreachable("Missing specialization/instantiation case?"); 6321} 6322 6323/// \brief Perform semantic analysis for the given dependent function 6324/// template specialization. 6325/// 6326/// The only possible way to get a dependent function template specialization 6327/// is with a friend declaration, like so: 6328/// 6329/// \code 6330/// template \<class T> void foo(T); 6331/// template \<class T> class A { 6332/// friend void foo<>(T); 6333/// }; 6334/// \endcode 6335/// 6336/// There really isn't any useful analysis we can do here, so we 6337/// just store the information. 6338bool 6339Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 6340 const TemplateArgumentListInfo &ExplicitTemplateArgs, 6341 LookupResult &Previous) { 6342 // Remove anything from Previous that isn't a function template in 6343 // the correct context. 6344 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 6345 LookupResult::Filter F = Previous.makeFilter(); 6346 while (F.hasNext()) { 6347 NamedDecl *D = F.next()->getUnderlyingDecl(); 6348 if (!isa<FunctionTemplateDecl>(D) || 6349 !FDLookupContext->InEnclosingNamespaceSetOf( 6350 D->getDeclContext()->getRedeclContext())) 6351 F.erase(); 6352 } 6353 F.done(); 6354 6355 // Should this be diagnosed here? 6356 if (Previous.empty()) return true; 6357 6358 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 6359 ExplicitTemplateArgs); 6360 return false; 6361} 6362 6363/// \brief Perform semantic analysis for the given function template 6364/// specialization. 6365/// 6366/// This routine performs all of the semantic analysis required for an 6367/// explicit function template specialization. On successful completion, 6368/// the function declaration \p FD will become a function template 6369/// specialization. 6370/// 6371/// \param FD the function declaration, which will be updated to become a 6372/// function template specialization. 6373/// 6374/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 6375/// if any. Note that this may be valid info even when 0 arguments are 6376/// explicitly provided as in, e.g., \c void sort<>(char*, char*); 6377/// as it anyway contains info on the angle brackets locations. 6378/// 6379/// \param Previous the set of declarations that may be specialized by 6380/// this function specialization. 6381bool Sema::CheckFunctionTemplateSpecialization( 6382 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs, 6383 LookupResult &Previous) { 6384 // The set of function template specializations that could match this 6385 // explicit function template specialization. 6386 UnresolvedSet<8> Candidates; 6387 TemplateSpecCandidateSet FailedCandidates(FD->getLocation()); 6388 6389 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 6390 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 6391 I != E; ++I) { 6392 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 6393 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 6394 // Only consider templates found within the same semantic lookup scope as 6395 // FD. 6396 if (!FDLookupContext->InEnclosingNamespaceSetOf( 6397 Ovl->getDeclContext()->getRedeclContext())) 6398 continue; 6399 6400 // When matching a constexpr member function template specialization 6401 // against the primary template, we don't yet know whether the 6402 // specialization has an implicit 'const' (because we don't know whether 6403 // it will be a static member function until we know which template it 6404 // specializes), so adjust it now assuming it specializes this template. 6405 QualType FT = FD->getType(); 6406 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>(); 6407 FunctionDecl *TmplFD = FunTmpl->getTemplatedDecl(); 6408 if (FD->isConstexpr()) { 6409 CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(TmplFD); 6410 if (OldMD && OldMD->isConst()) { 6411 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 6412 EPI.TypeQuals |= Qualifiers::Const; 6413 FT = Context.getFunctionType(FPT->getResultType(), FPT->getArgTypes(), 6414 EPI); 6415 } 6416 } 6417 6418 // Ignore differences in calling convention and noreturn until decl 6419 // merging. 6420 const FunctionProtoType *TmplFT = 6421 TmplFD->getType()->castAs<FunctionProtoType>(); 6422 if (FPT->getCallConv() != TmplFT->getCallConv() || 6423 FPT->getNoReturnAttr() != TmplFT->getNoReturnAttr()) { 6424 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 6425 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(TmplFT->getCallConv()); 6426 EPI.ExtInfo = EPI.ExtInfo.withNoReturn(TmplFT->getNoReturnAttr()); 6427 FT = Context.getFunctionType(FPT->getResultType(), FPT->getArgTypes(), 6428 EPI); 6429 } 6430 6431 // C++ [temp.expl.spec]p11: 6432 // A trailing template-argument can be left unspecified in the 6433 // template-id naming an explicit function template specialization 6434 // provided it can be deduced from the function argument type. 6435 // Perform template argument deduction to determine whether we may be 6436 // specializing this template. 6437 // FIXME: It is somewhat wasteful to build 6438 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 6439 FunctionDecl *Specialization = 0; 6440 if (TemplateDeductionResult TDK 6441 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, FT, 6442 Specialization, Info)) { 6443 // Template argument deduction failed; record why it failed, so 6444 // that we can provide nifty diagnostics. 6445 FailedCandidates.addCandidate() 6446 .set(FunTmpl->getTemplatedDecl(), 6447 MakeDeductionFailureInfo(Context, TDK, Info)); 6448 (void)TDK; 6449 continue; 6450 } 6451 6452 // Record this candidate. 6453 Candidates.addDecl(Specialization, I.getAccess()); 6454 } 6455 } 6456 6457 // Find the most specialized function template. 6458 UnresolvedSetIterator Result = getMostSpecialized( 6459 Candidates.begin(), Candidates.end(), FailedCandidates, TPOC_Other, 0, 6460 FD->getLocation(), 6461 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(), 6462 PDiag(diag::err_function_template_spec_ambiguous) 6463 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 6464 PDiag(diag::note_function_template_spec_matched)); 6465 6466 if (Result == Candidates.end()) 6467 return true; 6468 6469 // Ignore access information; it doesn't figure into redeclaration checking. 6470 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 6471 6472 FunctionTemplateSpecializationInfo *SpecInfo 6473 = Specialization->getTemplateSpecializationInfo(); 6474 assert(SpecInfo && "Function template specialization info missing?"); 6475 6476 // Note: do not overwrite location info if previous template 6477 // specialization kind was explicit. 6478 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 6479 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) { 6480 Specialization->setLocation(FD->getLocation()); 6481 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr 6482 // function can differ from the template declaration with respect to 6483 // the constexpr specifier. 6484 Specialization->setConstexpr(FD->isConstexpr()); 6485 } 6486 6487 // FIXME: Check if the prior specialization has a point of instantiation. 6488 // If so, we have run afoul of . 6489 6490 // If this is a friend declaration, then we're not really declaring 6491 // an explicit specialization. 6492 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 6493 6494 // Check the scope of this explicit specialization. 6495 if (!isFriend && 6496 CheckTemplateSpecializationScope(*this, 6497 Specialization->getPrimaryTemplate(), 6498 Specialization, FD->getLocation(), 6499 false)) 6500 return true; 6501 6502 // C++ [temp.expl.spec]p6: 6503 // If a template, a member template or the member of a class template is 6504 // explicitly specialized then that specialization shall be declared 6505 // before the first use of that specialization that would cause an implicit 6506 // instantiation to take place, in every translation unit in which such a 6507 // use occurs; no diagnostic is required. 6508 bool HasNoEffect = false; 6509 if (!isFriend && 6510 CheckSpecializationInstantiationRedecl(FD->getLocation(), 6511 TSK_ExplicitSpecialization, 6512 Specialization, 6513 SpecInfo->getTemplateSpecializationKind(), 6514 SpecInfo->getPointOfInstantiation(), 6515 HasNoEffect)) 6516 return true; 6517 6518 // Mark the prior declaration as an explicit specialization, so that later 6519 // clients know that this is an explicit specialization. 6520 if (!isFriend) { 6521 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 6522 MarkUnusedFileScopedDecl(Specialization); 6523 } 6524 6525 // Turn the given function declaration into a function template 6526 // specialization, with the template arguments from the previous 6527 // specialization. 6528 // Take copies of (semantic and syntactic) template argument lists. 6529 const TemplateArgumentList* TemplArgs = new (Context) 6530 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 6531 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 6532 TemplArgs, /*InsertPos=*/0, 6533 SpecInfo->getTemplateSpecializationKind(), 6534 ExplicitTemplateArgs); 6535 6536 // The "previous declaration" for this function template specialization is 6537 // the prior function template specialization. 6538 Previous.clear(); 6539 Previous.addDecl(Specialization); 6540 return false; 6541} 6542 6543/// \brief Perform semantic analysis for the given non-template member 6544/// specialization. 6545/// 6546/// This routine performs all of the semantic analysis required for an 6547/// explicit member function specialization. On successful completion, 6548/// the function declaration \p FD will become a member function 6549/// specialization. 6550/// 6551/// \param Member the member declaration, which will be updated to become a 6552/// specialization. 6553/// 6554/// \param Previous the set of declarations, one of which may be specialized 6555/// by this function specialization; the set will be modified to contain the 6556/// redeclared member. 6557bool 6558Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 6559 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 6560 6561 // Try to find the member we are instantiating. 6562 NamedDecl *Instantiation = 0; 6563 NamedDecl *InstantiatedFrom = 0; 6564 MemberSpecializationInfo *MSInfo = 0; 6565 6566 if (Previous.empty()) { 6567 // Nowhere to look anyway. 6568 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 6569 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 6570 I != E; ++I) { 6571 NamedDecl *D = (*I)->getUnderlyingDecl(); 6572 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 6573 if (Context.hasSameType(Function->getType(), Method->getType())) { 6574 Instantiation = Method; 6575 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 6576 MSInfo = Method->getMemberSpecializationInfo(); 6577 break; 6578 } 6579 } 6580 } 6581 } else if (isa<VarDecl>(Member)) { 6582 VarDecl *PrevVar; 6583 if (Previous.isSingleResult() && 6584 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 6585 if (PrevVar->isStaticDataMember()) { 6586 Instantiation = PrevVar; 6587 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 6588 MSInfo = PrevVar->getMemberSpecializationInfo(); 6589 } 6590 } else if (isa<RecordDecl>(Member)) { 6591 CXXRecordDecl *PrevRecord; 6592 if (Previous.isSingleResult() && 6593 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 6594 Instantiation = PrevRecord; 6595 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 6596 MSInfo = PrevRecord->getMemberSpecializationInfo(); 6597 } 6598 } else if (isa<EnumDecl>(Member)) { 6599 EnumDecl *PrevEnum; 6600 if (Previous.isSingleResult() && 6601 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) { 6602 Instantiation = PrevEnum; 6603 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum(); 6604 MSInfo = PrevEnum->getMemberSpecializationInfo(); 6605 } 6606 } 6607 6608 if (!Instantiation) { 6609 // There is no previous declaration that matches. Since member 6610 // specializations are always out-of-line, the caller will complain about 6611 // this mismatch later. 6612 return false; 6613 } 6614 6615 // If this is a friend, just bail out here before we start turning 6616 // things into explicit specializations. 6617 if (Member->getFriendObjectKind() != Decl::FOK_None) { 6618 // Preserve instantiation information. 6619 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 6620 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 6621 cast<CXXMethodDecl>(InstantiatedFrom), 6622 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 6623 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 6624 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 6625 cast<CXXRecordDecl>(InstantiatedFrom), 6626 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 6627 } 6628 6629 Previous.clear(); 6630 Previous.addDecl(Instantiation); 6631 return false; 6632 } 6633 6634 // Make sure that this is a specialization of a member. 6635 if (!InstantiatedFrom) { 6636 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 6637 << Member; 6638 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 6639 return true; 6640 } 6641 6642 // C++ [temp.expl.spec]p6: 6643 // If a template, a member template or the member of a class template is 6644 // explicitly specialized then that specialization shall be declared 6645 // before the first use of that specialization that would cause an implicit 6646 // instantiation to take place, in every translation unit in which such a 6647 // use occurs; no diagnostic is required. 6648 assert(MSInfo && "Member specialization info missing?"); 6649 6650 bool HasNoEffect = false; 6651 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 6652 TSK_ExplicitSpecialization, 6653 Instantiation, 6654 MSInfo->getTemplateSpecializationKind(), 6655 MSInfo->getPointOfInstantiation(), 6656 HasNoEffect)) 6657 return true; 6658 6659 // Check the scope of this explicit specialization. 6660 if (CheckTemplateSpecializationScope(*this, 6661 InstantiatedFrom, 6662 Instantiation, Member->getLocation(), 6663 false)) 6664 return true; 6665 6666 // Note that this is an explicit instantiation of a member. 6667 // the original declaration to note that it is an explicit specialization 6668 // (if it was previously an implicit instantiation). This latter step 6669 // makes bookkeeping easier. 6670 if (isa<FunctionDecl>(Member)) { 6671 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 6672 if (InstantiationFunction->getTemplateSpecializationKind() == 6673 TSK_ImplicitInstantiation) { 6674 InstantiationFunction->setTemplateSpecializationKind( 6675 TSK_ExplicitSpecialization); 6676 InstantiationFunction->setLocation(Member->getLocation()); 6677 } 6678 6679 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 6680 cast<CXXMethodDecl>(InstantiatedFrom), 6681 TSK_ExplicitSpecialization); 6682 MarkUnusedFileScopedDecl(InstantiationFunction); 6683 } else if (isa<VarDecl>(Member)) { 6684 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 6685 if (InstantiationVar->getTemplateSpecializationKind() == 6686 TSK_ImplicitInstantiation) { 6687 InstantiationVar->setTemplateSpecializationKind( 6688 TSK_ExplicitSpecialization); 6689 InstantiationVar->setLocation(Member->getLocation()); 6690 } 6691 6692 cast<VarDecl>(Member)->setInstantiationOfStaticDataMember( 6693 cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 6694 MarkUnusedFileScopedDecl(InstantiationVar); 6695 } else if (isa<CXXRecordDecl>(Member)) { 6696 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 6697 if (InstantiationClass->getTemplateSpecializationKind() == 6698 TSK_ImplicitInstantiation) { 6699 InstantiationClass->setTemplateSpecializationKind( 6700 TSK_ExplicitSpecialization); 6701 InstantiationClass->setLocation(Member->getLocation()); 6702 } 6703 6704 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 6705 cast<CXXRecordDecl>(InstantiatedFrom), 6706 TSK_ExplicitSpecialization); 6707 } else { 6708 assert(isa<EnumDecl>(Member) && "Only member enums remain"); 6709 EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation); 6710 if (InstantiationEnum->getTemplateSpecializationKind() == 6711 TSK_ImplicitInstantiation) { 6712 InstantiationEnum->setTemplateSpecializationKind( 6713 TSK_ExplicitSpecialization); 6714 InstantiationEnum->setLocation(Member->getLocation()); 6715 } 6716 6717 cast<EnumDecl>(Member)->setInstantiationOfMemberEnum( 6718 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 6719 } 6720 6721 // Save the caller the trouble of having to figure out which declaration 6722 // this specialization matches. 6723 Previous.clear(); 6724 Previous.addDecl(Instantiation); 6725 return false; 6726} 6727 6728/// \brief Check the scope of an explicit instantiation. 6729/// 6730/// \returns true if a serious error occurs, false otherwise. 6731static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 6732 SourceLocation InstLoc, 6733 bool WasQualifiedName) { 6734 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 6735 DeclContext *CurContext = S.CurContext->getRedeclContext(); 6736 6737 if (CurContext->isRecord()) { 6738 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 6739 << D; 6740 return true; 6741 } 6742 6743 // C++11 [temp.explicit]p3: 6744 // An explicit instantiation shall appear in an enclosing namespace of its 6745 // template. If the name declared in the explicit instantiation is an 6746 // unqualified name, the explicit instantiation shall appear in the 6747 // namespace where its template is declared or, if that namespace is inline 6748 // (7.3.1), any namespace from its enclosing namespace set. 6749 // 6750 // This is DR275, which we do not retroactively apply to C++98/03. 6751 if (WasQualifiedName) { 6752 if (CurContext->Encloses(OrigContext)) 6753 return false; 6754 } else { 6755 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 6756 return false; 6757 } 6758 6759 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) { 6760 if (WasQualifiedName) 6761 S.Diag(InstLoc, 6762 S.getLangOpts().CPlusPlus11? 6763 diag::err_explicit_instantiation_out_of_scope : 6764 diag::warn_explicit_instantiation_out_of_scope_0x) 6765 << D << NS; 6766 else 6767 S.Diag(InstLoc, 6768 S.getLangOpts().CPlusPlus11? 6769 diag::err_explicit_instantiation_unqualified_wrong_namespace : 6770 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 6771 << D << NS; 6772 } else 6773 S.Diag(InstLoc, 6774 S.getLangOpts().CPlusPlus11? 6775 diag::err_explicit_instantiation_must_be_global : 6776 diag::warn_explicit_instantiation_must_be_global_0x) 6777 << D; 6778 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 6779 return false; 6780} 6781 6782/// \brief Determine whether the given scope specifier has a template-id in it. 6783static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 6784 if (!SS.isSet()) 6785 return false; 6786 6787 // C++11 [temp.explicit]p3: 6788 // If the explicit instantiation is for a member function, a member class 6789 // or a static data member of a class template specialization, the name of 6790 // the class template specialization in the qualified-id for the member 6791 // name shall be a simple-template-id. 6792 // 6793 // C++98 has the same restriction, just worded differently. 6794 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 6795 NNS; NNS = NNS->getPrefix()) 6796 if (const Type *T = NNS->getAsType()) 6797 if (isa<TemplateSpecializationType>(T)) 6798 return true; 6799 6800 return false; 6801} 6802 6803// Explicit instantiation of a class template specialization 6804DeclResult 6805Sema::ActOnExplicitInstantiation(Scope *S, 6806 SourceLocation ExternLoc, 6807 SourceLocation TemplateLoc, 6808 unsigned TagSpec, 6809 SourceLocation KWLoc, 6810 const CXXScopeSpec &SS, 6811 TemplateTy TemplateD, 6812 SourceLocation TemplateNameLoc, 6813 SourceLocation LAngleLoc, 6814 ASTTemplateArgsPtr TemplateArgsIn, 6815 SourceLocation RAngleLoc, 6816 AttributeList *Attr) { 6817 // Find the class template we're specializing 6818 TemplateName Name = TemplateD.get(); 6819 TemplateDecl *TD = Name.getAsTemplateDecl(); 6820 // Check that the specialization uses the same tag kind as the 6821 // original template. 6822 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 6823 assert(Kind != TTK_Enum && 6824 "Invalid enum tag in class template explicit instantiation!"); 6825 6826 if (isa<TypeAliasTemplateDecl>(TD)) { 6827 Diag(KWLoc, diag::err_tag_reference_non_tag) << Kind; 6828 Diag(TD->getTemplatedDecl()->getLocation(), 6829 diag::note_previous_use); 6830 return true; 6831 } 6832 6833 ClassTemplateDecl *ClassTemplate = cast<ClassTemplateDecl>(TD); 6834 6835 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 6836 Kind, /*isDefinition*/false, KWLoc, 6837 *ClassTemplate->getIdentifier())) { 6838 Diag(KWLoc, diag::err_use_with_wrong_tag) 6839 << ClassTemplate 6840 << FixItHint::CreateReplacement(KWLoc, 6841 ClassTemplate->getTemplatedDecl()->getKindName()); 6842 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 6843 diag::note_previous_use); 6844 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 6845 } 6846 6847 // C++0x [temp.explicit]p2: 6848 // There are two forms of explicit instantiation: an explicit instantiation 6849 // definition and an explicit instantiation declaration. An explicit 6850 // instantiation declaration begins with the extern keyword. [...] 6851 TemplateSpecializationKind TSK 6852 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6853 : TSK_ExplicitInstantiationDeclaration; 6854 6855 // Translate the parser's template argument list in our AST format. 6856 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 6857 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 6858 6859 // Check that the template argument list is well-formed for this 6860 // template. 6861 SmallVector<TemplateArgument, 4> Converted; 6862 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 6863 TemplateArgs, false, Converted)) 6864 return true; 6865 6866 // Find the class template specialization declaration that 6867 // corresponds to these arguments. 6868 void *InsertPos = 0; 6869 ClassTemplateSpecializationDecl *PrevDecl 6870 = ClassTemplate->findSpecialization(Converted.data(), 6871 Converted.size(), InsertPos); 6872 6873 TemplateSpecializationKind PrevDecl_TSK 6874 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 6875 6876 // C++0x [temp.explicit]p2: 6877 // [...] An explicit instantiation shall appear in an enclosing 6878 // namespace of its template. [...] 6879 // 6880 // This is C++ DR 275. 6881 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 6882 SS.isSet())) 6883 return true; 6884 6885 ClassTemplateSpecializationDecl *Specialization = 0; 6886 6887 bool HasNoEffect = false; 6888 if (PrevDecl) { 6889 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 6890 PrevDecl, PrevDecl_TSK, 6891 PrevDecl->getPointOfInstantiation(), 6892 HasNoEffect)) 6893 return PrevDecl; 6894 6895 // Even though HasNoEffect == true means that this explicit instantiation 6896 // has no effect on semantics, we go on to put its syntax in the AST. 6897 6898 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 6899 PrevDecl_TSK == TSK_Undeclared) { 6900 // Since the only prior class template specialization with these 6901 // arguments was referenced but not declared, reuse that 6902 // declaration node as our own, updating the source location 6903 // for the template name to reflect our new declaration. 6904 // (Other source locations will be updated later.) 6905 Specialization = PrevDecl; 6906 Specialization->setLocation(TemplateNameLoc); 6907 PrevDecl = 0; 6908 } 6909 } 6910 6911 if (!Specialization) { 6912 // Create a new class template specialization declaration node for 6913 // this explicit specialization. 6914 Specialization 6915 = ClassTemplateSpecializationDecl::Create(Context, Kind, 6916 ClassTemplate->getDeclContext(), 6917 KWLoc, TemplateNameLoc, 6918 ClassTemplate, 6919 Converted.data(), 6920 Converted.size(), 6921 PrevDecl); 6922 SetNestedNameSpecifier(Specialization, SS); 6923 6924 if (!HasNoEffect && !PrevDecl) { 6925 // Insert the new specialization. 6926 ClassTemplate->AddSpecialization(Specialization, InsertPos); 6927 } 6928 } 6929 6930 // Build the fully-sugared type for this explicit instantiation as 6931 // the user wrote in the explicit instantiation itself. This means 6932 // that we'll pretty-print the type retrieved from the 6933 // specialization's declaration the way that the user actually wrote 6934 // the explicit instantiation, rather than formatting the name based 6935 // on the "canonical" representation used to store the template 6936 // arguments in the specialization. 6937 TypeSourceInfo *WrittenTy 6938 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 6939 TemplateArgs, 6940 Context.getTypeDeclType(Specialization)); 6941 Specialization->setTypeAsWritten(WrittenTy); 6942 6943 // Set source locations for keywords. 6944 Specialization->setExternLoc(ExternLoc); 6945 Specialization->setTemplateKeywordLoc(TemplateLoc); 6946 Specialization->setRBraceLoc(SourceLocation()); 6947 6948 if (Attr) 6949 ProcessDeclAttributeList(S, Specialization, Attr); 6950 6951 // Add the explicit instantiation into its lexical context. However, 6952 // since explicit instantiations are never found by name lookup, we 6953 // just put it into the declaration context directly. 6954 Specialization->setLexicalDeclContext(CurContext); 6955 CurContext->addDecl(Specialization); 6956 6957 // Syntax is now OK, so return if it has no other effect on semantics. 6958 if (HasNoEffect) { 6959 // Set the template specialization kind. 6960 Specialization->setTemplateSpecializationKind(TSK); 6961 return Specialization; 6962 } 6963 6964 // C++ [temp.explicit]p3: 6965 // A definition of a class template or class member template 6966 // shall be in scope at the point of the explicit instantiation of 6967 // the class template or class member template. 6968 // 6969 // This check comes when we actually try to perform the 6970 // instantiation. 6971 ClassTemplateSpecializationDecl *Def 6972 = cast_or_null<ClassTemplateSpecializationDecl>( 6973 Specialization->getDefinition()); 6974 if (!Def) 6975 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 6976 else if (TSK == TSK_ExplicitInstantiationDefinition) { 6977 MarkVTableUsed(TemplateNameLoc, Specialization, true); 6978 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 6979 } 6980 6981 // Instantiate the members of this class template specialization. 6982 Def = cast_or_null<ClassTemplateSpecializationDecl>( 6983 Specialization->getDefinition()); 6984 if (Def) { 6985 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 6986 6987 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 6988 // TSK_ExplicitInstantiationDefinition 6989 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 6990 TSK == TSK_ExplicitInstantiationDefinition) 6991 Def->setTemplateSpecializationKind(TSK); 6992 6993 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 6994 } 6995 6996 // Set the template specialization kind. 6997 Specialization->setTemplateSpecializationKind(TSK); 6998 return Specialization; 6999} 7000 7001// Explicit instantiation of a member class of a class template. 7002DeclResult 7003Sema::ActOnExplicitInstantiation(Scope *S, 7004 SourceLocation ExternLoc, 7005 SourceLocation TemplateLoc, 7006 unsigned TagSpec, 7007 SourceLocation KWLoc, 7008 CXXScopeSpec &SS, 7009 IdentifierInfo *Name, 7010 SourceLocation NameLoc, 7011 AttributeList *Attr) { 7012 7013 bool Owned = false; 7014 bool IsDependent = false; 7015 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 7016 KWLoc, SS, Name, NameLoc, Attr, AS_none, 7017 /*ModulePrivateLoc=*/SourceLocation(), 7018 MultiTemplateParamsArg(), Owned, IsDependent, 7019 SourceLocation(), false, TypeResult()); 7020 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 7021 7022 if (!TagD) 7023 return true; 7024 7025 TagDecl *Tag = cast<TagDecl>(TagD); 7026 assert(!Tag->isEnum() && "shouldn't see enumerations here"); 7027 7028 if (Tag->isInvalidDecl()) 7029 return true; 7030 7031 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 7032 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 7033 if (!Pattern) { 7034 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 7035 << Context.getTypeDeclType(Record); 7036 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 7037 return true; 7038 } 7039 7040 // C++0x [temp.explicit]p2: 7041 // If the explicit instantiation is for a class or member class, the 7042 // elaborated-type-specifier in the declaration shall include a 7043 // simple-template-id. 7044 // 7045 // C++98 has the same restriction, just worded differently. 7046 if (!ScopeSpecifierHasTemplateId(SS)) 7047 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 7048 << Record << SS.getRange(); 7049 7050 // C++0x [temp.explicit]p2: 7051 // There are two forms of explicit instantiation: an explicit instantiation 7052 // definition and an explicit instantiation declaration. An explicit 7053 // instantiation declaration begins with the extern keyword. [...] 7054 TemplateSpecializationKind TSK 7055 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 7056 : TSK_ExplicitInstantiationDeclaration; 7057 7058 // C++0x [temp.explicit]p2: 7059 // [...] An explicit instantiation shall appear in an enclosing 7060 // namespace of its template. [...] 7061 // 7062 // This is C++ DR 275. 7063 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 7064 7065 // Verify that it is okay to explicitly instantiate here. 7066 CXXRecordDecl *PrevDecl 7067 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl()); 7068 if (!PrevDecl && Record->getDefinition()) 7069 PrevDecl = Record; 7070 if (PrevDecl) { 7071 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 7072 bool HasNoEffect = false; 7073 assert(MSInfo && "No member specialization information?"); 7074 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 7075 PrevDecl, 7076 MSInfo->getTemplateSpecializationKind(), 7077 MSInfo->getPointOfInstantiation(), 7078 HasNoEffect)) 7079 return true; 7080 if (HasNoEffect) 7081 return TagD; 7082 } 7083 7084 CXXRecordDecl *RecordDef 7085 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 7086 if (!RecordDef) { 7087 // C++ [temp.explicit]p3: 7088 // A definition of a member class of a class template shall be in scope 7089 // at the point of an explicit instantiation of the member class. 7090 CXXRecordDecl *Def 7091 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 7092 if (!Def) { 7093 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 7094 << 0 << Record->getDeclName() << Record->getDeclContext(); 7095 Diag(Pattern->getLocation(), diag::note_forward_declaration) 7096 << Pattern; 7097 return true; 7098 } else { 7099 if (InstantiateClass(NameLoc, Record, Def, 7100 getTemplateInstantiationArgs(Record), 7101 TSK)) 7102 return true; 7103 7104 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 7105 if (!RecordDef) 7106 return true; 7107 } 7108 } 7109 7110 // Instantiate all of the members of the class. 7111 InstantiateClassMembers(NameLoc, RecordDef, 7112 getTemplateInstantiationArgs(Record), TSK); 7113 7114 if (TSK == TSK_ExplicitInstantiationDefinition) 7115 MarkVTableUsed(NameLoc, RecordDef, true); 7116 7117 // FIXME: We don't have any representation for explicit instantiations of 7118 // member classes. Such a representation is not needed for compilation, but it 7119 // should be available for clients that want to see all of the declarations in 7120 // the source code. 7121 return TagD; 7122} 7123 7124DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 7125 SourceLocation ExternLoc, 7126 SourceLocation TemplateLoc, 7127 Declarator &D) { 7128 // Explicit instantiations always require a name. 7129 // TODO: check if/when DNInfo should replace Name. 7130 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 7131 DeclarationName Name = NameInfo.getName(); 7132 if (!Name) { 7133 if (!D.isInvalidType()) 7134 Diag(D.getDeclSpec().getLocStart(), 7135 diag::err_explicit_instantiation_requires_name) 7136 << D.getDeclSpec().getSourceRange() 7137 << D.getSourceRange(); 7138 7139 return true; 7140 } 7141 7142 // The scope passed in may not be a decl scope. Zip up the scope tree until 7143 // we find one that is. 7144 while ((S->getFlags() & Scope::DeclScope) == 0 || 7145 (S->getFlags() & Scope::TemplateParamScope) != 0) 7146 S = S->getParent(); 7147 7148 // Determine the type of the declaration. 7149 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 7150 QualType R = T->getType(); 7151 if (R.isNull()) 7152 return true; 7153 7154 // C++ [dcl.stc]p1: 7155 // A storage-class-specifier shall not be specified in [...] an explicit 7156 // instantiation (14.7.2) directive. 7157 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 7158 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 7159 << Name; 7160 return true; 7161 } else if (D.getDeclSpec().getStorageClassSpec() 7162 != DeclSpec::SCS_unspecified) { 7163 // Complain about then remove the storage class specifier. 7164 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 7165 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 7166 7167 D.getMutableDeclSpec().ClearStorageClassSpecs(); 7168 } 7169 7170 // C++0x [temp.explicit]p1: 7171 // [...] An explicit instantiation of a function template shall not use the 7172 // inline or constexpr specifiers. 7173 // Presumably, this also applies to member functions of class templates as 7174 // well. 7175 if (D.getDeclSpec().isInlineSpecified()) 7176 Diag(D.getDeclSpec().getInlineSpecLoc(), 7177 getLangOpts().CPlusPlus11 ? 7178 diag::err_explicit_instantiation_inline : 7179 diag::warn_explicit_instantiation_inline_0x) 7180 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 7181 if (D.getDeclSpec().isConstexprSpecified() && R->isFunctionType()) 7182 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is 7183 // not already specified. 7184 Diag(D.getDeclSpec().getConstexprSpecLoc(), 7185 diag::err_explicit_instantiation_constexpr); 7186 7187 // C++0x [temp.explicit]p2: 7188 // There are two forms of explicit instantiation: an explicit instantiation 7189 // definition and an explicit instantiation declaration. An explicit 7190 // instantiation declaration begins with the extern keyword. [...] 7191 TemplateSpecializationKind TSK 7192 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 7193 : TSK_ExplicitInstantiationDeclaration; 7194 7195 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 7196 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 7197 7198 if (!R->isFunctionType()) { 7199 // C++ [temp.explicit]p1: 7200 // A [...] static data member of a class template can be explicitly 7201 // instantiated from the member definition associated with its class 7202 // template. 7203 // C++1y [temp.explicit]p1: 7204 // A [...] variable [...] template specialization can be explicitly 7205 // instantiated from its template. 7206 if (Previous.isAmbiguous()) 7207 return true; 7208 7209 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 7210 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>(); 7211 7212 if (!PrevTemplate) { 7213 if (!Prev || !Prev->isStaticDataMember()) { 7214 // We expect to see a data data member here. 7215 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 7216 << Name; 7217 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 7218 P != PEnd; ++P) 7219 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 7220 return true; 7221 } 7222 7223 if (!Prev->getInstantiatedFromStaticDataMember()) { 7224 // FIXME: Check for explicit specialization? 7225 Diag(D.getIdentifierLoc(), 7226 diag::err_explicit_instantiation_data_member_not_instantiated) 7227 << Prev; 7228 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 7229 // FIXME: Can we provide a note showing where this was declared? 7230 return true; 7231 } 7232 } else { 7233 // Explicitly instantiate a variable template. 7234 7235 // C++1y [dcl.spec.auto]p6: 7236 // ... A program that uses auto or decltype(auto) in a context not 7237 // explicitly allowed in this section is ill-formed. 7238 // 7239 // This includes auto-typed variable template instantiations. 7240 if (R->isUndeducedType()) { 7241 Diag(T->getTypeLoc().getLocStart(), 7242 diag::err_auto_not_allowed_var_inst); 7243 return true; 7244 } 7245 7246 TemplateArgumentListInfo TemplateArgs; 7247 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 7248 // Translate the parser's template argument list into our AST format. 7249 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 7250 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 7251 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 7252 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 7253 TemplateId->NumArgs); 7254 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 7255 } 7256 7257 DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc, 7258 D.getIdentifierLoc(), TemplateArgs); 7259 if (Res.isInvalid()) 7260 return true; 7261 7262 // Ignore access control bits, we don't need them for redeclaration 7263 // checking. 7264 Prev = cast<VarDecl>(Res.get()); 7265 } 7266 7267 // C++0x [temp.explicit]p2: 7268 // If the explicit instantiation is for a member function, a member class 7269 // or a static data member of a class template specialization, the name of 7270 // the class template specialization in the qualified-id for the member 7271 // name shall be a simple-template-id. 7272 // 7273 // C++98 has the same restriction, just worded differently. 7274 // 7275 // C++1y If the explicit instantiation is for a variable, the 7276 // unqualified-id in the declaration shall be a template-id. 7277 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && 7278 (!PrevTemplate || 7279 (D.getName().getKind() != UnqualifiedId::IK_TemplateId && 7280 D.getCXXScopeSpec().isSet()))) 7281 Diag(D.getIdentifierLoc(), 7282 diag::ext_explicit_instantiation_without_qualified_id) 7283 << Prev << D.getCXXScopeSpec().getRange(); 7284 7285 // Check the scope of this explicit instantiation. 7286 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 7287 7288 // Verify that it is okay to explicitly instantiate here. 7289 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 7290 TemplateSpecializationKind PrevTSK = 7291 MSInfo ? MSInfo->getTemplateSpecializationKind() 7292 : Prev->getTemplateSpecializationKind(); 7293 SourceLocation POI = MSInfo ? MSInfo->getPointOfInstantiation() 7294 : cast<VarTemplateSpecializationDecl>(Prev) 7295 ->getPointOfInstantiation(); 7296 bool HasNoEffect = false; 7297 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 7298 PrevTSK, POI, HasNoEffect)) 7299 return true; 7300 7301 if (!HasNoEffect) { 7302 // Instantiate static data member or variable template. 7303 7304 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 7305 if (PrevTemplate) { 7306 // Merge attributes. 7307 if (AttributeList *Attr = D.getDeclSpec().getAttributes().getList()) 7308 ProcessDeclAttributeList(S, Prev, Attr); 7309 } 7310 if (TSK == TSK_ExplicitInstantiationDefinition) 7311 InstantiateVariableDefinition(D.getIdentifierLoc(), Prev); 7312 } 7313 7314 // Check the new variable specialization against the parsed input. 7315 if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) { 7316 Diag(T->getTypeLoc().getLocStart(), 7317 diag::err_invalid_var_template_spec_type) 7318 << 0 << PrevTemplate << R << Prev->getType(); 7319 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here) 7320 << 2 << PrevTemplate->getDeclName(); 7321 return true; 7322 } 7323 7324 // FIXME: Create an ExplicitInstantiation node? 7325 return (Decl*) 0; 7326 } 7327 7328 // If the declarator is a template-id, translate the parser's template 7329 // argument list into our AST format. 7330 bool HasExplicitTemplateArgs = false; 7331 TemplateArgumentListInfo TemplateArgs; 7332 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 7333 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 7334 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 7335 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 7336 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 7337 TemplateId->NumArgs); 7338 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 7339 HasExplicitTemplateArgs = true; 7340 } 7341 7342 // C++ [temp.explicit]p1: 7343 // A [...] function [...] can be explicitly instantiated from its template. 7344 // A member function [...] of a class template can be explicitly 7345 // instantiated from the member definition associated with its class 7346 // template. 7347 UnresolvedSet<8> Matches; 7348 TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc()); 7349 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 7350 P != PEnd; ++P) { 7351 NamedDecl *Prev = *P; 7352 if (!HasExplicitTemplateArgs) { 7353 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 7354 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 7355 Matches.clear(); 7356 7357 Matches.addDecl(Method, P.getAccess()); 7358 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 7359 break; 7360 } 7361 } 7362 } 7363 7364 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 7365 if (!FunTmpl) 7366 continue; 7367 7368 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 7369 FunctionDecl *Specialization = 0; 7370 if (TemplateDeductionResult TDK 7371 = DeduceTemplateArguments(FunTmpl, 7372 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 7373 R, Specialization, Info)) { 7374 // Keep track of almost-matches. 7375 FailedCandidates.addCandidate() 7376 .set(FunTmpl->getTemplatedDecl(), 7377 MakeDeductionFailureInfo(Context, TDK, Info)); 7378 (void)TDK; 7379 continue; 7380 } 7381 7382 Matches.addDecl(Specialization, P.getAccess()); 7383 } 7384 7385 // Find the most specialized function template specialization. 7386 UnresolvedSetIterator Result = getMostSpecialized( 7387 Matches.begin(), Matches.end(), FailedCandidates, TPOC_Other, 0, 7388 D.getIdentifierLoc(), 7389 PDiag(diag::err_explicit_instantiation_not_known) << Name, 7390 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 7391 PDiag(diag::note_explicit_instantiation_candidate)); 7392 7393 if (Result == Matches.end()) 7394 return true; 7395 7396 // Ignore access control bits, we don't need them for redeclaration checking. 7397 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 7398 7399 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 7400 Diag(D.getIdentifierLoc(), 7401 diag::err_explicit_instantiation_member_function_not_instantiated) 7402 << Specialization 7403 << (Specialization->getTemplateSpecializationKind() == 7404 TSK_ExplicitSpecialization); 7405 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 7406 return true; 7407 } 7408 7409 FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); 7410 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 7411 PrevDecl = Specialization; 7412 7413 if (PrevDecl) { 7414 bool HasNoEffect = false; 7415 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 7416 PrevDecl, 7417 PrevDecl->getTemplateSpecializationKind(), 7418 PrevDecl->getPointOfInstantiation(), 7419 HasNoEffect)) 7420 return true; 7421 7422 // FIXME: We may still want to build some representation of this 7423 // explicit specialization. 7424 if (HasNoEffect) 7425 return (Decl*) 0; 7426 } 7427 7428 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 7429 AttributeList *Attr = D.getDeclSpec().getAttributes().getList(); 7430 if (Attr) 7431 ProcessDeclAttributeList(S, Specialization, Attr); 7432 7433 if (TSK == TSK_ExplicitInstantiationDefinition) 7434 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 7435 7436 // C++0x [temp.explicit]p2: 7437 // If the explicit instantiation is for a member function, a member class 7438 // or a static data member of a class template specialization, the name of 7439 // the class template specialization in the qualified-id for the member 7440 // name shall be a simple-template-id. 7441 // 7442 // C++98 has the same restriction, just worded differently. 7443 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 7444 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 7445 D.getCXXScopeSpec().isSet() && 7446 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 7447 Diag(D.getIdentifierLoc(), 7448 diag::ext_explicit_instantiation_without_qualified_id) 7449 << Specialization << D.getCXXScopeSpec().getRange(); 7450 7451 CheckExplicitInstantiationScope(*this, 7452 FunTmpl? (NamedDecl *)FunTmpl 7453 : Specialization->getInstantiatedFromMemberFunction(), 7454 D.getIdentifierLoc(), 7455 D.getCXXScopeSpec().isSet()); 7456 7457 // FIXME: Create some kind of ExplicitInstantiationDecl here. 7458 return (Decl*) 0; 7459} 7460 7461TypeResult 7462Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 7463 const CXXScopeSpec &SS, IdentifierInfo *Name, 7464 SourceLocation TagLoc, SourceLocation NameLoc) { 7465 // This has to hold, because SS is expected to be defined. 7466 assert(Name && "Expected a name in a dependent tag"); 7467 7468 NestedNameSpecifier *NNS 7469 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 7470 if (!NNS) 7471 return true; 7472 7473 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 7474 7475 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 7476 Diag(NameLoc, diag::err_dependent_tag_decl) 7477 << (TUK == TUK_Definition) << Kind << SS.getRange(); 7478 return true; 7479 } 7480 7481 // Create the resulting type. 7482 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 7483 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 7484 7485 // Create type-source location information for this type. 7486 TypeLocBuilder TLB; 7487 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 7488 TL.setElaboratedKeywordLoc(TagLoc); 7489 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 7490 TL.setNameLoc(NameLoc); 7491 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 7492} 7493 7494TypeResult 7495Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 7496 const CXXScopeSpec &SS, const IdentifierInfo &II, 7497 SourceLocation IdLoc) { 7498 if (SS.isInvalid()) 7499 return true; 7500 7501 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 7502 Diag(TypenameLoc, 7503 getLangOpts().CPlusPlus11 ? 7504 diag::warn_cxx98_compat_typename_outside_of_template : 7505 diag::ext_typename_outside_of_template) 7506 << FixItHint::CreateRemoval(TypenameLoc); 7507 7508 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 7509 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, 7510 TypenameLoc, QualifierLoc, II, IdLoc); 7511 if (T.isNull()) 7512 return true; 7513 7514 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 7515 if (isa<DependentNameType>(T)) { 7516 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 7517 TL.setElaboratedKeywordLoc(TypenameLoc); 7518 TL.setQualifierLoc(QualifierLoc); 7519 TL.setNameLoc(IdLoc); 7520 } else { 7521 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>(); 7522 TL.setElaboratedKeywordLoc(TypenameLoc); 7523 TL.setQualifierLoc(QualifierLoc); 7524 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc); 7525 } 7526 7527 return CreateParsedType(T, TSI); 7528} 7529 7530TypeResult 7531Sema::ActOnTypenameType(Scope *S, 7532 SourceLocation TypenameLoc, 7533 const CXXScopeSpec &SS, 7534 SourceLocation TemplateKWLoc, 7535 TemplateTy TemplateIn, 7536 SourceLocation TemplateNameLoc, 7537 SourceLocation LAngleLoc, 7538 ASTTemplateArgsPtr TemplateArgsIn, 7539 SourceLocation RAngleLoc) { 7540 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 7541 Diag(TypenameLoc, 7542 getLangOpts().CPlusPlus11 ? 7543 diag::warn_cxx98_compat_typename_outside_of_template : 7544 diag::ext_typename_outside_of_template) 7545 << FixItHint::CreateRemoval(TypenameLoc); 7546 7547 // Translate the parser's template argument list in our AST format. 7548 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 7549 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 7550 7551 TemplateName Template = TemplateIn.get(); 7552 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 7553 // Construct a dependent template specialization type. 7554 assert(DTN && "dependent template has non-dependent name?"); 7555 assert(DTN->getQualifier() 7556 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 7557 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, 7558 DTN->getQualifier(), 7559 DTN->getIdentifier(), 7560 TemplateArgs); 7561 7562 // Create source-location information for this type. 7563 TypeLocBuilder Builder; 7564 DependentTemplateSpecializationTypeLoc SpecTL 7565 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 7566 SpecTL.setElaboratedKeywordLoc(TypenameLoc); 7567 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 7568 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 7569 SpecTL.setTemplateNameLoc(TemplateNameLoc); 7570 SpecTL.setLAngleLoc(LAngleLoc); 7571 SpecTL.setRAngleLoc(RAngleLoc); 7572 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 7573 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 7574 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 7575 } 7576 7577 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs); 7578 if (T.isNull()) 7579 return true; 7580 7581 // Provide source-location information for the template specialization type. 7582 TypeLocBuilder Builder; 7583 TemplateSpecializationTypeLoc SpecTL 7584 = Builder.push<TemplateSpecializationTypeLoc>(T); 7585 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 7586 SpecTL.setTemplateNameLoc(TemplateNameLoc); 7587 SpecTL.setLAngleLoc(LAngleLoc); 7588 SpecTL.setRAngleLoc(RAngleLoc); 7589 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 7590 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 7591 7592 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); 7593 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 7594 TL.setElaboratedKeywordLoc(TypenameLoc); 7595 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 7596 7597 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 7598 return CreateParsedType(T, TSI); 7599} 7600 7601 7602/// Determine whether this failed name lookup should be treated as being 7603/// disabled by a usage of std::enable_if. 7604static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II, 7605 SourceRange &CondRange) { 7606 // We must be looking for a ::type... 7607 if (!II.isStr("type")) 7608 return false; 7609 7610 // ... within an explicitly-written template specialization... 7611 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType()) 7612 return false; 7613 TypeLoc EnableIfTy = NNS.getTypeLoc(); 7614 TemplateSpecializationTypeLoc EnableIfTSTLoc = 7615 EnableIfTy.getAs<TemplateSpecializationTypeLoc>(); 7616 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0) 7617 return false; 7618 const TemplateSpecializationType *EnableIfTST = 7619 cast<TemplateSpecializationType>(EnableIfTSTLoc.getTypePtr()); 7620 7621 // ... which names a complete class template declaration... 7622 const TemplateDecl *EnableIfDecl = 7623 EnableIfTST->getTemplateName().getAsTemplateDecl(); 7624 if (!EnableIfDecl || EnableIfTST->isIncompleteType()) 7625 return false; 7626 7627 // ... called "enable_if". 7628 const IdentifierInfo *EnableIfII = 7629 EnableIfDecl->getDeclName().getAsIdentifierInfo(); 7630 if (!EnableIfII || !EnableIfII->isStr("enable_if")) 7631 return false; 7632 7633 // Assume the first template argument is the condition. 7634 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange(); 7635 return true; 7636} 7637 7638/// \brief Build the type that describes a C++ typename specifier, 7639/// e.g., "typename T::type". 7640QualType 7641Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 7642 SourceLocation KeywordLoc, 7643 NestedNameSpecifierLoc QualifierLoc, 7644 const IdentifierInfo &II, 7645 SourceLocation IILoc) { 7646 CXXScopeSpec SS; 7647 SS.Adopt(QualifierLoc); 7648 7649 DeclContext *Ctx = computeDeclContext(SS); 7650 if (!Ctx) { 7651 // If the nested-name-specifier is dependent and couldn't be 7652 // resolved to a type, build a typename type. 7653 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 7654 return Context.getDependentNameType(Keyword, 7655 QualifierLoc.getNestedNameSpecifier(), 7656 &II); 7657 } 7658 7659 // If the nested-name-specifier refers to the current instantiation, 7660 // the "typename" keyword itself is superfluous. In C++03, the 7661 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 7662 // allows such extraneous "typename" keywords, and we retroactively 7663 // apply this DR to C++03 code with only a warning. In any case we continue. 7664 7665 if (RequireCompleteDeclContext(SS, Ctx)) 7666 return QualType(); 7667 7668 DeclarationName Name(&II); 7669 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 7670 LookupQualifiedName(Result, Ctx); 7671 unsigned DiagID = 0; 7672 Decl *Referenced = 0; 7673 switch (Result.getResultKind()) { 7674 case LookupResult::NotFound: { 7675 // If we're looking up 'type' within a template named 'enable_if', produce 7676 // a more specific diagnostic. 7677 SourceRange CondRange; 7678 if (isEnableIf(QualifierLoc, II, CondRange)) { 7679 Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if) 7680 << Ctx << CondRange; 7681 return QualType(); 7682 } 7683 7684 DiagID = diag::err_typename_nested_not_found; 7685 break; 7686 } 7687 7688 case LookupResult::FoundUnresolvedValue: { 7689 // We found a using declaration that is a value. Most likely, the using 7690 // declaration itself is meant to have the 'typename' keyword. 7691 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 7692 IILoc); 7693 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 7694 << Name << Ctx << FullRange; 7695 if (UnresolvedUsingValueDecl *Using 7696 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 7697 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 7698 Diag(Loc, diag::note_using_value_decl_missing_typename) 7699 << FixItHint::CreateInsertion(Loc, "typename "); 7700 } 7701 } 7702 // Fall through to create a dependent typename type, from which we can recover 7703 // better. 7704 7705 case LookupResult::NotFoundInCurrentInstantiation: 7706 // Okay, it's a member of an unknown instantiation. 7707 return Context.getDependentNameType(Keyword, 7708 QualifierLoc.getNestedNameSpecifier(), 7709 &II); 7710 7711 case LookupResult::Found: 7712 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 7713 // We found a type. Build an ElaboratedType, since the 7714 // typename-specifier was just sugar. 7715 return Context.getElaboratedType(ETK_Typename, 7716 QualifierLoc.getNestedNameSpecifier(), 7717 Context.getTypeDeclType(Type)); 7718 } 7719 7720 DiagID = diag::err_typename_nested_not_type; 7721 Referenced = Result.getFoundDecl(); 7722 break; 7723 7724 case LookupResult::FoundOverloaded: 7725 DiagID = diag::err_typename_nested_not_type; 7726 Referenced = *Result.begin(); 7727 break; 7728 7729 case LookupResult::Ambiguous: 7730 return QualType(); 7731 } 7732 7733 // If we get here, it's because name lookup did not find a 7734 // type. Emit an appropriate diagnostic and return an error. 7735 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 7736 IILoc); 7737 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 7738 if (Referenced) 7739 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 7740 << Name; 7741 return QualType(); 7742} 7743 7744namespace { 7745 // See Sema::RebuildTypeInCurrentInstantiation 7746 class CurrentInstantiationRebuilder 7747 : public TreeTransform<CurrentInstantiationRebuilder> { 7748 SourceLocation Loc; 7749 DeclarationName Entity; 7750 7751 public: 7752 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 7753 7754 CurrentInstantiationRebuilder(Sema &SemaRef, 7755 SourceLocation Loc, 7756 DeclarationName Entity) 7757 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 7758 Loc(Loc), Entity(Entity) { } 7759 7760 /// \brief Determine whether the given type \p T has already been 7761 /// transformed. 7762 /// 7763 /// For the purposes of type reconstruction, a type has already been 7764 /// transformed if it is NULL or if it is not dependent. 7765 bool AlreadyTransformed(QualType T) { 7766 return T.isNull() || !T->isDependentType(); 7767 } 7768 7769 /// \brief Returns the location of the entity whose type is being 7770 /// rebuilt. 7771 SourceLocation getBaseLocation() { return Loc; } 7772 7773 /// \brief Returns the name of the entity whose type is being rebuilt. 7774 DeclarationName getBaseEntity() { return Entity; } 7775 7776 /// \brief Sets the "base" location and entity when that 7777 /// information is known based on another transformation. 7778 void setBase(SourceLocation Loc, DeclarationName Entity) { 7779 this->Loc = Loc; 7780 this->Entity = Entity; 7781 } 7782 7783 ExprResult TransformLambdaExpr(LambdaExpr *E) { 7784 // Lambdas never need to be transformed. 7785 return E; 7786 } 7787 }; 7788} 7789 7790/// \brief Rebuilds a type within the context of the current instantiation. 7791/// 7792/// The type \p T is part of the type of an out-of-line member definition of 7793/// a class template (or class template partial specialization) that was parsed 7794/// and constructed before we entered the scope of the class template (or 7795/// partial specialization thereof). This routine will rebuild that type now 7796/// that we have entered the declarator's scope, which may produce different 7797/// canonical types, e.g., 7798/// 7799/// \code 7800/// template<typename T> 7801/// struct X { 7802/// typedef T* pointer; 7803/// pointer data(); 7804/// }; 7805/// 7806/// template<typename T> 7807/// typename X<T>::pointer X<T>::data() { ... } 7808/// \endcode 7809/// 7810/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 7811/// since we do not know that we can look into X<T> when we parsed the type. 7812/// This function will rebuild the type, performing the lookup of "pointer" 7813/// in X<T> and returning an ElaboratedType whose canonical type is the same 7814/// as the canonical type of T*, allowing the return types of the out-of-line 7815/// definition and the declaration to match. 7816TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 7817 SourceLocation Loc, 7818 DeclarationName Name) { 7819 if (!T || !T->getType()->isDependentType()) 7820 return T; 7821 7822 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 7823 return Rebuilder.TransformType(T); 7824} 7825 7826ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 7827 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 7828 DeclarationName()); 7829 return Rebuilder.TransformExpr(E); 7830} 7831 7832bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 7833 if (SS.isInvalid()) 7834 return true; 7835 7836 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 7837 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 7838 DeclarationName()); 7839 NestedNameSpecifierLoc Rebuilt 7840 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 7841 if (!Rebuilt) 7842 return true; 7843 7844 SS.Adopt(Rebuilt); 7845 return false; 7846} 7847 7848/// \brief Rebuild the template parameters now that we know we're in a current 7849/// instantiation. 7850bool Sema::RebuildTemplateParamsInCurrentInstantiation( 7851 TemplateParameterList *Params) { 7852 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 7853 Decl *Param = Params->getParam(I); 7854 7855 // There is nothing to rebuild in a type parameter. 7856 if (isa<TemplateTypeParmDecl>(Param)) 7857 continue; 7858 7859 // Rebuild the template parameter list of a template template parameter. 7860 if (TemplateTemplateParmDecl *TTP 7861 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 7862 if (RebuildTemplateParamsInCurrentInstantiation( 7863 TTP->getTemplateParameters())) 7864 return true; 7865 7866 continue; 7867 } 7868 7869 // Rebuild the type of a non-type template parameter. 7870 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param); 7871 TypeSourceInfo *NewTSI 7872 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(), 7873 NTTP->getLocation(), 7874 NTTP->getDeclName()); 7875 if (!NewTSI) 7876 return true; 7877 7878 if (NewTSI != NTTP->getTypeSourceInfo()) { 7879 NTTP->setTypeSourceInfo(NewTSI); 7880 NTTP->setType(NewTSI->getType()); 7881 } 7882 } 7883 7884 return false; 7885} 7886 7887/// \brief Produces a formatted string that describes the binding of 7888/// template parameters to template arguments. 7889std::string 7890Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 7891 const TemplateArgumentList &Args) { 7892 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 7893} 7894 7895std::string 7896Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 7897 const TemplateArgument *Args, 7898 unsigned NumArgs) { 7899 SmallString<128> Str; 7900 llvm::raw_svector_ostream Out(Str); 7901 7902 if (!Params || Params->size() == 0 || NumArgs == 0) 7903 return std::string(); 7904 7905 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 7906 if (I >= NumArgs) 7907 break; 7908 7909 if (I == 0) 7910 Out << "[with "; 7911 else 7912 Out << ", "; 7913 7914 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 7915 Out << Id->getName(); 7916 } else { 7917 Out << '$' << I; 7918 } 7919 7920 Out << " = "; 7921 Args[I].print(getPrintingPolicy(), Out); 7922 } 7923 7924 Out << ']'; 7925 return Out.str(); 7926} 7927 7928void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD, 7929 CachedTokens &Toks) { 7930 if (!FD) 7931 return; 7932 7933 LateParsedTemplate *LPT = new LateParsedTemplate; 7934 7935 // Take tokens to avoid allocations 7936 LPT->Toks.swap(Toks); 7937 LPT->D = FnD; 7938 LateParsedTemplateMap[FD] = LPT; 7939 7940 FD->setLateTemplateParsed(true); 7941} 7942 7943void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) { 7944 if (!FD) 7945 return; 7946 FD->setLateTemplateParsed(false); 7947} 7948 7949bool Sema::IsInsideALocalClassWithinATemplateFunction() { 7950 DeclContext *DC = CurContext; 7951 7952 while (DC) { 7953 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 7954 const FunctionDecl *FD = RD->isLocalClass(); 7955 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 7956 } else if (DC->isTranslationUnit() || DC->isNamespace()) 7957 return false; 7958 7959 DC = DC->getParent(); 7960 } 7961 return false; 7962} 7963