SemaTemplate.cpp revision e8bcd4c8e5a867c52bef3837731e44b88eba6a36
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "TreeTransform.h"
13#include "clang/AST/ASTContext.h"
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/DeclFriend.h"
16#include "clang/AST/DeclTemplate.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/RecursiveASTVisitor.h"
20#include "clang/AST/TypeVisitor.h"
21#include "clang/Basic/LangOptions.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "clang/Sema/DeclSpec.h"
24#include "clang/Sema/Lookup.h"
25#include "clang/Sema/ParsedTemplate.h"
26#include "clang/Sema/Scope.h"
27#include "clang/Sema/SemaInternal.h"
28#include "clang/Sema/Template.h"
29#include "clang/Sema/TemplateDeduction.h"
30#include "llvm/ADT/SmallBitVector.h"
31#include "llvm/ADT/SmallString.h"
32#include "llvm/ADT/StringExtras.h"
33using namespace clang;
34using namespace sema;
35
36// Exported for use by Parser.
37SourceRange
38clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
39                              unsigned N) {
40  if (!N) return SourceRange();
41  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
42}
43
44/// \brief Determine whether the declaration found is acceptable as the name
45/// of a template and, if so, return that template declaration. Otherwise,
46/// returns NULL.
47static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
48                                           NamedDecl *Orig,
49                                           bool AllowFunctionTemplates) {
50  NamedDecl *D = Orig->getUnderlyingDecl();
51
52  if (isa<TemplateDecl>(D)) {
53    if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
54      return 0;
55
56    return Orig;
57  }
58
59  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
60    // C++ [temp.local]p1:
61    //   Like normal (non-template) classes, class templates have an
62    //   injected-class-name (Clause 9). The injected-class-name
63    //   can be used with or without a template-argument-list. When
64    //   it is used without a template-argument-list, it is
65    //   equivalent to the injected-class-name followed by the
66    //   template-parameters of the class template enclosed in
67    //   <>. When it is used with a template-argument-list, it
68    //   refers to the specified class template specialization,
69    //   which could be the current specialization or another
70    //   specialization.
71    if (Record->isInjectedClassName()) {
72      Record = cast<CXXRecordDecl>(Record->getDeclContext());
73      if (Record->getDescribedClassTemplate())
74        return Record->getDescribedClassTemplate();
75
76      if (ClassTemplateSpecializationDecl *Spec
77            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
78        return Spec->getSpecializedTemplate();
79    }
80
81    return 0;
82  }
83
84  return 0;
85}
86
87void Sema::FilterAcceptableTemplateNames(LookupResult &R,
88                                         bool AllowFunctionTemplates) {
89  // The set of class templates we've already seen.
90  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
91  LookupResult::Filter filter = R.makeFilter();
92  while (filter.hasNext()) {
93    NamedDecl *Orig = filter.next();
94    NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
95                                               AllowFunctionTemplates);
96    if (!Repl)
97      filter.erase();
98    else if (Repl != Orig) {
99
100      // C++ [temp.local]p3:
101      //   A lookup that finds an injected-class-name (10.2) can result in an
102      //   ambiguity in certain cases (for example, if it is found in more than
103      //   one base class). If all of the injected-class-names that are found
104      //   refer to specializations of the same class template, and if the name
105      //   is used as a template-name, the reference refers to the class
106      //   template itself and not a specialization thereof, and is not
107      //   ambiguous.
108      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
109        if (!ClassTemplates.insert(ClassTmpl)) {
110          filter.erase();
111          continue;
112        }
113
114      // FIXME: we promote access to public here as a workaround to
115      // the fact that LookupResult doesn't let us remember that we
116      // found this template through a particular injected class name,
117      // which means we end up doing nasty things to the invariants.
118      // Pretending that access is public is *much* safer.
119      filter.replace(Repl, AS_public);
120    }
121  }
122  filter.done();
123}
124
125bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
126                                         bool AllowFunctionTemplates) {
127  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
128    if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
129      return true;
130
131  return false;
132}
133
134TemplateNameKind Sema::isTemplateName(Scope *S,
135                                      CXXScopeSpec &SS,
136                                      bool hasTemplateKeyword,
137                                      UnqualifiedId &Name,
138                                      ParsedType ObjectTypePtr,
139                                      bool EnteringContext,
140                                      TemplateTy &TemplateResult,
141                                      bool &MemberOfUnknownSpecialization) {
142  assert(getLangOpts().CPlusPlus && "No template names in C!");
143
144  DeclarationName TName;
145  MemberOfUnknownSpecialization = false;
146
147  switch (Name.getKind()) {
148  case UnqualifiedId::IK_Identifier:
149    TName = DeclarationName(Name.Identifier);
150    break;
151
152  case UnqualifiedId::IK_OperatorFunctionId:
153    TName = Context.DeclarationNames.getCXXOperatorName(
154                                              Name.OperatorFunctionId.Operator);
155    break;
156
157  case UnqualifiedId::IK_LiteralOperatorId:
158    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
159    break;
160
161  default:
162    return TNK_Non_template;
163  }
164
165  QualType ObjectType = ObjectTypePtr.get();
166
167  LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
168  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
169                     MemberOfUnknownSpecialization);
170  if (R.empty()) return TNK_Non_template;
171  if (R.isAmbiguous()) {
172    // Suppress diagnostics;  we'll redo this lookup later.
173    R.suppressDiagnostics();
174
175    // FIXME: we might have ambiguous templates, in which case we
176    // should at least parse them properly!
177    return TNK_Non_template;
178  }
179
180  TemplateName Template;
181  TemplateNameKind TemplateKind;
182
183  unsigned ResultCount = R.end() - R.begin();
184  if (ResultCount > 1) {
185    // We assume that we'll preserve the qualifier from a function
186    // template name in other ways.
187    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
188    TemplateKind = TNK_Function_template;
189
190    // We'll do this lookup again later.
191    R.suppressDiagnostics();
192  } else {
193    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
194
195    if (SS.isSet() && !SS.isInvalid()) {
196      NestedNameSpecifier *Qualifier
197        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
198      Template = Context.getQualifiedTemplateName(Qualifier,
199                                                  hasTemplateKeyword, TD);
200    } else {
201      Template = TemplateName(TD);
202    }
203
204    if (isa<FunctionTemplateDecl>(TD)) {
205      TemplateKind = TNK_Function_template;
206
207      // We'll do this lookup again later.
208      R.suppressDiagnostics();
209    } else {
210      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
211             isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD));
212      TemplateKind =
213          isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template;
214    }
215  }
216
217  TemplateResult = TemplateTy::make(Template);
218  return TemplateKind;
219}
220
221bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
222                                       SourceLocation IILoc,
223                                       Scope *S,
224                                       const CXXScopeSpec *SS,
225                                       TemplateTy &SuggestedTemplate,
226                                       TemplateNameKind &SuggestedKind) {
227  // We can't recover unless there's a dependent scope specifier preceding the
228  // template name.
229  // FIXME: Typo correction?
230  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
231      computeDeclContext(*SS))
232    return false;
233
234  // The code is missing a 'template' keyword prior to the dependent template
235  // name.
236  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
237  Diag(IILoc, diag::err_template_kw_missing)
238    << Qualifier << II.getName()
239    << FixItHint::CreateInsertion(IILoc, "template ");
240  SuggestedTemplate
241    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
242  SuggestedKind = TNK_Dependent_template_name;
243  return true;
244}
245
246void Sema::LookupTemplateName(LookupResult &Found,
247                              Scope *S, CXXScopeSpec &SS,
248                              QualType ObjectType,
249                              bool EnteringContext,
250                              bool &MemberOfUnknownSpecialization) {
251  // Determine where to perform name lookup
252  MemberOfUnknownSpecialization = false;
253  DeclContext *LookupCtx = 0;
254  bool isDependent = false;
255  if (!ObjectType.isNull()) {
256    // This nested-name-specifier occurs in a member access expression, e.g.,
257    // x->B::f, and we are looking into the type of the object.
258    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
259    LookupCtx = computeDeclContext(ObjectType);
260    isDependent = ObjectType->isDependentType();
261    assert((isDependent || !ObjectType->isIncompleteType() ||
262            ObjectType->castAs<TagType>()->isBeingDefined()) &&
263           "Caller should have completed object type");
264
265    // Template names cannot appear inside an Objective-C class or object type.
266    if (ObjectType->isObjCObjectOrInterfaceType()) {
267      Found.clear();
268      return;
269    }
270  } else if (SS.isSet()) {
271    // This nested-name-specifier occurs after another nested-name-specifier,
272    // so long into the context associated with the prior nested-name-specifier.
273    LookupCtx = computeDeclContext(SS, EnteringContext);
274    isDependent = isDependentScopeSpecifier(SS);
275
276    // The declaration context must be complete.
277    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
278      return;
279  }
280
281  bool ObjectTypeSearchedInScope = false;
282  bool AllowFunctionTemplatesInLookup = true;
283  if (LookupCtx) {
284    // Perform "qualified" name lookup into the declaration context we
285    // computed, which is either the type of the base of a member access
286    // expression or the declaration context associated with a prior
287    // nested-name-specifier.
288    LookupQualifiedName(Found, LookupCtx);
289    if (!ObjectType.isNull() && Found.empty()) {
290      // C++ [basic.lookup.classref]p1:
291      //   In a class member access expression (5.2.5), if the . or -> token is
292      //   immediately followed by an identifier followed by a <, the
293      //   identifier must be looked up to determine whether the < is the
294      //   beginning of a template argument list (14.2) or a less-than operator.
295      //   The identifier is first looked up in the class of the object
296      //   expression. If the identifier is not found, it is then looked up in
297      //   the context of the entire postfix-expression and shall name a class
298      //   or function template.
299      if (S) LookupName(Found, S);
300      ObjectTypeSearchedInScope = true;
301      AllowFunctionTemplatesInLookup = false;
302    }
303  } else if (isDependent && (!S || ObjectType.isNull())) {
304    // We cannot look into a dependent object type or nested nme
305    // specifier.
306    MemberOfUnknownSpecialization = true;
307    return;
308  } else {
309    // Perform unqualified name lookup in the current scope.
310    LookupName(Found, S);
311
312    if (!ObjectType.isNull())
313      AllowFunctionTemplatesInLookup = false;
314  }
315
316  if (Found.empty() && !isDependent) {
317    // If we did not find any names, attempt to correct any typos.
318    DeclarationName Name = Found.getLookupName();
319    Found.clear();
320    // Simple filter callback that, for keywords, only accepts the C++ *_cast
321    CorrectionCandidateCallback FilterCCC;
322    FilterCCC.WantTypeSpecifiers = false;
323    FilterCCC.WantExpressionKeywords = false;
324    FilterCCC.WantRemainingKeywords = false;
325    FilterCCC.WantCXXNamedCasts = true;
326    if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
327                                               Found.getLookupKind(), S, &SS,
328                                               FilterCCC, LookupCtx)) {
329      Found.setLookupName(Corrected.getCorrection());
330      if (Corrected.getCorrectionDecl())
331        Found.addDecl(Corrected.getCorrectionDecl());
332      FilterAcceptableTemplateNames(Found);
333      if (!Found.empty()) {
334        if (LookupCtx) {
335          std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
336          bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
337                                  Name.getAsString() == CorrectedStr;
338          diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
339                                    << Name << LookupCtx << DroppedSpecifier
340                                    << SS.getRange());
341        } else {
342          diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
343        }
344      }
345    } else {
346      Found.setLookupName(Name);
347    }
348  }
349
350  FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
351  if (Found.empty()) {
352    if (isDependent)
353      MemberOfUnknownSpecialization = true;
354    return;
355  }
356
357  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
358      !getLangOpts().CPlusPlus11) {
359    // C++03 [basic.lookup.classref]p1:
360    //   [...] If the lookup in the class of the object expression finds a
361    //   template, the name is also looked up in the context of the entire
362    //   postfix-expression and [...]
363    //
364    // Note: C++11 does not perform this second lookup.
365    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
366                            LookupOrdinaryName);
367    LookupName(FoundOuter, S);
368    FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
369
370    if (FoundOuter.empty()) {
371      //   - if the name is not found, the name found in the class of the
372      //     object expression is used, otherwise
373    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
374               FoundOuter.isAmbiguous()) {
375      //   - if the name is found in the context of the entire
376      //     postfix-expression and does not name a class template, the name
377      //     found in the class of the object expression is used, otherwise
378      FoundOuter.clear();
379    } else if (!Found.isSuppressingDiagnostics()) {
380      //   - if the name found is a class template, it must refer to the same
381      //     entity as the one found in the class of the object expression,
382      //     otherwise the program is ill-formed.
383      if (!Found.isSingleResult() ||
384          Found.getFoundDecl()->getCanonicalDecl()
385            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
386        Diag(Found.getNameLoc(),
387             diag::ext_nested_name_member_ref_lookup_ambiguous)
388          << Found.getLookupName()
389          << ObjectType;
390        Diag(Found.getRepresentativeDecl()->getLocation(),
391             diag::note_ambig_member_ref_object_type)
392          << ObjectType;
393        Diag(FoundOuter.getFoundDecl()->getLocation(),
394             diag::note_ambig_member_ref_scope);
395
396        // Recover by taking the template that we found in the object
397        // expression's type.
398      }
399    }
400  }
401}
402
403/// ActOnDependentIdExpression - Handle a dependent id-expression that
404/// was just parsed.  This is only possible with an explicit scope
405/// specifier naming a dependent type.
406ExprResult
407Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
408                                 SourceLocation TemplateKWLoc,
409                                 const DeclarationNameInfo &NameInfo,
410                                 bool isAddressOfOperand,
411                           const TemplateArgumentListInfo *TemplateArgs) {
412  DeclContext *DC = getFunctionLevelDeclContext();
413
414  if (!isAddressOfOperand &&
415      isa<CXXMethodDecl>(DC) &&
416      cast<CXXMethodDecl>(DC)->isInstance()) {
417    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
418
419    // Since the 'this' expression is synthesized, we don't need to
420    // perform the double-lookup check.
421    NamedDecl *FirstQualifierInScope = 0;
422
423    return Owned(CXXDependentScopeMemberExpr::Create(Context,
424                                                     /*This*/ 0, ThisType,
425                                                     /*IsArrow*/ true,
426                                                     /*Op*/ SourceLocation(),
427                                               SS.getWithLocInContext(Context),
428                                                     TemplateKWLoc,
429                                                     FirstQualifierInScope,
430                                                     NameInfo,
431                                                     TemplateArgs));
432  }
433
434  return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
435}
436
437ExprResult
438Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
439                                SourceLocation TemplateKWLoc,
440                                const DeclarationNameInfo &NameInfo,
441                                const TemplateArgumentListInfo *TemplateArgs) {
442  return Owned(DependentScopeDeclRefExpr::Create(Context,
443                                               SS.getWithLocInContext(Context),
444                                                 TemplateKWLoc,
445                                                 NameInfo,
446                                                 TemplateArgs));
447}
448
449/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
450/// that the template parameter 'PrevDecl' is being shadowed by a new
451/// declaration at location Loc. Returns true to indicate that this is
452/// an error, and false otherwise.
453void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
454  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
455
456  // Microsoft Visual C++ permits template parameters to be shadowed.
457  if (getLangOpts().MicrosoftExt)
458    return;
459
460  // C++ [temp.local]p4:
461  //   A template-parameter shall not be redeclared within its
462  //   scope (including nested scopes).
463  Diag(Loc, diag::err_template_param_shadow)
464    << cast<NamedDecl>(PrevDecl)->getDeclName();
465  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
466  return;
467}
468
469/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
470/// the parameter D to reference the templated declaration and return a pointer
471/// to the template declaration. Otherwise, do nothing to D and return null.
472TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
473  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
474    D = Temp->getTemplatedDecl();
475    return Temp;
476  }
477  return 0;
478}
479
480ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
481                                             SourceLocation EllipsisLoc) const {
482  assert(Kind == Template &&
483         "Only template template arguments can be pack expansions here");
484  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
485         "Template template argument pack expansion without packs");
486  ParsedTemplateArgument Result(*this);
487  Result.EllipsisLoc = EllipsisLoc;
488  return Result;
489}
490
491static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
492                                            const ParsedTemplateArgument &Arg) {
493
494  switch (Arg.getKind()) {
495  case ParsedTemplateArgument::Type: {
496    TypeSourceInfo *DI;
497    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
498    if (!DI)
499      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
500    return TemplateArgumentLoc(TemplateArgument(T), DI);
501  }
502
503  case ParsedTemplateArgument::NonType: {
504    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
505    return TemplateArgumentLoc(TemplateArgument(E), E);
506  }
507
508  case ParsedTemplateArgument::Template: {
509    TemplateName Template = Arg.getAsTemplate().get();
510    TemplateArgument TArg;
511    if (Arg.getEllipsisLoc().isValid())
512      TArg = TemplateArgument(Template, Optional<unsigned int>());
513    else
514      TArg = Template;
515    return TemplateArgumentLoc(TArg,
516                               Arg.getScopeSpec().getWithLocInContext(
517                                                              SemaRef.Context),
518                               Arg.getLocation(),
519                               Arg.getEllipsisLoc());
520  }
521  }
522
523  llvm_unreachable("Unhandled parsed template argument");
524}
525
526/// \brief Translates template arguments as provided by the parser
527/// into template arguments used by semantic analysis.
528void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
529                                      TemplateArgumentListInfo &TemplateArgs) {
530 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
531   TemplateArgs.addArgument(translateTemplateArgument(*this,
532                                                      TemplateArgsIn[I]));
533}
534
535static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
536                                                 SourceLocation Loc,
537                                                 IdentifierInfo *Name) {
538  NamedDecl *PrevDecl = SemaRef.LookupSingleName(
539      S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForRedeclaration);
540  if (PrevDecl && PrevDecl->isTemplateParameter())
541    SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
542}
543
544/// ActOnTypeParameter - Called when a C++ template type parameter
545/// (e.g., "typename T") has been parsed. Typename specifies whether
546/// the keyword "typename" was used to declare the type parameter
547/// (otherwise, "class" was used), and KeyLoc is the location of the
548/// "class" or "typename" keyword. ParamName is the name of the
549/// parameter (NULL indicates an unnamed template parameter) and
550/// ParamNameLoc is the location of the parameter name (if any).
551/// If the type parameter has a default argument, it will be added
552/// later via ActOnTypeParameterDefault.
553Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
554                               SourceLocation EllipsisLoc,
555                               SourceLocation KeyLoc,
556                               IdentifierInfo *ParamName,
557                               SourceLocation ParamNameLoc,
558                               unsigned Depth, unsigned Position,
559                               SourceLocation EqualLoc,
560                               ParsedType DefaultArg) {
561  assert(S->isTemplateParamScope() &&
562         "Template type parameter not in template parameter scope!");
563  bool Invalid = false;
564
565  SourceLocation Loc = ParamNameLoc;
566  if (!ParamName)
567    Loc = KeyLoc;
568
569  TemplateTypeParmDecl *Param
570    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
571                                   KeyLoc, Loc, Depth, Position, ParamName,
572                                   Typename, Ellipsis);
573  Param->setAccess(AS_public);
574  if (Invalid)
575    Param->setInvalidDecl();
576
577  if (ParamName) {
578    maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
579
580    // Add the template parameter into the current scope.
581    S->AddDecl(Param);
582    IdResolver.AddDecl(Param);
583  }
584
585  // C++0x [temp.param]p9:
586  //   A default template-argument may be specified for any kind of
587  //   template-parameter that is not a template parameter pack.
588  if (DefaultArg && Ellipsis) {
589    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
590    DefaultArg = ParsedType();
591  }
592
593  // Handle the default argument, if provided.
594  if (DefaultArg) {
595    TypeSourceInfo *DefaultTInfo;
596    GetTypeFromParser(DefaultArg, &DefaultTInfo);
597
598    assert(DefaultTInfo && "expected source information for type");
599
600    // Check for unexpanded parameter packs.
601    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
602                                        UPPC_DefaultArgument))
603      return Param;
604
605    // Check the template argument itself.
606    if (CheckTemplateArgument(Param, DefaultTInfo)) {
607      Param->setInvalidDecl();
608      return Param;
609    }
610
611    Param->setDefaultArgument(DefaultTInfo, false);
612  }
613
614  return Param;
615}
616
617/// \brief Check that the type of a non-type template parameter is
618/// well-formed.
619///
620/// \returns the (possibly-promoted) parameter type if valid;
621/// otherwise, produces a diagnostic and returns a NULL type.
622QualType
623Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
624  // We don't allow variably-modified types as the type of non-type template
625  // parameters.
626  if (T->isVariablyModifiedType()) {
627    Diag(Loc, diag::err_variably_modified_nontype_template_param)
628      << T;
629    return QualType();
630  }
631
632  // C++ [temp.param]p4:
633  //
634  // A non-type template-parameter shall have one of the following
635  // (optionally cv-qualified) types:
636  //
637  //       -- integral or enumeration type,
638  if (T->isIntegralOrEnumerationType() ||
639      //   -- pointer to object or pointer to function,
640      T->isPointerType() ||
641      //   -- reference to object or reference to function,
642      T->isReferenceType() ||
643      //   -- pointer to member,
644      T->isMemberPointerType() ||
645      //   -- std::nullptr_t.
646      T->isNullPtrType() ||
647      // If T is a dependent type, we can't do the check now, so we
648      // assume that it is well-formed.
649      T->isDependentType()) {
650    // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
651    // are ignored when determining its type.
652    return T.getUnqualifiedType();
653  }
654
655  // C++ [temp.param]p8:
656  //
657  //   A non-type template-parameter of type "array of T" or
658  //   "function returning T" is adjusted to be of type "pointer to
659  //   T" or "pointer to function returning T", respectively.
660  else if (T->isArrayType())
661    // FIXME: Keep the type prior to promotion?
662    return Context.getArrayDecayedType(T);
663  else if (T->isFunctionType())
664    // FIXME: Keep the type prior to promotion?
665    return Context.getPointerType(T);
666
667  Diag(Loc, diag::err_template_nontype_parm_bad_type)
668    << T;
669
670  return QualType();
671}
672
673Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
674                                          unsigned Depth,
675                                          unsigned Position,
676                                          SourceLocation EqualLoc,
677                                          Expr *Default) {
678  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
679  QualType T = TInfo->getType();
680
681  assert(S->isTemplateParamScope() &&
682         "Non-type template parameter not in template parameter scope!");
683  bool Invalid = false;
684
685  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
686  if (T.isNull()) {
687    T = Context.IntTy; // Recover with an 'int' type.
688    Invalid = true;
689  }
690
691  IdentifierInfo *ParamName = D.getIdentifier();
692  bool IsParameterPack = D.hasEllipsis();
693  NonTypeTemplateParmDecl *Param
694    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
695                                      D.getLocStart(),
696                                      D.getIdentifierLoc(),
697                                      Depth, Position, ParamName, T,
698                                      IsParameterPack, TInfo);
699  Param->setAccess(AS_public);
700
701  if (Invalid)
702    Param->setInvalidDecl();
703
704  if (ParamName) {
705    maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
706                                         ParamName);
707
708    // Add the template parameter into the current scope.
709    S->AddDecl(Param);
710    IdResolver.AddDecl(Param);
711  }
712
713  // C++0x [temp.param]p9:
714  //   A default template-argument may be specified for any kind of
715  //   template-parameter that is not a template parameter pack.
716  if (Default && IsParameterPack) {
717    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
718    Default = 0;
719  }
720
721  // Check the well-formedness of the default template argument, if provided.
722  if (Default) {
723    // Check for unexpanded parameter packs.
724    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
725      return Param;
726
727    TemplateArgument Converted;
728    ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
729    if (DefaultRes.isInvalid()) {
730      Param->setInvalidDecl();
731      return Param;
732    }
733    Default = DefaultRes.take();
734
735    Param->setDefaultArgument(Default, false);
736  }
737
738  return Param;
739}
740
741/// ActOnTemplateTemplateParameter - Called when a C++ template template
742/// parameter (e.g. T in template <template \<typename> class T> class array)
743/// has been parsed. S is the current scope.
744Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
745                                           SourceLocation TmpLoc,
746                                           TemplateParameterList *Params,
747                                           SourceLocation EllipsisLoc,
748                                           IdentifierInfo *Name,
749                                           SourceLocation NameLoc,
750                                           unsigned Depth,
751                                           unsigned Position,
752                                           SourceLocation EqualLoc,
753                                           ParsedTemplateArgument Default) {
754  assert(S->isTemplateParamScope() &&
755         "Template template parameter not in template parameter scope!");
756
757  // Construct the parameter object.
758  bool IsParameterPack = EllipsisLoc.isValid();
759  TemplateTemplateParmDecl *Param =
760    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
761                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
762                                     Depth, Position, IsParameterPack,
763                                     Name, Params);
764  Param->setAccess(AS_public);
765
766  // If the template template parameter has a name, then link the identifier
767  // into the scope and lookup mechanisms.
768  if (Name) {
769    maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
770
771    S->AddDecl(Param);
772    IdResolver.AddDecl(Param);
773  }
774
775  if (Params->size() == 0) {
776    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
777    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
778    Param->setInvalidDecl();
779  }
780
781  // C++0x [temp.param]p9:
782  //   A default template-argument may be specified for any kind of
783  //   template-parameter that is not a template parameter pack.
784  if (IsParameterPack && !Default.isInvalid()) {
785    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
786    Default = ParsedTemplateArgument();
787  }
788
789  if (!Default.isInvalid()) {
790    // Check only that we have a template template argument. We don't want to
791    // try to check well-formedness now, because our template template parameter
792    // might have dependent types in its template parameters, which we wouldn't
793    // be able to match now.
794    //
795    // If none of the template template parameter's template arguments mention
796    // other template parameters, we could actually perform more checking here.
797    // However, it isn't worth doing.
798    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
799    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
800      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
801        << DefaultArg.getSourceRange();
802      return Param;
803    }
804
805    // Check for unexpanded parameter packs.
806    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
807                                        DefaultArg.getArgument().getAsTemplate(),
808                                        UPPC_DefaultArgument))
809      return Param;
810
811    Param->setDefaultArgument(DefaultArg, false);
812  }
813
814  return Param;
815}
816
817/// ActOnTemplateParameterList - Builds a TemplateParameterList that
818/// contains the template parameters in Params/NumParams.
819TemplateParameterList *
820Sema::ActOnTemplateParameterList(unsigned Depth,
821                                 SourceLocation ExportLoc,
822                                 SourceLocation TemplateLoc,
823                                 SourceLocation LAngleLoc,
824                                 Decl **Params, unsigned NumParams,
825                                 SourceLocation RAngleLoc) {
826  if (ExportLoc.isValid())
827    Diag(ExportLoc, diag::warn_template_export_unsupported);
828
829  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
830                                       (NamedDecl**)Params, NumParams,
831                                       RAngleLoc);
832}
833
834static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
835  if (SS.isSet())
836    T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
837}
838
839DeclResult
840Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
841                         SourceLocation KWLoc, CXXScopeSpec &SS,
842                         IdentifierInfo *Name, SourceLocation NameLoc,
843                         AttributeList *Attr,
844                         TemplateParameterList *TemplateParams,
845                         AccessSpecifier AS, SourceLocation ModulePrivateLoc,
846                         unsigned NumOuterTemplateParamLists,
847                         TemplateParameterList** OuterTemplateParamLists) {
848  assert(TemplateParams && TemplateParams->size() > 0 &&
849         "No template parameters");
850  assert(TUK != TUK_Reference && "Can only declare or define class templates");
851  bool Invalid = false;
852
853  // Check that we can declare a template here.
854  if (CheckTemplateDeclScope(S, TemplateParams))
855    return true;
856
857  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
858  assert(Kind != TTK_Enum && "can't build template of enumerated type");
859
860  // There is no such thing as an unnamed class template.
861  if (!Name) {
862    Diag(KWLoc, diag::err_template_unnamed_class);
863    return true;
864  }
865
866  // Find any previous declaration with this name. For a friend with no
867  // scope explicitly specified, we only look for tag declarations (per
868  // C++11 [basic.lookup.elab]p2).
869  DeclContext *SemanticContext;
870  LookupResult Previous(*this, Name, NameLoc,
871                        (SS.isEmpty() && TUK == TUK_Friend)
872                          ? LookupTagName : LookupOrdinaryName,
873                        ForRedeclaration);
874  if (SS.isNotEmpty() && !SS.isInvalid()) {
875    SemanticContext = computeDeclContext(SS, true);
876    if (!SemanticContext) {
877      // FIXME: Horrible, horrible hack! We can't currently represent this
878      // in the AST, and historically we have just ignored such friend
879      // class templates, so don't complain here.
880      if (TUK != TUK_Friend)
881        Diag(NameLoc, diag::err_template_qualified_declarator_no_match)
882          << SS.getScopeRep() << SS.getRange();
883      return true;
884    }
885
886    if (RequireCompleteDeclContext(SS, SemanticContext))
887      return true;
888
889    // If we're adding a template to a dependent context, we may need to
890    // rebuilding some of the types used within the template parameter list,
891    // now that we know what the current instantiation is.
892    if (SemanticContext->isDependentContext()) {
893      ContextRAII SavedContext(*this, SemanticContext);
894      if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
895        Invalid = true;
896    } else if (TUK != TUK_Friend && TUK != TUK_Reference)
897      diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
898
899    LookupQualifiedName(Previous, SemanticContext);
900  } else {
901    SemanticContext = CurContext;
902    LookupName(Previous, S);
903  }
904
905  if (Previous.isAmbiguous())
906    return true;
907
908  NamedDecl *PrevDecl = 0;
909  if (Previous.begin() != Previous.end())
910    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
911
912  // If there is a previous declaration with the same name, check
913  // whether this is a valid redeclaration.
914  ClassTemplateDecl *PrevClassTemplate
915    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
916
917  // We may have found the injected-class-name of a class template,
918  // class template partial specialization, or class template specialization.
919  // In these cases, grab the template that is being defined or specialized.
920  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
921      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
922    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
923    PrevClassTemplate
924      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
925    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
926      PrevClassTemplate
927        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
928            ->getSpecializedTemplate();
929    }
930  }
931
932  if (TUK == TUK_Friend) {
933    // C++ [namespace.memdef]p3:
934    //   [...] When looking for a prior declaration of a class or a function
935    //   declared as a friend, and when the name of the friend class or
936    //   function is neither a qualified name nor a template-id, scopes outside
937    //   the innermost enclosing namespace scope are not considered.
938    if (!SS.isSet()) {
939      DeclContext *OutermostContext = CurContext;
940      while (!OutermostContext->isFileContext())
941        OutermostContext = OutermostContext->getLookupParent();
942
943      if (PrevDecl &&
944          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
945           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
946        SemanticContext = PrevDecl->getDeclContext();
947      } else {
948        // Declarations in outer scopes don't matter. However, the outermost
949        // context we computed is the semantic context for our new
950        // declaration.
951        PrevDecl = PrevClassTemplate = 0;
952        SemanticContext = OutermostContext;
953
954        // Check that the chosen semantic context doesn't already contain a
955        // declaration of this name as a non-tag type.
956        LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
957                              ForRedeclaration);
958        DeclContext *LookupContext = SemanticContext;
959        while (LookupContext->isTransparentContext())
960          LookupContext = LookupContext->getLookupParent();
961        LookupQualifiedName(Previous, LookupContext);
962
963        if (Previous.isAmbiguous())
964          return true;
965
966        if (Previous.begin() != Previous.end())
967          PrevDecl = (*Previous.begin())->getUnderlyingDecl();
968      }
969    }
970  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
971    PrevDecl = PrevClassTemplate = 0;
972
973  if (PrevClassTemplate) {
974    // Ensure that the template parameter lists are compatible. Skip this check
975    // for a friend in a dependent context: the template parameter list itself
976    // could be dependent.
977    if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
978        !TemplateParameterListsAreEqual(TemplateParams,
979                                   PrevClassTemplate->getTemplateParameters(),
980                                        /*Complain=*/true,
981                                        TPL_TemplateMatch))
982      return true;
983
984    // C++ [temp.class]p4:
985    //   In a redeclaration, partial specialization, explicit
986    //   specialization or explicit instantiation of a class template,
987    //   the class-key shall agree in kind with the original class
988    //   template declaration (7.1.5.3).
989    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
990    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
991                                      TUK == TUK_Definition,  KWLoc, *Name)) {
992      Diag(KWLoc, diag::err_use_with_wrong_tag)
993        << Name
994        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
995      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
996      Kind = PrevRecordDecl->getTagKind();
997    }
998
999    // Check for redefinition of this class template.
1000    if (TUK == TUK_Definition) {
1001      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1002        Diag(NameLoc, diag::err_redefinition) << Name;
1003        Diag(Def->getLocation(), diag::note_previous_definition);
1004        // FIXME: Would it make sense to try to "forget" the previous
1005        // definition, as part of error recovery?
1006        return true;
1007      }
1008    }
1009  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
1010    // Maybe we will complain about the shadowed template parameter.
1011    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1012    // Just pretend that we didn't see the previous declaration.
1013    PrevDecl = 0;
1014  } else if (PrevDecl) {
1015    // C++ [temp]p5:
1016    //   A class template shall not have the same name as any other
1017    //   template, class, function, object, enumeration, enumerator,
1018    //   namespace, or type in the same scope (3.3), except as specified
1019    //   in (14.5.4).
1020    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1021    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1022    return true;
1023  }
1024
1025  // Check the template parameter list of this declaration, possibly
1026  // merging in the template parameter list from the previous class
1027  // template declaration. Skip this check for a friend in a dependent
1028  // context, because the template parameter list might be dependent.
1029  if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1030      CheckTemplateParameterList(
1031          TemplateParams,
1032          PrevClassTemplate ? PrevClassTemplate->getTemplateParameters() : 0,
1033          (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
1034           SemanticContext->isDependentContext())
1035              ? TPC_ClassTemplateMember
1036              : TUK == TUK_Friend ? TPC_FriendClassTemplate
1037                                  : TPC_ClassTemplate))
1038    Invalid = true;
1039
1040  if (SS.isSet()) {
1041    // If the name of the template was qualified, we must be defining the
1042    // template out-of-line.
1043    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1044      Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1045                                      : diag::err_member_decl_does_not_match)
1046        << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
1047      Invalid = true;
1048    }
1049  }
1050
1051  CXXRecordDecl *NewClass =
1052    CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1053                          PrevClassTemplate?
1054                            PrevClassTemplate->getTemplatedDecl() : 0,
1055                          /*DelayTypeCreation=*/true);
1056  SetNestedNameSpecifier(NewClass, SS);
1057  if (NumOuterTemplateParamLists > 0)
1058    NewClass->setTemplateParameterListsInfo(Context,
1059                                            NumOuterTemplateParamLists,
1060                                            OuterTemplateParamLists);
1061
1062  // Add alignment attributes if necessary; these attributes are checked when
1063  // the ASTContext lays out the structure.
1064  if (TUK == TUK_Definition) {
1065    AddAlignmentAttributesForRecord(NewClass);
1066    AddMsStructLayoutForRecord(NewClass);
1067  }
1068
1069  ClassTemplateDecl *NewTemplate
1070    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1071                                DeclarationName(Name), TemplateParams,
1072                                NewClass, PrevClassTemplate);
1073  NewClass->setDescribedClassTemplate(NewTemplate);
1074
1075  if (ModulePrivateLoc.isValid())
1076    NewTemplate->setModulePrivate();
1077
1078  // Build the type for the class template declaration now.
1079  QualType T = NewTemplate->getInjectedClassNameSpecialization();
1080  T = Context.getInjectedClassNameType(NewClass, T);
1081  assert(T->isDependentType() && "Class template type is not dependent?");
1082  (void)T;
1083
1084  // If we are providing an explicit specialization of a member that is a
1085  // class template, make a note of that.
1086  if (PrevClassTemplate &&
1087      PrevClassTemplate->getInstantiatedFromMemberTemplate())
1088    PrevClassTemplate->setMemberSpecialization();
1089
1090  // Set the access specifier.
1091  if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1092    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1093
1094  // Set the lexical context of these templates
1095  NewClass->setLexicalDeclContext(CurContext);
1096  NewTemplate->setLexicalDeclContext(CurContext);
1097
1098  if (TUK == TUK_Definition)
1099    NewClass->startDefinition();
1100
1101  if (Attr)
1102    ProcessDeclAttributeList(S, NewClass, Attr);
1103
1104  if (PrevClassTemplate)
1105    mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
1106
1107  AddPushedVisibilityAttribute(NewClass);
1108
1109  if (TUK != TUK_Friend)
1110    PushOnScopeChains(NewTemplate, S);
1111  else {
1112    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1113      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1114      NewClass->setAccess(PrevClassTemplate->getAccess());
1115    }
1116
1117    NewTemplate->setObjectOfFriendDecl();
1118
1119    // Friend templates are visible in fairly strange ways.
1120    if (!CurContext->isDependentContext()) {
1121      DeclContext *DC = SemanticContext->getRedeclContext();
1122      DC->makeDeclVisibleInContext(NewTemplate);
1123      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1124        PushOnScopeChains(NewTemplate, EnclosingScope,
1125                          /* AddToContext = */ false);
1126    }
1127
1128    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1129                                            NewClass->getLocation(),
1130                                            NewTemplate,
1131                                    /*FIXME:*/NewClass->getLocation());
1132    Friend->setAccess(AS_public);
1133    CurContext->addDecl(Friend);
1134  }
1135
1136  if (Invalid) {
1137    NewTemplate->setInvalidDecl();
1138    NewClass->setInvalidDecl();
1139  }
1140
1141  ActOnDocumentableDecl(NewTemplate);
1142
1143  return NewTemplate;
1144}
1145
1146/// \brief Diagnose the presence of a default template argument on a
1147/// template parameter, which is ill-formed in certain contexts.
1148///
1149/// \returns true if the default template argument should be dropped.
1150static bool DiagnoseDefaultTemplateArgument(Sema &S,
1151                                            Sema::TemplateParamListContext TPC,
1152                                            SourceLocation ParamLoc,
1153                                            SourceRange DefArgRange) {
1154  switch (TPC) {
1155  case Sema::TPC_ClassTemplate:
1156  case Sema::TPC_VarTemplate:
1157  case Sema::TPC_TypeAliasTemplate:
1158    return false;
1159
1160  case Sema::TPC_FunctionTemplate:
1161  case Sema::TPC_FriendFunctionTemplateDefinition:
1162    // C++ [temp.param]p9:
1163    //   A default template-argument shall not be specified in a
1164    //   function template declaration or a function template
1165    //   definition [...]
1166    //   If a friend function template declaration specifies a default
1167    //   template-argument, that declaration shall be a definition and shall be
1168    //   the only declaration of the function template in the translation unit.
1169    // (C++98/03 doesn't have this wording; see DR226).
1170    S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
1171         diag::warn_cxx98_compat_template_parameter_default_in_function_template
1172           : diag::ext_template_parameter_default_in_function_template)
1173      << DefArgRange;
1174    return false;
1175
1176  case Sema::TPC_ClassTemplateMember:
1177    // C++0x [temp.param]p9:
1178    //   A default template-argument shall not be specified in the
1179    //   template-parameter-lists of the definition of a member of a
1180    //   class template that appears outside of the member's class.
1181    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1182      << DefArgRange;
1183    return true;
1184
1185  case Sema::TPC_FriendClassTemplate:
1186  case Sema::TPC_FriendFunctionTemplate:
1187    // C++ [temp.param]p9:
1188    //   A default template-argument shall not be specified in a
1189    //   friend template declaration.
1190    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1191      << DefArgRange;
1192    return true;
1193
1194    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1195    // for friend function templates if there is only a single
1196    // declaration (and it is a definition). Strange!
1197  }
1198
1199  llvm_unreachable("Invalid TemplateParamListContext!");
1200}
1201
1202/// \brief Check for unexpanded parameter packs within the template parameters
1203/// of a template template parameter, recursively.
1204static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1205                                             TemplateTemplateParmDecl *TTP) {
1206  // A template template parameter which is a parameter pack is also a pack
1207  // expansion.
1208  if (TTP->isParameterPack())
1209    return false;
1210
1211  TemplateParameterList *Params = TTP->getTemplateParameters();
1212  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1213    NamedDecl *P = Params->getParam(I);
1214    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1215      if (!NTTP->isParameterPack() &&
1216          S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1217                                            NTTP->getTypeSourceInfo(),
1218                                      Sema::UPPC_NonTypeTemplateParameterType))
1219        return true;
1220
1221      continue;
1222    }
1223
1224    if (TemplateTemplateParmDecl *InnerTTP
1225                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1226      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1227        return true;
1228  }
1229
1230  return false;
1231}
1232
1233/// \brief Checks the validity of a template parameter list, possibly
1234/// considering the template parameter list from a previous
1235/// declaration.
1236///
1237/// If an "old" template parameter list is provided, it must be
1238/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1239/// template parameter list.
1240///
1241/// \param NewParams Template parameter list for a new template
1242/// declaration. This template parameter list will be updated with any
1243/// default arguments that are carried through from the previous
1244/// template parameter list.
1245///
1246/// \param OldParams If provided, template parameter list from a
1247/// previous declaration of the same template. Default template
1248/// arguments will be merged from the old template parameter list to
1249/// the new template parameter list.
1250///
1251/// \param TPC Describes the context in which we are checking the given
1252/// template parameter list.
1253///
1254/// \returns true if an error occurred, false otherwise.
1255bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1256                                      TemplateParameterList *OldParams,
1257                                      TemplateParamListContext TPC) {
1258  bool Invalid = false;
1259
1260  // C++ [temp.param]p10:
1261  //   The set of default template-arguments available for use with a
1262  //   template declaration or definition is obtained by merging the
1263  //   default arguments from the definition (if in scope) and all
1264  //   declarations in scope in the same way default function
1265  //   arguments are (8.3.6).
1266  bool SawDefaultArgument = false;
1267  SourceLocation PreviousDefaultArgLoc;
1268
1269  // Dummy initialization to avoid warnings.
1270  TemplateParameterList::iterator OldParam = NewParams->end();
1271  if (OldParams)
1272    OldParam = OldParams->begin();
1273
1274  bool RemoveDefaultArguments = false;
1275  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1276                                    NewParamEnd = NewParams->end();
1277       NewParam != NewParamEnd; ++NewParam) {
1278    // Variables used to diagnose redundant default arguments
1279    bool RedundantDefaultArg = false;
1280    SourceLocation OldDefaultLoc;
1281    SourceLocation NewDefaultLoc;
1282
1283    // Variable used to diagnose missing default arguments
1284    bool MissingDefaultArg = false;
1285
1286    // Variable used to diagnose non-final parameter packs
1287    bool SawParameterPack = false;
1288
1289    if (TemplateTypeParmDecl *NewTypeParm
1290          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1291      // Check the presence of a default argument here.
1292      if (NewTypeParm->hasDefaultArgument() &&
1293          DiagnoseDefaultTemplateArgument(*this, TPC,
1294                                          NewTypeParm->getLocation(),
1295               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1296                                                       .getSourceRange()))
1297        NewTypeParm->removeDefaultArgument();
1298
1299      // Merge default arguments for template type parameters.
1300      TemplateTypeParmDecl *OldTypeParm
1301          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1302
1303      if (NewTypeParm->isParameterPack()) {
1304        assert(!NewTypeParm->hasDefaultArgument() &&
1305               "Parameter packs can't have a default argument!");
1306        SawParameterPack = true;
1307      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1308                 NewTypeParm->hasDefaultArgument()) {
1309        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1310        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1311        SawDefaultArgument = true;
1312        RedundantDefaultArg = true;
1313        PreviousDefaultArgLoc = NewDefaultLoc;
1314      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1315        // Merge the default argument from the old declaration to the
1316        // new declaration.
1317        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1318                                        true);
1319        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1320      } else if (NewTypeParm->hasDefaultArgument()) {
1321        SawDefaultArgument = true;
1322        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1323      } else if (SawDefaultArgument)
1324        MissingDefaultArg = true;
1325    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1326               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1327      // Check for unexpanded parameter packs.
1328      if (!NewNonTypeParm->isParameterPack() &&
1329          DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1330                                          NewNonTypeParm->getTypeSourceInfo(),
1331                                          UPPC_NonTypeTemplateParameterType)) {
1332        Invalid = true;
1333        continue;
1334      }
1335
1336      // Check the presence of a default argument here.
1337      if (NewNonTypeParm->hasDefaultArgument() &&
1338          DiagnoseDefaultTemplateArgument(*this, TPC,
1339                                          NewNonTypeParm->getLocation(),
1340                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1341        NewNonTypeParm->removeDefaultArgument();
1342      }
1343
1344      // Merge default arguments for non-type template parameters
1345      NonTypeTemplateParmDecl *OldNonTypeParm
1346        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1347      if (NewNonTypeParm->isParameterPack()) {
1348        assert(!NewNonTypeParm->hasDefaultArgument() &&
1349               "Parameter packs can't have a default argument!");
1350        if (!NewNonTypeParm->isPackExpansion())
1351          SawParameterPack = true;
1352      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1353                 NewNonTypeParm->hasDefaultArgument()) {
1354        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1355        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1356        SawDefaultArgument = true;
1357        RedundantDefaultArg = true;
1358        PreviousDefaultArgLoc = NewDefaultLoc;
1359      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1360        // Merge the default argument from the old declaration to the
1361        // new declaration.
1362        // FIXME: We need to create a new kind of "default argument"
1363        // expression that points to a previous non-type template
1364        // parameter.
1365        NewNonTypeParm->setDefaultArgument(
1366                                         OldNonTypeParm->getDefaultArgument(),
1367                                         /*Inherited=*/ true);
1368        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1369      } else if (NewNonTypeParm->hasDefaultArgument()) {
1370        SawDefaultArgument = true;
1371        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1372      } else if (SawDefaultArgument)
1373        MissingDefaultArg = true;
1374    } else {
1375      TemplateTemplateParmDecl *NewTemplateParm
1376        = cast<TemplateTemplateParmDecl>(*NewParam);
1377
1378      // Check for unexpanded parameter packs, recursively.
1379      if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1380        Invalid = true;
1381        continue;
1382      }
1383
1384      // Check the presence of a default argument here.
1385      if (NewTemplateParm->hasDefaultArgument() &&
1386          DiagnoseDefaultTemplateArgument(*this, TPC,
1387                                          NewTemplateParm->getLocation(),
1388                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1389        NewTemplateParm->removeDefaultArgument();
1390
1391      // Merge default arguments for template template parameters
1392      TemplateTemplateParmDecl *OldTemplateParm
1393        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1394      if (NewTemplateParm->isParameterPack()) {
1395        assert(!NewTemplateParm->hasDefaultArgument() &&
1396               "Parameter packs can't have a default argument!");
1397        if (!NewTemplateParm->isPackExpansion())
1398          SawParameterPack = true;
1399      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1400          NewTemplateParm->hasDefaultArgument()) {
1401        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1402        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1403        SawDefaultArgument = true;
1404        RedundantDefaultArg = true;
1405        PreviousDefaultArgLoc = NewDefaultLoc;
1406      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1407        // Merge the default argument from the old declaration to the
1408        // new declaration.
1409        // FIXME: We need to create a new kind of "default argument" expression
1410        // that points to a previous template template parameter.
1411        NewTemplateParm->setDefaultArgument(
1412                                          OldTemplateParm->getDefaultArgument(),
1413                                          /*Inherited=*/ true);
1414        PreviousDefaultArgLoc
1415          = OldTemplateParm->getDefaultArgument().getLocation();
1416      } else if (NewTemplateParm->hasDefaultArgument()) {
1417        SawDefaultArgument = true;
1418        PreviousDefaultArgLoc
1419          = NewTemplateParm->getDefaultArgument().getLocation();
1420      } else if (SawDefaultArgument)
1421        MissingDefaultArg = true;
1422    }
1423
1424    // C++11 [temp.param]p11:
1425    //   If a template parameter of a primary class template or alias template
1426    //   is a template parameter pack, it shall be the last template parameter.
1427    if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1428        (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
1429         TPC == TPC_TypeAliasTemplate)) {
1430      Diag((*NewParam)->getLocation(),
1431           diag::err_template_param_pack_must_be_last_template_parameter);
1432      Invalid = true;
1433    }
1434
1435    if (RedundantDefaultArg) {
1436      // C++ [temp.param]p12:
1437      //   A template-parameter shall not be given default arguments
1438      //   by two different declarations in the same scope.
1439      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1440      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1441      Invalid = true;
1442    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1443      // C++ [temp.param]p11:
1444      //   If a template-parameter of a class template has a default
1445      //   template-argument, each subsequent template-parameter shall either
1446      //   have a default template-argument supplied or be a template parameter
1447      //   pack.
1448      Diag((*NewParam)->getLocation(),
1449           diag::err_template_param_default_arg_missing);
1450      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1451      Invalid = true;
1452      RemoveDefaultArguments = true;
1453    }
1454
1455    // If we have an old template parameter list that we're merging
1456    // in, move on to the next parameter.
1457    if (OldParams)
1458      ++OldParam;
1459  }
1460
1461  // We were missing some default arguments at the end of the list, so remove
1462  // all of the default arguments.
1463  if (RemoveDefaultArguments) {
1464    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1465                                      NewParamEnd = NewParams->end();
1466         NewParam != NewParamEnd; ++NewParam) {
1467      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1468        TTP->removeDefaultArgument();
1469      else if (NonTypeTemplateParmDecl *NTTP
1470                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1471        NTTP->removeDefaultArgument();
1472      else
1473        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1474    }
1475  }
1476
1477  return Invalid;
1478}
1479
1480namespace {
1481
1482/// A class which looks for a use of a certain level of template
1483/// parameter.
1484struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1485  typedef RecursiveASTVisitor<DependencyChecker> super;
1486
1487  unsigned Depth;
1488  bool Match;
1489
1490  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1491    NamedDecl *ND = Params->getParam(0);
1492    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1493      Depth = PD->getDepth();
1494    } else if (NonTypeTemplateParmDecl *PD =
1495                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1496      Depth = PD->getDepth();
1497    } else {
1498      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1499    }
1500  }
1501
1502  bool Matches(unsigned ParmDepth) {
1503    if (ParmDepth >= Depth) {
1504      Match = true;
1505      return true;
1506    }
1507    return false;
1508  }
1509
1510  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1511    return !Matches(T->getDepth());
1512  }
1513
1514  bool TraverseTemplateName(TemplateName N) {
1515    if (TemplateTemplateParmDecl *PD =
1516          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1517      if (Matches(PD->getDepth())) return false;
1518    return super::TraverseTemplateName(N);
1519  }
1520
1521  bool VisitDeclRefExpr(DeclRefExpr *E) {
1522    if (NonTypeTemplateParmDecl *PD =
1523          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1524      if (PD->getDepth() == Depth) {
1525        Match = true;
1526        return false;
1527      }
1528    }
1529    return super::VisitDeclRefExpr(E);
1530  }
1531
1532  bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1533    return TraverseType(T->getInjectedSpecializationType());
1534  }
1535};
1536}
1537
1538/// Determines whether a given type depends on the given parameter
1539/// list.
1540static bool
1541DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1542  DependencyChecker Checker(Params);
1543  Checker.TraverseType(T);
1544  return Checker.Match;
1545}
1546
1547// Find the source range corresponding to the named type in the given
1548// nested-name-specifier, if any.
1549static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1550                                                       QualType T,
1551                                                       const CXXScopeSpec &SS) {
1552  NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1553  while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1554    if (const Type *CurType = NNS->getAsType()) {
1555      if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1556        return NNSLoc.getTypeLoc().getSourceRange();
1557    } else
1558      break;
1559
1560    NNSLoc = NNSLoc.getPrefix();
1561  }
1562
1563  return SourceRange();
1564}
1565
1566/// \brief Match the given template parameter lists to the given scope
1567/// specifier, returning the template parameter list that applies to the
1568/// name.
1569///
1570/// \param DeclStartLoc the start of the declaration that has a scope
1571/// specifier or a template parameter list.
1572///
1573/// \param DeclLoc The location of the declaration itself.
1574///
1575/// \param SS the scope specifier that will be matched to the given template
1576/// parameter lists. This scope specifier precedes a qualified name that is
1577/// being declared.
1578///
1579/// \param ParamLists the template parameter lists, from the outermost to the
1580/// innermost template parameter lists.
1581///
1582/// \param IsFriend Whether to apply the slightly different rules for
1583/// matching template parameters to scope specifiers in friend
1584/// declarations.
1585///
1586/// \param IsExplicitSpecialization will be set true if the entity being
1587/// declared is an explicit specialization, false otherwise.
1588///
1589/// \returns the template parameter list, if any, that corresponds to the
1590/// name that is preceded by the scope specifier @p SS. This template
1591/// parameter list may have template parameters (if we're declaring a
1592/// template) or may have no template parameters (if we're declaring a
1593/// template specialization), or may be NULL (if what we're declaring isn't
1594/// itself a template).
1595TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
1596    SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
1597    ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
1598    bool &IsExplicitSpecialization, bool &Invalid) {
1599  IsExplicitSpecialization = false;
1600  Invalid = false;
1601
1602  // The sequence of nested types to which we will match up the template
1603  // parameter lists. We first build this list by starting with the type named
1604  // by the nested-name-specifier and walking out until we run out of types.
1605  SmallVector<QualType, 4> NestedTypes;
1606  QualType T;
1607  if (SS.getScopeRep()) {
1608    if (CXXRecordDecl *Record
1609              = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1610      T = Context.getTypeDeclType(Record);
1611    else
1612      T = QualType(SS.getScopeRep()->getAsType(), 0);
1613  }
1614
1615  // If we found an explicit specialization that prevents us from needing
1616  // 'template<>' headers, this will be set to the location of that
1617  // explicit specialization.
1618  SourceLocation ExplicitSpecLoc;
1619
1620  while (!T.isNull()) {
1621    NestedTypes.push_back(T);
1622
1623    // Retrieve the parent of a record type.
1624    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1625      // If this type is an explicit specialization, we're done.
1626      if (ClassTemplateSpecializationDecl *Spec
1627          = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1628        if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1629            Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1630          ExplicitSpecLoc = Spec->getLocation();
1631          break;
1632        }
1633      } else if (Record->getTemplateSpecializationKind()
1634                                                == TSK_ExplicitSpecialization) {
1635        ExplicitSpecLoc = Record->getLocation();
1636        break;
1637      }
1638
1639      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1640        T = Context.getTypeDeclType(Parent);
1641      else
1642        T = QualType();
1643      continue;
1644    }
1645
1646    if (const TemplateSpecializationType *TST
1647                                     = T->getAs<TemplateSpecializationType>()) {
1648      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1649        if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1650          T = Context.getTypeDeclType(Parent);
1651        else
1652          T = QualType();
1653        continue;
1654      }
1655    }
1656
1657    // Look one step prior in a dependent template specialization type.
1658    if (const DependentTemplateSpecializationType *DependentTST
1659                          = T->getAs<DependentTemplateSpecializationType>()) {
1660      if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1661        T = QualType(NNS->getAsType(), 0);
1662      else
1663        T = QualType();
1664      continue;
1665    }
1666
1667    // Look one step prior in a dependent name type.
1668    if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1669      if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1670        T = QualType(NNS->getAsType(), 0);
1671      else
1672        T = QualType();
1673      continue;
1674    }
1675
1676    // Retrieve the parent of an enumeration type.
1677    if (const EnumType *EnumT = T->getAs<EnumType>()) {
1678      // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1679      // check here.
1680      EnumDecl *Enum = EnumT->getDecl();
1681
1682      // Get to the parent type.
1683      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1684        T = Context.getTypeDeclType(Parent);
1685      else
1686        T = QualType();
1687      continue;
1688    }
1689
1690    T = QualType();
1691  }
1692  // Reverse the nested types list, since we want to traverse from the outermost
1693  // to the innermost while checking template-parameter-lists.
1694  std::reverse(NestedTypes.begin(), NestedTypes.end());
1695
1696  // C++0x [temp.expl.spec]p17:
1697  //   A member or a member template may be nested within many
1698  //   enclosing class templates. In an explicit specialization for
1699  //   such a member, the member declaration shall be preceded by a
1700  //   template<> for each enclosing class template that is
1701  //   explicitly specialized.
1702  bool SawNonEmptyTemplateParameterList = false;
1703  unsigned ParamIdx = 0;
1704  for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1705       ++TypeIdx) {
1706    T = NestedTypes[TypeIdx];
1707
1708    // Whether we expect a 'template<>' header.
1709    bool NeedEmptyTemplateHeader = false;
1710
1711    // Whether we expect a template header with parameters.
1712    bool NeedNonemptyTemplateHeader = false;
1713
1714    // For a dependent type, the set of template parameters that we
1715    // expect to see.
1716    TemplateParameterList *ExpectedTemplateParams = 0;
1717
1718    // C++0x [temp.expl.spec]p15:
1719    //   A member or a member template may be nested within many enclosing
1720    //   class templates. In an explicit specialization for such a member, the
1721    //   member declaration shall be preceded by a template<> for each
1722    //   enclosing class template that is explicitly specialized.
1723    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1724      if (ClassTemplatePartialSpecializationDecl *Partial
1725            = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1726        ExpectedTemplateParams = Partial->getTemplateParameters();
1727        NeedNonemptyTemplateHeader = true;
1728      } else if (Record->isDependentType()) {
1729        if (Record->getDescribedClassTemplate()) {
1730          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1731                                                      ->getTemplateParameters();
1732          NeedNonemptyTemplateHeader = true;
1733        }
1734      } else if (ClassTemplateSpecializationDecl *Spec
1735                     = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1736        // C++0x [temp.expl.spec]p4:
1737        //   Members of an explicitly specialized class template are defined
1738        //   in the same manner as members of normal classes, and not using
1739        //   the template<> syntax.
1740        if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1741          NeedEmptyTemplateHeader = true;
1742        else
1743          continue;
1744      } else if (Record->getTemplateSpecializationKind()) {
1745        if (Record->getTemplateSpecializationKind()
1746                                                != TSK_ExplicitSpecialization &&
1747            TypeIdx == NumTypes - 1)
1748          IsExplicitSpecialization = true;
1749
1750        continue;
1751      }
1752    } else if (const TemplateSpecializationType *TST
1753                                     = T->getAs<TemplateSpecializationType>()) {
1754      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1755        ExpectedTemplateParams = Template->getTemplateParameters();
1756        NeedNonemptyTemplateHeader = true;
1757      }
1758    } else if (T->getAs<DependentTemplateSpecializationType>()) {
1759      // FIXME:  We actually could/should check the template arguments here
1760      // against the corresponding template parameter list.
1761      NeedNonemptyTemplateHeader = false;
1762    }
1763
1764    // C++ [temp.expl.spec]p16:
1765    //   In an explicit specialization declaration for a member of a class
1766    //   template or a member template that ap- pears in namespace scope, the
1767    //   member template and some of its enclosing class templates may remain
1768    //   unspecialized, except that the declaration shall not explicitly
1769    //   specialize a class member template if its en- closing class templates
1770    //   are not explicitly specialized as well.
1771    if (ParamIdx < ParamLists.size()) {
1772      if (ParamLists[ParamIdx]->size() == 0) {
1773        if (SawNonEmptyTemplateParameterList) {
1774          Diag(DeclLoc, diag::err_specialize_member_of_template)
1775            << ParamLists[ParamIdx]->getSourceRange();
1776          Invalid = true;
1777          IsExplicitSpecialization = false;
1778          return 0;
1779        }
1780      } else
1781        SawNonEmptyTemplateParameterList = true;
1782    }
1783
1784    if (NeedEmptyTemplateHeader) {
1785      // If we're on the last of the types, and we need a 'template<>' header
1786      // here, then it's an explicit specialization.
1787      if (TypeIdx == NumTypes - 1)
1788        IsExplicitSpecialization = true;
1789
1790      if (ParamIdx < ParamLists.size()) {
1791        if (ParamLists[ParamIdx]->size() > 0) {
1792          // The header has template parameters when it shouldn't. Complain.
1793          Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1794               diag::err_template_param_list_matches_nontemplate)
1795            << T
1796            << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1797                           ParamLists[ParamIdx]->getRAngleLoc())
1798            << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1799          Invalid = true;
1800          return 0;
1801        }
1802
1803        // Consume this template header.
1804        ++ParamIdx;
1805        continue;
1806      }
1807
1808      if (!IsFriend) {
1809        // We don't have a template header, but we should.
1810        SourceLocation ExpectedTemplateLoc;
1811        if (!ParamLists.empty())
1812          ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1813        else
1814          ExpectedTemplateLoc = DeclStartLoc;
1815
1816        Diag(DeclLoc, diag::err_template_spec_needs_header)
1817          << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
1818          << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1819      }
1820
1821      continue;
1822    }
1823
1824    if (NeedNonemptyTemplateHeader) {
1825      // In friend declarations we can have template-ids which don't
1826      // depend on the corresponding template parameter lists.  But
1827      // assume that empty parameter lists are supposed to match this
1828      // template-id.
1829      if (IsFriend && T->isDependentType()) {
1830        if (ParamIdx < ParamLists.size() &&
1831            DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1832          ExpectedTemplateParams = 0;
1833        else
1834          continue;
1835      }
1836
1837      if (ParamIdx < ParamLists.size()) {
1838        // Check the template parameter list, if we can.
1839        if (ExpectedTemplateParams &&
1840            !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1841                                            ExpectedTemplateParams,
1842                                            true, TPL_TemplateMatch))
1843          Invalid = true;
1844
1845        if (!Invalid &&
1846            CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1847                                       TPC_ClassTemplateMember))
1848          Invalid = true;
1849
1850        ++ParamIdx;
1851        continue;
1852      }
1853
1854      Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1855        << T
1856        << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1857      Invalid = true;
1858      continue;
1859    }
1860  }
1861
1862  // If there were at least as many template-ids as there were template
1863  // parameter lists, then there are no template parameter lists remaining for
1864  // the declaration itself.
1865  if (ParamIdx >= ParamLists.size())
1866    return 0;
1867
1868  // If there were too many template parameter lists, complain about that now.
1869  if (ParamIdx < ParamLists.size() - 1) {
1870    bool HasAnyExplicitSpecHeader = false;
1871    bool AllExplicitSpecHeaders = true;
1872    for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
1873      if (ParamLists[I]->size() == 0)
1874        HasAnyExplicitSpecHeader = true;
1875      else
1876        AllExplicitSpecHeaders = false;
1877    }
1878
1879    Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1880         AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
1881                                : diag::err_template_spec_extra_headers)
1882        << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1883                       ParamLists[ParamLists.size() - 2]->getRAngleLoc());
1884
1885    // If there was a specialization somewhere, such that 'template<>' is
1886    // not required, and there were any 'template<>' headers, note where the
1887    // specialization occurred.
1888    if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1889      Diag(ExplicitSpecLoc,
1890           diag::note_explicit_template_spec_does_not_need_header)
1891        << NestedTypes.back();
1892
1893    // We have a template parameter list with no corresponding scope, which
1894    // means that the resulting template declaration can't be instantiated
1895    // properly (we'll end up with dependent nodes when we shouldn't).
1896    if (!AllExplicitSpecHeaders)
1897      Invalid = true;
1898  }
1899
1900  // C++ [temp.expl.spec]p16:
1901  //   In an explicit specialization declaration for a member of a class
1902  //   template or a member template that ap- pears in namespace scope, the
1903  //   member template and some of its enclosing class templates may remain
1904  //   unspecialized, except that the declaration shall not explicitly
1905  //   specialize a class member template if its en- closing class templates
1906  //   are not explicitly specialized as well.
1907  if (ParamLists.back()->size() == 0 && SawNonEmptyTemplateParameterList) {
1908    Diag(DeclLoc, diag::err_specialize_member_of_template)
1909      << ParamLists[ParamIdx]->getSourceRange();
1910    Invalid = true;
1911    IsExplicitSpecialization = false;
1912    return 0;
1913  }
1914
1915  // Return the last template parameter list, which corresponds to the
1916  // entity being declared.
1917  return ParamLists.back();
1918}
1919
1920void Sema::NoteAllFoundTemplates(TemplateName Name) {
1921  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1922    Diag(Template->getLocation(), diag::note_template_declared_here)
1923        << (isa<FunctionTemplateDecl>(Template)
1924                ? 0
1925                : isa<ClassTemplateDecl>(Template)
1926                      ? 1
1927                      : isa<VarTemplateDecl>(Template)
1928                            ? 2
1929                            : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
1930        << Template->getDeclName();
1931    return;
1932  }
1933
1934  if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1935    for (OverloadedTemplateStorage::iterator I = OST->begin(),
1936                                          IEnd = OST->end();
1937         I != IEnd; ++I)
1938      Diag((*I)->getLocation(), diag::note_template_declared_here)
1939        << 0 << (*I)->getDeclName();
1940
1941    return;
1942  }
1943}
1944
1945QualType Sema::CheckTemplateIdType(TemplateName Name,
1946                                   SourceLocation TemplateLoc,
1947                                   TemplateArgumentListInfo &TemplateArgs) {
1948  DependentTemplateName *DTN
1949    = Name.getUnderlying().getAsDependentTemplateName();
1950  if (DTN && DTN->isIdentifier())
1951    // When building a template-id where the template-name is dependent,
1952    // assume the template is a type template. Either our assumption is
1953    // correct, or the code is ill-formed and will be diagnosed when the
1954    // dependent name is substituted.
1955    return Context.getDependentTemplateSpecializationType(ETK_None,
1956                                                          DTN->getQualifier(),
1957                                                          DTN->getIdentifier(),
1958                                                          TemplateArgs);
1959
1960  TemplateDecl *Template = Name.getAsTemplateDecl();
1961  if (!Template || isa<FunctionTemplateDecl>(Template)) {
1962    // We might have a substituted template template parameter pack. If so,
1963    // build a template specialization type for it.
1964    if (Name.getAsSubstTemplateTemplateParmPack())
1965      return Context.getTemplateSpecializationType(Name, TemplateArgs);
1966
1967    Diag(TemplateLoc, diag::err_template_id_not_a_type)
1968      << Name;
1969    NoteAllFoundTemplates(Name);
1970    return QualType();
1971  }
1972
1973  // Check that the template argument list is well-formed for this
1974  // template.
1975  SmallVector<TemplateArgument, 4> Converted;
1976  bool ExpansionIntoFixedList = false;
1977  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1978                                false, Converted, &ExpansionIntoFixedList))
1979    return QualType();
1980
1981  QualType CanonType;
1982
1983  bool InstantiationDependent = false;
1984  TypeAliasTemplateDecl *AliasTemplate = 0;
1985  if (!ExpansionIntoFixedList &&
1986      (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) {
1987    // Find the canonical type for this type alias template specialization.
1988    TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
1989    if (Pattern->isInvalidDecl())
1990      return QualType();
1991
1992    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1993                                      Converted.data(), Converted.size());
1994
1995    // Only substitute for the innermost template argument list.
1996    MultiLevelTemplateArgumentList TemplateArgLists;
1997    TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
1998    unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
1999    for (unsigned I = 0; I < Depth; ++I)
2000      TemplateArgLists.addOuterTemplateArguments(None);
2001
2002    LocalInstantiationScope Scope(*this);
2003    InstantiatingTemplate Inst(*this, TemplateLoc, Template);
2004    if (Inst)
2005      return QualType();
2006
2007    CanonType = SubstType(Pattern->getUnderlyingType(),
2008                          TemplateArgLists, AliasTemplate->getLocation(),
2009                          AliasTemplate->getDeclName());
2010    if (CanonType.isNull())
2011      return QualType();
2012  } else if (Name.isDependent() ||
2013             TemplateSpecializationType::anyDependentTemplateArguments(
2014               TemplateArgs, InstantiationDependent)) {
2015    // This class template specialization is a dependent
2016    // type. Therefore, its canonical type is another class template
2017    // specialization type that contains all of the converted
2018    // arguments in canonical form. This ensures that, e.g., A<T> and
2019    // A<T, T> have identical types when A is declared as:
2020    //
2021    //   template<typename T, typename U = T> struct A;
2022    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
2023    CanonType = Context.getTemplateSpecializationType(CanonName,
2024                                                      Converted.data(),
2025                                                      Converted.size());
2026
2027    // FIXME: CanonType is not actually the canonical type, and unfortunately
2028    // it is a TemplateSpecializationType that we will never use again.
2029    // In the future, we need to teach getTemplateSpecializationType to only
2030    // build the canonical type and return that to us.
2031    CanonType = Context.getCanonicalType(CanonType);
2032
2033    // This might work out to be a current instantiation, in which
2034    // case the canonical type needs to be the InjectedClassNameType.
2035    //
2036    // TODO: in theory this could be a simple hashtable lookup; most
2037    // changes to CurContext don't change the set of current
2038    // instantiations.
2039    if (isa<ClassTemplateDecl>(Template)) {
2040      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
2041        // If we get out to a namespace, we're done.
2042        if (Ctx->isFileContext()) break;
2043
2044        // If this isn't a record, keep looking.
2045        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
2046        if (!Record) continue;
2047
2048        // Look for one of the two cases with InjectedClassNameTypes
2049        // and check whether it's the same template.
2050        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
2051            !Record->getDescribedClassTemplate())
2052          continue;
2053
2054        // Fetch the injected class name type and check whether its
2055        // injected type is equal to the type we just built.
2056        QualType ICNT = Context.getTypeDeclType(Record);
2057        QualType Injected = cast<InjectedClassNameType>(ICNT)
2058          ->getInjectedSpecializationType();
2059
2060        if (CanonType != Injected->getCanonicalTypeInternal())
2061          continue;
2062
2063        // If so, the canonical type of this TST is the injected
2064        // class name type of the record we just found.
2065        assert(ICNT.isCanonical());
2066        CanonType = ICNT;
2067        break;
2068      }
2069    }
2070  } else if (ClassTemplateDecl *ClassTemplate
2071               = dyn_cast<ClassTemplateDecl>(Template)) {
2072    // Find the class template specialization declaration that
2073    // corresponds to these arguments.
2074    void *InsertPos = 0;
2075    ClassTemplateSpecializationDecl *Decl
2076      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
2077                                          InsertPos);
2078    if (!Decl) {
2079      // This is the first time we have referenced this class template
2080      // specialization. Create the canonical declaration and add it to
2081      // the set of specializations.
2082      Decl = ClassTemplateSpecializationDecl::Create(Context,
2083                            ClassTemplate->getTemplatedDecl()->getTagKind(),
2084                                                ClassTemplate->getDeclContext(),
2085                            ClassTemplate->getTemplatedDecl()->getLocStart(),
2086                                                ClassTemplate->getLocation(),
2087                                                     ClassTemplate,
2088                                                     Converted.data(),
2089                                                     Converted.size(), 0);
2090      ClassTemplate->AddSpecialization(Decl, InsertPos);
2091      if (ClassTemplate->isOutOfLine())
2092        Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
2093    }
2094
2095    CanonType = Context.getTypeDeclType(Decl);
2096    assert(isa<RecordType>(CanonType) &&
2097           "type of non-dependent specialization is not a RecordType");
2098  }
2099
2100  // Build the fully-sugared type for this class template
2101  // specialization, which refers back to the class template
2102  // specialization we created or found.
2103  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2104}
2105
2106TypeResult
2107Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
2108                          TemplateTy TemplateD, SourceLocation TemplateLoc,
2109                          SourceLocation LAngleLoc,
2110                          ASTTemplateArgsPtr TemplateArgsIn,
2111                          SourceLocation RAngleLoc,
2112                          bool IsCtorOrDtorName) {
2113  if (SS.isInvalid())
2114    return true;
2115
2116  TemplateName Template = TemplateD.get();
2117
2118  // Translate the parser's template argument list in our AST format.
2119  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2120  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2121
2122  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2123    QualType T
2124      = Context.getDependentTemplateSpecializationType(ETK_None,
2125                                                       DTN->getQualifier(),
2126                                                       DTN->getIdentifier(),
2127                                                       TemplateArgs);
2128    // Build type-source information.
2129    TypeLocBuilder TLB;
2130    DependentTemplateSpecializationTypeLoc SpecTL
2131      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2132    SpecTL.setElaboratedKeywordLoc(SourceLocation());
2133    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2134    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2135    SpecTL.setTemplateNameLoc(TemplateLoc);
2136    SpecTL.setLAngleLoc(LAngleLoc);
2137    SpecTL.setRAngleLoc(RAngleLoc);
2138    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2139      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2140    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2141  }
2142
2143  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2144
2145  if (Result.isNull())
2146    return true;
2147
2148  // Build type-source information.
2149  TypeLocBuilder TLB;
2150  TemplateSpecializationTypeLoc SpecTL
2151    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2152  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2153  SpecTL.setTemplateNameLoc(TemplateLoc);
2154  SpecTL.setLAngleLoc(LAngleLoc);
2155  SpecTL.setRAngleLoc(RAngleLoc);
2156  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2157    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2158
2159  // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2160  // constructor or destructor name (in such a case, the scope specifier
2161  // will be attached to the enclosing Decl or Expr node).
2162  if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2163    // Create an elaborated-type-specifier containing the nested-name-specifier.
2164    Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2165    ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2166    ElabTL.setElaboratedKeywordLoc(SourceLocation());
2167    ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2168  }
2169
2170  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2171}
2172
2173TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2174                                        TypeSpecifierType TagSpec,
2175                                        SourceLocation TagLoc,
2176                                        CXXScopeSpec &SS,
2177                                        SourceLocation TemplateKWLoc,
2178                                        TemplateTy TemplateD,
2179                                        SourceLocation TemplateLoc,
2180                                        SourceLocation LAngleLoc,
2181                                        ASTTemplateArgsPtr TemplateArgsIn,
2182                                        SourceLocation RAngleLoc) {
2183  TemplateName Template = TemplateD.get();
2184
2185  // Translate the parser's template argument list in our AST format.
2186  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2187  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2188
2189  // Determine the tag kind
2190  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2191  ElaboratedTypeKeyword Keyword
2192    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2193
2194  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2195    QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2196                                                          DTN->getQualifier(),
2197                                                          DTN->getIdentifier(),
2198                                                                TemplateArgs);
2199
2200    // Build type-source information.
2201    TypeLocBuilder TLB;
2202    DependentTemplateSpecializationTypeLoc SpecTL
2203      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2204    SpecTL.setElaboratedKeywordLoc(TagLoc);
2205    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2206    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2207    SpecTL.setTemplateNameLoc(TemplateLoc);
2208    SpecTL.setLAngleLoc(LAngleLoc);
2209    SpecTL.setRAngleLoc(RAngleLoc);
2210    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2211      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2212    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2213  }
2214
2215  if (TypeAliasTemplateDecl *TAT =
2216        dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2217    // C++0x [dcl.type.elab]p2:
2218    //   If the identifier resolves to a typedef-name or the simple-template-id
2219    //   resolves to an alias template specialization, the
2220    //   elaborated-type-specifier is ill-formed.
2221    Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2222    Diag(TAT->getLocation(), diag::note_declared_at);
2223  }
2224
2225  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2226  if (Result.isNull())
2227    return TypeResult(true);
2228
2229  // Check the tag kind
2230  if (const RecordType *RT = Result->getAs<RecordType>()) {
2231    RecordDecl *D = RT->getDecl();
2232
2233    IdentifierInfo *Id = D->getIdentifier();
2234    assert(Id && "templated class must have an identifier");
2235
2236    if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2237                                      TagLoc, *Id)) {
2238      Diag(TagLoc, diag::err_use_with_wrong_tag)
2239        << Result
2240        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2241      Diag(D->getLocation(), diag::note_previous_use);
2242    }
2243  }
2244
2245  // Provide source-location information for the template specialization.
2246  TypeLocBuilder TLB;
2247  TemplateSpecializationTypeLoc SpecTL
2248    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2249  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2250  SpecTL.setTemplateNameLoc(TemplateLoc);
2251  SpecTL.setLAngleLoc(LAngleLoc);
2252  SpecTL.setRAngleLoc(RAngleLoc);
2253  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2254    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2255
2256  // Construct an elaborated type containing the nested-name-specifier (if any)
2257  // and tag keyword.
2258  Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2259  ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2260  ElabTL.setElaboratedKeywordLoc(TagLoc);
2261  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2262  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2263}
2264
2265static bool CheckTemplatePartialSpecializationArgs(
2266    Sema &S, TemplateParameterList *TemplateParams,
2267    SmallVectorImpl<TemplateArgument> &TemplateArgs);
2268
2269static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
2270                                             NamedDecl *PrevDecl,
2271                                             SourceLocation Loc,
2272                                             bool IsPartialSpecialization);
2273
2274static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
2275
2276DeclResult Sema::ActOnVarTemplateSpecialization(
2277    Scope *S, VarTemplateDecl *VarTemplate, Declarator &D, TypeSourceInfo *DI,
2278    SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams,
2279    VarDecl::StorageClass SC, bool IsPartialSpecialization) {
2280  assert(VarTemplate && "A variable template id without template?");
2281
2282  // D must be variable template id.
2283  assert(D.getName().getKind() == UnqualifiedId::IK_TemplateId &&
2284         "Variable template specialization is declared with a template it.");
2285
2286  TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2287  SourceLocation TemplateNameLoc = D.getIdentifierLoc();
2288  SourceLocation LAngleLoc = TemplateId->LAngleLoc;
2289  SourceLocation RAngleLoc = TemplateId->RAngleLoc;
2290  ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
2291                                     TemplateId->NumArgs);
2292  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2293  translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
2294  TemplateName Name(VarTemplate);
2295
2296  // Check for unexpanded parameter packs in any of the template arguments.
2297  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2298    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
2299                                        UPPC_PartialSpecialization))
2300      return true;
2301
2302  // Check that the template argument list is well-formed for this
2303  // template.
2304  SmallVector<TemplateArgument, 4> Converted;
2305  if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
2306                                false, Converted))
2307    return true;
2308
2309  // Check that the type of this variable template specialization
2310  // matches the expected type.
2311  TypeSourceInfo *ExpectedDI;
2312  {
2313    // Do substitution on the type of the declaration
2314    TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
2315                                         Converted.data(), Converted.size());
2316    InstantiatingTemplate Inst(*this, TemplateKWLoc, VarTemplate);
2317    if (Inst)
2318      return true;
2319    VarDecl *Templated = VarTemplate->getTemplatedDecl();
2320    ExpectedDI =
2321        SubstType(Templated->getTypeSourceInfo(),
2322                  MultiLevelTemplateArgumentList(TemplateArgList),
2323                  Templated->getTypeSpecStartLoc(), Templated->getDeclName());
2324  }
2325  if (!ExpectedDI)
2326    return true;
2327
2328  // Find the variable template (partial) specialization declaration that
2329  // corresponds to these arguments.
2330  if (IsPartialSpecialization) {
2331    if (CheckTemplatePartialSpecializationArgs(
2332            *this, VarTemplate->getTemplateParameters(), Converted))
2333      return true;
2334
2335    bool InstantiationDependent;
2336    if (!Name.isDependent() &&
2337        !TemplateSpecializationType::anyDependentTemplateArguments(
2338            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
2339            InstantiationDependent)) {
2340      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
2341          << VarTemplate->getDeclName();
2342      IsPartialSpecialization = false;
2343    }
2344  }
2345
2346  void *InsertPos = 0;
2347  VarTemplateSpecializationDecl *PrevDecl = 0;
2348
2349  if (IsPartialSpecialization)
2350    // FIXME: Template parameter list matters too
2351    PrevDecl = VarTemplate->findPartialSpecialization(
2352        Converted.data(), Converted.size(), InsertPos);
2353  else
2354    PrevDecl = VarTemplate->findSpecialization(Converted.data(),
2355                                               Converted.size(), InsertPos);
2356
2357  VarTemplateSpecializationDecl *Specialization = 0;
2358
2359  // Check whether we can declare a variable template specialization in
2360  // the current scope.
2361  if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
2362                                       TemplateNameLoc,
2363                                       IsPartialSpecialization))
2364    return true;
2365
2366  if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
2367    // Since the only prior variable template specialization with these
2368    // arguments was referenced but not declared,  reuse that
2369    // declaration node as our own, updating its source location and
2370    // the list of outer template parameters to reflect our new declaration.
2371    Specialization = PrevDecl;
2372    Specialization->setLocation(TemplateNameLoc);
2373    PrevDecl = 0;
2374  } else if (IsPartialSpecialization) {
2375    // Create a new class template partial specialization declaration node.
2376    VarTemplatePartialSpecializationDecl *PrevPartial =
2377        cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
2378    VarTemplatePartialSpecializationDecl *Partial =
2379        VarTemplatePartialSpecializationDecl::Create(
2380            Context, VarTemplate->getDeclContext(), TemplateKWLoc,
2381            TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
2382            Converted.data(), Converted.size(), TemplateArgs);
2383
2384    if (!PrevPartial)
2385      VarTemplate->AddPartialSpecialization(Partial, InsertPos);
2386    Specialization = Partial;
2387
2388    // If we are providing an explicit specialization of a member variable
2389    // template specialization, make a note of that.
2390    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
2391      PrevPartial->setMemberSpecialization();
2392
2393    // Check that all of the template parameters of the variable template
2394    // partial specialization are deducible from the template
2395    // arguments. If not, this variable template partial specialization
2396    // will never be used.
2397    llvm::SmallBitVector DeducibleParams(TemplateParams->size());
2398    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
2399                               TemplateParams->getDepth(), DeducibleParams);
2400
2401    if (!DeducibleParams.all()) {
2402      unsigned NumNonDeducible =
2403          DeducibleParams.size() - DeducibleParams.count();
2404      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
2405          << (NumNonDeducible > 1) << SourceRange(TemplateNameLoc, RAngleLoc);
2406      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
2407        if (!DeducibleParams[I]) {
2408          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
2409          if (Param->getDeclName())
2410            Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2411                << Param->getDeclName();
2412          else
2413            Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2414                << "<anonymous>";
2415        }
2416      }
2417    }
2418  } else {
2419    // Create a new class template specialization declaration node for
2420    // this explicit specialization or friend declaration.
2421    Specialization = VarTemplateSpecializationDecl::Create(
2422        Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
2423        VarTemplate, DI->getType(), DI, SC, Converted.data(), Converted.size());
2424    Specialization->setTemplateArgsInfo(TemplateArgs);
2425
2426    if (!PrevDecl)
2427      VarTemplate->AddSpecialization(Specialization, InsertPos);
2428  }
2429
2430  // C++ [temp.expl.spec]p6:
2431  //   If a template, a member template or the member of a class template is
2432  //   explicitly specialized then that specialization shall be declared
2433  //   before the first use of that specialization that would cause an implicit
2434  //   instantiation to take place, in every translation unit in which such a
2435  //   use occurs; no diagnostic is required.
2436  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
2437    bool Okay = false;
2438    for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
2439      // Is there any previous explicit specialization declaration?
2440      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
2441        Okay = true;
2442        break;
2443      }
2444    }
2445
2446    if (!Okay) {
2447      SourceRange Range(TemplateNameLoc, RAngleLoc);
2448      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
2449          << Name << Range;
2450
2451      Diag(PrevDecl->getPointOfInstantiation(),
2452           diag::note_instantiation_required_here)
2453          << (PrevDecl->getTemplateSpecializationKind() !=
2454              TSK_ImplicitInstantiation);
2455      return true;
2456    }
2457  }
2458
2459  Specialization->setTemplateKeywordLoc(TemplateKWLoc);
2460  Specialization->setLexicalDeclContext(CurContext);
2461
2462  // Add the specialization into its lexical context, so that it can
2463  // be seen when iterating through the list of declarations in that
2464  // context. However, specializations are not found by name lookup.
2465  CurContext->addDecl(Specialization);
2466
2467  // Note that this is an explicit specialization.
2468  Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
2469
2470  if (PrevDecl) {
2471    // Check that this isn't a redefinition of this specialization,
2472    // merging with previous declarations.
2473    LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
2474                          ForRedeclaration);
2475    PrevSpec.addDecl(PrevDecl);
2476    D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
2477  } else if (Specialization->isStaticDataMember() &&
2478             Specialization->isOutOfLine()) {
2479    Specialization->setAccess(VarTemplate->getAccess());
2480  }
2481
2482  // Link instantiations of static data members back to the template from
2483  // which they were instantiated.
2484  if (Specialization->isStaticDataMember())
2485    Specialization->setInstantiationOfStaticDataMember(
2486        VarTemplate->getTemplatedDecl(),
2487        Specialization->getSpecializationKind());
2488
2489  return Specialization;
2490}
2491
2492namespace {
2493/// \brief A partial specialization whose template arguments have matched
2494/// a given template-id.
2495struct PartialSpecMatchResult {
2496  VarTemplatePartialSpecializationDecl *Partial;
2497  TemplateArgumentList *Args;
2498};
2499}
2500
2501DeclResult
2502Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
2503                         SourceLocation TemplateNameLoc,
2504                         const TemplateArgumentListInfo &TemplateArgs) {
2505  assert(Template && "A variable template id without template?");
2506
2507  // Check that the template argument list is well-formed for this template.
2508  SmallVector<TemplateArgument, 4> Converted;
2509  bool ExpansionIntoFixedList = false;
2510  if (CheckTemplateArgumentList(
2511          Template, TemplateNameLoc,
2512          const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
2513          Converted, &ExpansionIntoFixedList))
2514    return true;
2515
2516  // Find the variable template specialization declaration that
2517  // corresponds to these arguments.
2518  void *InsertPos = 0;
2519  if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
2520          Converted.data(), Converted.size(), InsertPos))
2521    // If we already have a variable template specialization, return it.
2522    return Spec;
2523
2524  // This is the first time we have referenced this variable template
2525  // specialization. Create the canonical declaration and add it to
2526  // the set of specializations, based on the closest partial specialization
2527  // that it represents. That is,
2528  VarDecl *InstantiationPattern = Template->getTemplatedDecl();
2529  TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
2530                                       Converted.data(), Converted.size());
2531  TemplateArgumentList *InstantiationArgs = &TemplateArgList;
2532  bool AmbiguousPartialSpec = false;
2533  typedef PartialSpecMatchResult MatchResult;
2534  SmallVector<MatchResult, 4> Matched;
2535  SourceLocation PointOfInstantiation = TemplateNameLoc;
2536  TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation);
2537
2538  // 1. Attempt to find the closest partial specialization that this
2539  // specializes, if any.
2540  // If any of the template arguments is dependent, then this is probably
2541  // a placeholder for an incomplete declarative context; which must be
2542  // complete by instantiation time. Thus, do not search through the partial
2543  // specializations yet.
2544  // TODO: Unify with InstantiateClassTemplateSpecialization()?
2545  //       Perhaps better after unification of DeduceTemplateArguments() and
2546  //       getMoreSpecializedPartialSpecialization().
2547  bool InstantiationDependent = false;
2548  if (!TemplateSpecializationType::anyDependentTemplateArguments(
2549          TemplateArgs, InstantiationDependent)) {
2550
2551    SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
2552    Template->getPartialSpecializations(PartialSpecs);
2553
2554    for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
2555      VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
2556      TemplateDeductionInfo Info(FailedCandidates.getLocation());
2557
2558      if (TemplateDeductionResult Result =
2559              DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
2560        // Store the failed-deduction information for use in diagnostics, later.
2561        // TODO: Actually use the failed-deduction info?
2562        FailedCandidates.addCandidate()
2563            .set(Partial, MakeDeductionFailureInfo(Context, Result, Info));
2564        (void)Result;
2565      } else {
2566        Matched.push_back(PartialSpecMatchResult());
2567        Matched.back().Partial = Partial;
2568        Matched.back().Args = Info.take();
2569      }
2570    }
2571
2572    // If we're dealing with a member template where the template parameters
2573    // have been instantiated, this provides the original template parameters
2574    // from which the member template's parameters were instantiated.
2575    SmallVector<const NamedDecl *, 4> InstantiatedTemplateParameters;
2576
2577    if (Matched.size() >= 1) {
2578      SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
2579      if (Matched.size() == 1) {
2580        //   -- If exactly one matching specialization is found, the
2581        //      instantiation is generated from that specialization.
2582        // We don't need to do anything for this.
2583      } else {
2584        //   -- If more than one matching specialization is found, the
2585        //      partial order rules (14.5.4.2) are used to determine
2586        //      whether one of the specializations is more specialized
2587        //      than the others. If none of the specializations is more
2588        //      specialized than all of the other matching
2589        //      specializations, then the use of the variable template is
2590        //      ambiguous and the program is ill-formed.
2591        for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
2592                                                   PEnd = Matched.end();
2593             P != PEnd; ++P) {
2594          if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
2595                                                      PointOfInstantiation) ==
2596              P->Partial)
2597            Best = P;
2598        }
2599
2600        // Determine if the best partial specialization is more specialized than
2601        // the others.
2602        for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2603                                                   PEnd = Matched.end();
2604             P != PEnd; ++P) {
2605          if (P != Best && getMoreSpecializedPartialSpecialization(
2606                               P->Partial, Best->Partial,
2607                               PointOfInstantiation) != Best->Partial) {
2608            AmbiguousPartialSpec = true;
2609            break;
2610          }
2611        }
2612      }
2613
2614      // Instantiate using the best variable template partial specialization.
2615      InstantiationPattern = Best->Partial;
2616      InstantiationArgs = Best->Args;
2617    } else {
2618      //   -- If no match is found, the instantiation is generated
2619      //      from the primary template.
2620      // InstantiationPattern = Template->getTemplatedDecl();
2621    }
2622  }
2623
2624  // 2. Create the canonical declaration.
2625  // Note that we do not instantiate the variable just yet, since
2626  // instantiation is handled in DoMarkVarDeclReferenced().
2627  // FIXME: LateAttrs et al.?
2628  VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
2629      Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
2630      Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
2631  if (!Decl)
2632    return true;
2633
2634  if (AmbiguousPartialSpec) {
2635    // Partial ordering did not produce a clear winner. Complain.
2636    Decl->setInvalidDecl();
2637    Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
2638        << Decl;
2639
2640    // Print the matching partial specializations.
2641    for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2642                                               PEnd = Matched.end();
2643         P != PEnd; ++P)
2644      Diag(P->Partial->getLocation(), diag::note_partial_spec_match)
2645          << getTemplateArgumentBindingsText(
2646                 P->Partial->getTemplateParameters(), *P->Args);
2647    return true;
2648  }
2649
2650  if (VarTemplatePartialSpecializationDecl *D =
2651          dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
2652    Decl->setInstantiationOf(D, InstantiationArgs);
2653
2654  assert(Decl && "No variable template specialization?");
2655  return Decl;
2656}
2657
2658ExprResult
2659Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
2660                         const DeclarationNameInfo &NameInfo,
2661                         VarTemplateDecl *Template, SourceLocation TemplateLoc,
2662                         const TemplateArgumentListInfo *TemplateArgs) {
2663
2664  DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
2665                                       *TemplateArgs);
2666  if (Decl.isInvalid())
2667    return ExprError();
2668
2669  VarDecl *Var = cast<VarDecl>(Decl.get());
2670  if (!Var->getTemplateSpecializationKind())
2671    Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
2672                                       NameInfo.getLoc());
2673
2674  // Build an ordinary singleton decl ref.
2675  return BuildDeclarationNameExpr(SS, NameInfo, Var,
2676                                  /*FoundD=*/0, TemplateArgs);
2677}
2678
2679ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2680                                     SourceLocation TemplateKWLoc,
2681                                     LookupResult &R,
2682                                     bool RequiresADL,
2683                                 const TemplateArgumentListInfo *TemplateArgs) {
2684  // FIXME: Can we do any checking at this point? I guess we could check the
2685  // template arguments that we have against the template name, if the template
2686  // name refers to a single template. That's not a terribly common case,
2687  // though.
2688  // foo<int> could identify a single function unambiguously
2689  // This approach does NOT work, since f<int>(1);
2690  // gets resolved prior to resorting to overload resolution
2691  // i.e., template<class T> void f(double);
2692  //       vs template<class T, class U> void f(U);
2693
2694  // These should be filtered out by our callers.
2695  assert(!R.empty() && "empty lookup results when building templateid");
2696  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2697
2698  // In C++1y, check variable template ids.
2699  if (R.getAsSingle<VarTemplateDecl>()) {
2700    return Owned(CheckVarTemplateId(SS, R.getLookupNameInfo(),
2701                                    R.getAsSingle<VarTemplateDecl>(),
2702                                    TemplateKWLoc, TemplateArgs));
2703  }
2704
2705  // We don't want lookup warnings at this point.
2706  R.suppressDiagnostics();
2707
2708  UnresolvedLookupExpr *ULE
2709    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2710                                   SS.getWithLocInContext(Context),
2711                                   TemplateKWLoc,
2712                                   R.getLookupNameInfo(),
2713                                   RequiresADL, TemplateArgs,
2714                                   R.begin(), R.end());
2715
2716  return Owned(ULE);
2717}
2718
2719// We actually only call this from template instantiation.
2720ExprResult
2721Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2722                                   SourceLocation TemplateKWLoc,
2723                                   const DeclarationNameInfo &NameInfo,
2724                             const TemplateArgumentListInfo *TemplateArgs) {
2725
2726  assert(TemplateArgs || TemplateKWLoc.isValid());
2727  DeclContext *DC;
2728  if (!(DC = computeDeclContext(SS, false)) ||
2729      DC->isDependentContext() ||
2730      RequireCompleteDeclContext(SS, DC))
2731    return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
2732
2733  bool MemberOfUnknownSpecialization;
2734  LookupResult R(*this, NameInfo, LookupOrdinaryName);
2735  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
2736                     MemberOfUnknownSpecialization);
2737
2738  if (R.isAmbiguous())
2739    return ExprError();
2740
2741  if (R.empty()) {
2742    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2743      << NameInfo.getName() << SS.getRange();
2744    return ExprError();
2745  }
2746
2747  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2748    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2749      << (NestedNameSpecifier*) SS.getScopeRep()
2750      << NameInfo.getName() << SS.getRange();
2751    Diag(Temp->getLocation(), diag::note_referenced_class_template);
2752    return ExprError();
2753  }
2754
2755  return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
2756}
2757
2758/// \brief Form a dependent template name.
2759///
2760/// This action forms a dependent template name given the template
2761/// name and its (presumably dependent) scope specifier. For
2762/// example, given "MetaFun::template apply", the scope specifier \p
2763/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2764/// of the "template" keyword, and "apply" is the \p Name.
2765TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2766                                                  CXXScopeSpec &SS,
2767                                                  SourceLocation TemplateKWLoc,
2768                                                  UnqualifiedId &Name,
2769                                                  ParsedType ObjectType,
2770                                                  bool EnteringContext,
2771                                                  TemplateTy &Result) {
2772  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
2773    Diag(TemplateKWLoc,
2774         getLangOpts().CPlusPlus11 ?
2775           diag::warn_cxx98_compat_template_outside_of_template :
2776           diag::ext_template_outside_of_template)
2777      << FixItHint::CreateRemoval(TemplateKWLoc);
2778
2779  DeclContext *LookupCtx = 0;
2780  if (SS.isSet())
2781    LookupCtx = computeDeclContext(SS, EnteringContext);
2782  if (!LookupCtx && ObjectType)
2783    LookupCtx = computeDeclContext(ObjectType.get());
2784  if (LookupCtx) {
2785    // C++0x [temp.names]p5:
2786    //   If a name prefixed by the keyword template is not the name of
2787    //   a template, the program is ill-formed. [Note: the keyword
2788    //   template may not be applied to non-template members of class
2789    //   templates. -end note ] [ Note: as is the case with the
2790    //   typename prefix, the template prefix is allowed in cases
2791    //   where it is not strictly necessary; i.e., when the
2792    //   nested-name-specifier or the expression on the left of the ->
2793    //   or . is not dependent on a template-parameter, or the use
2794    //   does not appear in the scope of a template. -end note]
2795    //
2796    // Note: C++03 was more strict here, because it banned the use of
2797    // the "template" keyword prior to a template-name that was not a
2798    // dependent name. C++ DR468 relaxed this requirement (the
2799    // "template" keyword is now permitted). We follow the C++0x
2800    // rules, even in C++03 mode with a warning, retroactively applying the DR.
2801    bool MemberOfUnknownSpecialization;
2802    TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
2803                                          ObjectType, EnteringContext, Result,
2804                                          MemberOfUnknownSpecialization);
2805    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2806        isa<CXXRecordDecl>(LookupCtx) &&
2807        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2808         cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2809      // This is a dependent template. Handle it below.
2810    } else if (TNK == TNK_Non_template) {
2811      Diag(Name.getLocStart(),
2812           diag::err_template_kw_refers_to_non_template)
2813        << GetNameFromUnqualifiedId(Name).getName()
2814        << Name.getSourceRange()
2815        << TemplateKWLoc;
2816      return TNK_Non_template;
2817    } else {
2818      // We found something; return it.
2819      return TNK;
2820    }
2821  }
2822
2823  NestedNameSpecifier *Qualifier
2824    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2825
2826  switch (Name.getKind()) {
2827  case UnqualifiedId::IK_Identifier:
2828    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2829                                                              Name.Identifier));
2830    return TNK_Dependent_template_name;
2831
2832  case UnqualifiedId::IK_OperatorFunctionId:
2833    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2834                                             Name.OperatorFunctionId.Operator));
2835    return TNK_Dependent_template_name;
2836
2837  case UnqualifiedId::IK_LiteralOperatorId:
2838    llvm_unreachable(
2839            "We don't support these; Parse shouldn't have allowed propagation");
2840
2841  default:
2842    break;
2843  }
2844
2845  Diag(Name.getLocStart(),
2846       diag::err_template_kw_refers_to_non_template)
2847    << GetNameFromUnqualifiedId(Name).getName()
2848    << Name.getSourceRange()
2849    << TemplateKWLoc;
2850  return TNK_Non_template;
2851}
2852
2853bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2854                                     const TemplateArgumentLoc &AL,
2855                          SmallVectorImpl<TemplateArgument> &Converted) {
2856  const TemplateArgument &Arg = AL.getArgument();
2857
2858  // Check template type parameter.
2859  switch(Arg.getKind()) {
2860  case TemplateArgument::Type:
2861    // C++ [temp.arg.type]p1:
2862    //   A template-argument for a template-parameter which is a
2863    //   type shall be a type-id.
2864    break;
2865  case TemplateArgument::Template: {
2866    // We have a template type parameter but the template argument
2867    // is a template without any arguments.
2868    SourceRange SR = AL.getSourceRange();
2869    TemplateName Name = Arg.getAsTemplate();
2870    Diag(SR.getBegin(), diag::err_template_missing_args)
2871      << Name << SR;
2872    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2873      Diag(Decl->getLocation(), diag::note_template_decl_here);
2874
2875    return true;
2876  }
2877  case TemplateArgument::Expression: {
2878    // We have a template type parameter but the template argument is an
2879    // expression; see if maybe it is missing the "typename" keyword.
2880    CXXScopeSpec SS;
2881    DeclarationNameInfo NameInfo;
2882
2883    if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
2884      SS.Adopt(ArgExpr->getQualifierLoc());
2885      NameInfo = ArgExpr->getNameInfo();
2886    } else if (DependentScopeDeclRefExpr *ArgExpr =
2887               dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
2888      SS.Adopt(ArgExpr->getQualifierLoc());
2889      NameInfo = ArgExpr->getNameInfo();
2890    } else if (CXXDependentScopeMemberExpr *ArgExpr =
2891               dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
2892      if (ArgExpr->isImplicitAccess()) {
2893        SS.Adopt(ArgExpr->getQualifierLoc());
2894        NameInfo = ArgExpr->getMemberNameInfo();
2895      }
2896    }
2897
2898    if (NameInfo.getName().isIdentifier()) {
2899      LookupResult Result(*this, NameInfo, LookupOrdinaryName);
2900      LookupParsedName(Result, CurScope, &SS);
2901
2902      if (Result.getAsSingle<TypeDecl>() ||
2903          Result.getResultKind() ==
2904            LookupResult::NotFoundInCurrentInstantiation) {
2905        // FIXME: Add a FixIt and fix up the template argument for recovery.
2906        SourceLocation Loc = AL.getSourceRange().getBegin();
2907        Diag(Loc, diag::err_template_arg_must_be_type_suggest);
2908        Diag(Param->getLocation(), diag::note_template_param_here);
2909        return true;
2910      }
2911    }
2912    // fallthrough
2913  }
2914  default: {
2915    // We have a template type parameter but the template argument
2916    // is not a type.
2917    SourceRange SR = AL.getSourceRange();
2918    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2919    Diag(Param->getLocation(), diag::note_template_param_here);
2920
2921    return true;
2922  }
2923  }
2924
2925  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2926    return true;
2927
2928  // Add the converted template type argument.
2929  QualType ArgType = Context.getCanonicalType(Arg.getAsType());
2930
2931  // Objective-C ARC:
2932  //   If an explicitly-specified template argument type is a lifetime type
2933  //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
2934  if (getLangOpts().ObjCAutoRefCount &&
2935      ArgType->isObjCLifetimeType() &&
2936      !ArgType.getObjCLifetime()) {
2937    Qualifiers Qs;
2938    Qs.setObjCLifetime(Qualifiers::OCL_Strong);
2939    ArgType = Context.getQualifiedType(ArgType, Qs);
2940  }
2941
2942  Converted.push_back(TemplateArgument(ArgType));
2943  return false;
2944}
2945
2946/// \brief Substitute template arguments into the default template argument for
2947/// the given template type parameter.
2948///
2949/// \param SemaRef the semantic analysis object for which we are performing
2950/// the substitution.
2951///
2952/// \param Template the template that we are synthesizing template arguments
2953/// for.
2954///
2955/// \param TemplateLoc the location of the template name that started the
2956/// template-id we are checking.
2957///
2958/// \param RAngleLoc the location of the right angle bracket ('>') that
2959/// terminates the template-id.
2960///
2961/// \param Param the template template parameter whose default we are
2962/// substituting into.
2963///
2964/// \param Converted the list of template arguments provided for template
2965/// parameters that precede \p Param in the template parameter list.
2966/// \returns the substituted template argument, or NULL if an error occurred.
2967static TypeSourceInfo *
2968SubstDefaultTemplateArgument(Sema &SemaRef,
2969                             TemplateDecl *Template,
2970                             SourceLocation TemplateLoc,
2971                             SourceLocation RAngleLoc,
2972                             TemplateTypeParmDecl *Param,
2973                         SmallVectorImpl<TemplateArgument> &Converted) {
2974  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2975
2976  // If the argument type is dependent, instantiate it now based
2977  // on the previously-computed template arguments.
2978  if (ArgType->getType()->isDependentType()) {
2979    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2980                                     Template, Converted,
2981                                     SourceRange(TemplateLoc, RAngleLoc));
2982    if (Inst)
2983      return 0;
2984
2985    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2986                                      Converted.data(), Converted.size());
2987
2988    // Only substitute for the innermost template argument list.
2989    MultiLevelTemplateArgumentList TemplateArgLists;
2990    TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
2991    for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
2992      TemplateArgLists.addOuterTemplateArguments(None);
2993
2994    Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
2995    ArgType =
2996        SemaRef.SubstType(ArgType, TemplateArgLists,
2997                          Param->getDefaultArgumentLoc(), Param->getDeclName());
2998  }
2999
3000  return ArgType;
3001}
3002
3003/// \brief Substitute template arguments into the default template argument for
3004/// the given non-type template parameter.
3005///
3006/// \param SemaRef the semantic analysis object for which we are performing
3007/// the substitution.
3008///
3009/// \param Template the template that we are synthesizing template arguments
3010/// for.
3011///
3012/// \param TemplateLoc the location of the template name that started the
3013/// template-id we are checking.
3014///
3015/// \param RAngleLoc the location of the right angle bracket ('>') that
3016/// terminates the template-id.
3017///
3018/// \param Param the non-type template parameter whose default we are
3019/// substituting into.
3020///
3021/// \param Converted the list of template arguments provided for template
3022/// parameters that precede \p Param in the template parameter list.
3023///
3024/// \returns the substituted template argument, or NULL if an error occurred.
3025static ExprResult
3026SubstDefaultTemplateArgument(Sema &SemaRef,
3027                             TemplateDecl *Template,
3028                             SourceLocation TemplateLoc,
3029                             SourceLocation RAngleLoc,
3030                             NonTypeTemplateParmDecl *Param,
3031                        SmallVectorImpl<TemplateArgument> &Converted) {
3032  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3033                                   Template, Converted,
3034                                   SourceRange(TemplateLoc, RAngleLoc));
3035  if (Inst)
3036    return ExprError();
3037
3038  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3039                                    Converted.data(), Converted.size());
3040
3041  // Only substitute for the innermost template argument list.
3042  MultiLevelTemplateArgumentList TemplateArgLists;
3043  TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3044  for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3045    TemplateArgLists.addOuterTemplateArguments(None);
3046
3047  Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3048  EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
3049  return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
3050}
3051
3052/// \brief Substitute template arguments into the default template argument for
3053/// the given template template parameter.
3054///
3055/// \param SemaRef the semantic analysis object for which we are performing
3056/// the substitution.
3057///
3058/// \param Template the template that we are synthesizing template arguments
3059/// for.
3060///
3061/// \param TemplateLoc the location of the template name that started the
3062/// template-id we are checking.
3063///
3064/// \param RAngleLoc the location of the right angle bracket ('>') that
3065/// terminates the template-id.
3066///
3067/// \param Param the template template parameter whose default we are
3068/// substituting into.
3069///
3070/// \param Converted the list of template arguments provided for template
3071/// parameters that precede \p Param in the template parameter list.
3072///
3073/// \param QualifierLoc Will be set to the nested-name-specifier (with
3074/// source-location information) that precedes the template name.
3075///
3076/// \returns the substituted template argument, or NULL if an error occurred.
3077static TemplateName
3078SubstDefaultTemplateArgument(Sema &SemaRef,
3079                             TemplateDecl *Template,
3080                             SourceLocation TemplateLoc,
3081                             SourceLocation RAngleLoc,
3082                             TemplateTemplateParmDecl *Param,
3083                       SmallVectorImpl<TemplateArgument> &Converted,
3084                             NestedNameSpecifierLoc &QualifierLoc) {
3085  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Template, Converted,
3086                                   SourceRange(TemplateLoc, RAngleLoc));
3087  if (Inst)
3088    return TemplateName();
3089
3090  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3091                                    Converted.data(), Converted.size());
3092
3093  // Only substitute for the innermost template argument list.
3094  MultiLevelTemplateArgumentList TemplateArgLists;
3095  TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3096  for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3097    TemplateArgLists.addOuterTemplateArguments(None);
3098
3099  Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3100  // Substitute into the nested-name-specifier first,
3101  QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
3102  if (QualifierLoc) {
3103    QualifierLoc =
3104        SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
3105    if (!QualifierLoc)
3106      return TemplateName();
3107  }
3108
3109  return SemaRef.SubstTemplateName(
3110             QualifierLoc,
3111             Param->getDefaultArgument().getArgument().getAsTemplate(),
3112             Param->getDefaultArgument().getTemplateNameLoc(),
3113             TemplateArgLists);
3114}
3115
3116/// \brief If the given template parameter has a default template
3117/// argument, substitute into that default template argument and
3118/// return the corresponding template argument.
3119TemplateArgumentLoc
3120Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
3121                                              SourceLocation TemplateLoc,
3122                                              SourceLocation RAngleLoc,
3123                                              Decl *Param,
3124                                              SmallVectorImpl<TemplateArgument>
3125                                                &Converted,
3126                                              bool &HasDefaultArg) {
3127  HasDefaultArg = false;
3128
3129  if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
3130    if (!TypeParm->hasDefaultArgument())
3131      return TemplateArgumentLoc();
3132
3133    HasDefaultArg = true;
3134    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
3135                                                      TemplateLoc,
3136                                                      RAngleLoc,
3137                                                      TypeParm,
3138                                                      Converted);
3139    if (DI)
3140      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
3141
3142    return TemplateArgumentLoc();
3143  }
3144
3145  if (NonTypeTemplateParmDecl *NonTypeParm
3146        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3147    if (!NonTypeParm->hasDefaultArgument())
3148      return TemplateArgumentLoc();
3149
3150    HasDefaultArg = true;
3151    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
3152                                                  TemplateLoc,
3153                                                  RAngleLoc,
3154                                                  NonTypeParm,
3155                                                  Converted);
3156    if (Arg.isInvalid())
3157      return TemplateArgumentLoc();
3158
3159    Expr *ArgE = Arg.takeAs<Expr>();
3160    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
3161  }
3162
3163  TemplateTemplateParmDecl *TempTempParm
3164    = cast<TemplateTemplateParmDecl>(Param);
3165  if (!TempTempParm->hasDefaultArgument())
3166    return TemplateArgumentLoc();
3167
3168  HasDefaultArg = true;
3169  NestedNameSpecifierLoc QualifierLoc;
3170  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
3171                                                    TemplateLoc,
3172                                                    RAngleLoc,
3173                                                    TempTempParm,
3174                                                    Converted,
3175                                                    QualifierLoc);
3176  if (TName.isNull())
3177    return TemplateArgumentLoc();
3178
3179  return TemplateArgumentLoc(TemplateArgument(TName),
3180                TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
3181                TempTempParm->getDefaultArgument().getTemplateNameLoc());
3182}
3183
3184/// \brief Check that the given template argument corresponds to the given
3185/// template parameter.
3186///
3187/// \param Param The template parameter against which the argument will be
3188/// checked.
3189///
3190/// \param Arg The template argument.
3191///
3192/// \param Template The template in which the template argument resides.
3193///
3194/// \param TemplateLoc The location of the template name for the template
3195/// whose argument list we're matching.
3196///
3197/// \param RAngleLoc The location of the right angle bracket ('>') that closes
3198/// the template argument list.
3199///
3200/// \param ArgumentPackIndex The index into the argument pack where this
3201/// argument will be placed. Only valid if the parameter is a parameter pack.
3202///
3203/// \param Converted The checked, converted argument will be added to the
3204/// end of this small vector.
3205///
3206/// \param CTAK Describes how we arrived at this particular template argument:
3207/// explicitly written, deduced, etc.
3208///
3209/// \returns true on error, false otherwise.
3210bool Sema::CheckTemplateArgument(NamedDecl *Param,
3211                                 const TemplateArgumentLoc &Arg,
3212                                 NamedDecl *Template,
3213                                 SourceLocation TemplateLoc,
3214                                 SourceLocation RAngleLoc,
3215                                 unsigned ArgumentPackIndex,
3216                            SmallVectorImpl<TemplateArgument> &Converted,
3217                                 CheckTemplateArgumentKind CTAK) {
3218  // Check template type parameters.
3219  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
3220    return CheckTemplateTypeArgument(TTP, Arg, Converted);
3221
3222  // Check non-type template parameters.
3223  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3224    // Do substitution on the type of the non-type template parameter
3225    // with the template arguments we've seen thus far.  But if the
3226    // template has a dependent context then we cannot substitute yet.
3227    QualType NTTPType = NTTP->getType();
3228    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
3229      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
3230
3231    if (NTTPType->isDependentType() &&
3232        !isa<TemplateTemplateParmDecl>(Template) &&
3233        !Template->getDeclContext()->isDependentContext()) {
3234      // Do substitution on the type of the non-type template parameter.
3235      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3236                                 NTTP, Converted,
3237                                 SourceRange(TemplateLoc, RAngleLoc));
3238      if (Inst)
3239        return true;
3240
3241      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3242                                        Converted.data(), Converted.size());
3243      NTTPType = SubstType(NTTPType,
3244                           MultiLevelTemplateArgumentList(TemplateArgs),
3245                           NTTP->getLocation(),
3246                           NTTP->getDeclName());
3247      // If that worked, check the non-type template parameter type
3248      // for validity.
3249      if (!NTTPType.isNull())
3250        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
3251                                                     NTTP->getLocation());
3252      if (NTTPType.isNull())
3253        return true;
3254    }
3255
3256    switch (Arg.getArgument().getKind()) {
3257    case TemplateArgument::Null:
3258      llvm_unreachable("Should never see a NULL template argument here");
3259
3260    case TemplateArgument::Expression: {
3261      TemplateArgument Result;
3262      ExprResult Res =
3263        CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
3264                              Result, CTAK);
3265      if (Res.isInvalid())
3266        return true;
3267
3268      Converted.push_back(Result);
3269      break;
3270    }
3271
3272    case TemplateArgument::Declaration:
3273    case TemplateArgument::Integral:
3274    case TemplateArgument::NullPtr:
3275      // We've already checked this template argument, so just copy
3276      // it to the list of converted arguments.
3277      Converted.push_back(Arg.getArgument());
3278      break;
3279
3280    case TemplateArgument::Template:
3281    case TemplateArgument::TemplateExpansion:
3282      // We were given a template template argument. It may not be ill-formed;
3283      // see below.
3284      if (DependentTemplateName *DTN
3285            = Arg.getArgument().getAsTemplateOrTemplatePattern()
3286                                              .getAsDependentTemplateName()) {
3287        // We have a template argument such as \c T::template X, which we
3288        // parsed as a template template argument. However, since we now
3289        // know that we need a non-type template argument, convert this
3290        // template name into an expression.
3291
3292        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
3293                                     Arg.getTemplateNameLoc());
3294
3295        CXXScopeSpec SS;
3296        SS.Adopt(Arg.getTemplateQualifierLoc());
3297        // FIXME: the template-template arg was a DependentTemplateName,
3298        // so it was provided with a template keyword. However, its source
3299        // location is not stored in the template argument structure.
3300        SourceLocation TemplateKWLoc;
3301        ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
3302                                                SS.getWithLocInContext(Context),
3303                                                               TemplateKWLoc,
3304                                                               NameInfo, 0));
3305
3306        // If we parsed the template argument as a pack expansion, create a
3307        // pack expansion expression.
3308        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
3309          E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
3310          if (E.isInvalid())
3311            return true;
3312        }
3313
3314        TemplateArgument Result;
3315        E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
3316        if (E.isInvalid())
3317          return true;
3318
3319        Converted.push_back(Result);
3320        break;
3321      }
3322
3323      // We have a template argument that actually does refer to a class
3324      // template, alias template, or template template parameter, and
3325      // therefore cannot be a non-type template argument.
3326      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
3327        << Arg.getSourceRange();
3328
3329      Diag(Param->getLocation(), diag::note_template_param_here);
3330      return true;
3331
3332    case TemplateArgument::Type: {
3333      // We have a non-type template parameter but the template
3334      // argument is a type.
3335
3336      // C++ [temp.arg]p2:
3337      //   In a template-argument, an ambiguity between a type-id and
3338      //   an expression is resolved to a type-id, regardless of the
3339      //   form of the corresponding template-parameter.
3340      //
3341      // We warn specifically about this case, since it can be rather
3342      // confusing for users.
3343      QualType T = Arg.getArgument().getAsType();
3344      SourceRange SR = Arg.getSourceRange();
3345      if (T->isFunctionType())
3346        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
3347      else
3348        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
3349      Diag(Param->getLocation(), diag::note_template_param_here);
3350      return true;
3351    }
3352
3353    case TemplateArgument::Pack:
3354      llvm_unreachable("Caller must expand template argument packs");
3355    }
3356
3357    return false;
3358  }
3359
3360
3361  // Check template template parameters.
3362  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
3363
3364  // Substitute into the template parameter list of the template
3365  // template parameter, since previously-supplied template arguments
3366  // may appear within the template template parameter.
3367  {
3368    // Set up a template instantiation context.
3369    LocalInstantiationScope Scope(*this);
3370    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3371                               TempParm, Converted,
3372                               SourceRange(TemplateLoc, RAngleLoc));
3373    if (Inst)
3374      return true;
3375
3376    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3377                                      Converted.data(), Converted.size());
3378    TempParm = cast_or_null<TemplateTemplateParmDecl>(
3379                      SubstDecl(TempParm, CurContext,
3380                                MultiLevelTemplateArgumentList(TemplateArgs)));
3381    if (!TempParm)
3382      return true;
3383  }
3384
3385  switch (Arg.getArgument().getKind()) {
3386  case TemplateArgument::Null:
3387    llvm_unreachable("Should never see a NULL template argument here");
3388
3389  case TemplateArgument::Template:
3390  case TemplateArgument::TemplateExpansion:
3391    if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex))
3392      return true;
3393
3394    Converted.push_back(Arg.getArgument());
3395    break;
3396
3397  case TemplateArgument::Expression:
3398  case TemplateArgument::Type:
3399    // We have a template template parameter but the template
3400    // argument does not refer to a template.
3401    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
3402      << getLangOpts().CPlusPlus11;
3403    return true;
3404
3405  case TemplateArgument::Declaration:
3406    llvm_unreachable("Declaration argument with template template parameter");
3407  case TemplateArgument::Integral:
3408    llvm_unreachable("Integral argument with template template parameter");
3409  case TemplateArgument::NullPtr:
3410    llvm_unreachable("Null pointer argument with template template parameter");
3411
3412  case TemplateArgument::Pack:
3413    llvm_unreachable("Caller must expand template argument packs");
3414  }
3415
3416  return false;
3417}
3418
3419/// \brief Diagnose an arity mismatch in the
3420static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
3421                                  SourceLocation TemplateLoc,
3422                                  TemplateArgumentListInfo &TemplateArgs) {
3423  TemplateParameterList *Params = Template->getTemplateParameters();
3424  unsigned NumParams = Params->size();
3425  unsigned NumArgs = TemplateArgs.size();
3426
3427  SourceRange Range;
3428  if (NumArgs > NumParams)
3429    Range = SourceRange(TemplateArgs[NumParams].getLocation(),
3430                        TemplateArgs.getRAngleLoc());
3431  S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3432    << (NumArgs > NumParams)
3433    << (isa<ClassTemplateDecl>(Template)? 0 :
3434        isa<FunctionTemplateDecl>(Template)? 1 :
3435        isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3436    << Template << Range;
3437  S.Diag(Template->getLocation(), diag::note_template_decl_here)
3438    << Params->getSourceRange();
3439  return true;
3440}
3441
3442/// \brief Check whether the template parameter is a pack expansion, and if so,
3443/// determine the number of parameters produced by that expansion. For instance:
3444///
3445/// \code
3446/// template<typename ...Ts> struct A {
3447///   template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
3448/// };
3449/// \endcode
3450///
3451/// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
3452/// is not a pack expansion, so returns an empty Optional.
3453static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
3454  if (NonTypeTemplateParmDecl *NTTP
3455        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3456    if (NTTP->isExpandedParameterPack())
3457      return NTTP->getNumExpansionTypes();
3458  }
3459
3460  if (TemplateTemplateParmDecl *TTP
3461        = dyn_cast<TemplateTemplateParmDecl>(Param)) {
3462    if (TTP->isExpandedParameterPack())
3463      return TTP->getNumExpansionTemplateParameters();
3464  }
3465
3466  return None;
3467}
3468
3469/// \brief Check that the given template argument list is well-formed
3470/// for specializing the given template.
3471bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
3472                                     SourceLocation TemplateLoc,
3473                                     TemplateArgumentListInfo &TemplateArgs,
3474                                     bool PartialTemplateArgs,
3475                          SmallVectorImpl<TemplateArgument> &Converted,
3476                                     bool *ExpansionIntoFixedList) {
3477  if (ExpansionIntoFixedList)
3478    *ExpansionIntoFixedList = false;
3479
3480  TemplateParameterList *Params = Template->getTemplateParameters();
3481
3482  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
3483
3484  // C++ [temp.arg]p1:
3485  //   [...] The type and form of each template-argument specified in
3486  //   a template-id shall match the type and form specified for the
3487  //   corresponding parameter declared by the template in its
3488  //   template-parameter-list.
3489  bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
3490  SmallVector<TemplateArgument, 2> ArgumentPack;
3491  unsigned ArgIdx = 0, NumArgs = TemplateArgs.size();
3492  LocalInstantiationScope InstScope(*this, true);
3493  for (TemplateParameterList::iterator Param = Params->begin(),
3494                                       ParamEnd = Params->end();
3495       Param != ParamEnd; /* increment in loop */) {
3496    // If we have an expanded parameter pack, make sure we don't have too
3497    // many arguments.
3498    if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
3499      if (*Expansions == ArgumentPack.size()) {
3500        // We're done with this parameter pack. Pack up its arguments and add
3501        // them to the list.
3502        Converted.push_back(
3503          TemplateArgument::CreatePackCopy(Context,
3504                                           ArgumentPack.data(),
3505                                           ArgumentPack.size()));
3506        ArgumentPack.clear();
3507
3508        // This argument is assigned to the next parameter.
3509        ++Param;
3510        continue;
3511      } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
3512        // Not enough arguments for this parameter pack.
3513        Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3514          << false
3515          << (isa<ClassTemplateDecl>(Template)? 0 :
3516              isa<FunctionTemplateDecl>(Template)? 1 :
3517              isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3518          << Template;
3519        Diag(Template->getLocation(), diag::note_template_decl_here)
3520          << Params->getSourceRange();
3521        return true;
3522      }
3523    }
3524
3525    if (ArgIdx < NumArgs) {
3526      // Check the template argument we were given.
3527      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
3528                                TemplateLoc, RAngleLoc,
3529                                ArgumentPack.size(), Converted))
3530        return true;
3531
3532      // We're now done with this argument.
3533      ++ArgIdx;
3534
3535      if ((*Param)->isTemplateParameterPack()) {
3536        // The template parameter was a template parameter pack, so take the
3537        // deduced argument and place it on the argument pack. Note that we
3538        // stay on the same template parameter so that we can deduce more
3539        // arguments.
3540        ArgumentPack.push_back(Converted.pop_back_val());
3541      } else {
3542        // Move to the next template parameter.
3543        ++Param;
3544      }
3545
3546      // If we just saw a pack expansion, then directly convert the remaining
3547      // arguments, because we don't know what parameters they'll match up
3548      // with.
3549      if (TemplateArgs[ArgIdx-1].getArgument().isPackExpansion()) {
3550        bool InFinalParameterPack = Param != ParamEnd &&
3551                                    Param + 1 == ParamEnd &&
3552                                    (*Param)->isTemplateParameterPack() &&
3553                                    !getExpandedPackSize(*Param);
3554
3555        if (!InFinalParameterPack && !ArgumentPack.empty()) {
3556          // If we were part way through filling in an expanded parameter pack,
3557          // fall back to just producing individual arguments.
3558          Converted.insert(Converted.end(),
3559                           ArgumentPack.begin(), ArgumentPack.end());
3560          ArgumentPack.clear();
3561        }
3562
3563        while (ArgIdx < NumArgs) {
3564          if (InFinalParameterPack)
3565            ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument());
3566          else
3567            Converted.push_back(TemplateArgs[ArgIdx].getArgument());
3568          ++ArgIdx;
3569        }
3570
3571        // Push the argument pack onto the list of converted arguments.
3572        if (InFinalParameterPack) {
3573          Converted.push_back(
3574            TemplateArgument::CreatePackCopy(Context,
3575                                             ArgumentPack.data(),
3576                                             ArgumentPack.size()));
3577          ArgumentPack.clear();
3578        } else if (ExpansionIntoFixedList) {
3579          // We have expanded a pack into a fixed list.
3580          *ExpansionIntoFixedList = true;
3581        }
3582
3583        return false;
3584      }
3585
3586      continue;
3587    }
3588
3589    // If we're checking a partial template argument list, we're done.
3590    if (PartialTemplateArgs) {
3591      if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
3592        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3593                                                         ArgumentPack.data(),
3594                                                         ArgumentPack.size()));
3595
3596      return false;
3597    }
3598
3599    // If we have a template parameter pack with no more corresponding
3600    // arguments, just break out now and we'll fill in the argument pack below.
3601    if ((*Param)->isTemplateParameterPack()) {
3602      assert(!getExpandedPackSize(*Param) &&
3603             "Should have dealt with this already");
3604
3605      // A non-expanded parameter pack before the end of the parameter list
3606      // only occurs for an ill-formed template parameter list, unless we've
3607      // got a partial argument list for a function template, so just bail out.
3608      if (Param + 1 != ParamEnd)
3609        return true;
3610
3611      Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3612                                                       ArgumentPack.data(),
3613                                                       ArgumentPack.size()));
3614      ArgumentPack.clear();
3615
3616      ++Param;
3617      continue;
3618    }
3619
3620    // Check whether we have a default argument.
3621    TemplateArgumentLoc Arg;
3622
3623    // Retrieve the default template argument from the template
3624    // parameter. For each kind of template parameter, we substitute the
3625    // template arguments provided thus far and any "outer" template arguments
3626    // (when the template parameter was part of a nested template) into
3627    // the default argument.
3628    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
3629      if (!TTP->hasDefaultArgument())
3630        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3631                                     TemplateArgs);
3632
3633      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
3634                                                             Template,
3635                                                             TemplateLoc,
3636                                                             RAngleLoc,
3637                                                             TTP,
3638                                                             Converted);
3639      if (!ArgType)
3640        return true;
3641
3642      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
3643                                ArgType);
3644    } else if (NonTypeTemplateParmDecl *NTTP
3645                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3646      if (!NTTP->hasDefaultArgument())
3647        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3648                                     TemplateArgs);
3649
3650      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
3651                                                              TemplateLoc,
3652                                                              RAngleLoc,
3653                                                              NTTP,
3654                                                              Converted);
3655      if (E.isInvalid())
3656        return true;
3657
3658      Expr *Ex = E.takeAs<Expr>();
3659      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
3660    } else {
3661      TemplateTemplateParmDecl *TempParm
3662        = cast<TemplateTemplateParmDecl>(*Param);
3663
3664      if (!TempParm->hasDefaultArgument())
3665        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3666                                     TemplateArgs);
3667
3668      NestedNameSpecifierLoc QualifierLoc;
3669      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3670                                                       TemplateLoc,
3671                                                       RAngleLoc,
3672                                                       TempParm,
3673                                                       Converted,
3674                                                       QualifierLoc);
3675      if (Name.isNull())
3676        return true;
3677
3678      Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3679                           TempParm->getDefaultArgument().getTemplateNameLoc());
3680    }
3681
3682    // Introduce an instantiation record that describes where we are using
3683    // the default template argument.
3684    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template,
3685                                        *Param, Converted,
3686                                        SourceRange(TemplateLoc, RAngleLoc));
3687    if (Instantiating)
3688      return true;
3689
3690    // Check the default template argument.
3691    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3692                              RAngleLoc, 0, Converted))
3693      return true;
3694
3695    // Core issue 150 (assumed resolution): if this is a template template
3696    // parameter, keep track of the default template arguments from the
3697    // template definition.
3698    if (isTemplateTemplateParameter)
3699      TemplateArgs.addArgument(Arg);
3700
3701    // Move to the next template parameter and argument.
3702    ++Param;
3703    ++ArgIdx;
3704  }
3705
3706  // If we have any leftover arguments, then there were too many arguments.
3707  // Complain and fail.
3708  if (ArgIdx < NumArgs)
3709    return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3710
3711  return false;
3712}
3713
3714namespace {
3715  class UnnamedLocalNoLinkageFinder
3716    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3717  {
3718    Sema &S;
3719    SourceRange SR;
3720
3721    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3722
3723  public:
3724    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3725
3726    bool Visit(QualType T) {
3727      return inherited::Visit(T.getTypePtr());
3728    }
3729
3730#define TYPE(Class, Parent) \
3731    bool Visit##Class##Type(const Class##Type *);
3732#define ABSTRACT_TYPE(Class, Parent) \
3733    bool Visit##Class##Type(const Class##Type *) { return false; }
3734#define NON_CANONICAL_TYPE(Class, Parent) \
3735    bool Visit##Class##Type(const Class##Type *) { return false; }
3736#include "clang/AST/TypeNodes.def"
3737
3738    bool VisitTagDecl(const TagDecl *Tag);
3739    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3740  };
3741}
3742
3743bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3744  return false;
3745}
3746
3747bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3748  return Visit(T->getElementType());
3749}
3750
3751bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3752  return Visit(T->getPointeeType());
3753}
3754
3755bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3756                                                    const BlockPointerType* T) {
3757  return Visit(T->getPointeeType());
3758}
3759
3760bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3761                                                const LValueReferenceType* T) {
3762  return Visit(T->getPointeeType());
3763}
3764
3765bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3766                                                const RValueReferenceType* T) {
3767  return Visit(T->getPointeeType());
3768}
3769
3770bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3771                                                  const MemberPointerType* T) {
3772  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3773}
3774
3775bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3776                                                  const ConstantArrayType* T) {
3777  return Visit(T->getElementType());
3778}
3779
3780bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3781                                                 const IncompleteArrayType* T) {
3782  return Visit(T->getElementType());
3783}
3784
3785bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3786                                                   const VariableArrayType* T) {
3787  return Visit(T->getElementType());
3788}
3789
3790bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3791                                            const DependentSizedArrayType* T) {
3792  return Visit(T->getElementType());
3793}
3794
3795bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3796                                         const DependentSizedExtVectorType* T) {
3797  return Visit(T->getElementType());
3798}
3799
3800bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3801  return Visit(T->getElementType());
3802}
3803
3804bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3805  return Visit(T->getElementType());
3806}
3807
3808bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3809                                                  const FunctionProtoType* T) {
3810  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
3811                                         AEnd = T->arg_type_end();
3812       A != AEnd; ++A) {
3813    if (Visit(*A))
3814      return true;
3815  }
3816
3817  return Visit(T->getResultType());
3818}
3819
3820bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3821                                               const FunctionNoProtoType* T) {
3822  return Visit(T->getResultType());
3823}
3824
3825bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
3826                                                  const UnresolvedUsingType*) {
3827  return false;
3828}
3829
3830bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
3831  return false;
3832}
3833
3834bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
3835  return Visit(T->getUnderlyingType());
3836}
3837
3838bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
3839  return false;
3840}
3841
3842bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
3843                                                    const UnaryTransformType*) {
3844  return false;
3845}
3846
3847bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
3848  return Visit(T->getDeducedType());
3849}
3850
3851bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
3852  return VisitTagDecl(T->getDecl());
3853}
3854
3855bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
3856  return VisitTagDecl(T->getDecl());
3857}
3858
3859bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
3860                                                 const TemplateTypeParmType*) {
3861  return false;
3862}
3863
3864bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
3865                                        const SubstTemplateTypeParmPackType *) {
3866  return false;
3867}
3868
3869bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
3870                                            const TemplateSpecializationType*) {
3871  return false;
3872}
3873
3874bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
3875                                              const InjectedClassNameType* T) {
3876  return VisitTagDecl(T->getDecl());
3877}
3878
3879bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
3880                                                   const DependentNameType* T) {
3881  return VisitNestedNameSpecifier(T->getQualifier());
3882}
3883
3884bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
3885                                 const DependentTemplateSpecializationType* T) {
3886  return VisitNestedNameSpecifier(T->getQualifier());
3887}
3888
3889bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
3890                                                   const PackExpansionType* T) {
3891  return Visit(T->getPattern());
3892}
3893
3894bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
3895  return false;
3896}
3897
3898bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
3899                                                   const ObjCInterfaceType *) {
3900  return false;
3901}
3902
3903bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
3904                                                const ObjCObjectPointerType *) {
3905  return false;
3906}
3907
3908bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
3909  return Visit(T->getValueType());
3910}
3911
3912bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
3913  if (Tag->getDeclContext()->isFunctionOrMethod()) {
3914    S.Diag(SR.getBegin(),
3915           S.getLangOpts().CPlusPlus11 ?
3916             diag::warn_cxx98_compat_template_arg_local_type :
3917             diag::ext_template_arg_local_type)
3918      << S.Context.getTypeDeclType(Tag) << SR;
3919    return true;
3920  }
3921
3922  if (!Tag->hasNameForLinkage()) {
3923    S.Diag(SR.getBegin(),
3924           S.getLangOpts().CPlusPlus11 ?
3925             diag::warn_cxx98_compat_template_arg_unnamed_type :
3926             diag::ext_template_arg_unnamed_type) << SR;
3927    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
3928    return true;
3929  }
3930
3931  return false;
3932}
3933
3934bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
3935                                                    NestedNameSpecifier *NNS) {
3936  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
3937    return true;
3938
3939  switch (NNS->getKind()) {
3940  case NestedNameSpecifier::Identifier:
3941  case NestedNameSpecifier::Namespace:
3942  case NestedNameSpecifier::NamespaceAlias:
3943  case NestedNameSpecifier::Global:
3944    return false;
3945
3946  case NestedNameSpecifier::TypeSpec:
3947  case NestedNameSpecifier::TypeSpecWithTemplate:
3948    return Visit(QualType(NNS->getAsType(), 0));
3949  }
3950  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3951}
3952
3953
3954/// \brief Check a template argument against its corresponding
3955/// template type parameter.
3956///
3957/// This routine implements the semantics of C++ [temp.arg.type]. It
3958/// returns true if an error occurred, and false otherwise.
3959bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
3960                                 TypeSourceInfo *ArgInfo) {
3961  assert(ArgInfo && "invalid TypeSourceInfo");
3962  QualType Arg = ArgInfo->getType();
3963  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
3964
3965  if (Arg->isVariablyModifiedType()) {
3966    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
3967  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
3968    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
3969  }
3970
3971  // C++03 [temp.arg.type]p2:
3972  //   A local type, a type with no linkage, an unnamed type or a type
3973  //   compounded from any of these types shall not be used as a
3974  //   template-argument for a template type-parameter.
3975  //
3976  // C++11 allows these, and even in C++03 we allow them as an extension with
3977  // a warning.
3978  if (LangOpts.CPlusPlus11 ?
3979     Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type,
3980                              SR.getBegin()) != DiagnosticsEngine::Ignored ||
3981      Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type,
3982                               SR.getBegin()) != DiagnosticsEngine::Ignored :
3983      Arg->hasUnnamedOrLocalType()) {
3984    UnnamedLocalNoLinkageFinder Finder(*this, SR);
3985    (void)Finder.Visit(Context.getCanonicalType(Arg));
3986  }
3987
3988  return false;
3989}
3990
3991enum NullPointerValueKind {
3992  NPV_NotNullPointer,
3993  NPV_NullPointer,
3994  NPV_Error
3995};
3996
3997/// \brief Determine whether the given template argument is a null pointer
3998/// value of the appropriate type.
3999static NullPointerValueKind
4000isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
4001                                   QualType ParamType, Expr *Arg) {
4002  if (Arg->isValueDependent() || Arg->isTypeDependent())
4003    return NPV_NotNullPointer;
4004
4005  if (!S.getLangOpts().CPlusPlus11)
4006    return NPV_NotNullPointer;
4007
4008  // Determine whether we have a constant expression.
4009  ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
4010  if (ArgRV.isInvalid())
4011    return NPV_Error;
4012  Arg = ArgRV.take();
4013
4014  Expr::EvalResult EvalResult;
4015  SmallVector<PartialDiagnosticAt, 8> Notes;
4016  EvalResult.Diag = &Notes;
4017  if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
4018      EvalResult.HasSideEffects) {
4019    SourceLocation DiagLoc = Arg->getExprLoc();
4020
4021    // If our only note is the usual "invalid subexpression" note, just point
4022    // the caret at its location rather than producing an essentially
4023    // redundant note.
4024    if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
4025        diag::note_invalid_subexpr_in_const_expr) {
4026      DiagLoc = Notes[0].first;
4027      Notes.clear();
4028    }
4029
4030    S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
4031      << Arg->getType() << Arg->getSourceRange();
4032    for (unsigned I = 0, N = Notes.size(); I != N; ++I)
4033      S.Diag(Notes[I].first, Notes[I].second);
4034
4035    S.Diag(Param->getLocation(), diag::note_template_param_here);
4036    return NPV_Error;
4037  }
4038
4039  // C++11 [temp.arg.nontype]p1:
4040  //   - an address constant expression of type std::nullptr_t
4041  if (Arg->getType()->isNullPtrType())
4042    return NPV_NullPointer;
4043
4044  //   - a constant expression that evaluates to a null pointer value (4.10); or
4045  //   - a constant expression that evaluates to a null member pointer value
4046  //     (4.11); or
4047  if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
4048      (EvalResult.Val.isMemberPointer() &&
4049       !EvalResult.Val.getMemberPointerDecl())) {
4050    // If our expression has an appropriate type, we've succeeded.
4051    bool ObjCLifetimeConversion;
4052    if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
4053        S.IsQualificationConversion(Arg->getType(), ParamType, false,
4054                                     ObjCLifetimeConversion))
4055      return NPV_NullPointer;
4056
4057    // The types didn't match, but we know we got a null pointer; complain,
4058    // then recover as if the types were correct.
4059    S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
4060      << Arg->getType() << ParamType << Arg->getSourceRange();
4061    S.Diag(Param->getLocation(), diag::note_template_param_here);
4062    return NPV_NullPointer;
4063  }
4064
4065  // If we don't have a null pointer value, but we do have a NULL pointer
4066  // constant, suggest a cast to the appropriate type.
4067  if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
4068    std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
4069    S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
4070      << ParamType
4071      << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
4072      << FixItHint::CreateInsertion(S.PP.getLocForEndOfToken(Arg->getLocEnd()),
4073                                    ")");
4074    S.Diag(Param->getLocation(), diag::note_template_param_here);
4075    return NPV_NullPointer;
4076  }
4077
4078  // FIXME: If we ever want to support general, address-constant expressions
4079  // as non-type template arguments, we should return the ExprResult here to
4080  // be interpreted by the caller.
4081  return NPV_NotNullPointer;
4082}
4083
4084/// \brief Checks whether the given template argument is compatible with its
4085/// template parameter.
4086static bool CheckTemplateArgumentIsCompatibleWithParameter(
4087    Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
4088    Expr *Arg, QualType ArgType) {
4089  bool ObjCLifetimeConversion;
4090  if (ParamType->isPointerType() &&
4091      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
4092      S.IsQualificationConversion(ArgType, ParamType, false,
4093                                  ObjCLifetimeConversion)) {
4094    // For pointer-to-object types, qualification conversions are
4095    // permitted.
4096  } else {
4097    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
4098      if (!ParamRef->getPointeeType()->isFunctionType()) {
4099        // C++ [temp.arg.nontype]p5b3:
4100        //   For a non-type template-parameter of type reference to
4101        //   object, no conversions apply. The type referred to by the
4102        //   reference may be more cv-qualified than the (otherwise
4103        //   identical) type of the template- argument. The
4104        //   template-parameter is bound directly to the
4105        //   template-argument, which shall be an lvalue.
4106
4107        // FIXME: Other qualifiers?
4108        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
4109        unsigned ArgQuals = ArgType.getCVRQualifiers();
4110
4111        if ((ParamQuals | ArgQuals) != ParamQuals) {
4112          S.Diag(Arg->getLocStart(),
4113                 diag::err_template_arg_ref_bind_ignores_quals)
4114            << ParamType << Arg->getType() << Arg->getSourceRange();
4115          S.Diag(Param->getLocation(), diag::note_template_param_here);
4116          return true;
4117        }
4118      }
4119    }
4120
4121    // At this point, the template argument refers to an object or
4122    // function with external linkage. We now need to check whether the
4123    // argument and parameter types are compatible.
4124    if (!S.Context.hasSameUnqualifiedType(ArgType,
4125                                          ParamType.getNonReferenceType())) {
4126      // We can't perform this conversion or binding.
4127      if (ParamType->isReferenceType())
4128        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
4129          << ParamType << ArgIn->getType() << Arg->getSourceRange();
4130      else
4131        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
4132          << ArgIn->getType() << ParamType << Arg->getSourceRange();
4133      S.Diag(Param->getLocation(), diag::note_template_param_here);
4134      return true;
4135    }
4136  }
4137
4138  return false;
4139}
4140
4141/// \brief Checks whether the given template argument is the address
4142/// of an object or function according to C++ [temp.arg.nontype]p1.
4143static bool
4144CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
4145                                               NonTypeTemplateParmDecl *Param,
4146                                               QualType ParamType,
4147                                               Expr *ArgIn,
4148                                               TemplateArgument &Converted) {
4149  bool Invalid = false;
4150  Expr *Arg = ArgIn;
4151  QualType ArgType = Arg->getType();
4152
4153  // If our parameter has pointer type, check for a null template value.
4154  if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
4155    switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
4156    case NPV_NullPointer:
4157      S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4158      Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
4159      return false;
4160
4161    case NPV_Error:
4162      return true;
4163
4164    case NPV_NotNullPointer:
4165      break;
4166    }
4167  }
4168
4169  bool AddressTaken = false;
4170  SourceLocation AddrOpLoc;
4171  if (S.getLangOpts().MicrosoftExt) {
4172    // Microsoft Visual C++ strips all casts, allows an arbitrary number of
4173    // dereference and address-of operators.
4174    Arg = Arg->IgnoreParenCasts();
4175
4176    bool ExtWarnMSTemplateArg = false;
4177    UnaryOperatorKind FirstOpKind;
4178    SourceLocation FirstOpLoc;
4179    while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4180      UnaryOperatorKind UnOpKind = UnOp->getOpcode();
4181      if (UnOpKind == UO_Deref)
4182        ExtWarnMSTemplateArg = true;
4183      if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
4184        Arg = UnOp->getSubExpr()->IgnoreParenCasts();
4185        if (!AddrOpLoc.isValid()) {
4186          FirstOpKind = UnOpKind;
4187          FirstOpLoc = UnOp->getOperatorLoc();
4188        }
4189      } else
4190        break;
4191    }
4192    if (FirstOpLoc.isValid()) {
4193      if (ExtWarnMSTemplateArg)
4194        S.Diag(ArgIn->getLocStart(), diag::ext_ms_deref_template_argument)
4195          << ArgIn->getSourceRange();
4196
4197      if (FirstOpKind == UO_AddrOf)
4198        AddressTaken = true;
4199      else if (Arg->getType()->isPointerType()) {
4200        // We cannot let pointers get dereferenced here, that is obviously not a
4201        // constant expression.
4202        assert(FirstOpKind == UO_Deref);
4203        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4204          << Arg->getSourceRange();
4205      }
4206    }
4207  } else {
4208    // See through any implicit casts we added to fix the type.
4209    Arg = Arg->IgnoreImpCasts();
4210
4211    // C++ [temp.arg.nontype]p1:
4212    //
4213    //   A template-argument for a non-type, non-template
4214    //   template-parameter shall be one of: [...]
4215    //
4216    //     -- the address of an object or function with external
4217    //        linkage, including function templates and function
4218    //        template-ids but excluding non-static class members,
4219    //        expressed as & id-expression where the & is optional if
4220    //        the name refers to a function or array, or if the
4221    //        corresponding template-parameter is a reference; or
4222
4223    // In C++98/03 mode, give an extension warning on any extra parentheses.
4224    // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4225    bool ExtraParens = false;
4226    while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4227      if (!Invalid && !ExtraParens) {
4228        S.Diag(Arg->getLocStart(),
4229               S.getLangOpts().CPlusPlus11
4230                   ? diag::warn_cxx98_compat_template_arg_extra_parens
4231                   : diag::ext_template_arg_extra_parens)
4232            << Arg->getSourceRange();
4233        ExtraParens = true;
4234      }
4235
4236      Arg = Parens->getSubExpr();
4237    }
4238
4239    while (SubstNonTypeTemplateParmExpr *subst =
4240               dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4241      Arg = subst->getReplacement()->IgnoreImpCasts();
4242
4243    if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4244      if (UnOp->getOpcode() == UO_AddrOf) {
4245        Arg = UnOp->getSubExpr();
4246        AddressTaken = true;
4247        AddrOpLoc = UnOp->getOperatorLoc();
4248      }
4249    }
4250
4251    while (SubstNonTypeTemplateParmExpr *subst =
4252               dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4253      Arg = subst->getReplacement()->IgnoreImpCasts();
4254  }
4255
4256  // Stop checking the precise nature of the argument if it is value dependent,
4257  // it should be checked when instantiated.
4258  if (Arg->isValueDependent()) {
4259    Converted = TemplateArgument(ArgIn);
4260    return false;
4261  }
4262
4263  if (isa<CXXUuidofExpr>(Arg)) {
4264    if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType,
4265                                                       ArgIn, Arg, ArgType))
4266      return true;
4267
4268    Converted = TemplateArgument(ArgIn);
4269    return false;
4270  }
4271
4272  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
4273  if (!DRE) {
4274    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4275    << Arg->getSourceRange();
4276    S.Diag(Param->getLocation(), diag::note_template_param_here);
4277    return true;
4278  }
4279
4280  ValueDecl *Entity = DRE->getDecl();
4281
4282  // Cannot refer to non-static data members
4283  if (FieldDecl *Field = dyn_cast<FieldDecl>(Entity)) {
4284    S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
4285      << Field << Arg->getSourceRange();
4286    S.Diag(Param->getLocation(), diag::note_template_param_here);
4287    return true;
4288  }
4289
4290  // Cannot refer to non-static member functions
4291  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
4292    if (!Method->isStatic()) {
4293      S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
4294        << Method << Arg->getSourceRange();
4295      S.Diag(Param->getLocation(), diag::note_template_param_here);
4296      return true;
4297    }
4298  }
4299
4300  FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
4301  VarDecl *Var = dyn_cast<VarDecl>(Entity);
4302
4303  // A non-type template argument must refer to an object or function.
4304  if (!Func && !Var) {
4305    // We found something, but we don't know specifically what it is.
4306    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
4307      << Arg->getSourceRange();
4308    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4309    return true;
4310  }
4311
4312  // Address / reference template args must have external linkage in C++98.
4313  if (Entity->getFormalLinkage() == InternalLinkage) {
4314    S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ?
4315             diag::warn_cxx98_compat_template_arg_object_internal :
4316             diag::ext_template_arg_object_internal)
4317      << !Func << Entity << Arg->getSourceRange();
4318    S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4319      << !Func;
4320  } else if (!Entity->hasLinkage()) {
4321    S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
4322      << !Func << Entity << Arg->getSourceRange();
4323    S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4324      << !Func;
4325    return true;
4326  }
4327
4328  if (Func) {
4329    // If the template parameter has pointer type, the function decays.
4330    if (ParamType->isPointerType() && !AddressTaken)
4331      ArgType = S.Context.getPointerType(Func->getType());
4332    else if (AddressTaken && ParamType->isReferenceType()) {
4333      // If we originally had an address-of operator, but the
4334      // parameter has reference type, complain and (if things look
4335      // like they will work) drop the address-of operator.
4336      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
4337                                            ParamType.getNonReferenceType())) {
4338        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4339          << ParamType;
4340        S.Diag(Param->getLocation(), diag::note_template_param_here);
4341        return true;
4342      }
4343
4344      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4345        << ParamType
4346        << FixItHint::CreateRemoval(AddrOpLoc);
4347      S.Diag(Param->getLocation(), diag::note_template_param_here);
4348
4349      ArgType = Func->getType();
4350    }
4351  } else {
4352    // A value of reference type is not an object.
4353    if (Var->getType()->isReferenceType()) {
4354      S.Diag(Arg->getLocStart(),
4355             diag::err_template_arg_reference_var)
4356        << Var->getType() << Arg->getSourceRange();
4357      S.Diag(Param->getLocation(), diag::note_template_param_here);
4358      return true;
4359    }
4360
4361    // A template argument must have static storage duration.
4362    if (Var->getTLSKind()) {
4363      S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
4364        << Arg->getSourceRange();
4365      S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
4366      return true;
4367    }
4368
4369    // If the template parameter has pointer type, we must have taken
4370    // the address of this object.
4371    if (ParamType->isReferenceType()) {
4372      if (AddressTaken) {
4373        // If we originally had an address-of operator, but the
4374        // parameter has reference type, complain and (if things look
4375        // like they will work) drop the address-of operator.
4376        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
4377                                            ParamType.getNonReferenceType())) {
4378          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4379            << ParamType;
4380          S.Diag(Param->getLocation(), diag::note_template_param_here);
4381          return true;
4382        }
4383
4384        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4385          << ParamType
4386          << FixItHint::CreateRemoval(AddrOpLoc);
4387        S.Diag(Param->getLocation(), diag::note_template_param_here);
4388
4389        ArgType = Var->getType();
4390      }
4391    } else if (!AddressTaken && ParamType->isPointerType()) {
4392      if (Var->getType()->isArrayType()) {
4393        // Array-to-pointer decay.
4394        ArgType = S.Context.getArrayDecayedType(Var->getType());
4395      } else {
4396        // If the template parameter has pointer type but the address of
4397        // this object was not taken, complain and (possibly) recover by
4398        // taking the address of the entity.
4399        ArgType = S.Context.getPointerType(Var->getType());
4400        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
4401          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4402            << ParamType;
4403          S.Diag(Param->getLocation(), diag::note_template_param_here);
4404          return true;
4405        }
4406
4407        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4408          << ParamType
4409          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
4410
4411        S.Diag(Param->getLocation(), diag::note_template_param_here);
4412      }
4413    }
4414  }
4415
4416  if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
4417                                                     Arg, ArgType))
4418    return true;
4419
4420  // Create the template argument.
4421  Converted = TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()),
4422                               ParamType->isReferenceType());
4423  S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false);
4424  return false;
4425}
4426
4427/// \brief Checks whether the given template argument is a pointer to
4428/// member constant according to C++ [temp.arg.nontype]p1.
4429static bool CheckTemplateArgumentPointerToMember(Sema &S,
4430                                                 NonTypeTemplateParmDecl *Param,
4431                                                 QualType ParamType,
4432                                                 Expr *&ResultArg,
4433                                                 TemplateArgument &Converted) {
4434  bool Invalid = false;
4435
4436  // Check for a null pointer value.
4437  Expr *Arg = ResultArg;
4438  switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
4439  case NPV_Error:
4440    return true;
4441  case NPV_NullPointer:
4442    S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4443    Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
4444    return false;
4445  case NPV_NotNullPointer:
4446    break;
4447  }
4448
4449  bool ObjCLifetimeConversion;
4450  if (S.IsQualificationConversion(Arg->getType(),
4451                                  ParamType.getNonReferenceType(),
4452                                  false, ObjCLifetimeConversion)) {
4453    Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
4454                              Arg->getValueKind()).take();
4455    ResultArg = Arg;
4456  } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
4457                ParamType.getNonReferenceType())) {
4458    // We can't perform this conversion.
4459    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
4460      << Arg->getType() << ParamType << Arg->getSourceRange();
4461    S.Diag(Param->getLocation(), diag::note_template_param_here);
4462    return true;
4463  }
4464
4465  // See through any implicit casts we added to fix the type.
4466  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
4467    Arg = Cast->getSubExpr();
4468
4469  // C++ [temp.arg.nontype]p1:
4470  //
4471  //   A template-argument for a non-type, non-template
4472  //   template-parameter shall be one of: [...]
4473  //
4474  //     -- a pointer to member expressed as described in 5.3.1.
4475  DeclRefExpr *DRE = 0;
4476
4477  // In C++98/03 mode, give an extension warning on any extra parentheses.
4478  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4479  bool ExtraParens = false;
4480  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4481    if (!Invalid && !ExtraParens) {
4482      S.Diag(Arg->getLocStart(),
4483             S.getLangOpts().CPlusPlus11 ?
4484               diag::warn_cxx98_compat_template_arg_extra_parens :
4485               diag::ext_template_arg_extra_parens)
4486        << Arg->getSourceRange();
4487      ExtraParens = true;
4488    }
4489
4490    Arg = Parens->getSubExpr();
4491  }
4492
4493  while (SubstNonTypeTemplateParmExpr *subst =
4494           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4495    Arg = subst->getReplacement()->IgnoreImpCasts();
4496
4497  // A pointer-to-member constant written &Class::member.
4498  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4499    if (UnOp->getOpcode() == UO_AddrOf) {
4500      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
4501      if (DRE && !DRE->getQualifier())
4502        DRE = 0;
4503    }
4504  }
4505  // A constant of pointer-to-member type.
4506  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
4507    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
4508      if (VD->getType()->isMemberPointerType()) {
4509        if (isa<NonTypeTemplateParmDecl>(VD) ||
4510            (isa<VarDecl>(VD) &&
4511             S.Context.getCanonicalType(VD->getType()).isConstQualified())) {
4512          if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4513            Converted = TemplateArgument(Arg);
4514          } else {
4515            VD = cast<ValueDecl>(VD->getCanonicalDecl());
4516            Converted = TemplateArgument(VD, /*isReferenceParam*/false);
4517          }
4518          return Invalid;
4519        }
4520      }
4521    }
4522
4523    DRE = 0;
4524  }
4525
4526  if (!DRE)
4527    return S.Diag(Arg->getLocStart(),
4528                  diag::err_template_arg_not_pointer_to_member_form)
4529      << Arg->getSourceRange();
4530
4531  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
4532    assert((isa<FieldDecl>(DRE->getDecl()) ||
4533            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
4534           "Only non-static member pointers can make it here");
4535
4536    // Okay: this is the address of a non-static member, and therefore
4537    // a member pointer constant.
4538    if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4539      Converted = TemplateArgument(Arg);
4540    } else {
4541      ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
4542      Converted = TemplateArgument(D, /*isReferenceParam*/false);
4543    }
4544    return Invalid;
4545  }
4546
4547  // We found something else, but we don't know specifically what it is.
4548  S.Diag(Arg->getLocStart(),
4549         diag::err_template_arg_not_pointer_to_member_form)
4550    << Arg->getSourceRange();
4551  S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4552  return true;
4553}
4554
4555/// \brief Check a template argument against its corresponding
4556/// non-type template parameter.
4557///
4558/// This routine implements the semantics of C++ [temp.arg.nontype].
4559/// If an error occurred, it returns ExprError(); otherwise, it
4560/// returns the converted template argument. \p
4561/// InstantiatedParamType is the type of the non-type template
4562/// parameter after it has been instantiated.
4563ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
4564                                       QualType InstantiatedParamType, Expr *Arg,
4565                                       TemplateArgument &Converted,
4566                                       CheckTemplateArgumentKind CTAK) {
4567  SourceLocation StartLoc = Arg->getLocStart();
4568
4569  // If either the parameter has a dependent type or the argument is
4570  // type-dependent, there's nothing we can check now.
4571  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
4572    // FIXME: Produce a cloned, canonical expression?
4573    Converted = TemplateArgument(Arg);
4574    return Owned(Arg);
4575  }
4576
4577  // C++ [temp.arg.nontype]p5:
4578  //   The following conversions are performed on each expression used
4579  //   as a non-type template-argument. If a non-type
4580  //   template-argument cannot be converted to the type of the
4581  //   corresponding template-parameter then the program is
4582  //   ill-formed.
4583  QualType ParamType = InstantiatedParamType;
4584  if (ParamType->isIntegralOrEnumerationType()) {
4585    // C++11:
4586    //   -- for a non-type template-parameter of integral or
4587    //      enumeration type, conversions permitted in a converted
4588    //      constant expression are applied.
4589    //
4590    // C++98:
4591    //   -- for a non-type template-parameter of integral or
4592    //      enumeration type, integral promotions (4.5) and integral
4593    //      conversions (4.7) are applied.
4594
4595    if (CTAK == CTAK_Deduced &&
4596        !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
4597      // C++ [temp.deduct.type]p17:
4598      //   If, in the declaration of a function template with a non-type
4599      //   template-parameter, the non-type template-parameter is used
4600      //   in an expression in the function parameter-list and, if the
4601      //   corresponding template-argument is deduced, the
4602      //   template-argument type shall match the type of the
4603      //   template-parameter exactly, except that a template-argument
4604      //   deduced from an array bound may be of any integral type.
4605      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
4606        << Arg->getType().getUnqualifiedType()
4607        << ParamType.getUnqualifiedType();
4608      Diag(Param->getLocation(), diag::note_template_param_here);
4609      return ExprError();
4610    }
4611
4612    if (getLangOpts().CPlusPlus11) {
4613      // We can't check arbitrary value-dependent arguments.
4614      // FIXME: If there's no viable conversion to the template parameter type,
4615      // we should be able to diagnose that prior to instantiation.
4616      if (Arg->isValueDependent()) {
4617        Converted = TemplateArgument(Arg);
4618        return Owned(Arg);
4619      }
4620
4621      // C++ [temp.arg.nontype]p1:
4622      //   A template-argument for a non-type, non-template template-parameter
4623      //   shall be one of:
4624      //
4625      //     -- for a non-type template-parameter of integral or enumeration
4626      //        type, a converted constant expression of the type of the
4627      //        template-parameter; or
4628      llvm::APSInt Value;
4629      ExprResult ArgResult =
4630        CheckConvertedConstantExpression(Arg, ParamType, Value,
4631                                         CCEK_TemplateArg);
4632      if (ArgResult.isInvalid())
4633        return ExprError();
4634
4635      // Widen the argument value to sizeof(parameter type). This is almost
4636      // always a no-op, except when the parameter type is bool. In
4637      // that case, this may extend the argument from 1 bit to 8 bits.
4638      QualType IntegerType = ParamType;
4639      if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4640        IntegerType = Enum->getDecl()->getIntegerType();
4641      Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
4642
4643      Converted = TemplateArgument(Context, Value,
4644                                   Context.getCanonicalType(ParamType));
4645      return ArgResult;
4646    }
4647
4648    ExprResult ArgResult = DefaultLvalueConversion(Arg);
4649    if (ArgResult.isInvalid())
4650      return ExprError();
4651    Arg = ArgResult.take();
4652
4653    QualType ArgType = Arg->getType();
4654
4655    // C++ [temp.arg.nontype]p1:
4656    //   A template-argument for a non-type, non-template
4657    //   template-parameter shall be one of:
4658    //
4659    //     -- an integral constant-expression of integral or enumeration
4660    //        type; or
4661    //     -- the name of a non-type template-parameter; or
4662    SourceLocation NonConstantLoc;
4663    llvm::APSInt Value;
4664    if (!ArgType->isIntegralOrEnumerationType()) {
4665      Diag(Arg->getLocStart(),
4666           diag::err_template_arg_not_integral_or_enumeral)
4667        << ArgType << Arg->getSourceRange();
4668      Diag(Param->getLocation(), diag::note_template_param_here);
4669      return ExprError();
4670    } else if (!Arg->isValueDependent()) {
4671      class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
4672        QualType T;
4673
4674      public:
4675        TmplArgICEDiagnoser(QualType T) : T(T) { }
4676
4677        virtual void diagnoseNotICE(Sema &S, SourceLocation Loc,
4678                                    SourceRange SR) {
4679          S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
4680        }
4681      } Diagnoser(ArgType);
4682
4683      Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
4684                                            false).take();
4685      if (!Arg)
4686        return ExprError();
4687    }
4688
4689    // From here on out, all we care about are the unqualified forms
4690    // of the parameter and argument types.
4691    ParamType = ParamType.getUnqualifiedType();
4692    ArgType = ArgType.getUnqualifiedType();
4693
4694    // Try to convert the argument to the parameter's type.
4695    if (Context.hasSameType(ParamType, ArgType)) {
4696      // Okay: no conversion necessary
4697    } else if (ParamType->isBooleanType()) {
4698      // This is an integral-to-boolean conversion.
4699      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
4700    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
4701               !ParamType->isEnumeralType()) {
4702      // This is an integral promotion or conversion.
4703      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
4704    } else {
4705      // We can't perform this conversion.
4706      Diag(Arg->getLocStart(),
4707           diag::err_template_arg_not_convertible)
4708        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
4709      Diag(Param->getLocation(), diag::note_template_param_here);
4710      return ExprError();
4711    }
4712
4713    // Add the value of this argument to the list of converted
4714    // arguments. We use the bitwidth and signedness of the template
4715    // parameter.
4716    if (Arg->isValueDependent()) {
4717      // The argument is value-dependent. Create a new
4718      // TemplateArgument with the converted expression.
4719      Converted = TemplateArgument(Arg);
4720      return Owned(Arg);
4721    }
4722
4723    QualType IntegerType = Context.getCanonicalType(ParamType);
4724    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4725      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
4726
4727    if (ParamType->isBooleanType()) {
4728      // Value must be zero or one.
4729      Value = Value != 0;
4730      unsigned AllowedBits = Context.getTypeSize(IntegerType);
4731      if (Value.getBitWidth() != AllowedBits)
4732        Value = Value.extOrTrunc(AllowedBits);
4733      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4734    } else {
4735      llvm::APSInt OldValue = Value;
4736
4737      // Coerce the template argument's value to the value it will have
4738      // based on the template parameter's type.
4739      unsigned AllowedBits = Context.getTypeSize(IntegerType);
4740      if (Value.getBitWidth() != AllowedBits)
4741        Value = Value.extOrTrunc(AllowedBits);
4742      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4743
4744      // Complain if an unsigned parameter received a negative value.
4745      if (IntegerType->isUnsignedIntegerOrEnumerationType()
4746               && (OldValue.isSigned() && OldValue.isNegative())) {
4747        Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
4748          << OldValue.toString(10) << Value.toString(10) << Param->getType()
4749          << Arg->getSourceRange();
4750        Diag(Param->getLocation(), diag::note_template_param_here);
4751      }
4752
4753      // Complain if we overflowed the template parameter's type.
4754      unsigned RequiredBits;
4755      if (IntegerType->isUnsignedIntegerOrEnumerationType())
4756        RequiredBits = OldValue.getActiveBits();
4757      else if (OldValue.isUnsigned())
4758        RequiredBits = OldValue.getActiveBits() + 1;
4759      else
4760        RequiredBits = OldValue.getMinSignedBits();
4761      if (RequiredBits > AllowedBits) {
4762        Diag(Arg->getLocStart(),
4763             diag::warn_template_arg_too_large)
4764          << OldValue.toString(10) << Value.toString(10) << Param->getType()
4765          << Arg->getSourceRange();
4766        Diag(Param->getLocation(), diag::note_template_param_here);
4767      }
4768    }
4769
4770    Converted = TemplateArgument(Context, Value,
4771                                 ParamType->isEnumeralType()
4772                                   ? Context.getCanonicalType(ParamType)
4773                                   : IntegerType);
4774    return Owned(Arg);
4775  }
4776
4777  QualType ArgType = Arg->getType();
4778  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
4779
4780  // Handle pointer-to-function, reference-to-function, and
4781  // pointer-to-member-function all in (roughly) the same way.
4782  if (// -- For a non-type template-parameter of type pointer to
4783      //    function, only the function-to-pointer conversion (4.3) is
4784      //    applied. If the template-argument represents a set of
4785      //    overloaded functions (or a pointer to such), the matching
4786      //    function is selected from the set (13.4).
4787      (ParamType->isPointerType() &&
4788       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
4789      // -- For a non-type template-parameter of type reference to
4790      //    function, no conversions apply. If the template-argument
4791      //    represents a set of overloaded functions, the matching
4792      //    function is selected from the set (13.4).
4793      (ParamType->isReferenceType() &&
4794       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
4795      // -- For a non-type template-parameter of type pointer to
4796      //    member function, no conversions apply. If the
4797      //    template-argument represents a set of overloaded member
4798      //    functions, the matching member function is selected from
4799      //    the set (13.4).
4800      (ParamType->isMemberPointerType() &&
4801       ParamType->getAs<MemberPointerType>()->getPointeeType()
4802         ->isFunctionType())) {
4803
4804    if (Arg->getType() == Context.OverloadTy) {
4805      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
4806                                                                true,
4807                                                                FoundResult)) {
4808        if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4809          return ExprError();
4810
4811        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4812        ArgType = Arg->getType();
4813      } else
4814        return ExprError();
4815    }
4816
4817    if (!ParamType->isMemberPointerType()) {
4818      if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4819                                                         ParamType,
4820                                                         Arg, Converted))
4821        return ExprError();
4822      return Owned(Arg);
4823    }
4824
4825    if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4826                                             Converted))
4827      return ExprError();
4828    return Owned(Arg);
4829  }
4830
4831  if (ParamType->isPointerType()) {
4832    //   -- for a non-type template-parameter of type pointer to
4833    //      object, qualification conversions (4.4) and the
4834    //      array-to-pointer conversion (4.2) are applied.
4835    // C++0x also allows a value of std::nullptr_t.
4836    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
4837           "Only object pointers allowed here");
4838
4839    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4840                                                       ParamType,
4841                                                       Arg, Converted))
4842      return ExprError();
4843    return Owned(Arg);
4844  }
4845
4846  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
4847    //   -- For a non-type template-parameter of type reference to
4848    //      object, no conversions apply. The type referred to by the
4849    //      reference may be more cv-qualified than the (otherwise
4850    //      identical) type of the template-argument. The
4851    //      template-parameter is bound directly to the
4852    //      template-argument, which must be an lvalue.
4853    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
4854           "Only object references allowed here");
4855
4856    if (Arg->getType() == Context.OverloadTy) {
4857      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
4858                                                 ParamRefType->getPointeeType(),
4859                                                                true,
4860                                                                FoundResult)) {
4861        if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4862          return ExprError();
4863
4864        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4865        ArgType = Arg->getType();
4866      } else
4867        return ExprError();
4868    }
4869
4870    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4871                                                       ParamType,
4872                                                       Arg, Converted))
4873      return ExprError();
4874    return Owned(Arg);
4875  }
4876
4877  // Deal with parameters of type std::nullptr_t.
4878  if (ParamType->isNullPtrType()) {
4879    if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4880      Converted = TemplateArgument(Arg);
4881      return Owned(Arg);
4882    }
4883
4884    switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
4885    case NPV_NotNullPointer:
4886      Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
4887        << Arg->getType() << ParamType;
4888      Diag(Param->getLocation(), diag::note_template_param_here);
4889      return ExprError();
4890
4891    case NPV_Error:
4892      return ExprError();
4893
4894    case NPV_NullPointer:
4895      Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4896      Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
4897      return Owned(Arg);
4898    }
4899  }
4900
4901  //     -- For a non-type template-parameter of type pointer to data
4902  //        member, qualification conversions (4.4) are applied.
4903  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
4904
4905  if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4906                                           Converted))
4907    return ExprError();
4908  return Owned(Arg);
4909}
4910
4911/// \brief Check a template argument against its corresponding
4912/// template template parameter.
4913///
4914/// This routine implements the semantics of C++ [temp.arg.template].
4915/// It returns true if an error occurred, and false otherwise.
4916bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
4917                                 const TemplateArgumentLoc &Arg,
4918                                 unsigned ArgumentPackIndex) {
4919  TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
4920  TemplateDecl *Template = Name.getAsTemplateDecl();
4921  if (!Template) {
4922    // Any dependent template name is fine.
4923    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
4924    return false;
4925  }
4926
4927  // C++0x [temp.arg.template]p1:
4928  //   A template-argument for a template template-parameter shall be
4929  //   the name of a class template or an alias template, expressed as an
4930  //   id-expression. When the template-argument names a class template, only
4931  //   primary class templates are considered when matching the
4932  //   template template argument with the corresponding parameter;
4933  //   partial specializations are not considered even if their
4934  //   parameter lists match that of the template template parameter.
4935  //
4936  // Note that we also allow template template parameters here, which
4937  // will happen when we are dealing with, e.g., class template
4938  // partial specializations.
4939  if (!isa<ClassTemplateDecl>(Template) &&
4940      !isa<TemplateTemplateParmDecl>(Template) &&
4941      !isa<TypeAliasTemplateDecl>(Template)) {
4942    assert(isa<FunctionTemplateDecl>(Template) &&
4943           "Only function templates are possible here");
4944    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
4945    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
4946      << Template;
4947  }
4948
4949  TemplateParameterList *Params = Param->getTemplateParameters();
4950  if (Param->isExpandedParameterPack())
4951    Params = Param->getExpansionTemplateParameters(ArgumentPackIndex);
4952
4953  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
4954                                         Params,
4955                                         true,
4956                                         TPL_TemplateTemplateArgumentMatch,
4957                                         Arg.getLocation());
4958}
4959
4960/// \brief Given a non-type template argument that refers to a
4961/// declaration and the type of its corresponding non-type template
4962/// parameter, produce an expression that properly refers to that
4963/// declaration.
4964ExprResult
4965Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
4966                                              QualType ParamType,
4967                                              SourceLocation Loc) {
4968  // C++ [temp.param]p8:
4969  //
4970  //   A non-type template-parameter of type "array of T" or
4971  //   "function returning T" is adjusted to be of type "pointer to
4972  //   T" or "pointer to function returning T", respectively.
4973  if (ParamType->isArrayType())
4974    ParamType = Context.getArrayDecayedType(ParamType);
4975  else if (ParamType->isFunctionType())
4976    ParamType = Context.getPointerType(ParamType);
4977
4978  // For a NULL non-type template argument, return nullptr casted to the
4979  // parameter's type.
4980  if (Arg.getKind() == TemplateArgument::NullPtr) {
4981    return ImpCastExprToType(
4982             new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
4983                             ParamType,
4984                             ParamType->getAs<MemberPointerType>()
4985                               ? CK_NullToMemberPointer
4986                               : CK_NullToPointer);
4987  }
4988  assert(Arg.getKind() == TemplateArgument::Declaration &&
4989         "Only declaration template arguments permitted here");
4990
4991  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
4992
4993  if (VD->getDeclContext()->isRecord() &&
4994      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
4995    // If the value is a class member, we might have a pointer-to-member.
4996    // Determine whether the non-type template template parameter is of
4997    // pointer-to-member type. If so, we need to build an appropriate
4998    // expression for a pointer-to-member, since a "normal" DeclRefExpr
4999    // would refer to the member itself.
5000    if (ParamType->isMemberPointerType()) {
5001      QualType ClassType
5002        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
5003      NestedNameSpecifier *Qualifier
5004        = NestedNameSpecifier::Create(Context, 0, false,
5005                                      ClassType.getTypePtr());
5006      CXXScopeSpec SS;
5007      SS.MakeTrivial(Context, Qualifier, Loc);
5008
5009      // The actual value-ness of this is unimportant, but for
5010      // internal consistency's sake, references to instance methods
5011      // are r-values.
5012      ExprValueKind VK = VK_LValue;
5013      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
5014        VK = VK_RValue;
5015
5016      ExprResult RefExpr = BuildDeclRefExpr(VD,
5017                                            VD->getType().getNonReferenceType(),
5018                                            VK,
5019                                            Loc,
5020                                            &SS);
5021      if (RefExpr.isInvalid())
5022        return ExprError();
5023
5024      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5025
5026      // We might need to perform a trailing qualification conversion, since
5027      // the element type on the parameter could be more qualified than the
5028      // element type in the expression we constructed.
5029      bool ObjCLifetimeConversion;
5030      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
5031                                    ParamType.getUnqualifiedType(), false,
5032                                    ObjCLifetimeConversion))
5033        RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
5034
5035      assert(!RefExpr.isInvalid() &&
5036             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
5037                                 ParamType.getUnqualifiedType()));
5038      return RefExpr;
5039    }
5040  }
5041
5042  QualType T = VD->getType().getNonReferenceType();
5043
5044  if (ParamType->isPointerType()) {
5045    // When the non-type template parameter is a pointer, take the
5046    // address of the declaration.
5047    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
5048    if (RefExpr.isInvalid())
5049      return ExprError();
5050
5051    if (T->isFunctionType() || T->isArrayType()) {
5052      // Decay functions and arrays.
5053      RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
5054      if (RefExpr.isInvalid())
5055        return ExprError();
5056
5057      return RefExpr;
5058    }
5059
5060    // Take the address of everything else
5061    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5062  }
5063
5064  ExprValueKind VK = VK_RValue;
5065
5066  // If the non-type template parameter has reference type, qualify the
5067  // resulting declaration reference with the extra qualifiers on the
5068  // type that the reference refers to.
5069  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
5070    VK = VK_LValue;
5071    T = Context.getQualifiedType(T,
5072                              TargetRef->getPointeeType().getQualifiers());
5073  } else if (isa<FunctionDecl>(VD)) {
5074    // References to functions are always lvalues.
5075    VK = VK_LValue;
5076  }
5077
5078  return BuildDeclRefExpr(VD, T, VK, Loc);
5079}
5080
5081/// \brief Construct a new expression that refers to the given
5082/// integral template argument with the given source-location
5083/// information.
5084///
5085/// This routine takes care of the mapping from an integral template
5086/// argument (which may have any integral type) to the appropriate
5087/// literal value.
5088ExprResult
5089Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
5090                                                  SourceLocation Loc) {
5091  assert(Arg.getKind() == TemplateArgument::Integral &&
5092         "Operation is only valid for integral template arguments");
5093  QualType OrigT = Arg.getIntegralType();
5094
5095  // If this is an enum type that we're instantiating, we need to use an integer
5096  // type the same size as the enumerator.  We don't want to build an
5097  // IntegerLiteral with enum type.  The integer type of an enum type can be of
5098  // any integral type with C++11 enum classes, make sure we create the right
5099  // type of literal for it.
5100  QualType T = OrigT;
5101  if (const EnumType *ET = OrigT->getAs<EnumType>())
5102    T = ET->getDecl()->getIntegerType();
5103
5104  Expr *E;
5105  if (T->isAnyCharacterType()) {
5106    CharacterLiteral::CharacterKind Kind;
5107    if (T->isWideCharType())
5108      Kind = CharacterLiteral::Wide;
5109    else if (T->isChar16Type())
5110      Kind = CharacterLiteral::UTF16;
5111    else if (T->isChar32Type())
5112      Kind = CharacterLiteral::UTF32;
5113    else
5114      Kind = CharacterLiteral::Ascii;
5115
5116    E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
5117                                       Kind, T, Loc);
5118  } else if (T->isBooleanType()) {
5119    E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
5120                                         T, Loc);
5121  } else if (T->isNullPtrType()) {
5122    E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
5123  } else {
5124    E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
5125  }
5126
5127  if (OrigT->isEnumeralType()) {
5128    // FIXME: This is a hack. We need a better way to handle substituted
5129    // non-type template parameters.
5130    E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E, 0,
5131                               Context.getTrivialTypeSourceInfo(OrigT, Loc),
5132                               Loc, Loc);
5133  }
5134
5135  return Owned(E);
5136}
5137
5138/// \brief Match two template parameters within template parameter lists.
5139static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
5140                                       bool Complain,
5141                                     Sema::TemplateParameterListEqualKind Kind,
5142                                       SourceLocation TemplateArgLoc) {
5143  // Check the actual kind (type, non-type, template).
5144  if (Old->getKind() != New->getKind()) {
5145    if (Complain) {
5146      unsigned NextDiag = diag::err_template_param_different_kind;
5147      if (TemplateArgLoc.isValid()) {
5148        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5149        NextDiag = diag::note_template_param_different_kind;
5150      }
5151      S.Diag(New->getLocation(), NextDiag)
5152        << (Kind != Sema::TPL_TemplateMatch);
5153      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
5154        << (Kind != Sema::TPL_TemplateMatch);
5155    }
5156
5157    return false;
5158  }
5159
5160  // Check that both are parameter packs are neither are parameter packs.
5161  // However, if we are matching a template template argument to a
5162  // template template parameter, the template template parameter can have
5163  // a parameter pack where the template template argument does not.
5164  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
5165      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5166        Old->isTemplateParameterPack())) {
5167    if (Complain) {
5168      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
5169      if (TemplateArgLoc.isValid()) {
5170        S.Diag(TemplateArgLoc,
5171             diag::err_template_arg_template_params_mismatch);
5172        NextDiag = diag::note_template_parameter_pack_non_pack;
5173      }
5174
5175      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
5176                      : isa<NonTypeTemplateParmDecl>(New)? 1
5177                      : 2;
5178      S.Diag(New->getLocation(), NextDiag)
5179        << ParamKind << New->isParameterPack();
5180      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
5181        << ParamKind << Old->isParameterPack();
5182    }
5183
5184    return false;
5185  }
5186
5187  // For non-type template parameters, check the type of the parameter.
5188  if (NonTypeTemplateParmDecl *OldNTTP
5189                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
5190    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
5191
5192    // If we are matching a template template argument to a template
5193    // template parameter and one of the non-type template parameter types
5194    // is dependent, then we must wait until template instantiation time
5195    // to actually compare the arguments.
5196    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5197        (OldNTTP->getType()->isDependentType() ||
5198         NewNTTP->getType()->isDependentType()))
5199      return true;
5200
5201    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
5202      if (Complain) {
5203        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
5204        if (TemplateArgLoc.isValid()) {
5205          S.Diag(TemplateArgLoc,
5206                 diag::err_template_arg_template_params_mismatch);
5207          NextDiag = diag::note_template_nontype_parm_different_type;
5208        }
5209        S.Diag(NewNTTP->getLocation(), NextDiag)
5210          << NewNTTP->getType()
5211          << (Kind != Sema::TPL_TemplateMatch);
5212        S.Diag(OldNTTP->getLocation(),
5213               diag::note_template_nontype_parm_prev_declaration)
5214          << OldNTTP->getType();
5215      }
5216
5217      return false;
5218    }
5219
5220    return true;
5221  }
5222
5223  // For template template parameters, check the template parameter types.
5224  // The template parameter lists of template template
5225  // parameters must agree.
5226  if (TemplateTemplateParmDecl *OldTTP
5227                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
5228    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
5229    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
5230                                            OldTTP->getTemplateParameters(),
5231                                            Complain,
5232                                        (Kind == Sema::TPL_TemplateMatch
5233                                           ? Sema::TPL_TemplateTemplateParmMatch
5234                                           : Kind),
5235                                            TemplateArgLoc);
5236  }
5237
5238  return true;
5239}
5240
5241/// \brief Diagnose a known arity mismatch when comparing template argument
5242/// lists.
5243static
5244void DiagnoseTemplateParameterListArityMismatch(Sema &S,
5245                                                TemplateParameterList *New,
5246                                                TemplateParameterList *Old,
5247                                      Sema::TemplateParameterListEqualKind Kind,
5248                                                SourceLocation TemplateArgLoc) {
5249  unsigned NextDiag = diag::err_template_param_list_different_arity;
5250  if (TemplateArgLoc.isValid()) {
5251    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5252    NextDiag = diag::note_template_param_list_different_arity;
5253  }
5254  S.Diag(New->getTemplateLoc(), NextDiag)
5255    << (New->size() > Old->size())
5256    << (Kind != Sema::TPL_TemplateMatch)
5257    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
5258  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
5259    << (Kind != Sema::TPL_TemplateMatch)
5260    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
5261}
5262
5263/// \brief Determine whether the given template parameter lists are
5264/// equivalent.
5265///
5266/// \param New  The new template parameter list, typically written in the
5267/// source code as part of a new template declaration.
5268///
5269/// \param Old  The old template parameter list, typically found via
5270/// name lookup of the template declared with this template parameter
5271/// list.
5272///
5273/// \param Complain  If true, this routine will produce a diagnostic if
5274/// the template parameter lists are not equivalent.
5275///
5276/// \param Kind describes how we are to match the template parameter lists.
5277///
5278/// \param TemplateArgLoc If this source location is valid, then we
5279/// are actually checking the template parameter list of a template
5280/// argument (New) against the template parameter list of its
5281/// corresponding template template parameter (Old). We produce
5282/// slightly different diagnostics in this scenario.
5283///
5284/// \returns True if the template parameter lists are equal, false
5285/// otherwise.
5286bool
5287Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
5288                                     TemplateParameterList *Old,
5289                                     bool Complain,
5290                                     TemplateParameterListEqualKind Kind,
5291                                     SourceLocation TemplateArgLoc) {
5292  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
5293    if (Complain)
5294      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5295                                                 TemplateArgLoc);
5296
5297    return false;
5298  }
5299
5300  // C++0x [temp.arg.template]p3:
5301  //   A template-argument matches a template template-parameter (call it P)
5302  //   when each of the template parameters in the template-parameter-list of
5303  //   the template-argument's corresponding class template or alias template
5304  //   (call it A) matches the corresponding template parameter in the
5305  //   template-parameter-list of P. [...]
5306  TemplateParameterList::iterator NewParm = New->begin();
5307  TemplateParameterList::iterator NewParmEnd = New->end();
5308  for (TemplateParameterList::iterator OldParm = Old->begin(),
5309                                    OldParmEnd = Old->end();
5310       OldParm != OldParmEnd; ++OldParm) {
5311    if (Kind != TPL_TemplateTemplateArgumentMatch ||
5312        !(*OldParm)->isTemplateParameterPack()) {
5313      if (NewParm == NewParmEnd) {
5314        if (Complain)
5315          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5316                                                     TemplateArgLoc);
5317
5318        return false;
5319      }
5320
5321      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5322                                      Kind, TemplateArgLoc))
5323        return false;
5324
5325      ++NewParm;
5326      continue;
5327    }
5328
5329    // C++0x [temp.arg.template]p3:
5330    //   [...] When P's template- parameter-list contains a template parameter
5331    //   pack (14.5.3), the template parameter pack will match zero or more
5332    //   template parameters or template parameter packs in the
5333    //   template-parameter-list of A with the same type and form as the
5334    //   template parameter pack in P (ignoring whether those template
5335    //   parameters are template parameter packs).
5336    for (; NewParm != NewParmEnd; ++NewParm) {
5337      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5338                                      Kind, TemplateArgLoc))
5339        return false;
5340    }
5341  }
5342
5343  // Make sure we exhausted all of the arguments.
5344  if (NewParm != NewParmEnd) {
5345    if (Complain)
5346      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5347                                                 TemplateArgLoc);
5348
5349    return false;
5350  }
5351
5352  return true;
5353}
5354
5355/// \brief Check whether a template can be declared within this scope.
5356///
5357/// If the template declaration is valid in this scope, returns
5358/// false. Otherwise, issues a diagnostic and returns true.
5359bool
5360Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
5361  if (!S)
5362    return false;
5363
5364  // Find the nearest enclosing declaration scope.
5365  while ((S->getFlags() & Scope::DeclScope) == 0 ||
5366         (S->getFlags() & Scope::TemplateParamScope) != 0)
5367    S = S->getParent();
5368
5369  // C++ [temp]p2:
5370  //   A template-declaration can appear only as a namespace scope or
5371  //   class scope declaration.
5372  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
5373  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
5374      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
5375    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
5376             << TemplateParams->getSourceRange();
5377
5378  while (Ctx && isa<LinkageSpecDecl>(Ctx))
5379    Ctx = Ctx->getParent();
5380
5381  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
5382    return false;
5383
5384  return Diag(TemplateParams->getTemplateLoc(),
5385              diag::err_template_outside_namespace_or_class_scope)
5386    << TemplateParams->getSourceRange();
5387}
5388
5389/// \brief Determine what kind of template specialization the given declaration
5390/// is.
5391static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
5392  if (!D)
5393    return TSK_Undeclared;
5394
5395  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
5396    return Record->getTemplateSpecializationKind();
5397  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
5398    return Function->getTemplateSpecializationKind();
5399  if (VarDecl *Var = dyn_cast<VarDecl>(D))
5400    return Var->getTemplateSpecializationKind();
5401
5402  return TSK_Undeclared;
5403}
5404
5405/// \brief Check whether a specialization is well-formed in the current
5406/// context.
5407///
5408/// This routine determines whether a template specialization can be declared
5409/// in the current context (C++ [temp.expl.spec]p2).
5410///
5411/// \param S the semantic analysis object for which this check is being
5412/// performed.
5413///
5414/// \param Specialized the entity being specialized or instantiated, which
5415/// may be a kind of template (class template, function template, etc.) or
5416/// a member of a class template (member function, static data member,
5417/// member class).
5418///
5419/// \param PrevDecl the previous declaration of this entity, if any.
5420///
5421/// \param Loc the location of the explicit specialization or instantiation of
5422/// this entity.
5423///
5424/// \param IsPartialSpecialization whether this is a partial specialization of
5425/// a class template.
5426///
5427/// \returns true if there was an error that we cannot recover from, false
5428/// otherwise.
5429static bool CheckTemplateSpecializationScope(Sema &S,
5430                                             NamedDecl *Specialized,
5431                                             NamedDecl *PrevDecl,
5432                                             SourceLocation Loc,
5433                                             bool IsPartialSpecialization) {
5434  // Keep these "kind" numbers in sync with the %select statements in the
5435  // various diagnostics emitted by this routine.
5436  int EntityKind = 0;
5437  if (isa<ClassTemplateDecl>(Specialized))
5438    EntityKind = IsPartialSpecialization? 1 : 0;
5439  else if (isa<VarTemplateDecl>(Specialized))
5440    EntityKind = IsPartialSpecialization ? 3 : 2;
5441  else if (isa<FunctionTemplateDecl>(Specialized))
5442    EntityKind = 4;
5443  else if (isa<CXXMethodDecl>(Specialized))
5444    EntityKind = 5;
5445  else if (isa<VarDecl>(Specialized))
5446    EntityKind = 6;
5447  else if (isa<RecordDecl>(Specialized))
5448    EntityKind = 7;
5449  else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
5450    EntityKind = 8;
5451  else {
5452    S.Diag(Loc, diag::err_template_spec_unknown_kind)
5453      << S.getLangOpts().CPlusPlus11;
5454    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5455    return true;
5456  }
5457
5458  // C++ [temp.expl.spec]p2:
5459  //   An explicit specialization shall be declared in the namespace
5460  //   of which the template is a member, or, for member templates, in
5461  //   the namespace of which the enclosing class or enclosing class
5462  //   template is a member. An explicit specialization of a member
5463  //   function, member class or static data member of a class
5464  //   template shall be declared in the namespace of which the class
5465  //   template is a member. Such a declaration may also be a
5466  //   definition. If the declaration is not a definition, the
5467  //   specialization may be defined later in the name- space in which
5468  //   the explicit specialization was declared, or in a namespace
5469  //   that encloses the one in which the explicit specialization was
5470  //   declared.
5471  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5472    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
5473      << Specialized;
5474    return true;
5475  }
5476
5477  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
5478    if (S.getLangOpts().MicrosoftExt) {
5479      // Do not warn for class scope explicit specialization during
5480      // instantiation, warning was already emitted during pattern
5481      // semantic analysis.
5482      if (!S.ActiveTemplateInstantiations.size())
5483        S.Diag(Loc, diag::ext_function_specialization_in_class)
5484          << Specialized;
5485    } else {
5486      S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5487        << Specialized;
5488      return true;
5489    }
5490  }
5491
5492  if (S.CurContext->isRecord() &&
5493      !S.CurContext->Equals(Specialized->getDeclContext())) {
5494    // Make sure that we're specializing in the right record context.
5495    // Otherwise, things can go horribly wrong.
5496    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5497      << Specialized;
5498    return true;
5499  }
5500
5501  // C++ [temp.class.spec]p6:
5502  //   A class template partial specialization may be declared or redeclared
5503  //   in any namespace scope in which its definition may be defined (14.5.1
5504  //   and 14.5.2).
5505  bool ComplainedAboutScope = false;
5506  DeclContext *SpecializedContext
5507    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
5508  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
5509  if ((!PrevDecl ||
5510       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
5511       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
5512    // C++ [temp.exp.spec]p2:
5513    //   An explicit specialization shall be declared in the namespace of which
5514    //   the template is a member, or, for member templates, in the namespace
5515    //   of which the enclosing class or enclosing class template is a member.
5516    //   An explicit specialization of a member function, member class or
5517    //   static data member of a class template shall be declared in the
5518    //   namespace of which the class template is a member.
5519    //
5520    // C++0x [temp.expl.spec]p2:
5521    //   An explicit specialization shall be declared in a namespace enclosing
5522    //   the specialized template.
5523    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
5524      bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext);
5525      if (isa<TranslationUnitDecl>(SpecializedContext)) {
5526        assert(!IsCPlusPlus11Extension &&
5527               "DC encloses TU but isn't in enclosing namespace set");
5528        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
5529          << EntityKind << Specialized;
5530      } else if (isa<NamespaceDecl>(SpecializedContext)) {
5531        int Diag;
5532        if (!IsCPlusPlus11Extension)
5533          Diag = diag::err_template_spec_decl_out_of_scope;
5534        else if (!S.getLangOpts().CPlusPlus11)
5535          Diag = diag::ext_template_spec_decl_out_of_scope;
5536        else
5537          Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
5538        S.Diag(Loc, Diag)
5539          << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
5540      }
5541
5542      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5543      ComplainedAboutScope =
5544        !(IsCPlusPlus11Extension && S.getLangOpts().CPlusPlus11);
5545    }
5546  }
5547
5548  // Make sure that this redeclaration (or definition) occurs in an enclosing
5549  // namespace.
5550  // Note that HandleDeclarator() performs this check for explicit
5551  // specializations of function templates, static data members, and member
5552  // functions, so we skip the check here for those kinds of entities.
5553  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
5554  // Should we refactor that check, so that it occurs later?
5555  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
5556      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
5557        isa<FunctionDecl>(Specialized))) {
5558    if (isa<TranslationUnitDecl>(SpecializedContext))
5559      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
5560        << EntityKind << Specialized;
5561    else if (isa<NamespaceDecl>(SpecializedContext))
5562      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
5563        << EntityKind << Specialized
5564        << cast<NamedDecl>(SpecializedContext);
5565
5566    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5567  }
5568
5569  // FIXME: check for specialization-after-instantiation errors and such.
5570
5571  return false;
5572}
5573
5574/// \brief Subroutine of Sema::CheckTemplatePartialSpecializationArgs
5575/// that checks non-type template partial specialization arguments.
5576static bool CheckNonTypeTemplatePartialSpecializationArgs(
5577    Sema &S, NonTypeTemplateParmDecl *Param, const TemplateArgument *Args,
5578    unsigned NumArgs) {
5579  for (unsigned I = 0; I != NumArgs; ++I) {
5580    if (Args[I].getKind() == TemplateArgument::Pack) {
5581      if (CheckNonTypeTemplatePartialSpecializationArgs(
5582              S, Param, Args[I].pack_begin(), Args[I].pack_size()))
5583        return true;
5584
5585      continue;
5586    }
5587
5588    if (Args[I].getKind() != TemplateArgument::Expression)
5589      continue;
5590
5591    Expr *ArgExpr = Args[I].getAsExpr();
5592
5593    // We can have a pack expansion of any of the bullets below.
5594    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
5595      ArgExpr = Expansion->getPattern();
5596
5597    // Strip off any implicit casts we added as part of type checking.
5598    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
5599      ArgExpr = ICE->getSubExpr();
5600
5601    // C++ [temp.class.spec]p8:
5602    //   A non-type argument is non-specialized if it is the name of a
5603    //   non-type parameter. All other non-type arguments are
5604    //   specialized.
5605    //
5606    // Below, we check the two conditions that only apply to
5607    // specialized non-type arguments, so skip any non-specialized
5608    // arguments.
5609    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
5610      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
5611        continue;
5612
5613    // C++ [temp.class.spec]p9:
5614    //   Within the argument list of a class template partial
5615    //   specialization, the following restrictions apply:
5616    //     -- A partially specialized non-type argument expression
5617    //        shall not involve a template parameter of the partial
5618    //        specialization except when the argument expression is a
5619    //        simple identifier.
5620    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
5621      S.Diag(ArgExpr->getLocStart(),
5622           diag::err_dependent_non_type_arg_in_partial_spec)
5623        << ArgExpr->getSourceRange();
5624      return true;
5625    }
5626
5627    //     -- The type of a template parameter corresponding to a
5628    //        specialized non-type argument shall not be dependent on a
5629    //        parameter of the specialization.
5630    if (Param->getType()->isDependentType()) {
5631      S.Diag(ArgExpr->getLocStart(),
5632           diag::err_dependent_typed_non_type_arg_in_partial_spec)
5633        << Param->getType()
5634        << ArgExpr->getSourceRange();
5635      S.Diag(Param->getLocation(), diag::note_template_param_here);
5636      return true;
5637    }
5638  }
5639
5640  return false;
5641}
5642
5643/// \brief Check the non-type template arguments of a class template
5644/// partial specialization according to C++ [temp.class.spec]p9.
5645///
5646/// \param TemplateParams the template parameters of the primary class
5647/// template.
5648///
5649/// \param TemplateArgs the template arguments of the class template
5650/// partial specialization.
5651///
5652/// \returns true if there was an error, false otherwise.
5653static bool CheckTemplatePartialSpecializationArgs(
5654    Sema &S, TemplateParameterList *TemplateParams,
5655    SmallVectorImpl<TemplateArgument> &TemplateArgs) {
5656  const TemplateArgument *ArgList = TemplateArgs.data();
5657
5658  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5659    NonTypeTemplateParmDecl *Param
5660      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
5661    if (!Param)
5662      continue;
5663
5664    if (CheckNonTypeTemplatePartialSpecializationArgs(S, Param, &ArgList[I], 1))
5665      return true;
5666  }
5667
5668  return false;
5669}
5670
5671DeclResult
5672Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
5673                                       TagUseKind TUK,
5674                                       SourceLocation KWLoc,
5675                                       SourceLocation ModulePrivateLoc,
5676                                       CXXScopeSpec &SS,
5677                                       TemplateTy TemplateD,
5678                                       SourceLocation TemplateNameLoc,
5679                                       SourceLocation LAngleLoc,
5680                                       ASTTemplateArgsPtr TemplateArgsIn,
5681                                       SourceLocation RAngleLoc,
5682                                       AttributeList *Attr,
5683                               MultiTemplateParamsArg TemplateParameterLists) {
5684  assert(TUK != TUK_Reference && "References are not specializations");
5685
5686  // NOTE: KWLoc is the location of the tag keyword. This will instead
5687  // store the location of the outermost template keyword in the declaration.
5688  SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
5689    ? TemplateParameterLists[0]->getTemplateLoc() : SourceLocation();
5690
5691  // Find the class template we're specializing
5692  TemplateName Name = TemplateD.get();
5693  ClassTemplateDecl *ClassTemplate
5694    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
5695
5696  if (!ClassTemplate) {
5697    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
5698      << (Name.getAsTemplateDecl() &&
5699          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
5700    return true;
5701  }
5702
5703  bool isExplicitSpecialization = false;
5704  bool isPartialSpecialization = false;
5705
5706  // Check the validity of the template headers that introduce this
5707  // template.
5708  // FIXME: We probably shouldn't complain about these headers for
5709  // friend declarations.
5710  bool Invalid = false;
5711  TemplateParameterList *TemplateParams =
5712      MatchTemplateParametersToScopeSpecifier(
5713          TemplateNameLoc, TemplateNameLoc, SS, TemplateParameterLists,
5714          TUK == TUK_Friend, isExplicitSpecialization, Invalid);
5715  if (Invalid)
5716    return true;
5717
5718  if (TemplateParams && TemplateParams->size() > 0) {
5719    isPartialSpecialization = true;
5720
5721    if (TUK == TUK_Friend) {
5722      Diag(KWLoc, diag::err_partial_specialization_friend)
5723        << SourceRange(LAngleLoc, RAngleLoc);
5724      return true;
5725    }
5726
5727    // C++ [temp.class.spec]p10:
5728    //   The template parameter list of a specialization shall not
5729    //   contain default template argument values.
5730    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5731      Decl *Param = TemplateParams->getParam(I);
5732      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
5733        if (TTP->hasDefaultArgument()) {
5734          Diag(TTP->getDefaultArgumentLoc(),
5735               diag::err_default_arg_in_partial_spec);
5736          TTP->removeDefaultArgument();
5737        }
5738      } else if (NonTypeTemplateParmDecl *NTTP
5739                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5740        if (Expr *DefArg = NTTP->getDefaultArgument()) {
5741          Diag(NTTP->getDefaultArgumentLoc(),
5742               diag::err_default_arg_in_partial_spec)
5743            << DefArg->getSourceRange();
5744          NTTP->removeDefaultArgument();
5745        }
5746      } else {
5747        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
5748        if (TTP->hasDefaultArgument()) {
5749          Diag(TTP->getDefaultArgument().getLocation(),
5750               diag::err_default_arg_in_partial_spec)
5751            << TTP->getDefaultArgument().getSourceRange();
5752          TTP->removeDefaultArgument();
5753        }
5754      }
5755    }
5756  } else if (TemplateParams) {
5757    if (TUK == TUK_Friend)
5758      Diag(KWLoc, diag::err_template_spec_friend)
5759        << FixItHint::CreateRemoval(
5760                                SourceRange(TemplateParams->getTemplateLoc(),
5761                                            TemplateParams->getRAngleLoc()))
5762        << SourceRange(LAngleLoc, RAngleLoc);
5763    else
5764      isExplicitSpecialization = true;
5765  } else if (TUK != TUK_Friend) {
5766    Diag(KWLoc, diag::err_template_spec_needs_header)
5767      << FixItHint::CreateInsertion(KWLoc, "template<> ");
5768    TemplateKWLoc = KWLoc;
5769    isExplicitSpecialization = true;
5770  }
5771
5772  // Check that the specialization uses the same tag kind as the
5773  // original template.
5774  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5775  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
5776  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5777                                    Kind, TUK == TUK_Definition, KWLoc,
5778                                    *ClassTemplate->getIdentifier())) {
5779    Diag(KWLoc, diag::err_use_with_wrong_tag)
5780      << ClassTemplate
5781      << FixItHint::CreateReplacement(KWLoc,
5782                            ClassTemplate->getTemplatedDecl()->getKindName());
5783    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5784         diag::note_previous_use);
5785    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5786  }
5787
5788  // Translate the parser's template argument list in our AST format.
5789  TemplateArgumentListInfo TemplateArgs;
5790  TemplateArgs.setLAngleLoc(LAngleLoc);
5791  TemplateArgs.setRAngleLoc(RAngleLoc);
5792  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5793
5794  // Check for unexpanded parameter packs in any of the template arguments.
5795  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
5796    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
5797                                        UPPC_PartialSpecialization))
5798      return true;
5799
5800  // Check that the template argument list is well-formed for this
5801  // template.
5802  SmallVector<TemplateArgument, 4> Converted;
5803  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5804                                TemplateArgs, false, Converted))
5805    return true;
5806
5807  // Find the class template (partial) specialization declaration that
5808  // corresponds to these arguments.
5809  if (isPartialSpecialization) {
5810    if (CheckTemplatePartialSpecializationArgs(
5811            *this, ClassTemplate->getTemplateParameters(), Converted))
5812      return true;
5813
5814    bool InstantiationDependent;
5815    if (!Name.isDependent() &&
5816        !TemplateSpecializationType::anyDependentTemplateArguments(
5817                                             TemplateArgs.getArgumentArray(),
5818                                                         TemplateArgs.size(),
5819                                                     InstantiationDependent)) {
5820      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
5821        << ClassTemplate->getDeclName();
5822      isPartialSpecialization = false;
5823    }
5824  }
5825
5826  void *InsertPos = 0;
5827  ClassTemplateSpecializationDecl *PrevDecl = 0;
5828
5829  if (isPartialSpecialization)
5830    // FIXME: Template parameter list matters, too
5831    PrevDecl
5832      = ClassTemplate->findPartialSpecialization(Converted.data(),
5833                                                 Converted.size(),
5834                                                 InsertPos);
5835  else
5836    PrevDecl
5837      = ClassTemplate->findSpecialization(Converted.data(),
5838                                          Converted.size(), InsertPos);
5839
5840  ClassTemplateSpecializationDecl *Specialization = 0;
5841
5842  // Check whether we can declare a class template specialization in
5843  // the current scope.
5844  if (TUK != TUK_Friend &&
5845      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
5846                                       TemplateNameLoc,
5847                                       isPartialSpecialization))
5848    return true;
5849
5850  // The canonical type
5851  QualType CanonType;
5852  if (PrevDecl &&
5853      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
5854               TUK == TUK_Friend)) {
5855    // Since the only prior class template specialization with these
5856    // arguments was referenced but not declared, or we're only
5857    // referencing this specialization as a friend, reuse that
5858    // declaration node as our own, updating its source location and
5859    // the list of outer template parameters to reflect our new declaration.
5860    Specialization = PrevDecl;
5861    Specialization->setLocation(TemplateNameLoc);
5862    if (TemplateParameterLists.size() > 0) {
5863      Specialization->setTemplateParameterListsInfo(Context,
5864                                              TemplateParameterLists.size(),
5865                                              TemplateParameterLists.data());
5866    }
5867    PrevDecl = 0;
5868    CanonType = Context.getTypeDeclType(Specialization);
5869  } else if (isPartialSpecialization) {
5870    // Build the canonical type that describes the converted template
5871    // arguments of the class template partial specialization.
5872    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
5873    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
5874                                                      Converted.data(),
5875                                                      Converted.size());
5876
5877    if (Context.hasSameType(CanonType,
5878                        ClassTemplate->getInjectedClassNameSpecialization())) {
5879      // C++ [temp.class.spec]p9b3:
5880      //
5881      //   -- The argument list of the specialization shall not be identical
5882      //      to the implicit argument list of the primary template.
5883      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
5884        << (TUK == TUK_Definition)
5885        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
5886      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
5887                                ClassTemplate->getIdentifier(),
5888                                TemplateNameLoc,
5889                                Attr,
5890                                TemplateParams,
5891                                AS_none, /*ModulePrivateLoc=*/SourceLocation(),
5892                                TemplateParameterLists.size() - 1,
5893                                TemplateParameterLists.data());
5894    }
5895
5896    // Create a new class template partial specialization declaration node.
5897    ClassTemplatePartialSpecializationDecl *PrevPartial
5898      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
5899    ClassTemplatePartialSpecializationDecl *Partial
5900      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
5901                                             ClassTemplate->getDeclContext(),
5902                                                       KWLoc, TemplateNameLoc,
5903                                                       TemplateParams,
5904                                                       ClassTemplate,
5905                                                       Converted.data(),
5906                                                       Converted.size(),
5907                                                       TemplateArgs,
5908                                                       CanonType,
5909                                                       PrevPartial);
5910    SetNestedNameSpecifier(Partial, SS);
5911    if (TemplateParameterLists.size() > 1 && SS.isSet()) {
5912      Partial->setTemplateParameterListsInfo(Context,
5913                                             TemplateParameterLists.size() - 1,
5914                                             TemplateParameterLists.data());
5915    }
5916
5917    if (!PrevPartial)
5918      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
5919    Specialization = Partial;
5920
5921    // If we are providing an explicit specialization of a member class
5922    // template specialization, make a note of that.
5923    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
5924      PrevPartial->setMemberSpecialization();
5925
5926    // Check that all of the template parameters of the class template
5927    // partial specialization are deducible from the template
5928    // arguments. If not, this class template partial specialization
5929    // will never be used.
5930    llvm::SmallBitVector DeducibleParams(TemplateParams->size());
5931    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
5932                               TemplateParams->getDepth(),
5933                               DeducibleParams);
5934
5935    if (!DeducibleParams.all()) {
5936      unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
5937      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
5938        << (NumNonDeducible > 1)
5939        << SourceRange(TemplateNameLoc, RAngleLoc);
5940      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
5941        if (!DeducibleParams[I]) {
5942          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
5943          if (Param->getDeclName())
5944            Diag(Param->getLocation(),
5945                 diag::note_partial_spec_unused_parameter)
5946              << Param->getDeclName();
5947          else
5948            Diag(Param->getLocation(),
5949                 diag::note_partial_spec_unused_parameter)
5950              << "<anonymous>";
5951        }
5952      }
5953    }
5954  } else {
5955    // Create a new class template specialization declaration node for
5956    // this explicit specialization or friend declaration.
5957    Specialization
5958      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5959                                             ClassTemplate->getDeclContext(),
5960                                                KWLoc, TemplateNameLoc,
5961                                                ClassTemplate,
5962                                                Converted.data(),
5963                                                Converted.size(),
5964                                                PrevDecl);
5965    SetNestedNameSpecifier(Specialization, SS);
5966    if (TemplateParameterLists.size() > 0) {
5967      Specialization->setTemplateParameterListsInfo(Context,
5968                                              TemplateParameterLists.size(),
5969                                              TemplateParameterLists.data());
5970    }
5971
5972    if (!PrevDecl)
5973      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5974
5975    CanonType = Context.getTypeDeclType(Specialization);
5976  }
5977
5978  // C++ [temp.expl.spec]p6:
5979  //   If a template, a member template or the member of a class template is
5980  //   explicitly specialized then that specialization shall be declared
5981  //   before the first use of that specialization that would cause an implicit
5982  //   instantiation to take place, in every translation unit in which such a
5983  //   use occurs; no diagnostic is required.
5984  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
5985    bool Okay = false;
5986    for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5987      // Is there any previous explicit specialization declaration?
5988      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5989        Okay = true;
5990        break;
5991      }
5992    }
5993
5994    if (!Okay) {
5995      SourceRange Range(TemplateNameLoc, RAngleLoc);
5996      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
5997        << Context.getTypeDeclType(Specialization) << Range;
5998
5999      Diag(PrevDecl->getPointOfInstantiation(),
6000           diag::note_instantiation_required_here)
6001        << (PrevDecl->getTemplateSpecializationKind()
6002                                                != TSK_ImplicitInstantiation);
6003      return true;
6004    }
6005  }
6006
6007  // If this is not a friend, note that this is an explicit specialization.
6008  if (TUK != TUK_Friend)
6009    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
6010
6011  // Check that this isn't a redefinition of this specialization.
6012  if (TUK == TUK_Definition) {
6013    if (RecordDecl *Def = Specialization->getDefinition()) {
6014      SourceRange Range(TemplateNameLoc, RAngleLoc);
6015      Diag(TemplateNameLoc, diag::err_redefinition)
6016        << Context.getTypeDeclType(Specialization) << Range;
6017      Diag(Def->getLocation(), diag::note_previous_definition);
6018      Specialization->setInvalidDecl();
6019      return true;
6020    }
6021  }
6022
6023  if (Attr)
6024    ProcessDeclAttributeList(S, Specialization, Attr);
6025
6026  // Add alignment attributes if necessary; these attributes are checked when
6027  // the ASTContext lays out the structure.
6028  if (TUK == TUK_Definition) {
6029    AddAlignmentAttributesForRecord(Specialization);
6030    AddMsStructLayoutForRecord(Specialization);
6031  }
6032
6033  if (ModulePrivateLoc.isValid())
6034    Diag(Specialization->getLocation(), diag::err_module_private_specialization)
6035      << (isPartialSpecialization? 1 : 0)
6036      << FixItHint::CreateRemoval(ModulePrivateLoc);
6037
6038  // Build the fully-sugared type for this class template
6039  // specialization as the user wrote in the specialization
6040  // itself. This means that we'll pretty-print the type retrieved
6041  // from the specialization's declaration the way that the user
6042  // actually wrote the specialization, rather than formatting the
6043  // name based on the "canonical" representation used to store the
6044  // template arguments in the specialization.
6045  TypeSourceInfo *WrittenTy
6046    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6047                                                TemplateArgs, CanonType);
6048  if (TUK != TUK_Friend) {
6049    Specialization->setTypeAsWritten(WrittenTy);
6050    Specialization->setTemplateKeywordLoc(TemplateKWLoc);
6051  }
6052
6053  // C++ [temp.expl.spec]p9:
6054  //   A template explicit specialization is in the scope of the
6055  //   namespace in which the template was defined.
6056  //
6057  // We actually implement this paragraph where we set the semantic
6058  // context (in the creation of the ClassTemplateSpecializationDecl),
6059  // but we also maintain the lexical context where the actual
6060  // definition occurs.
6061  Specialization->setLexicalDeclContext(CurContext);
6062
6063  // We may be starting the definition of this specialization.
6064  if (TUK == TUK_Definition)
6065    Specialization->startDefinition();
6066
6067  if (TUK == TUK_Friend) {
6068    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
6069                                            TemplateNameLoc,
6070                                            WrittenTy,
6071                                            /*FIXME:*/KWLoc);
6072    Friend->setAccess(AS_public);
6073    CurContext->addDecl(Friend);
6074  } else {
6075    // Add the specialization into its lexical context, so that it can
6076    // be seen when iterating through the list of declarations in that
6077    // context. However, specializations are not found by name lookup.
6078    CurContext->addDecl(Specialization);
6079  }
6080  return Specialization;
6081}
6082
6083Decl *Sema::ActOnTemplateDeclarator(Scope *S,
6084                              MultiTemplateParamsArg TemplateParameterLists,
6085                                    Declarator &D) {
6086  Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
6087  ActOnDocumentableDecl(NewDecl);
6088  return NewDecl;
6089}
6090
6091Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
6092                               MultiTemplateParamsArg TemplateParameterLists,
6093                                            Declarator &D) {
6094  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6095  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6096
6097  if (FTI.hasPrototype) {
6098    // FIXME: Diagnose arguments without names in C.
6099  }
6100
6101  Scope *ParentScope = FnBodyScope->getParent();
6102
6103  D.setFunctionDefinitionKind(FDK_Definition);
6104  Decl *DP = HandleDeclarator(ParentScope, D,
6105                              TemplateParameterLists);
6106  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6107}
6108
6109/// \brief Strips various properties off an implicit instantiation
6110/// that has just been explicitly specialized.
6111static void StripImplicitInstantiation(NamedDecl *D) {
6112  D->dropAttrs();
6113
6114  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6115    FD->setInlineSpecified(false);
6116
6117    for (FunctionDecl::param_iterator I = FD->param_begin(),
6118                                      E = FD->param_end();
6119         I != E; ++I)
6120      (*I)->dropAttrs();
6121  }
6122}
6123
6124/// \brief Compute the diagnostic location for an explicit instantiation
6125//  declaration or definition.
6126static SourceLocation DiagLocForExplicitInstantiation(
6127    NamedDecl* D, SourceLocation PointOfInstantiation) {
6128  // Explicit instantiations following a specialization have no effect and
6129  // hence no PointOfInstantiation. In that case, walk decl backwards
6130  // until a valid name loc is found.
6131  SourceLocation PrevDiagLoc = PointOfInstantiation;
6132  for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
6133       Prev = Prev->getPreviousDecl()) {
6134    PrevDiagLoc = Prev->getLocation();
6135  }
6136  assert(PrevDiagLoc.isValid() &&
6137         "Explicit instantiation without point of instantiation?");
6138  return PrevDiagLoc;
6139}
6140
6141/// \brief Diagnose cases where we have an explicit template specialization
6142/// before/after an explicit template instantiation, producing diagnostics
6143/// for those cases where they are required and determining whether the
6144/// new specialization/instantiation will have any effect.
6145///
6146/// \param NewLoc the location of the new explicit specialization or
6147/// instantiation.
6148///
6149/// \param NewTSK the kind of the new explicit specialization or instantiation.
6150///
6151/// \param PrevDecl the previous declaration of the entity.
6152///
6153/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
6154///
6155/// \param PrevPointOfInstantiation if valid, indicates where the previus
6156/// declaration was instantiated (either implicitly or explicitly).
6157///
6158/// \param HasNoEffect will be set to true to indicate that the new
6159/// specialization or instantiation has no effect and should be ignored.
6160///
6161/// \returns true if there was an error that should prevent the introduction of
6162/// the new declaration into the AST, false otherwise.
6163bool
6164Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
6165                                             TemplateSpecializationKind NewTSK,
6166                                             NamedDecl *PrevDecl,
6167                                             TemplateSpecializationKind PrevTSK,
6168                                        SourceLocation PrevPointOfInstantiation,
6169                                             bool &HasNoEffect) {
6170  HasNoEffect = false;
6171
6172  switch (NewTSK) {
6173  case TSK_Undeclared:
6174  case TSK_ImplicitInstantiation:
6175    llvm_unreachable("Don't check implicit instantiations here");
6176
6177  case TSK_ExplicitSpecialization:
6178    switch (PrevTSK) {
6179    case TSK_Undeclared:
6180    case TSK_ExplicitSpecialization:
6181      // Okay, we're just specializing something that is either already
6182      // explicitly specialized or has merely been mentioned without any
6183      // instantiation.
6184      return false;
6185
6186    case TSK_ImplicitInstantiation:
6187      if (PrevPointOfInstantiation.isInvalid()) {
6188        // The declaration itself has not actually been instantiated, so it is
6189        // still okay to specialize it.
6190        StripImplicitInstantiation(PrevDecl);
6191        return false;
6192      }
6193      // Fall through
6194
6195    case TSK_ExplicitInstantiationDeclaration:
6196    case TSK_ExplicitInstantiationDefinition:
6197      assert((PrevTSK == TSK_ImplicitInstantiation ||
6198              PrevPointOfInstantiation.isValid()) &&
6199             "Explicit instantiation without point of instantiation?");
6200
6201      // C++ [temp.expl.spec]p6:
6202      //   If a template, a member template or the member of a class template
6203      //   is explicitly specialized then that specialization shall be declared
6204      //   before the first use of that specialization that would cause an
6205      //   implicit instantiation to take place, in every translation unit in
6206      //   which such a use occurs; no diagnostic is required.
6207      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6208        // Is there any previous explicit specialization declaration?
6209        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
6210          return false;
6211      }
6212
6213      Diag(NewLoc, diag::err_specialization_after_instantiation)
6214        << PrevDecl;
6215      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
6216        << (PrevTSK != TSK_ImplicitInstantiation);
6217
6218      return true;
6219    }
6220
6221  case TSK_ExplicitInstantiationDeclaration:
6222    switch (PrevTSK) {
6223    case TSK_ExplicitInstantiationDeclaration:
6224      // This explicit instantiation declaration is redundant (that's okay).
6225      HasNoEffect = true;
6226      return false;
6227
6228    case TSK_Undeclared:
6229    case TSK_ImplicitInstantiation:
6230      // We're explicitly instantiating something that may have already been
6231      // implicitly instantiated; that's fine.
6232      return false;
6233
6234    case TSK_ExplicitSpecialization:
6235      // C++0x [temp.explicit]p4:
6236      //   For a given set of template parameters, if an explicit instantiation
6237      //   of a template appears after a declaration of an explicit
6238      //   specialization for that template, the explicit instantiation has no
6239      //   effect.
6240      HasNoEffect = true;
6241      return false;
6242
6243    case TSK_ExplicitInstantiationDefinition:
6244      // C++0x [temp.explicit]p10:
6245      //   If an entity is the subject of both an explicit instantiation
6246      //   declaration and an explicit instantiation definition in the same
6247      //   translation unit, the definition shall follow the declaration.
6248      Diag(NewLoc,
6249           diag::err_explicit_instantiation_declaration_after_definition);
6250
6251      // Explicit instantiations following a specialization have no effect and
6252      // hence no PrevPointOfInstantiation. In that case, walk decl backwards
6253      // until a valid name loc is found.
6254      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6255           diag::note_explicit_instantiation_definition_here);
6256      HasNoEffect = true;
6257      return false;
6258    }
6259
6260  case TSK_ExplicitInstantiationDefinition:
6261    switch (PrevTSK) {
6262    case TSK_Undeclared:
6263    case TSK_ImplicitInstantiation:
6264      // We're explicitly instantiating something that may have already been
6265      // implicitly instantiated; that's fine.
6266      return false;
6267
6268    case TSK_ExplicitSpecialization:
6269      // C++ DR 259, C++0x [temp.explicit]p4:
6270      //   For a given set of template parameters, if an explicit
6271      //   instantiation of a template appears after a declaration of
6272      //   an explicit specialization for that template, the explicit
6273      //   instantiation has no effect.
6274      //
6275      // In C++98/03 mode, we only give an extension warning here, because it
6276      // is not harmful to try to explicitly instantiate something that
6277      // has been explicitly specialized.
6278      Diag(NewLoc, getLangOpts().CPlusPlus11 ?
6279           diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
6280           diag::ext_explicit_instantiation_after_specialization)
6281        << PrevDecl;
6282      Diag(PrevDecl->getLocation(),
6283           diag::note_previous_template_specialization);
6284      HasNoEffect = true;
6285      return false;
6286
6287    case TSK_ExplicitInstantiationDeclaration:
6288      // We're explicity instantiating a definition for something for which we
6289      // were previously asked to suppress instantiations. That's fine.
6290
6291      // C++0x [temp.explicit]p4:
6292      //   For a given set of template parameters, if an explicit instantiation
6293      //   of a template appears after a declaration of an explicit
6294      //   specialization for that template, the explicit instantiation has no
6295      //   effect.
6296      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6297        // Is there any previous explicit specialization declaration?
6298        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
6299          HasNoEffect = true;
6300          break;
6301        }
6302      }
6303
6304      return false;
6305
6306    case TSK_ExplicitInstantiationDefinition:
6307      // C++0x [temp.spec]p5:
6308      //   For a given template and a given set of template-arguments,
6309      //     - an explicit instantiation definition shall appear at most once
6310      //       in a program,
6311      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
6312        << PrevDecl;
6313      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6314           diag::note_previous_explicit_instantiation);
6315      HasNoEffect = true;
6316      return false;
6317    }
6318  }
6319
6320  llvm_unreachable("Missing specialization/instantiation case?");
6321}
6322
6323/// \brief Perform semantic analysis for the given dependent function
6324/// template specialization.
6325///
6326/// The only possible way to get a dependent function template specialization
6327/// is with a friend declaration, like so:
6328///
6329/// \code
6330///   template \<class T> void foo(T);
6331///   template \<class T> class A {
6332///     friend void foo<>(T);
6333///   };
6334/// \endcode
6335///
6336/// There really isn't any useful analysis we can do here, so we
6337/// just store the information.
6338bool
6339Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
6340                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
6341                                                   LookupResult &Previous) {
6342  // Remove anything from Previous that isn't a function template in
6343  // the correct context.
6344  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6345  LookupResult::Filter F = Previous.makeFilter();
6346  while (F.hasNext()) {
6347    NamedDecl *D = F.next()->getUnderlyingDecl();
6348    if (!isa<FunctionTemplateDecl>(D) ||
6349        !FDLookupContext->InEnclosingNamespaceSetOf(
6350                              D->getDeclContext()->getRedeclContext()))
6351      F.erase();
6352  }
6353  F.done();
6354
6355  // Should this be diagnosed here?
6356  if (Previous.empty()) return true;
6357
6358  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
6359                                         ExplicitTemplateArgs);
6360  return false;
6361}
6362
6363/// \brief Perform semantic analysis for the given function template
6364/// specialization.
6365///
6366/// This routine performs all of the semantic analysis required for an
6367/// explicit function template specialization. On successful completion,
6368/// the function declaration \p FD will become a function template
6369/// specialization.
6370///
6371/// \param FD the function declaration, which will be updated to become a
6372/// function template specialization.
6373///
6374/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
6375/// if any. Note that this may be valid info even when 0 arguments are
6376/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
6377/// as it anyway contains info on the angle brackets locations.
6378///
6379/// \param Previous the set of declarations that may be specialized by
6380/// this function specialization.
6381bool Sema::CheckFunctionTemplateSpecialization(
6382    FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
6383    LookupResult &Previous) {
6384  // The set of function template specializations that could match this
6385  // explicit function template specialization.
6386  UnresolvedSet<8> Candidates;
6387  TemplateSpecCandidateSet FailedCandidates(FD->getLocation());
6388
6389  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6390  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6391         I != E; ++I) {
6392    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
6393    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
6394      // Only consider templates found within the same semantic lookup scope as
6395      // FD.
6396      if (!FDLookupContext->InEnclosingNamespaceSetOf(
6397                                Ovl->getDeclContext()->getRedeclContext()))
6398        continue;
6399
6400      // When matching a constexpr member function template specialization
6401      // against the primary template, we don't yet know whether the
6402      // specialization has an implicit 'const' (because we don't know whether
6403      // it will be a static member function until we know which template it
6404      // specializes), so adjust it now assuming it specializes this template.
6405      QualType FT = FD->getType();
6406      const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
6407      FunctionDecl *TmplFD = FunTmpl->getTemplatedDecl();
6408      if (FD->isConstexpr()) {
6409        CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(TmplFD);
6410        if (OldMD && OldMD->isConst()) {
6411          FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6412          EPI.TypeQuals |= Qualifiers::Const;
6413          FT = Context.getFunctionType(FPT->getResultType(), FPT->getArgTypes(),
6414                                       EPI);
6415        }
6416      }
6417
6418      // Ignore differences in calling convention and noreturn until decl
6419      // merging.
6420      const FunctionProtoType *TmplFT =
6421          TmplFD->getType()->castAs<FunctionProtoType>();
6422      if (FPT->getCallConv() != TmplFT->getCallConv() ||
6423          FPT->getNoReturnAttr() != TmplFT->getNoReturnAttr()) {
6424        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6425        EPI.ExtInfo = EPI.ExtInfo.withCallingConv(TmplFT->getCallConv());
6426        EPI.ExtInfo = EPI.ExtInfo.withNoReturn(TmplFT->getNoReturnAttr());
6427        FT = Context.getFunctionType(FPT->getResultType(), FPT->getArgTypes(),
6428                                     EPI);
6429      }
6430
6431      // C++ [temp.expl.spec]p11:
6432      //   A trailing template-argument can be left unspecified in the
6433      //   template-id naming an explicit function template specialization
6434      //   provided it can be deduced from the function argument type.
6435      // Perform template argument deduction to determine whether we may be
6436      // specializing this template.
6437      // FIXME: It is somewhat wasteful to build
6438      TemplateDeductionInfo Info(FailedCandidates.getLocation());
6439      FunctionDecl *Specialization = 0;
6440      if (TemplateDeductionResult TDK
6441            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, FT,
6442                                      Specialization, Info)) {
6443        // Template argument deduction failed; record why it failed, so
6444        // that we can provide nifty diagnostics.
6445        FailedCandidates.addCandidate()
6446            .set(FunTmpl->getTemplatedDecl(),
6447                 MakeDeductionFailureInfo(Context, TDK, Info));
6448        (void)TDK;
6449        continue;
6450      }
6451
6452      // Record this candidate.
6453      Candidates.addDecl(Specialization, I.getAccess());
6454    }
6455  }
6456
6457  // Find the most specialized function template.
6458  UnresolvedSetIterator Result = getMostSpecialized(
6459      Candidates.begin(), Candidates.end(), FailedCandidates, TPOC_Other, 0,
6460      FD->getLocation(),
6461      PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
6462      PDiag(diag::err_function_template_spec_ambiguous)
6463          << FD->getDeclName() << (ExplicitTemplateArgs != 0),
6464      PDiag(diag::note_function_template_spec_matched));
6465
6466  if (Result == Candidates.end())
6467    return true;
6468
6469  // Ignore access information;  it doesn't figure into redeclaration checking.
6470  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6471
6472  FunctionTemplateSpecializationInfo *SpecInfo
6473    = Specialization->getTemplateSpecializationInfo();
6474  assert(SpecInfo && "Function template specialization info missing?");
6475
6476  // Note: do not overwrite location info if previous template
6477  // specialization kind was explicit.
6478  TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
6479  if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
6480    Specialization->setLocation(FD->getLocation());
6481    // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
6482    // function can differ from the template declaration with respect to
6483    // the constexpr specifier.
6484    Specialization->setConstexpr(FD->isConstexpr());
6485  }
6486
6487  // FIXME: Check if the prior specialization has a point of instantiation.
6488  // If so, we have run afoul of .
6489
6490  // If this is a friend declaration, then we're not really declaring
6491  // an explicit specialization.
6492  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
6493
6494  // Check the scope of this explicit specialization.
6495  if (!isFriend &&
6496      CheckTemplateSpecializationScope(*this,
6497                                       Specialization->getPrimaryTemplate(),
6498                                       Specialization, FD->getLocation(),
6499                                       false))
6500    return true;
6501
6502  // C++ [temp.expl.spec]p6:
6503  //   If a template, a member template or the member of a class template is
6504  //   explicitly specialized then that specialization shall be declared
6505  //   before the first use of that specialization that would cause an implicit
6506  //   instantiation to take place, in every translation unit in which such a
6507  //   use occurs; no diagnostic is required.
6508  bool HasNoEffect = false;
6509  if (!isFriend &&
6510      CheckSpecializationInstantiationRedecl(FD->getLocation(),
6511                                             TSK_ExplicitSpecialization,
6512                                             Specialization,
6513                                   SpecInfo->getTemplateSpecializationKind(),
6514                                         SpecInfo->getPointOfInstantiation(),
6515                                             HasNoEffect))
6516    return true;
6517
6518  // Mark the prior declaration as an explicit specialization, so that later
6519  // clients know that this is an explicit specialization.
6520  if (!isFriend) {
6521    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
6522    MarkUnusedFileScopedDecl(Specialization);
6523  }
6524
6525  // Turn the given function declaration into a function template
6526  // specialization, with the template arguments from the previous
6527  // specialization.
6528  // Take copies of (semantic and syntactic) template argument lists.
6529  const TemplateArgumentList* TemplArgs = new (Context)
6530    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
6531  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
6532                                        TemplArgs, /*InsertPos=*/0,
6533                                    SpecInfo->getTemplateSpecializationKind(),
6534                                        ExplicitTemplateArgs);
6535
6536  // The "previous declaration" for this function template specialization is
6537  // the prior function template specialization.
6538  Previous.clear();
6539  Previous.addDecl(Specialization);
6540  return false;
6541}
6542
6543/// \brief Perform semantic analysis for the given non-template member
6544/// specialization.
6545///
6546/// This routine performs all of the semantic analysis required for an
6547/// explicit member function specialization. On successful completion,
6548/// the function declaration \p FD will become a member function
6549/// specialization.
6550///
6551/// \param Member the member declaration, which will be updated to become a
6552/// specialization.
6553///
6554/// \param Previous the set of declarations, one of which may be specialized
6555/// by this function specialization;  the set will be modified to contain the
6556/// redeclared member.
6557bool
6558Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
6559  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
6560
6561  // Try to find the member we are instantiating.
6562  NamedDecl *Instantiation = 0;
6563  NamedDecl *InstantiatedFrom = 0;
6564  MemberSpecializationInfo *MSInfo = 0;
6565
6566  if (Previous.empty()) {
6567    // Nowhere to look anyway.
6568  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
6569    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6570           I != E; ++I) {
6571      NamedDecl *D = (*I)->getUnderlyingDecl();
6572      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
6573        if (Context.hasSameType(Function->getType(), Method->getType())) {
6574          Instantiation = Method;
6575          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
6576          MSInfo = Method->getMemberSpecializationInfo();
6577          break;
6578        }
6579      }
6580    }
6581  } else if (isa<VarDecl>(Member)) {
6582    VarDecl *PrevVar;
6583    if (Previous.isSingleResult() &&
6584        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
6585      if (PrevVar->isStaticDataMember()) {
6586        Instantiation = PrevVar;
6587        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
6588        MSInfo = PrevVar->getMemberSpecializationInfo();
6589      }
6590  } else if (isa<RecordDecl>(Member)) {
6591    CXXRecordDecl *PrevRecord;
6592    if (Previous.isSingleResult() &&
6593        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
6594      Instantiation = PrevRecord;
6595      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
6596      MSInfo = PrevRecord->getMemberSpecializationInfo();
6597    }
6598  } else if (isa<EnumDecl>(Member)) {
6599    EnumDecl *PrevEnum;
6600    if (Previous.isSingleResult() &&
6601        (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
6602      Instantiation = PrevEnum;
6603      InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
6604      MSInfo = PrevEnum->getMemberSpecializationInfo();
6605    }
6606  }
6607
6608  if (!Instantiation) {
6609    // There is no previous declaration that matches. Since member
6610    // specializations are always out-of-line, the caller will complain about
6611    // this mismatch later.
6612    return false;
6613  }
6614
6615  // If this is a friend, just bail out here before we start turning
6616  // things into explicit specializations.
6617  if (Member->getFriendObjectKind() != Decl::FOK_None) {
6618    // Preserve instantiation information.
6619    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
6620      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
6621                                      cast<CXXMethodDecl>(InstantiatedFrom),
6622        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
6623    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
6624      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6625                                      cast<CXXRecordDecl>(InstantiatedFrom),
6626        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
6627    }
6628
6629    Previous.clear();
6630    Previous.addDecl(Instantiation);
6631    return false;
6632  }
6633
6634  // Make sure that this is a specialization of a member.
6635  if (!InstantiatedFrom) {
6636    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
6637      << Member;
6638    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
6639    return true;
6640  }
6641
6642  // C++ [temp.expl.spec]p6:
6643  //   If a template, a member template or the member of a class template is
6644  //   explicitly specialized then that specialization shall be declared
6645  //   before the first use of that specialization that would cause an implicit
6646  //   instantiation to take place, in every translation unit in which such a
6647  //   use occurs; no diagnostic is required.
6648  assert(MSInfo && "Member specialization info missing?");
6649
6650  bool HasNoEffect = false;
6651  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
6652                                             TSK_ExplicitSpecialization,
6653                                             Instantiation,
6654                                     MSInfo->getTemplateSpecializationKind(),
6655                                           MSInfo->getPointOfInstantiation(),
6656                                             HasNoEffect))
6657    return true;
6658
6659  // Check the scope of this explicit specialization.
6660  if (CheckTemplateSpecializationScope(*this,
6661                                       InstantiatedFrom,
6662                                       Instantiation, Member->getLocation(),
6663                                       false))
6664    return true;
6665
6666  // Note that this is an explicit instantiation of a member.
6667  // the original declaration to note that it is an explicit specialization
6668  // (if it was previously an implicit instantiation). This latter step
6669  // makes bookkeeping easier.
6670  if (isa<FunctionDecl>(Member)) {
6671    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
6672    if (InstantiationFunction->getTemplateSpecializationKind() ==
6673          TSK_ImplicitInstantiation) {
6674      InstantiationFunction->setTemplateSpecializationKind(
6675                                                  TSK_ExplicitSpecialization);
6676      InstantiationFunction->setLocation(Member->getLocation());
6677    }
6678
6679    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
6680                                        cast<CXXMethodDecl>(InstantiatedFrom),
6681                                                  TSK_ExplicitSpecialization);
6682    MarkUnusedFileScopedDecl(InstantiationFunction);
6683  } else if (isa<VarDecl>(Member)) {
6684    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
6685    if (InstantiationVar->getTemplateSpecializationKind() ==
6686          TSK_ImplicitInstantiation) {
6687      InstantiationVar->setTemplateSpecializationKind(
6688                                                  TSK_ExplicitSpecialization);
6689      InstantiationVar->setLocation(Member->getLocation());
6690    }
6691
6692    cast<VarDecl>(Member)->setInstantiationOfStaticDataMember(
6693        cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
6694    MarkUnusedFileScopedDecl(InstantiationVar);
6695  } else if (isa<CXXRecordDecl>(Member)) {
6696    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
6697    if (InstantiationClass->getTemplateSpecializationKind() ==
6698          TSK_ImplicitInstantiation) {
6699      InstantiationClass->setTemplateSpecializationKind(
6700                                                   TSK_ExplicitSpecialization);
6701      InstantiationClass->setLocation(Member->getLocation());
6702    }
6703
6704    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6705                                        cast<CXXRecordDecl>(InstantiatedFrom),
6706                                                   TSK_ExplicitSpecialization);
6707  } else {
6708    assert(isa<EnumDecl>(Member) && "Only member enums remain");
6709    EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
6710    if (InstantiationEnum->getTemplateSpecializationKind() ==
6711          TSK_ImplicitInstantiation) {
6712      InstantiationEnum->setTemplateSpecializationKind(
6713                                                   TSK_ExplicitSpecialization);
6714      InstantiationEnum->setLocation(Member->getLocation());
6715    }
6716
6717    cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
6718        cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
6719  }
6720
6721  // Save the caller the trouble of having to figure out which declaration
6722  // this specialization matches.
6723  Previous.clear();
6724  Previous.addDecl(Instantiation);
6725  return false;
6726}
6727
6728/// \brief Check the scope of an explicit instantiation.
6729///
6730/// \returns true if a serious error occurs, false otherwise.
6731static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
6732                                            SourceLocation InstLoc,
6733                                            bool WasQualifiedName) {
6734  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
6735  DeclContext *CurContext = S.CurContext->getRedeclContext();
6736
6737  if (CurContext->isRecord()) {
6738    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
6739      << D;
6740    return true;
6741  }
6742
6743  // C++11 [temp.explicit]p3:
6744  //   An explicit instantiation shall appear in an enclosing namespace of its
6745  //   template. If the name declared in the explicit instantiation is an
6746  //   unqualified name, the explicit instantiation shall appear in the
6747  //   namespace where its template is declared or, if that namespace is inline
6748  //   (7.3.1), any namespace from its enclosing namespace set.
6749  //
6750  // This is DR275, which we do not retroactively apply to C++98/03.
6751  if (WasQualifiedName) {
6752    if (CurContext->Encloses(OrigContext))
6753      return false;
6754  } else {
6755    if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
6756      return false;
6757  }
6758
6759  if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
6760    if (WasQualifiedName)
6761      S.Diag(InstLoc,
6762             S.getLangOpts().CPlusPlus11?
6763               diag::err_explicit_instantiation_out_of_scope :
6764               diag::warn_explicit_instantiation_out_of_scope_0x)
6765        << D << NS;
6766    else
6767      S.Diag(InstLoc,
6768             S.getLangOpts().CPlusPlus11?
6769               diag::err_explicit_instantiation_unqualified_wrong_namespace :
6770               diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
6771        << D << NS;
6772  } else
6773    S.Diag(InstLoc,
6774           S.getLangOpts().CPlusPlus11?
6775             diag::err_explicit_instantiation_must_be_global :
6776             diag::warn_explicit_instantiation_must_be_global_0x)
6777      << D;
6778  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
6779  return false;
6780}
6781
6782/// \brief Determine whether the given scope specifier has a template-id in it.
6783static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
6784  if (!SS.isSet())
6785    return false;
6786
6787  // C++11 [temp.explicit]p3:
6788  //   If the explicit instantiation is for a member function, a member class
6789  //   or a static data member of a class template specialization, the name of
6790  //   the class template specialization in the qualified-id for the member
6791  //   name shall be a simple-template-id.
6792  //
6793  // C++98 has the same restriction, just worded differently.
6794  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
6795       NNS; NNS = NNS->getPrefix())
6796    if (const Type *T = NNS->getAsType())
6797      if (isa<TemplateSpecializationType>(T))
6798        return true;
6799
6800  return false;
6801}
6802
6803// Explicit instantiation of a class template specialization
6804DeclResult
6805Sema::ActOnExplicitInstantiation(Scope *S,
6806                                 SourceLocation ExternLoc,
6807                                 SourceLocation TemplateLoc,
6808                                 unsigned TagSpec,
6809                                 SourceLocation KWLoc,
6810                                 const CXXScopeSpec &SS,
6811                                 TemplateTy TemplateD,
6812                                 SourceLocation TemplateNameLoc,
6813                                 SourceLocation LAngleLoc,
6814                                 ASTTemplateArgsPtr TemplateArgsIn,
6815                                 SourceLocation RAngleLoc,
6816                                 AttributeList *Attr) {
6817  // Find the class template we're specializing
6818  TemplateName Name = TemplateD.get();
6819  TemplateDecl *TD = Name.getAsTemplateDecl();
6820  // Check that the specialization uses the same tag kind as the
6821  // original template.
6822  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6823  assert(Kind != TTK_Enum &&
6824         "Invalid enum tag in class template explicit instantiation!");
6825
6826  if (isa<TypeAliasTemplateDecl>(TD)) {
6827      Diag(KWLoc, diag::err_tag_reference_non_tag) << Kind;
6828      Diag(TD->getTemplatedDecl()->getLocation(),
6829           diag::note_previous_use);
6830    return true;
6831  }
6832
6833  ClassTemplateDecl *ClassTemplate = cast<ClassTemplateDecl>(TD);
6834
6835  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
6836                                    Kind, /*isDefinition*/false, KWLoc,
6837                                    *ClassTemplate->getIdentifier())) {
6838    Diag(KWLoc, diag::err_use_with_wrong_tag)
6839      << ClassTemplate
6840      << FixItHint::CreateReplacement(KWLoc,
6841                            ClassTemplate->getTemplatedDecl()->getKindName());
6842    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
6843         diag::note_previous_use);
6844    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
6845  }
6846
6847  // C++0x [temp.explicit]p2:
6848  //   There are two forms of explicit instantiation: an explicit instantiation
6849  //   definition and an explicit instantiation declaration. An explicit
6850  //   instantiation declaration begins with the extern keyword. [...]
6851  TemplateSpecializationKind TSK
6852    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6853                           : TSK_ExplicitInstantiationDeclaration;
6854
6855  // Translate the parser's template argument list in our AST format.
6856  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6857  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6858
6859  // Check that the template argument list is well-formed for this
6860  // template.
6861  SmallVector<TemplateArgument, 4> Converted;
6862  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
6863                                TemplateArgs, false, Converted))
6864    return true;
6865
6866  // Find the class template specialization declaration that
6867  // corresponds to these arguments.
6868  void *InsertPos = 0;
6869  ClassTemplateSpecializationDecl *PrevDecl
6870    = ClassTemplate->findSpecialization(Converted.data(),
6871                                        Converted.size(), InsertPos);
6872
6873  TemplateSpecializationKind PrevDecl_TSK
6874    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
6875
6876  // C++0x [temp.explicit]p2:
6877  //   [...] An explicit instantiation shall appear in an enclosing
6878  //   namespace of its template. [...]
6879  //
6880  // This is C++ DR 275.
6881  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
6882                                      SS.isSet()))
6883    return true;
6884
6885  ClassTemplateSpecializationDecl *Specialization = 0;
6886
6887  bool HasNoEffect = false;
6888  if (PrevDecl) {
6889    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
6890                                               PrevDecl, PrevDecl_TSK,
6891                                            PrevDecl->getPointOfInstantiation(),
6892                                               HasNoEffect))
6893      return PrevDecl;
6894
6895    // Even though HasNoEffect == true means that this explicit instantiation
6896    // has no effect on semantics, we go on to put its syntax in the AST.
6897
6898    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
6899        PrevDecl_TSK == TSK_Undeclared) {
6900      // Since the only prior class template specialization with these
6901      // arguments was referenced but not declared, reuse that
6902      // declaration node as our own, updating the source location
6903      // for the template name to reflect our new declaration.
6904      // (Other source locations will be updated later.)
6905      Specialization = PrevDecl;
6906      Specialization->setLocation(TemplateNameLoc);
6907      PrevDecl = 0;
6908    }
6909  }
6910
6911  if (!Specialization) {
6912    // Create a new class template specialization declaration node for
6913    // this explicit specialization.
6914    Specialization
6915      = ClassTemplateSpecializationDecl::Create(Context, Kind,
6916                                             ClassTemplate->getDeclContext(),
6917                                                KWLoc, TemplateNameLoc,
6918                                                ClassTemplate,
6919                                                Converted.data(),
6920                                                Converted.size(),
6921                                                PrevDecl);
6922    SetNestedNameSpecifier(Specialization, SS);
6923
6924    if (!HasNoEffect && !PrevDecl) {
6925      // Insert the new specialization.
6926      ClassTemplate->AddSpecialization(Specialization, InsertPos);
6927    }
6928  }
6929
6930  // Build the fully-sugared type for this explicit instantiation as
6931  // the user wrote in the explicit instantiation itself. This means
6932  // that we'll pretty-print the type retrieved from the
6933  // specialization's declaration the way that the user actually wrote
6934  // the explicit instantiation, rather than formatting the name based
6935  // on the "canonical" representation used to store the template
6936  // arguments in the specialization.
6937  TypeSourceInfo *WrittenTy
6938    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6939                                                TemplateArgs,
6940                                  Context.getTypeDeclType(Specialization));
6941  Specialization->setTypeAsWritten(WrittenTy);
6942
6943  // Set source locations for keywords.
6944  Specialization->setExternLoc(ExternLoc);
6945  Specialization->setTemplateKeywordLoc(TemplateLoc);
6946  Specialization->setRBraceLoc(SourceLocation());
6947
6948  if (Attr)
6949    ProcessDeclAttributeList(S, Specialization, Attr);
6950
6951  // Add the explicit instantiation into its lexical context. However,
6952  // since explicit instantiations are never found by name lookup, we
6953  // just put it into the declaration context directly.
6954  Specialization->setLexicalDeclContext(CurContext);
6955  CurContext->addDecl(Specialization);
6956
6957  // Syntax is now OK, so return if it has no other effect on semantics.
6958  if (HasNoEffect) {
6959    // Set the template specialization kind.
6960    Specialization->setTemplateSpecializationKind(TSK);
6961    return Specialization;
6962  }
6963
6964  // C++ [temp.explicit]p3:
6965  //   A definition of a class template or class member template
6966  //   shall be in scope at the point of the explicit instantiation of
6967  //   the class template or class member template.
6968  //
6969  // This check comes when we actually try to perform the
6970  // instantiation.
6971  ClassTemplateSpecializationDecl *Def
6972    = cast_or_null<ClassTemplateSpecializationDecl>(
6973                                              Specialization->getDefinition());
6974  if (!Def)
6975    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
6976  else if (TSK == TSK_ExplicitInstantiationDefinition) {
6977    MarkVTableUsed(TemplateNameLoc, Specialization, true);
6978    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
6979  }
6980
6981  // Instantiate the members of this class template specialization.
6982  Def = cast_or_null<ClassTemplateSpecializationDecl>(
6983                                       Specialization->getDefinition());
6984  if (Def) {
6985    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
6986
6987    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
6988    // TSK_ExplicitInstantiationDefinition
6989    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
6990        TSK == TSK_ExplicitInstantiationDefinition)
6991      Def->setTemplateSpecializationKind(TSK);
6992
6993    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
6994  }
6995
6996  // Set the template specialization kind.
6997  Specialization->setTemplateSpecializationKind(TSK);
6998  return Specialization;
6999}
7000
7001// Explicit instantiation of a member class of a class template.
7002DeclResult
7003Sema::ActOnExplicitInstantiation(Scope *S,
7004                                 SourceLocation ExternLoc,
7005                                 SourceLocation TemplateLoc,
7006                                 unsigned TagSpec,
7007                                 SourceLocation KWLoc,
7008                                 CXXScopeSpec &SS,
7009                                 IdentifierInfo *Name,
7010                                 SourceLocation NameLoc,
7011                                 AttributeList *Attr) {
7012
7013  bool Owned = false;
7014  bool IsDependent = false;
7015  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
7016                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
7017                        /*ModulePrivateLoc=*/SourceLocation(),
7018                        MultiTemplateParamsArg(), Owned, IsDependent,
7019                        SourceLocation(), false, TypeResult());
7020  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
7021
7022  if (!TagD)
7023    return true;
7024
7025  TagDecl *Tag = cast<TagDecl>(TagD);
7026  assert(!Tag->isEnum() && "shouldn't see enumerations here");
7027
7028  if (Tag->isInvalidDecl())
7029    return true;
7030
7031  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
7032  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
7033  if (!Pattern) {
7034    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
7035      << Context.getTypeDeclType(Record);
7036    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
7037    return true;
7038  }
7039
7040  // C++0x [temp.explicit]p2:
7041  //   If the explicit instantiation is for a class or member class, the
7042  //   elaborated-type-specifier in the declaration shall include a
7043  //   simple-template-id.
7044  //
7045  // C++98 has the same restriction, just worded differently.
7046  if (!ScopeSpecifierHasTemplateId(SS))
7047    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
7048      << Record << SS.getRange();
7049
7050  // C++0x [temp.explicit]p2:
7051  //   There are two forms of explicit instantiation: an explicit instantiation
7052  //   definition and an explicit instantiation declaration. An explicit
7053  //   instantiation declaration begins with the extern keyword. [...]
7054  TemplateSpecializationKind TSK
7055    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7056                           : TSK_ExplicitInstantiationDeclaration;
7057
7058  // C++0x [temp.explicit]p2:
7059  //   [...] An explicit instantiation shall appear in an enclosing
7060  //   namespace of its template. [...]
7061  //
7062  // This is C++ DR 275.
7063  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
7064
7065  // Verify that it is okay to explicitly instantiate here.
7066  CXXRecordDecl *PrevDecl
7067    = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
7068  if (!PrevDecl && Record->getDefinition())
7069    PrevDecl = Record;
7070  if (PrevDecl) {
7071    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
7072    bool HasNoEffect = false;
7073    assert(MSInfo && "No member specialization information?");
7074    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
7075                                               PrevDecl,
7076                                        MSInfo->getTemplateSpecializationKind(),
7077                                             MSInfo->getPointOfInstantiation(),
7078                                               HasNoEffect))
7079      return true;
7080    if (HasNoEffect)
7081      return TagD;
7082  }
7083
7084  CXXRecordDecl *RecordDef
7085    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7086  if (!RecordDef) {
7087    // C++ [temp.explicit]p3:
7088    //   A definition of a member class of a class template shall be in scope
7089    //   at the point of an explicit instantiation of the member class.
7090    CXXRecordDecl *Def
7091      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
7092    if (!Def) {
7093      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
7094        << 0 << Record->getDeclName() << Record->getDeclContext();
7095      Diag(Pattern->getLocation(), diag::note_forward_declaration)
7096        << Pattern;
7097      return true;
7098    } else {
7099      if (InstantiateClass(NameLoc, Record, Def,
7100                           getTemplateInstantiationArgs(Record),
7101                           TSK))
7102        return true;
7103
7104      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7105      if (!RecordDef)
7106        return true;
7107    }
7108  }
7109
7110  // Instantiate all of the members of the class.
7111  InstantiateClassMembers(NameLoc, RecordDef,
7112                          getTemplateInstantiationArgs(Record), TSK);
7113
7114  if (TSK == TSK_ExplicitInstantiationDefinition)
7115    MarkVTableUsed(NameLoc, RecordDef, true);
7116
7117  // FIXME: We don't have any representation for explicit instantiations of
7118  // member classes. Such a representation is not needed for compilation, but it
7119  // should be available for clients that want to see all of the declarations in
7120  // the source code.
7121  return TagD;
7122}
7123
7124DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
7125                                            SourceLocation ExternLoc,
7126                                            SourceLocation TemplateLoc,
7127                                            Declarator &D) {
7128  // Explicit instantiations always require a name.
7129  // TODO: check if/when DNInfo should replace Name.
7130  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7131  DeclarationName Name = NameInfo.getName();
7132  if (!Name) {
7133    if (!D.isInvalidType())
7134      Diag(D.getDeclSpec().getLocStart(),
7135           diag::err_explicit_instantiation_requires_name)
7136        << D.getDeclSpec().getSourceRange()
7137        << D.getSourceRange();
7138
7139    return true;
7140  }
7141
7142  // The scope passed in may not be a decl scope.  Zip up the scope tree until
7143  // we find one that is.
7144  while ((S->getFlags() & Scope::DeclScope) == 0 ||
7145         (S->getFlags() & Scope::TemplateParamScope) != 0)
7146    S = S->getParent();
7147
7148  // Determine the type of the declaration.
7149  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
7150  QualType R = T->getType();
7151  if (R.isNull())
7152    return true;
7153
7154  // C++ [dcl.stc]p1:
7155  //   A storage-class-specifier shall not be specified in [...] an explicit
7156  //   instantiation (14.7.2) directive.
7157  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
7158    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
7159      << Name;
7160    return true;
7161  } else if (D.getDeclSpec().getStorageClassSpec()
7162                                                != DeclSpec::SCS_unspecified) {
7163    // Complain about then remove the storage class specifier.
7164    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
7165      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7166
7167    D.getMutableDeclSpec().ClearStorageClassSpecs();
7168  }
7169
7170  // C++0x [temp.explicit]p1:
7171  //   [...] An explicit instantiation of a function template shall not use the
7172  //   inline or constexpr specifiers.
7173  // Presumably, this also applies to member functions of class templates as
7174  // well.
7175  if (D.getDeclSpec().isInlineSpecified())
7176    Diag(D.getDeclSpec().getInlineSpecLoc(),
7177         getLangOpts().CPlusPlus11 ?
7178           diag::err_explicit_instantiation_inline :
7179           diag::warn_explicit_instantiation_inline_0x)
7180      << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7181  if (D.getDeclSpec().isConstexprSpecified() && R->isFunctionType())
7182    // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
7183    // not already specified.
7184    Diag(D.getDeclSpec().getConstexprSpecLoc(),
7185         diag::err_explicit_instantiation_constexpr);
7186
7187  // C++0x [temp.explicit]p2:
7188  //   There are two forms of explicit instantiation: an explicit instantiation
7189  //   definition and an explicit instantiation declaration. An explicit
7190  //   instantiation declaration begins with the extern keyword. [...]
7191  TemplateSpecializationKind TSK
7192    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7193                           : TSK_ExplicitInstantiationDeclaration;
7194
7195  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
7196  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
7197
7198  if (!R->isFunctionType()) {
7199    // C++ [temp.explicit]p1:
7200    //   A [...] static data member of a class template can be explicitly
7201    //   instantiated from the member definition associated with its class
7202    //   template.
7203    // C++1y [temp.explicit]p1:
7204    //   A [...] variable [...] template specialization can be explicitly
7205    //   instantiated from its template.
7206    if (Previous.isAmbiguous())
7207      return true;
7208
7209    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
7210    VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
7211
7212    if (!PrevTemplate) {
7213      if (!Prev || !Prev->isStaticDataMember()) {
7214        // We expect to see a data data member here.
7215        Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
7216            << Name;
7217        for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7218             P != PEnd; ++P)
7219          Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
7220        return true;
7221      }
7222
7223      if (!Prev->getInstantiatedFromStaticDataMember()) {
7224        // FIXME: Check for explicit specialization?
7225        Diag(D.getIdentifierLoc(),
7226             diag::err_explicit_instantiation_data_member_not_instantiated)
7227            << Prev;
7228        Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
7229        // FIXME: Can we provide a note showing where this was declared?
7230        return true;
7231      }
7232    } else {
7233      // Explicitly instantiate a variable template.
7234
7235      // C++1y [dcl.spec.auto]p6:
7236      //   ... A program that uses auto or decltype(auto) in a context not
7237      //   explicitly allowed in this section is ill-formed.
7238      //
7239      // This includes auto-typed variable template instantiations.
7240      if (R->isUndeducedType()) {
7241        Diag(T->getTypeLoc().getLocStart(),
7242             diag::err_auto_not_allowed_var_inst);
7243        return true;
7244      }
7245
7246      TemplateArgumentListInfo TemplateArgs;
7247      if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7248        // Translate the parser's template argument list into our AST format.
7249        TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
7250        TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
7251        TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
7252        ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7253                                           TemplateId->NumArgs);
7254        translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
7255      }
7256
7257      DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
7258                                          D.getIdentifierLoc(), TemplateArgs);
7259      if (Res.isInvalid())
7260        return true;
7261
7262      // Ignore access control bits, we don't need them for redeclaration
7263      // checking.
7264      Prev = cast<VarDecl>(Res.get());
7265    }
7266
7267    // C++0x [temp.explicit]p2:
7268    //   If the explicit instantiation is for a member function, a member class
7269    //   or a static data member of a class template specialization, the name of
7270    //   the class template specialization in the qualified-id for the member
7271    //   name shall be a simple-template-id.
7272    //
7273    // C++98 has the same restriction, just worded differently.
7274    //
7275    // C++1y If the explicit instantiation is for a variable, the
7276    // unqualified-id in the declaration shall be a template-id.
7277    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) &&
7278        (!PrevTemplate ||
7279         (D.getName().getKind() != UnqualifiedId::IK_TemplateId &&
7280          D.getCXXScopeSpec().isSet())))
7281      Diag(D.getIdentifierLoc(),
7282           diag::ext_explicit_instantiation_without_qualified_id)
7283        << Prev << D.getCXXScopeSpec().getRange();
7284
7285    // Check the scope of this explicit instantiation.
7286    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
7287
7288    // Verify that it is okay to explicitly instantiate here.
7289    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
7290    TemplateSpecializationKind PrevTSK =
7291        MSInfo ? MSInfo->getTemplateSpecializationKind()
7292               : Prev->getTemplateSpecializationKind();
7293    SourceLocation POI = MSInfo ? MSInfo->getPointOfInstantiation()
7294                                : cast<VarTemplateSpecializationDecl>(Prev)
7295                                      ->getPointOfInstantiation();
7296    bool HasNoEffect = false;
7297    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
7298                                               PrevTSK, POI, HasNoEffect))
7299      return true;
7300
7301    if (!HasNoEffect) {
7302      // Instantiate static data member or variable template.
7303
7304      Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
7305      if (PrevTemplate) {
7306        // Merge attributes.
7307        if (AttributeList *Attr = D.getDeclSpec().getAttributes().getList())
7308          ProcessDeclAttributeList(S, Prev, Attr);
7309      }
7310      if (TSK == TSK_ExplicitInstantiationDefinition)
7311        InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
7312    }
7313
7314    // Check the new variable specialization against the parsed input.
7315    if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
7316      Diag(T->getTypeLoc().getLocStart(),
7317           diag::err_invalid_var_template_spec_type)
7318          << 0 << PrevTemplate << R << Prev->getType();
7319      Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
7320          << 2 << PrevTemplate->getDeclName();
7321      return true;
7322    }
7323
7324    // FIXME: Create an ExplicitInstantiation node?
7325    return (Decl*) 0;
7326  }
7327
7328  // If the declarator is a template-id, translate the parser's template
7329  // argument list into our AST format.
7330  bool HasExplicitTemplateArgs = false;
7331  TemplateArgumentListInfo TemplateArgs;
7332  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7333    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
7334    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
7335    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
7336    ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7337                                       TemplateId->NumArgs);
7338    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
7339    HasExplicitTemplateArgs = true;
7340  }
7341
7342  // C++ [temp.explicit]p1:
7343  //   A [...] function [...] can be explicitly instantiated from its template.
7344  //   A member function [...] of a class template can be explicitly
7345  //  instantiated from the member definition associated with its class
7346  //  template.
7347  UnresolvedSet<8> Matches;
7348  TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
7349  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7350       P != PEnd; ++P) {
7351    NamedDecl *Prev = *P;
7352    if (!HasExplicitTemplateArgs) {
7353      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
7354        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
7355          Matches.clear();
7356
7357          Matches.addDecl(Method, P.getAccess());
7358          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
7359            break;
7360        }
7361      }
7362    }
7363
7364    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
7365    if (!FunTmpl)
7366      continue;
7367
7368    TemplateDeductionInfo Info(FailedCandidates.getLocation());
7369    FunctionDecl *Specialization = 0;
7370    if (TemplateDeductionResult TDK
7371          = DeduceTemplateArguments(FunTmpl,
7372                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
7373                                    R, Specialization, Info)) {
7374      // Keep track of almost-matches.
7375      FailedCandidates.addCandidate()
7376          .set(FunTmpl->getTemplatedDecl(),
7377               MakeDeductionFailureInfo(Context, TDK, Info));
7378      (void)TDK;
7379      continue;
7380    }
7381
7382    Matches.addDecl(Specialization, P.getAccess());
7383  }
7384
7385  // Find the most specialized function template specialization.
7386  UnresolvedSetIterator Result = getMostSpecialized(
7387      Matches.begin(), Matches.end(), FailedCandidates, TPOC_Other, 0,
7388      D.getIdentifierLoc(),
7389      PDiag(diag::err_explicit_instantiation_not_known) << Name,
7390      PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
7391      PDiag(diag::note_explicit_instantiation_candidate));
7392
7393  if (Result == Matches.end())
7394    return true;
7395
7396  // Ignore access control bits, we don't need them for redeclaration checking.
7397  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
7398
7399  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
7400    Diag(D.getIdentifierLoc(),
7401         diag::err_explicit_instantiation_member_function_not_instantiated)
7402      << Specialization
7403      << (Specialization->getTemplateSpecializationKind() ==
7404          TSK_ExplicitSpecialization);
7405    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
7406    return true;
7407  }
7408
7409  FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
7410  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
7411    PrevDecl = Specialization;
7412
7413  if (PrevDecl) {
7414    bool HasNoEffect = false;
7415    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
7416                                               PrevDecl,
7417                                     PrevDecl->getTemplateSpecializationKind(),
7418                                          PrevDecl->getPointOfInstantiation(),
7419                                               HasNoEffect))
7420      return true;
7421
7422    // FIXME: We may still want to build some representation of this
7423    // explicit specialization.
7424    if (HasNoEffect)
7425      return (Decl*) 0;
7426  }
7427
7428  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
7429  AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
7430  if (Attr)
7431    ProcessDeclAttributeList(S, Specialization, Attr);
7432
7433  if (TSK == TSK_ExplicitInstantiationDefinition)
7434    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
7435
7436  // C++0x [temp.explicit]p2:
7437  //   If the explicit instantiation is for a member function, a member class
7438  //   or a static data member of a class template specialization, the name of
7439  //   the class template specialization in the qualified-id for the member
7440  //   name shall be a simple-template-id.
7441  //
7442  // C++98 has the same restriction, just worded differently.
7443  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
7444  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
7445      D.getCXXScopeSpec().isSet() &&
7446      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
7447    Diag(D.getIdentifierLoc(),
7448         diag::ext_explicit_instantiation_without_qualified_id)
7449    << Specialization << D.getCXXScopeSpec().getRange();
7450
7451  CheckExplicitInstantiationScope(*this,
7452                   FunTmpl? (NamedDecl *)FunTmpl
7453                          : Specialization->getInstantiatedFromMemberFunction(),
7454                                  D.getIdentifierLoc(),
7455                                  D.getCXXScopeSpec().isSet());
7456
7457  // FIXME: Create some kind of ExplicitInstantiationDecl here.
7458  return (Decl*) 0;
7459}
7460
7461TypeResult
7462Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7463                        const CXXScopeSpec &SS, IdentifierInfo *Name,
7464                        SourceLocation TagLoc, SourceLocation NameLoc) {
7465  // This has to hold, because SS is expected to be defined.
7466  assert(Name && "Expected a name in a dependent tag");
7467
7468  NestedNameSpecifier *NNS
7469    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
7470  if (!NNS)
7471    return true;
7472
7473  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7474
7475  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
7476    Diag(NameLoc, diag::err_dependent_tag_decl)
7477      << (TUK == TUK_Definition) << Kind << SS.getRange();
7478    return true;
7479  }
7480
7481  // Create the resulting type.
7482  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
7483  QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
7484
7485  // Create type-source location information for this type.
7486  TypeLocBuilder TLB;
7487  DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
7488  TL.setElaboratedKeywordLoc(TagLoc);
7489  TL.setQualifierLoc(SS.getWithLocInContext(Context));
7490  TL.setNameLoc(NameLoc);
7491  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
7492}
7493
7494TypeResult
7495Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
7496                        const CXXScopeSpec &SS, const IdentifierInfo &II,
7497                        SourceLocation IdLoc) {
7498  if (SS.isInvalid())
7499    return true;
7500
7501  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
7502    Diag(TypenameLoc,
7503         getLangOpts().CPlusPlus11 ?
7504           diag::warn_cxx98_compat_typename_outside_of_template :
7505           diag::ext_typename_outside_of_template)
7506      << FixItHint::CreateRemoval(TypenameLoc);
7507
7508  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7509  QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
7510                                 TypenameLoc, QualifierLoc, II, IdLoc);
7511  if (T.isNull())
7512    return true;
7513
7514  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
7515  if (isa<DependentNameType>(T)) {
7516    DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
7517    TL.setElaboratedKeywordLoc(TypenameLoc);
7518    TL.setQualifierLoc(QualifierLoc);
7519    TL.setNameLoc(IdLoc);
7520  } else {
7521    ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
7522    TL.setElaboratedKeywordLoc(TypenameLoc);
7523    TL.setQualifierLoc(QualifierLoc);
7524    TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
7525  }
7526
7527  return CreateParsedType(T, TSI);
7528}
7529
7530TypeResult
7531Sema::ActOnTypenameType(Scope *S,
7532                        SourceLocation TypenameLoc,
7533                        const CXXScopeSpec &SS,
7534                        SourceLocation TemplateKWLoc,
7535                        TemplateTy TemplateIn,
7536                        SourceLocation TemplateNameLoc,
7537                        SourceLocation LAngleLoc,
7538                        ASTTemplateArgsPtr TemplateArgsIn,
7539                        SourceLocation RAngleLoc) {
7540  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
7541    Diag(TypenameLoc,
7542         getLangOpts().CPlusPlus11 ?
7543           diag::warn_cxx98_compat_typename_outside_of_template :
7544           diag::ext_typename_outside_of_template)
7545      << FixItHint::CreateRemoval(TypenameLoc);
7546
7547  // Translate the parser's template argument list in our AST format.
7548  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
7549  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
7550
7551  TemplateName Template = TemplateIn.get();
7552  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
7553    // Construct a dependent template specialization type.
7554    assert(DTN && "dependent template has non-dependent name?");
7555    assert(DTN->getQualifier()
7556           == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
7557    QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
7558                                                          DTN->getQualifier(),
7559                                                          DTN->getIdentifier(),
7560                                                                TemplateArgs);
7561
7562    // Create source-location information for this type.
7563    TypeLocBuilder Builder;
7564    DependentTemplateSpecializationTypeLoc SpecTL
7565    = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
7566    SpecTL.setElaboratedKeywordLoc(TypenameLoc);
7567    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
7568    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
7569    SpecTL.setTemplateNameLoc(TemplateNameLoc);
7570    SpecTL.setLAngleLoc(LAngleLoc);
7571    SpecTL.setRAngleLoc(RAngleLoc);
7572    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7573      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
7574    return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
7575  }
7576
7577  QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
7578  if (T.isNull())
7579    return true;
7580
7581  // Provide source-location information for the template specialization type.
7582  TypeLocBuilder Builder;
7583  TemplateSpecializationTypeLoc SpecTL
7584    = Builder.push<TemplateSpecializationTypeLoc>(T);
7585  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
7586  SpecTL.setTemplateNameLoc(TemplateNameLoc);
7587  SpecTL.setLAngleLoc(LAngleLoc);
7588  SpecTL.setRAngleLoc(RAngleLoc);
7589  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7590    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
7591
7592  T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
7593  ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
7594  TL.setElaboratedKeywordLoc(TypenameLoc);
7595  TL.setQualifierLoc(SS.getWithLocInContext(Context));
7596
7597  TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
7598  return CreateParsedType(T, TSI);
7599}
7600
7601
7602/// Determine whether this failed name lookup should be treated as being
7603/// disabled by a usage of std::enable_if.
7604static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
7605                       SourceRange &CondRange) {
7606  // We must be looking for a ::type...
7607  if (!II.isStr("type"))
7608    return false;
7609
7610  // ... within an explicitly-written template specialization...
7611  if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
7612    return false;
7613  TypeLoc EnableIfTy = NNS.getTypeLoc();
7614  TemplateSpecializationTypeLoc EnableIfTSTLoc =
7615      EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
7616  if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
7617    return false;
7618  const TemplateSpecializationType *EnableIfTST =
7619    cast<TemplateSpecializationType>(EnableIfTSTLoc.getTypePtr());
7620
7621  // ... which names a complete class template declaration...
7622  const TemplateDecl *EnableIfDecl =
7623    EnableIfTST->getTemplateName().getAsTemplateDecl();
7624  if (!EnableIfDecl || EnableIfTST->isIncompleteType())
7625    return false;
7626
7627  // ... called "enable_if".
7628  const IdentifierInfo *EnableIfII =
7629    EnableIfDecl->getDeclName().getAsIdentifierInfo();
7630  if (!EnableIfII || !EnableIfII->isStr("enable_if"))
7631    return false;
7632
7633  // Assume the first template argument is the condition.
7634  CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
7635  return true;
7636}
7637
7638/// \brief Build the type that describes a C++ typename specifier,
7639/// e.g., "typename T::type".
7640QualType
7641Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
7642                        SourceLocation KeywordLoc,
7643                        NestedNameSpecifierLoc QualifierLoc,
7644                        const IdentifierInfo &II,
7645                        SourceLocation IILoc) {
7646  CXXScopeSpec SS;
7647  SS.Adopt(QualifierLoc);
7648
7649  DeclContext *Ctx = computeDeclContext(SS);
7650  if (!Ctx) {
7651    // If the nested-name-specifier is dependent and couldn't be
7652    // resolved to a type, build a typename type.
7653    assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
7654    return Context.getDependentNameType(Keyword,
7655                                        QualifierLoc.getNestedNameSpecifier(),
7656                                        &II);
7657  }
7658
7659  // If the nested-name-specifier refers to the current instantiation,
7660  // the "typename" keyword itself is superfluous. In C++03, the
7661  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
7662  // allows such extraneous "typename" keywords, and we retroactively
7663  // apply this DR to C++03 code with only a warning. In any case we continue.
7664
7665  if (RequireCompleteDeclContext(SS, Ctx))
7666    return QualType();
7667
7668  DeclarationName Name(&II);
7669  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
7670  LookupQualifiedName(Result, Ctx);
7671  unsigned DiagID = 0;
7672  Decl *Referenced = 0;
7673  switch (Result.getResultKind()) {
7674  case LookupResult::NotFound: {
7675    // If we're looking up 'type' within a template named 'enable_if', produce
7676    // a more specific diagnostic.
7677    SourceRange CondRange;
7678    if (isEnableIf(QualifierLoc, II, CondRange)) {
7679      Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
7680        << Ctx << CondRange;
7681      return QualType();
7682    }
7683
7684    DiagID = diag::err_typename_nested_not_found;
7685    break;
7686  }
7687
7688  case LookupResult::FoundUnresolvedValue: {
7689    // We found a using declaration that is a value. Most likely, the using
7690    // declaration itself is meant to have the 'typename' keyword.
7691    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7692                          IILoc);
7693    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
7694      << Name << Ctx << FullRange;
7695    if (UnresolvedUsingValueDecl *Using
7696          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
7697      SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
7698      Diag(Loc, diag::note_using_value_decl_missing_typename)
7699        << FixItHint::CreateInsertion(Loc, "typename ");
7700    }
7701  }
7702  // Fall through to create a dependent typename type, from which we can recover
7703  // better.
7704
7705  case LookupResult::NotFoundInCurrentInstantiation:
7706    // Okay, it's a member of an unknown instantiation.
7707    return Context.getDependentNameType(Keyword,
7708                                        QualifierLoc.getNestedNameSpecifier(),
7709                                        &II);
7710
7711  case LookupResult::Found:
7712    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
7713      // We found a type. Build an ElaboratedType, since the
7714      // typename-specifier was just sugar.
7715      return Context.getElaboratedType(ETK_Typename,
7716                                       QualifierLoc.getNestedNameSpecifier(),
7717                                       Context.getTypeDeclType(Type));
7718    }
7719
7720    DiagID = diag::err_typename_nested_not_type;
7721    Referenced = Result.getFoundDecl();
7722    break;
7723
7724  case LookupResult::FoundOverloaded:
7725    DiagID = diag::err_typename_nested_not_type;
7726    Referenced = *Result.begin();
7727    break;
7728
7729  case LookupResult::Ambiguous:
7730    return QualType();
7731  }
7732
7733  // If we get here, it's because name lookup did not find a
7734  // type. Emit an appropriate diagnostic and return an error.
7735  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7736                        IILoc);
7737  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
7738  if (Referenced)
7739    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
7740      << Name;
7741  return QualType();
7742}
7743
7744namespace {
7745  // See Sema::RebuildTypeInCurrentInstantiation
7746  class CurrentInstantiationRebuilder
7747    : public TreeTransform<CurrentInstantiationRebuilder> {
7748    SourceLocation Loc;
7749    DeclarationName Entity;
7750
7751  public:
7752    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
7753
7754    CurrentInstantiationRebuilder(Sema &SemaRef,
7755                                  SourceLocation Loc,
7756                                  DeclarationName Entity)
7757    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
7758      Loc(Loc), Entity(Entity) { }
7759
7760    /// \brief Determine whether the given type \p T has already been
7761    /// transformed.
7762    ///
7763    /// For the purposes of type reconstruction, a type has already been
7764    /// transformed if it is NULL or if it is not dependent.
7765    bool AlreadyTransformed(QualType T) {
7766      return T.isNull() || !T->isDependentType();
7767    }
7768
7769    /// \brief Returns the location of the entity whose type is being
7770    /// rebuilt.
7771    SourceLocation getBaseLocation() { return Loc; }
7772
7773    /// \brief Returns the name of the entity whose type is being rebuilt.
7774    DeclarationName getBaseEntity() { return Entity; }
7775
7776    /// \brief Sets the "base" location and entity when that
7777    /// information is known based on another transformation.
7778    void setBase(SourceLocation Loc, DeclarationName Entity) {
7779      this->Loc = Loc;
7780      this->Entity = Entity;
7781    }
7782
7783    ExprResult TransformLambdaExpr(LambdaExpr *E) {
7784      // Lambdas never need to be transformed.
7785      return E;
7786    }
7787  };
7788}
7789
7790/// \brief Rebuilds a type within the context of the current instantiation.
7791///
7792/// The type \p T is part of the type of an out-of-line member definition of
7793/// a class template (or class template partial specialization) that was parsed
7794/// and constructed before we entered the scope of the class template (or
7795/// partial specialization thereof). This routine will rebuild that type now
7796/// that we have entered the declarator's scope, which may produce different
7797/// canonical types, e.g.,
7798///
7799/// \code
7800/// template<typename T>
7801/// struct X {
7802///   typedef T* pointer;
7803///   pointer data();
7804/// };
7805///
7806/// template<typename T>
7807/// typename X<T>::pointer X<T>::data() { ... }
7808/// \endcode
7809///
7810/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
7811/// since we do not know that we can look into X<T> when we parsed the type.
7812/// This function will rebuild the type, performing the lookup of "pointer"
7813/// in X<T> and returning an ElaboratedType whose canonical type is the same
7814/// as the canonical type of T*, allowing the return types of the out-of-line
7815/// definition and the declaration to match.
7816TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
7817                                                        SourceLocation Loc,
7818                                                        DeclarationName Name) {
7819  if (!T || !T->getType()->isDependentType())
7820    return T;
7821
7822  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
7823  return Rebuilder.TransformType(T);
7824}
7825
7826ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
7827  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
7828                                          DeclarationName());
7829  return Rebuilder.TransformExpr(E);
7830}
7831
7832bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
7833  if (SS.isInvalid())
7834    return true;
7835
7836  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7837  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
7838                                          DeclarationName());
7839  NestedNameSpecifierLoc Rebuilt
7840    = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
7841  if (!Rebuilt)
7842    return true;
7843
7844  SS.Adopt(Rebuilt);
7845  return false;
7846}
7847
7848/// \brief Rebuild the template parameters now that we know we're in a current
7849/// instantiation.
7850bool Sema::RebuildTemplateParamsInCurrentInstantiation(
7851                                               TemplateParameterList *Params) {
7852  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7853    Decl *Param = Params->getParam(I);
7854
7855    // There is nothing to rebuild in a type parameter.
7856    if (isa<TemplateTypeParmDecl>(Param))
7857      continue;
7858
7859    // Rebuild the template parameter list of a template template parameter.
7860    if (TemplateTemplateParmDecl *TTP
7861        = dyn_cast<TemplateTemplateParmDecl>(Param)) {
7862      if (RebuildTemplateParamsInCurrentInstantiation(
7863            TTP->getTemplateParameters()))
7864        return true;
7865
7866      continue;
7867    }
7868
7869    // Rebuild the type of a non-type template parameter.
7870    NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
7871    TypeSourceInfo *NewTSI
7872      = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
7873                                          NTTP->getLocation(),
7874                                          NTTP->getDeclName());
7875    if (!NewTSI)
7876      return true;
7877
7878    if (NewTSI != NTTP->getTypeSourceInfo()) {
7879      NTTP->setTypeSourceInfo(NewTSI);
7880      NTTP->setType(NewTSI->getType());
7881    }
7882  }
7883
7884  return false;
7885}
7886
7887/// \brief Produces a formatted string that describes the binding of
7888/// template parameters to template arguments.
7889std::string
7890Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7891                                      const TemplateArgumentList &Args) {
7892  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
7893}
7894
7895std::string
7896Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7897                                      const TemplateArgument *Args,
7898                                      unsigned NumArgs) {
7899  SmallString<128> Str;
7900  llvm::raw_svector_ostream Out(Str);
7901
7902  if (!Params || Params->size() == 0 || NumArgs == 0)
7903    return std::string();
7904
7905  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7906    if (I >= NumArgs)
7907      break;
7908
7909    if (I == 0)
7910      Out << "[with ";
7911    else
7912      Out << ", ";
7913
7914    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
7915      Out << Id->getName();
7916    } else {
7917      Out << '$' << I;
7918    }
7919
7920    Out << " = ";
7921    Args[I].print(getPrintingPolicy(), Out);
7922  }
7923
7924  Out << ']';
7925  return Out.str();
7926}
7927
7928void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
7929                                    CachedTokens &Toks) {
7930  if (!FD)
7931    return;
7932
7933  LateParsedTemplate *LPT = new LateParsedTemplate;
7934
7935  // Take tokens to avoid allocations
7936  LPT->Toks.swap(Toks);
7937  LPT->D = FnD;
7938  LateParsedTemplateMap[FD] = LPT;
7939
7940  FD->setLateTemplateParsed(true);
7941}
7942
7943void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
7944  if (!FD)
7945    return;
7946  FD->setLateTemplateParsed(false);
7947}
7948
7949bool Sema::IsInsideALocalClassWithinATemplateFunction() {
7950  DeclContext *DC = CurContext;
7951
7952  while (DC) {
7953    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
7954      const FunctionDecl *FD = RD->isLocalClass();
7955      return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
7956    } else if (DC->isTranslationUnit() || DC->isNamespace())
7957      return false;
7958
7959    DC = DC->getParent();
7960  }
7961  return false;
7962}
7963