SemaTemplate.cpp revision f0d5861d2db5e3075bd722ff7874e88c4bfedaae
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "TreeTransform.h"
13#include "clang/AST/ASTContext.h"
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/DeclFriend.h"
16#include "clang/AST/DeclTemplate.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/RecursiveASTVisitor.h"
20#include "clang/AST/TypeVisitor.h"
21#include "clang/Basic/LangOptions.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "clang/Sema/DeclSpec.h"
24#include "clang/Sema/Lookup.h"
25#include "clang/Sema/ParsedTemplate.h"
26#include "clang/Sema/Scope.h"
27#include "clang/Sema/SemaInternal.h"
28#include "clang/Sema/Template.h"
29#include "clang/Sema/TemplateDeduction.h"
30#include "llvm/ADT/SmallBitVector.h"
31#include "llvm/ADT/SmallString.h"
32#include "llvm/ADT/StringExtras.h"
33using namespace clang;
34using namespace sema;
35
36// Exported for use by Parser.
37SourceRange
38clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
39                              unsigned N) {
40  if (!N) return SourceRange();
41  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
42}
43
44/// \brief Determine whether the declaration found is acceptable as the name
45/// of a template and, if so, return that template declaration. Otherwise,
46/// returns NULL.
47static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
48                                           NamedDecl *Orig,
49                                           bool AllowFunctionTemplates) {
50  NamedDecl *D = Orig->getUnderlyingDecl();
51
52  if (isa<TemplateDecl>(D)) {
53    if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
54      return 0;
55
56    return Orig;
57  }
58
59  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
60    // C++ [temp.local]p1:
61    //   Like normal (non-template) classes, class templates have an
62    //   injected-class-name (Clause 9). The injected-class-name
63    //   can be used with or without a template-argument-list. When
64    //   it is used without a template-argument-list, it is
65    //   equivalent to the injected-class-name followed by the
66    //   template-parameters of the class template enclosed in
67    //   <>. When it is used with a template-argument-list, it
68    //   refers to the specified class template specialization,
69    //   which could be the current specialization or another
70    //   specialization.
71    if (Record->isInjectedClassName()) {
72      Record = cast<CXXRecordDecl>(Record->getDeclContext());
73      if (Record->getDescribedClassTemplate())
74        return Record->getDescribedClassTemplate();
75
76      if (ClassTemplateSpecializationDecl *Spec
77            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
78        return Spec->getSpecializedTemplate();
79    }
80
81    return 0;
82  }
83
84  return 0;
85}
86
87void Sema::FilterAcceptableTemplateNames(LookupResult &R,
88                                         bool AllowFunctionTemplates) {
89  // The set of class templates we've already seen.
90  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
91  LookupResult::Filter filter = R.makeFilter();
92  while (filter.hasNext()) {
93    NamedDecl *Orig = filter.next();
94    NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
95                                               AllowFunctionTemplates);
96    if (!Repl)
97      filter.erase();
98    else if (Repl != Orig) {
99
100      // C++ [temp.local]p3:
101      //   A lookup that finds an injected-class-name (10.2) can result in an
102      //   ambiguity in certain cases (for example, if it is found in more than
103      //   one base class). If all of the injected-class-names that are found
104      //   refer to specializations of the same class template, and if the name
105      //   is used as a template-name, the reference refers to the class
106      //   template itself and not a specialization thereof, and is not
107      //   ambiguous.
108      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
109        if (!ClassTemplates.insert(ClassTmpl)) {
110          filter.erase();
111          continue;
112        }
113
114      // FIXME: we promote access to public here as a workaround to
115      // the fact that LookupResult doesn't let us remember that we
116      // found this template through a particular injected class name,
117      // which means we end up doing nasty things to the invariants.
118      // Pretending that access is public is *much* safer.
119      filter.replace(Repl, AS_public);
120    }
121  }
122  filter.done();
123}
124
125bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
126                                         bool AllowFunctionTemplates) {
127  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
128    if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
129      return true;
130
131  return false;
132}
133
134TemplateNameKind Sema::isTemplateName(Scope *S,
135                                      CXXScopeSpec &SS,
136                                      bool hasTemplateKeyword,
137                                      UnqualifiedId &Name,
138                                      ParsedType ObjectTypePtr,
139                                      bool EnteringContext,
140                                      TemplateTy &TemplateResult,
141                                      bool &MemberOfUnknownSpecialization) {
142  assert(getLangOpts().CPlusPlus && "No template names in C!");
143
144  DeclarationName TName;
145  MemberOfUnknownSpecialization = false;
146
147  switch (Name.getKind()) {
148  case UnqualifiedId::IK_Identifier:
149    TName = DeclarationName(Name.Identifier);
150    break;
151
152  case UnqualifiedId::IK_OperatorFunctionId:
153    TName = Context.DeclarationNames.getCXXOperatorName(
154                                              Name.OperatorFunctionId.Operator);
155    break;
156
157  case UnqualifiedId::IK_LiteralOperatorId:
158    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
159    break;
160
161  default:
162    return TNK_Non_template;
163  }
164
165  QualType ObjectType = ObjectTypePtr.get();
166
167  LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
168  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
169                     MemberOfUnknownSpecialization);
170  if (R.empty()) return TNK_Non_template;
171  if (R.isAmbiguous()) {
172    // Suppress diagnostics;  we'll redo this lookup later.
173    R.suppressDiagnostics();
174
175    // FIXME: we might have ambiguous templates, in which case we
176    // should at least parse them properly!
177    return TNK_Non_template;
178  }
179
180  TemplateName Template;
181  TemplateNameKind TemplateKind;
182
183  unsigned ResultCount = R.end() - R.begin();
184  if (ResultCount > 1) {
185    // We assume that we'll preserve the qualifier from a function
186    // template name in other ways.
187    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
188    TemplateKind = TNK_Function_template;
189
190    // We'll do this lookup again later.
191    R.suppressDiagnostics();
192  } else {
193    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
194
195    if (SS.isSet() && !SS.isInvalid()) {
196      NestedNameSpecifier *Qualifier
197        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
198      Template = Context.getQualifiedTemplateName(Qualifier,
199                                                  hasTemplateKeyword, TD);
200    } else {
201      Template = TemplateName(TD);
202    }
203
204    if (isa<FunctionTemplateDecl>(TD)) {
205      TemplateKind = TNK_Function_template;
206
207      // We'll do this lookup again later.
208      R.suppressDiagnostics();
209    } else {
210      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
211             isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD));
212      TemplateKind =
213          isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template;
214    }
215  }
216
217  TemplateResult = TemplateTy::make(Template);
218  return TemplateKind;
219}
220
221bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
222                                       SourceLocation IILoc,
223                                       Scope *S,
224                                       const CXXScopeSpec *SS,
225                                       TemplateTy &SuggestedTemplate,
226                                       TemplateNameKind &SuggestedKind) {
227  // We can't recover unless there's a dependent scope specifier preceding the
228  // template name.
229  // FIXME: Typo correction?
230  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
231      computeDeclContext(*SS))
232    return false;
233
234  // The code is missing a 'template' keyword prior to the dependent template
235  // name.
236  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
237  Diag(IILoc, diag::err_template_kw_missing)
238    << Qualifier << II.getName()
239    << FixItHint::CreateInsertion(IILoc, "template ");
240  SuggestedTemplate
241    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
242  SuggestedKind = TNK_Dependent_template_name;
243  return true;
244}
245
246void Sema::LookupTemplateName(LookupResult &Found,
247                              Scope *S, CXXScopeSpec &SS,
248                              QualType ObjectType,
249                              bool EnteringContext,
250                              bool &MemberOfUnknownSpecialization) {
251  // Determine where to perform name lookup
252  MemberOfUnknownSpecialization = false;
253  DeclContext *LookupCtx = 0;
254  bool isDependent = false;
255  if (!ObjectType.isNull()) {
256    // This nested-name-specifier occurs in a member access expression, e.g.,
257    // x->B::f, and we are looking into the type of the object.
258    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
259    LookupCtx = computeDeclContext(ObjectType);
260    isDependent = ObjectType->isDependentType();
261    assert((isDependent || !ObjectType->isIncompleteType() ||
262            ObjectType->castAs<TagType>()->isBeingDefined()) &&
263           "Caller should have completed object type");
264
265    // Template names cannot appear inside an Objective-C class or object type.
266    if (ObjectType->isObjCObjectOrInterfaceType()) {
267      Found.clear();
268      return;
269    }
270  } else if (SS.isSet()) {
271    // This nested-name-specifier occurs after another nested-name-specifier,
272    // so long into the context associated with the prior nested-name-specifier.
273    LookupCtx = computeDeclContext(SS, EnteringContext);
274    isDependent = isDependentScopeSpecifier(SS);
275
276    // The declaration context must be complete.
277    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
278      return;
279  }
280
281  bool ObjectTypeSearchedInScope = false;
282  bool AllowFunctionTemplatesInLookup = true;
283  if (LookupCtx) {
284    // Perform "qualified" name lookup into the declaration context we
285    // computed, which is either the type of the base of a member access
286    // expression or the declaration context associated with a prior
287    // nested-name-specifier.
288    LookupQualifiedName(Found, LookupCtx);
289    if (!ObjectType.isNull() && Found.empty()) {
290      // C++ [basic.lookup.classref]p1:
291      //   In a class member access expression (5.2.5), if the . or -> token is
292      //   immediately followed by an identifier followed by a <, the
293      //   identifier must be looked up to determine whether the < is the
294      //   beginning of a template argument list (14.2) or a less-than operator.
295      //   The identifier is first looked up in the class of the object
296      //   expression. If the identifier is not found, it is then looked up in
297      //   the context of the entire postfix-expression and shall name a class
298      //   or function template.
299      if (S) LookupName(Found, S);
300      ObjectTypeSearchedInScope = true;
301      AllowFunctionTemplatesInLookup = false;
302    }
303  } else if (isDependent && (!S || ObjectType.isNull())) {
304    // We cannot look into a dependent object type or nested nme
305    // specifier.
306    MemberOfUnknownSpecialization = true;
307    return;
308  } else {
309    // Perform unqualified name lookup in the current scope.
310    LookupName(Found, S);
311
312    if (!ObjectType.isNull())
313      AllowFunctionTemplatesInLookup = false;
314  }
315
316  if (Found.empty() && !isDependent) {
317    // If we did not find any names, attempt to correct any typos.
318    DeclarationName Name = Found.getLookupName();
319    Found.clear();
320    // Simple filter callback that, for keywords, only accepts the C++ *_cast
321    CorrectionCandidateCallback FilterCCC;
322    FilterCCC.WantTypeSpecifiers = false;
323    FilterCCC.WantExpressionKeywords = false;
324    FilterCCC.WantRemainingKeywords = false;
325    FilterCCC.WantCXXNamedCasts = true;
326    if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
327                                               Found.getLookupKind(), S, &SS,
328                                               FilterCCC, LookupCtx)) {
329      Found.setLookupName(Corrected.getCorrection());
330      if (Corrected.getCorrectionDecl())
331        Found.addDecl(Corrected.getCorrectionDecl());
332      FilterAcceptableTemplateNames(Found);
333      if (!Found.empty()) {
334        if (LookupCtx) {
335          std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
336          bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
337                                  Name.getAsString() == CorrectedStr;
338          diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
339                                    << Name << LookupCtx << DroppedSpecifier
340                                    << SS.getRange());
341        } else {
342          diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
343        }
344      }
345    } else {
346      Found.setLookupName(Name);
347    }
348  }
349
350  FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
351  if (Found.empty()) {
352    if (isDependent)
353      MemberOfUnknownSpecialization = true;
354    return;
355  }
356
357  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
358      !getLangOpts().CPlusPlus11) {
359    // C++03 [basic.lookup.classref]p1:
360    //   [...] If the lookup in the class of the object expression finds a
361    //   template, the name is also looked up in the context of the entire
362    //   postfix-expression and [...]
363    //
364    // Note: C++11 does not perform this second lookup.
365    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
366                            LookupOrdinaryName);
367    LookupName(FoundOuter, S);
368    FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
369
370    if (FoundOuter.empty()) {
371      //   - if the name is not found, the name found in the class of the
372      //     object expression is used, otherwise
373    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
374               FoundOuter.isAmbiguous()) {
375      //   - if the name is found in the context of the entire
376      //     postfix-expression and does not name a class template, the name
377      //     found in the class of the object expression is used, otherwise
378      FoundOuter.clear();
379    } else if (!Found.isSuppressingDiagnostics()) {
380      //   - if the name found is a class template, it must refer to the same
381      //     entity as the one found in the class of the object expression,
382      //     otherwise the program is ill-formed.
383      if (!Found.isSingleResult() ||
384          Found.getFoundDecl()->getCanonicalDecl()
385            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
386        Diag(Found.getNameLoc(),
387             diag::ext_nested_name_member_ref_lookup_ambiguous)
388          << Found.getLookupName()
389          << ObjectType;
390        Diag(Found.getRepresentativeDecl()->getLocation(),
391             diag::note_ambig_member_ref_object_type)
392          << ObjectType;
393        Diag(FoundOuter.getFoundDecl()->getLocation(),
394             diag::note_ambig_member_ref_scope);
395
396        // Recover by taking the template that we found in the object
397        // expression's type.
398      }
399    }
400  }
401}
402
403/// ActOnDependentIdExpression - Handle a dependent id-expression that
404/// was just parsed.  This is only possible with an explicit scope
405/// specifier naming a dependent type.
406ExprResult
407Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
408                                 SourceLocation TemplateKWLoc,
409                                 const DeclarationNameInfo &NameInfo,
410                                 bool isAddressOfOperand,
411                           const TemplateArgumentListInfo *TemplateArgs) {
412  DeclContext *DC = getFunctionLevelDeclContext();
413
414  if (!isAddressOfOperand &&
415      isa<CXXMethodDecl>(DC) &&
416      cast<CXXMethodDecl>(DC)->isInstance()) {
417    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
418
419    // Since the 'this' expression is synthesized, we don't need to
420    // perform the double-lookup check.
421    NamedDecl *FirstQualifierInScope = 0;
422
423    return Owned(CXXDependentScopeMemberExpr::Create(Context,
424                                                     /*This*/ 0, ThisType,
425                                                     /*IsArrow*/ true,
426                                                     /*Op*/ SourceLocation(),
427                                               SS.getWithLocInContext(Context),
428                                                     TemplateKWLoc,
429                                                     FirstQualifierInScope,
430                                                     NameInfo,
431                                                     TemplateArgs));
432  }
433
434  return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
435}
436
437ExprResult
438Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
439                                SourceLocation TemplateKWLoc,
440                                const DeclarationNameInfo &NameInfo,
441                                const TemplateArgumentListInfo *TemplateArgs) {
442  return Owned(DependentScopeDeclRefExpr::Create(Context,
443                                               SS.getWithLocInContext(Context),
444                                                 TemplateKWLoc,
445                                                 NameInfo,
446                                                 TemplateArgs));
447}
448
449/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
450/// that the template parameter 'PrevDecl' is being shadowed by a new
451/// declaration at location Loc. Returns true to indicate that this is
452/// an error, and false otherwise.
453void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
454  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
455
456  // Microsoft Visual C++ permits template parameters to be shadowed.
457  if (getLangOpts().MicrosoftExt)
458    return;
459
460  // C++ [temp.local]p4:
461  //   A template-parameter shall not be redeclared within its
462  //   scope (including nested scopes).
463  Diag(Loc, diag::err_template_param_shadow)
464    << cast<NamedDecl>(PrevDecl)->getDeclName();
465  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
466  return;
467}
468
469/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
470/// the parameter D to reference the templated declaration and return a pointer
471/// to the template declaration. Otherwise, do nothing to D and return null.
472TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
473  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
474    D = Temp->getTemplatedDecl();
475    return Temp;
476  }
477  return 0;
478}
479
480ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
481                                             SourceLocation EllipsisLoc) const {
482  assert(Kind == Template &&
483         "Only template template arguments can be pack expansions here");
484  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
485         "Template template argument pack expansion without packs");
486  ParsedTemplateArgument Result(*this);
487  Result.EllipsisLoc = EllipsisLoc;
488  return Result;
489}
490
491static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
492                                            const ParsedTemplateArgument &Arg) {
493
494  switch (Arg.getKind()) {
495  case ParsedTemplateArgument::Type: {
496    TypeSourceInfo *DI;
497    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
498    if (!DI)
499      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
500    return TemplateArgumentLoc(TemplateArgument(T), DI);
501  }
502
503  case ParsedTemplateArgument::NonType: {
504    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
505    return TemplateArgumentLoc(TemplateArgument(E), E);
506  }
507
508  case ParsedTemplateArgument::Template: {
509    TemplateName Template = Arg.getAsTemplate().get();
510    TemplateArgument TArg;
511    if (Arg.getEllipsisLoc().isValid())
512      TArg = TemplateArgument(Template, Optional<unsigned int>());
513    else
514      TArg = Template;
515    return TemplateArgumentLoc(TArg,
516                               Arg.getScopeSpec().getWithLocInContext(
517                                                              SemaRef.Context),
518                               Arg.getLocation(),
519                               Arg.getEllipsisLoc());
520  }
521  }
522
523  llvm_unreachable("Unhandled parsed template argument");
524}
525
526/// \brief Translates template arguments as provided by the parser
527/// into template arguments used by semantic analysis.
528void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
529                                      TemplateArgumentListInfo &TemplateArgs) {
530 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
531   TemplateArgs.addArgument(translateTemplateArgument(*this,
532                                                      TemplateArgsIn[I]));
533}
534
535static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
536                                                 SourceLocation Loc,
537                                                 IdentifierInfo *Name) {
538  NamedDecl *PrevDecl = SemaRef.LookupSingleName(
539      S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForRedeclaration);
540  if (PrevDecl && PrevDecl->isTemplateParameter())
541    SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
542}
543
544/// ActOnTypeParameter - Called when a C++ template type parameter
545/// (e.g., "typename T") has been parsed. Typename specifies whether
546/// the keyword "typename" was used to declare the type parameter
547/// (otherwise, "class" was used), and KeyLoc is the location of the
548/// "class" or "typename" keyword. ParamName is the name of the
549/// parameter (NULL indicates an unnamed template parameter) and
550/// ParamNameLoc is the location of the parameter name (if any).
551/// If the type parameter has a default argument, it will be added
552/// later via ActOnTypeParameterDefault.
553Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
554                               SourceLocation EllipsisLoc,
555                               SourceLocation KeyLoc,
556                               IdentifierInfo *ParamName,
557                               SourceLocation ParamNameLoc,
558                               unsigned Depth, unsigned Position,
559                               SourceLocation EqualLoc,
560                               ParsedType DefaultArg) {
561  assert(S->isTemplateParamScope() &&
562         "Template type parameter not in template parameter scope!");
563  bool Invalid = false;
564
565  SourceLocation Loc = ParamNameLoc;
566  if (!ParamName)
567    Loc = KeyLoc;
568
569  TemplateTypeParmDecl *Param
570    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
571                                   KeyLoc, Loc, Depth, Position, ParamName,
572                                   Typename, Ellipsis);
573  Param->setAccess(AS_public);
574  if (Invalid)
575    Param->setInvalidDecl();
576
577  if (ParamName) {
578    maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
579
580    // Add the template parameter into the current scope.
581    S->AddDecl(Param);
582    IdResolver.AddDecl(Param);
583  }
584
585  // C++0x [temp.param]p9:
586  //   A default template-argument may be specified for any kind of
587  //   template-parameter that is not a template parameter pack.
588  if (DefaultArg && Ellipsis) {
589    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
590    DefaultArg = ParsedType();
591  }
592
593  // Handle the default argument, if provided.
594  if (DefaultArg) {
595    TypeSourceInfo *DefaultTInfo;
596    GetTypeFromParser(DefaultArg, &DefaultTInfo);
597
598    assert(DefaultTInfo && "expected source information for type");
599
600    // Check for unexpanded parameter packs.
601    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
602                                        UPPC_DefaultArgument))
603      return Param;
604
605    // Check the template argument itself.
606    if (CheckTemplateArgument(Param, DefaultTInfo)) {
607      Param->setInvalidDecl();
608      return Param;
609    }
610
611    Param->setDefaultArgument(DefaultTInfo, false);
612  }
613
614  return Param;
615}
616
617/// \brief Check that the type of a non-type template parameter is
618/// well-formed.
619///
620/// \returns the (possibly-promoted) parameter type if valid;
621/// otherwise, produces a diagnostic and returns a NULL type.
622QualType
623Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
624  // We don't allow variably-modified types as the type of non-type template
625  // parameters.
626  if (T->isVariablyModifiedType()) {
627    Diag(Loc, diag::err_variably_modified_nontype_template_param)
628      << T;
629    return QualType();
630  }
631
632  // C++ [temp.param]p4:
633  //
634  // A non-type template-parameter shall have one of the following
635  // (optionally cv-qualified) types:
636  //
637  //       -- integral or enumeration type,
638  if (T->isIntegralOrEnumerationType() ||
639      //   -- pointer to object or pointer to function,
640      T->isPointerType() ||
641      //   -- reference to object or reference to function,
642      T->isReferenceType() ||
643      //   -- pointer to member,
644      T->isMemberPointerType() ||
645      //   -- std::nullptr_t.
646      T->isNullPtrType() ||
647      // If T is a dependent type, we can't do the check now, so we
648      // assume that it is well-formed.
649      T->isDependentType()) {
650    // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
651    // are ignored when determining its type.
652    return T.getUnqualifiedType();
653  }
654
655  // C++ [temp.param]p8:
656  //
657  //   A non-type template-parameter of type "array of T" or
658  //   "function returning T" is adjusted to be of type "pointer to
659  //   T" or "pointer to function returning T", respectively.
660  else if (T->isArrayType())
661    // FIXME: Keep the type prior to promotion?
662    return Context.getArrayDecayedType(T);
663  else if (T->isFunctionType())
664    // FIXME: Keep the type prior to promotion?
665    return Context.getPointerType(T);
666
667  Diag(Loc, diag::err_template_nontype_parm_bad_type)
668    << T;
669
670  return QualType();
671}
672
673Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
674                                          unsigned Depth,
675                                          unsigned Position,
676                                          SourceLocation EqualLoc,
677                                          Expr *Default) {
678  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
679  QualType T = TInfo->getType();
680
681  assert(S->isTemplateParamScope() &&
682         "Non-type template parameter not in template parameter scope!");
683  bool Invalid = false;
684
685  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
686  if (T.isNull()) {
687    T = Context.IntTy; // Recover with an 'int' type.
688    Invalid = true;
689  }
690
691  IdentifierInfo *ParamName = D.getIdentifier();
692  bool IsParameterPack = D.hasEllipsis();
693  NonTypeTemplateParmDecl *Param
694    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
695                                      D.getLocStart(),
696                                      D.getIdentifierLoc(),
697                                      Depth, Position, ParamName, T,
698                                      IsParameterPack, TInfo);
699  Param->setAccess(AS_public);
700
701  if (Invalid)
702    Param->setInvalidDecl();
703
704  if (ParamName) {
705    maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
706                                         ParamName);
707
708    // Add the template parameter into the current scope.
709    S->AddDecl(Param);
710    IdResolver.AddDecl(Param);
711  }
712
713  // C++0x [temp.param]p9:
714  //   A default template-argument may be specified for any kind of
715  //   template-parameter that is not a template parameter pack.
716  if (Default && IsParameterPack) {
717    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
718    Default = 0;
719  }
720
721  // Check the well-formedness of the default template argument, if provided.
722  if (Default) {
723    // Check for unexpanded parameter packs.
724    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
725      return Param;
726
727    TemplateArgument Converted;
728    ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
729    if (DefaultRes.isInvalid()) {
730      Param->setInvalidDecl();
731      return Param;
732    }
733    Default = DefaultRes.take();
734
735    Param->setDefaultArgument(Default, false);
736  }
737
738  return Param;
739}
740
741/// ActOnTemplateTemplateParameter - Called when a C++ template template
742/// parameter (e.g. T in template <template \<typename> class T> class array)
743/// has been parsed. S is the current scope.
744Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
745                                           SourceLocation TmpLoc,
746                                           TemplateParameterList *Params,
747                                           SourceLocation EllipsisLoc,
748                                           IdentifierInfo *Name,
749                                           SourceLocation NameLoc,
750                                           unsigned Depth,
751                                           unsigned Position,
752                                           SourceLocation EqualLoc,
753                                           ParsedTemplateArgument Default) {
754  assert(S->isTemplateParamScope() &&
755         "Template template parameter not in template parameter scope!");
756
757  // Construct the parameter object.
758  bool IsParameterPack = EllipsisLoc.isValid();
759  TemplateTemplateParmDecl *Param =
760    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
761                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
762                                     Depth, Position, IsParameterPack,
763                                     Name, Params);
764  Param->setAccess(AS_public);
765
766  // If the template template parameter has a name, then link the identifier
767  // into the scope and lookup mechanisms.
768  if (Name) {
769    maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
770
771    S->AddDecl(Param);
772    IdResolver.AddDecl(Param);
773  }
774
775  if (Params->size() == 0) {
776    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
777    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
778    Param->setInvalidDecl();
779  }
780
781  // C++0x [temp.param]p9:
782  //   A default template-argument may be specified for any kind of
783  //   template-parameter that is not a template parameter pack.
784  if (IsParameterPack && !Default.isInvalid()) {
785    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
786    Default = ParsedTemplateArgument();
787  }
788
789  if (!Default.isInvalid()) {
790    // Check only that we have a template template argument. We don't want to
791    // try to check well-formedness now, because our template template parameter
792    // might have dependent types in its template parameters, which we wouldn't
793    // be able to match now.
794    //
795    // If none of the template template parameter's template arguments mention
796    // other template parameters, we could actually perform more checking here.
797    // However, it isn't worth doing.
798    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
799    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
800      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
801        << DefaultArg.getSourceRange();
802      return Param;
803    }
804
805    // Check for unexpanded parameter packs.
806    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
807                                        DefaultArg.getArgument().getAsTemplate(),
808                                        UPPC_DefaultArgument))
809      return Param;
810
811    Param->setDefaultArgument(DefaultArg, false);
812  }
813
814  return Param;
815}
816
817/// ActOnTemplateParameterList - Builds a TemplateParameterList that
818/// contains the template parameters in Params/NumParams.
819TemplateParameterList *
820Sema::ActOnTemplateParameterList(unsigned Depth,
821                                 SourceLocation ExportLoc,
822                                 SourceLocation TemplateLoc,
823                                 SourceLocation LAngleLoc,
824                                 Decl **Params, unsigned NumParams,
825                                 SourceLocation RAngleLoc) {
826  if (ExportLoc.isValid())
827    Diag(ExportLoc, diag::warn_template_export_unsupported);
828
829  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
830                                       (NamedDecl**)Params, NumParams,
831                                       RAngleLoc);
832}
833
834static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
835  if (SS.isSet())
836    T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
837}
838
839DeclResult
840Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
841                         SourceLocation KWLoc, CXXScopeSpec &SS,
842                         IdentifierInfo *Name, SourceLocation NameLoc,
843                         AttributeList *Attr,
844                         TemplateParameterList *TemplateParams,
845                         AccessSpecifier AS, SourceLocation ModulePrivateLoc,
846                         unsigned NumOuterTemplateParamLists,
847                         TemplateParameterList** OuterTemplateParamLists) {
848  assert(TemplateParams && TemplateParams->size() > 0 &&
849         "No template parameters");
850  assert(TUK != TUK_Reference && "Can only declare or define class templates");
851  bool Invalid = false;
852
853  // Check that we can declare a template here.
854  if (CheckTemplateDeclScope(S, TemplateParams))
855    return true;
856
857  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
858  assert(Kind != TTK_Enum && "can't build template of enumerated type");
859
860  // There is no such thing as an unnamed class template.
861  if (!Name) {
862    Diag(KWLoc, diag::err_template_unnamed_class);
863    return true;
864  }
865
866  // Find any previous declaration with this name. For a friend with no
867  // scope explicitly specified, we only look for tag declarations (per
868  // C++11 [basic.lookup.elab]p2).
869  DeclContext *SemanticContext;
870  LookupResult Previous(*this, Name, NameLoc,
871                        (SS.isEmpty() && TUK == TUK_Friend)
872                          ? LookupTagName : LookupOrdinaryName,
873                        ForRedeclaration);
874  if (SS.isNotEmpty() && !SS.isInvalid()) {
875    SemanticContext = computeDeclContext(SS, true);
876    if (!SemanticContext) {
877      // FIXME: Horrible, horrible hack! We can't currently represent this
878      // in the AST, and historically we have just ignored such friend
879      // class templates, so don't complain here.
880      if (TUK != TUK_Friend)
881        Diag(NameLoc, diag::err_template_qualified_declarator_no_match)
882          << SS.getScopeRep() << SS.getRange();
883      return true;
884    }
885
886    if (RequireCompleteDeclContext(SS, SemanticContext))
887      return true;
888
889    // If we're adding a template to a dependent context, we may need to
890    // rebuilding some of the types used within the template parameter list,
891    // now that we know what the current instantiation is.
892    if (SemanticContext->isDependentContext()) {
893      ContextRAII SavedContext(*this, SemanticContext);
894      if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
895        Invalid = true;
896    } else if (TUK != TUK_Friend && TUK != TUK_Reference)
897      diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
898
899    LookupQualifiedName(Previous, SemanticContext);
900  } else {
901    SemanticContext = CurContext;
902    LookupName(Previous, S);
903  }
904
905  if (Previous.isAmbiguous())
906    return true;
907
908  NamedDecl *PrevDecl = 0;
909  if (Previous.begin() != Previous.end())
910    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
911
912  // If there is a previous declaration with the same name, check
913  // whether this is a valid redeclaration.
914  ClassTemplateDecl *PrevClassTemplate
915    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
916
917  // We may have found the injected-class-name of a class template,
918  // class template partial specialization, or class template specialization.
919  // In these cases, grab the template that is being defined or specialized.
920  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
921      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
922    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
923    PrevClassTemplate
924      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
925    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
926      PrevClassTemplate
927        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
928            ->getSpecializedTemplate();
929    }
930  }
931
932  if (TUK == TUK_Friend) {
933    // C++ [namespace.memdef]p3:
934    //   [...] When looking for a prior declaration of a class or a function
935    //   declared as a friend, and when the name of the friend class or
936    //   function is neither a qualified name nor a template-id, scopes outside
937    //   the innermost enclosing namespace scope are not considered.
938    if (!SS.isSet()) {
939      DeclContext *OutermostContext = CurContext;
940      while (!OutermostContext->isFileContext())
941        OutermostContext = OutermostContext->getLookupParent();
942
943      if (PrevDecl &&
944          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
945           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
946        SemanticContext = PrevDecl->getDeclContext();
947      } else {
948        // Declarations in outer scopes don't matter. However, the outermost
949        // context we computed is the semantic context for our new
950        // declaration.
951        PrevDecl = PrevClassTemplate = 0;
952        SemanticContext = OutermostContext;
953
954        // Check that the chosen semantic context doesn't already contain a
955        // declaration of this name as a non-tag type.
956        LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
957                              ForRedeclaration);
958        DeclContext *LookupContext = SemanticContext;
959        while (LookupContext->isTransparentContext())
960          LookupContext = LookupContext->getLookupParent();
961        LookupQualifiedName(Previous, LookupContext);
962
963        if (Previous.isAmbiguous())
964          return true;
965
966        if (Previous.begin() != Previous.end())
967          PrevDecl = (*Previous.begin())->getUnderlyingDecl();
968      }
969    }
970  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
971    PrevDecl = PrevClassTemplate = 0;
972
973  if (PrevClassTemplate) {
974    // Ensure that the template parameter lists are compatible. Skip this check
975    // for a friend in a dependent context: the template parameter list itself
976    // could be dependent.
977    if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
978        !TemplateParameterListsAreEqual(TemplateParams,
979                                   PrevClassTemplate->getTemplateParameters(),
980                                        /*Complain=*/true,
981                                        TPL_TemplateMatch))
982      return true;
983
984    // C++ [temp.class]p4:
985    //   In a redeclaration, partial specialization, explicit
986    //   specialization or explicit instantiation of a class template,
987    //   the class-key shall agree in kind with the original class
988    //   template declaration (7.1.5.3).
989    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
990    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
991                                      TUK == TUK_Definition,  KWLoc, *Name)) {
992      Diag(KWLoc, diag::err_use_with_wrong_tag)
993        << Name
994        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
995      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
996      Kind = PrevRecordDecl->getTagKind();
997    }
998
999    // Check for redefinition of this class template.
1000    if (TUK == TUK_Definition) {
1001      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1002        Diag(NameLoc, diag::err_redefinition) << Name;
1003        Diag(Def->getLocation(), diag::note_previous_definition);
1004        // FIXME: Would it make sense to try to "forget" the previous
1005        // definition, as part of error recovery?
1006        return true;
1007      }
1008    }
1009  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
1010    // Maybe we will complain about the shadowed template parameter.
1011    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1012    // Just pretend that we didn't see the previous declaration.
1013    PrevDecl = 0;
1014  } else if (PrevDecl) {
1015    // C++ [temp]p5:
1016    //   A class template shall not have the same name as any other
1017    //   template, class, function, object, enumeration, enumerator,
1018    //   namespace, or type in the same scope (3.3), except as specified
1019    //   in (14.5.4).
1020    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1021    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1022    return true;
1023  }
1024
1025  // Check the template parameter list of this declaration, possibly
1026  // merging in the template parameter list from the previous class
1027  // template declaration. Skip this check for a friend in a dependent
1028  // context, because the template parameter list might be dependent.
1029  if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1030      CheckTemplateParameterList(
1031          TemplateParams,
1032          PrevClassTemplate ? PrevClassTemplate->getTemplateParameters() : 0,
1033          (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
1034           SemanticContext->isDependentContext())
1035              ? TPC_ClassTemplateMember
1036              : TUK == TUK_Friend ? TPC_FriendClassTemplate
1037                                  : TPC_ClassTemplate))
1038    Invalid = true;
1039
1040  if (SS.isSet()) {
1041    // If the name of the template was qualified, we must be defining the
1042    // template out-of-line.
1043    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1044      Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1045                                      : diag::err_member_decl_does_not_match)
1046        << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
1047      Invalid = true;
1048    }
1049  }
1050
1051  CXXRecordDecl *NewClass =
1052    CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1053                          PrevClassTemplate?
1054                            PrevClassTemplate->getTemplatedDecl() : 0,
1055                          /*DelayTypeCreation=*/true);
1056  SetNestedNameSpecifier(NewClass, SS);
1057  if (NumOuterTemplateParamLists > 0)
1058    NewClass->setTemplateParameterListsInfo(Context,
1059                                            NumOuterTemplateParamLists,
1060                                            OuterTemplateParamLists);
1061
1062  // Add alignment attributes if necessary; these attributes are checked when
1063  // the ASTContext lays out the structure.
1064  if (TUK == TUK_Definition) {
1065    AddAlignmentAttributesForRecord(NewClass);
1066    AddMsStructLayoutForRecord(NewClass);
1067  }
1068
1069  ClassTemplateDecl *NewTemplate
1070    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1071                                DeclarationName(Name), TemplateParams,
1072                                NewClass, PrevClassTemplate);
1073  NewClass->setDescribedClassTemplate(NewTemplate);
1074
1075  if (ModulePrivateLoc.isValid())
1076    NewTemplate->setModulePrivate();
1077
1078  // Build the type for the class template declaration now.
1079  QualType T = NewTemplate->getInjectedClassNameSpecialization();
1080  T = Context.getInjectedClassNameType(NewClass, T);
1081  assert(T->isDependentType() && "Class template type is not dependent?");
1082  (void)T;
1083
1084  // If we are providing an explicit specialization of a member that is a
1085  // class template, make a note of that.
1086  if (PrevClassTemplate &&
1087      PrevClassTemplate->getInstantiatedFromMemberTemplate())
1088    PrevClassTemplate->setMemberSpecialization();
1089
1090  // Set the access specifier.
1091  if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1092    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1093
1094  // Set the lexical context of these templates
1095  NewClass->setLexicalDeclContext(CurContext);
1096  NewTemplate->setLexicalDeclContext(CurContext);
1097
1098  if (TUK == TUK_Definition)
1099    NewClass->startDefinition();
1100
1101  if (Attr)
1102    ProcessDeclAttributeList(S, NewClass, Attr);
1103
1104  if (PrevClassTemplate)
1105    mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
1106
1107  AddPushedVisibilityAttribute(NewClass);
1108
1109  if (TUK != TUK_Friend)
1110    PushOnScopeChains(NewTemplate, S);
1111  else {
1112    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1113      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1114      NewClass->setAccess(PrevClassTemplate->getAccess());
1115    }
1116
1117    NewTemplate->setObjectOfFriendDecl();
1118
1119    // Friend templates are visible in fairly strange ways.
1120    if (!CurContext->isDependentContext()) {
1121      DeclContext *DC = SemanticContext->getRedeclContext();
1122      DC->makeDeclVisibleInContext(NewTemplate);
1123      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1124        PushOnScopeChains(NewTemplate, EnclosingScope,
1125                          /* AddToContext = */ false);
1126    }
1127
1128    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1129                                            NewClass->getLocation(),
1130                                            NewTemplate,
1131                                    /*FIXME:*/NewClass->getLocation());
1132    Friend->setAccess(AS_public);
1133    CurContext->addDecl(Friend);
1134  }
1135
1136  if (Invalid) {
1137    NewTemplate->setInvalidDecl();
1138    NewClass->setInvalidDecl();
1139  }
1140
1141  ActOnDocumentableDecl(NewTemplate);
1142
1143  return NewTemplate;
1144}
1145
1146/// \brief Diagnose the presence of a default template argument on a
1147/// template parameter, which is ill-formed in certain contexts.
1148///
1149/// \returns true if the default template argument should be dropped.
1150static bool DiagnoseDefaultTemplateArgument(Sema &S,
1151                                            Sema::TemplateParamListContext TPC,
1152                                            SourceLocation ParamLoc,
1153                                            SourceRange DefArgRange) {
1154  switch (TPC) {
1155  case Sema::TPC_ClassTemplate:
1156  case Sema::TPC_VarTemplate:
1157  case Sema::TPC_TypeAliasTemplate:
1158    return false;
1159
1160  case Sema::TPC_FunctionTemplate:
1161  case Sema::TPC_FriendFunctionTemplateDefinition:
1162    // C++ [temp.param]p9:
1163    //   A default template-argument shall not be specified in a
1164    //   function template declaration or a function template
1165    //   definition [...]
1166    //   If a friend function template declaration specifies a default
1167    //   template-argument, that declaration shall be a definition and shall be
1168    //   the only declaration of the function template in the translation unit.
1169    // (C++98/03 doesn't have this wording; see DR226).
1170    S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
1171         diag::warn_cxx98_compat_template_parameter_default_in_function_template
1172           : diag::ext_template_parameter_default_in_function_template)
1173      << DefArgRange;
1174    return false;
1175
1176  case Sema::TPC_ClassTemplateMember:
1177    // C++0x [temp.param]p9:
1178    //   A default template-argument shall not be specified in the
1179    //   template-parameter-lists of the definition of a member of a
1180    //   class template that appears outside of the member's class.
1181    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1182      << DefArgRange;
1183    return true;
1184
1185  case Sema::TPC_FriendClassTemplate:
1186  case Sema::TPC_FriendFunctionTemplate:
1187    // C++ [temp.param]p9:
1188    //   A default template-argument shall not be specified in a
1189    //   friend template declaration.
1190    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1191      << DefArgRange;
1192    return true;
1193
1194    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1195    // for friend function templates if there is only a single
1196    // declaration (and it is a definition). Strange!
1197  }
1198
1199  llvm_unreachable("Invalid TemplateParamListContext!");
1200}
1201
1202/// \brief Check for unexpanded parameter packs within the template parameters
1203/// of a template template parameter, recursively.
1204static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1205                                             TemplateTemplateParmDecl *TTP) {
1206  // A template template parameter which is a parameter pack is also a pack
1207  // expansion.
1208  if (TTP->isParameterPack())
1209    return false;
1210
1211  TemplateParameterList *Params = TTP->getTemplateParameters();
1212  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1213    NamedDecl *P = Params->getParam(I);
1214    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1215      if (!NTTP->isParameterPack() &&
1216          S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1217                                            NTTP->getTypeSourceInfo(),
1218                                      Sema::UPPC_NonTypeTemplateParameterType))
1219        return true;
1220
1221      continue;
1222    }
1223
1224    if (TemplateTemplateParmDecl *InnerTTP
1225                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1226      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1227        return true;
1228  }
1229
1230  return false;
1231}
1232
1233/// \brief Checks the validity of a template parameter list, possibly
1234/// considering the template parameter list from a previous
1235/// declaration.
1236///
1237/// If an "old" template parameter list is provided, it must be
1238/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1239/// template parameter list.
1240///
1241/// \param NewParams Template parameter list for a new template
1242/// declaration. This template parameter list will be updated with any
1243/// default arguments that are carried through from the previous
1244/// template parameter list.
1245///
1246/// \param OldParams If provided, template parameter list from a
1247/// previous declaration of the same template. Default template
1248/// arguments will be merged from the old template parameter list to
1249/// the new template parameter list.
1250///
1251/// \param TPC Describes the context in which we are checking the given
1252/// template parameter list.
1253///
1254/// \returns true if an error occurred, false otherwise.
1255bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1256                                      TemplateParameterList *OldParams,
1257                                      TemplateParamListContext TPC) {
1258  bool Invalid = false;
1259
1260  // C++ [temp.param]p10:
1261  //   The set of default template-arguments available for use with a
1262  //   template declaration or definition is obtained by merging the
1263  //   default arguments from the definition (if in scope) and all
1264  //   declarations in scope in the same way default function
1265  //   arguments are (8.3.6).
1266  bool SawDefaultArgument = false;
1267  SourceLocation PreviousDefaultArgLoc;
1268
1269  // Dummy initialization to avoid warnings.
1270  TemplateParameterList::iterator OldParam = NewParams->end();
1271  if (OldParams)
1272    OldParam = OldParams->begin();
1273
1274  bool RemoveDefaultArguments = false;
1275  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1276                                    NewParamEnd = NewParams->end();
1277       NewParam != NewParamEnd; ++NewParam) {
1278    // Variables used to diagnose redundant default arguments
1279    bool RedundantDefaultArg = false;
1280    SourceLocation OldDefaultLoc;
1281    SourceLocation NewDefaultLoc;
1282
1283    // Variable used to diagnose missing default arguments
1284    bool MissingDefaultArg = false;
1285
1286    // Variable used to diagnose non-final parameter packs
1287    bool SawParameterPack = false;
1288
1289    if (TemplateTypeParmDecl *NewTypeParm
1290          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1291      // Check the presence of a default argument here.
1292      if (NewTypeParm->hasDefaultArgument() &&
1293          DiagnoseDefaultTemplateArgument(*this, TPC,
1294                                          NewTypeParm->getLocation(),
1295               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1296                                                       .getSourceRange()))
1297        NewTypeParm->removeDefaultArgument();
1298
1299      // Merge default arguments for template type parameters.
1300      TemplateTypeParmDecl *OldTypeParm
1301          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1302
1303      if (NewTypeParm->isParameterPack()) {
1304        assert(!NewTypeParm->hasDefaultArgument() &&
1305               "Parameter packs can't have a default argument!");
1306        SawParameterPack = true;
1307      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1308                 NewTypeParm->hasDefaultArgument()) {
1309        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1310        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1311        SawDefaultArgument = true;
1312        RedundantDefaultArg = true;
1313        PreviousDefaultArgLoc = NewDefaultLoc;
1314      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1315        // Merge the default argument from the old declaration to the
1316        // new declaration.
1317        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1318                                        true);
1319        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1320      } else if (NewTypeParm->hasDefaultArgument()) {
1321        SawDefaultArgument = true;
1322        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1323      } else if (SawDefaultArgument)
1324        MissingDefaultArg = true;
1325    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1326               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1327      // Check for unexpanded parameter packs.
1328      if (!NewNonTypeParm->isParameterPack() &&
1329          DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1330                                          NewNonTypeParm->getTypeSourceInfo(),
1331                                          UPPC_NonTypeTemplateParameterType)) {
1332        Invalid = true;
1333        continue;
1334      }
1335
1336      // Check the presence of a default argument here.
1337      if (NewNonTypeParm->hasDefaultArgument() &&
1338          DiagnoseDefaultTemplateArgument(*this, TPC,
1339                                          NewNonTypeParm->getLocation(),
1340                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1341        NewNonTypeParm->removeDefaultArgument();
1342      }
1343
1344      // Merge default arguments for non-type template parameters
1345      NonTypeTemplateParmDecl *OldNonTypeParm
1346        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1347      if (NewNonTypeParm->isParameterPack()) {
1348        assert(!NewNonTypeParm->hasDefaultArgument() &&
1349               "Parameter packs can't have a default argument!");
1350        if (!NewNonTypeParm->isPackExpansion())
1351          SawParameterPack = true;
1352      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1353                 NewNonTypeParm->hasDefaultArgument()) {
1354        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1355        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1356        SawDefaultArgument = true;
1357        RedundantDefaultArg = true;
1358        PreviousDefaultArgLoc = NewDefaultLoc;
1359      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1360        // Merge the default argument from the old declaration to the
1361        // new declaration.
1362        // FIXME: We need to create a new kind of "default argument"
1363        // expression that points to a previous non-type template
1364        // parameter.
1365        NewNonTypeParm->setDefaultArgument(
1366                                         OldNonTypeParm->getDefaultArgument(),
1367                                         /*Inherited=*/ true);
1368        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1369      } else if (NewNonTypeParm->hasDefaultArgument()) {
1370        SawDefaultArgument = true;
1371        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1372      } else if (SawDefaultArgument)
1373        MissingDefaultArg = true;
1374    } else {
1375      TemplateTemplateParmDecl *NewTemplateParm
1376        = cast<TemplateTemplateParmDecl>(*NewParam);
1377
1378      // Check for unexpanded parameter packs, recursively.
1379      if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1380        Invalid = true;
1381        continue;
1382      }
1383
1384      // Check the presence of a default argument here.
1385      if (NewTemplateParm->hasDefaultArgument() &&
1386          DiagnoseDefaultTemplateArgument(*this, TPC,
1387                                          NewTemplateParm->getLocation(),
1388                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1389        NewTemplateParm->removeDefaultArgument();
1390
1391      // Merge default arguments for template template parameters
1392      TemplateTemplateParmDecl *OldTemplateParm
1393        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1394      if (NewTemplateParm->isParameterPack()) {
1395        assert(!NewTemplateParm->hasDefaultArgument() &&
1396               "Parameter packs can't have a default argument!");
1397        if (!NewTemplateParm->isPackExpansion())
1398          SawParameterPack = true;
1399      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1400          NewTemplateParm->hasDefaultArgument()) {
1401        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1402        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1403        SawDefaultArgument = true;
1404        RedundantDefaultArg = true;
1405        PreviousDefaultArgLoc = NewDefaultLoc;
1406      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1407        // Merge the default argument from the old declaration to the
1408        // new declaration.
1409        // FIXME: We need to create a new kind of "default argument" expression
1410        // that points to a previous template template parameter.
1411        NewTemplateParm->setDefaultArgument(
1412                                          OldTemplateParm->getDefaultArgument(),
1413                                          /*Inherited=*/ true);
1414        PreviousDefaultArgLoc
1415          = OldTemplateParm->getDefaultArgument().getLocation();
1416      } else if (NewTemplateParm->hasDefaultArgument()) {
1417        SawDefaultArgument = true;
1418        PreviousDefaultArgLoc
1419          = NewTemplateParm->getDefaultArgument().getLocation();
1420      } else if (SawDefaultArgument)
1421        MissingDefaultArg = true;
1422    }
1423
1424    // C++11 [temp.param]p11:
1425    //   If a template parameter of a primary class template or alias template
1426    //   is a template parameter pack, it shall be the last template parameter.
1427    if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1428        (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
1429         TPC == TPC_TypeAliasTemplate)) {
1430      Diag((*NewParam)->getLocation(),
1431           diag::err_template_param_pack_must_be_last_template_parameter);
1432      Invalid = true;
1433    }
1434
1435    if (RedundantDefaultArg) {
1436      // C++ [temp.param]p12:
1437      //   A template-parameter shall not be given default arguments
1438      //   by two different declarations in the same scope.
1439      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1440      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1441      Invalid = true;
1442    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1443      // C++ [temp.param]p11:
1444      //   If a template-parameter of a class template has a default
1445      //   template-argument, each subsequent template-parameter shall either
1446      //   have a default template-argument supplied or be a template parameter
1447      //   pack.
1448      Diag((*NewParam)->getLocation(),
1449           diag::err_template_param_default_arg_missing);
1450      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1451      Invalid = true;
1452      RemoveDefaultArguments = true;
1453    }
1454
1455    // If we have an old template parameter list that we're merging
1456    // in, move on to the next parameter.
1457    if (OldParams)
1458      ++OldParam;
1459  }
1460
1461  // We were missing some default arguments at the end of the list, so remove
1462  // all of the default arguments.
1463  if (RemoveDefaultArguments) {
1464    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1465                                      NewParamEnd = NewParams->end();
1466         NewParam != NewParamEnd; ++NewParam) {
1467      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1468        TTP->removeDefaultArgument();
1469      else if (NonTypeTemplateParmDecl *NTTP
1470                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1471        NTTP->removeDefaultArgument();
1472      else
1473        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1474    }
1475  }
1476
1477  return Invalid;
1478}
1479
1480namespace {
1481
1482/// A class which looks for a use of a certain level of template
1483/// parameter.
1484struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1485  typedef RecursiveASTVisitor<DependencyChecker> super;
1486
1487  unsigned Depth;
1488  bool Match;
1489
1490  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1491    NamedDecl *ND = Params->getParam(0);
1492    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1493      Depth = PD->getDepth();
1494    } else if (NonTypeTemplateParmDecl *PD =
1495                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1496      Depth = PD->getDepth();
1497    } else {
1498      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1499    }
1500  }
1501
1502  bool Matches(unsigned ParmDepth) {
1503    if (ParmDepth >= Depth) {
1504      Match = true;
1505      return true;
1506    }
1507    return false;
1508  }
1509
1510  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1511    return !Matches(T->getDepth());
1512  }
1513
1514  bool TraverseTemplateName(TemplateName N) {
1515    if (TemplateTemplateParmDecl *PD =
1516          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1517      if (Matches(PD->getDepth())) return false;
1518    return super::TraverseTemplateName(N);
1519  }
1520
1521  bool VisitDeclRefExpr(DeclRefExpr *E) {
1522    if (NonTypeTemplateParmDecl *PD =
1523          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1524      if (PD->getDepth() == Depth) {
1525        Match = true;
1526        return false;
1527      }
1528    }
1529    return super::VisitDeclRefExpr(E);
1530  }
1531
1532  bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1533    return TraverseType(T->getInjectedSpecializationType());
1534  }
1535};
1536}
1537
1538/// Determines whether a given type depends on the given parameter
1539/// list.
1540static bool
1541DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1542  DependencyChecker Checker(Params);
1543  Checker.TraverseType(T);
1544  return Checker.Match;
1545}
1546
1547// Find the source range corresponding to the named type in the given
1548// nested-name-specifier, if any.
1549static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1550                                                       QualType T,
1551                                                       const CXXScopeSpec &SS) {
1552  NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1553  while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1554    if (const Type *CurType = NNS->getAsType()) {
1555      if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1556        return NNSLoc.getTypeLoc().getSourceRange();
1557    } else
1558      break;
1559
1560    NNSLoc = NNSLoc.getPrefix();
1561  }
1562
1563  return SourceRange();
1564}
1565
1566/// \brief Match the given template parameter lists to the given scope
1567/// specifier, returning the template parameter list that applies to the
1568/// name.
1569///
1570/// \param DeclStartLoc the start of the declaration that has a scope
1571/// specifier or a template parameter list.
1572///
1573/// \param DeclLoc The location of the declaration itself.
1574///
1575/// \param SS the scope specifier that will be matched to the given template
1576/// parameter lists. This scope specifier precedes a qualified name that is
1577/// being declared.
1578///
1579/// \param ParamLists the template parameter lists, from the outermost to the
1580/// innermost template parameter lists.
1581///
1582/// \param IsFriend Whether to apply the slightly different rules for
1583/// matching template parameters to scope specifiers in friend
1584/// declarations.
1585///
1586/// \param IsExplicitSpecialization will be set true if the entity being
1587/// declared is an explicit specialization, false otherwise.
1588///
1589/// \returns the template parameter list, if any, that corresponds to the
1590/// name that is preceded by the scope specifier @p SS. This template
1591/// parameter list may have template parameters (if we're declaring a
1592/// template) or may have no template parameters (if we're declaring a
1593/// template specialization), or may be NULL (if what we're declaring isn't
1594/// itself a template).
1595TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
1596    SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
1597    ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
1598    bool &IsExplicitSpecialization, bool &Invalid) {
1599  IsExplicitSpecialization = false;
1600  Invalid = false;
1601
1602  // The sequence of nested types to which we will match up the template
1603  // parameter lists. We first build this list by starting with the type named
1604  // by the nested-name-specifier and walking out until we run out of types.
1605  SmallVector<QualType, 4> NestedTypes;
1606  QualType T;
1607  if (SS.getScopeRep()) {
1608    if (CXXRecordDecl *Record
1609              = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1610      T = Context.getTypeDeclType(Record);
1611    else
1612      T = QualType(SS.getScopeRep()->getAsType(), 0);
1613  }
1614
1615  // If we found an explicit specialization that prevents us from needing
1616  // 'template<>' headers, this will be set to the location of that
1617  // explicit specialization.
1618  SourceLocation ExplicitSpecLoc;
1619
1620  while (!T.isNull()) {
1621    NestedTypes.push_back(T);
1622
1623    // Retrieve the parent of a record type.
1624    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1625      // If this type is an explicit specialization, we're done.
1626      if (ClassTemplateSpecializationDecl *Spec
1627          = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1628        if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1629            Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1630          ExplicitSpecLoc = Spec->getLocation();
1631          break;
1632        }
1633      } else if (Record->getTemplateSpecializationKind()
1634                                                == TSK_ExplicitSpecialization) {
1635        ExplicitSpecLoc = Record->getLocation();
1636        break;
1637      }
1638
1639      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1640        T = Context.getTypeDeclType(Parent);
1641      else
1642        T = QualType();
1643      continue;
1644    }
1645
1646    if (const TemplateSpecializationType *TST
1647                                     = T->getAs<TemplateSpecializationType>()) {
1648      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1649        if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1650          T = Context.getTypeDeclType(Parent);
1651        else
1652          T = QualType();
1653        continue;
1654      }
1655    }
1656
1657    // Look one step prior in a dependent template specialization type.
1658    if (const DependentTemplateSpecializationType *DependentTST
1659                          = T->getAs<DependentTemplateSpecializationType>()) {
1660      if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1661        T = QualType(NNS->getAsType(), 0);
1662      else
1663        T = QualType();
1664      continue;
1665    }
1666
1667    // Look one step prior in a dependent name type.
1668    if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1669      if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1670        T = QualType(NNS->getAsType(), 0);
1671      else
1672        T = QualType();
1673      continue;
1674    }
1675
1676    // Retrieve the parent of an enumeration type.
1677    if (const EnumType *EnumT = T->getAs<EnumType>()) {
1678      // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1679      // check here.
1680      EnumDecl *Enum = EnumT->getDecl();
1681
1682      // Get to the parent type.
1683      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1684        T = Context.getTypeDeclType(Parent);
1685      else
1686        T = QualType();
1687      continue;
1688    }
1689
1690    T = QualType();
1691  }
1692  // Reverse the nested types list, since we want to traverse from the outermost
1693  // to the innermost while checking template-parameter-lists.
1694  std::reverse(NestedTypes.begin(), NestedTypes.end());
1695
1696  // C++0x [temp.expl.spec]p17:
1697  //   A member or a member template may be nested within many
1698  //   enclosing class templates. In an explicit specialization for
1699  //   such a member, the member declaration shall be preceded by a
1700  //   template<> for each enclosing class template that is
1701  //   explicitly specialized.
1702  bool SawNonEmptyTemplateParameterList = false;
1703  unsigned ParamIdx = 0;
1704  for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1705       ++TypeIdx) {
1706    T = NestedTypes[TypeIdx];
1707
1708    // Whether we expect a 'template<>' header.
1709    bool NeedEmptyTemplateHeader = false;
1710
1711    // Whether we expect a template header with parameters.
1712    bool NeedNonemptyTemplateHeader = false;
1713
1714    // For a dependent type, the set of template parameters that we
1715    // expect to see.
1716    TemplateParameterList *ExpectedTemplateParams = 0;
1717
1718    // C++0x [temp.expl.spec]p15:
1719    //   A member or a member template may be nested within many enclosing
1720    //   class templates. In an explicit specialization for such a member, the
1721    //   member declaration shall be preceded by a template<> for each
1722    //   enclosing class template that is explicitly specialized.
1723    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1724      if (ClassTemplatePartialSpecializationDecl *Partial
1725            = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1726        ExpectedTemplateParams = Partial->getTemplateParameters();
1727        NeedNonemptyTemplateHeader = true;
1728      } else if (Record->isDependentType()) {
1729        if (Record->getDescribedClassTemplate()) {
1730          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1731                                                      ->getTemplateParameters();
1732          NeedNonemptyTemplateHeader = true;
1733        }
1734      } else if (ClassTemplateSpecializationDecl *Spec
1735                     = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1736        // C++0x [temp.expl.spec]p4:
1737        //   Members of an explicitly specialized class template are defined
1738        //   in the same manner as members of normal classes, and not using
1739        //   the template<> syntax.
1740        if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1741          NeedEmptyTemplateHeader = true;
1742        else
1743          continue;
1744      } else if (Record->getTemplateSpecializationKind()) {
1745        if (Record->getTemplateSpecializationKind()
1746                                                != TSK_ExplicitSpecialization &&
1747            TypeIdx == NumTypes - 1)
1748          IsExplicitSpecialization = true;
1749
1750        continue;
1751      }
1752    } else if (const TemplateSpecializationType *TST
1753                                     = T->getAs<TemplateSpecializationType>()) {
1754      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1755        ExpectedTemplateParams = Template->getTemplateParameters();
1756        NeedNonemptyTemplateHeader = true;
1757      }
1758    } else if (T->getAs<DependentTemplateSpecializationType>()) {
1759      // FIXME:  We actually could/should check the template arguments here
1760      // against the corresponding template parameter list.
1761      NeedNonemptyTemplateHeader = false;
1762    }
1763
1764    // C++ [temp.expl.spec]p16:
1765    //   In an explicit specialization declaration for a member of a class
1766    //   template or a member template that ap- pears in namespace scope, the
1767    //   member template and some of its enclosing class templates may remain
1768    //   unspecialized, except that the declaration shall not explicitly
1769    //   specialize a class member template if its en- closing class templates
1770    //   are not explicitly specialized as well.
1771    if (ParamIdx < ParamLists.size()) {
1772      if (ParamLists[ParamIdx]->size() == 0) {
1773        if (SawNonEmptyTemplateParameterList) {
1774          Diag(DeclLoc, diag::err_specialize_member_of_template)
1775            << ParamLists[ParamIdx]->getSourceRange();
1776          Invalid = true;
1777          IsExplicitSpecialization = false;
1778          return 0;
1779        }
1780      } else
1781        SawNonEmptyTemplateParameterList = true;
1782    }
1783
1784    if (NeedEmptyTemplateHeader) {
1785      // If we're on the last of the types, and we need a 'template<>' header
1786      // here, then it's an explicit specialization.
1787      if (TypeIdx == NumTypes - 1)
1788        IsExplicitSpecialization = true;
1789
1790      if (ParamIdx < ParamLists.size()) {
1791        if (ParamLists[ParamIdx]->size() > 0) {
1792          // The header has template parameters when it shouldn't. Complain.
1793          Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1794               diag::err_template_param_list_matches_nontemplate)
1795            << T
1796            << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1797                           ParamLists[ParamIdx]->getRAngleLoc())
1798            << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1799          Invalid = true;
1800          return 0;
1801        }
1802
1803        // Consume this template header.
1804        ++ParamIdx;
1805        continue;
1806      }
1807
1808      if (!IsFriend) {
1809        // We don't have a template header, but we should.
1810        SourceLocation ExpectedTemplateLoc;
1811        if (!ParamLists.empty())
1812          ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1813        else
1814          ExpectedTemplateLoc = DeclStartLoc;
1815
1816        Diag(DeclLoc, diag::err_template_spec_needs_header)
1817          << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
1818          << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1819      }
1820
1821      continue;
1822    }
1823
1824    if (NeedNonemptyTemplateHeader) {
1825      // In friend declarations we can have template-ids which don't
1826      // depend on the corresponding template parameter lists.  But
1827      // assume that empty parameter lists are supposed to match this
1828      // template-id.
1829      if (IsFriend && T->isDependentType()) {
1830        if (ParamIdx < ParamLists.size() &&
1831            DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1832          ExpectedTemplateParams = 0;
1833        else
1834          continue;
1835      }
1836
1837      if (ParamIdx < ParamLists.size()) {
1838        // Check the template parameter list, if we can.
1839        if (ExpectedTemplateParams &&
1840            !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1841                                            ExpectedTemplateParams,
1842                                            true, TPL_TemplateMatch))
1843          Invalid = true;
1844
1845        if (!Invalid &&
1846            CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1847                                       TPC_ClassTemplateMember))
1848          Invalid = true;
1849
1850        ++ParamIdx;
1851        continue;
1852      }
1853
1854      Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1855        << T
1856        << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1857      Invalid = true;
1858      continue;
1859    }
1860  }
1861
1862  // If there were at least as many template-ids as there were template
1863  // parameter lists, then there are no template parameter lists remaining for
1864  // the declaration itself.
1865  if (ParamIdx >= ParamLists.size())
1866    return 0;
1867
1868  // If there were too many template parameter lists, complain about that now.
1869  if (ParamIdx < ParamLists.size() - 1) {
1870    bool HasAnyExplicitSpecHeader = false;
1871    bool AllExplicitSpecHeaders = true;
1872    for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
1873      if (ParamLists[I]->size() == 0)
1874        HasAnyExplicitSpecHeader = true;
1875      else
1876        AllExplicitSpecHeaders = false;
1877    }
1878
1879    Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1880         AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
1881                                : diag::err_template_spec_extra_headers)
1882        << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1883                       ParamLists[ParamLists.size() - 2]->getRAngleLoc());
1884
1885    // If there was a specialization somewhere, such that 'template<>' is
1886    // not required, and there were any 'template<>' headers, note where the
1887    // specialization occurred.
1888    if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1889      Diag(ExplicitSpecLoc,
1890           diag::note_explicit_template_spec_does_not_need_header)
1891        << NestedTypes.back();
1892
1893    // We have a template parameter list with no corresponding scope, which
1894    // means that the resulting template declaration can't be instantiated
1895    // properly (we'll end up with dependent nodes when we shouldn't).
1896    if (!AllExplicitSpecHeaders)
1897      Invalid = true;
1898  }
1899
1900  // C++ [temp.expl.spec]p16:
1901  //   In an explicit specialization declaration for a member of a class
1902  //   template or a member template that ap- pears in namespace scope, the
1903  //   member template and some of its enclosing class templates may remain
1904  //   unspecialized, except that the declaration shall not explicitly
1905  //   specialize a class member template if its en- closing class templates
1906  //   are not explicitly specialized as well.
1907  if (ParamLists.back()->size() == 0 && SawNonEmptyTemplateParameterList) {
1908    Diag(DeclLoc, diag::err_specialize_member_of_template)
1909      << ParamLists[ParamIdx]->getSourceRange();
1910    Invalid = true;
1911    IsExplicitSpecialization = false;
1912    return 0;
1913  }
1914
1915  // Return the last template parameter list, which corresponds to the
1916  // entity being declared.
1917  return ParamLists.back();
1918}
1919
1920void Sema::NoteAllFoundTemplates(TemplateName Name) {
1921  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1922    Diag(Template->getLocation(), diag::note_template_declared_here)
1923        << (isa<FunctionTemplateDecl>(Template)
1924                ? 0
1925                : isa<ClassTemplateDecl>(Template)
1926                      ? 1
1927                      : isa<VarTemplateDecl>(Template)
1928                            ? 2
1929                            : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
1930        << Template->getDeclName();
1931    return;
1932  }
1933
1934  if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1935    for (OverloadedTemplateStorage::iterator I = OST->begin(),
1936                                          IEnd = OST->end();
1937         I != IEnd; ++I)
1938      Diag((*I)->getLocation(), diag::note_template_declared_here)
1939        << 0 << (*I)->getDeclName();
1940
1941    return;
1942  }
1943}
1944
1945QualType Sema::CheckTemplateIdType(TemplateName Name,
1946                                   SourceLocation TemplateLoc,
1947                                   TemplateArgumentListInfo &TemplateArgs) {
1948  DependentTemplateName *DTN
1949    = Name.getUnderlying().getAsDependentTemplateName();
1950  if (DTN && DTN->isIdentifier())
1951    // When building a template-id where the template-name is dependent,
1952    // assume the template is a type template. Either our assumption is
1953    // correct, or the code is ill-formed and will be diagnosed when the
1954    // dependent name is substituted.
1955    return Context.getDependentTemplateSpecializationType(ETK_None,
1956                                                          DTN->getQualifier(),
1957                                                          DTN->getIdentifier(),
1958                                                          TemplateArgs);
1959
1960  TemplateDecl *Template = Name.getAsTemplateDecl();
1961  if (!Template || isa<FunctionTemplateDecl>(Template)) {
1962    // We might have a substituted template template parameter pack. If so,
1963    // build a template specialization type for it.
1964    if (Name.getAsSubstTemplateTemplateParmPack())
1965      return Context.getTemplateSpecializationType(Name, TemplateArgs);
1966
1967    Diag(TemplateLoc, diag::err_template_id_not_a_type)
1968      << Name;
1969    NoteAllFoundTemplates(Name);
1970    return QualType();
1971  }
1972
1973  // Check that the template argument list is well-formed for this
1974  // template.
1975  SmallVector<TemplateArgument, 4> Converted;
1976  bool ExpansionIntoFixedList = false;
1977  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1978                                false, Converted, &ExpansionIntoFixedList))
1979    return QualType();
1980
1981  QualType CanonType;
1982
1983  bool InstantiationDependent = false;
1984  TypeAliasTemplateDecl *AliasTemplate = 0;
1985  if (!ExpansionIntoFixedList &&
1986      (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) {
1987    // Find the canonical type for this type alias template specialization.
1988    TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
1989    if (Pattern->isInvalidDecl())
1990      return QualType();
1991
1992    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1993                                      Converted.data(), Converted.size());
1994
1995    // Only substitute for the innermost template argument list.
1996    MultiLevelTemplateArgumentList TemplateArgLists;
1997    TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
1998    unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
1999    for (unsigned I = 0; I < Depth; ++I)
2000      TemplateArgLists.addOuterTemplateArguments(None);
2001
2002    LocalInstantiationScope Scope(*this);
2003    InstantiatingTemplate Inst(*this, TemplateLoc, Template);
2004    if (Inst.isInvalid())
2005      return QualType();
2006
2007    CanonType = SubstType(Pattern->getUnderlyingType(),
2008                          TemplateArgLists, AliasTemplate->getLocation(),
2009                          AliasTemplate->getDeclName());
2010    if (CanonType.isNull())
2011      return QualType();
2012  } else if (Name.isDependent() ||
2013             TemplateSpecializationType::anyDependentTemplateArguments(
2014               TemplateArgs, InstantiationDependent)) {
2015    // This class template specialization is a dependent
2016    // type. Therefore, its canonical type is another class template
2017    // specialization type that contains all of the converted
2018    // arguments in canonical form. This ensures that, e.g., A<T> and
2019    // A<T, T> have identical types when A is declared as:
2020    //
2021    //   template<typename T, typename U = T> struct A;
2022    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
2023    CanonType = Context.getTemplateSpecializationType(CanonName,
2024                                                      Converted.data(),
2025                                                      Converted.size());
2026
2027    // FIXME: CanonType is not actually the canonical type, and unfortunately
2028    // it is a TemplateSpecializationType that we will never use again.
2029    // In the future, we need to teach getTemplateSpecializationType to only
2030    // build the canonical type and return that to us.
2031    CanonType = Context.getCanonicalType(CanonType);
2032
2033    // This might work out to be a current instantiation, in which
2034    // case the canonical type needs to be the InjectedClassNameType.
2035    //
2036    // TODO: in theory this could be a simple hashtable lookup; most
2037    // changes to CurContext don't change the set of current
2038    // instantiations.
2039    if (isa<ClassTemplateDecl>(Template)) {
2040      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
2041        // If we get out to a namespace, we're done.
2042        if (Ctx->isFileContext()) break;
2043
2044        // If this isn't a record, keep looking.
2045        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
2046        if (!Record) continue;
2047
2048        // Look for one of the two cases with InjectedClassNameTypes
2049        // and check whether it's the same template.
2050        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
2051            !Record->getDescribedClassTemplate())
2052          continue;
2053
2054        // Fetch the injected class name type and check whether its
2055        // injected type is equal to the type we just built.
2056        QualType ICNT = Context.getTypeDeclType(Record);
2057        QualType Injected = cast<InjectedClassNameType>(ICNT)
2058          ->getInjectedSpecializationType();
2059
2060        if (CanonType != Injected->getCanonicalTypeInternal())
2061          continue;
2062
2063        // If so, the canonical type of this TST is the injected
2064        // class name type of the record we just found.
2065        assert(ICNT.isCanonical());
2066        CanonType = ICNT;
2067        break;
2068      }
2069    }
2070  } else if (ClassTemplateDecl *ClassTemplate
2071               = dyn_cast<ClassTemplateDecl>(Template)) {
2072    // Find the class template specialization declaration that
2073    // corresponds to these arguments.
2074    void *InsertPos = 0;
2075    ClassTemplateSpecializationDecl *Decl
2076      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
2077                                          InsertPos);
2078    if (!Decl) {
2079      // This is the first time we have referenced this class template
2080      // specialization. Create the canonical declaration and add it to
2081      // the set of specializations.
2082      Decl = ClassTemplateSpecializationDecl::Create(Context,
2083                            ClassTemplate->getTemplatedDecl()->getTagKind(),
2084                                                ClassTemplate->getDeclContext(),
2085                            ClassTemplate->getTemplatedDecl()->getLocStart(),
2086                                                ClassTemplate->getLocation(),
2087                                                     ClassTemplate,
2088                                                     Converted.data(),
2089                                                     Converted.size(), 0);
2090      ClassTemplate->AddSpecialization(Decl, InsertPos);
2091      if (ClassTemplate->isOutOfLine())
2092        Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
2093    }
2094
2095    // Diagnose uses of this specialization.
2096    (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
2097
2098    CanonType = Context.getTypeDeclType(Decl);
2099    assert(isa<RecordType>(CanonType) &&
2100           "type of non-dependent specialization is not a RecordType");
2101  }
2102
2103  // Build the fully-sugared type for this class template
2104  // specialization, which refers back to the class template
2105  // specialization we created or found.
2106  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2107}
2108
2109TypeResult
2110Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
2111                          TemplateTy TemplateD, SourceLocation TemplateLoc,
2112                          SourceLocation LAngleLoc,
2113                          ASTTemplateArgsPtr TemplateArgsIn,
2114                          SourceLocation RAngleLoc,
2115                          bool IsCtorOrDtorName) {
2116  if (SS.isInvalid())
2117    return true;
2118
2119  TemplateName Template = TemplateD.get();
2120
2121  // Translate the parser's template argument list in our AST format.
2122  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2123  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2124
2125  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2126    QualType T
2127      = Context.getDependentTemplateSpecializationType(ETK_None,
2128                                                       DTN->getQualifier(),
2129                                                       DTN->getIdentifier(),
2130                                                       TemplateArgs);
2131    // Build type-source information.
2132    TypeLocBuilder TLB;
2133    DependentTemplateSpecializationTypeLoc SpecTL
2134      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2135    SpecTL.setElaboratedKeywordLoc(SourceLocation());
2136    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2137    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2138    SpecTL.setTemplateNameLoc(TemplateLoc);
2139    SpecTL.setLAngleLoc(LAngleLoc);
2140    SpecTL.setRAngleLoc(RAngleLoc);
2141    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2142      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2143    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2144  }
2145
2146  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2147
2148  if (Result.isNull())
2149    return true;
2150
2151  // Build type-source information.
2152  TypeLocBuilder TLB;
2153  TemplateSpecializationTypeLoc SpecTL
2154    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2155  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2156  SpecTL.setTemplateNameLoc(TemplateLoc);
2157  SpecTL.setLAngleLoc(LAngleLoc);
2158  SpecTL.setRAngleLoc(RAngleLoc);
2159  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2160    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2161
2162  // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2163  // constructor or destructor name (in such a case, the scope specifier
2164  // will be attached to the enclosing Decl or Expr node).
2165  if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2166    // Create an elaborated-type-specifier containing the nested-name-specifier.
2167    Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2168    ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2169    ElabTL.setElaboratedKeywordLoc(SourceLocation());
2170    ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2171  }
2172
2173  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2174}
2175
2176TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2177                                        TypeSpecifierType TagSpec,
2178                                        SourceLocation TagLoc,
2179                                        CXXScopeSpec &SS,
2180                                        SourceLocation TemplateKWLoc,
2181                                        TemplateTy TemplateD,
2182                                        SourceLocation TemplateLoc,
2183                                        SourceLocation LAngleLoc,
2184                                        ASTTemplateArgsPtr TemplateArgsIn,
2185                                        SourceLocation RAngleLoc) {
2186  TemplateName Template = TemplateD.get();
2187
2188  // Translate the parser's template argument list in our AST format.
2189  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2190  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2191
2192  // Determine the tag kind
2193  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2194  ElaboratedTypeKeyword Keyword
2195    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2196
2197  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2198    QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2199                                                          DTN->getQualifier(),
2200                                                          DTN->getIdentifier(),
2201                                                                TemplateArgs);
2202
2203    // Build type-source information.
2204    TypeLocBuilder TLB;
2205    DependentTemplateSpecializationTypeLoc SpecTL
2206      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2207    SpecTL.setElaboratedKeywordLoc(TagLoc);
2208    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2209    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2210    SpecTL.setTemplateNameLoc(TemplateLoc);
2211    SpecTL.setLAngleLoc(LAngleLoc);
2212    SpecTL.setRAngleLoc(RAngleLoc);
2213    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2214      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2215    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2216  }
2217
2218  if (TypeAliasTemplateDecl *TAT =
2219        dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2220    // C++0x [dcl.type.elab]p2:
2221    //   If the identifier resolves to a typedef-name or the simple-template-id
2222    //   resolves to an alias template specialization, the
2223    //   elaborated-type-specifier is ill-formed.
2224    Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2225    Diag(TAT->getLocation(), diag::note_declared_at);
2226  }
2227
2228  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2229  if (Result.isNull())
2230    return TypeResult(true);
2231
2232  // Check the tag kind
2233  if (const RecordType *RT = Result->getAs<RecordType>()) {
2234    RecordDecl *D = RT->getDecl();
2235
2236    IdentifierInfo *Id = D->getIdentifier();
2237    assert(Id && "templated class must have an identifier");
2238
2239    if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2240                                      TagLoc, *Id)) {
2241      Diag(TagLoc, diag::err_use_with_wrong_tag)
2242        << Result
2243        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2244      Diag(D->getLocation(), diag::note_previous_use);
2245    }
2246  }
2247
2248  // Provide source-location information for the template specialization.
2249  TypeLocBuilder TLB;
2250  TemplateSpecializationTypeLoc SpecTL
2251    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2252  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2253  SpecTL.setTemplateNameLoc(TemplateLoc);
2254  SpecTL.setLAngleLoc(LAngleLoc);
2255  SpecTL.setRAngleLoc(RAngleLoc);
2256  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2257    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2258
2259  // Construct an elaborated type containing the nested-name-specifier (if any)
2260  // and tag keyword.
2261  Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2262  ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2263  ElabTL.setElaboratedKeywordLoc(TagLoc);
2264  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2265  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2266}
2267
2268static bool CheckTemplatePartialSpecializationArgs(
2269    Sema &S, TemplateParameterList *TemplateParams,
2270    SmallVectorImpl<TemplateArgument> &TemplateArgs);
2271
2272static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
2273                                             NamedDecl *PrevDecl,
2274                                             SourceLocation Loc,
2275                                             bool IsPartialSpecialization);
2276
2277static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
2278
2279static bool isTemplateArgumentTemplateParameter(
2280    const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
2281  switch (Arg.getKind()) {
2282  case TemplateArgument::Null:
2283  case TemplateArgument::NullPtr:
2284  case TemplateArgument::Integral:
2285  case TemplateArgument::Declaration:
2286  case TemplateArgument::Pack:
2287  case TemplateArgument::TemplateExpansion:
2288    return false;
2289
2290  case TemplateArgument::Type: {
2291    QualType Type = Arg.getAsType();
2292    const TemplateTypeParmType *TPT =
2293        Arg.getAsType()->getAs<TemplateTypeParmType>();
2294    return TPT && !Type.hasQualifiers() &&
2295           TPT->getDepth() == Depth && TPT->getIndex() == Index;
2296  }
2297
2298  case TemplateArgument::Expression: {
2299    DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
2300    if (!DRE || !DRE->getDecl())
2301      return false;
2302    const NonTypeTemplateParmDecl *NTTP =
2303        dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
2304    return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
2305  }
2306
2307  case TemplateArgument::Template:
2308    const TemplateTemplateParmDecl *TTP =
2309        dyn_cast_or_null<TemplateTemplateParmDecl>(
2310            Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
2311    return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
2312  }
2313  llvm_unreachable("unexpected kind of template argument");
2314}
2315
2316static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
2317                                    ArrayRef<TemplateArgument> Args) {
2318  if (Params->size() != Args.size())
2319    return false;
2320
2321  unsigned Depth = Params->getDepth();
2322
2323  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2324    TemplateArgument Arg = Args[I];
2325
2326    // If the parameter is a pack expansion, the argument must be a pack
2327    // whose only element is a pack expansion.
2328    if (Params->getParam(I)->isParameterPack()) {
2329      if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
2330          !Arg.pack_begin()->isPackExpansion())
2331        return false;
2332      Arg = Arg.pack_begin()->getPackExpansionPattern();
2333    }
2334
2335    if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
2336      return false;
2337  }
2338
2339  return true;
2340}
2341
2342DeclResult Sema::ActOnVarTemplateSpecialization(
2343    Scope *S, VarTemplateDecl *VarTemplate, Declarator &D, TypeSourceInfo *DI,
2344    SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams,
2345    VarDecl::StorageClass SC, bool IsPartialSpecialization) {
2346  assert(VarTemplate && "A variable template id without template?");
2347
2348  // D must be variable template id.
2349  assert(D.getName().getKind() == UnqualifiedId::IK_TemplateId &&
2350         "Variable template specialization is declared with a template it.");
2351
2352  TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2353  SourceLocation TemplateNameLoc = D.getIdentifierLoc();
2354  SourceLocation LAngleLoc = TemplateId->LAngleLoc;
2355  SourceLocation RAngleLoc = TemplateId->RAngleLoc;
2356  ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
2357                                     TemplateId->NumArgs);
2358  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2359  translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
2360  TemplateName Name(VarTemplate);
2361
2362  // Check for unexpanded parameter packs in any of the template arguments.
2363  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2364    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
2365                                        UPPC_PartialSpecialization))
2366      return true;
2367
2368  // Check that the template argument list is well-formed for this
2369  // template.
2370  SmallVector<TemplateArgument, 4> Converted;
2371  if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
2372                                false, Converted))
2373    return true;
2374
2375  // Check that the type of this variable template specialization
2376  // matches the expected type.
2377  TypeSourceInfo *ExpectedDI;
2378  {
2379    // Do substitution on the type of the declaration
2380    TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
2381                                         Converted.data(), Converted.size());
2382    InstantiatingTemplate Inst(*this, TemplateKWLoc, VarTemplate);
2383    if (Inst.isInvalid())
2384      return true;
2385    VarDecl *Templated = VarTemplate->getTemplatedDecl();
2386    ExpectedDI =
2387        SubstType(Templated->getTypeSourceInfo(),
2388                  MultiLevelTemplateArgumentList(TemplateArgList),
2389                  Templated->getTypeSpecStartLoc(), Templated->getDeclName());
2390  }
2391  if (!ExpectedDI)
2392    return true;
2393
2394  // Find the variable template (partial) specialization declaration that
2395  // corresponds to these arguments.
2396  if (IsPartialSpecialization) {
2397    if (CheckTemplatePartialSpecializationArgs(
2398            *this, VarTemplate->getTemplateParameters(), Converted))
2399      return true;
2400
2401    bool InstantiationDependent;
2402    if (!Name.isDependent() &&
2403        !TemplateSpecializationType::anyDependentTemplateArguments(
2404            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
2405            InstantiationDependent)) {
2406      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
2407          << VarTemplate->getDeclName();
2408      IsPartialSpecialization = false;
2409    }
2410
2411    if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
2412                                Converted)) {
2413      // C++ [temp.class.spec]p9b3:
2414      //
2415      //   -- The argument list of the specialization shall not be identical
2416      //      to the implicit argument list of the primary template.
2417      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
2418        << /*variable template*/ 1
2419        << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
2420        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
2421      // FIXME: Recover from this by treating the declaration as a redeclaration
2422      // of the primary template.
2423      return true;
2424    }
2425  }
2426
2427  void *InsertPos = 0;
2428  VarTemplateSpecializationDecl *PrevDecl = 0;
2429
2430  if (IsPartialSpecialization)
2431    // FIXME: Template parameter list matters too
2432    PrevDecl = VarTemplate->findPartialSpecialization(
2433        Converted.data(), Converted.size(), InsertPos);
2434  else
2435    PrevDecl = VarTemplate->findSpecialization(Converted.data(),
2436                                               Converted.size(), InsertPos);
2437
2438  VarTemplateSpecializationDecl *Specialization = 0;
2439
2440  // Check whether we can declare a variable template specialization in
2441  // the current scope.
2442  if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
2443                                       TemplateNameLoc,
2444                                       IsPartialSpecialization))
2445    return true;
2446
2447  if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
2448    // Since the only prior variable template specialization with these
2449    // arguments was referenced but not declared,  reuse that
2450    // declaration node as our own, updating its source location and
2451    // the list of outer template parameters to reflect our new declaration.
2452    Specialization = PrevDecl;
2453    Specialization->setLocation(TemplateNameLoc);
2454    PrevDecl = 0;
2455  } else if (IsPartialSpecialization) {
2456    // Create a new class template partial specialization declaration node.
2457    VarTemplatePartialSpecializationDecl *PrevPartial =
2458        cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
2459    VarTemplatePartialSpecializationDecl *Partial =
2460        VarTemplatePartialSpecializationDecl::Create(
2461            Context, VarTemplate->getDeclContext(), TemplateKWLoc,
2462            TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
2463            Converted.data(), Converted.size(), TemplateArgs);
2464
2465    if (!PrevPartial)
2466      VarTemplate->AddPartialSpecialization(Partial, InsertPos);
2467    Specialization = Partial;
2468
2469    // If we are providing an explicit specialization of a member variable
2470    // template specialization, make a note of that.
2471    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
2472      PrevPartial->setMemberSpecialization();
2473
2474    // Check that all of the template parameters of the variable template
2475    // partial specialization are deducible from the template
2476    // arguments. If not, this variable template partial specialization
2477    // will never be used.
2478    llvm::SmallBitVector DeducibleParams(TemplateParams->size());
2479    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
2480                               TemplateParams->getDepth(), DeducibleParams);
2481
2482    if (!DeducibleParams.all()) {
2483      unsigned NumNonDeducible =
2484          DeducibleParams.size() - DeducibleParams.count();
2485      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
2486        << /*variable template*/ 1 << (NumNonDeducible > 1)
2487        << SourceRange(TemplateNameLoc, RAngleLoc);
2488      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
2489        if (!DeducibleParams[I]) {
2490          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
2491          if (Param->getDeclName())
2492            Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2493                << Param->getDeclName();
2494          else
2495            Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2496                << "<anonymous>";
2497        }
2498      }
2499    }
2500  } else {
2501    // Create a new class template specialization declaration node for
2502    // this explicit specialization or friend declaration.
2503    Specialization = VarTemplateSpecializationDecl::Create(
2504        Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
2505        VarTemplate, DI->getType(), DI, SC, Converted.data(), Converted.size());
2506    Specialization->setTemplateArgsInfo(TemplateArgs);
2507
2508    if (!PrevDecl)
2509      VarTemplate->AddSpecialization(Specialization, InsertPos);
2510  }
2511
2512  // C++ [temp.expl.spec]p6:
2513  //   If a template, a member template or the member of a class template is
2514  //   explicitly specialized then that specialization shall be declared
2515  //   before the first use of that specialization that would cause an implicit
2516  //   instantiation to take place, in every translation unit in which such a
2517  //   use occurs; no diagnostic is required.
2518  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
2519    bool Okay = false;
2520    for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
2521      // Is there any previous explicit specialization declaration?
2522      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
2523        Okay = true;
2524        break;
2525      }
2526    }
2527
2528    if (!Okay) {
2529      SourceRange Range(TemplateNameLoc, RAngleLoc);
2530      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
2531          << Name << Range;
2532
2533      Diag(PrevDecl->getPointOfInstantiation(),
2534           diag::note_instantiation_required_here)
2535          << (PrevDecl->getTemplateSpecializationKind() !=
2536              TSK_ImplicitInstantiation);
2537      return true;
2538    }
2539  }
2540
2541  Specialization->setTemplateKeywordLoc(TemplateKWLoc);
2542  Specialization->setLexicalDeclContext(CurContext);
2543
2544  // Add the specialization into its lexical context, so that it can
2545  // be seen when iterating through the list of declarations in that
2546  // context. However, specializations are not found by name lookup.
2547  CurContext->addDecl(Specialization);
2548
2549  // Note that this is an explicit specialization.
2550  Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
2551
2552  if (PrevDecl) {
2553    // Check that this isn't a redefinition of this specialization,
2554    // merging with previous declarations.
2555    LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
2556                          ForRedeclaration);
2557    PrevSpec.addDecl(PrevDecl);
2558    D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
2559  } else if (Specialization->isStaticDataMember() &&
2560             Specialization->isOutOfLine()) {
2561    Specialization->setAccess(VarTemplate->getAccess());
2562  }
2563
2564  // Link instantiations of static data members back to the template from
2565  // which they were instantiated.
2566  if (Specialization->isStaticDataMember())
2567    Specialization->setInstantiationOfStaticDataMember(
2568        VarTemplate->getTemplatedDecl(),
2569        Specialization->getSpecializationKind());
2570
2571  return Specialization;
2572}
2573
2574namespace {
2575/// \brief A partial specialization whose template arguments have matched
2576/// a given template-id.
2577struct PartialSpecMatchResult {
2578  VarTemplatePartialSpecializationDecl *Partial;
2579  TemplateArgumentList *Args;
2580};
2581}
2582
2583DeclResult
2584Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
2585                         SourceLocation TemplateNameLoc,
2586                         const TemplateArgumentListInfo &TemplateArgs) {
2587  assert(Template && "A variable template id without template?");
2588
2589  // Check that the template argument list is well-formed for this template.
2590  SmallVector<TemplateArgument, 4> Converted;
2591  bool ExpansionIntoFixedList = false;
2592  if (CheckTemplateArgumentList(
2593          Template, TemplateNameLoc,
2594          const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
2595          Converted, &ExpansionIntoFixedList))
2596    return true;
2597
2598  // Find the variable template specialization declaration that
2599  // corresponds to these arguments.
2600  void *InsertPos = 0;
2601  if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
2602          Converted.data(), Converted.size(), InsertPos))
2603    // If we already have a variable template specialization, return it.
2604    return Spec;
2605
2606  // This is the first time we have referenced this variable template
2607  // specialization. Create the canonical declaration and add it to
2608  // the set of specializations, based on the closest partial specialization
2609  // that it represents. That is,
2610  VarDecl *InstantiationPattern = Template->getTemplatedDecl();
2611  TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
2612                                       Converted.data(), Converted.size());
2613  TemplateArgumentList *InstantiationArgs = &TemplateArgList;
2614  bool AmbiguousPartialSpec = false;
2615  typedef PartialSpecMatchResult MatchResult;
2616  SmallVector<MatchResult, 4> Matched;
2617  SourceLocation PointOfInstantiation = TemplateNameLoc;
2618  TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation);
2619
2620  // 1. Attempt to find the closest partial specialization that this
2621  // specializes, if any.
2622  // If any of the template arguments is dependent, then this is probably
2623  // a placeholder for an incomplete declarative context; which must be
2624  // complete by instantiation time. Thus, do not search through the partial
2625  // specializations yet.
2626  // TODO: Unify with InstantiateClassTemplateSpecialization()?
2627  //       Perhaps better after unification of DeduceTemplateArguments() and
2628  //       getMoreSpecializedPartialSpecialization().
2629  bool InstantiationDependent = false;
2630  if (!TemplateSpecializationType::anyDependentTemplateArguments(
2631          TemplateArgs, InstantiationDependent)) {
2632
2633    SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
2634    Template->getPartialSpecializations(PartialSpecs);
2635
2636    for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
2637      VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
2638      TemplateDeductionInfo Info(FailedCandidates.getLocation());
2639
2640      if (TemplateDeductionResult Result =
2641              DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
2642        // Store the failed-deduction information for use in diagnostics, later.
2643        // TODO: Actually use the failed-deduction info?
2644        FailedCandidates.addCandidate()
2645            .set(Partial, MakeDeductionFailureInfo(Context, Result, Info));
2646        (void)Result;
2647      } else {
2648        Matched.push_back(PartialSpecMatchResult());
2649        Matched.back().Partial = Partial;
2650        Matched.back().Args = Info.take();
2651      }
2652    }
2653
2654    // If we're dealing with a member template where the template parameters
2655    // have been instantiated, this provides the original template parameters
2656    // from which the member template's parameters were instantiated.
2657    SmallVector<const NamedDecl *, 4> InstantiatedTemplateParameters;
2658
2659    if (Matched.size() >= 1) {
2660      SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
2661      if (Matched.size() == 1) {
2662        //   -- If exactly one matching specialization is found, the
2663        //      instantiation is generated from that specialization.
2664        // We don't need to do anything for this.
2665      } else {
2666        //   -- If more than one matching specialization is found, the
2667        //      partial order rules (14.5.4.2) are used to determine
2668        //      whether one of the specializations is more specialized
2669        //      than the others. If none of the specializations is more
2670        //      specialized than all of the other matching
2671        //      specializations, then the use of the variable template is
2672        //      ambiguous and the program is ill-formed.
2673        for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
2674                                                   PEnd = Matched.end();
2675             P != PEnd; ++P) {
2676          if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
2677                                                      PointOfInstantiation) ==
2678              P->Partial)
2679            Best = P;
2680        }
2681
2682        // Determine if the best partial specialization is more specialized than
2683        // the others.
2684        for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2685                                                   PEnd = Matched.end();
2686             P != PEnd; ++P) {
2687          if (P != Best && getMoreSpecializedPartialSpecialization(
2688                               P->Partial, Best->Partial,
2689                               PointOfInstantiation) != Best->Partial) {
2690            AmbiguousPartialSpec = true;
2691            break;
2692          }
2693        }
2694      }
2695
2696      // Instantiate using the best variable template partial specialization.
2697      InstantiationPattern = Best->Partial;
2698      InstantiationArgs = Best->Args;
2699    } else {
2700      //   -- If no match is found, the instantiation is generated
2701      //      from the primary template.
2702      // InstantiationPattern = Template->getTemplatedDecl();
2703    }
2704  }
2705
2706  // 2. Create the canonical declaration.
2707  // Note that we do not instantiate the variable just yet, since
2708  // instantiation is handled in DoMarkVarDeclReferenced().
2709  // FIXME: LateAttrs et al.?
2710  VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
2711      Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
2712      Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
2713  if (!Decl)
2714    return true;
2715
2716  if (AmbiguousPartialSpec) {
2717    // Partial ordering did not produce a clear winner. Complain.
2718    Decl->setInvalidDecl();
2719    Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
2720        << Decl;
2721
2722    // Print the matching partial specializations.
2723    for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2724                                               PEnd = Matched.end();
2725         P != PEnd; ++P)
2726      Diag(P->Partial->getLocation(), diag::note_partial_spec_match)
2727          << getTemplateArgumentBindingsText(
2728                 P->Partial->getTemplateParameters(), *P->Args);
2729    return true;
2730  }
2731
2732  if (VarTemplatePartialSpecializationDecl *D =
2733          dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
2734    Decl->setInstantiationOf(D, InstantiationArgs);
2735
2736  assert(Decl && "No variable template specialization?");
2737  return Decl;
2738}
2739
2740ExprResult
2741Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
2742                         const DeclarationNameInfo &NameInfo,
2743                         VarTemplateDecl *Template, SourceLocation TemplateLoc,
2744                         const TemplateArgumentListInfo *TemplateArgs) {
2745
2746  DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
2747                                       *TemplateArgs);
2748  if (Decl.isInvalid())
2749    return ExprError();
2750
2751  VarDecl *Var = cast<VarDecl>(Decl.get());
2752  if (!Var->getTemplateSpecializationKind())
2753    Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
2754                                       NameInfo.getLoc());
2755
2756  // Build an ordinary singleton decl ref.
2757  return BuildDeclarationNameExpr(SS, NameInfo, Var,
2758                                  /*FoundD=*/0, TemplateArgs);
2759}
2760
2761ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2762                                     SourceLocation TemplateKWLoc,
2763                                     LookupResult &R,
2764                                     bool RequiresADL,
2765                                 const TemplateArgumentListInfo *TemplateArgs) {
2766  // FIXME: Can we do any checking at this point? I guess we could check the
2767  // template arguments that we have against the template name, if the template
2768  // name refers to a single template. That's not a terribly common case,
2769  // though.
2770  // foo<int> could identify a single function unambiguously
2771  // This approach does NOT work, since f<int>(1);
2772  // gets resolved prior to resorting to overload resolution
2773  // i.e., template<class T> void f(double);
2774  //       vs template<class T, class U> void f(U);
2775
2776  // These should be filtered out by our callers.
2777  assert(!R.empty() && "empty lookup results when building templateid");
2778  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2779
2780  // In C++1y, check variable template ids.
2781  if (R.getAsSingle<VarTemplateDecl>()) {
2782    return Owned(CheckVarTemplateId(SS, R.getLookupNameInfo(),
2783                                    R.getAsSingle<VarTemplateDecl>(),
2784                                    TemplateKWLoc, TemplateArgs));
2785  }
2786
2787  // We don't want lookup warnings at this point.
2788  R.suppressDiagnostics();
2789
2790  UnresolvedLookupExpr *ULE
2791    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2792                                   SS.getWithLocInContext(Context),
2793                                   TemplateKWLoc,
2794                                   R.getLookupNameInfo(),
2795                                   RequiresADL, TemplateArgs,
2796                                   R.begin(), R.end());
2797
2798  return Owned(ULE);
2799}
2800
2801// We actually only call this from template instantiation.
2802ExprResult
2803Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2804                                   SourceLocation TemplateKWLoc,
2805                                   const DeclarationNameInfo &NameInfo,
2806                             const TemplateArgumentListInfo *TemplateArgs) {
2807
2808  assert(TemplateArgs || TemplateKWLoc.isValid());
2809  DeclContext *DC;
2810  if (!(DC = computeDeclContext(SS, false)) ||
2811      DC->isDependentContext() ||
2812      RequireCompleteDeclContext(SS, DC))
2813    return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
2814
2815  bool MemberOfUnknownSpecialization;
2816  LookupResult R(*this, NameInfo, LookupOrdinaryName);
2817  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
2818                     MemberOfUnknownSpecialization);
2819
2820  if (R.isAmbiguous())
2821    return ExprError();
2822
2823  if (R.empty()) {
2824    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2825      << NameInfo.getName() << SS.getRange();
2826    return ExprError();
2827  }
2828
2829  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2830    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2831      << (NestedNameSpecifier*) SS.getScopeRep()
2832      << NameInfo.getName() << SS.getRange();
2833    Diag(Temp->getLocation(), diag::note_referenced_class_template);
2834    return ExprError();
2835  }
2836
2837  return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
2838}
2839
2840/// \brief Form a dependent template name.
2841///
2842/// This action forms a dependent template name given the template
2843/// name and its (presumably dependent) scope specifier. For
2844/// example, given "MetaFun::template apply", the scope specifier \p
2845/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2846/// of the "template" keyword, and "apply" is the \p Name.
2847TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2848                                                  CXXScopeSpec &SS,
2849                                                  SourceLocation TemplateKWLoc,
2850                                                  UnqualifiedId &Name,
2851                                                  ParsedType ObjectType,
2852                                                  bool EnteringContext,
2853                                                  TemplateTy &Result) {
2854  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
2855    Diag(TemplateKWLoc,
2856         getLangOpts().CPlusPlus11 ?
2857           diag::warn_cxx98_compat_template_outside_of_template :
2858           diag::ext_template_outside_of_template)
2859      << FixItHint::CreateRemoval(TemplateKWLoc);
2860
2861  DeclContext *LookupCtx = 0;
2862  if (SS.isSet())
2863    LookupCtx = computeDeclContext(SS, EnteringContext);
2864  if (!LookupCtx && ObjectType)
2865    LookupCtx = computeDeclContext(ObjectType.get());
2866  if (LookupCtx) {
2867    // C++0x [temp.names]p5:
2868    //   If a name prefixed by the keyword template is not the name of
2869    //   a template, the program is ill-formed. [Note: the keyword
2870    //   template may not be applied to non-template members of class
2871    //   templates. -end note ] [ Note: as is the case with the
2872    //   typename prefix, the template prefix is allowed in cases
2873    //   where it is not strictly necessary; i.e., when the
2874    //   nested-name-specifier or the expression on the left of the ->
2875    //   or . is not dependent on a template-parameter, or the use
2876    //   does not appear in the scope of a template. -end note]
2877    //
2878    // Note: C++03 was more strict here, because it banned the use of
2879    // the "template" keyword prior to a template-name that was not a
2880    // dependent name. C++ DR468 relaxed this requirement (the
2881    // "template" keyword is now permitted). We follow the C++0x
2882    // rules, even in C++03 mode with a warning, retroactively applying the DR.
2883    bool MemberOfUnknownSpecialization;
2884    TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
2885                                          ObjectType, EnteringContext, Result,
2886                                          MemberOfUnknownSpecialization);
2887    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2888        isa<CXXRecordDecl>(LookupCtx) &&
2889        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2890         cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2891      // This is a dependent template. Handle it below.
2892    } else if (TNK == TNK_Non_template) {
2893      Diag(Name.getLocStart(),
2894           diag::err_template_kw_refers_to_non_template)
2895        << GetNameFromUnqualifiedId(Name).getName()
2896        << Name.getSourceRange()
2897        << TemplateKWLoc;
2898      return TNK_Non_template;
2899    } else {
2900      // We found something; return it.
2901      return TNK;
2902    }
2903  }
2904
2905  NestedNameSpecifier *Qualifier
2906    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2907
2908  switch (Name.getKind()) {
2909  case UnqualifiedId::IK_Identifier:
2910    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2911                                                              Name.Identifier));
2912    return TNK_Dependent_template_name;
2913
2914  case UnqualifiedId::IK_OperatorFunctionId:
2915    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2916                                             Name.OperatorFunctionId.Operator));
2917    return TNK_Dependent_template_name;
2918
2919  case UnqualifiedId::IK_LiteralOperatorId:
2920    llvm_unreachable(
2921            "We don't support these; Parse shouldn't have allowed propagation");
2922
2923  default:
2924    break;
2925  }
2926
2927  Diag(Name.getLocStart(),
2928       diag::err_template_kw_refers_to_non_template)
2929    << GetNameFromUnqualifiedId(Name).getName()
2930    << Name.getSourceRange()
2931    << TemplateKWLoc;
2932  return TNK_Non_template;
2933}
2934
2935bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2936                                     const TemplateArgumentLoc &AL,
2937                          SmallVectorImpl<TemplateArgument> &Converted) {
2938  const TemplateArgument &Arg = AL.getArgument();
2939
2940  // Check template type parameter.
2941  switch(Arg.getKind()) {
2942  case TemplateArgument::Type:
2943    // C++ [temp.arg.type]p1:
2944    //   A template-argument for a template-parameter which is a
2945    //   type shall be a type-id.
2946    break;
2947  case TemplateArgument::Template: {
2948    // We have a template type parameter but the template argument
2949    // is a template without any arguments.
2950    SourceRange SR = AL.getSourceRange();
2951    TemplateName Name = Arg.getAsTemplate();
2952    Diag(SR.getBegin(), diag::err_template_missing_args)
2953      << Name << SR;
2954    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2955      Diag(Decl->getLocation(), diag::note_template_decl_here);
2956
2957    return true;
2958  }
2959  case TemplateArgument::Expression: {
2960    // We have a template type parameter but the template argument is an
2961    // expression; see if maybe it is missing the "typename" keyword.
2962    CXXScopeSpec SS;
2963    DeclarationNameInfo NameInfo;
2964
2965    if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
2966      SS.Adopt(ArgExpr->getQualifierLoc());
2967      NameInfo = ArgExpr->getNameInfo();
2968    } else if (DependentScopeDeclRefExpr *ArgExpr =
2969               dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
2970      SS.Adopt(ArgExpr->getQualifierLoc());
2971      NameInfo = ArgExpr->getNameInfo();
2972    } else if (CXXDependentScopeMemberExpr *ArgExpr =
2973               dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
2974      if (ArgExpr->isImplicitAccess()) {
2975        SS.Adopt(ArgExpr->getQualifierLoc());
2976        NameInfo = ArgExpr->getMemberNameInfo();
2977      }
2978    }
2979
2980    if (NameInfo.getName().isIdentifier()) {
2981      LookupResult Result(*this, NameInfo, LookupOrdinaryName);
2982      LookupParsedName(Result, CurScope, &SS);
2983
2984      if (Result.getAsSingle<TypeDecl>() ||
2985          Result.getResultKind() ==
2986            LookupResult::NotFoundInCurrentInstantiation) {
2987        // FIXME: Add a FixIt and fix up the template argument for recovery.
2988        SourceLocation Loc = AL.getSourceRange().getBegin();
2989        Diag(Loc, diag::err_template_arg_must_be_type_suggest);
2990        Diag(Param->getLocation(), diag::note_template_param_here);
2991        return true;
2992      }
2993    }
2994    // fallthrough
2995  }
2996  default: {
2997    // We have a template type parameter but the template argument
2998    // is not a type.
2999    SourceRange SR = AL.getSourceRange();
3000    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
3001    Diag(Param->getLocation(), diag::note_template_param_here);
3002
3003    return true;
3004  }
3005  }
3006
3007  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
3008    return true;
3009
3010  // Add the converted template type argument.
3011  QualType ArgType = Context.getCanonicalType(Arg.getAsType());
3012
3013  // Objective-C ARC:
3014  //   If an explicitly-specified template argument type is a lifetime type
3015  //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
3016  if (getLangOpts().ObjCAutoRefCount &&
3017      ArgType->isObjCLifetimeType() &&
3018      !ArgType.getObjCLifetime()) {
3019    Qualifiers Qs;
3020    Qs.setObjCLifetime(Qualifiers::OCL_Strong);
3021    ArgType = Context.getQualifiedType(ArgType, Qs);
3022  }
3023
3024  Converted.push_back(TemplateArgument(ArgType));
3025  return false;
3026}
3027
3028/// \brief Substitute template arguments into the default template argument for
3029/// the given template type parameter.
3030///
3031/// \param SemaRef the semantic analysis object for which we are performing
3032/// the substitution.
3033///
3034/// \param Template the template that we are synthesizing template arguments
3035/// for.
3036///
3037/// \param TemplateLoc the location of the template name that started the
3038/// template-id we are checking.
3039///
3040/// \param RAngleLoc the location of the right angle bracket ('>') that
3041/// terminates the template-id.
3042///
3043/// \param Param the template template parameter whose default we are
3044/// substituting into.
3045///
3046/// \param Converted the list of template arguments provided for template
3047/// parameters that precede \p Param in the template parameter list.
3048/// \returns the substituted template argument, or NULL if an error occurred.
3049static TypeSourceInfo *
3050SubstDefaultTemplateArgument(Sema &SemaRef,
3051                             TemplateDecl *Template,
3052                             SourceLocation TemplateLoc,
3053                             SourceLocation RAngleLoc,
3054                             TemplateTypeParmDecl *Param,
3055                         SmallVectorImpl<TemplateArgument> &Converted) {
3056  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
3057
3058  // If the argument type is dependent, instantiate it now based
3059  // on the previously-computed template arguments.
3060  if (ArgType->getType()->isDependentType()) {
3061    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3062                                     Template, Converted,
3063                                     SourceRange(TemplateLoc, RAngleLoc));
3064    if (Inst.isInvalid())
3065      return 0;
3066
3067    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3068                                      Converted.data(), Converted.size());
3069
3070    // Only substitute for the innermost template argument list.
3071    MultiLevelTemplateArgumentList TemplateArgLists;
3072    TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3073    for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3074      TemplateArgLists.addOuterTemplateArguments(None);
3075
3076    Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3077    ArgType =
3078        SemaRef.SubstType(ArgType, TemplateArgLists,
3079                          Param->getDefaultArgumentLoc(), Param->getDeclName());
3080  }
3081
3082  return ArgType;
3083}
3084
3085/// \brief Substitute template arguments into the default template argument for
3086/// the given non-type template parameter.
3087///
3088/// \param SemaRef the semantic analysis object for which we are performing
3089/// the substitution.
3090///
3091/// \param Template the template that we are synthesizing template arguments
3092/// for.
3093///
3094/// \param TemplateLoc the location of the template name that started the
3095/// template-id we are checking.
3096///
3097/// \param RAngleLoc the location of the right angle bracket ('>') that
3098/// terminates the template-id.
3099///
3100/// \param Param the non-type template parameter whose default we are
3101/// substituting into.
3102///
3103/// \param Converted the list of template arguments provided for template
3104/// parameters that precede \p Param in the template parameter list.
3105///
3106/// \returns the substituted template argument, or NULL if an error occurred.
3107static ExprResult
3108SubstDefaultTemplateArgument(Sema &SemaRef,
3109                             TemplateDecl *Template,
3110                             SourceLocation TemplateLoc,
3111                             SourceLocation RAngleLoc,
3112                             NonTypeTemplateParmDecl *Param,
3113                        SmallVectorImpl<TemplateArgument> &Converted) {
3114  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3115                                   Template, Converted,
3116                                   SourceRange(TemplateLoc, RAngleLoc));
3117  if (Inst.isInvalid())
3118    return ExprError();
3119
3120  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3121                                    Converted.data(), Converted.size());
3122
3123  // Only substitute for the innermost template argument list.
3124  MultiLevelTemplateArgumentList TemplateArgLists;
3125  TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3126  for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3127    TemplateArgLists.addOuterTemplateArguments(None);
3128
3129  Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3130  EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
3131  return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
3132}
3133
3134/// \brief Substitute template arguments into the default template argument for
3135/// the given template template parameter.
3136///
3137/// \param SemaRef the semantic analysis object for which we are performing
3138/// the substitution.
3139///
3140/// \param Template the template that we are synthesizing template arguments
3141/// for.
3142///
3143/// \param TemplateLoc the location of the template name that started the
3144/// template-id we are checking.
3145///
3146/// \param RAngleLoc the location of the right angle bracket ('>') that
3147/// terminates the template-id.
3148///
3149/// \param Param the template template parameter whose default we are
3150/// substituting into.
3151///
3152/// \param Converted the list of template arguments provided for template
3153/// parameters that precede \p Param in the template parameter list.
3154///
3155/// \param QualifierLoc Will be set to the nested-name-specifier (with
3156/// source-location information) that precedes the template name.
3157///
3158/// \returns the substituted template argument, or NULL if an error occurred.
3159static TemplateName
3160SubstDefaultTemplateArgument(Sema &SemaRef,
3161                             TemplateDecl *Template,
3162                             SourceLocation TemplateLoc,
3163                             SourceLocation RAngleLoc,
3164                             TemplateTemplateParmDecl *Param,
3165                       SmallVectorImpl<TemplateArgument> &Converted,
3166                             NestedNameSpecifierLoc &QualifierLoc) {
3167  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Template, Converted,
3168                                   SourceRange(TemplateLoc, RAngleLoc));
3169  if (Inst.isInvalid())
3170    return TemplateName();
3171
3172  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3173                                    Converted.data(), Converted.size());
3174
3175  // Only substitute for the innermost template argument list.
3176  MultiLevelTemplateArgumentList TemplateArgLists;
3177  TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3178  for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3179    TemplateArgLists.addOuterTemplateArguments(None);
3180
3181  Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3182  // Substitute into the nested-name-specifier first,
3183  QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
3184  if (QualifierLoc) {
3185    QualifierLoc =
3186        SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
3187    if (!QualifierLoc)
3188      return TemplateName();
3189  }
3190
3191  return SemaRef.SubstTemplateName(
3192             QualifierLoc,
3193             Param->getDefaultArgument().getArgument().getAsTemplate(),
3194             Param->getDefaultArgument().getTemplateNameLoc(),
3195             TemplateArgLists);
3196}
3197
3198/// \brief If the given template parameter has a default template
3199/// argument, substitute into that default template argument and
3200/// return the corresponding template argument.
3201TemplateArgumentLoc
3202Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
3203                                              SourceLocation TemplateLoc,
3204                                              SourceLocation RAngleLoc,
3205                                              Decl *Param,
3206                                              SmallVectorImpl<TemplateArgument>
3207                                                &Converted,
3208                                              bool &HasDefaultArg) {
3209  HasDefaultArg = false;
3210
3211  if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
3212    if (!TypeParm->hasDefaultArgument())
3213      return TemplateArgumentLoc();
3214
3215    HasDefaultArg = true;
3216    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
3217                                                      TemplateLoc,
3218                                                      RAngleLoc,
3219                                                      TypeParm,
3220                                                      Converted);
3221    if (DI)
3222      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
3223
3224    return TemplateArgumentLoc();
3225  }
3226
3227  if (NonTypeTemplateParmDecl *NonTypeParm
3228        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3229    if (!NonTypeParm->hasDefaultArgument())
3230      return TemplateArgumentLoc();
3231
3232    HasDefaultArg = true;
3233    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
3234                                                  TemplateLoc,
3235                                                  RAngleLoc,
3236                                                  NonTypeParm,
3237                                                  Converted);
3238    if (Arg.isInvalid())
3239      return TemplateArgumentLoc();
3240
3241    Expr *ArgE = Arg.takeAs<Expr>();
3242    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
3243  }
3244
3245  TemplateTemplateParmDecl *TempTempParm
3246    = cast<TemplateTemplateParmDecl>(Param);
3247  if (!TempTempParm->hasDefaultArgument())
3248    return TemplateArgumentLoc();
3249
3250  HasDefaultArg = true;
3251  NestedNameSpecifierLoc QualifierLoc;
3252  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
3253                                                    TemplateLoc,
3254                                                    RAngleLoc,
3255                                                    TempTempParm,
3256                                                    Converted,
3257                                                    QualifierLoc);
3258  if (TName.isNull())
3259    return TemplateArgumentLoc();
3260
3261  return TemplateArgumentLoc(TemplateArgument(TName),
3262                TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
3263                TempTempParm->getDefaultArgument().getTemplateNameLoc());
3264}
3265
3266/// \brief Check that the given template argument corresponds to the given
3267/// template parameter.
3268///
3269/// \param Param The template parameter against which the argument will be
3270/// checked.
3271///
3272/// \param Arg The template argument.
3273///
3274/// \param Template The template in which the template argument resides.
3275///
3276/// \param TemplateLoc The location of the template name for the template
3277/// whose argument list we're matching.
3278///
3279/// \param RAngleLoc The location of the right angle bracket ('>') that closes
3280/// the template argument list.
3281///
3282/// \param ArgumentPackIndex The index into the argument pack where this
3283/// argument will be placed. Only valid if the parameter is a parameter pack.
3284///
3285/// \param Converted The checked, converted argument will be added to the
3286/// end of this small vector.
3287///
3288/// \param CTAK Describes how we arrived at this particular template argument:
3289/// explicitly written, deduced, etc.
3290///
3291/// \returns true on error, false otherwise.
3292bool Sema::CheckTemplateArgument(NamedDecl *Param,
3293                                 const TemplateArgumentLoc &Arg,
3294                                 NamedDecl *Template,
3295                                 SourceLocation TemplateLoc,
3296                                 SourceLocation RAngleLoc,
3297                                 unsigned ArgumentPackIndex,
3298                            SmallVectorImpl<TemplateArgument> &Converted,
3299                                 CheckTemplateArgumentKind CTAK) {
3300  // Check template type parameters.
3301  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
3302    return CheckTemplateTypeArgument(TTP, Arg, Converted);
3303
3304  // Check non-type template parameters.
3305  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3306    // Do substitution on the type of the non-type template parameter
3307    // with the template arguments we've seen thus far.  But if the
3308    // template has a dependent context then we cannot substitute yet.
3309    QualType NTTPType = NTTP->getType();
3310    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
3311      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
3312
3313    if (NTTPType->isDependentType() &&
3314        !isa<TemplateTemplateParmDecl>(Template) &&
3315        !Template->getDeclContext()->isDependentContext()) {
3316      // Do substitution on the type of the non-type template parameter.
3317      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3318                                 NTTP, Converted,
3319                                 SourceRange(TemplateLoc, RAngleLoc));
3320      if (Inst.isInvalid())
3321        return true;
3322
3323      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3324                                        Converted.data(), Converted.size());
3325      NTTPType = SubstType(NTTPType,
3326                           MultiLevelTemplateArgumentList(TemplateArgs),
3327                           NTTP->getLocation(),
3328                           NTTP->getDeclName());
3329      // If that worked, check the non-type template parameter type
3330      // for validity.
3331      if (!NTTPType.isNull())
3332        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
3333                                                     NTTP->getLocation());
3334      if (NTTPType.isNull())
3335        return true;
3336    }
3337
3338    switch (Arg.getArgument().getKind()) {
3339    case TemplateArgument::Null:
3340      llvm_unreachable("Should never see a NULL template argument here");
3341
3342    case TemplateArgument::Expression: {
3343      TemplateArgument Result;
3344      ExprResult Res =
3345        CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
3346                              Result, CTAK);
3347      if (Res.isInvalid())
3348        return true;
3349
3350      Converted.push_back(Result);
3351      break;
3352    }
3353
3354    case TemplateArgument::Declaration:
3355    case TemplateArgument::Integral:
3356    case TemplateArgument::NullPtr:
3357      // We've already checked this template argument, so just copy
3358      // it to the list of converted arguments.
3359      Converted.push_back(Arg.getArgument());
3360      break;
3361
3362    case TemplateArgument::Template:
3363    case TemplateArgument::TemplateExpansion:
3364      // We were given a template template argument. It may not be ill-formed;
3365      // see below.
3366      if (DependentTemplateName *DTN
3367            = Arg.getArgument().getAsTemplateOrTemplatePattern()
3368                                              .getAsDependentTemplateName()) {
3369        // We have a template argument such as \c T::template X, which we
3370        // parsed as a template template argument. However, since we now
3371        // know that we need a non-type template argument, convert this
3372        // template name into an expression.
3373
3374        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
3375                                     Arg.getTemplateNameLoc());
3376
3377        CXXScopeSpec SS;
3378        SS.Adopt(Arg.getTemplateQualifierLoc());
3379        // FIXME: the template-template arg was a DependentTemplateName,
3380        // so it was provided with a template keyword. However, its source
3381        // location is not stored in the template argument structure.
3382        SourceLocation TemplateKWLoc;
3383        ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
3384                                                SS.getWithLocInContext(Context),
3385                                                               TemplateKWLoc,
3386                                                               NameInfo, 0));
3387
3388        // If we parsed the template argument as a pack expansion, create a
3389        // pack expansion expression.
3390        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
3391          E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
3392          if (E.isInvalid())
3393            return true;
3394        }
3395
3396        TemplateArgument Result;
3397        E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
3398        if (E.isInvalid())
3399          return true;
3400
3401        Converted.push_back(Result);
3402        break;
3403      }
3404
3405      // We have a template argument that actually does refer to a class
3406      // template, alias template, or template template parameter, and
3407      // therefore cannot be a non-type template argument.
3408      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
3409        << Arg.getSourceRange();
3410
3411      Diag(Param->getLocation(), diag::note_template_param_here);
3412      return true;
3413
3414    case TemplateArgument::Type: {
3415      // We have a non-type template parameter but the template
3416      // argument is a type.
3417
3418      // C++ [temp.arg]p2:
3419      //   In a template-argument, an ambiguity between a type-id and
3420      //   an expression is resolved to a type-id, regardless of the
3421      //   form of the corresponding template-parameter.
3422      //
3423      // We warn specifically about this case, since it can be rather
3424      // confusing for users.
3425      QualType T = Arg.getArgument().getAsType();
3426      SourceRange SR = Arg.getSourceRange();
3427      if (T->isFunctionType())
3428        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
3429      else
3430        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
3431      Diag(Param->getLocation(), diag::note_template_param_here);
3432      return true;
3433    }
3434
3435    case TemplateArgument::Pack:
3436      llvm_unreachable("Caller must expand template argument packs");
3437    }
3438
3439    return false;
3440  }
3441
3442
3443  // Check template template parameters.
3444  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
3445
3446  // Substitute into the template parameter list of the template
3447  // template parameter, since previously-supplied template arguments
3448  // may appear within the template template parameter.
3449  {
3450    // Set up a template instantiation context.
3451    LocalInstantiationScope Scope(*this);
3452    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3453                               TempParm, Converted,
3454                               SourceRange(TemplateLoc, RAngleLoc));
3455    if (Inst.isInvalid())
3456      return true;
3457
3458    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3459                                      Converted.data(), Converted.size());
3460    TempParm = cast_or_null<TemplateTemplateParmDecl>(
3461                      SubstDecl(TempParm, CurContext,
3462                                MultiLevelTemplateArgumentList(TemplateArgs)));
3463    if (!TempParm)
3464      return true;
3465  }
3466
3467  switch (Arg.getArgument().getKind()) {
3468  case TemplateArgument::Null:
3469    llvm_unreachable("Should never see a NULL template argument here");
3470
3471  case TemplateArgument::Template:
3472  case TemplateArgument::TemplateExpansion:
3473    if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex))
3474      return true;
3475
3476    Converted.push_back(Arg.getArgument());
3477    break;
3478
3479  case TemplateArgument::Expression:
3480  case TemplateArgument::Type:
3481    // We have a template template parameter but the template
3482    // argument does not refer to a template.
3483    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
3484      << getLangOpts().CPlusPlus11;
3485    return true;
3486
3487  case TemplateArgument::Declaration:
3488    llvm_unreachable("Declaration argument with template template parameter");
3489  case TemplateArgument::Integral:
3490    llvm_unreachable("Integral argument with template template parameter");
3491  case TemplateArgument::NullPtr:
3492    llvm_unreachable("Null pointer argument with template template parameter");
3493
3494  case TemplateArgument::Pack:
3495    llvm_unreachable("Caller must expand template argument packs");
3496  }
3497
3498  return false;
3499}
3500
3501/// \brief Diagnose an arity mismatch in the
3502static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
3503                                  SourceLocation TemplateLoc,
3504                                  TemplateArgumentListInfo &TemplateArgs) {
3505  TemplateParameterList *Params = Template->getTemplateParameters();
3506  unsigned NumParams = Params->size();
3507  unsigned NumArgs = TemplateArgs.size();
3508
3509  SourceRange Range;
3510  if (NumArgs > NumParams)
3511    Range = SourceRange(TemplateArgs[NumParams].getLocation(),
3512                        TemplateArgs.getRAngleLoc());
3513  S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3514    << (NumArgs > NumParams)
3515    << (isa<ClassTemplateDecl>(Template)? 0 :
3516        isa<FunctionTemplateDecl>(Template)? 1 :
3517        isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3518    << Template << Range;
3519  S.Diag(Template->getLocation(), diag::note_template_decl_here)
3520    << Params->getSourceRange();
3521  return true;
3522}
3523
3524/// \brief Check whether the template parameter is a pack expansion, and if so,
3525/// determine the number of parameters produced by that expansion. For instance:
3526///
3527/// \code
3528/// template<typename ...Ts> struct A {
3529///   template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
3530/// };
3531/// \endcode
3532///
3533/// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
3534/// is not a pack expansion, so returns an empty Optional.
3535static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
3536  if (NonTypeTemplateParmDecl *NTTP
3537        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3538    if (NTTP->isExpandedParameterPack())
3539      return NTTP->getNumExpansionTypes();
3540  }
3541
3542  if (TemplateTemplateParmDecl *TTP
3543        = dyn_cast<TemplateTemplateParmDecl>(Param)) {
3544    if (TTP->isExpandedParameterPack())
3545      return TTP->getNumExpansionTemplateParameters();
3546  }
3547
3548  return None;
3549}
3550
3551/// \brief Check that the given template argument list is well-formed
3552/// for specializing the given template.
3553bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
3554                                     SourceLocation TemplateLoc,
3555                                     TemplateArgumentListInfo &TemplateArgs,
3556                                     bool PartialTemplateArgs,
3557                          SmallVectorImpl<TemplateArgument> &Converted,
3558                                     bool *ExpansionIntoFixedList) {
3559  if (ExpansionIntoFixedList)
3560    *ExpansionIntoFixedList = false;
3561
3562  TemplateParameterList *Params = Template->getTemplateParameters();
3563
3564  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
3565
3566  // C++ [temp.arg]p1:
3567  //   [...] The type and form of each template-argument specified in
3568  //   a template-id shall match the type and form specified for the
3569  //   corresponding parameter declared by the template in its
3570  //   template-parameter-list.
3571  bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
3572  SmallVector<TemplateArgument, 2> ArgumentPack;
3573  unsigned ArgIdx = 0, NumArgs = TemplateArgs.size();
3574  LocalInstantiationScope InstScope(*this, true);
3575  for (TemplateParameterList::iterator Param = Params->begin(),
3576                                       ParamEnd = Params->end();
3577       Param != ParamEnd; /* increment in loop */) {
3578    // If we have an expanded parameter pack, make sure we don't have too
3579    // many arguments.
3580    if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
3581      if (*Expansions == ArgumentPack.size()) {
3582        // We're done with this parameter pack. Pack up its arguments and add
3583        // them to the list.
3584        Converted.push_back(
3585          TemplateArgument::CreatePackCopy(Context,
3586                                           ArgumentPack.data(),
3587                                           ArgumentPack.size()));
3588        ArgumentPack.clear();
3589
3590        // This argument is assigned to the next parameter.
3591        ++Param;
3592        continue;
3593      } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
3594        // Not enough arguments for this parameter pack.
3595        Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3596          << false
3597          << (isa<ClassTemplateDecl>(Template)? 0 :
3598              isa<FunctionTemplateDecl>(Template)? 1 :
3599              isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3600          << Template;
3601        Diag(Template->getLocation(), diag::note_template_decl_here)
3602          << Params->getSourceRange();
3603        return true;
3604      }
3605    }
3606
3607    if (ArgIdx < NumArgs) {
3608      // Check the template argument we were given.
3609      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
3610                                TemplateLoc, RAngleLoc,
3611                                ArgumentPack.size(), Converted))
3612        return true;
3613
3614      // We're now done with this argument.
3615      ++ArgIdx;
3616
3617      if ((*Param)->isTemplateParameterPack()) {
3618        // The template parameter was a template parameter pack, so take the
3619        // deduced argument and place it on the argument pack. Note that we
3620        // stay on the same template parameter so that we can deduce more
3621        // arguments.
3622        ArgumentPack.push_back(Converted.pop_back_val());
3623      } else {
3624        // Move to the next template parameter.
3625        ++Param;
3626      }
3627
3628      // If we just saw a pack expansion, then directly convert the remaining
3629      // arguments, because we don't know what parameters they'll match up
3630      // with.
3631      if (TemplateArgs[ArgIdx-1].getArgument().isPackExpansion()) {
3632        bool InFinalParameterPack = Param != ParamEnd &&
3633                                    Param + 1 == ParamEnd &&
3634                                    (*Param)->isTemplateParameterPack() &&
3635                                    !getExpandedPackSize(*Param);
3636
3637        if (!InFinalParameterPack && !ArgumentPack.empty()) {
3638          // If we were part way through filling in an expanded parameter pack,
3639          // fall back to just producing individual arguments.
3640          Converted.insert(Converted.end(),
3641                           ArgumentPack.begin(), ArgumentPack.end());
3642          ArgumentPack.clear();
3643        }
3644
3645        while (ArgIdx < NumArgs) {
3646          if (InFinalParameterPack)
3647            ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument());
3648          else
3649            Converted.push_back(TemplateArgs[ArgIdx].getArgument());
3650          ++ArgIdx;
3651        }
3652
3653        // Push the argument pack onto the list of converted arguments.
3654        if (InFinalParameterPack) {
3655          Converted.push_back(
3656            TemplateArgument::CreatePackCopy(Context,
3657                                             ArgumentPack.data(),
3658                                             ArgumentPack.size()));
3659          ArgumentPack.clear();
3660        } else if (ExpansionIntoFixedList) {
3661          // We have expanded a pack into a fixed list.
3662          *ExpansionIntoFixedList = true;
3663        }
3664
3665        return false;
3666      }
3667
3668      continue;
3669    }
3670
3671    // If we're checking a partial template argument list, we're done.
3672    if (PartialTemplateArgs) {
3673      if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
3674        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3675                                                         ArgumentPack.data(),
3676                                                         ArgumentPack.size()));
3677
3678      return false;
3679    }
3680
3681    // If we have a template parameter pack with no more corresponding
3682    // arguments, just break out now and we'll fill in the argument pack below.
3683    if ((*Param)->isTemplateParameterPack()) {
3684      assert(!getExpandedPackSize(*Param) &&
3685             "Should have dealt with this already");
3686
3687      // A non-expanded parameter pack before the end of the parameter list
3688      // only occurs for an ill-formed template parameter list, unless we've
3689      // got a partial argument list for a function template, so just bail out.
3690      if (Param + 1 != ParamEnd)
3691        return true;
3692
3693      Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3694                                                       ArgumentPack.data(),
3695                                                       ArgumentPack.size()));
3696      ArgumentPack.clear();
3697
3698      ++Param;
3699      continue;
3700    }
3701
3702    // Check whether we have a default argument.
3703    TemplateArgumentLoc Arg;
3704
3705    // Retrieve the default template argument from the template
3706    // parameter. For each kind of template parameter, we substitute the
3707    // template arguments provided thus far and any "outer" template arguments
3708    // (when the template parameter was part of a nested template) into
3709    // the default argument.
3710    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
3711      if (!TTP->hasDefaultArgument())
3712        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3713                                     TemplateArgs);
3714
3715      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
3716                                                             Template,
3717                                                             TemplateLoc,
3718                                                             RAngleLoc,
3719                                                             TTP,
3720                                                             Converted);
3721      if (!ArgType)
3722        return true;
3723
3724      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
3725                                ArgType);
3726    } else if (NonTypeTemplateParmDecl *NTTP
3727                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3728      if (!NTTP->hasDefaultArgument())
3729        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3730                                     TemplateArgs);
3731
3732      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
3733                                                              TemplateLoc,
3734                                                              RAngleLoc,
3735                                                              NTTP,
3736                                                              Converted);
3737      if (E.isInvalid())
3738        return true;
3739
3740      Expr *Ex = E.takeAs<Expr>();
3741      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
3742    } else {
3743      TemplateTemplateParmDecl *TempParm
3744        = cast<TemplateTemplateParmDecl>(*Param);
3745
3746      if (!TempParm->hasDefaultArgument())
3747        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3748                                     TemplateArgs);
3749
3750      NestedNameSpecifierLoc QualifierLoc;
3751      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3752                                                       TemplateLoc,
3753                                                       RAngleLoc,
3754                                                       TempParm,
3755                                                       Converted,
3756                                                       QualifierLoc);
3757      if (Name.isNull())
3758        return true;
3759
3760      Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3761                           TempParm->getDefaultArgument().getTemplateNameLoc());
3762    }
3763
3764    // Introduce an instantiation record that describes where we are using
3765    // the default template argument.
3766    InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
3767                               SourceRange(TemplateLoc, RAngleLoc));
3768    if (Inst.isInvalid())
3769      return true;
3770
3771    // Check the default template argument.
3772    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3773                              RAngleLoc, 0, Converted))
3774      return true;
3775
3776    // Core issue 150 (assumed resolution): if this is a template template
3777    // parameter, keep track of the default template arguments from the
3778    // template definition.
3779    if (isTemplateTemplateParameter)
3780      TemplateArgs.addArgument(Arg);
3781
3782    // Move to the next template parameter and argument.
3783    ++Param;
3784    ++ArgIdx;
3785  }
3786
3787  // If we have any leftover arguments, then there were too many arguments.
3788  // Complain and fail.
3789  if (ArgIdx < NumArgs)
3790    return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3791
3792  return false;
3793}
3794
3795namespace {
3796  class UnnamedLocalNoLinkageFinder
3797    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3798  {
3799    Sema &S;
3800    SourceRange SR;
3801
3802    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3803
3804  public:
3805    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3806
3807    bool Visit(QualType T) {
3808      return inherited::Visit(T.getTypePtr());
3809    }
3810
3811#define TYPE(Class, Parent) \
3812    bool Visit##Class##Type(const Class##Type *);
3813#define ABSTRACT_TYPE(Class, Parent) \
3814    bool Visit##Class##Type(const Class##Type *) { return false; }
3815#define NON_CANONICAL_TYPE(Class, Parent) \
3816    bool Visit##Class##Type(const Class##Type *) { return false; }
3817#include "clang/AST/TypeNodes.def"
3818
3819    bool VisitTagDecl(const TagDecl *Tag);
3820    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3821  };
3822}
3823
3824bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3825  return false;
3826}
3827
3828bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3829  return Visit(T->getElementType());
3830}
3831
3832bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3833  return Visit(T->getPointeeType());
3834}
3835
3836bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3837                                                    const BlockPointerType* T) {
3838  return Visit(T->getPointeeType());
3839}
3840
3841bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3842                                                const LValueReferenceType* T) {
3843  return Visit(T->getPointeeType());
3844}
3845
3846bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3847                                                const RValueReferenceType* T) {
3848  return Visit(T->getPointeeType());
3849}
3850
3851bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3852                                                  const MemberPointerType* T) {
3853  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3854}
3855
3856bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3857                                                  const ConstantArrayType* T) {
3858  return Visit(T->getElementType());
3859}
3860
3861bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3862                                                 const IncompleteArrayType* T) {
3863  return Visit(T->getElementType());
3864}
3865
3866bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3867                                                   const VariableArrayType* T) {
3868  return Visit(T->getElementType());
3869}
3870
3871bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3872                                            const DependentSizedArrayType* T) {
3873  return Visit(T->getElementType());
3874}
3875
3876bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3877                                         const DependentSizedExtVectorType* T) {
3878  return Visit(T->getElementType());
3879}
3880
3881bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3882  return Visit(T->getElementType());
3883}
3884
3885bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3886  return Visit(T->getElementType());
3887}
3888
3889bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3890                                                  const FunctionProtoType* T) {
3891  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
3892                                         AEnd = T->arg_type_end();
3893       A != AEnd; ++A) {
3894    if (Visit(*A))
3895      return true;
3896  }
3897
3898  return Visit(T->getResultType());
3899}
3900
3901bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3902                                               const FunctionNoProtoType* T) {
3903  return Visit(T->getResultType());
3904}
3905
3906bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
3907                                                  const UnresolvedUsingType*) {
3908  return false;
3909}
3910
3911bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
3912  return false;
3913}
3914
3915bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
3916  return Visit(T->getUnderlyingType());
3917}
3918
3919bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
3920  return false;
3921}
3922
3923bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
3924                                                    const UnaryTransformType*) {
3925  return false;
3926}
3927
3928bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
3929  return Visit(T->getDeducedType());
3930}
3931
3932bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
3933  return VisitTagDecl(T->getDecl());
3934}
3935
3936bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
3937  return VisitTagDecl(T->getDecl());
3938}
3939
3940bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
3941                                                 const TemplateTypeParmType*) {
3942  return false;
3943}
3944
3945bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
3946                                        const SubstTemplateTypeParmPackType *) {
3947  return false;
3948}
3949
3950bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
3951                                            const TemplateSpecializationType*) {
3952  return false;
3953}
3954
3955bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
3956                                              const InjectedClassNameType* T) {
3957  return VisitTagDecl(T->getDecl());
3958}
3959
3960bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
3961                                                   const DependentNameType* T) {
3962  return VisitNestedNameSpecifier(T->getQualifier());
3963}
3964
3965bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
3966                                 const DependentTemplateSpecializationType* T) {
3967  return VisitNestedNameSpecifier(T->getQualifier());
3968}
3969
3970bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
3971                                                   const PackExpansionType* T) {
3972  return Visit(T->getPattern());
3973}
3974
3975bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
3976  return false;
3977}
3978
3979bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
3980                                                   const ObjCInterfaceType *) {
3981  return false;
3982}
3983
3984bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
3985                                                const ObjCObjectPointerType *) {
3986  return false;
3987}
3988
3989bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
3990  return Visit(T->getValueType());
3991}
3992
3993bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
3994  if (Tag->getDeclContext()->isFunctionOrMethod()) {
3995    S.Diag(SR.getBegin(),
3996           S.getLangOpts().CPlusPlus11 ?
3997             diag::warn_cxx98_compat_template_arg_local_type :
3998             diag::ext_template_arg_local_type)
3999      << S.Context.getTypeDeclType(Tag) << SR;
4000    return true;
4001  }
4002
4003  if (!Tag->hasNameForLinkage()) {
4004    S.Diag(SR.getBegin(),
4005           S.getLangOpts().CPlusPlus11 ?
4006             diag::warn_cxx98_compat_template_arg_unnamed_type :
4007             diag::ext_template_arg_unnamed_type) << SR;
4008    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
4009    return true;
4010  }
4011
4012  return false;
4013}
4014
4015bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
4016                                                    NestedNameSpecifier *NNS) {
4017  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
4018    return true;
4019
4020  switch (NNS->getKind()) {
4021  case NestedNameSpecifier::Identifier:
4022  case NestedNameSpecifier::Namespace:
4023  case NestedNameSpecifier::NamespaceAlias:
4024  case NestedNameSpecifier::Global:
4025    return false;
4026
4027  case NestedNameSpecifier::TypeSpec:
4028  case NestedNameSpecifier::TypeSpecWithTemplate:
4029    return Visit(QualType(NNS->getAsType(), 0));
4030  }
4031  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4032}
4033
4034
4035/// \brief Check a template argument against its corresponding
4036/// template type parameter.
4037///
4038/// This routine implements the semantics of C++ [temp.arg.type]. It
4039/// returns true if an error occurred, and false otherwise.
4040bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
4041                                 TypeSourceInfo *ArgInfo) {
4042  assert(ArgInfo && "invalid TypeSourceInfo");
4043  QualType Arg = ArgInfo->getType();
4044  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
4045
4046  if (Arg->isVariablyModifiedType()) {
4047    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
4048  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
4049    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
4050  }
4051
4052  // C++03 [temp.arg.type]p2:
4053  //   A local type, a type with no linkage, an unnamed type or a type
4054  //   compounded from any of these types shall not be used as a
4055  //   template-argument for a template type-parameter.
4056  //
4057  // C++11 allows these, and even in C++03 we allow them as an extension with
4058  // a warning.
4059  if (LangOpts.CPlusPlus11 ?
4060     Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type,
4061                              SR.getBegin()) != DiagnosticsEngine::Ignored ||
4062      Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type,
4063                               SR.getBegin()) != DiagnosticsEngine::Ignored :
4064      Arg->hasUnnamedOrLocalType()) {
4065    UnnamedLocalNoLinkageFinder Finder(*this, SR);
4066    (void)Finder.Visit(Context.getCanonicalType(Arg));
4067  }
4068
4069  return false;
4070}
4071
4072enum NullPointerValueKind {
4073  NPV_NotNullPointer,
4074  NPV_NullPointer,
4075  NPV_Error
4076};
4077
4078/// \brief Determine whether the given template argument is a null pointer
4079/// value of the appropriate type.
4080static NullPointerValueKind
4081isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
4082                                   QualType ParamType, Expr *Arg) {
4083  if (Arg->isValueDependent() || Arg->isTypeDependent())
4084    return NPV_NotNullPointer;
4085
4086  if (!S.getLangOpts().CPlusPlus11)
4087    return NPV_NotNullPointer;
4088
4089  // Determine whether we have a constant expression.
4090  ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
4091  if (ArgRV.isInvalid())
4092    return NPV_Error;
4093  Arg = ArgRV.take();
4094
4095  Expr::EvalResult EvalResult;
4096  SmallVector<PartialDiagnosticAt, 8> Notes;
4097  EvalResult.Diag = &Notes;
4098  if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
4099      EvalResult.HasSideEffects) {
4100    SourceLocation DiagLoc = Arg->getExprLoc();
4101
4102    // If our only note is the usual "invalid subexpression" note, just point
4103    // the caret at its location rather than producing an essentially
4104    // redundant note.
4105    if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
4106        diag::note_invalid_subexpr_in_const_expr) {
4107      DiagLoc = Notes[0].first;
4108      Notes.clear();
4109    }
4110
4111    S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
4112      << Arg->getType() << Arg->getSourceRange();
4113    for (unsigned I = 0, N = Notes.size(); I != N; ++I)
4114      S.Diag(Notes[I].first, Notes[I].second);
4115
4116    S.Diag(Param->getLocation(), diag::note_template_param_here);
4117    return NPV_Error;
4118  }
4119
4120  // C++11 [temp.arg.nontype]p1:
4121  //   - an address constant expression of type std::nullptr_t
4122  if (Arg->getType()->isNullPtrType())
4123    return NPV_NullPointer;
4124
4125  //   - a constant expression that evaluates to a null pointer value (4.10); or
4126  //   - a constant expression that evaluates to a null member pointer value
4127  //     (4.11); or
4128  if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
4129      (EvalResult.Val.isMemberPointer() &&
4130       !EvalResult.Val.getMemberPointerDecl())) {
4131    // If our expression has an appropriate type, we've succeeded.
4132    bool ObjCLifetimeConversion;
4133    if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
4134        S.IsQualificationConversion(Arg->getType(), ParamType, false,
4135                                     ObjCLifetimeConversion))
4136      return NPV_NullPointer;
4137
4138    // The types didn't match, but we know we got a null pointer; complain,
4139    // then recover as if the types were correct.
4140    S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
4141      << Arg->getType() << ParamType << Arg->getSourceRange();
4142    S.Diag(Param->getLocation(), diag::note_template_param_here);
4143    return NPV_NullPointer;
4144  }
4145
4146  // If we don't have a null pointer value, but we do have a NULL pointer
4147  // constant, suggest a cast to the appropriate type.
4148  if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
4149    std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
4150    S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
4151      << ParamType
4152      << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
4153      << FixItHint::CreateInsertion(S.PP.getLocForEndOfToken(Arg->getLocEnd()),
4154                                    ")");
4155    S.Diag(Param->getLocation(), diag::note_template_param_here);
4156    return NPV_NullPointer;
4157  }
4158
4159  // FIXME: If we ever want to support general, address-constant expressions
4160  // as non-type template arguments, we should return the ExprResult here to
4161  // be interpreted by the caller.
4162  return NPV_NotNullPointer;
4163}
4164
4165/// \brief Checks whether the given template argument is compatible with its
4166/// template parameter.
4167static bool CheckTemplateArgumentIsCompatibleWithParameter(
4168    Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
4169    Expr *Arg, QualType ArgType) {
4170  bool ObjCLifetimeConversion;
4171  if (ParamType->isPointerType() &&
4172      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
4173      S.IsQualificationConversion(ArgType, ParamType, false,
4174                                  ObjCLifetimeConversion)) {
4175    // For pointer-to-object types, qualification conversions are
4176    // permitted.
4177  } else {
4178    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
4179      if (!ParamRef->getPointeeType()->isFunctionType()) {
4180        // C++ [temp.arg.nontype]p5b3:
4181        //   For a non-type template-parameter of type reference to
4182        //   object, no conversions apply. The type referred to by the
4183        //   reference may be more cv-qualified than the (otherwise
4184        //   identical) type of the template- argument. The
4185        //   template-parameter is bound directly to the
4186        //   template-argument, which shall be an lvalue.
4187
4188        // FIXME: Other qualifiers?
4189        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
4190        unsigned ArgQuals = ArgType.getCVRQualifiers();
4191
4192        if ((ParamQuals | ArgQuals) != ParamQuals) {
4193          S.Diag(Arg->getLocStart(),
4194                 diag::err_template_arg_ref_bind_ignores_quals)
4195            << ParamType << Arg->getType() << Arg->getSourceRange();
4196          S.Diag(Param->getLocation(), diag::note_template_param_here);
4197          return true;
4198        }
4199      }
4200    }
4201
4202    // At this point, the template argument refers to an object or
4203    // function with external linkage. We now need to check whether the
4204    // argument and parameter types are compatible.
4205    if (!S.Context.hasSameUnqualifiedType(ArgType,
4206                                          ParamType.getNonReferenceType())) {
4207      // We can't perform this conversion or binding.
4208      if (ParamType->isReferenceType())
4209        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
4210          << ParamType << ArgIn->getType() << Arg->getSourceRange();
4211      else
4212        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
4213          << ArgIn->getType() << ParamType << Arg->getSourceRange();
4214      S.Diag(Param->getLocation(), diag::note_template_param_here);
4215      return true;
4216    }
4217  }
4218
4219  return false;
4220}
4221
4222/// \brief Checks whether the given template argument is the address
4223/// of an object or function according to C++ [temp.arg.nontype]p1.
4224static bool
4225CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
4226                                               NonTypeTemplateParmDecl *Param,
4227                                               QualType ParamType,
4228                                               Expr *ArgIn,
4229                                               TemplateArgument &Converted) {
4230  bool Invalid = false;
4231  Expr *Arg = ArgIn;
4232  QualType ArgType = Arg->getType();
4233
4234  // If our parameter has pointer type, check for a null template value.
4235  if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
4236    switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
4237    case NPV_NullPointer:
4238      S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4239      Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
4240      return false;
4241
4242    case NPV_Error:
4243      return true;
4244
4245    case NPV_NotNullPointer:
4246      break;
4247    }
4248  }
4249
4250  bool AddressTaken = false;
4251  SourceLocation AddrOpLoc;
4252  if (S.getLangOpts().MicrosoftExt) {
4253    // Microsoft Visual C++ strips all casts, allows an arbitrary number of
4254    // dereference and address-of operators.
4255    Arg = Arg->IgnoreParenCasts();
4256
4257    bool ExtWarnMSTemplateArg = false;
4258    UnaryOperatorKind FirstOpKind;
4259    SourceLocation FirstOpLoc;
4260    while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4261      UnaryOperatorKind UnOpKind = UnOp->getOpcode();
4262      if (UnOpKind == UO_Deref)
4263        ExtWarnMSTemplateArg = true;
4264      if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
4265        Arg = UnOp->getSubExpr()->IgnoreParenCasts();
4266        if (!AddrOpLoc.isValid()) {
4267          FirstOpKind = UnOpKind;
4268          FirstOpLoc = UnOp->getOperatorLoc();
4269        }
4270      } else
4271        break;
4272    }
4273    if (FirstOpLoc.isValid()) {
4274      if (ExtWarnMSTemplateArg)
4275        S.Diag(ArgIn->getLocStart(), diag::ext_ms_deref_template_argument)
4276          << ArgIn->getSourceRange();
4277
4278      if (FirstOpKind == UO_AddrOf)
4279        AddressTaken = true;
4280      else if (Arg->getType()->isPointerType()) {
4281        // We cannot let pointers get dereferenced here, that is obviously not a
4282        // constant expression.
4283        assert(FirstOpKind == UO_Deref);
4284        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4285          << Arg->getSourceRange();
4286      }
4287    }
4288  } else {
4289    // See through any implicit casts we added to fix the type.
4290    Arg = Arg->IgnoreImpCasts();
4291
4292    // C++ [temp.arg.nontype]p1:
4293    //
4294    //   A template-argument for a non-type, non-template
4295    //   template-parameter shall be one of: [...]
4296    //
4297    //     -- the address of an object or function with external
4298    //        linkage, including function templates and function
4299    //        template-ids but excluding non-static class members,
4300    //        expressed as & id-expression where the & is optional if
4301    //        the name refers to a function or array, or if the
4302    //        corresponding template-parameter is a reference; or
4303
4304    // In C++98/03 mode, give an extension warning on any extra parentheses.
4305    // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4306    bool ExtraParens = false;
4307    while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4308      if (!Invalid && !ExtraParens) {
4309        S.Diag(Arg->getLocStart(),
4310               S.getLangOpts().CPlusPlus11
4311                   ? diag::warn_cxx98_compat_template_arg_extra_parens
4312                   : diag::ext_template_arg_extra_parens)
4313            << Arg->getSourceRange();
4314        ExtraParens = true;
4315      }
4316
4317      Arg = Parens->getSubExpr();
4318    }
4319
4320    while (SubstNonTypeTemplateParmExpr *subst =
4321               dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4322      Arg = subst->getReplacement()->IgnoreImpCasts();
4323
4324    if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4325      if (UnOp->getOpcode() == UO_AddrOf) {
4326        Arg = UnOp->getSubExpr();
4327        AddressTaken = true;
4328        AddrOpLoc = UnOp->getOperatorLoc();
4329      }
4330    }
4331
4332    while (SubstNonTypeTemplateParmExpr *subst =
4333               dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4334      Arg = subst->getReplacement()->IgnoreImpCasts();
4335  }
4336
4337  // Stop checking the precise nature of the argument if it is value dependent,
4338  // it should be checked when instantiated.
4339  if (Arg->isValueDependent()) {
4340    Converted = TemplateArgument(ArgIn);
4341    return false;
4342  }
4343
4344  if (isa<CXXUuidofExpr>(Arg)) {
4345    if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType,
4346                                                       ArgIn, Arg, ArgType))
4347      return true;
4348
4349    Converted = TemplateArgument(ArgIn);
4350    return false;
4351  }
4352
4353  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
4354  if (!DRE) {
4355    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4356    << Arg->getSourceRange();
4357    S.Diag(Param->getLocation(), diag::note_template_param_here);
4358    return true;
4359  }
4360
4361  ValueDecl *Entity = DRE->getDecl();
4362
4363  // Cannot refer to non-static data members
4364  if (FieldDecl *Field = dyn_cast<FieldDecl>(Entity)) {
4365    S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
4366      << Field << Arg->getSourceRange();
4367    S.Diag(Param->getLocation(), diag::note_template_param_here);
4368    return true;
4369  }
4370
4371  // Cannot refer to non-static member functions
4372  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
4373    if (!Method->isStatic()) {
4374      S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
4375        << Method << Arg->getSourceRange();
4376      S.Diag(Param->getLocation(), diag::note_template_param_here);
4377      return true;
4378    }
4379  }
4380
4381  FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
4382  VarDecl *Var = dyn_cast<VarDecl>(Entity);
4383
4384  // A non-type template argument must refer to an object or function.
4385  if (!Func && !Var) {
4386    // We found something, but we don't know specifically what it is.
4387    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
4388      << Arg->getSourceRange();
4389    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4390    return true;
4391  }
4392
4393  // Address / reference template args must have external linkage in C++98.
4394  if (Entity->getFormalLinkage() == InternalLinkage) {
4395    S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ?
4396             diag::warn_cxx98_compat_template_arg_object_internal :
4397             diag::ext_template_arg_object_internal)
4398      << !Func << Entity << Arg->getSourceRange();
4399    S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4400      << !Func;
4401  } else if (!Entity->hasLinkage()) {
4402    S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
4403      << !Func << Entity << Arg->getSourceRange();
4404    S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4405      << !Func;
4406    return true;
4407  }
4408
4409  if (Func) {
4410    // If the template parameter has pointer type, the function decays.
4411    if (ParamType->isPointerType() && !AddressTaken)
4412      ArgType = S.Context.getPointerType(Func->getType());
4413    else if (AddressTaken && ParamType->isReferenceType()) {
4414      // If we originally had an address-of operator, but the
4415      // parameter has reference type, complain and (if things look
4416      // like they will work) drop the address-of operator.
4417      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
4418                                            ParamType.getNonReferenceType())) {
4419        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4420          << ParamType;
4421        S.Diag(Param->getLocation(), diag::note_template_param_here);
4422        return true;
4423      }
4424
4425      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4426        << ParamType
4427        << FixItHint::CreateRemoval(AddrOpLoc);
4428      S.Diag(Param->getLocation(), diag::note_template_param_here);
4429
4430      ArgType = Func->getType();
4431    }
4432  } else {
4433    // A value of reference type is not an object.
4434    if (Var->getType()->isReferenceType()) {
4435      S.Diag(Arg->getLocStart(),
4436             diag::err_template_arg_reference_var)
4437        << Var->getType() << Arg->getSourceRange();
4438      S.Diag(Param->getLocation(), diag::note_template_param_here);
4439      return true;
4440    }
4441
4442    // A template argument must have static storage duration.
4443    if (Var->getTLSKind()) {
4444      S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
4445        << Arg->getSourceRange();
4446      S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
4447      return true;
4448    }
4449
4450    // If the template parameter has pointer type, we must have taken
4451    // the address of this object.
4452    if (ParamType->isReferenceType()) {
4453      if (AddressTaken) {
4454        // If we originally had an address-of operator, but the
4455        // parameter has reference type, complain and (if things look
4456        // like they will work) drop the address-of operator.
4457        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
4458                                            ParamType.getNonReferenceType())) {
4459          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4460            << ParamType;
4461          S.Diag(Param->getLocation(), diag::note_template_param_here);
4462          return true;
4463        }
4464
4465        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4466          << ParamType
4467          << FixItHint::CreateRemoval(AddrOpLoc);
4468        S.Diag(Param->getLocation(), diag::note_template_param_here);
4469
4470        ArgType = Var->getType();
4471      }
4472    } else if (!AddressTaken && ParamType->isPointerType()) {
4473      if (Var->getType()->isArrayType()) {
4474        // Array-to-pointer decay.
4475        ArgType = S.Context.getArrayDecayedType(Var->getType());
4476      } else {
4477        // If the template parameter has pointer type but the address of
4478        // this object was not taken, complain and (possibly) recover by
4479        // taking the address of the entity.
4480        ArgType = S.Context.getPointerType(Var->getType());
4481        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
4482          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4483            << ParamType;
4484          S.Diag(Param->getLocation(), diag::note_template_param_here);
4485          return true;
4486        }
4487
4488        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4489          << ParamType
4490          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
4491
4492        S.Diag(Param->getLocation(), diag::note_template_param_here);
4493      }
4494    }
4495  }
4496
4497  if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
4498                                                     Arg, ArgType))
4499    return true;
4500
4501  // Create the template argument.
4502  Converted = TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()),
4503                               ParamType->isReferenceType());
4504  S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false);
4505  return false;
4506}
4507
4508/// \brief Checks whether the given template argument is a pointer to
4509/// member constant according to C++ [temp.arg.nontype]p1.
4510static bool CheckTemplateArgumentPointerToMember(Sema &S,
4511                                                 NonTypeTemplateParmDecl *Param,
4512                                                 QualType ParamType,
4513                                                 Expr *&ResultArg,
4514                                                 TemplateArgument &Converted) {
4515  bool Invalid = false;
4516
4517  // Check for a null pointer value.
4518  Expr *Arg = ResultArg;
4519  switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
4520  case NPV_Error:
4521    return true;
4522  case NPV_NullPointer:
4523    S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4524    Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
4525    return false;
4526  case NPV_NotNullPointer:
4527    break;
4528  }
4529
4530  bool ObjCLifetimeConversion;
4531  if (S.IsQualificationConversion(Arg->getType(),
4532                                  ParamType.getNonReferenceType(),
4533                                  false, ObjCLifetimeConversion)) {
4534    Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
4535                              Arg->getValueKind()).take();
4536    ResultArg = Arg;
4537  } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
4538                ParamType.getNonReferenceType())) {
4539    // We can't perform this conversion.
4540    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
4541      << Arg->getType() << ParamType << Arg->getSourceRange();
4542    S.Diag(Param->getLocation(), diag::note_template_param_here);
4543    return true;
4544  }
4545
4546  // See through any implicit casts we added to fix the type.
4547  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
4548    Arg = Cast->getSubExpr();
4549
4550  // C++ [temp.arg.nontype]p1:
4551  //
4552  //   A template-argument for a non-type, non-template
4553  //   template-parameter shall be one of: [...]
4554  //
4555  //     -- a pointer to member expressed as described in 5.3.1.
4556  DeclRefExpr *DRE = 0;
4557
4558  // In C++98/03 mode, give an extension warning on any extra parentheses.
4559  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4560  bool ExtraParens = false;
4561  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4562    if (!Invalid && !ExtraParens) {
4563      S.Diag(Arg->getLocStart(),
4564             S.getLangOpts().CPlusPlus11 ?
4565               diag::warn_cxx98_compat_template_arg_extra_parens :
4566               diag::ext_template_arg_extra_parens)
4567        << Arg->getSourceRange();
4568      ExtraParens = true;
4569    }
4570
4571    Arg = Parens->getSubExpr();
4572  }
4573
4574  while (SubstNonTypeTemplateParmExpr *subst =
4575           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4576    Arg = subst->getReplacement()->IgnoreImpCasts();
4577
4578  // A pointer-to-member constant written &Class::member.
4579  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4580    if (UnOp->getOpcode() == UO_AddrOf) {
4581      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
4582      if (DRE && !DRE->getQualifier())
4583        DRE = 0;
4584    }
4585  }
4586  // A constant of pointer-to-member type.
4587  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
4588    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
4589      if (VD->getType()->isMemberPointerType()) {
4590        if (isa<NonTypeTemplateParmDecl>(VD) ||
4591            (isa<VarDecl>(VD) &&
4592             S.Context.getCanonicalType(VD->getType()).isConstQualified())) {
4593          if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4594            Converted = TemplateArgument(Arg);
4595          } else {
4596            VD = cast<ValueDecl>(VD->getCanonicalDecl());
4597            Converted = TemplateArgument(VD, /*isReferenceParam*/false);
4598          }
4599          return Invalid;
4600        }
4601      }
4602    }
4603
4604    DRE = 0;
4605  }
4606
4607  if (!DRE)
4608    return S.Diag(Arg->getLocStart(),
4609                  diag::err_template_arg_not_pointer_to_member_form)
4610      << Arg->getSourceRange();
4611
4612  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
4613    assert((isa<FieldDecl>(DRE->getDecl()) ||
4614            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
4615           "Only non-static member pointers can make it here");
4616
4617    // Okay: this is the address of a non-static member, and therefore
4618    // a member pointer constant.
4619    if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4620      Converted = TemplateArgument(Arg);
4621    } else {
4622      ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
4623      Converted = TemplateArgument(D, /*isReferenceParam*/false);
4624    }
4625    return Invalid;
4626  }
4627
4628  // We found something else, but we don't know specifically what it is.
4629  S.Diag(Arg->getLocStart(),
4630         diag::err_template_arg_not_pointer_to_member_form)
4631    << Arg->getSourceRange();
4632  S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4633  return true;
4634}
4635
4636/// \brief Check a template argument against its corresponding
4637/// non-type template parameter.
4638///
4639/// This routine implements the semantics of C++ [temp.arg.nontype].
4640/// If an error occurred, it returns ExprError(); otherwise, it
4641/// returns the converted template argument. \p
4642/// InstantiatedParamType is the type of the non-type template
4643/// parameter after it has been instantiated.
4644ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
4645                                       QualType InstantiatedParamType, Expr *Arg,
4646                                       TemplateArgument &Converted,
4647                                       CheckTemplateArgumentKind CTAK) {
4648  SourceLocation StartLoc = Arg->getLocStart();
4649
4650  // If either the parameter has a dependent type or the argument is
4651  // type-dependent, there's nothing we can check now.
4652  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
4653    // FIXME: Produce a cloned, canonical expression?
4654    Converted = TemplateArgument(Arg);
4655    return Owned(Arg);
4656  }
4657
4658  // C++ [temp.arg.nontype]p5:
4659  //   The following conversions are performed on each expression used
4660  //   as a non-type template-argument. If a non-type
4661  //   template-argument cannot be converted to the type of the
4662  //   corresponding template-parameter then the program is
4663  //   ill-formed.
4664  QualType ParamType = InstantiatedParamType;
4665  if (ParamType->isIntegralOrEnumerationType()) {
4666    // C++11:
4667    //   -- for a non-type template-parameter of integral or
4668    //      enumeration type, conversions permitted in a converted
4669    //      constant expression are applied.
4670    //
4671    // C++98:
4672    //   -- for a non-type template-parameter of integral or
4673    //      enumeration type, integral promotions (4.5) and integral
4674    //      conversions (4.7) are applied.
4675
4676    if (CTAK == CTAK_Deduced &&
4677        !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
4678      // C++ [temp.deduct.type]p17:
4679      //   If, in the declaration of a function template with a non-type
4680      //   template-parameter, the non-type template-parameter is used
4681      //   in an expression in the function parameter-list and, if the
4682      //   corresponding template-argument is deduced, the
4683      //   template-argument type shall match the type of the
4684      //   template-parameter exactly, except that a template-argument
4685      //   deduced from an array bound may be of any integral type.
4686      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
4687        << Arg->getType().getUnqualifiedType()
4688        << ParamType.getUnqualifiedType();
4689      Diag(Param->getLocation(), diag::note_template_param_here);
4690      return ExprError();
4691    }
4692
4693    if (getLangOpts().CPlusPlus11) {
4694      // We can't check arbitrary value-dependent arguments.
4695      // FIXME: If there's no viable conversion to the template parameter type,
4696      // we should be able to diagnose that prior to instantiation.
4697      if (Arg->isValueDependent()) {
4698        Converted = TemplateArgument(Arg);
4699        return Owned(Arg);
4700      }
4701
4702      // C++ [temp.arg.nontype]p1:
4703      //   A template-argument for a non-type, non-template template-parameter
4704      //   shall be one of:
4705      //
4706      //     -- for a non-type template-parameter of integral or enumeration
4707      //        type, a converted constant expression of the type of the
4708      //        template-parameter; or
4709      llvm::APSInt Value;
4710      ExprResult ArgResult =
4711        CheckConvertedConstantExpression(Arg, ParamType, Value,
4712                                         CCEK_TemplateArg);
4713      if (ArgResult.isInvalid())
4714        return ExprError();
4715
4716      // Widen the argument value to sizeof(parameter type). This is almost
4717      // always a no-op, except when the parameter type is bool. In
4718      // that case, this may extend the argument from 1 bit to 8 bits.
4719      QualType IntegerType = ParamType;
4720      if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4721        IntegerType = Enum->getDecl()->getIntegerType();
4722      Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
4723
4724      Converted = TemplateArgument(Context, Value,
4725                                   Context.getCanonicalType(ParamType));
4726      return ArgResult;
4727    }
4728
4729    ExprResult ArgResult = DefaultLvalueConversion(Arg);
4730    if (ArgResult.isInvalid())
4731      return ExprError();
4732    Arg = ArgResult.take();
4733
4734    QualType ArgType = Arg->getType();
4735
4736    // C++ [temp.arg.nontype]p1:
4737    //   A template-argument for a non-type, non-template
4738    //   template-parameter shall be one of:
4739    //
4740    //     -- an integral constant-expression of integral or enumeration
4741    //        type; or
4742    //     -- the name of a non-type template-parameter; or
4743    SourceLocation NonConstantLoc;
4744    llvm::APSInt Value;
4745    if (!ArgType->isIntegralOrEnumerationType()) {
4746      Diag(Arg->getLocStart(),
4747           diag::err_template_arg_not_integral_or_enumeral)
4748        << ArgType << Arg->getSourceRange();
4749      Diag(Param->getLocation(), diag::note_template_param_here);
4750      return ExprError();
4751    } else if (!Arg->isValueDependent()) {
4752      class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
4753        QualType T;
4754
4755      public:
4756        TmplArgICEDiagnoser(QualType T) : T(T) { }
4757
4758        virtual void diagnoseNotICE(Sema &S, SourceLocation Loc,
4759                                    SourceRange SR) {
4760          S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
4761        }
4762      } Diagnoser(ArgType);
4763
4764      Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
4765                                            false).take();
4766      if (!Arg)
4767        return ExprError();
4768    }
4769
4770    // From here on out, all we care about are the unqualified forms
4771    // of the parameter and argument types.
4772    ParamType = ParamType.getUnqualifiedType();
4773    ArgType = ArgType.getUnqualifiedType();
4774
4775    // Try to convert the argument to the parameter's type.
4776    if (Context.hasSameType(ParamType, ArgType)) {
4777      // Okay: no conversion necessary
4778    } else if (ParamType->isBooleanType()) {
4779      // This is an integral-to-boolean conversion.
4780      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
4781    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
4782               !ParamType->isEnumeralType()) {
4783      // This is an integral promotion or conversion.
4784      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
4785    } else {
4786      // We can't perform this conversion.
4787      Diag(Arg->getLocStart(),
4788           diag::err_template_arg_not_convertible)
4789        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
4790      Diag(Param->getLocation(), diag::note_template_param_here);
4791      return ExprError();
4792    }
4793
4794    // Add the value of this argument to the list of converted
4795    // arguments. We use the bitwidth and signedness of the template
4796    // parameter.
4797    if (Arg->isValueDependent()) {
4798      // The argument is value-dependent. Create a new
4799      // TemplateArgument with the converted expression.
4800      Converted = TemplateArgument(Arg);
4801      return Owned(Arg);
4802    }
4803
4804    QualType IntegerType = Context.getCanonicalType(ParamType);
4805    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4806      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
4807
4808    if (ParamType->isBooleanType()) {
4809      // Value must be zero or one.
4810      Value = Value != 0;
4811      unsigned AllowedBits = Context.getTypeSize(IntegerType);
4812      if (Value.getBitWidth() != AllowedBits)
4813        Value = Value.extOrTrunc(AllowedBits);
4814      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4815    } else {
4816      llvm::APSInt OldValue = Value;
4817
4818      // Coerce the template argument's value to the value it will have
4819      // based on the template parameter's type.
4820      unsigned AllowedBits = Context.getTypeSize(IntegerType);
4821      if (Value.getBitWidth() != AllowedBits)
4822        Value = Value.extOrTrunc(AllowedBits);
4823      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4824
4825      // Complain if an unsigned parameter received a negative value.
4826      if (IntegerType->isUnsignedIntegerOrEnumerationType()
4827               && (OldValue.isSigned() && OldValue.isNegative())) {
4828        Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
4829          << OldValue.toString(10) << Value.toString(10) << Param->getType()
4830          << Arg->getSourceRange();
4831        Diag(Param->getLocation(), diag::note_template_param_here);
4832      }
4833
4834      // Complain if we overflowed the template parameter's type.
4835      unsigned RequiredBits;
4836      if (IntegerType->isUnsignedIntegerOrEnumerationType())
4837        RequiredBits = OldValue.getActiveBits();
4838      else if (OldValue.isUnsigned())
4839        RequiredBits = OldValue.getActiveBits() + 1;
4840      else
4841        RequiredBits = OldValue.getMinSignedBits();
4842      if (RequiredBits > AllowedBits) {
4843        Diag(Arg->getLocStart(),
4844             diag::warn_template_arg_too_large)
4845          << OldValue.toString(10) << Value.toString(10) << Param->getType()
4846          << Arg->getSourceRange();
4847        Diag(Param->getLocation(), diag::note_template_param_here);
4848      }
4849    }
4850
4851    Converted = TemplateArgument(Context, Value,
4852                                 ParamType->isEnumeralType()
4853                                   ? Context.getCanonicalType(ParamType)
4854                                   : IntegerType);
4855    return Owned(Arg);
4856  }
4857
4858  QualType ArgType = Arg->getType();
4859  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
4860
4861  // Handle pointer-to-function, reference-to-function, and
4862  // pointer-to-member-function all in (roughly) the same way.
4863  if (// -- For a non-type template-parameter of type pointer to
4864      //    function, only the function-to-pointer conversion (4.3) is
4865      //    applied. If the template-argument represents a set of
4866      //    overloaded functions (or a pointer to such), the matching
4867      //    function is selected from the set (13.4).
4868      (ParamType->isPointerType() &&
4869       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
4870      // -- For a non-type template-parameter of type reference to
4871      //    function, no conversions apply. If the template-argument
4872      //    represents a set of overloaded functions, the matching
4873      //    function is selected from the set (13.4).
4874      (ParamType->isReferenceType() &&
4875       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
4876      // -- For a non-type template-parameter of type pointer to
4877      //    member function, no conversions apply. If the
4878      //    template-argument represents a set of overloaded member
4879      //    functions, the matching member function is selected from
4880      //    the set (13.4).
4881      (ParamType->isMemberPointerType() &&
4882       ParamType->getAs<MemberPointerType>()->getPointeeType()
4883         ->isFunctionType())) {
4884
4885    if (Arg->getType() == Context.OverloadTy) {
4886      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
4887                                                                true,
4888                                                                FoundResult)) {
4889        if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4890          return ExprError();
4891
4892        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4893        ArgType = Arg->getType();
4894      } else
4895        return ExprError();
4896    }
4897
4898    if (!ParamType->isMemberPointerType()) {
4899      if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4900                                                         ParamType,
4901                                                         Arg, Converted))
4902        return ExprError();
4903      return Owned(Arg);
4904    }
4905
4906    if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4907                                             Converted))
4908      return ExprError();
4909    return Owned(Arg);
4910  }
4911
4912  if (ParamType->isPointerType()) {
4913    //   -- for a non-type template-parameter of type pointer to
4914    //      object, qualification conversions (4.4) and the
4915    //      array-to-pointer conversion (4.2) are applied.
4916    // C++0x also allows a value of std::nullptr_t.
4917    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
4918           "Only object pointers allowed here");
4919
4920    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4921                                                       ParamType,
4922                                                       Arg, Converted))
4923      return ExprError();
4924    return Owned(Arg);
4925  }
4926
4927  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
4928    //   -- For a non-type template-parameter of type reference to
4929    //      object, no conversions apply. The type referred to by the
4930    //      reference may be more cv-qualified than the (otherwise
4931    //      identical) type of the template-argument. The
4932    //      template-parameter is bound directly to the
4933    //      template-argument, which must be an lvalue.
4934    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
4935           "Only object references allowed here");
4936
4937    if (Arg->getType() == Context.OverloadTy) {
4938      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
4939                                                 ParamRefType->getPointeeType(),
4940                                                                true,
4941                                                                FoundResult)) {
4942        if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4943          return ExprError();
4944
4945        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4946        ArgType = Arg->getType();
4947      } else
4948        return ExprError();
4949    }
4950
4951    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4952                                                       ParamType,
4953                                                       Arg, Converted))
4954      return ExprError();
4955    return Owned(Arg);
4956  }
4957
4958  // Deal with parameters of type std::nullptr_t.
4959  if (ParamType->isNullPtrType()) {
4960    if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4961      Converted = TemplateArgument(Arg);
4962      return Owned(Arg);
4963    }
4964
4965    switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
4966    case NPV_NotNullPointer:
4967      Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
4968        << Arg->getType() << ParamType;
4969      Diag(Param->getLocation(), diag::note_template_param_here);
4970      return ExprError();
4971
4972    case NPV_Error:
4973      return ExprError();
4974
4975    case NPV_NullPointer:
4976      Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4977      Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
4978      return Owned(Arg);
4979    }
4980  }
4981
4982  //     -- For a non-type template-parameter of type pointer to data
4983  //        member, qualification conversions (4.4) are applied.
4984  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
4985
4986  if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4987                                           Converted))
4988    return ExprError();
4989  return Owned(Arg);
4990}
4991
4992/// \brief Check a template argument against its corresponding
4993/// template template parameter.
4994///
4995/// This routine implements the semantics of C++ [temp.arg.template].
4996/// It returns true if an error occurred, and false otherwise.
4997bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
4998                                 const TemplateArgumentLoc &Arg,
4999                                 unsigned ArgumentPackIndex) {
5000  TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
5001  TemplateDecl *Template = Name.getAsTemplateDecl();
5002  if (!Template) {
5003    // Any dependent template name is fine.
5004    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
5005    return false;
5006  }
5007
5008  // C++0x [temp.arg.template]p1:
5009  //   A template-argument for a template template-parameter shall be
5010  //   the name of a class template or an alias template, expressed as an
5011  //   id-expression. When the template-argument names a class template, only
5012  //   primary class templates are considered when matching the
5013  //   template template argument with the corresponding parameter;
5014  //   partial specializations are not considered even if their
5015  //   parameter lists match that of the template template parameter.
5016  //
5017  // Note that we also allow template template parameters here, which
5018  // will happen when we are dealing with, e.g., class template
5019  // partial specializations.
5020  if (!isa<ClassTemplateDecl>(Template) &&
5021      !isa<TemplateTemplateParmDecl>(Template) &&
5022      !isa<TypeAliasTemplateDecl>(Template)) {
5023    assert(isa<FunctionTemplateDecl>(Template) &&
5024           "Only function templates are possible here");
5025    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
5026    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
5027      << Template;
5028  }
5029
5030  TemplateParameterList *Params = Param->getTemplateParameters();
5031  if (Param->isExpandedParameterPack())
5032    Params = Param->getExpansionTemplateParameters(ArgumentPackIndex);
5033
5034  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
5035                                         Params,
5036                                         true,
5037                                         TPL_TemplateTemplateArgumentMatch,
5038                                         Arg.getLocation());
5039}
5040
5041/// \brief Given a non-type template argument that refers to a
5042/// declaration and the type of its corresponding non-type template
5043/// parameter, produce an expression that properly refers to that
5044/// declaration.
5045ExprResult
5046Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
5047                                              QualType ParamType,
5048                                              SourceLocation Loc) {
5049  // C++ [temp.param]p8:
5050  //
5051  //   A non-type template-parameter of type "array of T" or
5052  //   "function returning T" is adjusted to be of type "pointer to
5053  //   T" or "pointer to function returning T", respectively.
5054  if (ParamType->isArrayType())
5055    ParamType = Context.getArrayDecayedType(ParamType);
5056  else if (ParamType->isFunctionType())
5057    ParamType = Context.getPointerType(ParamType);
5058
5059  // For a NULL non-type template argument, return nullptr casted to the
5060  // parameter's type.
5061  if (Arg.getKind() == TemplateArgument::NullPtr) {
5062    return ImpCastExprToType(
5063             new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
5064                             ParamType,
5065                             ParamType->getAs<MemberPointerType>()
5066                               ? CK_NullToMemberPointer
5067                               : CK_NullToPointer);
5068  }
5069  assert(Arg.getKind() == TemplateArgument::Declaration &&
5070         "Only declaration template arguments permitted here");
5071
5072  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
5073
5074  if (VD->getDeclContext()->isRecord() &&
5075      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
5076    // If the value is a class member, we might have a pointer-to-member.
5077    // Determine whether the non-type template template parameter is of
5078    // pointer-to-member type. If so, we need to build an appropriate
5079    // expression for a pointer-to-member, since a "normal" DeclRefExpr
5080    // would refer to the member itself.
5081    if (ParamType->isMemberPointerType()) {
5082      QualType ClassType
5083        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
5084      NestedNameSpecifier *Qualifier
5085        = NestedNameSpecifier::Create(Context, 0, false,
5086                                      ClassType.getTypePtr());
5087      CXXScopeSpec SS;
5088      SS.MakeTrivial(Context, Qualifier, Loc);
5089
5090      // The actual value-ness of this is unimportant, but for
5091      // internal consistency's sake, references to instance methods
5092      // are r-values.
5093      ExprValueKind VK = VK_LValue;
5094      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
5095        VK = VK_RValue;
5096
5097      ExprResult RefExpr = BuildDeclRefExpr(VD,
5098                                            VD->getType().getNonReferenceType(),
5099                                            VK,
5100                                            Loc,
5101                                            &SS);
5102      if (RefExpr.isInvalid())
5103        return ExprError();
5104
5105      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5106
5107      // We might need to perform a trailing qualification conversion, since
5108      // the element type on the parameter could be more qualified than the
5109      // element type in the expression we constructed.
5110      bool ObjCLifetimeConversion;
5111      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
5112                                    ParamType.getUnqualifiedType(), false,
5113                                    ObjCLifetimeConversion))
5114        RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
5115
5116      assert(!RefExpr.isInvalid() &&
5117             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
5118                                 ParamType.getUnqualifiedType()));
5119      return RefExpr;
5120    }
5121  }
5122
5123  QualType T = VD->getType().getNonReferenceType();
5124
5125  if (ParamType->isPointerType()) {
5126    // When the non-type template parameter is a pointer, take the
5127    // address of the declaration.
5128    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
5129    if (RefExpr.isInvalid())
5130      return ExprError();
5131
5132    if (T->isFunctionType() || T->isArrayType()) {
5133      // Decay functions and arrays.
5134      RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
5135      if (RefExpr.isInvalid())
5136        return ExprError();
5137
5138      return RefExpr;
5139    }
5140
5141    // Take the address of everything else
5142    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5143  }
5144
5145  ExprValueKind VK = VK_RValue;
5146
5147  // If the non-type template parameter has reference type, qualify the
5148  // resulting declaration reference with the extra qualifiers on the
5149  // type that the reference refers to.
5150  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
5151    VK = VK_LValue;
5152    T = Context.getQualifiedType(T,
5153                              TargetRef->getPointeeType().getQualifiers());
5154  } else if (isa<FunctionDecl>(VD)) {
5155    // References to functions are always lvalues.
5156    VK = VK_LValue;
5157  }
5158
5159  return BuildDeclRefExpr(VD, T, VK, Loc);
5160}
5161
5162/// \brief Construct a new expression that refers to the given
5163/// integral template argument with the given source-location
5164/// information.
5165///
5166/// This routine takes care of the mapping from an integral template
5167/// argument (which may have any integral type) to the appropriate
5168/// literal value.
5169ExprResult
5170Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
5171                                                  SourceLocation Loc) {
5172  assert(Arg.getKind() == TemplateArgument::Integral &&
5173         "Operation is only valid for integral template arguments");
5174  QualType OrigT = Arg.getIntegralType();
5175
5176  // If this is an enum type that we're instantiating, we need to use an integer
5177  // type the same size as the enumerator.  We don't want to build an
5178  // IntegerLiteral with enum type.  The integer type of an enum type can be of
5179  // any integral type with C++11 enum classes, make sure we create the right
5180  // type of literal for it.
5181  QualType T = OrigT;
5182  if (const EnumType *ET = OrigT->getAs<EnumType>())
5183    T = ET->getDecl()->getIntegerType();
5184
5185  Expr *E;
5186  if (T->isAnyCharacterType()) {
5187    CharacterLiteral::CharacterKind Kind;
5188    if (T->isWideCharType())
5189      Kind = CharacterLiteral::Wide;
5190    else if (T->isChar16Type())
5191      Kind = CharacterLiteral::UTF16;
5192    else if (T->isChar32Type())
5193      Kind = CharacterLiteral::UTF32;
5194    else
5195      Kind = CharacterLiteral::Ascii;
5196
5197    E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
5198                                       Kind, T, Loc);
5199  } else if (T->isBooleanType()) {
5200    E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
5201                                         T, Loc);
5202  } else if (T->isNullPtrType()) {
5203    E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
5204  } else {
5205    E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
5206  }
5207
5208  if (OrigT->isEnumeralType()) {
5209    // FIXME: This is a hack. We need a better way to handle substituted
5210    // non-type template parameters.
5211    E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E, 0,
5212                               Context.getTrivialTypeSourceInfo(OrigT, Loc),
5213                               Loc, Loc);
5214  }
5215
5216  return Owned(E);
5217}
5218
5219/// \brief Match two template parameters within template parameter lists.
5220static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
5221                                       bool Complain,
5222                                     Sema::TemplateParameterListEqualKind Kind,
5223                                       SourceLocation TemplateArgLoc) {
5224  // Check the actual kind (type, non-type, template).
5225  if (Old->getKind() != New->getKind()) {
5226    if (Complain) {
5227      unsigned NextDiag = diag::err_template_param_different_kind;
5228      if (TemplateArgLoc.isValid()) {
5229        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5230        NextDiag = diag::note_template_param_different_kind;
5231      }
5232      S.Diag(New->getLocation(), NextDiag)
5233        << (Kind != Sema::TPL_TemplateMatch);
5234      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
5235        << (Kind != Sema::TPL_TemplateMatch);
5236    }
5237
5238    return false;
5239  }
5240
5241  // Check that both are parameter packs are neither are parameter packs.
5242  // However, if we are matching a template template argument to a
5243  // template template parameter, the template template parameter can have
5244  // a parameter pack where the template template argument does not.
5245  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
5246      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5247        Old->isTemplateParameterPack())) {
5248    if (Complain) {
5249      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
5250      if (TemplateArgLoc.isValid()) {
5251        S.Diag(TemplateArgLoc,
5252             diag::err_template_arg_template_params_mismatch);
5253        NextDiag = diag::note_template_parameter_pack_non_pack;
5254      }
5255
5256      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
5257                      : isa<NonTypeTemplateParmDecl>(New)? 1
5258                      : 2;
5259      S.Diag(New->getLocation(), NextDiag)
5260        << ParamKind << New->isParameterPack();
5261      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
5262        << ParamKind << Old->isParameterPack();
5263    }
5264
5265    return false;
5266  }
5267
5268  // For non-type template parameters, check the type of the parameter.
5269  if (NonTypeTemplateParmDecl *OldNTTP
5270                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
5271    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
5272
5273    // If we are matching a template template argument to a template
5274    // template parameter and one of the non-type template parameter types
5275    // is dependent, then we must wait until template instantiation time
5276    // to actually compare the arguments.
5277    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5278        (OldNTTP->getType()->isDependentType() ||
5279         NewNTTP->getType()->isDependentType()))
5280      return true;
5281
5282    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
5283      if (Complain) {
5284        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
5285        if (TemplateArgLoc.isValid()) {
5286          S.Diag(TemplateArgLoc,
5287                 diag::err_template_arg_template_params_mismatch);
5288          NextDiag = diag::note_template_nontype_parm_different_type;
5289        }
5290        S.Diag(NewNTTP->getLocation(), NextDiag)
5291          << NewNTTP->getType()
5292          << (Kind != Sema::TPL_TemplateMatch);
5293        S.Diag(OldNTTP->getLocation(),
5294               diag::note_template_nontype_parm_prev_declaration)
5295          << OldNTTP->getType();
5296      }
5297
5298      return false;
5299    }
5300
5301    return true;
5302  }
5303
5304  // For template template parameters, check the template parameter types.
5305  // The template parameter lists of template template
5306  // parameters must agree.
5307  if (TemplateTemplateParmDecl *OldTTP
5308                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
5309    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
5310    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
5311                                            OldTTP->getTemplateParameters(),
5312                                            Complain,
5313                                        (Kind == Sema::TPL_TemplateMatch
5314                                           ? Sema::TPL_TemplateTemplateParmMatch
5315                                           : Kind),
5316                                            TemplateArgLoc);
5317  }
5318
5319  return true;
5320}
5321
5322/// \brief Diagnose a known arity mismatch when comparing template argument
5323/// lists.
5324static
5325void DiagnoseTemplateParameterListArityMismatch(Sema &S,
5326                                                TemplateParameterList *New,
5327                                                TemplateParameterList *Old,
5328                                      Sema::TemplateParameterListEqualKind Kind,
5329                                                SourceLocation TemplateArgLoc) {
5330  unsigned NextDiag = diag::err_template_param_list_different_arity;
5331  if (TemplateArgLoc.isValid()) {
5332    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5333    NextDiag = diag::note_template_param_list_different_arity;
5334  }
5335  S.Diag(New->getTemplateLoc(), NextDiag)
5336    << (New->size() > Old->size())
5337    << (Kind != Sema::TPL_TemplateMatch)
5338    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
5339  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
5340    << (Kind != Sema::TPL_TemplateMatch)
5341    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
5342}
5343
5344/// \brief Determine whether the given template parameter lists are
5345/// equivalent.
5346///
5347/// \param New  The new template parameter list, typically written in the
5348/// source code as part of a new template declaration.
5349///
5350/// \param Old  The old template parameter list, typically found via
5351/// name lookup of the template declared with this template parameter
5352/// list.
5353///
5354/// \param Complain  If true, this routine will produce a diagnostic if
5355/// the template parameter lists are not equivalent.
5356///
5357/// \param Kind describes how we are to match the template parameter lists.
5358///
5359/// \param TemplateArgLoc If this source location is valid, then we
5360/// are actually checking the template parameter list of a template
5361/// argument (New) against the template parameter list of its
5362/// corresponding template template parameter (Old). We produce
5363/// slightly different diagnostics in this scenario.
5364///
5365/// \returns True if the template parameter lists are equal, false
5366/// otherwise.
5367bool
5368Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
5369                                     TemplateParameterList *Old,
5370                                     bool Complain,
5371                                     TemplateParameterListEqualKind Kind,
5372                                     SourceLocation TemplateArgLoc) {
5373  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
5374    if (Complain)
5375      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5376                                                 TemplateArgLoc);
5377
5378    return false;
5379  }
5380
5381  // C++0x [temp.arg.template]p3:
5382  //   A template-argument matches a template template-parameter (call it P)
5383  //   when each of the template parameters in the template-parameter-list of
5384  //   the template-argument's corresponding class template or alias template
5385  //   (call it A) matches the corresponding template parameter in the
5386  //   template-parameter-list of P. [...]
5387  TemplateParameterList::iterator NewParm = New->begin();
5388  TemplateParameterList::iterator NewParmEnd = New->end();
5389  for (TemplateParameterList::iterator OldParm = Old->begin(),
5390                                    OldParmEnd = Old->end();
5391       OldParm != OldParmEnd; ++OldParm) {
5392    if (Kind != TPL_TemplateTemplateArgumentMatch ||
5393        !(*OldParm)->isTemplateParameterPack()) {
5394      if (NewParm == NewParmEnd) {
5395        if (Complain)
5396          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5397                                                     TemplateArgLoc);
5398
5399        return false;
5400      }
5401
5402      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5403                                      Kind, TemplateArgLoc))
5404        return false;
5405
5406      ++NewParm;
5407      continue;
5408    }
5409
5410    // C++0x [temp.arg.template]p3:
5411    //   [...] When P's template- parameter-list contains a template parameter
5412    //   pack (14.5.3), the template parameter pack will match zero or more
5413    //   template parameters or template parameter packs in the
5414    //   template-parameter-list of A with the same type and form as the
5415    //   template parameter pack in P (ignoring whether those template
5416    //   parameters are template parameter packs).
5417    for (; NewParm != NewParmEnd; ++NewParm) {
5418      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5419                                      Kind, TemplateArgLoc))
5420        return false;
5421    }
5422  }
5423
5424  // Make sure we exhausted all of the arguments.
5425  if (NewParm != NewParmEnd) {
5426    if (Complain)
5427      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5428                                                 TemplateArgLoc);
5429
5430    return false;
5431  }
5432
5433  return true;
5434}
5435
5436/// \brief Check whether a template can be declared within this scope.
5437///
5438/// If the template declaration is valid in this scope, returns
5439/// false. Otherwise, issues a diagnostic and returns true.
5440bool
5441Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
5442  if (!S)
5443    return false;
5444
5445  // Find the nearest enclosing declaration scope.
5446  while ((S->getFlags() & Scope::DeclScope) == 0 ||
5447         (S->getFlags() & Scope::TemplateParamScope) != 0)
5448    S = S->getParent();
5449
5450  // C++ [temp]p2:
5451  //   A template-declaration can appear only as a namespace scope or
5452  //   class scope declaration.
5453  DeclContext *Ctx = S->getEntity();
5454  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
5455      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
5456    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
5457             << TemplateParams->getSourceRange();
5458
5459  while (Ctx && isa<LinkageSpecDecl>(Ctx))
5460    Ctx = Ctx->getParent();
5461
5462  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
5463    return false;
5464
5465  return Diag(TemplateParams->getTemplateLoc(),
5466              diag::err_template_outside_namespace_or_class_scope)
5467    << TemplateParams->getSourceRange();
5468}
5469
5470/// \brief Determine what kind of template specialization the given declaration
5471/// is.
5472static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
5473  if (!D)
5474    return TSK_Undeclared;
5475
5476  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
5477    return Record->getTemplateSpecializationKind();
5478  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
5479    return Function->getTemplateSpecializationKind();
5480  if (VarDecl *Var = dyn_cast<VarDecl>(D))
5481    return Var->getTemplateSpecializationKind();
5482
5483  return TSK_Undeclared;
5484}
5485
5486/// \brief Check whether a specialization is well-formed in the current
5487/// context.
5488///
5489/// This routine determines whether a template specialization can be declared
5490/// in the current context (C++ [temp.expl.spec]p2).
5491///
5492/// \param S the semantic analysis object for which this check is being
5493/// performed.
5494///
5495/// \param Specialized the entity being specialized or instantiated, which
5496/// may be a kind of template (class template, function template, etc.) or
5497/// a member of a class template (member function, static data member,
5498/// member class).
5499///
5500/// \param PrevDecl the previous declaration of this entity, if any.
5501///
5502/// \param Loc the location of the explicit specialization or instantiation of
5503/// this entity.
5504///
5505/// \param IsPartialSpecialization whether this is a partial specialization of
5506/// a class template.
5507///
5508/// \returns true if there was an error that we cannot recover from, false
5509/// otherwise.
5510static bool CheckTemplateSpecializationScope(Sema &S,
5511                                             NamedDecl *Specialized,
5512                                             NamedDecl *PrevDecl,
5513                                             SourceLocation Loc,
5514                                             bool IsPartialSpecialization) {
5515  // Keep these "kind" numbers in sync with the %select statements in the
5516  // various diagnostics emitted by this routine.
5517  int EntityKind = 0;
5518  if (isa<ClassTemplateDecl>(Specialized))
5519    EntityKind = IsPartialSpecialization? 1 : 0;
5520  else if (isa<VarTemplateDecl>(Specialized))
5521    EntityKind = IsPartialSpecialization ? 3 : 2;
5522  else if (isa<FunctionTemplateDecl>(Specialized))
5523    EntityKind = 4;
5524  else if (isa<CXXMethodDecl>(Specialized))
5525    EntityKind = 5;
5526  else if (isa<VarDecl>(Specialized))
5527    EntityKind = 6;
5528  else if (isa<RecordDecl>(Specialized))
5529    EntityKind = 7;
5530  else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
5531    EntityKind = 8;
5532  else {
5533    S.Diag(Loc, diag::err_template_spec_unknown_kind)
5534      << S.getLangOpts().CPlusPlus11;
5535    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5536    return true;
5537  }
5538
5539  // C++ [temp.expl.spec]p2:
5540  //   An explicit specialization shall be declared in the namespace
5541  //   of which the template is a member, or, for member templates, in
5542  //   the namespace of which the enclosing class or enclosing class
5543  //   template is a member. An explicit specialization of a member
5544  //   function, member class or static data member of a class
5545  //   template shall be declared in the namespace of which the class
5546  //   template is a member. Such a declaration may also be a
5547  //   definition. If the declaration is not a definition, the
5548  //   specialization may be defined later in the name- space in which
5549  //   the explicit specialization was declared, or in a namespace
5550  //   that encloses the one in which the explicit specialization was
5551  //   declared.
5552  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5553    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
5554      << Specialized;
5555    return true;
5556  }
5557
5558  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
5559    if (S.getLangOpts().MicrosoftExt) {
5560      // Do not warn for class scope explicit specialization during
5561      // instantiation, warning was already emitted during pattern
5562      // semantic analysis.
5563      if (!S.ActiveTemplateInstantiations.size())
5564        S.Diag(Loc, diag::ext_function_specialization_in_class)
5565          << Specialized;
5566    } else {
5567      S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5568        << Specialized;
5569      return true;
5570    }
5571  }
5572
5573  if (S.CurContext->isRecord() &&
5574      !S.CurContext->Equals(Specialized->getDeclContext())) {
5575    // Make sure that we're specializing in the right record context.
5576    // Otherwise, things can go horribly wrong.
5577    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5578      << Specialized;
5579    return true;
5580  }
5581
5582  // C++ [temp.class.spec]p6:
5583  //   A class template partial specialization may be declared or redeclared
5584  //   in any namespace scope in which its definition may be defined (14.5.1
5585  //   and 14.5.2).
5586  bool ComplainedAboutScope = false;
5587  DeclContext *SpecializedContext
5588    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
5589  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
5590  if ((!PrevDecl ||
5591       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
5592       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
5593    // C++ [temp.exp.spec]p2:
5594    //   An explicit specialization shall be declared in the namespace of which
5595    //   the template is a member, or, for member templates, in the namespace
5596    //   of which the enclosing class or enclosing class template is a member.
5597    //   An explicit specialization of a member function, member class or
5598    //   static data member of a class template shall be declared in the
5599    //   namespace of which the class template is a member.
5600    //
5601    // C++0x [temp.expl.spec]p2:
5602    //   An explicit specialization shall be declared in a namespace enclosing
5603    //   the specialized template.
5604    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
5605      bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext);
5606      if (isa<TranslationUnitDecl>(SpecializedContext)) {
5607        assert(!IsCPlusPlus11Extension &&
5608               "DC encloses TU but isn't in enclosing namespace set");
5609        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
5610          << EntityKind << Specialized;
5611      } else if (isa<NamespaceDecl>(SpecializedContext)) {
5612        int Diag;
5613        if (!IsCPlusPlus11Extension)
5614          Diag = diag::err_template_spec_decl_out_of_scope;
5615        else if (!S.getLangOpts().CPlusPlus11)
5616          Diag = diag::ext_template_spec_decl_out_of_scope;
5617        else
5618          Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
5619        S.Diag(Loc, Diag)
5620          << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
5621      }
5622
5623      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5624      ComplainedAboutScope =
5625        !(IsCPlusPlus11Extension && S.getLangOpts().CPlusPlus11);
5626    }
5627  }
5628
5629  // Make sure that this redeclaration (or definition) occurs in an enclosing
5630  // namespace.
5631  // Note that HandleDeclarator() performs this check for explicit
5632  // specializations of function templates, static data members, and member
5633  // functions, so we skip the check here for those kinds of entities.
5634  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
5635  // Should we refactor that check, so that it occurs later?
5636  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
5637      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
5638        isa<FunctionDecl>(Specialized))) {
5639    if (isa<TranslationUnitDecl>(SpecializedContext))
5640      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
5641        << EntityKind << Specialized;
5642    else if (isa<NamespaceDecl>(SpecializedContext))
5643      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
5644        << EntityKind << Specialized
5645        << cast<NamedDecl>(SpecializedContext);
5646
5647    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5648  }
5649
5650  // FIXME: check for specialization-after-instantiation errors and such.
5651
5652  return false;
5653}
5654
5655/// \brief Subroutine of Sema::CheckTemplatePartialSpecializationArgs
5656/// that checks non-type template partial specialization arguments.
5657static bool CheckNonTypeTemplatePartialSpecializationArgs(
5658    Sema &S, NonTypeTemplateParmDecl *Param, const TemplateArgument *Args,
5659    unsigned NumArgs) {
5660  for (unsigned I = 0; I != NumArgs; ++I) {
5661    if (Args[I].getKind() == TemplateArgument::Pack) {
5662      if (CheckNonTypeTemplatePartialSpecializationArgs(
5663              S, Param, Args[I].pack_begin(), Args[I].pack_size()))
5664        return true;
5665
5666      continue;
5667    }
5668
5669    if (Args[I].getKind() != TemplateArgument::Expression)
5670      continue;
5671
5672    Expr *ArgExpr = Args[I].getAsExpr();
5673
5674    // We can have a pack expansion of any of the bullets below.
5675    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
5676      ArgExpr = Expansion->getPattern();
5677
5678    // Strip off any implicit casts we added as part of type checking.
5679    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
5680      ArgExpr = ICE->getSubExpr();
5681
5682    // C++ [temp.class.spec]p8:
5683    //   A non-type argument is non-specialized if it is the name of a
5684    //   non-type parameter. All other non-type arguments are
5685    //   specialized.
5686    //
5687    // Below, we check the two conditions that only apply to
5688    // specialized non-type arguments, so skip any non-specialized
5689    // arguments.
5690    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
5691      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
5692        continue;
5693
5694    // C++ [temp.class.spec]p9:
5695    //   Within the argument list of a class template partial
5696    //   specialization, the following restrictions apply:
5697    //     -- A partially specialized non-type argument expression
5698    //        shall not involve a template parameter of the partial
5699    //        specialization except when the argument expression is a
5700    //        simple identifier.
5701    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
5702      S.Diag(ArgExpr->getLocStart(),
5703           diag::err_dependent_non_type_arg_in_partial_spec)
5704        << ArgExpr->getSourceRange();
5705      return true;
5706    }
5707
5708    //     -- The type of a template parameter corresponding to a
5709    //        specialized non-type argument shall not be dependent on a
5710    //        parameter of the specialization.
5711    if (Param->getType()->isDependentType()) {
5712      S.Diag(ArgExpr->getLocStart(),
5713           diag::err_dependent_typed_non_type_arg_in_partial_spec)
5714        << Param->getType()
5715        << ArgExpr->getSourceRange();
5716      S.Diag(Param->getLocation(), diag::note_template_param_here);
5717      return true;
5718    }
5719  }
5720
5721  return false;
5722}
5723
5724/// \brief Check the non-type template arguments of a class template
5725/// partial specialization according to C++ [temp.class.spec]p9.
5726///
5727/// \param TemplateParams the template parameters of the primary class
5728/// template.
5729///
5730/// \param TemplateArgs the template arguments of the class template
5731/// partial specialization.
5732///
5733/// \returns true if there was an error, false otherwise.
5734static bool CheckTemplatePartialSpecializationArgs(
5735    Sema &S, TemplateParameterList *TemplateParams,
5736    SmallVectorImpl<TemplateArgument> &TemplateArgs) {
5737  const TemplateArgument *ArgList = TemplateArgs.data();
5738
5739  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5740    NonTypeTemplateParmDecl *Param
5741      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
5742    if (!Param)
5743      continue;
5744
5745    if (CheckNonTypeTemplatePartialSpecializationArgs(S, Param, &ArgList[I], 1))
5746      return true;
5747  }
5748
5749  return false;
5750}
5751
5752DeclResult
5753Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
5754                                       TagUseKind TUK,
5755                                       SourceLocation KWLoc,
5756                                       SourceLocation ModulePrivateLoc,
5757                                       CXXScopeSpec &SS,
5758                                       TemplateTy TemplateD,
5759                                       SourceLocation TemplateNameLoc,
5760                                       SourceLocation LAngleLoc,
5761                                       ASTTemplateArgsPtr TemplateArgsIn,
5762                                       SourceLocation RAngleLoc,
5763                                       AttributeList *Attr,
5764                               MultiTemplateParamsArg TemplateParameterLists) {
5765  assert(TUK != TUK_Reference && "References are not specializations");
5766
5767  // NOTE: KWLoc is the location of the tag keyword. This will instead
5768  // store the location of the outermost template keyword in the declaration.
5769  SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
5770    ? TemplateParameterLists[0]->getTemplateLoc() : SourceLocation();
5771
5772  // Find the class template we're specializing
5773  TemplateName Name = TemplateD.get();
5774  ClassTemplateDecl *ClassTemplate
5775    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
5776
5777  if (!ClassTemplate) {
5778    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
5779      << (Name.getAsTemplateDecl() &&
5780          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
5781    return true;
5782  }
5783
5784  bool isExplicitSpecialization = false;
5785  bool isPartialSpecialization = false;
5786
5787  // Check the validity of the template headers that introduce this
5788  // template.
5789  // FIXME: We probably shouldn't complain about these headers for
5790  // friend declarations.
5791  bool Invalid = false;
5792  TemplateParameterList *TemplateParams =
5793      MatchTemplateParametersToScopeSpecifier(
5794          TemplateNameLoc, TemplateNameLoc, SS, TemplateParameterLists,
5795          TUK == TUK_Friend, isExplicitSpecialization, Invalid);
5796  if (Invalid)
5797    return true;
5798
5799  if (TemplateParams && TemplateParams->size() > 0) {
5800    isPartialSpecialization = true;
5801
5802    if (TUK == TUK_Friend) {
5803      Diag(KWLoc, diag::err_partial_specialization_friend)
5804        << SourceRange(LAngleLoc, RAngleLoc);
5805      return true;
5806    }
5807
5808    // C++ [temp.class.spec]p10:
5809    //   The template parameter list of a specialization shall not
5810    //   contain default template argument values.
5811    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5812      Decl *Param = TemplateParams->getParam(I);
5813      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
5814        if (TTP->hasDefaultArgument()) {
5815          Diag(TTP->getDefaultArgumentLoc(),
5816               diag::err_default_arg_in_partial_spec);
5817          TTP->removeDefaultArgument();
5818        }
5819      } else if (NonTypeTemplateParmDecl *NTTP
5820                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5821        if (Expr *DefArg = NTTP->getDefaultArgument()) {
5822          Diag(NTTP->getDefaultArgumentLoc(),
5823               diag::err_default_arg_in_partial_spec)
5824            << DefArg->getSourceRange();
5825          NTTP->removeDefaultArgument();
5826        }
5827      } else {
5828        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
5829        if (TTP->hasDefaultArgument()) {
5830          Diag(TTP->getDefaultArgument().getLocation(),
5831               diag::err_default_arg_in_partial_spec)
5832            << TTP->getDefaultArgument().getSourceRange();
5833          TTP->removeDefaultArgument();
5834        }
5835      }
5836    }
5837  } else if (TemplateParams) {
5838    if (TUK == TUK_Friend)
5839      Diag(KWLoc, diag::err_template_spec_friend)
5840        << FixItHint::CreateRemoval(
5841                                SourceRange(TemplateParams->getTemplateLoc(),
5842                                            TemplateParams->getRAngleLoc()))
5843        << SourceRange(LAngleLoc, RAngleLoc);
5844    else
5845      isExplicitSpecialization = true;
5846  } else if (TUK != TUK_Friend) {
5847    Diag(KWLoc, diag::err_template_spec_needs_header)
5848      << FixItHint::CreateInsertion(KWLoc, "template<> ");
5849    TemplateKWLoc = KWLoc;
5850    isExplicitSpecialization = true;
5851  }
5852
5853  // Check that the specialization uses the same tag kind as the
5854  // original template.
5855  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5856  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
5857  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5858                                    Kind, TUK == TUK_Definition, KWLoc,
5859                                    *ClassTemplate->getIdentifier())) {
5860    Diag(KWLoc, diag::err_use_with_wrong_tag)
5861      << ClassTemplate
5862      << FixItHint::CreateReplacement(KWLoc,
5863                            ClassTemplate->getTemplatedDecl()->getKindName());
5864    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5865         diag::note_previous_use);
5866    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5867  }
5868
5869  // Translate the parser's template argument list in our AST format.
5870  TemplateArgumentListInfo TemplateArgs;
5871  TemplateArgs.setLAngleLoc(LAngleLoc);
5872  TemplateArgs.setRAngleLoc(RAngleLoc);
5873  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5874
5875  // Check for unexpanded parameter packs in any of the template arguments.
5876  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
5877    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
5878                                        UPPC_PartialSpecialization))
5879      return true;
5880
5881  // Check that the template argument list is well-formed for this
5882  // template.
5883  SmallVector<TemplateArgument, 4> Converted;
5884  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5885                                TemplateArgs, false, Converted))
5886    return true;
5887
5888  // Find the class template (partial) specialization declaration that
5889  // corresponds to these arguments.
5890  if (isPartialSpecialization) {
5891    if (CheckTemplatePartialSpecializationArgs(
5892            *this, ClassTemplate->getTemplateParameters(), Converted))
5893      return true;
5894
5895    bool InstantiationDependent;
5896    if (!Name.isDependent() &&
5897        !TemplateSpecializationType::anyDependentTemplateArguments(
5898                                             TemplateArgs.getArgumentArray(),
5899                                                         TemplateArgs.size(),
5900                                                     InstantiationDependent)) {
5901      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
5902        << ClassTemplate->getDeclName();
5903      isPartialSpecialization = false;
5904    }
5905  }
5906
5907  void *InsertPos = 0;
5908  ClassTemplateSpecializationDecl *PrevDecl = 0;
5909
5910  if (isPartialSpecialization)
5911    // FIXME: Template parameter list matters, too
5912    PrevDecl
5913      = ClassTemplate->findPartialSpecialization(Converted.data(),
5914                                                 Converted.size(),
5915                                                 InsertPos);
5916  else
5917    PrevDecl
5918      = ClassTemplate->findSpecialization(Converted.data(),
5919                                          Converted.size(), InsertPos);
5920
5921  ClassTemplateSpecializationDecl *Specialization = 0;
5922
5923  // Check whether we can declare a class template specialization in
5924  // the current scope.
5925  if (TUK != TUK_Friend &&
5926      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
5927                                       TemplateNameLoc,
5928                                       isPartialSpecialization))
5929    return true;
5930
5931  // The canonical type
5932  QualType CanonType;
5933  if (PrevDecl &&
5934      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
5935               TUK == TUK_Friend)) {
5936    // Since the only prior class template specialization with these
5937    // arguments was referenced but not declared, or we're only
5938    // referencing this specialization as a friend, reuse that
5939    // declaration node as our own, updating its source location and
5940    // the list of outer template parameters to reflect our new declaration.
5941    Specialization = PrevDecl;
5942    Specialization->setLocation(TemplateNameLoc);
5943    if (TemplateParameterLists.size() > 0) {
5944      Specialization->setTemplateParameterListsInfo(Context,
5945                                              TemplateParameterLists.size(),
5946                                              TemplateParameterLists.data());
5947    }
5948    PrevDecl = 0;
5949    CanonType = Context.getTypeDeclType(Specialization);
5950  } else if (isPartialSpecialization) {
5951    // Build the canonical type that describes the converted template
5952    // arguments of the class template partial specialization.
5953    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
5954    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
5955                                                      Converted.data(),
5956                                                      Converted.size());
5957
5958    if (Context.hasSameType(CanonType,
5959                        ClassTemplate->getInjectedClassNameSpecialization())) {
5960      // C++ [temp.class.spec]p9b3:
5961      //
5962      //   -- The argument list of the specialization shall not be identical
5963      //      to the implicit argument list of the primary template.
5964      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
5965        << /*class template*/0 << (TUK == TUK_Definition)
5966        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
5967      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
5968                                ClassTemplate->getIdentifier(),
5969                                TemplateNameLoc,
5970                                Attr,
5971                                TemplateParams,
5972                                AS_none, /*ModulePrivateLoc=*/SourceLocation(),
5973                                TemplateParameterLists.size() - 1,
5974                                TemplateParameterLists.data());
5975    }
5976
5977    // Create a new class template partial specialization declaration node.
5978    ClassTemplatePartialSpecializationDecl *PrevPartial
5979      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
5980    ClassTemplatePartialSpecializationDecl *Partial
5981      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
5982                                             ClassTemplate->getDeclContext(),
5983                                                       KWLoc, TemplateNameLoc,
5984                                                       TemplateParams,
5985                                                       ClassTemplate,
5986                                                       Converted.data(),
5987                                                       Converted.size(),
5988                                                       TemplateArgs,
5989                                                       CanonType,
5990                                                       PrevPartial);
5991    SetNestedNameSpecifier(Partial, SS);
5992    if (TemplateParameterLists.size() > 1 && SS.isSet()) {
5993      Partial->setTemplateParameterListsInfo(Context,
5994                                             TemplateParameterLists.size() - 1,
5995                                             TemplateParameterLists.data());
5996    }
5997
5998    if (!PrevPartial)
5999      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
6000    Specialization = Partial;
6001
6002    // If we are providing an explicit specialization of a member class
6003    // template specialization, make a note of that.
6004    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
6005      PrevPartial->setMemberSpecialization();
6006
6007    // Check that all of the template parameters of the class template
6008    // partial specialization are deducible from the template
6009    // arguments. If not, this class template partial specialization
6010    // will never be used.
6011    llvm::SmallBitVector DeducibleParams(TemplateParams->size());
6012    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
6013                               TemplateParams->getDepth(),
6014                               DeducibleParams);
6015
6016    if (!DeducibleParams.all()) {
6017      unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
6018      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
6019        << /*class template*/0 << (NumNonDeducible > 1)
6020        << SourceRange(TemplateNameLoc, RAngleLoc);
6021      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
6022        if (!DeducibleParams[I]) {
6023          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
6024          if (Param->getDeclName())
6025            Diag(Param->getLocation(),
6026                 diag::note_partial_spec_unused_parameter)
6027              << Param->getDeclName();
6028          else
6029            Diag(Param->getLocation(),
6030                 diag::note_partial_spec_unused_parameter)
6031              << "<anonymous>";
6032        }
6033      }
6034    }
6035  } else {
6036    // Create a new class template specialization declaration node for
6037    // this explicit specialization or friend declaration.
6038    Specialization
6039      = ClassTemplateSpecializationDecl::Create(Context, Kind,
6040                                             ClassTemplate->getDeclContext(),
6041                                                KWLoc, TemplateNameLoc,
6042                                                ClassTemplate,
6043                                                Converted.data(),
6044                                                Converted.size(),
6045                                                PrevDecl);
6046    SetNestedNameSpecifier(Specialization, SS);
6047    if (TemplateParameterLists.size() > 0) {
6048      Specialization->setTemplateParameterListsInfo(Context,
6049                                              TemplateParameterLists.size(),
6050                                              TemplateParameterLists.data());
6051    }
6052
6053    if (!PrevDecl)
6054      ClassTemplate->AddSpecialization(Specialization, InsertPos);
6055
6056    CanonType = Context.getTypeDeclType(Specialization);
6057  }
6058
6059  // C++ [temp.expl.spec]p6:
6060  //   If a template, a member template or the member of a class template is
6061  //   explicitly specialized then that specialization shall be declared
6062  //   before the first use of that specialization that would cause an implicit
6063  //   instantiation to take place, in every translation unit in which such a
6064  //   use occurs; no diagnostic is required.
6065  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
6066    bool Okay = false;
6067    for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6068      // Is there any previous explicit specialization declaration?
6069      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
6070        Okay = true;
6071        break;
6072      }
6073    }
6074
6075    if (!Okay) {
6076      SourceRange Range(TemplateNameLoc, RAngleLoc);
6077      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
6078        << Context.getTypeDeclType(Specialization) << Range;
6079
6080      Diag(PrevDecl->getPointOfInstantiation(),
6081           diag::note_instantiation_required_here)
6082        << (PrevDecl->getTemplateSpecializationKind()
6083                                                != TSK_ImplicitInstantiation);
6084      return true;
6085    }
6086  }
6087
6088  // If this is not a friend, note that this is an explicit specialization.
6089  if (TUK != TUK_Friend)
6090    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
6091
6092  // Check that this isn't a redefinition of this specialization.
6093  if (TUK == TUK_Definition) {
6094    if (RecordDecl *Def = Specialization->getDefinition()) {
6095      SourceRange Range(TemplateNameLoc, RAngleLoc);
6096      Diag(TemplateNameLoc, diag::err_redefinition)
6097        << Context.getTypeDeclType(Specialization) << Range;
6098      Diag(Def->getLocation(), diag::note_previous_definition);
6099      Specialization->setInvalidDecl();
6100      return true;
6101    }
6102  }
6103
6104  if (Attr)
6105    ProcessDeclAttributeList(S, Specialization, Attr);
6106
6107  // Add alignment attributes if necessary; these attributes are checked when
6108  // the ASTContext lays out the structure.
6109  if (TUK == TUK_Definition) {
6110    AddAlignmentAttributesForRecord(Specialization);
6111    AddMsStructLayoutForRecord(Specialization);
6112  }
6113
6114  if (ModulePrivateLoc.isValid())
6115    Diag(Specialization->getLocation(), diag::err_module_private_specialization)
6116      << (isPartialSpecialization? 1 : 0)
6117      << FixItHint::CreateRemoval(ModulePrivateLoc);
6118
6119  // Build the fully-sugared type for this class template
6120  // specialization as the user wrote in the specialization
6121  // itself. This means that we'll pretty-print the type retrieved
6122  // from the specialization's declaration the way that the user
6123  // actually wrote the specialization, rather than formatting the
6124  // name based on the "canonical" representation used to store the
6125  // template arguments in the specialization.
6126  TypeSourceInfo *WrittenTy
6127    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6128                                                TemplateArgs, CanonType);
6129  if (TUK != TUK_Friend) {
6130    Specialization->setTypeAsWritten(WrittenTy);
6131    Specialization->setTemplateKeywordLoc(TemplateKWLoc);
6132  }
6133
6134  // C++ [temp.expl.spec]p9:
6135  //   A template explicit specialization is in the scope of the
6136  //   namespace in which the template was defined.
6137  //
6138  // We actually implement this paragraph where we set the semantic
6139  // context (in the creation of the ClassTemplateSpecializationDecl),
6140  // but we also maintain the lexical context where the actual
6141  // definition occurs.
6142  Specialization->setLexicalDeclContext(CurContext);
6143
6144  // We may be starting the definition of this specialization.
6145  if (TUK == TUK_Definition)
6146    Specialization->startDefinition();
6147
6148  if (TUK == TUK_Friend) {
6149    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
6150                                            TemplateNameLoc,
6151                                            WrittenTy,
6152                                            /*FIXME:*/KWLoc);
6153    Friend->setAccess(AS_public);
6154    CurContext->addDecl(Friend);
6155  } else {
6156    // Add the specialization into its lexical context, so that it can
6157    // be seen when iterating through the list of declarations in that
6158    // context. However, specializations are not found by name lookup.
6159    CurContext->addDecl(Specialization);
6160  }
6161  return Specialization;
6162}
6163
6164Decl *Sema::ActOnTemplateDeclarator(Scope *S,
6165                              MultiTemplateParamsArg TemplateParameterLists,
6166                                    Declarator &D) {
6167  Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
6168  ActOnDocumentableDecl(NewDecl);
6169  return NewDecl;
6170}
6171
6172Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
6173                               MultiTemplateParamsArg TemplateParameterLists,
6174                                            Declarator &D) {
6175  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6176  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6177
6178  if (FTI.hasPrototype) {
6179    // FIXME: Diagnose arguments without names in C.
6180  }
6181
6182  Scope *ParentScope = FnBodyScope->getParent();
6183
6184  D.setFunctionDefinitionKind(FDK_Definition);
6185  Decl *DP = HandleDeclarator(ParentScope, D,
6186                              TemplateParameterLists);
6187  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6188}
6189
6190/// \brief Strips various properties off an implicit instantiation
6191/// that has just been explicitly specialized.
6192static void StripImplicitInstantiation(NamedDecl *D) {
6193  D->dropAttrs();
6194
6195  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6196    FD->setInlineSpecified(false);
6197
6198    for (FunctionDecl::param_iterator I = FD->param_begin(),
6199                                      E = FD->param_end();
6200         I != E; ++I)
6201      (*I)->dropAttrs();
6202  }
6203}
6204
6205/// \brief Compute the diagnostic location for an explicit instantiation
6206//  declaration or definition.
6207static SourceLocation DiagLocForExplicitInstantiation(
6208    NamedDecl* D, SourceLocation PointOfInstantiation) {
6209  // Explicit instantiations following a specialization have no effect and
6210  // hence no PointOfInstantiation. In that case, walk decl backwards
6211  // until a valid name loc is found.
6212  SourceLocation PrevDiagLoc = PointOfInstantiation;
6213  for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
6214       Prev = Prev->getPreviousDecl()) {
6215    PrevDiagLoc = Prev->getLocation();
6216  }
6217  assert(PrevDiagLoc.isValid() &&
6218         "Explicit instantiation without point of instantiation?");
6219  return PrevDiagLoc;
6220}
6221
6222/// \brief Diagnose cases where we have an explicit template specialization
6223/// before/after an explicit template instantiation, producing diagnostics
6224/// for those cases where they are required and determining whether the
6225/// new specialization/instantiation will have any effect.
6226///
6227/// \param NewLoc the location of the new explicit specialization or
6228/// instantiation.
6229///
6230/// \param NewTSK the kind of the new explicit specialization or instantiation.
6231///
6232/// \param PrevDecl the previous declaration of the entity.
6233///
6234/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
6235///
6236/// \param PrevPointOfInstantiation if valid, indicates where the previus
6237/// declaration was instantiated (either implicitly or explicitly).
6238///
6239/// \param HasNoEffect will be set to true to indicate that the new
6240/// specialization or instantiation has no effect and should be ignored.
6241///
6242/// \returns true if there was an error that should prevent the introduction of
6243/// the new declaration into the AST, false otherwise.
6244bool
6245Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
6246                                             TemplateSpecializationKind NewTSK,
6247                                             NamedDecl *PrevDecl,
6248                                             TemplateSpecializationKind PrevTSK,
6249                                        SourceLocation PrevPointOfInstantiation,
6250                                             bool &HasNoEffect) {
6251  HasNoEffect = false;
6252
6253  switch (NewTSK) {
6254  case TSK_Undeclared:
6255  case TSK_ImplicitInstantiation:
6256    llvm_unreachable("Don't check implicit instantiations here");
6257
6258  case TSK_ExplicitSpecialization:
6259    switch (PrevTSK) {
6260    case TSK_Undeclared:
6261    case TSK_ExplicitSpecialization:
6262      // Okay, we're just specializing something that is either already
6263      // explicitly specialized or has merely been mentioned without any
6264      // instantiation.
6265      return false;
6266
6267    case TSK_ImplicitInstantiation:
6268      if (PrevPointOfInstantiation.isInvalid()) {
6269        // The declaration itself has not actually been instantiated, so it is
6270        // still okay to specialize it.
6271        StripImplicitInstantiation(PrevDecl);
6272        return false;
6273      }
6274      // Fall through
6275
6276    case TSK_ExplicitInstantiationDeclaration:
6277    case TSK_ExplicitInstantiationDefinition:
6278      assert((PrevTSK == TSK_ImplicitInstantiation ||
6279              PrevPointOfInstantiation.isValid()) &&
6280             "Explicit instantiation without point of instantiation?");
6281
6282      // C++ [temp.expl.spec]p6:
6283      //   If a template, a member template or the member of a class template
6284      //   is explicitly specialized then that specialization shall be declared
6285      //   before the first use of that specialization that would cause an
6286      //   implicit instantiation to take place, in every translation unit in
6287      //   which such a use occurs; no diagnostic is required.
6288      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6289        // Is there any previous explicit specialization declaration?
6290        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
6291          return false;
6292      }
6293
6294      Diag(NewLoc, diag::err_specialization_after_instantiation)
6295        << PrevDecl;
6296      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
6297        << (PrevTSK != TSK_ImplicitInstantiation);
6298
6299      return true;
6300    }
6301
6302  case TSK_ExplicitInstantiationDeclaration:
6303    switch (PrevTSK) {
6304    case TSK_ExplicitInstantiationDeclaration:
6305      // This explicit instantiation declaration is redundant (that's okay).
6306      HasNoEffect = true;
6307      return false;
6308
6309    case TSK_Undeclared:
6310    case TSK_ImplicitInstantiation:
6311      // We're explicitly instantiating something that may have already been
6312      // implicitly instantiated; that's fine.
6313      return false;
6314
6315    case TSK_ExplicitSpecialization:
6316      // C++0x [temp.explicit]p4:
6317      //   For a given set of template parameters, if an explicit instantiation
6318      //   of a template appears after a declaration of an explicit
6319      //   specialization for that template, the explicit instantiation has no
6320      //   effect.
6321      HasNoEffect = true;
6322      return false;
6323
6324    case TSK_ExplicitInstantiationDefinition:
6325      // C++0x [temp.explicit]p10:
6326      //   If an entity is the subject of both an explicit instantiation
6327      //   declaration and an explicit instantiation definition in the same
6328      //   translation unit, the definition shall follow the declaration.
6329      Diag(NewLoc,
6330           diag::err_explicit_instantiation_declaration_after_definition);
6331
6332      // Explicit instantiations following a specialization have no effect and
6333      // hence no PrevPointOfInstantiation. In that case, walk decl backwards
6334      // until a valid name loc is found.
6335      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6336           diag::note_explicit_instantiation_definition_here);
6337      HasNoEffect = true;
6338      return false;
6339    }
6340
6341  case TSK_ExplicitInstantiationDefinition:
6342    switch (PrevTSK) {
6343    case TSK_Undeclared:
6344    case TSK_ImplicitInstantiation:
6345      // We're explicitly instantiating something that may have already been
6346      // implicitly instantiated; that's fine.
6347      return false;
6348
6349    case TSK_ExplicitSpecialization:
6350      // C++ DR 259, C++0x [temp.explicit]p4:
6351      //   For a given set of template parameters, if an explicit
6352      //   instantiation of a template appears after a declaration of
6353      //   an explicit specialization for that template, the explicit
6354      //   instantiation has no effect.
6355      //
6356      // In C++98/03 mode, we only give an extension warning here, because it
6357      // is not harmful to try to explicitly instantiate something that
6358      // has been explicitly specialized.
6359      Diag(NewLoc, getLangOpts().CPlusPlus11 ?
6360           diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
6361           diag::ext_explicit_instantiation_after_specialization)
6362        << PrevDecl;
6363      Diag(PrevDecl->getLocation(),
6364           diag::note_previous_template_specialization);
6365      HasNoEffect = true;
6366      return false;
6367
6368    case TSK_ExplicitInstantiationDeclaration:
6369      // We're explicity instantiating a definition for something for which we
6370      // were previously asked to suppress instantiations. That's fine.
6371
6372      // C++0x [temp.explicit]p4:
6373      //   For a given set of template parameters, if an explicit instantiation
6374      //   of a template appears after a declaration of an explicit
6375      //   specialization for that template, the explicit instantiation has no
6376      //   effect.
6377      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6378        // Is there any previous explicit specialization declaration?
6379        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
6380          HasNoEffect = true;
6381          break;
6382        }
6383      }
6384
6385      return false;
6386
6387    case TSK_ExplicitInstantiationDefinition:
6388      // C++0x [temp.spec]p5:
6389      //   For a given template and a given set of template-arguments,
6390      //     - an explicit instantiation definition shall appear at most once
6391      //       in a program,
6392      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
6393        << PrevDecl;
6394      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6395           diag::note_previous_explicit_instantiation);
6396      HasNoEffect = true;
6397      return false;
6398    }
6399  }
6400
6401  llvm_unreachable("Missing specialization/instantiation case?");
6402}
6403
6404/// \brief Perform semantic analysis for the given dependent function
6405/// template specialization.
6406///
6407/// The only possible way to get a dependent function template specialization
6408/// is with a friend declaration, like so:
6409///
6410/// \code
6411///   template \<class T> void foo(T);
6412///   template \<class T> class A {
6413///     friend void foo<>(T);
6414///   };
6415/// \endcode
6416///
6417/// There really isn't any useful analysis we can do here, so we
6418/// just store the information.
6419bool
6420Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
6421                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
6422                                                   LookupResult &Previous) {
6423  // Remove anything from Previous that isn't a function template in
6424  // the correct context.
6425  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6426  LookupResult::Filter F = Previous.makeFilter();
6427  while (F.hasNext()) {
6428    NamedDecl *D = F.next()->getUnderlyingDecl();
6429    if (!isa<FunctionTemplateDecl>(D) ||
6430        !FDLookupContext->InEnclosingNamespaceSetOf(
6431                              D->getDeclContext()->getRedeclContext()))
6432      F.erase();
6433  }
6434  F.done();
6435
6436  // Should this be diagnosed here?
6437  if (Previous.empty()) return true;
6438
6439  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
6440                                         ExplicitTemplateArgs);
6441  return false;
6442}
6443
6444/// \brief Perform semantic analysis for the given function template
6445/// specialization.
6446///
6447/// This routine performs all of the semantic analysis required for an
6448/// explicit function template specialization. On successful completion,
6449/// the function declaration \p FD will become a function template
6450/// specialization.
6451///
6452/// \param FD the function declaration, which will be updated to become a
6453/// function template specialization.
6454///
6455/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
6456/// if any. Note that this may be valid info even when 0 arguments are
6457/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
6458/// as it anyway contains info on the angle brackets locations.
6459///
6460/// \param Previous the set of declarations that may be specialized by
6461/// this function specialization.
6462bool Sema::CheckFunctionTemplateSpecialization(
6463    FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
6464    LookupResult &Previous) {
6465  // The set of function template specializations that could match this
6466  // explicit function template specialization.
6467  UnresolvedSet<8> Candidates;
6468  TemplateSpecCandidateSet FailedCandidates(FD->getLocation());
6469
6470  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6471  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6472         I != E; ++I) {
6473    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
6474    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
6475      // Only consider templates found within the same semantic lookup scope as
6476      // FD.
6477      if (!FDLookupContext->InEnclosingNamespaceSetOf(
6478                                Ovl->getDeclContext()->getRedeclContext()))
6479        continue;
6480
6481      // When matching a constexpr member function template specialization
6482      // against the primary template, we don't yet know whether the
6483      // specialization has an implicit 'const' (because we don't know whether
6484      // it will be a static member function until we know which template it
6485      // specializes), so adjust it now assuming it specializes this template.
6486      QualType FT = FD->getType();
6487      const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
6488      FunctionDecl *TmplFD = FunTmpl->getTemplatedDecl();
6489      if (FD->isConstexpr()) {
6490        CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(TmplFD);
6491        if (OldMD && OldMD->isConst()) {
6492          FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6493          EPI.TypeQuals |= Qualifiers::Const;
6494          FT = Context.getFunctionType(FPT->getResultType(), FPT->getArgTypes(),
6495                                       EPI);
6496        }
6497      }
6498
6499      // Ignore differences in calling convention and noreturn until decl
6500      // merging.
6501      const FunctionProtoType *TmplFT =
6502          TmplFD->getType()->castAs<FunctionProtoType>();
6503      if (FPT->getCallConv() != TmplFT->getCallConv() ||
6504          FPT->getNoReturnAttr() != TmplFT->getNoReturnAttr()) {
6505        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6506        EPI.ExtInfo = EPI.ExtInfo.withCallingConv(TmplFT->getCallConv());
6507        EPI.ExtInfo = EPI.ExtInfo.withNoReturn(TmplFT->getNoReturnAttr());
6508        FT = Context.getFunctionType(FPT->getResultType(), FPT->getArgTypes(),
6509                                     EPI);
6510      }
6511
6512      // C++ [temp.expl.spec]p11:
6513      //   A trailing template-argument can be left unspecified in the
6514      //   template-id naming an explicit function template specialization
6515      //   provided it can be deduced from the function argument type.
6516      // Perform template argument deduction to determine whether we may be
6517      // specializing this template.
6518      // FIXME: It is somewhat wasteful to build
6519      TemplateDeductionInfo Info(FailedCandidates.getLocation());
6520      FunctionDecl *Specialization = 0;
6521      if (TemplateDeductionResult TDK
6522            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, FT,
6523                                      Specialization, Info)) {
6524        // Template argument deduction failed; record why it failed, so
6525        // that we can provide nifty diagnostics.
6526        FailedCandidates.addCandidate()
6527            .set(FunTmpl->getTemplatedDecl(),
6528                 MakeDeductionFailureInfo(Context, TDK, Info));
6529        (void)TDK;
6530        continue;
6531      }
6532
6533      // Record this candidate.
6534      Candidates.addDecl(Specialization, I.getAccess());
6535    }
6536  }
6537
6538  // Find the most specialized function template.
6539  UnresolvedSetIterator Result = getMostSpecialized(
6540      Candidates.begin(), Candidates.end(), FailedCandidates,
6541      FD->getLocation(),
6542      PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
6543      PDiag(diag::err_function_template_spec_ambiguous)
6544          << FD->getDeclName() << (ExplicitTemplateArgs != 0),
6545      PDiag(diag::note_function_template_spec_matched));
6546
6547  if (Result == Candidates.end())
6548    return true;
6549
6550  // Ignore access information;  it doesn't figure into redeclaration checking.
6551  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6552
6553  FunctionTemplateSpecializationInfo *SpecInfo
6554    = Specialization->getTemplateSpecializationInfo();
6555  assert(SpecInfo && "Function template specialization info missing?");
6556
6557  // Note: do not overwrite location info if previous template
6558  // specialization kind was explicit.
6559  TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
6560  if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
6561    Specialization->setLocation(FD->getLocation());
6562    // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
6563    // function can differ from the template declaration with respect to
6564    // the constexpr specifier.
6565    Specialization->setConstexpr(FD->isConstexpr());
6566  }
6567
6568  // FIXME: Check if the prior specialization has a point of instantiation.
6569  // If so, we have run afoul of .
6570
6571  // If this is a friend declaration, then we're not really declaring
6572  // an explicit specialization.
6573  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
6574
6575  // Check the scope of this explicit specialization.
6576  if (!isFriend &&
6577      CheckTemplateSpecializationScope(*this,
6578                                       Specialization->getPrimaryTemplate(),
6579                                       Specialization, FD->getLocation(),
6580                                       false))
6581    return true;
6582
6583  // C++ [temp.expl.spec]p6:
6584  //   If a template, a member template or the member of a class template is
6585  //   explicitly specialized then that specialization shall be declared
6586  //   before the first use of that specialization that would cause an implicit
6587  //   instantiation to take place, in every translation unit in which such a
6588  //   use occurs; no diagnostic is required.
6589  bool HasNoEffect = false;
6590  if (!isFriend &&
6591      CheckSpecializationInstantiationRedecl(FD->getLocation(),
6592                                             TSK_ExplicitSpecialization,
6593                                             Specialization,
6594                                   SpecInfo->getTemplateSpecializationKind(),
6595                                         SpecInfo->getPointOfInstantiation(),
6596                                             HasNoEffect))
6597    return true;
6598
6599  // Mark the prior declaration as an explicit specialization, so that later
6600  // clients know that this is an explicit specialization.
6601  if (!isFriend) {
6602    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
6603    MarkUnusedFileScopedDecl(Specialization);
6604  }
6605
6606  // Turn the given function declaration into a function template
6607  // specialization, with the template arguments from the previous
6608  // specialization.
6609  // Take copies of (semantic and syntactic) template argument lists.
6610  const TemplateArgumentList* TemplArgs = new (Context)
6611    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
6612  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
6613                                        TemplArgs, /*InsertPos=*/0,
6614                                    SpecInfo->getTemplateSpecializationKind(),
6615                                        ExplicitTemplateArgs);
6616
6617  // The "previous declaration" for this function template specialization is
6618  // the prior function template specialization.
6619  Previous.clear();
6620  Previous.addDecl(Specialization);
6621  return false;
6622}
6623
6624/// \brief Perform semantic analysis for the given non-template member
6625/// specialization.
6626///
6627/// This routine performs all of the semantic analysis required for an
6628/// explicit member function specialization. On successful completion,
6629/// the function declaration \p FD will become a member function
6630/// specialization.
6631///
6632/// \param Member the member declaration, which will be updated to become a
6633/// specialization.
6634///
6635/// \param Previous the set of declarations, one of which may be specialized
6636/// by this function specialization;  the set will be modified to contain the
6637/// redeclared member.
6638bool
6639Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
6640  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
6641
6642  // Try to find the member we are instantiating.
6643  NamedDecl *Instantiation = 0;
6644  NamedDecl *InstantiatedFrom = 0;
6645  MemberSpecializationInfo *MSInfo = 0;
6646
6647  if (Previous.empty()) {
6648    // Nowhere to look anyway.
6649  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
6650    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6651           I != E; ++I) {
6652      NamedDecl *D = (*I)->getUnderlyingDecl();
6653      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
6654        if (Context.hasSameType(Function->getType(), Method->getType())) {
6655          Instantiation = Method;
6656          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
6657          MSInfo = Method->getMemberSpecializationInfo();
6658          break;
6659        }
6660      }
6661    }
6662  } else if (isa<VarDecl>(Member)) {
6663    VarDecl *PrevVar;
6664    if (Previous.isSingleResult() &&
6665        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
6666      if (PrevVar->isStaticDataMember()) {
6667        Instantiation = PrevVar;
6668        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
6669        MSInfo = PrevVar->getMemberSpecializationInfo();
6670      }
6671  } else if (isa<RecordDecl>(Member)) {
6672    CXXRecordDecl *PrevRecord;
6673    if (Previous.isSingleResult() &&
6674        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
6675      Instantiation = PrevRecord;
6676      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
6677      MSInfo = PrevRecord->getMemberSpecializationInfo();
6678    }
6679  } else if (isa<EnumDecl>(Member)) {
6680    EnumDecl *PrevEnum;
6681    if (Previous.isSingleResult() &&
6682        (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
6683      Instantiation = PrevEnum;
6684      InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
6685      MSInfo = PrevEnum->getMemberSpecializationInfo();
6686    }
6687  }
6688
6689  if (!Instantiation) {
6690    // There is no previous declaration that matches. Since member
6691    // specializations are always out-of-line, the caller will complain about
6692    // this mismatch later.
6693    return false;
6694  }
6695
6696  // If this is a friend, just bail out here before we start turning
6697  // things into explicit specializations.
6698  if (Member->getFriendObjectKind() != Decl::FOK_None) {
6699    // Preserve instantiation information.
6700    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
6701      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
6702                                      cast<CXXMethodDecl>(InstantiatedFrom),
6703        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
6704    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
6705      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6706                                      cast<CXXRecordDecl>(InstantiatedFrom),
6707        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
6708    }
6709
6710    Previous.clear();
6711    Previous.addDecl(Instantiation);
6712    return false;
6713  }
6714
6715  // Make sure that this is a specialization of a member.
6716  if (!InstantiatedFrom) {
6717    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
6718      << Member;
6719    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
6720    return true;
6721  }
6722
6723  // C++ [temp.expl.spec]p6:
6724  //   If a template, a member template or the member of a class template is
6725  //   explicitly specialized then that specialization shall be declared
6726  //   before the first use of that specialization that would cause an implicit
6727  //   instantiation to take place, in every translation unit in which such a
6728  //   use occurs; no diagnostic is required.
6729  assert(MSInfo && "Member specialization info missing?");
6730
6731  bool HasNoEffect = false;
6732  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
6733                                             TSK_ExplicitSpecialization,
6734                                             Instantiation,
6735                                     MSInfo->getTemplateSpecializationKind(),
6736                                           MSInfo->getPointOfInstantiation(),
6737                                             HasNoEffect))
6738    return true;
6739
6740  // Check the scope of this explicit specialization.
6741  if (CheckTemplateSpecializationScope(*this,
6742                                       InstantiatedFrom,
6743                                       Instantiation, Member->getLocation(),
6744                                       false))
6745    return true;
6746
6747  // Note that this is an explicit instantiation of a member.
6748  // the original declaration to note that it is an explicit specialization
6749  // (if it was previously an implicit instantiation). This latter step
6750  // makes bookkeeping easier.
6751  if (isa<FunctionDecl>(Member)) {
6752    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
6753    if (InstantiationFunction->getTemplateSpecializationKind() ==
6754          TSK_ImplicitInstantiation) {
6755      InstantiationFunction->setTemplateSpecializationKind(
6756                                                  TSK_ExplicitSpecialization);
6757      InstantiationFunction->setLocation(Member->getLocation());
6758    }
6759
6760    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
6761                                        cast<CXXMethodDecl>(InstantiatedFrom),
6762                                                  TSK_ExplicitSpecialization);
6763    MarkUnusedFileScopedDecl(InstantiationFunction);
6764  } else if (isa<VarDecl>(Member)) {
6765    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
6766    if (InstantiationVar->getTemplateSpecializationKind() ==
6767          TSK_ImplicitInstantiation) {
6768      InstantiationVar->setTemplateSpecializationKind(
6769                                                  TSK_ExplicitSpecialization);
6770      InstantiationVar->setLocation(Member->getLocation());
6771    }
6772
6773    cast<VarDecl>(Member)->setInstantiationOfStaticDataMember(
6774        cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
6775    MarkUnusedFileScopedDecl(InstantiationVar);
6776  } else if (isa<CXXRecordDecl>(Member)) {
6777    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
6778    if (InstantiationClass->getTemplateSpecializationKind() ==
6779          TSK_ImplicitInstantiation) {
6780      InstantiationClass->setTemplateSpecializationKind(
6781                                                   TSK_ExplicitSpecialization);
6782      InstantiationClass->setLocation(Member->getLocation());
6783    }
6784
6785    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6786                                        cast<CXXRecordDecl>(InstantiatedFrom),
6787                                                   TSK_ExplicitSpecialization);
6788  } else {
6789    assert(isa<EnumDecl>(Member) && "Only member enums remain");
6790    EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
6791    if (InstantiationEnum->getTemplateSpecializationKind() ==
6792          TSK_ImplicitInstantiation) {
6793      InstantiationEnum->setTemplateSpecializationKind(
6794                                                   TSK_ExplicitSpecialization);
6795      InstantiationEnum->setLocation(Member->getLocation());
6796    }
6797
6798    cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
6799        cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
6800  }
6801
6802  // Save the caller the trouble of having to figure out which declaration
6803  // this specialization matches.
6804  Previous.clear();
6805  Previous.addDecl(Instantiation);
6806  return false;
6807}
6808
6809/// \brief Check the scope of an explicit instantiation.
6810///
6811/// \returns true if a serious error occurs, false otherwise.
6812static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
6813                                            SourceLocation InstLoc,
6814                                            bool WasQualifiedName) {
6815  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
6816  DeclContext *CurContext = S.CurContext->getRedeclContext();
6817
6818  if (CurContext->isRecord()) {
6819    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
6820      << D;
6821    return true;
6822  }
6823
6824  // C++11 [temp.explicit]p3:
6825  //   An explicit instantiation shall appear in an enclosing namespace of its
6826  //   template. If the name declared in the explicit instantiation is an
6827  //   unqualified name, the explicit instantiation shall appear in the
6828  //   namespace where its template is declared or, if that namespace is inline
6829  //   (7.3.1), any namespace from its enclosing namespace set.
6830  //
6831  // This is DR275, which we do not retroactively apply to C++98/03.
6832  if (WasQualifiedName) {
6833    if (CurContext->Encloses(OrigContext))
6834      return false;
6835  } else {
6836    if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
6837      return false;
6838  }
6839
6840  if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
6841    if (WasQualifiedName)
6842      S.Diag(InstLoc,
6843             S.getLangOpts().CPlusPlus11?
6844               diag::err_explicit_instantiation_out_of_scope :
6845               diag::warn_explicit_instantiation_out_of_scope_0x)
6846        << D << NS;
6847    else
6848      S.Diag(InstLoc,
6849             S.getLangOpts().CPlusPlus11?
6850               diag::err_explicit_instantiation_unqualified_wrong_namespace :
6851               diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
6852        << D << NS;
6853  } else
6854    S.Diag(InstLoc,
6855           S.getLangOpts().CPlusPlus11?
6856             diag::err_explicit_instantiation_must_be_global :
6857             diag::warn_explicit_instantiation_must_be_global_0x)
6858      << D;
6859  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
6860  return false;
6861}
6862
6863/// \brief Determine whether the given scope specifier has a template-id in it.
6864static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
6865  if (!SS.isSet())
6866    return false;
6867
6868  // C++11 [temp.explicit]p3:
6869  //   If the explicit instantiation is for a member function, a member class
6870  //   or a static data member of a class template specialization, the name of
6871  //   the class template specialization in the qualified-id for the member
6872  //   name shall be a simple-template-id.
6873  //
6874  // C++98 has the same restriction, just worded differently.
6875  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
6876       NNS; NNS = NNS->getPrefix())
6877    if (const Type *T = NNS->getAsType())
6878      if (isa<TemplateSpecializationType>(T))
6879        return true;
6880
6881  return false;
6882}
6883
6884// Explicit instantiation of a class template specialization
6885DeclResult
6886Sema::ActOnExplicitInstantiation(Scope *S,
6887                                 SourceLocation ExternLoc,
6888                                 SourceLocation TemplateLoc,
6889                                 unsigned TagSpec,
6890                                 SourceLocation KWLoc,
6891                                 const CXXScopeSpec &SS,
6892                                 TemplateTy TemplateD,
6893                                 SourceLocation TemplateNameLoc,
6894                                 SourceLocation LAngleLoc,
6895                                 ASTTemplateArgsPtr TemplateArgsIn,
6896                                 SourceLocation RAngleLoc,
6897                                 AttributeList *Attr) {
6898  // Find the class template we're specializing
6899  TemplateName Name = TemplateD.get();
6900  TemplateDecl *TD = Name.getAsTemplateDecl();
6901  // Check that the specialization uses the same tag kind as the
6902  // original template.
6903  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6904  assert(Kind != TTK_Enum &&
6905         "Invalid enum tag in class template explicit instantiation!");
6906
6907  if (isa<TypeAliasTemplateDecl>(TD)) {
6908      Diag(KWLoc, diag::err_tag_reference_non_tag) << Kind;
6909      Diag(TD->getTemplatedDecl()->getLocation(),
6910           diag::note_previous_use);
6911    return true;
6912  }
6913
6914  ClassTemplateDecl *ClassTemplate = cast<ClassTemplateDecl>(TD);
6915
6916  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
6917                                    Kind, /*isDefinition*/false, KWLoc,
6918                                    *ClassTemplate->getIdentifier())) {
6919    Diag(KWLoc, diag::err_use_with_wrong_tag)
6920      << ClassTemplate
6921      << FixItHint::CreateReplacement(KWLoc,
6922                            ClassTemplate->getTemplatedDecl()->getKindName());
6923    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
6924         diag::note_previous_use);
6925    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
6926  }
6927
6928  // C++0x [temp.explicit]p2:
6929  //   There are two forms of explicit instantiation: an explicit instantiation
6930  //   definition and an explicit instantiation declaration. An explicit
6931  //   instantiation declaration begins with the extern keyword. [...]
6932  TemplateSpecializationKind TSK
6933    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6934                           : TSK_ExplicitInstantiationDeclaration;
6935
6936  // Translate the parser's template argument list in our AST format.
6937  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6938  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6939
6940  // Check that the template argument list is well-formed for this
6941  // template.
6942  SmallVector<TemplateArgument, 4> Converted;
6943  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
6944                                TemplateArgs, false, Converted))
6945    return true;
6946
6947  // Find the class template specialization declaration that
6948  // corresponds to these arguments.
6949  void *InsertPos = 0;
6950  ClassTemplateSpecializationDecl *PrevDecl
6951    = ClassTemplate->findSpecialization(Converted.data(),
6952                                        Converted.size(), InsertPos);
6953
6954  TemplateSpecializationKind PrevDecl_TSK
6955    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
6956
6957  // C++0x [temp.explicit]p2:
6958  //   [...] An explicit instantiation shall appear in an enclosing
6959  //   namespace of its template. [...]
6960  //
6961  // This is C++ DR 275.
6962  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
6963                                      SS.isSet()))
6964    return true;
6965
6966  ClassTemplateSpecializationDecl *Specialization = 0;
6967
6968  bool HasNoEffect = false;
6969  if (PrevDecl) {
6970    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
6971                                               PrevDecl, PrevDecl_TSK,
6972                                            PrevDecl->getPointOfInstantiation(),
6973                                               HasNoEffect))
6974      return PrevDecl;
6975
6976    // Even though HasNoEffect == true means that this explicit instantiation
6977    // has no effect on semantics, we go on to put its syntax in the AST.
6978
6979    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
6980        PrevDecl_TSK == TSK_Undeclared) {
6981      // Since the only prior class template specialization with these
6982      // arguments was referenced but not declared, reuse that
6983      // declaration node as our own, updating the source location
6984      // for the template name to reflect our new declaration.
6985      // (Other source locations will be updated later.)
6986      Specialization = PrevDecl;
6987      Specialization->setLocation(TemplateNameLoc);
6988      PrevDecl = 0;
6989    }
6990  }
6991
6992  if (!Specialization) {
6993    // Create a new class template specialization declaration node for
6994    // this explicit specialization.
6995    Specialization
6996      = ClassTemplateSpecializationDecl::Create(Context, Kind,
6997                                             ClassTemplate->getDeclContext(),
6998                                                KWLoc, TemplateNameLoc,
6999                                                ClassTemplate,
7000                                                Converted.data(),
7001                                                Converted.size(),
7002                                                PrevDecl);
7003    SetNestedNameSpecifier(Specialization, SS);
7004
7005    if (!HasNoEffect && !PrevDecl) {
7006      // Insert the new specialization.
7007      ClassTemplate->AddSpecialization(Specialization, InsertPos);
7008    }
7009  }
7010
7011  // Build the fully-sugared type for this explicit instantiation as
7012  // the user wrote in the explicit instantiation itself. This means
7013  // that we'll pretty-print the type retrieved from the
7014  // specialization's declaration the way that the user actually wrote
7015  // the explicit instantiation, rather than formatting the name based
7016  // on the "canonical" representation used to store the template
7017  // arguments in the specialization.
7018  TypeSourceInfo *WrittenTy
7019    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
7020                                                TemplateArgs,
7021                                  Context.getTypeDeclType(Specialization));
7022  Specialization->setTypeAsWritten(WrittenTy);
7023
7024  // Set source locations for keywords.
7025  Specialization->setExternLoc(ExternLoc);
7026  Specialization->setTemplateKeywordLoc(TemplateLoc);
7027  Specialization->setRBraceLoc(SourceLocation());
7028
7029  if (Attr)
7030    ProcessDeclAttributeList(S, Specialization, Attr);
7031
7032  // Add the explicit instantiation into its lexical context. However,
7033  // since explicit instantiations are never found by name lookup, we
7034  // just put it into the declaration context directly.
7035  Specialization->setLexicalDeclContext(CurContext);
7036  CurContext->addDecl(Specialization);
7037
7038  // Syntax is now OK, so return if it has no other effect on semantics.
7039  if (HasNoEffect) {
7040    // Set the template specialization kind.
7041    Specialization->setTemplateSpecializationKind(TSK);
7042    return Specialization;
7043  }
7044
7045  // C++ [temp.explicit]p3:
7046  //   A definition of a class template or class member template
7047  //   shall be in scope at the point of the explicit instantiation of
7048  //   the class template or class member template.
7049  //
7050  // This check comes when we actually try to perform the
7051  // instantiation.
7052  ClassTemplateSpecializationDecl *Def
7053    = cast_or_null<ClassTemplateSpecializationDecl>(
7054                                              Specialization->getDefinition());
7055  if (!Def)
7056    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
7057  else if (TSK == TSK_ExplicitInstantiationDefinition) {
7058    MarkVTableUsed(TemplateNameLoc, Specialization, true);
7059    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
7060  }
7061
7062  // Instantiate the members of this class template specialization.
7063  Def = cast_or_null<ClassTemplateSpecializationDecl>(
7064                                       Specialization->getDefinition());
7065  if (Def) {
7066    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
7067
7068    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
7069    // TSK_ExplicitInstantiationDefinition
7070    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
7071        TSK == TSK_ExplicitInstantiationDefinition)
7072      Def->setTemplateSpecializationKind(TSK);
7073
7074    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
7075  }
7076
7077  // Set the template specialization kind.
7078  Specialization->setTemplateSpecializationKind(TSK);
7079  return Specialization;
7080}
7081
7082// Explicit instantiation of a member class of a class template.
7083DeclResult
7084Sema::ActOnExplicitInstantiation(Scope *S,
7085                                 SourceLocation ExternLoc,
7086                                 SourceLocation TemplateLoc,
7087                                 unsigned TagSpec,
7088                                 SourceLocation KWLoc,
7089                                 CXXScopeSpec &SS,
7090                                 IdentifierInfo *Name,
7091                                 SourceLocation NameLoc,
7092                                 AttributeList *Attr) {
7093
7094  bool Owned = false;
7095  bool IsDependent = false;
7096  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
7097                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
7098                        /*ModulePrivateLoc=*/SourceLocation(),
7099                        MultiTemplateParamsArg(), Owned, IsDependent,
7100                        SourceLocation(), false, TypeResult());
7101  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
7102
7103  if (!TagD)
7104    return true;
7105
7106  TagDecl *Tag = cast<TagDecl>(TagD);
7107  assert(!Tag->isEnum() && "shouldn't see enumerations here");
7108
7109  if (Tag->isInvalidDecl())
7110    return true;
7111
7112  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
7113  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
7114  if (!Pattern) {
7115    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
7116      << Context.getTypeDeclType(Record);
7117    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
7118    return true;
7119  }
7120
7121  // C++0x [temp.explicit]p2:
7122  //   If the explicit instantiation is for a class or member class, the
7123  //   elaborated-type-specifier in the declaration shall include a
7124  //   simple-template-id.
7125  //
7126  // C++98 has the same restriction, just worded differently.
7127  if (!ScopeSpecifierHasTemplateId(SS))
7128    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
7129      << Record << SS.getRange();
7130
7131  // C++0x [temp.explicit]p2:
7132  //   There are two forms of explicit instantiation: an explicit instantiation
7133  //   definition and an explicit instantiation declaration. An explicit
7134  //   instantiation declaration begins with the extern keyword. [...]
7135  TemplateSpecializationKind TSK
7136    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7137                           : TSK_ExplicitInstantiationDeclaration;
7138
7139  // C++0x [temp.explicit]p2:
7140  //   [...] An explicit instantiation shall appear in an enclosing
7141  //   namespace of its template. [...]
7142  //
7143  // This is C++ DR 275.
7144  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
7145
7146  // Verify that it is okay to explicitly instantiate here.
7147  CXXRecordDecl *PrevDecl
7148    = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
7149  if (!PrevDecl && Record->getDefinition())
7150    PrevDecl = Record;
7151  if (PrevDecl) {
7152    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
7153    bool HasNoEffect = false;
7154    assert(MSInfo && "No member specialization information?");
7155    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
7156                                               PrevDecl,
7157                                        MSInfo->getTemplateSpecializationKind(),
7158                                             MSInfo->getPointOfInstantiation(),
7159                                               HasNoEffect))
7160      return true;
7161    if (HasNoEffect)
7162      return TagD;
7163  }
7164
7165  CXXRecordDecl *RecordDef
7166    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7167  if (!RecordDef) {
7168    // C++ [temp.explicit]p3:
7169    //   A definition of a member class of a class template shall be in scope
7170    //   at the point of an explicit instantiation of the member class.
7171    CXXRecordDecl *Def
7172      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
7173    if (!Def) {
7174      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
7175        << 0 << Record->getDeclName() << Record->getDeclContext();
7176      Diag(Pattern->getLocation(), diag::note_forward_declaration)
7177        << Pattern;
7178      return true;
7179    } else {
7180      if (InstantiateClass(NameLoc, Record, Def,
7181                           getTemplateInstantiationArgs(Record),
7182                           TSK))
7183        return true;
7184
7185      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7186      if (!RecordDef)
7187        return true;
7188    }
7189  }
7190
7191  // Instantiate all of the members of the class.
7192  InstantiateClassMembers(NameLoc, RecordDef,
7193                          getTemplateInstantiationArgs(Record), TSK);
7194
7195  if (TSK == TSK_ExplicitInstantiationDefinition)
7196    MarkVTableUsed(NameLoc, RecordDef, true);
7197
7198  // FIXME: We don't have any representation for explicit instantiations of
7199  // member classes. Such a representation is not needed for compilation, but it
7200  // should be available for clients that want to see all of the declarations in
7201  // the source code.
7202  return TagD;
7203}
7204
7205DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
7206                                            SourceLocation ExternLoc,
7207                                            SourceLocation TemplateLoc,
7208                                            Declarator &D) {
7209  // Explicit instantiations always require a name.
7210  // TODO: check if/when DNInfo should replace Name.
7211  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7212  DeclarationName Name = NameInfo.getName();
7213  if (!Name) {
7214    if (!D.isInvalidType())
7215      Diag(D.getDeclSpec().getLocStart(),
7216           diag::err_explicit_instantiation_requires_name)
7217        << D.getDeclSpec().getSourceRange()
7218        << D.getSourceRange();
7219
7220    return true;
7221  }
7222
7223  // The scope passed in may not be a decl scope.  Zip up the scope tree until
7224  // we find one that is.
7225  while ((S->getFlags() & Scope::DeclScope) == 0 ||
7226         (S->getFlags() & Scope::TemplateParamScope) != 0)
7227    S = S->getParent();
7228
7229  // Determine the type of the declaration.
7230  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
7231  QualType R = T->getType();
7232  if (R.isNull())
7233    return true;
7234
7235  // C++ [dcl.stc]p1:
7236  //   A storage-class-specifier shall not be specified in [...] an explicit
7237  //   instantiation (14.7.2) directive.
7238  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
7239    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
7240      << Name;
7241    return true;
7242  } else if (D.getDeclSpec().getStorageClassSpec()
7243                                                != DeclSpec::SCS_unspecified) {
7244    // Complain about then remove the storage class specifier.
7245    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
7246      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7247
7248    D.getMutableDeclSpec().ClearStorageClassSpecs();
7249  }
7250
7251  // C++0x [temp.explicit]p1:
7252  //   [...] An explicit instantiation of a function template shall not use the
7253  //   inline or constexpr specifiers.
7254  // Presumably, this also applies to member functions of class templates as
7255  // well.
7256  if (D.getDeclSpec().isInlineSpecified())
7257    Diag(D.getDeclSpec().getInlineSpecLoc(),
7258         getLangOpts().CPlusPlus11 ?
7259           diag::err_explicit_instantiation_inline :
7260           diag::warn_explicit_instantiation_inline_0x)
7261      << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7262  if (D.getDeclSpec().isConstexprSpecified() && R->isFunctionType())
7263    // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
7264    // not already specified.
7265    Diag(D.getDeclSpec().getConstexprSpecLoc(),
7266         diag::err_explicit_instantiation_constexpr);
7267
7268  // C++0x [temp.explicit]p2:
7269  //   There are two forms of explicit instantiation: an explicit instantiation
7270  //   definition and an explicit instantiation declaration. An explicit
7271  //   instantiation declaration begins with the extern keyword. [...]
7272  TemplateSpecializationKind TSK
7273    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7274                           : TSK_ExplicitInstantiationDeclaration;
7275
7276  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
7277  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
7278
7279  if (!R->isFunctionType()) {
7280    // C++ [temp.explicit]p1:
7281    //   A [...] static data member of a class template can be explicitly
7282    //   instantiated from the member definition associated with its class
7283    //   template.
7284    // C++1y [temp.explicit]p1:
7285    //   A [...] variable [...] template specialization can be explicitly
7286    //   instantiated from its template.
7287    if (Previous.isAmbiguous())
7288      return true;
7289
7290    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
7291    VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
7292
7293    if (!PrevTemplate) {
7294      if (!Prev || !Prev->isStaticDataMember()) {
7295        // We expect to see a data data member here.
7296        Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
7297            << Name;
7298        for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7299             P != PEnd; ++P)
7300          Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
7301        return true;
7302      }
7303
7304      if (!Prev->getInstantiatedFromStaticDataMember()) {
7305        // FIXME: Check for explicit specialization?
7306        Diag(D.getIdentifierLoc(),
7307             diag::err_explicit_instantiation_data_member_not_instantiated)
7308            << Prev;
7309        Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
7310        // FIXME: Can we provide a note showing where this was declared?
7311        return true;
7312      }
7313    } else {
7314      // Explicitly instantiate a variable template.
7315
7316      // C++1y [dcl.spec.auto]p6:
7317      //   ... A program that uses auto or decltype(auto) in a context not
7318      //   explicitly allowed in this section is ill-formed.
7319      //
7320      // This includes auto-typed variable template instantiations.
7321      if (R->isUndeducedType()) {
7322        Diag(T->getTypeLoc().getLocStart(),
7323             diag::err_auto_not_allowed_var_inst);
7324        return true;
7325      }
7326
7327      if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
7328        // C++1y [temp.explicit]p3:
7329        //   If the explicit instantiation is for a variable, the unqualified-id
7330        //   in the declaration shall be a template-id.
7331        Diag(D.getIdentifierLoc(),
7332             diag::err_explicit_instantiation_without_template_id)
7333          << PrevTemplate;
7334        Diag(PrevTemplate->getLocation(),
7335             diag::note_explicit_instantiation_here);
7336        return true;
7337      }
7338
7339      // Translate the parser's template argument list into our AST format.
7340      TemplateArgumentListInfo TemplateArgs;
7341      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
7342      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
7343      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
7344      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7345                                         TemplateId->NumArgs);
7346      translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
7347
7348      DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
7349                                          D.getIdentifierLoc(), TemplateArgs);
7350      if (Res.isInvalid())
7351        return true;
7352
7353      // Ignore access control bits, we don't need them for redeclaration
7354      // checking.
7355      Prev = cast<VarDecl>(Res.get());
7356    }
7357
7358    // C++0x [temp.explicit]p2:
7359    //   If the explicit instantiation is for a member function, a member class
7360    //   or a static data member of a class template specialization, the name of
7361    //   the class template specialization in the qualified-id for the member
7362    //   name shall be a simple-template-id.
7363    //
7364    // C++98 has the same restriction, just worded differently.
7365    //
7366    // This does not apply to variable template specializations, where the
7367    // template-id is in the unqualified-id instead.
7368    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
7369      Diag(D.getIdentifierLoc(),
7370           diag::ext_explicit_instantiation_without_qualified_id)
7371        << Prev << D.getCXXScopeSpec().getRange();
7372
7373    // Check the scope of this explicit instantiation.
7374    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
7375
7376    // Verify that it is okay to explicitly instantiate here.
7377    TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
7378    SourceLocation POI = Prev->getPointOfInstantiation();
7379    bool HasNoEffect = false;
7380    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
7381                                               PrevTSK, POI, HasNoEffect))
7382      return true;
7383
7384    if (!HasNoEffect) {
7385      // Instantiate static data member or variable template.
7386
7387      Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
7388      if (PrevTemplate) {
7389        // Merge attributes.
7390        if (AttributeList *Attr = D.getDeclSpec().getAttributes().getList())
7391          ProcessDeclAttributeList(S, Prev, Attr);
7392      }
7393      if (TSK == TSK_ExplicitInstantiationDefinition)
7394        InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
7395    }
7396
7397    // Check the new variable specialization against the parsed input.
7398    if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
7399      Diag(T->getTypeLoc().getLocStart(),
7400           diag::err_invalid_var_template_spec_type)
7401          << 0 << PrevTemplate << R << Prev->getType();
7402      Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
7403          << 2 << PrevTemplate->getDeclName();
7404      return true;
7405    }
7406
7407    // FIXME: Create an ExplicitInstantiation node?
7408    return (Decl*) 0;
7409  }
7410
7411  // If the declarator is a template-id, translate the parser's template
7412  // argument list into our AST format.
7413  bool HasExplicitTemplateArgs = false;
7414  TemplateArgumentListInfo TemplateArgs;
7415  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7416    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
7417    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
7418    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
7419    ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7420                                       TemplateId->NumArgs);
7421    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
7422    HasExplicitTemplateArgs = true;
7423  }
7424
7425  // C++ [temp.explicit]p1:
7426  //   A [...] function [...] can be explicitly instantiated from its template.
7427  //   A member function [...] of a class template can be explicitly
7428  //  instantiated from the member definition associated with its class
7429  //  template.
7430  UnresolvedSet<8> Matches;
7431  TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
7432  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7433       P != PEnd; ++P) {
7434    NamedDecl *Prev = *P;
7435    if (!HasExplicitTemplateArgs) {
7436      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
7437        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
7438          Matches.clear();
7439
7440          Matches.addDecl(Method, P.getAccess());
7441          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
7442            break;
7443        }
7444      }
7445    }
7446
7447    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
7448    if (!FunTmpl)
7449      continue;
7450
7451    TemplateDeductionInfo Info(FailedCandidates.getLocation());
7452    FunctionDecl *Specialization = 0;
7453    if (TemplateDeductionResult TDK
7454          = DeduceTemplateArguments(FunTmpl,
7455                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
7456                                    R, Specialization, Info)) {
7457      // Keep track of almost-matches.
7458      FailedCandidates.addCandidate()
7459          .set(FunTmpl->getTemplatedDecl(),
7460               MakeDeductionFailureInfo(Context, TDK, Info));
7461      (void)TDK;
7462      continue;
7463    }
7464
7465    Matches.addDecl(Specialization, P.getAccess());
7466  }
7467
7468  // Find the most specialized function template specialization.
7469  UnresolvedSetIterator Result = getMostSpecialized(
7470      Matches.begin(), Matches.end(), FailedCandidates,
7471      D.getIdentifierLoc(),
7472      PDiag(diag::err_explicit_instantiation_not_known) << Name,
7473      PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
7474      PDiag(diag::note_explicit_instantiation_candidate));
7475
7476  if (Result == Matches.end())
7477    return true;
7478
7479  // Ignore access control bits, we don't need them for redeclaration checking.
7480  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
7481
7482  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
7483    Diag(D.getIdentifierLoc(),
7484         diag::err_explicit_instantiation_member_function_not_instantiated)
7485      << Specialization
7486      << (Specialization->getTemplateSpecializationKind() ==
7487          TSK_ExplicitSpecialization);
7488    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
7489    return true;
7490  }
7491
7492  FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
7493  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
7494    PrevDecl = Specialization;
7495
7496  if (PrevDecl) {
7497    bool HasNoEffect = false;
7498    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
7499                                               PrevDecl,
7500                                     PrevDecl->getTemplateSpecializationKind(),
7501                                          PrevDecl->getPointOfInstantiation(),
7502                                               HasNoEffect))
7503      return true;
7504
7505    // FIXME: We may still want to build some representation of this
7506    // explicit specialization.
7507    if (HasNoEffect)
7508      return (Decl*) 0;
7509  }
7510
7511  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
7512  AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
7513  if (Attr)
7514    ProcessDeclAttributeList(S, Specialization, Attr);
7515
7516  if (TSK == TSK_ExplicitInstantiationDefinition)
7517    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
7518
7519  // C++0x [temp.explicit]p2:
7520  //   If the explicit instantiation is for a member function, a member class
7521  //   or a static data member of a class template specialization, the name of
7522  //   the class template specialization in the qualified-id for the member
7523  //   name shall be a simple-template-id.
7524  //
7525  // C++98 has the same restriction, just worded differently.
7526  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
7527  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
7528      D.getCXXScopeSpec().isSet() &&
7529      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
7530    Diag(D.getIdentifierLoc(),
7531         diag::ext_explicit_instantiation_without_qualified_id)
7532    << Specialization << D.getCXXScopeSpec().getRange();
7533
7534  CheckExplicitInstantiationScope(*this,
7535                   FunTmpl? (NamedDecl *)FunTmpl
7536                          : Specialization->getInstantiatedFromMemberFunction(),
7537                                  D.getIdentifierLoc(),
7538                                  D.getCXXScopeSpec().isSet());
7539
7540  // FIXME: Create some kind of ExplicitInstantiationDecl here.
7541  return (Decl*) 0;
7542}
7543
7544TypeResult
7545Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7546                        const CXXScopeSpec &SS, IdentifierInfo *Name,
7547                        SourceLocation TagLoc, SourceLocation NameLoc) {
7548  // This has to hold, because SS is expected to be defined.
7549  assert(Name && "Expected a name in a dependent tag");
7550
7551  NestedNameSpecifier *NNS
7552    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
7553  if (!NNS)
7554    return true;
7555
7556  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7557
7558  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
7559    Diag(NameLoc, diag::err_dependent_tag_decl)
7560      << (TUK == TUK_Definition) << Kind << SS.getRange();
7561    return true;
7562  }
7563
7564  // Create the resulting type.
7565  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
7566  QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
7567
7568  // Create type-source location information for this type.
7569  TypeLocBuilder TLB;
7570  DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
7571  TL.setElaboratedKeywordLoc(TagLoc);
7572  TL.setQualifierLoc(SS.getWithLocInContext(Context));
7573  TL.setNameLoc(NameLoc);
7574  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
7575}
7576
7577TypeResult
7578Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
7579                        const CXXScopeSpec &SS, const IdentifierInfo &II,
7580                        SourceLocation IdLoc) {
7581  if (SS.isInvalid())
7582    return true;
7583
7584  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
7585    Diag(TypenameLoc,
7586         getLangOpts().CPlusPlus11 ?
7587           diag::warn_cxx98_compat_typename_outside_of_template :
7588           diag::ext_typename_outside_of_template)
7589      << FixItHint::CreateRemoval(TypenameLoc);
7590
7591  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7592  QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
7593                                 TypenameLoc, QualifierLoc, II, IdLoc);
7594  if (T.isNull())
7595    return true;
7596
7597  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
7598  if (isa<DependentNameType>(T)) {
7599    DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
7600    TL.setElaboratedKeywordLoc(TypenameLoc);
7601    TL.setQualifierLoc(QualifierLoc);
7602    TL.setNameLoc(IdLoc);
7603  } else {
7604    ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
7605    TL.setElaboratedKeywordLoc(TypenameLoc);
7606    TL.setQualifierLoc(QualifierLoc);
7607    TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
7608  }
7609
7610  return CreateParsedType(T, TSI);
7611}
7612
7613TypeResult
7614Sema::ActOnTypenameType(Scope *S,
7615                        SourceLocation TypenameLoc,
7616                        const CXXScopeSpec &SS,
7617                        SourceLocation TemplateKWLoc,
7618                        TemplateTy TemplateIn,
7619                        SourceLocation TemplateNameLoc,
7620                        SourceLocation LAngleLoc,
7621                        ASTTemplateArgsPtr TemplateArgsIn,
7622                        SourceLocation RAngleLoc) {
7623  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
7624    Diag(TypenameLoc,
7625         getLangOpts().CPlusPlus11 ?
7626           diag::warn_cxx98_compat_typename_outside_of_template :
7627           diag::ext_typename_outside_of_template)
7628      << FixItHint::CreateRemoval(TypenameLoc);
7629
7630  // Translate the parser's template argument list in our AST format.
7631  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
7632  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
7633
7634  TemplateName Template = TemplateIn.get();
7635  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
7636    // Construct a dependent template specialization type.
7637    assert(DTN && "dependent template has non-dependent name?");
7638    assert(DTN->getQualifier()
7639           == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
7640    QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
7641                                                          DTN->getQualifier(),
7642                                                          DTN->getIdentifier(),
7643                                                                TemplateArgs);
7644
7645    // Create source-location information for this type.
7646    TypeLocBuilder Builder;
7647    DependentTemplateSpecializationTypeLoc SpecTL
7648    = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
7649    SpecTL.setElaboratedKeywordLoc(TypenameLoc);
7650    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
7651    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
7652    SpecTL.setTemplateNameLoc(TemplateNameLoc);
7653    SpecTL.setLAngleLoc(LAngleLoc);
7654    SpecTL.setRAngleLoc(RAngleLoc);
7655    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7656      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
7657    return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
7658  }
7659
7660  QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
7661  if (T.isNull())
7662    return true;
7663
7664  // Provide source-location information for the template specialization type.
7665  TypeLocBuilder Builder;
7666  TemplateSpecializationTypeLoc SpecTL
7667    = Builder.push<TemplateSpecializationTypeLoc>(T);
7668  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
7669  SpecTL.setTemplateNameLoc(TemplateNameLoc);
7670  SpecTL.setLAngleLoc(LAngleLoc);
7671  SpecTL.setRAngleLoc(RAngleLoc);
7672  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7673    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
7674
7675  T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
7676  ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
7677  TL.setElaboratedKeywordLoc(TypenameLoc);
7678  TL.setQualifierLoc(SS.getWithLocInContext(Context));
7679
7680  TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
7681  return CreateParsedType(T, TSI);
7682}
7683
7684
7685/// Determine whether this failed name lookup should be treated as being
7686/// disabled by a usage of std::enable_if.
7687static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
7688                       SourceRange &CondRange) {
7689  // We must be looking for a ::type...
7690  if (!II.isStr("type"))
7691    return false;
7692
7693  // ... within an explicitly-written template specialization...
7694  if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
7695    return false;
7696  TypeLoc EnableIfTy = NNS.getTypeLoc();
7697  TemplateSpecializationTypeLoc EnableIfTSTLoc =
7698      EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
7699  if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
7700    return false;
7701  const TemplateSpecializationType *EnableIfTST =
7702    cast<TemplateSpecializationType>(EnableIfTSTLoc.getTypePtr());
7703
7704  // ... which names a complete class template declaration...
7705  const TemplateDecl *EnableIfDecl =
7706    EnableIfTST->getTemplateName().getAsTemplateDecl();
7707  if (!EnableIfDecl || EnableIfTST->isIncompleteType())
7708    return false;
7709
7710  // ... called "enable_if".
7711  const IdentifierInfo *EnableIfII =
7712    EnableIfDecl->getDeclName().getAsIdentifierInfo();
7713  if (!EnableIfII || !EnableIfII->isStr("enable_if"))
7714    return false;
7715
7716  // Assume the first template argument is the condition.
7717  CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
7718  return true;
7719}
7720
7721/// \brief Build the type that describes a C++ typename specifier,
7722/// e.g., "typename T::type".
7723QualType
7724Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
7725                        SourceLocation KeywordLoc,
7726                        NestedNameSpecifierLoc QualifierLoc,
7727                        const IdentifierInfo &II,
7728                        SourceLocation IILoc) {
7729  CXXScopeSpec SS;
7730  SS.Adopt(QualifierLoc);
7731
7732  DeclContext *Ctx = computeDeclContext(SS);
7733  if (!Ctx) {
7734    // If the nested-name-specifier is dependent and couldn't be
7735    // resolved to a type, build a typename type.
7736    assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
7737    return Context.getDependentNameType(Keyword,
7738                                        QualifierLoc.getNestedNameSpecifier(),
7739                                        &II);
7740  }
7741
7742  // If the nested-name-specifier refers to the current instantiation,
7743  // the "typename" keyword itself is superfluous. In C++03, the
7744  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
7745  // allows such extraneous "typename" keywords, and we retroactively
7746  // apply this DR to C++03 code with only a warning. In any case we continue.
7747
7748  if (RequireCompleteDeclContext(SS, Ctx))
7749    return QualType();
7750
7751  DeclarationName Name(&II);
7752  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
7753  LookupQualifiedName(Result, Ctx);
7754  unsigned DiagID = 0;
7755  Decl *Referenced = 0;
7756  switch (Result.getResultKind()) {
7757  case LookupResult::NotFound: {
7758    // If we're looking up 'type' within a template named 'enable_if', produce
7759    // a more specific diagnostic.
7760    SourceRange CondRange;
7761    if (isEnableIf(QualifierLoc, II, CondRange)) {
7762      Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
7763        << Ctx << CondRange;
7764      return QualType();
7765    }
7766
7767    DiagID = diag::err_typename_nested_not_found;
7768    break;
7769  }
7770
7771  case LookupResult::FoundUnresolvedValue: {
7772    // We found a using declaration that is a value. Most likely, the using
7773    // declaration itself is meant to have the 'typename' keyword.
7774    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7775                          IILoc);
7776    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
7777      << Name << Ctx << FullRange;
7778    if (UnresolvedUsingValueDecl *Using
7779          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
7780      SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
7781      Diag(Loc, diag::note_using_value_decl_missing_typename)
7782        << FixItHint::CreateInsertion(Loc, "typename ");
7783    }
7784  }
7785  // Fall through to create a dependent typename type, from which we can recover
7786  // better.
7787
7788  case LookupResult::NotFoundInCurrentInstantiation:
7789    // Okay, it's a member of an unknown instantiation.
7790    return Context.getDependentNameType(Keyword,
7791                                        QualifierLoc.getNestedNameSpecifier(),
7792                                        &II);
7793
7794  case LookupResult::Found:
7795    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
7796      // We found a type. Build an ElaboratedType, since the
7797      // typename-specifier was just sugar.
7798      return Context.getElaboratedType(ETK_Typename,
7799                                       QualifierLoc.getNestedNameSpecifier(),
7800                                       Context.getTypeDeclType(Type));
7801    }
7802
7803    DiagID = diag::err_typename_nested_not_type;
7804    Referenced = Result.getFoundDecl();
7805    break;
7806
7807  case LookupResult::FoundOverloaded:
7808    DiagID = diag::err_typename_nested_not_type;
7809    Referenced = *Result.begin();
7810    break;
7811
7812  case LookupResult::Ambiguous:
7813    return QualType();
7814  }
7815
7816  // If we get here, it's because name lookup did not find a
7817  // type. Emit an appropriate diagnostic and return an error.
7818  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7819                        IILoc);
7820  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
7821  if (Referenced)
7822    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
7823      << Name;
7824  return QualType();
7825}
7826
7827namespace {
7828  // See Sema::RebuildTypeInCurrentInstantiation
7829  class CurrentInstantiationRebuilder
7830    : public TreeTransform<CurrentInstantiationRebuilder> {
7831    SourceLocation Loc;
7832    DeclarationName Entity;
7833
7834  public:
7835    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
7836
7837    CurrentInstantiationRebuilder(Sema &SemaRef,
7838                                  SourceLocation Loc,
7839                                  DeclarationName Entity)
7840    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
7841      Loc(Loc), Entity(Entity) { }
7842
7843    /// \brief Determine whether the given type \p T has already been
7844    /// transformed.
7845    ///
7846    /// For the purposes of type reconstruction, a type has already been
7847    /// transformed if it is NULL or if it is not dependent.
7848    bool AlreadyTransformed(QualType T) {
7849      return T.isNull() || !T->isDependentType();
7850    }
7851
7852    /// \brief Returns the location of the entity whose type is being
7853    /// rebuilt.
7854    SourceLocation getBaseLocation() { return Loc; }
7855
7856    /// \brief Returns the name of the entity whose type is being rebuilt.
7857    DeclarationName getBaseEntity() { return Entity; }
7858
7859    /// \brief Sets the "base" location and entity when that
7860    /// information is known based on another transformation.
7861    void setBase(SourceLocation Loc, DeclarationName Entity) {
7862      this->Loc = Loc;
7863      this->Entity = Entity;
7864    }
7865
7866    ExprResult TransformLambdaExpr(LambdaExpr *E) {
7867      // Lambdas never need to be transformed.
7868      return E;
7869    }
7870  };
7871}
7872
7873/// \brief Rebuilds a type within the context of the current instantiation.
7874///
7875/// The type \p T is part of the type of an out-of-line member definition of
7876/// a class template (or class template partial specialization) that was parsed
7877/// and constructed before we entered the scope of the class template (or
7878/// partial specialization thereof). This routine will rebuild that type now
7879/// that we have entered the declarator's scope, which may produce different
7880/// canonical types, e.g.,
7881///
7882/// \code
7883/// template<typename T>
7884/// struct X {
7885///   typedef T* pointer;
7886///   pointer data();
7887/// };
7888///
7889/// template<typename T>
7890/// typename X<T>::pointer X<T>::data() { ... }
7891/// \endcode
7892///
7893/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
7894/// since we do not know that we can look into X<T> when we parsed the type.
7895/// This function will rebuild the type, performing the lookup of "pointer"
7896/// in X<T> and returning an ElaboratedType whose canonical type is the same
7897/// as the canonical type of T*, allowing the return types of the out-of-line
7898/// definition and the declaration to match.
7899TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
7900                                                        SourceLocation Loc,
7901                                                        DeclarationName Name) {
7902  if (!T || !T->getType()->isDependentType())
7903    return T;
7904
7905  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
7906  return Rebuilder.TransformType(T);
7907}
7908
7909ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
7910  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
7911                                          DeclarationName());
7912  return Rebuilder.TransformExpr(E);
7913}
7914
7915bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
7916  if (SS.isInvalid())
7917    return true;
7918
7919  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7920  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
7921                                          DeclarationName());
7922  NestedNameSpecifierLoc Rebuilt
7923    = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
7924  if (!Rebuilt)
7925    return true;
7926
7927  SS.Adopt(Rebuilt);
7928  return false;
7929}
7930
7931/// \brief Rebuild the template parameters now that we know we're in a current
7932/// instantiation.
7933bool Sema::RebuildTemplateParamsInCurrentInstantiation(
7934                                               TemplateParameterList *Params) {
7935  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7936    Decl *Param = Params->getParam(I);
7937
7938    // There is nothing to rebuild in a type parameter.
7939    if (isa<TemplateTypeParmDecl>(Param))
7940      continue;
7941
7942    // Rebuild the template parameter list of a template template parameter.
7943    if (TemplateTemplateParmDecl *TTP
7944        = dyn_cast<TemplateTemplateParmDecl>(Param)) {
7945      if (RebuildTemplateParamsInCurrentInstantiation(
7946            TTP->getTemplateParameters()))
7947        return true;
7948
7949      continue;
7950    }
7951
7952    // Rebuild the type of a non-type template parameter.
7953    NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
7954    TypeSourceInfo *NewTSI
7955      = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
7956                                          NTTP->getLocation(),
7957                                          NTTP->getDeclName());
7958    if (!NewTSI)
7959      return true;
7960
7961    if (NewTSI != NTTP->getTypeSourceInfo()) {
7962      NTTP->setTypeSourceInfo(NewTSI);
7963      NTTP->setType(NewTSI->getType());
7964    }
7965  }
7966
7967  return false;
7968}
7969
7970/// \brief Produces a formatted string that describes the binding of
7971/// template parameters to template arguments.
7972std::string
7973Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7974                                      const TemplateArgumentList &Args) {
7975  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
7976}
7977
7978std::string
7979Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7980                                      const TemplateArgument *Args,
7981                                      unsigned NumArgs) {
7982  SmallString<128> Str;
7983  llvm::raw_svector_ostream Out(Str);
7984
7985  if (!Params || Params->size() == 0 || NumArgs == 0)
7986    return std::string();
7987
7988  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7989    if (I >= NumArgs)
7990      break;
7991
7992    if (I == 0)
7993      Out << "[with ";
7994    else
7995      Out << ", ";
7996
7997    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
7998      Out << Id->getName();
7999    } else {
8000      Out << '$' << I;
8001    }
8002
8003    Out << " = ";
8004    Args[I].print(getPrintingPolicy(), Out);
8005  }
8006
8007  Out << ']';
8008  return Out.str();
8009}
8010
8011void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
8012                                    CachedTokens &Toks) {
8013  if (!FD)
8014    return;
8015
8016  LateParsedTemplate *LPT = new LateParsedTemplate;
8017
8018  // Take tokens to avoid allocations
8019  LPT->Toks.swap(Toks);
8020  LPT->D = FnD;
8021  LateParsedTemplateMap[FD] = LPT;
8022
8023  FD->setLateTemplateParsed(true);
8024}
8025
8026void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
8027  if (!FD)
8028    return;
8029  FD->setLateTemplateParsed(false);
8030}
8031
8032bool Sema::IsInsideALocalClassWithinATemplateFunction() {
8033  DeclContext *DC = CurContext;
8034
8035  while (DC) {
8036    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
8037      const FunctionDecl *FD = RD->isLocalClass();
8038      return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
8039    } else if (DC->isTranslationUnit() || DC->isNamespace())
8040      return false;
8041
8042    DC = DC->getParent();
8043  }
8044  return false;
8045}
8046