SimpleSValBuilder.cpp revision 14d20b1dff6370f76279fcfb0fd780e2e5eb57bb
1// SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*- 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines SimpleSValBuilder, a basic implementation of SValBuilder. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" 15#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 16 17using namespace clang; 18using namespace ento; 19 20namespace { 21class SimpleSValBuilder : public SValBuilder { 22protected: 23 virtual SVal dispatchCast(SVal val, QualType castTy); 24 virtual SVal evalCastFromNonLoc(NonLoc val, QualType castTy); 25 virtual SVal evalCastFromLoc(Loc val, QualType castTy); 26 27public: 28 SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context, 29 ProgramStateManager &stateMgr) 30 : SValBuilder(alloc, context, stateMgr) {} 31 virtual ~SimpleSValBuilder() {} 32 33 virtual SVal evalMinus(NonLoc val); 34 virtual SVal evalComplement(NonLoc val); 35 virtual SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op, 36 NonLoc lhs, NonLoc rhs, QualType resultTy); 37 virtual SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op, 38 Loc lhs, Loc rhs, QualType resultTy); 39 virtual SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op, 40 Loc lhs, NonLoc rhs, QualType resultTy); 41 42 /// getKnownValue - evaluates a given SVal. If the SVal has only one possible 43 /// (integer) value, that value is returned. Otherwise, returns NULL. 44 virtual const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V); 45 46 SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op, 47 const llvm::APSInt &RHS, QualType resultTy); 48}; 49} // end anonymous namespace 50 51SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc, 52 ASTContext &context, 53 ProgramStateManager &stateMgr) { 54 return new SimpleSValBuilder(alloc, context, stateMgr); 55} 56 57//===----------------------------------------------------------------------===// 58// Transfer function for Casts. 59//===----------------------------------------------------------------------===// 60 61SVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) { 62 assert(isa<Loc>(&Val) || isa<NonLoc>(&Val)); 63 return isa<Loc>(Val) ? evalCastFromLoc(cast<Loc>(Val), CastTy) 64 : evalCastFromNonLoc(cast<NonLoc>(Val), CastTy); 65} 66 67SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) { 68 69 bool isLocType = Loc::isLocType(castTy); 70 71 if (nonloc::LocAsInteger *LI = dyn_cast<nonloc::LocAsInteger>(&val)) { 72 if (isLocType) 73 return LI->getLoc(); 74 75 // FIXME: Correctly support promotions/truncations. 76 unsigned castSize = Context.getTypeSize(castTy); 77 if (castSize == LI->getNumBits()) 78 return val; 79 return makeLocAsInteger(LI->getLoc(), castSize); 80 } 81 82 if (const SymExpr *se = val.getAsSymbolicExpression()) { 83 QualType T = Context.getCanonicalType(se->getType(Context)); 84 // If types are the same or both are integers, ignore the cast. 85 // FIXME: Remove this hack when we support symbolic truncation/extension. 86 // HACK: If both castTy and T are integers, ignore the cast. This is 87 // not a permanent solution. Eventually we want to precisely handle 88 // extension/truncation of symbolic integers. This prevents us from losing 89 // precision when we assign 'x = y' and 'y' is symbolic and x and y are 90 // different integer types. 91 if (haveSameType(T, castTy)) 92 return val; 93 94 if (!isLocType) 95 return makeNonLoc(se, T, castTy); 96 return UnknownVal(); 97 } 98 99 // If value is a non integer constant, produce unknown. 100 if (!isa<nonloc::ConcreteInt>(val)) 101 return UnknownVal(); 102 103 // Only handle casts from integers to integers - if val is an integer constant 104 // being cast to a non integer type, produce unknown. 105 if (!isLocType && !castTy->isIntegerType()) 106 return UnknownVal(); 107 108 llvm::APSInt i = cast<nonloc::ConcreteInt>(val).getValue(); 109 i.setIsUnsigned(castTy->isUnsignedIntegerOrEnumerationType() || 110 Loc::isLocType(castTy)); 111 i = i.extOrTrunc(Context.getTypeSize(castTy)); 112 113 if (isLocType) 114 return makeIntLocVal(i); 115 else 116 return makeIntVal(i); 117} 118 119SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) { 120 121 // Casts from pointers -> pointers, just return the lval. 122 // 123 // Casts from pointers -> references, just return the lval. These 124 // can be introduced by the frontend for corner cases, e.g 125 // casting from va_list* to __builtin_va_list&. 126 // 127 if (Loc::isLocType(castTy) || castTy->isReferenceType()) 128 return val; 129 130 // FIXME: Handle transparent unions where a value can be "transparently" 131 // lifted into a union type. 132 if (castTy->isUnionType()) 133 return UnknownVal(); 134 135 if (castTy->isIntegerType()) { 136 unsigned BitWidth = Context.getTypeSize(castTy); 137 138 if (!isa<loc::ConcreteInt>(val)) 139 return makeLocAsInteger(val, BitWidth); 140 141 llvm::APSInt i = cast<loc::ConcreteInt>(val).getValue(); 142 i.setIsUnsigned(castTy->isUnsignedIntegerOrEnumerationType() || 143 Loc::isLocType(castTy)); 144 i = i.extOrTrunc(BitWidth); 145 return makeIntVal(i); 146 } 147 148 // All other cases: return 'UnknownVal'. This includes casting pointers 149 // to floats, which is probably badness it itself, but this is a good 150 // intermediate solution until we do something better. 151 return UnknownVal(); 152} 153 154//===----------------------------------------------------------------------===// 155// Transfer function for unary operators. 156//===----------------------------------------------------------------------===// 157 158SVal SimpleSValBuilder::evalMinus(NonLoc val) { 159 switch (val.getSubKind()) { 160 case nonloc::ConcreteIntKind: 161 return cast<nonloc::ConcreteInt>(val).evalMinus(*this); 162 default: 163 return UnknownVal(); 164 } 165} 166 167SVal SimpleSValBuilder::evalComplement(NonLoc X) { 168 switch (X.getSubKind()) { 169 case nonloc::ConcreteIntKind: 170 return cast<nonloc::ConcreteInt>(X).evalComplement(*this); 171 default: 172 return UnknownVal(); 173 } 174} 175 176//===----------------------------------------------------------------------===// 177// Transfer function for binary operators. 178//===----------------------------------------------------------------------===// 179 180static BinaryOperator::Opcode NegateComparison(BinaryOperator::Opcode op) { 181 switch (op) { 182 default: 183 llvm_unreachable("Invalid opcode."); 184 case BO_LT: return BO_GE; 185 case BO_GT: return BO_LE; 186 case BO_LE: return BO_GT; 187 case BO_GE: return BO_LT; 188 case BO_EQ: return BO_NE; 189 case BO_NE: return BO_EQ; 190 } 191} 192 193static BinaryOperator::Opcode ReverseComparison(BinaryOperator::Opcode op) { 194 switch (op) { 195 default: 196 llvm_unreachable("Invalid opcode."); 197 case BO_LT: return BO_GT; 198 case BO_GT: return BO_LT; 199 case BO_LE: return BO_GE; 200 case BO_GE: return BO_LE; 201 case BO_EQ: 202 case BO_NE: 203 return op; 204 } 205} 206 207SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS, 208 BinaryOperator::Opcode op, 209 const llvm::APSInt &RHS, 210 QualType resultTy) { 211 bool isIdempotent = false; 212 213 // Check for a few special cases with known reductions first. 214 switch (op) { 215 default: 216 // We can't reduce this case; just treat it normally. 217 break; 218 case BO_Mul: 219 // a*0 and a*1 220 if (RHS == 0) 221 return makeIntVal(0, resultTy); 222 else if (RHS == 1) 223 isIdempotent = true; 224 break; 225 case BO_Div: 226 // a/0 and a/1 227 if (RHS == 0) 228 // This is also handled elsewhere. 229 return UndefinedVal(); 230 else if (RHS == 1) 231 isIdempotent = true; 232 break; 233 case BO_Rem: 234 // a%0 and a%1 235 if (RHS == 0) 236 // This is also handled elsewhere. 237 return UndefinedVal(); 238 else if (RHS == 1) 239 return makeIntVal(0, resultTy); 240 break; 241 case BO_Add: 242 case BO_Sub: 243 case BO_Shl: 244 case BO_Shr: 245 case BO_Xor: 246 // a+0, a-0, a<<0, a>>0, a^0 247 if (RHS == 0) 248 isIdempotent = true; 249 break; 250 case BO_And: 251 // a&0 and a&(~0) 252 if (RHS == 0) 253 return makeIntVal(0, resultTy); 254 else if (RHS.isAllOnesValue()) 255 isIdempotent = true; 256 break; 257 case BO_Or: 258 // a|0 and a|(~0) 259 if (RHS == 0) 260 isIdempotent = true; 261 else if (RHS.isAllOnesValue()) { 262 const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS); 263 return nonloc::ConcreteInt(Result); 264 } 265 break; 266 } 267 268 // Idempotent ops (like a*1) can still change the type of an expression. 269 // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the 270 // dirty work. 271 if (isIdempotent) 272 return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy); 273 274 // If we reach this point, the expression cannot be simplified. 275 // Make a SymbolVal for the entire expression. 276 return makeNonLoc(LHS, op, RHS, resultTy); 277} 278 279SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state, 280 BinaryOperator::Opcode op, 281 NonLoc lhs, NonLoc rhs, 282 QualType resultTy) { 283 NonLoc InputLHS = lhs; 284 NonLoc InputRHS = rhs; 285 286 // Handle trivial case where left-side and right-side are the same. 287 if (lhs == rhs) 288 switch (op) { 289 default: 290 break; 291 case BO_EQ: 292 case BO_LE: 293 case BO_GE: 294 return makeTruthVal(true, resultTy); 295 case BO_LT: 296 case BO_GT: 297 case BO_NE: 298 return makeTruthVal(false, resultTy); 299 case BO_Xor: 300 case BO_Sub: 301 return makeIntVal(0, resultTy); 302 case BO_Or: 303 case BO_And: 304 return evalCastFromNonLoc(lhs, resultTy); 305 } 306 307 while (1) { 308 switch (lhs.getSubKind()) { 309 default: 310 return makeSymExprValNN(state, op, lhs, rhs, resultTy); 311 case nonloc::LocAsIntegerKind: { 312 Loc lhsL = cast<nonloc::LocAsInteger>(lhs).getLoc(); 313 switch (rhs.getSubKind()) { 314 case nonloc::LocAsIntegerKind: 315 return evalBinOpLL(state, op, lhsL, 316 cast<nonloc::LocAsInteger>(rhs).getLoc(), 317 resultTy); 318 case nonloc::ConcreteIntKind: { 319 // Transform the integer into a location and compare. 320 llvm::APSInt i = cast<nonloc::ConcreteInt>(rhs).getValue(); 321 i.setIsUnsigned(true); 322 i = i.extOrTrunc(Context.getTypeSize(Context.VoidPtrTy)); 323 return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy); 324 } 325 default: 326 switch (op) { 327 case BO_EQ: 328 return makeTruthVal(false, resultTy); 329 case BO_NE: 330 return makeTruthVal(true, resultTy); 331 default: 332 // This case also handles pointer arithmetic. 333 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy); 334 } 335 } 336 } 337 case nonloc::ConcreteIntKind: { 338 const nonloc::ConcreteInt& lhsInt = cast<nonloc::ConcreteInt>(lhs); 339 340 // Is the RHS a symbol we can simplify? 341 // FIXME: This was mostly copy/pasted from the LHS-is-a-symbol case. 342 if (const nonloc::SymbolVal *srhs = dyn_cast<nonloc::SymbolVal>(&rhs)) { 343 SymbolRef RSym = srhs->getSymbol(); 344 if (RSym->getType(Context)->isIntegerType()) { 345 if (const llvm::APSInt *Constant = state->getSymVal(RSym)) { 346 // The symbol evaluates to a constant. 347 const llvm::APSInt *rhs_I; 348 if (BinaryOperator::isComparisonOp(op)) 349 rhs_I = &BasicVals.Convert(lhsInt.getValue(), *Constant); 350 else 351 rhs_I = &BasicVals.Convert(resultTy, *Constant); 352 353 rhs = nonloc::ConcreteInt(*rhs_I); 354 } 355 } 356 } 357 358 if (isa<nonloc::ConcreteInt>(rhs)) { 359 return lhsInt.evalBinOp(*this, op, cast<nonloc::ConcreteInt>(rhs)); 360 } else { 361 const llvm::APSInt& lhsValue = lhsInt.getValue(); 362 363 // Swap the left and right sides and flip the operator if doing so 364 // allows us to better reason about the expression (this is a form 365 // of expression canonicalization). 366 // While we're at it, catch some special cases for non-commutative ops. 367 NonLoc tmp = rhs; 368 rhs = lhs; 369 lhs = tmp; 370 371 switch (op) { 372 case BO_LT: 373 case BO_GT: 374 case BO_LE: 375 case BO_GE: 376 op = ReverseComparison(op); 377 continue; 378 case BO_EQ: 379 case BO_NE: 380 case BO_Add: 381 case BO_Mul: 382 case BO_And: 383 case BO_Xor: 384 case BO_Or: 385 continue; 386 case BO_Shr: 387 if (lhsValue.isAllOnesValue() && lhsValue.isSigned()) 388 // At this point lhs and rhs have been swapped. 389 return rhs; 390 // FALL-THROUGH 391 case BO_Shl: 392 if (lhsValue == 0) 393 // At this point lhs and rhs have been swapped. 394 return rhs; 395 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy); 396 default: 397 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy); 398 } 399 } 400 } 401 case nonloc::SymbolValKind: { 402 nonloc::SymbolVal *selhs = cast<nonloc::SymbolVal>(&lhs); 403 404 // LHS is a symbolic expression. 405 if (selhs->isExpression()) { 406 407 // Only handle LHS of the form "$sym op constant", at least for now. 408 const SymIntExpr *symIntExpr = 409 dyn_cast<SymIntExpr>(selhs->getSymbol()); 410 411 if (!symIntExpr) 412 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy); 413 414 // Is this a logical not? (!x is represented as x == 0.) 415 if (op == BO_EQ && rhs.isZeroConstant()) { 416 // We know how to negate certain expressions. Simplify them here. 417 418 BinaryOperator::Opcode opc = symIntExpr->getOpcode(); 419 switch (opc) { 420 default: 421 // We don't know how to negate this operation. 422 // Just handle it as if it were a normal comparison to 0. 423 break; 424 case BO_LAnd: 425 case BO_LOr: 426 llvm_unreachable("Logical operators handled by branching logic."); 427 case BO_Assign: 428 case BO_MulAssign: 429 case BO_DivAssign: 430 case BO_RemAssign: 431 case BO_AddAssign: 432 case BO_SubAssign: 433 case BO_ShlAssign: 434 case BO_ShrAssign: 435 case BO_AndAssign: 436 case BO_XorAssign: 437 case BO_OrAssign: 438 case BO_Comma: 439 llvm_unreachable("'=' and ',' operators handled by ExprEngine."); 440 case BO_PtrMemD: 441 case BO_PtrMemI: 442 llvm_unreachable("Pointer arithmetic not handled here."); 443 case BO_LT: 444 case BO_GT: 445 case BO_LE: 446 case BO_GE: 447 case BO_EQ: 448 case BO_NE: 449 // Negate the comparison and make a value. 450 opc = NegateComparison(opc); 451 assert(symIntExpr->getType(Context) == resultTy); 452 return makeNonLoc(symIntExpr->getLHS(), opc, 453 symIntExpr->getRHS(), resultTy); 454 } 455 } 456 457 // For now, only handle expressions whose RHS is a constant. 458 const nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs); 459 if (!rhsInt) 460 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy); 461 462 // If both the LHS and the current expression are additive, 463 // fold their constants. 464 if (BinaryOperator::isAdditiveOp(op)) { 465 BinaryOperator::Opcode lop = symIntExpr->getOpcode(); 466 if (BinaryOperator::isAdditiveOp(lop)) { 467 // resultTy may not be the best type to convert to, but it's 468 // probably the best choice in expressions with mixed type 469 // (such as x+1U+2LL). The rules for implicit conversions should 470 // choose a reasonable type to preserve the expression, and will 471 // at least match how the value is going to be used. 472 const llvm::APSInt &first = 473 BasicVals.Convert(resultTy, symIntExpr->getRHS()); 474 const llvm::APSInt &second = 475 BasicVals.Convert(resultTy, rhsInt->getValue()); 476 const llvm::APSInt *newRHS; 477 if (lop == op) 478 newRHS = BasicVals.evalAPSInt(BO_Add, first, second); 479 else 480 newRHS = BasicVals.evalAPSInt(BO_Sub, first, second); 481 return MakeSymIntVal(symIntExpr->getLHS(), lop, *newRHS, resultTy); 482 } 483 } 484 485 // Otherwise, make a SymbolVal out of the expression. 486 return MakeSymIntVal(symIntExpr, op, rhsInt->getValue(), resultTy); 487 488 // LHS is a simple symbol (not a symbolic expression). 489 } else { 490 nonloc::SymbolVal *slhs = cast<nonloc::SymbolVal>(&lhs); 491 SymbolRef Sym = slhs->getSymbol(); 492 QualType lhsType = Sym->getType(Context); 493 494 // The conversion type is usually the result type, but not in the case 495 // of relational expressions. 496 QualType conversionType = resultTy; 497 if (BinaryOperator::isComparisonOp(op)) 498 conversionType = lhsType; 499 500 // Does the symbol simplify to a constant? If so, "fold" the constant 501 // by setting 'lhs' to a ConcreteInt and try again. 502 if (lhsType->isIntegerType()) 503 if (const llvm::APSInt *Constant = state->getSymVal(Sym)) { 504 // The symbol evaluates to a constant. If necessary, promote the 505 // folded constant (LHS) to the result type. 506 const llvm::APSInt &lhs_I = BasicVals.Convert(conversionType, 507 *Constant); 508 lhs = nonloc::ConcreteInt(lhs_I); 509 510 // Also promote the RHS (if necessary). 511 512 // For shifts, it is not necessary to promote the RHS. 513 if (BinaryOperator::isShiftOp(op)) 514 continue; 515 516 // Other operators: do an implicit conversion. This shouldn't be 517 // necessary once we support truncation/extension of symbolic values. 518 if (nonloc::ConcreteInt *rhs_I = dyn_cast<nonloc::ConcreteInt>(&rhs)){ 519 rhs = nonloc::ConcreteInt(BasicVals.Convert(conversionType, 520 rhs_I->getValue())); 521 } 522 523 continue; 524 } 525 526 // Is the RHS a symbol we can simplify? 527 if (const nonloc::SymbolVal *srhs = dyn_cast<nonloc::SymbolVal>(&rhs)) { 528 SymbolRef RSym = srhs->getSymbol(); 529 if (RSym->getType(Context)->isIntegerType()) { 530 if (const llvm::APSInt *Constant = state->getSymVal(RSym)) { 531 // The symbol evaluates to a constant. 532 const llvm::APSInt &rhs_I = BasicVals.Convert(conversionType, 533 *Constant); 534 rhs = nonloc::ConcreteInt(rhs_I); 535 } 536 } 537 } 538 539 if (isa<nonloc::ConcreteInt>(rhs)) { 540 return MakeSymIntVal(slhs->getSymbol(), op, 541 cast<nonloc::ConcreteInt>(rhs).getValue(), 542 resultTy); 543 } 544 545 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy); 546 } 547 } 548 } 549 } 550} 551 552// FIXME: all this logic will change if/when we have MemRegion::getLocation(). 553SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state, 554 BinaryOperator::Opcode op, 555 Loc lhs, Loc rhs, 556 QualType resultTy) { 557 // Only comparisons and subtractions are valid operations on two pointers. 558 // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15]. 559 // However, if a pointer is casted to an integer, evalBinOpNN may end up 560 // calling this function with another operation (PR7527). We don't attempt to 561 // model this for now, but it could be useful, particularly when the 562 // "location" is actually an integer value that's been passed through a void*. 563 if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub)) 564 return UnknownVal(); 565 566 // Special cases for when both sides are identical. 567 if (lhs == rhs) { 568 switch (op) { 569 default: 570 llvm_unreachable("Unimplemented operation for two identical values"); 571 case BO_Sub: 572 return makeZeroVal(resultTy); 573 case BO_EQ: 574 case BO_LE: 575 case BO_GE: 576 return makeTruthVal(true, resultTy); 577 case BO_NE: 578 case BO_LT: 579 case BO_GT: 580 return makeTruthVal(false, resultTy); 581 } 582 } 583 584 switch (lhs.getSubKind()) { 585 default: 586 llvm_unreachable("Ordering not implemented for this Loc."); 587 588 case loc::GotoLabelKind: 589 // The only thing we know about labels is that they're non-null. 590 if (rhs.isZeroConstant()) { 591 switch (op) { 592 default: 593 break; 594 case BO_Sub: 595 return evalCastFromLoc(lhs, resultTy); 596 case BO_EQ: 597 case BO_LE: 598 case BO_LT: 599 return makeTruthVal(false, resultTy); 600 case BO_NE: 601 case BO_GT: 602 case BO_GE: 603 return makeTruthVal(true, resultTy); 604 } 605 } 606 // There may be two labels for the same location, and a function region may 607 // have the same address as a label at the start of the function (depending 608 // on the ABI). 609 // FIXME: we can probably do a comparison against other MemRegions, though. 610 // FIXME: is there a way to tell if two labels refer to the same location? 611 return UnknownVal(); 612 613 case loc::ConcreteIntKind: { 614 // If one of the operands is a symbol and the other is a constant, 615 // build an expression for use by the constraint manager. 616 if (SymbolRef rSym = rhs.getAsLocSymbol()) { 617 // We can only build expressions with symbols on the left, 618 // so we need a reversible operator. 619 if (!BinaryOperator::isComparisonOp(op)) 620 return UnknownVal(); 621 622 const llvm::APSInt &lVal = cast<loc::ConcreteInt>(lhs).getValue(); 623 return makeNonLoc(rSym, ReverseComparison(op), lVal, resultTy); 624 } 625 626 // If both operands are constants, just perform the operation. 627 if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) { 628 SVal ResultVal = cast<loc::ConcreteInt>(lhs).evalBinOp(BasicVals, op, 629 *rInt); 630 if (Loc *Result = dyn_cast<Loc>(&ResultVal)) 631 return evalCastFromLoc(*Result, resultTy); 632 else 633 return UnknownVal(); 634 } 635 636 // Special case comparisons against NULL. 637 // This must come after the test if the RHS is a symbol, which is used to 638 // build constraints. The address of any non-symbolic region is guaranteed 639 // to be non-NULL, as is any label. 640 assert(isa<loc::MemRegionVal>(rhs) || isa<loc::GotoLabel>(rhs)); 641 if (lhs.isZeroConstant()) { 642 switch (op) { 643 default: 644 break; 645 case BO_EQ: 646 case BO_GT: 647 case BO_GE: 648 return makeTruthVal(false, resultTy); 649 case BO_NE: 650 case BO_LT: 651 case BO_LE: 652 return makeTruthVal(true, resultTy); 653 } 654 } 655 656 // Comparing an arbitrary integer to a region or label address is 657 // completely unknowable. 658 return UnknownVal(); 659 } 660 case loc::MemRegionKind: { 661 if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) { 662 // If one of the operands is a symbol and the other is a constant, 663 // build an expression for use by the constraint manager. 664 if (SymbolRef lSym = lhs.getAsLocSymbol()) 665 return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy); 666 667 // Special case comparisons to NULL. 668 // This must come after the test if the LHS is a symbol, which is used to 669 // build constraints. The address of any non-symbolic region is guaranteed 670 // to be non-NULL. 671 if (rInt->isZeroConstant()) { 672 switch (op) { 673 default: 674 break; 675 case BO_Sub: 676 return evalCastFromLoc(lhs, resultTy); 677 case BO_EQ: 678 case BO_LT: 679 case BO_LE: 680 return makeTruthVal(false, resultTy); 681 case BO_NE: 682 case BO_GT: 683 case BO_GE: 684 return makeTruthVal(true, resultTy); 685 } 686 } 687 688 // Comparing a region to an arbitrary integer is completely unknowable. 689 return UnknownVal(); 690 } 691 692 // Get both values as regions, if possible. 693 const MemRegion *LeftMR = lhs.getAsRegion(); 694 assert(LeftMR && "MemRegionKind SVal doesn't have a region!"); 695 696 const MemRegion *RightMR = rhs.getAsRegion(); 697 if (!RightMR) 698 // The RHS is probably a label, which in theory could address a region. 699 // FIXME: we can probably make a more useful statement about non-code 700 // regions, though. 701 return UnknownVal(); 702 703 // If both values wrap regions, see if they're from different base regions. 704 const MemRegion *LeftBase = LeftMR->getBaseRegion(); 705 const MemRegion *RightBase = RightMR->getBaseRegion(); 706 if (LeftBase != RightBase && 707 !isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) { 708 switch (op) { 709 default: 710 return UnknownVal(); 711 case BO_EQ: 712 return makeTruthVal(false, resultTy); 713 case BO_NE: 714 return makeTruthVal(true, resultTy); 715 } 716 } 717 718 // The two regions are from the same base region. See if they're both a 719 // type of region we know how to compare. 720 const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace(); 721 const MemSpaceRegion *RightMS = RightBase->getMemorySpace(); 722 723 // Heuristic: assume that no symbolic region (whose memory space is 724 // unknown) is on the stack. 725 // FIXME: we should be able to be more precise once we can do better 726 // aliasing constraints for symbolic regions, but this is a reasonable, 727 // albeit unsound, assumption that holds most of the time. 728 if (isa<StackSpaceRegion>(LeftMS) ^ isa<StackSpaceRegion>(RightMS)) { 729 switch (op) { 730 default: 731 break; 732 case BO_EQ: 733 return makeTruthVal(false, resultTy); 734 case BO_NE: 735 return makeTruthVal(true, resultTy); 736 } 737 } 738 739 // FIXME: If/when there is a getAsRawOffset() for FieldRegions, this 740 // ElementRegion path and the FieldRegion path below should be unified. 741 if (const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR)) { 742 // First see if the right region is also an ElementRegion. 743 const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR); 744 if (!RightER) 745 return UnknownVal(); 746 747 // Next, see if the two ERs have the same super-region and matching types. 748 // FIXME: This should do something useful even if the types don't match, 749 // though if both indexes are constant the RegionRawOffset path will 750 // give the correct answer. 751 if (LeftER->getSuperRegion() == RightER->getSuperRegion() && 752 LeftER->getElementType() == RightER->getElementType()) { 753 // Get the left index and cast it to the correct type. 754 // If the index is unknown or undefined, bail out here. 755 SVal LeftIndexVal = LeftER->getIndex(); 756 NonLoc *LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal); 757 if (!LeftIndex) 758 return UnknownVal(); 759 LeftIndexVal = evalCastFromNonLoc(*LeftIndex, resultTy); 760 LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal); 761 if (!LeftIndex) 762 return UnknownVal(); 763 764 // Do the same for the right index. 765 SVal RightIndexVal = RightER->getIndex(); 766 NonLoc *RightIndex = dyn_cast<NonLoc>(&RightIndexVal); 767 if (!RightIndex) 768 return UnknownVal(); 769 RightIndexVal = evalCastFromNonLoc(*RightIndex, resultTy); 770 RightIndex = dyn_cast<NonLoc>(&RightIndexVal); 771 if (!RightIndex) 772 return UnknownVal(); 773 774 // Actually perform the operation. 775 // evalBinOpNN expects the two indexes to already be the right type. 776 return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy); 777 } 778 779 // If the element indexes aren't comparable, see if the raw offsets are. 780 RegionRawOffset LeftOffset = LeftER->getAsArrayOffset(); 781 RegionRawOffset RightOffset = RightER->getAsArrayOffset(); 782 783 if (LeftOffset.getRegion() != NULL && 784 LeftOffset.getRegion() == RightOffset.getRegion()) { 785 CharUnits left = LeftOffset.getOffset(); 786 CharUnits right = RightOffset.getOffset(); 787 788 switch (op) { 789 default: 790 return UnknownVal(); 791 case BO_LT: 792 return makeTruthVal(left < right, resultTy); 793 case BO_GT: 794 return makeTruthVal(left > right, resultTy); 795 case BO_LE: 796 return makeTruthVal(left <= right, resultTy); 797 case BO_GE: 798 return makeTruthVal(left >= right, resultTy); 799 case BO_EQ: 800 return makeTruthVal(left == right, resultTy); 801 case BO_NE: 802 return makeTruthVal(left != right, resultTy); 803 } 804 } 805 806 // If we get here, we have no way of comparing the ElementRegions. 807 return UnknownVal(); 808 } 809 810 // See if both regions are fields of the same structure. 811 // FIXME: This doesn't handle nesting, inheritance, or Objective-C ivars. 812 if (const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR)) { 813 // Only comparisons are meaningful here! 814 if (!BinaryOperator::isComparisonOp(op)) 815 return UnknownVal(); 816 817 // First see if the right region is also a FieldRegion. 818 const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR); 819 if (!RightFR) 820 return UnknownVal(); 821 822 // Next, see if the two FRs have the same super-region. 823 // FIXME: This doesn't handle casts yet, and simply stripping the casts 824 // doesn't help. 825 if (LeftFR->getSuperRegion() != RightFR->getSuperRegion()) 826 return UnknownVal(); 827 828 const FieldDecl *LeftFD = LeftFR->getDecl(); 829 const FieldDecl *RightFD = RightFR->getDecl(); 830 const RecordDecl *RD = LeftFD->getParent(); 831 832 // Make sure the two FRs are from the same kind of record. Just in case! 833 // FIXME: This is probably where inheritance would be a problem. 834 if (RD != RightFD->getParent()) 835 return UnknownVal(); 836 837 // We know for sure that the two fields are not the same, since that 838 // would have given us the same SVal. 839 if (op == BO_EQ) 840 return makeTruthVal(false, resultTy); 841 if (op == BO_NE) 842 return makeTruthVal(true, resultTy); 843 844 // Iterate through the fields and see which one comes first. 845 // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field 846 // members and the units in which bit-fields reside have addresses that 847 // increase in the order in which they are declared." 848 bool leftFirst = (op == BO_LT || op == BO_LE); 849 for (RecordDecl::field_iterator I = RD->field_begin(), 850 E = RD->field_end(); I!=E; ++I) { 851 if (&*I == LeftFD) 852 return makeTruthVal(leftFirst, resultTy); 853 if (&*I == RightFD) 854 return makeTruthVal(!leftFirst, resultTy); 855 } 856 857 llvm_unreachable("Fields not found in parent record's definition"); 858 } 859 860 // If we get here, we have no way of comparing the regions. 861 return UnknownVal(); 862 } 863 } 864} 865 866SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state, 867 BinaryOperator::Opcode op, 868 Loc lhs, NonLoc rhs, QualType resultTy) { 869 870 // Special case: rhs is a zero constant. 871 if (rhs.isZeroConstant()) 872 return lhs; 873 874 // Special case: 'rhs' is an integer that has the same width as a pointer and 875 // we are using the integer location in a comparison. Normally this cannot be 876 // triggered, but transfer functions like those for OSCommpareAndSwapBarrier32 877 // can generate comparisons that trigger this code. 878 // FIXME: Are all locations guaranteed to have pointer width? 879 if (BinaryOperator::isComparisonOp(op)) { 880 if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) { 881 const llvm::APSInt *x = &rhsInt->getValue(); 882 ASTContext &ctx = Context; 883 if (ctx.getTypeSize(ctx.VoidPtrTy) == x->getBitWidth()) { 884 // Convert the signedness of the integer (if necessary). 885 if (x->isSigned()) 886 x = &getBasicValueFactory().getValue(*x, true); 887 888 return evalBinOpLL(state, op, lhs, loc::ConcreteInt(*x), resultTy); 889 } 890 } 891 } 892 893 // We are dealing with pointer arithmetic. 894 895 // Handle pointer arithmetic on constant values. 896 if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) { 897 if (loc::ConcreteInt *lhsInt = dyn_cast<loc::ConcreteInt>(&lhs)) { 898 const llvm::APSInt &leftI = lhsInt->getValue(); 899 assert(leftI.isUnsigned()); 900 llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true); 901 902 // Convert the bitwidth of rightI. This should deal with overflow 903 // since we are dealing with concrete values. 904 rightI = rightI.extOrTrunc(leftI.getBitWidth()); 905 906 // Offset the increment by the pointer size. 907 llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true); 908 rightI *= Multiplicand; 909 910 // Compute the adjusted pointer. 911 switch (op) { 912 case BO_Add: 913 rightI = leftI + rightI; 914 break; 915 case BO_Sub: 916 rightI = leftI - rightI; 917 break; 918 default: 919 llvm_unreachable("Invalid pointer arithmetic operation"); 920 } 921 return loc::ConcreteInt(getBasicValueFactory().getValue(rightI)); 922 } 923 } 924 925 // Handle cases where 'lhs' is a region. 926 if (const MemRegion *region = lhs.getAsRegion()) { 927 rhs = cast<NonLoc>(convertToArrayIndex(rhs)); 928 SVal index = UnknownVal(); 929 const MemRegion *superR = 0; 930 QualType elementType; 931 932 if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) { 933 assert(op == BO_Add || op == BO_Sub); 934 index = evalBinOpNN(state, op, elemReg->getIndex(), rhs, 935 getArrayIndexType()); 936 superR = elemReg->getSuperRegion(); 937 elementType = elemReg->getElementType(); 938 } 939 else if (isa<SubRegion>(region)) { 940 superR = region; 941 index = rhs; 942 if (const PointerType *PT = resultTy->getAs<PointerType>()) { 943 elementType = PT->getPointeeType(); 944 } 945 else { 946 const ObjCObjectPointerType *OT = 947 resultTy->getAs<ObjCObjectPointerType>(); 948 elementType = OT->getPointeeType(); 949 } 950 } 951 952 if (NonLoc *indexV = dyn_cast<NonLoc>(&index)) { 953 return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV, 954 superR, getContext())); 955 } 956 } 957 return UnknownVal(); 958} 959 960const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state, 961 SVal V) { 962 if (V.isUnknownOrUndef()) 963 return NULL; 964 965 if (loc::ConcreteInt* X = dyn_cast<loc::ConcreteInt>(&V)) 966 return &X->getValue(); 967 968 if (nonloc::ConcreteInt* X = dyn_cast<nonloc::ConcreteInt>(&V)) 969 return &X->getValue(); 970 971 if (SymbolRef Sym = V.getAsSymbol()) 972 return state->getSymVal(Sym); 973 974 // FIXME: Add support for SymExprs. 975 return NULL; 976} 977