SimpleSValBuilder.cpp revision 6d6a83c3754b449ac24cb83bc6d3a50b10535061
1// SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
15#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
16
17using namespace clang;
18using namespace ento;
19
20namespace {
21class SimpleSValBuilder : public SValBuilder {
22protected:
23  virtual SVal dispatchCast(SVal val, QualType castTy);
24  virtual SVal evalCastFromNonLoc(NonLoc val, QualType castTy);
25  virtual SVal evalCastFromLoc(Loc val, QualType castTy);
26
27public:
28  SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
29                    ProgramStateManager &stateMgr)
30                    : SValBuilder(alloc, context, stateMgr) {}
31  virtual ~SimpleSValBuilder() {}
32
33  virtual SVal evalMinus(NonLoc val);
34  virtual SVal evalComplement(NonLoc val);
35  virtual SVal evalBinOpNN(const ProgramState *state, BinaryOperator::Opcode op,
36                           NonLoc lhs, NonLoc rhs, QualType resultTy);
37  virtual SVal evalBinOpLL(const ProgramState *state, BinaryOperator::Opcode op,
38                           Loc lhs, Loc rhs, QualType resultTy);
39  virtual SVal evalBinOpLN(const ProgramState *state, BinaryOperator::Opcode op,
40                           Loc lhs, NonLoc rhs, QualType resultTy);
41
42  /// getKnownValue - evaluates a given SVal. If the SVal has only one possible
43  ///  (integer) value, that value is returned. Otherwise, returns NULL.
44  virtual const llvm::APSInt *getKnownValue(const ProgramState *state, SVal V);
45
46  SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
47                     const llvm::APSInt &RHS, QualType resultTy);
48};
49} // end anonymous namespace
50
51SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
52                                           ASTContext &context,
53                                           ProgramStateManager &stateMgr) {
54  return new SimpleSValBuilder(alloc, context, stateMgr);
55}
56
57//===----------------------------------------------------------------------===//
58// Transfer function for Casts.
59//===----------------------------------------------------------------------===//
60
61SVal SimpleSValBuilder::dispatchCast(SVal val, QualType castTy) {
62  return isa<Loc>(val) ? evalCastFromLoc(cast<Loc>(val), castTy)
63                       : evalCastFromNonLoc(cast<NonLoc>(val), castTy);
64}
65
66SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) {
67
68  bool isLocType = Loc::isLocType(castTy);
69
70  if (nonloc::LocAsInteger *LI = dyn_cast<nonloc::LocAsInteger>(&val)) {
71    if (isLocType)
72      return LI->getLoc();
73
74    // FIXME: Correctly support promotions/truncations.
75    unsigned castSize = Context.getTypeSize(castTy);
76    if (castSize == LI->getNumBits())
77      return val;
78    return makeLocAsInteger(LI->getLoc(), castSize);
79  }
80
81  if (const SymExpr *se = val.getAsSymbolicExpression()) {
82    QualType T = Context.getCanonicalType(se->getType(Context));
83    // If types are the same or both are integers, ignore the cast.
84    // FIXME: Remove this hack when we support symbolic truncation/extension.
85    // HACK: If both castTy and T are integers, ignore the cast.  This is
86    // not a permanent solution.  Eventually we want to precisely handle
87    // extension/truncation of symbolic integers.  This prevents us from losing
88    // precision when we assign 'x = y' and 'y' is symbolic and x and y are
89    // different integer types.
90   if (haveSameType(T, castTy))
91      return val;
92
93    if (!isLocType)
94      return makeNonLoc(se, T, castTy);
95    return UnknownVal();
96  }
97
98  // If value is a non integer constant, produce unknown.
99  if (!isa<nonloc::ConcreteInt>(val))
100    return UnknownVal();
101
102  // Only handle casts from integers to integers - if val is an integer constant
103  // being cast to a non integer type, produce unknown.
104  if (!isLocType && !castTy->isIntegerType())
105    return UnknownVal();
106
107  llvm::APSInt i = cast<nonloc::ConcreteInt>(val).getValue();
108  i.setIsUnsigned(castTy->isUnsignedIntegerOrEnumerationType() ||
109                  Loc::isLocType(castTy));
110  i = i.extOrTrunc(Context.getTypeSize(castTy));
111
112  if (isLocType)
113    return makeIntLocVal(i);
114  else
115    return makeIntVal(i);
116}
117
118SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) {
119
120  // Casts from pointers -> pointers, just return the lval.
121  //
122  // Casts from pointers -> references, just return the lval.  These
123  //   can be introduced by the frontend for corner cases, e.g
124  //   casting from va_list* to __builtin_va_list&.
125  //
126  if (Loc::isLocType(castTy) || castTy->isReferenceType())
127    return val;
128
129  // FIXME: Handle transparent unions where a value can be "transparently"
130  //  lifted into a union type.
131  if (castTy->isUnionType())
132    return UnknownVal();
133
134  if (castTy->isIntegerType()) {
135    unsigned BitWidth = Context.getTypeSize(castTy);
136
137    if (!isa<loc::ConcreteInt>(val))
138      return makeLocAsInteger(val, BitWidth);
139
140    llvm::APSInt i = cast<loc::ConcreteInt>(val).getValue();
141    i.setIsUnsigned(castTy->isUnsignedIntegerOrEnumerationType() ||
142                    Loc::isLocType(castTy));
143    i = i.extOrTrunc(BitWidth);
144    return makeIntVal(i);
145  }
146
147  // All other cases: return 'UnknownVal'.  This includes casting pointers
148  // to floats, which is probably badness it itself, but this is a good
149  // intermediate solution until we do something better.
150  return UnknownVal();
151}
152
153//===----------------------------------------------------------------------===//
154// Transfer function for unary operators.
155//===----------------------------------------------------------------------===//
156
157SVal SimpleSValBuilder::evalMinus(NonLoc val) {
158  switch (val.getSubKind()) {
159  case nonloc::ConcreteIntKind:
160    return cast<nonloc::ConcreteInt>(val).evalMinus(*this);
161  default:
162    return UnknownVal();
163  }
164}
165
166SVal SimpleSValBuilder::evalComplement(NonLoc X) {
167  switch (X.getSubKind()) {
168  case nonloc::ConcreteIntKind:
169    return cast<nonloc::ConcreteInt>(X).evalComplement(*this);
170  default:
171    return UnknownVal();
172  }
173}
174
175//===----------------------------------------------------------------------===//
176// Transfer function for binary operators.
177//===----------------------------------------------------------------------===//
178
179static BinaryOperator::Opcode NegateComparison(BinaryOperator::Opcode op) {
180  switch (op) {
181  default:
182    llvm_unreachable("Invalid opcode.");
183  case BO_LT: return BO_GE;
184  case BO_GT: return BO_LE;
185  case BO_LE: return BO_GT;
186  case BO_GE: return BO_LT;
187  case BO_EQ: return BO_NE;
188  case BO_NE: return BO_EQ;
189  }
190}
191
192static BinaryOperator::Opcode ReverseComparison(BinaryOperator::Opcode op) {
193  switch (op) {
194  default:
195    llvm_unreachable("Invalid opcode.");
196  case BO_LT: return BO_GT;
197  case BO_GT: return BO_LT;
198  case BO_LE: return BO_GE;
199  case BO_GE: return BO_LE;
200  case BO_EQ:
201  case BO_NE:
202    return op;
203  }
204}
205
206SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
207                                    BinaryOperator::Opcode op,
208                                    const llvm::APSInt &RHS,
209                                    QualType resultTy) {
210  bool isIdempotent = false;
211
212  // Check for a few special cases with known reductions first.
213  switch (op) {
214  default:
215    // We can't reduce this case; just treat it normally.
216    break;
217  case BO_Mul:
218    // a*0 and a*1
219    if (RHS == 0)
220      return makeIntVal(0, resultTy);
221    else if (RHS == 1)
222      isIdempotent = true;
223    break;
224  case BO_Div:
225    // a/0 and a/1
226    if (RHS == 0)
227      // This is also handled elsewhere.
228      return UndefinedVal();
229    else if (RHS == 1)
230      isIdempotent = true;
231    break;
232  case BO_Rem:
233    // a%0 and a%1
234    if (RHS == 0)
235      // This is also handled elsewhere.
236      return UndefinedVal();
237    else if (RHS == 1)
238      return makeIntVal(0, resultTy);
239    break;
240  case BO_Add:
241  case BO_Sub:
242  case BO_Shl:
243  case BO_Shr:
244  case BO_Xor:
245    // a+0, a-0, a<<0, a>>0, a^0
246    if (RHS == 0)
247      isIdempotent = true;
248    break;
249  case BO_And:
250    // a&0 and a&(~0)
251    if (RHS == 0)
252      return makeIntVal(0, resultTy);
253    else if (RHS.isAllOnesValue())
254      isIdempotent = true;
255    break;
256  case BO_Or:
257    // a|0 and a|(~0)
258    if (RHS == 0)
259      isIdempotent = true;
260    else if (RHS.isAllOnesValue()) {
261      const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
262      return nonloc::ConcreteInt(Result);
263    }
264    break;
265  }
266
267  // Idempotent ops (like a*1) can still change the type of an expression.
268  // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the
269  // dirty work.
270  if (isIdempotent)
271      return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy);
272
273  // If we reach this point, the expression cannot be simplified.
274  // Make a SymbolVal for the entire expression.
275  return makeNonLoc(LHS, op, RHS, resultTy);
276}
277
278SVal SimpleSValBuilder::evalBinOpNN(const ProgramState *state,
279                                  BinaryOperator::Opcode op,
280                                  NonLoc lhs, NonLoc rhs,
281                                  QualType resultTy)  {
282  // Handle trivial case where left-side and right-side are the same.
283  if (lhs == rhs)
284    switch (op) {
285      default:
286        break;
287      case BO_EQ:
288      case BO_LE:
289      case BO_GE:
290        return makeTruthVal(true, resultTy);
291      case BO_LT:
292      case BO_GT:
293      case BO_NE:
294        return makeTruthVal(false, resultTy);
295      case BO_Xor:
296      case BO_Sub:
297        return makeIntVal(0, resultTy);
298      case BO_Or:
299      case BO_And:
300        return evalCastFromNonLoc(lhs, resultTy);
301    }
302
303  while (1) {
304    switch (lhs.getSubKind()) {
305    default:
306      return makeGenericVal(state, op, lhs, rhs, resultTy);
307    case nonloc::LocAsIntegerKind: {
308      Loc lhsL = cast<nonloc::LocAsInteger>(lhs).getLoc();
309      switch (rhs.getSubKind()) {
310        case nonloc::LocAsIntegerKind:
311          return evalBinOpLL(state, op, lhsL,
312                             cast<nonloc::LocAsInteger>(rhs).getLoc(),
313                             resultTy);
314        case nonloc::ConcreteIntKind: {
315          // Transform the integer into a location and compare.
316          llvm::APSInt i = cast<nonloc::ConcreteInt>(rhs).getValue();
317          i.setIsUnsigned(true);
318          i = i.extOrTrunc(Context.getTypeSize(Context.VoidPtrTy));
319          return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
320        }
321        default:
322          switch (op) {
323            case BO_EQ:
324              return makeTruthVal(false, resultTy);
325            case BO_NE:
326              return makeTruthVal(true, resultTy);
327            default:
328              // This case also handles pointer arithmetic.
329              return makeGenericVal(state, op, lhs, rhs, resultTy);
330          }
331      }
332    }
333    case nonloc::ConcreteIntKind: {
334      const nonloc::ConcreteInt& lhsInt = cast<nonloc::ConcreteInt>(lhs);
335
336      // Is the RHS a symbol we can simplify?
337      // FIXME: This was mostly copy/pasted from the LHS-is-a-symbol case.
338      if (const nonloc::SymbolVal *srhs = dyn_cast<nonloc::SymbolVal>(&rhs)) {
339        SymbolRef RSym = srhs->getSymbol();
340        if (RSym->getType(Context)->isIntegerType()) {
341          if (const llvm::APSInt *Constant = state->getSymVal(RSym)) {
342            // The symbol evaluates to a constant.
343            const llvm::APSInt *rhs_I;
344            if (BinaryOperator::isRelationalOp(op))
345              rhs_I = &BasicVals.Convert(lhsInt.getValue(), *Constant);
346            else
347              rhs_I = &BasicVals.Convert(resultTy, *Constant);
348
349            rhs = nonloc::ConcreteInt(*rhs_I);
350          }
351        }
352      }
353
354      if (isa<nonloc::ConcreteInt>(rhs)) {
355        return lhsInt.evalBinOp(*this, op, cast<nonloc::ConcreteInt>(rhs));
356      } else {
357        const llvm::APSInt& lhsValue = lhsInt.getValue();
358
359        // Swap the left and right sides and flip the operator if doing so
360        // allows us to better reason about the expression (this is a form
361        // of expression canonicalization).
362        // While we're at it, catch some special cases for non-commutative ops.
363        NonLoc tmp = rhs;
364        rhs = lhs;
365        lhs = tmp;
366
367        switch (op) {
368          case BO_LT:
369          case BO_GT:
370          case BO_LE:
371          case BO_GE:
372            op = ReverseComparison(op);
373            continue;
374          case BO_EQ:
375          case BO_NE:
376          case BO_Add:
377          case BO_Mul:
378          case BO_And:
379          case BO_Xor:
380          case BO_Or:
381            continue;
382          case BO_Shr:
383            if (lhsValue.isAllOnesValue() && lhsValue.isSigned())
384              // At this point lhs and rhs have been swapped.
385              return rhs;
386            // FALL-THROUGH
387          case BO_Shl:
388            if (lhsValue == 0)
389              // At this point lhs and rhs have been swapped.
390              return rhs;
391            return makeGenericVal(state, op, rhs, lhs, resultTy);
392          default:
393            return makeGenericVal(state, op, rhs, lhs, resultTy);
394        }
395      }
396    }
397    case nonloc::SymbolValKind: {
398      nonloc::SymbolVal *selhs = cast<nonloc::SymbolVal>(&lhs);
399
400      // LHS is a symbolic expression.
401      if (selhs->isExpression()) {
402
403        // Only handle LHS of the form "$sym op constant", at least for now.
404        const SymIntExpr *symIntExpr =
405            dyn_cast<SymIntExpr>(selhs->getSymbol());
406
407        if (!symIntExpr)
408          return makeGenericVal(state, op, lhs, rhs, resultTy);
409
410        // Is this a logical not? (!x is represented as x == 0.)
411        if (op == BO_EQ && rhs.isZeroConstant()) {
412          // We know how to negate certain expressions. Simplify them here.
413
414          BinaryOperator::Opcode opc = symIntExpr->getOpcode();
415          switch (opc) {
416          default:
417            // We don't know how to negate this operation.
418            // Just handle it as if it were a normal comparison to 0.
419            break;
420          case BO_LAnd:
421          case BO_LOr:
422            llvm_unreachable("Logical operators handled by branching logic.");
423          case BO_Assign:
424          case BO_MulAssign:
425          case BO_DivAssign:
426          case BO_RemAssign:
427          case BO_AddAssign:
428          case BO_SubAssign:
429          case BO_ShlAssign:
430          case BO_ShrAssign:
431          case BO_AndAssign:
432          case BO_XorAssign:
433          case BO_OrAssign:
434          case BO_Comma:
435            llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
436          case BO_PtrMemD:
437          case BO_PtrMemI:
438            llvm_unreachable("Pointer arithmetic not handled here.");
439          case BO_LT:
440          case BO_GT:
441          case BO_LE:
442          case BO_GE:
443          case BO_EQ:
444          case BO_NE:
445            // Negate the comparison and make a value.
446            opc = NegateComparison(opc);
447            assert(symIntExpr->getType(Context) == resultTy);
448            return makeNonLoc(symIntExpr->getLHS(), opc,
449                symIntExpr->getRHS(), resultTy);
450          }
451        }
452
453        // For now, only handle expressions whose RHS is a constant.
454        const nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs);
455        if (!rhsInt)
456          return makeGenericVal(state, op, lhs, rhs, resultTy);
457
458        // If both the LHS and the current expression are additive,
459        // fold their constants.
460        if (BinaryOperator::isAdditiveOp(op)) {
461          BinaryOperator::Opcode lop = symIntExpr->getOpcode();
462          if (BinaryOperator::isAdditiveOp(lop)) {
463            // resultTy may not be the best type to convert to, but it's
464            // probably the best choice in expressions with mixed type
465            // (such as x+1U+2LL). The rules for implicit conversions should
466            // choose a reasonable type to preserve the expression, and will
467            // at least match how the value is going to be used.
468            const llvm::APSInt &first =
469                BasicVals.Convert(resultTy, symIntExpr->getRHS());
470            const llvm::APSInt &second =
471                BasicVals.Convert(resultTy, rhsInt->getValue());
472            const llvm::APSInt *newRHS;
473            if (lop == op)
474              newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
475            else
476              newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
477            return MakeSymIntVal(symIntExpr->getLHS(), lop, *newRHS, resultTy);
478          }
479        }
480
481        // Otherwise, make a SymbolVal out of the expression.
482        return MakeSymIntVal(symIntExpr, op, rhsInt->getValue(), resultTy);
483
484      // LHS is a simple symbol (not a symbolic expression).
485      } else {
486        nonloc::SymbolVal *slhs = cast<nonloc::SymbolVal>(&lhs);
487        SymbolRef Sym = slhs->getSymbol();
488        QualType lhsType = Sym->getType(Context);
489
490        // The conversion type is usually the result type, but not in the case
491        // of relational expressions.
492        QualType conversionType = resultTy;
493        if (BinaryOperator::isRelationalOp(op))
494          conversionType = lhsType;
495
496        // Does the symbol simplify to a constant?  If so, "fold" the constant
497        // by setting 'lhs' to a ConcreteInt and try again.
498        if (lhsType->isIntegerType())
499          if (const llvm::APSInt *Constant = state->getSymVal(Sym)) {
500            // The symbol evaluates to a constant. If necessary, promote the
501            // folded constant (LHS) to the result type.
502            const llvm::APSInt &lhs_I = BasicVals.Convert(conversionType,
503                *Constant);
504            lhs = nonloc::ConcreteInt(lhs_I);
505
506            // Also promote the RHS (if necessary).
507
508            // For shifts, it is not necessary to promote the RHS.
509            if (BinaryOperator::isShiftOp(op))
510              continue;
511
512            // Other operators: do an implicit conversion.  This shouldn't be
513            // necessary once we support truncation/extension of symbolic values.
514            if (nonloc::ConcreteInt *rhs_I = dyn_cast<nonloc::ConcreteInt>(&rhs)){
515              rhs = nonloc::ConcreteInt(BasicVals.Convert(conversionType,
516                  rhs_I->getValue()));
517            }
518
519            continue;
520          }
521
522        // Is the RHS a symbol we can simplify?
523        if (const nonloc::SymbolVal *srhs = dyn_cast<nonloc::SymbolVal>(&rhs)) {
524          SymbolRef RSym = srhs->getSymbol();
525          if (RSym->getType(Context)->isIntegerType()) {
526            if (const llvm::APSInt *Constant = state->getSymVal(RSym)) {
527              // The symbol evaluates to a constant.
528              const llvm::APSInt &rhs_I = BasicVals.Convert(conversionType,
529                  *Constant);
530              rhs = nonloc::ConcreteInt(rhs_I);
531            }
532          }
533        }
534
535        if (isa<nonloc::ConcreteInt>(rhs)) {
536          return MakeSymIntVal(slhs->getSymbol(), op,
537              cast<nonloc::ConcreteInt>(rhs).getValue(),
538              resultTy);
539        }
540
541        return makeGenericVal(state, op, lhs, rhs, resultTy);
542      }
543    }
544    }
545  }
546}
547
548// FIXME: all this logic will change if/when we have MemRegion::getLocation().
549SVal SimpleSValBuilder::evalBinOpLL(const ProgramState *state,
550                                  BinaryOperator::Opcode op,
551                                  Loc lhs, Loc rhs,
552                                  QualType resultTy) {
553  // Only comparisons and subtractions are valid operations on two pointers.
554  // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
555  // However, if a pointer is casted to an integer, evalBinOpNN may end up
556  // calling this function with another operation (PR7527). We don't attempt to
557  // model this for now, but it could be useful, particularly when the
558  // "location" is actually an integer value that's been passed through a void*.
559  if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
560    return UnknownVal();
561
562  // Special cases for when both sides are identical.
563  if (lhs == rhs) {
564    switch (op) {
565    default:
566      llvm_unreachable("Unimplemented operation for two identical values");
567    case BO_Sub:
568      return makeZeroVal(resultTy);
569    case BO_EQ:
570    case BO_LE:
571    case BO_GE:
572      return makeTruthVal(true, resultTy);
573    case BO_NE:
574    case BO_LT:
575    case BO_GT:
576      return makeTruthVal(false, resultTy);
577    }
578  }
579
580  switch (lhs.getSubKind()) {
581  default:
582    llvm_unreachable("Ordering not implemented for this Loc.");
583
584  case loc::GotoLabelKind:
585    // The only thing we know about labels is that they're non-null.
586    if (rhs.isZeroConstant()) {
587      switch (op) {
588      default:
589        break;
590      case BO_Sub:
591        return evalCastFromLoc(lhs, resultTy);
592      case BO_EQ:
593      case BO_LE:
594      case BO_LT:
595        return makeTruthVal(false, resultTy);
596      case BO_NE:
597      case BO_GT:
598      case BO_GE:
599        return makeTruthVal(true, resultTy);
600      }
601    }
602    // There may be two labels for the same location, and a function region may
603    // have the same address as a label at the start of the function (depending
604    // on the ABI).
605    // FIXME: we can probably do a comparison against other MemRegions, though.
606    // FIXME: is there a way to tell if two labels refer to the same location?
607    return UnknownVal();
608
609  case loc::ConcreteIntKind: {
610    // If one of the operands is a symbol and the other is a constant,
611    // build an expression for use by the constraint manager.
612    if (SymbolRef rSym = rhs.getAsLocSymbol()) {
613      // We can only build expressions with symbols on the left,
614      // so we need a reversible operator.
615      if (!BinaryOperator::isComparisonOp(op))
616        return UnknownVal();
617
618      const llvm::APSInt &lVal = cast<loc::ConcreteInt>(lhs).getValue();
619      return makeNonLoc(rSym, ReverseComparison(op), lVal, resultTy);
620    }
621
622    // If both operands are constants, just perform the operation.
623    if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) {
624      SVal ResultVal = cast<loc::ConcreteInt>(lhs).evalBinOp(BasicVals, op,
625                                                             *rInt);
626      if (Loc *Result = dyn_cast<Loc>(&ResultVal))
627        return evalCastFromLoc(*Result, resultTy);
628      else
629        return UnknownVal();
630    }
631
632    // Special case comparisons against NULL.
633    // This must come after the test if the RHS is a symbol, which is used to
634    // build constraints. The address of any non-symbolic region is guaranteed
635    // to be non-NULL, as is any label.
636    assert(isa<loc::MemRegionVal>(rhs) || isa<loc::GotoLabel>(rhs));
637    if (lhs.isZeroConstant()) {
638      switch (op) {
639      default:
640        break;
641      case BO_EQ:
642      case BO_GT:
643      case BO_GE:
644        return makeTruthVal(false, resultTy);
645      case BO_NE:
646      case BO_LT:
647      case BO_LE:
648        return makeTruthVal(true, resultTy);
649      }
650    }
651
652    // Comparing an arbitrary integer to a region or label address is
653    // completely unknowable.
654    return UnknownVal();
655  }
656  case loc::MemRegionKind: {
657    if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) {
658      // If one of the operands is a symbol and the other is a constant,
659      // build an expression for use by the constraint manager.
660      if (SymbolRef lSym = lhs.getAsLocSymbol())
661        return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
662
663      // Special case comparisons to NULL.
664      // This must come after the test if the LHS is a symbol, which is used to
665      // build constraints. The address of any non-symbolic region is guaranteed
666      // to be non-NULL.
667      if (rInt->isZeroConstant()) {
668        switch (op) {
669        default:
670          break;
671        case BO_Sub:
672          return evalCastFromLoc(lhs, resultTy);
673        case BO_EQ:
674        case BO_LT:
675        case BO_LE:
676          return makeTruthVal(false, resultTy);
677        case BO_NE:
678        case BO_GT:
679        case BO_GE:
680          return makeTruthVal(true, resultTy);
681        }
682      }
683
684      // Comparing a region to an arbitrary integer is completely unknowable.
685      return UnknownVal();
686    }
687
688    // Get both values as regions, if possible.
689    const MemRegion *LeftMR = lhs.getAsRegion();
690    assert(LeftMR && "MemRegionKind SVal doesn't have a region!");
691
692    const MemRegion *RightMR = rhs.getAsRegion();
693    if (!RightMR)
694      // The RHS is probably a label, which in theory could address a region.
695      // FIXME: we can probably make a more useful statement about non-code
696      // regions, though.
697      return UnknownVal();
698
699    // If both values wrap regions, see if they're from different base regions.
700    const MemRegion *LeftBase = LeftMR->getBaseRegion();
701    const MemRegion *RightBase = RightMR->getBaseRegion();
702    if (LeftBase != RightBase &&
703        !isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) {
704      switch (op) {
705      default:
706        return UnknownVal();
707      case BO_EQ:
708        return makeTruthVal(false, resultTy);
709      case BO_NE:
710        return makeTruthVal(true, resultTy);
711      }
712    }
713
714    // The two regions are from the same base region. See if they're both a
715    // type of region we know how to compare.
716
717    // FIXME: If/when there is a getAsRawOffset() for FieldRegions, this
718    // ElementRegion path and the FieldRegion path below should be unified.
719    if (const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR)) {
720      // First see if the right region is also an ElementRegion.
721      const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
722      if (!RightER)
723        return UnknownVal();
724
725      // Next, see if the two ERs have the same super-region and matching types.
726      // FIXME: This should do something useful even if the types don't match,
727      // though if both indexes are constant the RegionRawOffset path will
728      // give the correct answer.
729      if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
730          LeftER->getElementType() == RightER->getElementType()) {
731        // Get the left index and cast it to the correct type.
732        // If the index is unknown or undefined, bail out here.
733        SVal LeftIndexVal = LeftER->getIndex();
734        NonLoc *LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal);
735        if (!LeftIndex)
736          return UnknownVal();
737        LeftIndexVal = evalCastFromNonLoc(*LeftIndex, resultTy);
738        LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal);
739        if (!LeftIndex)
740          return UnknownVal();
741
742        // Do the same for the right index.
743        SVal RightIndexVal = RightER->getIndex();
744        NonLoc *RightIndex = dyn_cast<NonLoc>(&RightIndexVal);
745        if (!RightIndex)
746          return UnknownVal();
747        RightIndexVal = evalCastFromNonLoc(*RightIndex, resultTy);
748        RightIndex = dyn_cast<NonLoc>(&RightIndexVal);
749        if (!RightIndex)
750          return UnknownVal();
751
752        // Actually perform the operation.
753        // evalBinOpNN expects the two indexes to already be the right type.
754        return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
755      }
756
757      // If the element indexes aren't comparable, see if the raw offsets are.
758      RegionRawOffset LeftOffset = LeftER->getAsArrayOffset();
759      RegionRawOffset RightOffset = RightER->getAsArrayOffset();
760
761      if (LeftOffset.getRegion() != NULL &&
762          LeftOffset.getRegion() == RightOffset.getRegion()) {
763        CharUnits left = LeftOffset.getOffset();
764        CharUnits right = RightOffset.getOffset();
765
766        switch (op) {
767        default:
768          return UnknownVal();
769        case BO_LT:
770          return makeTruthVal(left < right, resultTy);
771        case BO_GT:
772          return makeTruthVal(left > right, resultTy);
773        case BO_LE:
774          return makeTruthVal(left <= right, resultTy);
775        case BO_GE:
776          return makeTruthVal(left >= right, resultTy);
777        case BO_EQ:
778          return makeTruthVal(left == right, resultTy);
779        case BO_NE:
780          return makeTruthVal(left != right, resultTy);
781        }
782      }
783
784      // If we get here, we have no way of comparing the ElementRegions.
785      return UnknownVal();
786    }
787
788    // See if both regions are fields of the same structure.
789    // FIXME: This doesn't handle nesting, inheritance, or Objective-C ivars.
790    if (const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR)) {
791      // Only comparisons are meaningful here!
792      if (!BinaryOperator::isComparisonOp(op))
793        return UnknownVal();
794
795      // First see if the right region is also a FieldRegion.
796      const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
797      if (!RightFR)
798        return UnknownVal();
799
800      // Next, see if the two FRs have the same super-region.
801      // FIXME: This doesn't handle casts yet, and simply stripping the casts
802      // doesn't help.
803      if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
804        return UnknownVal();
805
806      const FieldDecl *LeftFD = LeftFR->getDecl();
807      const FieldDecl *RightFD = RightFR->getDecl();
808      const RecordDecl *RD = LeftFD->getParent();
809
810      // Make sure the two FRs are from the same kind of record. Just in case!
811      // FIXME: This is probably where inheritance would be a problem.
812      if (RD != RightFD->getParent())
813        return UnknownVal();
814
815      // We know for sure that the two fields are not the same, since that
816      // would have given us the same SVal.
817      if (op == BO_EQ)
818        return makeTruthVal(false, resultTy);
819      if (op == BO_NE)
820        return makeTruthVal(true, resultTy);
821
822      // Iterate through the fields and see which one comes first.
823      // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
824      // members and the units in which bit-fields reside have addresses that
825      // increase in the order in which they are declared."
826      bool leftFirst = (op == BO_LT || op == BO_LE);
827      for (RecordDecl::field_iterator I = RD->field_begin(),
828           E = RD->field_end(); I!=E; ++I) {
829        if (*I == LeftFD)
830          return makeTruthVal(leftFirst, resultTy);
831        if (*I == RightFD)
832          return makeTruthVal(!leftFirst, resultTy);
833      }
834
835      llvm_unreachable("Fields not found in parent record's definition");
836    }
837
838    // If we get here, we have no way of comparing the regions.
839    return UnknownVal();
840  }
841  }
842}
843
844SVal SimpleSValBuilder::evalBinOpLN(const ProgramState *state,
845                                  BinaryOperator::Opcode op,
846                                  Loc lhs, NonLoc rhs, QualType resultTy) {
847
848  // Special case: rhs is a zero constant.
849  if (rhs.isZeroConstant())
850    return lhs;
851
852  // Special case: 'rhs' is an integer that has the same width as a pointer and
853  // we are using the integer location in a comparison.  Normally this cannot be
854  // triggered, but transfer functions like those for OSCommpareAndSwapBarrier32
855  // can generate comparisons that trigger this code.
856  // FIXME: Are all locations guaranteed to have pointer width?
857  if (BinaryOperator::isComparisonOp(op)) {
858    if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) {
859      const llvm::APSInt *x = &rhsInt->getValue();
860      ASTContext &ctx = Context;
861      if (ctx.getTypeSize(ctx.VoidPtrTy) == x->getBitWidth()) {
862        // Convert the signedness of the integer (if necessary).
863        if (x->isSigned())
864          x = &getBasicValueFactory().getValue(*x, true);
865
866        return evalBinOpLL(state, op, lhs, loc::ConcreteInt(*x), resultTy);
867      }
868    }
869  }
870
871  // We are dealing with pointer arithmetic.
872
873  // Handle pointer arithmetic on constant values.
874  if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) {
875    if (loc::ConcreteInt *lhsInt = dyn_cast<loc::ConcreteInt>(&lhs)) {
876      const llvm::APSInt &leftI = lhsInt->getValue();
877      assert(leftI.isUnsigned());
878      llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
879
880      // Convert the bitwidth of rightI.  This should deal with overflow
881      // since we are dealing with concrete values.
882      rightI = rightI.extOrTrunc(leftI.getBitWidth());
883
884      // Offset the increment by the pointer size.
885      llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
886      rightI *= Multiplicand;
887
888      // Compute the adjusted pointer.
889      switch (op) {
890        case BO_Add:
891          rightI = leftI + rightI;
892          break;
893        case BO_Sub:
894          rightI = leftI - rightI;
895          break;
896        default:
897          llvm_unreachable("Invalid pointer arithmetic operation");
898      }
899      return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
900    }
901  }
902
903  // Handle cases where 'lhs' is a region.
904  if (const MemRegion *region = lhs.getAsRegion()) {
905    rhs = cast<NonLoc>(convertToArrayIndex(rhs));
906    SVal index = UnknownVal();
907    const MemRegion *superR = 0;
908    QualType elementType;
909
910    if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
911      assert(op == BO_Add || op == BO_Sub);
912      index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
913                          getArrayIndexType());
914      superR = elemReg->getSuperRegion();
915      elementType = elemReg->getElementType();
916    }
917    else if (isa<SubRegion>(region)) {
918      superR = region;
919      index = rhs;
920      if (const PointerType *PT = resultTy->getAs<PointerType>()) {
921        elementType = PT->getPointeeType();
922      }
923      else {
924        const ObjCObjectPointerType *OT =
925          resultTy->getAs<ObjCObjectPointerType>();
926        elementType = OT->getPointeeType();
927      }
928    }
929
930    if (NonLoc *indexV = dyn_cast<NonLoc>(&index)) {
931      return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
932                                                       superR, getContext()));
933    }
934  }
935  return UnknownVal();
936}
937
938const llvm::APSInt *SimpleSValBuilder::getKnownValue(const ProgramState *state,
939                                                   SVal V) {
940  if (V.isUnknownOrUndef())
941    return NULL;
942
943  if (loc::ConcreteInt* X = dyn_cast<loc::ConcreteInt>(&V))
944    return &X->getValue();
945
946  if (nonloc::ConcreteInt* X = dyn_cast<nonloc::ConcreteInt>(&V))
947    return &X->getValue();
948
949  if (SymbolRef Sym = V.getAsSymbol())
950    return state->getSymVal(Sym);
951
952  // FIXME: Add support for SymExprs.
953  return NULL;
954}
955