SimpleSValBuilder.cpp revision b219cfc4d75f0a03630b7c4509ef791b7e97b2c8
1// SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
15#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
16
17using namespace clang;
18using namespace ento;
19
20namespace {
21class SimpleSValBuilder : public SValBuilder {
22protected:
23  virtual SVal evalCastFromNonLoc(NonLoc val, QualType castTy);
24  virtual SVal evalCastFromLoc(Loc val, QualType castTy);
25
26public:
27  SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
28                    ProgramStateManager &stateMgr)
29                    : SValBuilder(alloc, context, stateMgr) {}
30  virtual ~SimpleSValBuilder() {}
31
32  virtual SVal evalMinus(NonLoc val);
33  virtual SVal evalComplement(NonLoc val);
34  virtual SVal evalBinOpNN(const ProgramState *state, BinaryOperator::Opcode op,
35                           NonLoc lhs, NonLoc rhs, QualType resultTy);
36  virtual SVal evalBinOpLL(const ProgramState *state, BinaryOperator::Opcode op,
37                           Loc lhs, Loc rhs, QualType resultTy);
38  virtual SVal evalBinOpLN(const ProgramState *state, BinaryOperator::Opcode op,
39                           Loc lhs, NonLoc rhs, QualType resultTy);
40
41  /// getKnownValue - evaluates a given SVal. If the SVal has only one possible
42  ///  (integer) value, that value is returned. Otherwise, returns NULL.
43  virtual const llvm::APSInt *getKnownValue(const ProgramState *state, SVal V);
44
45  SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
46                     const llvm::APSInt &RHS, QualType resultTy);
47};
48} // end anonymous namespace
49
50SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
51                                           ASTContext &context,
52                                           ProgramStateManager &stateMgr) {
53  return new SimpleSValBuilder(alloc, context, stateMgr);
54}
55
56//===----------------------------------------------------------------------===//
57// Transfer function for Casts.
58//===----------------------------------------------------------------------===//
59
60SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) {
61
62  bool isLocType = Loc::isLocType(castTy);
63
64  if (nonloc::LocAsInteger *LI = dyn_cast<nonloc::LocAsInteger>(&val)) {
65    if (isLocType)
66      return LI->getLoc();
67
68    // FIXME: Correctly support promotions/truncations.
69    unsigned castSize = Context.getTypeSize(castTy);
70    if (castSize == LI->getNumBits())
71      return val;
72    return makeLocAsInteger(LI->getLoc(), castSize);
73  }
74
75  if (const SymExpr *se = val.getAsSymbolicExpression()) {
76    QualType T = Context.getCanonicalType(se->getType(Context));
77    if (T == Context.getCanonicalType(castTy))
78      return val;
79
80    // FIXME: Remove this hack when we support symbolic truncation/extension.
81    // HACK: If both castTy and T are integers, ignore the cast.  This is
82    // not a permanent solution.  Eventually we want to precisely handle
83    // extension/truncation of symbolic integers.  This prevents us from losing
84    // precision when we assign 'x = y' and 'y' is symbolic and x and y are
85    // different integer types.
86    if (T->isIntegerType() && castTy->isIntegerType())
87      return val;
88
89    return UnknownVal();
90  }
91
92  if (!isa<nonloc::ConcreteInt>(val))
93    return UnknownVal();
94
95  // Only handle casts from integers to integers.
96  if (!isLocType && !castTy->isIntegerType())
97    return UnknownVal();
98
99  llvm::APSInt i = cast<nonloc::ConcreteInt>(val).getValue();
100  i.setIsUnsigned(castTy->isUnsignedIntegerOrEnumerationType() ||
101                  Loc::isLocType(castTy));
102  i = i.extOrTrunc(Context.getTypeSize(castTy));
103
104  if (isLocType)
105    return makeIntLocVal(i);
106  else
107    return makeIntVal(i);
108}
109
110SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) {
111
112  // Casts from pointers -> pointers, just return the lval.
113  //
114  // Casts from pointers -> references, just return the lval.  These
115  //   can be introduced by the frontend for corner cases, e.g
116  //   casting from va_list* to __builtin_va_list&.
117  //
118  if (Loc::isLocType(castTy) || castTy->isReferenceType())
119    return val;
120
121  // FIXME: Handle transparent unions where a value can be "transparently"
122  //  lifted into a union type.
123  if (castTy->isUnionType())
124    return UnknownVal();
125
126  if (castTy->isIntegerType()) {
127    unsigned BitWidth = Context.getTypeSize(castTy);
128
129    if (!isa<loc::ConcreteInt>(val))
130      return makeLocAsInteger(val, BitWidth);
131
132    llvm::APSInt i = cast<loc::ConcreteInt>(val).getValue();
133    i.setIsUnsigned(castTy->isUnsignedIntegerOrEnumerationType() ||
134                    Loc::isLocType(castTy));
135    i = i.extOrTrunc(BitWidth);
136    return makeIntVal(i);
137  }
138
139  // All other cases: return 'UnknownVal'.  This includes casting pointers
140  // to floats, which is probably badness it itself, but this is a good
141  // intermediate solution until we do something better.
142  return UnknownVal();
143}
144
145//===----------------------------------------------------------------------===//
146// Transfer function for unary operators.
147//===----------------------------------------------------------------------===//
148
149SVal SimpleSValBuilder::evalMinus(NonLoc val) {
150  switch (val.getSubKind()) {
151  case nonloc::ConcreteIntKind:
152    return cast<nonloc::ConcreteInt>(val).evalMinus(*this);
153  default:
154    return UnknownVal();
155  }
156}
157
158SVal SimpleSValBuilder::evalComplement(NonLoc X) {
159  switch (X.getSubKind()) {
160  case nonloc::ConcreteIntKind:
161    return cast<nonloc::ConcreteInt>(X).evalComplement(*this);
162  default:
163    return UnknownVal();
164  }
165}
166
167//===----------------------------------------------------------------------===//
168// Transfer function for binary operators.
169//===----------------------------------------------------------------------===//
170
171static BinaryOperator::Opcode NegateComparison(BinaryOperator::Opcode op) {
172  switch (op) {
173  default:
174    llvm_unreachable("Invalid opcode.");
175  case BO_LT: return BO_GE;
176  case BO_GT: return BO_LE;
177  case BO_LE: return BO_GT;
178  case BO_GE: return BO_LT;
179  case BO_EQ: return BO_NE;
180  case BO_NE: return BO_EQ;
181  }
182}
183
184static BinaryOperator::Opcode ReverseComparison(BinaryOperator::Opcode op) {
185  switch (op) {
186  default:
187    llvm_unreachable("Invalid opcode.");
188  case BO_LT: return BO_GT;
189  case BO_GT: return BO_LT;
190  case BO_LE: return BO_GE;
191  case BO_GE: return BO_LE;
192  case BO_EQ:
193  case BO_NE:
194    return op;
195  }
196}
197
198SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
199                                    BinaryOperator::Opcode op,
200                                    const llvm::APSInt &RHS,
201                                    QualType resultTy) {
202  bool isIdempotent = false;
203
204  // Check for a few special cases with known reductions first.
205  switch (op) {
206  default:
207    // We can't reduce this case; just treat it normally.
208    break;
209  case BO_Mul:
210    // a*0 and a*1
211    if (RHS == 0)
212      return makeIntVal(0, resultTy);
213    else if (RHS == 1)
214      isIdempotent = true;
215    break;
216  case BO_Div:
217    // a/0 and a/1
218    if (RHS == 0)
219      // This is also handled elsewhere.
220      return UndefinedVal();
221    else if (RHS == 1)
222      isIdempotent = true;
223    break;
224  case BO_Rem:
225    // a%0 and a%1
226    if (RHS == 0)
227      // This is also handled elsewhere.
228      return UndefinedVal();
229    else if (RHS == 1)
230      return makeIntVal(0, resultTy);
231    break;
232  case BO_Add:
233  case BO_Sub:
234  case BO_Shl:
235  case BO_Shr:
236  case BO_Xor:
237    // a+0, a-0, a<<0, a>>0, a^0
238    if (RHS == 0)
239      isIdempotent = true;
240    break;
241  case BO_And:
242    // a&0 and a&(~0)
243    if (RHS == 0)
244      return makeIntVal(0, resultTy);
245    else if (RHS.isAllOnesValue())
246      isIdempotent = true;
247    break;
248  case BO_Or:
249    // a|0 and a|(~0)
250    if (RHS == 0)
251      isIdempotent = true;
252    else if (RHS.isAllOnesValue()) {
253      const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
254      return nonloc::ConcreteInt(Result);
255    }
256    break;
257  }
258
259  // Idempotent ops (like a*1) can still change the type of an expression.
260  // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the
261  // dirty work.
262  if (isIdempotent) {
263    if (SymbolRef LHSSym = dyn_cast<SymbolData>(LHS))
264      return evalCastFromNonLoc(nonloc::SymbolVal(LHSSym), resultTy);
265    return evalCastFromNonLoc(nonloc::SymExprVal(LHS), resultTy);
266  }
267
268  // If we reach this point, the expression cannot be simplified.
269  // Make a SymExprVal for the entire thing.
270  return makeNonLoc(LHS, op, RHS, resultTy);
271}
272
273SVal SimpleSValBuilder::evalBinOpNN(const ProgramState *state,
274                                  BinaryOperator::Opcode op,
275                                  NonLoc lhs, NonLoc rhs,
276                                  QualType resultTy)  {
277  // Handle trivial case where left-side and right-side are the same.
278  if (lhs == rhs)
279    switch (op) {
280      default:
281        break;
282      case BO_EQ:
283      case BO_LE:
284      case BO_GE:
285        return makeTruthVal(true, resultTy);
286      case BO_LT:
287      case BO_GT:
288      case BO_NE:
289        return makeTruthVal(false, resultTy);
290      case BO_Xor:
291      case BO_Sub:
292        return makeIntVal(0, resultTy);
293      case BO_Or:
294      case BO_And:
295        return evalCastFromNonLoc(lhs, resultTy);
296    }
297
298  while (1) {
299    switch (lhs.getSubKind()) {
300    default:
301      return UnknownVal();
302    case nonloc::LocAsIntegerKind: {
303      Loc lhsL = cast<nonloc::LocAsInteger>(lhs).getLoc();
304      switch (rhs.getSubKind()) {
305        case nonloc::LocAsIntegerKind:
306          return evalBinOpLL(state, op, lhsL,
307                             cast<nonloc::LocAsInteger>(rhs).getLoc(),
308                             resultTy);
309        case nonloc::ConcreteIntKind: {
310          // Transform the integer into a location and compare.
311          llvm::APSInt i = cast<nonloc::ConcreteInt>(rhs).getValue();
312          i.setIsUnsigned(true);
313          i = i.extOrTrunc(Context.getTypeSize(Context.VoidPtrTy));
314          return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
315        }
316        default:
317          switch (op) {
318            case BO_EQ:
319              return makeTruthVal(false, resultTy);
320            case BO_NE:
321              return makeTruthVal(true, resultTy);
322            default:
323              // This case also handles pointer arithmetic.
324              return UnknownVal();
325          }
326      }
327    }
328    case nonloc::SymExprValKind: {
329      nonloc::SymExprVal *selhs = cast<nonloc::SymExprVal>(&lhs);
330
331      // Only handle LHS of the form "$sym op constant", at least for now.
332      const SymIntExpr *symIntExpr =
333        dyn_cast<SymIntExpr>(selhs->getSymbolicExpression());
334
335      if (!symIntExpr)
336        return UnknownVal();
337
338      // Is this a logical not? (!x is represented as x == 0.)
339      if (op == BO_EQ && rhs.isZeroConstant()) {
340        // We know how to negate certain expressions. Simplify them here.
341
342        BinaryOperator::Opcode opc = symIntExpr->getOpcode();
343        switch (opc) {
344        default:
345          // We don't know how to negate this operation.
346          // Just handle it as if it were a normal comparison to 0.
347          break;
348        case BO_LAnd:
349        case BO_LOr:
350          llvm_unreachable("Logical operators handled by branching logic.");
351          return UnknownVal();
352        case BO_Assign:
353        case BO_MulAssign:
354        case BO_DivAssign:
355        case BO_RemAssign:
356        case BO_AddAssign:
357        case BO_SubAssign:
358        case BO_ShlAssign:
359        case BO_ShrAssign:
360        case BO_AndAssign:
361        case BO_XorAssign:
362        case BO_OrAssign:
363        case BO_Comma:
364          llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
365          return UnknownVal();
366        case BO_PtrMemD:
367        case BO_PtrMemI:
368          llvm_unreachable("Pointer arithmetic not handled here.");
369          return UnknownVal();
370        case BO_LT:
371        case BO_GT:
372        case BO_LE:
373        case BO_GE:
374        case BO_EQ:
375        case BO_NE:
376          // Negate the comparison and make a value.
377          opc = NegateComparison(opc);
378          assert(symIntExpr->getType(Context) == resultTy);
379          return makeNonLoc(symIntExpr->getLHS(), opc,
380                                   symIntExpr->getRHS(), resultTy);
381        }
382      }
383
384      // For now, only handle expressions whose RHS is a constant.
385      const nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs);
386      if (!rhsInt)
387        return UnknownVal();
388
389      // If both the LHS and the current expression are additive,
390      // fold their constants.
391      if (BinaryOperator::isAdditiveOp(op)) {
392        BinaryOperator::Opcode lop = symIntExpr->getOpcode();
393        if (BinaryOperator::isAdditiveOp(lop)) {
394          // resultTy may not be the best type to convert to, but it's
395          // probably the best choice in expressions with mixed type
396          // (such as x+1U+2LL). The rules for implicit conversions should
397          // choose a reasonable type to preserve the expression, and will
398          // at least match how the value is going to be used.
399          const llvm::APSInt &first =
400            BasicVals.Convert(resultTy, symIntExpr->getRHS());
401          const llvm::APSInt &second =
402            BasicVals.Convert(resultTy, rhsInt->getValue());
403          const llvm::APSInt *newRHS;
404          if (lop == op)
405            newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
406          else
407            newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
408          return MakeSymIntVal(symIntExpr->getLHS(), lop, *newRHS, resultTy);
409        }
410      }
411
412      // Otherwise, make a SymExprVal out of the expression.
413      return MakeSymIntVal(symIntExpr, op, rhsInt->getValue(), resultTy);
414    }
415    case nonloc::ConcreteIntKind: {
416      const nonloc::ConcreteInt& lhsInt = cast<nonloc::ConcreteInt>(lhs);
417
418      // Is the RHS a symbol we can simplify?
419      // FIXME: This was mostly copy/pasted from the LHS-is-a-symbol case.
420      if (const nonloc::SymbolVal *srhs = dyn_cast<nonloc::SymbolVal>(&rhs)) {
421        SymbolRef RSym = srhs->getSymbol();
422        if (RSym->getType(Context)->isIntegerType()) {
423          if (const llvm::APSInt *Constant = state->getSymVal(RSym)) {
424            // The symbol evaluates to a constant.
425            const llvm::APSInt *rhs_I;
426            if (BinaryOperator::isRelationalOp(op))
427              rhs_I = &BasicVals.Convert(lhsInt.getValue(), *Constant);
428            else
429              rhs_I = &BasicVals.Convert(resultTy, *Constant);
430
431            rhs = nonloc::ConcreteInt(*rhs_I);
432          }
433        }
434      }
435
436      if (isa<nonloc::ConcreteInt>(rhs)) {
437        return lhsInt.evalBinOp(*this, op, cast<nonloc::ConcreteInt>(rhs));
438      } else {
439        const llvm::APSInt& lhsValue = lhsInt.getValue();
440
441        // Swap the left and right sides and flip the operator if doing so
442        // allows us to better reason about the expression (this is a form
443        // of expression canonicalization).
444        // While we're at it, catch some special cases for non-commutative ops.
445        NonLoc tmp = rhs;
446        rhs = lhs;
447        lhs = tmp;
448
449        switch (op) {
450          case BO_LT:
451          case BO_GT:
452          case BO_LE:
453          case BO_GE:
454            op = ReverseComparison(op);
455            continue;
456          case BO_EQ:
457          case BO_NE:
458          case BO_Add:
459          case BO_Mul:
460          case BO_And:
461          case BO_Xor:
462          case BO_Or:
463            continue;
464          case BO_Shr:
465            if (lhsValue.isAllOnesValue() && lhsValue.isSigned())
466              // At this point lhs and rhs have been swapped.
467              return rhs;
468            // FALL-THROUGH
469          case BO_Shl:
470            if (lhsValue == 0)
471              // At this point lhs and rhs have been swapped.
472              return rhs;
473            return UnknownVal();
474          default:
475            return UnknownVal();
476        }
477      }
478    }
479    case nonloc::SymbolValKind: {
480      nonloc::SymbolVal *slhs = cast<nonloc::SymbolVal>(&lhs);
481      SymbolRef Sym = slhs->getSymbol();
482      QualType lhsType = Sym->getType(Context);
483
484      // The conversion type is usually the result type, but not in the case
485      // of relational expressions.
486      QualType conversionType = resultTy;
487      if (BinaryOperator::isRelationalOp(op))
488        conversionType = lhsType;
489
490      // Does the symbol simplify to a constant?  If so, "fold" the constant
491      // by setting 'lhs' to a ConcreteInt and try again.
492      if (lhsType->isIntegerType())
493        if (const llvm::APSInt *Constant = state->getSymVal(Sym)) {
494          // The symbol evaluates to a constant. If necessary, promote the
495          // folded constant (LHS) to the result type.
496          const llvm::APSInt &lhs_I = BasicVals.Convert(conversionType,
497                                                        *Constant);
498          lhs = nonloc::ConcreteInt(lhs_I);
499
500          // Also promote the RHS (if necessary).
501
502          // For shifts, it is not necessary to promote the RHS.
503          if (BinaryOperator::isShiftOp(op))
504            continue;
505
506          // Other operators: do an implicit conversion.  This shouldn't be
507          // necessary once we support truncation/extension of symbolic values.
508          if (nonloc::ConcreteInt *rhs_I = dyn_cast<nonloc::ConcreteInt>(&rhs)){
509            rhs = nonloc::ConcreteInt(BasicVals.Convert(conversionType,
510                                                        rhs_I->getValue()));
511          }
512
513          continue;
514        }
515
516      // Is the RHS a symbol we can simplify?
517      if (const nonloc::SymbolVal *srhs = dyn_cast<nonloc::SymbolVal>(&rhs)) {
518        SymbolRef RSym = srhs->getSymbol();
519        if (RSym->getType(Context)->isIntegerType()) {
520          if (const llvm::APSInt *Constant = state->getSymVal(RSym)) {
521            // The symbol evaluates to a constant.
522            const llvm::APSInt &rhs_I = BasicVals.Convert(conversionType,
523                                                          *Constant);
524            rhs = nonloc::ConcreteInt(rhs_I);
525          }
526        }
527      }
528
529      if (isa<nonloc::ConcreteInt>(rhs)) {
530        return MakeSymIntVal(slhs->getSymbol(), op,
531                             cast<nonloc::ConcreteInt>(rhs).getValue(),
532                             resultTy);
533      }
534
535      return UnknownVal();
536    }
537    }
538  }
539}
540
541// FIXME: all this logic will change if/when we have MemRegion::getLocation().
542SVal SimpleSValBuilder::evalBinOpLL(const ProgramState *state,
543                                  BinaryOperator::Opcode op,
544                                  Loc lhs, Loc rhs,
545                                  QualType resultTy) {
546  // Only comparisons and subtractions are valid operations on two pointers.
547  // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
548  // However, if a pointer is casted to an integer, evalBinOpNN may end up
549  // calling this function with another operation (PR7527). We don't attempt to
550  // model this for now, but it could be useful, particularly when the
551  // "location" is actually an integer value that's been passed through a void*.
552  if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
553    return UnknownVal();
554
555  // Special cases for when both sides are identical.
556  if (lhs == rhs) {
557    switch (op) {
558    default:
559      llvm_unreachable("Unimplemented operation for two identical values");
560      return UnknownVal();
561    case BO_Sub:
562      return makeZeroVal(resultTy);
563    case BO_EQ:
564    case BO_LE:
565    case BO_GE:
566      return makeTruthVal(true, resultTy);
567    case BO_NE:
568    case BO_LT:
569    case BO_GT:
570      return makeTruthVal(false, resultTy);
571    }
572  }
573
574  switch (lhs.getSubKind()) {
575  default:
576    llvm_unreachable("Ordering not implemented for this Loc.");
577    return UnknownVal();
578
579  case loc::GotoLabelKind:
580    // The only thing we know about labels is that they're non-null.
581    if (rhs.isZeroConstant()) {
582      switch (op) {
583      default:
584        break;
585      case BO_Sub:
586        return evalCastFromLoc(lhs, resultTy);
587      case BO_EQ:
588      case BO_LE:
589      case BO_LT:
590        return makeTruthVal(false, resultTy);
591      case BO_NE:
592      case BO_GT:
593      case BO_GE:
594        return makeTruthVal(true, resultTy);
595      }
596    }
597    // There may be two labels for the same location, and a function region may
598    // have the same address as a label at the start of the function (depending
599    // on the ABI).
600    // FIXME: we can probably do a comparison against other MemRegions, though.
601    // FIXME: is there a way to tell if two labels refer to the same location?
602    return UnknownVal();
603
604  case loc::ConcreteIntKind: {
605    // If one of the operands is a symbol and the other is a constant,
606    // build an expression for use by the constraint manager.
607    if (SymbolRef rSym = rhs.getAsLocSymbol()) {
608      // We can only build expressions with symbols on the left,
609      // so we need a reversible operator.
610      if (!BinaryOperator::isComparisonOp(op))
611        return UnknownVal();
612
613      const llvm::APSInt &lVal = cast<loc::ConcreteInt>(lhs).getValue();
614      return makeNonLoc(rSym, ReverseComparison(op), lVal, resultTy);
615    }
616
617    // If both operands are constants, just perform the operation.
618    if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) {
619      SVal ResultVal = cast<loc::ConcreteInt>(lhs).evalBinOp(BasicVals, op,
620                                                             *rInt);
621      if (Loc *Result = dyn_cast<Loc>(&ResultVal))
622        return evalCastFromLoc(*Result, resultTy);
623      else
624        return UnknownVal();
625    }
626
627    // Special case comparisons against NULL.
628    // This must come after the test if the RHS is a symbol, which is used to
629    // build constraints. The address of any non-symbolic region is guaranteed
630    // to be non-NULL, as is any label.
631    assert(isa<loc::MemRegionVal>(rhs) || isa<loc::GotoLabel>(rhs));
632    if (lhs.isZeroConstant()) {
633      switch (op) {
634      default:
635        break;
636      case BO_EQ:
637      case BO_GT:
638      case BO_GE:
639        return makeTruthVal(false, resultTy);
640      case BO_NE:
641      case BO_LT:
642      case BO_LE:
643        return makeTruthVal(true, resultTy);
644      }
645    }
646
647    // Comparing an arbitrary integer to a region or label address is
648    // completely unknowable.
649    return UnknownVal();
650  }
651  case loc::MemRegionKind: {
652    if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) {
653      // If one of the operands is a symbol and the other is a constant,
654      // build an expression for use by the constraint manager.
655      if (SymbolRef lSym = lhs.getAsLocSymbol())
656        return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
657
658      // Special case comparisons to NULL.
659      // This must come after the test if the LHS is a symbol, which is used to
660      // build constraints. The address of any non-symbolic region is guaranteed
661      // to be non-NULL.
662      if (rInt->isZeroConstant()) {
663        switch (op) {
664        default:
665          break;
666        case BO_Sub:
667          return evalCastFromLoc(lhs, resultTy);
668        case BO_EQ:
669        case BO_LT:
670        case BO_LE:
671          return makeTruthVal(false, resultTy);
672        case BO_NE:
673        case BO_GT:
674        case BO_GE:
675          return makeTruthVal(true, resultTy);
676        }
677      }
678
679      // Comparing a region to an arbitrary integer is completely unknowable.
680      return UnknownVal();
681    }
682
683    // Get both values as regions, if possible.
684    const MemRegion *LeftMR = lhs.getAsRegion();
685    assert(LeftMR && "MemRegionKind SVal doesn't have a region!");
686
687    const MemRegion *RightMR = rhs.getAsRegion();
688    if (!RightMR)
689      // The RHS is probably a label, which in theory could address a region.
690      // FIXME: we can probably make a more useful statement about non-code
691      // regions, though.
692      return UnknownVal();
693
694    // If both values wrap regions, see if they're from different base regions.
695    const MemRegion *LeftBase = LeftMR->getBaseRegion();
696    const MemRegion *RightBase = RightMR->getBaseRegion();
697    if (LeftBase != RightBase &&
698        !isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) {
699      switch (op) {
700      default:
701        return UnknownVal();
702      case BO_EQ:
703        return makeTruthVal(false, resultTy);
704      case BO_NE:
705        return makeTruthVal(true, resultTy);
706      }
707    }
708
709    // The two regions are from the same base region. See if they're both a
710    // type of region we know how to compare.
711
712    // FIXME: If/when there is a getAsRawOffset() for FieldRegions, this
713    // ElementRegion path and the FieldRegion path below should be unified.
714    if (const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR)) {
715      // First see if the right region is also an ElementRegion.
716      const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
717      if (!RightER)
718        return UnknownVal();
719
720      // Next, see if the two ERs have the same super-region and matching types.
721      // FIXME: This should do something useful even if the types don't match,
722      // though if both indexes are constant the RegionRawOffset path will
723      // give the correct answer.
724      if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
725          LeftER->getElementType() == RightER->getElementType()) {
726        // Get the left index and cast it to the correct type.
727        // If the index is unknown or undefined, bail out here.
728        SVal LeftIndexVal = LeftER->getIndex();
729        NonLoc *LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal);
730        if (!LeftIndex)
731          return UnknownVal();
732        LeftIndexVal = evalCastFromNonLoc(*LeftIndex, resultTy);
733        LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal);
734        if (!LeftIndex)
735          return UnknownVal();
736
737        // Do the same for the right index.
738        SVal RightIndexVal = RightER->getIndex();
739        NonLoc *RightIndex = dyn_cast<NonLoc>(&RightIndexVal);
740        if (!RightIndex)
741          return UnknownVal();
742        RightIndexVal = evalCastFromNonLoc(*RightIndex, resultTy);
743        RightIndex = dyn_cast<NonLoc>(&RightIndexVal);
744        if (!RightIndex)
745          return UnknownVal();
746
747        // Actually perform the operation.
748        // evalBinOpNN expects the two indexes to already be the right type.
749        return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
750      }
751
752      // If the element indexes aren't comparable, see if the raw offsets are.
753      RegionRawOffset LeftOffset = LeftER->getAsArrayOffset();
754      RegionRawOffset RightOffset = RightER->getAsArrayOffset();
755
756      if (LeftOffset.getRegion() != NULL &&
757          LeftOffset.getRegion() == RightOffset.getRegion()) {
758        CharUnits left = LeftOffset.getOffset();
759        CharUnits right = RightOffset.getOffset();
760
761        switch (op) {
762        default:
763          return UnknownVal();
764        case BO_LT:
765          return makeTruthVal(left < right, resultTy);
766        case BO_GT:
767          return makeTruthVal(left > right, resultTy);
768        case BO_LE:
769          return makeTruthVal(left <= right, resultTy);
770        case BO_GE:
771          return makeTruthVal(left >= right, resultTy);
772        case BO_EQ:
773          return makeTruthVal(left == right, resultTy);
774        case BO_NE:
775          return makeTruthVal(left != right, resultTy);
776        }
777      }
778
779      // If we get here, we have no way of comparing the ElementRegions.
780      return UnknownVal();
781    }
782
783    // See if both regions are fields of the same structure.
784    // FIXME: This doesn't handle nesting, inheritance, or Objective-C ivars.
785    if (const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR)) {
786      // Only comparisons are meaningful here!
787      if (!BinaryOperator::isComparisonOp(op))
788        return UnknownVal();
789
790      // First see if the right region is also a FieldRegion.
791      const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
792      if (!RightFR)
793        return UnknownVal();
794
795      // Next, see if the two FRs have the same super-region.
796      // FIXME: This doesn't handle casts yet, and simply stripping the casts
797      // doesn't help.
798      if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
799        return UnknownVal();
800
801      const FieldDecl *LeftFD = LeftFR->getDecl();
802      const FieldDecl *RightFD = RightFR->getDecl();
803      const RecordDecl *RD = LeftFD->getParent();
804
805      // Make sure the two FRs are from the same kind of record. Just in case!
806      // FIXME: This is probably where inheritance would be a problem.
807      if (RD != RightFD->getParent())
808        return UnknownVal();
809
810      // We know for sure that the two fields are not the same, since that
811      // would have given us the same SVal.
812      if (op == BO_EQ)
813        return makeTruthVal(false, resultTy);
814      if (op == BO_NE)
815        return makeTruthVal(true, resultTy);
816
817      // Iterate through the fields and see which one comes first.
818      // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
819      // members and the units in which bit-fields reside have addresses that
820      // increase in the order in which they are declared."
821      bool leftFirst = (op == BO_LT || op == BO_LE);
822      for (RecordDecl::field_iterator I = RD->field_begin(),
823           E = RD->field_end(); I!=E; ++I) {
824        if (*I == LeftFD)
825          return makeTruthVal(leftFirst, resultTy);
826        if (*I == RightFD)
827          return makeTruthVal(!leftFirst, resultTy);
828      }
829
830      llvm_unreachable("Fields not found in parent record's definition");
831    }
832
833    // If we get here, we have no way of comparing the regions.
834    return UnknownVal();
835  }
836  }
837}
838
839SVal SimpleSValBuilder::evalBinOpLN(const ProgramState *state,
840                                  BinaryOperator::Opcode op,
841                                  Loc lhs, NonLoc rhs, QualType resultTy) {
842
843  // Special case: rhs is a zero constant.
844  if (rhs.isZeroConstant())
845    return lhs;
846
847  // Special case: 'rhs' is an integer that has the same width as a pointer and
848  // we are using the integer location in a comparison.  Normally this cannot be
849  // triggered, but transfer functions like those for OSCommpareAndSwapBarrier32
850  // can generate comparisons that trigger this code.
851  // FIXME: Are all locations guaranteed to have pointer width?
852  if (BinaryOperator::isComparisonOp(op)) {
853    if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) {
854      const llvm::APSInt *x = &rhsInt->getValue();
855      ASTContext &ctx = Context;
856      if (ctx.getTypeSize(ctx.VoidPtrTy) == x->getBitWidth()) {
857        // Convert the signedness of the integer (if necessary).
858        if (x->isSigned())
859          x = &getBasicValueFactory().getValue(*x, true);
860
861        return evalBinOpLL(state, op, lhs, loc::ConcreteInt(*x), resultTy);
862      }
863    }
864  }
865
866  // We are dealing with pointer arithmetic.
867
868  // Handle pointer arithmetic on constant values.
869  if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) {
870    if (loc::ConcreteInt *lhsInt = dyn_cast<loc::ConcreteInt>(&lhs)) {
871      const llvm::APSInt &leftI = lhsInt->getValue();
872      assert(leftI.isUnsigned());
873      llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
874
875      // Convert the bitwidth of rightI.  This should deal with overflow
876      // since we are dealing with concrete values.
877      rightI = rightI.extOrTrunc(leftI.getBitWidth());
878
879      // Offset the increment by the pointer size.
880      llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
881      rightI *= Multiplicand;
882
883      // Compute the adjusted pointer.
884      switch (op) {
885        case BO_Add:
886          rightI = leftI + rightI;
887          break;
888        case BO_Sub:
889          rightI = leftI - rightI;
890          break;
891        default:
892          llvm_unreachable("Invalid pointer arithmetic operation");
893      }
894      return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
895    }
896  }
897
898  // Handle cases where 'lhs' is a region.
899  if (const MemRegion *region = lhs.getAsRegion()) {
900    rhs = cast<NonLoc>(convertToArrayIndex(rhs));
901    SVal index = UnknownVal();
902    const MemRegion *superR = 0;
903    QualType elementType;
904
905    if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
906      assert(op == BO_Add || op == BO_Sub);
907      index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
908                          getArrayIndexType());
909      superR = elemReg->getSuperRegion();
910      elementType = elemReg->getElementType();
911    }
912    else if (isa<SubRegion>(region)) {
913      superR = region;
914      index = rhs;
915      if (const PointerType *PT = resultTy->getAs<PointerType>()) {
916        elementType = PT->getPointeeType();
917      }
918      else {
919        const ObjCObjectPointerType *OT =
920          resultTy->getAs<ObjCObjectPointerType>();
921        elementType = OT->getPointeeType();
922      }
923    }
924
925    if (NonLoc *indexV = dyn_cast<NonLoc>(&index)) {
926      return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
927                                                       superR, getContext()));
928    }
929  }
930  return UnknownVal();
931}
932
933const llvm::APSInt *SimpleSValBuilder::getKnownValue(const ProgramState *state,
934                                                   SVal V) {
935  if (V.isUnknownOrUndef())
936    return NULL;
937
938  if (loc::ConcreteInt* X = dyn_cast<loc::ConcreteInt>(&V))
939    return &X->getValue();
940
941  if (nonloc::ConcreteInt* X = dyn_cast<nonloc::ConcreteInt>(&V))
942    return &X->getValue();
943
944  if (SymbolRef Sym = V.getAsSymbol())
945    return state->getSymVal(Sym);
946
947  // FIXME: Add support for SymExprs.
948  return NULL;
949}
950