tsan_rtl.cc revision 86277eb844c4983c81de62d7c050e92fe7155788
1//===-- tsan_rtl.cc -------------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of ThreadSanitizer (TSan), a race detector.
11//
12// Main file (entry points) for the TSan run-time.
13//===----------------------------------------------------------------------===//
14
15#include "sanitizer_common/sanitizer_atomic.h"
16#include "sanitizer_common/sanitizer_common.h"
17#include "sanitizer_common/sanitizer_libc.h"
18#include "sanitizer_common/sanitizer_stackdepot.h"
19#include "sanitizer_common/sanitizer_placement_new.h"
20#include "sanitizer_common/sanitizer_symbolizer.h"
21#include "tsan_defs.h"
22#include "tsan_platform.h"
23#include "tsan_rtl.h"
24#include "tsan_mman.h"
25#include "tsan_suppressions.h"
26#include "tsan_symbolize.h"
27
28#ifdef __SSE3__
29// <emmintrin.h> transitively includes <stdlib.h>,
30// and it's prohibited to include std headers into tsan runtime.
31// So we do this dirty trick.
32#define _MM_MALLOC_H_INCLUDED
33#define __MM_MALLOC_H
34#include <emmintrin.h>
35typedef __m128i m128;
36#endif
37
38volatile int __tsan_resumed = 0;
39
40extern "C" void __tsan_resume() {
41  __tsan_resumed = 1;
42}
43
44namespace __tsan {
45
46#ifndef SANITIZER_GO
47THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64);
48#endif
49static char ctx_placeholder[sizeof(Context)] ALIGNED(64);
50Context *ctx;
51
52// Can be overriden by a front-end.
53#ifdef TSAN_EXTERNAL_HOOKS
54bool OnFinalize(bool failed);
55void OnInitialize();
56#else
57SANITIZER_INTERFACE_ATTRIBUTE
58bool WEAK OnFinalize(bool failed) {
59  return failed;
60}
61SANITIZER_INTERFACE_ATTRIBUTE
62void WEAK OnInitialize() {}
63#endif
64
65static char thread_registry_placeholder[sizeof(ThreadRegistry)];
66
67static ThreadContextBase *CreateThreadContext(u32 tid) {
68  // Map thread trace when context is created.
69  MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event));
70  const uptr hdr = GetThreadTraceHeader(tid);
71  MapThreadTrace(hdr, sizeof(Trace));
72  new((void*)hdr) Trace();
73  // We are going to use only a small part of the trace with the default
74  // value of history_size. However, the constructor writes to the whole trace.
75  // Unmap the unused part.
76  uptr hdr_end = hdr + sizeof(Trace);
77  hdr_end -= sizeof(TraceHeader) * (kTraceParts - TraceParts());
78  hdr_end = RoundUp(hdr_end, GetPageSizeCached());
79  if (hdr_end < hdr + sizeof(Trace))
80    UnmapOrDie((void*)hdr_end, hdr + sizeof(Trace) - hdr_end);
81  void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext));
82  return new(mem) ThreadContext(tid);
83}
84
85#ifndef SANITIZER_GO
86static const u32 kThreadQuarantineSize = 16;
87#else
88static const u32 kThreadQuarantineSize = 64;
89#endif
90
91Context::Context()
92  : initialized()
93  , report_mtx(MutexTypeReport, StatMtxReport)
94  , nreported()
95  , nmissed_expected()
96  , thread_registry(new(thread_registry_placeholder) ThreadRegistry(
97      CreateThreadContext, kMaxTid, kThreadQuarantineSize, kMaxTidReuse))
98  , racy_stacks(MBlockRacyStacks)
99  , racy_addresses(MBlockRacyAddresses)
100  , fired_suppressions(8) {
101}
102
103// The objects are allocated in TLS, so one may rely on zero-initialization.
104ThreadState::ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
105                         unsigned reuse_count,
106                         uptr stk_addr, uptr stk_size,
107                         uptr tls_addr, uptr tls_size)
108  : fast_state(tid, epoch)
109  // Do not touch these, rely on zero initialization,
110  // they may be accessed before the ctor.
111  // , ignore_reads_and_writes()
112  // , ignore_interceptors()
113  , clock(tid, reuse_count)
114#ifndef SANITIZER_GO
115  , jmp_bufs(MBlockJmpBuf)
116#endif
117  , tid(tid)
118  , unique_id(unique_id)
119  , stk_addr(stk_addr)
120  , stk_size(stk_size)
121  , tls_addr(tls_addr)
122  , tls_size(tls_size)
123#ifndef SANITIZER_GO
124  , last_sleep_clock(tid)
125#endif
126{
127}
128
129#ifndef SANITIZER_GO
130static void MemoryProfiler(Context *ctx, fd_t fd, int i) {
131  uptr n_threads;
132  uptr n_running_threads;
133  ctx->thread_registry->GetNumberOfThreads(&n_threads, &n_running_threads);
134  InternalScopedBuffer<char> buf(4096);
135  WriteMemoryProfile(buf.data(), buf.size(), n_threads, n_running_threads);
136  internal_write(fd, buf.data(), internal_strlen(buf.data()));
137}
138
139static void BackgroundThread(void *arg) {
140  // This is a non-initialized non-user thread, nothing to see here.
141  // We don't use ScopedIgnoreInterceptors, because we want ignores to be
142  // enabled even when the thread function exits (e.g. during pthread thread
143  // shutdown code).
144  cur_thread()->ignore_interceptors++;
145  const u64 kMs2Ns = 1000 * 1000;
146
147  fd_t mprof_fd = kInvalidFd;
148  if (flags()->profile_memory && flags()->profile_memory[0]) {
149    if (internal_strcmp(flags()->profile_memory, "stdout") == 0) {
150      mprof_fd = 1;
151    } else if (internal_strcmp(flags()->profile_memory, "stderr") == 0) {
152      mprof_fd = 2;
153    } else {
154      InternalScopedString filename(kMaxPathLength);
155      filename.append("%s.%d", flags()->profile_memory, (int)internal_getpid());
156      uptr openrv = OpenFile(filename.data(), true);
157      if (internal_iserror(openrv)) {
158        Printf("ThreadSanitizer: failed to open memory profile file '%s'\n",
159            &filename[0]);
160      } else {
161        mprof_fd = openrv;
162      }
163    }
164  }
165
166  u64 last_flush = NanoTime();
167  uptr last_rss = 0;
168  for (int i = 0;
169      atomic_load(&ctx->stop_background_thread, memory_order_relaxed) == 0;
170      i++) {
171    SleepForMillis(100);
172    u64 now = NanoTime();
173
174    // Flush memory if requested.
175    if (flags()->flush_memory_ms > 0) {
176      if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) {
177        VPrintf(1, "ThreadSanitizer: periodic memory flush\n");
178        FlushShadowMemory();
179        last_flush = NanoTime();
180      }
181    }
182    // GetRSS can be expensive on huge programs, so don't do it every 100ms.
183    if (flags()->memory_limit_mb > 0) {
184      uptr rss = GetRSS();
185      uptr limit = uptr(flags()->memory_limit_mb) << 20;
186      VPrintf(1, "ThreadSanitizer: memory flush check"
187                 " RSS=%llu LAST=%llu LIMIT=%llu\n",
188              (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20);
189      if (2 * rss > limit + last_rss) {
190        VPrintf(1, "ThreadSanitizer: flushing memory due to RSS\n");
191        FlushShadowMemory();
192        rss = GetRSS();
193        VPrintf(1, "ThreadSanitizer: memory flushed RSS=%llu\n", (u64)rss>>20);
194      }
195      last_rss = rss;
196    }
197
198    // Write memory profile if requested.
199    if (mprof_fd != kInvalidFd)
200      MemoryProfiler(ctx, mprof_fd, i);
201
202    // Flush symbolizer cache if requested.
203    if (flags()->flush_symbolizer_ms > 0) {
204      u64 last = atomic_load(&ctx->last_symbolize_time_ns,
205                             memory_order_relaxed);
206      if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) {
207        Lock l(&ctx->report_mtx);
208        SpinMutexLock l2(&CommonSanitizerReportMutex);
209        SymbolizeFlush();
210        atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed);
211      }
212    }
213  }
214}
215
216static void StartBackgroundThread() {
217  ctx->background_thread = internal_start_thread(&BackgroundThread, 0);
218}
219
220#ifndef __mips__
221static void StopBackgroundThread() {
222  atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed);
223  internal_join_thread(ctx->background_thread);
224  ctx->background_thread = 0;
225}
226#endif
227#endif
228
229void DontNeedShadowFor(uptr addr, uptr size) {
230  uptr shadow_beg = MemToShadow(addr);
231  uptr shadow_end = MemToShadow(addr + size);
232  FlushUnneededShadowMemory(shadow_beg, shadow_end - shadow_beg);
233}
234
235void MapShadow(uptr addr, uptr size) {
236  // Global data is not 64K aligned, but there are no adjacent mappings,
237  // so we can get away with unaligned mapping.
238  // CHECK_EQ(addr, addr & ~((64 << 10) - 1));  // windows wants 64K alignment
239  MmapFixedNoReserve(MemToShadow(addr), size * kShadowMultiplier);
240
241  // Meta shadow is 2:1, so tread carefully.
242  static bool data_mapped = false;
243  static uptr mapped_meta_end = 0;
244  uptr meta_begin = (uptr)MemToMeta(addr);
245  uptr meta_end = (uptr)MemToMeta(addr + size);
246  meta_begin = RoundDownTo(meta_begin, 64 << 10);
247  meta_end = RoundUpTo(meta_end, 64 << 10);
248  if (!data_mapped) {
249    // First call maps data+bss.
250    data_mapped = true;
251    MmapFixedNoReserve(meta_begin, meta_end - meta_begin);
252  } else {
253    // Mapping continous heap.
254    // Windows wants 64K alignment.
255    meta_begin = RoundDownTo(meta_begin, 64 << 10);
256    meta_end = RoundUpTo(meta_end, 64 << 10);
257    if (meta_end <= mapped_meta_end)
258      return;
259    if (meta_begin < mapped_meta_end)
260      meta_begin = mapped_meta_end;
261    MmapFixedNoReserve(meta_begin, meta_end - meta_begin);
262    mapped_meta_end = meta_end;
263  }
264  VPrintf(2, "mapped meta shadow for (%p-%p) at (%p-%p)\n",
265      addr, addr+size, meta_begin, meta_end);
266}
267
268void MapThreadTrace(uptr addr, uptr size) {
269  DPrintf("#0: Mapping trace at %p-%p(0x%zx)\n", addr, addr + size, size);
270  CHECK_GE(addr, kTraceMemBeg);
271  CHECK_LE(addr + size, kTraceMemEnd);
272  CHECK_EQ(addr, addr & ~((64 << 10) - 1));  // windows wants 64K alignment
273  uptr addr1 = (uptr)MmapFixedNoReserve(addr, size);
274  if (addr1 != addr) {
275    Printf("FATAL: ThreadSanitizer can not mmap thread trace (%p/%p->%p)\n",
276        addr, size, addr1);
277    Die();
278  }
279}
280
281static void CheckShadowMapping() {
282  for (uptr i = 0; i < ARRAY_SIZE(UserRegions); i += 2) {
283    const uptr beg = UserRegions[i];
284    const uptr end = UserRegions[i + 1];
285    VPrintf(3, "checking shadow region %p-%p\n", beg, end);
286    for (uptr p0 = beg; p0 <= end; p0 += (end - beg) / 4) {
287      for (int x = -1; x <= 1; x++) {
288        const uptr p = p0 + x;
289        if (p < beg || p >= end)
290          continue;
291        const uptr s = MemToShadow(p);
292        const uptr m = (uptr)MemToMeta(p);
293        VPrintf(3, "  checking pointer %p: shadow=%p meta=%p\n", p, s, m);
294        CHECK(IsAppMem(p));
295        CHECK(IsShadowMem(s));
296        CHECK_EQ(p & ~(kShadowCell - 1), ShadowToMem(s));
297        CHECK(IsMetaMem(m));
298      }
299    }
300  }
301}
302
303void Initialize(ThreadState *thr) {
304  // Thread safe because done before all threads exist.
305  static bool is_initialized = false;
306  if (is_initialized)
307    return;
308  is_initialized = true;
309  // We are not ready to handle interceptors yet.
310  ScopedIgnoreInterceptors ignore;
311  SanitizerToolName = "ThreadSanitizer";
312  // Install tool-specific callbacks in sanitizer_common.
313  SetCheckFailedCallback(TsanCheckFailed);
314
315  ctx = new(ctx_placeholder) Context;
316  const char *options = GetEnv(kTsanOptionsEnv);
317  InitializeFlags(&ctx->flags, options);
318#ifndef SANITIZER_GO
319  InitializeAllocator();
320#endif
321  InitializeInterceptors();
322  CheckShadowMapping();
323  InitializePlatform();
324  InitializeMutex();
325  InitializeDynamicAnnotations();
326#ifndef SANITIZER_GO
327  InitializeShadowMemory();
328#endif
329  // Setup correct file descriptor for error reports.
330  __sanitizer_set_report_path(common_flags()->log_path);
331  InitializeSuppressions();
332#ifndef SANITIZER_GO
333  InitializeLibIgnore();
334  Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer);
335  // On MIPS, TSan initialization is run before
336  // __pthread_initialize_minimal_internal() is finished, so we can not spawn
337  // new threads.
338#ifndef __mips__
339  StartBackgroundThread();
340  SetSandboxingCallback(StopBackgroundThread);
341#endif
342#endif
343  if (common_flags()->detect_deadlocks)
344    ctx->dd = DDetector::Create(flags());
345
346  VPrintf(1, "***** Running under ThreadSanitizer v2 (pid %d) *****\n",
347          (int)internal_getpid());
348
349  // Initialize thread 0.
350  int tid = ThreadCreate(thr, 0, 0, true);
351  CHECK_EQ(tid, 0);
352  ThreadStart(thr, tid, internal_getpid());
353  ctx->initialized = true;
354
355  if (flags()->stop_on_start) {
356    Printf("ThreadSanitizer is suspended at startup (pid %d)."
357           " Call __tsan_resume().\n",
358           (int)internal_getpid());
359    while (__tsan_resumed == 0) {}
360  }
361
362  OnInitialize();
363}
364
365int Finalize(ThreadState *thr) {
366  bool failed = false;
367
368  if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1)
369    SleepForMillis(flags()->atexit_sleep_ms);
370
371  // Wait for pending reports.
372  ctx->report_mtx.Lock();
373  CommonSanitizerReportMutex.Lock();
374  CommonSanitizerReportMutex.Unlock();
375  ctx->report_mtx.Unlock();
376
377#ifndef SANITIZER_GO
378  if (Verbosity()) AllocatorPrintStats();
379#endif
380
381  ThreadFinalize(thr);
382
383  if (ctx->nreported) {
384    failed = true;
385#ifndef SANITIZER_GO
386    Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported);
387#else
388    Printf("Found %d data race(s)\n", ctx->nreported);
389#endif
390  }
391
392  if (ctx->nmissed_expected) {
393    failed = true;
394    Printf("ThreadSanitizer: missed %d expected races\n",
395        ctx->nmissed_expected);
396  }
397
398  if (common_flags()->print_suppressions)
399    PrintMatchedSuppressions();
400#ifndef SANITIZER_GO
401  if (flags()->print_benign)
402    PrintMatchedBenignRaces();
403#endif
404
405  failed = OnFinalize(failed);
406
407#if TSAN_COLLECT_STATS
408  StatAggregate(ctx->stat, thr->stat);
409  StatOutput(ctx->stat);
410#endif
411
412  return failed ? flags()->exitcode : 0;
413}
414
415#ifndef SANITIZER_GO
416void ForkBefore(ThreadState *thr, uptr pc) {
417  ctx->thread_registry->Lock();
418  ctx->report_mtx.Lock();
419}
420
421void ForkParentAfter(ThreadState *thr, uptr pc) {
422  ctx->report_mtx.Unlock();
423  ctx->thread_registry->Unlock();
424}
425
426void ForkChildAfter(ThreadState *thr, uptr pc) {
427  ctx->report_mtx.Unlock();
428  ctx->thread_registry->Unlock();
429
430  uptr nthread = 0;
431  ctx->thread_registry->GetNumberOfThreads(0, 0, &nthread /* alive threads */);
432  VPrintf(1, "ThreadSanitizer: forked new process with pid %d,"
433      " parent had %d threads\n", (int)internal_getpid(), (int)nthread);
434  if (nthread == 1) {
435    StartBackgroundThread();
436  } else {
437    // We've just forked a multi-threaded process. We cannot reasonably function
438    // after that (some mutexes may be locked before fork). So just enable
439    // ignores for everything in the hope that we will exec soon.
440    ctx->after_multithreaded_fork = true;
441    thr->ignore_interceptors++;
442    ThreadIgnoreBegin(thr, pc);
443    ThreadIgnoreSyncBegin(thr, pc);
444  }
445}
446#endif
447
448#ifdef SANITIZER_GO
449NOINLINE
450void GrowShadowStack(ThreadState *thr) {
451  const int sz = thr->shadow_stack_end - thr->shadow_stack;
452  const int newsz = 2 * sz;
453  uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack,
454      newsz * sizeof(uptr));
455  internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr));
456  internal_free(thr->shadow_stack);
457  thr->shadow_stack = newstack;
458  thr->shadow_stack_pos = newstack + sz;
459  thr->shadow_stack_end = newstack + newsz;
460}
461#endif
462
463u32 CurrentStackId(ThreadState *thr, uptr pc) {
464  if (thr->shadow_stack_pos == 0)  // May happen during bootstrap.
465    return 0;
466  if (pc != 0) {
467#ifndef SANITIZER_GO
468    DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
469#else
470    if (thr->shadow_stack_pos == thr->shadow_stack_end)
471      GrowShadowStack(thr);
472#endif
473    thr->shadow_stack_pos[0] = pc;
474    thr->shadow_stack_pos++;
475  }
476  u32 id = StackDepotPut(
477      StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack));
478  if (pc != 0)
479    thr->shadow_stack_pos--;
480  return id;
481}
482
483void TraceSwitch(ThreadState *thr) {
484  thr->nomalloc++;
485  Trace *thr_trace = ThreadTrace(thr->tid);
486  Lock l(&thr_trace->mtx);
487  unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % TraceParts();
488  TraceHeader *hdr = &thr_trace->headers[trace];
489  hdr->epoch0 = thr->fast_state.epoch();
490  ObtainCurrentStack(thr, 0, &hdr->stack0);
491  hdr->mset0 = thr->mset;
492  thr->nomalloc--;
493}
494
495Trace *ThreadTrace(int tid) {
496  return (Trace*)GetThreadTraceHeader(tid);
497}
498
499uptr TraceTopPC(ThreadState *thr) {
500  Event *events = (Event*)GetThreadTrace(thr->tid);
501  uptr pc = events[thr->fast_state.GetTracePos()];
502  return pc;
503}
504
505uptr TraceSize() {
506  return (uptr)(1ull << (kTracePartSizeBits + flags()->history_size + 1));
507}
508
509uptr TraceParts() {
510  return TraceSize() / kTracePartSize;
511}
512
513#ifndef SANITIZER_GO
514extern "C" void __tsan_trace_switch() {
515  TraceSwitch(cur_thread());
516}
517
518extern "C" void __tsan_report_race() {
519  ReportRace(cur_thread());
520}
521#endif
522
523ALWAYS_INLINE
524Shadow LoadShadow(u64 *p) {
525  u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed);
526  return Shadow(raw);
527}
528
529ALWAYS_INLINE
530void StoreShadow(u64 *sp, u64 s) {
531  atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed);
532}
533
534ALWAYS_INLINE
535void StoreIfNotYetStored(u64 *sp, u64 *s) {
536  StoreShadow(sp, *s);
537  *s = 0;
538}
539
540ALWAYS_INLINE
541void HandleRace(ThreadState *thr, u64 *shadow_mem,
542                              Shadow cur, Shadow old) {
543  thr->racy_state[0] = cur.raw();
544  thr->racy_state[1] = old.raw();
545  thr->racy_shadow_addr = shadow_mem;
546#ifndef SANITIZER_GO
547  HACKY_CALL(__tsan_report_race);
548#else
549  ReportRace(thr);
550#endif
551}
552
553static inline bool HappensBefore(Shadow old, ThreadState *thr) {
554  return thr->clock.get(old.TidWithIgnore()) >= old.epoch();
555}
556
557ALWAYS_INLINE
558void MemoryAccessImpl1(ThreadState *thr, uptr addr,
559    int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
560    u64 *shadow_mem, Shadow cur) {
561  StatInc(thr, StatMop);
562  StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
563  StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
564
565  // This potentially can live in an MMX/SSE scratch register.
566  // The required intrinsics are:
567  // __m128i _mm_move_epi64(__m128i*);
568  // _mm_storel_epi64(u64*, __m128i);
569  u64 store_word = cur.raw();
570
571  // scan all the shadow values and dispatch to 4 categories:
572  // same, replace, candidate and race (see comments below).
573  // we consider only 3 cases regarding access sizes:
574  // equal, intersect and not intersect. initially I considered
575  // larger and smaller as well, it allowed to replace some
576  // 'candidates' with 'same' or 'replace', but I think
577  // it's just not worth it (performance- and complexity-wise).
578
579  Shadow old(0);
580
581  // It release mode we manually unroll the loop,
582  // because empirically gcc generates better code this way.
583  // However, we can't afford unrolling in debug mode, because the function
584  // consumes almost 4K of stack. Gtest gives only 4K of stack to death test
585  // threads, which is not enough for the unrolled loop.
586#if SANITIZER_DEBUG
587  for (int idx = 0; idx < 4; idx++) {
588#include "tsan_update_shadow_word_inl.h"
589  }
590#else
591  int idx = 0;
592#include "tsan_update_shadow_word_inl.h"
593  idx = 1;
594#include "tsan_update_shadow_word_inl.h"
595  idx = 2;
596#include "tsan_update_shadow_word_inl.h"
597  idx = 3;
598#include "tsan_update_shadow_word_inl.h"
599#endif
600
601  // we did not find any races and had already stored
602  // the current access info, so we are done
603  if (LIKELY(store_word == 0))
604    return;
605  // choose a random candidate slot and replace it
606  StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word);
607  StatInc(thr, StatShadowReplace);
608  return;
609 RACE:
610  HandleRace(thr, shadow_mem, cur, old);
611  return;
612}
613
614void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
615    int size, bool kAccessIsWrite, bool kIsAtomic) {
616  while (size) {
617    int size1 = 1;
618    int kAccessSizeLog = kSizeLog1;
619    if (size >= 8 && (addr & ~7) == ((addr + 7) & ~7)) {
620      size1 = 8;
621      kAccessSizeLog = kSizeLog8;
622    } else if (size >= 4 && (addr & ~7) == ((addr + 3) & ~7)) {
623      size1 = 4;
624      kAccessSizeLog = kSizeLog4;
625    } else if (size >= 2 && (addr & ~7) == ((addr + 1) & ~7)) {
626      size1 = 2;
627      kAccessSizeLog = kSizeLog2;
628    }
629    MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic);
630    addr += size1;
631    size -= size1;
632  }
633}
634
635ALWAYS_INLINE
636bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
637  Shadow cur(a);
638  for (uptr i = 0; i < kShadowCnt; i++) {
639    Shadow old(LoadShadow(&s[i]));
640    if (Shadow::Addr0AndSizeAreEqual(cur, old) &&
641        old.TidWithIgnore() == cur.TidWithIgnore() &&
642        old.epoch() > sync_epoch &&
643        old.IsAtomic() == cur.IsAtomic() &&
644        old.IsRead() <= cur.IsRead())
645      return true;
646  }
647  return false;
648}
649
650#if defined(__SSE3__)
651#define SHUF(v0, v1, i0, i1, i2, i3) _mm_castps_si128(_mm_shuffle_ps( \
652    _mm_castsi128_ps(v0), _mm_castsi128_ps(v1), \
653    (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64))
654ALWAYS_INLINE
655bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
656  // This is an optimized version of ContainsSameAccessSlow.
657  // load current access into access[0:63]
658  const m128 access     = _mm_cvtsi64_si128(a);
659  // duplicate high part of access in addr0:
660  // addr0[0:31]        = access[32:63]
661  // addr0[32:63]       = access[32:63]
662  // addr0[64:95]       = access[32:63]
663  // addr0[96:127]      = access[32:63]
664  const m128 addr0      = SHUF(access, access, 1, 1, 1, 1);
665  // load 4 shadow slots
666  const m128 shadow0    = _mm_load_si128((__m128i*)s);
667  const m128 shadow1    = _mm_load_si128((__m128i*)s + 1);
668  // load high parts of 4 shadow slots into addr_vect:
669  // addr_vect[0:31]    = shadow0[32:63]
670  // addr_vect[32:63]   = shadow0[96:127]
671  // addr_vect[64:95]   = shadow1[32:63]
672  // addr_vect[96:127]  = shadow1[96:127]
673  m128 addr_vect        = SHUF(shadow0, shadow1, 1, 3, 1, 3);
674  if (!is_write) {
675    // set IsRead bit in addr_vect
676    const m128 rw_mask1 = _mm_cvtsi64_si128(1<<15);
677    const m128 rw_mask  = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0);
678    addr_vect           = _mm_or_si128(addr_vect, rw_mask);
679  }
680  // addr0 == addr_vect?
681  const m128 addr_res   = _mm_cmpeq_epi32(addr0, addr_vect);
682  // epoch1[0:63]       = sync_epoch
683  const m128 epoch1     = _mm_cvtsi64_si128(sync_epoch);
684  // epoch[0:31]        = sync_epoch[0:31]
685  // epoch[32:63]       = sync_epoch[0:31]
686  // epoch[64:95]       = sync_epoch[0:31]
687  // epoch[96:127]      = sync_epoch[0:31]
688  const m128 epoch      = SHUF(epoch1, epoch1, 0, 0, 0, 0);
689  // load low parts of shadow cell epochs into epoch_vect:
690  // epoch_vect[0:31]   = shadow0[0:31]
691  // epoch_vect[32:63]  = shadow0[64:95]
692  // epoch_vect[64:95]  = shadow1[0:31]
693  // epoch_vect[96:127] = shadow1[64:95]
694  const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2);
695  // epoch_vect >= sync_epoch?
696  const m128 epoch_res  = _mm_cmpgt_epi32(epoch_vect, epoch);
697  // addr_res & epoch_res
698  const m128 res        = _mm_and_si128(addr_res, epoch_res);
699  // mask[0] = res[7]
700  // mask[1] = res[15]
701  // ...
702  // mask[15] = res[127]
703  const int mask        = _mm_movemask_epi8(res);
704  return mask != 0;
705}
706#endif
707
708ALWAYS_INLINE
709bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
710#if defined(__SSE3__)
711  bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write);
712  // NOTE: this check can fail if the shadow is concurrently mutated
713  // by other threads. But it still can be useful if you modify
714  // ContainsSameAccessFast and want to ensure that it's not completely broken.
715  // DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write));
716  return res;
717#else
718  return ContainsSameAccessSlow(s, a, sync_epoch, is_write);
719#endif
720}
721
722ALWAYS_INLINE USED
723void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
724    int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic) {
725  u64 *shadow_mem = (u64*)MemToShadow(addr);
726  DPrintf2("#%d: MemoryAccess: @%p %p size=%d"
727      " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n",
728      (int)thr->fast_state.tid(), (void*)pc, (void*)addr,
729      (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem,
730      (uptr)shadow_mem[0], (uptr)shadow_mem[1],
731      (uptr)shadow_mem[2], (uptr)shadow_mem[3]);
732#if SANITIZER_DEBUG
733  if (!IsAppMem(addr)) {
734    Printf("Access to non app mem %zx\n", addr);
735    DCHECK(IsAppMem(addr));
736  }
737  if (!IsShadowMem((uptr)shadow_mem)) {
738    Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
739    DCHECK(IsShadowMem((uptr)shadow_mem));
740  }
741#endif
742
743  if (kCppMode && *shadow_mem == kShadowRodata) {
744    // Access to .rodata section, no races here.
745    // Measurements show that it can be 10-20% of all memory accesses.
746    StatInc(thr, StatMop);
747    StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
748    StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
749    StatInc(thr, StatMopRodata);
750    return;
751  }
752
753  FastState fast_state = thr->fast_state;
754  if (fast_state.GetIgnoreBit()) {
755    StatInc(thr, StatMop);
756    StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
757    StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
758    StatInc(thr, StatMopIgnored);
759    return;
760  }
761
762  Shadow cur(fast_state);
763  cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog);
764  cur.SetWrite(kAccessIsWrite);
765  cur.SetAtomic(kIsAtomic);
766
767  if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
768      thr->fast_synch_epoch, kAccessIsWrite))) {
769    StatInc(thr, StatMop);
770    StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
771    StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
772    StatInc(thr, StatMopSame);
773    return;
774  }
775
776  if (kCollectHistory) {
777    fast_state.IncrementEpoch();
778    thr->fast_state = fast_state;
779    TraceAddEvent(thr, fast_state, EventTypeMop, pc);
780    cur.IncrementEpoch();
781  }
782
783  MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
784      shadow_mem, cur);
785}
786
787// Called by MemoryAccessRange in tsan_rtl_thread.cc
788ALWAYS_INLINE USED
789void MemoryAccessImpl(ThreadState *thr, uptr addr,
790    int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
791    u64 *shadow_mem, Shadow cur) {
792  if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
793      thr->fast_synch_epoch, kAccessIsWrite))) {
794    StatInc(thr, StatMop);
795    StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
796    StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
797    StatInc(thr, StatMopSame);
798    return;
799  }
800
801  MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
802      shadow_mem, cur);
803}
804
805static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size,
806                           u64 val) {
807  (void)thr;
808  (void)pc;
809  if (size == 0)
810    return;
811  // FIXME: fix me.
812  uptr offset = addr % kShadowCell;
813  if (offset) {
814    offset = kShadowCell - offset;
815    if (size <= offset)
816      return;
817    addr += offset;
818    size -= offset;
819  }
820  DCHECK_EQ(addr % 8, 0);
821  // If a user passes some insane arguments (memset(0)),
822  // let it just crash as usual.
823  if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
824    return;
825  // Don't want to touch lots of shadow memory.
826  // If a program maps 10MB stack, there is no need reset the whole range.
827  size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1);
828  // UnmapOrDie/MmapFixedNoReserve does not work on Windows,
829  // so we do it only for C/C++.
830  if (kGoMode || size < common_flags()->clear_shadow_mmap_threshold) {
831    u64 *p = (u64*)MemToShadow(addr);
832    CHECK(IsShadowMem((uptr)p));
833    CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1)));
834    // FIXME: may overwrite a part outside the region
835    for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) {
836      p[i++] = val;
837      for (uptr j = 1; j < kShadowCnt; j++)
838        p[i++] = 0;
839    }
840  } else {
841    // The region is big, reset only beginning and end.
842    const uptr kPageSize = GetPageSizeCached();
843    u64 *begin = (u64*)MemToShadow(addr);
844    u64 *end = begin + size / kShadowCell * kShadowCnt;
845    u64 *p = begin;
846    // Set at least first kPageSize/2 to page boundary.
847    while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) {
848      *p++ = val;
849      for (uptr j = 1; j < kShadowCnt; j++)
850        *p++ = 0;
851    }
852    // Reset middle part.
853    u64 *p1 = p;
854    p = RoundDown(end, kPageSize);
855    UnmapOrDie((void*)p1, (uptr)p - (uptr)p1);
856    MmapFixedNoReserve((uptr)p1, (uptr)p - (uptr)p1);
857    // Set the ending.
858    while (p < end) {
859      *p++ = val;
860      for (uptr j = 1; j < kShadowCnt; j++)
861        *p++ = 0;
862    }
863  }
864}
865
866void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) {
867  MemoryRangeSet(thr, pc, addr, size, 0);
868}
869
870void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) {
871  // Processing more than 1k (4k of shadow) is expensive,
872  // can cause excessive memory consumption (user does not necessary touch
873  // the whole range) and most likely unnecessary.
874  if (size > 1024)
875    size = 1024;
876  CHECK_EQ(thr->is_freeing, false);
877  thr->is_freeing = true;
878  MemoryAccessRange(thr, pc, addr, size, true);
879  thr->is_freeing = false;
880  if (kCollectHistory) {
881    thr->fast_state.IncrementEpoch();
882    TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
883  }
884  Shadow s(thr->fast_state);
885  s.ClearIgnoreBit();
886  s.MarkAsFreed();
887  s.SetWrite(true);
888  s.SetAddr0AndSizeLog(0, 3);
889  MemoryRangeSet(thr, pc, addr, size, s.raw());
890}
891
892void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) {
893  if (kCollectHistory) {
894    thr->fast_state.IncrementEpoch();
895    TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
896  }
897  Shadow s(thr->fast_state);
898  s.ClearIgnoreBit();
899  s.SetWrite(true);
900  s.SetAddr0AndSizeLog(0, 3);
901  MemoryRangeSet(thr, pc, addr, size, s.raw());
902}
903
904ALWAYS_INLINE USED
905void FuncEntry(ThreadState *thr, uptr pc) {
906  StatInc(thr, StatFuncEnter);
907  DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc);
908  if (kCollectHistory) {
909    thr->fast_state.IncrementEpoch();
910    TraceAddEvent(thr, thr->fast_state, EventTypeFuncEnter, pc);
911  }
912
913  // Shadow stack maintenance can be replaced with
914  // stack unwinding during trace switch (which presumably must be faster).
915  DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack);
916#ifndef SANITIZER_GO
917  DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
918#else
919  if (thr->shadow_stack_pos == thr->shadow_stack_end)
920    GrowShadowStack(thr);
921#endif
922  thr->shadow_stack_pos[0] = pc;
923  thr->shadow_stack_pos++;
924}
925
926ALWAYS_INLINE USED
927void FuncExit(ThreadState *thr) {
928  StatInc(thr, StatFuncExit);
929  DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid());
930  if (kCollectHistory) {
931    thr->fast_state.IncrementEpoch();
932    TraceAddEvent(thr, thr->fast_state, EventTypeFuncExit, 0);
933  }
934
935  DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack);
936#ifndef SANITIZER_GO
937  DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
938#endif
939  thr->shadow_stack_pos--;
940}
941
942void ThreadIgnoreBegin(ThreadState *thr, uptr pc) {
943  DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid);
944  thr->ignore_reads_and_writes++;
945  CHECK_GT(thr->ignore_reads_and_writes, 0);
946  thr->fast_state.SetIgnoreBit();
947#ifndef SANITIZER_GO
948  if (!ctx->after_multithreaded_fork)
949    thr->mop_ignore_set.Add(CurrentStackId(thr, pc));
950#endif
951}
952
953void ThreadIgnoreEnd(ThreadState *thr, uptr pc) {
954  DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid);
955  thr->ignore_reads_and_writes--;
956  CHECK_GE(thr->ignore_reads_and_writes, 0);
957  if (thr->ignore_reads_and_writes == 0) {
958    thr->fast_state.ClearIgnoreBit();
959#ifndef SANITIZER_GO
960    thr->mop_ignore_set.Reset();
961#endif
962  }
963}
964
965void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc) {
966  DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid);
967  thr->ignore_sync++;
968  CHECK_GT(thr->ignore_sync, 0);
969#ifndef SANITIZER_GO
970  if (!ctx->after_multithreaded_fork)
971    thr->sync_ignore_set.Add(CurrentStackId(thr, pc));
972#endif
973}
974
975void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc) {
976  DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid);
977  thr->ignore_sync--;
978  CHECK_GE(thr->ignore_sync, 0);
979#ifndef SANITIZER_GO
980  if (thr->ignore_sync == 0)
981    thr->sync_ignore_set.Reset();
982#endif
983}
984
985bool MD5Hash::operator==(const MD5Hash &other) const {
986  return hash[0] == other.hash[0] && hash[1] == other.hash[1];
987}
988
989#if SANITIZER_DEBUG
990void build_consistency_debug() {}
991#else
992void build_consistency_release() {}
993#endif
994
995#if TSAN_COLLECT_STATS
996void build_consistency_stats() {}
997#else
998void build_consistency_nostats() {}
999#endif
1000
1001}  // namespace __tsan
1002
1003#ifndef SANITIZER_GO
1004// Must be included in this file to make sure everything is inlined.
1005#include "tsan_interface_inl.h"
1006#endif
1007