1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
7//
8// This Source Code Form is subject to the terms of the Mozilla
9// Public License v. 2.0. If a copy of the MPL was not distributed
10// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11
12#ifndef EIGEN_TRANSFORM_H
13#define EIGEN_TRANSFORM_H
14
15namespace Eigen {
16
17namespace internal {
18
19template<typename Transform>
20struct transform_traits
21{
22  enum
23  {
24    Dim = Transform::Dim,
25    HDim = Transform::HDim,
26    Mode = Transform::Mode,
27    IsProjective = (int(Mode)==int(Projective))
28  };
29};
30
31template< typename TransformType,
32          typename MatrixType,
33          int Case = transform_traits<TransformType>::IsProjective ? 0
34                   : int(MatrixType::RowsAtCompileTime) == int(transform_traits<TransformType>::HDim) ? 1
35                   : 2>
36struct transform_right_product_impl;
37
38template< typename Other,
39          int Mode,
40          int Options,
41          int Dim,
42          int HDim,
43          int OtherRows=Other::RowsAtCompileTime,
44          int OtherCols=Other::ColsAtCompileTime>
45struct transform_left_product_impl;
46
47template< typename Lhs,
48          typename Rhs,
49          bool AnyProjective =
50            transform_traits<Lhs>::IsProjective ||
51            transform_traits<Rhs>::IsProjective>
52struct transform_transform_product_impl;
53
54template< typename Other,
55          int Mode,
56          int Options,
57          int Dim,
58          int HDim,
59          int OtherRows=Other::RowsAtCompileTime,
60          int OtherCols=Other::ColsAtCompileTime>
61struct transform_construct_from_matrix;
62
63template<typename TransformType> struct transform_take_affine_part;
64
65template<int Mode> struct transform_make_affine;
66
67} // end namespace internal
68
69/** \geometry_module \ingroup Geometry_Module
70  *
71  * \class Transform
72  *
73  * \brief Represents an homogeneous transformation in a N dimensional space
74  *
75  * \tparam _Scalar the scalar type, i.e., the type of the coefficients
76  * \tparam _Dim the dimension of the space
77  * \tparam _Mode the type of the transformation. Can be:
78  *              - #Affine: the transformation is stored as a (Dim+1)^2 matrix,
79  *                         where the last row is assumed to be [0 ... 0 1].
80  *              - #AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix.
81  *              - #Projective: the transformation is stored as a (Dim+1)^2 matrix
82  *                             without any assumption.
83  * \tparam _Options has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor.
84  *                  These Options are passed directly to the underlying matrix type.
85  *
86  * The homography is internally represented and stored by a matrix which
87  * is available through the matrix() method. To understand the behavior of
88  * this class you have to think a Transform object as its internal
89  * matrix representation. The chosen convention is right multiply:
90  *
91  * \code v' = T * v \endcode
92  *
93  * Therefore, an affine transformation matrix M is shaped like this:
94  *
95  * \f$ \left( \begin{array}{cc}
96  * linear & translation\\
97  * 0 ... 0 & 1
98  * \end{array} \right) \f$
99  *
100  * Note that for a projective transformation the last row can be anything,
101  * and then the interpretation of different parts might be sightly different.
102  *
103  * However, unlike a plain matrix, the Transform class provides many features
104  * simplifying both its assembly and usage. In particular, it can be composed
105  * with any other transformations (Transform,Translation,RotationBase,Matrix)
106  * and can be directly used to transform implicit homogeneous vectors. All these
107  * operations are handled via the operator*. For the composition of transformations,
108  * its principle consists to first convert the right/left hand sides of the product
109  * to a compatible (Dim+1)^2 matrix and then perform a pure matrix product.
110  * Of course, internally, operator* tries to perform the minimal number of operations
111  * according to the nature of each terms. Likewise, when applying the transform
112  * to non homogeneous vectors, the latters are automatically promoted to homogeneous
113  * one before doing the matrix product. The convertions to homogeneous representations
114  * are performed as follow:
115  *
116  * \b Translation t (Dim)x(1):
117  * \f$ \left( \begin{array}{cc}
118  * I & t \\
119  * 0\,...\,0 & 1
120  * \end{array} \right) \f$
121  *
122  * \b Rotation R (Dim)x(Dim):
123  * \f$ \left( \begin{array}{cc}
124  * R & 0\\
125  * 0\,...\,0 & 1
126  * \end{array} \right) \f$
127  *
128  * \b Linear \b Matrix L (Dim)x(Dim):
129  * \f$ \left( \begin{array}{cc}
130  * L & 0\\
131  * 0\,...\,0 & 1
132  * \end{array} \right) \f$
133  *
134  * \b Affine \b Matrix A (Dim)x(Dim+1):
135  * \f$ \left( \begin{array}{c}
136  * A\\
137  * 0\,...\,0\,1
138  * \end{array} \right) \f$
139  *
140  * \b Column \b vector v (Dim)x(1):
141  * \f$ \left( \begin{array}{c}
142  * v\\
143  * 1
144  * \end{array} \right) \f$
145  *
146  * \b Set \b of \b column \b vectors V1...Vn (Dim)x(n):
147  * \f$ \left( \begin{array}{ccc}
148  * v_1 & ... & v_n\\
149  * 1 & ... & 1
150  * \end{array} \right) \f$
151  *
152  * The concatenation of a Transform object with any kind of other transformation
153  * always returns a Transform object.
154  *
155  * A little exception to the "as pure matrix product" rule is the case of the
156  * transformation of non homogeneous vectors by an affine transformation. In
157  * that case the last matrix row can be ignored, and the product returns non
158  * homogeneous vectors.
159  *
160  * Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation,
161  * it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix.
162  * The solution is either to use a Dim x Dynamic matrix or explicitly request a
163  * vector transformation by making the vector homogeneous:
164  * \code
165  * m' = T * m.colwise().homogeneous();
166  * \endcode
167  * Note that there is zero overhead.
168  *
169  * Conversion methods from/to Qt's QMatrix and QTransform are available if the
170  * preprocessor token EIGEN_QT_SUPPORT is defined.
171  *
172  * This class can be extended with the help of the plugin mechanism described on the page
173  * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_TRANSFORM_PLUGIN.
174  *
175  * \sa class Matrix, class Quaternion
176  */
177template<typename _Scalar, int _Dim, int _Mode, int _Options>
178class Transform
179{
180public:
181  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1))
182  enum {
183    Mode = _Mode,
184    Options = _Options,
185    Dim = _Dim,     ///< space dimension in which the transformation holds
186    HDim = _Dim+1,  ///< size of a respective homogeneous vector
187    Rows = int(Mode)==(AffineCompact) ? Dim : HDim
188  };
189  /** the scalar type of the coefficients */
190  typedef _Scalar Scalar;
191  typedef DenseIndex Index;
192  /** type of the matrix used to represent the transformation */
193  typedef typename internal::make_proper_matrix_type<Scalar,Rows,HDim,Options>::type MatrixType;
194  /** constified MatrixType */
195  typedef const MatrixType ConstMatrixType;
196  /** type of the matrix used to represent the linear part of the transformation */
197  typedef Matrix<Scalar,Dim,Dim,Options> LinearMatrixType;
198  /** type of read/write reference to the linear part of the transformation */
199  typedef Block<MatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> LinearPart;
200  /** type of read reference to the linear part of the transformation */
201  typedef const Block<ConstMatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> ConstLinearPart;
202  /** type of read/write reference to the affine part of the transformation */
203  typedef typename internal::conditional<int(Mode)==int(AffineCompact),
204                              MatrixType&,
205                              Block<MatrixType,Dim,HDim> >::type AffinePart;
206  /** type of read reference to the affine part of the transformation */
207  typedef typename internal::conditional<int(Mode)==int(AffineCompact),
208                              const MatrixType&,
209                              const Block<const MatrixType,Dim,HDim> >::type ConstAffinePart;
210  /** type of a vector */
211  typedef Matrix<Scalar,Dim,1> VectorType;
212  /** type of a read/write reference to the translation part of the rotation */
213  typedef Block<MatrixType,Dim,1,int(Mode)==(AffineCompact)> TranslationPart;
214  /** type of a read reference to the translation part of the rotation */
215  typedef const Block<ConstMatrixType,Dim,1,int(Mode)==(AffineCompact)> ConstTranslationPart;
216  /** corresponding translation type */
217  typedef Translation<Scalar,Dim> TranslationType;
218
219  // this intermediate enum is needed to avoid an ICE with gcc 3.4 and 4.0
220  enum { TransformTimeDiagonalMode = ((Mode==int(Isometry))?Affine:int(Mode)) };
221  /** The return type of the product between a diagonal matrix and a transform */
222  typedef Transform<Scalar,Dim,TransformTimeDiagonalMode> TransformTimeDiagonalReturnType;
223
224protected:
225
226  MatrixType m_matrix;
227
228public:
229
230  /** Default constructor without initialization of the meaningful coefficients.
231    * If Mode==Affine, then the last row is set to [0 ... 0 1] */
232  inline Transform()
233  {
234    check_template_params();
235    internal::transform_make_affine<(int(Mode)==Affine) ? Affine : AffineCompact>::run(m_matrix);
236  }
237
238  inline Transform(const Transform& other)
239  {
240    check_template_params();
241    m_matrix = other.m_matrix;
242  }
243
244  inline explicit Transform(const TranslationType& t)
245  {
246    check_template_params();
247    *this = t;
248  }
249  inline explicit Transform(const UniformScaling<Scalar>& s)
250  {
251    check_template_params();
252    *this = s;
253  }
254  template<typename Derived>
255  inline explicit Transform(const RotationBase<Derived, Dim>& r)
256  {
257    check_template_params();
258    *this = r;
259  }
260
261  inline Transform& operator=(const Transform& other)
262  { m_matrix = other.m_matrix; return *this; }
263
264  typedef internal::transform_take_affine_part<Transform> take_affine_part;
265
266  /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */
267  template<typename OtherDerived>
268  inline explicit Transform(const EigenBase<OtherDerived>& other)
269  {
270    EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value),
271      YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY);
272
273    check_template_params();
274    internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived());
275  }
276
277  /** Set \c *this from a Dim^2 or (Dim+1)^2 matrix. */
278  template<typename OtherDerived>
279  inline Transform& operator=(const EigenBase<OtherDerived>& other)
280  {
281    EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value),
282      YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY);
283
284    internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived());
285    return *this;
286  }
287
288  template<int OtherOptions>
289  inline Transform(const Transform<Scalar,Dim,Mode,OtherOptions>& other)
290  {
291    check_template_params();
292    // only the options change, we can directly copy the matrices
293    m_matrix = other.matrix();
294  }
295
296  template<int OtherMode,int OtherOptions>
297  inline Transform(const Transform<Scalar,Dim,OtherMode,OtherOptions>& other)
298  {
299    check_template_params();
300    // prevent conversions as:
301    // Affine | AffineCompact | Isometry = Projective
302    EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Projective), Mode==int(Projective)),
303                        YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION)
304
305    // prevent conversions as:
306    // Isometry = Affine | AffineCompact
307    EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Affine)||OtherMode==int(AffineCompact), Mode!=int(Isometry)),
308                        YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION)
309
310    enum { ModeIsAffineCompact = Mode == int(AffineCompact),
311           OtherModeIsAffineCompact = OtherMode == int(AffineCompact)
312    };
313
314    if(ModeIsAffineCompact == OtherModeIsAffineCompact)
315    {
316      // We need the block expression because the code is compiled for all
317      // combinations of transformations and will trigger a compile time error
318      // if one tries to assign the matrices directly
319      m_matrix.template block<Dim,Dim+1>(0,0) = other.matrix().template block<Dim,Dim+1>(0,0);
320      makeAffine();
321    }
322    else if(OtherModeIsAffineCompact)
323    {
324      typedef typename Transform<Scalar,Dim,OtherMode,OtherOptions>::MatrixType OtherMatrixType;
325      internal::transform_construct_from_matrix<OtherMatrixType,Mode,Options,Dim,HDim>::run(this, other.matrix());
326    }
327    else
328    {
329      // here we know that Mode == AffineCompact and OtherMode != AffineCompact.
330      // if OtherMode were Projective, the static assert above would already have caught it.
331      // So the only possibility is that OtherMode == Affine
332      linear() = other.linear();
333      translation() = other.translation();
334    }
335  }
336
337  template<typename OtherDerived>
338  Transform(const ReturnByValue<OtherDerived>& other)
339  {
340    check_template_params();
341    other.evalTo(*this);
342  }
343
344  template<typename OtherDerived>
345  Transform& operator=(const ReturnByValue<OtherDerived>& other)
346  {
347    other.evalTo(*this);
348    return *this;
349  }
350
351  #ifdef EIGEN_QT_SUPPORT
352  inline Transform(const QMatrix& other);
353  inline Transform& operator=(const QMatrix& other);
354  inline QMatrix toQMatrix(void) const;
355  inline Transform(const QTransform& other);
356  inline Transform& operator=(const QTransform& other);
357  inline QTransform toQTransform(void) const;
358  #endif
359
360  /** shortcut for m_matrix(row,col);
361    * \sa MatrixBase::operator(Index,Index) const */
362  inline Scalar operator() (Index row, Index col) const { return m_matrix(row,col); }
363  /** shortcut for m_matrix(row,col);
364    * \sa MatrixBase::operator(Index,Index) */
365  inline Scalar& operator() (Index row, Index col) { return m_matrix(row,col); }
366
367  /** \returns a read-only expression of the transformation matrix */
368  inline const MatrixType& matrix() const { return m_matrix; }
369  /** \returns a writable expression of the transformation matrix */
370  inline MatrixType& matrix() { return m_matrix; }
371
372  /** \returns a read-only expression of the linear part of the transformation */
373  inline ConstLinearPart linear() const { return ConstLinearPart(m_matrix,0,0); }
374  /** \returns a writable expression of the linear part of the transformation */
375  inline LinearPart linear() { return LinearPart(m_matrix,0,0); }
376
377  /** \returns a read-only expression of the Dim x HDim affine part of the transformation */
378  inline ConstAffinePart affine() const { return take_affine_part::run(m_matrix); }
379  /** \returns a writable expression of the Dim x HDim affine part of the transformation */
380  inline AffinePart affine() { return take_affine_part::run(m_matrix); }
381
382  /** \returns a read-only expression of the translation vector of the transformation */
383  inline ConstTranslationPart translation() const { return ConstTranslationPart(m_matrix,0,Dim); }
384  /** \returns a writable expression of the translation vector of the transformation */
385  inline TranslationPart translation() { return TranslationPart(m_matrix,0,Dim); }
386
387  /** \returns an expression of the product between the transform \c *this and a matrix expression \a other
388    *
389    * The right hand side \a other might be either:
390    * \li a vector of size Dim,
391    * \li an homogeneous vector of size Dim+1,
392    * \li a set of vectors of size Dim x Dynamic,
393    * \li a set of homogeneous vectors of size Dim+1 x Dynamic,
394    * \li a linear transformation matrix of size Dim x Dim,
395    * \li an affine transformation matrix of size Dim x Dim+1,
396    * \li a transformation matrix of size Dim+1 x Dim+1.
397    */
398  // note: this function is defined here because some compilers cannot find the respective declaration
399  template<typename OtherDerived>
400  EIGEN_STRONG_INLINE const typename internal::transform_right_product_impl<Transform, OtherDerived>::ResultType
401  operator * (const EigenBase<OtherDerived> &other) const
402  { return internal::transform_right_product_impl<Transform, OtherDerived>::run(*this,other.derived()); }
403
404  /** \returns the product expression of a transformation matrix \a a times a transform \a b
405    *
406    * The left hand side \a other might be either:
407    * \li a linear transformation matrix of size Dim x Dim,
408    * \li an affine transformation matrix of size Dim x Dim+1,
409    * \li a general transformation matrix of size Dim+1 x Dim+1.
410    */
411  template<typename OtherDerived> friend
412  inline const typename internal::transform_left_product_impl<OtherDerived,Mode,Options,_Dim,_Dim+1>::ResultType
413    operator * (const EigenBase<OtherDerived> &a, const Transform &b)
414  { return internal::transform_left_product_impl<OtherDerived,Mode,Options,Dim,HDim>::run(a.derived(),b); }
415
416  /** \returns The product expression of a transform \a a times a diagonal matrix \a b
417    *
418    * The rhs diagonal matrix is interpreted as an affine scaling transformation. The
419    * product results in a Transform of the same type (mode) as the lhs only if the lhs
420    * mode is no isometry. In that case, the returned transform is an affinity.
421    */
422  template<typename DiagonalDerived>
423  inline const TransformTimeDiagonalReturnType
424    operator * (const DiagonalBase<DiagonalDerived> &b) const
425  {
426    TransformTimeDiagonalReturnType res(*this);
427    res.linear() *= b;
428    return res;
429  }
430
431  /** \returns The product expression of a diagonal matrix \a a times a transform \a b
432    *
433    * The lhs diagonal matrix is interpreted as an affine scaling transformation. The
434    * product results in a Transform of the same type (mode) as the lhs only if the lhs
435    * mode is no isometry. In that case, the returned transform is an affinity.
436    */
437  template<typename DiagonalDerived>
438  friend inline TransformTimeDiagonalReturnType
439    operator * (const DiagonalBase<DiagonalDerived> &a, const Transform &b)
440  {
441    TransformTimeDiagonalReturnType res;
442    res.linear().noalias() = a*b.linear();
443    res.translation().noalias() = a*b.translation();
444    if (Mode!=int(AffineCompact))
445      res.matrix().row(Dim) = b.matrix().row(Dim);
446    return res;
447  }
448
449  template<typename OtherDerived>
450  inline Transform& operator*=(const EigenBase<OtherDerived>& other) { return *this = *this * other; }
451
452  /** Concatenates two transformations */
453  inline const Transform operator * (const Transform& other) const
454  {
455    return internal::transform_transform_product_impl<Transform,Transform>::run(*this,other);
456  }
457
458  #ifdef __INTEL_COMPILER
459private:
460  // this intermediate structure permits to workaround a bug in ICC 11:
461  //   error: template instantiation resulted in unexpected function type of "Eigen::Transform<double, 3, 32, 0>
462  //             (const Eigen::Transform<double, 3, 2, 0> &) const"
463  //  (the meaning of a name may have changed since the template declaration -- the type of the template is:
464  // "Eigen::internal::transform_transform_product_impl<Eigen::Transform<double, 3, 32, 0>,
465  //     Eigen::Transform<double, 3, Mode, Options>, <expression>>::ResultType (const Eigen::Transform<double, 3, Mode, Options> &) const")
466  //
467  template<int OtherMode,int OtherOptions> struct icc_11_workaround
468  {
469    typedef internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> > ProductType;
470    typedef typename ProductType::ResultType ResultType;
471  };
472
473public:
474  /** Concatenates two different transformations */
475  template<int OtherMode,int OtherOptions>
476  inline typename icc_11_workaround<OtherMode,OtherOptions>::ResultType
477    operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const
478  {
479    typedef typename icc_11_workaround<OtherMode,OtherOptions>::ProductType ProductType;
480    return ProductType::run(*this,other);
481  }
482  #else
483  /** Concatenates two different transformations */
484  template<int OtherMode,int OtherOptions>
485  inline typename internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::ResultType
486    operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const
487  {
488    return internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::run(*this,other);
489  }
490  #endif
491
492  /** \sa MatrixBase::setIdentity() */
493  void setIdentity() { m_matrix.setIdentity(); }
494
495  /**
496   * \brief Returns an identity transformation.
497   * \todo In the future this function should be returning a Transform expression.
498   */
499  static const Transform Identity()
500  {
501    return Transform(MatrixType::Identity());
502  }
503
504  template<typename OtherDerived>
505  inline Transform& scale(const MatrixBase<OtherDerived> &other);
506
507  template<typename OtherDerived>
508  inline Transform& prescale(const MatrixBase<OtherDerived> &other);
509
510  inline Transform& scale(const Scalar& s);
511  inline Transform& prescale(const Scalar& s);
512
513  template<typename OtherDerived>
514  inline Transform& translate(const MatrixBase<OtherDerived> &other);
515
516  template<typename OtherDerived>
517  inline Transform& pretranslate(const MatrixBase<OtherDerived> &other);
518
519  template<typename RotationType>
520  inline Transform& rotate(const RotationType& rotation);
521
522  template<typename RotationType>
523  inline Transform& prerotate(const RotationType& rotation);
524
525  Transform& shear(const Scalar& sx, const Scalar& sy);
526  Transform& preshear(const Scalar& sx, const Scalar& sy);
527
528  inline Transform& operator=(const TranslationType& t);
529  inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); }
530  inline Transform operator*(const TranslationType& t) const;
531
532  inline Transform& operator=(const UniformScaling<Scalar>& t);
533  inline Transform& operator*=(const UniformScaling<Scalar>& s) { return scale(s.factor()); }
534  inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?int(Affine):int(Mode))> operator*(const UniformScaling<Scalar>& s) const
535  {
536    Transform<Scalar,Dim,(int(Mode)==int(Isometry)?int(Affine):int(Mode)),Options> res = *this;
537    res.scale(s.factor());
538    return res;
539  }
540
541  inline Transform& operator*=(const DiagonalMatrix<Scalar,Dim>& s) { linear() *= s; return *this; }
542
543  template<typename Derived>
544  inline Transform& operator=(const RotationBase<Derived,Dim>& r);
545  template<typename Derived>
546  inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); }
547  template<typename Derived>
548  inline Transform operator*(const RotationBase<Derived,Dim>& r) const;
549
550  const LinearMatrixType rotation() const;
551  template<typename RotationMatrixType, typename ScalingMatrixType>
552  void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const;
553  template<typename ScalingMatrixType, typename RotationMatrixType>
554  void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const;
555
556  template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
557  Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
558    const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);
559
560  inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const;
561
562  /** \returns a const pointer to the column major internal matrix */
563  const Scalar* data() const { return m_matrix.data(); }
564  /** \returns a non-const pointer to the column major internal matrix */
565  Scalar* data() { return m_matrix.data(); }
566
567  /** \returns \c *this with scalar type casted to \a NewScalarType
568    *
569    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
570    * then this function smartly returns a const reference to \c *this.
571    */
572  template<typename NewScalarType>
573  inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type cast() const
574  { return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type(*this); }
575
576  /** Copy constructor with scalar type conversion */
577  template<typename OtherScalarType>
578  inline explicit Transform(const Transform<OtherScalarType,Dim,Mode,Options>& other)
579  {
580    check_template_params();
581    m_matrix = other.matrix().template cast<Scalar>();
582  }
583
584  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
585    * determined by \a prec.
586    *
587    * \sa MatrixBase::isApprox() */
588  bool isApprox(const Transform& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
589  { return m_matrix.isApprox(other.m_matrix, prec); }
590
591  /** Sets the last row to [0 ... 0 1]
592    */
593  void makeAffine()
594  {
595    internal::transform_make_affine<int(Mode)>::run(m_matrix);
596  }
597
598  /** \internal
599    * \returns the Dim x Dim linear part if the transformation is affine,
600    *          and the HDim x Dim part for projective transformations.
601    */
602  inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt()
603  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }
604  /** \internal
605    * \returns the Dim x Dim linear part if the transformation is affine,
606    *          and the HDim x Dim part for projective transformations.
607    */
608  inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() const
609  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }
610
611  /** \internal
612    * \returns the translation part if the transformation is affine,
613    *          and the last column for projective transformations.
614    */
615  inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt()
616  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }
617  /** \internal
618    * \returns the translation part if the transformation is affine,
619    *          and the last column for projective transformations.
620    */
621  inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() const
622  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }
623
624
625  #ifdef EIGEN_TRANSFORM_PLUGIN
626  #include EIGEN_TRANSFORM_PLUGIN
627  #endif
628
629protected:
630  #ifndef EIGEN_PARSED_BY_DOXYGEN
631    static EIGEN_STRONG_INLINE void check_template_params()
632    {
633      EIGEN_STATIC_ASSERT((Options & (DontAlign|RowMajor)) == Options, INVALID_MATRIX_TEMPLATE_PARAMETERS)
634    }
635  #endif
636
637};
638
639/** \ingroup Geometry_Module */
640typedef Transform<float,2,Isometry> Isometry2f;
641/** \ingroup Geometry_Module */
642typedef Transform<float,3,Isometry> Isometry3f;
643/** \ingroup Geometry_Module */
644typedef Transform<double,2,Isometry> Isometry2d;
645/** \ingroup Geometry_Module */
646typedef Transform<double,3,Isometry> Isometry3d;
647
648/** \ingroup Geometry_Module */
649typedef Transform<float,2,Affine> Affine2f;
650/** \ingroup Geometry_Module */
651typedef Transform<float,3,Affine> Affine3f;
652/** \ingroup Geometry_Module */
653typedef Transform<double,2,Affine> Affine2d;
654/** \ingroup Geometry_Module */
655typedef Transform<double,3,Affine> Affine3d;
656
657/** \ingroup Geometry_Module */
658typedef Transform<float,2,AffineCompact> AffineCompact2f;
659/** \ingroup Geometry_Module */
660typedef Transform<float,3,AffineCompact> AffineCompact3f;
661/** \ingroup Geometry_Module */
662typedef Transform<double,2,AffineCompact> AffineCompact2d;
663/** \ingroup Geometry_Module */
664typedef Transform<double,3,AffineCompact> AffineCompact3d;
665
666/** \ingroup Geometry_Module */
667typedef Transform<float,2,Projective> Projective2f;
668/** \ingroup Geometry_Module */
669typedef Transform<float,3,Projective> Projective3f;
670/** \ingroup Geometry_Module */
671typedef Transform<double,2,Projective> Projective2d;
672/** \ingroup Geometry_Module */
673typedef Transform<double,3,Projective> Projective3d;
674
675/**************************
676*** Optional QT support ***
677**************************/
678
679#ifdef EIGEN_QT_SUPPORT
680/** Initializes \c *this from a QMatrix assuming the dimension is 2.
681  *
682  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
683  */
684template<typename Scalar, int Dim, int Mode,int Options>
685Transform<Scalar,Dim,Mode,Options>::Transform(const QMatrix& other)
686{
687  check_template_params();
688  *this = other;
689}
690
691/** Set \c *this from a QMatrix assuming the dimension is 2.
692  *
693  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
694  */
695template<typename Scalar, int Dim, int Mode,int Options>
696Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QMatrix& other)
697{
698  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
699  m_matrix << other.m11(), other.m21(), other.dx(),
700              other.m12(), other.m22(), other.dy(),
701              0, 0, 1;
702  return *this;
703}
704
705/** \returns a QMatrix from \c *this assuming the dimension is 2.
706  *
707  * \warning this conversion might loss data if \c *this is not affine
708  *
709  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
710  */
711template<typename Scalar, int Dim, int Mode, int Options>
712QMatrix Transform<Scalar,Dim,Mode,Options>::toQMatrix(void) const
713{
714  check_template_params();
715  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
716  return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
717                 m_matrix.coeff(0,1), m_matrix.coeff(1,1),
718                 m_matrix.coeff(0,2), m_matrix.coeff(1,2));
719}
720
721/** Initializes \c *this from a QTransform assuming the dimension is 2.
722  *
723  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
724  */
725template<typename Scalar, int Dim, int Mode,int Options>
726Transform<Scalar,Dim,Mode,Options>::Transform(const QTransform& other)
727{
728  check_template_params();
729  *this = other;
730}
731
732/** Set \c *this from a QTransform assuming the dimension is 2.
733  *
734  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
735  */
736template<typename Scalar, int Dim, int Mode, int Options>
737Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QTransform& other)
738{
739  check_template_params();
740  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
741  if (Mode == int(AffineCompact))
742    m_matrix << other.m11(), other.m21(), other.dx(),
743                other.m12(), other.m22(), other.dy();
744  else
745    m_matrix << other.m11(), other.m21(), other.dx(),
746                other.m12(), other.m22(), other.dy(),
747                other.m13(), other.m23(), other.m33();
748  return *this;
749}
750
751/** \returns a QTransform from \c *this assuming the dimension is 2.
752  *
753  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
754  */
755template<typename Scalar, int Dim, int Mode, int Options>
756QTransform Transform<Scalar,Dim,Mode,Options>::toQTransform(void) const
757{
758  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
759  if (Mode == int(AffineCompact))
760    return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
761                      m_matrix.coeff(0,1), m_matrix.coeff(1,1),
762                      m_matrix.coeff(0,2), m_matrix.coeff(1,2));
763  else
764    return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0),
765                      m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1),
766                      m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2));
767}
768#endif
769
770/*********************
771*** Procedural API ***
772*********************/
773
774/** Applies on the right the non uniform scale transformation represented
775  * by the vector \a other to \c *this and returns a reference to \c *this.
776  * \sa prescale()
777  */
778template<typename Scalar, int Dim, int Mode, int Options>
779template<typename OtherDerived>
780Transform<Scalar,Dim,Mode,Options>&
781Transform<Scalar,Dim,Mode,Options>::scale(const MatrixBase<OtherDerived> &other)
782{
783  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
784  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
785  linearExt().noalias() = (linearExt() * other.asDiagonal());
786  return *this;
787}
788
789/** Applies on the right a uniform scale of a factor \a c to \c *this
790  * and returns a reference to \c *this.
791  * \sa prescale(Scalar)
792  */
793template<typename Scalar, int Dim, int Mode, int Options>
794inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::scale(const Scalar& s)
795{
796  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
797  linearExt() *= s;
798  return *this;
799}
800
801/** Applies on the left the non uniform scale transformation represented
802  * by the vector \a other to \c *this and returns a reference to \c *this.
803  * \sa scale()
804  */
805template<typename Scalar, int Dim, int Mode, int Options>
806template<typename OtherDerived>
807Transform<Scalar,Dim,Mode,Options>&
808Transform<Scalar,Dim,Mode,Options>::prescale(const MatrixBase<OtherDerived> &other)
809{
810  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
811  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
812  m_matrix.template block<Dim,HDim>(0,0).noalias() = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0));
813  return *this;
814}
815
816/** Applies on the left a uniform scale of a factor \a c to \c *this
817  * and returns a reference to \c *this.
818  * \sa scale(Scalar)
819  */
820template<typename Scalar, int Dim, int Mode, int Options>
821inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::prescale(const Scalar& s)
822{
823  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
824  m_matrix.template topRows<Dim>() *= s;
825  return *this;
826}
827
828/** Applies on the right the translation matrix represented by the vector \a other
829  * to \c *this and returns a reference to \c *this.
830  * \sa pretranslate()
831  */
832template<typename Scalar, int Dim, int Mode, int Options>
833template<typename OtherDerived>
834Transform<Scalar,Dim,Mode,Options>&
835Transform<Scalar,Dim,Mode,Options>::translate(const MatrixBase<OtherDerived> &other)
836{
837  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
838  translationExt() += linearExt() * other;
839  return *this;
840}
841
842/** Applies on the left the translation matrix represented by the vector \a other
843  * to \c *this and returns a reference to \c *this.
844  * \sa translate()
845  */
846template<typename Scalar, int Dim, int Mode, int Options>
847template<typename OtherDerived>
848Transform<Scalar,Dim,Mode,Options>&
849Transform<Scalar,Dim,Mode,Options>::pretranslate(const MatrixBase<OtherDerived> &other)
850{
851  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
852  if(int(Mode)==int(Projective))
853    affine() += other * m_matrix.row(Dim);
854  else
855    translation() += other;
856  return *this;
857}
858
859/** Applies on the right the rotation represented by the rotation \a rotation
860  * to \c *this and returns a reference to \c *this.
861  *
862  * The template parameter \a RotationType is the type of the rotation which
863  * must be known by internal::toRotationMatrix<>.
864  *
865  * Natively supported types includes:
866  *   - any scalar (2D),
867  *   - a Dim x Dim matrix expression,
868  *   - a Quaternion (3D),
869  *   - a AngleAxis (3D)
870  *
871  * This mechanism is easily extendable to support user types such as Euler angles,
872  * or a pair of Quaternion for 4D rotations.
873  *
874  * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType)
875  */
876template<typename Scalar, int Dim, int Mode, int Options>
877template<typename RotationType>
878Transform<Scalar,Dim,Mode,Options>&
879Transform<Scalar,Dim,Mode,Options>::rotate(const RotationType& rotation)
880{
881  linearExt() *= internal::toRotationMatrix<Scalar,Dim>(rotation);
882  return *this;
883}
884
885/** Applies on the left the rotation represented by the rotation \a rotation
886  * to \c *this and returns a reference to \c *this.
887  *
888  * See rotate() for further details.
889  *
890  * \sa rotate()
891  */
892template<typename Scalar, int Dim, int Mode, int Options>
893template<typename RotationType>
894Transform<Scalar,Dim,Mode,Options>&
895Transform<Scalar,Dim,Mode,Options>::prerotate(const RotationType& rotation)
896{
897  m_matrix.template block<Dim,HDim>(0,0) = internal::toRotationMatrix<Scalar,Dim>(rotation)
898                                         * m_matrix.template block<Dim,HDim>(0,0);
899  return *this;
900}
901
902/** Applies on the right the shear transformation represented
903  * by the vector \a other to \c *this and returns a reference to \c *this.
904  * \warning 2D only.
905  * \sa preshear()
906  */
907template<typename Scalar, int Dim, int Mode, int Options>
908Transform<Scalar,Dim,Mode,Options>&
909Transform<Scalar,Dim,Mode,Options>::shear(const Scalar& sx, const Scalar& sy)
910{
911  EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
912  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
913  VectorType tmp = linear().col(0)*sy + linear().col(1);
914  linear() << linear().col(0) + linear().col(1)*sx, tmp;
915  return *this;
916}
917
918/** Applies on the left the shear transformation represented
919  * by the vector \a other to \c *this and returns a reference to \c *this.
920  * \warning 2D only.
921  * \sa shear()
922  */
923template<typename Scalar, int Dim, int Mode, int Options>
924Transform<Scalar,Dim,Mode,Options>&
925Transform<Scalar,Dim,Mode,Options>::preshear(const Scalar& sx, const Scalar& sy)
926{
927  EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
928  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
929  m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
930  return *this;
931}
932
933/******************************************************
934*** Scaling, Translation and Rotation compatibility ***
935******************************************************/
936
937template<typename Scalar, int Dim, int Mode, int Options>
938inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const TranslationType& t)
939{
940  linear().setIdentity();
941  translation() = t.vector();
942  makeAffine();
943  return *this;
944}
945
946template<typename Scalar, int Dim, int Mode, int Options>
947inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const TranslationType& t) const
948{
949  Transform res = *this;
950  res.translate(t.vector());
951  return res;
952}
953
954template<typename Scalar, int Dim, int Mode, int Options>
955inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const UniformScaling<Scalar>& s)
956{
957  m_matrix.setZero();
958  linear().diagonal().fill(s.factor());
959  makeAffine();
960  return *this;
961}
962
963template<typename Scalar, int Dim, int Mode, int Options>
964template<typename Derived>
965inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const RotationBase<Derived,Dim>& r)
966{
967  linear() = internal::toRotationMatrix<Scalar,Dim>(r);
968  translation().setZero();
969  makeAffine();
970  return *this;
971}
972
973template<typename Scalar, int Dim, int Mode, int Options>
974template<typename Derived>
975inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const RotationBase<Derived,Dim>& r) const
976{
977  Transform res = *this;
978  res.rotate(r.derived());
979  return res;
980}
981
982/************************
983*** Special functions ***
984************************/
985
986/** \returns the rotation part of the transformation
987  *
988  *
989  * \svd_module
990  *
991  * \sa computeRotationScaling(), computeScalingRotation(), class SVD
992  */
993template<typename Scalar, int Dim, int Mode, int Options>
994const typename Transform<Scalar,Dim,Mode,Options>::LinearMatrixType
995Transform<Scalar,Dim,Mode,Options>::rotation() const
996{
997  LinearMatrixType result;
998  computeRotationScaling(&result, (LinearMatrixType*)0);
999  return result;
1000}
1001
1002
1003/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
1004  * not necessarily positive.
1005  *
1006  * If either pointer is zero, the corresponding computation is skipped.
1007  *
1008  *
1009  *
1010  * \svd_module
1011  *
1012  * \sa computeScalingRotation(), rotation(), class SVD
1013  */
1014template<typename Scalar, int Dim, int Mode, int Options>
1015template<typename RotationMatrixType, typename ScalingMatrixType>
1016void Transform<Scalar,Dim,Mode,Options>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const
1017{
1018  JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV);
1019
1020  Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
1021  VectorType sv(svd.singularValues());
1022  sv.coeffRef(0) *= x;
1023  if(scaling) scaling->lazyAssign(svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint());
1024  if(rotation)
1025  {
1026    LinearMatrixType m(svd.matrixU());
1027    m.col(0) /= x;
1028    rotation->lazyAssign(m * svd.matrixV().adjoint());
1029  }
1030}
1031
1032/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
1033  * not necessarily positive.
1034  *
1035  * If either pointer is zero, the corresponding computation is skipped.
1036  *
1037  *
1038  *
1039  * \svd_module
1040  *
1041  * \sa computeRotationScaling(), rotation(), class SVD
1042  */
1043template<typename Scalar, int Dim, int Mode, int Options>
1044template<typename ScalingMatrixType, typename RotationMatrixType>
1045void Transform<Scalar,Dim,Mode,Options>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const
1046{
1047  JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV);
1048
1049  Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
1050  VectorType sv(svd.singularValues());
1051  sv.coeffRef(0) *= x;
1052  if(scaling) scaling->lazyAssign(svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint());
1053  if(rotation)
1054  {
1055    LinearMatrixType m(svd.matrixU());
1056    m.col(0) /= x;
1057    rotation->lazyAssign(m * svd.matrixV().adjoint());
1058  }
1059}
1060
1061/** Convenient method to set \c *this from a position, orientation and scale
1062  * of a 3D object.
1063  */
1064template<typename Scalar, int Dim, int Mode, int Options>
1065template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
1066Transform<Scalar,Dim,Mode,Options>&
1067Transform<Scalar,Dim,Mode,Options>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
1068  const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale)
1069{
1070  linear() = internal::toRotationMatrix<Scalar,Dim>(orientation);
1071  linear() *= scale.asDiagonal();
1072  translation() = position;
1073  makeAffine();
1074  return *this;
1075}
1076
1077namespace internal {
1078
1079template<int Mode>
1080struct transform_make_affine
1081{
1082  template<typename MatrixType>
1083  static void run(MatrixType &mat)
1084  {
1085    static const int Dim = MatrixType::ColsAtCompileTime-1;
1086    mat.template block<1,Dim>(Dim,0).setZero();
1087    mat.coeffRef(Dim,Dim) = typename MatrixType::Scalar(1);
1088  }
1089};
1090
1091template<>
1092struct transform_make_affine<AffineCompact>
1093{
1094  template<typename MatrixType> static void run(MatrixType &) { }
1095};
1096
1097// selector needed to avoid taking the inverse of a 3x4 matrix
1098template<typename TransformType, int Mode=TransformType::Mode>
1099struct projective_transform_inverse
1100{
1101  static inline void run(const TransformType&, TransformType&)
1102  {}
1103};
1104
1105template<typename TransformType>
1106struct projective_transform_inverse<TransformType, Projective>
1107{
1108  static inline void run(const TransformType& m, TransformType& res)
1109  {
1110    res.matrix() = m.matrix().inverse();
1111  }
1112};
1113
1114} // end namespace internal
1115
1116
1117/**
1118  *
1119  * \returns the inverse transformation according to some given knowledge
1120  * on \c *this.
1121  *
1122  * \param hint allows to optimize the inversion process when the transformation
1123  * is known to be not a general transformation (optional). The possible values are:
1124  *  - #Projective if the transformation is not necessarily affine, i.e., if the
1125  *    last row is not guaranteed to be [0 ... 0 1]
1126  *  - #Affine if the last row can be assumed to be [0 ... 0 1]
1127  *  - #Isometry if the transformation is only a concatenations of translations
1128  *    and rotations.
1129  *  The default is the template class parameter \c Mode.
1130  *
1131  * \warning unless \a traits is always set to NoShear or NoScaling, this function
1132  * requires the generic inverse method of MatrixBase defined in the LU module. If
1133  * you forget to include this module, then you will get hard to debug linking errors.
1134  *
1135  * \sa MatrixBase::inverse()
1136  */
1137template<typename Scalar, int Dim, int Mode, int Options>
1138Transform<Scalar,Dim,Mode,Options>
1139Transform<Scalar,Dim,Mode,Options>::inverse(TransformTraits hint) const
1140{
1141  Transform res;
1142  if (hint == Projective)
1143  {
1144    internal::projective_transform_inverse<Transform>::run(*this, res);
1145  }
1146  else
1147  {
1148    if (hint == Isometry)
1149    {
1150      res.matrix().template topLeftCorner<Dim,Dim>() = linear().transpose();
1151    }
1152    else if(hint&Affine)
1153    {
1154      res.matrix().template topLeftCorner<Dim,Dim>() = linear().inverse();
1155    }
1156    else
1157    {
1158      eigen_assert(false && "Invalid transform traits in Transform::Inverse");
1159    }
1160    // translation and remaining parts
1161    res.matrix().template topRightCorner<Dim,1>()
1162      = - res.matrix().template topLeftCorner<Dim,Dim>() * translation();
1163    res.makeAffine(); // we do need this, because in the beginning res is uninitialized
1164  }
1165  return res;
1166}
1167
1168namespace internal {
1169
1170/*****************************************************
1171*** Specializations of take affine part            ***
1172*****************************************************/
1173
1174template<typename TransformType> struct transform_take_affine_part {
1175  typedef typename TransformType::MatrixType MatrixType;
1176  typedef typename TransformType::AffinePart AffinePart;
1177  typedef typename TransformType::ConstAffinePart ConstAffinePart;
1178  static inline AffinePart run(MatrixType& m)
1179  { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); }
1180  static inline ConstAffinePart run(const MatrixType& m)
1181  { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); }
1182};
1183
1184template<typename Scalar, int Dim, int Options>
1185struct transform_take_affine_part<Transform<Scalar,Dim,AffineCompact, Options> > {
1186  typedef typename Transform<Scalar,Dim,AffineCompact,Options>::MatrixType MatrixType;
1187  static inline MatrixType& run(MatrixType& m) { return m; }
1188  static inline const MatrixType& run(const MatrixType& m) { return m; }
1189};
1190
1191/*****************************************************
1192*** Specializations of construct from matrix       ***
1193*****************************************************/
1194
1195template<typename Other, int Mode, int Options, int Dim, int HDim>
1196struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,Dim>
1197{
1198  static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
1199  {
1200    transform->linear() = other;
1201    transform->translation().setZero();
1202    transform->makeAffine();
1203  }
1204};
1205
1206template<typename Other, int Mode, int Options, int Dim, int HDim>
1207struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,HDim>
1208{
1209  static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
1210  {
1211    transform->affine() = other;
1212    transform->makeAffine();
1213  }
1214};
1215
1216template<typename Other, int Mode, int Options, int Dim, int HDim>
1217struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, HDim,HDim>
1218{
1219  static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
1220  { transform->matrix() = other; }
1221};
1222
1223template<typename Other, int Options, int Dim, int HDim>
1224struct transform_construct_from_matrix<Other, AffineCompact,Options,Dim,HDim, HDim,HDim>
1225{
1226  static inline void run(Transform<typename Other::Scalar,Dim,AffineCompact,Options> *transform, const Other& other)
1227  { transform->matrix() = other.template block<Dim,HDim>(0,0); }
1228};
1229
1230/**********************************************************
1231***   Specializations of operator* with rhs EigenBase   ***
1232**********************************************************/
1233
1234template<int LhsMode,int RhsMode>
1235struct transform_product_result
1236{
1237  enum
1238  {
1239    Mode =
1240      (LhsMode == (int)Projective    || RhsMode == (int)Projective    ) ? Projective :
1241      (LhsMode == (int)Affine        || RhsMode == (int)Affine        ) ? Affine :
1242      (LhsMode == (int)AffineCompact || RhsMode == (int)AffineCompact ) ? AffineCompact :
1243      (LhsMode == (int)Isometry      || RhsMode == (int)Isometry      ) ? Isometry : Projective
1244  };
1245};
1246
1247template< typename TransformType, typename MatrixType >
1248struct transform_right_product_impl< TransformType, MatrixType, 0 >
1249{
1250  typedef typename MatrixType::PlainObject ResultType;
1251
1252  static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
1253  {
1254    return T.matrix() * other;
1255  }
1256};
1257
1258template< typename TransformType, typename MatrixType >
1259struct transform_right_product_impl< TransformType, MatrixType, 1 >
1260{
1261  enum {
1262    Dim = TransformType::Dim,
1263    HDim = TransformType::HDim,
1264    OtherRows = MatrixType::RowsAtCompileTime,
1265    OtherCols = MatrixType::ColsAtCompileTime
1266  };
1267
1268  typedef typename MatrixType::PlainObject ResultType;
1269
1270  static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
1271  {
1272    EIGEN_STATIC_ASSERT(OtherRows==HDim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);
1273
1274    typedef Block<ResultType, Dim, OtherCols, int(MatrixType::RowsAtCompileTime)==Dim> TopLeftLhs;
1275
1276    ResultType res(other.rows(),other.cols());
1277    TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() = T.affine() * other;
1278    res.row(OtherRows-1) = other.row(OtherRows-1);
1279
1280    return res;
1281  }
1282};
1283
1284template< typename TransformType, typename MatrixType >
1285struct transform_right_product_impl< TransformType, MatrixType, 2 >
1286{
1287  enum {
1288    Dim = TransformType::Dim,
1289    HDim = TransformType::HDim,
1290    OtherRows = MatrixType::RowsAtCompileTime,
1291    OtherCols = MatrixType::ColsAtCompileTime
1292  };
1293
1294  typedef typename MatrixType::PlainObject ResultType;
1295
1296  static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
1297  {
1298    EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);
1299
1300    typedef Block<ResultType, Dim, OtherCols, true> TopLeftLhs;
1301    ResultType res(Replicate<typename TransformType::ConstTranslationPart, 1, OtherCols>(T.translation(),1,other.cols()));
1302    TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() += T.linear() * other;
1303
1304    return res;
1305  }
1306};
1307
1308/**********************************************************
1309***   Specializations of operator* with lhs EigenBase   ***
1310**********************************************************/
1311
1312// generic HDim x HDim matrix * T => Projective
1313template<typename Other,int Mode, int Options, int Dim, int HDim>
1314struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, HDim,HDim>
1315{
1316  typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
1317  typedef typename TransformType::MatrixType MatrixType;
1318  typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType;
1319  static ResultType run(const Other& other,const TransformType& tr)
1320  { return ResultType(other * tr.matrix()); }
1321};
1322
1323// generic HDim x HDim matrix * AffineCompact => Projective
1324template<typename Other, int Options, int Dim, int HDim>
1325struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, HDim,HDim>
1326{
1327  typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType;
1328  typedef typename TransformType::MatrixType MatrixType;
1329  typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType;
1330  static ResultType run(const Other& other,const TransformType& tr)
1331  {
1332    ResultType res;
1333    res.matrix().noalias() = other.template block<HDim,Dim>(0,0) * tr.matrix();
1334    res.matrix().col(Dim) += other.col(Dim);
1335    return res;
1336  }
1337};
1338
1339// affine matrix * T
1340template<typename Other,int Mode, int Options, int Dim, int HDim>
1341struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,HDim>
1342{
1343  typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
1344  typedef typename TransformType::MatrixType MatrixType;
1345  typedef TransformType ResultType;
1346  static ResultType run(const Other& other,const TransformType& tr)
1347  {
1348    ResultType res;
1349    res.affine().noalias() = other * tr.matrix();
1350    res.matrix().row(Dim) = tr.matrix().row(Dim);
1351    return res;
1352  }
1353};
1354
1355// affine matrix * AffineCompact
1356template<typename Other, int Options, int Dim, int HDim>
1357struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, Dim,HDim>
1358{
1359  typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType;
1360  typedef typename TransformType::MatrixType MatrixType;
1361  typedef TransformType ResultType;
1362  static ResultType run(const Other& other,const TransformType& tr)
1363  {
1364    ResultType res;
1365    res.matrix().noalias() = other.template block<Dim,Dim>(0,0) * tr.matrix();
1366    res.translation() += other.col(Dim);
1367    return res;
1368  }
1369};
1370
1371// linear matrix * T
1372template<typename Other,int Mode, int Options, int Dim, int HDim>
1373struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,Dim>
1374{
1375  typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
1376  typedef typename TransformType::MatrixType MatrixType;
1377  typedef TransformType ResultType;
1378  static ResultType run(const Other& other, const TransformType& tr)
1379  {
1380    TransformType res;
1381    if(Mode!=int(AffineCompact))
1382      res.matrix().row(Dim) = tr.matrix().row(Dim);
1383    res.matrix().template topRows<Dim>().noalias()
1384      = other * tr.matrix().template topRows<Dim>();
1385    return res;
1386  }
1387};
1388
1389/**********************************************************
1390*** Specializations of operator* with another Transform ***
1391**********************************************************/
1392
1393template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions>
1394struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,false >
1395{
1396  enum { ResultMode = transform_product_result<LhsMode,RhsMode>::Mode };
1397  typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs;
1398  typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs;
1399  typedef Transform<Scalar,Dim,ResultMode,LhsOptions> ResultType;
1400  static ResultType run(const Lhs& lhs, const Rhs& rhs)
1401  {
1402    ResultType res;
1403    res.linear() = lhs.linear() * rhs.linear();
1404    res.translation() = lhs.linear() * rhs.translation() + lhs.translation();
1405    res.makeAffine();
1406    return res;
1407  }
1408};
1409
1410template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions>
1411struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,true >
1412{
1413  typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs;
1414  typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs;
1415  typedef Transform<Scalar,Dim,Projective> ResultType;
1416  static ResultType run(const Lhs& lhs, const Rhs& rhs)
1417  {
1418    return ResultType( lhs.matrix() * rhs.matrix() );
1419  }
1420};
1421
1422template<typename Scalar, int Dim, int LhsOptions, int RhsOptions>
1423struct transform_transform_product_impl<Transform<Scalar,Dim,AffineCompact,LhsOptions>,Transform<Scalar,Dim,Projective,RhsOptions>,true >
1424{
1425  typedef Transform<Scalar,Dim,AffineCompact,LhsOptions> Lhs;
1426  typedef Transform<Scalar,Dim,Projective,RhsOptions> Rhs;
1427  typedef Transform<Scalar,Dim,Projective> ResultType;
1428  static ResultType run(const Lhs& lhs, const Rhs& rhs)
1429  {
1430    ResultType res;
1431    res.matrix().template topRows<Dim>() = lhs.matrix() * rhs.matrix();
1432    res.matrix().row(Dim) = rhs.matrix().row(Dim);
1433    return res;
1434  }
1435};
1436
1437template<typename Scalar, int Dim, int LhsOptions, int RhsOptions>
1438struct transform_transform_product_impl<Transform<Scalar,Dim,Projective,LhsOptions>,Transform<Scalar,Dim,AffineCompact,RhsOptions>,true >
1439{
1440  typedef Transform<Scalar,Dim,Projective,LhsOptions> Lhs;
1441  typedef Transform<Scalar,Dim,AffineCompact,RhsOptions> Rhs;
1442  typedef Transform<Scalar,Dim,Projective> ResultType;
1443  static ResultType run(const Lhs& lhs, const Rhs& rhs)
1444  {
1445    ResultType res(lhs.matrix().template leftCols<Dim>() * rhs.matrix());
1446    res.matrix().col(Dim) += lhs.matrix().col(Dim);
1447    return res;
1448  }
1449};
1450
1451} // end namespace internal
1452
1453} // end namespace Eigen
1454
1455#endif // EIGEN_TRANSFORM_H
1456