1c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// This file is part of Eigen, a lightweight C++ template library
2c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// for linear algebra. Eigen itself is part of the KDE project.
3c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath//
4c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath//
6c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// This Source Code Form is subject to the terms of the Mozilla
7c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Public License v. 2.0. If a copy of the MPL was not distributed
8c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
10c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#include "main.h"
11c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#include <Eigen/Array>
12c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#include <Eigen/QR>
13c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
14c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename Derived1, typename Derived2>
15c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathbool areNotApprox(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2, typename Derived1::RealScalar epsilon = precision<typename Derived1::RealScalar>())
16c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
17c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  return !((m1-m2).cwise().abs2().maxCoeff() < epsilon * epsilon
18c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath                          * std::max(m1.cwise().abs2().maxCoeff(), m2.cwise().abs2().maxCoeff()));
19c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
20c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
21c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType> void product(const MatrixType& m)
22c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
23c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /* this test covers the following files:
24c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath     Identity.h Product.h
25c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  */
26c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
27c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename MatrixType::Scalar Scalar;
28c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename NumTraits<Scalar>::FloatingPoint FloatingPoint;
29c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> RowVectorType;
30c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> ColVectorType;
31c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RowSquareMatrixType;
32c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> ColSquareMatrixType;
33c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime,
34c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath                         MatrixType::Options^RowMajor> OtherMajorMatrixType;
35c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
36c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  int rows = m.rows();
37c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  int cols = m.cols();
38c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
39c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // this test relies a lot on Random.h, and there's not much more that we can do
40c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // to test it, hence I consider that we will have tested Random.h
41c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  MatrixType m1 = MatrixType::Random(rows, cols),
42c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath             m2 = MatrixType::Random(rows, cols),
43615d816d068b4d0f5e8df601930b5f160bf7eda1Tim Murray             m3(rows, cols);
44c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  RowSquareMatrixType
45c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath             identity = RowSquareMatrixType::Identity(rows, rows),
46c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath             square = RowSquareMatrixType::Random(rows, rows),
47c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath             res = RowSquareMatrixType::Random(rows, rows);
48c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  ColSquareMatrixType
49c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath             square2 = ColSquareMatrixType::Random(cols, cols),
50c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath             res2 = ColSquareMatrixType::Random(cols, cols);
51615d816d068b4d0f5e8df601930b5f160bf7eda1Tim Murray  RowVectorType v1 = RowVectorType::Random(rows);
52c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
53c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  OtherMajorMatrixType tm1 = m1;
54c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
55c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Scalar s1 = ei_random<Scalar>();
56c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
57c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  int r = ei_random<int>(0, rows-1),
58c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      c = ei_random<int>(0, cols-1);
59c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
60c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // begin testing Product.h: only associativity for now
61c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // (we use Transpose.h but this doesn't count as a test for it)
62c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
63c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX((m1*m1.transpose())*m2,  m1*(m1.transpose()*m2));
64c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  m3 = m1;
65c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  m3 *= m1.transpose() * m2;
66c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX(m3,                      m1 * (m1.transpose()*m2));
67c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX(m3,                      m1.lazy() * (m1.transpose()*m2));
68c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
69c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // continue testing Product.h: distributivity
70c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX(square*(m1 + m2),        square*m1+square*m2);
71c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX(square*(m1 - m2),        square*m1-square*m2);
72c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
73c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // continue testing Product.h: compatibility with ScalarMultiple.h
74c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX(s1*(square*m1),          (s1*square)*m1);
75c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX(s1*(square*m1),          square*(m1*s1));
76c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
77c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // again, test operator() to check const-qualification
78c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  s1 += (square.lazy() * m1)(r,c);
79c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
80c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // test Product.h together with Identity.h
81c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX(v1,                      identity*v1);
82c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX(v1.transpose(),          v1.transpose() * identity);
83c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // again, test operator() to check const-qualification
84c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX(MatrixType::Identity(rows, cols)(r,c), static_cast<Scalar>(r==c));
85c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
86c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  if (rows!=cols)
87c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath     VERIFY_RAISES_ASSERT(m3 = m1*m1);
88c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
89c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // test the previous tests were not screwed up because operator* returns 0
90c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // (we use the more accurate default epsilon)
91c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1)
92c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  {
93c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    VERIFY(areNotApprox(m1.transpose()*m2,m2.transpose()*m1));
94c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
95c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
96c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // test optimized operator+= path
97c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  res = square;
98c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  res += (m1 * m2.transpose()).lazy();
99c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX(res, square + m1 * m2.transpose());
100c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1)
101c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  {
102c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    VERIFY(areNotApprox(res,square + m2 * m1.transpose()));
103c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
104c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  vcres = vc2;
105c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  vcres += (m1.transpose() * v1).lazy();
106c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1);
107c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  tm1 = m1;
108c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX(tm1.transpose() * v1, m1.transpose() * v1);
109c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX(v1.transpose() * tm1, v1.transpose() * m1);
110c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
111c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // test submatrix and matrix/vector product
112c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  for (int i=0; i<rows; ++i)
113c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    res.row(i) = m1.row(i) * m2.transpose();
114c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX(res, m1 * m2.transpose());
115c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // the other way round:
116c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  for (int i=0; i<rows; ++i)
117c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    res.col(i) = m1 * m2.transpose().col(i);
118c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX(res, m1 * m2.transpose());
119c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
120c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  res2 = square2;
121c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  res2 += (m1.transpose() * m2).lazy();
122c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2);
123c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
124c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1)
125c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  {
126c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    VERIFY(areNotApprox(res2,square2 + m2.transpose() * m1));
127c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
128c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
129c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
130