1c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// This file is part of Eigen, a lightweight C++ template library 2c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// for linear algebra. 3c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// 4c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> 5c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// 6c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// This Source Code Form is subject to the terms of the Mozilla 7c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Public License v. 2.0. If a copy of the MPL was not distributed 8c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 10c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#include "main.h" 11c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 12c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType> void matrixRedux(const MatrixType& m) 13c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{ 14c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath typedef typename MatrixType::Index Index; 15c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath typedef typename MatrixType::Scalar Scalar; 16c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath typedef typename MatrixType::RealScalar RealScalar; 17c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 18c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath Index rows = m.rows(); 19c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath Index cols = m.cols(); 20c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 21c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath MatrixType m1 = MatrixType::Random(rows, cols); 22c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 23c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath // The entries of m1 are uniformly distributed in [0,1], so m1.prod() is very small. This may lead to test 24c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath // failures if we underflow into denormals. Thus, we scale so that entires are close to 1. 257faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez MatrixType m1_for_prod = MatrixType::Ones(rows, cols) + RealScalar(0.2) * m1; 26c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 27c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1)); 28c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(float(rows*cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy 297faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez Scalar s(0), p(1), minc(numext::real(m1.coeff(0))), maxc(numext::real(m1.coeff(0))); 30c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath for(int j = 0; j < cols; j++) 31c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath for(int i = 0; i < rows; i++) 32c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath { 33c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath s += m1(i,j); 34c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath p *= m1_for_prod(i,j); 357faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez minc = (std::min)(numext::real(minc), numext::real(m1(i,j))); 367faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez maxc = (std::max)(numext::real(maxc), numext::real(m1(i,j))); 37c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath } 38c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath const Scalar mean = s/Scalar(RealScalar(rows*cols)); 39c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 40c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VERIFY_IS_APPROX(m1.sum(), s); 41c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VERIFY_IS_APPROX(m1.mean(), mean); 42c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VERIFY_IS_APPROX(m1_for_prod.prod(), p); 437faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez VERIFY_IS_APPROX(m1.real().minCoeff(), numext::real(minc)); 447faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez VERIFY_IS_APPROX(m1.real().maxCoeff(), numext::real(maxc)); 45c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 46c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath // test slice vectorization assuming assign is ok 47c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath Index r0 = internal::random<Index>(0,rows-1); 48c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath Index c0 = internal::random<Index>(0,cols-1); 49c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath Index r1 = internal::random<Index>(r0+1,rows)-r0; 50c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath Index c1 = internal::random<Index>(c0+1,cols)-c0; 51c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).sum(), m1.block(r0,c0,r1,c1).eval().sum()); 52c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).mean(), m1.block(r0,c0,r1,c1).eval().mean()); 53c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VERIFY_IS_APPROX(m1_for_prod.block(r0,c0,r1,c1).prod(), m1_for_prod.block(r0,c0,r1,c1).eval().prod()); 54c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().minCoeff(), m1.block(r0,c0,r1,c1).real().eval().minCoeff()); 55c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().maxCoeff(), m1.block(r0,c0,r1,c1).real().eval().maxCoeff()); 56c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 57c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath // test empty objects 58c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VERIFY_IS_APPROX(m1.block(r0,c0,0,0).sum(), Scalar(0)); 59c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VERIFY_IS_APPROX(m1.block(r0,c0,0,0).prod(), Scalar(1)); 60c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath} 61c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 62c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename VectorType> void vectorRedux(const VectorType& w) 63c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{ 647faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez using std::abs; 65c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath typedef typename VectorType::Index Index; 66c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath typedef typename VectorType::Scalar Scalar; 67c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath typedef typename NumTraits<Scalar>::Real RealScalar; 68c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath Index size = w.size(); 69c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 70c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VectorType v = VectorType::Random(size); 71c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VectorType v_for_prod = VectorType::Ones(size) + Scalar(0.2) * v; // see comment above declaration of m1_for_prod 72c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 73c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath for(int i = 1; i < size; i++) 74c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath { 75c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath Scalar s(0), p(1); 767faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez RealScalar minc(numext::real(v.coeff(0))), maxc(numext::real(v.coeff(0))); 77c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath for(int j = 0; j < i; j++) 78c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath { 79c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath s += v[j]; 80c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath p *= v_for_prod[j]; 817faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez minc = (std::min)(minc, numext::real(v[j])); 827faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez maxc = (std::max)(maxc, numext::real(v[j])); 83c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath } 847faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.head(i).sum()), Scalar(1)); 85c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VERIFY_IS_APPROX(p, v_for_prod.head(i).prod()); 86c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VERIFY_IS_APPROX(minc, v.real().head(i).minCoeff()); 87c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VERIFY_IS_APPROX(maxc, v.real().head(i).maxCoeff()); 88c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath } 89c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 90c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath for(int i = 0; i < size-1; i++) 91c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath { 92c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath Scalar s(0), p(1); 937faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i))); 94c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath for(int j = i; j < size; j++) 95c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath { 96c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath s += v[j]; 97c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath p *= v_for_prod[j]; 987faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez minc = (std::min)(minc, numext::real(v[j])); 997faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez maxc = (std::max)(maxc, numext::real(v[j])); 100c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath } 1017faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.tail(size-i).sum()), Scalar(1)); 102c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VERIFY_IS_APPROX(p, v_for_prod.tail(size-i).prod()); 103c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VERIFY_IS_APPROX(minc, v.real().tail(size-i).minCoeff()); 104c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VERIFY_IS_APPROX(maxc, v.real().tail(size-i).maxCoeff()); 105c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath } 106c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 107c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath for(int i = 0; i < size/2; i++) 108c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath { 109c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath Scalar s(0), p(1); 1107faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i))); 111c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath for(int j = i; j < size-i; j++) 112c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath { 113c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath s += v[j]; 114c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath p *= v_for_prod[j]; 1157faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez minc = (std::min)(minc, numext::real(v[j])); 1167faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez maxc = (std::max)(maxc, numext::real(v[j])); 117c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath } 1187faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.segment(i, size-2*i).sum()), Scalar(1)); 119c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VERIFY_IS_APPROX(p, v_for_prod.segment(i, size-2*i).prod()); 120c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VERIFY_IS_APPROX(minc, v.real().segment(i, size-2*i).minCoeff()); 121c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VERIFY_IS_APPROX(maxc, v.real().segment(i, size-2*i).maxCoeff()); 122c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath } 123c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 124c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath // test empty objects 125c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VERIFY_IS_APPROX(v.head(0).sum(), Scalar(0)); 126c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VERIFY_IS_APPROX(v.tail(0).prod(), Scalar(1)); 127c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VERIFY_RAISES_ASSERT(v.head(0).mean()); 128c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VERIFY_RAISES_ASSERT(v.head(0).minCoeff()); 129c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VERIFY_RAISES_ASSERT(v.head(0).maxCoeff()); 130c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath} 131c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 132c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathvoid test_redux() 133c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{ 134c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath // the max size cannot be too large, otherwise reduxion operations obviously generate large errors. 135c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath int maxsize = (std::min)(100,EIGEN_TEST_MAX_SIZE); 1367faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez TEST_SET_BUT_UNUSED_VARIABLE(maxsize); 137c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath for(int i = 0; i < g_repeat; i++) { 138c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath CALL_SUBTEST_1( matrixRedux(Matrix<float, 1, 1>()) ); 139c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath CALL_SUBTEST_1( matrixRedux(Array<float, 1, 1>()) ); 140c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath CALL_SUBTEST_2( matrixRedux(Matrix2f()) ); 141c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath CALL_SUBTEST_2( matrixRedux(Array2f()) ); 142c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath CALL_SUBTEST_3( matrixRedux(Matrix4d()) ); 143c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath CALL_SUBTEST_3( matrixRedux(Array4d()) ); 144c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath CALL_SUBTEST_4( matrixRedux(MatrixXcf(internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); 145c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath CALL_SUBTEST_4( matrixRedux(ArrayXXcf(internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); 146c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath CALL_SUBTEST_5( matrixRedux(MatrixXd (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); 147c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath CALL_SUBTEST_5( matrixRedux(ArrayXXd (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); 148c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath CALL_SUBTEST_6( matrixRedux(MatrixXi (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); 149c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath CALL_SUBTEST_6( matrixRedux(ArrayXXi (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); 150c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath } 151c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath for(int i = 0; i < g_repeat; i++) { 152c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath CALL_SUBTEST_7( vectorRedux(Vector4f()) ); 153c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath CALL_SUBTEST_7( vectorRedux(Array4f()) ); 154c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath CALL_SUBTEST_5( vectorRedux(VectorXd(internal::random<int>(1,maxsize))) ); 155c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath CALL_SUBTEST_5( vectorRedux(ArrayXd(internal::random<int>(1,maxsize))) ); 156c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath CALL_SUBTEST_8( vectorRedux(VectorXf(internal::random<int>(1,maxsize))) ); 157c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath CALL_SUBTEST_8( vectorRedux(ArrayXf(internal::random<int>(1,maxsize))) ); 158c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath } 159c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath} 160