io_u.c revision 5a7c56804dafab5770797044a4f1d259fe708dfb
1#include <unistd.h> 2#include <fcntl.h> 3#include <string.h> 4#include <signal.h> 5#include <time.h> 6#include <assert.h> 7 8#include "fio.h" 9#include "os.h" 10 11/* 12 * Change this define to play with the timeout handling 13 */ 14#undef FIO_USE_TIMEOUT 15 16struct io_completion_data { 17 int nr; /* input */ 18 19 int error; /* output */ 20 unsigned long bytes_done[2]; /* output */ 21 struct timeval time; /* output */ 22}; 23 24/* 25 * The ->file_map[] contains a map of blocks we have or have not done io 26 * to yet. Used to make sure we cover the entire range in a fair fashion. 27 */ 28static int random_map_free(struct thread_data *td, struct fio_file *f, 29 unsigned long long block) 30{ 31 unsigned int idx = RAND_MAP_IDX(td, f, block); 32 unsigned int bit = RAND_MAP_BIT(td, f, block); 33 34 return (f->file_map[idx] & (1UL << bit)) == 0; 35} 36 37/* 38 * Mark a given offset as used in the map. 39 */ 40static void mark_random_map(struct thread_data *td, struct io_u *io_u) 41{ 42 unsigned int min_bs = td->o.rw_min_bs; 43 struct fio_file *f = io_u->file; 44 unsigned long long block; 45 unsigned int blocks; 46 unsigned int nr_blocks; 47 48 block = io_u->offset / (unsigned long long) min_bs; 49 blocks = 0; 50 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs; 51 52 while (blocks < nr_blocks) { 53 unsigned int idx, bit; 54 55 /* 56 * If we have a mixed random workload, we may 57 * encounter blocks we already did IO to. 58 */ 59 if (!td->o.ddir_nr && !random_map_free(td, f, block)) 60 break; 61 62 idx = RAND_MAP_IDX(td, f, block); 63 bit = RAND_MAP_BIT(td, f, block); 64 65 fio_assert(td, idx < f->num_maps); 66 67 f->file_map[idx] |= (1UL << bit); 68 block++; 69 blocks++; 70 } 71 72 if ((blocks * min_bs) < io_u->buflen) 73 io_u->buflen = blocks * min_bs; 74} 75 76/* 77 * Return the next free block in the map. 78 */ 79static int get_next_free_block(struct thread_data *td, struct fio_file *f, 80 unsigned long long *b) 81{ 82 int i; 83 84 i = f->last_free_lookup; 85 *b = (i * BLOCKS_PER_MAP); 86 while ((*b) * td->o.rw_min_bs < f->real_file_size) { 87 if (f->file_map[i] != -1UL) { 88 *b += ffz(f->file_map[i]); 89 f->last_free_lookup = i; 90 return 0; 91 } 92 93 *b += BLOCKS_PER_MAP; 94 i++; 95 } 96 97 return 1; 98} 99 100static int get_next_rand_offset(struct thread_data *td, struct fio_file *f, 101 int ddir, unsigned long long *b) 102{ 103 unsigned long long max_blocks = f->io_size / td->o.min_bs[ddir]; 104 unsigned long long r, rb; 105 int loops = 5; 106 107 do { 108 r = os_random_long(&td->random_state); 109 if (!max_blocks) 110 *b = 0; 111 else 112 *b = ((max_blocks - 1) * r / (unsigned long long) (RAND_MAX+1.0)); 113 if (td->o.norandommap) 114 break; 115 rb = *b + (f->file_offset / td->o.min_bs[ddir]); 116 loops--; 117 } while (!random_map_free(td, f, rb) && loops); 118 119 /* 120 * if we failed to retrieve a truly random offset within 121 * the loops assigned, see if there are free ones left at all 122 */ 123 if (!loops && get_next_free_block(td, f, b)) 124 return 1; 125 126 return 0; 127} 128 129/* 130 * For random io, generate a random new block and see if it's used. Repeat 131 * until we find a free one. For sequential io, just return the end of 132 * the last io issued. 133 */ 134static int get_next_offset(struct thread_data *td, struct io_u *io_u) 135{ 136 struct fio_file *f = io_u->file; 137 const int ddir = io_u->ddir; 138 unsigned long long b; 139 140 if (td_random(td) && (td->o.ddir_nr && !--td->ddir_nr)) { 141 td->ddir_nr = td->o.ddir_nr; 142 143 if (get_next_rand_offset(td, f, ddir, &b)) 144 return 1; 145 } else { 146 if (f->last_pos >= f->real_file_size) 147 return 1; 148 149 b = f->last_pos / td->o.min_bs[ddir]; 150 } 151 152 io_u->offset = (b * td->o.min_bs[ddir]) + f->file_offset; 153 if (io_u->offset >= f->real_file_size) 154 return 1; 155 156 return 0; 157} 158 159static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u) 160{ 161 struct fio_file *f = io_u->file; 162 const int ddir = io_u->ddir; 163 unsigned int buflen; 164 long r; 165 166 if (td->o.min_bs[ddir] == td->o.max_bs[ddir]) 167 buflen = td->o.min_bs[ddir]; 168 else { 169 r = os_random_long(&td->bsrange_state); 170 buflen = (unsigned int) (1 + (double) (td->o.max_bs[ddir] - 1) * r / (RAND_MAX + 1.0)); 171 if (!td->o.bs_unaligned) 172 buflen = (buflen + td->o.min_bs[ddir] - 1) & ~(td->o.min_bs[ddir] - 1); 173 } 174 175 return buflen; 176} 177 178static void set_rwmix_bytes(struct thread_data *td) 179{ 180 unsigned long long rbytes; 181 unsigned int diff; 182 183 /* 184 * we do time or byte based switch. this is needed because 185 * buffered writes may issue a lot quicker than they complete, 186 * whereas reads do not. 187 */ 188 rbytes = td->io_bytes[td->rwmix_ddir] - td->rwmix_bytes; 189 diff = td->o.rwmix[td->rwmix_ddir ^ 1]; 190 191 td->rwmix_bytes = td->io_bytes[td->rwmix_ddir] + (rbytes * ((100 - diff)) / diff); 192} 193 194static inline enum fio_ddir get_rand_ddir(struct thread_data *td) 195{ 196 unsigned int v; 197 long r; 198 199 r = os_random_long(&td->rwmix_state); 200 v = 1 + (int) (100.0 * (r / (RAND_MAX + 1.0))); 201 if (v < td->o.rwmix[DDIR_READ]) 202 return DDIR_READ; 203 204 return DDIR_WRITE; 205} 206 207/* 208 * Return the data direction for the next io_u. If the job is a 209 * mixed read/write workload, check the rwmix cycle and switch if 210 * necessary. 211 */ 212static enum fio_ddir get_rw_ddir(struct thread_data *td) 213{ 214 if (td_rw(td)) { 215 struct timeval now; 216 unsigned long elapsed; 217 unsigned int cycle; 218 219 fio_gettime(&now, NULL); 220 elapsed = mtime_since_now(&td->rwmix_switch); 221 222 /* 223 * if this is the first cycle, make it shorter 224 */ 225 cycle = td->o.rwmixcycle; 226 if (!td->rwmix_bytes) 227 cycle /= 10; 228 229 /* 230 * Check if it's time to seed a new data direction. 231 */ 232 if (elapsed >= cycle || 233 td->io_bytes[td->rwmix_ddir] >= td->rwmix_bytes) { 234 unsigned long long max_bytes; 235 enum fio_ddir ddir; 236 237 /* 238 * Put a top limit on how many bytes we do for 239 * one data direction, to avoid overflowing the 240 * ranges too much 241 */ 242 ddir = get_rand_ddir(td); 243 max_bytes = td->this_io_bytes[ddir]; 244 if (max_bytes >= (td->o.size * td->o.rwmix[ddir] / 100)) { 245 if (!td->rw_end_set[ddir]) { 246 td->rw_end_set[ddir] = 1; 247 memcpy(&td->rw_end[ddir], &now, sizeof(now)); 248 } 249 ddir ^= 1; 250 } 251 252 if (ddir != td->rwmix_ddir) 253 set_rwmix_bytes(td); 254 255 td->rwmix_ddir = ddir; 256 memcpy(&td->rwmix_switch, &now, sizeof(now)); 257 } 258 return td->rwmix_ddir; 259 } else if (td_read(td)) 260 return DDIR_READ; 261 else 262 return DDIR_WRITE; 263} 264 265void put_io_u(struct thread_data *td, struct io_u *io_u) 266{ 267 assert((io_u->flags & IO_U_F_FREE) == 0); 268 io_u->flags |= IO_U_F_FREE; 269 270 io_u->file = NULL; 271 list_del(&io_u->list); 272 list_add(&io_u->list, &td->io_u_freelist); 273 td->cur_depth--; 274} 275 276void requeue_io_u(struct thread_data *td, struct io_u **io_u) 277{ 278 struct io_u *__io_u = *io_u; 279 280 __io_u->flags |= IO_U_F_FREE; 281 __io_u->flags &= ~IO_U_F_FLIGHT; 282 283 list_del(&__io_u->list); 284 list_add_tail(&__io_u->list, &td->io_u_requeues); 285 td->cur_depth--; 286 *io_u = NULL; 287} 288 289static int fill_io_u(struct thread_data *td, struct io_u *io_u) 290{ 291 /* 292 * If using an iolog, grab next piece if any available. 293 */ 294 if (td->o.read_iolog) 295 return read_iolog_get(td, io_u); 296 297 /* 298 * see if it's time to sync 299 */ 300 if (td->o.fsync_blocks && 301 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) && 302 td->io_issues[DDIR_WRITE] && should_fsync(td)) { 303 io_u->ddir = DDIR_SYNC; 304 goto out; 305 } 306 307 io_u->ddir = get_rw_ddir(td); 308 309 /* 310 * No log, let the seq/rand engine retrieve the next buflen and 311 * position. 312 */ 313 if (get_next_offset(td, io_u)) 314 return 1; 315 316 io_u->buflen = get_next_buflen(td, io_u); 317 if (!io_u->buflen) 318 return 1; 319 320 /* 321 * mark entry before potentially trimming io_u 322 */ 323 if (td_random(td) && !td->o.norandommap) 324 mark_random_map(td, io_u); 325 326 /* 327 * If using a write iolog, store this entry. 328 */ 329out: 330 if (td->o.write_iolog_file) 331 write_iolog_put(td, io_u); 332 333 return 0; 334} 335 336void io_u_mark_depth(struct thread_data *td, struct io_u *io_u) 337{ 338 int index = 0; 339 340 if (io_u->ddir == DDIR_SYNC) 341 return; 342 343 switch (td->cur_depth) { 344 default: 345 index++; 346 case 32 ... 63: 347 index++; 348 case 16 ... 31: 349 index++; 350 case 8 ... 15: 351 index++; 352 case 4 ... 7: 353 index++; 354 case 2 ... 3: 355 index++; 356 case 1: 357 break; 358 } 359 360 td->ts.io_u_map[index]++; 361 td->ts.total_io_u[io_u->ddir]++; 362} 363 364static void io_u_mark_latency(struct thread_data *td, unsigned long msec) 365{ 366 int index = 0; 367 368 switch (msec) { 369 default: 370 index++; 371 case 1000 ... 1999: 372 index++; 373 case 750 ... 999: 374 index++; 375 case 500 ... 749: 376 index++; 377 case 250 ... 499: 378 index++; 379 case 100 ... 249: 380 index++; 381 case 50 ... 99: 382 index++; 383 case 20 ... 49: 384 index++; 385 case 10 ... 19: 386 index++; 387 case 4 ... 9: 388 index++; 389 case 2 ... 3: 390 index++; 391 case 0 ... 1: 392 break; 393 } 394 395 td->ts.io_u_lat[index]++; 396} 397 398/* 399 * Get next file to service by choosing one at random 400 */ 401static struct fio_file *get_next_file_rand(struct thread_data *td, int goodf, 402 int badf) 403{ 404 struct fio_file *f; 405 int fno; 406 407 do { 408 long r = os_random_long(&td->next_file_state); 409 410 fno = (unsigned int) ((double) td->o.nr_files * (r / (RAND_MAX + 1.0))); 411 f = &td->files[fno]; 412 if (f->flags & FIO_FILE_DONE) 413 continue; 414 415 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) 416 return f; 417 } while (1); 418} 419 420/* 421 * Get next file to service by doing round robin between all available ones 422 */ 423static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf, 424 int badf) 425{ 426 unsigned int old_next_file = td->next_file; 427 struct fio_file *f; 428 429 do { 430 f = &td->files[td->next_file]; 431 432 td->next_file++; 433 if (td->next_file >= td->o.nr_files) 434 td->next_file = 0; 435 436 if (f->flags & FIO_FILE_DONE) { 437 f = NULL; 438 continue; 439 } 440 441 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) 442 break; 443 444 f = NULL; 445 } while (td->next_file != old_next_file); 446 447 return f; 448} 449 450static struct fio_file *get_next_file(struct thread_data *td) 451{ 452 struct fio_file *f; 453 454 assert(td->o.nr_files <= td->files_index); 455 456 if (!td->nr_open_files) 457 return NULL; 458 459 f = td->file_service_file; 460 if (f && (f->flags & FIO_FILE_OPEN) && td->file_service_left--) 461 return f; 462 463 if (td->o.file_service_type == FIO_FSERVICE_RR) 464 f = get_next_file_rr(td, FIO_FILE_OPEN, FIO_FILE_CLOSING); 465 else 466 f = get_next_file_rand(td, FIO_FILE_OPEN, FIO_FILE_CLOSING); 467 468 td->file_service_file = f; 469 td->file_service_left = td->file_service_nr - 1; 470 return f; 471} 472 473static struct fio_file *find_next_new_file(struct thread_data *td) 474{ 475 struct fio_file *f; 476 477 if (td->o.file_service_type == FIO_FSERVICE_RR) 478 f = get_next_file_rr(td, 0, FIO_FILE_OPEN); 479 else 480 f = get_next_file_rand(td, 0, FIO_FILE_OPEN); 481 482 return f; 483} 484 485struct io_u *__get_io_u(struct thread_data *td) 486{ 487 struct io_u *io_u = NULL; 488 489 if (!list_empty(&td->io_u_requeues)) 490 io_u = list_entry(td->io_u_requeues.next, struct io_u, list); 491 else if (!queue_full(td)) { 492 io_u = list_entry(td->io_u_freelist.next, struct io_u, list); 493 494 io_u->buflen = 0; 495 io_u->resid = 0; 496 io_u->file = NULL; 497 io_u->end_io = NULL; 498 } 499 500 if (io_u) { 501 assert(io_u->flags & IO_U_F_FREE); 502 io_u->flags &= ~IO_U_F_FREE; 503 504 io_u->error = 0; 505 list_del(&io_u->list); 506 list_add(&io_u->list, &td->io_u_busylist); 507 td->cur_depth++; 508 } 509 510 return io_u; 511} 512 513/* 514 * Return an io_u to be processed. Gets a buflen and offset, sets direction, 515 * etc. The returned io_u is fully ready to be prepped and submitted. 516 */ 517struct io_u *get_io_u(struct thread_data *td) 518{ 519 struct fio_file *f; 520 struct io_u *io_u; 521 int ret; 522 523 io_u = __get_io_u(td); 524 if (!io_u) 525 return NULL; 526 527 /* 528 * from a requeue, io_u already setup 529 */ 530 if (io_u->file) 531 goto out; 532 533 do { 534 f = get_next_file(td); 535 if (!f) { 536 put_io_u(td, io_u); 537 return NULL; 538 } 539 540set_file: 541 io_u->file = f; 542 543 if (!fill_io_u(td, io_u)) 544 break; 545 546 /* 547 * No more to do for this file, close it 548 */ 549 io_u->file = NULL; 550 td_io_close_file(td, f); 551 f->flags |= FIO_FILE_DONE; 552 553 /* 554 * probably not the right place to do this, but see 555 * if we need to open a new file 556 */ 557 if (td->nr_open_files < td->o.open_files && 558 td->o.open_files != td->o.nr_files) { 559 f = find_next_new_file(td); 560 561 if (!f || (ret = td_io_open_file(td, f))) { 562 put_io_u(td, io_u); 563 return NULL; 564 } 565 goto set_file; 566 } 567 } while (1); 568 569 if (td->zone_bytes >= td->o.zone_size) { 570 td->zone_bytes = 0; 571 f->last_pos += td->o.zone_skip; 572 } 573 574 if (io_u->ddir != DDIR_SYNC) { 575 if (!io_u->buflen) { 576 put_io_u(td, io_u); 577 return NULL; 578 } 579 580 f->last_pos = io_u->offset + io_u->buflen; 581 582 if (td->o.verify != VERIFY_NONE) 583 populate_verify_io_u(td, io_u); 584 } 585 586 /* 587 * Set io data pointers. 588 */ 589out: 590 io_u->xfer_buf = io_u->buf; 591 io_u->xfer_buflen = io_u->buflen; 592 593 if (td_io_prep(td, io_u)) { 594 put_io_u(td, io_u); 595 return NULL; 596 } 597 598 fio_gettime(&io_u->start_time, NULL); 599 return io_u; 600} 601 602void io_u_log_error(struct thread_data *td, struct io_u *io_u) 603{ 604 const char *msg[] = { "read", "write", "sync" }; 605 606 log_err("fio: io_u error"); 607 608 if (io_u->file) 609 log_err(" on file %s", io_u->file->file_name); 610 611 log_err(": %s\n", strerror(io_u->error)); 612 613 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir], io_u->offset, io_u->xfer_buflen); 614 615 if (!td->error) 616 td_verror(td, io_u->error, "io_u error"); 617} 618 619static void io_completed(struct thread_data *td, struct io_u *io_u, 620 struct io_completion_data *icd) 621{ 622 unsigned long msec; 623 624 assert(io_u->flags & IO_U_F_FLIGHT); 625 io_u->flags &= ~IO_U_F_FLIGHT; 626 627 put_file(td, io_u->file); 628 629 if (io_u->ddir == DDIR_SYNC) { 630 td->last_was_sync = 1; 631 return; 632 } 633 634 td->last_was_sync = 0; 635 636 if (!io_u->error) { 637 unsigned int bytes = io_u->buflen - io_u->resid; 638 const enum fio_ddir idx = io_u->ddir; 639 int ret; 640 641 td->io_blocks[idx]++; 642 td->io_bytes[idx] += bytes; 643 td->zone_bytes += bytes; 644 td->this_io_bytes[idx] += bytes; 645 646 io_u->file->last_completed_pos = io_u->offset + io_u->buflen; 647 648 msec = mtime_since(&io_u->issue_time, &icd->time); 649 650 add_clat_sample(td, idx, msec); 651 add_bw_sample(td, idx, &icd->time); 652 io_u_mark_latency(td, msec); 653 654 if ((td_rw(td) || td_write(td)) && idx == DDIR_WRITE && 655 td->o.verify != VERIFY_NONE) 656 log_io_piece(td, io_u); 657 658 icd->bytes_done[idx] += bytes; 659 660 if (io_u->end_io) { 661 ret = io_u->end_io(td, io_u); 662 if (ret && !icd->error) 663 icd->error = ret; 664 } 665 } else { 666 icd->error = io_u->error; 667 io_u_log_error(td, io_u); 668 } 669} 670 671static void init_icd(struct io_completion_data *icd, int nr) 672{ 673 fio_gettime(&icd->time, NULL); 674 675 icd->nr = nr; 676 677 icd->error = 0; 678 icd->bytes_done[0] = icd->bytes_done[1] = 0; 679} 680 681static void ios_completed(struct thread_data *td, 682 struct io_completion_data *icd) 683{ 684 struct io_u *io_u; 685 int i; 686 687 for (i = 0; i < icd->nr; i++) { 688 io_u = td->io_ops->event(td, i); 689 690 io_completed(td, io_u, icd); 691 put_io_u(td, io_u); 692 } 693} 694 695/* 696 * Complete a single io_u for the sync engines. 697 */ 698long io_u_sync_complete(struct thread_data *td, struct io_u *io_u) 699{ 700 struct io_completion_data icd; 701 702 init_icd(&icd, 1); 703 io_completed(td, io_u, &icd); 704 put_io_u(td, io_u); 705 706 if (!icd.error) 707 return icd.bytes_done[0] + icd.bytes_done[1]; 708 709 td_verror(td, icd.error, "io_u_sync_complete"); 710 return -1; 711} 712 713/* 714 * Called to complete min_events number of io for the async engines. 715 */ 716long io_u_queued_complete(struct thread_data *td, int min_events) 717{ 718 struct io_completion_data icd; 719 struct timespec *tvp = NULL; 720 int ret; 721 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, }; 722 723 if (!min_events) 724 tvp = &ts; 725 726 ret = td_io_getevents(td, min_events, td->cur_depth, tvp); 727 if (ret < 0) { 728 td_verror(td, -ret, "td_io_getevents"); 729 return ret; 730 } else if (!ret) 731 return ret; 732 733 init_icd(&icd, ret); 734 ios_completed(td, &icd); 735 if (!icd.error) 736 return icd.bytes_done[0] + icd.bytes_done[1]; 737 738 td_verror(td, icd.error, "io_u_queued_complete"); 739 return -1; 740} 741 742/* 743 * Call when io_u is really queued, to update the submission latency. 744 */ 745void io_u_queued(struct thread_data *td, struct io_u *io_u) 746{ 747 unsigned long slat_time; 748 749 slat_time = mtime_since(&io_u->start_time, &io_u->issue_time); 750 add_slat_sample(td, io_u->ddir, slat_time); 751} 752 753#ifdef FIO_USE_TIMEOUT 754void io_u_set_timeout(struct thread_data *td) 755{ 756 assert(td->cur_depth); 757 758 td->timer.it_interval.tv_sec = 0; 759 td->timer.it_interval.tv_usec = 0; 760 td->timer.it_value.tv_sec = IO_U_TIMEOUT + IO_U_TIMEOUT_INC; 761 td->timer.it_value.tv_usec = 0; 762 setitimer(ITIMER_REAL, &td->timer, NULL); 763 fio_gettime(&td->timeout_end, NULL); 764} 765 766static void io_u_dump(struct io_u *io_u) 767{ 768 unsigned long t_start = mtime_since_now(&io_u->start_time); 769 unsigned long t_issue = mtime_since_now(&io_u->issue_time); 770 771 log_err("io_u=%p, t_start=%lu, t_issue=%lu\n", io_u, t_start, t_issue); 772 log_err(" buf=%p/%p, len=%lu/%lu, offset=%llu\n", io_u->buf, io_u->xfer_buf, io_u->buflen, io_u->xfer_buflen, io_u->offset); 773 log_err(" ddir=%d, fname=%s\n", io_u->ddir, io_u->file->file_name); 774} 775#else 776void io_u_set_timeout(struct thread_data fio_unused *td) 777{ 778} 779#endif 780 781#ifdef FIO_USE_TIMEOUT 782static void io_u_timeout_handler(int fio_unused sig) 783{ 784 struct thread_data *td, *__td; 785 pid_t pid = getpid(); 786 struct list_head *entry; 787 struct io_u *io_u; 788 int i; 789 790 log_err("fio: io_u timeout\n"); 791 792 /* 793 * TLS would be nice... 794 */ 795 td = NULL; 796 for_each_td(__td, i) { 797 if (__td->pid == pid) { 798 td = __td; 799 break; 800 } 801 } 802 803 if (!td) { 804 log_err("fio: io_u timeout, can't find job\n"); 805 exit(1); 806 } 807 808 if (!td->cur_depth) { 809 log_err("fio: timeout without pending work?\n"); 810 return; 811 } 812 813 log_err("fio: io_u timeout: job=%s, pid=%d\n", td->o.name, td->pid); 814 815 list_for_each(entry, &td->io_u_busylist) { 816 io_u = list_entry(entry, struct io_u, list); 817 818 io_u_dump(io_u); 819 } 820 821 td_verror(td, ETIMEDOUT, "io_u timeout"); 822 exit(1); 823} 824#endif 825 826void io_u_init_timeout(void) 827{ 828#ifdef FIO_USE_TIMEOUT 829 signal(SIGALRM, io_u_timeout_handler); 830#endif 831} 832