io_u.c revision 6b1190fdf64da94a5d6b22439fa31825160f8734
1#include <unistd.h> 2#include <fcntl.h> 3#include <string.h> 4#include <signal.h> 5#include <time.h> 6#include <assert.h> 7 8#include "fio.h" 9#include "hash.h" 10#include "verify.h" 11#include "trim.h" 12#include "lib/rand.h" 13 14struct io_completion_data { 15 int nr; /* input */ 16 int account; /* input */ 17 18 int error; /* output */ 19 unsigned long bytes_done[2]; /* output */ 20 struct timeval time; /* output */ 21}; 22 23/* 24 * The ->file_map[] contains a map of blocks we have or have not done io 25 * to yet. Used to make sure we cover the entire range in a fair fashion. 26 */ 27static int random_map_free(struct fio_file *f, const unsigned long long block) 28{ 29 unsigned int idx = RAND_MAP_IDX(f, block); 30 unsigned int bit = RAND_MAP_BIT(f, block); 31 32 dprint(FD_RANDOM, "free: b=%llu, idx=%u, bit=%u\n", block, idx, bit); 33 34 return (f->file_map[idx] & (1UL << bit)) == 0; 35} 36 37/* 38 * Mark a given offset as used in the map. 39 */ 40static void mark_random_map(struct thread_data *td, struct io_u *io_u) 41{ 42 unsigned int min_bs = td->o.rw_min_bs; 43 struct fio_file *f = io_u->file; 44 unsigned long long block; 45 unsigned int blocks, nr_blocks; 46 int busy_check; 47 48 block = (io_u->offset - f->file_offset) / (unsigned long long) min_bs; 49 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs; 50 blocks = 0; 51 busy_check = !(io_u->flags & IO_U_F_BUSY_OK); 52 53 while (nr_blocks) { 54 unsigned int idx, bit; 55 unsigned long mask, this_blocks; 56 57 /* 58 * If we have a mixed random workload, we may 59 * encounter blocks we already did IO to. 60 */ 61 if (!busy_check) { 62 blocks = nr_blocks; 63 break; 64 } 65 if ((td->o.ddir_seq_nr == 1) && !random_map_free(f, block)) 66 break; 67 68 idx = RAND_MAP_IDX(f, block); 69 bit = RAND_MAP_BIT(f, block); 70 71 fio_assert(td, idx < f->num_maps); 72 73 this_blocks = nr_blocks; 74 if (this_blocks + bit > BLOCKS_PER_MAP) 75 this_blocks = BLOCKS_PER_MAP - bit; 76 77 do { 78 if (this_blocks == BLOCKS_PER_MAP) 79 mask = -1UL; 80 else 81 mask = ((1UL << this_blocks) - 1) << bit; 82 83 if (!(f->file_map[idx] & mask)) 84 break; 85 86 this_blocks--; 87 } while (this_blocks); 88 89 if (!this_blocks) 90 break; 91 92 f->file_map[idx] |= mask; 93 nr_blocks -= this_blocks; 94 blocks += this_blocks; 95 block += this_blocks; 96 } 97 98 if ((blocks * min_bs) < io_u->buflen) 99 io_u->buflen = blocks * min_bs; 100} 101 102static unsigned long long last_block(struct thread_data *td, struct fio_file *f, 103 enum fio_ddir ddir) 104{ 105 unsigned long long max_blocks; 106 unsigned long long max_size; 107 108 assert(ddir_rw(ddir)); 109 110 /* 111 * Hmm, should we make sure that ->io_size <= ->real_file_size? 112 */ 113 max_size = f->io_size; 114 if (max_size > f->real_file_size) 115 max_size = f->real_file_size; 116 117 if (td->o.zone_range) 118 max_size = td->o.zone_range; 119 120 max_blocks = max_size / (unsigned long long) td->o.ba[ddir]; 121 if (!max_blocks) 122 return 0; 123 124 return max_blocks; 125} 126 127/* 128 * Return the next free block in the map. 129 */ 130static int get_next_free_block(struct thread_data *td, struct fio_file *f, 131 enum fio_ddir ddir, unsigned long long *b) 132{ 133 unsigned long long block, min_bs = td->o.rw_min_bs, lastb; 134 int i; 135 136 lastb = last_block(td, f, ddir); 137 if (!lastb) 138 return 1; 139 140 i = f->last_free_lookup; 141 block = i * BLOCKS_PER_MAP; 142 while (block * min_bs < f->real_file_size && 143 block * min_bs < f->io_size) { 144 if (f->file_map[i] != -1UL) { 145 block += ffz(f->file_map[i]); 146 if (block > lastb) 147 break; 148 f->last_free_lookup = i; 149 *b = block; 150 return 0; 151 } 152 153 block += BLOCKS_PER_MAP; 154 i++; 155 } 156 157 dprint(FD_IO, "failed finding a free block\n"); 158 return 1; 159} 160 161static int get_next_rand_offset(struct thread_data *td, struct fio_file *f, 162 enum fio_ddir ddir, unsigned long long *b) 163{ 164 unsigned long long rmax, r, lastb; 165 int loops = 5; 166 167 lastb = last_block(td, f, ddir); 168 if (!lastb) 169 return 1; 170 171 if (f->failed_rands >= 200) 172 goto ffz; 173 174 rmax = td->o.use_os_rand ? OS_RAND_MAX : FRAND_MAX; 175 do { 176 if (td->o.use_os_rand) 177 r = os_random_long(&td->random_state); 178 else 179 r = __rand(&td->__random_state); 180 181 *b = (lastb - 1) * (r / ((unsigned long long) rmax + 1.0)); 182 183 dprint(FD_RANDOM, "off rand %llu\n", r); 184 185 186 /* 187 * if we are not maintaining a random map, we are done. 188 */ 189 if (!file_randommap(td, f)) 190 goto ret_good; 191 192 /* 193 * calculate map offset and check if it's free 194 */ 195 if (random_map_free(f, *b)) 196 goto ret_good; 197 198 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n", 199 *b); 200 } while (--loops); 201 202 if (!f->failed_rands++) 203 f->last_free_lookup = 0; 204 205 /* 206 * we get here, if we didn't suceed in looking up a block. generate 207 * a random start offset into the filemap, and find the first free 208 * block from there. 209 */ 210 loops = 10; 211 do { 212 f->last_free_lookup = (f->num_maps - 1) * 213 (r / ((unsigned long long) rmax + 1.0)); 214 if (!get_next_free_block(td, f, ddir, b)) 215 goto ret; 216 217 if (td->o.use_os_rand) 218 r = os_random_long(&td->random_state); 219 else 220 r = __rand(&td->__random_state); 221 } while (--loops); 222 223 /* 224 * that didn't work either, try exhaustive search from the start 225 */ 226 f->last_free_lookup = 0; 227ffz: 228 if (!get_next_free_block(td, f, ddir, b)) 229 return 0; 230 f->last_free_lookup = 0; 231 return get_next_free_block(td, f, ddir, b); 232ret_good: 233 f->failed_rands = 0; 234ret: 235 return 0; 236} 237 238static int get_next_rand_block(struct thread_data *td, struct fio_file *f, 239 enum fio_ddir ddir, unsigned long long *b) 240{ 241 if (get_next_rand_offset(td, f, ddir, b)) { 242 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n", 243 f->file_name, f->last_pos, f->real_file_size); 244 return 1; 245 } 246 247 return 0; 248} 249 250static int get_next_seq_block(struct thread_data *td, struct fio_file *f, 251 enum fio_ddir ddir, unsigned long long *b) 252{ 253 assert(ddir_rw(ddir)); 254 255 if (f->last_pos < f->real_file_size) { 256 unsigned long long pos; 257 258 if (f->last_pos == f->file_offset && td->o.ddir_seq_add < 0) 259 f->last_pos = f->real_file_size; 260 261 pos = f->last_pos - f->file_offset; 262 if (pos) 263 pos += td->o.ddir_seq_add; 264 265 *b = pos / td->o.min_bs[ddir]; 266 return 0; 267 } 268 269 return 1; 270} 271 272static int get_next_block(struct thread_data *td, struct io_u *io_u, 273 enum fio_ddir ddir, int rw_seq, unsigned long long *b) 274{ 275 struct fio_file *f = io_u->file; 276 int ret; 277 278 assert(ddir_rw(ddir)); 279 280 if (rw_seq) { 281 if (td_random(td)) 282 ret = get_next_rand_block(td, f, ddir, b); 283 else 284 ret = get_next_seq_block(td, f, ddir, b); 285 } else { 286 io_u->flags |= IO_U_F_BUSY_OK; 287 288 if (td->o.rw_seq == RW_SEQ_SEQ) { 289 ret = get_next_seq_block(td, f, ddir, b); 290 if (ret) 291 ret = get_next_rand_block(td, f, ddir, b); 292 } else if (td->o.rw_seq == RW_SEQ_IDENT) { 293 if (f->last_start != -1ULL) 294 *b = (f->last_start - f->file_offset) 295 / td->o.min_bs[ddir]; 296 else 297 *b = 0; 298 ret = 0; 299 } else { 300 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq); 301 ret = 1; 302 } 303 } 304 305 return ret; 306} 307 308/* 309 * For random io, generate a random new block and see if it's used. Repeat 310 * until we find a free one. For sequential io, just return the end of 311 * the last io issued. 312 */ 313static int __get_next_offset(struct thread_data *td, struct io_u *io_u) 314{ 315 struct fio_file *f = io_u->file; 316 unsigned long long b; 317 enum fio_ddir ddir = io_u->ddir; 318 int rw_seq_hit = 0; 319 320 assert(ddir_rw(ddir)); 321 322 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) { 323 rw_seq_hit = 1; 324 td->ddir_seq_nr = td->o.ddir_seq_nr; 325 } 326 327 if (get_next_block(td, io_u, ddir, rw_seq_hit, &b)) 328 return 1; 329 330 io_u->offset = b * td->o.ba[ddir]; 331 if (io_u->offset >= f->io_size) { 332 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n", 333 io_u->offset, f->io_size); 334 return 1; 335 } 336 337 io_u->offset += f->file_offset; 338 if (io_u->offset >= f->real_file_size) { 339 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n", 340 io_u->offset, f->real_file_size); 341 return 1; 342 } 343 344 return 0; 345} 346 347static int get_next_offset(struct thread_data *td, struct io_u *io_u) 348{ 349 struct prof_io_ops *ops = &td->prof_io_ops; 350 351 if (ops->fill_io_u_off) 352 return ops->fill_io_u_off(td, io_u); 353 354 return __get_next_offset(td, io_u); 355} 356 357static inline int io_u_fits(struct thread_data *td, struct io_u *io_u, 358 unsigned int buflen) 359{ 360 struct fio_file *f = io_u->file; 361 362 return io_u->offset + buflen <= f->io_size + td->o.start_offset; 363} 364 365static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u) 366{ 367 const int ddir = io_u->ddir; 368 unsigned int uninitialized_var(buflen); 369 unsigned int minbs, maxbs; 370 unsigned long r, rand_max; 371 372 assert(ddir_rw(ddir)); 373 374 minbs = td->o.min_bs[ddir]; 375 maxbs = td->o.max_bs[ddir]; 376 377 if (minbs == maxbs) 378 return minbs; 379 380 /* 381 * If we can't satisfy the min block size from here, then fail 382 */ 383 if (!io_u_fits(td, io_u, minbs)) 384 return 0; 385 386 if (td->o.use_os_rand) 387 rand_max = OS_RAND_MAX; 388 else 389 rand_max = FRAND_MAX; 390 391 do { 392 if (td->o.use_os_rand) 393 r = os_random_long(&td->bsrange_state); 394 else 395 r = __rand(&td->__bsrange_state); 396 397 if (!td->o.bssplit_nr[ddir]) { 398 buflen = 1 + (unsigned int) ((double) maxbs * 399 (r / (rand_max + 1.0))); 400 if (buflen < minbs) 401 buflen = minbs; 402 } else { 403 long perc = 0; 404 unsigned int i; 405 406 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) { 407 struct bssplit *bsp = &td->o.bssplit[ddir][i]; 408 409 buflen = bsp->bs; 410 perc += bsp->perc; 411 if ((r <= ((rand_max / 100L) * perc)) && 412 io_u_fits(td, io_u, buflen)) 413 break; 414 } 415 } 416 417 if (!td->o.bs_unaligned && is_power_of_2(minbs)) 418 buflen = (buflen + minbs - 1) & ~(minbs - 1); 419 420 } while (!io_u_fits(td, io_u, buflen)); 421 422 return buflen; 423} 424 425static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u) 426{ 427 struct prof_io_ops *ops = &td->prof_io_ops; 428 429 if (ops->fill_io_u_size) 430 return ops->fill_io_u_size(td, io_u); 431 432 return __get_next_buflen(td, io_u); 433} 434 435static void set_rwmix_bytes(struct thread_data *td) 436{ 437 unsigned int diff; 438 439 /* 440 * we do time or byte based switch. this is needed because 441 * buffered writes may issue a lot quicker than they complete, 442 * whereas reads do not. 443 */ 444 diff = td->o.rwmix[td->rwmix_ddir ^ 1]; 445 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100; 446} 447 448static inline enum fio_ddir get_rand_ddir(struct thread_data *td) 449{ 450 unsigned int v; 451 unsigned long r; 452 453 if (td->o.use_os_rand) { 454 r = os_random_long(&td->rwmix_state); 455 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0))); 456 } else { 457 r = __rand(&td->__rwmix_state); 458 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0))); 459 } 460 461 if (v <= td->o.rwmix[DDIR_READ]) 462 return DDIR_READ; 463 464 return DDIR_WRITE; 465} 466 467static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir) 468{ 469 enum fio_ddir odir = ddir ^ 1; 470 struct timeval t; 471 long usec; 472 473 assert(ddir_rw(ddir)); 474 475 if (td->rate_pending_usleep[ddir] <= 0) 476 return ddir; 477 478 /* 479 * We have too much pending sleep in this direction. See if we 480 * should switch. 481 */ 482 if (td_rw(td)) { 483 /* 484 * Other direction does not have too much pending, switch 485 */ 486 if (td->rate_pending_usleep[odir] < 100000) 487 return odir; 488 489 /* 490 * Both directions have pending sleep. Sleep the minimum time 491 * and deduct from both. 492 */ 493 if (td->rate_pending_usleep[ddir] <= 494 td->rate_pending_usleep[odir]) { 495 usec = td->rate_pending_usleep[ddir]; 496 } else { 497 usec = td->rate_pending_usleep[odir]; 498 ddir = odir; 499 } 500 } else 501 usec = td->rate_pending_usleep[ddir]; 502 503 /* 504 * We are going to sleep, ensure that we flush anything pending as 505 * not to skew our latency numbers. 506 * 507 * Changed to only monitor 'in flight' requests here instead of the 508 * td->cur_depth, b/c td->cur_depth does not accurately represent 509 * io's that have been actually submitted to an async engine, 510 * and cur_depth is meaningless for sync engines. 511 */ 512 if (td->io_u_in_flight) { 513 int fio_unused ret; 514 515 ret = io_u_queued_complete(td, td->io_u_in_flight, NULL); 516 } 517 518 fio_gettime(&t, NULL); 519 usec_sleep(td, usec); 520 usec = utime_since_now(&t); 521 522 td->rate_pending_usleep[ddir] -= usec; 523 524 odir = ddir ^ 1; 525 if (td_rw(td) && __should_check_rate(td, odir)) 526 td->rate_pending_usleep[odir] -= usec; 527 528 return ddir; 529} 530 531/* 532 * Return the data direction for the next io_u. If the job is a 533 * mixed read/write workload, check the rwmix cycle and switch if 534 * necessary. 535 */ 536static enum fio_ddir get_rw_ddir(struct thread_data *td) 537{ 538 enum fio_ddir ddir; 539 540 /* 541 * see if it's time to fsync 542 */ 543 if (td->o.fsync_blocks && 544 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) && 545 td->io_issues[DDIR_WRITE] && should_fsync(td)) 546 return DDIR_SYNC; 547 548 /* 549 * see if it's time to fdatasync 550 */ 551 if (td->o.fdatasync_blocks && 552 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) && 553 td->io_issues[DDIR_WRITE] && should_fsync(td)) 554 return DDIR_DATASYNC; 555 556 /* 557 * see if it's time to sync_file_range 558 */ 559 if (td->sync_file_range_nr && 560 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) && 561 td->io_issues[DDIR_WRITE] && should_fsync(td)) 562 return DDIR_SYNC_FILE_RANGE; 563 564 if (td_rw(td)) { 565 /* 566 * Check if it's time to seed a new data direction. 567 */ 568 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) { 569 /* 570 * Put a top limit on how many bytes we do for 571 * one data direction, to avoid overflowing the 572 * ranges too much 573 */ 574 ddir = get_rand_ddir(td); 575 576 if (ddir != td->rwmix_ddir) 577 set_rwmix_bytes(td); 578 579 td->rwmix_ddir = ddir; 580 } 581 ddir = td->rwmix_ddir; 582 } else if (td_read(td)) 583 ddir = DDIR_READ; 584 else 585 ddir = DDIR_WRITE; 586 587 td->rwmix_ddir = rate_ddir(td, ddir); 588 return td->rwmix_ddir; 589} 590 591static void set_rw_ddir(struct thread_data *td, struct io_u *io_u) 592{ 593 io_u->ddir = get_rw_ddir(td); 594 595 if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) && 596 td->o.barrier_blocks && 597 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) && 598 td->io_issues[DDIR_WRITE]) 599 io_u->flags |= IO_U_F_BARRIER; 600} 601 602void put_file_log(struct thread_data *td, struct fio_file *f) 603{ 604 int ret = put_file(td, f); 605 606 if (ret) 607 td_verror(td, ret, "file close"); 608} 609 610void put_io_u(struct thread_data *td, struct io_u *io_u) 611{ 612 td_io_u_lock(td); 613 614 if (io_u->file && !(io_u->flags & IO_U_F_FREE_DEF)) 615 put_file_log(td, io_u->file); 616 io_u->file = NULL; 617 io_u->flags &= ~IO_U_F_FREE_DEF; 618 io_u->flags |= IO_U_F_FREE; 619 620 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) 621 td->cur_depth--; 622 flist_del_init(&io_u->list); 623 flist_add(&io_u->list, &td->io_u_freelist); 624 td_io_u_unlock(td); 625 td_io_u_free_notify(td); 626} 627 628void clear_io_u(struct thread_data *td, struct io_u *io_u) 629{ 630 io_u->flags &= ~IO_U_F_FLIGHT; 631 put_io_u(td, io_u); 632} 633 634void requeue_io_u(struct thread_data *td, struct io_u **io_u) 635{ 636 struct io_u *__io_u = *io_u; 637 638 dprint(FD_IO, "requeue %p\n", __io_u); 639 640 td_io_u_lock(td); 641 642 __io_u->flags |= IO_U_F_FREE; 643 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(__io_u->ddir)) 644 td->io_issues[__io_u->ddir]--; 645 646 __io_u->flags &= ~IO_U_F_FLIGHT; 647 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) 648 td->cur_depth--; 649 flist_del(&__io_u->list); 650 flist_add_tail(&__io_u->list, &td->io_u_requeues); 651 td_io_u_unlock(td); 652 *io_u = NULL; 653} 654 655static int fill_io_u(struct thread_data *td, struct io_u *io_u) 656{ 657 if (td->io_ops->flags & FIO_NOIO) 658 goto out; 659 660 set_rw_ddir(td, io_u); 661 662 /* 663 * fsync() or fdatasync() or trim etc, we are done 664 */ 665 if (!ddir_rw(io_u->ddir)) 666 goto out; 667 668 /* 669 * See if it's time to switch to a new zone 670 */ 671 if (td->zone_bytes >= td->o.zone_size) { 672 td->zone_bytes = 0; 673 io_u->file->file_offset += td->o.zone_range + td->o.zone_skip; 674 io_u->file->last_pos = io_u->file->file_offset; 675 td->io_skip_bytes += td->o.zone_skip; 676 } 677 678 /* 679 * No log, let the seq/rand engine retrieve the next buflen and 680 * position. 681 */ 682 if (get_next_offset(td, io_u)) { 683 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u); 684 return 1; 685 } 686 687 io_u->buflen = get_next_buflen(td, io_u); 688 if (!io_u->buflen) { 689 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u); 690 return 1; 691 } 692 693 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) { 694 dprint(FD_IO, "io_u %p, offset too large\n", io_u); 695 dprint(FD_IO, " off=%llu/%lu > %llu\n", io_u->offset, 696 io_u->buflen, io_u->file->real_file_size); 697 return 1; 698 } 699 700 /* 701 * mark entry before potentially trimming io_u 702 */ 703 if (td_random(td) && file_randommap(td, io_u->file)) 704 mark_random_map(td, io_u); 705 706 /* 707 * If using a write iolog, store this entry. 708 */ 709out: 710 dprint_io_u(io_u, "fill_io_u"); 711 td->zone_bytes += io_u->buflen; 712 log_io_u(td, io_u); 713 return 0; 714} 715 716static void __io_u_mark_map(unsigned int *map, unsigned int nr) 717{ 718 int idx = 0; 719 720 switch (nr) { 721 default: 722 idx = 6; 723 break; 724 case 33 ... 64: 725 idx = 5; 726 break; 727 case 17 ... 32: 728 idx = 4; 729 break; 730 case 9 ... 16: 731 idx = 3; 732 break; 733 case 5 ... 8: 734 idx = 2; 735 break; 736 case 1 ... 4: 737 idx = 1; 738 case 0: 739 break; 740 } 741 742 map[idx]++; 743} 744 745void io_u_mark_submit(struct thread_data *td, unsigned int nr) 746{ 747 __io_u_mark_map(td->ts.io_u_submit, nr); 748 td->ts.total_submit++; 749} 750 751void io_u_mark_complete(struct thread_data *td, unsigned int nr) 752{ 753 __io_u_mark_map(td->ts.io_u_complete, nr); 754 td->ts.total_complete++; 755} 756 757void io_u_mark_depth(struct thread_data *td, unsigned int nr) 758{ 759 int idx = 0; 760 761 switch (td->cur_depth) { 762 default: 763 idx = 6; 764 break; 765 case 32 ... 63: 766 idx = 5; 767 break; 768 case 16 ... 31: 769 idx = 4; 770 break; 771 case 8 ... 15: 772 idx = 3; 773 break; 774 case 4 ... 7: 775 idx = 2; 776 break; 777 case 2 ... 3: 778 idx = 1; 779 case 1: 780 break; 781 } 782 783 td->ts.io_u_map[idx] += nr; 784} 785 786static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec) 787{ 788 int idx = 0; 789 790 assert(usec < 1000); 791 792 switch (usec) { 793 case 750 ... 999: 794 idx = 9; 795 break; 796 case 500 ... 749: 797 idx = 8; 798 break; 799 case 250 ... 499: 800 idx = 7; 801 break; 802 case 100 ... 249: 803 idx = 6; 804 break; 805 case 50 ... 99: 806 idx = 5; 807 break; 808 case 20 ... 49: 809 idx = 4; 810 break; 811 case 10 ... 19: 812 idx = 3; 813 break; 814 case 4 ... 9: 815 idx = 2; 816 break; 817 case 2 ... 3: 818 idx = 1; 819 case 0 ... 1: 820 break; 821 } 822 823 assert(idx < FIO_IO_U_LAT_U_NR); 824 td->ts.io_u_lat_u[idx]++; 825} 826 827static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec) 828{ 829 int idx = 0; 830 831 switch (msec) { 832 default: 833 idx = 11; 834 break; 835 case 1000 ... 1999: 836 idx = 10; 837 break; 838 case 750 ... 999: 839 idx = 9; 840 break; 841 case 500 ... 749: 842 idx = 8; 843 break; 844 case 250 ... 499: 845 idx = 7; 846 break; 847 case 100 ... 249: 848 idx = 6; 849 break; 850 case 50 ... 99: 851 idx = 5; 852 break; 853 case 20 ... 49: 854 idx = 4; 855 break; 856 case 10 ... 19: 857 idx = 3; 858 break; 859 case 4 ... 9: 860 idx = 2; 861 break; 862 case 2 ... 3: 863 idx = 1; 864 case 0 ... 1: 865 break; 866 } 867 868 assert(idx < FIO_IO_U_LAT_M_NR); 869 td->ts.io_u_lat_m[idx]++; 870} 871 872static void io_u_mark_latency(struct thread_data *td, unsigned long usec) 873{ 874 if (usec < 1000) 875 io_u_mark_lat_usec(td, usec); 876 else 877 io_u_mark_lat_msec(td, usec / 1000); 878} 879 880/* 881 * Get next file to service by choosing one at random 882 */ 883static struct fio_file *get_next_file_rand(struct thread_data *td, 884 enum fio_file_flags goodf, 885 enum fio_file_flags badf) 886{ 887 struct fio_file *f; 888 int fno; 889 890 do { 891 int opened = 0; 892 unsigned long r; 893 894 if (td->o.use_os_rand) { 895 r = os_random_long(&td->next_file_state); 896 fno = (unsigned int) ((double) td->o.nr_files 897 * (r / (OS_RAND_MAX + 1.0))); 898 } else { 899 r = __rand(&td->__next_file_state); 900 fno = (unsigned int) ((double) td->o.nr_files 901 * (r / (FRAND_MAX + 1.0))); 902 } 903 904 f = td->files[fno]; 905 if (fio_file_done(f)) 906 continue; 907 908 if (!fio_file_open(f)) { 909 int err; 910 911 err = td_io_open_file(td, f); 912 if (err) 913 continue; 914 opened = 1; 915 } 916 917 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) { 918 dprint(FD_FILE, "get_next_file_rand: %p\n", f); 919 return f; 920 } 921 if (opened) 922 td_io_close_file(td, f); 923 } while (1); 924} 925 926/* 927 * Get next file to service by doing round robin between all available ones 928 */ 929static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf, 930 int badf) 931{ 932 unsigned int old_next_file = td->next_file; 933 struct fio_file *f; 934 935 do { 936 int opened = 0; 937 938 f = td->files[td->next_file]; 939 940 td->next_file++; 941 if (td->next_file >= td->o.nr_files) 942 td->next_file = 0; 943 944 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags); 945 if (fio_file_done(f)) { 946 f = NULL; 947 continue; 948 } 949 950 if (!fio_file_open(f)) { 951 int err; 952 953 err = td_io_open_file(td, f); 954 if (err) { 955 dprint(FD_FILE, "error %d on open of %s\n", 956 err, f->file_name); 957 f = NULL; 958 continue; 959 } 960 opened = 1; 961 } 962 963 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf, 964 f->flags); 965 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) 966 break; 967 968 if (opened) 969 td_io_close_file(td, f); 970 971 f = NULL; 972 } while (td->next_file != old_next_file); 973 974 dprint(FD_FILE, "get_next_file_rr: %p\n", f); 975 return f; 976} 977 978static struct fio_file *__get_next_file(struct thread_data *td) 979{ 980 struct fio_file *f; 981 982 assert(td->o.nr_files <= td->files_index); 983 984 if (td->nr_done_files >= td->o.nr_files) { 985 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d," 986 " nr_files=%d\n", td->nr_open_files, 987 td->nr_done_files, 988 td->o.nr_files); 989 return NULL; 990 } 991 992 f = td->file_service_file; 993 if (f && fio_file_open(f) && !fio_file_closing(f)) { 994 if (td->o.file_service_type == FIO_FSERVICE_SEQ) 995 goto out; 996 if (td->file_service_left--) 997 goto out; 998 } 999 1000 if (td->o.file_service_type == FIO_FSERVICE_RR || 1001 td->o.file_service_type == FIO_FSERVICE_SEQ) 1002 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing); 1003 else 1004 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing); 1005 1006 td->file_service_file = f; 1007 td->file_service_left = td->file_service_nr - 1; 1008out: 1009 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name); 1010 return f; 1011} 1012 1013static struct fio_file *get_next_file(struct thread_data *td) 1014{ 1015 struct prof_io_ops *ops = &td->prof_io_ops; 1016 1017 if (ops->get_next_file) 1018 return ops->get_next_file(td); 1019 1020 return __get_next_file(td); 1021} 1022 1023static int set_io_u_file(struct thread_data *td, struct io_u *io_u) 1024{ 1025 struct fio_file *f; 1026 1027 do { 1028 f = get_next_file(td); 1029 if (!f) 1030 return 1; 1031 1032 io_u->file = f; 1033 get_file(f); 1034 1035 if (!fill_io_u(td, io_u)) 1036 break; 1037 1038 put_file_log(td, f); 1039 td_io_close_file(td, f); 1040 io_u->file = NULL; 1041 fio_file_set_done(f); 1042 td->nr_done_files++; 1043 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name, 1044 td->nr_done_files, td->o.nr_files); 1045 } while (1); 1046 1047 return 0; 1048} 1049 1050 1051struct io_u *__get_io_u(struct thread_data *td) 1052{ 1053 struct io_u *io_u = NULL; 1054 1055 td_io_u_lock(td); 1056 1057again: 1058 if (!flist_empty(&td->io_u_requeues)) 1059 io_u = flist_entry(td->io_u_requeues.next, struct io_u, list); 1060 else if (!queue_full(td)) { 1061 io_u = flist_entry(td->io_u_freelist.next, struct io_u, list); 1062 1063 io_u->buflen = 0; 1064 io_u->resid = 0; 1065 io_u->file = NULL; 1066 io_u->end_io = NULL; 1067 } 1068 1069 if (io_u) { 1070 assert(io_u->flags & IO_U_F_FREE); 1071 io_u->flags &= ~(IO_U_F_FREE | IO_U_F_FREE_DEF); 1072 io_u->flags &= ~(IO_U_F_TRIMMED | IO_U_F_BARRIER); 1073 1074 io_u->error = 0; 1075 flist_del(&io_u->list); 1076 flist_add(&io_u->list, &td->io_u_busylist); 1077 td->cur_depth++; 1078 io_u->flags |= IO_U_F_IN_CUR_DEPTH; 1079 } else if (td->o.verify_async) { 1080 /* 1081 * We ran out, wait for async verify threads to finish and 1082 * return one 1083 */ 1084 pthread_cond_wait(&td->free_cond, &td->io_u_lock); 1085 goto again; 1086 } 1087 1088 td_io_u_unlock(td); 1089 return io_u; 1090} 1091 1092static int check_get_trim(struct thread_data *td, struct io_u *io_u) 1093{ 1094 if (td->o.trim_backlog && td->trim_entries) { 1095 int get_trim = 0; 1096 1097 if (td->trim_batch) { 1098 td->trim_batch--; 1099 get_trim = 1; 1100 } else if (!(td->io_hist_len % td->o.trim_backlog) && 1101 td->last_ddir != DDIR_READ) { 1102 td->trim_batch = td->o.trim_batch; 1103 if (!td->trim_batch) 1104 td->trim_batch = td->o.trim_backlog; 1105 get_trim = 1; 1106 } 1107 1108 if (get_trim && !get_next_trim(td, io_u)) 1109 return 1; 1110 } 1111 1112 return 0; 1113} 1114 1115static int check_get_verify(struct thread_data *td, struct io_u *io_u) 1116{ 1117 if (td->o.verify_backlog && td->io_hist_len) { 1118 int get_verify = 0; 1119 1120 if (td->verify_batch) { 1121 td->verify_batch--; 1122 get_verify = 1; 1123 } else if (!(td->io_hist_len % td->o.verify_backlog) && 1124 td->last_ddir != DDIR_READ) { 1125 td->verify_batch = td->o.verify_batch; 1126 if (!td->verify_batch) 1127 td->verify_batch = td->o.verify_backlog; 1128 get_verify = 1; 1129 } 1130 1131 if (get_verify && !get_next_verify(td, io_u)) 1132 return 1; 1133 } 1134 1135 return 0; 1136} 1137 1138/* 1139 * Fill offset and start time into the buffer content, to prevent too 1140 * easy compressible data for simple de-dupe attempts. Do this for every 1141 * 512b block in the range, since that should be the smallest block size 1142 * we can expect from a device. 1143 */ 1144static void small_content_scramble(struct io_u *io_u) 1145{ 1146 unsigned int i, nr_blocks = io_u->buflen / 512; 1147 unsigned long long boffset; 1148 unsigned int offset; 1149 void *p, *end; 1150 1151 if (!nr_blocks) 1152 return; 1153 1154 p = io_u->xfer_buf; 1155 boffset = io_u->offset; 1156 io_u->buf_filled_len = 0; 1157 1158 for (i = 0; i < nr_blocks; i++) { 1159 /* 1160 * Fill the byte offset into a "random" start offset of 1161 * the buffer, given by the product of the usec time 1162 * and the actual offset. 1163 */ 1164 offset = (io_u->start_time.tv_usec ^ boffset) & 511; 1165 offset &= ~(sizeof(unsigned long long) - 1); 1166 if (offset >= 512 - sizeof(unsigned long long)) 1167 offset -= sizeof(unsigned long long); 1168 memcpy(p + offset, &boffset, sizeof(boffset)); 1169 1170 end = p + 512 - sizeof(io_u->start_time); 1171 memcpy(end, &io_u->start_time, sizeof(io_u->start_time)); 1172 p += 512; 1173 boffset += 512; 1174 } 1175} 1176 1177/* 1178 * Return an io_u to be processed. Gets a buflen and offset, sets direction, 1179 * etc. The returned io_u is fully ready to be prepped and submitted. 1180 */ 1181struct io_u *get_io_u(struct thread_data *td) 1182{ 1183 struct fio_file *f; 1184 struct io_u *io_u; 1185 int do_scramble = 0; 1186 1187 io_u = __get_io_u(td); 1188 if (!io_u) { 1189 dprint(FD_IO, "__get_io_u failed\n"); 1190 return NULL; 1191 } 1192 1193 if (check_get_verify(td, io_u)) 1194 goto out; 1195 if (check_get_trim(td, io_u)) 1196 goto out; 1197 1198 /* 1199 * from a requeue, io_u already setup 1200 */ 1201 if (io_u->file) 1202 goto out; 1203 1204 /* 1205 * If using an iolog, grab next piece if any available. 1206 */ 1207 if (td->o.read_iolog_file) { 1208 if (read_iolog_get(td, io_u)) 1209 goto err_put; 1210 } else if (set_io_u_file(td, io_u)) { 1211 dprint(FD_IO, "io_u %p, setting file failed\n", io_u); 1212 goto err_put; 1213 } 1214 1215 f = io_u->file; 1216 assert(fio_file_open(f)); 1217 1218 if (ddir_rw(io_u->ddir)) { 1219 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) { 1220 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u); 1221 goto err_put; 1222 } 1223 1224 f->last_start = io_u->offset; 1225 f->last_pos = io_u->offset + io_u->buflen; 1226 1227 if (io_u->ddir == DDIR_WRITE) { 1228 if (td->o.verify != VERIFY_NONE) 1229 populate_verify_io_u(td, io_u); 1230 else if (td->o.refill_buffers) 1231 io_u_fill_buffer(td, io_u, io_u->xfer_buflen); 1232 else if (td->o.scramble_buffers) 1233 do_scramble = 1; 1234 } else if (io_u->ddir == DDIR_READ) { 1235 /* 1236 * Reset the buf_filled parameters so next time if the 1237 * buffer is used for writes it is refilled. 1238 */ 1239 io_u->buf_filled_len = 0; 1240 } 1241 } 1242 1243 /* 1244 * Set io data pointers. 1245 */ 1246 io_u->xfer_buf = io_u->buf; 1247 io_u->xfer_buflen = io_u->buflen; 1248 1249out: 1250 assert(io_u->file); 1251 if (!td_io_prep(td, io_u)) { 1252 if (!td->o.disable_slat) 1253 fio_gettime(&io_u->start_time, NULL); 1254 if (do_scramble) 1255 small_content_scramble(io_u); 1256 return io_u; 1257 } 1258err_put: 1259 dprint(FD_IO, "get_io_u failed\n"); 1260 put_io_u(td, io_u); 1261 return NULL; 1262} 1263 1264void io_u_log_error(struct thread_data *td, struct io_u *io_u) 1265{ 1266 const char *msg[] = { "read", "write", "sync", "datasync", 1267 "sync_file_range", "wait", "trim" }; 1268 1269 1270 1271 log_err("fio: io_u error"); 1272 1273 if (io_u->file) 1274 log_err(" on file %s", io_u->file->file_name); 1275 1276 log_err(": %s\n", strerror(io_u->error)); 1277 1278 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir], 1279 io_u->offset, io_u->xfer_buflen); 1280 1281 if (!td->error) 1282 td_verror(td, io_u->error, "io_u error"); 1283} 1284 1285static void account_io_completion(struct thread_data *td, struct io_u *io_u, 1286 struct io_completion_data *icd, 1287 const enum fio_ddir idx, unsigned int bytes) 1288{ 1289 unsigned long uninitialized_var(lusec); 1290 1291 if (!icd->account) 1292 return; 1293 1294 if (!td->o.disable_clat || !td->o.disable_bw) 1295 lusec = utime_since(&io_u->issue_time, &icd->time); 1296 1297 if (!td->o.disable_lat) { 1298 unsigned long tusec; 1299 1300 tusec = utime_since(&io_u->start_time, &icd->time); 1301 add_lat_sample(td, idx, tusec, bytes); 1302 } 1303 1304 if (!td->o.disable_clat) { 1305 add_clat_sample(td, idx, lusec, bytes); 1306 io_u_mark_latency(td, lusec); 1307 } 1308 1309 if (!td->o.disable_bw) 1310 add_bw_sample(td, idx, bytes, &icd->time); 1311 1312 add_iops_sample(td, idx, &icd->time); 1313} 1314 1315static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir) 1316{ 1317 unsigned long long secs, remainder, bps, bytes; 1318 bytes = td->this_io_bytes[ddir]; 1319 bps = td->rate_bps[ddir]; 1320 secs = bytes / bps; 1321 remainder = bytes % bps; 1322 return remainder * 1000000 / bps + secs * 1000000; 1323} 1324 1325static void io_completed(struct thread_data *td, struct io_u *io_u, 1326 struct io_completion_data *icd) 1327{ 1328 /* 1329 * Older gcc's are too dumb to realize that usec is always used 1330 * initialized, silence that warning. 1331 */ 1332 unsigned long uninitialized_var(usec); 1333 struct fio_file *f; 1334 1335 dprint_io_u(io_u, "io complete"); 1336 1337 td_io_u_lock(td); 1338 assert(io_u->flags & IO_U_F_FLIGHT); 1339 io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK); 1340 td_io_u_unlock(td); 1341 1342 if (ddir_sync(io_u->ddir)) { 1343 td->last_was_sync = 1; 1344 f = io_u->file; 1345 if (f) { 1346 f->first_write = -1ULL; 1347 f->last_write = -1ULL; 1348 } 1349 return; 1350 } 1351 1352 td->last_was_sync = 0; 1353 td->last_ddir = io_u->ddir; 1354 1355 if (!io_u->error && ddir_rw(io_u->ddir)) { 1356 unsigned int bytes = io_u->buflen - io_u->resid; 1357 const enum fio_ddir idx = io_u->ddir; 1358 const enum fio_ddir odx = io_u->ddir ^ 1; 1359 int ret; 1360 1361 td->io_blocks[idx]++; 1362 td->this_io_blocks[idx]++; 1363 td->io_bytes[idx] += bytes; 1364 td->this_io_bytes[idx] += bytes; 1365 1366 if (idx == DDIR_WRITE) { 1367 f = io_u->file; 1368 if (f) { 1369 if (f->first_write == -1ULL || 1370 io_u->offset < f->first_write) 1371 f->first_write = io_u->offset; 1372 if (f->last_write == -1ULL || 1373 ((io_u->offset + bytes) > f->last_write)) 1374 f->last_write = io_u->offset + bytes; 1375 } 1376 } 1377 1378 if (ramp_time_over(td) && (td->runstate == TD_RUNNING || 1379 td->runstate == TD_VERIFYING)) { 1380 account_io_completion(td, io_u, icd, idx, bytes); 1381 1382 if (__should_check_rate(td, idx)) { 1383 td->rate_pending_usleep[idx] = 1384 (usec_for_io(td, idx) - 1385 utime_since_now(&td->start)); 1386 } 1387 if (__should_check_rate(td, odx)) 1388 td->rate_pending_usleep[odx] = 1389 (usec_for_io(td, odx) - 1390 utime_since_now(&td->start)); 1391 } 1392 1393 if (td_write(td) && idx == DDIR_WRITE && 1394 td->o.do_verify && 1395 td->o.verify != VERIFY_NONE) 1396 log_io_piece(td, io_u); 1397 1398 icd->bytes_done[idx] += bytes; 1399 1400 if (io_u->end_io) { 1401 ret = io_u->end_io(td, io_u); 1402 if (ret && !icd->error) 1403 icd->error = ret; 1404 } 1405 } else if (io_u->error) { 1406 icd->error = io_u->error; 1407 io_u_log_error(td, io_u); 1408 } 1409 if (icd->error && td_non_fatal_error(icd->error) && 1410 (td->o.continue_on_error & td_error_type(io_u->ddir, icd->error))) { 1411 /* 1412 * If there is a non_fatal error, then add to the error count 1413 * and clear all the errors. 1414 */ 1415 update_error_count(td, icd->error); 1416 td_clear_error(td); 1417 icd->error = 0; 1418 io_u->error = 0; 1419 } 1420} 1421 1422static void init_icd(struct thread_data *td, struct io_completion_data *icd, 1423 int nr) 1424{ 1425 if (!td->o.disable_clat || !td->o.disable_bw) 1426 fio_gettime(&icd->time, NULL); 1427 1428 icd->nr = nr; 1429 icd->account = 1; 1430 1431 icd->error = 0; 1432 icd->bytes_done[0] = icd->bytes_done[1] = 0; 1433} 1434 1435static void ios_completed(struct thread_data *td, 1436 struct io_completion_data *icd) 1437{ 1438 struct io_u *io_u; 1439 int i; 1440 1441 for (i = 0; i < icd->nr; i++) { 1442 io_u = td->io_ops->event(td, i); 1443 1444 io_completed(td, io_u, icd); 1445 1446 if (!(io_u->flags & IO_U_F_FREE_DEF)) 1447 put_io_u(td, io_u); 1448 1449 icd->account = 0; 1450 } 1451} 1452 1453/* 1454 * Complete a single io_u for the sync engines. 1455 */ 1456int io_u_sync_complete(struct thread_data *td, struct io_u *io_u, 1457 unsigned long *bytes) 1458{ 1459 struct io_completion_data icd; 1460 1461 init_icd(td, &icd, 1); 1462 io_completed(td, io_u, &icd); 1463 1464 if (!(io_u->flags & IO_U_F_FREE_DEF)) 1465 put_io_u(td, io_u); 1466 1467 if (icd.error) { 1468 td_verror(td, icd.error, "io_u_sync_complete"); 1469 return -1; 1470 } 1471 1472 if (bytes) { 1473 bytes[0] += icd.bytes_done[0]; 1474 bytes[1] += icd.bytes_done[1]; 1475 } 1476 1477 return 0; 1478} 1479 1480/* 1481 * Called to complete min_events number of io for the async engines. 1482 */ 1483int io_u_queued_complete(struct thread_data *td, int min_evts, 1484 unsigned long *bytes) 1485{ 1486 struct io_completion_data icd; 1487 struct timespec *tvp = NULL; 1488 int ret; 1489 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, }; 1490 1491 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts); 1492 1493 if (!min_evts) 1494 tvp = &ts; 1495 1496 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp); 1497 if (ret < 0) { 1498 td_verror(td, -ret, "td_io_getevents"); 1499 return ret; 1500 } else if (!ret) 1501 return ret; 1502 1503 init_icd(td, &icd, ret); 1504 ios_completed(td, &icd); 1505 if (icd.error) { 1506 td_verror(td, icd.error, "io_u_queued_complete"); 1507 return -1; 1508 } 1509 1510 if (bytes) { 1511 bytes[0] += icd.bytes_done[0]; 1512 bytes[1] += icd.bytes_done[1]; 1513 } 1514 1515 return 0; 1516} 1517 1518/* 1519 * Call when io_u is really queued, to update the submission latency. 1520 */ 1521void io_u_queued(struct thread_data *td, struct io_u *io_u) 1522{ 1523 if (!td->o.disable_slat) { 1524 unsigned long slat_time; 1525 1526 slat_time = utime_since(&io_u->start_time, &io_u->issue_time); 1527 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen); 1528 } 1529} 1530 1531/* 1532 * "randomly" fill the buffer contents 1533 */ 1534void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u, 1535 unsigned int max_bs) 1536{ 1537 io_u->buf_filled_len = 0; 1538 1539 if (!td->o.zero_buffers) 1540 fill_random_buf(&td->buf_state, io_u->buf, max_bs); 1541 else 1542 memset(io_u->buf, 0, max_bs); 1543} 1544