io_u.c revision 7477673323a943b99ea203bb9434661d13a0159c
1#include <unistd.h> 2#include <fcntl.h> 3#include <string.h> 4#include <signal.h> 5#include <time.h> 6#include <assert.h> 7 8#include "fio.h" 9#include "hash.h" 10#include "verify.h" 11#include "trim.h" 12#include "lib/rand.h" 13#include "lib/axmap.h" 14 15struct io_completion_data { 16 int nr; /* input */ 17 18 int error; /* output */ 19 unsigned long bytes_done[DDIR_RWDIR_CNT]; /* output */ 20 struct timeval time; /* output */ 21}; 22 23/* 24 * The ->io_axmap contains a map of blocks we have or have not done io 25 * to yet. Used to make sure we cover the entire range in a fair fashion. 26 */ 27static int random_map_free(struct fio_file *f, const unsigned long long block) 28{ 29 return !axmap_isset(f->io_axmap, block); 30} 31 32/* 33 * Mark a given offset as used in the map. 34 */ 35static void mark_random_map(struct thread_data *td, struct io_u *io_u) 36{ 37 unsigned int min_bs = td->o.rw_min_bs; 38 struct fio_file *f = io_u->file; 39 unsigned long long block; 40 unsigned int nr_blocks; 41 42 block = (io_u->offset - f->file_offset) / (unsigned long long) min_bs; 43 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs; 44 45 if (!(io_u->flags & IO_U_F_BUSY_OK)) 46 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks); 47 48 if ((nr_blocks * min_bs) < io_u->buflen) 49 io_u->buflen = nr_blocks * min_bs; 50} 51 52static uint64_t last_block(struct thread_data *td, struct fio_file *f, 53 enum fio_ddir ddir) 54{ 55 uint64_t max_blocks; 56 uint64_t max_size; 57 58 assert(ddir_rw(ddir)); 59 60 /* 61 * Hmm, should we make sure that ->io_size <= ->real_file_size? 62 */ 63 max_size = f->io_size; 64 if (max_size > f->real_file_size) 65 max_size = f->real_file_size; 66 67 if (td->o.zone_range) 68 max_size = td->o.zone_range; 69 70 max_blocks = max_size / (unsigned long long) td->o.ba[ddir]; 71 if (!max_blocks) 72 return 0; 73 74 return max_blocks; 75} 76 77static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f, 78 enum fio_ddir ddir, unsigned long long *b) 79{ 80 unsigned long long r, lastb; 81 82 lastb = last_block(td, f, ddir); 83 if (!lastb) 84 return 1; 85 86 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE) { 87 unsigned long long rmax; 88 89 rmax = td->o.use_os_rand ? OS_RAND_MAX : FRAND_MAX; 90 91 if (td->o.use_os_rand) { 92 rmax = OS_RAND_MAX; 93 r = os_random_long(&td->random_state); 94 } else { 95 rmax = FRAND_MAX; 96 r = __rand(&td->__random_state); 97 } 98 99 dprint(FD_RANDOM, "off rand %llu\n", r); 100 101 *b = (lastb - 1) * (r / ((unsigned long long) rmax + 1.0)); 102 } else { 103 uint64_t off = 0; 104 105 if (lfsr_next(&f->lfsr, &off, lastb)) 106 return 1; 107 108 *b = off; 109 } 110 111 /* 112 * if we are not maintaining a random map, we are done. 113 */ 114 if (!file_randommap(td, f)) 115 goto ret; 116 117 /* 118 * calculate map offset and check if it's free 119 */ 120 if (random_map_free(f, *b)) 121 goto ret; 122 123 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n", *b); 124 125 *b = axmap_next_free(f->io_axmap, *b); 126 if (*b == (uint64_t) -1ULL) 127 return 1; 128ret: 129 return 0; 130} 131 132static int __get_next_rand_offset_zipf(struct thread_data *td, 133 struct fio_file *f, enum fio_ddir ddir, 134 unsigned long long *b) 135{ 136 *b = zipf_next(&f->zipf); 137 return 0; 138} 139 140static int __get_next_rand_offset_pareto(struct thread_data *td, 141 struct fio_file *f, enum fio_ddir ddir, 142 unsigned long long *b) 143{ 144 *b = pareto_next(&f->zipf); 145 return 0; 146} 147 148static int get_next_rand_offset(struct thread_data *td, struct fio_file *f, 149 enum fio_ddir ddir, unsigned long long *b) 150{ 151 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) 152 return __get_next_rand_offset(td, f, ddir, b); 153 else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF) 154 return __get_next_rand_offset_zipf(td, f, ddir, b); 155 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO) 156 return __get_next_rand_offset_pareto(td, f, ddir, b); 157 158 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution); 159 return 1; 160} 161 162static int get_next_rand_block(struct thread_data *td, struct fio_file *f, 163 enum fio_ddir ddir, unsigned long long *b) 164{ 165 if (!get_next_rand_offset(td, f, ddir, b)) 166 return 0; 167 168 if (td->o.time_based) { 169 fio_file_reset(f); 170 if (!get_next_rand_offset(td, f, ddir, b)) 171 return 0; 172 } 173 174 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n", 175 f->file_name, f->last_pos, f->real_file_size); 176 return 1; 177} 178 179static int get_next_seq_offset(struct thread_data *td, struct fio_file *f, 180 enum fio_ddir ddir, unsigned long long *offset) 181{ 182 assert(ddir_rw(ddir)); 183 184 if (f->last_pos >= f->io_size + get_start_offset(td) && td->o.time_based) 185 f->last_pos = f->last_pos - f->io_size; 186 187 if (f->last_pos < f->real_file_size) { 188 unsigned long long pos; 189 190 if (f->last_pos == f->file_offset && td->o.ddir_seq_add < 0) 191 f->last_pos = f->real_file_size; 192 193 pos = f->last_pos - f->file_offset; 194 if (pos) 195 pos += td->o.ddir_seq_add; 196 197 *offset = pos; 198 return 0; 199 } 200 201 return 1; 202} 203 204static int get_next_block(struct thread_data *td, struct io_u *io_u, 205 enum fio_ddir ddir, int rw_seq) 206{ 207 struct fio_file *f = io_u->file; 208 unsigned long long b, offset; 209 int ret; 210 211 assert(ddir_rw(ddir)); 212 213 b = offset = -1ULL; 214 215 if (rw_seq) { 216 if (td_random(td)) 217 ret = get_next_rand_block(td, f, ddir, &b); 218 else 219 ret = get_next_seq_offset(td, f, ddir, &offset); 220 } else { 221 io_u->flags |= IO_U_F_BUSY_OK; 222 223 if (td->o.rw_seq == RW_SEQ_SEQ) { 224 ret = get_next_seq_offset(td, f, ddir, &offset); 225 if (ret) 226 ret = get_next_rand_block(td, f, ddir, &b); 227 } else if (td->o.rw_seq == RW_SEQ_IDENT) { 228 if (f->last_start != -1ULL) 229 offset = f->last_start - f->file_offset; 230 else 231 offset = 0; 232 ret = 0; 233 } else { 234 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq); 235 ret = 1; 236 } 237 } 238 239 if (!ret) { 240 if (offset != -1ULL) 241 io_u->offset = offset; 242 else if (b != -1ULL) 243 io_u->offset = b * td->o.ba[ddir]; 244 else { 245 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", 246 offset, b); 247 ret = 1; 248 } 249 } 250 251 return ret; 252} 253 254/* 255 * For random io, generate a random new block and see if it's used. Repeat 256 * until we find a free one. For sequential io, just return the end of 257 * the last io issued. 258 */ 259static int __get_next_offset(struct thread_data *td, struct io_u *io_u) 260{ 261 struct fio_file *f = io_u->file; 262 enum fio_ddir ddir = io_u->ddir; 263 int rw_seq_hit = 0; 264 265 assert(ddir_rw(ddir)); 266 267 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) { 268 rw_seq_hit = 1; 269 td->ddir_seq_nr = td->o.ddir_seq_nr; 270 } 271 272 if (get_next_block(td, io_u, ddir, rw_seq_hit)) 273 return 1; 274 275 if (io_u->offset >= f->io_size) { 276 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n", 277 io_u->offset, f->io_size); 278 return 1; 279 } 280 281 io_u->offset += f->file_offset; 282 if (io_u->offset >= f->real_file_size) { 283 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n", 284 io_u->offset, f->real_file_size); 285 return 1; 286 } 287 288 return 0; 289} 290 291static int get_next_offset(struct thread_data *td, struct io_u *io_u) 292{ 293 if (td->flags & TD_F_PROFILE_OPS) { 294 struct prof_io_ops *ops = &td->prof_io_ops; 295 296 if (ops->fill_io_u_off) 297 return ops->fill_io_u_off(td, io_u); 298 } 299 300 return __get_next_offset(td, io_u); 301} 302 303static inline int io_u_fits(struct thread_data *td, struct io_u *io_u, 304 unsigned int buflen) 305{ 306 struct fio_file *f = io_u->file; 307 308 return io_u->offset + buflen <= f->io_size + get_start_offset(td); 309} 310 311static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u) 312{ 313 const int ddir = io_u->ddir; 314 unsigned int buflen = 0; 315 unsigned int minbs, maxbs; 316 unsigned long r, rand_max; 317 318 assert(ddir_rw(ddir)); 319 320 minbs = td->o.min_bs[ddir]; 321 maxbs = td->o.max_bs[ddir]; 322 323 if (minbs == maxbs) 324 return minbs; 325 326 /* 327 * If we can't satisfy the min block size from here, then fail 328 */ 329 if (!io_u_fits(td, io_u, minbs)) 330 return 0; 331 332 if (td->o.use_os_rand) 333 rand_max = OS_RAND_MAX; 334 else 335 rand_max = FRAND_MAX; 336 337 do { 338 if (td->o.use_os_rand) 339 r = os_random_long(&td->bsrange_state); 340 else 341 r = __rand(&td->__bsrange_state); 342 343 if (!td->o.bssplit_nr[ddir]) { 344 buflen = 1 + (unsigned int) ((double) maxbs * 345 (r / (rand_max + 1.0))); 346 if (buflen < minbs) 347 buflen = minbs; 348 } else { 349 long perc = 0; 350 unsigned int i; 351 352 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) { 353 struct bssplit *bsp = &td->o.bssplit[ddir][i]; 354 355 buflen = bsp->bs; 356 perc += bsp->perc; 357 if ((r <= ((rand_max / 100L) * perc)) && 358 io_u_fits(td, io_u, buflen)) 359 break; 360 } 361 } 362 363 if (!td->o.bs_unaligned && is_power_of_2(minbs)) 364 buflen = (buflen + minbs - 1) & ~(minbs - 1); 365 366 } while (!io_u_fits(td, io_u, buflen)); 367 368 return buflen; 369} 370 371static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u) 372{ 373 if (td->flags & TD_F_PROFILE_OPS) { 374 struct prof_io_ops *ops = &td->prof_io_ops; 375 376 if (ops->fill_io_u_size) 377 return ops->fill_io_u_size(td, io_u); 378 } 379 380 return __get_next_buflen(td, io_u); 381} 382 383static void set_rwmix_bytes(struct thread_data *td) 384{ 385 unsigned int diff; 386 387 /* 388 * we do time or byte based switch. this is needed because 389 * buffered writes may issue a lot quicker than they complete, 390 * whereas reads do not. 391 */ 392 diff = td->o.rwmix[td->rwmix_ddir ^ 1]; 393 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100; 394} 395 396static inline enum fio_ddir get_rand_ddir(struct thread_data *td) 397{ 398 unsigned int v; 399 unsigned long r; 400 401 if (td->o.use_os_rand) { 402 r = os_random_long(&td->rwmix_state); 403 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0))); 404 } else { 405 r = __rand(&td->__rwmix_state); 406 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0))); 407 } 408 409 if (v <= td->o.rwmix[DDIR_READ]) 410 return DDIR_READ; 411 412 return DDIR_WRITE; 413} 414 415static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir) 416{ 417 enum fio_ddir odir = ddir ^ 1; 418 struct timeval t; 419 long usec; 420 421 assert(ddir_rw(ddir)); 422 423 if (td->rate_pending_usleep[ddir] <= 0) 424 return ddir; 425 426 /* 427 * We have too much pending sleep in this direction. See if we 428 * should switch. 429 */ 430 if (td_rw(td)) { 431 /* 432 * Other direction does not have too much pending, switch 433 */ 434 if (td->rate_pending_usleep[odir] < 100000) 435 return odir; 436 437 /* 438 * Both directions have pending sleep. Sleep the minimum time 439 * and deduct from both. 440 */ 441 if (td->rate_pending_usleep[ddir] <= 442 td->rate_pending_usleep[odir]) { 443 usec = td->rate_pending_usleep[ddir]; 444 } else { 445 usec = td->rate_pending_usleep[odir]; 446 ddir = odir; 447 } 448 } else 449 usec = td->rate_pending_usleep[ddir]; 450 451 /* 452 * We are going to sleep, ensure that we flush anything pending as 453 * not to skew our latency numbers. 454 * 455 * Changed to only monitor 'in flight' requests here instead of the 456 * td->cur_depth, b/c td->cur_depth does not accurately represent 457 * io's that have been actually submitted to an async engine, 458 * and cur_depth is meaningless for sync engines. 459 */ 460 if (td->io_u_in_flight) { 461 int fio_unused ret; 462 463 ret = io_u_queued_complete(td, td->io_u_in_flight, NULL); 464 } 465 466 fio_gettime(&t, NULL); 467 usec_sleep(td, usec); 468 usec = utime_since_now(&t); 469 470 td->rate_pending_usleep[ddir] -= usec; 471 472 odir = ddir ^ 1; 473 if (td_rw(td) && __should_check_rate(td, odir)) 474 td->rate_pending_usleep[odir] -= usec; 475 476 if (ddir_trim(ddir)) 477 return ddir; 478 return ddir; 479} 480 481/* 482 * Return the data direction for the next io_u. If the job is a 483 * mixed read/write workload, check the rwmix cycle and switch if 484 * necessary. 485 */ 486static enum fio_ddir get_rw_ddir(struct thread_data *td) 487{ 488 enum fio_ddir ddir; 489 490 /* 491 * see if it's time to fsync 492 */ 493 if (td->o.fsync_blocks && 494 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) && 495 td->io_issues[DDIR_WRITE] && should_fsync(td)) 496 return DDIR_SYNC; 497 498 /* 499 * see if it's time to fdatasync 500 */ 501 if (td->o.fdatasync_blocks && 502 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) && 503 td->io_issues[DDIR_WRITE] && should_fsync(td)) 504 return DDIR_DATASYNC; 505 506 /* 507 * see if it's time to sync_file_range 508 */ 509 if (td->sync_file_range_nr && 510 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) && 511 td->io_issues[DDIR_WRITE] && should_fsync(td)) 512 return DDIR_SYNC_FILE_RANGE; 513 514 if (td_rw(td)) { 515 /* 516 * Check if it's time to seed a new data direction. 517 */ 518 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) { 519 /* 520 * Put a top limit on how many bytes we do for 521 * one data direction, to avoid overflowing the 522 * ranges too much 523 */ 524 ddir = get_rand_ddir(td); 525 526 if (ddir != td->rwmix_ddir) 527 set_rwmix_bytes(td); 528 529 td->rwmix_ddir = ddir; 530 } 531 ddir = td->rwmix_ddir; 532 } else if (td_read(td)) 533 ddir = DDIR_READ; 534 else if (td_write(td)) 535 ddir = DDIR_WRITE; 536 else 537 ddir = DDIR_TRIM; 538 539 td->rwmix_ddir = rate_ddir(td, ddir); 540 return td->rwmix_ddir; 541} 542 543static void set_rw_ddir(struct thread_data *td, struct io_u *io_u) 544{ 545 io_u->ddir = get_rw_ddir(td); 546 547 if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) && 548 td->o.barrier_blocks && 549 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) && 550 td->io_issues[DDIR_WRITE]) 551 io_u->flags |= IO_U_F_BARRIER; 552} 553 554void put_file_log(struct thread_data *td, struct fio_file *f) 555{ 556 int ret = put_file(td, f); 557 558 if (ret) 559 td_verror(td, ret, "file close"); 560} 561 562void put_io_u(struct thread_data *td, struct io_u *io_u) 563{ 564 td_io_u_lock(td); 565 566 if (io_u->file && !(io_u->flags & IO_U_F_FREE_DEF)) 567 put_file_log(td, io_u->file); 568 io_u->file = NULL; 569 io_u->flags &= ~IO_U_F_FREE_DEF; 570 io_u->flags |= IO_U_F_FREE; 571 572 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) 573 td->cur_depth--; 574 flist_del_init(&io_u->list); 575 flist_add(&io_u->list, &td->io_u_freelist); 576 td_io_u_unlock(td); 577 td_io_u_free_notify(td); 578} 579 580void clear_io_u(struct thread_data *td, struct io_u *io_u) 581{ 582 io_u->flags &= ~IO_U_F_FLIGHT; 583 put_io_u(td, io_u); 584} 585 586void requeue_io_u(struct thread_data *td, struct io_u **io_u) 587{ 588 struct io_u *__io_u = *io_u; 589 590 dprint(FD_IO, "requeue %p\n", __io_u); 591 592 td_io_u_lock(td); 593 594 __io_u->flags |= IO_U_F_FREE; 595 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(__io_u->ddir)) 596 td->io_issues[__io_u->ddir]--; 597 598 __io_u->flags &= ~IO_U_F_FLIGHT; 599 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) 600 td->cur_depth--; 601 flist_del(&__io_u->list); 602 flist_add_tail(&__io_u->list, &td->io_u_requeues); 603 td_io_u_unlock(td); 604 *io_u = NULL; 605} 606 607static int fill_io_u(struct thread_data *td, struct io_u *io_u) 608{ 609 if (td->io_ops->flags & FIO_NOIO) 610 goto out; 611 612 set_rw_ddir(td, io_u); 613 614 /* 615 * fsync() or fdatasync() or trim etc, we are done 616 */ 617 if (!ddir_rw(io_u->ddir)) 618 goto out; 619 620 /* 621 * See if it's time to switch to a new zone 622 */ 623 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) { 624 td->zone_bytes = 0; 625 io_u->file->file_offset += td->o.zone_range + td->o.zone_skip; 626 io_u->file->last_pos = io_u->file->file_offset; 627 td->io_skip_bytes += td->o.zone_skip; 628 } 629 630 /* 631 * No log, let the seq/rand engine retrieve the next buflen and 632 * position. 633 */ 634 if (get_next_offset(td, io_u)) { 635 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u); 636 return 1; 637 } 638 639 io_u->buflen = get_next_buflen(td, io_u); 640 if (!io_u->buflen) { 641 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u); 642 return 1; 643 } 644 645 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) { 646 dprint(FD_IO, "io_u %p, offset too large\n", io_u); 647 dprint(FD_IO, " off=%llu/%lu > %llu\n", io_u->offset, 648 io_u->buflen, io_u->file->real_file_size); 649 return 1; 650 } 651 652 /* 653 * mark entry before potentially trimming io_u 654 */ 655 if (td_random(td) && file_randommap(td, io_u->file)) 656 mark_random_map(td, io_u); 657 658 /* 659 * If using a write iolog, store this entry. 660 */ 661out: 662 dprint_io_u(io_u, "fill_io_u"); 663 td->zone_bytes += io_u->buflen; 664 log_io_u(td, io_u); 665 return 0; 666} 667 668static void __io_u_mark_map(unsigned int *map, unsigned int nr) 669{ 670 int idx = 0; 671 672 switch (nr) { 673 default: 674 idx = 6; 675 break; 676 case 33 ... 64: 677 idx = 5; 678 break; 679 case 17 ... 32: 680 idx = 4; 681 break; 682 case 9 ... 16: 683 idx = 3; 684 break; 685 case 5 ... 8: 686 idx = 2; 687 break; 688 case 1 ... 4: 689 idx = 1; 690 case 0: 691 break; 692 } 693 694 map[idx]++; 695} 696 697void io_u_mark_submit(struct thread_data *td, unsigned int nr) 698{ 699 __io_u_mark_map(td->ts.io_u_submit, nr); 700 td->ts.total_submit++; 701} 702 703void io_u_mark_complete(struct thread_data *td, unsigned int nr) 704{ 705 __io_u_mark_map(td->ts.io_u_complete, nr); 706 td->ts.total_complete++; 707} 708 709void io_u_mark_depth(struct thread_data *td, unsigned int nr) 710{ 711 int idx = 0; 712 713 switch (td->cur_depth) { 714 default: 715 idx = 6; 716 break; 717 case 32 ... 63: 718 idx = 5; 719 break; 720 case 16 ... 31: 721 idx = 4; 722 break; 723 case 8 ... 15: 724 idx = 3; 725 break; 726 case 4 ... 7: 727 idx = 2; 728 break; 729 case 2 ... 3: 730 idx = 1; 731 case 1: 732 break; 733 } 734 735 td->ts.io_u_map[idx] += nr; 736} 737 738static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec) 739{ 740 int idx = 0; 741 742 assert(usec < 1000); 743 744 switch (usec) { 745 case 750 ... 999: 746 idx = 9; 747 break; 748 case 500 ... 749: 749 idx = 8; 750 break; 751 case 250 ... 499: 752 idx = 7; 753 break; 754 case 100 ... 249: 755 idx = 6; 756 break; 757 case 50 ... 99: 758 idx = 5; 759 break; 760 case 20 ... 49: 761 idx = 4; 762 break; 763 case 10 ... 19: 764 idx = 3; 765 break; 766 case 4 ... 9: 767 idx = 2; 768 break; 769 case 2 ... 3: 770 idx = 1; 771 case 0 ... 1: 772 break; 773 } 774 775 assert(idx < FIO_IO_U_LAT_U_NR); 776 td->ts.io_u_lat_u[idx]++; 777} 778 779static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec) 780{ 781 int idx = 0; 782 783 switch (msec) { 784 default: 785 idx = 11; 786 break; 787 case 1000 ... 1999: 788 idx = 10; 789 break; 790 case 750 ... 999: 791 idx = 9; 792 break; 793 case 500 ... 749: 794 idx = 8; 795 break; 796 case 250 ... 499: 797 idx = 7; 798 break; 799 case 100 ... 249: 800 idx = 6; 801 break; 802 case 50 ... 99: 803 idx = 5; 804 break; 805 case 20 ... 49: 806 idx = 4; 807 break; 808 case 10 ... 19: 809 idx = 3; 810 break; 811 case 4 ... 9: 812 idx = 2; 813 break; 814 case 2 ... 3: 815 idx = 1; 816 case 0 ... 1: 817 break; 818 } 819 820 assert(idx < FIO_IO_U_LAT_M_NR); 821 td->ts.io_u_lat_m[idx]++; 822} 823 824static void io_u_mark_latency(struct thread_data *td, unsigned long usec) 825{ 826 if (usec < 1000) 827 io_u_mark_lat_usec(td, usec); 828 else 829 io_u_mark_lat_msec(td, usec / 1000); 830} 831 832/* 833 * Get next file to service by choosing one at random 834 */ 835static struct fio_file *get_next_file_rand(struct thread_data *td, 836 enum fio_file_flags goodf, 837 enum fio_file_flags badf) 838{ 839 struct fio_file *f; 840 int fno; 841 842 do { 843 int opened = 0; 844 unsigned long r; 845 846 if (td->o.use_os_rand) { 847 r = os_random_long(&td->next_file_state); 848 fno = (unsigned int) ((double) td->o.nr_files 849 * (r / (OS_RAND_MAX + 1.0))); 850 } else { 851 r = __rand(&td->__next_file_state); 852 fno = (unsigned int) ((double) td->o.nr_files 853 * (r / (FRAND_MAX + 1.0))); 854 } 855 856 f = td->files[fno]; 857 if (fio_file_done(f)) 858 continue; 859 860 if (!fio_file_open(f)) { 861 int err; 862 863 err = td_io_open_file(td, f); 864 if (err) 865 continue; 866 opened = 1; 867 } 868 869 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) { 870 dprint(FD_FILE, "get_next_file_rand: %p\n", f); 871 return f; 872 } 873 if (opened) 874 td_io_close_file(td, f); 875 } while (1); 876} 877 878/* 879 * Get next file to service by doing round robin between all available ones 880 */ 881static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf, 882 int badf) 883{ 884 unsigned int old_next_file = td->next_file; 885 struct fio_file *f; 886 887 do { 888 int opened = 0; 889 890 f = td->files[td->next_file]; 891 892 td->next_file++; 893 if (td->next_file >= td->o.nr_files) 894 td->next_file = 0; 895 896 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags); 897 if (fio_file_done(f)) { 898 f = NULL; 899 continue; 900 } 901 902 if (!fio_file_open(f)) { 903 int err; 904 905 err = td_io_open_file(td, f); 906 if (err) { 907 dprint(FD_FILE, "error %d on open of %s\n", 908 err, f->file_name); 909 f = NULL; 910 continue; 911 } 912 opened = 1; 913 } 914 915 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf, 916 f->flags); 917 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) 918 break; 919 920 if (opened) 921 td_io_close_file(td, f); 922 923 f = NULL; 924 } while (td->next_file != old_next_file); 925 926 dprint(FD_FILE, "get_next_file_rr: %p\n", f); 927 return f; 928} 929 930static struct fio_file *__get_next_file(struct thread_data *td) 931{ 932 struct fio_file *f; 933 934 assert(td->o.nr_files <= td->files_index); 935 936 if (td->nr_done_files >= td->o.nr_files) { 937 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d," 938 " nr_files=%d\n", td->nr_open_files, 939 td->nr_done_files, 940 td->o.nr_files); 941 return NULL; 942 } 943 944 f = td->file_service_file; 945 if (f && fio_file_open(f) && !fio_file_closing(f)) { 946 if (td->o.file_service_type == FIO_FSERVICE_SEQ) 947 goto out; 948 if (td->file_service_left--) 949 goto out; 950 } 951 952 if (td->o.file_service_type == FIO_FSERVICE_RR || 953 td->o.file_service_type == FIO_FSERVICE_SEQ) 954 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing); 955 else 956 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing); 957 958 td->file_service_file = f; 959 td->file_service_left = td->file_service_nr - 1; 960out: 961 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name); 962 return f; 963} 964 965static struct fio_file *get_next_file(struct thread_data *td) 966{ 967 if (!(td->flags & TD_F_PROFILE_OPS)) { 968 struct prof_io_ops *ops = &td->prof_io_ops; 969 970 if (ops->get_next_file) 971 return ops->get_next_file(td); 972 } 973 974 return __get_next_file(td); 975} 976 977static int set_io_u_file(struct thread_data *td, struct io_u *io_u) 978{ 979 struct fio_file *f; 980 981 do { 982 f = get_next_file(td); 983 if (!f) 984 return 1; 985 986 io_u->file = f; 987 get_file(f); 988 989 if (!fill_io_u(td, io_u)) 990 break; 991 992 put_file_log(td, f); 993 td_io_close_file(td, f); 994 io_u->file = NULL; 995 fio_file_set_done(f); 996 td->nr_done_files++; 997 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name, 998 td->nr_done_files, td->o.nr_files); 999 } while (1); 1000 1001 return 0; 1002} 1003 1004 1005struct io_u *__get_io_u(struct thread_data *td) 1006{ 1007 struct io_u *io_u = NULL; 1008 1009 td_io_u_lock(td); 1010 1011again: 1012 if (!flist_empty(&td->io_u_requeues)) 1013 io_u = flist_entry(td->io_u_requeues.next, struct io_u, list); 1014 else if (!queue_full(td)) { 1015 io_u = flist_entry(td->io_u_freelist.next, struct io_u, list); 1016 1017 io_u->buflen = 0; 1018 io_u->resid = 0; 1019 io_u->file = NULL; 1020 io_u->end_io = NULL; 1021 } 1022 1023 if (io_u) { 1024 assert(io_u->flags & IO_U_F_FREE); 1025 io_u->flags &= ~(IO_U_F_FREE | IO_U_F_FREE_DEF); 1026 io_u->flags &= ~(IO_U_F_TRIMMED | IO_U_F_BARRIER); 1027 io_u->flags &= ~IO_U_F_VER_LIST; 1028 1029 io_u->error = 0; 1030 flist_del(&io_u->list); 1031 flist_add_tail(&io_u->list, &td->io_u_busylist); 1032 td->cur_depth++; 1033 io_u->flags |= IO_U_F_IN_CUR_DEPTH; 1034 } else if (td->o.verify_async) { 1035 /* 1036 * We ran out, wait for async verify threads to finish and 1037 * return one 1038 */ 1039 pthread_cond_wait(&td->free_cond, &td->io_u_lock); 1040 goto again; 1041 } 1042 1043 td_io_u_unlock(td); 1044 return io_u; 1045} 1046 1047static int check_get_trim(struct thread_data *td, struct io_u *io_u) 1048{ 1049 if (!(td->flags & TD_F_TRIM_BACKLOG)) 1050 return 0; 1051 1052 if (td->trim_entries) { 1053 int get_trim = 0; 1054 1055 if (td->trim_batch) { 1056 td->trim_batch--; 1057 get_trim = 1; 1058 } else if (!(td->io_hist_len % td->o.trim_backlog) && 1059 td->last_ddir != DDIR_READ) { 1060 td->trim_batch = td->o.trim_batch; 1061 if (!td->trim_batch) 1062 td->trim_batch = td->o.trim_backlog; 1063 get_trim = 1; 1064 } 1065 1066 if (get_trim && !get_next_trim(td, io_u)) 1067 return 1; 1068 } 1069 1070 return 0; 1071} 1072 1073static int check_get_verify(struct thread_data *td, struct io_u *io_u) 1074{ 1075 if (!(td->flags & TD_F_VER_BACKLOG)) 1076 return 0; 1077 1078 if (td->io_hist_len) { 1079 int get_verify = 0; 1080 1081 if (td->verify_batch) 1082 get_verify = 1; 1083 else if (!(td->io_hist_len % td->o.verify_backlog) && 1084 td->last_ddir != DDIR_READ) { 1085 td->verify_batch = td->o.verify_batch; 1086 if (!td->verify_batch) 1087 td->verify_batch = td->o.verify_backlog; 1088 get_verify = 1; 1089 } 1090 1091 if (get_verify && !get_next_verify(td, io_u)) { 1092 td->verify_batch--; 1093 return 1; 1094 } 1095 } 1096 1097 return 0; 1098} 1099 1100/* 1101 * Fill offset and start time into the buffer content, to prevent too 1102 * easy compressible data for simple de-dupe attempts. Do this for every 1103 * 512b block in the range, since that should be the smallest block size 1104 * we can expect from a device. 1105 */ 1106static void small_content_scramble(struct io_u *io_u) 1107{ 1108 unsigned int i, nr_blocks = io_u->buflen / 512; 1109 unsigned long long boffset; 1110 unsigned int offset; 1111 void *p, *end; 1112 1113 if (!nr_blocks) 1114 return; 1115 1116 p = io_u->xfer_buf; 1117 boffset = io_u->offset; 1118 io_u->buf_filled_len = 0; 1119 1120 for (i = 0; i < nr_blocks; i++) { 1121 /* 1122 * Fill the byte offset into a "random" start offset of 1123 * the buffer, given by the product of the usec time 1124 * and the actual offset. 1125 */ 1126 offset = (io_u->start_time.tv_usec ^ boffset) & 511; 1127 offset &= ~(sizeof(unsigned long long) - 1); 1128 if (offset >= 512 - sizeof(unsigned long long)) 1129 offset -= sizeof(unsigned long long); 1130 memcpy(p + offset, &boffset, sizeof(boffset)); 1131 1132 end = p + 512 - sizeof(io_u->start_time); 1133 memcpy(end, &io_u->start_time, sizeof(io_u->start_time)); 1134 p += 512; 1135 boffset += 512; 1136 } 1137} 1138 1139/* 1140 * Return an io_u to be processed. Gets a buflen and offset, sets direction, 1141 * etc. The returned io_u is fully ready to be prepped and submitted. 1142 */ 1143struct io_u *get_io_u(struct thread_data *td) 1144{ 1145 struct fio_file *f; 1146 struct io_u *io_u; 1147 int do_scramble = 0; 1148 1149 io_u = __get_io_u(td); 1150 if (!io_u) { 1151 dprint(FD_IO, "__get_io_u failed\n"); 1152 return NULL; 1153 } 1154 1155 if (check_get_verify(td, io_u)) 1156 goto out; 1157 if (check_get_trim(td, io_u)) 1158 goto out; 1159 1160 /* 1161 * from a requeue, io_u already setup 1162 */ 1163 if (io_u->file) 1164 goto out; 1165 1166 /* 1167 * If using an iolog, grab next piece if any available. 1168 */ 1169 if (td->flags & TD_F_READ_IOLOG) { 1170 if (read_iolog_get(td, io_u)) 1171 goto err_put; 1172 } else if (set_io_u_file(td, io_u)) { 1173 dprint(FD_IO, "io_u %p, setting file failed\n", io_u); 1174 goto err_put; 1175 } 1176 1177 f = io_u->file; 1178 assert(fio_file_open(f)); 1179 1180 if (ddir_rw(io_u->ddir)) { 1181 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) { 1182 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u); 1183 goto err_put; 1184 } 1185 1186 f->last_start = io_u->offset; 1187 f->last_pos = io_u->offset + io_u->buflen; 1188 1189 if (io_u->ddir == DDIR_WRITE) { 1190 if (td->flags & TD_F_REFILL_BUFFERS) { 1191 io_u_fill_buffer(td, io_u, 1192 io_u->xfer_buflen, io_u->xfer_buflen); 1193 } else if (td->flags & TD_F_SCRAMBLE_BUFFERS) 1194 do_scramble = 1; 1195 if (td->flags & TD_F_VER_NONE) { 1196 populate_verify_io_u(td, io_u); 1197 do_scramble = 0; 1198 } 1199 } else if (io_u->ddir == DDIR_READ) { 1200 /* 1201 * Reset the buf_filled parameters so next time if the 1202 * buffer is used for writes it is refilled. 1203 */ 1204 io_u->buf_filled_len = 0; 1205 } 1206 } 1207 1208 /* 1209 * Set io data pointers. 1210 */ 1211 io_u->xfer_buf = io_u->buf; 1212 io_u->xfer_buflen = io_u->buflen; 1213 1214out: 1215 assert(io_u->file); 1216 if (!td_io_prep(td, io_u)) { 1217 if (!td->o.disable_slat) 1218 fio_gettime(&io_u->start_time, NULL); 1219 if (do_scramble) 1220 small_content_scramble(io_u); 1221 return io_u; 1222 } 1223err_put: 1224 dprint(FD_IO, "get_io_u failed\n"); 1225 put_io_u(td, io_u); 1226 return NULL; 1227} 1228 1229void io_u_log_error(struct thread_data *td, struct io_u *io_u) 1230{ 1231 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error); 1232 const char *msg[] = { "read", "write", "sync", "datasync", 1233 "sync_file_range", "wait", "trim" }; 1234 1235 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump) 1236 return; 1237 1238 log_err("fio: io_u error"); 1239 1240 if (io_u->file) 1241 log_err(" on file %s", io_u->file->file_name); 1242 1243 log_err(": %s\n", strerror(io_u->error)); 1244 1245 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir], 1246 io_u->offset, io_u->xfer_buflen); 1247 1248 if (!td->error) 1249 td_verror(td, io_u->error, "io_u error"); 1250} 1251 1252static void account_io_completion(struct thread_data *td, struct io_u *io_u, 1253 struct io_completion_data *icd, 1254 const enum fio_ddir idx, unsigned int bytes) 1255{ 1256 unsigned long lusec = 0; 1257 1258 if (!td->o.disable_clat || !td->o.disable_bw) 1259 lusec = utime_since(&io_u->issue_time, &icd->time); 1260 1261 if (!td->o.disable_lat) { 1262 unsigned long tusec; 1263 1264 tusec = utime_since(&io_u->start_time, &icd->time); 1265 add_lat_sample(td, idx, tusec, bytes); 1266 1267 if (td->o.max_latency && tusec > td->o.max_latency) { 1268 if (!td->error) 1269 log_err("fio: latency of %lu usec exceeds specified max (%u usec)\n", tusec, td->o.max_latency); 1270 td_verror(td, ETIMEDOUT, "max latency exceeded"); 1271 icd->error = ETIMEDOUT; 1272 } 1273 } 1274 1275 if (!td->o.disable_clat) { 1276 add_clat_sample(td, idx, lusec, bytes); 1277 io_u_mark_latency(td, lusec); 1278 } 1279 1280 if (!td->o.disable_bw) 1281 add_bw_sample(td, idx, bytes, &icd->time); 1282 1283 add_iops_sample(td, idx, &icd->time); 1284} 1285 1286static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir) 1287{ 1288 unsigned long long secs, remainder, bps, bytes; 1289 bytes = td->this_io_bytes[ddir]; 1290 bps = td->rate_bps[ddir]; 1291 secs = bytes / bps; 1292 remainder = bytes % bps; 1293 return remainder * 1000000 / bps + secs * 1000000; 1294} 1295 1296static void io_completed(struct thread_data *td, struct io_u *io_u, 1297 struct io_completion_data *icd) 1298{ 1299 struct fio_file *f; 1300 1301 dprint_io_u(io_u, "io complete"); 1302 1303 td_io_u_lock(td); 1304 assert(io_u->flags & IO_U_F_FLIGHT); 1305 io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK); 1306 td_io_u_unlock(td); 1307 1308 if (ddir_sync(io_u->ddir)) { 1309 td->last_was_sync = 1; 1310 f = io_u->file; 1311 if (f) { 1312 f->first_write = -1ULL; 1313 f->last_write = -1ULL; 1314 } 1315 return; 1316 } 1317 1318 td->last_was_sync = 0; 1319 td->last_ddir = io_u->ddir; 1320 1321 if (!io_u->error && ddir_rw(io_u->ddir)) { 1322 unsigned int bytes = io_u->buflen - io_u->resid; 1323 const enum fio_ddir idx = io_u->ddir; 1324 const enum fio_ddir odx = io_u->ddir ^ 1; 1325 int ret; 1326 1327 td->io_blocks[idx]++; 1328 td->this_io_blocks[idx]++; 1329 td->io_bytes[idx] += bytes; 1330 1331 if (!(io_u->flags & IO_U_F_VER_LIST)) 1332 td->this_io_bytes[idx] += bytes; 1333 1334 if (idx == DDIR_WRITE) { 1335 f = io_u->file; 1336 if (f) { 1337 if (f->first_write == -1ULL || 1338 io_u->offset < f->first_write) 1339 f->first_write = io_u->offset; 1340 if (f->last_write == -1ULL || 1341 ((io_u->offset + bytes) > f->last_write)) 1342 f->last_write = io_u->offset + bytes; 1343 } 1344 } 1345 1346 if (ramp_time_over(td) && (td->runstate == TD_RUNNING || 1347 td->runstate == TD_VERIFYING)) { 1348 account_io_completion(td, io_u, icd, idx, bytes); 1349 1350 if (__should_check_rate(td, idx)) { 1351 td->rate_pending_usleep[idx] = 1352 (usec_for_io(td, idx) - 1353 utime_since_now(&td->start)); 1354 } 1355 if (idx != DDIR_TRIM && __should_check_rate(td, odx)) 1356 td->rate_pending_usleep[odx] = 1357 (usec_for_io(td, odx) - 1358 utime_since_now(&td->start)); 1359 } 1360 1361 if (td_write(td) && idx == DDIR_WRITE && 1362 td->o.do_verify && 1363 td->o.verify != VERIFY_NONE) 1364 log_io_piece(td, io_u); 1365 1366 icd->bytes_done[idx] += bytes; 1367 1368 if (io_u->end_io) { 1369 ret = io_u->end_io(td, io_u); 1370 if (ret && !icd->error) 1371 icd->error = ret; 1372 } 1373 } else if (io_u->error) { 1374 icd->error = io_u->error; 1375 io_u_log_error(td, io_u); 1376 } 1377 if (icd->error) { 1378 enum error_type_bit eb = td_error_type(io_u->ddir, icd->error); 1379 if (!td_non_fatal_error(td, eb, icd->error)) 1380 return; 1381 /* 1382 * If there is a non_fatal error, then add to the error count 1383 * and clear all the errors. 1384 */ 1385 update_error_count(td, icd->error); 1386 td_clear_error(td); 1387 icd->error = 0; 1388 io_u->error = 0; 1389 } 1390} 1391 1392static void init_icd(struct thread_data *td, struct io_completion_data *icd, 1393 int nr) 1394{ 1395 int ddir; 1396 if (!td->o.disable_clat || !td->o.disable_bw) 1397 fio_gettime(&icd->time, NULL); 1398 1399 icd->nr = nr; 1400 1401 icd->error = 0; 1402 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) 1403 icd->bytes_done[ddir] = 0; 1404} 1405 1406static void ios_completed(struct thread_data *td, 1407 struct io_completion_data *icd) 1408{ 1409 struct io_u *io_u; 1410 int i; 1411 1412 for (i = 0; i < icd->nr; i++) { 1413 io_u = td->io_ops->event(td, i); 1414 1415 io_completed(td, io_u, icd); 1416 1417 if (!(io_u->flags & IO_U_F_FREE_DEF)) 1418 put_io_u(td, io_u); 1419 } 1420} 1421 1422/* 1423 * Complete a single io_u for the sync engines. 1424 */ 1425int io_u_sync_complete(struct thread_data *td, struct io_u *io_u, 1426 unsigned long *bytes) 1427{ 1428 struct io_completion_data icd; 1429 1430 init_icd(td, &icd, 1); 1431 io_completed(td, io_u, &icd); 1432 1433 if (!(io_u->flags & IO_U_F_FREE_DEF)) 1434 put_io_u(td, io_u); 1435 1436 if (icd.error) { 1437 td_verror(td, icd.error, "io_u_sync_complete"); 1438 return -1; 1439 } 1440 1441 if (bytes) { 1442 int ddir; 1443 1444 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) 1445 bytes[ddir] += icd.bytes_done[ddir]; 1446 } 1447 1448 return 0; 1449} 1450 1451/* 1452 * Called to complete min_events number of io for the async engines. 1453 */ 1454int io_u_queued_complete(struct thread_data *td, int min_evts, 1455 unsigned long *bytes) 1456{ 1457 struct io_completion_data icd; 1458 struct timespec *tvp = NULL; 1459 int ret; 1460 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, }; 1461 1462 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts); 1463 1464 if (!min_evts) 1465 tvp = &ts; 1466 1467 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp); 1468 if (ret < 0) { 1469 td_verror(td, -ret, "td_io_getevents"); 1470 return ret; 1471 } else if (!ret) 1472 return ret; 1473 1474 init_icd(td, &icd, ret); 1475 ios_completed(td, &icd); 1476 if (icd.error) { 1477 td_verror(td, icd.error, "io_u_queued_complete"); 1478 return -1; 1479 } 1480 1481 if (bytes) { 1482 int ddir; 1483 1484 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) 1485 bytes[ddir] += icd.bytes_done[ddir]; 1486 } 1487 1488 return 0; 1489} 1490 1491/* 1492 * Call when io_u is really queued, to update the submission latency. 1493 */ 1494void io_u_queued(struct thread_data *td, struct io_u *io_u) 1495{ 1496 if (!td->o.disable_slat) { 1497 unsigned long slat_time; 1498 1499 slat_time = utime_since(&io_u->start_time, &io_u->issue_time); 1500 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen); 1501 } 1502} 1503 1504/* 1505 * "randomly" fill the buffer contents 1506 */ 1507void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u, 1508 unsigned int min_write, unsigned int max_bs) 1509{ 1510 io_u->buf_filled_len = 0; 1511 1512 if (!td->o.zero_buffers) { 1513 unsigned int perc = td->o.compress_percentage; 1514 1515 if (perc) { 1516 unsigned int seg = min_write; 1517 1518 seg = min(min_write, td->o.compress_chunk); 1519 fill_random_buf_percentage(&td->buf_state, io_u->buf, 1520 perc, seg, max_bs); 1521 } else 1522 fill_random_buf(&td->buf_state, io_u->buf, max_bs); 1523 } else 1524 memset(io_u->buf, 0, max_bs); 1525} 1526