io_u.c revision 7bb48f84ac78cac1f90e3e04d0220d90d6a64a6b
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "os.h"
10
11/*
12 * Change this define to play with the timeout handling
13 */
14#undef FIO_USE_TIMEOUT
15
16struct io_completion_data {
17	int nr;				/* input */
18
19	int error;			/* output */
20	unsigned long bytes_done[2];	/* output */
21	struct timeval time;		/* output */
22};
23
24/*
25 * The ->file_map[] contains a map of blocks we have or have not done io
26 * to yet. Used to make sure we cover the entire range in a fair fashion.
27 */
28static int random_map_free(struct thread_data *td, struct fio_file *f,
29			   unsigned long long block)
30{
31	unsigned int idx = RAND_MAP_IDX(td, f, block);
32	unsigned int bit = RAND_MAP_BIT(td, f, block);
33
34	return (f->file_map[idx] & (1UL << bit)) == 0;
35}
36
37/*
38 * Mark a given offset as used in the map.
39 */
40static void mark_random_map(struct thread_data *td, struct io_u *io_u)
41{
42	unsigned int min_bs = td->o.rw_min_bs;
43	struct fio_file *f = io_u->file;
44	unsigned long long block;
45	unsigned int blocks;
46	unsigned int nr_blocks;
47
48	block = io_u->offset / (unsigned long long) min_bs;
49	blocks = 0;
50	nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
51
52	while (blocks < nr_blocks) {
53		unsigned int idx, bit;
54
55		/*
56		 * If we have a mixed random workload, we may
57		 * encounter blocks we already did IO to.
58		 */
59		if (!td->o.ddir_nr && !random_map_free(td, f, block))
60			break;
61
62		idx = RAND_MAP_IDX(td, f, block);
63		bit = RAND_MAP_BIT(td, f, block);
64
65		fio_assert(td, idx < f->num_maps);
66
67		f->file_map[idx] |= (1UL << bit);
68		block++;
69		blocks++;
70	}
71
72	if ((blocks * min_bs) < io_u->buflen)
73		io_u->buflen = blocks * min_bs;
74}
75
76/*
77 * Return the next free block in the map.
78 */
79static int get_next_free_block(struct thread_data *td, struct fio_file *f,
80			       unsigned long long *b)
81{
82	int i;
83
84	i = f->last_free_lookup;
85	*b = (i * BLOCKS_PER_MAP);
86	while ((*b) * td->o.rw_min_bs < f->real_file_size) {
87		if (f->file_map[i] != -1UL) {
88			*b += ffz(f->file_map[i]);
89			f->last_free_lookup = i;
90			return 0;
91		}
92
93		*b += BLOCKS_PER_MAP;
94		i++;
95	}
96
97	return 1;
98}
99
100static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
101				int ddir, unsigned long long *b)
102{
103	unsigned long long max_blocks = f->io_size / td->o.min_bs[ddir];
104	unsigned long long r, rb;
105	int loops = 5;
106
107	do {
108		r = os_random_long(&td->random_state);
109		if (!max_blocks)
110			*b = 0;
111		else
112			*b = ((max_blocks - 1) * r / (unsigned long long) (RAND_MAX+1.0));
113		if (td->o.norandommap)
114			break;
115		rb = *b + (f->file_offset / td->o.min_bs[ddir]);
116		loops--;
117	} while (!random_map_free(td, f, rb) && loops);
118
119	/*
120	 * if we failed to retrieve a truly random offset within
121	 * the loops assigned, see if there are free ones left at all
122	 */
123	if (!loops && get_next_free_block(td, f, b))
124		return 1;
125
126	return 0;
127}
128
129/*
130 * For random io, generate a random new block and see if it's used. Repeat
131 * until we find a free one. For sequential io, just return the end of
132 * the last io issued.
133 */
134static int get_next_offset(struct thread_data *td, struct io_u *io_u)
135{
136	struct fio_file *f = io_u->file;
137	const int ddir = io_u->ddir;
138	unsigned long long b;
139
140	if (td_random(td) && (td->o.ddir_nr && !--td->ddir_nr)) {
141		td->ddir_nr = td->o.ddir_nr;
142
143		if (get_next_rand_offset(td, f, ddir, &b))
144			return 1;
145	} else
146		b = f->last_pos / td->o.min_bs[ddir];
147
148	io_u->offset = (b * td->o.min_bs[ddir]) + f->file_offset;
149	if (io_u->offset >= f->real_file_size)
150		return 1;
151
152	return 0;
153}
154
155static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
156{
157	struct fio_file *f = io_u->file;
158	const int ddir = io_u->ddir;
159	unsigned int buflen;
160	long r;
161
162	if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
163		buflen = td->o.min_bs[ddir];
164	else {
165		r = os_random_long(&td->bsrange_state);
166		buflen = (unsigned int) (1 + (double) (td->o.max_bs[ddir] - 1) * r / (RAND_MAX + 1.0));
167		if (!td->o.bs_unaligned)
168			buflen = (buflen + td->o.min_bs[ddir] - 1) & ~(td->o.min_bs[ddir] - 1);
169	}
170
171	while (buflen + io_u->offset > f->real_file_size) {
172		if (buflen == td->o.min_bs[ddir]) {
173			if (!td->o.odirect) {
174				assert(io_u->offset <= f->real_file_size);
175				buflen = f->real_file_size - io_u->offset;
176				return buflen;
177			}
178			return 0;
179		}
180
181		buflen = td->o.min_bs[ddir];
182	}
183
184	return buflen;
185}
186
187static void set_rwmix_bytes(struct thread_data *td)
188{
189	unsigned long long rbytes;
190	unsigned int diff;
191
192	/*
193	 * we do time or byte based switch. this is needed because
194	 * buffered writes may issue a lot quicker than they complete,
195	 * whereas reads do not.
196	 */
197	rbytes = td->io_bytes[td->rwmix_ddir] - td->rwmix_bytes;
198	diff = td->o.rwmix[td->rwmix_ddir ^ 1];
199
200	td->rwmix_bytes = td->io_bytes[td->rwmix_ddir] + (rbytes * ((100 - diff)) / diff);
201}
202
203static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
204{
205	unsigned int v;
206	long r;
207
208	r = os_random_long(&td->rwmix_state);
209	v = 1 + (int) (100.0 * (r / (RAND_MAX + 1.0)));
210	if (v < td->o.rwmix[DDIR_READ])
211		return DDIR_READ;
212
213	return DDIR_WRITE;
214}
215
216/*
217 * Return the data direction for the next io_u. If the job is a
218 * mixed read/write workload, check the rwmix cycle and switch if
219 * necessary.
220 */
221static enum fio_ddir get_rw_ddir(struct thread_data *td)
222{
223	if (td_rw(td)) {
224		struct timeval now;
225		unsigned long elapsed;
226		unsigned int cycle;
227
228		fio_gettime(&now, NULL);
229	 	elapsed = mtime_since_now(&td->rwmix_switch);
230
231		/*
232		 * if this is the first cycle, make it shorter
233		 */
234		cycle = td->o.rwmixcycle;
235		if (!td->rwmix_bytes)
236			cycle /= 10;
237
238		/*
239		 * Check if it's time to seed a new data direction.
240		 */
241		if (elapsed >= cycle ||
242		    td->io_bytes[td->rwmix_ddir] >= td->rwmix_bytes) {
243			unsigned long long max_bytes;
244			enum fio_ddir ddir;
245
246			/*
247			 * Put a top limit on how many bytes we do for
248			 * one data direction, to avoid overflowing the
249			 * ranges too much
250			 */
251			ddir = get_rand_ddir(td);
252			max_bytes = td->this_io_bytes[ddir];
253			if (max_bytes >= (td->o.size * td->o.rwmix[ddir] / 100)) {
254				if (!td->rw_end_set[ddir]) {
255					td->rw_end_set[ddir] = 1;
256					memcpy(&td->rw_end[ddir], &now, sizeof(now));
257				}
258				ddir ^= 1;
259			}
260
261			if (ddir != td->rwmix_ddir)
262				set_rwmix_bytes(td);
263
264			td->rwmix_ddir = ddir;
265			memcpy(&td->rwmix_switch, &now, sizeof(now));
266		}
267		return td->rwmix_ddir;
268	} else if (td_read(td))
269		return DDIR_READ;
270	else
271		return DDIR_WRITE;
272}
273
274void put_io_u(struct thread_data *td, struct io_u *io_u)
275{
276	assert((io_u->flags & IO_U_F_FREE) == 0);
277	io_u->flags |= IO_U_F_FREE;
278
279	io_u->file = NULL;
280	list_del(&io_u->list);
281	list_add(&io_u->list, &td->io_u_freelist);
282	td->cur_depth--;
283}
284
285void requeue_io_u(struct thread_data *td, struct io_u **io_u)
286{
287	struct io_u *__io_u = *io_u;
288
289	__io_u->flags |= IO_U_F_FREE;
290	__io_u->flags &= ~IO_U_F_FLIGHT;
291
292	list_del(&__io_u->list);
293	list_add_tail(&__io_u->list, &td->io_u_requeues);
294	td->cur_depth--;
295	*io_u = NULL;
296}
297
298static int fill_io_u(struct thread_data *td, struct io_u *io_u)
299{
300	/*
301	 * If using an iolog, grab next piece if any available.
302	 */
303	if (td->o.read_iolog)
304		return read_iolog_get(td, io_u);
305
306	/*
307	 * see if it's time to sync
308	 */
309	if (td->o.fsync_blocks &&
310	   !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
311	     td->io_issues[DDIR_WRITE] && should_fsync(td)) {
312		io_u->ddir = DDIR_SYNC;
313		goto out;
314	}
315
316	io_u->ddir = get_rw_ddir(td);
317
318	/*
319	 * No log, let the seq/rand engine retrieve the next buflen and
320	 * position.
321	 */
322	if (get_next_offset(td, io_u))
323		return 1;
324
325	io_u->buflen = get_next_buflen(td, io_u);
326	if (!io_u->buflen)
327		return 1;
328
329	/*
330	 * mark entry before potentially trimming io_u
331	 */
332	if (td_random(td) && !td->o.norandommap)
333		mark_random_map(td, io_u);
334
335	/*
336	 * If using a write iolog, store this entry.
337	 */
338out:
339	if (td->o.write_iolog_file)
340		write_iolog_put(td, io_u);
341
342	return 0;
343}
344
345void io_u_mark_depth(struct thread_data *td, struct io_u *io_u)
346{
347	int index = 0;
348
349	if (io_u->ddir == DDIR_SYNC)
350		return;
351
352	switch (td->cur_depth) {
353	default:
354		index++;
355	case 32 ... 63:
356		index++;
357	case 16 ... 31:
358		index++;
359	case 8 ... 15:
360		index++;
361	case 4 ... 7:
362		index++;
363	case 2 ... 3:
364		index++;
365	case 1:
366		break;
367	}
368
369	td->ts.io_u_map[index]++;
370	td->ts.total_io_u[io_u->ddir]++;
371}
372
373static void io_u_mark_latency(struct thread_data *td, unsigned long msec)
374{
375	int index = 0;
376
377	switch (msec) {
378	default:
379		index++;
380	case 1000 ... 1999:
381		index++;
382	case 750 ... 999:
383		index++;
384	case 500 ... 749:
385		index++;
386	case 250 ... 499:
387		index++;
388	case 100 ... 249:
389		index++;
390	case 50 ... 99:
391		index++;
392	case 20 ... 49:
393		index++;
394	case 10 ... 19:
395		index++;
396	case 4 ... 9:
397		index++;
398	case 2 ... 3:
399		index++;
400	case 0 ... 1:
401		break;
402	}
403
404	td->ts.io_u_lat[index]++;
405}
406
407/*
408 * Get next file to service by choosing one at random
409 */
410static struct fio_file *get_next_file_rand(struct thread_data *td, int goodf,
411					   int badf)
412{
413	struct fio_file *f;
414	int fno;
415
416	do {
417		long r = os_random_long(&td->next_file_state);
418
419		fno = (unsigned int) ((double) td->o.nr_files * (r / (RAND_MAX + 1.0)));
420		f = &td->files[fno];
421
422		if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
423			return f;
424	} while (1);
425}
426
427/*
428 * Get next file to service by doing round robin between all available ones
429 */
430static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
431					 int badf)
432{
433	unsigned int old_next_file = td->next_file;
434	struct fio_file *f;
435
436	do {
437		f = &td->files[td->next_file];
438
439		td->next_file++;
440		if (td->next_file >= td->o.nr_files)
441			td->next_file = 0;
442
443		if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
444			break;
445
446		f = NULL;
447	} while (td->next_file != old_next_file);
448
449	return f;
450}
451
452static struct fio_file *get_next_file(struct thread_data *td)
453{
454	struct fio_file *f;
455
456	assert(td->o.nr_files <= td->files_index);
457
458	if (!td->nr_open_files)
459		return NULL;
460
461	f = td->file_service_file;
462	if (f && (f->flags & FIO_FILE_OPEN) && td->file_service_left--)
463		return f;
464
465	if (td->o.file_service_type == FIO_FSERVICE_RR)
466		f = get_next_file_rr(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
467	else
468		f = get_next_file_rand(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
469
470	td->file_service_file = f;
471	td->file_service_left = td->file_service_nr - 1;
472	return f;
473}
474
475static struct fio_file *find_next_new_file(struct thread_data *td)
476{
477	struct fio_file *f;
478
479	if (td->o.file_service_type == FIO_FSERVICE_RR)
480		f = get_next_file_rr(td, 0, FIO_FILE_OPEN);
481	else
482		f = get_next_file_rand(td, 0, FIO_FILE_OPEN);
483
484	return f;
485}
486
487struct io_u *__get_io_u(struct thread_data *td)
488{
489	struct io_u *io_u = NULL;
490
491	if (!list_empty(&td->io_u_requeues))
492		io_u = list_entry(td->io_u_requeues.next, struct io_u, list);
493	else if (!queue_full(td)) {
494		io_u = list_entry(td->io_u_freelist.next, struct io_u, list);
495
496		io_u->buflen = 0;
497		io_u->resid = 0;
498		io_u->file = NULL;
499		io_u->end_io = NULL;
500	}
501
502	if (io_u) {
503		assert(io_u->flags & IO_U_F_FREE);
504		io_u->flags &= ~IO_U_F_FREE;
505
506		io_u->error = 0;
507		list_del(&io_u->list);
508		list_add(&io_u->list, &td->io_u_busylist);
509		td->cur_depth++;
510	}
511
512	return io_u;
513}
514
515/*
516 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
517 * etc. The returned io_u is fully ready to be prepped and submitted.
518 */
519struct io_u *get_io_u(struct thread_data *td)
520{
521	struct fio_file *f;
522	struct io_u *io_u;
523	int ret;
524
525	io_u = __get_io_u(td);
526	if (!io_u)
527		return NULL;
528
529	/*
530	 * from a requeue, io_u already setup
531	 */
532	if (io_u->file)
533		goto out;
534
535	do {
536		f = get_next_file(td);
537		if (!f) {
538			put_io_u(td, io_u);
539			return NULL;
540		}
541
542set_file:
543		io_u->file = f;
544
545		if (!fill_io_u(td, io_u))
546			break;
547
548		/*
549		 * No more to do for this file, close it
550		 */
551		io_u->file = NULL;
552		td_io_close_file(td, f);
553
554		/*
555		 * probably not the right place to do this, but see
556		 * if we need to open a new file
557		 */
558		if (td->nr_open_files < td->o.open_files &&
559		    td->o.open_files != td->o.nr_files) {
560			f = find_next_new_file(td);
561
562			if (!f || (ret = td_io_open_file(td, f))) {
563				put_io_u(td, io_u);
564				return NULL;
565			}
566			goto set_file;
567		}
568	} while (1);
569
570	if (td->zone_bytes >= td->o.zone_size) {
571		td->zone_bytes = 0;
572		f->last_pos += td->o.zone_skip;
573	}
574
575	if (io_u->buflen + io_u->offset > f->real_file_size) {
576		if (td->io_ops->flags & FIO_RAWIO) {
577			put_io_u(td, io_u);
578			return NULL;
579		}
580
581		io_u->buflen = f->real_file_size - io_u->offset;
582	}
583
584	if (io_u->ddir != DDIR_SYNC) {
585		if (!io_u->buflen) {
586			put_io_u(td, io_u);
587			return NULL;
588		}
589
590		f->last_pos = io_u->offset + io_u->buflen;
591
592		if (td->o.verify != VERIFY_NONE)
593			populate_verify_io_u(td, io_u);
594	}
595
596	/*
597	 * Set io data pointers.
598	 */
599out:
600	io_u->xfer_buf = io_u->buf;
601	io_u->xfer_buflen = io_u->buflen;
602
603	if (td_io_prep(td, io_u)) {
604		put_io_u(td, io_u);
605		return NULL;
606	}
607
608	fio_gettime(&io_u->start_time, NULL);
609	return io_u;
610}
611
612void io_u_log_error(struct thread_data *td, struct io_u *io_u)
613{
614	const char *msg[] = { "read", "write", "sync" };
615
616	log_err("fio: io_u error");
617
618	if (io_u->file)
619		log_err(" on file %s", io_u->file->file_name);
620
621	log_err(": %s\n", strerror(io_u->error));
622
623	log_err("     %s offset=%llu, buflen=%lu\n", msg[io_u->ddir], io_u->offset, io_u->xfer_buflen);
624
625	if (!td->error)
626		td_verror(td, io_u->error, "io_u error");
627}
628
629static void io_completed(struct thread_data *td, struct io_u *io_u,
630			 struct io_completion_data *icd)
631{
632	unsigned long msec;
633
634	assert(io_u->flags & IO_U_F_FLIGHT);
635	io_u->flags &= ~IO_U_F_FLIGHT;
636
637	put_file(td, io_u->file);
638
639	if (io_u->ddir == DDIR_SYNC) {
640		td->last_was_sync = 1;
641		return;
642	}
643
644	td->last_was_sync = 0;
645
646	if (!io_u->error) {
647		unsigned int bytes = io_u->buflen - io_u->resid;
648		const enum fio_ddir idx = io_u->ddir;
649		int ret;
650
651		td->io_blocks[idx]++;
652		td->io_bytes[idx] += bytes;
653		td->zone_bytes += bytes;
654		td->this_io_bytes[idx] += bytes;
655
656		io_u->file->last_completed_pos = io_u->offset + io_u->buflen;
657
658		msec = mtime_since(&io_u->issue_time, &icd->time);
659
660		add_clat_sample(td, idx, msec);
661		add_bw_sample(td, idx, &icd->time);
662		io_u_mark_latency(td, msec);
663
664		if ((td_rw(td) || td_write(td)) && idx == DDIR_WRITE &&
665		    td->o.verify != VERIFY_NONE)
666			log_io_piece(td, io_u);
667
668		icd->bytes_done[idx] += bytes;
669
670		if (io_u->end_io) {
671			ret = io_u->end_io(td, io_u);
672			if (ret && !icd->error)
673				icd->error = ret;
674		}
675	} else {
676		icd->error = io_u->error;
677		io_u_log_error(td, io_u);
678	}
679}
680
681static void init_icd(struct io_completion_data *icd, int nr)
682{
683	fio_gettime(&icd->time, NULL);
684
685	icd->nr = nr;
686
687	icd->error = 0;
688	icd->bytes_done[0] = icd->bytes_done[1] = 0;
689}
690
691static void ios_completed(struct thread_data *td,
692			  struct io_completion_data *icd)
693{
694	struct io_u *io_u;
695	int i;
696
697	for (i = 0; i < icd->nr; i++) {
698		io_u = td->io_ops->event(td, i);
699
700		io_completed(td, io_u, icd);
701		put_io_u(td, io_u);
702	}
703}
704
705/*
706 * Complete a single io_u for the sync engines.
707 */
708long io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
709{
710	struct io_completion_data icd;
711
712	init_icd(&icd, 1);
713	io_completed(td, io_u, &icd);
714	put_io_u(td, io_u);
715
716	if (!icd.error)
717		return icd.bytes_done[0] + icd.bytes_done[1];
718
719	td_verror(td, icd.error, "io_u_sync_complete");
720	return -1;
721}
722
723/*
724 * Called to complete min_events number of io for the async engines.
725 */
726long io_u_queued_complete(struct thread_data *td, int min_events)
727{
728	struct io_completion_data icd;
729	struct timespec *tvp = NULL;
730	int ret;
731	struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
732
733	if (!min_events)
734		tvp = &ts;
735
736	ret = td_io_getevents(td, min_events, td->cur_depth, tvp);
737	if (ret < 0) {
738		td_verror(td, -ret, "td_io_getevents");
739		return ret;
740	} else if (!ret)
741		return ret;
742
743	init_icd(&icd, ret);
744	ios_completed(td, &icd);
745	if (!icd.error)
746		return icd.bytes_done[0] + icd.bytes_done[1];
747
748	td_verror(td, icd.error, "io_u_queued_complete");
749	return -1;
750}
751
752/*
753 * Call when io_u is really queued, to update the submission latency.
754 */
755void io_u_queued(struct thread_data *td, struct io_u *io_u)
756{
757	unsigned long slat_time;
758
759	slat_time = mtime_since(&io_u->start_time, &io_u->issue_time);
760	add_slat_sample(td, io_u->ddir, slat_time);
761}
762
763#ifdef FIO_USE_TIMEOUT
764void io_u_set_timeout(struct thread_data *td)
765{
766	assert(td->cur_depth);
767
768	td->timer.it_interval.tv_sec = 0;
769	td->timer.it_interval.tv_usec = 0;
770	td->timer.it_value.tv_sec = IO_U_TIMEOUT + IO_U_TIMEOUT_INC;
771	td->timer.it_value.tv_usec = 0;
772	setitimer(ITIMER_REAL, &td->timer, NULL);
773	fio_gettime(&td->timeout_end, NULL);
774}
775
776static void io_u_dump(struct io_u *io_u)
777{
778	unsigned long t_start = mtime_since_now(&io_u->start_time);
779	unsigned long t_issue = mtime_since_now(&io_u->issue_time);
780
781	log_err("io_u=%p, t_start=%lu, t_issue=%lu\n", io_u, t_start, t_issue);
782	log_err("  buf=%p/%p, len=%lu/%lu, offset=%llu\n", io_u->buf, io_u->xfer_buf, io_u->buflen, io_u->xfer_buflen, io_u->offset);
783	log_err("  ddir=%d, fname=%s\n", io_u->ddir, io_u->file->file_name);
784}
785#else
786void io_u_set_timeout(struct thread_data fio_unused *td)
787{
788}
789#endif
790
791#ifdef FIO_USE_TIMEOUT
792static void io_u_timeout_handler(int fio_unused sig)
793{
794	struct thread_data *td, *__td;
795	pid_t pid = getpid();
796	struct list_head *entry;
797	struct io_u *io_u;
798	int i;
799
800	log_err("fio: io_u timeout\n");
801
802	/*
803	 * TLS would be nice...
804	 */
805	td = NULL;
806	for_each_td(__td, i) {
807		if (__td->pid == pid) {
808			td = __td;
809			break;
810		}
811	}
812
813	if (!td) {
814		log_err("fio: io_u timeout, can't find job\n");
815		exit(1);
816	}
817
818	if (!td->cur_depth) {
819		log_err("fio: timeout without pending work?\n");
820		return;
821	}
822
823	log_err("fio: io_u timeout: job=%s, pid=%d\n", td->o.name, td->pid);
824
825	list_for_each(entry, &td->io_u_busylist) {
826		io_u = list_entry(entry, struct io_u, list);
827
828		io_u_dump(io_u);
829	}
830
831	td_verror(td, ETIMEDOUT, "io_u timeout");
832	exit(1);
833}
834#endif
835
836void io_u_init_timeout(void)
837{
838#ifdef FIO_USE_TIMEOUT
839	signal(SIGALRM, io_u_timeout_handler);
840#endif
841}
842