io_u.c revision 8055e41d0ecc54770a2653427532b3e2c5fabdad
1#include <unistd.h> 2#include <fcntl.h> 3#include <string.h> 4#include <signal.h> 5#include <time.h> 6#include <assert.h> 7 8#include "fio.h" 9#include "hash.h" 10#include "verify.h" 11#include "trim.h" 12#include "lib/rand.h" 13#include "lib/bitmap.h" 14 15struct io_completion_data { 16 int nr; /* input */ 17 18 int error; /* output */ 19 unsigned long bytes_done[DDIR_RWDIR_CNT]; /* output */ 20 struct timeval time; /* output */ 21}; 22 23/* 24 * The ->io_bitmap contains a map of blocks we have or have not done io 25 * to yet. Used to make sure we cover the entire range in a fair fashion. 26 */ 27static int random_map_free(struct fio_file *f, const unsigned long long block) 28{ 29 return !bitmap_isset(f->io_bitmap, block); 30} 31 32/* 33 * Mark a given offset as used in the map. 34 */ 35static void mark_random_map(struct thread_data *td, struct io_u *io_u) 36{ 37 unsigned int min_bs = td->o.rw_min_bs; 38 struct fio_file *f = io_u->file; 39 unsigned long long block; 40 unsigned int nr_blocks; 41 42 block = (io_u->offset - f->file_offset) / (unsigned long long) min_bs; 43 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs; 44 45 if (!(io_u->flags & IO_U_F_BUSY_OK)) 46 nr_blocks = bitmap_set_nr(f->io_bitmap, block, nr_blocks); 47 48 if ((nr_blocks * min_bs) < io_u->buflen) 49 io_u->buflen = nr_blocks * min_bs; 50} 51 52static unsigned long long last_block(struct thread_data *td, struct fio_file *f, 53 enum fio_ddir ddir) 54{ 55 unsigned long long max_blocks; 56 unsigned long long max_size; 57 58 assert(ddir_rw(ddir)); 59 60 /* 61 * Hmm, should we make sure that ->io_size <= ->real_file_size? 62 */ 63 max_size = f->io_size; 64 if (max_size > f->real_file_size) 65 max_size = f->real_file_size; 66 67 if (td->o.zone_range) 68 max_size = td->o.zone_range; 69 70 max_blocks = max_size / (unsigned long long) td->o.ba[ddir]; 71 if (!max_blocks) 72 return 0; 73 74 return max_blocks; 75} 76 77static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f, 78 enum fio_ddir ddir, unsigned long long *b) 79{ 80 unsigned long long r; 81 82 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE) { 83 unsigned long long rmax, lastb; 84 85 lastb = last_block(td, f, ddir); 86 if (!lastb) 87 return 1; 88 89 rmax = td->o.use_os_rand ? OS_RAND_MAX : FRAND_MAX; 90 91 if (td->o.use_os_rand) { 92 rmax = OS_RAND_MAX; 93 r = os_random_long(&td->random_state); 94 } else { 95 rmax = FRAND_MAX; 96 r = __rand(&td->__random_state); 97 } 98 99 dprint(FD_RANDOM, "off rand %llu\n", r); 100 101 *b = (lastb - 1) * (r / ((unsigned long long) rmax + 1.0)); 102 } else { 103 uint64_t off = 0; 104 105 if (lfsr_next(&f->lfsr, &off)) 106 return 1; 107 108 *b = off; 109 } 110 111 /* 112 * if we are not maintaining a random map, we are done. 113 */ 114 if (!file_randommap(td, f)) 115 goto ret; 116 117 /* 118 * calculate map offset and check if it's free 119 */ 120 if (random_map_free(f, *b)) 121 goto ret; 122 123 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n", *b); 124 125 *b = bitmap_next_free(f->io_bitmap, *b); 126 if (*b == (uint64_t) -1ULL) 127 return 1; 128ret: 129 return 0; 130} 131 132static int __get_next_rand_offset_zipf(struct thread_data *td, 133 struct fio_file *f, enum fio_ddir ddir, 134 unsigned long long *b) 135{ 136 *b = zipf_next(&f->zipf); 137 return 0; 138} 139 140static int __get_next_rand_offset_pareto(struct thread_data *td, 141 struct fio_file *f, enum fio_ddir ddir, 142 unsigned long long *b) 143{ 144 *b = pareto_next(&f->zipf); 145 return 0; 146} 147 148static int get_next_rand_offset(struct thread_data *td, struct fio_file *f, 149 enum fio_ddir ddir, unsigned long long *b) 150{ 151 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) 152 return __get_next_rand_offset(td, f, ddir, b); 153 else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF) 154 return __get_next_rand_offset_zipf(td, f, ddir, b); 155 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO) 156 return __get_next_rand_offset_pareto(td, f, ddir, b); 157 158 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution); 159 return 1; 160} 161 162static int get_next_rand_block(struct thread_data *td, struct fio_file *f, 163 enum fio_ddir ddir, unsigned long long *b) 164{ 165 if (!get_next_rand_offset(td, f, ddir, b)) 166 return 0; 167 168 if (td->o.time_based) { 169 fio_file_reset(f); 170 if (!get_next_rand_offset(td, f, ddir, b)) 171 return 0; 172 } 173 174 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n", 175 f->file_name, f->last_pos, f->real_file_size); 176 return 1; 177} 178 179static int get_next_seq_offset(struct thread_data *td, struct fio_file *f, 180 enum fio_ddir ddir, unsigned long long *offset) 181{ 182 assert(ddir_rw(ddir)); 183 184 if (f->last_pos >= f->io_size + get_start_offset(td) && td->o.time_based) 185 f->last_pos = f->last_pos - f->io_size; 186 187 if (f->last_pos < f->real_file_size) { 188 unsigned long long pos; 189 190 if (f->last_pos == f->file_offset && td->o.ddir_seq_add < 0) 191 f->last_pos = f->real_file_size; 192 193 pos = f->last_pos - f->file_offset; 194 if (pos) 195 pos += td->o.ddir_seq_add; 196 197 *offset = pos; 198 return 0; 199 } 200 201 return 1; 202} 203 204static int get_next_block(struct thread_data *td, struct io_u *io_u, 205 enum fio_ddir ddir, int rw_seq) 206{ 207 struct fio_file *f = io_u->file; 208 unsigned long long b, offset; 209 int ret; 210 211 assert(ddir_rw(ddir)); 212 213 b = offset = -1ULL; 214 215 if (rw_seq) { 216 if (td_random(td)) 217 ret = get_next_rand_block(td, f, ddir, &b); 218 else 219 ret = get_next_seq_offset(td, f, ddir, &offset); 220 } else { 221 io_u->flags |= IO_U_F_BUSY_OK; 222 223 if (td->o.rw_seq == RW_SEQ_SEQ) { 224 ret = get_next_seq_offset(td, f, ddir, &offset); 225 if (ret) 226 ret = get_next_rand_block(td, f, ddir, &b); 227 } else if (td->o.rw_seq == RW_SEQ_IDENT) { 228 if (f->last_start != -1ULL) 229 offset = f->last_start - f->file_offset; 230 else 231 offset = 0; 232 ret = 0; 233 } else { 234 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq); 235 ret = 1; 236 } 237 } 238 239 if (!ret) { 240 if (offset != -1ULL) 241 io_u->offset = offset; 242 else if (b != -1ULL) 243 io_u->offset = b * td->o.ba[ddir]; 244 else { 245 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", 246 offset, b); 247 ret = 1; 248 } 249 } 250 251 return ret; 252} 253 254/* 255 * For random io, generate a random new block and see if it's used. Repeat 256 * until we find a free one. For sequential io, just return the end of 257 * the last io issued. 258 */ 259static int __get_next_offset(struct thread_data *td, struct io_u *io_u) 260{ 261 struct fio_file *f = io_u->file; 262 enum fio_ddir ddir = io_u->ddir; 263 int rw_seq_hit = 0; 264 265 assert(ddir_rw(ddir)); 266 267 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) { 268 rw_seq_hit = 1; 269 td->ddir_seq_nr = td->o.ddir_seq_nr; 270 } 271 272 if (get_next_block(td, io_u, ddir, rw_seq_hit)) 273 return 1; 274 275 if (io_u->offset >= f->io_size) { 276 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n", 277 io_u->offset, f->io_size); 278 return 1; 279 } 280 281 io_u->offset += f->file_offset; 282 if (io_u->offset >= f->real_file_size) { 283 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n", 284 io_u->offset, f->real_file_size); 285 return 1; 286 } 287 288 return 0; 289} 290 291static int get_next_offset(struct thread_data *td, struct io_u *io_u) 292{ 293 struct prof_io_ops *ops = &td->prof_io_ops; 294 295 if (ops->fill_io_u_off) 296 return ops->fill_io_u_off(td, io_u); 297 298 return __get_next_offset(td, io_u); 299} 300 301static inline int io_u_fits(struct thread_data *td, struct io_u *io_u, 302 unsigned int buflen) 303{ 304 struct fio_file *f = io_u->file; 305 306 return io_u->offset + buflen <= f->io_size + get_start_offset(td); 307} 308 309static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u) 310{ 311 const int ddir = io_u->ddir; 312 unsigned int buflen = 0; 313 unsigned int minbs, maxbs; 314 unsigned long r, rand_max; 315 316 assert(ddir_rw(ddir)); 317 318 minbs = td->o.min_bs[ddir]; 319 maxbs = td->o.max_bs[ddir]; 320 321 if (minbs == maxbs) 322 return minbs; 323 324 /* 325 * If we can't satisfy the min block size from here, then fail 326 */ 327 if (!io_u_fits(td, io_u, minbs)) 328 return 0; 329 330 if (td->o.use_os_rand) 331 rand_max = OS_RAND_MAX; 332 else 333 rand_max = FRAND_MAX; 334 335 do { 336 if (td->o.use_os_rand) 337 r = os_random_long(&td->bsrange_state); 338 else 339 r = __rand(&td->__bsrange_state); 340 341 if (!td->o.bssplit_nr[ddir]) { 342 buflen = 1 + (unsigned int) ((double) maxbs * 343 (r / (rand_max + 1.0))); 344 if (buflen < minbs) 345 buflen = minbs; 346 } else { 347 long perc = 0; 348 unsigned int i; 349 350 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) { 351 struct bssplit *bsp = &td->o.bssplit[ddir][i]; 352 353 buflen = bsp->bs; 354 perc += bsp->perc; 355 if ((r <= ((rand_max / 100L) * perc)) && 356 io_u_fits(td, io_u, buflen)) 357 break; 358 } 359 } 360 361 if (!td->o.bs_unaligned && is_power_of_2(minbs)) 362 buflen = (buflen + minbs - 1) & ~(minbs - 1); 363 364 } while (!io_u_fits(td, io_u, buflen)); 365 366 return buflen; 367} 368 369static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u) 370{ 371 struct prof_io_ops *ops = &td->prof_io_ops; 372 373 if (ops->fill_io_u_size) 374 return ops->fill_io_u_size(td, io_u); 375 376 return __get_next_buflen(td, io_u); 377} 378 379static void set_rwmix_bytes(struct thread_data *td) 380{ 381 unsigned int diff; 382 383 /* 384 * we do time or byte based switch. this is needed because 385 * buffered writes may issue a lot quicker than they complete, 386 * whereas reads do not. 387 */ 388 diff = td->o.rwmix[td->rwmix_ddir ^ 1]; 389 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100; 390} 391 392static inline enum fio_ddir get_rand_ddir(struct thread_data *td) 393{ 394 unsigned int v; 395 unsigned long r; 396 397 if (td->o.use_os_rand) { 398 r = os_random_long(&td->rwmix_state); 399 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0))); 400 } else { 401 r = __rand(&td->__rwmix_state); 402 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0))); 403 } 404 405 if (v <= td->o.rwmix[DDIR_READ]) 406 return DDIR_READ; 407 408 return DDIR_WRITE; 409} 410 411static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir) 412{ 413 enum fio_ddir odir = ddir ^ 1; 414 struct timeval t; 415 long usec; 416 417 assert(ddir_rw(ddir)); 418 419 if (td->rate_pending_usleep[ddir] <= 0) 420 return ddir; 421 422 /* 423 * We have too much pending sleep in this direction. See if we 424 * should switch. 425 */ 426 if (td_rw(td)) { 427 /* 428 * Other direction does not have too much pending, switch 429 */ 430 if (td->rate_pending_usleep[odir] < 100000) 431 return odir; 432 433 /* 434 * Both directions have pending sleep. Sleep the minimum time 435 * and deduct from both. 436 */ 437 if (td->rate_pending_usleep[ddir] <= 438 td->rate_pending_usleep[odir]) { 439 usec = td->rate_pending_usleep[ddir]; 440 } else { 441 usec = td->rate_pending_usleep[odir]; 442 ddir = odir; 443 } 444 } else 445 usec = td->rate_pending_usleep[ddir]; 446 447 /* 448 * We are going to sleep, ensure that we flush anything pending as 449 * not to skew our latency numbers. 450 * 451 * Changed to only monitor 'in flight' requests here instead of the 452 * td->cur_depth, b/c td->cur_depth does not accurately represent 453 * io's that have been actually submitted to an async engine, 454 * and cur_depth is meaningless for sync engines. 455 */ 456 if (td->io_u_in_flight) { 457 int fio_unused ret; 458 459 ret = io_u_queued_complete(td, td->io_u_in_flight, NULL); 460 } 461 462 fio_gettime(&t, NULL); 463 usec_sleep(td, usec); 464 usec = utime_since_now(&t); 465 466 td->rate_pending_usleep[ddir] -= usec; 467 468 odir = ddir ^ 1; 469 if (td_rw(td) && __should_check_rate(td, odir)) 470 td->rate_pending_usleep[odir] -= usec; 471 472 if (ddir_trim(ddir)) 473 return ddir; 474 return ddir; 475} 476 477/* 478 * Return the data direction for the next io_u. If the job is a 479 * mixed read/write workload, check the rwmix cycle and switch if 480 * necessary. 481 */ 482static enum fio_ddir get_rw_ddir(struct thread_data *td) 483{ 484 enum fio_ddir ddir; 485 486 /* 487 * see if it's time to fsync 488 */ 489 if (td->o.fsync_blocks && 490 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) && 491 td->io_issues[DDIR_WRITE] && should_fsync(td)) 492 return DDIR_SYNC; 493 494 /* 495 * see if it's time to fdatasync 496 */ 497 if (td->o.fdatasync_blocks && 498 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) && 499 td->io_issues[DDIR_WRITE] && should_fsync(td)) 500 return DDIR_DATASYNC; 501 502 /* 503 * see if it's time to sync_file_range 504 */ 505 if (td->sync_file_range_nr && 506 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) && 507 td->io_issues[DDIR_WRITE] && should_fsync(td)) 508 return DDIR_SYNC_FILE_RANGE; 509 510 if (td_rw(td)) { 511 /* 512 * Check if it's time to seed a new data direction. 513 */ 514 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) { 515 /* 516 * Put a top limit on how many bytes we do for 517 * one data direction, to avoid overflowing the 518 * ranges too much 519 */ 520 ddir = get_rand_ddir(td); 521 522 if (ddir != td->rwmix_ddir) 523 set_rwmix_bytes(td); 524 525 td->rwmix_ddir = ddir; 526 } 527 ddir = td->rwmix_ddir; 528 } else if (td_read(td)) 529 ddir = DDIR_READ; 530 else if (td_write(td)) 531 ddir = DDIR_WRITE; 532 else 533 ddir = DDIR_TRIM; 534 535 td->rwmix_ddir = rate_ddir(td, ddir); 536 return td->rwmix_ddir; 537} 538 539static void set_rw_ddir(struct thread_data *td, struct io_u *io_u) 540{ 541 io_u->ddir = get_rw_ddir(td); 542 543 if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) && 544 td->o.barrier_blocks && 545 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) && 546 td->io_issues[DDIR_WRITE]) 547 io_u->flags |= IO_U_F_BARRIER; 548} 549 550void put_file_log(struct thread_data *td, struct fio_file *f) 551{ 552 int ret = put_file(td, f); 553 554 if (ret) 555 td_verror(td, ret, "file close"); 556} 557 558void put_io_u(struct thread_data *td, struct io_u *io_u) 559{ 560 td_io_u_lock(td); 561 562 if (io_u->file && !(io_u->flags & IO_U_F_FREE_DEF)) 563 put_file_log(td, io_u->file); 564 io_u->file = NULL; 565 io_u->flags &= ~IO_U_F_FREE_DEF; 566 io_u->flags |= IO_U_F_FREE; 567 568 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) 569 td->cur_depth--; 570 flist_del_init(&io_u->list); 571 flist_add(&io_u->list, &td->io_u_freelist); 572 td_io_u_unlock(td); 573 td_io_u_free_notify(td); 574} 575 576void clear_io_u(struct thread_data *td, struct io_u *io_u) 577{ 578 io_u->flags &= ~IO_U_F_FLIGHT; 579 put_io_u(td, io_u); 580} 581 582void requeue_io_u(struct thread_data *td, struct io_u **io_u) 583{ 584 struct io_u *__io_u = *io_u; 585 586 dprint(FD_IO, "requeue %p\n", __io_u); 587 588 td_io_u_lock(td); 589 590 __io_u->flags |= IO_U_F_FREE; 591 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(__io_u->ddir)) 592 td->io_issues[__io_u->ddir]--; 593 594 __io_u->flags &= ~IO_U_F_FLIGHT; 595 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) 596 td->cur_depth--; 597 flist_del(&__io_u->list); 598 flist_add_tail(&__io_u->list, &td->io_u_requeues); 599 td_io_u_unlock(td); 600 *io_u = NULL; 601} 602 603static int fill_io_u(struct thread_data *td, struct io_u *io_u) 604{ 605 if (td->io_ops->flags & FIO_NOIO) 606 goto out; 607 608 set_rw_ddir(td, io_u); 609 610 /* 611 * fsync() or fdatasync() or trim etc, we are done 612 */ 613 if (!ddir_rw(io_u->ddir)) 614 goto out; 615 616 /* 617 * See if it's time to switch to a new zone 618 */ 619 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) { 620 td->zone_bytes = 0; 621 io_u->file->file_offset += td->o.zone_range + td->o.zone_skip; 622 io_u->file->last_pos = io_u->file->file_offset; 623 td->io_skip_bytes += td->o.zone_skip; 624 } 625 626 /* 627 * No log, let the seq/rand engine retrieve the next buflen and 628 * position. 629 */ 630 if (get_next_offset(td, io_u)) { 631 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u); 632 return 1; 633 } 634 635 io_u->buflen = get_next_buflen(td, io_u); 636 if (!io_u->buflen) { 637 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u); 638 return 1; 639 } 640 641 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) { 642 dprint(FD_IO, "io_u %p, offset too large\n", io_u); 643 dprint(FD_IO, " off=%llu/%lu > %llu\n", io_u->offset, 644 io_u->buflen, io_u->file->real_file_size); 645 return 1; 646 } 647 648 /* 649 * mark entry before potentially trimming io_u 650 */ 651 if (td_random(td) && file_randommap(td, io_u->file)) 652 mark_random_map(td, io_u); 653 654 /* 655 * If using a write iolog, store this entry. 656 */ 657out: 658 dprint_io_u(io_u, "fill_io_u"); 659 td->zone_bytes += io_u->buflen; 660 log_io_u(td, io_u); 661 return 0; 662} 663 664static void __io_u_mark_map(unsigned int *map, unsigned int nr) 665{ 666 int idx = 0; 667 668 switch (nr) { 669 default: 670 idx = 6; 671 break; 672 case 33 ... 64: 673 idx = 5; 674 break; 675 case 17 ... 32: 676 idx = 4; 677 break; 678 case 9 ... 16: 679 idx = 3; 680 break; 681 case 5 ... 8: 682 idx = 2; 683 break; 684 case 1 ... 4: 685 idx = 1; 686 case 0: 687 break; 688 } 689 690 map[idx]++; 691} 692 693void io_u_mark_submit(struct thread_data *td, unsigned int nr) 694{ 695 __io_u_mark_map(td->ts.io_u_submit, nr); 696 td->ts.total_submit++; 697} 698 699void io_u_mark_complete(struct thread_data *td, unsigned int nr) 700{ 701 __io_u_mark_map(td->ts.io_u_complete, nr); 702 td->ts.total_complete++; 703} 704 705void io_u_mark_depth(struct thread_data *td, unsigned int nr) 706{ 707 int idx = 0; 708 709 switch (td->cur_depth) { 710 default: 711 idx = 6; 712 break; 713 case 32 ... 63: 714 idx = 5; 715 break; 716 case 16 ... 31: 717 idx = 4; 718 break; 719 case 8 ... 15: 720 idx = 3; 721 break; 722 case 4 ... 7: 723 idx = 2; 724 break; 725 case 2 ... 3: 726 idx = 1; 727 case 1: 728 break; 729 } 730 731 td->ts.io_u_map[idx] += nr; 732} 733 734static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec) 735{ 736 int idx = 0; 737 738 assert(usec < 1000); 739 740 switch (usec) { 741 case 750 ... 999: 742 idx = 9; 743 break; 744 case 500 ... 749: 745 idx = 8; 746 break; 747 case 250 ... 499: 748 idx = 7; 749 break; 750 case 100 ... 249: 751 idx = 6; 752 break; 753 case 50 ... 99: 754 idx = 5; 755 break; 756 case 20 ... 49: 757 idx = 4; 758 break; 759 case 10 ... 19: 760 idx = 3; 761 break; 762 case 4 ... 9: 763 idx = 2; 764 break; 765 case 2 ... 3: 766 idx = 1; 767 case 0 ... 1: 768 break; 769 } 770 771 assert(idx < FIO_IO_U_LAT_U_NR); 772 td->ts.io_u_lat_u[idx]++; 773} 774 775static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec) 776{ 777 int idx = 0; 778 779 switch (msec) { 780 default: 781 idx = 11; 782 break; 783 case 1000 ... 1999: 784 idx = 10; 785 break; 786 case 750 ... 999: 787 idx = 9; 788 break; 789 case 500 ... 749: 790 idx = 8; 791 break; 792 case 250 ... 499: 793 idx = 7; 794 break; 795 case 100 ... 249: 796 idx = 6; 797 break; 798 case 50 ... 99: 799 idx = 5; 800 break; 801 case 20 ... 49: 802 idx = 4; 803 break; 804 case 10 ... 19: 805 idx = 3; 806 break; 807 case 4 ... 9: 808 idx = 2; 809 break; 810 case 2 ... 3: 811 idx = 1; 812 case 0 ... 1: 813 break; 814 } 815 816 assert(idx < FIO_IO_U_LAT_M_NR); 817 td->ts.io_u_lat_m[idx]++; 818} 819 820static void io_u_mark_latency(struct thread_data *td, unsigned long usec) 821{ 822 if (usec < 1000) 823 io_u_mark_lat_usec(td, usec); 824 else 825 io_u_mark_lat_msec(td, usec / 1000); 826} 827 828/* 829 * Get next file to service by choosing one at random 830 */ 831static struct fio_file *get_next_file_rand(struct thread_data *td, 832 enum fio_file_flags goodf, 833 enum fio_file_flags badf) 834{ 835 struct fio_file *f; 836 int fno; 837 838 do { 839 int opened = 0; 840 unsigned long r; 841 842 if (td->o.use_os_rand) { 843 r = os_random_long(&td->next_file_state); 844 fno = (unsigned int) ((double) td->o.nr_files 845 * (r / (OS_RAND_MAX + 1.0))); 846 } else { 847 r = __rand(&td->__next_file_state); 848 fno = (unsigned int) ((double) td->o.nr_files 849 * (r / (FRAND_MAX + 1.0))); 850 } 851 852 f = td->files[fno]; 853 if (fio_file_done(f)) 854 continue; 855 856 if (!fio_file_open(f)) { 857 int err; 858 859 err = td_io_open_file(td, f); 860 if (err) 861 continue; 862 opened = 1; 863 } 864 865 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) { 866 dprint(FD_FILE, "get_next_file_rand: %p\n", f); 867 return f; 868 } 869 if (opened) 870 td_io_close_file(td, f); 871 } while (1); 872} 873 874/* 875 * Get next file to service by doing round robin between all available ones 876 */ 877static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf, 878 int badf) 879{ 880 unsigned int old_next_file = td->next_file; 881 struct fio_file *f; 882 883 do { 884 int opened = 0; 885 886 f = td->files[td->next_file]; 887 888 td->next_file++; 889 if (td->next_file >= td->o.nr_files) 890 td->next_file = 0; 891 892 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags); 893 if (fio_file_done(f)) { 894 f = NULL; 895 continue; 896 } 897 898 if (!fio_file_open(f)) { 899 int err; 900 901 err = td_io_open_file(td, f); 902 if (err) { 903 dprint(FD_FILE, "error %d on open of %s\n", 904 err, f->file_name); 905 f = NULL; 906 continue; 907 } 908 opened = 1; 909 } 910 911 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf, 912 f->flags); 913 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) 914 break; 915 916 if (opened) 917 td_io_close_file(td, f); 918 919 f = NULL; 920 } while (td->next_file != old_next_file); 921 922 dprint(FD_FILE, "get_next_file_rr: %p\n", f); 923 return f; 924} 925 926static struct fio_file *__get_next_file(struct thread_data *td) 927{ 928 struct fio_file *f; 929 930 assert(td->o.nr_files <= td->files_index); 931 932 if (td->nr_done_files >= td->o.nr_files) { 933 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d," 934 " nr_files=%d\n", td->nr_open_files, 935 td->nr_done_files, 936 td->o.nr_files); 937 return NULL; 938 } 939 940 f = td->file_service_file; 941 if (f && fio_file_open(f) && !fio_file_closing(f)) { 942 if (td->o.file_service_type == FIO_FSERVICE_SEQ) 943 goto out; 944 if (td->file_service_left--) 945 goto out; 946 } 947 948 if (td->o.file_service_type == FIO_FSERVICE_RR || 949 td->o.file_service_type == FIO_FSERVICE_SEQ) 950 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing); 951 else 952 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing); 953 954 td->file_service_file = f; 955 td->file_service_left = td->file_service_nr - 1; 956out: 957 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name); 958 return f; 959} 960 961static struct fio_file *get_next_file(struct thread_data *td) 962{ 963 struct prof_io_ops *ops = &td->prof_io_ops; 964 965 if (ops->get_next_file) 966 return ops->get_next_file(td); 967 968 return __get_next_file(td); 969} 970 971static int set_io_u_file(struct thread_data *td, struct io_u *io_u) 972{ 973 struct fio_file *f; 974 975 do { 976 f = get_next_file(td); 977 if (!f) 978 return 1; 979 980 io_u->file = f; 981 get_file(f); 982 983 if (!fill_io_u(td, io_u)) 984 break; 985 986 put_file_log(td, f); 987 td_io_close_file(td, f); 988 io_u->file = NULL; 989 fio_file_set_done(f); 990 td->nr_done_files++; 991 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name, 992 td->nr_done_files, td->o.nr_files); 993 } while (1); 994 995 return 0; 996} 997 998 999struct io_u *__get_io_u(struct thread_data *td) 1000{ 1001 struct io_u *io_u = NULL; 1002 1003 td_io_u_lock(td); 1004 1005again: 1006 if (!flist_empty(&td->io_u_requeues)) 1007 io_u = flist_entry(td->io_u_requeues.next, struct io_u, list); 1008 else if (!queue_full(td)) { 1009 io_u = flist_entry(td->io_u_freelist.next, struct io_u, list); 1010 1011 io_u->buflen = 0; 1012 io_u->resid = 0; 1013 io_u->file = NULL; 1014 io_u->end_io = NULL; 1015 } 1016 1017 if (io_u) { 1018 assert(io_u->flags & IO_U_F_FREE); 1019 io_u->flags &= ~(IO_U_F_FREE | IO_U_F_FREE_DEF); 1020 io_u->flags &= ~(IO_U_F_TRIMMED | IO_U_F_BARRIER); 1021 io_u->flags &= ~IO_U_F_VER_LIST; 1022 1023 io_u->error = 0; 1024 flist_del(&io_u->list); 1025 flist_add_tail(&io_u->list, &td->io_u_busylist); 1026 td->cur_depth++; 1027 io_u->flags |= IO_U_F_IN_CUR_DEPTH; 1028 } else if (td->o.verify_async) { 1029 /* 1030 * We ran out, wait for async verify threads to finish and 1031 * return one 1032 */ 1033 pthread_cond_wait(&td->free_cond, &td->io_u_lock); 1034 goto again; 1035 } 1036 1037 td_io_u_unlock(td); 1038 return io_u; 1039} 1040 1041static int check_get_trim(struct thread_data *td, struct io_u *io_u) 1042{ 1043 if (td->o.trim_backlog && td->trim_entries) { 1044 int get_trim = 0; 1045 1046 if (td->trim_batch) { 1047 td->trim_batch--; 1048 get_trim = 1; 1049 } else if (!(td->io_hist_len % td->o.trim_backlog) && 1050 td->last_ddir != DDIR_READ) { 1051 td->trim_batch = td->o.trim_batch; 1052 if (!td->trim_batch) 1053 td->trim_batch = td->o.trim_backlog; 1054 get_trim = 1; 1055 } 1056 1057 if (get_trim && !get_next_trim(td, io_u)) 1058 return 1; 1059 } 1060 1061 return 0; 1062} 1063 1064static int check_get_verify(struct thread_data *td, struct io_u *io_u) 1065{ 1066 if (td->o.verify_backlog && td->io_hist_len) { 1067 int get_verify = 0; 1068 1069 if (td->verify_batch) 1070 get_verify = 1; 1071 else if (!(td->io_hist_len % td->o.verify_backlog) && 1072 td->last_ddir != DDIR_READ) { 1073 td->verify_batch = td->o.verify_batch; 1074 if (!td->verify_batch) 1075 td->verify_batch = td->o.verify_backlog; 1076 get_verify = 1; 1077 } 1078 1079 if (get_verify && !get_next_verify(td, io_u)) { 1080 td->verify_batch--; 1081 return 1; 1082 } 1083 } 1084 1085 return 0; 1086} 1087 1088/* 1089 * Fill offset and start time into the buffer content, to prevent too 1090 * easy compressible data for simple de-dupe attempts. Do this for every 1091 * 512b block in the range, since that should be the smallest block size 1092 * we can expect from a device. 1093 */ 1094static void small_content_scramble(struct io_u *io_u) 1095{ 1096 unsigned int i, nr_blocks = io_u->buflen / 512; 1097 unsigned long long boffset; 1098 unsigned int offset; 1099 void *p, *end; 1100 1101 if (!nr_blocks) 1102 return; 1103 1104 p = io_u->xfer_buf; 1105 boffset = io_u->offset; 1106 io_u->buf_filled_len = 0; 1107 1108 for (i = 0; i < nr_blocks; i++) { 1109 /* 1110 * Fill the byte offset into a "random" start offset of 1111 * the buffer, given by the product of the usec time 1112 * and the actual offset. 1113 */ 1114 offset = (io_u->start_time.tv_usec ^ boffset) & 511; 1115 offset &= ~(sizeof(unsigned long long) - 1); 1116 if (offset >= 512 - sizeof(unsigned long long)) 1117 offset -= sizeof(unsigned long long); 1118 memcpy(p + offset, &boffset, sizeof(boffset)); 1119 1120 end = p + 512 - sizeof(io_u->start_time); 1121 memcpy(end, &io_u->start_time, sizeof(io_u->start_time)); 1122 p += 512; 1123 boffset += 512; 1124 } 1125} 1126 1127/* 1128 * Return an io_u to be processed. Gets a buflen and offset, sets direction, 1129 * etc. The returned io_u is fully ready to be prepped and submitted. 1130 */ 1131struct io_u *get_io_u(struct thread_data *td) 1132{ 1133 struct fio_file *f; 1134 struct io_u *io_u; 1135 int do_scramble = 0; 1136 1137 io_u = __get_io_u(td); 1138 if (!io_u) { 1139 dprint(FD_IO, "__get_io_u failed\n"); 1140 return NULL; 1141 } 1142 1143 if (check_get_verify(td, io_u)) 1144 goto out; 1145 if (check_get_trim(td, io_u)) 1146 goto out; 1147 1148 /* 1149 * from a requeue, io_u already setup 1150 */ 1151 if (io_u->file) 1152 goto out; 1153 1154 /* 1155 * If using an iolog, grab next piece if any available. 1156 */ 1157 if (td->o.read_iolog_file) { 1158 if (read_iolog_get(td, io_u)) 1159 goto err_put; 1160 } else if (set_io_u_file(td, io_u)) { 1161 dprint(FD_IO, "io_u %p, setting file failed\n", io_u); 1162 goto err_put; 1163 } 1164 1165 f = io_u->file; 1166 assert(fio_file_open(f)); 1167 1168 if (ddir_rw(io_u->ddir)) { 1169 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) { 1170 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u); 1171 goto err_put; 1172 } 1173 1174 f->last_start = io_u->offset; 1175 f->last_pos = io_u->offset + io_u->buflen; 1176 1177 if (io_u->ddir == DDIR_WRITE) { 1178 if (td->o.refill_buffers) { 1179 io_u_fill_buffer(td, io_u, 1180 io_u->xfer_buflen, io_u->xfer_buflen); 1181 } else if (td->o.scramble_buffers) 1182 do_scramble = 1; 1183 if (td->o.verify != VERIFY_NONE) { 1184 populate_verify_io_u(td, io_u); 1185 do_scramble = 0; 1186 } 1187 } else if (io_u->ddir == DDIR_READ) { 1188 /* 1189 * Reset the buf_filled parameters so next time if the 1190 * buffer is used for writes it is refilled. 1191 */ 1192 io_u->buf_filled_len = 0; 1193 } 1194 } 1195 1196 /* 1197 * Set io data pointers. 1198 */ 1199 io_u->xfer_buf = io_u->buf; 1200 io_u->xfer_buflen = io_u->buflen; 1201 1202out: 1203 assert(io_u->file); 1204 if (!td_io_prep(td, io_u)) { 1205 if (!td->o.disable_slat) 1206 fio_gettime(&io_u->start_time, NULL); 1207 if (do_scramble) 1208 small_content_scramble(io_u); 1209 return io_u; 1210 } 1211err_put: 1212 dprint(FD_IO, "get_io_u failed\n"); 1213 put_io_u(td, io_u); 1214 return NULL; 1215} 1216 1217void io_u_log_error(struct thread_data *td, struct io_u *io_u) 1218{ 1219 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error); 1220 const char *msg[] = { "read", "write", "sync", "datasync", 1221 "sync_file_range", "wait", "trim" }; 1222 1223 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump) 1224 return; 1225 1226 log_err("fio: io_u error"); 1227 1228 if (io_u->file) 1229 log_err(" on file %s", io_u->file->file_name); 1230 1231 log_err(": %s\n", strerror(io_u->error)); 1232 1233 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir], 1234 io_u->offset, io_u->xfer_buflen); 1235 1236 if (!td->error) 1237 td_verror(td, io_u->error, "io_u error"); 1238} 1239 1240static void account_io_completion(struct thread_data *td, struct io_u *io_u, 1241 struct io_completion_data *icd, 1242 const enum fio_ddir idx, unsigned int bytes) 1243{ 1244 unsigned long lusec = 0; 1245 1246 if (!td->o.disable_clat || !td->o.disable_bw) 1247 lusec = utime_since(&io_u->issue_time, &icd->time); 1248 1249 if (!td->o.disable_lat) { 1250 unsigned long tusec; 1251 1252 tusec = utime_since(&io_u->start_time, &icd->time); 1253 add_lat_sample(td, idx, tusec, bytes); 1254 1255 if (td->o.max_latency && tusec > td->o.max_latency) { 1256 if (!td->error) 1257 log_err("fio: latency of %lu usec exceeds specified max (%u usec)\n", tusec, td->o.max_latency); 1258 td_verror(td, ETIMEDOUT, "max latency exceeded"); 1259 icd->error = ETIMEDOUT; 1260 } 1261 } 1262 1263 if (!td->o.disable_clat) { 1264 add_clat_sample(td, idx, lusec, bytes); 1265 io_u_mark_latency(td, lusec); 1266 } 1267 1268 if (!td->o.disable_bw) 1269 add_bw_sample(td, idx, bytes, &icd->time); 1270 1271 add_iops_sample(td, idx, &icd->time); 1272} 1273 1274static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir) 1275{ 1276 unsigned long long secs, remainder, bps, bytes; 1277 bytes = td->this_io_bytes[ddir]; 1278 bps = td->rate_bps[ddir]; 1279 secs = bytes / bps; 1280 remainder = bytes % bps; 1281 return remainder * 1000000 / bps + secs * 1000000; 1282} 1283 1284static void io_completed(struct thread_data *td, struct io_u *io_u, 1285 struct io_completion_data *icd) 1286{ 1287 struct fio_file *f; 1288 1289 dprint_io_u(io_u, "io complete"); 1290 1291 td_io_u_lock(td); 1292 assert(io_u->flags & IO_U_F_FLIGHT); 1293 io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK); 1294 td_io_u_unlock(td); 1295 1296 if (ddir_sync(io_u->ddir)) { 1297 td->last_was_sync = 1; 1298 f = io_u->file; 1299 if (f) { 1300 f->first_write = -1ULL; 1301 f->last_write = -1ULL; 1302 } 1303 return; 1304 } 1305 1306 td->last_was_sync = 0; 1307 td->last_ddir = io_u->ddir; 1308 1309 if (!io_u->error && ddir_rw(io_u->ddir)) { 1310 unsigned int bytes = io_u->buflen - io_u->resid; 1311 const enum fio_ddir idx = io_u->ddir; 1312 const enum fio_ddir odx = io_u->ddir ^ 1; 1313 int ret; 1314 1315 td->io_blocks[idx]++; 1316 td->this_io_blocks[idx]++; 1317 td->io_bytes[idx] += bytes; 1318 1319 if (!(io_u->flags & IO_U_F_VER_LIST)) 1320 td->this_io_bytes[idx] += bytes; 1321 1322 if (idx == DDIR_WRITE) { 1323 f = io_u->file; 1324 if (f) { 1325 if (f->first_write == -1ULL || 1326 io_u->offset < f->first_write) 1327 f->first_write = io_u->offset; 1328 if (f->last_write == -1ULL || 1329 ((io_u->offset + bytes) > f->last_write)) 1330 f->last_write = io_u->offset + bytes; 1331 } 1332 } 1333 1334 if (ramp_time_over(td) && (td->runstate == TD_RUNNING || 1335 td->runstate == TD_VERIFYING)) { 1336 account_io_completion(td, io_u, icd, idx, bytes); 1337 1338 if (__should_check_rate(td, idx)) { 1339 td->rate_pending_usleep[idx] = 1340 (usec_for_io(td, idx) - 1341 utime_since_now(&td->start)); 1342 } 1343 if (idx != DDIR_TRIM && __should_check_rate(td, odx)) 1344 td->rate_pending_usleep[odx] = 1345 (usec_for_io(td, odx) - 1346 utime_since_now(&td->start)); 1347 } 1348 1349 if (td_write(td) && idx == DDIR_WRITE && 1350 td->o.do_verify && 1351 td->o.verify != VERIFY_NONE) 1352 log_io_piece(td, io_u); 1353 1354 icd->bytes_done[idx] += bytes; 1355 1356 if (io_u->end_io) { 1357 ret = io_u->end_io(td, io_u); 1358 if (ret && !icd->error) 1359 icd->error = ret; 1360 } 1361 } else if (io_u->error) { 1362 icd->error = io_u->error; 1363 io_u_log_error(td, io_u); 1364 } 1365 if (icd->error) { 1366 enum error_type_bit eb = td_error_type(io_u->ddir, icd->error); 1367 if (!td_non_fatal_error(td, eb, icd->error)) 1368 return; 1369 /* 1370 * If there is a non_fatal error, then add to the error count 1371 * and clear all the errors. 1372 */ 1373 update_error_count(td, icd->error); 1374 td_clear_error(td); 1375 icd->error = 0; 1376 io_u->error = 0; 1377 } 1378} 1379 1380static void init_icd(struct thread_data *td, struct io_completion_data *icd, 1381 int nr) 1382{ 1383 int ddir; 1384 if (!td->o.disable_clat || !td->o.disable_bw) 1385 fio_gettime(&icd->time, NULL); 1386 1387 icd->nr = nr; 1388 1389 icd->error = 0; 1390 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) 1391 icd->bytes_done[ddir] = 0; 1392} 1393 1394static void ios_completed(struct thread_data *td, 1395 struct io_completion_data *icd) 1396{ 1397 struct io_u *io_u; 1398 int i; 1399 1400 for (i = 0; i < icd->nr; i++) { 1401 io_u = td->io_ops->event(td, i); 1402 1403 io_completed(td, io_u, icd); 1404 1405 if (!(io_u->flags & IO_U_F_FREE_DEF)) 1406 put_io_u(td, io_u); 1407 } 1408} 1409 1410/* 1411 * Complete a single io_u for the sync engines. 1412 */ 1413int io_u_sync_complete(struct thread_data *td, struct io_u *io_u, 1414 unsigned long *bytes) 1415{ 1416 struct io_completion_data icd; 1417 1418 init_icd(td, &icd, 1); 1419 io_completed(td, io_u, &icd); 1420 1421 if (!(io_u->flags & IO_U_F_FREE_DEF)) 1422 put_io_u(td, io_u); 1423 1424 if (icd.error) { 1425 td_verror(td, icd.error, "io_u_sync_complete"); 1426 return -1; 1427 } 1428 1429 if (bytes) { 1430 int ddir; 1431 1432 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) 1433 bytes[ddir] += icd.bytes_done[ddir]; 1434 } 1435 1436 return 0; 1437} 1438 1439/* 1440 * Called to complete min_events number of io for the async engines. 1441 */ 1442int io_u_queued_complete(struct thread_data *td, int min_evts, 1443 unsigned long *bytes) 1444{ 1445 struct io_completion_data icd; 1446 struct timespec *tvp = NULL; 1447 int ret; 1448 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, }; 1449 1450 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts); 1451 1452 if (!min_evts) 1453 tvp = &ts; 1454 1455 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp); 1456 if (ret < 0) { 1457 td_verror(td, -ret, "td_io_getevents"); 1458 return ret; 1459 } else if (!ret) 1460 return ret; 1461 1462 init_icd(td, &icd, ret); 1463 ios_completed(td, &icd); 1464 if (icd.error) { 1465 td_verror(td, icd.error, "io_u_queued_complete"); 1466 return -1; 1467 } 1468 1469 if (bytes) { 1470 int ddir; 1471 1472 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) 1473 bytes[ddir] += icd.bytes_done[ddir]; 1474 } 1475 1476 return 0; 1477} 1478 1479/* 1480 * Call when io_u is really queued, to update the submission latency. 1481 */ 1482void io_u_queued(struct thread_data *td, struct io_u *io_u) 1483{ 1484 if (!td->o.disable_slat) { 1485 unsigned long slat_time; 1486 1487 slat_time = utime_since(&io_u->start_time, &io_u->issue_time); 1488 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen); 1489 } 1490} 1491 1492/* 1493 * "randomly" fill the buffer contents 1494 */ 1495void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u, 1496 unsigned int min_write, unsigned int max_bs) 1497{ 1498 io_u->buf_filled_len = 0; 1499 1500 if (!td->o.zero_buffers) { 1501 unsigned int perc = td->o.compress_percentage; 1502 1503 if (perc) { 1504 unsigned int seg = min_write; 1505 1506 seg = min(min_write, td->o.compress_chunk); 1507 fill_random_buf_percentage(&td->buf_state, io_u->buf, 1508 perc, seg, max_bs); 1509 } else 1510 fill_random_buf(&td->buf_state, io_u->buf, max_bs); 1511 } else 1512 memset(io_u->buf, 0, max_bs); 1513} 1514