io_u.c revision c8eeb9df1f52f28567a5937e141decc6a26ec30b
1#include <unistd.h> 2#include <fcntl.h> 3#include <string.h> 4#include <signal.h> 5#include <time.h> 6#include <assert.h> 7 8#include "fio.h" 9#include "hash.h" 10#include "verify.h" 11#include "trim.h" 12#include "lib/rand.h" 13 14struct io_completion_data { 15 int nr; /* input */ 16 int account; /* input */ 17 18 int error; /* output */ 19 unsigned long bytes_done[2]; /* output */ 20 struct timeval time; /* output */ 21}; 22 23/* 24 * The ->file_map[] contains a map of blocks we have or have not done io 25 * to yet. Used to make sure we cover the entire range in a fair fashion. 26 */ 27static int random_map_free(struct fio_file *f, const unsigned long long block) 28{ 29 unsigned int idx = RAND_MAP_IDX(f, block); 30 unsigned int bit = RAND_MAP_BIT(f, block); 31 32 dprint(FD_RANDOM, "free: b=%llu, idx=%u, bit=%u\n", block, idx, bit); 33 34 return (f->file_map[idx] & (1UL << bit)) == 0; 35} 36 37/* 38 * Mark a given offset as used in the map. 39 */ 40static void mark_random_map(struct thread_data *td, struct io_u *io_u) 41{ 42 unsigned int min_bs = td->o.rw_min_bs; 43 struct fio_file *f = io_u->file; 44 unsigned long long block; 45 unsigned int blocks, nr_blocks; 46 int busy_check; 47 48 block = (io_u->offset - f->file_offset) / (unsigned long long) min_bs; 49 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs; 50 blocks = 0; 51 busy_check = !(io_u->flags & IO_U_F_BUSY_OK); 52 53 while (nr_blocks) { 54 unsigned int idx, bit; 55 unsigned long mask, this_blocks; 56 57 /* 58 * If we have a mixed random workload, we may 59 * encounter blocks we already did IO to. 60 */ 61 if (!busy_check) { 62 blocks = nr_blocks; 63 break; 64 } 65 if ((td->o.ddir_seq_nr == 1) && !random_map_free(f, block)) 66 break; 67 68 idx = RAND_MAP_IDX(f, block); 69 bit = RAND_MAP_BIT(f, block); 70 71 fio_assert(td, idx < f->num_maps); 72 73 this_blocks = nr_blocks; 74 if (this_blocks + bit > BLOCKS_PER_MAP) 75 this_blocks = BLOCKS_PER_MAP - bit; 76 77 do { 78 if (this_blocks == BLOCKS_PER_MAP) 79 mask = -1UL; 80 else 81 mask = ((1UL << this_blocks) - 1) << bit; 82 83 if (!(f->file_map[idx] & mask)) 84 break; 85 86 this_blocks--; 87 } while (this_blocks); 88 89 if (!this_blocks) 90 break; 91 92 f->file_map[idx] |= mask; 93 nr_blocks -= this_blocks; 94 blocks += this_blocks; 95 block += this_blocks; 96 } 97 98 if ((blocks * min_bs) < io_u->buflen) 99 io_u->buflen = blocks * min_bs; 100} 101 102static unsigned long long last_block(struct thread_data *td, struct fio_file *f, 103 enum fio_ddir ddir) 104{ 105 unsigned long long max_blocks; 106 unsigned long long max_size; 107 108 assert(ddir_rw(ddir)); 109 110 /* 111 * Hmm, should we make sure that ->io_size <= ->real_file_size? 112 */ 113 max_size = f->io_size; 114 if (max_size > f->real_file_size) 115 max_size = f->real_file_size; 116 117 max_blocks = max_size / (unsigned long long) td->o.ba[ddir]; 118 if (!max_blocks) 119 return 0; 120 121 return max_blocks; 122} 123 124/* 125 * Return the next free block in the map. 126 */ 127static int get_next_free_block(struct thread_data *td, struct fio_file *f, 128 enum fio_ddir ddir, unsigned long long *b) 129{ 130 unsigned long long block, min_bs = td->o.rw_min_bs, lastb; 131 int i; 132 133 lastb = last_block(td, f, ddir); 134 if (!lastb) 135 return 1; 136 137 i = f->last_free_lookup; 138 block = i * BLOCKS_PER_MAP; 139 while (block * min_bs < f->real_file_size && 140 block * min_bs < f->io_size) { 141 if (f->file_map[i] != -1UL) { 142 block += ffz(f->file_map[i]); 143 if (block > lastb) 144 break; 145 f->last_free_lookup = i; 146 *b = block; 147 return 0; 148 } 149 150 block += BLOCKS_PER_MAP; 151 i++; 152 } 153 154 dprint(FD_IO, "failed finding a free block\n"); 155 return 1; 156} 157 158static int get_next_rand_offset(struct thread_data *td, struct fio_file *f, 159 enum fio_ddir ddir, unsigned long long *b) 160{ 161 unsigned long long r, lastb; 162 int loops = 5; 163 164 lastb = last_block(td, f, ddir); 165 if (!lastb) 166 return 1; 167 168 if (f->failed_rands >= 200) 169 goto ffz; 170 171 do { 172 if (td->o.use_os_rand) { 173 r = os_random_long(&td->random_state); 174 *b = (lastb - 1) * (r / ((unsigned long long) OS_RAND_MAX + 1.0)); 175 } else { 176 r = __rand(&td->__random_state); 177 *b = (lastb - 1) * (r / ((unsigned long long) FRAND_MAX + 1.0)); 178 } 179 180 dprint(FD_RANDOM, "off rand %llu\n", r); 181 182 183 /* 184 * if we are not maintaining a random map, we are done. 185 */ 186 if (!file_randommap(td, f)) 187 goto ret_good; 188 189 /* 190 * calculate map offset and check if it's free 191 */ 192 if (random_map_free(f, *b)) 193 goto ret_good; 194 195 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n", 196 *b); 197 } while (--loops); 198 199 if (!f->failed_rands++) 200 f->last_free_lookup = 0; 201 202 /* 203 * we get here, if we didn't suceed in looking up a block. generate 204 * a random start offset into the filemap, and find the first free 205 * block from there. 206 */ 207 loops = 10; 208 do { 209 f->last_free_lookup = (f->num_maps - 1) * 210 (r / (OS_RAND_MAX + 1.0)); 211 if (!get_next_free_block(td, f, ddir, b)) 212 goto ret; 213 214 if (td->o.use_os_rand) 215 r = os_random_long(&td->random_state); 216 else 217 r = __rand(&td->__random_state); 218 } while (--loops); 219 220 /* 221 * that didn't work either, try exhaustive search from the start 222 */ 223 f->last_free_lookup = 0; 224ffz: 225 if (!get_next_free_block(td, f, ddir, b)) 226 return 0; 227 f->last_free_lookup = 0; 228 return get_next_free_block(td, f, ddir, b); 229ret_good: 230 f->failed_rands = 0; 231ret: 232 return 0; 233} 234 235static int get_next_rand_block(struct thread_data *td, struct fio_file *f, 236 enum fio_ddir ddir, unsigned long long *b) 237{ 238 if (get_next_rand_offset(td, f, ddir, b)) { 239 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n", 240 f->file_name, f->last_pos, f->real_file_size); 241 return 1; 242 } 243 244 return 0; 245} 246 247static int get_next_seq_block(struct thread_data *td, struct fio_file *f, 248 enum fio_ddir ddir, unsigned long long *b) 249{ 250 assert(ddir_rw(ddir)); 251 252 if (f->last_pos < f->real_file_size) { 253 unsigned long long pos; 254 255 if (f->last_pos == f->file_offset && td->o.ddir_seq_add < 0) 256 f->last_pos = f->real_file_size; 257 258 pos = f->last_pos - f->file_offset; 259 if (pos) 260 pos += td->o.ddir_seq_add; 261 262 *b = pos / td->o.min_bs[ddir]; 263 return 0; 264 } 265 266 return 1; 267} 268 269static int get_next_block(struct thread_data *td, struct io_u *io_u, 270 enum fio_ddir ddir, int rw_seq, unsigned long long *b) 271{ 272 struct fio_file *f = io_u->file; 273 int ret; 274 275 assert(ddir_rw(ddir)); 276 277 if (rw_seq) { 278 if (td_random(td)) 279 ret = get_next_rand_block(td, f, ddir, b); 280 else 281 ret = get_next_seq_block(td, f, ddir, b); 282 } else { 283 io_u->flags |= IO_U_F_BUSY_OK; 284 285 if (td->o.rw_seq == RW_SEQ_SEQ) { 286 ret = get_next_seq_block(td, f, ddir, b); 287 if (ret) 288 ret = get_next_rand_block(td, f, ddir, b); 289 } else if (td->o.rw_seq == RW_SEQ_IDENT) { 290 if (f->last_start != -1ULL) 291 *b = (f->last_start - f->file_offset) 292 / td->o.min_bs[ddir]; 293 else 294 *b = 0; 295 ret = 0; 296 } else { 297 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq); 298 ret = 1; 299 } 300 } 301 302 return ret; 303} 304 305/* 306 * For random io, generate a random new block and see if it's used. Repeat 307 * until we find a free one. For sequential io, just return the end of 308 * the last io issued. 309 */ 310static int __get_next_offset(struct thread_data *td, struct io_u *io_u) 311{ 312 struct fio_file *f = io_u->file; 313 unsigned long long b; 314 enum fio_ddir ddir = io_u->ddir; 315 int rw_seq_hit = 0; 316 317 assert(ddir_rw(ddir)); 318 319 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) { 320 rw_seq_hit = 1; 321 td->ddir_seq_nr = td->o.ddir_seq_nr; 322 } 323 324 if (get_next_block(td, io_u, ddir, rw_seq_hit, &b)) 325 return 1; 326 327 io_u->offset = b * td->o.ba[ddir]; 328 if (io_u->offset >= f->io_size) { 329 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n", 330 io_u->offset, f->io_size); 331 return 1; 332 } 333 334 io_u->offset += f->file_offset; 335 if (io_u->offset >= f->real_file_size) { 336 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n", 337 io_u->offset, f->real_file_size); 338 return 1; 339 } 340 341 return 0; 342} 343 344static int get_next_offset(struct thread_data *td, struct io_u *io_u) 345{ 346 struct prof_io_ops *ops = &td->prof_io_ops; 347 348 if (ops->fill_io_u_off) 349 return ops->fill_io_u_off(td, io_u); 350 351 return __get_next_offset(td, io_u); 352} 353 354static inline int io_u_fits(struct thread_data *td, struct io_u *io_u, 355 unsigned int buflen) 356{ 357 struct fio_file *f = io_u->file; 358 359 return io_u->offset + buflen <= f->io_size + td->o.start_offset; 360} 361 362static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u) 363{ 364 const int ddir = io_u->ddir; 365 unsigned int uninitialized_var(buflen); 366 unsigned int minbs, maxbs; 367 unsigned long r, rand_max; 368 369 assert(ddir_rw(ddir)); 370 371 minbs = td->o.min_bs[ddir]; 372 maxbs = td->o.max_bs[ddir]; 373 374 if (minbs == maxbs) 375 return minbs; 376 377 if (td->o.use_os_rand) 378 rand_max = OS_RAND_MAX; 379 else 380 rand_max = FRAND_MAX; 381 382 do { 383 if (td->o.use_os_rand) 384 r = os_random_long(&td->bsrange_state); 385 else 386 r = __rand(&td->__bsrange_state); 387 388 if (!td->o.bssplit_nr[ddir]) { 389 buflen = 1 + (unsigned int) ((double) maxbs * 390 (r / (rand_max + 1.0))); 391 if (buflen < minbs) 392 buflen = minbs; 393 } else { 394 long perc = 0; 395 unsigned int i; 396 397 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) { 398 struct bssplit *bsp = &td->o.bssplit[ddir][i]; 399 400 buflen = bsp->bs; 401 perc += bsp->perc; 402 if ((r <= ((rand_max / 100L) * perc)) && 403 io_u_fits(td, io_u, buflen)) 404 break; 405 } 406 } 407 408 if (!td->o.bs_unaligned && is_power_of_2(minbs)) 409 buflen = (buflen + minbs - 1) & ~(minbs - 1); 410 411 } while (!io_u_fits(td, io_u, buflen)); 412 413 return buflen; 414} 415 416static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u) 417{ 418 struct prof_io_ops *ops = &td->prof_io_ops; 419 420 if (ops->fill_io_u_size) 421 return ops->fill_io_u_size(td, io_u); 422 423 return __get_next_buflen(td, io_u); 424} 425 426static void set_rwmix_bytes(struct thread_data *td) 427{ 428 unsigned int diff; 429 430 /* 431 * we do time or byte based switch. this is needed because 432 * buffered writes may issue a lot quicker than they complete, 433 * whereas reads do not. 434 */ 435 diff = td->o.rwmix[td->rwmix_ddir ^ 1]; 436 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100; 437} 438 439static inline enum fio_ddir get_rand_ddir(struct thread_data *td) 440{ 441 unsigned int v; 442 unsigned long r; 443 444 if (td->o.use_os_rand) { 445 r = os_random_long(&td->rwmix_state); 446 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0))); 447 } else { 448 r = __rand(&td->__rwmix_state); 449 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0))); 450 } 451 452 if (v <= td->o.rwmix[DDIR_READ]) 453 return DDIR_READ; 454 455 return DDIR_WRITE; 456} 457 458static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir) 459{ 460 enum fio_ddir odir = ddir ^ 1; 461 struct timeval t; 462 long usec; 463 464 assert(ddir_rw(ddir)); 465 466 if (td->rate_pending_usleep[ddir] <= 0) 467 return ddir; 468 469 /* 470 * We have too much pending sleep in this direction. See if we 471 * should switch. 472 */ 473 if (td_rw(td)) { 474 /* 475 * Other direction does not have too much pending, switch 476 */ 477 if (td->rate_pending_usleep[odir] < 100000) 478 return odir; 479 480 /* 481 * Both directions have pending sleep. Sleep the minimum time 482 * and deduct from both. 483 */ 484 if (td->rate_pending_usleep[ddir] <= 485 td->rate_pending_usleep[odir]) { 486 usec = td->rate_pending_usleep[ddir]; 487 } else { 488 usec = td->rate_pending_usleep[odir]; 489 ddir = odir; 490 } 491 } else 492 usec = td->rate_pending_usleep[ddir]; 493 494 /* 495 * We are going to sleep, ensure that we flush anything pending as 496 * not to skew our latency numbers 497 */ 498 if (td->cur_depth) { 499 int fio_unused ret; 500 501 ret = io_u_queued_complete(td, td->cur_depth, NULL); 502 } 503 504 fio_gettime(&t, NULL); 505 usec_sleep(td, usec); 506 usec = utime_since_now(&t); 507 508 td->rate_pending_usleep[ddir] -= usec; 509 510 odir = ddir ^ 1; 511 if (td_rw(td) && __should_check_rate(td, odir)) 512 td->rate_pending_usleep[odir] -= usec; 513 514 return ddir; 515} 516 517/* 518 * Return the data direction for the next io_u. If the job is a 519 * mixed read/write workload, check the rwmix cycle and switch if 520 * necessary. 521 */ 522static enum fio_ddir get_rw_ddir(struct thread_data *td) 523{ 524 enum fio_ddir ddir; 525 526 /* 527 * see if it's time to fsync 528 */ 529 if (td->o.fsync_blocks && 530 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) && 531 td->io_issues[DDIR_WRITE] && should_fsync(td)) 532 return DDIR_SYNC; 533 534 /* 535 * see if it's time to fdatasync 536 */ 537 if (td->o.fdatasync_blocks && 538 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) && 539 td->io_issues[DDIR_WRITE] && should_fsync(td)) 540 return DDIR_DATASYNC; 541 542 /* 543 * see if it's time to sync_file_range 544 */ 545 if (td->sync_file_range_nr && 546 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) && 547 td->io_issues[DDIR_WRITE] && should_fsync(td)) 548 return DDIR_SYNC_FILE_RANGE; 549 550 if (td_rw(td)) { 551 /* 552 * Check if it's time to seed a new data direction. 553 */ 554 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) { 555 /* 556 * Put a top limit on how many bytes we do for 557 * one data direction, to avoid overflowing the 558 * ranges too much 559 */ 560 ddir = get_rand_ddir(td); 561 562 if (ddir != td->rwmix_ddir) 563 set_rwmix_bytes(td); 564 565 td->rwmix_ddir = ddir; 566 } 567 ddir = td->rwmix_ddir; 568 } else if (td_read(td)) 569 ddir = DDIR_READ; 570 else 571 ddir = DDIR_WRITE; 572 573 td->rwmix_ddir = rate_ddir(td, ddir); 574 return td->rwmix_ddir; 575} 576 577static void set_rw_ddir(struct thread_data *td, struct io_u *io_u) 578{ 579 io_u->ddir = get_rw_ddir(td); 580 581 if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) && 582 td->o.barrier_blocks && 583 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) && 584 td->io_issues[DDIR_WRITE]) 585 io_u->flags |= IO_U_F_BARRIER; 586} 587 588void put_file_log(struct thread_data *td, struct fio_file *f) 589{ 590 int ret = put_file(td, f); 591 592 if (ret) 593 td_verror(td, ret, "file close"); 594} 595 596void put_io_u(struct thread_data *td, struct io_u *io_u) 597{ 598 td_io_u_lock(td); 599 600 io_u->flags |= IO_U_F_FREE; 601 io_u->flags &= ~IO_U_F_FREE_DEF; 602 603 if (io_u->file) 604 put_file_log(td, io_u->file); 605 606 io_u->file = NULL; 607 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) 608 td->cur_depth--; 609 flist_del_init(&io_u->list); 610 flist_add(&io_u->list, &td->io_u_freelist); 611 td_io_u_unlock(td); 612 td_io_u_free_notify(td); 613} 614 615void clear_io_u(struct thread_data *td, struct io_u *io_u) 616{ 617 io_u->flags &= ~IO_U_F_FLIGHT; 618 put_io_u(td, io_u); 619} 620 621void requeue_io_u(struct thread_data *td, struct io_u **io_u) 622{ 623 struct io_u *__io_u = *io_u; 624 625 dprint(FD_IO, "requeue %p\n", __io_u); 626 627 td_io_u_lock(td); 628 629 __io_u->flags |= IO_U_F_FREE; 630 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(__io_u->ddir)) 631 td->io_issues[__io_u->ddir]--; 632 633 __io_u->flags &= ~IO_U_F_FLIGHT; 634 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) 635 td->cur_depth--; 636 flist_del(&__io_u->list); 637 flist_add_tail(&__io_u->list, &td->io_u_requeues); 638 td_io_u_unlock(td); 639 *io_u = NULL; 640} 641 642static int fill_io_u(struct thread_data *td, struct io_u *io_u) 643{ 644 if (td->io_ops->flags & FIO_NOIO) 645 goto out; 646 647 set_rw_ddir(td, io_u); 648 649 /* 650 * fsync() or fdatasync() or trim etc, we are done 651 */ 652 if (!ddir_rw(io_u->ddir)) 653 goto out; 654 655 /* 656 * See if it's time to switch to a new zone 657 */ 658 if (td->zone_bytes >= td->o.zone_size) { 659 td->zone_bytes = 0; 660 io_u->file->last_pos += td->o.zone_skip; 661 td->io_skip_bytes += td->o.zone_skip; 662 } 663 664 /* 665 * No log, let the seq/rand engine retrieve the next buflen and 666 * position. 667 */ 668 if (get_next_offset(td, io_u)) { 669 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u); 670 return 1; 671 } 672 673 io_u->buflen = get_next_buflen(td, io_u); 674 if (!io_u->buflen) { 675 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u); 676 return 1; 677 } 678 679 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) { 680 dprint(FD_IO, "io_u %p, offset too large\n", io_u); 681 dprint(FD_IO, " off=%llu/%lu > %llu\n", io_u->offset, 682 io_u->buflen, io_u->file->real_file_size); 683 return 1; 684 } 685 686 /* 687 * mark entry before potentially trimming io_u 688 */ 689 if (td_random(td) && file_randommap(td, io_u->file)) 690 mark_random_map(td, io_u); 691 692 /* 693 * If using a write iolog, store this entry. 694 */ 695out: 696 dprint_io_u(io_u, "fill_io_u"); 697 td->zone_bytes += io_u->buflen; 698 log_io_u(td, io_u); 699 return 0; 700} 701 702static void __io_u_mark_map(unsigned int *map, unsigned int nr) 703{ 704 int idx = 0; 705 706 switch (nr) { 707 default: 708 idx = 6; 709 break; 710 case 33 ... 64: 711 idx = 5; 712 break; 713 case 17 ... 32: 714 idx = 4; 715 break; 716 case 9 ... 16: 717 idx = 3; 718 break; 719 case 5 ... 8: 720 idx = 2; 721 break; 722 case 1 ... 4: 723 idx = 1; 724 case 0: 725 break; 726 } 727 728 map[idx]++; 729} 730 731void io_u_mark_submit(struct thread_data *td, unsigned int nr) 732{ 733 __io_u_mark_map(td->ts.io_u_submit, nr); 734 td->ts.total_submit++; 735} 736 737void io_u_mark_complete(struct thread_data *td, unsigned int nr) 738{ 739 __io_u_mark_map(td->ts.io_u_complete, nr); 740 td->ts.total_complete++; 741} 742 743void io_u_mark_depth(struct thread_data *td, unsigned int nr) 744{ 745 int idx = 0; 746 747 switch (td->cur_depth) { 748 default: 749 idx = 6; 750 break; 751 case 32 ... 63: 752 idx = 5; 753 break; 754 case 16 ... 31: 755 idx = 4; 756 break; 757 case 8 ... 15: 758 idx = 3; 759 break; 760 case 4 ... 7: 761 idx = 2; 762 break; 763 case 2 ... 3: 764 idx = 1; 765 case 1: 766 break; 767 } 768 769 td->ts.io_u_map[idx] += nr; 770} 771 772static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec) 773{ 774 int idx = 0; 775 776 assert(usec < 1000); 777 778 switch (usec) { 779 case 750 ... 999: 780 idx = 9; 781 break; 782 case 500 ... 749: 783 idx = 8; 784 break; 785 case 250 ... 499: 786 idx = 7; 787 break; 788 case 100 ... 249: 789 idx = 6; 790 break; 791 case 50 ... 99: 792 idx = 5; 793 break; 794 case 20 ... 49: 795 idx = 4; 796 break; 797 case 10 ... 19: 798 idx = 3; 799 break; 800 case 4 ... 9: 801 idx = 2; 802 break; 803 case 2 ... 3: 804 idx = 1; 805 case 0 ... 1: 806 break; 807 } 808 809 assert(idx < FIO_IO_U_LAT_U_NR); 810 td->ts.io_u_lat_u[idx]++; 811} 812 813static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec) 814{ 815 int idx = 0; 816 817 switch (msec) { 818 default: 819 idx = 11; 820 break; 821 case 1000 ... 1999: 822 idx = 10; 823 break; 824 case 750 ... 999: 825 idx = 9; 826 break; 827 case 500 ... 749: 828 idx = 8; 829 break; 830 case 250 ... 499: 831 idx = 7; 832 break; 833 case 100 ... 249: 834 idx = 6; 835 break; 836 case 50 ... 99: 837 idx = 5; 838 break; 839 case 20 ... 49: 840 idx = 4; 841 break; 842 case 10 ... 19: 843 idx = 3; 844 break; 845 case 4 ... 9: 846 idx = 2; 847 break; 848 case 2 ... 3: 849 idx = 1; 850 case 0 ... 1: 851 break; 852 } 853 854 assert(idx < FIO_IO_U_LAT_M_NR); 855 td->ts.io_u_lat_m[idx]++; 856} 857 858static void io_u_mark_latency(struct thread_data *td, unsigned long usec) 859{ 860 if (usec < 1000) 861 io_u_mark_lat_usec(td, usec); 862 else 863 io_u_mark_lat_msec(td, usec / 1000); 864} 865 866/* 867 * Get next file to service by choosing one at random 868 */ 869static struct fio_file *get_next_file_rand(struct thread_data *td, 870 enum fio_file_flags goodf, 871 enum fio_file_flags badf) 872{ 873 struct fio_file *f; 874 int fno; 875 876 do { 877 int opened = 0; 878 unsigned long r; 879 880 if (td->o.use_os_rand) { 881 r = os_random_long(&td->next_file_state); 882 fno = (unsigned int) ((double) td->o.nr_files 883 * (r / (OS_RAND_MAX + 1.0))); 884 } else { 885 r = __rand(&td->__next_file_state); 886 fno = (unsigned int) ((double) td->o.nr_files 887 * (r / (FRAND_MAX + 1.0))); 888 } 889 890 f = td->files[fno]; 891 if (fio_file_done(f)) 892 continue; 893 894 if (!fio_file_open(f)) { 895 int err; 896 897 err = td_io_open_file(td, f); 898 if (err) 899 continue; 900 opened = 1; 901 } 902 903 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) { 904 dprint(FD_FILE, "get_next_file_rand: %p\n", f); 905 return f; 906 } 907 if (opened) 908 td_io_close_file(td, f); 909 } while (1); 910} 911 912/* 913 * Get next file to service by doing round robin between all available ones 914 */ 915static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf, 916 int badf) 917{ 918 unsigned int old_next_file = td->next_file; 919 struct fio_file *f; 920 921 do { 922 int opened = 0; 923 924 f = td->files[td->next_file]; 925 926 td->next_file++; 927 if (td->next_file >= td->o.nr_files) 928 td->next_file = 0; 929 930 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags); 931 if (fio_file_done(f)) { 932 f = NULL; 933 continue; 934 } 935 936 if (!fio_file_open(f)) { 937 int err; 938 939 err = td_io_open_file(td, f); 940 if (err) { 941 dprint(FD_FILE, "error %d on open of %s\n", 942 err, f->file_name); 943 f = NULL; 944 continue; 945 } 946 opened = 1; 947 } 948 949 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf, 950 f->flags); 951 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) 952 break; 953 954 if (opened) 955 td_io_close_file(td, f); 956 957 f = NULL; 958 } while (td->next_file != old_next_file); 959 960 dprint(FD_FILE, "get_next_file_rr: %p\n", f); 961 return f; 962} 963 964static struct fio_file *__get_next_file(struct thread_data *td) 965{ 966 struct fio_file *f; 967 968 assert(td->o.nr_files <= td->files_index); 969 970 if (td->nr_done_files >= td->o.nr_files) { 971 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d," 972 " nr_files=%d\n", td->nr_open_files, 973 td->nr_done_files, 974 td->o.nr_files); 975 return NULL; 976 } 977 978 f = td->file_service_file; 979 if (f && fio_file_open(f) && !fio_file_closing(f)) { 980 if (td->o.file_service_type == FIO_FSERVICE_SEQ) 981 goto out; 982 if (td->file_service_left--) 983 goto out; 984 } 985 986 if (td->o.file_service_type == FIO_FSERVICE_RR || 987 td->o.file_service_type == FIO_FSERVICE_SEQ) 988 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing); 989 else 990 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing); 991 992 td->file_service_file = f; 993 td->file_service_left = td->file_service_nr - 1; 994out: 995 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name); 996 return f; 997} 998 999static struct fio_file *get_next_file(struct thread_data *td) 1000{ 1001 struct prof_io_ops *ops = &td->prof_io_ops; 1002 1003 if (ops->get_next_file) 1004 return ops->get_next_file(td); 1005 1006 return __get_next_file(td); 1007} 1008 1009static int set_io_u_file(struct thread_data *td, struct io_u *io_u) 1010{ 1011 struct fio_file *f; 1012 1013 do { 1014 f = get_next_file(td); 1015 if (!f) 1016 return 1; 1017 1018 io_u->file = f; 1019 get_file(f); 1020 1021 if (!fill_io_u(td, io_u)) 1022 break; 1023 1024 put_file_log(td, f); 1025 td_io_close_file(td, f); 1026 io_u->file = NULL; 1027 fio_file_set_done(f); 1028 td->nr_done_files++; 1029 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name, 1030 td->nr_done_files, td->o.nr_files); 1031 } while (1); 1032 1033 return 0; 1034} 1035 1036 1037struct io_u *__get_io_u(struct thread_data *td) 1038{ 1039 struct io_u *io_u = NULL; 1040 1041 td_io_u_lock(td); 1042 1043again: 1044 if (!flist_empty(&td->io_u_requeues)) 1045 io_u = flist_entry(td->io_u_requeues.next, struct io_u, list); 1046 else if (!queue_full(td)) { 1047 io_u = flist_entry(td->io_u_freelist.next, struct io_u, list); 1048 1049 io_u->buflen = 0; 1050 io_u->resid = 0; 1051 io_u->file = NULL; 1052 io_u->end_io = NULL; 1053 } 1054 1055 if (io_u) { 1056 assert(io_u->flags & IO_U_F_FREE); 1057 io_u->flags &= ~(IO_U_F_FREE | IO_U_F_FREE_DEF); 1058 io_u->flags &= ~(IO_U_F_TRIMMED | IO_U_F_BARRIER); 1059 1060 io_u->error = 0; 1061 flist_del(&io_u->list); 1062 flist_add(&io_u->list, &td->io_u_busylist); 1063 td->cur_depth++; 1064 io_u->flags |= IO_U_F_IN_CUR_DEPTH; 1065 } else if (td->o.verify_async) { 1066 /* 1067 * We ran out, wait for async verify threads to finish and 1068 * return one 1069 */ 1070 pthread_cond_wait(&td->free_cond, &td->io_u_lock); 1071 goto again; 1072 } 1073 1074 td_io_u_unlock(td); 1075 return io_u; 1076} 1077 1078static int check_get_trim(struct thread_data *td, struct io_u *io_u) 1079{ 1080 if (td->o.trim_backlog && td->trim_entries) { 1081 int get_trim = 0; 1082 1083 if (td->trim_batch) { 1084 td->trim_batch--; 1085 get_trim = 1; 1086 } else if (!(td->io_hist_len % td->o.trim_backlog) && 1087 td->last_ddir != DDIR_READ) { 1088 td->trim_batch = td->o.trim_batch; 1089 if (!td->trim_batch) 1090 td->trim_batch = td->o.trim_backlog; 1091 get_trim = 1; 1092 } 1093 1094 if (get_trim && !get_next_trim(td, io_u)) 1095 return 1; 1096 } 1097 1098 return 0; 1099} 1100 1101static int check_get_verify(struct thread_data *td, struct io_u *io_u) 1102{ 1103 if (td->o.verify_backlog && td->io_hist_len) { 1104 int get_verify = 0; 1105 1106 if (td->verify_batch) { 1107 td->verify_batch--; 1108 get_verify = 1; 1109 } else if (!(td->io_hist_len % td->o.verify_backlog) && 1110 td->last_ddir != DDIR_READ) { 1111 td->verify_batch = td->o.verify_batch; 1112 if (!td->verify_batch) 1113 td->verify_batch = td->o.verify_backlog; 1114 get_verify = 1; 1115 } 1116 1117 if (get_verify && !get_next_verify(td, io_u)) 1118 return 1; 1119 } 1120 1121 return 0; 1122} 1123 1124/* 1125 * Fill offset and start time into the buffer content, to prevent too 1126 * easy compressible data for simple de-dupe attempts. Do this for every 1127 * 512b block in the range, since that should be the smallest block size 1128 * we can expect from a device. 1129 */ 1130static void small_content_scramble(struct io_u *io_u) 1131{ 1132 unsigned int i, nr_blocks = io_u->buflen / 512; 1133 unsigned long long boffset; 1134 unsigned int offset; 1135 void *p, *end; 1136 1137 if (!nr_blocks) 1138 return; 1139 1140 p = io_u->xfer_buf; 1141 boffset = io_u->offset; 1142 1143 for (i = 0; i < nr_blocks; i++) { 1144 /* 1145 * Fill the byte offset into a "random" start offset of 1146 * the buffer, given by the product of the usec time 1147 * and the actual offset. 1148 */ 1149 offset = (io_u->start_time.tv_usec ^ boffset) & 511; 1150 offset &= ~(sizeof(unsigned long long) - 1); 1151 if (offset >= 512 - sizeof(unsigned long long)) 1152 offset -= sizeof(unsigned long long); 1153 memcpy(p + offset, &boffset, sizeof(boffset)); 1154 1155 end = p + 512 - sizeof(io_u->start_time); 1156 memcpy(end, &io_u->start_time, sizeof(io_u->start_time)); 1157 p += 512; 1158 boffset += 512; 1159 } 1160} 1161 1162/* 1163 * Return an io_u to be processed. Gets a buflen and offset, sets direction, 1164 * etc. The returned io_u is fully ready to be prepped and submitted. 1165 */ 1166struct io_u *get_io_u(struct thread_data *td) 1167{ 1168 struct fio_file *f; 1169 struct io_u *io_u; 1170 int do_scramble = 0; 1171 1172 io_u = __get_io_u(td); 1173 if (!io_u) { 1174 dprint(FD_IO, "__get_io_u failed\n"); 1175 return NULL; 1176 } 1177 1178 if (check_get_verify(td, io_u)) 1179 goto out; 1180 if (check_get_trim(td, io_u)) 1181 goto out; 1182 1183 /* 1184 * from a requeue, io_u already setup 1185 */ 1186 if (io_u->file) 1187 goto out; 1188 1189 /* 1190 * If using an iolog, grab next piece if any available. 1191 */ 1192 if (td->o.read_iolog_file) { 1193 if (read_iolog_get(td, io_u)) 1194 goto err_put; 1195 } else if (set_io_u_file(td, io_u)) { 1196 dprint(FD_IO, "io_u %p, setting file failed\n", io_u); 1197 goto err_put; 1198 } 1199 1200 f = io_u->file; 1201 assert(fio_file_open(f)); 1202 1203 if (ddir_rw(io_u->ddir)) { 1204 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) { 1205 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u); 1206 goto err_put; 1207 } 1208 1209 f->last_start = io_u->offset; 1210 f->last_pos = io_u->offset + io_u->buflen; 1211 1212 if (io_u->ddir == DDIR_WRITE) { 1213 if (td->o.verify != VERIFY_NONE) 1214 populate_verify_io_u(td, io_u); 1215 else if (td->o.refill_buffers) 1216 io_u_fill_buffer(td, io_u, io_u->xfer_buflen); 1217 else if (td->o.scramble_buffers) 1218 do_scramble = 1; 1219 } else if (io_u->ddir == DDIR_READ) { 1220 /* 1221 * Reset the buf_filled parameters so next time if the 1222 * buffer is used for writes it is refilled. 1223 */ 1224 io_u->buf_filled_len = 0; 1225 } 1226 } 1227 1228 /* 1229 * Set io data pointers. 1230 */ 1231 io_u->xfer_buf = io_u->buf; 1232 io_u->xfer_buflen = io_u->buflen; 1233 1234out: 1235 assert(io_u->file); 1236 if (!td_io_prep(td, io_u)) { 1237 if (!td->o.disable_slat) 1238 fio_gettime(&io_u->start_time, NULL); 1239 if (do_scramble) 1240 small_content_scramble(io_u); 1241 return io_u; 1242 } 1243err_put: 1244 dprint(FD_IO, "get_io_u failed\n"); 1245 put_io_u(td, io_u); 1246 return NULL; 1247} 1248 1249void io_u_log_error(struct thread_data *td, struct io_u *io_u) 1250{ 1251 const char *msg[] = { "read", "write", "sync", "datasync", 1252 "sync_file_range", "wait", "trim" }; 1253 1254 1255 1256 log_err("fio: io_u error"); 1257 1258 if (io_u->file) 1259 log_err(" on file %s", io_u->file->file_name); 1260 1261 log_err(": %s\n", strerror(io_u->error)); 1262 1263 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir], 1264 io_u->offset, io_u->xfer_buflen); 1265 1266 if (!td->error) 1267 td_verror(td, io_u->error, "io_u error"); 1268} 1269 1270static void account_io_completion(struct thread_data *td, struct io_u *io_u, 1271 struct io_completion_data *icd, 1272 const enum fio_ddir idx, unsigned int bytes) 1273{ 1274 unsigned long uninitialized_var(lusec); 1275 1276 if (!icd->account) 1277 return; 1278 1279 if (!td->o.disable_clat || !td->o.disable_bw) 1280 lusec = utime_since(&io_u->issue_time, &icd->time); 1281 1282 if (!td->o.disable_lat) { 1283 unsigned long tusec; 1284 1285 tusec = utime_since(&io_u->start_time, &icd->time); 1286 add_lat_sample(td, idx, tusec, bytes); 1287 } 1288 1289 if (!td->o.disable_clat) { 1290 add_clat_sample(td, idx, lusec, bytes); 1291 io_u_mark_latency(td, lusec); 1292 } 1293 1294 if (!td->o.disable_bw) 1295 add_bw_sample(td, idx, bytes, &icd->time); 1296 1297 add_iops_sample(td, idx, &icd->time); 1298} 1299 1300static void io_completed(struct thread_data *td, struct io_u *io_u, 1301 struct io_completion_data *icd) 1302{ 1303 /* 1304 * Older gcc's are too dumb to realize that usec is always used 1305 * initialized, silence that warning. 1306 */ 1307 unsigned long uninitialized_var(usec); 1308 struct fio_file *f; 1309 1310 dprint_io_u(io_u, "io complete"); 1311 1312 td_io_u_lock(td); 1313 assert(io_u->flags & IO_U_F_FLIGHT); 1314 io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK); 1315 td_io_u_unlock(td); 1316 1317 if (ddir_sync(io_u->ddir)) { 1318 td->last_was_sync = 1; 1319 f = io_u->file; 1320 if (f) { 1321 f->first_write = -1ULL; 1322 f->last_write = -1ULL; 1323 } 1324 return; 1325 } 1326 1327 td->last_was_sync = 0; 1328 td->last_ddir = io_u->ddir; 1329 1330 if (!io_u->error && ddir_rw(io_u->ddir)) { 1331 unsigned int bytes = io_u->buflen - io_u->resid; 1332 const enum fio_ddir idx = io_u->ddir; 1333 const enum fio_ddir odx = io_u->ddir ^ 1; 1334 int ret; 1335 1336 td->io_blocks[idx]++; 1337 td->this_io_blocks[idx]++; 1338 td->io_bytes[idx] += bytes; 1339 td->this_io_bytes[idx] += bytes; 1340 1341 if (idx == DDIR_WRITE) { 1342 f = io_u->file; 1343 if (f) { 1344 if (f->first_write == -1ULL || 1345 io_u->offset < f->first_write) 1346 f->first_write = io_u->offset; 1347 if (f->last_write == -1ULL || 1348 ((io_u->offset + bytes) > f->last_write)) 1349 f->last_write = io_u->offset + bytes; 1350 } 1351 } 1352 1353 if (ramp_time_over(td) && td->runstate == TD_RUNNING) { 1354 account_io_completion(td, io_u, icd, idx, bytes); 1355 1356 if (__should_check_rate(td, idx)) { 1357 td->rate_pending_usleep[idx] = 1358 ((td->this_io_bytes[idx] * 1359 td->rate_nsec_cycle[idx]) / 1000 - 1360 utime_since_now(&td->start)); 1361 } 1362 if (__should_check_rate(td, idx ^ 1)) 1363 td->rate_pending_usleep[odx] = 1364 ((td->this_io_bytes[odx] * 1365 td->rate_nsec_cycle[odx]) / 1000 - 1366 utime_since_now(&td->start)); 1367 } 1368 1369 if (td_write(td) && idx == DDIR_WRITE && 1370 td->o.do_verify && 1371 td->o.verify != VERIFY_NONE) 1372 log_io_piece(td, io_u); 1373 1374 icd->bytes_done[idx] += bytes; 1375 1376 if (io_u->end_io) { 1377 ret = io_u->end_io(td, io_u); 1378 if (ret && !icd->error) 1379 icd->error = ret; 1380 } 1381 } else if (io_u->error) { 1382 icd->error = io_u->error; 1383 io_u_log_error(td, io_u); 1384 } 1385 if (td->o.continue_on_error && icd->error && 1386 td_non_fatal_error(icd->error)) { 1387 /* 1388 * If there is a non_fatal error, then add to the error count 1389 * and clear all the errors. 1390 */ 1391 update_error_count(td, icd->error); 1392 td_clear_error(td); 1393 icd->error = 0; 1394 io_u->error = 0; 1395 } 1396} 1397 1398static void init_icd(struct thread_data *td, struct io_completion_data *icd, 1399 int nr) 1400{ 1401 if (!td->o.disable_clat || !td->o.disable_bw) 1402 fio_gettime(&icd->time, NULL); 1403 1404 icd->nr = nr; 1405 icd->account = 1; 1406 1407 icd->error = 0; 1408 icd->bytes_done[0] = icd->bytes_done[1] = 0; 1409} 1410 1411static void ios_completed(struct thread_data *td, 1412 struct io_completion_data *icd) 1413{ 1414 struct io_u *io_u; 1415 int i; 1416 1417 for (i = 0; i < icd->nr; i++) { 1418 io_u = td->io_ops->event(td, i); 1419 1420 io_completed(td, io_u, icd); 1421 1422 if (!(io_u->flags & IO_U_F_FREE_DEF)) 1423 put_io_u(td, io_u); 1424 1425 icd->account = 0; 1426 } 1427} 1428 1429/* 1430 * Complete a single io_u for the sync engines. 1431 */ 1432int io_u_sync_complete(struct thread_data *td, struct io_u *io_u, 1433 unsigned long *bytes) 1434{ 1435 struct io_completion_data icd; 1436 1437 init_icd(td, &icd, 1); 1438 io_completed(td, io_u, &icd); 1439 1440 if (!(io_u->flags & IO_U_F_FREE_DEF)) 1441 put_io_u(td, io_u); 1442 1443 if (icd.error) { 1444 td_verror(td, icd.error, "io_u_sync_complete"); 1445 return -1; 1446 } 1447 1448 if (bytes) { 1449 bytes[0] += icd.bytes_done[0]; 1450 bytes[1] += icd.bytes_done[1]; 1451 } 1452 1453 return 0; 1454} 1455 1456/* 1457 * Called to complete min_events number of io for the async engines. 1458 */ 1459int io_u_queued_complete(struct thread_data *td, int min_evts, 1460 unsigned long *bytes) 1461{ 1462 struct io_completion_data icd; 1463 struct timespec *tvp = NULL; 1464 int ret; 1465 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, }; 1466 1467 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts); 1468 1469 if (!min_evts) 1470 tvp = &ts; 1471 1472 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp); 1473 if (ret < 0) { 1474 td_verror(td, -ret, "td_io_getevents"); 1475 return ret; 1476 } else if (!ret) 1477 return ret; 1478 1479 init_icd(td, &icd, ret); 1480 ios_completed(td, &icd); 1481 if (icd.error) { 1482 td_verror(td, icd.error, "io_u_queued_complete"); 1483 return -1; 1484 } 1485 1486 if (bytes) { 1487 bytes[0] += icd.bytes_done[0]; 1488 bytes[1] += icd.bytes_done[1]; 1489 } 1490 1491 return 0; 1492} 1493 1494/* 1495 * Call when io_u is really queued, to update the submission latency. 1496 */ 1497void io_u_queued(struct thread_data *td, struct io_u *io_u) 1498{ 1499 if (!td->o.disable_slat) { 1500 unsigned long slat_time; 1501 1502 slat_time = utime_since(&io_u->start_time, &io_u->issue_time); 1503 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen); 1504 } 1505} 1506 1507/* 1508 * "randomly" fill the buffer contents 1509 */ 1510void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u, 1511 unsigned int max_bs) 1512{ 1513 io_u->buf_filled_len = 0; 1514 1515 if (!td->o.zero_buffers) 1516 fill_random_buf(&td->buf_state, io_u->buf, max_bs); 1517 else 1518 memset(io_u->buf, 0, max_bs); 1519} 1520