io_u.c revision d8005759746a2cb5c8269201911b1997aa714e80
1#include <unistd.h> 2#include <fcntl.h> 3#include <string.h> 4#include <signal.h> 5#include <time.h> 6#include <assert.h> 7 8#include "fio.h" 9 10/* 11 * Change this define to play with the timeout handling 12 */ 13#undef FIO_USE_TIMEOUT 14 15struct io_completion_data { 16 int nr; /* input */ 17 18 int error; /* output */ 19 unsigned long bytes_done[2]; /* output */ 20 struct timeval time; /* output */ 21}; 22 23/* 24 * The ->file_map[] contains a map of blocks we have or have not done io 25 * to yet. Used to make sure we cover the entire range in a fair fashion. 26 */ 27static int random_map_free(struct fio_file *f, const unsigned long long block) 28{ 29 unsigned int idx = RAND_MAP_IDX(f, block); 30 unsigned int bit = RAND_MAP_BIT(f, block); 31 32 dprint(FD_RANDOM, "free: b=%llu, idx=%u, bit=%u\n", block, idx, bit); 33 34 return (f->file_map[idx] & (1UL << bit)) == 0; 35} 36 37/* 38 * Mark a given offset as used in the map. 39 */ 40static void mark_random_map(struct thread_data *td, struct io_u *io_u) 41{ 42 unsigned int min_bs = td->o.rw_min_bs; 43 struct fio_file *f = io_u->file; 44 unsigned long long block; 45 unsigned int blocks; 46 unsigned int nr_blocks; 47 48 block = (io_u->offset - f->file_offset) / (unsigned long long) min_bs; 49 blocks = 0; 50 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs; 51 52 while (blocks < nr_blocks) { 53 unsigned int idx, bit; 54 55 /* 56 * If we have a mixed random workload, we may 57 * encounter blocks we already did IO to. 58 */ 59 if ((td->o.ddir_nr == 1) && !random_map_free(f, block)) 60 break; 61 62 idx = RAND_MAP_IDX(f, block); 63 bit = RAND_MAP_BIT(f, block); 64 65 fio_assert(td, idx < f->num_maps); 66 67 f->file_map[idx] |= (1UL << bit); 68 block++; 69 blocks++; 70 } 71 72 if ((blocks * min_bs) < io_u->buflen) 73 io_u->buflen = blocks * min_bs; 74} 75 76static inline unsigned long long last_block(struct thread_data *td, 77 struct fio_file *f, 78 enum fio_ddir ddir) 79{ 80 unsigned long long max_blocks; 81 82 max_blocks = f->io_size / (unsigned long long) td->o.min_bs[ddir]; 83 if (!max_blocks) 84 return 0; 85 86 return max_blocks; 87} 88 89/* 90 * Return the next free block in the map. 91 */ 92static int get_next_free_block(struct thread_data *td, struct fio_file *f, 93 enum fio_ddir ddir, unsigned long long *b) 94{ 95 unsigned long long min_bs = td->o.rw_min_bs; 96 int i; 97 98 i = f->last_free_lookup; 99 *b = (i * BLOCKS_PER_MAP); 100 while ((*b) * min_bs < f->real_file_size) { 101 if (f->file_map[i] != -1UL) { 102 *b += fio_ffz(f->file_map[i]); 103 if (*b > last_block(td, f, ddir)) 104 break; 105 f->last_free_lookup = i; 106 return 0; 107 } 108 109 *b += BLOCKS_PER_MAP; 110 i++; 111 } 112 113 dprint(FD_IO, "failed finding a free block\n"); 114 return 1; 115} 116 117static int get_next_rand_offset(struct thread_data *td, struct fio_file *f, 118 enum fio_ddir ddir, unsigned long long *b) 119{ 120 unsigned long long r; 121 int loops = 5; 122 123 do { 124 r = os_random_long(&td->random_state); 125 dprint(FD_RANDOM, "off rand %llu\n", r); 126 *b = (last_block(td, f, ddir) - 1) 127 * (r / ((unsigned long long) RAND_MAX + 1.0)); 128 129 /* 130 * if we are not maintaining a random map, we are done. 131 */ 132 if (!file_randommap(td, f)) 133 return 0; 134 135 /* 136 * calculate map offset and check if it's free 137 */ 138 if (random_map_free(f, *b)) 139 return 0; 140 141 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n", 142 *b); 143 } while (--loops); 144 145 /* 146 * we get here, if we didn't suceed in looking up a block. generate 147 * a random start offset into the filemap, and find the first free 148 * block from there. 149 */ 150 loops = 10; 151 do { 152 f->last_free_lookup = (f->num_maps - 1) * (r / (RAND_MAX+1.0)); 153 if (!get_next_free_block(td, f, ddir, b)) 154 return 0; 155 156 r = os_random_long(&td->random_state); 157 } while (--loops); 158 159 /* 160 * that didn't work either, try exhaustive search from the start 161 */ 162 f->last_free_lookup = 0; 163 return get_next_free_block(td, f, ddir, b); 164} 165 166/* 167 * For random io, generate a random new block and see if it's used. Repeat 168 * until we find a free one. For sequential io, just return the end of 169 * the last io issued. 170 */ 171static int get_next_offset(struct thread_data *td, struct io_u *io_u) 172{ 173 struct fio_file *f = io_u->file; 174 unsigned long long b; 175 enum fio_ddir ddir = io_u->ddir; 176 177 if (td_random(td) && (td->o.ddir_nr && !--td->ddir_nr)) { 178 td->ddir_nr = td->o.ddir_nr; 179 180 if (get_next_rand_offset(td, f, ddir, &b)) 181 return 1; 182 } else { 183 if (f->last_pos >= f->real_file_size) { 184 if (!td_random(td) || 185 get_next_rand_offset(td, f, ddir, &b)) 186 return 1; 187 } else 188 b = (f->last_pos - f->file_offset) / td->o.min_bs[ddir]; 189 } 190 191 io_u->offset = (b * td->o.min_bs[ddir]) + f->file_offset; 192 if (io_u->offset >= f->real_file_size) { 193 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n", 194 io_u->offset, f->real_file_size); 195 return 1; 196 } 197 198 return 0; 199} 200 201static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u) 202{ 203 const int ddir = io_u->ddir; 204 unsigned int buflen; 205 long r; 206 207 if (td->o.min_bs[ddir] == td->o.max_bs[ddir]) 208 buflen = td->o.min_bs[ddir]; 209 else { 210 r = os_random_long(&td->bsrange_state); 211 if (!td->o.bssplit_nr) { 212 buflen = (unsigned int) 213 (1 + (double) (td->o.max_bs[ddir] - 1) 214 * r / (RAND_MAX + 1.0)); 215 } else { 216 long perc = 0; 217 unsigned int i; 218 219 for (i = 0; i < td->o.bssplit_nr; i++) { 220 struct bssplit *bsp = &td->o.bssplit[i]; 221 222 buflen = bsp->bs; 223 perc += bsp->perc; 224 if (r <= ((LONG_MAX / 100L) * perc)) 225 break; 226 } 227 } 228 if (!td->o.bs_unaligned) { 229 buflen = (buflen + td->o.min_bs[ddir] - 1) 230 & ~(td->o.min_bs[ddir] - 1); 231 } 232 } 233 234 if (io_u->offset + buflen > io_u->file->real_file_size) { 235 dprint(FD_IO, "lower buflen %u -> %u (ddir=%d)\n", buflen, 236 td->o.min_bs[ddir], ddir); 237 buflen = td->o.min_bs[ddir]; 238 } 239 240 return buflen; 241} 242 243static void set_rwmix_bytes(struct thread_data *td) 244{ 245 unsigned long issues; 246 unsigned int diff; 247 248 /* 249 * we do time or byte based switch. this is needed because 250 * buffered writes may issue a lot quicker than they complete, 251 * whereas reads do not. 252 */ 253 issues = td->io_issues[td->rwmix_ddir] - td->rwmix_issues; 254 diff = td->o.rwmix[td->rwmix_ddir ^ 1]; 255 256 td->rwmix_issues = td->io_issues[td->rwmix_ddir] 257 + (issues * ((100 - diff)) / diff); 258} 259 260static inline enum fio_ddir get_rand_ddir(struct thread_data *td) 261{ 262 unsigned int v; 263 long r; 264 265 r = os_random_long(&td->rwmix_state); 266 v = 1 + (int) (100.0 * (r / (RAND_MAX + 1.0))); 267 if (v < td->o.rwmix[DDIR_READ]) 268 return DDIR_READ; 269 270 return DDIR_WRITE; 271} 272 273/* 274 * Return the data direction for the next io_u. If the job is a 275 * mixed read/write workload, check the rwmix cycle and switch if 276 * necessary. 277 */ 278static enum fio_ddir get_rw_ddir(struct thread_data *td) 279{ 280 if (td_rw(td)) { 281 /* 282 * Check if it's time to seed a new data direction. 283 */ 284 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) { 285 unsigned long long max_bytes; 286 enum fio_ddir ddir; 287 288 /* 289 * Put a top limit on how many bytes we do for 290 * one data direction, to avoid overflowing the 291 * ranges too much 292 */ 293 ddir = get_rand_ddir(td); 294 max_bytes = td->this_io_bytes[ddir]; 295 if (max_bytes >= 296 (td->o.size * td->o.rwmix[ddir] / 100)) { 297 if (!td->rw_end_set[ddir]) 298 td->rw_end_set[ddir] = 1; 299 300 ddir ^= 1; 301 } 302 303 if (ddir != td->rwmix_ddir) 304 set_rwmix_bytes(td); 305 306 td->rwmix_ddir = ddir; 307 } 308 return td->rwmix_ddir; 309 } else if (td_read(td)) 310 return DDIR_READ; 311 else 312 return DDIR_WRITE; 313} 314 315void put_io_u(struct thread_data *td, struct io_u *io_u) 316{ 317 assert((io_u->flags & IO_U_F_FREE) == 0); 318 io_u->flags |= IO_U_F_FREE; 319 320 if (io_u->file) { 321 int ret = put_file(td, io_u->file); 322 323 if (ret) 324 td_verror(td, ret, "file close"); 325 } 326 327 io_u->file = NULL; 328 list_del(&io_u->list); 329 list_add(&io_u->list, &td->io_u_freelist); 330 td->cur_depth--; 331} 332 333void requeue_io_u(struct thread_data *td, struct io_u **io_u) 334{ 335 struct io_u *__io_u = *io_u; 336 337 __io_u->flags |= IO_U_F_FREE; 338 if ((__io_u->flags & IO_U_F_FLIGHT) && (__io_u->ddir != DDIR_SYNC)) 339 td->io_issues[__io_u->ddir]--; 340 341 __io_u->flags &= ~IO_U_F_FLIGHT; 342 343 list_del(&__io_u->list); 344 list_add_tail(&__io_u->list, &td->io_u_requeues); 345 td->cur_depth--; 346 *io_u = NULL; 347} 348 349static int fill_io_u(struct thread_data *td, struct io_u *io_u) 350{ 351 if (td->io_ops->flags & FIO_NOIO) 352 goto out; 353 354 /* 355 * see if it's time to sync 356 */ 357 if (td->o.fsync_blocks && 358 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) && 359 td->io_issues[DDIR_WRITE] && should_fsync(td)) { 360 io_u->ddir = DDIR_SYNC; 361 goto out; 362 } 363 364 io_u->ddir = get_rw_ddir(td); 365 366 /* 367 * See if it's time to switch to a new zone 368 */ 369 if (td->zone_bytes >= td->o.zone_size) { 370 td->zone_bytes = 0; 371 io_u->file->last_pos += td->o.zone_skip; 372 td->io_skip_bytes += td->o.zone_skip; 373 } 374 375 /* 376 * No log, let the seq/rand engine retrieve the next buflen and 377 * position. 378 */ 379 if (get_next_offset(td, io_u)) { 380 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u); 381 return 1; 382 } 383 384 io_u->buflen = get_next_buflen(td, io_u); 385 if (!io_u->buflen) { 386 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u); 387 return 1; 388 } 389 390 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) { 391 dprint(FD_IO, "io_u %p, offset too large\n", io_u); 392 dprint(FD_IO, " off=%llu/%lu > %llu\n", io_u->offset, 393 io_u->buflen, io_u->file->real_file_size); 394 return 1; 395 } 396 397 /* 398 * mark entry before potentially trimming io_u 399 */ 400 if (td_random(td) && file_randommap(td, io_u->file)) 401 mark_random_map(td, io_u); 402 403 /* 404 * If using a write iolog, store this entry. 405 */ 406out: 407 dprint_io_u(io_u, "fill_io_u"); 408 td->zone_bytes += io_u->buflen; 409 log_io_u(td, io_u); 410 return 0; 411} 412 413void io_u_mark_depth(struct thread_data *td, unsigned int nr) 414{ 415 int index = 0; 416 417 switch (td->cur_depth) { 418 default: 419 index = 6; 420 break; 421 case 32 ... 63: 422 index = 5; 423 break; 424 case 16 ... 31: 425 index = 4; 426 break; 427 case 8 ... 15: 428 index = 3; 429 break; 430 case 4 ... 7: 431 index = 2; 432 break; 433 case 2 ... 3: 434 index = 1; 435 case 1: 436 break; 437 } 438 439 td->ts.io_u_map[index] += nr; 440} 441 442static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec) 443{ 444 int index = 0; 445 446 assert(usec < 1000); 447 448 switch (usec) { 449 case 750 ... 999: 450 index = 9; 451 break; 452 case 500 ... 749: 453 index = 8; 454 break; 455 case 250 ... 499: 456 index = 7; 457 break; 458 case 100 ... 249: 459 index = 6; 460 break; 461 case 50 ... 99: 462 index = 5; 463 break; 464 case 20 ... 49: 465 index = 4; 466 break; 467 case 10 ... 19: 468 index = 3; 469 break; 470 case 4 ... 9: 471 index = 2; 472 break; 473 case 2 ... 3: 474 index = 1; 475 case 0 ... 1: 476 break; 477 } 478 479 assert(index < FIO_IO_U_LAT_U_NR); 480 td->ts.io_u_lat_u[index]++; 481} 482 483static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec) 484{ 485 int index = 0; 486 487 switch (msec) { 488 default: 489 index = 11; 490 break; 491 case 1000 ... 1999: 492 index = 10; 493 break; 494 case 750 ... 999: 495 index = 9; 496 break; 497 case 500 ... 749: 498 index = 8; 499 break; 500 case 250 ... 499: 501 index = 7; 502 break; 503 case 100 ... 249: 504 index = 6; 505 break; 506 case 50 ... 99: 507 index = 5; 508 break; 509 case 20 ... 49: 510 index = 4; 511 break; 512 case 10 ... 19: 513 index = 3; 514 break; 515 case 4 ... 9: 516 index = 2; 517 break; 518 case 2 ... 3: 519 index = 1; 520 case 0 ... 1: 521 break; 522 } 523 524 assert(index < FIO_IO_U_LAT_M_NR); 525 td->ts.io_u_lat_m[index]++; 526} 527 528static void io_u_mark_latency(struct thread_data *td, unsigned long usec) 529{ 530 if (usec < 1000) 531 io_u_mark_lat_usec(td, usec); 532 else 533 io_u_mark_lat_msec(td, usec / 1000); 534} 535 536/* 537 * Get next file to service by choosing one at random 538 */ 539static struct fio_file *get_next_file_rand(struct thread_data *td, int goodf, 540 int badf) 541{ 542 struct fio_file *f; 543 int fno; 544 545 do { 546 long r = os_random_long(&td->next_file_state); 547 548 fno = (unsigned int) ((double) td->o.nr_files 549 * (r / (RAND_MAX + 1.0))); 550 f = td->files[fno]; 551 if (f->flags & FIO_FILE_DONE) 552 continue; 553 554 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) { 555 dprint(FD_FILE, "get_next_file_rand: %p\n", f); 556 return f; 557 } 558 } while (1); 559} 560 561/* 562 * Get next file to service by doing round robin between all available ones 563 */ 564static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf, 565 int badf) 566{ 567 unsigned int old_next_file = td->next_file; 568 struct fio_file *f; 569 570 do { 571 f = td->files[td->next_file]; 572 573 td->next_file++; 574 if (td->next_file >= td->o.nr_files) 575 td->next_file = 0; 576 577 if (f->flags & FIO_FILE_DONE) { 578 f = NULL; 579 continue; 580 } 581 582 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) 583 break; 584 585 f = NULL; 586 } while (td->next_file != old_next_file); 587 588 dprint(FD_FILE, "get_next_file_rr: %p\n", f); 589 return f; 590} 591 592static struct fio_file *get_next_file(struct thread_data *td) 593{ 594 struct fio_file *f; 595 596 assert(td->o.nr_files <= td->files_index); 597 598 if (!td->nr_open_files || td->nr_done_files >= td->o.nr_files) { 599 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d," 600 " nr_files=%d\n", td->nr_open_files, 601 td->nr_done_files, 602 td->o.nr_files); 603 return NULL; 604 } 605 606 f = td->file_service_file; 607 if (f && (f->flags & FIO_FILE_OPEN) && td->file_service_left--) 608 goto out; 609 610 if (td->o.file_service_type == FIO_FSERVICE_RR) 611 f = get_next_file_rr(td, FIO_FILE_OPEN, FIO_FILE_CLOSING); 612 else 613 f = get_next_file_rand(td, FIO_FILE_OPEN, FIO_FILE_CLOSING); 614 615 td->file_service_file = f; 616 td->file_service_left = td->file_service_nr - 1; 617out: 618 dprint(FD_FILE, "get_next_file: %p\n", f); 619 return f; 620} 621 622static struct fio_file *find_next_new_file(struct thread_data *td) 623{ 624 struct fio_file *f; 625 626 if (!td->nr_open_files || td->nr_done_files >= td->o.nr_files) 627 return NULL; 628 629 if (td->o.file_service_type == FIO_FSERVICE_RR) 630 f = get_next_file_rr(td, 0, FIO_FILE_OPEN); 631 else 632 f = get_next_file_rand(td, 0, FIO_FILE_OPEN); 633 634 return f; 635} 636 637static int set_io_u_file(struct thread_data *td, struct io_u *io_u) 638{ 639 struct fio_file *f; 640 641 do { 642 f = get_next_file(td); 643 if (!f) 644 return 1; 645 646set_file: 647 io_u->file = f; 648 get_file(f); 649 650 if (!fill_io_u(td, io_u)) 651 break; 652 653 /* 654 * td_io_close() does a put_file() as well, so no need to 655 * do that here. 656 */ 657 io_u->file = NULL; 658 td_io_close_file(td, f); 659 f->flags |= FIO_FILE_DONE; 660 td->nr_done_files++; 661 662 /* 663 * probably not the right place to do this, but see 664 * if we need to open a new file 665 */ 666 if (td->nr_open_files < td->o.open_files && 667 td->o.open_files != td->o.nr_files) { 668 f = find_next_new_file(td); 669 670 if (!f || td_io_open_file(td, f)) 671 return 1; 672 673 goto set_file; 674 } 675 } while (1); 676 677 return 0; 678} 679 680 681struct io_u *__get_io_u(struct thread_data *td) 682{ 683 struct io_u *io_u = NULL; 684 685 if (!list_empty(&td->io_u_requeues)) 686 io_u = list_entry(td->io_u_requeues.next, struct io_u, list); 687 else if (!queue_full(td)) { 688 io_u = list_entry(td->io_u_freelist.next, struct io_u, list); 689 690 io_u->buflen = 0; 691 io_u->resid = 0; 692 io_u->file = NULL; 693 io_u->end_io = NULL; 694 } 695 696 if (io_u) { 697 assert(io_u->flags & IO_U_F_FREE); 698 io_u->flags &= ~IO_U_F_FREE; 699 700 io_u->error = 0; 701 list_del(&io_u->list); 702 list_add(&io_u->list, &td->io_u_busylist); 703 td->cur_depth++; 704 } 705 706 return io_u; 707} 708 709/* 710 * Return an io_u to be processed. Gets a buflen and offset, sets direction, 711 * etc. The returned io_u is fully ready to be prepped and submitted. 712 */ 713struct io_u *get_io_u(struct thread_data *td) 714{ 715 struct fio_file *f; 716 struct io_u *io_u; 717 718 io_u = __get_io_u(td); 719 if (!io_u) { 720 dprint(FD_IO, "__get_io_u failed\n"); 721 return NULL; 722 } 723 724 /* 725 * from a requeue, io_u already setup 726 */ 727 if (io_u->file) 728 goto out; 729 730 /* 731 * If using an iolog, grab next piece if any available. 732 */ 733 if (td->o.read_iolog_file) { 734 if (read_iolog_get(td, io_u)) 735 goto err_put; 736 } else if (set_io_u_file(td, io_u)) { 737 dprint(FD_IO, "io_u %p, setting file failed\n", io_u); 738 goto err_put; 739 } 740 741 f = io_u->file; 742 assert(f->flags & FIO_FILE_OPEN); 743 744 if (io_u->ddir != DDIR_SYNC) { 745 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) { 746 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u); 747 goto err_put; 748 } 749 750 f->last_pos = io_u->offset + io_u->buflen; 751 752 if (td->o.verify != VERIFY_NONE) 753 populate_verify_io_u(td, io_u); 754 } 755 756 /* 757 * Set io data pointers. 758 */ 759 io_u->endpos = io_u->offset + io_u->buflen; 760 io_u->xfer_buf = io_u->buf; 761 io_u->xfer_buflen = io_u->buflen; 762out: 763 if (!td_io_prep(td, io_u)) { 764 fio_gettime(&io_u->start_time, NULL); 765 return io_u; 766 } 767err_put: 768 dprint(FD_IO, "get_io_u failed\n"); 769 put_io_u(td, io_u); 770 return NULL; 771} 772 773void io_u_log_error(struct thread_data *td, struct io_u *io_u) 774{ 775 const char *msg[] = { "read", "write", "sync" }; 776 777 log_err("fio: io_u error"); 778 779 if (io_u->file) 780 log_err(" on file %s", io_u->file->file_name); 781 782 log_err(": %s\n", strerror(io_u->error)); 783 784 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir], 785 io_u->offset, io_u->xfer_buflen); 786 787 if (!td->error) 788 td_verror(td, io_u->error, "io_u error"); 789} 790 791static void io_completed(struct thread_data *td, struct io_u *io_u, 792 struct io_completion_data *icd) 793{ 794 unsigned long usec; 795 796 dprint_io_u(io_u, "io complete"); 797 798 assert(io_u->flags & IO_U_F_FLIGHT); 799 io_u->flags &= ~IO_U_F_FLIGHT; 800 801 if (io_u->ddir == DDIR_SYNC) { 802 td->last_was_sync = 1; 803 return; 804 } 805 806 td->last_was_sync = 0; 807 808 if (!io_u->error) { 809 unsigned int bytes = io_u->buflen - io_u->resid; 810 const enum fio_ddir idx = io_u->ddir; 811 int ret; 812 813 td->io_blocks[idx]++; 814 td->io_bytes[idx] += bytes; 815 td->this_io_bytes[idx] += bytes; 816 817 usec = utime_since(&io_u->issue_time, &icd->time); 818 819 add_clat_sample(td, idx, usec); 820 add_bw_sample(td, idx, &icd->time); 821 io_u_mark_latency(td, usec); 822 823 if (td_write(td) && idx == DDIR_WRITE && 824 td->o.do_verify && 825 td->o.verify != VERIFY_NONE) 826 log_io_piece(td, io_u); 827 828 icd->bytes_done[idx] += bytes; 829 830 if (io_u->end_io) { 831 ret = io_u->end_io(td, io_u); 832 if (ret && !icd->error) 833 icd->error = ret; 834 } 835 } else { 836 icd->error = io_u->error; 837 io_u_log_error(td, io_u); 838 } 839} 840 841static void init_icd(struct io_completion_data *icd, int nr) 842{ 843 fio_gettime(&icd->time, NULL); 844 845 icd->nr = nr; 846 847 icd->error = 0; 848 icd->bytes_done[0] = icd->bytes_done[1] = 0; 849} 850 851static void ios_completed(struct thread_data *td, 852 struct io_completion_data *icd) 853{ 854 struct io_u *io_u; 855 int i; 856 857 for (i = 0; i < icd->nr; i++) { 858 io_u = td->io_ops->event(td, i); 859 860 io_completed(td, io_u, icd); 861 put_io_u(td, io_u); 862 } 863} 864 865/* 866 * Complete a single io_u for the sync engines. 867 */ 868long io_u_sync_complete(struct thread_data *td, struct io_u *io_u) 869{ 870 struct io_completion_data icd; 871 872 init_icd(&icd, 1); 873 io_completed(td, io_u, &icd); 874 put_io_u(td, io_u); 875 876 if (!icd.error) 877 return icd.bytes_done[0] + icd.bytes_done[1]; 878 879 td_verror(td, icd.error, "io_u_sync_complete"); 880 return -1; 881} 882 883/* 884 * Called to complete min_events number of io for the async engines. 885 */ 886long io_u_queued_complete(struct thread_data *td, int min_events) 887{ 888 struct io_completion_data icd; 889 struct timespec *tvp = NULL; 890 int ret; 891 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, }; 892 893 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_events); 894 895 if (!min_events) 896 tvp = &ts; 897 898 ret = td_io_getevents(td, min_events, td->cur_depth, tvp); 899 if (ret < 0) { 900 td_verror(td, -ret, "td_io_getevents"); 901 return ret; 902 } else if (!ret) 903 return ret; 904 905 init_icd(&icd, ret); 906 ios_completed(td, &icd); 907 if (!icd.error) 908 return icd.bytes_done[0] + icd.bytes_done[1]; 909 910 td_verror(td, icd.error, "io_u_queued_complete"); 911 return -1; 912} 913 914/* 915 * Call when io_u is really queued, to update the submission latency. 916 */ 917void io_u_queued(struct thread_data *td, struct io_u *io_u) 918{ 919 unsigned long slat_time; 920 921 slat_time = utime_since(&io_u->start_time, &io_u->issue_time); 922 add_slat_sample(td, io_u->ddir, slat_time); 923} 924 925#ifdef FIO_USE_TIMEOUT 926void io_u_set_timeout(struct thread_data *td) 927{ 928 assert(td->cur_depth); 929 930 td->timer.it_interval.tv_sec = 0; 931 td->timer.it_interval.tv_usec = 0; 932 td->timer.it_value.tv_sec = IO_U_TIMEOUT + IO_U_TIMEOUT_INC; 933 td->timer.it_value.tv_usec = 0; 934 setitimer(ITIMER_REAL, &td->timer, NULL); 935 fio_gettime(&td->timeout_end, NULL); 936} 937 938static void io_u_dump(struct io_u *io_u) 939{ 940 unsigned long t_start = mtime_since_now(&io_u->start_time); 941 unsigned long t_issue = mtime_since_now(&io_u->issue_time); 942 943 log_err("io_u=%p, t_start=%lu, t_issue=%lu\n", io_u, t_start, t_issue); 944 log_err(" buf=%p/%p, len=%lu/%lu, offset=%llu\n", io_u->buf, 945 io_u->xfer_buf, io_u->buflen, 946 io_u->xfer_buflen, 947 io_u->offset); 948 log_err(" ddir=%d, fname=%s\n", io_u->ddir, io_u->file->file_name); 949} 950#else 951void io_u_set_timeout(struct thread_data fio_unused *td) 952{ 953} 954#endif 955 956#ifdef FIO_USE_TIMEOUT 957static void io_u_timeout_handler(int fio_unused sig) 958{ 959 struct thread_data *td, *__td; 960 pid_t pid = getpid(); 961 struct list_head *entry; 962 struct io_u *io_u; 963 int i; 964 965 log_err("fio: io_u timeout\n"); 966 967 /* 968 * TLS would be nice... 969 */ 970 td = NULL; 971 for_each_td(__td, i) { 972 if (__td->pid == pid) { 973 td = __td; 974 break; 975 } 976 } 977 978 if (!td) { 979 log_err("fio: io_u timeout, can't find job\n"); 980 exit(1); 981 } 982 983 if (!td->cur_depth) { 984 log_err("fio: timeout without pending work?\n"); 985 return; 986 } 987 988 log_err("fio: io_u timeout: job=%s, pid=%d\n", td->o.name, td->pid); 989 990 list_for_each(entry, &td->io_u_busylist) { 991 io_u = list_entry(entry, struct io_u, list); 992 993 io_u_dump(io_u); 994 } 995 996 td_verror(td, ETIMEDOUT, "io_u timeout"); 997 exit(1); 998} 999#endif 1000 1001void io_u_init_timeout(void) 1002{ 1003#ifdef FIO_USE_TIMEOUT 1004 signal(SIGALRM, io_u_timeout_handler); 1005#endif 1006} 1007