pointInsidePen.py revision 3a98ae5baf9ebff980f02eacb4ce8509503824a2
1"""fontTools.pens.pointInsidePen -- Pen implementing "point inside" testing 2for shapes. 3""" 4 5from fontTools.pens.basePen import BasePen 6from fontTools.misc.bezierTools import solveQuadratic, solveCubic 7 8 9__all__ = ["PointInsidePen"] 10 11 12# working around floating point errors 13EPSILON = 1e-10 14ONE_PLUS_EPSILON = 1 + EPSILON 15ZERO_MINUS_EPSILON = 0 - EPSILON 16 17 18class PointInsidePen(BasePen): 19 20 """This pen implements "point inside" testing: to test whether 21 a given point lies inside the shape (black) or outside (white). 22 Instances of this class can be recycled, as long as the 23 setTestPoint() method is used to set the new point to test. 24 25 Typical usage: 26 27 pen = PointInsidePen(glyphSet, (100, 200)) 28 outline.draw(pen) 29 isInside = pen.getResult() 30 31 Both the even-odd algorithm and the non-zero-winding-rule 32 algorithm are implemented. The latter is the default, specify 33 True for the evenOdd argument of __init__ or setTestPoint 34 to use the even-odd algorithm. 35 """ 36 37 # This class implements the classical "shoot a ray from the test point 38 # to infinity and count how many times it intersects the outline" (as well 39 # as the non-zero variant, where the counter is incremented if the outline 40 # intersects the ray in one direction and decremented if it intersects in 41 # the other direction). 42 # I found an amazingly clear explanation of the subtleties involved in 43 # implementing this correctly for polygons here: 44 # http://graphics.cs.ucdavis.edu/~okreylos/TAship/Spring2000/PointInPolygon.html 45 # I extended the principles outlined on that page to curves. 46 47 def __init__(self, glyphSet, testPoint, evenOdd=0): 48 BasePen.__init__(self, glyphSet) 49 self.setTestPoint(testPoint, evenOdd) 50 51 def setTestPoint(self, testPoint, evenOdd=0): 52 """Set the point to test. Call this _before_ the outline gets drawn.""" 53 self.testPoint = testPoint 54 self.evenOdd = evenOdd 55 self.firstPoint = None 56 self.intersectionCount = 0 57 58 def getResult(self): 59 """After the shape has been drawn, getResult() returns True if the test 60 point lies within the (black) shape, and False if it doesn't. 61 """ 62 if self.firstPoint is not None: 63 # always make sure the sub paths are closed; the algorithm only works 64 # for closed paths. 65 self.closePath() 66 if self.evenOdd: 67 result = self.intersectionCount % 2 68 else: 69 result = self.intersectionCount 70 return not not result 71 72 def _addIntersection(self, goingUp): 73 if self.evenOdd or goingUp: 74 self.intersectionCount += 1 75 else: 76 self.intersectionCount -= 1 77 78 def _moveTo(self, point): 79 if self.firstPoint is not None: 80 # always make sure the sub paths are closed; the algorithm only works 81 # for closed paths. 82 self.closePath() 83 self.firstPoint = point 84 85 def _lineTo(self, point): 86 x, y = self.testPoint 87 x1, y1 = self._getCurrentPoint() 88 x2, y2 = point 89 90 if x1 < x and x2 < x: 91 return 92 if y1 < y and y2 < y: 93 return 94 if y1 >= y and y2 >= y: 95 return 96 97 dx = x2 - x1 98 dy = y2 - y1 99 t = float(y - y1) / dy 100 ix = dx * t + x1 101 if ix < x: 102 return 103 self._addIntersection(y2 > y1) 104 105 def _curveToOne(self, bcp1, bcp2, point): 106 x, y = self.testPoint 107 x1, y1 = self._getCurrentPoint() 108 x2, y2 = bcp1 109 x3, y3 = bcp2 110 x4, y4 = point 111 112 if x1 < x and x2 < x and x3 < x and x4 < x: 113 return 114 if y1 < y and y2 < y and y3 < y and y4 < y: 115 return 116 if y1 >= y and y2 >= y and y3 >= y and y4 >= y: 117 return 118 119 dy = y1 120 cy = (y2 - dy) * 3.0 121 by = (y3 - y2) * 3.0 - cy 122 ay = y4 - dy - cy - by 123 solutions = solveCubic(ay, by, cy, dy - y) 124 solutions.sort() 125 solutions = [t for t in solutions if ZERO_MINUS_EPSILON <= t <= ONE_PLUS_EPSILON] 126 if not solutions: 127 return 128 129 dx = x1 130 cx = (x2 - dx) * 3.0 131 bx = (x3 - x2) * 3.0 - cx 132 ax = x4 - dx - cx - bx 133 134 above = y1 >= y 135 lastT = None 136 for t in solutions: 137 if t == lastT: 138 continue 139 lastT = t 140 t2 = t * t 141 t3 = t2 * t 142 143 direction = 3*ay*t2 + 2*by*t + cy 144 if direction == 0.0: 145 direction = 6*ay*t + 2*by 146 if direction == 0.0: 147 direction = ay 148 goingUp = direction > 0.0 149 150 xt = ax*t3 + bx*t2 + cx*t + dx 151 if xt < x: 152 above = goingUp 153 continue 154 155 if t == 0.0: 156 if not goingUp: 157 self._addIntersection(goingUp) 158 elif t == 1.0: 159 if not above: 160 self._addIntersection(goingUp) 161 else: 162 if above != goingUp: 163 self._addIntersection(goingUp) 164 #else: 165 # we're not really intersecting, merely touching the 'top' 166 above = goingUp 167 168 def _qCurveToOne_unfinished(self, bcp, point): 169 # XXX need to finish this, for now doing it through a cubic 170 # (BasePen implements _qCurveTo in terms of a cubic) will 171 # have to do. 172 x, y = self.testPoint 173 x1, y1 = self._getCurrentPoint() 174 x2, y2 = bcp 175 x3, y3 = point 176 c = y1 177 b = (y2 - c) * 2.0 178 a = y3 - c - b 179 solutions = solveQuadratic(a, b, c - y) 180 solutions.sort() 181 solutions = [t for t in solutions if ZERO_MINUS_EPSILON <= t <= ONE_PLUS_EPSILON] 182 if not solutions: 183 return 184 XXX 185 186 def _closePath(self): 187 if self._getCurrentPoint() != self.firstPoint: 188 self.lineTo(self.firstPoint) 189 self.firstPoint = None 190 191 _endPath = _closePath 192