minidump_writer.cc revision cfc8628092e17069d8d6c7068d4f21d9baabe077
1// Copyright (c) 2009, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8//     * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10//     * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14//     * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30// This code writes out minidump files:
31//   http://msdn.microsoft.com/en-us/library/ms680378(VS.85,loband).aspx
32//
33// Minidumps are a Microsoft format which Breakpad uses for recording crash
34// dumps. This code has to run in a compromised environment (the address space
35// may have received SIGSEGV), thus the following rules apply:
36//   * You may not enter the dynamic linker. This means that we cannot call
37//     any symbols in a shared library (inc libc). Because of this we replace
38//     libc functions in linux_libc_support.h.
39//   * You may not call syscalls via the libc wrappers. This rule is a subset
40//     of the first rule but it bears repeating. We have direct wrappers
41//     around the system calls in linux_syscall_support.h.
42//   * You may not malloc. There's an alternative allocator in memory.h and
43//     a canonical instance in the LinuxDumper object. We use the placement
44//     new form to allocate objects and we don't delete them.
45
46#include "client/linux/minidump_writer/minidump_writer.h"
47#include "client/minidump_file_writer-inl.h"
48
49#include <algorithm>
50
51#include <errno.h>
52#include <fcntl.h>
53#if !defined(__ANDROID__)
54#include <link.h>
55#endif
56#include <stdio.h>
57#include <unistd.h>
58#if !defined(__ANDROID__)
59#include <sys/ucontext.h>
60#include <sys/user.h>
61#endif
62#include <sys/utsname.h>
63
64#include "client/minidump_file_writer.h"
65#include "google_breakpad/common/minidump_format.h"
66#include "google_breakpad/common/minidump_cpu_amd64.h"
67#include "google_breakpad/common/minidump_cpu_x86.h"
68
69#if defined(__ANDROID__)
70#include "client/linux/android_link.h"
71#include "client/linux/android_ucontext.h"
72#endif
73#include "client/linux/handler/exception_handler.h"
74#include "client/linux/minidump_writer/line_reader.h"
75#include "client/linux/minidump_writer/linux_dumper.h"
76#include "client/linux/minidump_writer/minidump_extension_linux.h"
77#include "common/linux/linux_libc_support.h"
78#include "third_party/lss/linux_syscall_support.h"
79
80// Minidump defines register structures which are different from the raw
81// structures which we get from the kernel. These are platform specific
82// functions to juggle the ucontext and user structures into minidump format.
83#if defined(__i386)
84typedef MDRawContextX86 RawContextCPU;
85
86// Write a uint16_t to memory
87//   out: memory location to write to
88//   v: value to write.
89static void U16(void* out, uint16_t v) {
90  memcpy(out, &v, sizeof(v));
91}
92
93// Write a uint32_t to memory
94//   out: memory location to write to
95//   v: value to write.
96static void U32(void* out, uint32_t v) {
97  memcpy(out, &v, sizeof(v));
98}
99
100// Juggle an x86 user_(fp|fpx|)regs_struct into minidump format
101//   out: the minidump structure
102//   info: the collection of register structures.
103static void CPUFillFromThreadInfo(MDRawContextX86 *out,
104                                  const google_breakpad::ThreadInfo &info) {
105  out->context_flags = MD_CONTEXT_X86_ALL;
106
107  out->dr0 = info.dregs[0];
108  out->dr1 = info.dregs[1];
109  out->dr2 = info.dregs[2];
110  out->dr3 = info.dregs[3];
111  // 4 and 5 deliberatly omitted because they aren't included in the minidump
112  // format.
113  out->dr6 = info.dregs[6];
114  out->dr7 = info.dregs[7];
115
116  out->gs = info.regs.xgs;
117  out->fs = info.regs.xfs;
118  out->es = info.regs.xes;
119  out->ds = info.regs.xds;
120
121  out->edi = info.regs.edi;
122  out->esi = info.regs.esi;
123  out->ebx = info.regs.ebx;
124  out->edx = info.regs.edx;
125  out->ecx = info.regs.ecx;
126  out->eax = info.regs.eax;
127
128  out->ebp = info.regs.ebp;
129  out->eip = info.regs.eip;
130  out->cs = info.regs.xcs;
131  out->eflags = info.regs.eflags;
132  out->esp = info.regs.esp;
133  out->ss = info.regs.xss;
134
135  out->float_save.control_word = info.fpregs.cwd;
136  out->float_save.status_word = info.fpregs.swd;
137  out->float_save.tag_word = info.fpregs.twd;
138  out->float_save.error_offset = info.fpregs.fip;
139  out->float_save.error_selector = info.fpregs.fcs;
140  out->float_save.data_offset = info.fpregs.foo;
141  out->float_save.data_selector = info.fpregs.fos;
142
143  // 8 registers * 10 bytes per register.
144  memcpy(out->float_save.register_area, info.fpregs.st_space, 10 * 8);
145
146  // This matches the Intel fpsave format.
147  U16(out->extended_registers + 0, info.fpregs.cwd);
148  U16(out->extended_registers + 2, info.fpregs.swd);
149  U16(out->extended_registers + 4, info.fpregs.twd);
150  U16(out->extended_registers + 6, info.fpxregs.fop);
151  U32(out->extended_registers + 8, info.fpxregs.fip);
152  U16(out->extended_registers + 12, info.fpxregs.fcs);
153  U32(out->extended_registers + 16, info.fpregs.foo);
154  U16(out->extended_registers + 20, info.fpregs.fos);
155  U32(out->extended_registers + 24, info.fpxregs.mxcsr);
156
157  memcpy(out->extended_registers + 32, &info.fpxregs.st_space, 128);
158  memcpy(out->extended_registers + 160, &info.fpxregs.xmm_space, 128);
159}
160
161// Juggle an x86 ucontext into minidump format
162//   out: the minidump structure
163//   info: the collection of register structures.
164static void CPUFillFromUContext(MDRawContextX86 *out, const ucontext *uc,
165                                const struct _libc_fpstate* fp) {
166  const greg_t* regs = uc->uc_mcontext.gregs;
167
168  out->context_flags = MD_CONTEXT_X86_FULL |
169                       MD_CONTEXT_X86_FLOATING_POINT;
170
171  out->gs = regs[REG_GS];
172  out->fs = regs[REG_FS];
173  out->es = regs[REG_ES];
174  out->ds = regs[REG_DS];
175
176  out->edi = regs[REG_EDI];
177  out->esi = regs[REG_ESI];
178  out->ebx = regs[REG_EBX];
179  out->edx = regs[REG_EDX];
180  out->ecx = regs[REG_ECX];
181  out->eax = regs[REG_EAX];
182
183  out->ebp = regs[REG_EBP];
184  out->eip = regs[REG_EIP];
185  out->cs = regs[REG_CS];
186  out->eflags = regs[REG_EFL];
187  out->esp = regs[REG_UESP];
188  out->ss = regs[REG_SS];
189
190  out->float_save.control_word = fp->cw;
191  out->float_save.status_word = fp->sw;
192  out->float_save.tag_word = fp->tag;
193  out->float_save.error_offset = fp->ipoff;
194  out->float_save.error_selector = fp->cssel;
195  out->float_save.data_offset = fp->dataoff;
196  out->float_save.data_selector = fp->datasel;
197
198  // 8 registers * 10 bytes per register.
199  memcpy(out->float_save.register_area, fp->_st, 10 * 8);
200}
201
202#elif defined(__x86_64)
203typedef MDRawContextAMD64 RawContextCPU;
204
205static void CPUFillFromThreadInfo(MDRawContextAMD64 *out,
206                                  const google_breakpad::ThreadInfo &info) {
207  out->context_flags = MD_CONTEXT_AMD64_FULL |
208                       MD_CONTEXT_AMD64_SEGMENTS;
209
210  out->cs = info.regs.cs;
211
212  out->ds = info.regs.ds;
213  out->es = info.regs.es;
214  out->fs = info.regs.fs;
215  out->gs = info.regs.gs;
216
217  out->ss = info.regs.ss;
218  out->eflags = info.regs.eflags;
219
220  out->dr0 = info.dregs[0];
221  out->dr1 = info.dregs[1];
222  out->dr2 = info.dregs[2];
223  out->dr3 = info.dregs[3];
224  // 4 and 5 deliberatly omitted because they aren't included in the minidump
225  // format.
226  out->dr6 = info.dregs[6];
227  out->dr7 = info.dregs[7];
228
229  out->rax = info.regs.rax;
230  out->rcx = info.regs.rcx;
231  out->rdx = info.regs.rdx;
232  out->rbx = info.regs.rbx;
233
234  out->rsp = info.regs.rsp;
235
236  out->rbp = info.regs.rbp;
237  out->rsi = info.regs.rsi;
238  out->rdi = info.regs.rdi;
239  out->r8 = info.regs.r8;
240  out->r9 = info.regs.r9;
241  out->r10 = info.regs.r10;
242  out->r11 = info.regs.r11;
243  out->r12 = info.regs.r12;
244  out->r13 = info.regs.r13;
245  out->r14 = info.regs.r14;
246  out->r15 = info.regs.r15;
247
248  out->rip = info.regs.rip;
249
250  out->flt_save.control_word = info.fpregs.cwd;
251  out->flt_save.status_word = info.fpregs.swd;
252  out->flt_save.tag_word = info.fpregs.ftw;
253  out->flt_save.error_opcode = info.fpregs.fop;
254  out->flt_save.error_offset = info.fpregs.rip;
255  out->flt_save.error_selector = 0; // We don't have this.
256  out->flt_save.data_offset = info.fpregs.rdp;
257  out->flt_save.data_selector = 0;  // We don't have this.
258  out->flt_save.mx_csr = info.fpregs.mxcsr;
259  out->flt_save.mx_csr_mask = info.fpregs.mxcr_mask;
260  memcpy(&out->flt_save.float_registers, &info.fpregs.st_space, 8 * 16);
261  memcpy(&out->flt_save.xmm_registers, &info.fpregs.xmm_space, 16 * 16);
262}
263
264static void CPUFillFromUContext(MDRawContextAMD64 *out, const ucontext *uc,
265                                const struct _libc_fpstate* fpregs) {
266  const greg_t* regs = uc->uc_mcontext.gregs;
267
268  out->context_flags = MD_CONTEXT_AMD64_FULL;
269
270  out->cs = regs[REG_CSGSFS] & 0xffff;
271
272  out->fs = (regs[REG_CSGSFS] >> 32) & 0xffff;
273  out->gs = (regs[REG_CSGSFS] >> 16) & 0xffff;
274
275  out->eflags = regs[REG_EFL];
276
277  out->rax = regs[REG_RAX];
278  out->rcx = regs[REG_RCX];
279  out->rdx = regs[REG_RDX];
280  out->rbx = regs[REG_RBX];
281
282  out->rsp = regs[REG_RSP];
283  out->rbp = regs[REG_RBP];
284  out->rsi = regs[REG_RSI];
285  out->rdi = regs[REG_RDI];
286  out->r8 = regs[REG_R8];
287  out->r9 = regs[REG_R9];
288  out->r10 = regs[REG_R10];
289  out->r11 = regs[REG_R11];
290  out->r12 = regs[REG_R12];
291  out->r13 = regs[REG_R13];
292  out->r14 = regs[REG_R14];
293  out->r15 = regs[REG_R15];
294
295  out->rip = regs[REG_RIP];
296
297  out->flt_save.control_word = fpregs->cwd;
298  out->flt_save.status_word = fpregs->swd;
299  out->flt_save.tag_word = fpregs->ftw;
300  out->flt_save.error_opcode = fpregs->fop;
301  out->flt_save.error_offset = fpregs->rip;
302  out->flt_save.data_offset = fpregs->rdp;
303  out->flt_save.error_selector = 0; // We don't have this.
304  out->flt_save.data_selector = 0;  // We don't have this.
305  out->flt_save.mx_csr = fpregs->mxcsr;
306  out->flt_save.mx_csr_mask = fpregs->mxcr_mask;
307  memcpy(&out->flt_save.float_registers, &fpregs->_st, 8 * 16);
308  memcpy(&out->flt_save.xmm_registers, &fpregs->_xmm, 16 * 16);
309}
310
311#elif defined(__ARMEL__)
312typedef MDRawContextARM RawContextCPU;
313
314static void CPUFillFromThreadInfo(MDRawContextARM *out,
315                                  const google_breakpad::ThreadInfo &info) {
316  out->context_flags = MD_CONTEXT_ARM_FULL;
317
318  for (int i = 0; i < MD_CONTEXT_ARM_GPR_COUNT; ++i)
319    out->iregs[i] = info.regs.uregs[i];
320  // No CPSR register in ThreadInfo(it's not accessible via ptrace)
321  out->cpsr = 0;
322#if !defined(__ANDROID__)
323  out->float_save.fpscr = info.fpregs.fpsr |
324    (static_cast<u_int64_t>(info.fpregs.fpcr) << 32);
325  //TODO: sort this out, actually collect floating point registers
326  memset(&out->float_save.regs, 0, sizeof(out->float_save.regs));
327  memset(&out->float_save.extra, 0, sizeof(out->float_save.extra));
328#endif
329}
330
331static void CPUFillFromUContext(MDRawContextARM *out, const ucontext *uc,
332                                const struct _libc_fpstate* fpregs) {
333  out->context_flags = MD_CONTEXT_ARM_FULL;
334
335  out->iregs[0] = uc->uc_mcontext.arm_r0;
336  out->iregs[1] = uc->uc_mcontext.arm_r1;
337  out->iregs[2] = uc->uc_mcontext.arm_r2;
338  out->iregs[3] = uc->uc_mcontext.arm_r3;
339  out->iregs[4] = uc->uc_mcontext.arm_r4;
340  out->iregs[5] = uc->uc_mcontext.arm_r5;
341  out->iregs[6] = uc->uc_mcontext.arm_r6;
342  out->iregs[7] = uc->uc_mcontext.arm_r7;
343  out->iregs[8] = uc->uc_mcontext.arm_r8;
344  out->iregs[9] = uc->uc_mcontext.arm_r9;
345  out->iregs[10] = uc->uc_mcontext.arm_r10;
346
347  out->iregs[11] = uc->uc_mcontext.arm_fp;
348  out->iregs[12] = uc->uc_mcontext.arm_ip;
349  out->iregs[13] = uc->uc_mcontext.arm_sp;
350  out->iregs[14] = uc->uc_mcontext.arm_lr;
351  out->iregs[15] = uc->uc_mcontext.arm_pc;
352
353  out->cpsr = uc->uc_mcontext.arm_cpsr;
354
355  //TODO: fix this after fixing ExceptionHandler
356  out->float_save.fpscr = 0;
357  memset(&out->float_save.regs, 0, sizeof(out->float_save.regs));
358  memset(&out->float_save.extra, 0, sizeof(out->float_save.extra));
359}
360
361#else
362#error "This code has not been ported to your platform yet."
363#endif
364
365namespace google_breakpad {
366
367class MinidumpWriter {
368 public:
369  MinidumpWriter(const char* filename,
370                 pid_t crashing_pid,
371                 const ExceptionHandler::CrashContext* context)
372      : filename_(filename),
373        siginfo_(&context->siginfo),
374        ucontext_(&context->context),
375#if !defined(__ARM_EABI__)
376        float_state_(&context->float_state),
377#else
378        //TODO: fix this after fixing ExceptionHandler
379        float_state_(NULL),
380#endif
381        crashing_tid_(context->tid),
382        dumper_(crashing_pid),
383        memory_blocks_(dumper_.allocator()) {
384  }
385
386  bool Init() {
387    return dumper_.Init() && minidump_writer_.Open(filename_) &&
388           dumper_.ThreadsSuspend();
389  }
390
391  ~MinidumpWriter() {
392    minidump_writer_.Close();
393    dumper_.ThreadsResume();
394  }
395
396  bool Dump() {
397    // The dynamic linker makes information available that helps gdb find all
398    // DSOs loaded into the program. If we can access this information, we dump
399    // it to a MD_LINUX_DSO_DEBUG stream.
400    struct r_debug* r_debug = NULL;
401    uint32_t dynamic_length = 0;
402#if !defined(__ANDROID__)
403    // The Android NDK is missing structure definitions for most of this.
404    // For now, it's simpler just to skip it.
405    for (int i = 0;;) {
406      ElfW(Dyn) dyn;
407      dynamic_length += sizeof(dyn);
408      dumper_.CopyFromProcess(&dyn, crashing_tid_, _DYNAMIC+i++, sizeof(dyn));
409      if (dyn.d_tag == DT_DEBUG) {
410        r_debug = (struct r_debug*)dyn.d_un.d_ptr;
411        continue;
412      } else if (dyn.d_tag == DT_NULL)
413        break;
414    }
415#endif
416
417    // A minidump file contains a number of tagged streams. This is the number
418    // of stream which we write.
419    unsigned kNumWriters = 12;
420    if (r_debug)
421      ++kNumWriters;
422
423    TypedMDRVA<MDRawHeader> header(&minidump_writer_);
424    TypedMDRVA<MDRawDirectory> dir(&minidump_writer_);
425    if (!header.Allocate())
426      return false;
427    if (!dir.AllocateArray(kNumWriters))
428      return false;
429    memset(header.get(), 0, sizeof(MDRawHeader));
430
431    header.get()->signature = MD_HEADER_SIGNATURE;
432    header.get()->version = MD_HEADER_VERSION;
433    header.get()->time_date_stamp = time(NULL);
434    header.get()->stream_count = kNumWriters;
435    header.get()->stream_directory_rva = dir.position();
436
437    unsigned dir_index = 0;
438    MDRawDirectory dirent;
439
440    if (!WriteThreadListStream(&dirent))
441      return false;
442    dir.CopyIndex(dir_index++, &dirent);
443
444    if (!WriteMappings(&dirent))
445      return false;
446    dir.CopyIndex(dir_index++, &dirent);
447
448    if (!WriteMemoryListStream(&dirent))
449      return false;
450    dir.CopyIndex(dir_index++, &dirent);
451
452    if (!WriteExceptionStream(&dirent))
453      return false;
454    dir.CopyIndex(dir_index++, &dirent);
455
456    if (!WriteSystemInfoStream(&dirent))
457      return false;
458    dir.CopyIndex(dir_index++, &dirent);
459
460    dirent.stream_type = MD_LINUX_CPU_INFO;
461    if (!WriteFile(&dirent.location, "/proc/cpuinfo"))
462      NullifyDirectoryEntry(&dirent);
463    dir.CopyIndex(dir_index++, &dirent);
464
465    dirent.stream_type = MD_LINUX_PROC_STATUS;
466    if (!WriteProcFile(&dirent.location, crashing_tid_, "status"))
467      NullifyDirectoryEntry(&dirent);
468    dir.CopyIndex(dir_index++, &dirent);
469
470    dirent.stream_type = MD_LINUX_LSB_RELEASE;
471    if (!WriteFile(&dirent.location, "/etc/lsb-release"))
472      NullifyDirectoryEntry(&dirent);
473    dir.CopyIndex(dir_index++, &dirent);
474
475    dirent.stream_type = MD_LINUX_CMD_LINE;
476    if (!WriteProcFile(&dirent.location, crashing_tid_, "cmdline"))
477      NullifyDirectoryEntry(&dirent);
478    dir.CopyIndex(dir_index++, &dirent);
479
480    dirent.stream_type = MD_LINUX_ENVIRON;
481    if (!WriteProcFile(&dirent.location, crashing_tid_, "environ"))
482      NullifyDirectoryEntry(&dirent);
483    dir.CopyIndex(dir_index++, &dirent);
484
485    dirent.stream_type = MD_LINUX_AUXV;
486    if (!WriteProcFile(&dirent.location, crashing_tid_, "auxv"))
487      NullifyDirectoryEntry(&dirent);
488    dir.CopyIndex(dir_index++, &dirent);
489
490    dirent.stream_type = MD_LINUX_MAPS;
491    if (!WriteProcFile(&dirent.location, crashing_tid_, "maps"))
492      NullifyDirectoryEntry(&dirent);
493    dir.CopyIndex(dir_index++, &dirent);
494
495    if (r_debug) {
496      dirent.stream_type = MD_LINUX_DSO_DEBUG;
497      if (!WriteDSODebugStream(&dirent, r_debug, dynamic_length))
498        NullifyDirectoryEntry(&dirent);
499      dir.CopyIndex(dir_index++, &dirent);
500    }
501
502    // If you add more directory entries, don't forget to update kNumWriters,
503    // above.
504
505    dumper_.ThreadsResume();
506    return true;
507  }
508
509  // Check if the top of the stack is part of a system call that has been
510  // redirected by the seccomp sandbox. If so, try to pop the stack frames
511  // all the way back to the point where the interception happened.
512  void PopSeccompStackFrame(RawContextCPU* cpu, const MDRawThread& thread,
513                            uint8_t* stack_copy) {
514#if defined(__x86_64)
515    u_int64_t bp = cpu->rbp;
516    u_int64_t top = thread.stack.start_of_memory_range;
517    for (int i = 4; i--; ) {
518      if (bp < top ||
519          bp + sizeof(bp) > thread.stack.start_of_memory_range +
520          thread.stack.memory.data_size ||
521          bp & 1) {
522        break;
523      }
524      uint64_t old_top = top;
525      top = bp;
526      u_int8_t* bp_addr = stack_copy + bp - thread.stack.start_of_memory_range;
527      memcpy(&bp, bp_addr, sizeof(bp));
528      if (bp == 0xDEADBEEFDEADBEEFull) {
529        struct {
530          uint64_t r15;
531          uint64_t r14;
532          uint64_t r13;
533          uint64_t r12;
534          uint64_t r11;
535          uint64_t r10;
536          uint64_t r9;
537          uint64_t r8;
538          uint64_t rdi;
539          uint64_t rsi;
540          uint64_t rdx;
541          uint64_t rcx;
542          uint64_t rbx;
543          uint64_t deadbeef;
544          uint64_t rbp;
545          uint64_t fakeret;
546          uint64_t ret;
547          /* char redzone[128]; */
548        } seccomp_stackframe;
549        if (top - offsetof(typeof(seccomp_stackframe), deadbeef) < old_top ||
550            top - offsetof(typeof(seccomp_stackframe), deadbeef) +
551            sizeof(seccomp_stackframe) >
552            thread.stack.start_of_memory_range+thread.stack.memory.data_size) {
553          break;
554        }
555        memcpy(&seccomp_stackframe,
556               bp_addr - offsetof(typeof(seccomp_stackframe), deadbeef),
557               sizeof(seccomp_stackframe));
558        cpu->rbx = seccomp_stackframe.rbx;
559        cpu->rcx = seccomp_stackframe.rcx;
560        cpu->rdx = seccomp_stackframe.rdx;
561        cpu->rsi = seccomp_stackframe.rsi;
562        cpu->rdi = seccomp_stackframe.rdi;
563        cpu->rbp = seccomp_stackframe.rbp;
564        cpu->rsp = top + 4*sizeof(uint64_t) + 128;
565        cpu->r8  = seccomp_stackframe.r8;
566        cpu->r9  = seccomp_stackframe.r9;
567        cpu->r10 = seccomp_stackframe.r10;
568        cpu->r11 = seccomp_stackframe.r11;
569        cpu->r12 = seccomp_stackframe.r12;
570        cpu->r13 = seccomp_stackframe.r13;
571        cpu->r14 = seccomp_stackframe.r14;
572        cpu->r15 = seccomp_stackframe.r15;
573        cpu->rip = seccomp_stackframe.fakeret;
574        return;
575      }
576    }
577#elif defined(__i386)
578    u_int32_t bp = cpu->ebp;
579    u_int32_t top = thread.stack.start_of_memory_range;
580    for (int i = 4; i--; ) {
581      if (bp < top ||
582          bp + sizeof(bp) > thread.stack.start_of_memory_range +
583          thread.stack.memory.data_size ||
584          bp & 1) {
585        break;
586      }
587      uint32_t old_top = top;
588      top = bp;
589      u_int8_t* bp_addr = stack_copy + bp - thread.stack.start_of_memory_range;
590      memcpy(&bp, bp_addr, sizeof(bp));
591      if (bp == 0xDEADBEEFu) {
592        struct {
593          uint32_t edi;
594          uint32_t esi;
595          uint32_t edx;
596          uint32_t ecx;
597          uint32_t ebx;
598          uint32_t deadbeef;
599          uint32_t ebp;
600          uint32_t fakeret;
601          uint32_t ret;
602        } seccomp_stackframe;
603        if (top - offsetof(typeof(seccomp_stackframe), deadbeef) < old_top ||
604            top - offsetof(typeof(seccomp_stackframe), deadbeef) +
605            sizeof(seccomp_stackframe) >
606            thread.stack.start_of_memory_range+thread.stack.memory.data_size) {
607          break;
608        }
609        memcpy(&seccomp_stackframe,
610               bp_addr - offsetof(typeof(seccomp_stackframe), deadbeef),
611               sizeof(seccomp_stackframe));
612        cpu->ebx = seccomp_stackframe.ebx;
613        cpu->ecx = seccomp_stackframe.ecx;
614        cpu->edx = seccomp_stackframe.edx;
615        cpu->esi = seccomp_stackframe.esi;
616        cpu->edi = seccomp_stackframe.edi;
617        cpu->ebp = seccomp_stackframe.ebp;
618        cpu->esp = top + 4*sizeof(void*);
619        cpu->eip = seccomp_stackframe.fakeret;
620        return;
621      }
622    }
623#endif
624  }
625
626  // Write information about the threads.
627  bool WriteThreadListStream(MDRawDirectory* dirent) {
628    const unsigned num_threads = dumper_.threads().size();
629
630    TypedMDRVA<uint32_t> list(&minidump_writer_);
631    if (!list.AllocateObjectAndArray(num_threads, sizeof(MDRawThread)))
632      return false;
633
634    dirent->stream_type = MD_THREAD_LIST_STREAM;
635    dirent->location = list.location();
636
637    *list.get() = num_threads;
638
639    for (unsigned i = 0; i < num_threads; ++i) {
640      MDRawThread thread;
641      my_memset(&thread, 0, sizeof(thread));
642      thread.thread_id = dumper_.threads()[i];
643      // We have a different source of information for the crashing thread. If
644      // we used the actual state of the thread we would find it running in the
645      // signal handler with the alternative stack, which would be deeply
646      // unhelpful.
647      if ((pid_t)thread.thread_id == crashing_tid_) {
648        const void* stack;
649        size_t stack_len;
650        if (!dumper_.GetStackInfo(&stack, &stack_len, GetStackPointer()))
651          return false;
652        UntypedMDRVA memory(&minidump_writer_);
653        if (!memory.Allocate(stack_len))
654          return false;
655        uint8_t* stack_copy = (uint8_t*) dumper_.allocator()->Alloc(stack_len);
656        dumper_.CopyFromProcess(stack_copy, thread.thread_id, stack, stack_len);
657        memory.Copy(stack_copy, stack_len);
658        thread.stack.start_of_memory_range = (uintptr_t) (stack);
659        thread.stack.memory = memory.location();
660        memory_blocks_.push_back(thread.stack);
661
662        // Copy 256 bytes around crashing instruction pointer to minidump.
663        const size_t kIPMemorySize = 256;
664        u_int64_t ip = GetInstructionPointer();
665        // Bound it to the upper and lower bounds of the memory map
666        // it's contained within. If it's not in mapped memory,
667        // don't bother trying to write it.
668        bool ip_is_mapped = false;
669        MDMemoryDescriptor ip_memory_d;
670        for (unsigned i = 0; i < dumper_.mappings().size(); ++i) {
671          const MappingInfo& mapping = *dumper_.mappings()[i];
672          if (ip >= mapping.start_addr &&
673              ip < mapping.start_addr + mapping.size) {
674            ip_is_mapped = true;
675            // Try to get 128 bytes before and after the IP, but
676            // settle for whatever's available.
677            ip_memory_d.start_of_memory_range =
678              std::max(mapping.start_addr,
679                       uintptr_t(ip - (kIPMemorySize / 2)));
680            uintptr_t end_of_range =
681              std::min(uintptr_t(ip + (kIPMemorySize / 2)),
682                       uintptr_t(mapping.start_addr + mapping.size));
683            ip_memory_d.memory.data_size =
684              end_of_range - ip_memory_d.start_of_memory_range;
685            break;
686          }
687        }
688
689        if (ip_is_mapped) {
690          UntypedMDRVA ip_memory(&minidump_writer_);
691          if (!ip_memory.Allocate(ip_memory_d.memory.data_size))
692            return false;
693          uint8_t* memory_copy =
694            (uint8_t*) dumper_.allocator()->Alloc(ip_memory_d.memory.data_size);
695          dumper_.CopyFromProcess(
696            memory_copy,
697            thread.thread_id,
698            reinterpret_cast<void*>(ip_memory_d.start_of_memory_range),
699            ip_memory_d.memory.data_size);
700          ip_memory.Copy(memory_copy, ip_memory_d.memory.data_size);
701          ip_memory_d.memory = ip_memory.location();
702          memory_blocks_.push_back(ip_memory_d);
703        }
704
705        TypedMDRVA<RawContextCPU> cpu(&minidump_writer_);
706        if (!cpu.Allocate())
707          return false;
708        my_memset(cpu.get(), 0, sizeof(RawContextCPU));
709        CPUFillFromUContext(cpu.get(), ucontext_, float_state_);
710        PopSeccompStackFrame(cpu.get(), thread, stack_copy);
711        thread.thread_context = cpu.location();
712        crashing_thread_context_ = cpu.location();
713      } else {
714        ThreadInfo info;
715        if (!dumper_.ThreadInfoGet(dumper_.threads()[i], &info))
716          return false;
717        UntypedMDRVA memory(&minidump_writer_);
718        if (!memory.Allocate(info.stack_len))
719          return false;
720        uint8_t* stack_copy =
721            (uint8_t*) dumper_.allocator()->Alloc(info.stack_len);
722        dumper_.CopyFromProcess(stack_copy, thread.thread_id, info.stack,
723                                info.stack_len);
724        memory.Copy(stack_copy, info.stack_len);
725        thread.stack.start_of_memory_range = (uintptr_t)(info.stack);
726        thread.stack.memory = memory.location();
727        memory_blocks_.push_back(thread.stack);
728
729        TypedMDRVA<RawContextCPU> cpu(&minidump_writer_);
730        if (!cpu.Allocate())
731          return false;
732        my_memset(cpu.get(), 0, sizeof(RawContextCPU));
733        CPUFillFromThreadInfo(cpu.get(), info);
734        PopSeccompStackFrame(cpu.get(), thread, stack_copy);
735        thread.thread_context = cpu.location();
736      }
737
738      list.CopyIndexAfterObject(i, &thread, sizeof(thread));
739    }
740
741    return true;
742  }
743
744  static bool ShouldIncludeMapping(const MappingInfo& mapping) {
745    if (mapping.name[0] == 0 || // we only want modules with filenames.
746        mapping.offset || // we only want to include one mapping per shared lib.
747        mapping.size < 4096) {  // too small to get a signature for.
748      return false;
749    }
750
751    return true;
752  }
753
754  // Write information about the mappings in effect. Because we are using the
755  // minidump format, the information about the mappings is pretty limited.
756  // Because of this, we also include the full, unparsed, /proc/$x/maps file in
757  // another stream in the file.
758  bool WriteMappings(MDRawDirectory* dirent) {
759    const unsigned num_mappings = dumper_.mappings().size();
760    unsigned num_output_mappings = 0;
761
762    for (unsigned i = 0; i < dumper_.mappings().size(); ++i) {
763      const MappingInfo& mapping = *dumper_.mappings()[i];
764      if (ShouldIncludeMapping(mapping))
765        num_output_mappings++;
766    }
767
768    TypedMDRVA<uint32_t> list(&minidump_writer_);
769    if (!list.AllocateObjectAndArray(num_output_mappings, MD_MODULE_SIZE))
770      return false;
771
772    dirent->stream_type = MD_MODULE_LIST_STREAM;
773    dirent->location = list.location();
774    *list.get() = num_output_mappings;
775
776    for (unsigned i = 0, j = 0; i < num_mappings; ++i) {
777      const MappingInfo& mapping = *dumper_.mappings()[i];
778      if (!ShouldIncludeMapping(mapping))
779        continue;
780
781      MDRawModule mod;
782      my_memset(&mod, 0, MD_MODULE_SIZE);
783      mod.base_of_image = mapping.start_addr;
784      mod.size_of_image = mapping.size;
785      const size_t filepath_len = my_strlen(mapping.name);
786
787      // Figure out file name from path
788      const char* filename_ptr = mapping.name + filepath_len - 1;
789      while (filename_ptr >= mapping.name) {
790        if (*filename_ptr == '/')
791          break;
792        filename_ptr--;
793      }
794      filename_ptr++;
795      const size_t filename_len = mapping.name + filepath_len - filename_ptr;
796
797      uint8_t cv_buf[MDCVInfoPDB70_minsize + NAME_MAX];
798      uint8_t* cv_ptr = cv_buf;
799      UntypedMDRVA cv(&minidump_writer_);
800      if (!cv.Allocate(MDCVInfoPDB70_minsize + filename_len + 1))
801        return false;
802
803      const uint32_t cv_signature = MD_CVINFOPDB70_SIGNATURE;
804      memcpy(cv_ptr, &cv_signature, sizeof(cv_signature));
805      cv_ptr += sizeof(cv_signature);
806      uint8_t* signature = cv_ptr;
807      cv_ptr += sizeof(MDGUID);
808      dumper_.ElfFileIdentifierForMapping(i, signature);
809      my_memset(cv_ptr, 0, sizeof(uint32_t));  // Set age to 0 on Linux.
810      cv_ptr += sizeof(uint32_t);
811
812      // Write pdb_file_name
813      memcpy(cv_ptr, filename_ptr, filename_len + 1);
814      cv.Copy(cv_buf, MDCVInfoPDB70_minsize + filename_len + 1);
815
816      mod.cv_record = cv.location();
817
818      MDLocationDescriptor ld;
819      if (!minidump_writer_.WriteString(mapping.name, filepath_len, &ld))
820        return false;
821      mod.module_name_rva = ld.rva;
822
823      list.CopyIndexAfterObject(j++, &mod, MD_MODULE_SIZE);
824    }
825
826    return true;
827  }
828
829  bool WriteMemoryListStream(MDRawDirectory* dirent) {
830    TypedMDRVA<uint32_t> list(&minidump_writer_);
831    if (!list.AllocateObjectAndArray(memory_blocks_.size(),
832                                     sizeof(MDMemoryDescriptor)))
833      return false;
834
835    dirent->stream_type = MD_MEMORY_LIST_STREAM;
836    dirent->location = list.location();
837
838    *list.get() = memory_blocks_.size();
839
840    for (size_t i = 0; i < memory_blocks_.size(); ++i) {
841      list.CopyIndexAfterObject(i, &memory_blocks_[i],
842                                sizeof(MDMemoryDescriptor));
843    }
844    return true;
845  }
846
847  bool WriteExceptionStream(MDRawDirectory* dirent) {
848    TypedMDRVA<MDRawExceptionStream> exc(&minidump_writer_);
849    if (!exc.Allocate())
850      return false;
851    my_memset(exc.get(), 0, sizeof(MDRawExceptionStream));
852
853    dirent->stream_type = MD_EXCEPTION_STREAM;
854    dirent->location = exc.location();
855
856    exc.get()->thread_id = crashing_tid_;
857    exc.get()->exception_record.exception_code = siginfo_->si_signo;
858    exc.get()->exception_record.exception_address =
859        (uintptr_t) siginfo_->si_addr;
860    exc.get()->thread_context = crashing_thread_context_;
861
862    return true;
863  }
864
865  bool WriteSystemInfoStream(MDRawDirectory* dirent) {
866    TypedMDRVA<MDRawSystemInfo> si(&minidump_writer_);
867    if (!si.Allocate())
868      return false;
869    my_memset(si.get(), 0, sizeof(MDRawSystemInfo));
870
871    dirent->stream_type = MD_SYSTEM_INFO_STREAM;
872    dirent->location = si.location();
873
874    WriteCPUInformation(si.get());
875    WriteOSInformation(si.get());
876
877    return true;
878  }
879
880  bool WriteDSODebugStream(MDRawDirectory* dirent, struct r_debug* r_debug,
881                           uint32_t dynamic_length) {
882#if defined(__ANDROID__)
883    return false;
884#else
885    // The caller provided us with a pointer to "struct r_debug". We can
886    // look up the "r_map" field to get a linked list of all loaded DSOs.
887    // Our list of DSOs potentially is different from the ones in the crashing
888    // process. So, we have to be careful to never dereference pointers
889    // directly. Instead, we use CopyFromProcess() everywhere.
890    // See <link.h> for a more detailed discussion of the how the dynamic
891    // loader communicates with debuggers.
892
893    // Count the number of loaded DSOs
894    int dso_count = 0;
895    struct r_debug debug_entry;
896    dumper_.CopyFromProcess(&debug_entry, crashing_tid_, r_debug,
897                            sizeof(debug_entry));
898    for (struct link_map* ptr = debug_entry.r_map; ptr; ) {
899      struct link_map map;
900      dumper_.CopyFromProcess(&map, crashing_tid_, ptr, sizeof(map));
901      ptr = map.l_next;
902      dso_count++;
903    }
904
905    MDRVA linkmap_rva = minidump_writer_.kInvalidMDRVA;
906    if (dso_count > 0) {
907      // If we have at least one DSO, create an array of MDRawLinkMap
908      // entries in the minidump file.
909      TypedMDRVA<MDRawLinkMap> linkmap(&minidump_writer_);
910      if (!linkmap.AllocateArray(dso_count))
911        return false;
912      linkmap_rva = linkmap.location().rva;
913      int idx = 0;
914
915      // Iterate over DSOs and write their information to mini dump
916      for (struct link_map* ptr = debug_entry.r_map; ptr; ) {
917        struct link_map map;
918        dumper_.CopyFromProcess(&map, crashing_tid_, ptr, sizeof(map));
919        ptr = map.l_next;
920        char filename[257] = { 0 };
921        if (map.l_name) {
922          dumper_.CopyFromProcess(filename, crashing_tid_, map.l_name,
923                                  sizeof(filename) - 1);
924        }
925        MDLocationDescriptor location;
926        if (!minidump_writer_.WriteString(filename, 0, &location))
927          return false;
928        MDRawLinkMap entry;
929        entry.name = location.rva;
930        entry.addr = (void*)map.l_addr;
931        entry.ld = (void*)map.l_ld;
932        linkmap.CopyIndex(idx++, &entry);
933      }
934    }
935
936    // Write MD_LINUX_DSO_DEBUG record
937    TypedMDRVA<MDRawDebug> debug(&minidump_writer_);
938    if (!debug.AllocateObjectAndArray(1, dynamic_length))
939      return false;
940    my_memset(debug.get(), 0, sizeof(MDRawDebug));
941    dirent->stream_type = MD_LINUX_DSO_DEBUG;
942    dirent->location = debug.location();
943
944    debug.get()->version = debug_entry.r_version;
945    debug.get()->map = linkmap_rva;
946    debug.get()->dso_count = dso_count;
947    debug.get()->brk = (void*)debug_entry.r_brk;
948    debug.get()->ldbase = (void*)debug_entry.r_ldbase;
949    debug.get()->dynamic = (void*)&_DYNAMIC;
950
951    char *dso_debug_data = new char[dynamic_length];
952    dumper_.CopyFromProcess(dso_debug_data, crashing_tid_, &_DYNAMIC,
953                            dynamic_length);
954    debug.CopyIndexAfterObject(0, dso_debug_data, dynamic_length);
955    delete[] dso_debug_data;
956
957    return true;
958#endif
959  }
960
961 private:
962#if defined(__i386)
963  uintptr_t GetStackPointer() {
964    return ucontext_->uc_mcontext.gregs[REG_ESP];
965  }
966
967  uintptr_t GetInstructionPointer() {
968    return ucontext_->uc_mcontext.gregs[REG_EIP];
969  }
970#elif defined(__x86_64)
971  uintptr_t GetStackPointer() {
972    return ucontext_->uc_mcontext.gregs[REG_RSP];
973  }
974
975  uintptr_t GetInstructionPointer() {
976    return ucontext_->uc_mcontext.gregs[REG_RIP];
977  }
978#elif defined(__ARM_EABI__)
979  uintptr_t GetStackPointer() {
980    return ucontext_->uc_mcontext.arm_sp;
981  }
982
983  uintptr_t GetInstructionPointer() {
984    return ucontext_->uc_mcontext.arm_ip;
985  }
986#else
987#error "This code has not been ported to your platform yet."
988#endif
989
990  void NullifyDirectoryEntry(MDRawDirectory* dirent) {
991    dirent->stream_type = 0;
992    dirent->location.data_size = 0;
993    dirent->location.rva = 0;
994  }
995
996  bool WriteCPUInformation(MDRawSystemInfo* sys_info) {
997    char vendor_id[sizeof(sys_info->cpu.x86_cpu_info.vendor_id) + 1] = {0};
998    static const char vendor_id_name[] = "vendor_id";
999    static const size_t vendor_id_name_length = sizeof(vendor_id_name) - 1;
1000
1001    struct CpuInfoEntry {
1002      const char* info_name;
1003      int value;
1004      bool found;
1005    } cpu_info_table[] = {
1006      { "processor", -1, false },
1007      { "model", 0, false },
1008      { "stepping",  0, false },
1009      { "cpu family", 0, false },
1010    };
1011
1012    // processor_architecture should always be set, do this first
1013    sys_info->processor_architecture =
1014#if defined(__i386)
1015        MD_CPU_ARCHITECTURE_X86;
1016#elif defined(__x86_64)
1017        MD_CPU_ARCHITECTURE_AMD64;
1018#elif defined(__arm__)
1019        MD_CPU_ARCHITECTURE_ARM;
1020#else
1021#error "Unknown CPU arch"
1022#endif
1023
1024    const int fd = sys_open("/proc/cpuinfo", O_RDONLY, 0);
1025    if (fd < 0)
1026      return false;
1027
1028    {
1029      PageAllocator allocator;
1030      LineReader* const line_reader = new(allocator) LineReader(fd);
1031      const char* line;
1032      unsigned line_len;
1033      while (line_reader->GetNextLine(&line, &line_len)) {
1034        for (size_t i = 0;
1035             i < sizeof(cpu_info_table) / sizeof(cpu_info_table[0]);
1036             i++) {
1037          CpuInfoEntry* entry = &cpu_info_table[i];
1038          if (entry->found && i)
1039            continue;
1040          if (!strncmp(line, entry->info_name, strlen(entry->info_name))) {
1041            const char* value = strchr(line, ':');
1042            if (!value)
1043              continue;
1044
1045            // the above strncmp only matches the prefix, it might be the wrong
1046            // line. i.e. we matched "model name" instead of "model".
1047            // check and make sure there is only spaces between the prefix and
1048            // the colon.
1049            const char* space_ptr = line + strlen(entry->info_name);
1050            for (; space_ptr < value; space_ptr++) {
1051              if (!isspace(*space_ptr)) {
1052                break;
1053              }
1054            }
1055            if (space_ptr != value)
1056              continue;
1057
1058            sscanf(++value, " %d", &(entry->value));
1059            entry->found = true;
1060          }
1061        }
1062
1063        // special case for vendor_id
1064        if (!strncmp(line, vendor_id_name, vendor_id_name_length)) {
1065          const char* value = strchr(line, ':');
1066          if (!value)
1067            goto popline;
1068
1069          // skip ':" and all the spaces that follows
1070          do {
1071            value++;
1072          } while (isspace(*value));
1073
1074          if (*value) {
1075            size_t length = strlen(value);
1076            if (length == 0)
1077              goto popline;
1078            // we don't want the trailing newline
1079            if (value[length - 1] == '\n')
1080              length--;
1081            // ensure we have space for the value
1082            if (length < sizeof(vendor_id))
1083              strncpy(vendor_id, value, length);
1084          }
1085        }
1086
1087popline:
1088        line_reader->PopLine(line_len);
1089      }
1090      sys_close(fd);
1091    }
1092
1093    // make sure we got everything we wanted
1094    for (size_t i = 0;
1095         i < sizeof(cpu_info_table) / sizeof(cpu_info_table[0]);
1096         i++) {
1097      if (!cpu_info_table[i].found) {
1098        return false;
1099      }
1100    }
1101    // /proc/cpuinfo contains cpu id, change it into number by adding one.
1102    cpu_info_table[0].value++;
1103
1104    sys_info->number_of_processors = cpu_info_table[0].value;
1105    sys_info->processor_level      = cpu_info_table[3].value;
1106    sys_info->processor_revision   = cpu_info_table[1].value << 8 |
1107                                     cpu_info_table[2].value;
1108
1109    if (vendor_id[0] != '\0') {
1110      memcpy(sys_info->cpu.x86_cpu_info.vendor_id, vendor_id,
1111             sizeof(sys_info->cpu.x86_cpu_info.vendor_id));
1112    }
1113    return true;
1114  }
1115
1116  bool WriteFile(MDLocationDescriptor* result, const char* filename) {
1117    const int fd = sys_open(filename, O_RDONLY, 0);
1118    if (fd < 0)
1119      return false;
1120
1121    // We can't stat the files because several of the files that we want to
1122    // read are kernel seqfiles, which always have a length of zero. So we have
1123    // to read as much as we can into a buffer.
1124    static const unsigned kBufSize = 1024 - 2*sizeof(void*);
1125    struct Buffers {
1126      struct Buffers* next;
1127      size_t len;
1128      uint8_t data[kBufSize];
1129    } *buffers =
1130        (struct Buffers*) dumper_.allocator()->Alloc(sizeof(struct Buffers));
1131    buffers->next = NULL;
1132    buffers->len = 0;
1133
1134    size_t total = 0;
1135    for (struct Buffers* bufptr = buffers;;) {
1136      ssize_t r;
1137      do {
1138        r = sys_read(fd, &bufptr->data[bufptr->len], kBufSize - bufptr->len);
1139      } while (r == -1 && errno == EINTR);
1140
1141      if (r < 1)
1142        break;
1143
1144      total += r;
1145      bufptr->len += r;
1146      if (bufptr->len == kBufSize) {
1147        bufptr->next =
1148          (struct Buffers*) dumper_.allocator()->Alloc(sizeof(struct Buffers));
1149        bufptr = bufptr->next;
1150        bufptr->next = NULL;
1151        bufptr->len = 0;
1152      }
1153    }
1154    sys_close(fd);
1155
1156    if (!total)
1157      return false;
1158
1159    UntypedMDRVA memory(&minidump_writer_);
1160    if (!memory.Allocate(total))
1161      return false;
1162    for (MDRVA pos = memory.position(); buffers; buffers = buffers->next) {
1163      memory.Copy(pos, &buffers->data, buffers->len);
1164      pos += buffers->len;
1165    }
1166    *result = memory.location();
1167    return true;
1168  }
1169
1170  bool WriteOSInformation(MDRawSystemInfo* sys_info) {
1171    sys_info->platform_id = MD_OS_LINUX;
1172
1173    struct utsname uts;
1174    if (uname(&uts))
1175      return false;
1176
1177    static const size_t buf_len = 512;
1178    char buf[buf_len] = {0};
1179    size_t space_left = buf_len - 1;
1180    const char* info_table[] = {
1181      uts.sysname,
1182      uts.release,
1183      uts.version,
1184      uts.machine,
1185      NULL
1186    };
1187    bool first_item = true;
1188    for (const char** cur_info = info_table; *cur_info; cur_info++) {
1189      static const char* separator = " ";
1190      size_t separator_len = strlen(separator);
1191      size_t info_len = strlen(*cur_info);
1192      if (info_len == 0)
1193        continue;
1194
1195      if (space_left < info_len + (first_item ? 0 : separator_len))
1196        break;
1197
1198      if (!first_item) {
1199        strcat(buf, separator);
1200        space_left -= separator_len;
1201      }
1202
1203      first_item = false;
1204      strcat(buf, *cur_info);
1205      space_left -= info_len;
1206    }
1207
1208    MDLocationDescriptor location;
1209    if (!minidump_writer_.WriteString(buf, 0, &location))
1210      return false;
1211    sys_info->csd_version_rva = location.rva;
1212
1213    return true;
1214  }
1215
1216  bool WriteProcFile(MDLocationDescriptor* result, pid_t pid,
1217                     const char* filename) {
1218    char buf[80];
1219    memcpy(buf, "/proc/", 6);
1220    const unsigned pid_len = my_int_len(pid);
1221    my_itos(buf + 6, pid, pid_len);
1222    buf[6 + pid_len] = '/';
1223    memcpy(buf + 6 + pid_len + 1, filename, my_strlen(filename) + 1);
1224    return WriteFile(result, buf);
1225  }
1226
1227  const char* const filename_;  // output filename
1228  const siginfo_t* const siginfo_;  // from the signal handler (see sigaction)
1229  const struct ucontext* const ucontext_;  // also from the signal handler
1230  const struct _libc_fpstate* const float_state_;  // ditto
1231  const pid_t crashing_tid_;  // the process which actually crashed
1232  LinuxDumper dumper_;
1233  MinidumpFileWriter minidump_writer_;
1234  MDLocationDescriptor crashing_thread_context_;
1235  // Blocks of memory written to the dump. These are all currently
1236  // written while writing the thread list stream, but saved here
1237  // so a memory list stream can be written afterwards.
1238  wasteful_vector<MDMemoryDescriptor> memory_blocks_;
1239};
1240
1241bool WriteMinidump(const char* filename, pid_t crashing_process,
1242                   const void* blob, size_t blob_size) {
1243  if (blob_size != sizeof(ExceptionHandler::CrashContext))
1244    return false;
1245  const ExceptionHandler::CrashContext* context =
1246      reinterpret_cast<const ExceptionHandler::CrashContext*>(blob);
1247  MinidumpWriter writer(filename, crashing_process, context);
1248  if (!writer.Init())
1249    return false;
1250  return writer.Dump();
1251}
1252
1253}  // namespace google_breakpad
1254