1// Copyright (c) 2011 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5// This defines a set of argument wrappers and related factory methods that
6// can be used specify the refcounting and reference semantics of arguments
7// that are bound by the Bind() function in base/bind.h.
8//
9// It also defines a set of simple functions and utilities that people want
10// when using Callback<> and Bind().
11//
12//
13// ARGUMENT BINDING WRAPPERS
14//
15// The wrapper functions are base::Unretained(), base::Owned(), base::Passed(),
16// base::ConstRef(), and base::IgnoreResult().
17//
18// Unretained() allows Bind() to bind a non-refcounted class, and to disable
19// refcounting on arguments that are refcounted objects.
20//
21// Owned() transfers ownership of an object to the Callback resulting from
22// bind; the object will be deleted when the Callback is deleted.
23//
24// Passed() is for transferring movable-but-not-copyable types (eg. scoped_ptr)
25// through a Callback. Logically, this signifies a destructive transfer of
26// the state of the argument into the target function.  Invoking
27// Callback::Run() twice on a Callback that was created with a Passed()
28// argument will CHECK() because the first invocation would have already
29// transferred ownership to the target function.
30//
31// ConstRef() allows binding a constant reference to an argument rather
32// than a copy.
33//
34// IgnoreResult() is used to adapt a function or Callback with a return type to
35// one with a void return. This is most useful if you have a function with,
36// say, a pesky ignorable bool return that you want to use with PostTask or
37// something else that expect a Callback with a void return.
38//
39// EXAMPLE OF Unretained():
40//
41//   class Foo {
42//    public:
43//     void func() { cout << "Foo:f" << endl; }
44//   };
45//
46//   // In some function somewhere.
47//   Foo foo;
48//   Closure foo_callback =
49//       Bind(&Foo::func, Unretained(&foo));
50//   foo_callback.Run();  // Prints "Foo:f".
51//
52// Without the Unretained() wrapper on |&foo|, the above call would fail
53// to compile because Foo does not support the AddRef() and Release() methods.
54//
55//
56// EXAMPLE OF Owned():
57//
58//   void foo(int* arg) { cout << *arg << endl }
59//
60//   int* pn = new int(1);
61//   Closure foo_callback = Bind(&foo, Owned(pn));
62//
63//   foo_callback.Run();  // Prints "1"
64//   foo_callback.Run();  // Prints "1"
65//   *n = 2;
66//   foo_callback.Run();  // Prints "2"
67//
68//   foo_callback.Reset();  // |pn| is deleted.  Also will happen when
69//                          // |foo_callback| goes out of scope.
70//
71// Without Owned(), someone would have to know to delete |pn| when the last
72// reference to the Callback is deleted.
73//
74//
75// EXAMPLE OF ConstRef():
76//
77//   void foo(int arg) { cout << arg << endl }
78//
79//   int n = 1;
80//   Closure no_ref = Bind(&foo, n);
81//   Closure has_ref = Bind(&foo, ConstRef(n));
82//
83//   no_ref.Run();  // Prints "1"
84//   has_ref.Run();  // Prints "1"
85//
86//   n = 2;
87//   no_ref.Run();  // Prints "1"
88//   has_ref.Run();  // Prints "2"
89//
90// Note that because ConstRef() takes a reference on |n|, |n| must outlive all
91// its bound callbacks.
92//
93//
94// EXAMPLE OF IgnoreResult():
95//
96//   int DoSomething(int arg) { cout << arg << endl; }
97//
98//   // Assign to a Callback with a void return type.
99//   Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething));
100//   cb->Run(1);  // Prints "1".
101//
102//   // Prints "1" on |ml|.
103//   ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1);
104//
105//
106// EXAMPLE OF Passed():
107//
108//   void TakesOwnership(scoped_ptr<Foo> arg) { }
109//   scoped_ptr<Foo> CreateFoo() { return scoped_ptr<Foo>(new Foo()); }
110//
111//   scoped_ptr<Foo> f(new Foo());
112//
113//   // |cb| is given ownership of Foo(). |f| is now NULL.
114//   // You can use std::move(f) in place of &f, but it's more verbose.
115//   Closure cb = Bind(&TakesOwnership, Passed(&f));
116//
117//   // Run was never called so |cb| still owns Foo() and deletes
118//   // it on Reset().
119//   cb.Reset();
120//
121//   // |cb| is given a new Foo created by CreateFoo().
122//   cb = Bind(&TakesOwnership, Passed(CreateFoo()));
123//
124//   // |arg| in TakesOwnership() is given ownership of Foo(). |cb|
125//   // no longer owns Foo() and, if reset, would not delete Foo().
126//   cb.Run();  // Foo() is now transferred to |arg| and deleted.
127//   cb.Run();  // This CHECK()s since Foo() already been used once.
128//
129// Passed() is particularly useful with PostTask() when you are transferring
130// ownership of an argument into a task, but don't necessarily know if the
131// task will always be executed. This can happen if the task is cancellable
132// or if it is posted to a TaskRunner.
133//
134//
135// SIMPLE FUNCTIONS AND UTILITIES.
136//
137//   DoNothing() - Useful for creating a Closure that does nothing when called.
138//   DeletePointer<T>() - Useful for creating a Closure that will delete a
139//                        pointer when invoked. Only use this when necessary.
140//                        In most cases MessageLoop::DeleteSoon() is a better
141//                        fit.
142
143#ifndef BASE_BIND_HELPERS_H_
144#define BASE_BIND_HELPERS_H_
145
146#include <stddef.h>
147
148#include <map>
149#include <memory>
150#include <type_traits>
151#include <utility>
152#include <vector>
153
154#include "base/callback.h"
155#include "base/memory/weak_ptr.h"
156#include "base/template_util.h"
157#include "build/build_config.h"
158
159namespace base {
160namespace internal {
161
162// Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T
163// for the existence of AddRef() and Release() functions of the correct
164// signature.
165//
166// http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error
167// http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-template-to-check-for-a-functions-existence
168// http://stackoverflow.com/questions/4358584/sfinae-approach-comparison
169// http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-member-functions
170//
171// The last link in particular show the method used below.
172//
173// For SFINAE to work with inherited methods, we need to pull some extra tricks
174// with multiple inheritance.  In the more standard formulation, the overloads
175// of Check would be:
176//
177//   template <typename C>
178//   Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*);
179//
180//   template <typename C>
181//   No NotTheCheckWeWant(...);
182//
183//   static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes);
184//
185// The problem here is that template resolution will not match
186// C::TargetFunc if TargetFunc does not exist directly in C.  That is, if
187// TargetFunc in inherited from an ancestor, &C::TargetFunc will not match,
188// |value| will be false.  This formulation only checks for whether or
189// not TargetFunc exist directly in the class being introspected.
190//
191// To get around this, we play a dirty trick with multiple inheritance.
192// First, We create a class BaseMixin that declares each function that we
193// want to probe for.  Then we create a class Base that inherits from both T
194// (the class we wish to probe) and BaseMixin.  Note that the function
195// signature in BaseMixin does not need to match the signature of the function
196// we are probing for; thus it's easiest to just use void().
197//
198// Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an
199// ambiguous resolution between BaseMixin and T.  This lets us write the
200// following:
201//
202//   template <typename C>
203//   No GoodCheck(Helper<&C::TargetFunc>*);
204//
205//   template <typename C>
206//   Yes GoodCheck(...);
207//
208//   static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes);
209//
210// Notice here that the variadic version of GoodCheck() returns Yes here
211// instead of No like the previous one. Also notice that we calculate |value|
212// by specializing GoodCheck() on Base instead of T.
213//
214// We've reversed the roles of the variadic, and Helper overloads.
215// GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid
216// substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve
217// to the variadic version if T has TargetFunc.  If T::TargetFunc does not
218// exist, then &C::TargetFunc is not ambiguous, and the overload resolution
219// will prefer GoodCheck(Helper<&C::TargetFunc>*).
220//
221// This method of SFINAE will correctly probe for inherited names, but it cannot
222// typecheck those names.  It's still a good enough sanity check though.
223//
224// Works on gcc-4.2, gcc-4.4, and Visual Studio 2008.
225//
226// TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted
227// this works well.
228//
229// TODO(ajwong): Make this check for Release() as well.
230// See http://crbug.com/82038.
231template <typename T>
232class SupportsAddRefAndRelease {
233  using Yes = char[1];
234  using No = char[2];
235
236  struct BaseMixin {
237    void AddRef();
238  };
239
240// MSVC warns when you try to use Base if T has a private destructor, the
241// common pattern for refcounted types. It does this even though no attempt to
242// instantiate Base is made.  We disable the warning for this definition.
243#if defined(OS_WIN)
244#pragma warning(push)
245#pragma warning(disable:4624)
246#endif
247  struct Base : public T, public BaseMixin {
248  };
249#if defined(OS_WIN)
250#pragma warning(pop)
251#endif
252
253  template <void(BaseMixin::*)()> struct Helper {};
254
255  template <typename C>
256  static No& Check(Helper<&C::AddRef>*);
257
258  template <typename >
259  static Yes& Check(...);
260
261 public:
262  enum { value = sizeof(Check<Base>(0)) == sizeof(Yes) };
263};
264
265// Helpers to assert that arguments of a recounted type are bound with a
266// scoped_refptr.
267template <bool IsClasstype, typename T>
268struct UnsafeBindtoRefCountedArgHelper : false_type {
269};
270
271template <typename T>
272struct UnsafeBindtoRefCountedArgHelper<true, T>
273    : integral_constant<bool, SupportsAddRefAndRelease<T>::value> {
274};
275
276template <typename T>
277struct UnsafeBindtoRefCountedArg : false_type {
278};
279
280template <typename T>
281struct UnsafeBindtoRefCountedArg<T*>
282    : UnsafeBindtoRefCountedArgHelper<is_class<T>::value, T> {
283};
284
285template <typename T>
286class HasIsMethodTag {
287  using Yes = char[1];
288  using No = char[2];
289
290  template <typename U>
291  static Yes& Check(typename U::IsMethod*);
292
293  template <typename U>
294  static No& Check(...);
295
296 public:
297  enum { value = sizeof(Check<T>(0)) == sizeof(Yes) };
298};
299
300template <typename T>
301class UnretainedWrapper {
302 public:
303  explicit UnretainedWrapper(T* o) : ptr_(o) {}
304  T* get() const { return ptr_; }
305 private:
306  T* ptr_;
307};
308
309template <typename T>
310class ConstRefWrapper {
311 public:
312  explicit ConstRefWrapper(const T& o) : ptr_(&o) {}
313  const T& get() const { return *ptr_; }
314 private:
315  const T* ptr_;
316};
317
318template <typename T>
319struct IgnoreResultHelper {
320  explicit IgnoreResultHelper(T functor) : functor_(functor) {}
321
322  T functor_;
323};
324
325template <typename T>
326struct IgnoreResultHelper<Callback<T> > {
327  explicit IgnoreResultHelper(const Callback<T>& functor) : functor_(functor) {}
328
329  const Callback<T>& functor_;
330};
331
332// An alternate implementation is to avoid the destructive copy, and instead
333// specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to
334// a class that is essentially a scoped_ptr<>.
335//
336// The current implementation has the benefit though of leaving ParamTraits<>
337// fully in callback_internal.h as well as avoiding type conversions during
338// storage.
339template <typename T>
340class OwnedWrapper {
341 public:
342  explicit OwnedWrapper(T* o) : ptr_(o) {}
343  ~OwnedWrapper() { delete ptr_; }
344  T* get() const { return ptr_; }
345  OwnedWrapper(const OwnedWrapper& other) {
346    ptr_ = other.ptr_;
347    other.ptr_ = NULL;
348  }
349
350 private:
351  mutable T* ptr_;
352};
353
354// PassedWrapper is a copyable adapter for a scoper that ignores const.
355//
356// It is needed to get around the fact that Bind() takes a const reference to
357// all its arguments.  Because Bind() takes a const reference to avoid
358// unnecessary copies, it is incompatible with movable-but-not-copyable
359// types; doing a destructive "move" of the type into Bind() would violate
360// the const correctness.
361//
362// This conundrum cannot be solved without either C++11 rvalue references or
363// a O(2^n) blowup of Bind() templates to handle each combination of regular
364// types and movable-but-not-copyable types.  Thus we introduce a wrapper type
365// that is copyable to transmit the correct type information down into
366// BindState<>. Ignoring const in this type makes sense because it is only
367// created when we are explicitly trying to do a destructive move.
368//
369// Two notes:
370//  1) PassedWrapper supports any type that has a move constructor, however
371//     the type will need to be specifically whitelisted in order for it to be
372//     bound to a Callback. We guard this explicitly at the call of Passed()
373//     to make for clear errors. Things not given to Passed() will be forwarded
374//     and stored by value which will not work for general move-only types.
375//  2) is_valid_ is distinct from NULL because it is valid to bind a "NULL"
376//     scoper to a Callback and allow the Callback to execute once.
377template <typename T>
378class PassedWrapper {
379 public:
380  explicit PassedWrapper(T&& scoper)
381      : is_valid_(true), scoper_(std::move(scoper)) {}
382  PassedWrapper(const PassedWrapper& other)
383      : is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {}
384  T Pass() const {
385    CHECK(is_valid_);
386    is_valid_ = false;
387    return std::move(scoper_);
388  }
389
390 private:
391  mutable bool is_valid_;
392  mutable T scoper_;
393};
394
395// Specialize PassedWrapper for std::unique_ptr used by base::Passed().
396// Use std::move() to transfer the data from one storage to another.
397template <typename T, typename D>
398class PassedWrapper<std::unique_ptr<T, D>> {
399 public:
400  explicit PassedWrapper(std::unique_ptr<T, D> scoper)
401      : is_valid_(true), scoper_(std::move(scoper)) {}
402  PassedWrapper(const PassedWrapper& other)
403      : is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {}
404
405  std::unique_ptr<T, D> Pass() const {
406    CHECK(is_valid_);
407    is_valid_ = false;
408    return std::move(scoper_);
409  }
410
411 private:
412  mutable bool is_valid_;
413  mutable std::unique_ptr<T, D> scoper_;
414};
415
416// Specialize PassedWrapper for std::vector<std::unique_ptr<T>>.
417template <typename T, typename D, typename A>
418class PassedWrapper<std::vector<std::unique_ptr<T, D>, A>> {
419 public:
420  explicit PassedWrapper(std::vector<std::unique_ptr<T, D>, A> scoper)
421      : is_valid_(true), scoper_(std::move(scoper)) {}
422  PassedWrapper(const PassedWrapper& other)
423      : is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {}
424
425  std::vector<std::unique_ptr<T, D>, A> Pass() const {
426    CHECK(is_valid_);
427    is_valid_ = false;
428    return std::move(scoper_);
429  }
430
431 private:
432  mutable bool is_valid_;
433  mutable std::vector<std::unique_ptr<T, D>, A> scoper_;
434};
435
436// Specialize PassedWrapper for std::map<K, std::unique_ptr<T>>.
437template <typename K, typename T, typename D, typename C, typename A>
438class PassedWrapper<std::map<K, std::unique_ptr<T, D>, C, A>> {
439 public:
440  explicit PassedWrapper(std::map<K, std::unique_ptr<T, D>, C, A> scoper)
441      : is_valid_(true), scoper_(std::move(scoper)) {}
442  PassedWrapper(const PassedWrapper& other)
443      : is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {}
444
445  std::map<K, std::unique_ptr<T, D>, C, A> Pass() const {
446    CHECK(is_valid_);
447    is_valid_ = false;
448    return std::move(scoper_);
449  }
450
451 private:
452  mutable bool is_valid_;
453  mutable std::map<K, std::unique_ptr<T, D>, C, A> scoper_;
454};
455
456// Unwrap the stored parameters for the wrappers above.
457template <typename T>
458struct UnwrapTraits {
459  using ForwardType = const T&;
460  static ForwardType Unwrap(const T& o) { return o; }
461};
462
463template <typename T>
464struct UnwrapTraits<UnretainedWrapper<T> > {
465  using ForwardType = T*;
466  static ForwardType Unwrap(UnretainedWrapper<T> unretained) {
467    return unretained.get();
468  }
469};
470
471template <typename T>
472struct UnwrapTraits<ConstRefWrapper<T> > {
473  using ForwardType = const T&;
474  static ForwardType Unwrap(ConstRefWrapper<T> const_ref) {
475    return const_ref.get();
476  }
477};
478
479template <typename T>
480struct UnwrapTraits<scoped_refptr<T> > {
481  using ForwardType = T*;
482  static ForwardType Unwrap(const scoped_refptr<T>& o) { return o.get(); }
483};
484
485template <typename T>
486struct UnwrapTraits<WeakPtr<T> > {
487  using ForwardType = const WeakPtr<T>&;
488  static ForwardType Unwrap(const WeakPtr<T>& o) { return o; }
489};
490
491template <typename T>
492struct UnwrapTraits<OwnedWrapper<T> > {
493  using ForwardType = T*;
494  static ForwardType Unwrap(const OwnedWrapper<T>& o) {
495    return o.get();
496  }
497};
498
499template <typename T>
500struct UnwrapTraits<PassedWrapper<T> > {
501  using ForwardType = T;
502  static T Unwrap(PassedWrapper<T>& o) {
503    return o.Pass();
504  }
505};
506
507// Utility for handling different refcounting semantics in the Bind()
508// function.
509template <bool is_method, typename... T>
510struct MaybeScopedRefPtr;
511
512template <bool is_method>
513struct MaybeScopedRefPtr<is_method> {
514  MaybeScopedRefPtr() {}
515};
516
517template <typename T, typename... Rest>
518struct MaybeScopedRefPtr<false, T, Rest...> {
519  MaybeScopedRefPtr(const T&, const Rest&...) {}
520};
521
522template <typename T, size_t n, typename... Rest>
523struct MaybeScopedRefPtr<false, T[n], Rest...> {
524  MaybeScopedRefPtr(const T*, const Rest&...) {}
525};
526
527template <typename T, typename... Rest>
528struct MaybeScopedRefPtr<true, T, Rest...> {
529  MaybeScopedRefPtr(const T& /* o */, const Rest&...) {}
530};
531
532template <typename T, typename... Rest>
533struct MaybeScopedRefPtr<true, T*, Rest...> {
534  MaybeScopedRefPtr(T* o, const Rest&...) : ref_(o) {}
535  scoped_refptr<T> ref_;
536};
537
538// No need to additionally AddRef() and Release() since we are storing a
539// scoped_refptr<> inside the storage object already.
540template <typename T, typename... Rest>
541struct MaybeScopedRefPtr<true, scoped_refptr<T>, Rest...> {
542  MaybeScopedRefPtr(const scoped_refptr<T>&, const Rest&...) {}
543};
544
545template <typename T, typename... Rest>
546struct MaybeScopedRefPtr<true, const T*, Rest...> {
547  MaybeScopedRefPtr(const T* o, const Rest&...) : ref_(o) {}
548  scoped_refptr<const T> ref_;
549};
550
551// IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a
552// method.  It is used internally by Bind() to select the correct
553// InvokeHelper that will no-op itself in the event the WeakPtr<> for
554// the target object is invalidated.
555//
556// The first argument should be the type of the object that will be received by
557// the method.
558template <bool IsMethod, typename... Args>
559struct IsWeakMethod : public false_type {};
560
561template <typename T, typename... Args>
562struct IsWeakMethod<true, WeakPtr<T>, Args...> : public true_type {};
563
564template <typename T, typename... Args>
565struct IsWeakMethod<true, ConstRefWrapper<WeakPtr<T>>, Args...>
566    : public true_type {};
567
568
569// Packs a list of types to hold them in a single type.
570template <typename... Types>
571struct TypeList {};
572
573// Used for DropTypeListItem implementation.
574template <size_t n, typename List>
575struct DropTypeListItemImpl;
576
577// Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
578template <size_t n, typename T, typename... List>
579struct DropTypeListItemImpl<n, TypeList<T, List...>>
580    : DropTypeListItemImpl<n - 1, TypeList<List...>> {};
581
582template <typename T, typename... List>
583struct DropTypeListItemImpl<0, TypeList<T, List...>> {
584  using Type = TypeList<T, List...>;
585};
586
587template <>
588struct DropTypeListItemImpl<0, TypeList<>> {
589  using Type = TypeList<>;
590};
591
592// A type-level function that drops |n| list item from given TypeList.
593template <size_t n, typename List>
594using DropTypeListItem = typename DropTypeListItemImpl<n, List>::Type;
595
596// Used for TakeTypeListItem implementation.
597template <size_t n, typename List, typename... Accum>
598struct TakeTypeListItemImpl;
599
600// Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
601template <size_t n, typename T, typename... List, typename... Accum>
602struct TakeTypeListItemImpl<n, TypeList<T, List...>, Accum...>
603    : TakeTypeListItemImpl<n - 1, TypeList<List...>, Accum..., T> {};
604
605template <typename T, typename... List, typename... Accum>
606struct TakeTypeListItemImpl<0, TypeList<T, List...>, Accum...> {
607  using Type = TypeList<Accum...>;
608};
609
610template <typename... Accum>
611struct TakeTypeListItemImpl<0, TypeList<>, Accum...> {
612  using Type = TypeList<Accum...>;
613};
614
615// A type-level function that takes first |n| list item from given TypeList.
616// E.g. TakeTypeListItem<3, TypeList<A, B, C, D>> is evaluated to
617// TypeList<A, B, C>.
618template <size_t n, typename List>
619using TakeTypeListItem = typename TakeTypeListItemImpl<n, List>::Type;
620
621// Used for ConcatTypeLists implementation.
622template <typename List1, typename List2>
623struct ConcatTypeListsImpl;
624
625template <typename... Types1, typename... Types2>
626struct ConcatTypeListsImpl<TypeList<Types1...>, TypeList<Types2...>> {
627  using Type = TypeList<Types1..., Types2...>;
628};
629
630// A type-level function that concats two TypeLists.
631template <typename List1, typename List2>
632using ConcatTypeLists = typename ConcatTypeListsImpl<List1, List2>::Type;
633
634// Used for MakeFunctionType implementation.
635template <typename R, typename ArgList>
636struct MakeFunctionTypeImpl;
637
638template <typename R, typename... Args>
639struct MakeFunctionTypeImpl<R, TypeList<Args...>> {
640  // MSVC 2013 doesn't support Type Alias of function types.
641  // Revisit this after we update it to newer version.
642  typedef R Type(Args...);
643};
644
645// A type-level function that constructs a function type that has |R| as its
646// return type and has TypeLists items as its arguments.
647template <typename R, typename ArgList>
648using MakeFunctionType = typename MakeFunctionTypeImpl<R, ArgList>::Type;
649
650// Used for ExtractArgs.
651template <typename Signature>
652struct ExtractArgsImpl;
653
654template <typename R, typename... Args>
655struct ExtractArgsImpl<R(Args...)> {
656  using Type = TypeList<Args...>;
657};
658
659// A type-level function that extracts function arguments into a TypeList.
660// E.g. ExtractArgs<R(A, B, C)> is evaluated to TypeList<A, B, C>.
661template <typename Signature>
662using ExtractArgs = typename ExtractArgsImpl<Signature>::Type;
663
664}  // namespace internal
665
666template <typename T>
667static inline internal::UnretainedWrapper<T> Unretained(T* o) {
668  return internal::UnretainedWrapper<T>(o);
669}
670
671template <typename T>
672static inline internal::ConstRefWrapper<T> ConstRef(const T& o) {
673  return internal::ConstRefWrapper<T>(o);
674}
675
676template <typename T>
677static inline internal::OwnedWrapper<T> Owned(T* o) {
678  return internal::OwnedWrapper<T>(o);
679}
680
681// We offer 2 syntaxes for calling Passed().  The first takes an rvalue and
682// is best suited for use with the return value of a function or other temporary
683// rvalues. The second takes a pointer to the scoper and is just syntactic sugar
684// to avoid having to write Passed(std::move(scoper)).
685//
686// Both versions of Passed() prevent T from being an lvalue reference. The first
687// via use of enable_if, and the second takes a T* which will not bind to T&.
688template <typename T,
689          typename std::enable_if<internal::IsMoveOnlyType<T>::value &&
690                                  !std::is_lvalue_reference<T>::value>::type* =
691              nullptr>
692static inline internal::PassedWrapper<T> Passed(T&& scoper) {
693  return internal::PassedWrapper<T>(std::move(scoper));
694}
695template <typename T,
696          typename std::enable_if<internal::IsMoveOnlyType<T>::value>::type* =
697              nullptr>
698static inline internal::PassedWrapper<T> Passed(T* scoper) {
699  return internal::PassedWrapper<T>(std::move(*scoper));
700}
701
702template <typename T>
703static inline internal::IgnoreResultHelper<T> IgnoreResult(T data) {
704  return internal::IgnoreResultHelper<T>(data);
705}
706
707template <typename T>
708static inline internal::IgnoreResultHelper<Callback<T> >
709IgnoreResult(const Callback<T>& data) {
710  return internal::IgnoreResultHelper<Callback<T> >(data);
711}
712
713BASE_EXPORT void DoNothing();
714
715template<typename T>
716void DeletePointer(T* obj) {
717  delete obj;
718}
719
720}  // namespace base
721
722#endif  // BASE_BIND_HELPERS_H_
723