jdarith.c revision 1e247ac854f8e33682bcfea475f6bccc42377208
1ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/*
2ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * jdarith.c
36948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar *
46948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar * Copyright (C) 1997, Guido Vollbeding <guivol@esc.de>.
5ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * This file is NOT part of the Independent JPEG Group's software
6ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * for legal reasons.
7ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * See the accompanying README file for conditions of distribution and use.
8ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines *
9ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * This file contains portable arithmetic entropy decoding routines for JPEG
10ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
11ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines *
126948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar * Both sequential and progressive modes are supported in this single module.
13ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines *
146948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar * Suspension is not currently supported in this module.
15ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines */
16ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
17ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines#define JPEG_INTERNALS
18ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines#include "jinclude.h"
19ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines#include "jpeglib.h"
20ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
21ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
22ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/* Expanded entropy decoder object for arithmetic decoding. */
23ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
246948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainartypedef struct {
25ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  struct jpeg_entropy_decoder pub; /* public fields */
26ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
27ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  INT32 c;       /* C register, base of coding interval + input bit buffer */
286948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar  INT32 a;               /* A register, normalized size of coding interval */
29ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  int ct;     /* bit shift counter, # of bits left in bit buffer part of C */
30ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines                                                         /* init: ct = -16 */
31ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines                                                         /* run: ct = 0..7 */
32ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines                                                         /* error: ct = -1 */
33ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
34ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
35ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
36ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
37ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
38ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  /* Pointers to statistics areas (these workspaces have image lifespan) */
39ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  unsigned char * dc_stats[NUM_ARITH_TBLS];
40ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  unsigned char * ac_stats[NUM_ARITH_TBLS];
41ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines} arith_entropy_decoder;
42ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
43ebe69fe11e48d322045d5949c83283927a0d790bStephen Hinestypedef arith_entropy_decoder * arith_entropy_ptr;
44ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
45ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/* The following two definitions specify the allocation chunk size
466948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar * for the statistics area.
47ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
48ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * 49 statistics bins for DC, and 245 statistics bins for AC coding.
49ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * Note that we use one additional AC bin for codings with fixed
50ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * probability (0.5), thus the minimum number for AC is 246.
51ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines *
52ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * We use a compact representation with 1 byte per statistics bin,
53ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * thus the numbers directly represent byte sizes.
54ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * This 1 byte per statistics bin contains the meaning of the MPS
55ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * (more probable symbol) in the highest bit (mask 0x80), and the
56ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * index into the probability estimation state machine table
57ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * in the lower bits (mask 0x7F).
58ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines */
59ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
60ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines#define DC_STAT_BINS 64
61ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines#define AC_STAT_BINS 256
62ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
63ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
64ebe69fe11e48d322045d5949c83283927a0d790bStephen HinesLOCAL(int)
65ebe69fe11e48d322045d5949c83283927a0d790bStephen Hinesget_byte (j_decompress_ptr cinfo)
666948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar/* Read next input byte; we do not support suspension in this module. */
67ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines{
68ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  struct jpeg_source_mgr * src = cinfo->src;
69ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
70ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  if (src->bytes_in_buffer == 0)
71ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines    if (! (*src->fill_input_buffer) (cinfo))
72ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines      ERREXIT(cinfo, JERR_CANT_SUSPEND);
73ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  src->bytes_in_buffer--;
74ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  return GETJOCTET(*src->next_input_byte++);
75ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines}
76ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
77ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
786948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar/*
79ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * The core arithmetic decoding routine (common in JPEG and JBIG).
806948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar * This needs to go as fast as possible.
81ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * Machine-dependent optimization facilities
826948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar * are not utilized in this portable implementation.
83ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * However, this code should be fairly efficient and
846948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar * may be a good base for further optimizations anyway.
85ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines *
86ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * Return value is 0 or 1 (binary decision).
87ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines *
88ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * Note: I've changed the handling of the code base & bit
89ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * buffer register C compared to other implementations
90ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * based on the standards layout & procedures.
91ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * While it also contains both the actual base of the
92ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * coding interval (16 bits) and the next-bits buffer,
93ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * the cut-point between these two parts is floating
94ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * (instead of fixed) with the bit shift counter CT.
95ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * Thus, we also need only one (variable instead of
96ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * fixed size) shift for the LPS/MPS decision, and
97ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * we can get away with any renormalization update
98ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * of C (except for new data insertion, of course).
99ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines *
100ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * I've also introduced a new scheme for accessing
101ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * the probability estimation state machine table,
102ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * derived from Markus Kuhn's JBIG implementation.
103ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines */
104ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
105ebe69fe11e48d322045d5949c83283927a0d790bStephen HinesLOCAL(int)
106ebe69fe11e48d322045d5949c83283927a0d790bStephen Hinesarith_decode (j_decompress_ptr cinfo, unsigned char *st)
107ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines{
1086948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar  extern const INT32 jaritab[];
109ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
110ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  register unsigned char nl, nm;
111ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  register INT32 qe, temp;
112ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  register int sv, data;
113ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
114ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  /* Renormalization & data input per section D.2.6 */
115ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  while (e->a < 0x8000L) {
116ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines    if (--e->ct < 0) {
117ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines      /* Need to fetch next data byte */
118ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines      if (cinfo->unread_marker)
119ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines	data = 0;		/* stuff zero data */
120ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines      else {
121ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines	data = get_byte(cinfo);	/* read next input byte */
1226948897e478cbd66626159776a8017b3c18579b9Pirama Arumuga Nainar	if (data == 0xFF) {	/* zero stuff or marker code */
123ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines	  do data = get_byte(cinfo);
124ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines	  while (data == 0xFF);	/* swallow extra 0xFF bytes */
125ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines	  if (data == 0)
126ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines	    data = 0xFF;	/* discard stuffed zero byte */
127ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines	  else {
128ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines	    /* Note: Different from the Huffman decoder, hitting
129ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines	     * a marker while processing the compressed data
130ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines	     * segment is legal in arithmetic coding.
131ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines	     * The convention is to supply zero data
132ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines	     * then until decoding is complete.
133ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines	     */
134ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines	    cinfo->unread_marker = data;
135ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines	    data = 0;
136ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines	  }
137ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines	}
138ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines      }
139ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines      e->c = (e->c << 8) | data; /* insert data into C register */
140ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines      if ((e->ct += 8) < 0)	 /* update bit shift counter */
141ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines	/* Need more initial bytes */
142ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines	if (++e->ct == 0)
143ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines	  /* Got 2 initial bytes -> re-init A and exit loop */
144ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines	  e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
145ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines    }
146ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines    e->a <<= 1;
147ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  }
148ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
149ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  /* Fetch values from our compact representation of Table D.2:
150ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines   * Qe values and probability estimation state machine
151ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines   */
152ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  sv = *st;
153ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  qe = jaritab[sv & 0x7F];	/* => Qe_Value */
154ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  nl = qe & 0xFF; qe >>= 8;	/* Next_Index_LPS + Switch_MPS */
155ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  nm = qe & 0xFF; qe >>= 8;	/* Next_Index_MPS */
156ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
157ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  /* Decode & estimation procedures per sections D.2.4 & D.2.5 */
158ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  temp = e->a - qe;
159ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  e->a = temp;
160ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  temp <<= e->ct;
161ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  if (e->c >= temp) {
162ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines    e->c -= temp;
163ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines    /* Conditional LPS (less probable symbol) exchange */
164ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines    if (e->a < qe) {
165ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines      e->a = qe;
166ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines      *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
167ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines    } else {
168ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines      e->a = qe;
169ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines      *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
170ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines      sv ^= 0x80;		/* Exchange LPS/MPS */
171ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines    }
172ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  } else if (e->a < 0x8000L) {
173ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines    /* Conditional MPS (more probable symbol) exchange */
174ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines    if (e->a < qe) {
175ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines      *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
176ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines      sv ^= 0x80;		/* Exchange LPS/MPS */
177ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines    } else {
178ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines      *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
179ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines    }
180ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  }
181ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
182ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  return sv >> 7;
183ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines}
184ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
185ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
186ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/*
187ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * Check for a restart marker & resynchronize decoder.
188ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines */
189ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
190ebe69fe11e48d322045d5949c83283927a0d790bStephen HinesLOCAL(void)
191ebe69fe11e48d322045d5949c83283927a0d790bStephen Hinesprocess_restart (j_decompress_ptr cinfo)
192ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines{
193ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
194ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  int ci;
195ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  jpeg_component_info * compptr;
196ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
197ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  /* Advance past the RSTn marker */
198ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  if (! (*cinfo->marker->read_restart_marker) (cinfo))
199ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines    ERREXIT(cinfo, JERR_CANT_SUSPEND);
200ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
201ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
202ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines    compptr = cinfo->cur_comp_info[ci];
203ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines    /* Re-initialize statistics areas */
204ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines    if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
205ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines      MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
206ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines      /* Reset DC predictions to 0 */
207ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines      entropy->last_dc_val[ci] = 0;
208ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines      entropy->dc_context[ci] = 0;
209ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines    }
210ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines    if (cinfo->progressive_mode == 0 || cinfo->Ss) {
211ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines      MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
212ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines    }
213ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  }
214ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
215ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  /* Reset arithmetic decoding variables */
216ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  entropy->c = 0;
217ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  entropy->a = 0;
218ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  entropy->ct = -16;	/* force reading 2 initial bytes to fill C */
219ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
220ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  /* Reset restart counter */
221ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  entropy->restarts_to_go = cinfo->restart_interval;
222ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines}
223ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
224ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
225ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/*
226ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * Arithmetic MCU decoding.
227ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * Each of these routines decodes and returns one MCU's worth of
228ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * arithmetic-compressed coefficients.
229ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * The coefficients are reordered from zigzag order into natural array order,
230ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * but are not dequantized.
231ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines *
232ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * The i'th block of the MCU is stored into the block pointed to by
233ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
234ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines */
235ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
236ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/*
237ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * MCU decoding for DC initial scan (either spectral selection,
238ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines * or first pass of successive approximation).
239ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines */
240ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
241ebe69fe11e48d322045d5949c83283927a0d790bStephen HinesMETHODDEF(boolean)
242ebe69fe11e48d322045d5949c83283927a0d790bStephen Hinesdecode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
243ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines{
244ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
245ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  JBLOCKROW block;
246ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  unsigned char *st;
247ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  int blkn, ci, tbl, sign;
248ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  int v, m;
249ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
250ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  /* Process restart marker if needed */
251ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  if (cinfo->restart_interval) {
252ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines    if (entropy->restarts_to_go == 0)
253      process_restart(cinfo);
254    entropy->restarts_to_go--;
255  }
256
257  if (entropy->ct == -1) return TRUE;	/* if error do nothing */
258
259  /* Outer loop handles each block in the MCU */
260
261  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
262    block = MCU_data[blkn];
263    ci = cinfo->MCU_membership[blkn];
264    tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
265
266    /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
267
268    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
269    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
270
271    /* Figure F.19: Decode_DC_DIFF */
272    if (arith_decode(cinfo, st) == 0)
273      entropy->dc_context[ci] = 0;
274    else {
275      /* Figure F.21: Decoding nonzero value v */
276      /* Figure F.22: Decoding the sign of v */
277      sign = arith_decode(cinfo, st + 1);
278      st += 2; st += sign;
279      /* Figure F.23: Decoding the magnitude category of v */
280      if ((m = arith_decode(cinfo, st)) != 0) {
281	st = entropy->dc_stats[tbl] + 20;	/* Table F.4: X1 = 20 */
282	while (arith_decode(cinfo, st)) {
283	  if ((m <<= 1) == 0x8000) {
284	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
285	    entropy->ct = -1;			/* magnitude overflow */
286	    return TRUE;
287	  }
288	  st += 1;
289	}
290      }
291      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
292      if (m < (int) (((INT32) 1 << cinfo->arith_dc_L[tbl]) >> 1))
293	entropy->dc_context[ci] = 0;		   /* zero diff category */
294      else if (m > (int) (((INT32) 1 << cinfo->arith_dc_U[tbl]) >> 1))
295	entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
296      else
297	entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
298      v = m;
299      /* Figure F.24: Decoding the magnitude bit pattern of v */
300      st += 14;
301      while (m >>= 1)
302	if (arith_decode(cinfo, st)) v |= m;
303      v += 1; if (sign) v = -v;
304      entropy->last_dc_val[ci] += v;
305    }
306
307    /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
308    (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al);
309  }
310
311  return TRUE;
312}
313
314
315/*
316 * MCU decoding for AC initial scan (either spectral selection,
317 * or first pass of successive approximation).
318 */
319
320METHODDEF(boolean)
321decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
322{
323  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
324  JBLOCKROW block;
325  unsigned char *st;
326  int tbl, sign, k;
327  int v, m;
328
329  /* Process restart marker if needed */
330  if (cinfo->restart_interval) {
331    if (entropy->restarts_to_go == 0)
332      process_restart(cinfo);
333    entropy->restarts_to_go--;
334  }
335
336  if (entropy->ct == -1) return TRUE;	/* if error do nothing */
337
338  /* There is always only one block per MCU */
339  block = MCU_data[0];
340  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
341
342  /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
343
344  /* Figure F.20: Decode_AC_coefficients */
345  for (k = cinfo->Ss; k <= cinfo->Se; k++) {
346    st = entropy->ac_stats[tbl] + 3 * (k - 1);
347    if (arith_decode(cinfo, st)) break;		/* EOB flag */
348    while (arith_decode(cinfo, st + 1) == 0) {
349      st += 3; k++;
350      if (k > cinfo->Se) {
351	WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
352	entropy->ct = -1;			/* spectral overflow */
353	return TRUE;
354      }
355    }
356    /* Figure F.21: Decoding nonzero value v */
357    /* Figure F.22: Decoding the sign of v */
358    entropy->ac_stats[tbl][245] = 0;
359    sign = arith_decode(cinfo, entropy->ac_stats[tbl] + 245);
360    st += 2;
361    /* Figure F.23: Decoding the magnitude category of v */
362    if ((m = arith_decode(cinfo, st)) != 0) {
363      if (arith_decode(cinfo, st)) {
364	m <<= 1;
365	st = entropy->ac_stats[tbl] +
366	     (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
367	while (arith_decode(cinfo, st)) {
368	  if ((m <<= 1) == 0x8000) {
369	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
370	    entropy->ct = -1;			/* magnitude overflow */
371	    return TRUE;
372	  }
373	  st += 1;
374	}
375      }
376    }
377    v = m;
378    /* Figure F.24: Decoding the magnitude bit pattern of v */
379    st += 14;
380    while (m >>= 1)
381      if (arith_decode(cinfo, st)) v |= m;
382    v += 1; if (sign) v = -v;
383    /* Scale and output coefficient in natural (dezigzagged) order */
384    (*block)[jpeg_natural_order[k]] = (JCOEF) (v << cinfo->Al);
385  }
386
387  return TRUE;
388}
389
390
391/*
392 * MCU decoding for DC successive approximation refinement scan.
393 */
394
395METHODDEF(boolean)
396decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
397{
398  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
399  unsigned char st[4];
400  int p1, blkn;
401
402  /* Process restart marker if needed */
403  if (cinfo->restart_interval) {
404    if (entropy->restarts_to_go == 0)
405      process_restart(cinfo);
406    entropy->restarts_to_go--;
407  }
408
409  p1 = 1 << cinfo->Al;		/* 1 in the bit position being coded */
410
411  /* Outer loop handles each block in the MCU */
412
413  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
414    st[0] = 0;	/* use fixed probability estimation */
415    /* Encoded data is simply the next bit of the two's-complement DC value */
416    if (arith_decode(cinfo, st))
417      MCU_data[blkn][0][0] |= p1;
418  }
419
420  return TRUE;
421}
422
423
424/*
425 * MCU decoding for AC successive approximation refinement scan.
426 */
427
428METHODDEF(boolean)
429decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
430{
431  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
432  JBLOCKROW block;
433  JCOEFPTR thiscoef;
434  unsigned char *st;
435  int tbl, k, kex;
436  int p1, m1;
437
438  /* Process restart marker if needed */
439  if (cinfo->restart_interval) {
440    if (entropy->restarts_to_go == 0)
441      process_restart(cinfo);
442    entropy->restarts_to_go--;
443  }
444
445  if (entropy->ct == -1) return TRUE;	/* if error do nothing */
446
447  /* There is always only one block per MCU */
448  block = MCU_data[0];
449  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
450
451  p1 = 1 << cinfo->Al;		/* 1 in the bit position being coded */
452  m1 = (-1) << cinfo->Al;	/* -1 in the bit position being coded */
453
454  /* Establish EOBx (previous stage end-of-block) index */
455  for (kex = cinfo->Se + 1; kex > 1; kex--)
456    if ((*block)[jpeg_natural_order[kex - 1]]) break;
457
458  for (k = cinfo->Ss; k <= cinfo->Se; k++) {
459    st = entropy->ac_stats[tbl] + 3 * (k - 1);
460    if (k >= kex)
461      if (arith_decode(cinfo, st)) break;	/* EOB flag */
462    for (;;) {
463      thiscoef = *block + jpeg_natural_order[k];
464      if (*thiscoef) {				/* previously nonzero coef */
465	if (arith_decode(cinfo, st + 2))
466	  if (*thiscoef < 0)
467	    *thiscoef += m1;
468	  else
469	    *thiscoef += p1;
470	break;
471      }
472      if (arith_decode(cinfo, st + 1)) {	/* newly nonzero coef */
473	entropy->ac_stats[tbl][245] = 0;
474	if (arith_decode(cinfo, entropy->ac_stats[tbl] + 245))
475	  *thiscoef = m1;
476	else
477	  *thiscoef = p1;
478	break;
479      }
480      st += 3; k++;
481      if (k > cinfo->Se) {
482	WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
483	entropy->ct = -1;			/* spectral overflow */
484	return TRUE;
485      }
486    }
487  }
488
489  return TRUE;
490}
491
492
493/*
494 * Decode one MCU's worth of arithmetic-compressed coefficients.
495 */
496
497METHODDEF(boolean)
498decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
499{
500  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
501  jpeg_component_info * compptr;
502  JBLOCKROW block;
503  unsigned char *st;
504  int blkn, ci, tbl, sign, k;
505  int v, m;
506
507  /* Process restart marker if needed */
508  if (cinfo->restart_interval) {
509    if (entropy->restarts_to_go == 0)
510      process_restart(cinfo);
511    entropy->restarts_to_go--;
512  }
513
514  if (entropy->ct == -1) return TRUE;	/* if error do nothing */
515
516  /* Outer loop handles each block in the MCU */
517
518  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
519    block = MCU_data[blkn];
520    ci = cinfo->MCU_membership[blkn];
521    compptr = cinfo->cur_comp_info[ci];
522
523    /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
524
525    tbl = compptr->dc_tbl_no;
526
527    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
528    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
529
530    /* Figure F.19: Decode_DC_DIFF */
531    if (arith_decode(cinfo, st) == 0)
532      entropy->dc_context[ci] = 0;
533    else {
534      /* Figure F.21: Decoding nonzero value v */
535      /* Figure F.22: Decoding the sign of v */
536      sign = arith_decode(cinfo, st + 1);
537      st += 2; st += sign;
538      /* Figure F.23: Decoding the magnitude category of v */
539      if ((m = arith_decode(cinfo, st)) != 0) {
540	st = entropy->dc_stats[tbl] + 20;	/* Table F.4: X1 = 20 */
541	while (arith_decode(cinfo, st)) {
542	  if ((m <<= 1) == 0x8000) {
543	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
544	    entropy->ct = -1;			/* magnitude overflow */
545	    return TRUE;
546	  }
547	  st += 1;
548	}
549      }
550      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
551      if (m < (int) (((INT32) 1 << cinfo->arith_dc_L[tbl]) >> 1))
552	entropy->dc_context[ci] = 0;		   /* zero diff category */
553      else if (m > (int) (((INT32) 1 << cinfo->arith_dc_U[tbl]) >> 1))
554	entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
555      else
556	entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
557      v = m;
558      /* Figure F.24: Decoding the magnitude bit pattern of v */
559      st += 14;
560      while (m >>= 1)
561	if (arith_decode(cinfo, st)) v |= m;
562      v += 1; if (sign) v = -v;
563      entropy->last_dc_val[ci] += v;
564    }
565
566    (*block)[0] = (JCOEF) entropy->last_dc_val[ci];
567
568    /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
569
570    tbl = compptr->ac_tbl_no;
571
572    /* Figure F.20: Decode_AC_coefficients */
573    for (k = 1; k < DCTSIZE2; k++) {
574      st = entropy->ac_stats[tbl] + 3 * (k - 1);
575      if (arith_decode(cinfo, st)) break;	/* EOB flag */
576      while (arith_decode(cinfo, st + 1) == 0) {
577	st += 3; k++;
578	if (k >= DCTSIZE2) {
579	  WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
580	  entropy->ct = -1;			/* spectral overflow */
581	  return TRUE;
582	}
583      }
584      /* Figure F.21: Decoding nonzero value v */
585      /* Figure F.22: Decoding the sign of v */
586      entropy->ac_stats[tbl][245] = 0;
587      sign = arith_decode(cinfo, entropy->ac_stats[tbl] + 245);
588      st += 2;
589      /* Figure F.23: Decoding the magnitude category of v */
590      if ((m = arith_decode(cinfo, st)) != 0) {
591	if (arith_decode(cinfo, st)) {
592	  m <<= 1;
593	  st = entropy->ac_stats[tbl] +
594	       (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
595	  while (arith_decode(cinfo, st)) {
596	    if ((m <<= 1) == 0x8000) {
597	      WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
598	      entropy->ct = -1;			/* magnitude overflow */
599	      return TRUE;
600	    }
601	    st += 1;
602	  }
603	}
604      }
605      v = m;
606      /* Figure F.24: Decoding the magnitude bit pattern of v */
607      st += 14;
608      while (m >>= 1)
609	if (arith_decode(cinfo, st)) v |= m;
610      v += 1; if (sign) v = -v;
611      (*block)[jpeg_natural_order[k]] = (JCOEF) v;
612    }
613  }
614
615  return TRUE;
616}
617
618
619/*
620 * Initialize for an arithmetic-compressed scan.
621 */
622
623METHODDEF(void)
624start_pass (j_decompress_ptr cinfo)
625{
626  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
627  int ci, tbl;
628  jpeg_component_info * compptr;
629
630  if (cinfo->progressive_mode) {
631    /* Validate progressive scan parameters */
632    if (cinfo->Ss == 0) {
633      if (cinfo->Se != 0)
634	goto bad;
635    } else {
636      /* need not check Ss/Se < 0 since they came from unsigned bytes */
637      if (cinfo->Se < cinfo->Ss || cinfo->Se >= DCTSIZE2)
638	goto bad;
639      /* AC scans may have only one component */
640      if (cinfo->comps_in_scan != 1)
641	goto bad;
642    }
643    if (cinfo->Ah != 0) {
644      /* Successive approximation refinement scan: must have Al = Ah-1. */
645      if (cinfo->Ah-1 != cinfo->Al)
646	goto bad;
647    }
648    if (cinfo->Al > 13) {	/* need not check for < 0 */
649      bad:
650      ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
651	       cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
652    }
653    /* Update progression status, and verify that scan order is legal.
654     * Note that inter-scan inconsistencies are treated as warnings
655     * not fatal errors ... not clear if this is right way to behave.
656     */
657    for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
658      int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
659      int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
660      if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
661	WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
662      for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
663	int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
664	if (cinfo->Ah != expected)
665	  WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
666	coef_bit_ptr[coefi] = cinfo->Al;
667      }
668    }
669    /* Select MCU decoding routine */
670    if (cinfo->Ah == 0) {
671      if (cinfo->Ss == 0)
672	entropy->pub.decode_mcu = decode_mcu_DC_first;
673      else
674	entropy->pub.decode_mcu = decode_mcu_AC_first;
675    } else {
676      if (cinfo->Ss == 0)
677	entropy->pub.decode_mcu = decode_mcu_DC_refine;
678      else
679	entropy->pub.decode_mcu = decode_mcu_AC_refine;
680    }
681  } else {
682    /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
683     * This ought to be an error condition, but we make it a warning because
684     * there are some baseline files out there with all zeroes in these bytes.
685     */
686    if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
687	cinfo->Ah != 0 || cinfo->Al != 0)
688      WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
689    /* Select MCU decoding routine */
690    entropy->pub.decode_mcu = decode_mcu;
691  }
692
693  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
694    compptr = cinfo->cur_comp_info[ci];
695    /* Allocate & initialize requested statistics areas */
696    if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
697      tbl = compptr->dc_tbl_no;
698      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
699	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
700      if (entropy->dc_stats[tbl] == NULL)
701	entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
702	  ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
703      MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
704      /* Initialize DC predictions to 0 */
705      entropy->last_dc_val[ci] = 0;
706      entropy->dc_context[ci] = 0;
707    }
708    if (cinfo->progressive_mode == 0 || cinfo->Ss) {
709      tbl = compptr->ac_tbl_no;
710      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
711	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
712      if (entropy->ac_stats[tbl] == NULL)
713	entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
714	  ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
715      MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
716    }
717  }
718
719  /* Initialize arithmetic decoding variables */
720  entropy->c = 0;
721  entropy->a = 0;
722  entropy->ct = -16;	/* force reading 2 initial bytes to fill C */
723
724  /* Initialize restart counter */
725  entropy->restarts_to_go = cinfo->restart_interval;
726}
727
728
729/*
730 * Module initialization routine for arithmetic entropy decoding.
731 */
732
733GLOBAL(void)
734jinit_arith_decoder (j_decompress_ptr cinfo)
735{
736  arith_entropy_ptr entropy;
737  int i;
738
739  entropy = (arith_entropy_ptr)
740    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
741				SIZEOF(arith_entropy_decoder));
742  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
743  entropy->pub.start_pass = start_pass;
744
745  /* Mark tables unallocated */
746  for (i = 0; i < NUM_ARITH_TBLS; i++) {
747    entropy->dc_stats[i] = NULL;
748    entropy->ac_stats[i] = NULL;
749  }
750
751  if (cinfo->progressive_mode) {
752    /* Create progression status table */
753    int *coef_bit_ptr, ci;
754    cinfo->coef_bits = (int (*)[DCTSIZE2])
755      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
756				  cinfo->num_components*DCTSIZE2*SIZEOF(int));
757    coef_bit_ptr = & cinfo->coef_bits[0][0];
758    for (ci = 0; ci < cinfo->num_components; ci++)
759      for (i = 0; i < DCTSIZE2; i++)
760	*coef_bit_ptr++ = -1;
761  }
762}
763