1/*
2 *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
3 *
4 *  Use of this source code is governed by a BSD-style license
5 *  that can be found in the LICENSE file in the root of the source
6 *  tree. An additional intellectual property rights grant can be found
7 *  in the file PATENTS.  All contributing project authors may
8 *  be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include <assert.h>
12#if defined(_MSC_VER) && _MSC_VER <= 1500
13// Need to include math.h before calling tmmintrin.h/intrin.h
14// in certain versions of MSVS.
15#include <math.h>
16#endif
17#include <tmmintrin.h>  // SSSE3
18
19#include "./vp9_rtcd.h"
20#include "vpx_dsp/x86/inv_txfm_sse2.h"
21#include "vpx_dsp/x86/txfm_common_sse2.h"
22
23void vp9_fdct8x8_quant_ssse3(const int16_t *input, int stride,
24                             int16_t* coeff_ptr, intptr_t n_coeffs,
25                             int skip_block, const int16_t* zbin_ptr,
26                             const int16_t* round_ptr, const int16_t* quant_ptr,
27                             const int16_t* quant_shift_ptr,
28                             int16_t* qcoeff_ptr,
29                             int16_t* dqcoeff_ptr, const int16_t* dequant_ptr,
30                             uint16_t* eob_ptr,
31                             const int16_t* scan_ptr,
32                             const int16_t* iscan_ptr) {
33  __m128i zero;
34  int pass;
35  // Constants
36  //    When we use them, in one case, they are all the same. In all others
37  //    it's a pair of them that we need to repeat four times. This is done
38  //    by constructing the 32 bit constant corresponding to that pair.
39  const __m128i k__dual_p16_p16 = dual_set_epi16(23170, 23170);
40  const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
41  const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
42  const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
43  const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
44  const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
45  const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
46  const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
47  const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
48  const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
49  // Load input
50  __m128i in0  = _mm_load_si128((const __m128i *)(input + 0 * stride));
51  __m128i in1  = _mm_load_si128((const __m128i *)(input + 1 * stride));
52  __m128i in2  = _mm_load_si128((const __m128i *)(input + 2 * stride));
53  __m128i in3  = _mm_load_si128((const __m128i *)(input + 3 * stride));
54  __m128i in4  = _mm_load_si128((const __m128i *)(input + 4 * stride));
55  __m128i in5  = _mm_load_si128((const __m128i *)(input + 5 * stride));
56  __m128i in6  = _mm_load_si128((const __m128i *)(input + 6 * stride));
57  __m128i in7  = _mm_load_si128((const __m128i *)(input + 7 * stride));
58  __m128i *in[8];
59  int index = 0;
60
61  (void)scan_ptr;
62  (void)zbin_ptr;
63  (void)quant_shift_ptr;
64  (void)coeff_ptr;
65
66  // Pre-condition input (shift by two)
67  in0 = _mm_slli_epi16(in0, 2);
68  in1 = _mm_slli_epi16(in1, 2);
69  in2 = _mm_slli_epi16(in2, 2);
70  in3 = _mm_slli_epi16(in3, 2);
71  in4 = _mm_slli_epi16(in4, 2);
72  in5 = _mm_slli_epi16(in5, 2);
73  in6 = _mm_slli_epi16(in6, 2);
74  in7 = _mm_slli_epi16(in7, 2);
75
76  in[0] = &in0;
77  in[1] = &in1;
78  in[2] = &in2;
79  in[3] = &in3;
80  in[4] = &in4;
81  in[5] = &in5;
82  in[6] = &in6;
83  in[7] = &in7;
84
85  // We do two passes, first the columns, then the rows. The results of the
86  // first pass are transposed so that the same column code can be reused. The
87  // results of the second pass are also transposed so that the rows (processed
88  // as columns) are put back in row positions.
89  for (pass = 0; pass < 2; pass++) {
90    // To store results of each pass before the transpose.
91    __m128i res0, res1, res2, res3, res4, res5, res6, res7;
92    // Add/subtract
93    const __m128i q0 = _mm_add_epi16(in0, in7);
94    const __m128i q1 = _mm_add_epi16(in1, in6);
95    const __m128i q2 = _mm_add_epi16(in2, in5);
96    const __m128i q3 = _mm_add_epi16(in3, in4);
97    const __m128i q4 = _mm_sub_epi16(in3, in4);
98    const __m128i q5 = _mm_sub_epi16(in2, in5);
99    const __m128i q6 = _mm_sub_epi16(in1, in6);
100    const __m128i q7 = _mm_sub_epi16(in0, in7);
101    // Work on first four results
102    {
103      // Add/subtract
104      const __m128i r0 = _mm_add_epi16(q0, q3);
105      const __m128i r1 = _mm_add_epi16(q1, q2);
106      const __m128i r2 = _mm_sub_epi16(q1, q2);
107      const __m128i r3 = _mm_sub_epi16(q0, q3);
108      // Interleave to do the multiply by constants which gets us into 32bits
109      const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
110      const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
111      const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
112      const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
113
114      const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
115      const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16);
116      const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16);
117      const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16);
118
119      const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08);
120      const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08);
121      const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24);
122      const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24);
123      // dct_const_round_shift
124
125      const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
126      const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
127      const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
128      const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
129
130      const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
131      const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
132      const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
133      const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
134
135      const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
136      const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
137      const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
138      const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
139
140      const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
141      const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
142      const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
143      const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
144      // Combine
145
146      res0 = _mm_packs_epi32(w0, w1);
147      res4 = _mm_packs_epi32(w2, w3);
148      res2 = _mm_packs_epi32(w4, w5);
149      res6 = _mm_packs_epi32(w6, w7);
150    }
151    // Work on next four results
152    {
153      // Interleave to do the multiply by constants which gets us into 32bits
154      const __m128i d0 = _mm_sub_epi16(q6, q5);
155      const __m128i d1 = _mm_add_epi16(q6, q5);
156      const __m128i r0 = _mm_mulhrs_epi16(d0, k__dual_p16_p16);
157      const __m128i r1 = _mm_mulhrs_epi16(d1, k__dual_p16_p16);
158
159      // Add/subtract
160      const __m128i x0 = _mm_add_epi16(q4, r0);
161      const __m128i x1 = _mm_sub_epi16(q4, r0);
162      const __m128i x2 = _mm_sub_epi16(q7, r1);
163      const __m128i x3 = _mm_add_epi16(q7, r1);
164      // Interleave to do the multiply by constants which gets us into 32bits
165      const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
166      const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
167      const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
168      const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
169      const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04);
170      const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04);
171      const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28);
172      const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28);
173      const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20);
174      const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20);
175      const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12);
176      const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12);
177      // dct_const_round_shift
178      const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
179      const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
180      const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
181      const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
182      const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
183      const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
184      const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
185      const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
186      const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
187      const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
188      const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
189      const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
190      const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
191      const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
192      const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
193      const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
194      // Combine
195      res1 = _mm_packs_epi32(w0, w1);
196      res7 = _mm_packs_epi32(w2, w3);
197      res5 = _mm_packs_epi32(w4, w5);
198      res3 = _mm_packs_epi32(w6, w7);
199    }
200    // Transpose the 8x8.
201    {
202      // 00 01 02 03 04 05 06 07
203      // 10 11 12 13 14 15 16 17
204      // 20 21 22 23 24 25 26 27
205      // 30 31 32 33 34 35 36 37
206      // 40 41 42 43 44 45 46 47
207      // 50 51 52 53 54 55 56 57
208      // 60 61 62 63 64 65 66 67
209      // 70 71 72 73 74 75 76 77
210      const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1);
211      const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3);
212      const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1);
213      const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3);
214      const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5);
215      const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7);
216      const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5);
217      const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7);
218      // 00 10 01 11 02 12 03 13
219      // 20 30 21 31 22 32 23 33
220      // 04 14 05 15 06 16 07 17
221      // 24 34 25 35 26 36 27 37
222      // 40 50 41 51 42 52 43 53
223      // 60 70 61 71 62 72 63 73
224      // 54 54 55 55 56 56 57 57
225      // 64 74 65 75 66 76 67 77
226      const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
227      const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
228      const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
229      const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
230      const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
231      const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
232      const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
233      const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
234      // 00 10 20 30 01 11 21 31
235      // 40 50 60 70 41 51 61 71
236      // 02 12 22 32 03 13 23 33
237      // 42 52 62 72 43 53 63 73
238      // 04 14 24 34 05 15 21 36
239      // 44 54 64 74 45 55 61 76
240      // 06 16 26 36 07 17 27 37
241      // 46 56 66 76 47 57 67 77
242      in0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
243      in1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
244      in2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
245      in3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
246      in4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
247      in5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
248      in6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
249      in7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
250      // 00 10 20 30 40 50 60 70
251      // 01 11 21 31 41 51 61 71
252      // 02 12 22 32 42 52 62 72
253      // 03 13 23 33 43 53 63 73
254      // 04 14 24 34 44 54 64 74
255      // 05 15 25 35 45 55 65 75
256      // 06 16 26 36 46 56 66 76
257      // 07 17 27 37 47 57 67 77
258    }
259  }
260  // Post-condition output and store it
261  {
262    // Post-condition (division by two)
263    //    division of two 16 bits signed numbers using shifts
264    //    n / 2 = (n - (n >> 15)) >> 1
265    const __m128i sign_in0 = _mm_srai_epi16(in0, 15);
266    const __m128i sign_in1 = _mm_srai_epi16(in1, 15);
267    const __m128i sign_in2 = _mm_srai_epi16(in2, 15);
268    const __m128i sign_in3 = _mm_srai_epi16(in3, 15);
269    const __m128i sign_in4 = _mm_srai_epi16(in4, 15);
270    const __m128i sign_in5 = _mm_srai_epi16(in5, 15);
271    const __m128i sign_in6 = _mm_srai_epi16(in6, 15);
272    const __m128i sign_in7 = _mm_srai_epi16(in7, 15);
273    in0 = _mm_sub_epi16(in0, sign_in0);
274    in1 = _mm_sub_epi16(in1, sign_in1);
275    in2 = _mm_sub_epi16(in2, sign_in2);
276    in3 = _mm_sub_epi16(in3, sign_in3);
277    in4 = _mm_sub_epi16(in4, sign_in4);
278    in5 = _mm_sub_epi16(in5, sign_in5);
279    in6 = _mm_sub_epi16(in6, sign_in6);
280    in7 = _mm_sub_epi16(in7, sign_in7);
281    in0 = _mm_srai_epi16(in0, 1);
282    in1 = _mm_srai_epi16(in1, 1);
283    in2 = _mm_srai_epi16(in2, 1);
284    in3 = _mm_srai_epi16(in3, 1);
285    in4 = _mm_srai_epi16(in4, 1);
286    in5 = _mm_srai_epi16(in5, 1);
287    in6 = _mm_srai_epi16(in6, 1);
288    in7 = _mm_srai_epi16(in7, 1);
289  }
290
291  iscan_ptr += n_coeffs;
292  qcoeff_ptr += n_coeffs;
293  dqcoeff_ptr += n_coeffs;
294  n_coeffs = -n_coeffs;
295  zero = _mm_setzero_si128();
296
297  if (!skip_block) {
298    __m128i eob;
299    __m128i round, quant, dequant, thr;
300    int16_t nzflag;
301    {
302      __m128i coeff0, coeff1;
303
304      // Setup global values
305      {
306        round = _mm_load_si128((const __m128i*)round_ptr);
307        quant = _mm_load_si128((const __m128i*)quant_ptr);
308        dequant = _mm_load_si128((const __m128i*)dequant_ptr);
309      }
310
311      {
312        __m128i coeff0_sign, coeff1_sign;
313        __m128i qcoeff0, qcoeff1;
314        __m128i qtmp0, qtmp1;
315        // Do DC and first 15 AC
316        coeff0 = *in[0];
317        coeff1 = *in[1];
318
319        // Poor man's sign extract
320        coeff0_sign = _mm_srai_epi16(coeff0, 15);
321        coeff1_sign = _mm_srai_epi16(coeff1, 15);
322        qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
323        qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
324        qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
325        qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
326
327        qcoeff0 = _mm_adds_epi16(qcoeff0, round);
328        round = _mm_unpackhi_epi64(round, round);
329        qcoeff1 = _mm_adds_epi16(qcoeff1, round);
330        qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
331        quant = _mm_unpackhi_epi64(quant, quant);
332        qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
333
334        // Reinsert signs
335        qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign);
336        qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign);
337        qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
338        qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
339
340        _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), qcoeff0);
341        _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, qcoeff1);
342
343        coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
344        dequant = _mm_unpackhi_epi64(dequant, dequant);
345        coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
346
347        _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), coeff0);
348        _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, coeff1);
349      }
350
351      {
352        // Scan for eob
353        __m128i zero_coeff0, zero_coeff1;
354        __m128i nzero_coeff0, nzero_coeff1;
355        __m128i iscan0, iscan1;
356        __m128i eob1;
357        zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
358        zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
359        nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
360        nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
361        iscan0 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs));
362        iscan1 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs) + 1);
363        // Add one to convert from indices to counts
364        iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
365        iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
366        eob = _mm_and_si128(iscan0, nzero_coeff0);
367        eob1 = _mm_and_si128(iscan1, nzero_coeff1);
368        eob = _mm_max_epi16(eob, eob1);
369      }
370      n_coeffs += 8 * 2;
371    }
372
373    // AC only loop
374    index = 2;
375    thr = _mm_srai_epi16(dequant, 1);
376    while (n_coeffs < 0) {
377      __m128i coeff0, coeff1;
378      {
379        __m128i coeff0_sign, coeff1_sign;
380        __m128i qcoeff0, qcoeff1;
381        __m128i qtmp0, qtmp1;
382
383        assert(index < (int)(sizeof(in) / sizeof(in[0])) - 1);
384        coeff0 = *in[index];
385        coeff1 = *in[index + 1];
386
387        // Poor man's sign extract
388        coeff0_sign = _mm_srai_epi16(coeff0, 15);
389        coeff1_sign = _mm_srai_epi16(coeff1, 15);
390        qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
391        qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
392        qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
393        qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
394
395        nzflag = _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff0, thr)) |
396            _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff1, thr));
397
398        if (nzflag) {
399          qcoeff0 = _mm_adds_epi16(qcoeff0, round);
400          qcoeff1 = _mm_adds_epi16(qcoeff1, round);
401          qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
402          qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
403
404          // Reinsert signs
405          qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign);
406          qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign);
407          qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
408          qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
409
410          _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), qcoeff0);
411          _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, qcoeff1);
412
413          coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
414          coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
415
416          _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), coeff0);
417          _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, coeff1);
418        } else {
419          _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), zero);
420          _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, zero);
421
422          _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), zero);
423          _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, zero);
424        }
425      }
426
427      if (nzflag) {
428        // Scan for eob
429        __m128i zero_coeff0, zero_coeff1;
430        __m128i nzero_coeff0, nzero_coeff1;
431        __m128i iscan0, iscan1;
432        __m128i eob0, eob1;
433        zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
434        zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
435        nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
436        nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
437        iscan0 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs));
438        iscan1 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs) + 1);
439        // Add one to convert from indices to counts
440        iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
441        iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
442        eob0 = _mm_and_si128(iscan0, nzero_coeff0);
443        eob1 = _mm_and_si128(iscan1, nzero_coeff1);
444        eob0 = _mm_max_epi16(eob0, eob1);
445        eob = _mm_max_epi16(eob, eob0);
446      }
447      n_coeffs += 8 * 2;
448      index += 2;
449    }
450
451    // Accumulate EOB
452    {
453      __m128i eob_shuffled;
454      eob_shuffled = _mm_shuffle_epi32(eob, 0xe);
455      eob = _mm_max_epi16(eob, eob_shuffled);
456      eob_shuffled = _mm_shufflelo_epi16(eob, 0xe);
457      eob = _mm_max_epi16(eob, eob_shuffled);
458      eob_shuffled = _mm_shufflelo_epi16(eob, 0x1);
459      eob = _mm_max_epi16(eob, eob_shuffled);
460      *eob_ptr = _mm_extract_epi16(eob, 1);
461    }
462  } else {
463    do {
464      _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), zero);
465      _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, zero);
466      _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), zero);
467      _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, zero);
468      n_coeffs += 8 * 2;
469    } while (n_coeffs < 0);
470    *eob_ptr = 0;
471  }
472}
473