1//===-- llvm/CodeGen/MachineBasicBlock.h ------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Collect the sequence of machine instructions for a basic block.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
15#define LLVM_CODEGEN_MACHINEBASICBLOCK_H
16
17#include "llvm/ADT/GraphTraits.h"
18#include "llvm/CodeGen/MachineInstr.h"
19#include "llvm/Support/BranchProbability.h"
20#include "llvm/MC/MCRegisterInfo.h"
21#include "llvm/Support/DataTypes.h"
22#include <functional>
23
24namespace llvm {
25
26class Pass;
27class BasicBlock;
28class MachineFunction;
29class MCSymbol;
30class MIPrinter;
31class SlotIndexes;
32class StringRef;
33class raw_ostream;
34class MachineBranchProbabilityInfo;
35
36// Forward declaration to avoid circular include problem with TargetRegisterInfo
37typedef unsigned LaneBitmask;
38
39template <>
40struct ilist_traits<MachineInstr> : public ilist_default_traits<MachineInstr> {
41private:
42  mutable ilist_half_node<MachineInstr> Sentinel;
43
44  // this is only set by the MachineBasicBlock owning the LiveList
45  friend class MachineBasicBlock;
46  MachineBasicBlock* Parent;
47
48public:
49  MachineInstr *createSentinel() const {
50    return static_cast<MachineInstr*>(&Sentinel);
51  }
52  void destroySentinel(MachineInstr *) const {}
53
54  MachineInstr *provideInitialHead() const { return createSentinel(); }
55  MachineInstr *ensureHead(MachineInstr*) const { return createSentinel(); }
56  static void noteHead(MachineInstr*, MachineInstr*) {}
57
58  void addNodeToList(MachineInstr* N);
59  void removeNodeFromList(MachineInstr* N);
60  void transferNodesFromList(ilist_traits &SrcTraits,
61                             ilist_iterator<MachineInstr> First,
62                             ilist_iterator<MachineInstr> Last);
63  void deleteNode(MachineInstr *N);
64private:
65  void createNode(const MachineInstr &);
66};
67
68class MachineBasicBlock
69    : public ilist_node_with_parent<MachineBasicBlock, MachineFunction> {
70public:
71  /// Pair of physical register and lane mask.
72  /// This is not simply a std::pair typedef because the members should be named
73  /// clearly as they both have an integer type.
74  struct RegisterMaskPair {
75  public:
76    MCPhysReg PhysReg;
77    LaneBitmask LaneMask;
78
79    RegisterMaskPair(MCPhysReg PhysReg, LaneBitmask LaneMask)
80        : PhysReg(PhysReg), LaneMask(LaneMask) {}
81  };
82
83private:
84  typedef ilist<MachineInstr> Instructions;
85  Instructions Insts;
86  const BasicBlock *BB;
87  int Number;
88  MachineFunction *xParent;
89
90  /// Keep track of the predecessor / successor basic blocks.
91  std::vector<MachineBasicBlock *> Predecessors;
92  std::vector<MachineBasicBlock *> Successors;
93
94  /// Keep track of the probabilities to the successors. This vector has the
95  /// same order as Successors, or it is empty if we don't use it (disable
96  /// optimization).
97  std::vector<BranchProbability> Probs;
98  typedef std::vector<BranchProbability>::iterator probability_iterator;
99  typedef std::vector<BranchProbability>::const_iterator
100      const_probability_iterator;
101
102  /// Keep track of the physical registers that are livein of the basicblock.
103  typedef std::vector<RegisterMaskPair> LiveInVector;
104  LiveInVector LiveIns;
105
106  /// Alignment of the basic block. Zero if the basic block does not need to be
107  /// aligned. The alignment is specified as log2(bytes).
108  unsigned Alignment = 0;
109
110  /// Indicate that this basic block is entered via an exception handler.
111  bool IsEHPad = false;
112
113  /// Indicate that this basic block is potentially the target of an indirect
114  /// branch.
115  bool AddressTaken = false;
116
117  /// Indicate that this basic block is the entry block of an EH funclet.
118  bool IsEHFuncletEntry = false;
119
120  /// Indicate that this basic block is the entry block of a cleanup funclet.
121  bool IsCleanupFuncletEntry = false;
122
123  /// \brief since getSymbol is a relatively heavy-weight operation, the symbol
124  /// is only computed once and is cached.
125  mutable MCSymbol *CachedMCSymbol = nullptr;
126
127  // Intrusive list support
128  MachineBasicBlock() {}
129
130  explicit MachineBasicBlock(MachineFunction &MF, const BasicBlock *BB);
131
132  ~MachineBasicBlock();
133
134  // MachineBasicBlocks are allocated and owned by MachineFunction.
135  friend class MachineFunction;
136
137public:
138  /// Return the LLVM basic block that this instance corresponded to originally.
139  /// Note that this may be NULL if this instance does not correspond directly
140  /// to an LLVM basic block.
141  const BasicBlock *getBasicBlock() const { return BB; }
142
143  /// Return the name of the corresponding LLVM basic block, or "(null)".
144  StringRef getName() const;
145
146  /// Return a formatted string to identify this block and its parent function.
147  std::string getFullName() const;
148
149  /// Test whether this block is potentially the target of an indirect branch.
150  bool hasAddressTaken() const { return AddressTaken; }
151
152  /// Set this block to reflect that it potentially is the target of an indirect
153  /// branch.
154  void setHasAddressTaken() { AddressTaken = true; }
155
156  /// Return the MachineFunction containing this basic block.
157  const MachineFunction *getParent() const { return xParent; }
158  MachineFunction *getParent() { return xParent; }
159
160  /// MachineBasicBlock iterator that automatically skips over MIs that are
161  /// inside bundles (i.e. walk top level MIs only).
162  template<typename Ty, typename IterTy>
163  class bundle_iterator
164    : public std::iterator<std::bidirectional_iterator_tag, Ty, ptrdiff_t> {
165    IterTy MII;
166
167  public:
168    bundle_iterator(IterTy MI) : MII(MI) {}
169
170    bundle_iterator(Ty &MI) : MII(MI) {
171      assert(!MI.isBundledWithPred() &&
172             "It's not legal to initialize bundle_iterator with a bundled MI");
173    }
174    bundle_iterator(Ty *MI) : MII(MI) {
175      assert((!MI || !MI->isBundledWithPred()) &&
176             "It's not legal to initialize bundle_iterator with a bundled MI");
177    }
178    // Template allows conversion from const to nonconst.
179    template<class OtherTy, class OtherIterTy>
180    bundle_iterator(const bundle_iterator<OtherTy, OtherIterTy> &I)
181      : MII(I.getInstrIterator()) {}
182    bundle_iterator() : MII(nullptr) {}
183
184    Ty &operator*() const { return *MII; }
185    Ty *operator->() const { return &operator*(); }
186
187    operator Ty *() const { return MII.getNodePtrUnchecked(); }
188
189    bool operator==(const bundle_iterator &X) const {
190      return MII == X.MII;
191    }
192    bool operator!=(const bundle_iterator &X) const {
193      return !operator==(X);
194    }
195
196    // Increment and decrement operators...
197    bundle_iterator &operator--() {      // predecrement - Back up
198      do --MII;
199      while (MII->isBundledWithPred());
200      return *this;
201    }
202    bundle_iterator &operator++() {      // preincrement - Advance
203      while (MII->isBundledWithSucc())
204        ++MII;
205      ++MII;
206      return *this;
207    }
208    bundle_iterator operator--(int) {    // postdecrement operators...
209      bundle_iterator tmp = *this;
210      --*this;
211      return tmp;
212    }
213    bundle_iterator operator++(int) {    // postincrement operators...
214      bundle_iterator tmp = *this;
215      ++*this;
216      return tmp;
217    }
218
219    IterTy getInstrIterator() const {
220      return MII;
221    }
222  };
223
224  typedef Instructions::iterator                                 instr_iterator;
225  typedef Instructions::const_iterator                     const_instr_iterator;
226  typedef std::reverse_iterator<instr_iterator>          reverse_instr_iterator;
227  typedef
228  std::reverse_iterator<const_instr_iterator>      const_reverse_instr_iterator;
229
230  typedef
231  bundle_iterator<MachineInstr,instr_iterator>                         iterator;
232  typedef
233  bundle_iterator<const MachineInstr,const_instr_iterator>       const_iterator;
234  typedef std::reverse_iterator<const_iterator>          const_reverse_iterator;
235  typedef std::reverse_iterator<iterator>                      reverse_iterator;
236
237
238  unsigned size() const { return (unsigned)Insts.size(); }
239  bool empty() const { return Insts.empty(); }
240
241  MachineInstr       &instr_front()       { return Insts.front(); }
242  MachineInstr       &instr_back()        { return Insts.back();  }
243  const MachineInstr &instr_front() const { return Insts.front(); }
244  const MachineInstr &instr_back()  const { return Insts.back();  }
245
246  MachineInstr       &front()             { return Insts.front(); }
247  MachineInstr       &back()              { return *--end();      }
248  const MachineInstr &front()       const { return Insts.front(); }
249  const MachineInstr &back()        const { return *--end();      }
250
251  instr_iterator                instr_begin()       { return Insts.begin();  }
252  const_instr_iterator          instr_begin() const { return Insts.begin();  }
253  instr_iterator                  instr_end()       { return Insts.end();    }
254  const_instr_iterator            instr_end() const { return Insts.end();    }
255  reverse_instr_iterator       instr_rbegin()       { return Insts.rbegin(); }
256  const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
257  reverse_instr_iterator       instr_rend  ()       { return Insts.rend();   }
258  const_reverse_instr_iterator instr_rend  () const { return Insts.rend();   }
259
260  iterator                begin()       { return instr_begin();  }
261  const_iterator          begin() const { return instr_begin();  }
262  iterator                end  ()       { return instr_end();    }
263  const_iterator          end  () const { return instr_end();    }
264  reverse_iterator       rbegin()       { return instr_rbegin(); }
265  const_reverse_iterator rbegin() const { return instr_rbegin(); }
266  reverse_iterator       rend  ()       { return instr_rend();   }
267  const_reverse_iterator rend  () const { return instr_rend();   }
268
269  /// Support for MachineInstr::getNextNode().
270  static Instructions MachineBasicBlock::*getSublistAccess(MachineInstr *) {
271    return &MachineBasicBlock::Insts;
272  }
273
274  inline iterator_range<iterator> terminators() {
275    return make_range(getFirstTerminator(), end());
276  }
277  inline iterator_range<const_iterator> terminators() const {
278    return make_range(getFirstTerminator(), end());
279  }
280
281  // Machine-CFG iterators
282  typedef std::vector<MachineBasicBlock *>::iterator       pred_iterator;
283  typedef std::vector<MachineBasicBlock *>::const_iterator const_pred_iterator;
284  typedef std::vector<MachineBasicBlock *>::iterator       succ_iterator;
285  typedef std::vector<MachineBasicBlock *>::const_iterator const_succ_iterator;
286  typedef std::vector<MachineBasicBlock *>::reverse_iterator
287                                                         pred_reverse_iterator;
288  typedef std::vector<MachineBasicBlock *>::const_reverse_iterator
289                                                   const_pred_reverse_iterator;
290  typedef std::vector<MachineBasicBlock *>::reverse_iterator
291                                                         succ_reverse_iterator;
292  typedef std::vector<MachineBasicBlock *>::const_reverse_iterator
293                                                   const_succ_reverse_iterator;
294  pred_iterator        pred_begin()       { return Predecessors.begin(); }
295  const_pred_iterator  pred_begin() const { return Predecessors.begin(); }
296  pred_iterator        pred_end()         { return Predecessors.end();   }
297  const_pred_iterator  pred_end()   const { return Predecessors.end();   }
298  pred_reverse_iterator        pred_rbegin()
299                                          { return Predecessors.rbegin();}
300  const_pred_reverse_iterator  pred_rbegin() const
301                                          { return Predecessors.rbegin();}
302  pred_reverse_iterator        pred_rend()
303                                          { return Predecessors.rend();  }
304  const_pred_reverse_iterator  pred_rend()   const
305                                          { return Predecessors.rend();  }
306  unsigned             pred_size()  const {
307    return (unsigned)Predecessors.size();
308  }
309  bool                 pred_empty() const { return Predecessors.empty(); }
310  succ_iterator        succ_begin()       { return Successors.begin();   }
311  const_succ_iterator  succ_begin() const { return Successors.begin();   }
312  succ_iterator        succ_end()         { return Successors.end();     }
313  const_succ_iterator  succ_end()   const { return Successors.end();     }
314  succ_reverse_iterator        succ_rbegin()
315                                          { return Successors.rbegin();  }
316  const_succ_reverse_iterator  succ_rbegin() const
317                                          { return Successors.rbegin();  }
318  succ_reverse_iterator        succ_rend()
319                                          { return Successors.rend();    }
320  const_succ_reverse_iterator  succ_rend()   const
321                                          { return Successors.rend();    }
322  unsigned             succ_size()  const {
323    return (unsigned)Successors.size();
324  }
325  bool                 succ_empty() const { return Successors.empty();   }
326
327  inline iterator_range<pred_iterator> predecessors() {
328    return make_range(pred_begin(), pred_end());
329  }
330  inline iterator_range<const_pred_iterator> predecessors() const {
331    return make_range(pred_begin(), pred_end());
332  }
333  inline iterator_range<succ_iterator> successors() {
334    return make_range(succ_begin(), succ_end());
335  }
336  inline iterator_range<const_succ_iterator> successors() const {
337    return make_range(succ_begin(), succ_end());
338  }
339
340  // LiveIn management methods.
341
342  /// Adds the specified register as a live in. Note that it is an error to add
343  /// the same register to the same set more than once unless the intention is
344  /// to call sortUniqueLiveIns after all registers are added.
345  void addLiveIn(MCPhysReg PhysReg, LaneBitmask LaneMask = ~0u) {
346    LiveIns.push_back(RegisterMaskPair(PhysReg, LaneMask));
347  }
348  void addLiveIn(const RegisterMaskPair &RegMaskPair) {
349    LiveIns.push_back(RegMaskPair);
350  }
351
352  /// Sorts and uniques the LiveIns vector. It can be significantly faster to do
353  /// this than repeatedly calling isLiveIn before calling addLiveIn for every
354  /// LiveIn insertion.
355  void sortUniqueLiveIns();
356
357  /// Add PhysReg as live in to this block, and ensure that there is a copy of
358  /// PhysReg to a virtual register of class RC. Return the virtual register
359  /// that is a copy of the live in PhysReg.
360  unsigned addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC);
361
362  /// Remove the specified register from the live in set.
363  void removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask = ~0u);
364
365  /// Return true if the specified register is in the live in set.
366  bool isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask = ~0u) const;
367
368  // Iteration support for live in sets.  These sets are kept in sorted
369  // order by their register number.
370  typedef LiveInVector::const_iterator livein_iterator;
371  livein_iterator livein_begin() const { return LiveIns.begin(); }
372  livein_iterator livein_end()   const { return LiveIns.end(); }
373  bool            livein_empty() const { return LiveIns.empty(); }
374  iterator_range<livein_iterator> liveins() const {
375    return make_range(livein_begin(), livein_end());
376  }
377
378  /// Get the clobber mask for the start of this basic block. Funclets use this
379  /// to prevent register allocation across funclet transitions.
380  const uint32_t *getBeginClobberMask(const TargetRegisterInfo *TRI) const;
381
382  /// Get the clobber mask for the end of the basic block.
383  /// \see getBeginClobberMask()
384  const uint32_t *getEndClobberMask(const TargetRegisterInfo *TRI) const;
385
386  /// Return alignment of the basic block. The alignment is specified as
387  /// log2(bytes).
388  unsigned getAlignment() const { return Alignment; }
389
390  /// Set alignment of the basic block. The alignment is specified as
391  /// log2(bytes).
392  void setAlignment(unsigned Align) { Alignment = Align; }
393
394  /// Returns true if the block is a landing pad. That is this basic block is
395  /// entered via an exception handler.
396  bool isEHPad() const { return IsEHPad; }
397
398  /// Indicates the block is a landing pad.  That is this basic block is entered
399  /// via an exception handler.
400  void setIsEHPad(bool V = true) { IsEHPad = V; }
401
402  /// If this block has a successor that is a landing pad, return it. Otherwise
403  /// return NULL.
404  const MachineBasicBlock *getLandingPadSuccessor() const;
405
406  bool hasEHPadSuccessor() const;
407
408  /// Returns true if this is the entry block of an EH funclet.
409  bool isEHFuncletEntry() const { return IsEHFuncletEntry; }
410
411  /// Indicates if this is the entry block of an EH funclet.
412  void setIsEHFuncletEntry(bool V = true) { IsEHFuncletEntry = V; }
413
414  /// Returns true if this is the entry block of a cleanup funclet.
415  bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry; }
416
417  /// Indicates if this is the entry block of a cleanup funclet.
418  void setIsCleanupFuncletEntry(bool V = true) { IsCleanupFuncletEntry = V; }
419
420  // Code Layout methods.
421
422  /// Move 'this' block before or after the specified block.  This only moves
423  /// the block, it does not modify the CFG or adjust potential fall-throughs at
424  /// the end of the block.
425  void moveBefore(MachineBasicBlock *NewAfter);
426  void moveAfter(MachineBasicBlock *NewBefore);
427
428  /// Update the terminator instructions in block to account for changes to the
429  /// layout. If the block previously used a fallthrough, it may now need a
430  /// branch, and if it previously used branching it may now be able to use a
431  /// fallthrough.
432  void updateTerminator();
433
434  // Machine-CFG mutators
435
436  /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
437  /// of Succ is automatically updated. PROB parameter is stored in
438  /// Probabilities list. The default probability is set as unknown. Mixing
439  /// known and unknown probabilities in successor list is not allowed. When all
440  /// successors have unknown probabilities, 1 / N is returned as the
441  /// probability for each successor, where N is the number of successors.
442  ///
443  /// Note that duplicate Machine CFG edges are not allowed.
444  void addSuccessor(MachineBasicBlock *Succ,
445                    BranchProbability Prob = BranchProbability::getUnknown());
446
447  /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
448  /// of Succ is automatically updated. The probability is not provided because
449  /// BPI is not available (e.g. -O0 is used), in which case edge probabilities
450  /// won't be used. Using this interface can save some space.
451  void addSuccessorWithoutProb(MachineBasicBlock *Succ);
452
453  /// Set successor probability of a given iterator.
454  void setSuccProbability(succ_iterator I, BranchProbability Prob);
455
456  /// Normalize probabilities of all successors so that the sum of them becomes
457  /// one. This is usually done when the current update on this MBB is done, and
458  /// the sum of its successors' probabilities is not guaranteed to be one. The
459  /// user is responsible for the correct use of this function.
460  /// MBB::removeSuccessor() has an option to do this automatically.
461  void normalizeSuccProbs() {
462    BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
463  }
464
465  /// Validate successors' probabilities and check if the sum of them is
466  /// approximate one. This only works in DEBUG mode.
467  void validateSuccProbs() const;
468
469  /// Remove successor from the successors list of this MachineBasicBlock. The
470  /// Predecessors list of Succ is automatically updated.
471  /// If NormalizeSuccProbs is true, then normalize successors' probabilities
472  /// after the successor is removed.
473  void removeSuccessor(MachineBasicBlock *Succ,
474                       bool NormalizeSuccProbs = false);
475
476  /// Remove specified successor from the successors list of this
477  /// MachineBasicBlock. The Predecessors list of Succ is automatically updated.
478  /// If NormalizeSuccProbs is true, then normalize successors' probabilities
479  /// after the successor is removed.
480  /// Return the iterator to the element after the one removed.
481  succ_iterator removeSuccessor(succ_iterator I,
482                                bool NormalizeSuccProbs = false);
483
484  /// Replace successor OLD with NEW and update probability info.
485  void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
486
487  /// Transfers all the successors from MBB to this machine basic block (i.e.,
488  /// copies all the successors FromMBB and remove all the successors from
489  /// FromMBB).
490  void transferSuccessors(MachineBasicBlock *FromMBB);
491
492  /// Transfers all the successors, as in transferSuccessors, and update PHI
493  /// operands in the successor blocks which refer to FromMBB to refer to this.
494  void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB);
495
496  /// Return true if any of the successors have probabilities attached to them.
497  bool hasSuccessorProbabilities() const { return !Probs.empty(); }
498
499  /// Return true if the specified MBB is a predecessor of this block.
500  bool isPredecessor(const MachineBasicBlock *MBB) const;
501
502  /// Return true if the specified MBB is a successor of this block.
503  bool isSuccessor(const MachineBasicBlock *MBB) const;
504
505  /// Return true if the specified MBB will be emitted immediately after this
506  /// block, such that if this block exits by falling through, control will
507  /// transfer to the specified MBB. Note that MBB need not be a successor at
508  /// all, for example if this block ends with an unconditional branch to some
509  /// other block.
510  bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
511
512  /// Return true if the block can implicitly transfer control to the block
513  /// after it by falling off the end of it.  This should return false if it can
514  /// reach the block after it, but it uses an explicit branch to do so (e.g., a
515  /// table jump).  True is a conservative answer.
516  bool canFallThrough();
517
518  /// Returns a pointer to the first instruction in this block that is not a
519  /// PHINode instruction. When adding instructions to the beginning of the
520  /// basic block, they should be added before the returned value, not before
521  /// the first instruction, which might be PHI.
522  /// Returns end() is there's no non-PHI instruction.
523  iterator getFirstNonPHI();
524
525  /// Return the first instruction in MBB after I that is not a PHI or a label.
526  /// This is the correct point to insert copies at the beginning of a basic
527  /// block.
528  iterator SkipPHIsAndLabels(iterator I);
529
530  /// Returns an iterator to the first terminator instruction of this basic
531  /// block. If a terminator does not exist, it returns end().
532  iterator getFirstTerminator();
533  const_iterator getFirstTerminator() const {
534    return const_cast<MachineBasicBlock *>(this)->getFirstTerminator();
535  }
536
537  /// Same getFirstTerminator but it ignores bundles and return an
538  /// instr_iterator instead.
539  instr_iterator getFirstInstrTerminator();
540
541  /// Returns an iterator to the first non-debug instruction in the basic block,
542  /// or end().
543  iterator getFirstNonDebugInstr();
544  const_iterator getFirstNonDebugInstr() const {
545    return const_cast<MachineBasicBlock *>(this)->getFirstNonDebugInstr();
546  }
547
548  /// Returns an iterator to the last non-debug instruction in the basic block,
549  /// or end().
550  iterator getLastNonDebugInstr();
551  const_iterator getLastNonDebugInstr() const {
552    return const_cast<MachineBasicBlock *>(this)->getLastNonDebugInstr();
553  }
554
555  /// Convenience function that returns true if the block ends in a return
556  /// instruction.
557  bool isReturnBlock() const {
558    return !empty() && back().isReturn();
559  }
560
561  /// Split the critical edge from this block to the given successor block, and
562  /// return the newly created block, or null if splitting is not possible.
563  ///
564  /// This function updates LiveVariables, MachineDominatorTree, and
565  /// MachineLoopInfo, as applicable.
566  MachineBasicBlock *SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P);
567
568  void pop_front() { Insts.pop_front(); }
569  void pop_back() { Insts.pop_back(); }
570  void push_back(MachineInstr *MI) { Insts.push_back(MI); }
571
572  /// Insert MI into the instruction list before I, possibly inside a bundle.
573  ///
574  /// If the insertion point is inside a bundle, MI will be added to the bundle,
575  /// otherwise MI will not be added to any bundle. That means this function
576  /// alone can't be used to prepend or append instructions to bundles. See
577  /// MIBundleBuilder::insert() for a more reliable way of doing that.
578  instr_iterator insert(instr_iterator I, MachineInstr *M);
579
580  /// Insert a range of instructions into the instruction list before I.
581  template<typename IT>
582  void insert(iterator I, IT S, IT E) {
583    assert((I == end() || I->getParent() == this) &&
584           "iterator points outside of basic block");
585    Insts.insert(I.getInstrIterator(), S, E);
586  }
587
588  /// Insert MI into the instruction list before I.
589  iterator insert(iterator I, MachineInstr *MI) {
590    assert((I == end() || I->getParent() == this) &&
591           "iterator points outside of basic block");
592    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
593           "Cannot insert instruction with bundle flags");
594    return Insts.insert(I.getInstrIterator(), MI);
595  }
596
597  /// Insert MI into the instruction list after I.
598  iterator insertAfter(iterator I, MachineInstr *MI) {
599    assert((I == end() || I->getParent() == this) &&
600           "iterator points outside of basic block");
601    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
602           "Cannot insert instruction with bundle flags");
603    return Insts.insertAfter(I.getInstrIterator(), MI);
604  }
605
606  /// Remove an instruction from the instruction list and delete it.
607  ///
608  /// If the instruction is part of a bundle, the other instructions in the
609  /// bundle will still be bundled after removing the single instruction.
610  instr_iterator erase(instr_iterator I);
611
612  /// Remove an instruction from the instruction list and delete it.
613  ///
614  /// If the instruction is part of a bundle, the other instructions in the
615  /// bundle will still be bundled after removing the single instruction.
616  instr_iterator erase_instr(MachineInstr *I) {
617    return erase(instr_iterator(I));
618  }
619
620  /// Remove a range of instructions from the instruction list and delete them.
621  iterator erase(iterator I, iterator E) {
622    return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
623  }
624
625  /// Remove an instruction or bundle from the instruction list and delete it.
626  ///
627  /// If I points to a bundle of instructions, they are all erased.
628  iterator erase(iterator I) {
629    return erase(I, std::next(I));
630  }
631
632  /// Remove an instruction from the instruction list and delete it.
633  ///
634  /// If I is the head of a bundle of instructions, the whole bundle will be
635  /// erased.
636  iterator erase(MachineInstr *I) {
637    return erase(iterator(I));
638  }
639
640  /// Remove the unbundled instruction from the instruction list without
641  /// deleting it.
642  ///
643  /// This function can not be used to remove bundled instructions, use
644  /// remove_instr to remove individual instructions from a bundle.
645  MachineInstr *remove(MachineInstr *I) {
646    assert(!I->isBundled() && "Cannot remove bundled instructions");
647    return Insts.remove(instr_iterator(I));
648  }
649
650  /// Remove the possibly bundled instruction from the instruction list
651  /// without deleting it.
652  ///
653  /// If the instruction is part of a bundle, the other instructions in the
654  /// bundle will still be bundled after removing the single instruction.
655  MachineInstr *remove_instr(MachineInstr *I);
656
657  void clear() {
658    Insts.clear();
659  }
660
661  /// Take an instruction from MBB 'Other' at the position From, and insert it
662  /// into this MBB right before 'Where'.
663  ///
664  /// If From points to a bundle of instructions, the whole bundle is moved.
665  void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
666    // The range splice() doesn't allow noop moves, but this one does.
667    if (Where != From)
668      splice(Where, Other, From, std::next(From));
669  }
670
671  /// Take a block of instructions from MBB 'Other' in the range [From, To),
672  /// and insert them into this MBB right before 'Where'.
673  ///
674  /// The instruction at 'Where' must not be included in the range of
675  /// instructions to move.
676  void splice(iterator Where, MachineBasicBlock *Other,
677              iterator From, iterator To) {
678    Insts.splice(Where.getInstrIterator(), Other->Insts,
679                 From.getInstrIterator(), To.getInstrIterator());
680  }
681
682  /// This method unlinks 'this' from the containing function, and returns it,
683  /// but does not delete it.
684  MachineBasicBlock *removeFromParent();
685
686  /// This method unlinks 'this' from the containing function and deletes it.
687  void eraseFromParent();
688
689  /// Given a machine basic block that branched to 'Old', change the code and
690  /// CFG so that it branches to 'New' instead.
691  void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
692
693  /// Various pieces of code can cause excess edges in the CFG to be inserted.
694  /// If we have proven that MBB can only branch to DestA and DestB, remove any
695  /// other MBB successors from the CFG. DestA and DestB can be null. Besides
696  /// DestA and DestB, retain other edges leading to LandingPads (currently
697  /// there can be only one; we don't check or require that here). Note it is
698  /// possible that DestA and/or DestB are LandingPads.
699  bool CorrectExtraCFGEdges(MachineBasicBlock *DestA,
700                            MachineBasicBlock *DestB,
701                            bool IsCond);
702
703  /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
704  /// instructions.  Return UnknownLoc if there is none.
705  DebugLoc findDebugLoc(instr_iterator MBBI);
706  DebugLoc findDebugLoc(iterator MBBI) {
707    return findDebugLoc(MBBI.getInstrIterator());
708  }
709
710  /// Possible outcome of a register liveness query to computeRegisterLiveness()
711  enum LivenessQueryResult {
712    LQR_Live,   ///< Register is known to be (at least partially) live.
713    LQR_Dead,   ///< Register is known to be fully dead.
714    LQR_Unknown ///< Register liveness not decidable from local neighborhood.
715  };
716
717  /// Return whether (physical) register \p Reg has been <def>ined and not
718  /// <kill>ed as of just before \p Before.
719  ///
720  /// Search is localised to a neighborhood of \p Neighborhood instructions
721  /// before (searching for defs or kills) and \p Neighborhood instructions
722  /// after (searching just for defs) \p Before.
723  ///
724  /// \p Reg must be a physical register.
725  LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
726                                              unsigned Reg,
727                                              const_iterator Before,
728                                              unsigned Neighborhood=10) const;
729
730  // Debugging methods.
731  void dump() const;
732  void print(raw_ostream &OS, SlotIndexes* = nullptr) const;
733  void print(raw_ostream &OS, ModuleSlotTracker &MST,
734             SlotIndexes * = nullptr) const;
735
736  // Printing method used by LoopInfo.
737  void printAsOperand(raw_ostream &OS, bool PrintType = true) const;
738
739  /// MachineBasicBlocks are uniquely numbered at the function level, unless
740  /// they're not in a MachineFunction yet, in which case this will return -1.
741  int getNumber() const { return Number; }
742  void setNumber(int N) { Number = N; }
743
744  /// Return the MCSymbol for this basic block.
745  MCSymbol *getSymbol() const;
746
747
748private:
749  /// Return probability iterator corresponding to the I successor iterator.
750  probability_iterator getProbabilityIterator(succ_iterator I);
751  const_probability_iterator
752  getProbabilityIterator(const_succ_iterator I) const;
753
754  friend class MachineBranchProbabilityInfo;
755  friend class MIPrinter;
756
757  /// Return probability of the edge from this block to MBB. This method should
758  /// NOT be called directly, but by using getEdgeProbability method from
759  /// MachineBranchProbabilityInfo class.
760  BranchProbability getSuccProbability(const_succ_iterator Succ) const;
761
762  // Methods used to maintain doubly linked list of blocks...
763  friend struct ilist_traits<MachineBasicBlock>;
764
765  // Machine-CFG mutators
766
767  /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
768  /// unless you know what you're doing, because it doesn't update Pred's
769  /// successors list. Use Pred->addSuccessor instead.
770  void addPredecessor(MachineBasicBlock *Pred);
771
772  /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
773  /// unless you know what you're doing, because it doesn't update Pred's
774  /// successors list. Use Pred->removeSuccessor instead.
775  void removePredecessor(MachineBasicBlock *Pred);
776};
777
778raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
779
780// This is useful when building IndexedMaps keyed on basic block pointers.
781struct MBB2NumberFunctor :
782  public std::unary_function<const MachineBasicBlock*, unsigned> {
783  unsigned operator()(const MachineBasicBlock *MBB) const {
784    return MBB->getNumber();
785  }
786};
787
788//===--------------------------------------------------------------------===//
789// GraphTraits specializations for machine basic block graphs (machine-CFGs)
790//===--------------------------------------------------------------------===//
791
792// Provide specializations of GraphTraits to be able to treat a
793// MachineFunction as a graph of MachineBasicBlocks.
794//
795
796template <> struct GraphTraits<MachineBasicBlock *> {
797  typedef MachineBasicBlock NodeType;
798  typedef MachineBasicBlock::succ_iterator ChildIteratorType;
799
800  static NodeType *getEntryNode(MachineBasicBlock *BB) { return BB; }
801  static inline ChildIteratorType child_begin(NodeType *N) {
802    return N->succ_begin();
803  }
804  static inline ChildIteratorType child_end(NodeType *N) {
805    return N->succ_end();
806  }
807};
808
809template <> struct GraphTraits<const MachineBasicBlock *> {
810  typedef const MachineBasicBlock NodeType;
811  typedef MachineBasicBlock::const_succ_iterator ChildIteratorType;
812
813  static NodeType *getEntryNode(const MachineBasicBlock *BB) { return BB; }
814  static inline ChildIteratorType child_begin(NodeType *N) {
815    return N->succ_begin();
816  }
817  static inline ChildIteratorType child_end(NodeType *N) {
818    return N->succ_end();
819  }
820};
821
822// Provide specializations of GraphTraits to be able to treat a
823// MachineFunction as a graph of MachineBasicBlocks and to walk it
824// in inverse order.  Inverse order for a function is considered
825// to be when traversing the predecessor edges of a MBB
826// instead of the successor edges.
827//
828template <> struct GraphTraits<Inverse<MachineBasicBlock*> > {
829  typedef MachineBasicBlock NodeType;
830  typedef MachineBasicBlock::pred_iterator ChildIteratorType;
831  static NodeType *getEntryNode(Inverse<MachineBasicBlock *> G) {
832    return G.Graph;
833  }
834  static inline ChildIteratorType child_begin(NodeType *N) {
835    return N->pred_begin();
836  }
837  static inline ChildIteratorType child_end(NodeType *N) {
838    return N->pred_end();
839  }
840};
841
842template <> struct GraphTraits<Inverse<const MachineBasicBlock*> > {
843  typedef const MachineBasicBlock NodeType;
844  typedef MachineBasicBlock::const_pred_iterator ChildIteratorType;
845  static NodeType *getEntryNode(Inverse<const MachineBasicBlock*> G) {
846    return G.Graph;
847  }
848  static inline ChildIteratorType child_begin(NodeType *N) {
849    return N->pred_begin();
850  }
851  static inline ChildIteratorType child_end(NodeType *N) {
852    return N->pred_end();
853  }
854};
855
856
857
858/// MachineInstrSpan provides an interface to get an iteration range
859/// containing the instruction it was initialized with, along with all
860/// those instructions inserted prior to or following that instruction
861/// at some point after the MachineInstrSpan is constructed.
862class MachineInstrSpan {
863  MachineBasicBlock &MBB;
864  MachineBasicBlock::iterator I, B, E;
865public:
866  MachineInstrSpan(MachineBasicBlock::iterator I)
867    : MBB(*I->getParent()),
868      I(I),
869      B(I == MBB.begin() ? MBB.end() : std::prev(I)),
870      E(std::next(I)) {}
871
872  MachineBasicBlock::iterator begin() {
873    return B == MBB.end() ? MBB.begin() : std::next(B);
874  }
875  MachineBasicBlock::iterator end() { return E; }
876  bool empty() { return begin() == end(); }
877
878  MachineBasicBlock::iterator getInitial() { return I; }
879};
880
881} // End llvm namespace
882
883#endif
884